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Abstract

Offshore wind development is constrained by its high cost. One potential way to meet
this challenge is to reduce the uncertainty in wave modeling and hydrodynamic loads
calculation for offshore wind support structures design. The thesis covers two aspects for
calculating loads acting on a offshore wind support structure: an improved hydrodynamic
load model and a modified higher order wave model.

In studying hydrodynamic load model, FNV and Rainey’s methods, both intended to
explain third order phenomena observed on offshore slender structure, are compared and
analyzed to solve the surface piercing problem, critical for a slender structure at an
extreme sea state. Rainey’s new equation is preferred over FNV.

Second order irregular wave model, a simple higher order stochastic wave model, enables
it to include non-linear contributions from waves. Analysis focuses on how the modified
wave model affects wave surface elevation, wave power spectrum and wave kinematics.

With improved hydrodynamic load model and wave model introduced, there are in total
six methods available to calculate the loads acting on a slender offshore wind support
structure. The proposed six methods are invstigated by comparing load statistics and
corresponding power spectrum of shear force and bending moment at foundation base.
The implementation of non-linear models increases foundation shear and bending moment
by 3% to 34%

For a floating type support structure, the analysis concentrates on dynamic response of
structure, including spar hull and mooring lines. With the assistance of numerical tool
RIFLEX, the non-linear dynamic problem is solved in time domain by displaying dis-
placements and forces at targeted section, mooring lines and cylinder hull. It is observed
that the low frequency components exerts a reduction effect on maximum axial force on
mooring lines, while higher order frequency effects are absent. Based a simple long term
extrapolation, environmental contour line method, the reduction effect is predicted to be
10% at the mooring line for a 50-year sea state. When it comes to fatigue analysis, sec-
ond order irregular wave model only slightly differs damage level at cylinder hull around
surface piercing point, but greatly reduce cycle nubmers on mooring lines.
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Chapter 1

Introduction

1.1 Background

The wind industry is nowadays experiencing a technology transfer from onshore to off-
shore, which makes offshore wind one of the fastest growing maritime sectors. Statistics
reveals that installed offshore wind capacity has reached 5 GW by the end of 2012, and
the figure is expected to reach 40 GW, meeting 4% of European electricity demand in the
near future [3].

Offshore wind turbines, mainly installed in North Sea, are mounted on bottom fixed
substructures. Among them, monopiles and gravity based substructures are the most
commonly employed offshore wind foundations for regions with a water depth of smaller
than 30 m, while frame structures, i.e. jackets and tripods, are chosen for a deeper site up
to 50 m, e.g. OWEC tower at Beatrice Windfarm [4]. But for an even deeper site larger
than 100 m, the diameter of support structure needs to increase significantly to ensure
the integrity of the utility, which causes problems for both design and installation. To
harness offshore wind resources in countries with a steep continental shelf, such as China,
USA, Japan and Norway, floating type support structures are generally preferred over
fixed ones. Several alternatives are available for floating wind turbine design, including
spar, semi-submersible, TLP etc.

Though booming, offshore wind development is greatly constrained by its high cost. Com-
pared with land-based wind turbines, which are already less economically competitive
than fossil fuels, offshore wind development easily exerts extra demand on investment.
Different from land based structures, offshore wind turbines are subjected to hydrody-
namic forces in addition to aerodynamic loads. A potential way to reduce the cost is
to gain a more in depth insight into incident wave modeling and the mechanism that
explains how wave interacts with structure.

To predict hydrodynamic loads on such a slender structure, Morison equation combined
with first order wave theory, is widely used in industry to divide wave loads into two

1



2 Introduction

components, inertia and drag forces[5], leaving out higher order terms. The calculation
based on Morison equation generates satisfying results and is computationally efficient
for a benign sea state. But when set at a harsh sea state, where wave height is compa-
rable to the structure diameter, nonlinear effects might be excited and affect the steady
state oscillations by displaying higher order steady state or transient response. Besides,
first order wave theory, which uses linearized boundary condition, fails to describe wave
kinematics in the wave zone and subsequently leaves out loads in the wave zone.

Solving the above mentioned problem requires a modified load model and a more so-
phisticated wave model. For a bottom fixed substructure, which is frequency driven in
design, the higher order terms introduced with either method can better determine the
frequency range that the support structure should be sited. For a floating wind turbine,
which is in most cases moored, the low frequency items included by using a non-linear
wave model might affect mooring line design for both ULS and FLS. Most importantly,
with an improved environmental description implemented, the safety margin included in
engineering design can be accordingly reduced and consequently cut down offshore wind
cost.

The primary objective of this thesis is to introduce a more sophisticated hydrodynamic
load model and a modified wave model, analyze how the modified method affects foun-
dation design.

1.2 Hywind Demo Project

Hywind, a concept from Statoil, is world’s first spar type floating wind turbine. It was
installed 12 km south east of Karmøy in Norway, at a water depth of about 220 m [6].
The hull and the tower of Hywind Demo is made of steel and blasted with gravel and
water, with its major design parameters shown in table 1.1.

Table 1.1: Technical data of Hywind Demo[2]

Design Parameter Value Unit

Power 2.3 MW
Turbine Weight 138 tonnes
Rotor Diameter 82.4 m
Nacelle Height above MSL 65 m
Hull Draft 100 m
Diameter at Water Line 6 m
Diameter of Submerged Part 8.3 m
Water Depth 220 m
Displacement 5, 300 tonnes

The Hydro Demo is composed of three parts, a spar type substructure, a tower and a
wind turbine generator mounted at its top, refer to figure A.1. The substructure, hereon
referred as the hull, is designed to support the wind turbine and maintains a desirable sea
performance to ensure the operation of wind turbine. The hull is a 100 m steel cylinder
with a diameter of 8.3 m at the immersed part, and a reduced diameter of 5 m at water
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surface to reduced hydrodynamic loading in wave zone. The hull is blasted with gravel
and water to lower the center of gravity. Also, three mooring lines, anchored at sea, are
attached to the hull at 52.3 m below MSL for positioning purposes. The turbine tower,
with a total length of 46.54m, acts as the link between the hull and WTG. WTG consists
of three parts, a nacelle, a rotor and a generator. The wind turbine supplied by Siemens
is a SWT − 2.3− 82 with a rated power of 2.3 MW [6].

The following three tables illustrated the design parameters. Table 1.3 includes the mass
distribution over height. Table 1.4 shows the concentrated weight of different parts of
the structure, and the total weight. Table 1.5 gives the critical dynamic characteristics
of the structures, including 6 DOF’s rigid body modes and the lowest bending modes of
the turbine tower.

Table 1.2: Structural parameters for each segment of Hywind

Section Range Diameter [m] Wall thickness[m]

upper tower 27.5 ∼ 65.7 3.3 0.022
lower tower 17.0 ∼ 27.5 4.6 0.045
MS 1 11.0 ∼ 17.0 6.0 0.052
MS 2 −4.5 ∼ 11.0 6.0 0.052
MS 3 −18.4 ∼ −4.5 6.0 0.052
MS 4 −36.2 ∼ −18.4 7.8 0.052
MS 5 −51.0 ∼ −36.2 8.3 0.037
MS 6 −57.0 ∼ −51.0 8.3 0.038
MS 7 −68.8 ∼ −57.0 8.3 0.038
MS 8 −86.6 ∼ −68.8 8.3 0.038
MS 9 −99.3 ∼ −86.8 8.3 0.038

Table 1.3: Hywind support structure mass distribution

Section Range Mass [tonnes] Mass per unit length[tonnes/m]

upper tower 27.5 ∼ 65.7 88.0 2.3
lower tower 17.0 ∼ 27.5 85.3 8.1
MS 1 11.0 ∼ 17.0 104.9 17.5
MS 2 −4.5 ∼ 11.0 153.4 9.9
MS 3 −18.4 ∼ −4.5 172.0 12.4
MS 4 −36.2 ∼ −18.4 173.7 9.8
MS 5 −51.0 ∼ −36.2 143.3 9.7
MS 6 −57.0 ∼ −51.0 96.4 16.1
MS 7 −68.8 ∼ −57.0 117.2 9.9
MS 8 −86.6 ∼ −68.8 1772.4 99.6
MS 9 −99.3 ∼ −86.8 2086.9 164.3
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Table 1.4: Siemens 2.3 MW turbine mass distribution

Part Mass [tonnes]

Hub 26.4
Nacelle 82.1
Blades 27.6

Sum 136.1

Table 1.5: Natural frequencies of Hywind Demo [2]

Mode of motion Measured value [Hz] Simulated value [Hz]

Surge/ sway 0.008 0.009
Roll /pitch 0.040 0.043
Heave 0.036 0.037
1st tower bending moment 0.699 0.690
2nd tower bending moment 1.667 1.639

1.3 Wave Forces

The wave forces acting on a marine unit can be classified into four areas as shown in
figure 1.1 [7]. The ratio between cylinder diameter and incident wave length, λ

D , and
ratio between wave height and cylinder diameter H

D determine the governing wave loads

type. Within the wave breaking limit, diffraction loads are dominating when λ
D is smaller

than 5, while for longer waves the mass forces become more important if λ
D > 5. Besides,

viscous effects, such as flow separation and wake, need to be included if H
D is sufficiently

large.

In the context of the project, though a relatively large wave height is applied, breaking
wave is not considered to simplify wave modeling. Also, as a slender structure with a
large λ

D ratio, it is assumed that mass forces is the dominating wave force type. It is
thus justified to combine strip theory and long wave approximation for loads calculation,
ignoring 2D effects and wave profile deformation.

In offshore wind industry, Morison Equation is widely applied to calculate the hydrody-
namic loads. This semi-empirical load formula considers two parts, one inertia term and
one drag term. The inertia term serves to count for the diffraction problem, assuming
the relevant characteristic length L is smaller than the wave length, i.e. KL � O (1).
This long wave assumption leads to the simple conclusion that the horizontal wave force
acting locally on a fixed body is proportional to the acceleration of the incident-wave
velocity field at the same position. Morison’s equation also assumes that viscous drag
dominates in drag loading, and that wave radiation damping can be ignored. Concluded
by Rainey [8], Morison equation is applicable for limiting cases of small lattice-member
diameter, and deals entirely in member-center line fluid properties, so that it can be ap-
plied computationally by a simple ‘stick model’ computer program. Morison equation
will be treated with in more detail in 2.1.1

In the offshore wind industry, integrated wind turbine design codes employ the Morison
Equation for calculating hydrodynamic loads for its simplicity and high efficiency. When
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2.3. INITIAL HYDRODYNAMIC CLASSIFICATION

(2010)
Tz
TP

= 0.6673 + 0.05037γ − 0.006230γ2 + 0.0003610γ3 (2.3)

For simplicity γ is set to a fixed value, γ = 3.3. This is done since the values of TP are only to
be used as an initial classification. The lowest peak period is given as

TP =
4

0.6673 + 0.05037 ∗ 3.3− 0.006230 ∗ 3.32 + 0.0003610 ∗ 3.33
= 5.14[s] (2.4)

The largest period is calculated to be 14.4[s].

These characteristic lengths are used in the next chapter as an initial classification of the hydro-
dynamic regime of the structure.

2.3 Initial Hydrodynamic Classification

It is customary to classify the problem in terms of the dominant forces on a structure, figure 2.3
is reproduced from Faltinsen (1990) and shows the various regimes of forces.

≈ 10

≈ 5 λ
D

H
D

H

λ D

Wave Difraction

Mass Forces

Viscous Forces

Wave breaking limit

Figure 2.2: Relative importance of mass, viscous drag and diffraction forces, reproduced from
(Faltinsen, 1990)
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Figure 1.1: Classification of wave forces

[7]

it comes to analyzing floating support structure, its disadvantages is well pointed out by
Matha et al. [9]. However, when the structural characteristic length is comparable to
wave length, which is always the case for floating wind, and causes noticeable disturbance
to incident wave, wave potential should not be assumed to be constant over piecing
surface and leads to the failure of diffraction simplification in Morision Equation. Also,
they indicate that for floating hull with accountable displacement, the radiation damping
should be also included in analysis and the simplification that viscous drag dominates
the drag loading is no longer valid. Another issue they noted is that the equation does
not take account of any added mass induced coupling between hydrodynamic force and
support structure in all DOF’s, as the wind structure is no longer as axisymmetric as
assumed in Morison equation.

Apart from the limitations of Morison’s Equation, some nonlinear phenomenon, such as
the ringing effects, see figure 1.2 [10], and springing, can not be explained when higher
order terms are excluded. These higher order phenomenon have arouse recognition on
nonlinear wave loads since late 1980’s, in order to explain transient structural deflection
beyond dominant wave frequencies. Since the hull of Hywind Demo has a relatively large
draft-diameter ratio and can thus be treated as a slender cylinder with a low natural
frequency, the higher order response might be excited by nonlinear wave components.
A recent study performed by Lucas [11] on the comparison of first- and second-order
hydrodynamics confirms the importance of second-order effects for an FOWT [9]. But
few efforts have been paid to analyze higher order effects, to third or fourth order, when
the floater is slender and subject to steep waves.
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FIGURE 1. Experimental data showing the occurrence of ringing on a tension-leg platform with four 
columns. The upper curve shows the time history of the incident wave, which builds up to a large 
amplitude after a relatively calm interval of time. The lower curve shows a measured tension at the 
structural eigenfrequency, where a rapid buildup and slow decay of resonant 'ringing' is evident. 
Since the incident wave is measured at a point alongside the structure which is midway between the 
columns, there is a phase lead of the response relative to the first large wave crest. (This figure is 
replotted from the data presented by Jefferys & Rainey (1994, figure 5). The horizontal axis has been 
re-scaled in units of time. The normalizations of the vertical scales are not known to the authors.) 

moment acting on the structure, and of the local 'wave loads'. In the linearized theory 
these are harmonic in time, with the same frequency w as the incident waves. 

In applications where the structure is sensitive to excitation at high or low 
frequencies, outside the range of first-order forcing, it is necessary to consider the 
second-order wave forces proportional to (K@.  In regular waves these include a mean 
drift force, which is constant in time, and a second-harmonic force. The mean drift 
force, and part of the second-harmonic force, are due to quadratic contributions from 
the linear solution. These contributions are associated partly with the second-order 
pressure acting on the mean submerged surface of the structure, and also with the effect 
of the first-order pressure acting on the unsteady boundary at the free surface. The 
force due to the latter effect is effectively a 'point force' acting at the free surface. In 
addition to these contributions from the linear solution there is an additional 
component of the second-harmonic force due to the second-order solution for the 
velocity potential. The second-order solution is particularly complicated, since it is 
governed by an inhomogeneous free-surface boundary condition which corresponds 
physically to an imposed pressure acting on the free surface and extending to the far 
field in an oscillatory manner with relatively slow attenuation (cf. Chau & Eatock 
Taylor 1992). Malenica & Molin (1994) have initiated an extended approach intended 

Figure 1.2: Springing phenomenon

1.4 Nonlinear Phenomena

Slamming

Slamming is a non-linear fluid-structure interaction that affects not only local structure
integrity, but also its global elastic behavior. When it comes to the substructure of
Hywind, the slamming loads acting at the wave intersection might have great concern
with regard to its fatigue life and local strength. Two parameters, relative impact angle
or dead-rise angle, and the relative attacking velocity, the relative structure-liquid velocity
at the impact, determine the level of slamming loads.

Ringing

Ringing is a high-frequency transient response caused by large and steep waves. These
transient oscillations at frequencies substantially higher than wave frequencies were first
observed in some tension leg platforms and gravity based structure in North Sea during
1980’s. Similar problems can also occur to fixed platforms in deep waters, which has a
relatively high natural frequency.

Ringing is believed to be a third order effect, as the natural frequency of those structures
were approximately three times the wave frequency. It tends to be excited in a steep
wave with the wave amplitude comparable to structure radius. This phenomenon can
not be explained by traditional wave diffraction theory. Since this issue first came into
sights, great efforts have been paid to explain the rationale behind this in the last two
decades. One such example is FNV-theory introduced by Faltinsen et al. [10] that enables
to include a third order term in the formula. By introducing a inner domain and outer
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domain, FNV-theory is valid for wave height comparable to cylinder radius. This method
will be explained in detail in chapter 2. Another approach is presented by Malenica and
Molin [12] by applying the conventional perturbation technique and derived the complete
third order potential for a fixed cylinder in finite water depth. In contrast to FNV-theory,
as a standard procedure, the wave height is assumed to be small compared with other
length scales. Also, Rainey [8] invented a new method to calculate wave loads on a slender
structure. Instead of directly integrating pressure over the submerged surface, Rainey’s
new formula is based on energy conservation, which will also be elaborated in chapter 2.

Springing

Springing is a steady state resonance phenomena that affects the fatigue level of the
structure. Springing is normally excited by second order loads, which lies outside the
range of linear forces. It has been observed that springing effects can cause resonant axial
deflection of the tendons.

1.5 Objectives

To study the above described non-linear phenomena that might occur at a severe sea
state, both improved hydrodynamic load model and a more sophisticated wave model
shall be proposed. Besides, how the improved hydrodynamic model affects static loads of
a bottom founded slender offshore support structure, and dynamic response of a floating
wind turbine shall also be investigated. The study thus concentrates on following areas,

1. Hydrodynamic load model, focusing on proposing improved loads model to solve
wave-structure interaction at a steep wave;

2. Higher order wave models that includes a certain level of non-linearity at low com-
putation cost;

3. Static load calculation to investigate into statistic properties of loads estimated with
various loads models;

4. Higher order wave model on the dynamic of Hywind and its influence on extreme
loads estimation, and fatigue design.
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Chapter 2

Hydrodynamic Model

To capture the non-linearity resulting from steep waves, it would be straight forward to
investigate into both non-linear wave model and sea loads calculation model. In this
chapter, the prior focus will be on the state of the art in offshore wind design codes, and
a comparative study of more sophisticated load models.

2.1 State of the art

2.1.1 Morison equation

In offshore wind design codes, Morison equation is widely employed for its convenience
in implementation and high calculation efficiency. Morision equation is a semi-empirical
method that calculates the sea loads as the sum of quasi-static inertia and drag force,
which has the form,

dF = CAρπ
D2

4
u̇dz + CDρ

D

2
|u|udz (2.1)

in which CD and CA are drag coefficient and mass coefficient, u̇ and u are the water particle
acceleration and velocity at the cylinder center in x direction. The two coefficients CA
and CD are determined empirically, depending on Keuligan-Carpenter number, Reynolds
number, roughness and some other parameters.

For a floating wind turbine, which is free to move in 6 DOFs, the Morison equation
needs to be expanded to account for the relative motion between the structure and wave.
Equation 2.1 needs to be modified as,

dF = CA
D2

4
ρπu̇dz − CA

D2

4
ρπη̈dz + CDρ

D

2
|u− η̇|(u− η̇)dz (2.2)

in which η̇ and η̈ are velocity and acceleration of the floating substructure. Combined
with strip theory, the wave loads can be conveniently obtained by integrating dF over its
length ‘L’ i.e.

9
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Ftotal =

∫ L

0
dF (2.3)

Morision equation is based on the assumption that the structure is slender in comparison
to wave length λ. The structure will not deform the wave profile. Pressure and velocity
fields around the structure remain as they are in the far field. Wave particle velocity
and acceleration at the center line are used in calculation, i.e. long wave assumption is
assumed.

By writing the drag term in Fourier series, higher order components, but odd frequency
terms only, i.e. ω, 3ω, 5ω, are found in the second part of the formula, which can be one
source for non-linearity.

For Hywind Demo, the long wave assumption can be easily justified, so long as the
wave length is larger than 5D. The limitation of using Morison equation mainly lies
on the integration method, since it ignores the free surface piecing effect at the wave-
structure intersection. Besides, when applied in combination with linear wave theory, the
integration is carried out to mean free surface, z = 0. In that way, it fails to capture the
nonlinearities above the mean water surface. Though stretching method to some extent
adds wave zone loads to the expression as a engineering remedy, its physical rationale
remains to be proved. Also, it is reported that stretching methods, such as Wheeler
stretching, significantly underestimate velocities with the error ranging from 0.5KA to
0.75KA [13] for steep waves. A more sophisticated model is thus in need.

2.1.2 Stretching

Though not recommended in the context of extreme wave, streching method will still
be briefly introduced for comparison purposes. The most often utilized technique is the
Wheeler stretching that ‘stretches’ the vertical coordinates from the original level zs to a
modified level z:

z =
zs − ζ
1 + ζ

h

(2.4)

where ζ is free surface elevation and h is the water depth. Figure 2.1[14] clearly illustrates
the procedure. Intuitively, this stretching method works to transform the linear wave
velocities up and down to the wave crest or trough. First order solution is correct to
MSL, the stretching method will significantly reduce velocity under a wave crest of an
extreme wave.

Besides, pointed out by Wheeler, the coordinates are shifted to proximate the particle
velocity in stretching, which makes the solution fail to satisfy Laplace equation. Significant
errors occur especially when applied in combination with steep waves and linear wave
theory. Further, Larsen et al. [15] concluded that due to asymmetry in loading, stretching
method underestimate fatigue damage, and shall not be preferred for fatigue analysis. A
more sophisticated wave kinematic model is in need to capture non-linearity included in
the wave zone.
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putes the velocity for each frequency component using linear
theory and for each time step in the time series, the vertical co-
ordinate is stretched according to

where  is the free surface elevation and d is the water depth
(Figure 3-6).

Figure 3-6
Stretching and extrapolation of velocity profile.

3.3.3.2  The Wheeler method should be used with a nonlinear
(measured or second-order) elevation record and nonlinear
kinematics components added as if they are independent.

Horizontal velocities can be consistently modelled up to the
free surface elevation by use of a second-orderkinematics
model which is a Taylor expansion (extrapolation) of the linear
velocity profile including contributions from sum- and differ-
ence frequency wave components. Reference is made to Mar-
thinsen & Winterstein (1992), Nestegård & Stokka (1995) and
Stansberg & Gudmestad (1996). The horizontal velocity at a
level z under a crest is given by

where u(1) (z), u(2+) (z), u(2-) (z) are the linear, second order
sum- and second order difference-frequency velocity profiles.
Similar expressions exist for vertical velocity and horizontal
and vertical acceleration. Note that when calculating forces on
risers attached to a floater, the kinematics must be consistent
with the wave theory used for calculating the floater motion.

3.3.3.3  When using a measured input record, a low-pass filter
must be applied to avoid the very high frequencies. It is
advised to use a cut-off frequency equal to 4 times the spectral
peak frequency.

