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Abstract

In this thesis, the theoretical bivariate distribution of surf parameter and wave height is de-

rived from a theoretical joint distribution of wave height and wave period based on narrow

band approximation. Statistical properties of the derived bivariate probability density func-

tion are sensitive to the bandwidth parameter, which is reflected by appreciable spread in its

contour. Based on theoretical solutions given by Matlab and Mable which also are verified

by numerical calculations, the peak value of this distribution decreases exponentially. How-

ever the position of the peak value varies around characteristic wave height as bandwidth

parameter increases in the range of interest. The resultant conditional distribution of surf

parameter given small wave height is rather broad-banded.

By employing same bandwidth parameter and dimensionless quantities, the derived theo-

retical probability model of surf parameter and wave height is compared with best-fit para-

metric probability model to data from Norwegian Continental Shelf. It is found that the two

models do not compare well with each other but give same statistical qualitative behaviour

for statistical quantities of surf parameter such as conditional probability, expected value

and variance. Resultant probabilities of four breakers also display same variation pattern for

the two models.

During the recent two decades the interest of green energy has increased, and wave energy

is among the area of interest. Due to the necessity to assess the appropriateness of a wave

power farm, there is an urgent need for reliable statistical models to give credible predication

of expected wave power in the field of interest. Hence, a theoretical bivariate distribution of

wave power and wave height as well as wave power and wave period is compared with that of

parametric probability model based on the same data for developing parametric probability

model of surf parameter and wave height.

By pursuing the same methodology for investigation of statistical properties of theoretical

distribution of surf parameter, it is shown that singularities appear in both theoretical distri-

butions for wave power. In comparison with parametric probability model for wave power,

it is shown that the marginal distribution of wave power is in good agreement. Contour plots

of two models show that the theoretical model is much more broad banded. The computed

conditional expected value and standard deviation of wave power given wave height from
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two models show almost same increasing trend and correspond to the interpretation of the

contour plots. Similarly, the two conditional characteristic quantities of wave power given

wave period from two models both increase firstly then decrease with wave period.

Several numerical integration methods, including trapezoidal, Simpson and Romberg method

implemented by author, are applied to obtain credible result. Adaptive Gauss quadrature is

comprehensively employed to carry out validation against unity for transformed theoretical

probability model of surf parameter and wave power as well as for their marginal distribu-

tions and conditional distributions. Convergence study has been conducted and results are

presented either in figures or by tabulated values.
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Nomenclature

αd deepwater model parameter

B coefficient for connecting t with t̂MK

Cg wave group velocity

Cω wave profile velocity

db water depth at wave breaking

hb breaker index

E total average wave energy per unit surface area

E( jMK |ĥMK ) expected value of normalized wave power given normalized wave

height

E( jMK |t̂MK ) expected value of normalized wave power jMK given normalized

wave period t̂MK

E(R|ĥMK ) expected value of runup R given ĥMK

E(ξ̂MK |ĥMK ) expected value of ξ̂MK given ĥMK

f wave frequency

F (ĥ/υ) correction factor to Rayleigh distribution of ĥ in LH83 model

g acceleration of gravity

γT coefficient for connecting Tr ms with Tz

γξ coefficient used for connecting ξ̂MK with ĥMK and t̂MK

G(υ) parameter dependent on υ

ĥI N normalized wave height by
√

m f
o

ĥ normalized wave height by characteristic wave height Hcr

Ŝ normalized wave steepness by characteristic wave steepness Scr

ξ̂ normalized surf parameter by characteristic surf parameter ξcr
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ĥb normalized breaker index that is dependent on ξ̂

Hb wave height at wave breaking

ĥmax value of ĥ corresponding to pmax

ĥMK wave height normalized by Hr ms

Hr ms root mean square value of wave height from data

Hs significant wave height

j normalized wave power corresponding with ĥ and t

J dimensional wave power of per unit crest length

jMK normalized wave power corresponding with ĥMK and t̂MK

K empirical coefficients for connecting R with ξ and H

k1 one of two empirical coefficients for connecting breaker index hb

with surf parameter ξ

k2 the other empirical coefficient for connecting breaker index hb with

surf parameter ξ

L(υ) parameter dependent on bandwidth parameter υ and defined in

LH83 model

λ wave length

m slope

m f
n nth spectral moment expressed in wave frequency f

μR expected value of lnR from MF12 model

μξ̂ expected value of lnξ̂MK from MF12 model

n parameter used in MB09 probability model for wave power

p(ĥb , ĥ) joint probability density function of ĥb and ĥ

p(ĥbMK , ĥMK ) joint probability density function of ĥbMK and ĥMK

φ cumulative distribution function of standard normal distribution
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p(ĥMK ) marginal probability density function of normalized wave height

ĥMK

p

(
t̂MK |ĥMK =

√
jMK

t̂MK

)
probability density function obtained by substituting

√
jMK

t̂MK
for ĥMK

in p
(
t̂MK |ĥMK

)

p(H ,ξ) joint probability density function of wave height H and surf pa-

rameter ξ

p( j , ĥ) joint probability density function of j and ĥ

p( jI N , ĥI N ) joint probability density function of normalized wave power jI N

and normalized wave height hI N

p( ĵ I N ,τ) joint probability density function of normalized wave power ĵ I N

and normalized wave period τ

p( jMK |ĥMK ) conditional probability density function of normalized wave power

jMK given normalize wave height ĥMK

p( jMK , ĥMK ) joint probability density function of normalized wave power jMK

and normalized wave period ĥMK

p( j , t ) joint probability density function of j and t

pmax maximum value of probability density function

p(R, H) joint probability density function of R and H

p(R|ĥMK ) conditional probability density function of R given ĥMK

p(t̂MK |ĥMK ) conditional probability density function of t̂MK given ĥMK

p(ξ, H) joint probability density function of ξ and H

p(ξ̂MK |ĥMK ) conditional probability density function of ξ̂MK given ĥMK

p(ξ̂MK , ĥMK ) joint probability density function of ξ̂MK and ĥMK

p(ξ,R) joint probability density function of ξ and R

Q(υ) parameter dependent on υ

r parameter used in MB09 probability model for wave power
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Ra normalized wave amplitude

ρ water density

S wave steepness

S( f ) wave spectrum expressed in wave frequency f

σ( jMK |ĥMK ) standard deviation of normalized wave power jMK given normal-

ized wave height ĥMK

σ( jMK |t̂MK ) standard deviation of normalized wave power jMK given normal-

ized wave period t̂MK

σ2
R variance of lnR from MF12 model

σ2
ξ̂

variance of lnξ̂MK from MF12 model

σ(ξ̂MK |ĥMK ) conditional standard deviation of ξ̂MK given ĥMK

Sr ms root mean square value of wave steepness from data

T wave period

t̂MK wave period normalized by Tr ms

τ wave period normalized by T

θ angle relative to horizontal level

Tz mean zero crossing period

υ bandwidth parameter

W (υ) parameter dependent on υ

ξ surf parameter

ξ̂max value of ξ̂ corresponding to pmax

ξ̂MK surf parameter normalzied by ξr ms

A coefficient bridges different normalized procedures for wave height

Cm coefficient bridges different normalized procedures for surf param-

eter
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γH coefficient used for defining root mean square value of wave height

γs coefficient used for defining rms value of wave steepness

ĥbMK normalized breaker index that is dependent on ξ̂MK

Hcr characteristic wave height for normalization

hMK hMK ≡ ĥMK

jMK jMK ≡ jMK

pmax maximum value of joint distribution p(ξ̂, ĥ) as υ varies

pmax f i t best fit to maximum value of joint probability density function p(ξ̂, ĥ)

as υ varies

p(ξ̂, ĥ) joint probability density function of ξ̂ and ĥ

Scr characteristic wave steepness for normalization

t normalized wave period by characteristic period Tcr

Tcr characteristic wave period

xd limit for various types of wave breakers

ξcr characteristic surf parameter for normalization
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cdf cumulative distribution function

DUT Dalian University of Technology

HEU Harbin Engineering University
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rms root mean square value
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Chapter 1

Introduction

In this chapter, the previous work for surf parameter and wave power is reviewed. Objective

is defined based on the time and resources available. The organization of the thesis is given

for reader to have an overview about the methodologies used and work completed.

1.1 Background

1.1.1 surf parameter

Surf parameter, also mentioned as surf similarity parameter or Iribarren number is firstly

introduced by Iribarren Cavanilles and Nogales (1949) and applied later by Battjes (1974).

It is defined as the slope of either beach or face of structure to the square root of the wave

steepness. A number of surf zone phenomena can be represented by quantities related to

surf parameter, such as breakers, sediment transport as a result of wave breaking as well as

runup. One application of runup is in determination of position of a beach setback line for

restricted construction (Sorensen (1993)).

A lognormal distribution of surf parameter is presented by Tayfun (2006) by following a

lognormal form of wave steepness from theoretical arguments. Conversely, Myrhaug and

Fouques (2007) found that the surf parameter normalized by rms (root mean squre) value

is distributed in Fréchet form as being less than 0.913 otherwise a lognormal distribution

based on data from North Sea. Myrhaug and Fouques (2010) exemplified the transforma-
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1.1. Background

tion of a joint pdf of significant wave height and peak period based on data from Northern

North Sea to obtain the bivariate probability model of surf parameter and significant wave

height. More recently, Myrhaug et al. (2011) derived joint pdf of surf parameter and wave

height from parametric model of wave height and wave period given by Myrhaug and Kjeld-

sen (1984) and demonstrated thoroughly the statistical properties of derived model.

1.1.2 Wave power

The wave energy in the ocean is considered as a promising energy source. Existing wave

conversion technologies and concepts have been comprehensively examined by many pub-

lications (such as Clément et al. (2002), Falnes (2007) Cruz (2008), and Falcão (2010)). Mørk

et al. (2010) evaluated the wave power distribution around the globe and seasonality of it

from data given by global wind - wave model and measurements from buoy. More recently,

Gunn and Stock-Williams (2012) suggested annual best direction for harvesting wave energy

worldwide. Specifically, Vicinanza et al. (2013) gave a review of the total wave power in the

oceans close to several European countries.

Compared to already commercialized offshore wind power exploitation, wave energy extrac-

tion is still in the immature phase (Mørk et al. (2010)). One of the remaining challenges is the

reliable estimate of the wave power in the potential wave power farm. To quantify the wave

energy conversion for economically appealing site, sea state parameters such as significant

wave height, energy period and wave propagation direction are usually utilized. It is noted

that sea states appearing most frequently does not have to contribute most significantly to

the total incident wave energy but would be essential for fatigue analysis (Lenee-Bluhm et al.

(2011)).

The optimal performance of the WECs (wave energy converters) are strongly frequency de-

pendent. As a consequence of variability of sea state, WECs have to be designed or selected

to give maximum output in an average sense. Smith et al. (2006) demonstrated that a hy-

pothetical WEC works most effectively when it is tuned to individual waves. Saulnier et al.

(2011) carried out the sensitivity analysis of WEC performance towards wave groupiness and

spectral width parameter.

Myrhaug et al. (2011) presented two joint distributions of wave power and wave period for
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Chapter 1. Introduction

sea states by random variable transformation from bivariate probability distribution of Hs

and Tp and Hs and Tz , respectively.

Myrhaug et al. (2009) investigated the statistical properties of parametric model for wave

power and primary wave parameters (i.e. wave height and wave period). This model is devel-

oped from transformation of parametric probability model for wave height and wave period

by best fit to measurements on Norwegian Continental Shelf (Myrhaug and Kjeldsen (1984)).

In the utilization of same methodology, Izadparast and Niedzwecki (2011) derived theoreti-

cal model of wave power and primary wave parameters for individual waves from joint prob-

ability model of wave height and wave period given by Longuet-Higgins (1983). They found

that narrow banded approximation for wave power is appropriate as bandwidth parameter

(υ)< 0.4 if triangular spectrum is employed to approximate a more complicated practically

used spectrum.

1.2 Notes for numerical method

Since the credibility of results obtained in this thesis is strongly dependent on the numerical

integration method, some discussions are necessary.

Each numerical integration method may only be applicable for specific problems. Hence,

sometimes trial and error process cannot be circumvented. Engineers and scientists have

to be aware of the limitation of numerical method. Critical assessment of the results deliv-

ered by numerical method is always necessary. Potential risk is high for inexperienced user

of mathematics tool such as Matlab and Maple. As stated by Davis and Rabinowitz (1984),

Whenever possible, a problem should be analyzed and put into a proper form before it is run on

a computer and one good thought may be worth a hundred hours on the computer. This be-

comes apparent during this thesis work. Therefore, numerical integration methods should

never be employed in a blind fashion. It is advisable that proficient programmers have ac-

quainted themselves with analytical results for integrals.

In concrete application, one common problem faced by many analysts would be the trunca-

tion of the infinite interval. Then, adequate estimate of the upper integral limit for numerical

implementation requires analyst to be capable of estimating the tail appropriately. Addi-

3



1.3. Objectives and scope of work

tionally, it would be desirable to conduct numerical stability analysis for verification. Prior

to evaluation of particular integral, Abramowitz (1954) suggested the following important

points to take into consideration:

• Confirm the existence of the integral

• Ascertain the important ranges of the parameters involved

• Reduce the integral to its simplest forms

• Determine the essential parameters which are involved

• Determine the accuracy to which numerical values (if desired) are to be given

As for the probability analysis, another powerful tool is to check the unity of cdf (cumulative

distribution of function) as integrating over the whole valid range of integration variables in

the probability model.

1.3 Objectives and scope of work

1. Investigate the statistical properties of joint distribution of surf parameter and wave

height derived from bivariate distributions of individual wave height and wave period

developed by Longuet-Higgins (1983).

