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Thesis outline

This thesis consists of three parts:

Part I is a scientific paper about using automatic weather stations to build
a data driven decision support system for avalanche forecasting.

Part II gives some background information about the models being used.

Part III contains notes on the implementation.

Preface

This thesis is written as a part of my master in Applied Physics and Math-
ematics at the Norwegian University of Science and Technology (NTNU).
Statens Vegvesen (The Norwegian Public Road Administration) proposed
the project, wanting to research what data science could do to help them im-
prove avalanche safety on the road network. As a statistician with an interest
in avalanches, it seemed like a very interesting project where knowledge from
many different domains had to be combined. Also, using knowledge about
statistics and technology to solve a practical problem was a motivational fac-
tor to me.

The main part of the thesis is an article which is written such that it can be
published as a scientific paper. It is intended for researchers in avalanche sci-
ence, engineers working with avalanches or others who work with avalanche
safety. Knowledge about snow avalanche formation is assumed so no back-
ground information about avalanche theory is included in the article. Also,
details about the mathematical properties of the models are kept to a min-
imum. Part II briefly explains the theory behind the models that are being
used. This part is added to give some background information and is in-
tended for a more mathematical oriented audience. The third and last part
is about the implementation. Much of the work in this project was related
to data analysis and programming, and also involved development of a pro-
totype. To do that efficiently, I took advantage of many open source projects
and I also developed one myself for easy retrieval of weather data. The pro-
totype showing live avalanche predictions for Mefjorden at Senja is available
at http://52.19.132.210:5000/.
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Using automatic weather stations to build a
data driven decision support system for

avalanche forecasting

Anders Asheim Hennum
Department of Mathematical Sciences

NTNU, March 2016

Abstract

In this paper, a decision support system for avalanche forecast-
ing based on data from automatic weather stations is developed and
tested. 17 years of avalanche and weather observations from Senja in
Northern Norway are processed and analyzed to identify meteorolog-
ical factors important for avalanche formation. Current snow depth
and precipitation the preceding days of an avalanche release are found
to be most important. Further, a simple model based purely on snow
depth, a logistic regression model and a random forest model are fitted
to training data and used to forecast the probability of an avalanche on
test data. The results show that the logistic regression model and ran-
dom forest model performs better than the simple snow depth model.
Random forest is able to detect 12 out of 19 avalanches, obtaining a
true skill score of 0.6. This is better than logistic regression that de-
tects 9 out of 19, obtaining a true skill score of 0.43. The study shows
that it is possible to develop a decision support system for avalanche
forecasting using already existing infrastructure. However, the results
also shows that the models have their limitations. Many avalanches
are not detected, and hence, a system based on these models should
only act as decision support system and not be relied on solely. At
last, a prototype is developed and tested live. Live testing showed that
reliability of the weather stations in use is important for operational
usage.
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1 Introduction and background

In Norway, avalanches are one of the most frequent cause for roads to be
closed. A total of 6500 avalanche events were registered on Norwegian roads
between 1998 - 2008 [Norem, 2014]. Securing all roads exposed to avalanche
activity by building tunnels or other protective structures, is not an option
due to high costs. The road network is large, and in many rural regions
the traffic volume is too low to justify such costs. Closing roads or artificial
triggering of avalanches are in many regions the only possible actions to
secure roads during periods of high avalanche risk. For many settlements,
closing the road means isolation or long detours, so it should be kept to
a minimum. Thus, to maintain a high level of safety without closing the
road too often, it is important to estimate the avalanche risk as precisely
as possible. Today, the contractors that operate the road are responsible
for monitoring the road, determine avalanche risk and take action when it
is required. Estimating avalanche risk is a difficult task, and the knowledge
they base their decisions on varies much between contractors. No systematic
way of estimating avalanche risk is established. Having a system that can
utilize available information and support decision makers in these situations
would be beneficial as it can reduce the costs of estimating avalanche risk
and possibly contribute to better safety and minimize consequences of closed
roads.

The relation between meteorological factors and avalanche formation has
been studied for a long time. Atwater [1954] listed 10 factors he found to be
important in avalanche formation and several studies has been undertaken
since then. Much of this research is summarized by Schweizer et al. [2003]. To
do predictive analysis, various statistical learning methods have been applied
to avalanche and weather data. Bois et al. [1975] used multivariate discrimi-
nant analysis and Buser [1983] used nearest neighbors to predict avalanches.
Nearest neighbors has also been implemented in the avalanche forecasting
program NXD-2000 [Gassner et al., 2000] and used operationally. More re-
cently Hendrikx et al. [2014] used classification trees to forecast avalanches
and Marienthal et al. [2015] used both classification trees and random forest
to predict the occurrence of deep slab avalanches.

This study follow the lines of previous work and explores how logistic
regression and random forest performs as predictive models for avalanche
activity on Highway 862 at Mefjorden, Senja in Northern Norway. Weather
observations and avalanche data for 16 years, with a total of 78 avalanche days
and 2717 non-avalanche days, are analyzed in the study. First, an exploratory
analysis is performed to give an overview over the data and to verify the
existence of meteorological factors important in avalanche formation. This

2



is an important part of the study, as meteorological factors important in
avalanche formation will depend on the climate and topography of the studied
area. Exploratory analysis will reveal some of the information the models
can utilize to predict avalanches in this area. Further, two logistic regression
models and one random forest model are fitted to 13 years of training data,
and then used to forecast the occurrence of avalanches on 3 years of test
data. These models are examined in order to interpret what information they
utilize and if this is in agreement with common avalanche theory. Rather
than predicting the outcome directly (i.e avalanche or no avalanhce), the
models in this study are set up to model the probability of an avalanche for a
given day. The intention is that having a probability make the models more
suitable as a decision support system. Uncertainty is then incorporated in
the prediction and additional information (snow pack information, weather
forecast, etc.) can be combined with the predicted probability to make a
final decision. At last, to explore how such a system can be implemented
and used operationally, a prototype that automatically collects weather data,
predicts probabilities, and displays the avalanche probability is developed and
described. The prototype was tested live for the season 2015/2016.