3.3.3.4  A comparison of the three methods has been presented
by Stansberg (2005):

— The second-order kinematics model performs well for all
z-levels under a steep crest in deep water.

— Grue’s method performs well for z > 0, but it overpredicts
the velocity for z < 0.

— Wheeler’s method, when used with a measured or a sec-
ond-order input elevation record performs well close to the
crest, but it underpredicts around z = 0 as well as at lower
levels. If Wheeler’s method is used with a linear input, it
underpredicts also at the free surface.

3.3.4  Wave kinematics factor

When using two-dimensional design waves for computing
forces on structural members, the wave particle velocities and
accelerations may be reduced by taking into account the actual
directional spreading of the irregular waves. The reduction fac-
tor is known as the wave kinematics factor defined as the ratio
between the r.m.s. value of the in-line velocity and the r.m.s.
value of the velocity in a unidirectional sea.

The wave kinematics factor can be taken as

for the directional spreading function D() ~ cosn() defined in
3.5.8.4, or it can be taken as 

for the directional spreading function D() ~ cos2s(/2)
defined in 3.5.8.7.

3.4  Wave transformation

3.4.1  General

Provided the water depth varies slowly on a scale given by the
wave length, wave theories developed for constant water depth
can be used to predict transformation of wave properties when
water waves propagate towards the shore from deep to shallow
water. Wave period T remains constant, while phase speed c
and wave length  decrease, and wave height H and steepness
S increases. A general description of wave transformations is
given by Sarpkaya & Isaacson. 

3.4.2  Shoaling

For two-dimensional motion, the wave height increases
according to the formula

where Ks is the shoaling coefficient and cg is the group velocity

and wave number k is related to wave period T by the disper-
sion relation. The zero subscript refer to deep water values at
water depth d = d0.

3.4.3  Refraction

The phase speed varies as a function of the water depth, d. There-
fore, for a wave which is approaching the depth contours at an
angle other than normal, the water depth will vary along the
wave crest, so will the phase speed. As a result, the crest will tend
to bend towards alignment with the depth contours and wave
crests will tend to become parallel with the shore line.
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Figure 2.1: Wheeler stretching

[14]

2.2 Wave Model

In Stokes waves derivations, perturbation method is a commonly used technique to solve
the potential problem. When a Taylor expansion is applied at z = 0, the boundary
condition problem for wave potential can be linearized as,

Φ(x, y, ζ, t) = Φ(x, y, 0, t) + ζ

(
∂Φ

∂z

)
(2.5)

When a linearized boundary condition is applied, the solved linear potential will be valid
up to the mean free surface and is assumed to be constant from z = 0 to z = ζ. To
use the linear potential theory consistently, wave forces is integrated up to mean free
surface as well. It can be justified for a benign wave condition, where the wave surface
elevation is relatively small. But for an extreme sea state, wave kinematics in the wave
zone is expected to be included in calculation, in order to describe wave zone loads, which
include a non-negligible part of the total wave load.

One widely applied remedy is Wheeler stretching, explained in section 2.1.2. Alternatives
are, higher order wave models, 2nd order irregular sea model and stream theory.

2.2.1 Higher order Stokes

When applying perturbation techniques, the velocity potential can be expressed as,

Φ = Φ1ε+ Φ2ε
2 + Φ3ε

3 + · · · (2.6)
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The accuracy of the potential problem increases when more higher order terms are added,
see equation 2.7. The derived higher order solution has its advantage in better predicting
extreme loads for design purposes.

Φ(x, y, z = ζ, t) = Φ(x, y, 0, t) + ζ

(
∂φ

∂z

)
+

1

2
ζ2

(
∂2φ

∂2z

)
(2.7)

But the accuracy is achieved at the cost of loosing its superposition property. For a
linearized potential problem, superposition technique is applicable to represent the real
sea state as the sum of a group of linear waves characterized by varying wave frequencies.
But when higher order terms included, superposition is not valid any more.

Besides, the perturbation method requires wave amplitude to be smaller than all the
other length scales to be valid. When the wave steepness is large, for example wave
amplitude of the same order of cylinder diameter, the results from Stokes waves may
diverge. Rainey [16] discussed this in detail in its appendix.

Despite of the two above mentioned shortcomings, higher order Stokes still have its ad-
vantage in studying nonlinear wave kinematics for its more sophisticated description of
wave kinematics in the wave zone. But its applicability is constrained by two parame-
ters, water depth and wave height. As a general guidance, the more higher order terms
included, the better approximation to the ‘real’ wave.
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3.2.3.5  To third order however, the phase velocity depends on
wave height according to 

For deep water , the formula simplifies to

Formulae for fluid particle displacement, particle velocity and
acceleration and sub surface pressure in a second-order Stokes
wave are given in Table 3-1. 

3.2.3.6  For regular steep waves S < Smax (and Ursell number
UR < 30) Stokes 5th order wave theory applies, ref. Fenton
(1985). A method for calculation of Stokes waves to any order
n is presented by Schwartz (1974) and Longuet-Higgins
(1985). The maximum crest to wave height ratio for a Stokes
wave is 0.635. 

Stokes wave theory is not applicable for very shallow water,
UR > 30, where cnoidal wave theory or stream function wave
theory should be used.

For UR ~ 30, both Stokes fifth order wave theory and cnoidal
wave theory have inaccuracies. For such regular waves the
stream function method is recommended.

3.2.4  Cnoidal wave theory

The cnoidal wave is a periodic wave with sharp crests sepa-
rated by wide troughs. Cnoidal wave theory should be used
when  < 0.125 and UR> 30. A cnoidal wave has crest to wave
height ratio between 0.635 and 1. The cnoidal wave theory and
its application is described in Wiegel (1960) and Mallery &
Clark (1972).

3.2.5  Solitary wave theory

For high Ursell numbers the wave length of the cnoidal wave
goes to infinity and the wave is a solitary wave. A solitary
wave is a propagating shallow water wave where the surface
elevation lies wholly above the mean water level, hence
AC = H. The solitary wave profile can be approximated by 

where . The wave celerity is . 

More details on solitary wave theory is given by Sarpkaya &
Isaacson (1981).

3.2.6  Stream function wave theory

The stream function wave theory is a purely numerical proce-
dure for approximating a given wave profile and has a broader
range of validity than the wave theories above.

A stream function wave solution has the general form

where c is the wave celerity and N is the order of the wave the-
ory. The required order, N, of the stream function theory is
determined by the wave parameters steepness S and shallow
water parameter . For N = 1, the stream function theory
reduces to linear wave theory.

The closer to the breaking wave height, the more terms are
required in order to give an accurate representation of the
wave. Reference is made to Dean (1965 & 1970).

3.3  Wave kinematics

3.3.1  Regular wave kinematics

3.3.1.1  For a specified regular wave with period T, wave
height H and water depth d, two-dimensional regular wave
kinematics can be calculated using a relevant wave theory
valid for the given wave parameters. 

Figure 3-4
Required order, N, of stream function wave theory such that er-
rors in maximum velocity and acceleration are less than one per-
cent.

Table 3-1 gives expressions for horizontal fluid velocity u and
vertical fluid velocity w in a linear Airy wave and in a second-
order Stokes wave.

3.3.1.2  Linear waves and Stokes waves are based on perturba-
tion theory and provide directly wave kinematics below z = 0.
Wave kinematics between the wave crest and the still water level
can be estimated by stretching or extrapolation methods as
described in 3.3.3. The stream function theory (3.2.6) provides
wave kinematics all the way up to the free surface elevation. 

3.3.2  Modelling of irregular waves

3.3.2.1  Irregular random waves, representing a real sea state,
can be modelled as a summation of sinusoidal wave compo-
nents. The simplest random wave model is the linear long-
crested wave model given by

where k are random phases uniformly distributed between 0
and 2mutually independent of each other and of the random
amplitudes Ak which are taken to be Rayleigh distributed with
mean square value given by

S() is the wave spectrum and  is the differ-
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2.2.2 Stream function

Stream function is a purely numerical procedure for approximating a given wave profile,
which has a broader range of validity than Stokes waves[5]. A stream function wave
solution has a general form,

Ψ(x, z) = cz +
N∑
n=1

X(n) sinh(nk(z + h)) cos(nkx)[5] (2.8)

where c is the wave celerity. N is the order aimed at when applying stream function. The
targeted order N is determined by the wave parameter steepness, S, and shallow water
parameter, µ. When N is chosen to be 1, the stream function theory leads to the same
result as linearized first order problem. The closer to the breaking wave limit, the more
terms should be included in order to give an accurate representation of the wave profile.
X(n) is the coefficient for each order that is required to satisfy the dynamic free surface
condition at its order. Figure 2.2 provides some guidance on selecting stream function
order over Stokes waves.

Stream function has its advantage in describing steep waves that are close to breaking
limit, for its high accuracy achieved by increasing N . However, when using stream func-
tion theory, the incident wave height, water depth and wave period are required to be
determinant. Due to the stochastic nature of a real sea state, stream function is not ideal
for design purposes. But it can help to predict the loading in extreme states.

2.2.3 Second order irregular wave

A irregular wave model that enables the realization of stochastic of a sea state will be a
better targeted solution, in comparison with the above mentioned methods. The simplest
non-linear random wave model is the long-crested second-order model, where the second-
order wave process has N2 corrections spreading over all sum-frequencies and another N2

corrections terms covering all difference frequencies.

Longuett-Higgins invented a simple nonlinear random wave model for long crested second
order waves, which is expressed as,

ζ(2) =

N∑
n=1

N∑
m=1

AmAnB
+
mn cos[(ωm + ωn)t+ (εm + εn)]

+

N∑
n=1

N∑
m=1

AmAnB
−
mn cos[(ωm − ωn)t+ (εm − εn)]

(2.9)

where B±mn = B±(ωm, ωn) are quadratic surface elevation transfer functions. The wave
is modeled by including additional N2 terms to include sum frequencies and difference
frequencies terms all over the complete frequency spectrum. As the only method that
better describes the stochastic nature of a real sea state in a convenient manner, this
model will be selected and treated in detail in the subsequent analysis in chapter 3.
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2.2.4 Fully nonlinear model

In Marino et al. [17], a fully nonlinear wave model is developed to model breaking waves,
which is called a mixed-Eulerian-Lagrangian approach. There are two steps involved in
this procedure. First, the potential problem is solved using a boundary element method
at time t. Then the free surface is stepped forward in time by a distance of δt by using a
Taylor expansion in time. Afterwards the boundary value problem is again solved using
the same boundary element method as in the first step, before continuing with the next
time step. Non-linear wave can also be modeled with Boussinesq, see Madsen et al. [18],
but at a rather high computation cost.

2.2.5 Kinematics

Recommended in DNV guidelines [14], wave kinematics in irregular waves can be predicted
by one of the following methods,

1. Grue’s method

2. Wheeler’s method

3. Second order kinematics model

Grue’s method introduces a nonlinear dispersion relationship and a non-dimensional free
surface elevation, i.e.

ω2

gk
= 1 + ε2 (2.10)

kηm = ε+
1

2
ε2 +

1

2
ε3 (2.11)

The horizontal velocity under the crest is given by the exponential profile

u(z) = ε

√
g

k
ekz (2.12)

where z = 0 is the mean water level and g is the acceleration of gravity. But the validity
is limited to crest kinematics and deep water.

Wheeler’s streching has been elaborated in section 2.1.2.

Horizontal velocities can also be consistently modeled up to the free surface elevation
with a second-order kinematics model, which is a Taylor expansion of the linear velocity
profile, including contributions from sum and difference frequency wave components. The
horizontal velocity under a crest is given as,

u(2)(z) = u(1)(z) + u(2+)(z) + u(2−)(z), forz ≤ 0 (2.13)

u(2)(z) = u(1)(0) +
∂u(1)

∂z
|z=0 z + u(2+)(0) + u(2−)(0), forz > 0 (2.14)
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where u(1)(z), u(2+)(z) and u(2−)(z) are the linear, second order sum and difference fre-
quency velocity profiles.

Stansberg [14] compared the above mentioned of three methods for predicting wave kine-
matics under an extreme wave and came the conclusions that:

1. Grues method well predicts the wave kinematics for z > 0, but it arrived at a too
large velocity for the part below mean free surface.

2. The second-order kinematics model performs the best for all z-levels of a steep waves
in deep water.

3. Wheelers method under predicts the values at positions around z = 0 as well as at
lower levels.

2.3 Sea loads models

Wave loads also utilizes perturbation method, which allows it to obtain first order loads
proportional to wave height and second order loads squared to wave height. But in case
that the waves are sufficiently steep, Stokes expansion will diverge even without any
cylinder interaction, as explained by Rainey [16]. To capture higher order terms, one
possibility is to apply FNV-theory that introduces a innovative perturbation scheme on
the horizontal plane moving up and down with the first order incident wave. An alter-
native is ‘slender body theory’ introduced by Rainey [16], in which the Stokes expansion
parameter is replaced by the slenderness parameter. The key in his derivation is energy
conservation.

2.3.1 The FNV-theory

To explain the third order effects on TLP, O.M. Faltinsen, J.N.Newman, and T.Vinje
presented an innovative theory that allows to include the third order harmonic terms in
the expression for loads on a fixed flexible cylinder. Similar as the general method that
solves the diffraction problem, assumptions are made that both wave amplitude A and
cylinder radius a are small compared to the wave length. But instead of further assuming
small wave elevation, A and a can actually be of the same order in their derivation, which
makes the theory applicable to a extreme wave condition of the same order of structure
diameter.

The diffraction problem is subsequently divided into two domains, an outer domain and
an inner domain. In the outer domain, the conventional linear analysis can be justified,
when the wave slope is small. However significant nonlinear effects are present in the inner
domain, associated with the free-surface boundary condition. Thus the perturbation is
applied at the free surface, instead of z = 0 for a conventional analysis. The rationale be-
hind this is that the leading-order nonlinear contribution to the velocity potential includes
terms proportional to both A2a and A3.The wave load which acts on the cylinder near
the free surface includes second- and third-harmonic components which are proportional
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respectively to A2a2 and A3a. In a conventional perturbation analysis, where A � a,
these components would be ordered in magnitude corresponding to the different powers of
A, but here they are of the same order [10] for a condition A and a are of the same order.

Wave loads

With boundary-value problem solved, it is possible to evaluate the wave loads acting on
the cylinder. Following [10], the expression for the force is given as,

Fx = ρa

∫ 2π

0
cos θdθ

∫ 0

−∞
(Φt +

1

2
V 2)r=adz + ρa

∫ 2π

0
cos θdθ

∫ ζ

0
(Φt +

1

2
V 2 + gz)r=adz

(2.15)

In the integration of the first part up to z = 0, the first order contribution can be obtained
from the total linear diffraction potential,

F ′1 = ρa

∫ 2π

0
ΦDt cos θdθ = 2πρgKAa2eKz cosωt (2.16)

This is the first order component acting on unit length along the cylinder. The expression
is exactly the same as inertia force term in Morison’s equation.

The second order component is given by integrating the squared term in Bernoulli equa-
tion,

F ′2 =
1

2
ρa

∫ 2π

0
(5ΦD)2 cos θdθ =

1

2
πρgK2A2a2e2Kz sin 2ωt (2.17)

For the second integral in equation 2.15, integration is carried out between the planes
z = 0 and z = ζ1 = A sinωt by evaluating 2.16 and 2.17 respectively. For the remaining
portion between z = ζ1 and the exact free surface z = ζ, the pressure is approximated as
hydro-static.

The wave loads contributions from linear potential ΦD is thus formulated as,

FDx = 2πρga2A cosωt+
5

4
πρgKa2A2 sin 2ωt− πρgK2a2A3 cos 3ωt+O(ε6) (2.18)

The nonlinear potential also gives a contribution to nonlinear loads,

Fψx = πρgK2a2A3(cosωt− cos 3ωt) +O(ε6) (2.19)

Adding linear and nonlinear components, i.e. 2.18 and 2.19, gives the total point force
Fx acting on the intersection,

Fx = πρgKa2A2 sin 2ωt+ πρgK2a2A3(cosωt− 2 cos 3ωt) +O(ε6) (2.20)
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As is noticed above, linear potential φD and the higher order potential ψ equally contribute
to the third harmonic component in the expression of the total point force. Faltinsen et
al. argues that Third-order load is attenuated more rapidly with negligible contributions
below a depth comparable to the cylinder diameter.[10] Besides, The third-order load is
represented in terms of the normalized vertical coordinate,which moves up and down with
the undisturbed incident wave. Thus it is appropriate to think of this load as acting locally
at the free surface point forces which are concentrated in the vicinity of the free surface.[10]

In addition, there is a fourth order harmonic contribution, if the moment due to the higher
order loads is calculated about a fixed point,

M = −πρgK2a2A4 sin 4ωt (2.21)

2.3.2 Rainey’s new equation

Contrary to FNV-theory that applies direct surface pressure integration, Rainey’s method
is derived from fluid kinetic energy, which requires a lower level understanding of flow
details. The proposed method is inherently more efficient, in that a simple 2D flow
idealization can be used, which would not be sufficient for pressure integration purposes
for the FNV theory. The new equation is formulated as an improvement for the inertia
term of Morision equation, although the accuracy gained is somehow offset by the level
of uncertainty over the prediction of vorticity-induced loads.

In Rainey’s derivation [8], the water surface is assumed to be contained by a ‘wavy lid’
in the shape of the incident wave, so that the wave is assumed not to be distorted by
the cylinder. One of the greatest advantage of the ‘wavy lid’ assumption is that it does
not put any restrictions on the incident waves. In other words, the incident wave can be
fully nonlinear or even breaking. By assuming this, it removes the free-surface degrees of
freedom from the problem, so that it can be tackled by classical energy arguments. This is
the simplest limiting case by assuming non distorted wave surface. A more sophisticated
‘distorted wavy lid’ is also derived at a later time by Rainey [16] to add its contributions
to the loads at the intersection.

Another assumption made in the derivation is that the structure members can be treated
as slender, i.e. that the diameter is small compared with all the other relative length. As
a basic rule, the wavelength is required to be at least ten times the cylinder diameter. Or
else, serious error occurs due to the significant contribution from ‘microseism effect’.

Based on two assumption made above, the slender body theory can be developed applying
energy conservation. But both the derivation and reasoning are quite lengthy and not
straightforward in Rainey [8]. The method is generalized to a moving structure at a later
phase by Rainey. The results deduced from the new theory is surprisingly simple and can
be easily applied for engineering purposes.

The results show that there are mainly four contributions to wave loads based on Rainey’s
theory,
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Force per unit immersed length

For a circular cylinder with the cross-sectional area of πD2

4 , the distributed loads for unit
immersed length has the form,

dF1 = ρ
πD2

4
(a− g)t + M [a+ (l ·Vl)w]−Mu̇− 2MΩwa (2.22)

in expression 2.22, the bold sns-serif capitals denote matrices, while bold letters are
vectors. a is the particle acceleration including convective terms, with the expression
a = ∂v/∂t + Vv. V and v are velocity gradient matrices and velocity of the incident
wave, respectively. u is the velocity of the structure at a specified point along the body,
i.e. u = u0+Ω×r. M is the added mass matrix. l is a unit vector along the structure, and
Ω is defined as Ωx = ω × x.The suffixes a and t denotes axial and transverse components.
w is the relative velocity defined as w = v − u. g = −gez, i.e. it points downwards.

Point loads at joints

In addition to unit forces at each segment, each element produces a point loads at its
end. For the Hywind hull, there will be a point force at its immersed end, which can be
calculated as,

F2 =

(
1

2
w ·Mw − πD2

4
p

)
l − (l · w) Mw (2.23)

where p is the pressure term, including both hydrodynamic and static components. All
the other terms in equation 2.23 are defined in the same way as in equation 2.22. The
pressure term can be interpreted as the axial buoyancy and provides static restoring force.
The terms associated with velocity squared can be seen as a second order component of
the wave force.

Point loads at surface intersection

The point load at the intersection is actually of greater interest within the scope o this
project. Is is written as,

F3 =
1

2
tan(α) [(t · w) Mw − (t · (l ×Mw))] (2.24)

where α is the acute angle between the cylinder centerline and the surface normal to
the incident wave; and t is a unit vector at the joint plane, normal to the centerline and
pointing out of the fluid. For a large wave, the wave slope will be large as well for a vertical
structure and results in a slamming loads. See from the expression, the intersection load
grows with the increase of the angle. Thus it has the potential to approximate slamming
loads when the intersection angle α is large. For a smaller angle, it can be used to predict
the ‘ringing’ of offshore structures, since it is shown by Rainey that this force are at least
third order of the wave height.
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Rainey also carried out an error analysis of the simple ‘wavy lid’ assumption. When the
order of the wave defined in the same way as Stokes expansion, i.e. based on the order
to the wave height, the error introduced by the wavy lid is of third order. And that it is
accurate to the first and second order.

The drag force per unit length can be calculated in the same way as in Morison equation
to include the viscous effects,

dFdrag = ρDCDwn|wn| (2.25)

2.3.3 Alternatives

Nesteg̊ard et al. [19] also proposed a method to calculate loads in the wave zone, defined
as slamming loads in the analysis. The sectional slamming loads is dependent on the
changing rate of added mass, which has the expression,

Fx(z, t) =
d

dt

[
A2D(t, z)u

]
=

d

ds

[
A2D(s, z)u2

]
(2.26)

where A2D is the high-frequency limit of the added mass for a 2D cylindrical section as
a function of submergence length s, and u is relative velocity between particle velocity
of wave and cylinder. For a steep wave, the slamming loads can be approximated as
following,

Fx(z, t) =
1

2
ρCsDu

2 (2.27)

Cs(s) = 5.15

[
D

D + 19s
+

0.107s

D

]
(2.28)

the empirical coefficients are proposed by Campbell and Weynberg [20] based on experi-
ment results.

Malenica and Molin [12] also applied a conventional perturbation to the third order and
deduced a third order wave loads that explains the ringing effects. But the method is
mathematically laborious and tends to diverge at high wave height.

2.3.4 Comparison

FNV-theory provides a method to estimate higher order loads acting on a fixed flexible
cylinder when the wave amplitude is comparable to cylinder diameter. In the analysis,
wave slope is assumed to be small and wave length is long compare to the characteristic
length of the structure. To analyze the elastic response of Hywind, the explicit expres-
sion equation 2.17 is not applicable any more, since the floating structure has 6 DOFs.
However, a numerical method can be applied to analyze the problem in the time domain,
with the higher order loads evaluated at each time step, taking into consideration the
relative motion between wave and the structure. Also, by applying Newman’s method,
it is possible to extend FNV-theory to a more practical case of unidirectional irregular
waves. However, FNV model is applicable to deep water condition, where the pressure
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field is not significantly affected by sea bed. Also, first order regular wave model, devel-
oped by Stokes expansion, is assumed in derivation with higher order terms implemented
as a correction to account the true free surface in the inner domain. Highly nonlinear
effects in the incident waves are ignored in FNV.