2. Examine the effects of the bandwidth parameter on the behaviour of the derived bi-

variate distribution of surf parameter and wave height

3. Compare the theoretical distribution of surf parameter and wave height with the para-

metric model presented in Myrhaug and Fouques (2012)

4. Compare the theoretical bivariate distribution of wave power and wave height as well

as wave power and wave period from Izadparast and Niedzwecki (2011) with the para-

metric model given by Myrhaug et al. (2009)

1.4 Thesis outline

1. Chapter 2 presents the derivation and the statistical properties of theoretical distri-

bution of surf parameter and wave height. Comparison is made between parametric
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Chapter 1. Introduction

model and theoretical model by focusing on the quantities of interest for surf parame-

ter. Then, a number of application examples are given to serve the purpose of demon-

stration.

2. Chapter 3 compares the theoretical and parametric model for wave power by compar-

ing marginal and conditional quantities of wave power

3. Chapter 4 makes a summary of contributions as well as suggestions for further work

4. Appendix A gives detailed alternative derivation way for equations given in Chapter 2.

Numerical convergence study for results given in Chapter 2 is present in a concise way.

5. Appendix B covers the comparison of results from by application of different numerical

integration methods and convergence study for results given in Chapter 3. Romberg

integration method is depicted in details herein.

6. Appendix C, D and E give examples of Matlab scripts, visual basic and bash script.
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Chapter 2

Statistics of Surf Parameter for individual

waves

In this chapter, a theoretical bivariate distribution of surf parameter and wave height is

derived from theoretical joint distribution of wave height and wave period from Longuet-

Higgins (1983) (given in section 2.1). Properties of the derived model will be exhibited in sec-

tions 2.1 and 2.3. Detailed comparisons between derived model and the parametric model

given by Myrhaug and Fouques (2012) are made in subsection 2.3.2. Then, some examples

of practical applications of derived model are shown in subsection 2.3.3.

2.1 Theoretical bivariate distribution of surf parameter and

wave height

According to Myrhaug and Fouques (2012), the surf parameter ξ is defined as m/
�

s, where m

is the slope and is computed by t anθ with θ as the angle referred to horizontals. S is the wave

steepness with definition as S = H/λ (λ= g T 2/(2π)), where g ,λ and T is the acceleration of

gravity, wave length and wave period, respectively.

Characteristic values used herein for normalisations are Hcr for wave height, Tcr for wave

period, Scr for wave steepness and ξcr for surf parameter. The definitions of these values are
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2.1. Theoretical bivariate distribution of surf parameter and wave height

given by

Tcr = 2π
mω

0

mω
1

(2.1)

Hcr = 2
√

2mω
0 (2.2)

Scr = Hcr

g T 2
cr /(2π)

(2.3)

ξcr = m/
√

Scr (2.4)

Normalized wave period, wave height, wave steepness and surf parameter then are denoted

as t , ĥ, Ŝ and ξ̂, respectively (D. Myrhaug, personal communication, 26 February 2014).

Aforementioned mω
0 and mω

1 are calculated by:

mω
n =
∫∞

0
ωnS(ω) dω; n = 0, 1, 2, · · · (2.5)

where S(ω) is the one sided wave spectrum expressed in terms of circular wave frequency ω.

Based on foregoing definition, ξ̂ can be expressed as

ξ̂= t√
ĥ

(2.6)

Longuet-Higgins (1983) gave joint probability density function of ĥ and t (hereafter denoted

as LH83 model) as the following:

p(ĥ, t ) = 2

υ
�
π

ĥ2

t 2
exp

[
−ĥ2
(
1+ (1−1/t )2/υ2

)]
L(υ) (2.7)

where υ is the bandwidth parameter, and L(υ) is a normalization factor as a consequence of

only positive t being taken into account. υ and L(υ) are given as

L(υ) = 2

1+ (1+υ2)−1/2
(2.8)

υ=

⎛
⎜⎜⎝mω

0 mω
2(

mω
1

)2 −1

⎞
⎟⎟⎠

1/2

(2.9)

LH83 model is derived from the joint distribution of wave envelope amplitude and the rate of

change of total phase. If the surface wave elevation is considered as narrow banded process,

8



Chapter 2. Statistics of surf parameter for individual waves

the wave envelope amplitude can be approximated as wave amplitude. Thus, with further

assumption for the time derivative of total phase, the Eq. 2.7 is obtained. Hereafter, the dis-

tinguish will not be made and wave amplitude will be used. It should be noted that the value

of normalized wave amplitude defined by Longuet-Higgins (1983) is identical with normal-

ized wave height ĥ defined herein. Furthermore, Eq.(2.17) given in Longuet-Higgins (1983)

should have a leading factor with 2/(
�
πυ) instead of 2/(

�
π) (see section A.1 for details).

By transformation of pdf (probability density function), Eq. 2.7, with argument (ĥ, t ) into

(ĥ, ξ̂) , joint pdf p(ξ̂, ĥ) is shown as:

p(ξ̂, ĥ) = 2

υ
�
π

ĥ3/2

ξ̂2
exp

⎡
⎢⎣−ĥ2

⎛
⎝1+ (1− 1

ξ̂
√

ĥ
)2/υ2

⎞
⎠
⎤
⎥⎦L(υ) (2.10)

where L(υ) can also be given as another form if corrected form of Eq. (2.17) in Longuet-

Higgins (1983) is utilized

1

L(υ)
= 2

υ
�
π

∫∞

0

∫∞

0

ĥ3/2

ξ̂2
exp

⎡
⎢⎣−ĥ2

⎛
⎝1+ (1− 1

ξ̂
√

ĥ
)2/υ2

⎞
⎠
⎤
⎥⎦ dĥ dξ̂ (2.11)

Actually, L(υ) keeps the same form in transformation of variables due to its independence

of ĥ and t as seen in Eq. (2.8). Also, it is reasonable to take analytical integral result shown

above rather than numerical solution of Eq. (2.11).

The maximum value of p(ĥ, ξ̂) is found by taking its partial differentiation with respect to ĥ

and ξ̂, respectively, and enforcing them being zero. Additionally, ĥ ≥ 0 , ξ̂≥ 0 and p(ξ̂, ĥ) > 0

should be satisfied simultaneously. Thus the position (ĥmax , ξ̂max) of maximum value is

obtained.

ĥmax =
�

2

4
G(υ) (2.12)

ξ̂max = 2−13/4 υ
2 +1

υ2
G(υ)7/2 −2−9/4 υ

2 +5

υ2
G(υ)3/2 (2.13)

where G(υ) is a factor only dependent on υ, and takes the form

G(υ) =
√�

16υ2 +25+ (5+2υ2)

υ2 +1
(2.14)

9



2.1. Theoretical bivariate distribution of surf parameter and wave height

By substituting Eqs. (2.12), (2.13) and (2.14) in Eq. (2.10), the value of p(ĥ, ξ̂) at mode (maxi-

mum value) is therefore

pmax = 2−11/4exp

(
−5

4

G(υ)2 W (υ)

Q(υ)

)
L(υ)G(υ)5/2 W (υ)2

Q(υ)υ
�
π

(2.15)

where W (υ) and Q(υ) are factors dependent on υ only and given by

Q(υ) = (
√

16υ2 +25+5)2 (2.16)

W (υ) = 8υ2 +
√

16υ2 +25+5 (2.17)

From Eq. (2.15), it seems that the maximum value of p(ĥ, ξ̂) decreases exponentially for in-

creasing υ. This statement is verified by fitting to the data generated by Eq. (2.15) (shown by

Fig. 2.1a). Maximum value after being fitted pmax f i t is given by

pmax f i t = 14.91exp(−17.89υ)+2.214exp(−1.317) (2.18)

Take first derivative of Eq. (2.15) with respect to υ and enforce it to be zero, it is found that υ=
0.969086 gives the minimum peak value. With the increase of υ, the projection of point pmax

on ξ̂−ĥ plane moves on a straight line (see Fig. 2.1b produced by using Eqs. (2.12) and (2.13))

to smaller wave height (varying around character wave height Hcr ) and surf parameter. By

fitting, the corresponding track projected is given as

ĥ = 0.6054 ξ̂+0.5459 (2.19)

υ

(a) Value of pmax

ξ̂

ĥ

(b) Position of pmax

Figure 2.1: The value and position of pmax vary with υ in the range of 0.05:0.03:0.8

More investigation with respect to the effect of bandwidth parameter on the statistical quan-
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Chapter 2. Statistics of surf parameter for individual waves

tities of interest is given in subsection 2.3.2.

2.2 Parametric joint distribution of surf parameter and wave

height

By best fitting to measurements on the Norwegian continental shelf, Myrhaug and Kjeldsen

(1984) (hereafter denoted as MK84) gave parametric joint distribution of normalized wave

height and wave steepness. Through transformation of variables, Myrhaug and Fouques

(2012) derived the parametric bivariate distribution of normalized wave height ĥMK and surf

parameter ξ̂MK , given as

p(ξ̂MK , ĥMK )= p(ξ̂MK |ĥMK )p(ĥMK ) (2.20)

where p(ĥMK ) and p(ξ̂MK |ĥMK ) are given as a 2-parameter Weibull pdf and a lognormal pdf,

respectively and take the forms

p(ĥMK ) = 2.39ĥ1.39
MK

1.052.39
exp

⎡
⎣−
(

ĥMK

1.05

)2.39
⎤
⎦ (2.21)

p(ξ̂MK |ĥMK ) = 1�
2πσξ̂MK

ξ̂MK
exp

⎡
⎢⎢⎣−
(
ln(ξ̂MK )−μξ̂MK

)2
2σ2

ξ̂MK

⎤
⎥⎥⎦ (2.22)

Here, μξ̂MK
and σξ̂MK

are mean value and variance of ln(ξ̂MK ) respectively, given by

μξ̂MK
=

⎧⎪⎪⎨
⎪⎪⎩
−0.048+0.5105 ĥMK −0.279 ĥ2

MK for ĥMK ≤ 1.7

−0.125arctan[4( ĥMK −1.7)]+0.0135 for ĥMK > 1.7
(2.23)

σ2
ξ̂MK

=−0.0375arctan[1.75( ĥMK −1.20)]+0.05625 (2.24)

where normalized wave height ĥMK and normalized surf parameter ξ̂MK are defined by

ĥMK = H

Hr ms
(2.25)

ξ̂MK = ξ

ξr ms
; ξr ms = m�

Sr ms
(2.26)
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2.2. Parametric joint distribution of surf parameter and wave height

Normalized wave steepness herein is defined as hatSMK = S/Sr ms . Connections between

Sr ms , Hr ms and sea state parameter Hs , Tz are found by performing linear regression analy-

sis, given by

Hr ms = 0.714 Hs (2.27)

Sr ms = 0.7Sm ; Sm = Hs
g

2πT 2
z

(2.28)

where significant wave height Hs and mean zero crossing period Tz are defined in terms of

spectral moments m f
n

Tz =
√√√√m f

0

m f
2

(2.29)

Hs = 4
√

m f
0 (2.30)

Here m f
0 and m f

2 are zeroth and second moment of single sided wave spectrum S( f ), which

is defined as

m f
n =
∫∞

0
f nS( f )d f ; n = 0, 1, 2, · · · (2.31)

It is noted that nth spectral moments m f
n expressed by wave frequency f with unit H z are

defined in the same manner as for mω
n (see Eq. (2.5)). As ω = 2π f and area under spectra

(represents energy) given as S( f ) and S(ω) should be the same, following connection is es-

tablished

S(ω) = 1

2π
S( f ) (2.32)

Further, relation between spectral moments expressed in f and ω are derived as

mω
n = (2π)nm f

n (2.33)

It is noted that the definition of Sr ms in Myrhaug and Kjeldsen (1984) is identical with that

in Myrhaug and Fouques (2012) but extra factor 4π2 exists in Eq. (12) given by Myrhaug and

Kvålsvold (1995), since wave spectrum is expressed in terms of circular wave frequency ω

there (personal discussion with Dag Myrhaug on June 10th, 2014).
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Chapter 2. Statistics of surf parameter for individual waves

2.3 Comparison between parametric probability and theo-

retical probability model

In Longuet-Higgins (1983), υ≤ 0.6 is used as the basis for deriving narrow band approxima-

tion Eq. (2.7). Hence, typical values of bandwidth parameter within the range are selected to

serve the purpose of investigating the its effect on the properties of derived LH83 model.

2.3.1 Using same normalized quantities

To make results comparable with those presented in Myrhaug and Fouques (2012), their

definitions of normalized wave height and slope are employed and bandwidth parameter

υ is limited to 0.504 (Myrhaug and Fouques (2012)), which is the bandwidth of surface wave

elevation process the MF12 model is based on. From Eqs. (14) and (16) in Myrhaug and

Kvålsvold (1995), the relation between normalized procedures employed in Myrhaug and

Kjeldsen (1984) and Longuet-Higgins (1983) is given as

ĥ = γH ĥMK

2
�

2
; γH = 2.8582 (2.34)

ξ̂= ξMK

√
4π

�
2

γS(1+υ2)
; γS = 17.6 (2.35)

Hereafter, γH /(2
�

2) and
√

4π
�

2/γs(1+υ2) are denoted as A and Cm ( see section A.3 for

detailed derivations of Cm ), respectively.