2 Study area and data

2.1 Study area

Senja is an island off the coast of Northern Norway, southwest of the city of
Tromsø. The climate is subpolar oceanic and low-pressure systems coming
in over the coast bring large amounts of snow during the winter. (Figure
2.2 shows the total precipitation (water equivalent) and average temperature
over the winter months). Topographically, Senja mostly consists of moun-
tains and fjords and several roads are passing through areas with regular
avalanche activity. The relatively cold climate and large amounts of precip-
itation creates together with steep slopes conditions that are favorable to
avalanche activity. In this study we focus on one specific road stretch on
highway 862, going from Mefjordbotn to Senjahopen (figure 2.1). There are
several avalanche paths along the 8 km road stretch and it is subject of reg-
ular avalanche activity during the winter months. Closing this road means
a significant detour for the inhabitants at Senjahopen and logistic challenges
for the local fishing industry. Figure 2.3 shows a map over the region.
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Figure 2.1: Location of Senja and topographical map over the studied area.

2.2 Avalanche data

From January 1995 to April 2013 a total of 315 snow avalanche events on 130
unique days were registered on highway 862 from Mefjordbotn to Senjahopen.
Avalanches have been registered by snowplough drivers operating the road
and only avalanches that hit the road are registered. As it can be several
hours between each passing, especially during night, there is some uncertainty
in the registration times of the avalanches. Only a few avalanches contain
additional information like type of avalanche and size, so in this study all
avalanches are treated equally. The number of avalanche events per season
varies greatly from season to season (Figure 2.2). The avalanche season
2000, i.e winter 1999/2000, had over 40 avalanche events, while both the
1999 season and the 2004 season had zero registrations.
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Figure 2.2: A summary of total precipitation (mm), mean temperature
(°C), number of observed avalanches and unique avalanche days over the
period from November to April. Precipitation is observed at Botnhamn and
temperature at Hekkingen Fyr.

2.3 Weather data

Data from three automatic weather stations run by the Norwegian Meteoro-
logical Institute are used in the study. Hekkingen Fyr is located on a small
island north of Senja and observes temperature and wind. Botnhamn is lo-
cated on the north eastern part of Senja and observes precipitation and snow
depth. Grunnfarnes is located on the south western part and also observes
precipitation and snow depth. All stations are just above sea level. These
are the three nearest stations that have been operational in the period from
1995 to 2013. Figure 2.3 shows a map over the area and the location of the
stations. Two precipitation stations are included to get a better measure
of precipitation as it can be large local variations due to the topography.
Temperature and wind are measured hourly while precipitation is measured
daily. Table 1 shows the details.
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Table 1: Details about the weather stations used in this study. The distance
is from the station to the avalanche area.

Location Distance m.a.s.l Weather observed Interval
Botnhamn 12 km 10 m Precipitation and snow depth Daily (7am)
Grunnfarnes 30 km 3 m Precipitation and snow depth Daily (7am)
Hekkingen Fyr 17 km 14 m Temperature and wind Hourly

Botnhamn

Grunnfarnes

Senja

Hekkingen Fyr

10 KM

Figure 2.3: Map over northern part of Senja showing the studied road (red)
and the weather stations used in the study.

3 Methods

3.1 Meteorological metrics

Before the data could analyzed and explored, raw weather observations had
to be processed into meaningful meteorological metrics and aligned with
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avalanche observations. As precipitation is only measured daily, hourly
wind and temperature data was processed into daily observations starting
at 07:00 (NMT). Based on what previous research has found to be important
in avalanche formation [Schweizer et al., 2003], the data was processed into
variables that would expose relevant information, including mean temper-
ature, maximum temperature, temperature trend, average wind speed and
dominating wind direction. These quantities were aligned with daily mea-
sures of snow depth and 24 hour accumulated precipitation (water equiva-
lent). In order to preserve relevant information from previous days, some
additional variables were added to the daily observations. In particular, this
was accumulated precipitation last three days, maximum mean temperature
last 5 days (but not including the day itself) and change in snow depth last
24 hours. Table 2 lists the variables included in the final processed dataset.

3.2 Avalanche days

To combine avalanche observations with the processed weather data de-
scribed above, a binary variable for indicating avalanche activity was added.
1 for indicating that one or more avalanche events were registered within
the proceeding 24 hours of the weather observation and 0 for indicating that
no avalanche activity was registered. As many days have several avalanche
events, we loose some information by reducing avalanche activity to a binary
variable, but having a binary variable is required when working both with
the Kolmogorov-Smirnow two sample test and logistic regression.

3.3 Data cleaning and processing

The processed dataset was filtered by removing all rows with missing weather
data. Also two full seasons, 1999 and 2004, were removed as they contained
zero avalanche registrations. It is suspected that this is due to lack of reg-
istrations. After this, the dataset contained data from 17 avalanche seasons
and a total of 2795 days were 78 were associated with avalanche activity.
For exploratory analysis, the full dataset was used to utilize all data avail-
able. For model analysis, the dataset was split into a training set (avalanche
seasons from 1995 to 2010) and a test set (avalanche season 2011, 2012 and
2013). The training set contained 59 avalanche days and the test set con-
tained 19 avalanche days. Table 3 shows the details about the training set
and test set. In the exploratory analysis, to compare the distribution of
the meteorological variables for avalanche days and non-avalanche days, a
random subset of non-avalanche days was generated. This is due to the
imbalanced data. There is by far more non-avalanche days than avalanche
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days, and many of the non-avalanche days are from periods with little snow
or other weather factors where one easily can discriminate between avalanche
and non-avalanche days. Thus, to have a sample with more interesting data
to analyze, a random sample of non-avalache days was generated by, for each
avalanche day in the dataset, pick a random non-avalanche day from the same
month and year as the avalanche day. With this method, we get a sample
of non-avalanche days of same size as avalanche days, and from about the
same periods of the season. This is more interesting to analyze as it is in the
periods near an avalanche event a decision support tool will be most useful.

Table 2: Variables included in the processed dataset, i.e. each day (row)
in the dataset have the listed observations. The observation time is at 07:00
am.

Name Meteorological variable Unit
SA x Snow depth at Botnhamn cm
SA y Snow depth at Grunnfarnes cm
SA 24 x Change in snow depth last 24 hours at Botnhamn cm
SA 24 y Change in snow depth last 24 hours at Grunnfarnes cm
RR 24 x Precipitation last 24 hours at Botnhamn mm
RR 24 y Precipitation last 24 hours at Grunnfarnes mm
RR 3 x Precipitation last 3 days at Botnhamn mm
RR 3 y Precipitation last 3 days at Grunnfarnes mm
TA mean Mean temperature last 24 hours °C
TA max Maximum temperature last 24 hours °C
TA 5 Maximum daily mean temperature last 5 days °C
TA grad Change in mean temperature from 12-6 hours to last 6 hours °C
FF Mean wind speed last 24 hours m/s
DD Dominating wind direction last 24 hours -
OA Binary indicator for avalanche activity within proceeding 24 hours -

Table 3: Number of avalanche days and non-avalanche days in training set
and test set.