When Rainey’s ‘slender body theory’ is applied on a vertical cylinder, the point load at
the water surface intersection is only one eighth of that in FNV-theory. The difference,
as explained by Jefferey, is due to the rate of change the energy stored in the surface
distortion. If corrected, two models actually produces exactly the same results. However,
while FNV-theory is derived for a fixed cylinder, Rainey’s equation is applicable to more
general cases of an arbitrarily moving structure with arbitrary cross-sectional shapes.
Also, Rainey’s methods has a broader application as is can be used even when the wave
is breaking. Rainey’s method seems to be the best available solution, since it allows for
the implement of fully nonlinear wave model and include nonlinear components in the
incident wave.

However, Chaplin et al. [21] argues that Rainey’s method will be an attractive solution,
without considering the surface distortion, when either of the following conditions is
satisfied,

1. D > L/10

2. D > relative fluid motion/5

3. D > structure motion raduis/20

4. D > λ/30

The first condition is not satisfied for Hywind, as the length of the structure is about 16
times the cylinder diameter. Rainey’s method still seems to be promising since the other
three conditions are not too demanding.

Nesteg̊ard et al. [19] method is empirical. It will be preferred only when the wave steepness
is rather large and slamming tends to occur. Malenica and Molin is not considered here
is this case due to its complexity in application.

2.4 Preliminary calculations

The preliminary calculations are based on free-free beam model for hywind, refer to
Appendix C.

2.4.1 FNV-theory

The point loads acting at the intersection has the expression that,

Fx = πρgKa2A2 sin 2ωt+ πρgK2a2A3(cosωt− 2 cos 3ωt) +O(ε6) (2.29)
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Since the derivation is done for a fixed cylinder at deep water, the analysis is first carried
out assuming the rigid body motion of Hywind to be restrained. Consequently, a larger
relative motion between wave and the structure is included in the analysis. But the trend
observed in analysis will still of value in predicting the elastic response of the structure
due to non-linear components included in wave zone.
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Figure 2.3: Total point loads

Figure 2.3 shows the wave loads act at the intersection in one wave period. Different KA
value, defined as wave steepness, is applied in analysis. See from the figure, for small
value of wave steepness, there is only slight difference from the first order solution. The
relative importance of the third order forces increases with KA. For ωt < π, the higher
order components tend to increase the magnitude of the total loads, while in the second
half of the cycle cancellation effects are dominant.

For simplicity concerns, a linear incident wave, defined as ζ = A sin(ωt), is introduced.
The dynamic response analysis are based on modal analysis in Appendix C, with the
following assumptions made,

1. Floating wind turbine is constrained from moving;

2. Wave amplitude is set to be the same size as cylinder diameter at the intersection,
i.e. A = a = 3.0 m;

3. Load in the wave zone is taken as a point load, as argued by Faltisen;

See from figure 2.4, the elastic deformation is dominated by the lowest eigenmode, with
the largest deformation appearing at two ends of the cylinder. Based on assumptions
made above, dynamic response will be dependent on wave number K only, since wave
height is set to be a constant. It will be of interest to see its trend with the variation
of KA. Illustrated in figure 2.5, resonance of the lowest eigen mode is excited by the
third order wave loads at around KA = 0.6, where incident wave frequency is one third
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Figure 2.4: Elastic response along the center line, KA = 0.1

of the lowest eigenfrequency of the cylindrical hull. At resonance, the amplitude of elastic
deformation is around 0.5 m, which is about 8% of the structure diameter.

The ratio between magnitude of resultant dynamic response to A3 can be seen as RAO,
when looking into third orde resonance. See from figure 2.6, it is obvious that third order
contributions are dominant, exhibiting a high peak at kA = 0.6. The divergence of the
lines is because of second order terms in equation 2.29. The second lowest eigenmode
of Hywind is expected to be excited at KA > 1. But the importance of second order
contributions reduce with the increase of wave amplitude.
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Figure 2.5: Elastic response of cylinder hull

Since FNV-theory is applicable to non-breaking waves only, the above mentioned reso-
nance excitation condition remains to see whether the critical wave condition is within
breaking limit. For a deep water site, breaking occurs when the wave steepness, 2A/λ is
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Figure 2.6: RAO at different wave amplitude

approximately 0.14, i.e. KA < 0.439. When wave amplitude is set to be A = 3.0 m, the
higher order resonance, ringing, might not be excited due to wave-breaking. Based on
this, FNV-theory is not the most desirable tool for calculating non-linear loads in wave
zone.

2.4.2 Rainey’s new equation

To compare with FNV method, Rainey’s slender body theory is applied on Hywind sub-
structure with rigid body DOFs constrained as well. Though there are five components
derived in Rainey equation, only the point load at the intersection is of interest in ana-
lyzing the elastic response of the cylindrical hull when rigid body mode is restrained,

F3 =
1

2
tan(α) [(t · w) Mw − (t · (l ×Mw))] [22] (2.30)

can be simplified as,

F3 =
1

8
πρa2CAKA

3ω2 (cos(ωt)− cos(3ωt)) (2.31)

in derivation, first order potential is introduced, ignoring higher order contributions with
all the terms expressed considering first order potential with a regular incident wave
written as,

ζ = A sin(ωt−Kx) (2.32)

and the corresponding first order velocity potential,

Φ1 =
gA

ω

coshK(z + h)

coshKh
cos (ωt−Kx) (2.33)

Figure 2.7 shows how the point loads at the intersection varies with the elapse of time.
In the analysis, the wave steepness KA is taken as 0.1, with the wave amplitude set to be
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Figure 2.7: Point force,Rainey’s Method, KA = 0.1
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the same as cylinder radius. Contributions from third order effects are clearly indicated
in the figure. The third order components tends to increase the load magnitude during
the first half of the wave period and poses a canceling effect during the second half of the
cycle.

Rainey’s results are obviously a lot smaller than FNV solution. The reason are mainly
three folds. One is that, in FNV there are second order contributions included as a point
loads, while in Rainey, there are first and third order components only. Besides, correc-
tions are included to describe the real free surface in FNV, which doubles the nonlinear
loads at the intersection. Further, free surface distortion, which adds to the nonlinear
loads at the intersection, is also ignored in Rainey’s derivation. Figure 2.8 compares
the third order contributions in two theories. Two lines in the figure overlap, indicating
Rainey’s result to be 1/16 of FNV. But if FNV considers first order potential only, the
difference will be reduced to 1/8. The difference is explained in detail in Rainey [16].

Rainey’s method will be preferred over FNV, due to following considerations,

1. Rainey asks for less information about incident waves, which makes it applicable
even for a breaking wave case and shallow water site while FNV assume deep water
unbreaking wave condition;

2. Rainey’s method is derived for a floating slender structure, while FNV are targeted
at fixed structure sited at deep water;

3. Rainey’s equation also accounts forces at member joint, which is another source of
non-linearity.

It should also be noticed that the resonance of the lowest eignmode will hardly be excited.
The cylinder hull of Hywind is still relatively stiff, though it maintains a small D/L
ratio. Resonance occurs at KA = 0.6, which is normally far beyond wave breaking limit.
However, the improved hydrodynamic, with the surface piercing correction introduced,
can potentially provides a better approximation for wave loads at a steep wave.
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Chapter 3

Second Order Irregular Waves

This chapter focuses on second order irregular wave model that encloses both non-linearity
and stochasticity in incident waves.

Wave non-linearity exerts a greater effect on structures sited at shallow waters, since the
limited water depth deformed the wave profile to be sharp crested and trough flattened
[23]. To better capture non-linearity in waves, a finite water depth second order irregular
wave model will be first explained in this chapter. Deep water water non-linear wave
model, which is the actual intention, will be referred and modeled at a later phase when
dealing with floating wind support structure.

3.1 Stochasticity

Irregularity is a fundamental property of ocean waves. As a first approximation, random
sea waves may be considered as a liner superposition of an infinite number of sinusoidal
waves, characterized by different wave numbers, kn, amplitudes, An, and phase angles,
φn. A random sea state can conveniently be expressed in a mathematical way as a sum
of a group of sinusoidal waves,

ζ (t) =

N∑
n=1

(an cos (ωnt) + bn sin (ωnt)) (3.1)

=
N∑
n=1

An cos (ωnt+ φn) (3.2)

in which An =
√
a2
n + b2n, φn = arctan

(
bn
an

)
, ωn = 2πn∆f , ∆f represents the bandwidth,

i.e. frequency resolution applied in each sea state realization.

Widely accepted in offshore engineering practice, the energy characteristics of a random
sea state is represented by the wave spectral density function E (f), which indicates the

27
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Figure 3.1: Realization of Jonswasp spectrum

magnitude of the time average of wave energy as a function of wave frequency. Among the
proposed forms, Pierson-Moskowits frequency spectrum, JONSWAP frequency spectrum
and TMA frequency spectrum are the most popular ones.

Considering that the Hywind Demo was installed in North sea, a JONSWAP frequency
spectrum, which is based on a Joint North Sea Wave Project, can be implemented for
wave realization at the site. Proposed by Hasselmann et al. [24], the spectrum has the
formulation,

E (f) =
(m0

Ξ

)
af−5 exp

(
−bf−4

)
γΩ(f) (3.3)

Ξ =
N∑
n=1

af−5 exp
(
−bf−4

)
γΩ(f)∆f (3.4)

Ω (f) = exp

(
−1

2

(
f − fp
σfp

)2
)

(3.5)

in which

f = n∆f, a = 5f4
p , b =

5

4
f4
p

σ = σb, for f > fp

σ = σa, for f ≤ fp

Typical values are γ = 3.3, σa = 0.07, σb = 0.09, but they are site dependent.

Figure 3.1 shows several realizations of equations above, with fp = 0.10Hz, σa = 0.07, σb =
0.09, but different gamma. The wave spectrum tends to have a higher peak at a larger
γ and the energy is more concentrated around peak frequency, while at a smaller γ the
wave energy is spread over a larger range of frequency around wave peak frequency.
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One of the shortcomings of JONSWAP, also for the other two spectrum introduced above,
is that the randomness of a real sea state introduced by the wave propagation direction
is lost. To account for wave direction, one remedy is to multiply the unidirectional wave
spectrum by an empirically determined directional distribution function.

However, the primary objective of the project lies on comparing linear wave model and
second order wave model in a random sea state. It can be justified to leave out the
wave propagation direction parameter for this moment and focus on static and dynamic
characteristics resulting from uni-directional waves. From now on, incident wave will be
assumed to be unidirectional, and characterized by σa = 0.07, σb = 0.09, γ = 3.3,

3.2 Wave model

Based on second order wave model derived by Sharma and Dean [25], the non-linear wave
elevation ζ(2) can be expressed as a sum of first order solution and second order correction
terms,

ζ(2) (t) = ζ(1) (t) + ζ(2+) (t) + ζ(2−) (t) (3.6)

The first order contribution, ζ(1) is a sum of various linear waves that cover a complete
wave spectrum. Each component, achieved by solving linearized boundary conditions,
can be expressed in a sinusoidal form. The first order part is,

ζ(1) =

N∑
n=1

An cos (ωnt− φn) (3.7)

where An, ωn and φn are the wave amplitude, wave frequency and wave phase, with
An =

√
2E (n∆f), ωn = 2πn∆f , ∆f is the sampling frequency, n identifies it to be the

nth order wave component of the wave series. φn randomly distributes among [0, 2π), and
can be realized in Matlab by utilizing the command random.

Second order correction terms, which include sub-harmonics and super-harmonics, are
obtained from second order potential corrections,

ζ(2+) =

N∑
m=1

N∑
n=1

AmAnB
+
mn cos (ψm + ψn) (3.8)

ζ(2−) =

N∑
m=1

N∑
n=1

AmAnB
−
mn cos (ψm − ψn) (3.9)

where

ψm + ψn = (ωm + ωn)t+ φm + φn (3.10)

ψm − ψn = (ωm − ωn)t+ φm − φn (3.11)
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B+
mn and B−mn can be seen as transfer function for the solutions of Laplace equations,

with non-linear boundary conditions implemented. The transfers functions are given as,

B+
mn =

1

4

[
D+
mn − (kmkn −RmRn)√

RmRn
+ (Rm +Rn)

]
(3.12)

B−mn =
1

4

[
D−mn − (kmkn +RmRn)√

RmRn
(Rm +Rn)

]
(3.13)

in which

D+
mn =

(√
Rm +

√
Rn
) [√

Rn
(
k2
m −R2

m

)
+
√
Rm

(
k2
n −R2

n

)](√
Rm +

√
Rn
)2 − k+

mn tanh
(
k+
mnh

)
+

2
(√
Rm +

√
Rn
)2

(kmkn −RmRn)(√
Rm +

√
Rn
)2 − k+

mn tanh
(
k+
mnh

) (3.14)

D−mn =

(√
Rm −

√
Rn
) [√

Rn
(
k2
m −R2

m

)
−√Rm

(
k2
n −R2

n

)](√
Rm −

√
Rn
)2 − k−mn tanh

(
k−mnh

)
+

2
(√
Rm −

√
Rn
)2

(kmkn +RmRn)(√
Rm −

√
Rn
)2 − k+

mn tanh
(
k−mnh

) (3.15)

where km is the wave number corresponds to the mth wave component in the wave group,
and linked to wave frequency and site water depth via the shallow water dispersion rela-
tion, i.e.

ω2
m = gkm tanh (kh)

the other parameters in B±are defined as ,

Rm =
ω2
m

g
(3.16)

k−mn = | km − kn | (3.17)

k+
mn = | km + kn | (3.18)

3.3 Wave generation

Various techniques have been devised to create the random time histories. Based on
methods introduced by H.T. Cuong Cuong et al. [26], inverse fast Fourier transform
(IFFT) method gives the desired time history, without further elaboration here, refer to
Morooka et al. [27]. In comparison, IFFT method significantly reduces the computation
time. To generate a 1000s wave records with a time increment of 0.3s, IFFT methods
consumes 8.1× 10−4s only, while the superposition method needs as much as 1.3s. This
advantage will be more evident when wave frequency spectrum is subdivided into more
subtle components.
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However, the problem of using IFFT is also quite obvious: the time increment in the
generated wave is constrained by cut-off frequency of the wave spectrum. In Stansberg
et al. [28], it is stated that a spectrum input with a long tail will include a higher level
of non-linearity than a narrow spectrum with the same energy. To avoid introducing
nonphysically reasonable high frequency terms, the wave spectrum used in second order
irregular wave modeling generally does not include components higher than cut-off fre-
quency. Since the cut-off frequency is recommend to be four times peak frequency, see
Forristall [29], time increment implemented used in simulation is thus 1/cf = 2.5s for a
wave condition characterized by Tp = 10s. Though linear interpolation can be applied to
get the wave information between two consecutive points in wave record, the large time
step still causes problem for time domain integration when it comes to dynamic response
analysis.

As a remedy, a modified JONSWAP spectrum, which follows the JONSWAP below the
cut off frequency and artificially extend to a higher value with zero energy concentration
will be introduced in analysis.

Although wave generation efficiency is improved by IFFT, second order irregular wave
formulation is still time consuming. When the wave spectrum is divided into N com-
ponents, the integration should be repeated N2 times, if direct integration method is
applied. Fortunately, by collecting terms with the same frequency first, it is possible to
reduce the calculation times to 2N − 1 for sum frequency contribution, and N − 1 for low
frequency terms. Though the saved time will be offset to some extent by the operation
of locating and collecting the same-frequency terms in the N × N matrix, the reduced
computation time with regards to total computation time is still very promising.

The formulation of sum and difference frequency terms follow equation 3.18. Figure 3.2
further illustrates the method. In the figure ω1 = ∆f, ω2 = 2∆f, · · · , ωn = n∆f . If the
same frequency terms, (i.e. the diagonal going from the lower left corner to the upper
right corner in sum-freq matrix, and the diagonal going from upper left corner to the lower
right corner in dif-freq matrix), are collected first, the double summation of N ×N terms
can be replaced with a single summation of 2N − 1 terms for sum frequency components,
and N − 1 for difference frequency components.

In this way, equation Equations 3.18, which composes of double summations, will be
simplified as,

ζ2+ =
2N−1∑
p=1

A+
p B

+
p cos

(
ω+
p t+ φ+

p

)
(3.19)

ζ2− = 2 ·
N−1∑
p=1

A−p B
−
p cos

(
ω−p t+ φ−p

)
(3.20)

where,
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Figure 3.2: Second order wave frequency matrix, left sum-freq, right dif-freq

A±p =
∑

m±n=p

Amn

B±p =
∑

m±n=p

Bmn

ω±p =
∑

m±n=p

ωmn

φ±p =
∑

m±n=p

φmn

the method shows in figure 3.2 is also applicable to generate second order transfer function
and second order wave height. With an integration order reduction method introduced, it
is expected to generate numerical second order irregular wave in a more efficient manner.

3.3.1 Regular wave

To get a knowledge of how wave elevation is affected by including sub and super-harmonic
terms, a Dirac-delta function is used to express the wave spectrum and formulate a wave
series composed of only a single frequency sinusoidal wave. See from figure 3.3, the
difference frequency component is absent from the numerical wave, since there is only one
frequency component in the wave series. The sum-frequency component, which is also
sinusoidal, is characterized by showing a frequency twice of first order input. Also, since
sum frequency component are in phase at peaks and out of phase at troughs, the total
sum of second order solution, exhibits an elevation effect, characterized by a higher peak
and a flattened trough.

The non-linearity of a sea state can measured by both wave amplitude and wave period.
Wave steepness kA, which is linked to both wave amplitude and wave period, is normally
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Figure 3.3: Second order regular wave

Table 3.1: Summary of data sets used in simulation

T [s] H[m] kA comment

1 8.33 4.24 0.13 mild
2 8.33 5.65 0.17 medium
3 6.66 4.24 0.19 medium
4 6.66 5.65 0.26 extreme
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Figure 3.4: Second Order Regular Wave, 4 sea states comparison

employed to describe the non-linearity of a wave input. To study the influence of these
two parameters on non-linearity of numerical wave, four groups of kA, listed in table
3.1, are generated for simulation purposes. Characterized by wave steepness kA, these
four data sets are intended to simulate a mild, two medium, and a extreme wave states
respectively. Figure 3.4 shows how the modified wave model affects the wave surface
elevation at different wave steepness. The figure contains only the first three cycles, and
wave elevation is normalized to first order amplitude. As expected, the difference between
first order and second order solution is smallest at a benign sea sate (lower left) among
the four input sets, while it deforms wave profile to severely at the worst case (upper
right).

Table 3.2 summarizes the wave statistics, including maximum elevation, variance and
skewness. The trend shown in the table is consistent with what is observed in figure 3.4.
The larger the wave steepness, the more noticeable the change in wave height. Skewness,
which is an indicator of non-linearity, turns non-zero for non-linear incident wave trains.
The largest skewness is achieved at highest wave steepness, and lowest value corresponds
to the wave input with lowest wave steepness.



3.3 Wave generation 35

Table 3.2: Summary of regular wave statistics, water depth 30m

Maximum[m] Variance[m2] Skewness

Wave Steepness Linear Non-linear Linear Non-linear Linear Non-linear

0.13 2.12 2.33 2.26 2.27 0.00 0.21
0.17 2.83 3.21 4.01 4.07 0.00 0.28
0.19 2.12 2.42 2.25 2.29 0.00 0.29
0.26 2.83 3.35 4.01 4.14 0.00 0.38

Table 3.3: Biachromatic wave parameters

Wave Group 1 Wave Group 2
Comp. 1 Comp. 2 Comp. 1 Comp. 2

Wave period [s] 4.00 10.00 8.00 10.00
Wave height [m] 4.24 4.26 4.24 4.24

3.3.2 Bichromatic wave

Difference frequency components will be present in waves that compose of at least two
frequency components, i.e. a bichromatic wave. Figure 3.5 shows time series of two
bichromatic wave groups, see table 3.3 for wave parameters. Each wave group contains
two frequency components, and zeros phase angle is assumed for sinusoidal wave input
in both groups. In figure 3.5, the upper two figures illustrates the time series of wave
elevation, while the lower two are the results of FFT, showing the power spectrum of the
two generated waves. At a first glance, it is noticed that the time series differs mainly in
wave peak and wave trough.

Group 1 shows a higher level of non-linearity, characterized by an obvious deviation from
first order solution at both wave peak and wave trough, while in group 2 the difference
is relatively less obvious. Besides, while there is only an elevation effect observed in the
wave profile of group two, the wave troughs in group one are severely deformed due to
second order effects. Also, since the two wave inputs are quite close in wave period in
group 2, it results only in three noticeable wave frequency components in power density
spectrum, together with other three components with negligible energy accumulation.
There are in total six easily distinguished peaks in the lower left figure, with additional
three sum-frequency components and one difference frequency component.

3.3.3 Irregular wave

Second order irregular wave theory allows it to include the stochastic nature of a real sea
state, though it is still time consuming. One aspect of interests is to see how it affects wave
surface elevation, with regards to max wave elevation, variance, skewness and kurtois.

A three hour time series of waves is generated using a JONSWAP spectrum, parametrized
by Hs = 5.0 m and Tp = 12 s. Two shallow water sites, with a water depth of h = 20 m
and 30 m, respectively will be the target site for wave realization. Since the sea state is
considered extreme for that water depth, non-linearity should be expected to be evident
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in the simulation results. A total of one hundred seeds are used to minimize short term
variance introduced by the randomly generated phase angle φ.
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Figure 3.6: Second order irregular wave time series

Figure 3.6 is a realization of a stochastic sea state implemented with both linear and
non-linear wave model. Clearly, when the non-linear components are included, the wave
train tends to have a higher peak at crest and flatter trough at wave bottom. Due to the
change of wave shape, especially the higher peaks, it can be expected to induce a higher
load at the wave-structure intersection. The second figure in 3.6, which decomposes the
second order profile into first order components and second order corrections, can work to
explain the mechanism. Similar to the first order simulation, the sum component sharpens
to the peak and flatten the trough, due to the difference in phase angle. Concluded by
Carl Stansberg et al. [30], second-order elevation produces reasonably well the sharpening
of the crest and flattening effects at troughs, compared with measurement data.

