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Abstract––Reported studies on pattern recognition of 

electromyograms (EMG) for the control of prosthetic 

devices traditionally focus on classification accuracy of 

signals recorded in a laboratory. The difference between 

the constrained nature in which such data are often 

collected and the unpredictable nature of prosthetic use is 

an example of the semantic gap between research findings 

and a viable clinical implementation.  

In this work, we demonstrate that the variations in limb 

position associated with normal use can have a substantial 

impact on the robustness of EMG pattern recognition, as 

illustrated by an increase in average classification error 

from 3.8% to 18%. 

We propose to solve this problem by (1) collecting EMG 

data and training the classifier in multiple limb positions 

and by (2) measuring the limb position with 

accelerometers. Applying these two methods to data from 

ten normally limbed subjects, we reduce the average 

classification error from 18% to 5.7% and 5.0%, 

respectively. 

Our study shows how sensor fusion (using EMG and 

accelerometers) may be an efficient method to mitigate the 

effect of limb position and improve classification 

accuracy. 

 

Index terms––Accelerometer, prosthetics, prosthetic 

hands, electromyography. 

I. INTRODUCTION 

HERE is a significant body of research describing the 

use of  pattern recognition of myoelectric signals to 

control prosthetic devices [1]-[7]. A large majority of 

this work focuses mainly on improving the offline 

classification accuracy of pre-recorded signals. While the 

results of these works are important, they fail to address what 

may be described as a semantic gap between research findings 

and a viable implementation. A study by Hill et al. [8] puts 

this into the context of the World Health Organization 

International Classification of Function (ICF) [9]. While most 

prosthetics research is done in the Function domain in a 

laboratory, it should also be tested in the Activity domain in 

the clinic, and at the final stage in the Participation domain 

by the end user. 

In order to bridge this gap, it is important to examine the 

source of the disparity between current research and clinical 

results. One difference relates to the way that electromyogram 

(EMG) data are acquired for conventional offline 

classification. In research, for example, forearm EMG data 

are commonly acquired with the subject in a seated position, 

with the elbow resting on the arm of a chair. This is done 

because it makes it easier for the subject to perform 

repeatable contractions across trials, resulting in classification 

accuracies that may be unrealistically high. In a clinical 

implementation, training data may be collected in the same 

way but testing usually consists of more task oriented usage 

scenarios. This requires the user to not only produce 

coordinated contractions, but also to elicit those contractions 

in a wide variety of limb positions. When it comes to 

activities of daily living, the conditions become even more 

disparate. Consider, for example, the task of reaching for a 

glass in a cupboard, filling that glass with water, and then 

taking a drink. It quickly becomes apparent that the typical 

prosthetic user requires that the remnant and prosthetic limb 

operate in a multitude of positions. 

Pattern recognition of EMG signals relies on the 

generation of differentiable and repeatable contractions. 

Changes in these patterns can erode the performance of the 

classifier and may result in an unusable controller. Such 

pattern alterations can occur for various reasons. Hargrove et 

al. [10] showed that electrode displacement, if unaccounted 

for during training, could degrade pattern recognition 

performance. Findings by Howard et al. [11] and Jamison and 

Caldwell [12] indicate that some muscles’ activity depends on 

the angles in joints other than those primarily actuated by 

these muscles. Changes in the shape and length of muscles 

caused by limb positioning can result in a shift between the 

signal source and electrode, but even the muscle lengthening 

will change the efficiency of the muscle due to the degree of 

overlap of thin and thick filaments, causing an associated 

change in EMG activity [13]. 
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The inspiration for this study is based on clinical 

observations made during training sessions with amputee 

patients. A severe degradation in pattern recognition 

performance has been subjectively linked to changes in 

posture and limb position. In this work, we investigate the 

effect of changing limb position on classification accuracy. In 

addition, we propose two possible solutions to reduce the 

adverse limb position effect: 

1) Training in multiple limb positions – By training in 

multiple positions, we inform the pattern recognition 

system of what the patterns are like in each single 

position. This expands the boundaries of each class to 

include the effects of position variation.  

2) Measuring the position – This allows the pattern 

recognition system to know the position/orientation of 

the limb.  With knowledge of position, a classifier can 

compensate for the effect on the EMG, or a position-

specific classifier may be selected. We have used 

accelerometers to measure the static orientation of the 

forearm and the upper arm with respect to gravity. 

The combination of EMG and accelerometers has 

previously been used by Roy et al. [14] for monitoring 

patients with stroke and by Li et al. [15] for sign language 

detection and game control. To the best of our knowledge the 

combination of EMG and accelerometers has not been used in 

conjunction with prosthesis control. This study is an example 

of a general trend towards including more sensor types to 

maximize the environmental and intent information provided 

to the control system. The pilot study for this work was 

described by Scheme et al. [16]. 