Training set Test set Total
Avalanche days 59 19 78
Non-avalanche days 2308 409 2717
Total 2367 428 2795

3.4 Exploratory analysis

Using the processed dataset, some basic plots were examined to get an
overview over the data. This included a plot of the scatter matrix along with

8



estimated kernel densities. A Kolmogorov-Smirnov test was undertaken to
compare the distribution of the variables grouped by avalanche activity. As
the randomly generated sample of non-avalanche days introduce a random
effect in the estimated p-values, 100 random samples of non-avalanche days
were generated. The Kolmogorov-Smirnov test was then used to compare
each of these to the sample of avalanche days. This resulted in 100 p-values
for each of the variables in the dataset. The reported results from the test
were the mean and standard deviation of these values.

3.5 Models

Two types of models were considered in this study: logistic regression [Aldrich
and Nelson, 1984] and random forest [Breiman, 2001]. As the data is highly
imbalanced (78:2717) in favor of non-avalanche days, both logistic regression
and random forest will be biased towards the non-avalanche days as they
aim to minimize the overall error rate [Chen et al., 2004]. This will lean
the predictions towards correctly classifying non-avalanche days, rather than
avalanche days. This is of less interest, as we are more concerned about cor-
rectly classifying avalanche days. To address this problem, avalanche days
were assigned more weight than non avalanche days (weights are also referred
to as misclassification cost). This way, the models will penalize misclassifying
avalanche days more than non-avalanche days. We followed Hendrikx et al.
[2014] and used weight 2 for avalanche days and 1 for non-avalanche days.
The weights were set arbitrarily, but are supposed to reflect the actual cost
of misclassifying in operational usage (i.e. misclassifying an avalanche day is
twice the cost of misclassifying a non-avalanche day). Opposed to Hendrikx
et al. [2014], where they predict the outcome directly (i.e 0 or 1) we predict
the probability of an avalanche day and then map the probability to an out-
come. In that sense the class weights are of less importance here as they will
only act as a scaling parameter for the probabilities.

The first logistic regression model used only snow depth as the variable
to explain avalanche activity. This model was included to see how much
of the avalanche activity a very simple model could explain. This is useful
when evaluating the performance of more complex models and for verifying
their potential advantage over a simple model with only snow depth. The
logistic regression model with only snow depth is refereed to as the snow
depth model.

For the second logistic regression model, a variable selection was per-
formed to reduce the number of variables. The dataset contains many vari-
ables and many of them are highly correlated (table 9), so it seems like a good
idea to reduce the number variables and thus the potential for overfitting.
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The results from a simpler model will also be easier to interpret and give
information about which meteorological factors that are most important in
avalanche formation at this specific location. Selecting the most important
variables is a difficult task itself and several methods exist. Here, we used
a stability selection method based on work by Meinshausen and Bühlmann
[2010]. The idea is very general:

• Fit a logistic regression model to a random subset of training data and
use the l1 penalty (known as Lasso [Tibshirani, 1996]) to determine the
regression coefficients. When using Lasso, less important variables will
tend to be excluded by getting a regression coefficient equal to zero.

• Repeat the step above an appropriate number of times, each time with
a different random subset of data. Important variables will tend to be
selected more often than less important variables.

Using this stability selection method, a subset of variables was selected. A
logistic regression model with ordinary least square penalization (l2) was then
fitted to the reduced dataset (i.e the dataset with only the selected variables),
and used to predict the probability of an avalanche day on the test dataset.
This model is refereed to as the logistic regression model.

For the random forest model, all variables were used. 500 classification
trees were grown by splitting bootstrapped samples of data recursively into
groups of avalanche and non-avalanche days. At each split, two variables
were selected randomly and the Gini index [Breiman et al., 1984] was used
to determine the values of these that would best split the data. This method-
ology is known as the CART methodology [Breiman et al., 1984]. The nodes
were split until they were homogeneous, i.e contained only non-avalanche
days or avalanche days, or until the node contained less than 7 samples. Set-
ting a minimum criteria for splitting a node helps to reduce overfitting of
the trees, i.e having many nodes with only a few samples. A prediction for a
given weather observation is from a single tree calculated by the respective
class weights times the number of avalanche days and non-avalanche day in
the terminal node for the given observation. The final predicted probabil-
ity from the random forest is the average over all individual trees. To get
a better overview of what information the random forest found to be most
important, the variable importances were plotted. The variable importances
are calculated by mean decrease in impurity [Breiman et al., 1984] over all
nodes in all trees.

For both logistic regression and random forest, python [Rossum, 1995]
was used with the package scikit-learn [Pedregosa et al., 2011] that con-
tains implementations of both models. For data cleaning and filtering, pandas
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[McKinney, 2010] was used. All models were trained on the training dataset
and then used to predict avalanche probabilities on the test dataset.

3.6 Model performance

To evaluate the models predictive performance on the test set (seasons 2011,
2012 and 2013), the unweighted average accuracy (RPC), true skill score
(TSS), false alarm ratio (FAR), probability of detection (POD), probability
of non-events (PON) and probability of non-detection (FSR, i.e false stable
ratio) was used. Definitions are in table 5. These are identical to the scores
used in similar studies on avalanche forecasting by Schweizer et al. [2009],
Hendrikx et al. [2014] and Marienthal et al. [2015]. The scores are based on
values from the confusion matrix (Table 4). This requires that the predicted
probabilities have been mapped into avalanche days (1) or non-avalanche
days (0). This was done by setting a fixed threshold at 15% and for days
with probability above this, an avalanche was predicted. The threshold was
set arbitrarily at a value that gave a reasonable ratio between true positives
and false alarms.

The scores gives a good indication of the models performance, and makes
it easy to compare them. But the scores alone do not tell the full story. To
get a better visual interpretation of the models performance, the probabilities
were plotted as a time series along with the true avalanche observations.
This also shows the time dependence in the probabilities and shows how the
probability of an avalanche behave before and after an observed avalanche
event.

Table 4: Confusion matrix

Observed

Avalanche No avalanche

Predicted
Avalanche True positive (TP ) False positive (FP )

No avalanche False negative (FN) True negative (TN)

3.7 Implementation of a prototype

Based on the results from the model analysis, a prototype was developed
and implemented. The prototype consisted of a web application that auto-
matically pulled weather data from the Norwegian Meteorological Institute
and calculated the probability of an avalanche. The predicted probabilities
were shown on web page and plotted as a time series together with observed
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Table 5: Mathematical definitions of the scores used to validate the models.
TP is true positive, FP is false positive, TN is true negative and FN is
false negative.