Figure 3.7 transforms the time domain wave elevation records into frequency domain.
Both the spectrum for linear and non-linear wave surface elevation reach the peak at
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Figure 3.7: Wave elevation spectrum, Hs = 5 m, Tp = 12 s, , γ = 3.3, h = 20 m

Table 3.4: Code Validation, Hs = 12 m,Tp = 14 s, h = 30 m

Variance
[
m2
]

Skewness Kurtiosis

Target 9.22 0.17 3.10
Simulation 9.17 0.17 3.04

incident wave peak frequency, corresponds to Tp = 12 s. While the first order solution
poses the shape of JONSWAP spectrum, second order solution deviates from first order
curve around f = 0 Hz and f = 0.17 Hz, by displaying two additional peaks. The first
sub-peak can be owed to difference interactions of first order components, and the second
sub-peak is attributed to the super harmonics enclosed in the second order corrections.
Tough second order irregular wave model brings in a higher level of energy and results
in an odd shape that contradicts with wave power spectrum input, it actually does not
need to be corrected and is said to be a better approximation of measured elevation, see
Veldkamp and Van Der Tempel [31].

To validate Matlab code, a study is carried out to compare the statistical properties of
the wave generated with values in literature. A JONSWAP spectrum with a significant
wave height of 12 m and peak period of 14 s is used to simulate a 3 hour wave series
and compare it with value reported by Sweetman and Winterstein [32]. Table 3.4 shows
the mean value over 500 realizations. The simulation results are fairly close to the target
value, which proves the Matlab code to be valid.

To investigate the non-linearity introduced by second order correction, a statistics com-
parison is carried out focusing on skewness and kurtois of the generated wave train.
Skewness is an indicator for symmetry of the probability density function. For a linear
wave, which is a true Gaussian process, the calculated value should be zero. However,
when non-linearity is introduced, the skewness will be different from zero. Kurtosis rep-
resents the tails for the probability density function. For a Gaussian process, such as the
linear wave trains, the value is 3, while for a non-linear is larger than 3.

See from table 3.5, linear model generates a wave series that corresponds to a Gaussian
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Table 3.5: Statistics for sea surface elevation

Max [m] Min[m] Variance
[
m2
]

Skewness Kurtiosis
h = 20m

Linear 4.81 -4.78 1.56 0.00 2.99
Non-linear 5.45 -4.78 1.66 0.10 3.07
Ratio 1.13 1.00 1.06 1.02

h = 30m

Linear 4.88 -4.87 1.56 0.00 3.00
Non-linear 5.38 -4.87 1.60 0.11 3.03
Ratio 1.10 1.00 1.02 1.01

process. Skewness remains zeros, since it is symmetrical. The no-linear wave model
increases peak crest by around 10%, which is consistent with the elevation effect observed
in regular waves. The non-linearity of the wave is also indicated by the change in skewness,
which is no longer a non-zero value. Also, the kurtois becomes larger than 3 and makes
it a non-Gaussian process. When a distribution kurtosis is greater than 3, it is said to be
leptokurtic, associated with distribution contains a fat tail.

The level of non-linearity is also dependent on site conditions. The change in wave
elevation, and skewness tend to be affected to a greater extent at a shallower water site
and at a sea sate characterized with higher significant wave heights and shorter peak
period, e.g. when the wave period decrease to 7s, the wave crest increase reaches 20%,
and skewness to 0.27.

3.4 Wave kinematics

The accuracy of loads estimation, especially wave zone load in an extreme sea state,
largely relies on the proximity of wave kinematics model used. In linear wave models,
velocities are valid up to mean sea level due to boundary condition linearization. The
linearization simplification can be justified for estimating wave loads at a benign sea state,
but for a severe sea state with high wave steepness, it fails to capture the kinematics in
wave zone and consequently underestimate loads in the wave zone. By implementing
second order wave corrections, wave kinematics in the crest can be added as a correction
term to the first order solution.

The wave kinematics estimation is based on a 2nd order perturbation. Obtained velocity
potential will be valid up to the free surface, i.e,

Φ2 (z) = Φ1 (z) + Φ2+ (z) + Φ2− (z) for z ≤ 0 (3.21)

Φ2 (z) = Φ1 (0) + Φ2+ (0) + Φ2− (0) + z · ∂Φ1

∂z
|z=0 for z > 0 (3.22)

in which Φ1, Φ2,Φ2+, and Φ2− are first order potential, second order potential, second
order sum frequency correction potential and second order difference frequency correction
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potential, respectively. The third term in equation 3.22 can be treated as as a Taylor
expansion of first order potential at z = 0, and thus the solved potential problem will be
valid up to linear surface elevation, ζ1. While the first order potential can be found from
classical linear wave theory, the second order correction terms can be formulated with a
quadratic transformation function as presented by Sweetman and Winterstein [32].

Partial velocity and local acceleration are the first order derivative of the potential to
space and time. The correction method includes super-harmonics and sub-harmonics
terms for particles below water level and at the same time linearly extrapolate the linear
velocity at z = 0 to the crest. The horizontal velocity at a level z is formulated as,

u(2) (z) = u(1) (z) + u(2+) (z) + u(2−) (z) for z ≤ 0 (3.23)

u(2) (z) = u(1) (0) +
∂u(1)

∂z
|z=0 ·z + u(2+) (0) + u(2−) (0) for z > 0 (3.24)

in which u2, u1, u2+, u2− are x component of the corrected second order particle velocity,
first order particle velocity and contributions from sum, difference frequency potentials
respectively. The solution, based on second order perturbation of the velocity potential,
is valid up to first order free surface.

To compare wave kinematics profile, three models, first order solution to mean free surface,
first order solution with Wheeler stretching implemented and second order solution, are
chosen to establish particle velocity profile in wave zone for a site h = 30 m.

Figure 3.8 shows the wave kinematics calculated with the above mentioned three wave
kinematic calculation methods for waves listed in table 3.1. In the figure, horizontal
axis shows the normalized velocity, ratio between local velocity to first order solution at
wave crest. Vertical coordinates are the vertical location. See from the figure, Wheeler’s
method under predict velocities in steep waves for z < 0, though it managers to express
wave kinematics in the wave zone z > 0. Second order solution linearly extends the profile
to the wave free surface, and the predicted velocity is about 1.2u1−1.4u1. The increment
ratio is dependent on wave steepness. At a higher wave steepness, i.e in the upper right
figure, the ratio reaches 1.4, while at kA = 0.13, the ratio is about 1.2. When z < 0, the
second order solution overlaps with first order solution, though minor difference can still
be observed.

However, the difference between second order and first order wave kinematics is present
in a bichromatic wave group for z < 0. When difference frequency components are added
to the wave train, it works to elevate the velocity profile and slightly decreases wave
kinematics under the wave crest. In general, non-linear model slightly under predict the
wave kinematics under mean water level, but significantly increases that at wave crest,
to 1.5 u1 for some cases. Wheeler’s methods stretches the profile to the wave surface,
but consequently reduce the wave loads under the mean free surface. Due to presence of
second order difference frequency contributions, the second order potential contribution
puts a negative effect on wave kinematics, which is interpreted as a ‘return current’ by
Longuet-Higgins and Stewart [33]. The trend shows in figure 3.10 is consistent with the
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Figure 3.8: Wave Kinematics, regular wave, t=0s, h=30 m
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Figure 3.9: Wave Kinematics, bichromatic, t=0s, h=30 m
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Figure 3.10: Horizontal particle velocity, bichromatic waves,
h = 30 m, T1 = 8 s, T2 = 12 s,A1 = 2 m,A2 = 2 m
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‘return current’ phenomenon. While the super-harmonics add to wave kinematics, second
order difference component tends to reduce local maximum of horizontal particle velocity,
and the effect is more evident at z < 0 due to the slower vanishing tendency than higher
frequency terms.

3.5 Force

With wave kinematics expressed in the same way as the previous section, the proposed
wave model can be conveniently implemented into the modified non-linear loads model,
with first order wave theory kinematics replaced by second order expressions. To get an
impression of how the loads acting on a cylinder will be influenced by including higher
order terms, a fixed cylinder at a shallow water site, e.g. a monopile, is chosen as the
loading structure to analyze load statistics.

3.5.1 Implementation in Rainey’s model

Rainey’s equation, which originally derived for a slender structure, can be expressed in
an analytically way, with the following taken into considerations,

1. Cylinder assumed to be rigidly fixed with negligible deformation, and relative ve-
locity equals water particle velocity,

2. Strip theory assumed valid, which indicates that it is a 2D problem without any
terms in y direction.

dFx =

(
ρ
πD2

4
+mx

)(
∂u(2)

∂t
+ u(2)∂u

(2)

∂x
+ w(2)∂u

(2)

∂z

)
+mx

∂w(2)

z
u(2)[22] (3.25)

where u(2) follows the expression in 3.24 and 3.23 and w(2) has a similar form, but u
replaced by w. The other terms are derived as below,

for a second order irregular wave, which is expressed as

ζ(2) =

N∑
n=1

An cos (ψn)+

N∑
m=1

N∑
n=1

AmAnB
+
mn cos (ψm + ψn) +

N∑
m=1

N∑
n=1

AmAnB
−
mn cos (ψm − ψn)

(3.26)

the first order kinematics has the following forms, for x components,

u(1)
n = ωnAn

cosh (kn (z + h))

sinh (kh)
cos (ψn) (3.27)
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while in z direction,

w(1)
n = ωnAn

sinh (kn (z + h))

sinh (kh)
sin (ψn) (3.28)

the derivatives to t, x, and z are,

∂u(1)

∂t
= −

N∑
n=1

ω2
nAn

cosh (kn (z + h))

sinh (kh)
sin (ψn) (3.29)
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sin (ψn) (3.30)

∂u(1)
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sinh (kh)
cos (ψn) (3.31)

introducing second order terms to the expression,
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Double summation above shall utilize the same reduction method used for wave genera-
tion.
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3.5.2 Comparison

With both non-linear hydrodynamic model and higher order irregular wave model intro-
duced, a total of 6 methods, summarized in table 3.6, can be utilized to calculate wave
forces acting on a slender cylinder structure. The second and third column define the
wave model and hydrodynamic model applied in loads calculation, and the fourth column
works to assign a name for each model. For reducing calculation time purposes, quasi-
static state is assumed, and aerodynamic forces are not included. Considering a bottom
fixed wind support structure, the quasi-static loading condition can be justified, since the
structure is normally quite stiff and the dynamic behavior is of secondary concern.

Table 3.6: Load calculation models

No Wave Model Load Model Comment

1 1st Order Morison Linear Morison
2 1st Order Rainey Linear Rainey
3 1st+Wheeler Morison Wheeler Morison
4 1st+Wheeler Rainey Wheeler Rainey
5 2nd Order Morison Non-linear Morison
6 2nd Order Rainey Non-linear Rainey

Compared with first order wave model, second order irregular wave theory enables a
better description of wave peaks, which can potentially better describe loads in wave zone
and increase the total hydrodynamic forces exerting on an offshore wind sub-structure.
Besides, the non-linear hydrodynamic model includes higher order force components at
the wave-structure intersection when solving this surface piercing problem. The additional
higher order term at the wave intersection can be critical at a severe sea state where wave
height approaches cylinder diameter. If take a bottom fixed monopile, which is laterally
supported, as a the offshore wind support structure, shear force and bending moment at
the foundation bottom needs to be investigated for design purposes.

Regular Wave

Table 3.7: Comparison of load statistics of monopile base shear, quasi-static assumed, regular
wave, T=8 s, H=3 m

Model 1 2 3 4 5 6

Sea State

1 Max [MN] 1.58 1.67 1.61 1.62 1.73 1.67
Sta.Dev 1.13 1.15 1.13 1.12 1.23 1.19
Skewness 0.00 -0.08 0.01 -0.07 0.01 -0.13

To figure out how the various loads calculation model affects the magnitude of loads,
a regular wave with a wave period of 8 s and wave amplitude of 1.5 m is used as the
incident wave. See from table 3.7, the non-linear models alter the skewness of loads,
which is no longer zero. Rainey’s model tends to introduce a negative skewness and
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makes the distribution has a long left tail, while Wheeler’s and second order correction
achieves a positive skewness and a long left tail. Also, non-linear model includes a higher
variation of loads, indicated by an increased standard deviation. One thing worth noticing
is that while Wheeler stretching gives higher load than first order solution when Morison
equation is used, it actually reduces the total force when combined with Rainey’s model,
see 2 and 4 in table 3.10.
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Figure 3.11: Comparison of Rainey’s model with linear wave model with stretching

Figure 3.11 and 3.12 explain why Wheeler’s stretching reduces the maximum value of
wave load. Rainey’s model mainly modifies the inertia term in the Morison equation. See
from the two figures, inertia components are dominating in the total wave force. Due to
the phase difference between inertia term and the rest, the maximum value occur at z < 0,
below mean water level. The compressed wave profile results in a smaller derivation of
velocity terms with respect to z, and consequently reduces the value of the maximum
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load. Figure 3.12 shows how Wheeler’s streching affects the drag term in Rainey’s load
calculation model. Different from inertia terms, the non-linear model still results in a
similar loading curve, but higher peaks and lower troughs.

Irregular Wave

The objective of this part is to compare the maximum shear force and bending moment at
foundation base when subject to first order irregular wave and second order irregular wave.
Four sea states are chosen in the simulation, based on North Sea conditions described by
Faltinsen [34], see table 3.8.

Table 3.8: Sea states

Sea state Tp[s] Hs [m] Comment

1 8 3.25 Mild
2 9 5.10 Medium
3 10 6.00 Medium
4 10 7.50 Extreme

Each sea state represents a mild, medium or a extreme wave condition for the selected site
with a water depth of 20 m. A total of 48 seeds are used in simulation for the realization
of each sea state that lasts 30 min. The reason that a 30 min, instead of 3 h simulation
is that when using IFFT method, the extension in sea state realization time will greatly
increase the matrix size and consequently reduces computation efficiency significantly. A
simulation of 3 h sea state cost significantly longer time than 6 realization of 30 min
the same sea state. To ensure the results are both representative and computationally
efficient, a total of 48 seeds are taken, fully utilizing multi-task ability of parallelly running
12 tasks in Matlab. Table 3.9 and 3.10 show the averages of 48 simulations, represented
as the ratios to first order value. The absolute are included in Appendix E.

Table 3.9: Comparison of load statistics of monopile base shear, quasi-static assumed, averages
maximum over 50 simulations, ratio to first order value

Model 1 2 3 4 5 6

1 Max 1.00 1.08 1.01 1.03 1.02 1.15
Sta.Dev 1.00 1.01 1.00 1.00 1.01 1.02

2 Max 1.00 1.13 1.02 1.05 1.06 1.27
Sta.Dev 1.00 1.01 1.00 1.00 1.01 1.04

3 Max 1.00 1.15 1.03 1.05 1.07 1.32
Sta.Dev 1.00 1.02 1.00 1.00 1.02 1.05

4 Max 1.00 1.13 1.05 1.03 1.12 1.34
Sta.Dev 1.00 1.02 1.00 1.00 1.03 1.05

Take table 3.9 as an example, non-linear models introduce a higher load at the foundation
bases, ranging from 3% to 34%, depending on sea sates and load calculation model. Figure
3.13 summarizes the general trend shows in the table. Linear Rainey and Non-linear
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Table 3.10: Comparison of load statistics of monopile base bending moment, quasi-static
assumed, average maximum over 50 simulations, ratio to first order value

Model 1 2 3 4 5 6

1 Max 1.00 1.11 1.01 1.03 1.03 1.21
Sta.Dev 1.00 1.01 1.00 0.99 1.01 1.03

2 Max 1.00 1.16 1.02 1.03 1.08 1.37
Sta.Dev 1.00 1.02 1.00 0.98 1.02 1.04

3 Max 1.00 1.18 1.03 1.03 1.10 1.41
Sta.Dev 1.00 1.02 1.00 0.98 1.03 1.05

4 Max 1.00 1.17 1.05 1.02 1.17 1.45
Sta.Dev 1.00 1.02 1.00 0.98 1.04 1.04
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Figure 3.13: Comparison of foundation base shear, bending moment calculated with various
loads model, ratio to first order value

Rainey get the largest base shear, compared to first order solution integrated to mean
water surface. Wheeler’s method mildly adds another 1% to 5% of first order solution
to account for the wave zone loads. In comparison, the loads included by second order
irregular wave model are a lot higher, varying from 2% to 12%. The tendency observed
here is also present in the bending moment at foundation base, see table 3.10. Non-linear
models even increase the bending moment at the foundation base to a larger extent.

Standard deviation shows the variability of the data from the mean value, and can be used
as an indicator for fatigue damage. Table 3.9 and 3.10 also contain information about
the how the results spread out over a large range of shear forces or bending moments.
Wheeler’s model, though it modifies wave loads in the wave zone and slightly increase
the maximum value, it seldom affects the variation of the loading. In comparision, non-
linear wave model and non-linear loads model increase the standard deviation by 2−4 %.
Similar as the maximum value, the difference is more obvious at harsher sea states. Also,
it affects bending moment to a larger extent than foundation shear.

Apart from maximum foundation shear and bending moment, another critical aspect
that governs monopile design is the distribution of loads in frequency domain. Fast
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Figure 3.14: Load comparison 1, blue: Linear Morison, red: Linear Rainey
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Figure 3.15: Load comparison 2, blue: Linear Morison, red: Non-linear Morison

fourier transformation method conveniently transfers time series of loading into frequency
domain, and shows how the added low frequency and high frequency components affect
the power density spectrum. The six load calculation methods are group into three pairs,
with 1 and 2 compared to see how the Rainey’s method brings in higher order terms at
different sea states, 1 and 5 compared to figure out second order effects, 3 and 5 compared
to find how Wheeler’s streching method works to add the wave zone loads.

Figure 3.14 compares PSD for bending moment at foundation base, when subject to
linear irregular wave, and wave force calculated with morison equation and Rainey’s new
equation for slender structure respectively. On the figure at left, when the sea state is
mild, two curves almost overlap, though it shows some deviation from first order solution
at high frequency end. The higher order term introduced by Rainey’s model is more
relevant to a harsher sea state. On the figure to the right side, the red curve, representing
a non-linear solution, shows several small local maxima at f > 0.15Hz.

Similarly, figure 3.15 shows how non-linear irregular wave model affects power density
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Figure 3.16: Load comparison 3, blue: Linear Rainey, red: Non-linear Rainey

spectrum for bending moment at foundation base. Different from the previous case, the
non-linearity introduced by higher order wave model is present in a mild sea state, by
presenting a higher peak at wave peak frequency, and increased PSD at the high frequency
range. On the figure to the right, the non-linear wave model increases PSD distributed
around 2fp. Also, the red curve reach a higher value around 0.05− 0.1 Hz. The enclosed
area of PSD, an indicator of energy introduced by the incident wave, is evidently larger
when using non-linear model irregular wave model. Similar trend can also be observed in
figure 3.16. Second order irregular wave model increases PSD at peak and high frequency
end. What’s more, low frequency contributions starts to present if Rainey’s model is used
in combination with second order irregular wave.

To summarize what is observed in the three figures above, all the modified calculation
models to some extent alter energy distribution over the frequency range. At a benign sea
state, the modified model tends to increase the value at peak frequency, while at a harsher
sea state the difference occurs at high frequency end with increased energy distribution
at high frequency tail.

Both non-linear wave and loads models include a higher level of energy on the structure,
by enclosing a larger area under the power density spectrum curve. But the extent
to which non-linear models affects structure design still remains to be determined by
considering the dynamic properties of wind turbine and design sea sate selected. Take
Siemens 2.3 MW as an example, the rotor speed ranges from 6 to 16 rpm, introducing a
rotational frequency that varies from 0.10−0.27 Hz. Figure 3.17 illustrates how the design
wave condition and turbine dynamic properties guide support structure design. The
eigenfrequency corresponds to first order bending moment of the offshore wind support
structure normally lies between the upper boundary of 1P and the lower boundary of
3P, i.e. the region where the red line is placed in the figure. In case significant higher
order components are included in this area, second order irregular wave model shall be
consider for design purposes since resonance might occur in this range due to second order
contributions.
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OE5662 Offshore Wind Farm Design  SSSSnake Wind Farm 

Page 16 / 32 

Repower 0.20 0.25  0.30 0.35 25 
Table 3.3 SWT-6.0-154 and RE-6.0-126 comparison (natrual frequency) 

From the above table, it is conculded that 6m foundation is required for Siemens while 
Repower wind turbine requires 7m. Combining with the above comparison and the former 
comparison between the two turbines, Repower is chosen. 

 

Figure 3.2 Frequency of Siemens at 40m water depth 

Therefore, the diameter of the monopile is determined to be 6 meters, while thickness of the 
monopile is 70 mm. 

3.3 Loading 
At this site, the environmental forces acting on the turbines are mainly wave, wind and current 
loads. In the calculations below, environmental loads will be factored by 1.35. Also, ultimate 
conditions are considered in analysis.  

3.3.1 Wind loads 

As for the wind loading, two situations are considered which are operational load condition 
and extreme load condition. 

Operational load condition 

The maximum wind loading can be determined at the nominal wind speed, which is obviously 
shown in Figure 3.3.  

Figure 3.17: Frequency guided support structure design method
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Figure 3.18: Extreme value distribution for local and global maxima

Extreme loads

A long term load extrapolation can help to explain how higher order loads affects ULS
design. Forces calculated from model 1 and model 5 will be used for analyzing the
distribution of local maximum and global maximum distribution. See from figure 3.18,
non-linear model tends to yield higher extreme value than first order solution for both
global and local maxima distribution. Figure 3.19 is a Weibull fit for local peaks. Weibull
distribution satisfying describes local extremes for the upper part in the figure, while
the various outsiders are present in the lower part. However, the trend that non-linear
model gives a higher extreme value can still be observed in the fitted curve. For block
extremes, i.e. extreme value in each simulation, a Gumbel distribution can be used to
fit the distribution. The extreme load extrapolation will be treated in length later in
chapter 4.4. As a general conclusion, second order wave models increases long term loads
estimations.
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3.6 Conclusion

For a monopile foundation, non-linear wave loads significantly affects loads estimation,
with respect to foundation base shear and bending moment. In total, six load calculation
methods are compared in analysis. For a severe sea sate, second order irregular wave model
increase load at the foundation by 3% to 34%, depending on wave calculation method
and environment input. Rainey’s load model significantly increases load magnitude, while
Wheeler’s stretching only mildly modifies wave zone loads. But for a harsh environment
condition, the validity of Rainey’s model still remains to see, since the ‘microseism effect’
might occur. When the time series are transferred into frequency domain, higher order
frequency terms are present in the wave frequency range. Though dependent on the wave
steepness and loads model, higher frequency terms in general affects loads to a greater
extend by enclosing higher energy in the spectrum at the high frequency range, while low
frequency contributions are secondary. When it comes to fatigue analysis, second order
irregular wave model is less critical than the influence on extreme loads, since it only
slightly affects force variance.
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Chapter 4

Dynamics of Floating Wind Turbine

Second order irregular wave model adds sub-harmonics and super-harmonics in the wave
model. For a moored floating turbine, the higher frequency terms might potentially ex-
cite the lowest eigen mode of the cylinder hull, resulting in a high bending moment and
curvature, while the low frequency components will in most cases affects the dynamic
behavior of mooring lines, which are sensitive to low frequency components. Considering
that second order irregular waves are most relevant to severe sea sate that normally comes
along with a high wind speed, the wind turbines are assumed to be parked for simplifi-
cation purposes. For the subsequent simulations, aerodynamic forces will be decoupled
from the model and the wind turbine is simply treated as a point mass mounted at the
top. But the dynamic effects shall still be considered at the end of the project to see if
how a coupled model will affect the result significantly. The primary focus of this chapter
is on: statistic analysis of loads and response, including displacement, bending moment
shear force for both cylinder hull and mooring lines, and some ULS, FLS considerations.