Theoretical joint distribution of (ξ̂MK , ĥMK ) is then derived from Eq. (2.10) by using Jacobian∣∣∣∣ ∂ξ̂

∂ξ̂MK
· ∂ĥ
∂ĥMK

∣∣∣∣=Cm A and becomes

p(ξ̂MK , ĥMK ) = 2A5/2

Cm
�
πυ

⎛
⎝ ĥ3/2

MK

ξ̂2
MK

⎞
⎠ ·

exp

⎡
⎢⎢⎢⎣−(A ĥMK )2

⎛
⎜⎜⎝1+

⎛
⎜⎝1− 1

Cm ξ̂MK

√
A ĥMK

⎞
⎟⎠

2

/υ2

⎞
⎟⎟⎠
⎤
⎥⎥⎥⎦L(υ) (2.36)
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ξ̂MK

ĥ
M

K

υ

(a)

ξ̂MK

ĥ
M

K

υ

(b)

ξ̂MK

ĥ
M

K

υ

(c)

ξ̂MK
ĥ
M

K

υ

(d)

Figure 2.2: Isocontours of derived LH83 model p(ĥMK , ξ̂MK ), p takes peak value (indicated
as ×), 0.8, 0.3, 0.1, 0.01, 0.001 and 0.0001 respectively from the centre outwards

It is also feasible firstly to make a change of variables for LH83 model from (ĥ, t̂ ) into (ĥMK , t̂MK )

through the use of Eqs. (2.34) and (3.11). Then, obtained pdf can further be transformed to

theoretical joint distribution of (ξ̂MK , ĥMK ), which is identical with Eq. (2.36) (details can be

found in section A.4).

2.3.2 Comparison of statistical quantities of interest

Compared with derived LH83 model( Fig 2.2c), MF12 model (Fig 2.3) gives more even distri-

bution. The positions and the values of the peak from two models are close to each other as

seen in Table 2.1.

Table 2.1: Peak values and their positions of MF12 and derived LH83 model

Model υ ĥMK ξ̂MK peak value

MF12 – 0.905 1.120 1.160
Derived LH83 0.1 1.105 0.940 4.362
Derived LH83 0.3 1.075 0.930 1.516
Derived LH83 0.504 1.030 0.915 0.974
Derived LH83 0.6 1.005 0.905 0.855
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Chapter 2. Statistics of surf parameter for individual waves

Symmetry with respect to wave height is observed as ĥMK ≈ 0.6 for MF12 model given ξ̂MK >
2 . Asymmetry with respect to surf parameter is observed for derived LH83 model while

symmetry is presented for MF12 model as ĥMK > 2.

ξ̂MK

ĥ
M

K

Figure 2.3: Isocontours of MF12 model (ĥMK , ξ̂MK ), p takes peak value (indicated as ×), 0.8,
0.3, 0.1, 0.01, 0.001 and 0.0001 respectively from the centre outwards (adapted from

Myrhaug and Fouques (2012))

It is observed from Fig. 2.2 that the broadening of spectrum lowers the probability density

gradient. And the point with maximum probability density is almost fixes as illustrated by

Fig. 2.2 as well as by Table 2.1. In the lower range of wave height, the conditional distribution

of ξ̂MK given ĥMK is skewed to the right and broad-banded compared to large wave height

(e.g. ĥMK > 2). Same feature is also inherent in MF12 model (see e.g Figs 14 - 16 Myrhaug

and Fouques (2012)). Fig. 2.9 also illustrates the branded-band feature as ĥMK less than

1.5. Fig. 2.2a shows that the isocurve possesses longer tail in comparison with other values

of bandwidth parameter as ĥMK < 1.5. Longuet-Higgins (1983) gave the theoretical marginal

distribution of non-dimensional wave amplitude Ra with Eq. (5.4). As mentioned previously,

Ra = ĥ, and therefore the marginal distribution of ĥ take the same form as that of Ra and as

shown below.

p(ĥ) = 2ĥ�
π

e−ĥ2
L(υ)
∫ĥ/υ

−∞
e−η

2
dη (2.37)

= 2ĥe−ĥ2
L(υ)F (ĥ/υ) (2.38)
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ĥMK

p
(
ĥ
M

K
)

Probability density function p(ĥMK ) versus ĥMK

υ = 0

υ = 0.1

υ = 0.3

υ = 0.504

υ = 0.6

MF12

Figure 2.4: p(ĥMK ) versus ĥMK

where L(υ) and F (ĥ/υ) are correction factors to Rayleigh distribution.F (ĥ/υ) and η are given

by

F (ĥ/υ) = 1�
π

∫ĥ/υ

−∞
e−η

2
dη (2.39)

η= ĥ

υ
(1−1/t ) (2.40)

Note that F (ĥ/υ) is not the same as mostly common error function with leading factor 2�
π

.

Transforming Eq. (2.37) into the distribution of ĥMK , Fig. 2.4 is produced by also including

results from integrating Eq. (2.36) with respect to ξ̂MK . Fig. 2.4 illustrates that the marginal

distribution of ĥMK is not sensitive to the variation of bandwidth, which is also presented in

Fig. 2 by Longuet-Higgins (1983) and supported by Fig. 2.5. It is observed that MF12 model

gives higher peak value, which shifts to the right compared to model derived from LH83. The

distinguish between these two models are clearly seen as υ= 0.504.

Weibull scale probability paper(Fig. 2.5) is used to better illustrate the difference of these two

models, especially between Rayleigh distribution(υ = 0) and the distribution with υ = 0.1.

Both Fig. 2.5 and Fig. 2.4 shows the higher and lower probability given by transformed LH83

model and Rayleigh distribution in small and large wave height relative to MF12 model,

respectively. Thus, cautions should be taken for utilizing Rayleigh and MF12 model in se-

vere sea state. Another feature is very small curvature observed in Weibull probability pa-

per for transformed LH83 model. As what Longuet-Higgins (1983) stated, correction from
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ĥMK

P
(
ĥ
M

K
)

Marginal Distribution P (ĥMK) versus ĥMK in Weibull-scale

υ = 0

υ = 0.1

υ = 0.3

υ = 0.504

υ = 0.6

MF12

Figure 2.5: Marginal cdf P (ĥMK ) versus ĥMK

ξ̂MK

P
(
ξ̂ M

K
)

Marginal Distribution P (ξ̂MK ) versus ξ̂MK in Weibull-scale

υ
υ
υ
υ

Figure 2.6: Marginal cdf P (ξ̂MK ) versus ξ̂MK

L(υ)F (R/υ) to Rayleigh model is obvious in the order of υ and small as ĥMK is in the or-

der of 1.5. Tail behaviour is observed for transformed LH83 model, which further implies

incapability of this model for predicting probability of extremely large wave height. With

no analytical expression of cdf for marginal wave height distribution, numerical integration

has to be used to evaluate the integral of Eq. (2.37). The probability of ĥMK corresponds to

the tail of transformed LH83 model and is sensitive to the steps for integration. Thus, step

with maximum numerical error of cdf in the magnitude of 10−8 is applied. Fig 2.6 shows de-

creasingly evident concavity of P (ξ̂MK ) curve by transformed LH83 model as broadening of

spectrum. By contrast, the curve generated by MF12 model has the same sign of curvature

the throughout all slopes. From Fig. 2.7, it is seen that the conditional probability of ξ̂MK is
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ĥMK

P
(
ξ̂ M

K
|ĥ

M
K
)

Commulative Distribution P (ξ̂MK |ĥMK ) versus ĥMK in Weibull-scale

ĥMK = 0.5

ĥMK = 1

ĥMK = 1.4

ĥMK = 2.1

Figure 2.7: P (ξ̂MK |ĥMK ) versus ξ̂MK in Weibull-scale

increased with ĥMK for ξ̂MK being approximately larger than 0.7.

Fig. 2.8 shows the expected value of ξ̂MK given wave height ĥMK (E(ξ̂MK |ĥMK )). It appears

that the values increase with decreasing bandwidth parameter υ as ĥMK is small for distribu-

tion derived from LH83, However, the trend reverses with large ĥMK . It is also observed that

all curves follow the same pattern, that is, they increase firstly and then reduce as ĥMK grows.

Fig. 2.9 shows the lower variability for MF12 model than corresponding transformed LH83

model. It also implies that dispersion increases with bandwidth parameter υ as expected.

It should be noted that the numerically computed E(ξ̂MK |ĥMK ) and σ(ξ̂MK |ĥMK ) are only

converged as ĥMK > 2 for derived LH83 model (see Figs. A.8 and A.15 for details). However

the trends reflected in 2.8 and 2.9 remain the same even by utilizing different integration

steps (see Figs.A.2 - A.6 and Figs.A.9 - A.12 for details).

2.3.3 Application examples

For the purpose of facilitating comparison, application examples of derived LH83 model

are presented in the foregoing text with the same manner utilized in Myrhaug and Fouques

(2012). One quantity of interest in coastal engineering is breaker index hb . It is defined as

Hb/db , where Hb and db are wave height and water depth at breaking, respectively. Empir-

ically, hb can be related with ξ by hb = k1ξ
k2 as suggested by Myrhaug and Fouques (2007).
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ĥMK
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|ĥ
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K
)

υ = 0.1

υ = 0.3

υ =0.504

υ = 0.6

MF12

Figure 2.8: E [ξ̂MK |ĥMK ]

ĥMK

σ
(
ξ̂ M

K
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K
)

σ(ξ̂MK |ĥMK ) by using dimensionless quantities in MK84

υ = 0.1

υ = 0.3

υ =0.504

υ = 0.6

MF12

Figure 2.9: σ(ξ̂MK |ĥMK )
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ĥbMK

P
(
ĥ
b
M

K
)

Figure 2.10: Probability of breaker index ĥbMK in Weibull scale

k1 and k2 are empirical coefficients and one possible set of values (k1 = 1.20,k2 = 0.27) are

proposed by Kaminsky and Kraus (1994). Normalized form of hb consistent with Myrhaug

and Fouques (2012) is defined as ĥbMK = hb/(k1ξ
k2
r ms) = ξ̂k2

MK . Through a change of variables

from Eq. (2.36) by using Jacobian

∣∣∣∣ ∂ξ̂MK

∂ ĥbMK

∣∣∣∣ = ĥ1/k2−1
bMK /k2, joint distribution p(ĥbMK , ĥMK ) is

obtained as

p(ĥbMK , ĥMK ) = 2L(υ)A5/2

k2Cm
�
πυ

ĥ3/2
MK

ĥ(k2+1)/k2
bMK

·

exp

⎡
⎢⎢⎢⎣−(A ĥMK )2

⎛
⎜⎜⎝1+

⎛
⎜⎝1− 1

Cmĥ1/k2
bMK

√
AĥMK

⎞
⎟⎠

2

/υ2

⎞
⎟⎟⎠
⎤
⎥⎥⎥⎦ (2.41)

Fig. 2.10 shows the marginal probability P (ĥbMK ) in Weilbull-scale. Similar to what is ob-

served in Fig. 2.7, the exceeding conditional probability of ĥbMK given ĥMK decreases as

ĥMK increases for a given value of ĥbMK as shown in Fig. 2.11.

According to the change of surface profile in the process of breaking, breaking waves are di-

vided into four categories, whose main features are illustrated in Fig. 2.12 and described as

follows (Sorensen (1993) and Myrhaug (2006))

• Spilling breaker : Foam firstly appears at the crest where air is entrapped and spread to

the front face of the wave as it moves forward. Its profile nearly horizontally symmetric.
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ĥbMK

P
(
ĥ
b
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K
|ĥ

M
K
)

Marginal Distribution P (ĥbMK |ĥMK) - Weibull Scale

ĥMK = 0.5

ĥMK = 1

ĥMK = 1.4

ĥMK = 2.1

Figure 2.11: Conditional probability of breaker index ĥMK b in Weibull scale

(a) Spilling breaker (b) Plunging breaker

(c) Collapsing breaker (d) Surging breaker

Figure 2.12: Sketches of different wave breakers (after Sorensen (1993))
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• Plunging breaker : Overhanging crest formed due to gravity shows evident horizontal

asymmetry profile of plunging breaker. Afterwards, the crest plunges at the base of the

front face of the wave.

• Collapsing breaker : Crest overtakes lower parts and forms vertical front. The lower

portion of the front face plunges forward and collapses.

• Surging Breaker : Steepness of wave front increases as the wave propagates towards

shallower water. In the close proximity of shoreline, lower portion of the wave ejects

forward.

Spilling breaker and plunging breaker happen both in deep water and shallow water, while

collapsing breaker and surging breaker are only observed in shallow water. With decreas-

ing wave steepness and the increase of slope, progression from plunging breaker, collapsing

breaker to surging breaker is found.

Further, Battjes (1974) classifies wave breakers based on the quantities of surf parameter, as

given in Table 2.2.

Table 2.2: Classification of wave breaker in terms of surf parameter

wave breaker surf parameter ( ξ) 1

Spilling breaker 0 – 0.5
Plunging breaker 0.5 – 3.0
Collapsing breaker 3 – 3.5
Surging breaker > 3.5

The normalized surf parameters corresponds to different types of wave breakers can be given

as in the form

ξ̂MK d =
(
xd

√
Sr ms

)
/m (2.42)

where xd is in correspondence with limits of various wave breakers(i.e. xd = 0 and xd = 0.5

for the lower and upper limit of spilling breaker, respectively).

The probability for these breakers then can be computed by integrating Eq. (2.10) in the

interval given by ξ̂MK d and range of ĥ of interest.

It should be noted that every point on the curves of the Figs. 7-10 given in Myrhaug and

1Lowerlimit is not included in each range except for spilling breaker
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Fouques (2012) can be interpreted as the marginal probability of ξ̂MK in an interval, since

the joint density probability function of (ξ̂MK , ĥMK ) is integrated over the whole range of

ĥMK .

Fig. 2.13 gives the probability of spilling breakers independent of wave height with varying

sea state parameter Sm . It is clearly seen that probability increases with Sm and probability

of a spilling breaker is higher with smaller slope m. Contrastingly, probability of a surging

breaker drops with the increase of slope(shown by Fig. 2.16).