Score Definition Interval Optimal value

RPC - Unweighted average accuracy 1
2

(
TP

TP+FN + TN
FP+TN

)
{0, 1} 1

TSS - True skill score TP
TP+FN −

FP
FP+TN {−1, 1} 1

FAR - False alarm ratio FP
FP+TP {0, 1} 0

POD - Probability of detection TP
TP+FN {0, 1} 1

PON - Probability of non-events TN
TN+FP {0, 1} 1

FSR - Probability of non-detection FN
FN+TP {0, 1} 0

weather information. The weather forecast was also included to provide addi-
tional relevant information. The prototype was tested live for the 2015/2016
season.

4 Results

4.1 Exploratory analysis

The scatter matrix in figure 4.1 indicates that for some variables there is a
difference in the distribution of the variable depending on avalanche activity.
Particularly for snow depth (SA x) and wet precipitation last three days
(RR 3 y), where values for avalanche days tend to be higher than on non-
avalanche days. For maximum mean temperature preceding days (TA 5), the
difference is not that clear, but values for avalanche days seems to be slightly
skewed towards lower values. For mean wind speed, the values for avalanche
days is also more to towards lower values than non-avalanche days.

The differences in distribution seen in the scatter matrix is further sup-
ported by the results from the Kolmogorv-Smirnov test (Table 6). The test
indicates that there is a difference in distribution, especially for variables
related to precipitation, but not all of them. For the precipitation station
closest to the avalanche area (x is Botnhamn), 3 out of 4 variables are sig-
nificant on a p < 0.05 level. For the precipitation station further away (y
is Grunnfarnes), only 1 out of 4 variables are significant on the same level.
For variables related to temperature and wind, the difference is not signifi-
cant according to the Kolmogorv-Smirnov test. It is worth to note that the
Kolmogorov-Smirnov test only consider one variable at a time, so even though
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these variables seems less important, they may have interaction effects which
can be of importance.
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Figure 4.1: Scatter matrix.

4.2 Model analysis

A stability selection method applied on a logistic regression model with all
variables selected snow depth at both stations (SA x and SA y), accumulated
precipitation last three days from both stations (RR 3 x and RR 3 y), max-
imum mean temperature preceding days (TA 5) and change in snow depth
last 24 hours at Botnhamn (SA 24 x). Table 7 shows the resulting coefficients
when fitting a logistic regression model with these variables to the training
data. The coefficients shows that snow depth has the strongest linear effect on
avalanche activity. More snow is causing more avalanches. Precipitation last
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Table 6: Mean p-values and standard deviation from the Kolmogorov-
Smirnov test where 100 random subsets of non-avalanche days was compared
to the sample of avalanche days. The subset non-avalanche days was gener-
ated such that the days were from the about the same periods as the avalanche
days. This was done to reduce seasonal dependency.

Variable mean P-value Standard deviation
SA x 0.013 0.02
SA y 0.12 0.11
SA 24 x 0.039 0.065
SA 24 y 0.27 0.18
RR 3 x 0.01 0.02
RR 3 y 0.002 0.007
RR 24 x 0.05 0.07
RR 24 y 0.1 0.13
TA 5 0.19 0.17
TA mean 0.19 0.17
TA max 0.31 0.24
TA grad 0.35 0.26
FF 0.16 0.16

three days is also positively correlated with avalanche activity. Both these
results are supported by previously stated avalanche theory. Maximum mean
temperature last 5 days is negatively correlated with avalanche activity. A
period without any warm days seems to increase avalanche activity.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

SA_24_y
RR_24_x
TA_grad

RR_24_y
TA_max

SA_24_x
TA_mean

RR_3_y
RR_3_x

TA_5
SA_y
SA_x

Figure 4.2: Random forest variable importances for the model where wind
was excluded.

Figure A.1 shows which variables the random forests found to be most
important based on mean decrease in node impurity. As with logistic re-
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Table 7: Variables selected when the stability selection method is applied on a
logistic regression model. The listed coefficients are from a logistic regression
model with the selected variables fitted to training data. The variables were
normalized before fitting the model.

Name Coefficient
Intercept -1.92
SA x 0.71
SA y 0.18
SA 24 x 0.25
RR 3 x 0.14
RR 3 y 0.35
TA 5 -0.52

gression, snow depth is found to be most important. The top five variables
found to be most important by random forest are the same as selected by
the stability selection method applied on logistic regression. Further, mean
temperature and average wind speed, which is not selected by the stability
selection method, is more important in random forest than change in snow
depth last 24 hours, but the difference is small. Wind direction seems to be
of less importance to avalanche activity in these data.

In the exploratory analysis, the effect of wind seemed to be opposite
of what one would expect from avalanche theory. To further examine the
importance of wind a random forest model without wind, was also included.
The variable importances for this model is shown in figure 4.2. The top five
list is unchanged compared to the random forest where wind was included
(figure A.1).

4.3 Model performance

Table 8 shows the evaluated scores after the predicted probabilities has been
mapped to outcomes. A threshold at 15% was used so an avalanche was
predicted for days with a probability above this. Random forest without
wind predicts correctly (TP) 12 out of 19 avalanches, and by that obtains
the highest probability of detection at 0.63. With 12 false positives it has a
false alarm ratio at 0.5. This is better than random forest with wind that
detects 9 out of 19. Random forest with wind has with 8 false positives the
lowest false alarm ratio at 0.47. Logistic regression with only snow depth
predicts correctly 8 out of 19, resulting in a POD at 0.42. With 22 false
positives it has the highest false alarm ratio at 0.73. Logistic regression with

15



Table 8: Evaluated prediction scores. To calculate the scores, a fixed thresh-
old at 15% has been used, i.e an avalanche is predicted on days with an
avalanche probability greater than 15 %. Values in bold are the best.

Score Snow depth Logistic Regression Random Forest RF no wind
TN 387 392 401 397
FN 11 9 10 7
FP 22 17 8 12
TP 8 10 9 12
RPC 0.68 0.74 0.73 0.8
TSS 0.37 0.48 0.45 0.6
FAR 0.73 0.63 0.47 0.5
POD 0.42 0.53 0.47 0.63
PON 0.95 0.96 0.98 0.97
FSR 0.58 0.47 0.53 0.37

selected variables predicts correctly 10 out of 19 avalanches resulting in a
POD at 0.53. With 17 false positives the false alarm ratio is 0.63.