II. METHODS  

All experiments were approved by the University of New 

Brunswick’s Research Ethics Board. 

A. Population and Data Acquisition  

EMG data corresponding to eight classes of motion were 

collected from 17 healthy normally limbed subjects (10 male, 

7 female) within the age range 18 to 34 years. The experience 

level in EMG-based motion classification ranged from none 

to moderate. 

Subjects were fitted with a cuff made of thermo formable 

gel (taken from a 6mm Alpha liner by Ohio Willow Wood) 

that was embedded with eight equally spaced pairs of 

stainless steel dome electrodes (EL12 by Liberating 

Technologies, Inc.). The cuff was placed around the dominant 

forearm (13 right, 4 left), proximal to the elbow, at the 

position with largest muscle bulk. A reference electrode 

(RedDot by 3M) was placed over the back of the hand. Two 

analog 3-axis accelerometers (Freescale MMA7260QT 

MEMS) were used to estimate limb position. The first 

accelerometer was affixed adjacent to the cuff on the forearm, 

over the brachioradialis muscle and the second was placed 

over the biceps brachii. The experimental setup is illustrated 

in  

Fig. 1. Both accelerometers were configured to have a 

sensitivity of 800 mV/g at a range of ±1.5 g, where g 

represents acceleration due to gravity. 

The eight channels of EMG were differentially amplified 

using remote AC electrode-amplifiers (BE328 by Liberating 

Technologies, Inc.), and low pass filtered at 500Hz with a 5th 

order Butterworth filter. Finally, the six accelerometer 

channels and eight EMG channels were acquired using a 16-

bit analog-to-digital converter (USB1616FS by Measurement 

Computing) sampling at 1 kHz. 

  

Fig. 1.  Placement of electrodes and accelerometers. 

Subjects were prompted to elicit contractions 

corresponding to the eight classes of motion shown in Fig. 2.  

 

Fig. 2.  Motion classes. 

Each contraction was sustained for three seconds and a 

three second rest was given between subsequent contractions. 

Ten trials were recorded in each of the following limb 

positions (P1-P5; as illustrated in Fig. 3), resulting in a total 

data set of [n subjects × 10 trials × 5 positions × 8 classes × 3 

seconds], where n is explained in Section C. 

 

 

Fig. 3.  Limb positions (illustration inspired by A. Loomis’ drawings [15]). 

P1. Straight arm hanging at side.  

P2. Straight arm reaching forward (horizontal).  

P3. Straight arm reaching up (45° from vertical).  

P4. Humerus hanging at side, forearm horizontal.  

P5. Humerus hanging at side, forearm 45° above 

horizontal. 
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Subjects were instructed to perform contractions at a 

moderate and repeatable force level and given rest periods 

between trials to avoid fatigue. The average duration of the 

experiment (with 50 trials lasting 48 seconds each) was 

approximately 80 minutes per subject. Some subjects noted 

minor shoulder (deltoid) fatigue.  

B. Data processing  

As this work represents an introductory look at the effect 

of position on pattern recognition, it was appropriate to test 

the effects using a known control scheme. Englehart and 

Hudgins [1] showed that simple time-domain (TD) feature 

extraction combined with a linear discriminant analysis 

(LDA) classifier can be used as an effective real-time control 

scheme for myoelectric control. Because of its relative ease of 

implementation and high performance, this system has been 

widely accepted and was therefore adopted in the present 

study. EMG data were digitally notch filtered at 60 Hz using a 

3rd order Butterworth filter in order to attenuate any power 

line interference. Data were segmented for feature extraction 

using 250 ms windows, with processing increments of 50 ms. 

Four TD features (mean absolute value, zero crossings, 

number of turns and waveform length) were extracted from 

the EMG data. Feature selection is not in focus of our study. 

Please refer to [1] for details of the feature extraction and the 

classification. 

For each processing window, the average value of the 

accelerometer data was calculated. Where applicable, this 

feature (hereafter called ACCEL) was fed into the LDA 

classifier separately or as an extension of the original feature 

set. 

C. Data exclusion 

Some of the subjects were not able to perform consistently 

throughout the data set. Similar phenomena occur in real-life 

situations where some individuals have great difficulty 

producing distinct myoelectric signals [19]. To ensure 

consistent data, subjects whose intra-position classification 

error exceeded 10% (five of the 17 subjects) were excluded 

from the study.  This does not detract from the focus of this 

work; to ascertain the effects of position on performance.  It 

simply eliminates possible confounding factors that may have 

been present with those subjects that did not perform well.  