Sm

P

ĥc = 0.0 −Spilling

Figure 2.13: Probability of spilling breakers as Sm and slopes m vary

Similar probability variation pattern of each mentioned wave breaker can be found in Figs. 7-

10 in Myrhaug and Fouques (2012). However, derived LH83 model gives higher probability

for spilling breaker and lower probability for plunging breaker.

Sm

P

ĥc = 0.0 −P lunging

Figure 2.14: Probability of plunging breakers as Sm and slopes m vary
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Sm

P

ĥc = 0.0 −Collapsing

Figure 2.15: Probability of collapsing breakers as Sm and slope m vary

Every point on curves in Figs. 2.13 - 2.16 can be interpreted as the area under the pdf curve

which is truncated by the limits of each wave breaker (e.g. 0.5 and 3 for plunging breaker)

for a given Sm . Take collapsing breaker (i.e. 3 ≤ ξ≤ 3.5) as an example, the area under curves

corresponding to slope m = 0.25 and m = 0.33 is the same as seen in Fig. 2.17, which is

displayed by intersection of the green and black line in Fig. 2.15 as Sm = 0.01.

Sm

P

ĥc = 0.0−Surging

Figure 2.16: Probability of surging breakers as Sm and slope m vary

Joint probability density function of (ξ, H) is derived from Eq. (2.36) by transformation and

is given as

p(ξ, H) = 2A2.5ξr ms�
πυCm H 2.5

r ms

H 1.5

ξ2
·

exp−(A H/Hr ms)2[1+ (1− ξr ms H 0.5
r ms

Cm ξ (AH)0.5
)2/υ2]L(v) (2.43)
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In principle, altering Sm and m directly changes the distribution of dimensional wave surf

parameter ξ. Actually, all distributions mentioned in this thesis should be interpreted as

short term distribution in one sea state. In other words, probability models relevant for dis-

cussion here are conditional distributions that are dependent on sea state. As Sm is a sea

state parameter, the change of it varies conditional distribution of related short term param-

eters. Figs. 2.17 - 2.19 support the statement.

ξ

p
(
ξ
)

Sm = 0.01

Figure 2.17: Marginal probability density of ξMK for Sm = 0.010 and different slopes m

ξ

p
(
ξ
)

Sm = 0.035

Figure 2.18: Marginal probability density of ξMK for Sm = 0.035 and different slopes m
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2.3. Comparison between parametric probability and theoretical probability model

Figs 2.20 - 2.22 give isodensity curve of p(H ,ξ) for different slopes m and for sea state (Hs =
7.5m,Tp = 9.5 s) corresponding to one year return period according to measurements from

Nothern North Sea (details can be found in Myrhaug et al. (2009)).

ξ

p
(
ξ
)

Sm = 0.07

Figure 2.19: Marginal probability density of ξMK for Sm = 0.070 and different slopes m

Vertical lines represent the limit of each wave breaker and corresponding probabilities are

also presented. It appears that surging breaker occur more frequently than collapsing breaker

for each given slope. Spilling breaker only dominates as m = 0.1 while plunging breaker

dominates for other two slopes.

ξ

H

Isocontours of the (H, ξ) - joint probability density function

Hs=7.5m - Tp =9.5s - m=0.1

Figure 2.20: Isocontours of joint density p(H ,ξ) for slope m = 0.10. p takes peak
value(indicated as ×), 0.1, 0.01, 0.001 and 0.0001 from center outwards
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ξ

H

Isocontours of the (H, ξ) - joint probability density function

Hs=7.5m - Tp =9.5s - m=0.3

Figure 2.21: Isocontours of joint density p(H ,ξ) for slope m = 0.30. p takes peak value
(indicated as ×), 0.1, 0.01, 0.001 and 0.0001 from center outwards

ξ

H

Isocontours of the (H, ξ) - joint probability density function

Hs=7.5m - Tp =9.5s - m=0.5

Figure 2.22: Isocontours of joint density p(H ,ξ) for slope m = 0.50. p takes peak
value(indicated as ×), 0.1, 0.01, 0.001 and 0.0001 from center outwards

Figure 2.23: Sketch for runup
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Move focus to breaking waves now. According to Sorensen (1993), runup R is defined as the

maximum vertical elevation above SWL (still water level) as water rises to the beach or struc-

ture face, which is depicted in Fig. 2.23.

Hunt, I.A. (1959) made estimation of run-up above sea water level at wave breaking for pe-

riodic monochromatic waves, which is based on experimental data from many laboratory

tests performed in Europe and United States (Sorensen (1993)). Hunt’s formula is given by

R = Hξ= H tanθ
�
λ/H = tanθ

�
Hλ= tanθ

√
H

g T 2

2π
(2.44)

It should be noted that Eq. (2.44) is only valid for breaking waves at ξ ≤ 2 that is correspon-

dence with R ≤ 2H (Nielsen (2009)). In addition, H herein is restricted to deep wave height.

Then λ can be expressed as g T 2/(2π) by using deep water dispersion relation ω2 = g k, where

k is wave number and defined as k = 2π/λ.

Eq. (2.44) also implies that runup increases with slope for given incident waves and depends

more on the period than on the wave height (Nielsen (2009)).

As for waves do not break, the relation among runup, slope and wave height is formulated in

Meyer (1971) from the solution given in Carrier and Greenspan (1958):

R

H
=
√

2π

tanβ
for ξ> 4 (2.45)

Baldock et al. (2009) provided with an alternative form of Hunt’s formula that delivers better

correlation with their experimental data and it takes the form

R

H
= K ξ (2.46)

where K is empirical coefficients and K = 1 corresponds with original Hunt’s formula. H is

deep wave height.

By focusing on the occurrence frequency of wave runup corresponding with breaking waves,

theoretical joint distribution of wave runup R and wave height H is derived from Eq. (2.43),
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given as

p(R, H) = 2K A2.5ξr ms

Cm
�
πυH 2.5

r ms

H 2.5

R2
·

exp

⎡
⎢⎣−(A H/Hr ms)2

⎛
⎝1+
(

1− K ξr ms(Hr ms H)0.5

Cm
�

A R

)2

/υ2

⎞
⎠
⎤
⎥⎦L(υ) (2.47)

Afterwards, K = 1 is taken as in original form of Hunt’s formula for concrete calculations.

Even though the validity of Hunt’s formula is questionable as ξ> 2, the example given herein

is much simplified for demonstration of the application of the derived LH83 model. As

p(R|ĥMK = 1)dR = p(R|h = Hr ms)dR, an alternative way of investigating the conditional

distribution of R given wave height is using (Dag Myrhaug, personal communication, 12

March, 2014 ).

p(R, ĥMK ) = 1

K ĥMK Hr msξr ms
p(ξ̂MK (R, ĥMK ), ĥMK ) (2.48)

Specifically, the conditional probability density function of R given non-dimensional wave

height ĥMK , p(R|ĥMK ), using (2.48) is elaborated as

p(R|ĥMK ) = 1�
2πRσR

exp

[
− (lnR −μR )2

2σ2
R

]
(2.49)

where μR and σ2
R are the mean value and variance of R and given by

μR = ln(K H ξr ms)+μξ̂; σ2
R =σ2

ξ̂
(2.50)

where μξ̂ and σ2
ξ̂

are the mean value and variance of non-dimensional surf parameter ξ̂ (see

Eqs. (4), (5) and (10) in Myrhaug and Fouques (2012)).

Taking (lnR −μR )/σR as one variable, then Eq. (2.49) after integration can be expressed as

standard Gaussian distribution φ. Specifically,

P (R|ĥMK ) =φ

[
(lnR −μR )

σR

]
(2.51)
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2.3. Comparison between parametric probability and theoretical probability model

Fig. 2.25 shows the conditional expected value of R given ĥMK , E(R|ĥMK ) , where

E(R|ĥMK ) = exp

(
μR + 1

2
σ2

R

)
(2.52)

For slope m = 1, the probability of expected vertical runup given different wave height varies

significantly as illustrated in Fig. 2.24 by dots and dash line. By contrast, MF12 results in

lower and almost the same probability level of mean wave runup for wave height listed as

shown in Fig. 2.25. Though numerical calculated E(R|ĥMK ) is only converged for ĥMK = 1.4

and ĥMK = 2.1 as shown in Fig. A.16, nevertheless the same variation pattern is observed

even with different integration steps (see Figs. A.17 and A.18 for details)

P
(
R
|ĥ

M
K
)

ĥMK=0.25

ĥMK= 0.5

ĥMK= 1

ĥMK= 1.4

ĥMK= 2.1

Figure 2.24: Conditional cumulative distribution of wave run-up given wave height P(R|H)
from derived LH83 model

It should be noted Myrhaug and Fouques (2012) estimates mean R given ĥMK by another

method. For example, R = Hr msξr ms ·E(ξ̂MK |ĥMK = 1.4) is employed, which is equal to the

value computed by E(R|ĥMK = 1.4) =∫∞0 Rp(R|ĥMK = 1.4)dR as well as by Eq. (2.52).

According to Sorensen (1993), runup is connected with the types of breaker. Spilling breaker

results in lowest runup while as the breaker develops into the form of plunging , collapsing or

surging breaker, the consequent runup may exceed twice the wave height. Hence, it would

be of interest to investigate into the conditional probability of runup given different types of

wave breakers.
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Run up [m]

P
(
R
|ĥ

M
K
)

Run-up distribution for Hs=7.5 m - Tp=9.5 s - m=0.1

ĥMK = 0.25

ĥMK = 0.5

ĥMK = 1

ĥMK = 1.4

ĥMK = 2.1

Figure 2.25: Conditional cumulative distribution of wave run-up given wave height P(R|H)
based on MF12 model(adapted from Myrhaug and Fouques (2012))

Through making a change of variables from (ξ, H) to (R,ξ) by employing Jacobian that is

computed in combination with Eq. 2.46,
∣∣∣∂ξ∂ξ · ∂H

∂R

∣∣∣ = (K ξ
)−1, joint distribution p(ξ,R) is ob-

tained

p(ξ,R) = 2A5/2ξr ms

Cm
�
πυ(K Hr ms)5/2

(
R3/2

ξ9/2

)
·

exp

⎡
⎢⎣−
(

A R

K ξHr ms

)2
⎛
⎝1+
(

1− ξr ms
�

K Hr ms

Cm
√

AξR

)2

/υ2

⎞
⎠
⎤
⎥⎦L(υ) (2.53)

As a result of limited time, the concrete computation is not implemented.
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Chapter 3

Statistics of wave power for individual

waves

In this chapter, the connection between wave power per unit crest length and wave height

and in addition to wave power and wave period will be firstly presented in section 3.1. Theo-

retical probability model from Izadparast and Niedzwecki (2011) and parametric probability

model from Myrhaug et al. (2009) for wave power are presented in sections 3.2 and 3.3, re-

spectively. Then, comparison between these two models is conduted in terms of peak values

(subsection 3.4.1) before comparing with other properties (subsection 3.4.2).

3.1 Basic mathematics background for wave power

Total average wave energy of per unit surface area for regular waves,E is expressed as

E = 1

2
ρg

H 2

4
= 1

8
ρg H 2 (3.1)

where ρ is water density. Wave power per unit crest length ( or energy flux, i.e. the rate of

energy transferred) J is defined as

J = ECg (3.2)
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where Cg is the wave group velocity. In deep water, following relation is valid

Cg = 1

2
Cω = 1

2

ω

k
= 1

2

ω

ω2/g
= 1

2

g

ω
= 1

2

g

2π/T
= g T

4π
(3.3)

where Cω is phase velocity ( or wave profile velocity ). Combining Eq. (3.2) with Eqs. (3.3)

and (3.1), Eq. (3.2) then is rearranged into

J = ρg 2

32π
H 2T (3.4)

One form of dimensionless wave power j is defined as

j = J

ρg 2H 2
cr Tcr /(32π)

= ĥ2t (3.5)

3.2 Theoretical probability model for wave power

By means of stochastic variable transformation rule and together with using Eq. (3.5), the

joint probability distribution of wave power j and wave period t can be formulated through

p( j , t ) = p

⎛
⎝ĥ =

√
j

t
, t

⎞
⎠ ∂

∂ j

⎛
⎝
√

j

t

⎞
⎠ (3.6)

Hence, we have p( j , t ) taking the form

p( j , t ) = L(υ)�
πυ

j 1/2

t 7/2
exp

⎡
⎣− j

t

(
1+
(
1− 1

t

)2
/υ2

)⎤⎦ (3.7)

In the same manner, the joint probability distribution p( j , ĥ) is derived from Eq. (2.7) and

takes the form

p( j , ĥ) = 2L(υ)�
πυ

ĥ4

j 2
exp

⎡
⎢⎣−ĥ2

⎛
⎝1+
(

1− ĥ2

j

)2

/υ2

⎞
⎠
⎤
⎥⎦ (3.8)

For the purpose of comparing the theoretical bivariate distribution derived herein for wave

power with parametric model given in Myrhaug et al. (2009), same normalized procedure is

followed (e.g. using the definition of normalized wave period given in Myrhaug and Kjeldsen
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(1984), i.e. t̂MK is defined as T /Tr ms). Root mean square value of wave period Tr ms is related

to Tz by coefficient γT (based on best fit to measurements given by Myrhaug and Kjeldsen

(1984) in Eq. (9b))

Tr ms = γT Tz ; γT = 1.2416 (3.9)

Corresponding jMK is defined as

jMK = J

ρg 2H 2
r msTr ms/(32π)

= ĥ2
MK t̂MK (3.10)

The relation between t and t̂MK is given in Myrhaug and Kvålsvold (1995) with coefficient B

as

t = B t̂MK ; B = γT�
1+υ2

(3.11)

Incorporating Eqs. (2.34), (3.5) and (3.10) with (3.11), the connection between j and jMK is

established:

j = A2B jMK (3.12)

Performing a change of variables for Eq. (3.7) from ( j , t ) to ( jMK , t̂MK ) through the utilization

of Jacobian
∣∣∣ ∂ j
∂ jMK

· ∂t
∂t̂MK

∣∣∣= (A B)2, p( jMK , t̂MK ) is derived as

p( jMK , t̂MK ) = A3L(υ)

B
�
πυ

j 1/2
MK

t̂ 7/2
MK

exp

⎡
⎢⎣− A2 jMK

t̂MK

⎛
⎝1+
(

1− 1

B t̂MK

)2

/υ2

⎞
⎠
⎤
⎥⎦ (3.13)

Following same approach, Eq. (3.8), using Jacobian

∣∣∣∣ ∂ j
∂ jMK

· ∂ĥ
∂ĥMK

∣∣∣∣= A3 B , is transformed into

p( jMK , ĥMK ) as

p( jMK , ĥMK ) = 2A3L(υ)

B
�
πυ

ĥ4
MK

j 2
MK

exp

⎡
⎢⎢⎣−A2ĥ2

MK

⎛
⎜⎝1+
⎛
⎝1− ĥ2

MK

B jMK

⎞
⎠

2

/υ2

⎞
⎟⎠
⎤
⎥⎥⎦ (3.14)

Izadparast and Niedzwecki (2011) also present the joint distribution of dimensionless wave

power and wave period as well as of dimensionless wave power and wave height based on
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3.2. Theoretical probability model for wave power

Longuet-Higgins (1983), but with different normalized procedures. They define dimension-

less wave power as

jI N =αdτĥ2
I N (3.15)

where αd= (1/8)(T /Tp ) is a sea state parameter for deep water condition, Tp is peak period

for a sea state, τ = T /T is normalized wave period and ĥI N = H/
�

m0 is normalized wave

height.