Plotting the predicted probabilities for avalanche season 2011, 2012 and
2013 along with observed avalanche activity shows that both the random
forest models and the logistic regression model are better to predict avalanche
activity than the simple snow depth model (Figure 4.3 to 4.4). The random
forest models and the logistic regression model give similar predictions, i.e are
highly correlated. Random forest without wind seems to be best correlated
with avalanche activity when inspecting the plot. The difference is small,
but the model without wind is detecting some more avalanches and has in
general higher probabilities on days with avalanche activity than the model
including wind.

For most avalanches, there is a notable change at or before the event, but
there are some avalanches that occurs at low predicted avalanche risk and no
sign of avalanche activity is indicated in the probability plot.

5 Discussion

5.1 Exploratory and model analysis

The results from the exploratory analysis demonstrates the importance of
snow depth and precipitation in snow avalanche formation. For tempera-
ture and wind, the importance is not so clear. The scatter matrix in figure
4.1 shows that the two variables with the most significant difference in the
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Figure 4.3: Predicted probabilities for avalanche season 2011. The red
dashed lines are true avalanche observations.
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Figure 4.4: Predicted probabilities for avalanche season 2013. The red
dashed lines are true avalanche observations.
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Kolmogorv-Smirnow test (SA x and RR 3 y), have clear visual differences
in the estimated kernel densities. In general it seems to be more snow on
avalanche days and the amount of precipitation last three days is greater
than on non-avalanche days. This is in agreement with previously stated
avalanche theory [Schweizer et al., 2003]. For maximum daily mean temper-
ature last 5 days before the avalanche event (TA 5) the difference is not so
clear, but there is an indication to be slightly colder in the period before an
avalanche event. One explanation is that if the maximum mean temperature
in the preceding period has been high, the snow deck might have had time to
stabilize already, or the avalanche was triggered during the period of warmer
temperature. Further, the exploratory analysis shows that there is much
overlap in the data and one can not easily discriminate between avalanche
days and non-avalanche days by only consider one variable. It appears that
one has to deal with significant uncertainty. Therefore, using models that can
predict probabilities rather than predicting the outcome directly are appeal-
ing. A probability contains more information and is more useful to combine
with other information such as snow stratigraphy and weather forecast.

The variables selected by the stability selection method applied on the
logistic regression model and the variables found to be most important by
random forest, coincides with the results from the exploratory analysis. Both
models finds snow depth to be most important, and also agrees on precip-
itation last three days and maximum mean temperature last 5 days. It
is encouraging that two different models selects the same variables, and it
strengthens the importance of those variables.

Regarding the less importance of temperature and wind, this could be
related to the location of the weather station that observes wind and temper-
ature. The distance to the avalanche area is about 17 km and it is placed on
a small island further out in the ocean. Measuring wind and temperature out
there might not capture the effect of these variables as they are in the moun-
tains where the avalanches are triggered. Additionally, it could be related to
the more complex effect wind and temperature has on snow avalanche forma-
tion. Snow depth and precipitation is generally more directly coupled to the
formation of avalanches (i.e. more snow and precipitation generally means
more avalanches), where as temperature and wind has a more complicated
effect on snow avalanche formation.

5.2 Model performance

Both the evaluated scores in table 8 and the probability plots in figure 4.3,
4.4 and A.2, indicates that the random forest models and the logistic regres-
sion model with selected variables, are better to explain avalanche activity
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than the simple snow depth model. This suggest that including more in-
formation than just snow depth increase the predictive capabilities of the
models. The random forest models and the logistic regression model seems
to behave similarly, which is expected as they do contain much of the same
information. Random forest seems to be favorable over logistic regression as
it detects some more avalanches and have fewer false alarm events. This in-
dicates that there could be more complex interactions than linear in the data
such that a model that can detect non-linear effects is appropriate. Also, it
indicates that the variables excluded by the stability selection method, but
are included in random forest, do contain some information.

There are some avalanches that occur at low risk, and when inspecting
weather observations related to these days, there is no indication of avalanche
risk (no precipitation, no increase in temperature, etc.). These avalanches
could be caused by factors not available in the data included here. For exam-
ple, avalanches late in April might be caused by strong sun radiation, a me-
teorological variable which is not available. Another example are avalanches
caused by deep persistent weak layers that have sustained in the snowpack
for a long time. Under such conditions, even small changes in temperature
and wind can cause a release of an avalanche. For the models, it will not be
possible to distinguish these days from similar days where the snowpack is
stable. Two observations that are similar for the models can have completely
different snowpacks. This is some of the limitation with models that only
consider weather information. Including information about the snow stabil-
ity could possibly improve this, but this information is simply not available.
Limitations like these are reasons to why the models should only be used
to support decisions, and not take decisions. For a decision maker, the pre-
dicted probabilities should be treated as the risk of an avalanche given the
recent weather conditions only.

Even though using a model that includes weather information only has its
limitations, it has a strong advantage of being automatic. For example, this
makes it possible to set this up as an automatic warning system that notifies
responsible people when the predicted probability exceeds a certain thresh-
old. Having such a system in addition to the existing workflow could possibly
help to detect dangerous situations that would otherwise be undetected.

At last it should be noted that the performance of the models varies
greatly from season to season. For these test data, the avalanche season
2013 greatly improves the evaluated scores for the models. Given the limi-
tations discussed above, it seems reasonable that the performance will vary
depending on whether the main cause for most avalanches a given season is
detectable recent weather changes or if it is more complex snow stability con-
ditions. For the 2013 season, where the main cause for a series of avalanches
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was a huge snowfall, the performance is very good. But for the 2012 season,
two out of four avalanches occurs at very low risk. Thus, testing the models
on more data is necessary to better evaluate their performance.

6 Operational testing and prototype

The results from the model analysis indicates that a decision support sys-
tem based on already existing infrastructure can be useful in an operational
setting. Even though we are dealing with great uncertainty and the models
needs to be tested on more data, it is still useful to test how such a system
would work in practice. This can help to guide further development of the
models, identify possible technical issues and to get experience on how such a
system can be implemented in the current workflow of determining avalanche
risk.

To start testing how a predictive model would work in an operational
setting, a prototype was developed. The prototype consisted of a web ap-
plication that automatically pulled data from the Norwegian Meteorological
Institute, processed and stored the data and then used a pre-trained model to
predict the probability of an avalanche event. The model used in the proto-
type was the random forest without wind and it was trained on all available
data. To visualize the results, the avalanche probabilities for the last five
days were shown as a time series, aligned with observed weather data. Also
the weather forecast for the next 24 hours were shown. The prototype was
tested live, but not used to take actual decisions.