4.1 RIFLEX model

SIMA, short for simulation workbench for marine applications, is a newly developed user
interface that enables using SIMO and RIFLEX without experiencing the inconvenience
of coding. RIFLEX is a computer program for structural analysis based on finite element
method, a tool developed for static and dynamic analysis of slender marine structures,
such as mooring lines, and flexible risers, [35]. A very recent development version of
RIFLEX includes second order irregular wave model and makes it possible to carry out a
non-linear time domain simulation for stochastic analysis with either linear or nonlinear
irregular wave model as environment input. The prior interests of the comparison is on
the variation of bending moment on the cylinder hull in the wave zone and mooring line
attaching points, and axial force on mooring lines. RIFLEX will thus be a desired tool
for simulation purposes.

As a tool developed for slender structure analysis, RIFLEX does not included a compli-
cated hydrodynamic model, but Morison equations combined with long wave assumption.

55
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Since the spar hull can be treated as a slender structure due to its relative large longitu-
dinal dimension, the use of Morison equation can be justified, so long as the wave length
is relatively large compared with characteristic length of the cylinder. But the surface
piercing effects, which are of concern for severe sea states, are not considered in the model.

Based on a Hywind Demo model provided by Marintek, a self-built RIFLEX model was
constructed with the same structure properties defined in Neuenkirchen Godø [1]. Ap-
pendix B includes a detailed description of Hywind Demo RIFLEX model, which will also
be briefly summarized below.

Figures 4.1 and 4.2 respectively shows a layout of mooring system viewing from turbine
top and a detailed description of the mooring lines from side. The structural properties
of lines will not be elaborated here, but in the Appendix B.

The cylinder hull model is composed of two lines, line 1 running from the keel to the
mooring point and line 2 covers the rest of the structure. Table 4.1 shows the segment of
which the data will be stored and analyzed during the time domain simulation. Nodes on
line 2 will provide information on how the non-linear loads affect the dynamic response in
the wave zone, while the nodes on the mooring lines will assist in analyzing the mooring
line motion resulting from low frequency components.

Figure 4.1: Mooring system layout

The analysis basically follows the standard RIFLEX simulation procedure. Static analysis
achieves structure position in a equilibrium state. Afterwards dynamic forces are exerted
on the model to study the dynamic response of the structure. The output files, containing
information on nodal displacement and force, will be post processed in Matlab for com-
parison purposes. The comparison focus primarily on how second order irregular wave
affects power spectrum and long term extreme value prediction and fatigue estimation.
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CHAPTER 4. HYWIND DEMO
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Figure 4.2: Schematic drawing of the mooring line configuration of Hywind Demo.

area marked red in Figure 4.3 are the delta-plate connecting the mooring line with the two
delta lines.

36

Figure 4.2: Mooring line configuration [1]

Table 4.1: Hywind wind model brief

Line Segment No. Node No. Location description

line 1 16 1 mooring point
line 2 17 1 6 m below free water surface

21 1 free water surface
25 1 6 m above free water surface

line 3-8 1 1 delta lines
line 9-11 6 5 main mooring lines

4.2 Environmental Input

4.2.1 Wave

The development version of RIFLEX exerts some limitations on using second order wave
integration. Second order wave model is available for only severe sea states. Also, there
is some incompatibility in using second order non-linear wave to model a regular or bicro-
matic wave in RIFLEX 4.1.5. Thus only stochastic sea states, represented by JONSWAP,
will be used as wave input.

4.2.2 Current

A simplified current model, transporting in wave direction, is used in analysis. Values
are based on measurements at the Troll field, and adopted for Hywind Demo site [1], see
table 4.2 and figure 4.3. The values varies linearly between two consecutive water levels.

Table 4.2: Current profile

Water level [m] 3 25 50 100 200
Current speed [m/s] 1.70 1.22 1.14 0.77 0.73
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Figure 4.3: Current profile

4.2.3 Wind

Aerodynamic forces can be conveniently included in the RIFLEX model by either using the
self built-in wind turbine model or a coupled model with AeroDyn. But considering the
nonlinear wave model already significantly increase computation time, and wind turbines
are normally parked at a severe sea state, aerodynamic effects are ignored.

4.2.4 Second order irregular wave

The previous chapter introduces second order irregular wave model for an infinite water
depth site by comparing the wave records, generated wave spectrum and wave kinematics.
In deep water, the sum-frequency part is expected to vanish and difference frequency part
to be present. Figure 3.7 shows the wave spectrum at a deep water site, with the input
defined as Hs = 5 m, Tp = 12 s, γ = 3.3. Different from spectrum for a shallow water
site, both sub-harmonics and super-harmonics are absent in figure (a) 4.4. However,
contributions from correction terms start to be present at a severer sea state, displaying
sum-frequency contributions and some minor deviation from the first order spectrum at
the low frequency end, see figure (b) on 4.4.

To confirm the existence of second order corrections in a deep water site, a bichromatic
wave, composed of T1 = 8 s, T2 = 12 s,A1 = 2 m,A2 = 2 m, is used as wave input.
Figure 4.5 is the power spectrum based on numerical time records. There are in total
six frequency components present in the figure, corresponding to two wave frequency
components, three sum-frequency contributions and one difference frequency correction.
Among the additional four frequency components resulting from second order potential
corrections, the highest two frequency in comparison contains more energy, though all
these correction terms are of secondary to the composition of energy spectrum.

Figure 4.6 illustrates how wave kinematics vary over the water depth. Figure (a) and (b)
respectively shows the horizontal particle velocity at z = 0 and z = −50. While sum-
frequency components adds to the magnitude of particle velocity, the difference frequency
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Figure 4.4: Spectrum for wave surface elevation
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T1 = 8 s, T2 = 12 s,A1 = 2 m,A2 = 2 m, h = 200 m



60 Dynamics of Floating Wind Turbine

0 5 10 15 20 25 30 35 40
−4

−3

−2

−1

0

1

2

3

4

time [s]

h
o

ri
z
o

n
ta

l 
v
e

lo
c
it
y
 [

m
/s

]

 

 
1st order

2nd order, total

2nd order, sum

2nd order, dif

(a) z = 0 m

0 5 10 15 20 25 30 35 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time [s]

h
o

ri
z
o

n
ta

l 
v
e

lo
c
it
y
 [

m
/s

]

 

 
1st order

2nd order, total

2nd order, sum

2nd order, dif

(b) z = −50 m

Figure 4.6: Horizontal particle velocity, bichromatic waves,
h = 200 m, T1 = 8 s, T2 = 12 s,A1 = 2 m,A2 = 2 m

counterpart actually reduces the value showing a ‘return current’ effect. The particle
velocity reduces with the increase of water depth, but the difference frequency components
vanishes in a slower manner.

4.3 Time domain simulation

Step wise integration method works as a numerical tool for solving dynamic vibration
problem. Due to the geometric non-linearity introduced by the mooring lines, the dynamic
system requires a non-linear solution scheme to determine dynamic response of the system.
SIMA utilizes Newmark’s method for solving nonlinear problems. Newark method with
λ = 0.5 and β = 0.25 is preferred, since it is unconditionally stable for a linear problem
with a satisfying period error. To assist with convergence, λ is slightly increased to 0.505
by adding artificial damping to the system. Besides, only the lowest modes are of interests,
a relativity large time step, so long as it converge to the real solution, can be chosen in the
analysis. However, implicit methods that are unconditionally stable for linear problems,
may begin to show instability when used for nonlinear problems, especially for long time
simulations[36]. A convergence study is still in need to determine the time increment.

4.3.1 Convergence study

Time domain simulation for a non-linear problem is time consuming. To minimize the
computation cost and at the same time ensure the representatives of simulation result, a
convergence study is first carried out to determine an optimum time increment used for
solving the dynamic equilibrium, and also storage step used for writing into result files.
Time step affects total computation time for each simulation, while storage steps decides
the time required for importing data into Matlab. The convergence study focuses on how
the time step influence the variance of bending moment on the structure part in wave zone
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Figure 4.7: Convergence study, response over various time step

and the axial force of delta lines and main mooring lines. Four different time increments,
dt ranging from 0.001, 0.005, 0.010, and 0.050 are compared, with each simulation lasts
1200s. But error occurs for even smaller time increment. One possible explanation is that
the solution lost its stability and results in an unrealistically large value.

Figure 4.7 shows how the time series of bending moment varies with different time incre-
ments at surface piercing point in wave zone and axial force in the mooring lines. Results
are shown for second order irregular wave model only, considering non-linear wave model
should require a smaller time increment to capture the higher order frequency terms in-
troduced. See from the figure, the response tend to diverge when time increment is as
large as 0.05, while curves for other increments almost overlap, indicating a convergence
trend.

Table 4.3 summarizes total computation time for non-linear time integration for a total
simulation length of 1200 s. The computation time grows in proportion to the total time
steps taken in each simulation.

Values in table 4.4 comes from the expression (1 − A/B) × 100%, in which B is the
reference value, i.e results for ∆t = 0.005 and A is the value to be compared. See from
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Table 4.3: CPU time for non-linear time integration

∆ t [s] 2e-2 1e-2 5e-3 1e-3

time [s] 743 1359 2629 11723

Table 4.4: Statistics comparison, different time steps

Maximum [%] Variance [%]
∆ t 0.005 0.01 0.02 0.005 0.01 0.02

Location

Wave intersection 0.72 0.71 0.65 1.10 1.11 1.10
Mooring point 0.67 0.66 0.60 0.99 1.01 0.99
Delta line 0.01 0.01 0.01 -0.31 -0.32 -0.34
Main Mooring line 0.00 0.00 0.00 -0.15 -0.15 -0.16

the table, a more delicate division of time do result in an improved description of maximum
value, but in a subtle manner. In comparison, it seldom affects the maximum axial force
in the mooring lines, though it to some extend reduces the variance. Considering both
computation cost and accuracy requirement, the time increment is determined to be 0.01s.

While time increment affects time required for each simulation , the storage step decides
the efficiency of data post-processing in Matlab. A series of time step, ranging from 1 to
20 with an increment of 5, are tested to determine the storage step. It shows that when
results are stored every 10 steps, the change of maximum value will be within 0.05% and
0.07% for variance.

To sum up, simulations below use the time increment of 0.01 s and the response results
are written into the result files very 10 steps, i.e. the output files contain information for
the dynamic responses in every other 0.1 s. The maximum response frequency is thus
10Hz, which still cover the lowest igenmodes that are of interests.

4.3.2 Dynamic analysis

To study how second order irregular wave model affects the dynamics of Hywind, a sea
state, characterized by Tp = 6 s, Hs = 6 m is introduced as environmental excitation. The
results presented are based on 20 simulations. Each simulation lasts 6200 s and repeated
20 times with seed number ranging from 1 − 20. First order and second order wave
input share exactly the same seed number. The time series presented below are based on
the simulation results of seed 1 while power spectral density function is formulated with
averages of 20 simulations. The smooth command in the fit curve tool box assists to show
the curve in a more elegant manner.

In the RIFLEX model, the cylinder hull are modeled as beams. For beam elements, the
dynamic behavior are characterized by the bending moment, shear force and displacement.
Figure 4.9 and figure 4.8 respectively show the dynamic response of the structure at
mooring point and wave-structure intersection. Figures in the first column shows time
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Figure 4.8: Dynamic response of cylinder hull in wave zone, Hs = 6 m,Tp = 6 s
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Figure 4.9: Dynamics of cylinder hull at mooring point, Hs = 6 m,Tp = 6 s
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domain variations, while figures on the second column shows FFT transformation of time
series into frequency domain. See from the figures, the modified wave model results in
a larger displacement from its mean position, and a re-distribute of energy spectrum by
increasing PSD in the low frequency range.

Figure 4.8 illustrates the dynamic behavior of a point located 6 m below mean water
level in static position. See from the time records, second order wave input causes an
additional 0.5 m mean displacement in x direction, and at the same time differentiate
it from first order solution by displaying increased maximum displacements and a larger
variation. Bending moment variation overlaps with first order solution, but it includes a
significantly increased number of negative peaks. At this location, the maximum positive
and negative force are the same when using linear wave input, which is not the case for
second order solution. Larsen et al. [15] looked into the asymmetry caused by Stokes five
order wave, which can also be an explanation for the asymmetry observed. Briefly speak-
ing, when the surface elevation is considered in wave modeling, the maximum negative
and positive force do not appear at the same water level. The third row in the figure shows
the statics properties of shear force. It is noticed that second order wave model results
in significantly higher local and global peaks. With kurtosis reached 6.5 and skewness
increased to 1.11, strong non-linearity are present in shear force records. In comparison,
first order solution is symmetric and Gaussian distributed. Figures in the second column
assists in explaining the difference. See from the frequency domain solutions, second order
corrections terms, mainly low frequency components, magnifies the dynamic response at
the frequency around 0.23 rad/s. The amplification effects can also be clearly observed
in the PSD for displacement and shear force, while there is only a hardly observable local
peak in figure (d) around 0.23 rad/s. 0.23 rad/s corresponds to a period of 27.3 s, which
is close to the natural period of pitch 25.00 s and heave motion 27.78 s. When second
order irregular wave is applied, heave motion is dominated by low frequency motion and
turns wave frequency motion to be secondary. RIFLEX output files contain information
on transnational displacements only, but rotational displacement. Assuming local defor-
mation on the cylinder is negligible compared to surge motion, the pitch angle can be
calculated using the ratio between the difference of x−displacement at two water levels
and its distance along the hull. Different from heave, pitch motion still exhibits wave
frequency motion, in addition to the magnified low frequency motion in low frequency
range.

Similar trends can also be observed in figure 4.9, showing asymmetry in loading profile and
amplified energy distribution around 0.23 rad/s. While there is a only slight deformation
of PSD for bending moment in figure 4.8, second order wave model significantly intensify
the vibration in the low frequency range. For the time series of bending moment, the
negative maximum is twice as large as first order solution maximum. When it comes to
shear force, amplification effects are present at both wave peak frequency region and low
frequency range. Second order wave model works to increase the maximum shear force
by 45

To sum up, the improved wave model introduced significant low frequency contributions,
which might excite resonance. The model also cause asymmetry in load profile and results
in higher peaks.
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Figure 4.10: Heave and pitch motion of cylinder hull, Hs = 6 m,Tp = 6 s
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Figure 4.11: Dynamics of delta line, line 3,Hs = 6 m,Tp = 6 s

In the RIFLEX model, mooring lines are treated as bar elements, which is subject to axial
force only. Figure 4.11 shows the dynamics of delta line calculated with two wave models.
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An increased maximum displacement from its equilibrium position is also represent, see
from figure (a). Different from the dynamics at cylinder hull, mooring displacement is
dominated by low frequency vibrations, displaying a high peak close to zero in the power
spectrum without showing wave frequency motion. Though second order model only
moderately changes the magnitude of axial force, it actually alters energy distribution to
a great extent. With more energy enclosed in low frequency range, there is a shift of energy
distribution between two peaks at 0.2rad/s, and 1.1rad/s corresponding to incident wave
peak frequency. Similar trends can also be observed in figure 4.12. On the main mooring
line, the non-linear wave model increases the displacement, and reduces the PSD value
at wave peak frequency. The total energy extracted from wave is significantly reduced.
Possible explanation can be the inclusion of low frequency terms. Though all the wave
kinematic terms vanish with the increment of water depth, low frequency components
decrease in a slower manner. In deep water, sum-frequency contributions are absent,
which means only low frequency terms are added. When low frequency terms take over,
it will reduce the inertia forces acting on the mooring lines. Slower variation means a
reduced acceleration and consequently a lower inertia force term exerted as excitation.
On the other hand, second order difference components exhibit a ’return current’, which
reduces wave kinematic and consequence the forces acting on the mooring line.

Conclusions drawn above are also confirmed by the statistics comparison in table 4.5.
Table 4.5 shows the statistics of forces acting on the structure from two types of analysis,
loading from first order wave, and second order irregular wave, based on averages of
twenty simulations. For the environment set Hs = 6 m, Tp = 6 s, the maximum bending
moment at mooring point is increased by 95.51%, while at the surface piercing point it
is increased by around 20%. The effects of second order wave model on shear force are
also vital influence at either water intersection or at the mooring point, displaying around
10−30% increase of the maximum value. But for axial force on mooring lines, it actually
reduces its maximum value by 2.32 − 2.45%depending on its relative position to wave
direction.

However, the extent to which second order irregular wave model affects design loads still
remains to be investigated. Due to the excited low frequency mode around 0.25 rad/s,
second order wave model might not exert similar amplification effect when use other
environment inputs. Also, the condition set exerts a high loads using linear model might
not be of as critical when using non-linear wave model. It is thus necessary to look into
how second order wave model affects mooring line design by varying wave condition, which
will be dealt with in detail in the following section.

4.4 Extreme load

Another critical aspect of design calculation is to establish long term extreme loads. For
a floating wind turbine, the ultimate limit state normally corresponds to 50 year level
response. Based on analysis in previous chapter, the adaption of second order irregular
wave significantly changes most probable maximum during 20 simulation at some segment
of the structural model. The second order modification also alters the distribution for
global maximum. To gain a further understanding of how the wave model affects structure
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Figure 4.12: Dynamic response of main mooring line, line 9, Hs = 6 m,Tp = 6 s

design, it will be of help to determine long term extreme loads based on short term
simulations.

Generally, extreme load prediction can be calculated in either a deterministic or a relia-
bility based manner. When using the deterministic approach, a 50-year sea state needs
to be predefined and the calculated results correspond the targeted ULS level. The de-
terministic approach saves considerable computation time, but it generates a relatively
conservative result. In comparision, reliability based method returns a more satisfying
estimation. Reliability method also provide two approaches, full long term all sea state
analysis and contour line method.

4.4.1 Full long term all sea state approach

In the present study, the probability distributions for wind and current are decoupled
from wave, which makes it possible to conveniently express the probability for response
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Table 4.5: Dynamic response statistics, Hs = 6 m,Tp = 6 s

Bending Moment[Nm]

2nd 1st ∆

Mooring point 3.83E+04 1.98E+04 95.51%
Water intersection 4.14E+04 3.33E+04 18.85%

∼ 4.94E+04 ∼ 4.61E+04 ∼ 24.16%

Axial Force [N]

2nd 1st ∆

Delta line 4.03E+02 4.19E+02 -3.90%
∼ 8.56E+03 ∼8.77E+02 ∼2.81%

Main mooring line 7.42E+02 7.77E+02 -2.32%
∼1.52E+03 ∼1.56E+03 ∼-4.51%

Shear Force [N]

2nd 1st ∆

Mooring point 8.15E+02 5.65E+02 44.01%
Water intersection 1.15E+03 1.01E+03 14.18%

∼1.59E+03 ∼ 1.13E+03 ∼40.61%

x to occur as,

FXd
(x) =

∫
h

∫
t
FXd|HsTp (x|h, t) fHd,Tp (h, t) dtdh (4.1)

fHd,Tp (h, t) is the joint probability density function of the sea sate parameters, which
is site specific. For analysis purposes, a North Sea wave climate, for which a Weibull
distribution has been fit to Hs [37]will be assumed for Hywind Demo site:

P [Hs < h] = FHs(h) = 1− exp[−(h/2.822)1.547] (4.2)

Conditional on Hs, Tp is assumed log-normally distributed, characterized with:

E[lnTp] = 1.59 + 0.42ln(Hs + 2) (4.3)

V ar[lnTp|Hs] = 0.005 + 0.085exp(−0.13H1.34
s ) (4.4)

and
fHd,Tp (h, t) = P [Hs < h]× P [Tp < t|Hs] (4.5)

FXd|HsTp (x|h, t) is the short term distribution of the maximum over simulation time
d. When evaluating d-hour extremes, FXd|HsTp (x|h, t) is always modeled with Gumbel
distribution (see equation ), so long as the initial response process can be treated as
Gaussian.

FXd|HsTp (x|h, t) = exp

{
−exp

[
−
(
x− γG
βG

)]}
(4.6)

If the global maxima, i.e. peaks between zero-crossings, is Rayleigh distributed, the
Gumbel parameter are given as,
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γG = σd (h, t)
√

2ln (N) (4.7)

βG =
σd (h, t)√
2ln (N)

(4.8)

However, within the scope of the project, second order irregular wave model, and geomet-
ric non-linearity in the mooring lines make the above assumption invalid. But still, the
response maxima for a non-linear problems can be modeled with Weilbull distribution.
The Gumbel distribution is well suited if the initial distribution has an exponential tail,
but the parameters need to be modified [1] as:

βG =
π

6
s (4.9)

γG = x̄− 0.577β (4.10)

x̄, s are the mean and standard deviation of d-hour maximum in k simulations.

Another alternative is to apply Generalized Extreme Value Distribution. Like the extreme
value distribution, also called Gumbel distribution, the generalized extreme value distribu-
tion is often used to model the smallest or largest value among a large set of independent,
identically distributed random values representing measurements or observations[38]. In
case the modified Gumbel parameters fail to describe the distribution of block maxima,
the generalized extreme distribution type will be utilized to fit the extreme value distri-
bution.

With above calculated, the response that correspond to a return period of T years, i.e.
with the probability of occurring once, is formulated as,

1− FXd|HsTp (x|h, t) =
1

Nd,T
(4.11)

in which, Nd,T is the number of d hour sea state in T years, Nd,T = T ·365·24
d . At a north

sea environment, each sea state realization normally cover a three hour period. But when
the simulation time is set to to 1120 s, error occurs in RIFLEX due to the failure in
generating second order irregular waves. Based on trials, the simulation time is chosen
as 6200 s. With transient state response removed from the time series, the data that can
be used for analysis covers one hour and a half.