The joint probability density function p( jI N , ĥI N ) then is

p( jI N , ĥI N ) = αd ĥ4
I N

8
�

2πυ j 2
I N

L(υ)exp

⎡
⎢⎢⎣−υ2

8

⎛
⎜⎝1+
⎛
⎝1− αd ĥ2

I N

jI N

2
⎞
⎠ 1

υ2

⎞
⎟⎠
⎤
⎥⎥⎦ (3.16)

The joint probability distribution of p( ĵ I N ,τ) takes the form

p( ĵ I N ,τ) = j 1/2
I N

16υ
�

2π(αd )3/2τ7/2
L(υ)exp

⎡
⎣− jI N

8αd

(
1+
(
1− 1

υ2

))⎤⎦ (3.17)

Connections between ĥMK and ĥI N , t̂MK and τ, jMK and jI N are presented as

ĥI N = 2
�

2AĥMK (3.18)

τ= B t̂MK (3.19)

jI N = 8αd A2B jMK (3.20)

Employing Eqs. (3.18) - (3.20), Eq. (3.14) can alternatively be obtained from Eq. (3.16) by a

change of variables with using the Jacobian

∣∣∣∣ ∂ jI N
∂ jMK

· ∂ĥI N

∂ĥMK

∣∣∣∣= (16
�

2αd )A3B .

Similarly, Eq. (3.13) can alternatively be derived from Eq. (3.17) with utilizing the Jacobian∣∣∣ ∂ jI N
∂ jMK

· ∂τ
∂t̂MK

∣∣∣= 8αd
(

AB
)2.

It should be noted that Tcr = 2πmω
0 /mω

1 has the same definition as τ in Izadparast and

Niedzwecki (2011).

Additionally, the Eq. (17) for distribution of wave height given there is missing standard de-

viation of linear and narrow banded surf wave elevation in the denominator of the leading
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Chapter 3. Statistics of wave power for individual waves

factor.

3.3 Parametric probability model for wave power

Myrhaug et al. (2009) derives joint probability distribution of (ĥMK , jMK ) and (t̂MK , jMK )

(hereafter denoted as MB09) from parametric model of (ĥMK , t̂MK ) given in Myrhaug and

Kjeldsen (1984) , which is obtained by best-fitting to data from measurements at sea on Nor-

wegian continental shelf.

Joint pdf p( jMK , ĥMK ) is given as

p(ĥMK , jMK ) = p( jMK |ĥMK )p(ĥMK ) (3.21)

where p(ĥMK ) is given as a 2-parameter Weibull model as given in Eq. (2.21). p( jMK |ĥMK )

is given as a 3-parameter Weibull model as following

p( jMK |hMK ) = β

ρĥ2
MK

⎛
⎝ jMK −αĥ2

MK

ρĥ2
MK

⎞
⎠
β−1

exp

⎡
⎢⎣
⎛
⎝ jMK −αĥ2

MK

ρĥ2
MK

⎞
⎠
β
⎤
⎥⎦ ; jMK ≥αĥ2

MK (3.22)

with the parameters

α= 0.12
√

ĥMK (3.23)

β= 2arctan[2(ĥMK −1.2)]+5 (3.24)

ρ =

⎧⎪⎪⎨
⎪⎪⎩

0.78ĥMK +0.26 if ĥMK ≤ 0.9

0.962 if ĥMK > 0.9
(3.25)

Joint distribution p( jMK , t̂MK ) from MB09 is given as

p( jMK , t̂MK ) = p

⎛
⎝t̂MK |ĥMK =

√
jMK

t̂MK

⎞
⎠
⎡
⎣n

r

(
jMK

r

)n−1

exp

(
−
(

jMK

r

)n)⎤⎦ ; jMK ≥ 0 (3.26)

with the parameters r and n are given by

r = 1.052 t̂MK ; n = 2.39/2 (3.27)
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p

(
t̂MK |ĥMK =

√
jMK

t̂MK

)
is obtained by substituting

√
jMK /t̂MK for ĥMK in Eqs. (3.23) – (3.25)

and pdf p(t̂MK |ĥMK ) in Eq. (3.28).

p(t̂MK |ĥMK ) = β

ρ

(
t̂MK −α

ρ

)β−1

exp

⎡
⎣−
(

t̂MK −α

ρ

)β⎤⎦ ; t̂MK ≥α (3.28)

3.4 Comparison between theoretical and parametric proba-

bility model for wave power

3.4.1 Comparison of peak values from two models

Performing partial differentiation of Eq. (3.7) from IN11 model with regards to j and t and

enforce them to be zero, following formulae are obtained

7 j 0.5 t 3 −2 j 0.5
[

j t 2 +
(

j t 2 −4 j t +3 j
)

/υ2
]
= 0 (3.29a)

t 3 −2 j

[
t 2 +
(
t 2 −2t +1

)
/υ2
]
= 0 (3.29b)

In the similar fashion, following equations are derived from Eq. (3.8) of IN11 model

2ĥ3 j 2 + ĥ5
[
− j 2 +

(
− j 2 +4 j ĥ2 −3ĥ4

)
/υ2
]
= 0 (3.30a)

ĥ4 j 2 + ĥ4
(
ĥ4 j − ĥ6

) 1

υ2
= 0 (3.30b)

As ĥ, j and t are possible to be zero, common factors such as ĥ4 and j 0.5 are not cancelled

out. No real solutions except zero of Eqs. (3.29) and (3.30) are found. By substituting zero

solutions in Eqs. (3.7) and (3.8), singularities are found. Numerically calculated peak values

with different meshgrids also support this statement (details can be found in section B.2).

Based on numerical computation results (see Fig 3.1), the peak value of MB09 model for

bivariate probability density function of wave power and wave period (p(t̂MK , jMK ) is found

to be extremely close to the t̂MK axis. Specifically, it is found that the peak value of pdf is

4.807 and it is located at t̂MK = 0.235 and jMK = 0.0011 rather than pmax= 2.65, t̂MK = 0.5

and jMK = 0.072 given in Myrhaug et al. (2009). Hence, there is dramatic difference of peak

value of the bivariate distribution of wave power and wave period between the two models.
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Chapter 3. Statistics of wave power for individual waves

It is noted that the contour for bivariate probability distribution without singularity should

be enclosed (e.g. see contour of p( jMK , t̂MK ) in Fig. B.1b ).

jMK

t̂ M
K

Figure 3.1: Isocontour of p(t̂MK , jMK ) from MB09 model, p takes 0.001, 0.01, 0.1, 0.25, 0.75,
1.25, 1.75 and 2 from outermost to the centre (adapted from Myrhaug et al. (2009))

jMK

t̂ M
K

Figure 3.2: Isocontour of p(t̂MK , jMK ) from IN11 model, p takes 0.001, 0.01, 0.1, 0.25, 0.75,
1.25, 1.75 and 2 from the outermost to the centre

As for p(ĥMK , jMK ), it is found that singularity seems to appear as jMK approaches to trivial

values (see Table B.1).

It should be noted that the isocontour of p(t̂MK , jMK ) (Fig. 7) in Myrhaug et al. (2009) is dis-

tinct from Fig. B.1 in the proximity of t̂MK axis.
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3.4.2 Comparison of other properties from two models

From Figs. 3.1 and 3.2, it is observed that the conditional distribution of jMK given t̂MK seems

most broad-banded at t̂MK ≈ 1 for both models. However, the conditional distribution of

t̂MK given jMK form IN11 model is more broad-banded than that of MB09 model. The asym-

metry of p( jMK , t̂MK ) with regards to t̂MK is observed for IN11 model, while it appears that

the joint distribution from MB09 model is symmetric with respect to t̂MK at high jMK .

jMK

ĥ
M

K

Figure 3.3: Isocontour of joint probability density (ĥMK , jMK ) from MB09 model, p takes 1,
0.7, 0.3, 0.1, 0.01, 0.001 from center outwards

jMK

ĥ
M

K

Figure 3.4: Isocontour of joint probability density (ĥMK , jMK ) from IN11 model, p takes 1,
0.7, 0.3, 0.1, 0.01, 0.001 from center outwards
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It is found from Figs. 3.3 – 3.4, that the contour is not enclosed, though uniform increment

of abscissas and ordinates of discrete points with interval 10−5 is used. The conditional dis-

tribution of jMK given hMK given by MB09 model and IN11 model is skewed to the left and

right, respectively. Isocurve of IN11 model deviates from MB09 model greatly as joint prob-

ability density value is fairly small (i.e. 0.01 and 0.001). Due to ρ being piecewise function of

ĥMK , obvious discontinuity is observed for MB09 model (see Figs. 3.1 and 3.8a).

p
(
j
M

K
)

jMK

(a) Marginal probability density function of jMK

jMK

P
(
j
M

K
)

(b) Cumulative distribution function of jMK

Figure 3.5: Marginal distribution of jMK

As can be observed from Fig. 3.5a, singularity of marginal distribution of jMK from two mod-

els exist. Hence, sufficiently small steps for integration have to be used, especially as trape-

zoidal method is utilized. It is also seen that the pdf of jMK from two models agree well with

each other as jMK ≥ 1. However, the cumulative probability functions of jMK of two models

have better agreement for all values of jMK (see Fig. 3.5b). Same features of pdf and cdf of

dimensionless power jI N were illustrated in Fig. 4 by Izadparast and Niedzwecki (2011).
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3.4. Comparison between theoretical and parametric probability model for wave power

The conditional expected value of wave power ( jMK ) given wave height (ĥMK ) is another

quantity of interest. As seen from Fig. 3.6, the conditional mean values from two models in-

crease with wave height, which are consistent with the features shown in Figs. 3.3 and 3.4.

The difference of E( jMK |ĥMK ) from MB09 and IN11 model widens gradually in the high wave

heights.

ĥMK

E
(
j
M

K
|ĥ

M
K
)

Figure 3.6: E( jMK |ĥMK ) versus ĥMK

ĥMK

σ
(
j
M

K
|ĥ

M
K
)

Figure 3.7: σ( jMK |ĥMK )

Fig. 3.7 shows a noticeable convex feature of curve for σ( jMK |ĥMK ) from IN11 model, which

is reflected by Fig. 3.4 if we examine the conditional distribution of jMK given 0 ≤ ĥMK ≤
1.5. It is found that the numerical calculated σ( jMK |ĥMK ) is only convergent as ĥMK is in

excess of approximately 1.7, though an amount of efforts have been dedicated to adoption

of different numerical integral recipes (see Table B.6 – B.8 and Fig. B.5 for details). However,
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Chapter 3. Statistics of wave power for individual waves

the trend of curves in Fig. B.5 is the same as that of curve for IN11 model in Fig. 3.7.

The expected value of jMK can be obtained by either of following three formulae

E( jMK ) =
∫∞

0
E
(

jMK |t̂MK
)

p(t̂MK )dt̂MK =
∫∞

0

∫∞

0
jMK p( jMK , t̂MK ) d jMK dt̂MK (3.31)

E( jMK ) =
∫∞

0

∫∞

0
jMK p( jMK , ĥMK ) d jMK dĥMK (3.32)

E( jMK ) =
∫∞

0

∫∞

0
ĥ2

MK t̂MK p(ĥMK , t̂MK ) dĥMK dtMK (3.33)

Note that the Eq. (23) given by Myrhaug et al. (2009) can be rearranged into Eq. (3.31). How-

ever, it is found that Eqs. (3.32) and (3.33) for IN11 model cannot be solved by using built-in

function integral2 in Matlab and int in Maple with the default accuracy criterion. Routines

mentioned above give the same results for Eq. (3.31) to the second decimal, E( jMK ) = 1.38,

which is higher than the estimate 1.03 made by Myrhaug et al. (2009).