In two of the remaining 12 subjects, hardware problems 

caused erroneous accelerometer readings. However, the 

corresponding EMG data were consistent and could be used 

for some parts of the study. In the following, the inclusion or 

exclusion of the two subjects with erroneous accelerometer 

data are indicated by numbers of subjects n = 12 or n = 10, 

respectively. 

D. Classification 

All classifiers were trained using data from the first five 

trials and tested using data from the last five trials, unless 

otherwise stated. Training was always done individually for 

each subject. 

The following classifier training schemes were explored: 

1) Training in a single limb position  

TD features recorded from a single limb position 

were used to train the classifier (n = 12). 

 

2) Training in multiple limb positions 

TD features recorded in multiple limb positions were 

concatenated and used to train the classifier (n = 12). 

 

3) Two-stage position-aware classification 

One motion classifier was trained in each position. 

For testing, the following stages were used: 

 Limb position detection. Accelerometer data were 

used for limb position classification (n = 10). For 

these subjects a zero position classification error 

was demonstrated (see Fig. 8). This result justifies 

the assumption of perfect position classification in 

the following stage. 

 Position specific motion classification. Perfect 

position classification was assumed (that is, the 

correct motion classifier was always used). TD 

features were used for position specific motion 

classification (n = 12). 

 

4) Single-stage position-aware classification 

TD and ACCEL features recorded in multiple 

positions were concatenated to form feature vectors:  

 [

 T 
   

 |
             

    EL
   

 |
            

] where   

   feature no.
   electrode no.
   accel. no.
   axis label

 (1) 

The feature vectors were then used for motion 

classification (n = 10). 

III. RESULTS   

A. Training in a single limb position 

Five different position-specific classifiers were trained; 

each one using data from only one of the limb positions, but 

tested using data from all positions. The resulting matrix of 

inter-position errors is shown in Fig. 4. Each entry in the 

matrix represents the average error of all motion classes 

across all subjects for the indicated training and test positions 

(vertical and horizontal axis, respectively). The classification 

errors shown in the main diagonal represent the intra-position 

classification errors, while the off-diagonal elements represent 

the inter-position errors. 

The mean intra-position classification error (on the 

diagonal) was 3.8%, whereas the mean inter-position error 

was 21.1% and the mean overall error was 17.6%. 
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Fig. 4.  Inter-position classification error (in %), averaged across all subjects 

and classes. Darker shades indicate greater error. 

Fig. 5 illustrates the class-specific limb position effect, 

using a similar confusion matrix. It illustrates the same results 

as those in Fig. 4, but they are averaged across positions 

instead of classes.  

 

Fig. 5.  Confusion matrix (in %), averaged across all subjects and positions. 

The classifier was based on EMG input and training in a single position. The 

color coding of the main diagonal entries has been inverted, so that a perfect 

classification result would yield 100% on the diagonal and 0% everywhere 

else, and a completely white matrix (rounding errors may yield column sums 

not identical to 100). 

For a closer look at how the position affects the 

discrimination of specific classes, the inter-position 

classification matrix in Fig. 4 is broken out into class specific 

matrices in Fig. 6. 

The motion classes that are most influenced by limb 

position can been identified in Fig. 5 as dark-colored elements 

off of the main diagonal. The discrimination of these classes 

is exacerbated by some positions more than others (Fig. 6). 

An example of this is the discrimination of Class 3 (Wrist 

Pronation), which is severely affected by changes in elbow 

angle, i.e. when training with flexed elbow and testing with 

extended elbow or vice versa. Similarly, the results for Class 

8 (Hand at rest) are poor in Position 3 (Reaching up) when 

trained in another position. 

 

Fig. 6.  Inter-position classification error (in %), averaged across all subjects 

and shown separately for each class.  

B. Training in multiple limb positions 

The average classification errors when using data from 

multiple (1-5) positions in the training set and all five 

positions in the test set were calculated and are presented in 

Fig. 7. 

It is interesting to note that the elbow is extended in P1-

P3, while it is flexed in P4 and P5. For the sake of comparison 

we have divided the training set combinations into two 

groups: Group 1 consists of the training set combinations 

corresponding to both a flexed elbow and an extended elbow. 

Group 2 consists of the combinations corresponding to only 

one of these cases. The results imply that the training set 

combinations in Group 1 perform better than those in Group 

2. The median classification errors of the two groups are 

significantly different (p<0.005) according to the Kruskal-

Wallis test [18],[20]. This implies that including variations in 

elbow angle is an important aspect of multi-position training.
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Fig. 7.  Classification errors when training in each combination of position subsets and testing in all 5 positions. The result is averaged over all subjects, classes 

and test positions. The error bars represent the standard deviation across test positions. 