All sea state long term analysis give a desirable prediction for long term loads, but at
a high computation cost. The integration requires a knowledge of the response over a
considerable number of sea states, with several realizations at each sea sate. For linear
problems, the method can still be an efficient approach when the problem is solved in
frequency domain. But for a non-linear problem, which normally requires a time do-
main simulation with small time increment, this method will be rather demanding in
computation cost. Contour line method can be an alternative.
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4.4.2 Contour line method

Compared with all sea state long term analysis, contour line method excludes short term
variations. A good example of short term variation is the difference between two real-
izations of the same sea state with different seed number. Due to change of randomly
generated phase angle, the two wave series are not identical and result in short term
variance. As a benefit of ignoring short term variance, it requires only a limited set of
environmental condition to be checked to ensure adequate structure capacity.

When short term variation is ignored, the response XT , corresponds to T-year level, can
be estimated by analyzing short-term response along the T-year environmental contour
line. After the environmental design point, where the largest response occurs, is located,
the T-year response, XT , can be replaced by the median value, x50%, of design point
d-hour maximum distribution.

To account for the omitted short term variation, it is recommended to inflate the contour
line, scale the x50% by a factor of γ or taking a higher level of percentile, instead of the
median as the design response value [39]. However, the remedy for short term variation
equally alters first order and second order response. In the remaining part of thesis, this
correction method will not be discussed in detail.

Environmental contour line

Figure 4.13 shows Hs−Tp contours for a return periods of 1, 20, 50, 100 year. The curves
are obtained by relating Hs and Tp to standard normal variables U1 and U2. Rosenblatt
transformation transforms the joint distribution function to a standard Gaussian space.

U1 = Φ−1 [FHs(h)] (4.12)

U2 = Φ−1
[
FTp|Hs

(t|h)
]

(4.13)

In the transformed Gaussian space, the environment condition with the same occurrence
probability are located within the same distance from the origin. In this case, it forms a
circle with a radius of β by varying two variables, U1 and U2:

β =
√
U2

1 + U2
2 (4.14)

= Φ−1 (1− pf ) (4.15)

= Φ−1

(
1− d

365 · 24 · T

)
(4.16)

where d is the simulation length of each realization in hours and T the targeted return
period. Varying T from 1 to 100, it shows an expanding trend of the envelop. But this
tendency becomes less obvious with the increase of T . For a 50 year contour, pf = 1.14e−6
and corresponds to β = 4.72. Reformulate U1 and U2 into a polar coordinate system and
relate it to the probability distribution function, the points on the contour line can be
conveniently calculated.
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Figure 4.13: Envrionmental contour lines

Design point

Figure (b) on 4.13 shows the points to be considered as the potential environment com-
binations that yield the largest response. Those points to the left side of the figure, with
Hs < 5 m, are actually not considered in RIFLEX simulation. On the one hand, the
development version of RIFLEX set a lower limit, approximately Hs = 5 m, for generat-
ing second order irregular waves series. On the other hand, though those environmental
sets that fails in wave initiation has a low probability of occurrence, the corresponding
resultant response should not be expected to be critical. Thus only a portion of points
on the contour line are used as the environment input in SIMA. The reduced condition
sets are assumed to include the targeted environmental design points.

Based on time domain simulations with 56 varying environment condition sets along
the 50 year environmental contour line, the design points that results in highest extreme
response, are located as follows listed in table 4.6 and 4.7 for linear and non-linear incident
wave respectively,

Table 4.6: Design points, linear wave model

Location Hs [m] Tp [s]

mooring point 14.3 16.5
intersection 12.6 13.0
delta lines 13.9 17.1
main mooring lines 10.1 10.6

Table 4.7: Design points, non-linear wave model

Location Hs [m] Tp [s]

mooring point 13.9 17.1
intersection 13.3 17.5
delta lines 13.3 17.5
main mooring lines 13.3 17.5
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Table 4.6 and table 4.7 respectively shows the design points to be considered when using
linear wave and non-linear wave as environmental excitation. See from the tables, the
environment condition set correspond to the chosen design points vary along the structure,
mainly because of the varying of mass and stiffness distribution along the structure. Also,
the non-linear wave inputs also alters the location of design point.
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Figure 4.14: Design ponits on the contour line, left first order wave, right, second order

Figure 4.14 shows that for linear wave case, the design points scatter along the contour
line, while for non-linear wave case they accumulate at the upper right corner of the
contour line. Also, it is noticed a sea state characterized by a relatively large wave height
and a small wave period is more likely to result in a large response, since all the design
points are located at the lower half of the contour line.

Extreme distribution

To determine the extreme distribution at design points, multiple realizations of each sea
state are required to obtain several global maxima that can be used for distribution
fit. As the first attempt, 40 simulations are realized for each environment set. The
global maximum in each simulation, 40 in total, will be used to approximate a Gumbel
distribution , with Gumbel parameters calculated from equation 4.8 and 4.8.

Figure 4.15 shows how block maxima fit in a Gumbel paper. Outsiders are present in the
lower part of the figure, but data points in the upper part follows the fitted Gumbel line
in a satisfying manner.

With the extreme distribution defined, the median value, x50%, will can be treated as 50
year ULS design load. Concluded in previous sections, higher order wave model mainly
affect the bending moment at mooring point and MSL, and axial forces at the mooring
lines. Long term load extrapolation thus focus mainly on those force components.

Table 4.8 summarizes the statistic properties of long term loads, correspond to a return
period of 50 years. Due to second order correction terms, the 50-year bending moment
on the cylinder hull are increased by 2% at mooring point and 7% at water intersection,
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Table 4.8: Dynamic response statistics, long term exptrapolation

Bending Moment[Nm]

1st 2nd ∆

Mooring point 1.04 e+4 1.07 e+5 2.86%
Water intersection 1.03 e+5 1.13 e+5 7.34%

Shear Force[N]

1st 2nd ∆

Mooring point 2.22. e+3 2.31 e+3 5.14%
Water intersection 2.14 e+3 2.23 e+3 4.58%

Axial Force [N]

1st 2nd ∆

Delta line 1.23 e+3 1.02 e+3 -9.08%
Mooring line 1.43 e+3 1.23 e+3 -9.28%

corresponds to a point below mean water level. On the mooring lines, the non-linear wave
model reduce the axial force design load by approximately 9%. For the shear forces, it is
increased by around 5% at both mooring line attaching point and surface piercing point.

4.5 Fatigue damage

Fatigue design aim to ensure the safe and reliable performance of the offshore wind support
structure during its operational life. Fatigue damage is governed by stress range, instead
of stress level. Though second order irregular wave alters maximum load level at various
part of the structure, it still remains to investigate the extent to which it affects fatigue
design.

A FLS analysis normally requires a knowledge of S-N curve and loading conditions for the
site. The sea state that attributes the most to fatigue design can be determined based
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Table 4.9: Dynamic response statistics, force variance, Hs = 6 m, Tp = 12 s

Bending Moment[Nm2]

1st 2nd ∆

Mooring point 1.99 e+7 2.09 e+7 4.44%
Water intersection 7.79 e+7 7.75 e+7 +0.49%

Axial Force[N2]

Delta line, line 3 3.56 e+2 2.44 e+2 -46.15%
Mooring line, line 9 4.54 e+2 2.00 e+2 -127.05%

on a site specific scatter table, and the resultant fatigue damage can be calculated by
Miner-Palmgren’s hypothesis,

D =

p∑
i=1

ni
Ni

(4.17)

in which D is the accumulated damage, ni is the number of cycles of stress ranges at level
Si, Ni is the number of cycles that lead to fatigue damage at stress level Si, p is the total
number of stress levels. Rainflow counting is widely employed procedure for determining
the load cycle at a certain stress level.

Sea states that affect fatigue level the moment are those with the high occurrence prob-
ability and normally corresponds to a significant wave height smaller than 5 m. But due
to the limitation of the minimum wave height requirement in RIFLEX, fatigue damage
comparison can not be carried out in a deterministic manner. Instead, a comparative
caparison by looking into the number of load cycles corresponds to a certain stress level
at a selected sea state will be used illustrate how second order irregular wave model affects
FLS design.

See from the power spectrum above in figure 4.9, it is evident that the modified wave
model affects the energy distribution over its frequency range. But the analyzed sea
state, Hs = 6 m Tp = 6 s retains a low probability of occurrence. Instead, a Hs = 6 m,
Tp = 12 s sea, which corresponds to a occurrence probability of 1.6 % [40], will be taken
as the wave input for fatigue comparison.

Table 4.9 shows the variance of forces acting at various sections of the structure. It is
noticed that second order irregular wave model only slightly influence of the variation of
forces around the surface piercing, but greatly affects the response variation of mooring
lines. Since the force variance can be an indicator for fatigue damage, it is expected
that the improved wave model affects mooring line fatigue design to a larger extend than
cylinder hull.

Figure 4.16 shows the dynamic behavior of the main mooring line, line 9 at Hs = 6, Tp =
12 s. Similar as the environment set Hs = 6, Tp = 6 s, the dynamics behavior poses an in-
creased slow frequency motion and reduced wave frequency motion. But the amplification
effects around heave and pitch natural frequency are absent.
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Figure 4.17: Rainflow counting matrix, Hs = 6 m, Tp = 12 s, t = 6000 s
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Herein, force variation is assumed to be representive of stress level. Force variations in
time, instead of stress, is used as input for Rainflow counting. Figure ?? includes informa-
tion on rainflow amplitude and mean value versus cycle number, for loading at both MSL
and mooring lines. Results from first order wave input are listed in the first column, and
the second column corresponds to second order solution. Rainflowing counting analysis
utilized Matlab scripts publish online by Nieslony [41]. The general trend is that second
order corrections terms increase the cycle number corresponds to small amplitude and
medium mean stress level.

When using Miner’s law, it is actually the cycle number at each stress level decides
fatigue damage. Figure 4.18 projects the rainflow matrix to x-amplitude, showing the
cycles numbers corresponds to various stress level at Hs = 6 m, Tp = 12 s in a 6000 s sea
state. At MSL, second order model slightly increase the damage level by increasing the
cycle number at the low ‘rainflow amplitude’ end, and the two curves overlap at high stress
tail. Similarly, at the mid-point of the cylinder, minor difference of cycle number occurs
at middle range of the ‘rainflow amplitude’. Second order terms thus slightly reduce the
fatigue damage on cylinder hull. In contrast, second order terms are critical to mooring
line fatigue. In consistent with the predictions based on variance values, second order
wave model predicts a lower fatigue damage. At the delta line, second order wave model
always gives a lower cycle number throughout the complete stress level range, though
there some exceptions around S = 30. The reduction effect is more strait forward, since
second order cycle number approaches zero at high stress level while first order cycle
number is still no-zero. In a typical S-N curve, a large stress level normally correspond
to a small N.

Based on above analysis, it can be concluded that FLS analysis using first order wave
model generates a conservative design for mooring lines, compared to second order con-
dition. However, it seldom affects the fatigue at cylinder hull, though extra wave loads
are included in the wave zone. But it should be noticed that above conclusions are based
on the assumption the selected sea state Hs = 6 m, Tp = 12 s is representative for the
general wave condition, and cycle for force can be a good indicator for stress variations.

4.6 Conclusion

When it comes to deep water, low frequency contributions will be of primary interests.
Though second order irregular wave model introduces both sum frequency and difference
frequency components in deep water, contributions from super-harmonics are negligible
with regards to both loads and responses. Due the fact that low frequency terms vanishes
slower than the rest, sub-harmonics still exerts a comparably more significant influence on
structure design, especially mooring line design. The additional sum-frequency terms can
potentially reduce the 50-year design load by 9%, calculated with contour line method,
and also reduce fatigue damage by displaying fewer cycles at a high stress level. Be-
sides, though it hardly shows noticeable change in the wave spectrum, the low frequency
terms introduced can cause significant amplification of vibration by exciting low frequency
modes and consequently results in high element force maximum.
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Figure 4.18: Rainflow counting cycle number comparison, amplitude range versus cycle
number, Hs = 6 m, Tp = 12 s , t = 6000 s
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Chapter 5

Conclusions and further work

5.1 Conclusions

A better description of non-linear loads acting on an offshore wind support can be achieved
by either implementing a modified hydrodynamic calculation model, or a higher order
wave model.

FNV-method and Rainey’s new equation for slender structures, both intended to explain
third order phenomenon on a offshore structure, include a higher order component at the
wave-intersection and modifies inertia term in Morison equation when solving the surface
piercing problem. In comparison, Rainey’s model is adaptable to a more general loading
condition and is preferred in the analysis for offshore wind support structure. Based on
modal analysis, it is concluded that the resonance of the lowest eignmode of Hywind will
hardly be excited by the higher frequency components introduced by improved hydrody-
namic model. However, this improved hydrodynamic model that solves surface piercing
included, shall still be considered for extreme sea state wave loads calculation.

An improved description of wave loads also relies on a more sophisticated wave model. Sec-
ond order irregular wave severs to provide a convenient way to count for both non-linearity
in wave and the stochastic nature of sea. The non-linearity introduced is dependent on
water depth, wave height and period.

The improved hydrodynamic model and wave model are applied for two types of offshore
wind support structure, a bottom founded monopile, and a floating type support structure
Hywind Demo.

For a monopile foundation, non-linear wave loads significantly affects extreme loads es-
timation, with respect to foundation base shear and bending moment. In total, six load
calculation methods are compared in analysis. For a severe sea sate, second order irregular
wave model increase load at the foundation by 3% to 34%, depending on wave calculation

81
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method and environment input. Rainey’s load model significantly increases load magni-
tude, while Wheeler’s stretching only mildly modifies wave zone loads. But for a harsh
environment condition, the validity of Rainey’s model still remains to see, since ‘ micro-
seism effect’ might occur. When the time series are transferred into frequency domain,
higher order frequency terms are present in the wave frequency range. Though dependent
on the wave steepness and loads model, higher frequency terms in general affects loads
to a greater extend and low frequency contributions are secondary by enclosing higher
energy in the spectrum at the high frequency tail. When it comes to fatigue analysis,
second order irregular wave model is less critical than its influence on extreme loads, since
it only slightly affects force variance by 2% to 4%.

When it comes to deep water, low frequency contributions will be of primary interests.
Though second order irregular wave model introduces both sum frequency and difference
frequency components in deep water, contributions from super-harmonics are negligible
with regards to both loads and responses. Due the fact that low frequency terms vanishes
slower than the rest, sub-harmonics still exerts a comparably more significant influence on
structure design, especially mooring line design. The additional sum-frequency terms can
potentially reduce the 50-year design load by 9%, calculated with contour line method,
and also reduce fatigue damage by displaying fewer cycles at a high stress level. Be-
sides, though it hardly shows noticeable change in the wave spectrum, the low frequency
terms introduced can cause significant amplification of vibration by exciting low frequency
modes and consequently results in high element force maximum.

5.2 Further work

Model test is suggested to validate simulation data. Besides, secondary order kinematic
corrections shall be tested with measured data. Comparison work done nowadays mainly
focuses on wave kinematics in the wave zone, but kinematics under z < 0. See from the
analysis, second order correction terms below mean water level is critical to mooring line
design, but the accuracy of the model is not yet fully explored.

RIFLEX does not include a complicated hydrodynamic calculation model, but Morison
equation in combination with long wave assumption. Discussed in previous chapter, the
point load at the wave and structure intersection will be critical when wave height is the
close to cylinder diameter. Two alternatives, FNV and Rainey can be implemented for
including the point loads at the intersection. Importing Rainey’s point loads at the inter-
section into RIFLEX to see the resultant dynamics behavior can be a further extension
of the topic.

A coupled simulation that includes the aerodynamic effects would be a more desirable
way of analyzing the dynamic response problem.

From economic views, how the improved hydrodynamic model reduces safety margin and
consequently reduce offshore wind cost still remain to be investigated.
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Appendix A

Hywind Model

The structural properties used here comes from GodøNeuenkirchen Godø [1], who did a
reliability based analysis of long term prediction for dynamic response of hywind. The
complete structure are subdivided into two parts, mooring lines and towers.

Mooring lines

Mooring lines are modelled as bar element, and considers axial force only. Structural
properties of the mooring lines are presented in table A.1.

Hywind Demo is moored with three lines, and each can be divided into three parts, one
main mooring line, and two delta lines. The three mooring lines are identical and are
modelled with the same line type. Figure 4.1 and figure 4.2 show the configuration of the
mooring system and the components of each mooring line respectively.

Table A.1: Mooring line structural properties

Mass External Stiffness Quadratic Diameter Added
coefficient Axial Area Drag Mass
[kg/m] [m2] [N] [-] [m] [-]

Bottom chain 126 0.02 5.45E+08 1.273 0.152 1
Rope 32 0.01 6.10E+08 1.000 0.078 1
Link Chain 127 0.02 5.45E+08 1.273 0.152 1
Clump Weight 66640 19.83 5.45E+08 1.000 5.000 1
Link Chain 126 0.02 5.45E+08 1.273 0.152 1
Rope 32 0.01 6.10E+08 1.000 0.078 1
Delta Line 139 0.02 5.44E+08 1.273 0.152 1
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CHAPTER 4. HYWIND DEMO
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Figure 4.1: Structural drawing of Hywind Demo. The tower and the hull are not drawn in
scale.

34

Figure A.1: Structural drawing of Hywind Demo [1]



89

Hull and tower

The hull and the tower are relatively long, which makes it possible to model it in RIFLEX
in a similar way as a flexiable riser. The hull and tower is modelled with two lines, with
line 1 covering from the keel to the fairlead of the mooring lines, and line 2, models the
remaining parts, i.e. from z = -53 to z = 65. Table A.2 shows a summarized structure
properties of the cylinder hull. Beam-type cross sections with varying geometries and
stiffness defines the cylinder with varying structural properties along the hull.

Table A.2: Structural properties of cylinder hull and turbine tower

segment no mass coefficient external area gyration radius
[-] [ton/m] [m2] [m]

line 1 16 9.75-16.2 54.6 1.62-5.08
line 2 52 0.9-43.3 4.49-54.6 1.20-6.00

axial stiff bending stiffness shear stiffness torsional stiffness
[N ] [Nm2] [N ] [Nm2/rad]

line 1 2.08e+11 1.19e+12 8.97e+11
2.73e+11 2.35e+12 1.17e+12

line 2 2.49e+7 1.98e+7 9.89e+6
5.86 e+11 2.35e+9 1.17e+9
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Appendix B

Matlab Scripts

B.1 Non-linear Load calculation

1 %%%Main
2

3 close all
4 clear all
5 clc
6

7 %load 'ContourLine.mat'
8 %Tp=15;
9 %Hs=13.9;

10

11 Tp=[8,9,9,10,10];
12 Hs=[3.25,5,5.5,6.0,7.5];
13

14

15 g=9.81;
16 h=20; %water depth=20m
17 cf=3*1./Tp; %cut off frequency/ sample frequency
18 f sp=30*1./Tp; %sampling frequency
19 Hm0=Hs;
20 df=1/(100);
21

22 gamma=3.3;
23 sigma a=0.07;
24 sigma b=0.09;
25

26

27 m=length(Hs); %sea state number
28 n=1; %seeds number
29 U=cell(m+1,1);
30 U(1,:)={'F'};
31

32 tic
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33 for k=1:1
34 [˜,˜,˜,˜,F]=SecondOrderWave(Hm0(k),Tp(k),cf(k),df,gamma,sigma a,sigma b,f sp(k),n,g,h);
35 U(k+1,:)={F};
36 end
37 toc
38

39 %save('Forces 30min 48Seed 4seaState0527.mat','U')

1 function ...
[U1,U2,loc,WaveP,F]=SecondOrderWave(Hm0,Tp,cf,df,gamma,sigma a,sigma b,f sp,p,g,h)

2

3 %% wave paramters%%
4 [Nfreq 1,Nfreq,˜,An,Omega,K]=waveparameters(Hm0,Tp,df,gamma,sigma a,sigma b,cf,f sp,g,h);
5 K(1)=1*10ˆ−15;
6

7 %% second order coefficients%%
8 [k sum,k dif,D sum,D dif,B sum,B dif,Omega sum,Omega dif]=second tranfunction(Omega,Nfreq 1,K,g,h);
9

10 b=An*g./Omega; %array
11 b(isnan(b))=0;
12 A=An'*An;
13 B=b'*b;
14 t=(0:1:Nfreq−1)*1/f sp;
15 t1=(0:2*Nfreq−2)*1/f sp/2;
16 t2=(0:Nfreq−2)*1/f sp;
17

18 U1=cell(p+1,6);
19 U2=cell(p+1,7);
20 loc=cell(p+1,6);
21 F=cell(p+1,12);
22 U1(1,:)={'u1','w1','u1dx','u1dz','w1dz','u1dt'};
23 U2(1,:)={'u2','w2','u2dt','u2dx','u2dz','w2dz','u2 eta'};
24 loc(1,:)={'z','Eta','Eta2','Eta2 dx','Phi','z eta'};
25 F(1,:)={'F1','M1','F10','M10','F1 streched','M1 streched','FR10','MR10','FR10s','MR10s','FR2','MR2'};
26

27 for q=1:p
28

29 %% first order elevation
30 PHI=2*pi*rand(1,Nfreq);
31 Phi=PHI(1:Nfreq 1);
32

33 X=An.*exp(−1i*Phi);
34 X dx=−K.*X;
35

36 Y=ifft([X,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq; ...
%expand to Nfrq terms by adding 0s

37 Y dx=ifft([X dx,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq; ...
%expand to Nfrq terms by adding 0s

38 Eta=real(Y);
39 Eta dx=imag(Y dx);
40

41 %% first order kinematics
42 dz1=−0.01;
43 z1=0:dz1:min(Eta);
44 dz2=−0.1;
45 z2=min(Eta)+dz1:dz2:−h;



B.1 Non-linear Load calculation 93

46 Z=[z1,z2];
47 len1=length(Z);
48

49 [u1,w1,u1dx,u1dz,w1dz,u1dt,u1 dz,udt dz,udx dz,w1 dz]=first kinematics(Phi,Omega,An,t,Nfreq,Nfreq 1,Z',K,h);
50

51 %% second order elevation
52 phi sum=zeros(Nfreq 1,Nfreq 1);
53 phi dif=zeros(Nfreq 1,Nfreq 1);
54

55 for m=1:Nfreq 1
56 phi sum(m,:)=Phi(m)+Phi(:);
57 phi dif(m,:)=Phi(m)−Phi(:);
58 end
59