ĥMK

t̂
M

K

Integrand of jMK

(a) Contour of ĥ2
MK t̂MK p(ĥMK , t̂MK ) from MB09 model. The

level is 2, 1.75, 1.25, 0.75 and 0.25 from center outwards,
reproduced from Myrhaug et al. (2009)

ĥMK

t̂
M

K

Integrand of jMK

(b) Contour of ĥ2
MK t̂MK p(ĥMK , t̂MK ) from IN11 model. The

level is 1.25, 0.75 and 0.25 from center outwards

Figure 3.8: Contour of ĥ2
MK t̂MK p(ĥMK , t̂MK )
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Figs. 3.8a and 3.8b show the integrand of Eq. (3.33) from MB09 and IN11 model, respectively.

The forms of contour are similar to each other with IN model being much more spread. An-

other feature is the lack of levels 1.75 and 2 for IN11 model.

Rearrange Eq. (3.33) into the form shown in Eq. (3.34) as Myrhaug et al. (2009) did.

E( jMK ) =
∫∞

0
ĥ2

MK p(ĥMK )

(∫∞

0
t̂MK p(t̂MK |ĥMK ) dt̂MK

)
dĥMK

=
∫∞

0
ĥ2

MK p(ĥMK )E(t̂MK |ĥMK ) dĥMK

=
∫∞

0
E( jMK |ĥMK )p(ĥMK ) dĥMK (3.34)

Fig. 3.9 shows the integrand in the last line of Eq.(3.34). It appears that the maximum con-

tribution to E( jMK ) happens at ĥMK ≈ 1.2 and ĥMK ≈ 1.0 for MB09 and IN11 model, respec-

tively.

ĥMK

E
[j
M

K
|ĥ

M
K
]p
(
ĥ
M

K
)

Figure 3.9: E( jMK |ĥMK )p(ĥMK ) versus ĥMK

Figs. 3.10 and 3.11 show that both E( jMK |t̂MK ) and σ( jMK |t̂MK ) of two models possess same

qualitative behaviour. Specifically, both E( jMK |t̂MK ) and σ( jMK |t̂MK ) of MB09 model appear

to increase to maximum at t̂MK ≈ 1.3 before decreasing, while these two quantities of IN11

model rise to peaks at t̂MK ≈ 1.05 prior to dropping. They are respectively corresponding to

the properties of p( jMK , t̂MK ) from two models shown in Figs. 3.1 and 3.2.

Due to high gradient of p( jMK |t̂MK ) of IN11 model in the range of 0−0.5 for t̂MK as seen in

Fig. 3.2, extremely small integration step has to be employed to reach converged result of

E( jMK |t̂MK ) and σ( jMK |t̂MK ). Even though integration step with 8× 10−5 is applied, com-
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plex number is obtained during calculation of σ( jMK |t̂MK ) for the values of t̂MK mentioned

above, show by red curve in Fig. 3.11.

t̂MK

E
(
j
M

K
|t̂
M

K
)

Figure 3.10: E( jMK |t̂MK ) versus t̂MK

t̂MK

σ
(
j
M

K
|t̂
M

K
)

Figure 3.11: σ( jMK |t̂MK ) versus t̂MK

Fig. 3.12 shows the integrand given in the integral after first equal sign in Eq. (3.31). It appears

that maximum contribution to E( jMK ) is at t̂MK ≈ 1.1 for MB09 model while t̂MK ≈ 0.85 for

IN11 model.

It is seen that the same variation pattern is in presence for E( jMK |t̂MK )p(t̂MK ) and ptMK as

shown in Figs. 3.11 and 3.13.
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t̂MK

E
(
j
M

K
|t̂
M

K
)
p
(
t̂
M

K
)

Figure 3.12: E( jMK |t̂MK )p(t̂MK ) versus t̂MK

It should be noted that the blue curves in Figs. 3.10 and 3.11 are different from those given by

Myrhaug et al. (2009). It raises the question of the implementation in Matlab by the author

of this thesis. However, cdf of p( jMK |t̂MK ) reaches unity as integrated over the valid range

of t̂MK for MB09 model. Furthermore, the E( jMK |t̂MK ) and σ( jMK |t̂MK ) computed for MB09

model only have the maximum error to the order of magnitude 10−8 (see Figs. B.2 and B.3 for

details). Therefore, further discussion with the authors of Myrhaug et al. (2009) is required

though some have been done.

t̂MK

p
(
t̂
M

K
)

Figure 3.13: Marginal pdf p(t̂MK ) versus t̂MK
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Chapter 4

Conclusions and Recommendations

In this thesis, the statistics of surf parameter and wave power for individual waves are fo-

cused on. Comprehensive comparisons between theoretical model derived from Longuet-

Higgins (1983) and parametric model presented by Myrhaug and Fouques (2012) for surf

parameter are made by employing same normalized quantities as well as same scale of plot.

Same approach is followed for the comparative study of the theoretic model and parametric

model for wave power.

4.1 Conclusions

Based on the analysis made in Chapter 2 and Chapter 3, following conclusions are made:

1. Theoretical joint distribution of surf parameter and wave height is derived from theo-

retical probability model of wave height and wave period from Longuet-Higgins (1983),

which is based on narrow banded approximation. The properties of the theoretical bi-

variate distribution of surf parameter and wave height are then investigated. It is found

that the peak value of the derived model decreases exponentially while the its location

follows a line. Even though theoretical expressions for peak value as well as its posi-

tion are presented (Eqs. (2.12) - (2.17)), the simple formulae from best fit to the data

generated by those theoretical expressions are suggested to apply for quick estimate.

2. Derived theoretical probability model of surf parameter and wave height is sensitive to

the bandwidth parameter. Broad banded feature is found for the conditional distribu-
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tion of surf parameter given low values of wave height.

3. Derived theoretical probability model of surf parameter and wave height gives same

qualitative statistical behaviour for breaker index and breakers with parametric model

given by Myrhaug and Fouques (2012). However, the marginal and conditional quanti-

ties of surf parameter obtained are not in good agreement between these two models,

but show the same qualitative behaviour. Hence, theoretical model and parametric

model are comparable in qualitative sense.

4. Marginal distributions of wave power from theoretical model and parametric model

are in good agreement with each other.

5. Theoretical probability model of wave power and wave height given by Izadparast and

Niedzwecki (2011) only compares well with parametric bivariate distribution of wave

power and wave height presented by Myrhaug et al. (2009) for large wave height as

opposed to the models of wave power and wave period in small wave period.

4.2 Recommendation for further work

1. As runup is related to the surf parameter, it is interesting to investigate the conditional

distribution of runup for different breakers in further study. Since the empirical rela-

tion of runup and surf parameter used in this thesis is only valid for a small range of

surf parameter, more advanced form of the relation covering larger range of surf pa-

rameter are suggested.

2. Estimates of distributions of wave power from theoretical model and parametric model

may be compared with the results from simulated sea state by using the method given

by Izadparast and Niedzwecki (2011) in Wave-by-wave analysis part. Expected wave

power for the same state from theoretical model, parametric model as well as simu-

lation may be compared with the result of following formula for estimating the mean

deepwater wave power in one random sea state (Falnes (2002))

J = ρg 2

4π
T−1m f

0 ; T−1 =
m f

−1

m f
0

(4.1)
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where T−1 is energy period, m f
0 and m f

−1 are moments of wave spectrum. The defini-

tions of wave spectrum and its moment can be found in Chapter 2. J is dimensional

wave power defined in section 3.1.

3. Estimate of averaged wave power in long term in the field of interest is an important

parameter for the selection of specific WECs for that area. The value of it may be com-

puted by taking summation of products of mean wave power of each possible sea state

and the probability of the sea state in long term. Izadparast and Niedzwecki (2011)

utilized the same approach by using a simplified formula based on narrow band ap-

proximation, which takes the form

p( jI N ) = exp(− jI N ) (4.2)

where jI N is dimensionless wave power defined in section 3.2.

The approximation may be inappropriate for evaluation of wave power in long-term

sense, since sea states in long term, e.g. seasonally or yearly, are not always narrow

banded. Hence, it is necessary to employ the theoretical marginal distribution of wave

power without narrow banded assumption, which is obtained by numerical integra-

tion with respect to wave height or wave period from theoretical model for wave power,

for calculating the long-term averaged wave power.
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Appendix A

Derivation and numerical stability study

of the theoretical

A.1 Erratum in Longuet - Higgins 83 Model

Author found that the Eq. (2.17) presented in Longuet-Higgins (1983)] results in probability

exceeding unity as Eq. (2.16) is integrated with integral limit from 0 to ∞ for the normalized

wave amplitude and wave period. Eq. (2.17) should take the form as:

1

L(υ)
= 2

υ
�
π

∫∞

0

∫∞

0

R2
a

t 2
exp

[
−R2

a

(
1+ (1−1/t )2/υ2

)]
dRa dt (A.1)

However, Eqs. A2 (Longuet-Higgins (1983)), Eq. (2.18) in Longuet-Higgins (1983) remain the

same. This is verified by manual derivation, Maple and numerical integration in Matlab.
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A.2. Maximum value of theoretical joint distribution of surf parameter and wave height

A.2 Maximum value of theoretical joint distribution of surf

parameter and wave height

Extreme points of Eq. (2.10) are found by taking partial differentiations with respect to ξ̂ and

ĥ, respectively. After simplification, followings are obtained

3

2
ĥ1/2ξ̂2 −2ĥ5/2ξ̂2 − 1

υ2

(
2ĥ5/2ξ̂2 −3ĥ2ξ̂+ ĥ3/2

)
= 0

ĥ3/2ξ̂2 + 1

υ2

(
ĥ3ξ̂− ĥ5/2

)
= 0

(A.2)

Solving Eq. (A.2) by Maple and utilizing the same arguments for obtaining Eqs. (2.12) - (2.13)

give the extreme points as follows

ĥmax =
�

2

4
G(υ)

ξ̂max = 23/4 Q(υ)1/2

W (υ)G(υ)1/2

(A.3)

which are actually the same as Eqs. (2.12) - (2.13) given by Matlab.

It should be noted an extra solution of Eq. (A.2) is (ĥ = 0, ξ̂= ξ̂ ) if one of the criteria for find-

ing maximum value p(ξ̂, ĥ) > 0 is loosed to include p(ξ̂, ĥ) = 0, which is the minimum value

of pdf in general.

Substituting Eqs. (2.12) - (2.13) into Eq. (2.10), expression of corresponding peak value cal-

culated by Matlab after simplifications is

pmax = 144115188075855872

3991211251234741

4
�

2
√
μ2 +1μ3 exp

⎛
⎝ 5μ2

(
−8μ2+

�
16μ2+25−5

)
(�

16μ2+25−5
)2(�

16μ2+25+2μ2+5
)
⎞
⎠

(
1+√μ2 +1

)(√
16μ2 +25−5

)2 (�16μ2+25+2μ2+5
μ2+1

)3/4
(A.4)

which is the same as Eq. 2.15 computed by Maple. Numerical investigation carried out also

delivers the coincident results if numeric values of υ are used.

Fig. A.1a shows that p(ξ̂, ĥ) from derived LH83 model given by Eq. (A.3) seems to possess

singularity while Fig. A.1b illustrates that minimum peak value is located around υ = 0.97

(see also section 2.1).
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Chapter A. Derivation and numerical stability study of the theoretical

υ

p
m
a
x

(a) The value of pmax as υ is close to 0

υ

p
m
a
x

(b) Variation of pmax near minimum peak value

Figure A.1: Variation of pmax as υ is close to 0 and 1, respectively

A.3 Connection between different normalized procedure

Two approaches of deriving Eq. (2.35) are presented herein, that is, from definitions of two

normalized quantities of S given in section 2.1 and section 2.3 respectively and from con-

nections of different normalized quantities established in Myrhaug and Kvålsvold (1995).

Ŝ
Hcr

g T 2
cr /(2π)

= ŜMK
0.7Hs

g T 2
z /(2π)

(A.5)

where Tcr , Hcr , Tz are given in Eq. (2.1), (2.2) and (2.29), respectively. Substitute the expres-

sions of Tcr , Hcr , Tz and Hs = 4
√

m f
0 into Eq. (A.5), we obtain

Ŝ
2
√

2mω
0(

g /(2π)
)(

2πmω
0 /mω

1

)2 = ŜMK

2.8
√

m f
0

g m f
0 /(2πm f

2 )
(A.6)

Combine Eq. (A.6) with Eq. (2.33), Eq. (A.6) can be rearranged into

Ŝ = ŜMK
5.6π

4π
�

2

m f
0 m f

2(
m f

1

)2 (A.7)

Further, Eq. (A.7) can be simplified by using Eq. (2.9), and take the form

Ŝ = ŜMK
γs(1+υ2)

4π
�

2
(A.8)

where γs = 5.6π= 17.6.
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A.3. Connection between different normalized procedure

Based on definitions of ξ̂ and Ŝ given in section 2.1, following is obtained

Ŝ = 1

ξ̂2
(A.9)

Substitute Eq. (2.6) into Eq. (A.9), relation between Ŝ and ĥ, t is given by

Ŝ = ĥ

t 2
(A.10)

However, the connection between ŜMK and ĥMK , t̂MK not necessarily follows the same form.

Corresponding derivation will be given in the forthcoming. Eq. (16) in Myrhaug and Kvålsvold

(1995) gives

t =
[

2πγH

γS(1+υ2)

]1/2 (
ĥMK

ŜMK

)1/2

(A.11)

Combine Eq. (A.10) with Eqs. (A.11) and (2.34), Eq. (A.8) is obtained.

As ξ= m/
�

S, the connection between ξ̂ and ξ̂MK is established as shown in Eq. (2.35).