The prototype gave useful insight on the operational potential and chal-
lenges. Including both the observed weather data and the weather forecast,
gave a better understanding of the situation than only showing the probabil-
ity without any further background. Some issues arose as one of the stations
providing precipitation observations was unreliable. On several occasions,
weather observations were available first after two or three days. Thus, the
station is not useful in an operational setting.

7 Conclusion

Based on 17 years of weather and avalanche data, this study has identi-
fied meteorological variables important in avalanche formation at Mefjorden,
Senja. Exploratory analysis has indicated that snow depth, precipitation
last three days and maximum mean temperature the 5 preceding days are
weather characteristics that are important in the formation of avalanches at
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Mefjorden.
Fitting a logistic regression model and random forest models to the data,

confirmed the results from the exploratory analysis about which variables
that were most important. Random forest were the model that performed
best at predicting avalanches and obtained a true skill score at 0.6. Logistic
regression with a selection of variables obtained a TSS at 0.48 and performed
better than a simple logistic regression model that only used snow depth and
obtained a TSS at 0.37. The results indicates that using a model that is not
restricted to linear effects is preferable, and including more information than
only snow depth does increase the accuracy of the models.

A prototype was developed and tested live. Combining predicted prob-
abilities with other relevant information is a promising approach for how a
decision support system based on weather observations can be set up.
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A Additional tables and figures

Table 9: Correlation matrix for the variables used in the study.

Variable SA x SA y SA 24 x SA 24 y RR 3 x RR 3 y RR 24 x RR 24 y TA 5 TA mean TA grad TA max FF OA
SA x 1.00 0.82 0.08 0.02 0.07 0.08 0.04 0.05 -0.32 -0.21 -0.05 -0.21 -0.08 0.23
SA y 0.82 1.00 0.09 0.11 0.04 0.11 0.02 0.07 -0.45 -0.34 -0.00 -0.33 -0.06 0.23
SA 24 x 0.08 0.09 1.00 0.52 0.17 0.12 0.22 0.14 -0.06 -0.26 -0.03 -0.26 -0.08 0.09
SA 24 y 0.02 0.11 0.52 1.00 0.10 0.14 0.09 0.23 -0.05 -0.23 -0.06 -0.23 -0.09 0.05
RR 3 x 0.07 0.04 0.17 0.10 1.00 0.78 0.71 0.52 0.23 0.15 -0.03 0.17 0.01 0.09
RR 3 y 0.08 0.11 0.12 0.14 0.78 1.00 0.60 0.71 0.17 0.17 -0.01 0.19 -0.07 0.11
RR 24 x 0.04 0.02 0.22 0.09 0.71 0.60 1.00 0.67 0.15 0.20 0.00 0.23 0.06 0.06
RR 24 y 0.05 0.07 0.14 0.23 0.52 0.71 0.67 1.00 0.09 0.20 0.10 0.23 -0.05 0.08
TA 5 -0.32 -0.45 -0.06 -0.05 0.23 0.17 0.15 0.09 1.00 0.62 -0.20 0.61 -0.06 -0.09
TA mean -0.21 -0.34 -0.26 -0.23 0.15 0.17 0.20 0.20 0.62 1.00 -0.05 0.97 -0.09 -0.07
TA grad -0.05 -0.00 -0.03 -0.06 -0.03 -0.01 0.00 0.10 -0.20 -0.05 1.00 -0.03 0.11 0.01
TA max -0.21 -0.33 -0.26 -0.23 0.17 0.19 0.23 0.23 0.61 0.97 -0.03 1.00 -0.09 -0.07
FF -0.08 -0.06 -0.08 -0.09 0.01 -0.07 0.06 -0.05 -0.06 -0.09 0.11 -0.09 1.00 -0.07
OA 0.23 0.23 0.09 0.05 0.09 0.11 0.06 0.08 -0.09 -0.07 0.01 -0.07 -0.07 1.00
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Figure A.1: Random forest variable importances when wind and wind di-
rection are included.
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Figure A.2: Predicted probabilities for avalanche season 2012. The red
dashed lines are true avalanche observations.
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Logistic regression and random
forest

1 Notation

To explain the methods used in this study, it is useful to define a general no-
tation and relate this to the weather and avalanche data we have. The data
consists of weather observations {x1, . . . ,xN} and corresponding responses
{y1, . . . , yN} representing avalanche activity. N is the number of observa-
tions, i.e. number of days considered. A single weather observation x ∈ Rp

is a vector of length p, where p is the number of exploratory variables (also
refereed to as features), i.e. snow depth, wind speed, temperature etc. The
response y ∈ {0, 1} is a binary value that takes the value 0 for no avalanche
activity and 1 for avalanche activity. Together x and y form a learning set
L consisting of data {(xi, yi), i = 1, . . . , N)}. With this notation, we can
define a learning method ϕ(x,L) as a method that predicts the response y
to the observation x based on the learning set L.

Since we model the risk of an avalanche rather than the direct outcome
y, we assume that

y ∼ Bernoulli(π),

so that the response y ∈ {0, 1} take the value 1 with probability π and 0
with probability 1 − π. The learning methods used in this study are set up
to model the probabilities π.

2 Logistic Regression

A logistic regression model is a common choice to inspect the relationship
between a binary response like ”Yes”/”No” and a set of exploratory variables.
Here, we will use a linear logistic regression model with link function logit
[Aldrich and Nelson, 1984]. The model assumes that the log-odds of the
probabilities have a linear relationship to the exploratory variables, i.e

logit(π) = x>β = η,

where β is a set of regression coefficients. The log-odds, or logit function, is
defined as

logit(π) = log

(
π

1− π

)
.
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Applying the inverse of the logit, we can write the model as

π = logit−1(x>β) =
exp{x>β}

1 + exp{x>β}
=

exp{η}
1 + exp{η}

.

It is a simple model that captures linear effects in the data such as more
snow → more avalaches, less snow → less avalaches. By normalizing the
variables by subtracting the mean and dividing by the standard deviation,
the size of the estimated coefficients β can be compared. This gives us an
indication of how strong the effects are and the variables relative importance.
Since the model assumes linearity, more complex relations in the data will
not be found by this model.

3 Random Forest (RF)

Random Forest [Breiman, 2001] is a statistical method used both for classifi-
cation and regression. RF is based upon decision trees and bagging [Breiman,
1996]. To understand how it works, we need to understand these two con-
cepts.