 

   

C. Two-stage position aware classification 

1) Limb position detection 

The results of limb position classification using 

accelerometer data are illustrated in Fig. 8. Note that the 

classifier was able to identify position with zero error when 

using the ACCEL features from both accelerometers, thus the 

corresponding bars are not visible in the figure. 

 

Fig. 8.  Classification error of limb position when using accelerometer data. 

The results are averaged across all subjects and classes. 

2) Position-specific motion classification 

Assuming known positions, a position specific motion 

classifier was trained. The results are presented in Fig. 9 

along with the results of the classifier from Results section A 

(trained in a single position, P4, using TD features only) and a 

classifier from Results section B (trained in multiple positions, 

using TD features only). 

The two-stage position-aware classifier had an average 

error across all subjects and test positions of 3.8% while the 

classifier trained only with TD features from multiple 

positions had a 4.9% error and the classifier trained only in a 

single position (P4) had a 17.8% error. 

 

Fig. 9.  Comparison of a classifier trained only in position 4 (the normal 

approach) with a single-stage classifier trained in multiple positions and a 

two-stage classifier using known position. The classification error values are 

averaged across all subjects and classes. 

D. Single-stage position-aware classification 

The results of a single-stage motion classifier using 

ACCEL features from one or two accelerometers in addition 

to the TD features are illustrated in Fig. 10. For comparison, 

we have also included the results of using only TD features. 

The results of using only the upper arm accelerometer are 

omitted in the figure; since they skewed the scale of the axes  

(they were much worse than the results for other methods). 

Our results show that the accelerometers can improve the 

system, but only the forearm accelerometer is needed to get 

this improvement. We can also see that the single-stage 

classifier performs better than the two-stage classifier. 
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Fig. 10.  Comparison of classification based only on EMG TD features with 

four methods based on TD and ACCEL features. The bars represent the value 

averaged across all subjects and test positions, and the standard deviation is 

computed over test positions (i.e. averaged over subjects). 

All three single-stage classification schemes are presented 

in Fig. 11, comparing our methods with the standard approach 

of training in a single position and using TD features of EMG 

only. The numbers are omitted for clarity. However, as an 

example the misclassification of Class 3 (Pronation) as Class 

4 (Supination), i.e. row 4/column 3, happens in 16.9% of the 

cases when training in a single position with TD features. By 

training in multiple positions, this misclassification was 

reduced to 3.7%, and by using ACCEL features along with 

TD it was reduced to 0.6%. 

 

Fig. 11.  Comparison of training in a single position (TD), training in multiple 

positions (TD) and training in multiple positions (TD + both ACCEL). These 

confusion matrices are made in the same way as Fig. 5, i.e. with inverted 

colors on the diagonal. For the case of multiple training positions, the training 

set size was scaled to the same size as for single-position, by using only one 

trial instead of five.  

IV. DISCUSSION  

EMG TD features and training in a single position yielded 

an average intra-position classification error (3.8%) 

significantly lower than the corresponding inter-position 

errors (21.1%). The results indicate that EMG classification 

error is strongly dependent on limb position. This dependence 

may be attributable to variations in muscle recruitment (for 

limb stabilization due to gravitational forces), electrode shift 

(due to changes in muscle shape, length and position), the 

force-length relationship of the muscle, and changes in the 

musculotendon lever arm, which all depend on joint angles. 

As a result, training a prosthetic control system in a single 

position may be insufficient if the system is to perform well in 

multi-position use. The degradation shown when changing 

between positions may contribute to the differences seen 

between published classification accuracy results and 

observed clinical performance. 

Some subjects noted minor shoulder (deltoid) fatigue. The 

effect of the fatigue on accuracy is expected to be negative. 

Although fatigue was not the focus of this work, the 

manifestation of fatigue effects in the EMG is a reality of 

prosthetic usage. In these experiments, the effect of limb 

position appears to be more dominant than any fatigue effect 

that may have occurred. 

By training in multiple positions, the overall classification 

error was reduced substantially (from 17.6% to 4.9%, Fig. 9). 

Since training in multiple positions can be cumbersome for 

the end user, it is desirable to reduce the number of training 

positions. We have shown that the performance improvement 

decreases with each additional position. For a test set of five 

positions, an increase from three to five training positions 

only yields a reduction from 5.3% to 4.9% in the associated 

classification error. We have also shown that it is important to 

have a training set containing a variation in elbow angle. It 

remains to investigate how many, and which, training 

positions will be needed for the prosthesis users, since it is 

desirable to reduce the training time. 