60 Xmn sum=A.*B sum.*exp(−1i*phi sum);
61 Xmn dif=A.*B dif.*exp(−1i*phi dif);
62

63 Xmn sum dx=−k sum.*Xmn sum;
64 Xmn dif dx=−k sum.*Xmn dif;
65

66 Y eta2 sum=zeros(1,2*Nfreq−1);
67 Y eta2 sum dx=zeros(1,2*Nfreq−1);
68

69

70 Xmn sum1=fliplr(Xmn sum);
71 Xmn sum1 dx=fliplr(Xmn sum dx);
72

73 for i=1:2*Nfreq 1−1
74 X=diag(Xmn sum1,−i+Nfreq 1);
75 X dx=diag(Xmn sum1 dx,−i+Nfreq 1);
76 Y eta2 sum(i)=sum(X);
77 Y eta2 sum dx(i)=sum(X dx);
78 end
79

80 Xmn dif1=Xmn dif;
81 Xmn dif1 dx=Xmn dif dx;
82

83 Y eta2 dif=zeros(1,Nfreq);
84 Y eta2 dif dx=zeros(1,Nfreq);
85

86

87 for i=1:Nfreq 1
88 X=diag(Xmn dif1,−i+1);
89 X dx=diag(Xmn dif1 dx,−i+1);
90

91 Y eta2 dif(i)=2*sum(X);
92 Y eta2 dif dx(i)=2*sum(X dx);
93 end
94

95 Y sum=ifft(Y eta2 sum,2*Nfreq−1)*(2*Nfreq−1);
96 Y sum dx=ifft(Y eta2 sum dx,2*Nfreq−1)*(2*Nfreq−1);
97 Elv2 sum=real(Y sum);
98 Elv2 sum dx=imag(Y sum dx);
99

100

101 Y dif=ifft(Y eta2 dif,Nfreq−1)*(Nfreq−1);
102 Y dif dx=ifft(Y eta2 dif dx,Nfreq−1)*(Nfreq−1);
103
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104 Elv2 dif=real(Y dif);
105 Elv2 dif dx=real(Y dif dx);
106

107

108

109 Eta2=Eta(1:end−1)+Elv2 sum(1:2:end−1)+Elv2 dif;
110 Eta2 dx=Eta dx(1:end−1)+Elv2 sum dx(1:2:end−1)+Elv2 dif dx;
111

112 [u2 sum1,u2dt sum1,u2dx sum1,u2dz sum1,w2dz sum1,u2 dif1,u2dt dif1,u2dx dif1,u2dz dif1,w2 sum1,w2 dif1,w2dz dif1]=second kinematics(B,k sum,k dif,phi sum,phi dif,D sum,D dif,Omega sum,Omega dif,Nfreq,Nfreq 1,len1,t1,t2,Z,h);
113

114 %% combine all the components
115 %%cut the time series to the same length%%
116 len2=length(t2); %second order time steps in total
117 u2 sum1(:,len2+1:end)=[];
118 w2 sum1(:,len2+1:end)=[];
119 u2dt sum1(:,len2+1:end)=[];
120 u2dx sum1(:,len2+1:end)=[];
121 u2dz sum1(:,len2+1:end)=[];
122 w2dz sum1(:,len2+1:end)=[];
123

124 u1(:,len2+1:end)=[]; %first oder
125 w1(:,len2+1:end)=[];
126 u1dt(:,len2+1:end)=[];
127 u1dx(:,len2+1:end)=[];
128 u1dz(:,len2+1:end)=[];
129 w1dz(:,len2+1:end)=[];
130

131 u1 dz(:,len2+1:end)=[];
132 udt dz(:,len2+1:end)=[];
133 udx dz(:,len2+1:end)=[];
134 w1 dz(:,len2+1:end)=[];
135

136 %%sum of first order comp and second order correction
137

138 u2 1=u1+u2 sum1+u2 dif1;
139 w2 1=w1+w2 sum1+w2 dif1;
140

141 udt 1=u1dt+u2dt sum1+u2dt dif1;
142 udx 1=u1dx+u2dx sum1+u2dx dif1;
143 udz 1=u1dz+u2dz sum1+u2dz dif1;
144 wdz 1=w1dz+w2dz sum1+w2dz dif1;
145

146 %%wave kinamatics for particles above zero
147 Eta max=max(Eta);
148 z3=Eta max−dz1:dz1:0.1;
149 len3=length(z3);
150 U0=zeros(len3,len2);
151 W0=zeros(len3,len2);
152 Udt0=zeros(len3,len2);
153 Udx0=zeros(len3,len2);
154 Udz0=zeros(len3,len2);
155 Wdz0=zeros(len3,len2);
156

157 for i=1:len3
158 U0(i,:)=u2 1(1,:);
159 W0(i,:)=w2 1(1,:);
160

161 Udt0(i,:)=udt 1(1,:);
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162 Udx0(i,:)=udx 1(1,:);
163 Udz0(i,:)=udz 1(1,:);
164 Wdz0(i,:)=wdz 1(1,:);
165 end
166

167 u2 2=U0+z3'*u1 dz;
168 w2 2=W0+z3'*w1 dz;
169 u2dt 2=Udx0+z3'*udt dz;
170 u2dx 2=Udz0+z3'*udx dz;
171 u2dz 2=repmat(u1 dz,len3,1);
172 w2dz 2=repmat(w1 dz,len3,1);
173

174 u2=[u2 2;u2 1];
175 w2=[w2 2;w2 1];
176 u2dt=[u2dt 2;udt 1];
177 u2dx=[u2dx 2;udx 1];
178 u2dz=[u2dz 2;udz 1];
179 w2dz=[w2dz 2;wdz 1];
180

181

182 z=[z3,Z];
183

184 u2 eta=zeros(1,Nfreq−1);
185 z eta=zeros(1,Nfreq−1);
186 %%clear the kinematic terms for z under water surface
187 for i=1:Nfreq−1
188 if Eta(i)>0
189 j=floor((−Eta max+Eta(i))/dz1); %%NB
190 else
191 j=length(z3);
192 end
193 u2 eta(i)=u2(j+1,i);
194 z eta(i)=Eta(i);
195 u2(1:j,i)=0;
196 w2(1:j,i)=0;
197 u2dt(1:j,i)=0;
198 u2dx(1:j,i)=0;
199 u2dz(1:j,i)=0;
200 w2dz(1:j,i)=0;
201 end
202

203

204 U1(q+1,:)={u1,w1,u1dx,u1dz,w1dz,u1dt}; %6
205 U2(q+1,:)={u2,w2,u2dt,u2dx,u2dz,w2dz,u2 eta}; %7
206 loc(q+1,:)={z,Eta,Eta2,Eta2 dx,Phi,z eta}; %5
207 [F1,M1,F10,M10,F1 streched,M1 streched,FR10,MR10,FR10s,MR10s,FR2,MR2]=load calculation check(u1,w1,u1dx,u1dz,w1dz,u1dt,u2,u2dt,z,u2dx,u2dz,w2dz,Eta2 dx,u2 eta,Z,len2,Eta,Phi,Omega,An,t,Nfreq,Nfreq 1,K,w2,z eta,h);
208 F(q+1,:)={F1,M1,F10,M10,F1 streched,M1 streched,FR10,MR10,FR10s,MR10s,FR2,MR2};
209 end
210

211 WaveP={K,Omega,An,Nfreq,Nfreq 1,t,t1,t2}; %7
212 %save('WaveKinematics.mat','U1','U2')
213 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 function[u1,w1,u1dx,u1dz,w1dz,u1dt,u1 dz,udt dz,udx dz,w1 dz]=first kinematics(Phi,Omega,An,t,Nfreq,Nfreq 1,Z,K,h)
2

3 %%first order values
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4 len1=size(Z,1);
5

6 U11=Omega.*An.*exp(−1i*Phi);
7 Ud11=Omega.ˆ2.*An.*exp(−1i*Phi);
8 u1=zeros(len1,length(t));
9 w1=zeros(len1,length(t));

10

11 u1dt=zeros(len1,length(t)); %dt
12 u1dx=zeros(len1,length(t)); %dx
13 u1dz=zeros(len1,length(t)); %du/dz
14 w1dz=zeros(len1,length(t)); %dw/dz
15

16 U1=zeros(1,Nfreq 1);
17 W1=zeros(1,Nfreq 1);
18

19 U1dx=zeros(1,Nfreq 1); %dU/dx
20 U1dz=zeros(1,Nfreq 1); %dU/dz
21 W1dz=zeros(1,Nfreq 1); %dQ/dz
22

23 U1dt=zeros(1,Nfreq 1);
24

25 %%first order kinematics
26 for i=1:len1
27 U1(1:Nfreq 1)=U11(1:Nfreq 1).*cosh(K(1:Nfreq 1)*(Z(i)+h))./sinh(K(1:Nfreq 1)*h); ...

%real part
28 W1(1:Nfreq 1)=U11(1:Nfreq 1).*sinh(K(1:Nfreq 1)*(Z(i)+h))./sinh(K(1:Nfreq 1)*h); ...

%imga part
29

30 U1(isnan(U1))=0;
31 W1(isnan(W1))=0;
32

33 U1dx(1:Nfreq 1)=K(1:Nfreq 1).*U11(1:Nfreq 1).*cosh(K(1:Nfreq 1)*(Z(i)+h))./sinh(K(1:Nfreq 1)*h); ...
%imagine part

34 U1dz(1:Nfreq 1)=K(1:Nfreq 1).*U11(1:Nfreq 1).*sinh(K(1:Nfreq 1)*(Z(i)+h))./sinh(K(1:Nfreq 1)*h); ...
%real part

35 W1dz(1:Nfreq 1)=K(1:Nfreq 1).*U11(1:Nfreq 1).*cosh(K(1:Nfreq 1)*(Z(i)+h))./sinh(K(1:Nfreq 1)*h); ...
%imagine part

36 U1dt(1:Nfreq 1)=−Ud11(1:Nfreq 1).*cosh(K(1:Nfreq 1)*(Z(i)+h))./sinh(K(1:Nfreq 1)*h);
37

38 U1dx(isnan(U1dx)) = 0;
39 U1dz(isnan(U1dz)) = 0;
40 W1dz(isnan(W1dz)) = 0;
41 U1dt(isnan(U1dt)) = 0;
42

43 u1(i,:)=real(ifft([U1,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq);
44 w1(i,:)=imag(ifft([W1,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq);
45

46 u1dx(i,:)=imag(ifft([U1dx,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq);
47 u1dz(i,:)=real(ifft([U1dz,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq);
48 w1dz(i,:)=imag(ifft([W1dz,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq);
49 u1dt(i,:)=imag(ifft([U1dt,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq);
50 end
51

52

53 %slope at Z=0
54 U1 dz=Omega.*An.*K.*exp(−1i*Phi);
55 U1 dz(isnan(U1 dz))=0;
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56 u1 dz=real(ifft([U1 dz,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq); %first ...
order dirivation to Z at Z=0

57

58 Udt dz=−Omega.ˆ2.*An.*K.*exp(−1i*Phi);
59 Udt dz(isnan(Udt dz))=0;
60 udt dz=imag(ifft([Udt dz,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq); %first ...

order dirivation to Z at Z=0
61

62 Udx dz=K.ˆ2.*Omega.*An.*exp(−1i*Phi); %sin
63 Udx dz(isnan(Udx dz))=0;
64 udx dz=imag(ifft([Udx dz,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq); %first ...

order dirivation to Z at Z=0
65

66 W1 dz=Omega.*An.*K.*exp(−1i*Phi).*cosh(K*h)./sinh(K*h);
67 W1 dz(isnan(W1 dz))=0;
68 w1 dz=imag(ifft([W1 dz,(Nfreq 1+1:Nfreq)*0],Nfreq)*Nfreq); %first ...

order dirivation to Z at Z=0

1 function[u2 sum1,u2dt sum1,u2dx sum1,u2dz sum1,w2dz sum1,u2 dif1,u2dt dif1,u2dx dif1,u2dz dif1,w2 sum1,w2 dif1,w2dz dif1]=second kinematics(B,k sum,k dif,phi sum,phi dif,D sum,D dif,Omega sum,Omega dif,Nfreq,Nfreq 1,len1,t1,t2,Z,h)
2

3 Z sum=zeros(Nfreq 1,Nfreq 1);
4 Z dif=zeros(Nfreq 1,Nfreq 1);
5

6 ZW sum=zeros(Nfreq 1,Nfreq 1);
7 ZW dif=zeros(Nfreq 1,Nfreq 1);
8

9 SGN1=ones(Nfreq 1,Nfreq 1);
10 SGN2=−ones(Nfreq 1,Nfreq 1);
11 SGN=triu(SGN2,0)+tril(SGN1,0);
12

13 u2 sum=zeros(len1,length(t1));
14 u2 dif=zeros(len1,length(t2));
15

16 w2 sum=zeros(len1,length(t1));
17 w2 dif=zeros(len1,length(t2));
18

19 u2dt sum=zeros(len1,length(t1));
20 u2dt dif=zeros(len1,length(t2));
21

22 u2dx sum=zeros(len1,length(t1));
23 u2dx dif=zeros(len1,length(t2));
24

25 u2dz sum=zeros(len1,length(t1));
26 u2dz dif=zeros(len1,length(t2));
27

28 w2dz sum=zeros(len1,length(t1));
29 w2dz dif=zeros(len1,length(t2));
30

31 %v and a at varisous vertical level
32 for i=1:len1
33 Z sum(1:Nfreq 1,1:Nfreq 1)=1/4.*B(1:Nfreq 1,1:Nfreq 1).*cosh(k sum(1:Nfreq 1,1:Nfreq 1)*(h+Z(i)))./cosh(k sum(1:Nfreq 1,1:Nfreq 1)*h).*D sum(1:Nfreq 1,1:Nfreq 1)./Omega sum(1:Nfreq 1,1:Nfreq 1).*k sum(1:Nfreq 1,1:Nfreq 1);
34 Z dif(1:Nfreq 1,1:Nfreq 1)=1/4.*B(1:Nfreq 1,1:Nfreq 1).*cosh(k dif(1:Nfreq 1,1:Nfreq 1)*(h+Z(i)))./cosh(k dif(1:Nfreq 1,1:Nfreq 1)*h).*D dif(1:Nfreq 1,1:Nfreq 1)./Omega dif(1:Nfreq 1,1:Nfreq 1).*k dif(1:Nfreq 1,1:Nfreq 1);
35

36 ZW sum(1:Nfreq 1,1:Nfreq 1)=1/4.*B(1:Nfreq 1,1:Nfreq 1).*sinh(k sum(1:Nfreq 1,1:Nfreq 1)*(h+Z(i)))./cosh(k sum(1:Nfreq 1,1:Nfreq 1)*h).*D sum(1:Nfreq 1,1:Nfreq 1)./Omega sum(1:Nfreq 1,1:Nfreq 1).*k sum(1:Nfreq 1,1:Nfreq 1);
37 ZW dif(1:Nfreq 1,1:Nfreq 1)=1/4.*B(1:Nfreq 1,1:Nfreq 1).*sinh(k dif(1:Nfreq 1,1:Nfreq 1)*(h+Z(i)))./cosh(k dif(1:Nfreq 1,1:Nfreq 1)*h).*D dif(1:Nfreq 1,1:Nfreq 1)./Omega dif(1:Nfreq 1,1:Nfreq 1).*k dif(1:Nfreq 1,1:Nfreq 1);
38
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39 Z dif(1,:)=0;
40 Z dif(:,1)=0;
41 Z dif(isnan(Z dif))=0;
42

43 Z sum(1,:)=0;
44 Z sum(:,1)=0;
45 Z sum(isnan(Z sum))=0;
46

47

48 ZW dif(1,:)=0;
49 ZW dif(:,1)=0;
50 ZW dif(isnan(ZW dif))=0;
51

52 ZW sum(1,:)=0;
53 ZW sum(:,1)=0;
54 ZW sum(isnan(ZW sum))=0;
55

56 U sum=Z sum.*exp(−1i*phi sum); %velocity u
57 U dif=Z dif.*exp(−1i*phi dif);
58

59 W sum=ZW sum.*exp(−1i*phi sum); %velocity u
60 W dif=ZW dif.*exp(−1i*phi dif);
61 W dif(isnan(W dif))=0;
62

63

64 U sum2=Z sum.*exp(−1i*phi sum); %velocity u
65 U dif2=Z dif.*exp(−1i*phi dif);
66

67 Udt sum=−(Omega sum).*U sum; %acceleration du/dt
68 Udt dif=−(Omega dif).*U dif;
69

70 Udx sum=k sum.*U sum; %du/dx
71 Udx dif=k dif.*U dif;
72

73 Udz sum=k sum.*U sum2; %du/dz
74 Udz dif=k dif.*U dif2;
75

76 %remains to check the solutuion...
77 Wdz sum=k sum.*W sum; %dw/dz
78 Wdz dif=k dif.*W dif;
79

80 U dif=U dif.*SGN;
81 W dif=W dif.*SGN;
82 Udt dif=Udt dif.*SGN;
83 Udx dif=Udx dif.*SGN;
84 Udz dif=Udz dif.*SGN;
85 Wdz dif=Wdz dif.*SGN;
86

87

88 U dif(logical(eye(size(U dif))))=0;
89 W dif(logical(eye(size(W dif))))=0;
90 Udt dif(logical(eye(size(Udt dif))))=0;
91 Udx dif(logical(eye(size(Udx dif))))=0;
92 Udz dif(logical(eye(size(Udz dif))))=0;
93 Wdz dif(logical(eye(size(Wdz dif))))=0;
94

95

96 %%ifft
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97 UU sum=zeros(1,2*Nfreq−1);
98 WW sum=zeros(1,2*Nfreq−1);
99 UUdt sum=zeros(1,2*Nfreq−1);

100 UUdx sum=zeros(1,2*Nfreq−1);
101 UUdz sum=zeros(1,2*Nfreq−1);
102 WWdz sum=zeros(1,2*Nfreq−1);
103

104

105 U sum1=fliplr(U sum);
106 W sum1=fliplr(W sum);
107 Udt sum1=fliplr(Udt sum);
108 Udx sum1=fliplr(Udx sum);
109 Udz sum1=fliplr(Udz sum);
110 Wdz sum1=fliplr(Wdz sum);
111

112

113 for j=1:2*Nfreq 1−1
114 X1=diag(U sum1,−j+Nfreq 1);
115 X2=diag(Udt sum1,−j+Nfreq 1);
116 X3=diag(Udx sum1,−j+Nfreq 1);
117 X4=diag(Udz sum1,−j+Nfreq 1);
118 X5=diag(Wdz sum1,−j+Nfreq 1);
119 X6=diag(W sum1,−j+Nfreq 1);
120

121 UU sum(j)=sum(X1);
122 UUdt sum(j)=sum(X2);
123 UUdx sum(j)=sum(X3);
124 UUdz sum(j)=sum(X4);
125 WWdz sum(j)=sum(X5);
126 WW sum(j)=sum(X6);
127 end
128

129

130 UU dif=zeros(1,Nfreq−1);
131 WW dif=zeros(1,Nfreq−1);
132 UUdt dif=zeros(1,Nfreq−1);
133 UUdx dif=zeros(1,Nfreq−1);
134 UUdz dif=zeros(1,Nfreq−1);
135 WWdz dif=zeros(1,Nfreq−1);
136

137 for j=1:Nfreq 1
138 X1=diag(U dif,−j+1);
139 X2=diag(Udt dif,−j+1);
140 X3=diag(Udx dif,−j+1);
141 X4=diag(Udz dif,−j+1);
142 X5=diag(Wdz dif,−j+1);
143 X6=diag(W dif,−j+1);
144

145 UU dif(j)=2*sum(X1);
146 UUdt dif(j)=2*sum(X2);
147 UUdx dif(j)=2*sum(X3);
148 UUdz dif(j)=2*sum(X4);
149 WWdz dif(j)=2*sum(X5);
150 WW dif(j)=2*sum(X6);
151 end
152

153 u2 sum(i,:)=ifft(UU sum,2*Nfreq−1)*(2*Nfreq−1);
154 u2 dif(i,:)=ifft(UU dif, Nfreq−1)*(Nfreq−1);
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155

156 w2 sum(i,:)=ifft(UU sum,2*Nfreq−1)*(2*Nfreq−1);
157 w2 dif(i,:)=ifft(UU dif, Nfreq−1)*(Nfreq−1);
158

159 u2dt sum(i,:)=ifft(UUdt sum,2*Nfreq−1)*(2*Nfreq−1);
160 u2dt dif(i,:)=ifft(UUdt dif, Nfreq−1)*(Nfreq−1);
161

162 u2dx sum(i,:)=ifft(UUdx sum,2*Nfreq−1)*(2*Nfreq−1);
163 u2dx dif(i,:)=ifft(UUdx dif, Nfreq−1)*(Nfreq−1);
164

165 u2dz sum(i,:)=ifft(UUdz sum,2*Nfreq−1)*(2*Nfreq−1);
166 u2dz dif(i,:)=ifft(UUdz dif, Nfreq−1)*(Nfreq−1);
167

168 w2dz sum(i,:)=ifft(WWdz sum,2*Nfreq−1)*(2*Nfreq−1);
169 w2dz dif(i,:)=ifft(WWdz dif, Nfreq−1)*(Nfreq−1);
170 end
171

172

173 u2 sum1=real(u2 sum(:,1:2:end));
174 u2 dif1=real(u2 dif);
175

176 w2 sum1=imag(u2 sum(:,1:2:end));
177 w2 dif1=imag(u2 dif);
178

179 u2dt sum1=imag(u2dt sum(:,1:2:end));
180 u2dt dif1=imag(u2dt dif);
181

182 u2dx sum1=imag(u2dx sum(:,1:2:end));
183 u2dx dif1=imag(u2dx dif);
184

185 u2dz sum1=real(u2dz sum(:,1:2:end));
186 u2dz dif1=real(u2dz dif);
187

188 w2dz sum1=imag(w2dz sum(:,1:2:end));
189 w2dz dif1=imag(w2dz dif);

1 function ...
[F1,M1,F10,M10,F1 streched,M1 streched,FR10,MR10,FR10s,MR10s,FR2,MR2]=load calculation(u1,w1,u1dx,u1dz,w1dz,u1dt,u2,u2dt,z,u2dx,u2dz,w2dz,Eta2 dx,u2 eta,Z,len2,Eta,Phi,Omega,An,t,Nfreq,Nfreq 1,K,w2,z eta,h)