According to the definition of ŜMK given in section 2.2, it can be expressed as

ŜMK = 0.714

0.7

HT 2
z

Hr msT 2
(A.12)

Hence,

ŜMK = 0.714

0.7γ2
T

ĥMK

t̂ 2
MK

(A.13)

ξ̂MK is connected with ŜMK in the same form as given in Eq. (A.9). After incorporating the

relation with Eq. (A.13), following is obtained

ξ̂MK =
(

0.7γ2
T

0.714

)1/2
t̂MK√
ĥMK

(A.14)
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Chapter A. Derivation and numerical stability study of the theoretical

Hereafter, (0.7γ2
T /0.714))1/2 is denoted as γξ Combine Eq. (A.13) with Eq. (3.11), following is

obtained

t =
(

0.714

0.7(1+υ2)

)1/2
(

ĥMK

ŜMK

)1/2

(A.15)

Eq. (A.11) and Eq. (A.15) are the same with 2πγH /γS = 0.714/0.7.

A.4 Another approach to derive theoretical models for differ-

ent quantities of interest

A.4.1 Normalized quantities

With utilization of Eqs. (2.34) and (3.11), LH83 model is transformed with Jacobian

∣∣∣∣ ∂ĥ
∂ĥMK

· ∂t̂
∂t̂MK

∣∣∣∣=
A B to have arguments, normalized wave height and wave period as given in Myrhaug and

Kjeldsen (1984).

p(ĥMK , t̂MK ) = 2 A3

B
�
πυ

(
ĥMK

t̂MK

)2

exp

⎡
⎢⎣−(AĥMK )2

⎛
⎝1+
(

1− 1

B t̂MK

)2

/υ2

⎞
⎠
⎤
⎥⎦L(υ) (A.16)

Combining with Eq. (A.14), Eq. (A.16) is transformed into joint distribution of (ξ̂MK , ĥMK )

with Jacobian
√

ĥMK /γξ

p(ξ̂MK , ĥMK ) = 2 A3γξ

B
�
πυ

ĥ3/2
MK

ξ̂2
MK

exp

⎡
⎢⎢⎢⎣−(AĥMK )2

⎛
⎜⎜⎝1+

⎛
⎜⎝1− γξ

B ξ̂MK

√
ĥMK

⎞
⎟⎠

2

/υ2

⎞
⎟⎟⎠
⎤
⎥⎥⎥⎦L(υ) (A.17)

Comparing with Eq. (2.36), it is found that

γξ

B
= 1

Cm
�

A
=
√

0.98(1+υ2) (A.18)

A3γξ

B
= A5/2

Cm
= 1.021

√
1+υ2 (A.19)

Similar to the definition of ĥbMK , ĥb = ξ̂k2. Making a change of variables for Eq. (2.10) from

variables (ξ̂, ĥ) to (ĥb , ĥ) by using Jacobian

∣∣∣∣ ∂ξ̂∂ĥb

∣∣∣∣ = ĥ1/k2−1
b /k2, joint pdf p(ĥb , ĥ) hence is
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A.5. Numerical Stability Study for surf parameter and runup

given by

p(ĥb , ĥ) = 2L(υ)

k2
�
πυ

ĥ1.5

ĥ
k2+1

k2
b

exp

⎛
⎜⎜⎜⎝−ĥ2

⎡
⎢⎢⎣1+

⎛
⎜⎝1− 1

ĥ1/k2
b

√
ĥ

⎞
⎟⎠

2

/υ2

⎤
⎥⎥⎦
⎞
⎟⎟⎟⎠ (A.20)

By change of variable from Eq. (A.20) using Jacobian A C k2
m , the joint distribution of (ĥbMK , ĥMK )

is obtained.

A.4.2 Dimensional quantities

Performing transformation of Eq. (2.10) from variables (ξ̂, ĥ) into (ξ, H) in the use of Jocabian

(ξcr Hcr )−1, p(ξ, H) is given by

p(ξ, H) = 2ξcr

H 5/2
cr

�
πυ

H 3/2

ξ2
exp

⎡
⎢⎣−(H/Hcr )2

⎛
⎝1+
(

1− ξcr
�

Hcr

ξ
�

H

)2

/υ2

⎞
⎠
⎤
⎥⎦L(υ) (A.21)

Further, combining with Eq. (2.46), p(R, H) is derived from Eq. (A.21) through a change of

variables from (ξ, H) into (R, H) by utilization of Jocabian
∣∣∣ ∂ξ∂R · ∂H

∂H

∣∣∣= 1
K H , and takes the form

p(R, H) = 2K ξcr�
πυH 2.5

cr

H 2.5

R2
exp

⎡
⎢⎣−(H/Hcr )2

⎛
⎝1+
(

1− K ξcr (Hcr H)0.5

R

)2

/υ2

⎞
⎠
⎤
⎥⎦L(υ) (A.22)

Joint pdf of (R,ξ) can be derived from by combining Eqs. (2.25), (2.26) and (2.46) with Eq. (2.36)

through change of variables, and Jacobian calculated is

∣∣∣∣∂ξ̂MK
ξ

∂ĤMK
H

∣∣∣∣= (K ξHr msξr ms
)−1. Hence,

Eq. (2.53) is obtained.

A.5 Numerical Stability Study for surf parameter and runup

A.5.1 surf parameter

E(ξ̂MK |ĥMK ) =
∫∞

0
p(ξ̂MK |ĥMK )ξ̂MK dξ̂MK (A.23)
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Chapter A. Derivation and numerical stability study of the theoretical

Table A.1: Numerical integration by matlab trap built-in function and Simpson method

ĥMK = 0.01 Trapsoidal Method Simpson Method

ξ̂MK E(ξ̂MK |ĥMK ) σ(ξ̂MK |ĥMK ) E(ξ̂MK |ĥMK ) σ(ξ̂MK |ĥMK )

5×10−4 : 5×10−4 : 600.0005 1.5667 10.8249 1.5667 10.8249
5×10−4 : 5×10−4 : 700.0005 1.5975 11.7059 1.5975 11.7059
5×10−4 : 5×10−4 : 900.0005 1.6476 13.2951 1.6476 13.2951
5×10−4 : 5×10−4 : 1000.0005 1.6686 14.0228 1.6686 14.0228
5×10−4 : 5×10−4 : 1500.0005 1.7495 17.2076 1.7495 17.2076
2×10−4 : 2×10−4 : 1500.0002 1.7495 17.2076 1.7495 17.2076

ĥMK

E
(
ξ̂ M

K
|ĥ

M
K
)

Expected value of ξ̂MK given ĥMK by using dimensionless quantities in MK84

υ = 0.1

υ = 0.3

υ =0.504

υ = 0.6

Figure A.2: E(ξ̂MK |ĥMK ) versus ĥMK

ξ̂MK = 0.0005 : 0.0005 : 400.0005

ĥMK

E
(
ξ̂ M

K
|ĥ

M
K
)

Expected value of ξ̂MK given ĥMK by using dimensionless quantities in MK84

υ = 0.1

υ = 0.3

υ =0.504

υ = 0.6

Figure A.3: E(ξ̂MK |ĥMK ) versus ĥMK

ξ̂MK = 0.0005 : 0.0005 : 600.0005

61



A.5. Numerical Stability Study for surf parameter and runup

ĥMK

δ
E
(
ξ̂ M

K
|ĥ

M
K
)

δE(ξ̂MK |ĥMK ) from differenct integration steps

υ = 0.1

υ = 0.3

υ =0.504

υ = 0.6

Figure A.4: δE(ξ̂MK |ĥMK ) versus ĥMK

ξ̂MK = 0.0005 : 0.0005 : 600.0005 and ξ̂MK = 0.0002 : 0.0002 : 600.0002, respectively

ĥMK

E
(
ξ̂ M

K
|ĥ

M
K
)

Expected value of ξ̂MK given ĥMK by using dimensionless quantities in MK84

υ = 0.1

υ = 0.3

υ =0.504

υ = 0.6

Figure A.5: E(ξ̂MK |ĥMK ) versus ĥMK

ξ̂MK = 0.0005 : 0.0005 : 1000.0005
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ĥMK

δ
E
(
ξ̂ M

K
|ĥ

M
K
)

δE(ξ̂MK |ĥMK) from differenct integration steps

υ = 0.1

υ = 0.3

υ =0.504

υ = 0.6

Figure A.6: δE(ξ̂MK |ĥMK ) versus ĥMK

ξ̂MK = 0.0005 : 0.0005 : 600.0005 and ξ̂MK = 0.0005 : 0.0005 : 1000.0005, respectively

ĥMK

δ
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ξ̂ M

K
|ĥ

M
K
)

δE(ξ̂MK |ĥMK ) from differenct integration methods

υ = 0.1

υ = 0.3

υ =0.504

υ = 0.6

Figure A.7: δE(ξ̂MK |ĥMK ) caused by using Simpson and Romberg integration method,
respectively
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ĥMK

E
(
ξ̂ M

K
|ĥ

M
K
)

Expected value of ξ̂MK given ĥMK by using dimensionless quantities in MK84

υ = 0.1

υ = 0.3

υ =0.504

υ = 0.6

MF12

Figure A.8: Comparison of E(ξ̂MK |ĥMK ) between derived LH83 model and MF12 model
ξ̂MK = 0.0005 : 0.0005 : 1000.0005

From Figs. A.2, A.3 and A.5, it is observed that E(ξ̂MK |ĥMK ) increases significantly with in-

tegration upper limit of ξ̂MK for small ĥMK , which reflects the broadening characteristics of

joint distribution of (ξ̂MK , ĥMK ) at low values of ĥMK . Eq.(A.23) verifies that the results of

integral increase with upper integration limit due to non-negative integrand and integration

variable in this case. Fig. A.4 demonstrates that integration with δξ̂MK is sufficient. It is seen

from Fig. A.6 that results converge as ξ̂MK larger than 1.6. Fig. A.7 shows extremelly small

difference induced by different numerical integration methods. To summerize, it seems that

numerical integration method utilized is not so critical in contrast with variation of upper in-

tegration limit and integration step. Numerical integration results of E(ξ̂MK |ĥMK ) are credi-

ble with ĥMK being in excess of 1.6.

In the similar manner, numerically calculated standard deviation of ξ̂MK given ĥMK

grows with numerical upper integral limit (shown by Figs. A.9, A.10 and A.12). It means that

conditional p(ξ̂MK |ĥMK ) has much lower peak values in smaller wave height than the larger

wave height. Therefore, to obtain converged numerically calculated σ(ξ̂MK |ĥMK ), higher in-

tegration limit approaches infinity is required. As shown by Figs. A.11 and A.13, less evident

disparity exists due to 0.0005 and 0.0002 integration step compared to different integration

limit.

Comparing Fig. A.7 and Fig. A.14, it is found that Simpson and Romberg integration meth-

ods give same results for both E(ξ̂MK |ĥMK ) and σ(ξ̂MK |ĥMK ) to the 12th decimal. Eq. (A.24)
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σ(ξ̂MK |ĥMK ) by using dimensionless quantities in MK84

υ = 0.1

υ = 0.3

υ =0.504

υ = 0.6

Figure A.9: σ(ξ̂MK |ĥMK ) versus ĥMK

ξ̂MK = 0.0005 : 0.0005 : 400.0005
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σ(ξ̂MK |ĥMK) by using dimensionless quantities in MK84

υ = 0.1

υ = 0.3

υ =0.504

υ = 0.6

Figure A.10: σ(ξ̂MK |ĥMK ) versus ĥMK

ξ̂MK = 0.0005 : 0.0005 : 600.0005
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δσ(ξ̂MK |ĥMK ) due to different integration steps

υ = 0.1

υ = 0.3

υ =0.504

υ = 6

Figure A.11: δσ(ξ̂MK |ĥMK ) versus ĥMK

ξ̂MK = 0.0005 : 0.0005 : 600.0005 and ξ̂MK = 0.0002 : 0.0002 : 600.0002, respectively
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σ(ξ̂MK |ĥMK ) by using dimensionless quantities in MK84
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Figure A.12: E(ξ̂MK |ĥMK ) versus ĥMK

ξ̂MK = 0.0005 : 0.0005 : 1000.0005
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ĥMK
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δσ(ξ̂MK |ĥMK ) due to different integration steps

υ = 0.1

υ = 0.3

υ =0.504

υ = 6

Figure A.13: δσ(ξ̂MK |ĥMK ) versus ĥMK

ξ̂MK = 0.0005 : 0.0005 : 600.0005 and ξ̂MK = 0.0005 : 0.0005 : 1000.0005, respectively
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δσ(ξ̂MK |ĥMK ) due to different integration methods
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υ = 6

Figure A.14: δσ(ξ̂MK |ĥMK ) caused by using Simpson and Romberg integration method,
respectively
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σ(ξ̂MK |ĥMK ) by using dimensionless quantities in MK84
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Figure A.15: Comparison of σ(ξ̂MK |ĥMK ) between derived LH83 model and MF12 model
ξ̂MK = 0.0005 : 0.0005 : 1000.0005

demonstrates that numerically calculated conditional standard deviation of surf parameter

given wave height depends on the corresponding mean values of surf parameter given wave

height. Consequently, σ(ξ̂MK |ĥMK ) begins to converge at higher wave height in comparison

with corresponding to E(ξ̂MK |ĥMK ) if same converged criterion i.e. 1×10−3 applies.

σ(ξ̂MK |ĥMK ) =
√

E(ξ̂2
MK |ĥMK )− [E(ξ̂MK |ĥMK )]2 (A.24)
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A.5.2 Runup

Fig. A.16 shows that the conditional expected value of R is converged only for given wave

height ĥMK = 1.4 and ĥMK = 3.2 in terms of integration steps utilized. However, it is noted

that the calculated expected value for other four wave heights increase with upper integral

limit for numerical integration. The variability of the expected conditional runup seems ex-

tremely limited by using derived LH83 model.