A limb position classifier using ACCEL features was able 

to detect the static position with zero error (Fig. 8). Position 

specific motion classifiers were then used to reduce the 

overall motion classification error from 5.2% to 3.7% (Fig. 9 

& Fig. 10). By using the ACCEL features as an additional 

input to a single-stage motion classifier trained in multiple 

positions, the error was further reduced to 3.4%. It is 

hypothesized that the single-stage method had better 

performance than the two-stage method because, in the latter 

case, the limb position classifier abstracts the ACCEL data to 

a discrete limb position, thereby reducing the information 

content. 

It was shown that the forearm accelerometer is sufficient to 

achieve an improvement in the single-stage motion classifier 

(overall motion classification error of 3.4%). With both 

accelerometers, the same average performance was achieved 

but with lower variability among subjects; however, the use 

of the single forearm accelerometer simplifies the task of 

implementing this method in existing prostheses. While a 

forearm accelerometer can be built into a transradial 

prosthesis socket, an upper arm accelerometer would need to 

be external to the socket, complicating the fitting process. 

According to Hill et al. [8], the domains Function, Activity 

and Participation can be related to the situations Research, 

Development, Clinical Assessment and Daily Use. The 

corresponding progression, when it comes to myoelectric 

pattern recognition control, can be identified as that from 

single-position pre-recorded data with off-line classification 

to general dynamic movements. As illustrated in Table 1, our 

study represents a shift from Function towards the Activity 

domain by taking multiple limb positions into account. 

Nonetheless, there is clearly still a significant amount of work 

that needs to be done to extend this research to the 

Participation domain and hence Daily Use. 

Table 1.  Domains, situations and positions in myoelectric pattern recognition 

Function Activity Participation 

Research Development Clinic Home 

Single position Multiple static pos. Dynamic use 
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Recently, renewed international interest towards advancing 

prosthetics research has pushed the field to provide more 

clinically relevant outcome measures. In the present study, we 

have adopted the traditional classification accuracy as our 

outcome measure. However, Lock et al. [21] showed only a 

very weak correlation between classification accuracy and 

usability. Hargrove et al. [22] found that by including 

transient contractions in their training data, they could 

simultaneously improve the results of a virtual clothespin 

placement task and decrease standard classification accuracy. 

Kuiken et al. [23] introduced alternative quantitative usability 

metrics focused on class selection and motion completion 

times. This kind of outcome measure is needed to further 

assess the validity of these results in the Activity domain and 

beyond. 

Gravitational and biomechanical effects of limb position 

will be different for prosthesis users compared to the normally 

limbed subjects of this study. It is an open question whether 

the position effect will be smaller or larger. Although a 

residual limb is shorter and lighter than a healthy one, the 

influence of gravity on the EMG signals may still be larger 

due to the shorter residual that is to take the gravitational load 

of the prosthesis. Also, when wearing a prosthesis socket, the 

effect of position will manifest itself in other ways, such as 

changes in contact forces between the socket and the skin, 

which will likely produce changes in EMG patterns in a 

manner not represented in our present data. Likewise, the 

biomechanical effects in the prosthetic case are still to be 

researched. Nevertheless, since our study was inspired by 

clinical observations made during sessions with amputee 

patients, we believe that it is relevant also for them.  

V. FUTURE WORK   

The present results show that our methods are applicable to 

upper-limb movement pattern recognition in able-bodied 

subjects, and as such may find immediate usage in 

applications such as sign language recognition and the study 

of musical gestures.  The results also are an encouraging 

starting point for adapting the methods to be used in 

prosthesis control. The population of prosthesis users is 

limited, so for practical and ethical reasons the present 

method assessment using able-bodied subjects represents a 

necessary first step towards this ultimate goal. The next step 

will be to validate the results by application to prosthesis 

users. 

The mitigation techniques discussed here all require 

collection of training data in multiple positions. This may 

prove to be cumbersome for the end prosthetic user, and 

therefore, an ideal controller would provide position invariant 

control after being trained in a single position. While we have 

shown that training in only a subset of position yields positive 

results, we have yet to attain this goal. 

While the accelerometers are able to give information 

about a limb’s orientation, they can also be used to measure 

the dynamical movements of the limb. In the case of 

simultaneous proportional control systems, such as those 

described by Jiang [24] and Fougner [25], they could be even 

more useful. 

This work is part of a larger investigation aimed at 

improving the practical robustness of myoelectric control. 

The present results indicate that facilitating position invariant 

myoelectric control through methods such as feature 

selection, data projection, multi-sensor systems, or by other 

means could be an important part of this larger work.   
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