3.1 Decision Trees

Decision trees as a statistical method has been around for a while [Morgan
and Sonquist, 1963]. It has shown to be a successful approach for many
classification and regression problems. To define a decision tree formally,
we use the notation as defined earlier. Let the space of all feasible x be
denoted by X and similarly for y, Y . We can then define a decision tree ϕ
as a function ϕ : X 7→ Y by checking one or more conditions on x in a tree
structured procedure. Because of this tree structure, decision trees can easily
be visualized. Figure 1 shows an example of a tree classifier.

A random forest consists of many decision trees. Each single tree is grown
using the CART methodology as described in ”Classification and Regression
Trees” by Breiman et al. [1984]. Briefly explained this involves picking m
random variables and then find the values of these that best categorize the
data. In our case, if m = 3, the randomly picked variables could be snow
depth, mean temperature and new snow accumulation. An algorithm then
find the values of these variables that best split the data into avalanche
activity and no avalanche activity. The whole procedure is applied recursively
on each split of the data until a terminal criteria is met. This is either when all
the instances in the node is of the same class, the number of instances is less
than a certain value or no possible best split is found. In our case, were we use
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SA X ≥ 60

SA 24 y ≥ 30 TA 5 ≤ 1

Avalanche No avalanche Avalanche No avalanche

True

False

True

False

True

False

Figure 1: Example of a decision tree. At each parent node a condition
is checked for the weather observation. The conditions defines which way
the observation should take down the tree until it reaches a terminal node.
The terminal node then use the proportion of the remaining instances (from
growing the tree) to cast a vote for which class the observation belongs to, or
use them to calculate a probability for which class the observation belongs to.
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random forest for predicting probabilities, the proportion of the remaining
instances will be returned instead of a single vote for a specific class. If
class weights are assigned, these are used both as weights to determine the
best split, and they are used as weights when the proportion of remaining
instances in the terminal node are used to cast a vote or predict a probability
for a given observation.

3.2 Bagging

If we have N observations we define a learning set L as the set that consists
of data {(yi,xi), i = 1, . . . , N)}. Assume further that we have a predicator
ϕ(x,L). The notation means that the predicator is predicting the response
to x based on the data from learning set L. Now, create k learning sets
{L1, . . . ,Lk} by, for each set, draw randomly N samples from the original
set L with replacement. With k learning sets available we can create a set
of classifiers {ϕ(x,L1), . . . , ϕ(x,Lk)}. Let all of these classifiers predict the
response y to x. Instead of having a single prediction, we now have an
ensemble of predictions. If our problem is a classification problem, we can
now pick the class for x with most votes or, if it is a regression problem,
we can use the votes to calculate probabilities for the different classes. This
procedure is called bagging, also called bootstrap aggregating, and was first
introduced in a paper by Breiman [1996].

3.3 A randomized forest

Assume that we perform bagging on our learning set L, k times. For each
learning set Ln where n = 1, . . . , k, we grow a decision tree as described in
section 3.1. The result is a collection of trees, {ϕ(x,L1), . . . , ϕ(x,Lk)}, also
called forest. In stead of having a single tree to predict the outcome of x, we
now have a collection of trees that can predict the outcome of x. The idea
with RF is that with a sufficient number of trees it should be able to capture
most of the usable information available in the dataset. To get good results
a large number of trees are required. The general rule is to use as many as
computational affordable, since more trees than necessary do not decrease
accuracy. A typical default value is 500.

4



References

Aldrich, J. and Nelson, F. (1984). Linear Probability, Logit, and Probit Mod-
els. Number Bd. 45;Bd. 1984 in Linear Probability, Logit, and Probit
Models. SAGE Publications.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C., and Olshen, R. (1984). Classifica-
tion and Regression Trees. The Wadsworth and Brooks-Cole statistics-
probability series. Taylor & Francis.

Morgan, J. N. and Sonquist, J. A. (1963). Problems in the analysis of survey
data, and a proposal. Journal of the American Statistical Association,
58(302):pp. 415–434.

5





Notes on the implementation

Today, there exists many powerful open source projects that can help scien-
tists do research more efficiently. Especially within data science, where much
of the time is spent on cleaning and organizing data, choosing the right tools
can save time. Also, many open source frameworks exists to make software
development easier. Taking advantage of this, scientists can more easily take
their ideas from the paper and turn them into prototypes. Getting feedback
from a prototype early in the process gives valuable information, and it can
help to present the research to others, for example people from the industry
who could benefit from the research. Letting people see how the idea works
in practice make it easier for them to understand how they can use the re-
sult. For applied research, that deals with solving practical problems, early
development of a prototype helps to make sure that one solves the actual
problem and that practical issues are detected early in the process.

This chapter briefly explains how the study was conducted technically
and describes the implementation of the prototype. It is not a complete
documentation of what has been done or how things work. I made a sepa-
rate software package, metnopy [Hennum, 2016], to make it easy to retrieve
weather data and some examples of usage are included. Hopefully, this chap-
ter can give some inspiration on how similar projects and prototypes can be
implemented.

1 Software

The language of choice for this project was python [Rossum, 1995]. As a
high-level programming language with a rich ecosystem of packages, it is
a language suitable for many tasks. Especially within scientific comput-
ing there exists many packages for doing common computational operations.
This makes python an ideal choice for projects like this. For all the various
operations throughout the project, it was possible to stick to one program-
ming language. With one language, it is easier to connect different parts of
the workflow together and it saves time as it require less learning than using
two languages. python is also free and open source.

For data analysis, pandas [McKinney, 2010] was used. This python pack-
age provides high performance, easy-to-use data structures and a rich set of
functions for typical data analysis operations. Among the data structures
pandas provides are data frames. This structure is much like a spreadsheet,
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it contains columns and rows. Most of the data in this project was repre-
sented as data frames. With support for smart date indexes and functions
for most kinds of common transformations, the data preparation necessary
in this project was easy to implement. Under the hood pandas uses numpy

[Van Der Walt et al., 2011] which provides multi-dimensional array objects
to python. Most of numpy is written in C which ensures high performance.
Both pandas and numpy is a part of the Scipy [Jones et al., 2001] ecosystem
of open source software.

For fitting the models, scikit-learn [Pedregosa et al., 2011] was used.
It is a huge library and contains implementations for the most commonly
used machine learning methods. With its easy-to-use application interface
and a strong community of researchers who supports it, it has become a very
popular machine learning library. As a result, many good learning resources
are available online. Further, scikit-learn and pandas are easy to use
together, so one can easily fit models to the data structures provided by
pandas.