Figure A.16: Numerical stability study for calculation of E(R|ĥMK ) from derived LH83
model
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P
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R
|ĥ
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K
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ĥMK=0.25

ĥMK= 0.5

ĥMK= 1

ĥMK= 1.4

ĥMK= 2.1

Figure A.17: Conditional cumulative distribution of wave run-up given wave height P (R|H)
from derived LH83 model by integration step corresponding with Rend = 100.0005 in

Fig. A.16
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ĥMK=0.25

ĥMK= 0.5

ĥMK= 1

ĥMK= 1.4

ĥMK= 2.1

Figure A.18: Conditional cumulative distribution of wave run-up given wave height P (R|H)
from derived LH83 model by integration step indicated with Rend = 200.0005 in Fig. A.16
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Appendix B

Derivation and numerical stability study

of the theoretical

Appreciable efforts have been putted into to obtain convergent numerically calculated re-

sults. Trapezoidal method, Simpson method as well as Romberg method are adopted to

compute integrals needed to be evaluated.

The peak value of two bivariate distributions p(ĥMK , jMK ) and p(t̂MK , jMK ) from IN11 model

and MB09 model also investigated numerically. The mesh grids are generated according to

the Tables. B.1 and B.4 and numerical peak values are presented there as well. As the grided

domain is fined further, peak value of p(ĥMK , jMK ) from both models calculated increases

dramatically and their positions are closer to origin. Hence, singularity seems to exist.

B.1 Numerical stability study for MB09 model

Utilizing t ≥α given in Eq. (3.28) and Eq. (3.23), following connection between tMK and jMK

is

t̂MK ≥ [ jMK (0.12)4]1/5 (B.1)

Note that Δ given in Tables. B.1 and B.2 are used to generate jMK (from j ≥αĥ2
MK in Eq. (3.22)

) and t̂MK (based on Eq. (B.1)) matrix in Matlab, respectively.
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B.2. Numerical Stability Study for IN11 model

Table B.1: Numerical peak value of p(ĥMK , jMK ) from MB09 model

ĥMK Δ ĥmax
MK j max

MK Peak Value

1×10−3 : 1×10−3 : 1.4 1×10−3 : 1×10−3 : 2 0.0600 1.1×10−3 40.68
5×10−4 : 5×10−4 : 1.4 5×10−4 : 5×10−4 : 2 0.0435 5.47×10−4 51.64
2×10−4 : 2×10−4 : 1.4 2×10−4 : 2×10−4 : 2 0.0282 2.16×10−4 70.08
5×10−5 : 5×10−5 : 1.4 5×10−5 : 5×10−5 : 2 0.0144 5.30×10−5 109.60

Table B.2: Numerical peak value of p(t̂MK , jMK ) from MB09 model

jMK Δ j max
MK t̂ max

MK Peak Value

2×10−4 : 2×10−4 : 0.5 2×10−4 : 2×10−4 : 0.8 1.2×10−3 0.236 4.8067
1×10−4 : 1×10−4 : 0.5 1×10−4 : 1×10−4 : 0.8 1.1×10−4 0.2334 4.8070
5×10−5 : 5×10−5 : 0.5 5×10−4 : 5×10−5 : 0.8 1.2×10−3 0.2347 4.8071
1×10−5 : 1×10−5 : 0.002 1×10−5 : 1×10−5 : 0.4 1.1×10−3 0.2342 4.8071
5×10−6 : 5×10−6 : 0.0015 5×10−6 : 5×10−6 : 0.3 1.1×10−3 0.2343 4.8071
2×10−6 : 2×10−6 : 0.0015 2×10−6 : 2×10−6 : 0.3 1.1×10−3 0.2343 4.8071
2×10−6 : 2×10−6 : 0.0030 2×10−6 : 2×10−6 : 0.4 1.1×10−3 0.2343 4.8071

Iso-density curves of p(t̂MK , jMK ) from MB09 are plotted by Matlab and Maple and are iden-

tical with each other, shown as Figs. B.1a and B.1b. The possibility of distinct isocontour

being attributed to different contour plotting algorithms is therefore excluded. In compar-

ison with Fig. 7 in Myrhaug et al. (2009), region neighbouring to ordinate axis shows some

discrepancies. Fig. B.1c illustrates that the isocontour is enclosed as opposed to this feature

not being shown clearly in Figs. B.1a and B.1b.

B.2 Numerical Stability Study for IN11 model

Recursive - Romberg method is more efficient compared to basic construction of Romberg

method, since function evaluation does not have to repeat. Specifically, more than half of

Table B.3: Numerical peak value of p(ĥMK , jMK ) from IN11 model

ĥMK jMK ĥmax
MK j max

MK Peak Value

2×10−4 : 2×10−4 : 1.5 2×10−4 : 2×10−4 : 1.5 0.0460 2×10−4 109.72
1×10−4 : 2×10−4 : 1.5 1×10−4 : 1×10−4 : 1.5 0.0363 1×10−4 203.80
5×10−5 : 5×10−5 : 0.75 5×10−5 : 5×10−5 : 0.75 0.0287 5×10−5 316.05
2×10−5 : 2×10−5 : 0.75 2×10−5 : 2×10−5 : 0.75 0.0211 2×10−5 568.49
1×10−4 : 1×10−4 : 0.1 1×10−7 : 1×10−7 : 1×10−4 0.0036 1×10−7 1.83×104
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Table B.4: Numerical peak value of p(t̂MK , jMK ) from IN11 model

t̂MK jMK j max
MK t̂ max

MK Peak Value

2×10−4 : 2×10−4 : 1.5 2×10−4 : 2×10−4 : 1.5 2×10−4 0.0792 37.14
1×10−4 : 1×10−4 : 0.5 1×10−4 : 1×10−4 : 0.5 1×10−4 0.0634 56.49
5×10−5 : 5×10−5 : 0.2 5×10−5 : 5×10−5 : 0.2 5×10−5 0.0507 86.67
2×10−5 : 2×10−5 : 1.5 2×10−5 : 2×10−5 : 1.5 2×10−5 0.0376 154.20
1×10−5 : 1×10−5 : 0.07 1×10−5 : 1×10−5 : 0.07 1×10−5 0.0299 239.90
1×10−5 : 1×10−5 : 0.5 1×10−7 : 1×10−7 : 1×10−5 1×10−7 0.0065 4.86×103

Table B.5: Integration steps for numerical stability study of δE( jMK |t̂MK ) from MB09 model

Legend value of mm j max
MK integration steps

mm6 6×107

t̂ 5
MK

(0.12)4

(
1− 1

m

)
j max

MK
mm :

j max
MK

mm : j max
MK

mm8 8×107

mm10 1×108

Table B.6: Numerical integration by matlab built-in function and trapzoidal method for
IN11 model

ĥMK jMK E( jMK |ĥMK ) σ( jMK |ĥMK ) p(ĥMK )

0.5

1×10−4 : 2×10−4 : 1000.0001 0.6161 7.1037 0.6269
1×10−4 : 1×10−4 : 2000.0001 0.6512 10.0537 0.6269
1×10−4 : 1×10−4 : 3000.0001 0.6717 12.3167 0.6269
5×10−5 : 5×10−5 : 3000.00005 0.6717 12.3168 0.6269
1×10−4 : 1×10−4 : 4000.0001 0.6863 14.2243 0.6269

Table B.7: Numerical integration by matlab built-in function and Simpson method for IN11
model

ĥMK jMK E( jMK |ĥMK ) σ( jMK |ĥMK ) p(ĥMK )

0.5

1×10−4 : 2×10−4 : 1000.0001 0.6161 7.1037 0.6269
1×10−4 : 1×10−4 : 2000.0001 0.6512 10.0537 0.6269
1×10−4 : 1×10−4 : 3000.0001 0.6717 12.3167 0.6269
5×10−5 : 5×10−5 : 3000.00005 0.6717 12.3168 0.6269
1×10−4 : 1×10−4 : 4000.0001 0.6863 14.2243 0.6269

Table B.8: Numerical integration by matlab built-in function and Romberg method - basic
construction for IN11 model

ĥMK jMK E( jMK |ĥMK ) σ( jMK |ĥMK ) p(ĥMK )

0.5
1×10−4 : 1×10−4 : 838.8609 0.6072 6.5045 0.6269
1×10−4 : 1×10−4 : 1677.7217 0.6423 9.2067 0.6269
1×10−4 : 1×10−4 : 3355.4432 0.6774 13.0268 0.6269
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Table B.9: Numerical integration by matlab built-in function and Simpson method for IN11
model

ĥMK jMK E( jMK |ĥMK ) σ( jMK |ĥMK ) p(ĥMK )

0.5
1×10−4 : 1×10−4 : 838.8609 0.6072 6.5045 0.6269
1×10−4 : 1×10−4 : 1677.7217 0.6423 9.2067 0.6269
1×10−4 : 1×10−4 : 3355.4432 0.6774 13.0268 0.6269

evaluations of integrand for entry at next row in first column of Romberg table are performed

already as composite trapezoidal formulae is applied for neighbouring upper row.

From Carroll, approximations of integral
∫b

a f (x)dx by composite trapezoidal rule are carried

out as following, which generate the entries in first column

R1,1 = (b −a)

2
[ f (a)+ f (b)] (B.2)

Rk,1 =
1

2

⎡
⎣Rk−1,1 +hk−1

2k−2∑
i=1

f (a + (2i −1)hk )

⎤
⎦ ; k = 2, 3, . . . (B.3)

where

hk = b −a

2k−1
(B.4)

Remaining columns are produced by

Rk, j = Rk, j−1 +
1

4 j−1 −1

(
Rk, j−1 −Rk−1, j−1

)
; k = j , j +1 . . . (B.5)

It should be noted that integral step is subdivided until the following tolerances are met

∣∣Rn,n −Rn−1,n−1
∣∣< 1e−6 (B.6)∣∣Rn,n −Rn,n−1
∣∣< 1e−6 (B.7)
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Table B.10: Comparison of numerical integration by matlab integral built-in function and
recursive Romberg method for IN11 model

Romberg Integral

ĥMK jMK p(ĥMK ) jMK p(ĥMK )

0.5

1×10−4 − 1×104 0.4593

0−∞ 0.6269

1×10−4 − 1.5×104 0.4722
1×10−4 − 5×104 0.5104
1×10−4 − 2×105 0.5544
1×10−4 − 5×105 0.5835
1×10−4 − 1×106 0.6055
1×10−4 − 1.5×106 0.6184
1×10−4 − 1.8×106 0.6242
1×10−4 − 2×106 0.6275
1×10−4 − 2×106 0.6291
1×10−6 − 2×106 0.6291

Table B.11: Integration steps for numerical stability study of δE( jMK |t̂MK ) and
δσ( jMK |t̂MK ) from IN11 model

Legend Meaning ( integration steps)

60008 8×10−5 : 8×10−5 : 600
6001 1×10−4 : 1×10−4 : 600
8001 1×10−4 : 1×10−4 : 800
10005 5×10−4 : 5×10−4 : 1000
10002 2×10−4 : 2×10−4 : 1000
12005 5×10−4 : 5×10−4 : 1200
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jMK

t̂
M

K

(a) joint pdf of ( jMK , t̂MK ) plotted by Matlab

(b) joint pdf of ( jMK , t̂MK ) plotted by Maple

(c) joint pdf of ( jMK , t̂MK ) plotted by Maple for showing enclosed contour in the
proximity of origin

Figure B.1: Isocontour of p(t̂MK , jMK ) from MB09 model p takes 0.25, 0.75, 1.25, and 2.0
from outermost to center, respectively
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Figure B.2: δE( jMK |t̂MK ) versus t̂MK from MB09 model
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Figure B.3: δσ( jMK |t̂MK ) versus t̂MK from MB09 model

Figure B.4: E( jMK |ĥMK ) from IN11 model versus ĥMK (hMK ≡ ĥMK and jMK ≡ jMK )
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Figure B.5: σ( jMK |ĥMK ) from IN11 model versus ĥMK ( hMK ≡ ĥMK and jMK ≡ jMK )
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Figure B.6: δE( jMK |t̂MK ) versus t̂MK from IN11 model

t̂MK

δ
σ
(
j
M

K
|t̂
M

K
)

Figure B.7: δσ( jMK |t̂MK ) versus t̂MK from IN11 model
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Appendix D

Example of visual basic code for Excel

Sub ConvergedStudy()

Dim i As Long

Dim j As Long

For j = 1 To 2 Step 1

For i = 1 To 1999 Step 1

Cells(2 + i, 9 + j).Value = Abs(Cells(2 + i, 1 + j).Value - Cells(5 + (i - 1) * 2, 5 + j).Value)

Next i

Next j

End Sub

In the user interface of Excel, following command is useful to find the exact cell storing max-

imum value in one column: ’=ADDRESS(MATCH(MAX(K:K),K:K,0),COLUMN(K:K))’
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Appendix E

Example of bash script for using on

supercomputer

Useful short-cut is the Ctrl + G to open the ’Go to File’ window to locate at a specific line. The

line number the cursor at is indicated as shown by the red rectangular region in Fig. E.1.

In putty software, useful commands include

• cd ../XX, XX represents the directory to be changed into under the same parent direc-

tory as the current directory is in

• qsub job_Eq22.sh, submit job_Eq22.sh to run Matlab script

Thesis_ExpectedValue_SameScaleAsMK84_WorkStation.m

• qstat, check current status of files run on server, including the time elapsed for running

• qdel 2440517.server2 , delete job 2440517 run on number 2 server

Figure E.1: Example of bash script
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