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abstract

In this thesis we develop a multiscale method that solves non-isothermal flow
in porous media. A sequential formulation is established that decouples corre-
sponding equations into three systems, one pertaining pressure, one pertaining
temperature and one pertaining transport. The sequential method is then ver-
ified against a standard fully implicit method on two examples with varying
degree of complexity on the permeability field. By adjusting a tolerance that
decides the number of outer iterations in the sequential method, the method
converges toward the fully implicit method. After the sequential method is ver-
ified, we use the sequential structure in the development of an accurate and
efficient multiscale method for the pressure and temperature systems. This
multiscale method is then vigorously tested against the sequential method on
several examples with varying degrees of complex grids and permeability fields,
as well as being verified for both single-phase and multiphase flow. The multi-
scale method can, by adjusting the parameters of the original sequential method,
converge towards various fully implicit solutions, or give a reasonable approx-
imation on the coarse scale. The experiments show that the multiscale method
provides a flexible and stable solver that accurately solves the equations describ-
ing non-isothermal flow in porous media more efficiently than both the fully
implicit method and the sequential method as long as heterogeneous perme-
abilities are used.

i



sammendrag

I denne mastergradsoppgaven utvikler vi en multiskalametode som løser ikke-
isoterm flyt i porøst media. En sekvensiell formulering er etablert, hvor vi
omgjør de korresponderende likningene til tre systemer, en tilhørende trykk, en
tilhørende temperatur og en tilhørende transport. Den sekvensielle metoden
testes deretter mot en standard fullt implisitt metode på to eksempler med vari-
erende grad av kompleksitet på permeabilitetfeltet. Ved å justere en toleranse
som bestemmer antall ytre iterasjoner i den sekvensielle metoden, konvergerer
metoden mot den fullt implisitte metoden. Etter at den sekvensielle metoden er
bekreftet, bruker vi den sekventielle strukturen i utviklingen av en nøyaktig og
effektiv multiskalametode for trykk- og temperatursystemene. Denne metoden
er deretter kraftig testet mot den sekvensielle metoden på flere eksempler med
varierende grad av komplekse grid og permeabilitetfelt, så vel som på både
enkeltfase og flerfasestrømning. Multiskalametoden kan, ved å justere parame-
trene til den sekvensielle metoden, konvergere mot forskjellige fullt implisitte
løsninger, eller gi en rimelig approksimasjon på grov skala. Forsøkene viser at
multiskalametoden gir en fleksibel og stabil løser som nøyaktig løser likninger
som beskriver ikke-isoterm strømning i porøst media mer effektivt enn både
den fullt implisitte metoden og den sekvensielle metoden så lenge heterogene
permeabiliteter blir brukt.
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1

I N T R O D U C T I O N

Petroleum reservoirs have been studied actively for many years. In mathemat-
ics, this is manifested in the study of the equations that describe the reservoirs,
as well as the development of numerical methods that can accurately solve the
equations and thus simulate the different processes of reservoir simulation.

The reservoirs consist of porous or fractured rock formations, where the hydro-
carbons are contained in the pores of the rocks. Pressure differences, capillary
forces and buoyancy will force the fluids to flow through these pores, and ther-
mal effects can change the properties of fluid, thereby affecting the flow. When
we are to simulate flow in porous media we thus have to account for both the
pressure and temperature.

The simplest and most obvious way to solve the equations describing flow in
porous media is to order the equations in a system, apply a fully implicit time
discretization and solve for all the unknowns simultaneously. This constitutes
an accurate solver, but the system is a large one when we model reservoirs. A
lot of computer memory will therefore be used, and the method will not be very
efficient. To account for this, we will apply a sequential method which decou-
ples the system into several subsystems and solves for each unknown separately
and more efficiently. To further improve the efficiency, we will thereafter apply
a multiscale method.

The idea behind the multiscale methods is to employ basis functions that restrict
the equations from the fine grid that represents the reservoir to a coarser grid
where we will have fewer unknowns. Here, the equations can be solved more
efficiently. Then we use new basis functions to prolong the coarse scale solution
back to the original fine scale. The basis functions are constructed so that fine
scale heterogeneities are preserved.

There have been developed several different types of multiscale methods [11, 7,
9, 1, 17, 6, 12, 19]. The difference comes from the individual ways the meth-
ods choose to restrict and especially prolong the unknowns. We are going
to employ the newly developed multiscale restricted-smoothed basis (MsRSB)
method [19, 20, 18, 8] in this thesis. The method uses a control volume sum-
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introduction

mation operator to restrict the system, and to prolong the system it employs
basis functions found through an iterative scheme that constructs the functions
so that they are properly smooth and consistent with local properties.