2 %% LOAD CALCULATION
3 D=5.0;
4 Cm=2.0;
5 Cd=1.0;
6 rho=1.0*10ˆ3;
7

8 %morision +second order wave kinematics
9 dF1=rho*pi*D.ˆ2/4*Cm*u2dt+rho/2*Cd*D*abs(u2).*u2;

10 dz 1=[z(2:end),z(end)];
11 dz 2=[z(1),z(1:end−1)];
12 dz=(dz 1−dz 2)';
13 F1=1/2*sum(dF1.*repmat(dz,1,size(dF1,2)));
14

15 dM1=dF1.*(repmat(z',1,size(dF1,2))+h);
16 M1=1/2*sum(dM1.*repmat(dz,1,size(dF1,2)));
17

18 % morison +first order without streching
19 dF10=rho*pi*D.ˆ2/4*Cm*u1dt+rho/2*Cd*D*abs(u1).*u1;
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20 dZ1=[Z(2:end),Z(end)];
21 dZ2=[Z(1),Z(1:end−1)];
22 dZ=(dZ1−dZ2)';
23 F10=1/2*sum(dF10.*repmat(dZ,1,size(dF1,2)));
24 dM10=dF10.*(repmat(Z',1,size(dF1,2))+h);
25 M10=1/2*sum(dM10.*repmat(dZ,1,size(dF1,2)));
26

27 % morision +first order+streching
28 z streched=(repmat(z',1,len2)−repmat(Eta(1:end−1),size(z',1),1))./(1+1/h*repmat(Eta(1:end−1),size(z',1),1));
29

30 %EtaExp=repmat(Eta(1:end−1),size(z streched,1),1);
31 %z streched(z streched > 0)=0; %determine the free surface in ...

the streched coordinate
32

33 %loc=find(z streched>0);
34

35 dz 1streched=[z streched(2:end,:);z streched(end,:)];
36 dz 2streched=[z streched(1,:);z streched(1:end−1,:)];
37 dz streched=(dz 1streched−dz 2streched);
38

39 [u1 streched,w1 streched,u1dx streched,u1dz streched,w1dz streched,u1dt streched,˜,˜,˜,˜]=first kinematics(Phi,Omega,An,t,Nfreq,Nfreq 1,z streched,K,h);
40 dF1 streched=rho*pi*D.ˆ2/4*Cm*u1dt streched(:,1:end−1)+rho/2*Cd*D*abs(u1 streched(:,1:end−1)).*u1 streched(:,1:end−1);
41 F1 streched=1/2*sum(dF1 streched.*repmat(dz,1,size(dF1,2)));
42 F1 streched(z streched>0)=0;
43

44 dM1 streched=dF1 streched.*(z streched+h);
45 M1 streched=1/2*sum(dM1 streched.*repmat(dz,1,size(dF1,2)));
46

47 % Rainey+first order
48 %[u1,w1,u1dx,u1dz,w1dz,u1dt,˜,˜,˜,˜]=first kinematics(Phi,Omega,An,t,Nfreq,Nfreq 1,Z,K);
49 dFR10=(rho*pi*Dˆ2/4)*Cm*(u1dt+u1.*u1dx+w1.*u1dz)+(Cm−1)*(rho*pi*Dˆ2/4).*w1dz.*u1;
50 dFdR10=rho/2*Cd*D*abs(u1).*u1;
51 Fs10=−1/2*Eta2 dx.*(Cm−1)*(rho*pi*Dˆ2/4).*u1(1,:).ˆ2;
52 FR10=1/2*sum((dFR10+dFdR10).*repmat(dZ,1,size(dF1,2)))+Fs10;
53

54 Ms10=Fs10.*(h);
55 dM R10=dFR10.*(repmat(Z',1,size(dF1,2))+h);
56 MR10=1/2*sum(dM R10.*repmat(dZ,1,size(dF1,2)))+Ms10;
57

58 % Rainey+first order+streching
59 dFR10s=(rho*pi*Dˆ2/4)*Cm*(u1dt streched+u1 streched.*u1dx streched+w1 streched.*u1dz streched)+(Cm−1)*(rho*pi*Dˆ2/4).*w1dz streched.*u1 streched;
60 dFdR10s=rho/2*Cd*D*abs(u1 streched).*u1 streched;
61 Fs10s=−1/2*Eta2 dx.*(Cm−1)*(rho*pi*Dˆ2/4).*u1(1,:).ˆ2;
62 FR10s=1/2*sum((dFR10s(:,1:end−1)+dFdR10s(:,1:end−1)).*repmat(dz,1,size(dF1,2)))+Fs10;
63

64 Ms1s=Fs10s.*(h);
65 dMR1s=dFR10s(:,1:end−1).*(repmat(dz,1,size(dF1,2))+h);
66 MR10s=1/2*sum(dMR1s.*dz streched)+Ms1s;
67

68 % Rainey+second order
69 dFR2=(rho*pi*Dˆ2/4)*Cm*(u2dt+u2.*u2dx+w2.*u2dz)+(Cm−1)*(rho*pi*Dˆ2/4).*w2dz.*u2;
70 dFdR2=rho/2*Cd*D*abs(u2).*u2;
71 Fs2=−1/2*Eta2 dx.*(Cm−1)*(rho*pi*Dˆ2/4).*u2 eta.ˆ2;
72 FR2=1/2*sum((dFR2+dFdR2).*repmat(dz,1,size(dF1,2)))+Fs2;
73

74 Ms2=Fs2.*(z eta+h);
75 dMR2=dFR2.*(repmat(z',1,size(dF1,2))+h);
76 MR2=1/2*sum(dMR2.*repmat(dz,1,size(dF1,2)))+Ms2;
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B.2 Rossenblatt Transformation

1 clear all
2 clc
3

4 year=[1,20,50,100];
5 n=100;
6 m=length(year);
7 linetype={'r','c','b','k'};
8 legendInfo={'1 year','10 years','50 years','100 years'};
9

10 for i=1:m
11

12 a=1/(year(i)*365*24*2);
13 b=−sqrt(2) * erfinv(2*a−1); ...

%inverse normal ...
distribution accumulated

14 beta=2*pi/n*(0:1:n); ...
%reliablity

15 u1=b*cos(beta);
16 u2=b*sin(beta);
17

18 phi1=normcdf(u1);
19 h=2.822*nthroot(−log(1−phi1),1.547);
20 mu=1.59+0.42*log(h+2);
21 sigmma=sqrt(0.005+0.085*exp(−0.14*h.ˆ(1.34)));
22 phi2=normcdf(u2);
23 tp=exp(u2.*sigmma+mu);
24 grid on
25 plot(h,tp,linetype{i})
26

27 hold on
28

29 end
30

31 lgh=legend(legendInfo);
32 set(lgh,'Location','Best')
33 hold off
34 title('Hs−Tp contour line')
35 xlabel('Hs [m]')
36 ylabel('Tp [s]')
37

38 for i=3
39 a=1/(year(i)*365*8);
40 b=−sqrt(2) * erfinv(2*a−1); ...

%inverse normal ...
distribution accumulated

41 beta=2*pi/n*(0:1:n); ...
%reliablity

42 u1=b*cos(beta);
43 u2=b*sin(beta);
44
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45 phi1=normcdf(u1);
46 h=2.822*nthroot(−log(1−phi1),1.547);
47 mu=1.59+0.42*log(h+2);
48 sigmma=sqrt(0.005+0.085*exp(−0.14*h.ˆ(1.34)));
49 phi2=normcdf(u2);
50 tp=exp(u2.*sigmma+mu);
51 end
52 Hs=h(1:5:end);
53 Tp=tp(1:5:end);
54

55 save('ContourLine.mat','Hs','Tp')
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Appendix C

Modal Analysis

C.1 Modal analysis

When the structure is subject to higher order loads, its elastic response, instead of the
global motion is of greater interests. The higher loads, though with a lower magnitude
than first order wave forces, have the potential to excite significant elastic deformation
due its higher frequency.

Due to the complex geometry of Hywind Demo, it is not practical to establish a set of
governing equations and solve analytically to get the exact value. Instead, numerical
methods are applied to obtain a approximate value that is expected to have a satisfying
accuracy. Generally, there are two numerical methods applicable, i.e. finite element meth-
ods by discretionary the structure, and modal superposition by assuming the deformation
as a combination of known mode shapes. As the mode shapes are relatively convenient to
calculate and requires fewer computational efforts, herein, modal superposition is utilized
to analyze the dynamic characteristics of this floating wind turbine. At a later phase
of the project, FEM method will be implemented as well in RIFLEX and compare with
modal superposition results.

In this section, C.1.1 aims to formulate the mode shapes of the simplified model and C.1.2
works to explain the principles of modal superposition.

C.1.1 Beam model

To obtain the lowest vibration modes of this structure, a free-free beam model is applied,
considering the support structure is free to move at both ends with out any forces or
moments applied. Based on these concerns, the support structure of Hywind Demo is
simplified as a free-free beam.

For a free-free beam, the governing equation is formulated as below in equation C.1, in
which A, I, E, ρ, and γ represents the cross sectional area, the moment of inertia, the

105
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elastic modulus, material density of the structure and structural damping coefficient of
the structure.

ρAẅ + γẇ + EIw
′′′′

= 0 (C.1)

where the dots correspond to a time partial differentiation, and the primes indicates a
spatial partial differentiation(i.e., ẇ = ∂w

∂t and w
′

= ∂w
∂x ).

To solve the partial differential equation that describes the vertical deflection w(x, t), a
‘separation of variables’ approach is employed in the analysis. The vertical displacement
is assumed to be composed of the product of two functions, one which is a function of
space only and the other is a function of time only, i.e.

w(x, t) = X(x)T (t) (C.2)

Substituting equation C.2 into equation C.1, the governing equation can be formulated
as two separate equations after some manipulations.

X
′′′′ − β4X = 0, β4 =

ω2

c2
, c = 2

√
EI

ρA
(C.3)

T̈ +
γL

m
Ṫ + ω2T = 0 (C.4)

The spatial variation of the vibration shape is of greater interest here. The general solution
of the equation C.3 has the form,

X(x) = a1 sin(βx) + a2 cos(βx) + a3 sinh(βx) + a4 cosh(βx) (C.5)

The four unknowns, a1, a2, a3, anda4, are determined by applying the four boundary con-
ditions at the two ends, i,e, zero moments at both ends of the beam

EIw
′′
(0, t) = EIw

′′
(L, t) = 0 (C.6)

and zero shear force at both ends of the beam,

EIw
′′′′

(0, t) = EIw
′′′′

(L, t) = 0 (C.7)

With the above boundary conditions applied, the spatial variation part is obtained as,

Xn(x) = −a2

[
cosh[(βnL)

x

L
] + cos[(βnL)

x

L
]− σn(sinh[(βnL)

x

L
] + sin[(βnL)

x

L
]
]

(C.8)

where n = 1, 2, 3, · · · , and σn = cosh(βnL)−cos(βn)L
sinh(βnL)−sin(βnL) .
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Figure C.1: Modes shape for the lowest six modes

while the value of βn is constrained by the following characteristic equation, with the
roots given in table

cos(βL) cosh(βL) = 1 (C.9)

Table C.1: Roots of the characteristic equation for a free-free beam

Root Value

β0L 0
β1L 4.73
β2L 7.85
β3L 10.99
β4L 14.13
βnL (2n+ 1)π/2

Equation C.8 describes the nth order elastic mode shape for this free-free beam, with the
first few mode shapes shown in figure C.1. In the figure, the lowest mode, rigid body
mode is not included. The x-axis in the figure represents the location from the bottom of
the spar and the red dot is the anchoring point where the mooring lines are attached.

C.1.2 Modal superposition

When using modal superposition, the dynamic response is assumed as a linear combi-
nation of the natural modes of vibration, as shown in equation C.5. The basis for this
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method is equation C.10.

w(x, t) =
N∑
i=1

ψi(x)qi(t) (C.10)

where w(x, t) is the combined weighted response, ψi(x) is the shape function for the
ith mode and qi(t) is a time-dependent weight function for ith mode. By applying the
principle of virtual displacement, it is possible to rephrase the continuous system with
arbitrary distributional of masses, damping and stiffness, into a simplified system with
one degree of freedom by using a generalized coordinate, qi(t).

By equating the external and internal virtual work, the dynamic equations can be rephrased
as:

miq̈i + ciq̇i + kiqi = pi (C.11)

in which,

mi =

∫ L

0
m(x) [ψi (x)]2 dx+

N∑
j=1

Mj [ψi (xj)]
2 (C.12)

ki =

∫ L

0
EI(x) [ψi,xx (x)]2 dx+

N∑
j=1

Kj [ψi (xj)]
2 (C.13)

ci =

∫ L

0
c(x) [ψi (x)]2 dx+

N∑
j=1

Cj [ψi (xj)]
2 (C.14)

pit =

∫ L

0
q(x, t)ψi (x) dx+

N∑
j=1

Pjψi (xj) (C.15)

mi, ki, ci and pi are generalized mass, generalized stiffness, generalized damping and gen-
eralized load respectively. In the expressions for the generalized quantities, the integral
part represent the contributions from the distributed quantities, m(x), c(x), k(x), while
the summation parts are the contributions from the concentrated quantities, Mj(xj), Cj(xj),Kj(xj)
acting on the position xj . Also, the stiffness contribution from the bending stiffness of
the beam EI is also included in the expression.

While modal mass and modal stiffness are explicitly defined in chapter 1.2, the damping
level is relatively more challenging to measure. For simplicity concerns, a modal damping
ratio is introduced directly into the prolbem, as defined in equation C.1.2.

ξi =
ci

ci,critical
=

c̄i

2
√
m̄ik̄i

(C.16)

When the damping level is explicitly defined, the modal damping can be calculate as,

c̄i = 2ξi
√
m̄ik̄i (C.17)
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C.2 Hywind Model

Detailed design parameters of the structure are provided in chapter 1. The complete
support structure has 11 segments in total, including 2 for the wind turbine tower and
the rest for the spar type hull. For numerical analysis purposes, the support structure
is divided into smaller sections within each segment assigned with a node number in the
modal analysis coordinates w − o − x, which is marked as coordinate 1 in the Matlab
script. When dividing the segment, the general rule is applying smaller section for seg-
ments with significant geometrical variation and larger sections for segments with constant
geometrical properties, such as segments at the hull bottom, see table 1.2. Due to limited
knowledge on design details within each segment, all the parameters are assumed to be
linearly varied, if the design parameters for segment top and bottom are not identical.

Di,k = Di,bottom +
zi,k − zi,bottom
zi,top − zi,bottom

×Di,top −Di,bottom (C.18)

where, D can be any of the design parameter, mass per unit length, wall thickness, and
cylinder diameter, the suffix i denotes the segment number, k is the node number within
that segment, and top, bottom represent the value at the segment top and bottom.

Coordinate system

To model the Hywind Demo, three coordinate systems are defined. Two of them are body
fixed coordinate system and earth fixed coordinate system as defined in figure ??. A third
coordinate system is introduced here for elastic deformation analysis purposes, the origin
is fixed at the bottom of the hull, with the centerline of the structure taken as the x axis
and w pointing outwards.

Modal mass

The Hywind Demo tower and substructure consist of 11 segments in total. The mass
distribution is illustrated in table 1.3 containing information on mass distribution. For
the immersed part, added mass due to radiation is counted as a distributed mass along

the length, which means m(x) = mdis(x) +m
(2D)
11 .

mi =

∫ L

0
m(x) [ψi (x)]2 dx

N∑
j=1

Mj [ψi (xj)]
2 (C.19)

Since the mass distribution is not continuous, the integration is instead carried out in a
numerical way. The mass distribution is defined in table chapter 2 and the modal shapes
are analyzed in section C.1, with the following derived for mode shapes,

ψi(x) = −a2

[
cosh[(βiL)

x

L
] + cos[(βiL)

x

L
]− σi(sinh[(βiL)

x

L
] + sin[(βiL)

x

L
]
]

(C.20)



110 Modal Analysis

where i = 1, 2, 3, · · · , and σi = cosh(βiL)−cos(βi)L
sinh(βiL)−sin(βiL) . βi is constrained

cos(βL) cosh(βL) = 1 (C.21)

The turbine mass and nacelle mass are treated as a lumped mass, without considering
the coupling, which is added as the second part of equation C.19.

Within each segment, each section is defined with the same length for simplicity concerns.
The numerical integration can be carried out in a efficient way by applying trapezoidal
rule, i.e.

f(x) = m(x)[ψi(x)]2, (C.22)

mi =

∫ L

0
f(x)dx (C.23)

=

11∑
j=1

hj [
1

2
f(x1) + f(x2) + f(x3) + · · ·+ f(xn−1) +

1

2
f(xn)] (C.24)

where j is the segment number, ranges from 1 to 11, and xk denotes the coordinate of
node k within the segment. hj is the node length in segment j.

Modal stiffness

Modal stiffness can be calculated by using equation C.25.

ki =

∫ L

0
EI(x) [ψi,xx (x)]2 dx+

N∑
j=1

Kj [ψi (xj)]
2 (C.25)

where the EI(x) can be expressed for each node, ψi,xx is the second derivative of the
mode shapes.

When performing numerical integration, the trapezoidal rule is again utilized to account
for the structural stiffness distributed along the cylinder. Two Young’s modules are
introduced for steel and concrete, Esteel = 210 GPa and Econcrete = 30 GPa. The
moment of inertia, I, is calculated using the equation for a circular cross section:

I =
π

4

[(
D

2

)4

−
(
D

2
− t
)4
]

(C.26)

where D is the outer diameter, and t is the wall thickness. For the moment of inertia due
to blasting, the value for outer diameter and wall thickness can be equated and regarded
as D

2 − t. In that way, equation C.26 is applicable to calculate the contributions from
blasting as well.
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Mooring lines, attached at z = −53.2 m contributes to second part of equation C.25. Due
to the lack of information on mooring line stiffness, it is approximated by using the surge
period, since mooring line stiffness acts as the only contribution to the storing force in
surge.

kmr = (m11 +m)(
2π

T11
)2 (C.27)

Eigenfrequency

One of the most important part of the modal analysis is to achieve the correct value of of
the lowest egiengfrequencies. With modal and modal stiffness calculated for each mode,
the eigenfrequencies for the lowest six modes are shown in table C.2,

ωi =

√
ki
mi

(C.28)

Table C.2: Eigenfrequencies for the lowest six modes

Mode Value [rad/s]

0 0
1 4.26
2 17.38
3 32.19
4 55.06
5 77.67
6 129.91

According to Bekkeheien[42], the eigenfrequency for mode 55 can be regarded as the
lowest eigenfrequency of the structure, which is ωn = 4.5429 rad/s. The calculated
value is 6.17% lower than the provided value. The error might be introduced in two
aspects, the modeling and the mode shape. For the modeling part, the diameter and
wall thickness distribution is based on the assumption of linearly distribution among each
segment, which affects the structural stiffness distribution and the resultant modal mass
of each mode. Second, the mass distribution is also assumed to be constant unit value
over the segment, which might lead to a error. Thirdly, the 2D added mass, which is
taken as m2D

11 = ρπD2/4, might be different from the analysis by Statoil. Besides, the
accuracy of the modal analysis largely depends on the modal shapes assumed and the
boundary conditions applied in analysis. In the analysis, a free-free beam is assumed,
which is of doubt due the mooring line connection and the heavy mass at the top of the
structure. Compared with the value ω = 58.7 rad/s calculate by Bekkeheinen, the value
obtained here is more compatibly closer to the real value. The much too large k/m ratio in
Bekkeheinen might be caused by ignoring modal mass contributions from hydrodynamic
added mass(resulted in a small m), or mistakenly used the same Young’s modulus for the
blasting as steel(led to a large k).
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Figure D.1: Maixmum value of dynamic response on main mooring line 9, Hs = 6 m,Tp = 12 s
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Figure D.2: Maixmum value of dynamic response on main mooring line 9, Hs = 6 m,Tp = 12 s
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Figure D.3: Maixmum value of dynamic response on main mooring line 9, Hs = 6 m,Tp = 12 s
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Figure D.4: Maixmum value of dynamic response on main mooring line 9, Hs = 6 m,Tp = 12 s
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Figure D.5: Maixmum value of dynamic response on main mooring line 9, Hs = 6 m,Tp = 12 s
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Figure D.6: Maixmum value of dynamic response on main mooring line 9, Hs = 6 m,Tp = 12 s
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Appendix E

Wave Force

Table E.1: Comparison of load statistics of monopile base shear, quasi-static assumed, averages
over 50 simulations, absolute value

Model 1 2 3 4 5 6

1 Max 9.83E+05 1.06E+06 9.90E+05 1.02E+06 1.01E+06 1.13E+06
Sta.Dev 2.86E+05 2.89E+05 2.87E+05 2.87E+05 2.89E+05 2.93E+05

2 Max 1.43E+06 1.61E+06 1.46E+06 1.50E+06 1.52E+06 1.82E+06
Sta.Dev 4.22E+05 4.28E+05 4.23E+05 4.21E+05 4.28E+05 4.37E+05

3 Max 1.55E+06 1.78E+06 1.59E+06 1.63E+06 1.65E+06 2.05E+06
Sta.Dev 4.64E+05 4.72E+05 4.65E+05 4.63E+05 4.72E+05 4.85E+05

4 Max 1.62E+06 1.84E+06 1.71E+06 1.68E+06 1.82E+06 2.17E+06
Sta.Dev 4.82E+05 4.91E+05 4.84E+05 4.81E+05 4.95E+05 5.07E+05

Table E.2: Comparison of load statistics of monopile base bending moment, quasi-static
assumed, average over 50 simulations, absolute value

Model 1 2 3 4 5 6

1 Max 1.24E+07 1.38E+07 1.25E+07 1.27E+07 1.27E+07 1.51E+07
Sta.Dev 3.57E+06 3.61E+06 3.57E+06 3.55E+06 3.62E+06 3.67E+06

2 Max 1.74E+07 2.03E+07 1.77E+07 1.78E+07 1.87E+07 2.38E+07
Sta.Dev 5.06E+06 5.14E+06 5.07E+06 4.98E+06 5.18E+06 5.27E+06

3 Max 1.88E+07 2.22E+07 1.94E+07 1.93E+07 2.07E+07 2.65E+07
Sta.Dev 5.57E+06 5.69E+06 5.59E+06 5.47E+06 5.74E+06 5.85E+06

4 Max 1.91E+07 2.25E+07 2.01E+07 1.94E+07 2.23E+07 2.77E+07
Sta.Dev 5.63E+06 5.71E+06 5.64E+06 5.49E+06 5.85E+06 5.88E+06
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