2 Retreiving data

2.1 Weather data

All the weather data used in this study is retrieved from the Norwegian Me-
teorological Institute. They provide a web service, eKlima [The Norwegian
Meteorological Institute, 2016], for accessing weather data and export it in
CSV text format. It is possible, but cumbersome, to export data for re-
search purposes with this service. In an operational setting, data retrieval
should be automated, this does not work. For accessing weather data from
applications, the Norwegian Meteorological Institute provide a web service
which allow users to query the weather database with HTTP requests and
retrieve weather data in XML format. This makes it easy for users to im-
plement weather data access in their applications, but the XML format the
data is returned in is not of a form which can be imported and used directly
in python. To make it easy to retrieve weather data in a usable format, I
developed a separate python package for this purpose only. The package was
developed such that one can query eKlima directly from python and retrieve
the data as a pandas data frame. In the returned data frame, dates are
converted into a date-time index and the weather variables are casted to the
correct type (int, float, etc.). The returned data frame can then be used
directly without any further formating. This makes it very convenient to do
exploratory analysis on weather data, or build an application that make use
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of weather data. The amount of coding necessary for accessing weather data
and do some simple analysis, is reduced to a minimum. Splitting this part
of the project out as a separate python package makes it easy for others to
reuse the code for their own projects. The package is called metnopy [Hen-
num, 2016] and is available online with full source code and documentation.
Two examples are shown under to give some ideas on how this package can
be used.

Example 1: This example shows how air temperature (weather code TA)
at 11 o’clock from the 10th of June 2015 to the 15th of June 2015 at Blidern,
Oslo (station nr. 18700) and Voll, Trondheim (station nr. 68860) is retrieved.
The function parameters in get_met_data are the same as used in the official
web service.

In [1]: from metnopy import get_met_data

In [2]: get_met_data("2", "18700,68860", "TA", "2015-06-10",

...: "2015-06-15", "11", "")

Out[3]:

TA_18700 TA_68860

date

2015-06-10 11:00:00 18.4 9.8

2015-06-11 11:00:00 20.1 9.8

2015-06-12 11:00:00 23.1 12.2

2015-06-13 11:00:00 18.8 9.5

2015-06-14 11:00:00 17.5 7.7

2015-06-15 11:00:00 16.5 6.8

Example 2: This example shows how one can plot the combined annual
mean temperature for January, February and March at Blindern, Oslo from
1931 until 2016 together with a rolling mean and the average for the whole
period. With an easy way to get data and the built-in power of pandas, it
doesn’t require much coding to do analysis on weather data.

import matplotlib.pyplot as plt

import pandas as pd
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from metnopy import get_met_data

data = get_met_data("2", "18700", "TA", "1931-01-01",

"2016-03-31", "", "1,2,3")

data.groupby(data.index.year).mean()["TA"].plot()

pd.rolling_mean(data.groupby(data.index.year).mean()["TA"],

window=5, center=False).plot()

plt.axhline(y=data["TA"].mean(), color="red")

plt.legend(["Annual mean", "Rolling mean (5yr)", "Overall mean"],

loc=4)

plt.ylabel("Temperature [C$^\circ$]")

plt.xlabel("Year")
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Figure 1: Resulting plot from example 2. Shows the annual mean tempera-
ture for January, February and March at Blindern, Oslo, from 1931 to 2016,
together with a rolling 5 year mean and the overall mean.

2.2 Avalanche data

Statens Vegvesen [2016] has recently made a web service were much of their
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Figure 2: Shows how the data flows from the sources into the analysis
process.

data is publicly available. With this web service, it is possible to retrieve
avalanche data in JSON format. The returned format did not require much
coding to parse into a pandas data frame. Having such an API as they
provide, with several filtering and format options, greatly simplifies the data
gathering process. This function was not separated out of the project as it
easy to implement and it is of limited use to others.

3 Data processing and model fitting

To process the weather data into the required format for further analysis (like
the meteorological variables described in Chapter 2), a library of functions
was developed. For every transformation that was necessary to apply to the
data, there was a corresponding function. Having a set of small functions
made it easier to keep control over the data transformation. Also, tests were
written to ensure that the functions worked as intended. When the code
base grow bigger and changes were made, having tests were crucial to make
sure that the result was as expected and to avoid introducing bugs. The
functions was then combined into a pipeline where raw data was retrieved
and then transformed into the format required for the analysis and for model
fitting with scikit-learn. Figure 2 shows how the dataflow was in the
study. By setting up a pipeline consisting of modular functions, it was easy
make changes by just setting changing function parameters somewhere in the
pipeline, and then run the complete analysis again.
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4 A prototype

A simple working prototype should be able to automatically retrieve new
weather data, predict the probability of an avalanche and then visualize the
result. Thus, to accomplish this, we needed:

• A predictive model trained on historical data

• A task to automatically retrieve new weather data

• A task to process new weather data into the meteorological metrics
used in the predictive model

• A task to predict the avalanche probability for new data

• A way to store the data

• A way to visualize the results

As the code developed during the study was made as reusable modules and
functions, the same code could be used to put together a prototype. This
made the development of the prototype quite simple, and was more or less
about gluing together already existing functionality and then automate the
whole process. Figure 3 shows a flowchart of the prototype. First, a SQL
database was set up with the necessary tables and columns to store the data.
Secondly, based on the results from the study, a random forest was trained
on historical data and stored (purple). Then, the following tasks were set
up:

• Retrieve new weather data and store it in the database (blue)

• Read new weather data from the database, process the data into the
format required by model and store it in the database (yellow)

• Read the processed data from the database, predict the probability of
an avalanche event and store it in the database (green)

Each of these tasks were set up as separate services. This makes it easier
to track down errors when the program fails. To automate the process,
a task runner was configured to run the services sequentially every day at
appropriate times. To avoid duplicates in the database, the database was set
up with multiple constraints to ensure that rows in the database were unique.
This made it possible to run the services many times without worrying about
getting duplicates in the database.
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Figure 3: Shows how the data flows in the prototype.
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Figure 4: A screenshot of the frontend. The map and the weather forecast
is left out here to save space.

To visualize the data, a simple web application was developed. The ap-
plication was written in flask [Ronacher, 2016], a lightweight python frame-
work for developing web applications, and Highcharts, a JavaScript library
for drawing graphs. The application simply read the raw weather data and
the avalanche probabilities from the database, and then graphed the data on
a webpage. It also included a map over the area were the road stretch the fore-
cast was valid for and the weather stations in use were marked out. The final
frontend is shown in figure 4. The prototype was hosted in the cloud by using
Amazon Web Services and is available at http://52.19.132.210:5000/.
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