The MsRSB method has previously been tested and found to be working well
when we have different isothermal processes [19, 20, 18, 8]. Though it is true
that we in many circumstances have isothermal processes, there are other times
when heat change is an important part of the reservoir. Warming up the wells
has for instance been used as a method in enhanced oil recovery [14]. Tempera-
ture is also important in different chemical methods, where the reactions heavily
depend on temperature. By heating up the fluids we will change the flow prop-
erties, and we have to check how this affects the flow. A good method must work
consistently for all processes that are typical for the given model. It is therefore
important to test that the MsRSB method works on non-isothermal processes,
because non-isothermal flow is a realistic scenario in petroleum reservoirs. This
is what will be done in this thesis, where we construct a non-isothermal model
and first solve the equations using the sequential method, before testing whether
the MsRSB method offer additional efficiency while still preserving the accuracy
and advantages of the sequential method.

We are going to start off by deriving the model equations in Chapter 2 to give
background information and a thorough introduction to petroleum reservoirs.
In Chapter 3, we introduce the standard time and space discretizations used
when solving the equations numerically, as well as the well model and the
Newton-Raphson method which will be used both as an introductory numerical
solver, the fully implicit method, and as a tool in the later methods. Chapter 4

contains a formulation of the sequential method, which will solve the system
more efficiently than the fully implicit method. The chapter also includes a cou-
ple of examples that check whether we have managed to implement the method
correctly. In Chapter 5 we introduce the multiscale method that, used on top
of the sequential method, should further improve efficiency. In the end of the
chapter we present several examples that vigorously test the multiscale method.
A conclusion of the thesis is offered in Chapter 6.
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2

M AT H E M AT I C A L M O D E L

In this thesis, we are going to study non-isothermal flow in oil reservoirs. Oil
plays a big part in the world we live in and it is therefore important to be able to
understand and model its recovery. To understand flow properties in petroleum
reservoirs one needs to get a knowledge of the physical and mathematical con-
cepts that describe them. We therefore start by presenting the derivation of the
equations that make up the mathematical model of reservoirs, before we in later
chapters present numerical methods that solve the derived equations.

Reservoirs normally contain multiple components, such as water and different
hydrocarbon elements. These components form different phases, such as water,
gas and oil, which flow through the reservoir. As these models can be complex,
we are going to start with a simplification when we derive the equations, namely
the assumption that the reservoirs contain only one phase. By first studying
single-phase, it will be easier to understand multiphase, our main field of study,
later on. We are going to let the single-phase be oil, but it is also possible to
look at gas or water. After studying the single-phase case, we are going to
extend the model and derive the equations for multiple components, multiple
phases, before we study a specific case, namely the black-oil model. But first,
the single-phase equations.

2.1 single-phase flow

Several mechanisms come to play when fluids are transported in porous media.
Pressure differences will cause bulk flow, as the fluid moves from an area of
high pressure to an area of low pressure. Gravity can force the fluid to move
in a certain direction, while thermal conductivity and heat transport will heat
or cool the fluid, which will affect the flow. In addition comes the properties of
the porous media, such as the porosity of the rock. To account for the different
mechanisms we need two equations, one that describes the bulk flow, and one
that describes the heat transfer.

To derive the model equations, we assume a continuum hypothesis. This means
that we assume that the fluid properties are defined at infinitesimal small points,
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and ignore the fact that the fluid is made up of discrete particles. That is, we say
that properties such as pressure, temperature and velocity have a specific value
for each infinitesimal point.

2.1.1 Single-Phase Flow Equation

The fundamental principle used to derive equations describing the bulk flow of
a single fluid is the law of conservation of mass, which states that the mass of a
control volume Ω must remain constant over time. Said differently, this is the
same as

rate of change of mass in Ω = mass flow across the boundary ∂Ω
+ mass production/consumption in Ω.

By looking at a volume-element of Ω, call it dΩ, the mass of the volume is given
by φρdΩ, where φ is the porosity of the medium, i.e., the fraction of the rock
that contains fluid, and ρ is the density, i.e., the mass per unit of fluid. Note
that φ depends on the pressure of the fluid, while ρ depends on both pressure
and temperature. To get the mass of the reference volume Ω, we sum up all the
infinitesimal volume elements. The rate of change of mass is hence given by

∂

∂t

∫
Ω

φρ dΩ.

Mass flow is determined by the flux. As the flow follows the velocity of the
fluid, and as we are only interested in the normal component of the boundary,
the mass flux is given by j = −ρ~v ·~n, where ~v is the fluid’s velocity and ~n is
the normal vector of the boundary of the infinitesimal volume-element dΩ. The
mass flow through ∂Ω is thus obtained by

−
∫

∂Ω
ρ~v ·~n dS,

where we use a surface integral as we are concerned with the flow through the
boundary of Ω.

Mass production/consumption in an infinitesimal volume-element of Ω is given
by a source term q. Summing up all the volume-elements of Ω yields∫

Ω
q dΩ.

The law of conservation of mass will thus become∫
Ω

∂

∂t
(φρ) dΩ = −

∫
∂Ω

ρ~v ·~n dS +
∫

Ω
q dΩ,

where the derivative has been placed inside the integral because Ω is fixed.
Using the divergence theorem, we get
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2.1 single-phase flow

∫
Ω

[
∂

∂t
(φρ) +∇ · (ρ~v)− q

]
dΩ = 0.

As this is true for any control volume Ω, we have that the integrand must be
zero, and the continuity equation for a single-phase fluid is thus given by

∂

∂t
(φρ) +∇ · (ρ~v) = q.

The velocity of a fluid flowing through a porous medium is given by Darcy’s law.
It was formulated by Henry Darcy in 1856, who found, through experiments
where he looked at the flow of water through sand, that the flux rate of the
fluid is related to the hydrostatic pressure difference and the permeability, the
mediums ability to transmit fluid. It has later been discovered that the fluid’s
resistance to flow, the viscosity, also influences the fluid flow. Darcy might have
discovered this if he had used more than one fluid in his experiments. The
law has later been derived from the Navier-Stokes equations as well. All in all,
Darcy’s law states that

~v = −K
µ
(∇p− gρ∇z),

where K is the permeability, µ is the viscosity, g is the magnitude of the gravity,
and ∇z constitutes a unit vector in the z-direction.

2.1.2 Single-Phase Heat Equation

The heat equation is found in a similar manner as the continuity equation. In-
stead of using the law of conservation of mass, we use the law of conservation
of energy, which states that the energy of a control volume Ω must remain con-
stant over time, as energy can neither be created nor destroyed (first law of
thermodynamics). This is the same as

rate of change of energy in Ω = energy transported across the boundary ∂Ω
+ energy production/consumption in Ω.

The thermal energy of Ω is determined by the internal energy, U, of the fluid,
and the internal energy, Ur, of the rocks. Again we use the fact that the porosity
φ gives the percentage of the volume that contains fluid and that the density ρ

gives the mass per unit of fluid, and conclude that φρUdΩ gives the thermal
energy of the part of the infinitesimal volume dΩ that contains fluid. As the
heat, unlike mass, can travel through the rocks, we also have to remember the
thermal energy through the rocks. This will be given by (1− φ)ρrUr, as ρr is
the rock density and 1 − φ gives the percentage of the volume that contains
the rock (or no fluid). In the end, we have that the net thermal energy in an
infinitesimal volume-element of Ω is given by (φρU + (1− φ)ρrUr) dΩ. Just as
with the continuity equation, we get that the rate of change in Ω is obtained by
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summing up these volume-elements, and by taking the derivative with respect
to time

∂

∂t

∫
Ω
(φρU + (1− φ)ρrUr) dΩ.

Energy is transported through ∂Ω by the means of the energy flux. The overall
energy flux is made up of different contributions. We will focus on conduction
and the flowing fluid, while contributions such as radiation will be neglected.
Conduction is the transfer of energy between two points, here caused by a tem-
perature difference between the points. It is determined by the heat flux, j,
which is given by Fick’s law. Fick’s law states that j = −κ∇T, where κ is the
thermal conductivity coefficient. The coefficient has the same function for heat
as the permeability has for the fluid flow. That is, κ describes the material’s abil-
ity to conduct heat, where there are more heat transfer in a material with a high
thermal conductivity. In this thesis, we will for simplicity mostly use a homo-
geneous value for the coefficient. The thermal conductivity of granite, κ = 4.0
W/(mK), will be used in almost all experiments. Heat can also be transported
by the fluid. The internal energy will follow the fluid flow and this transfer is
therefore described by ρU~v. The energy flux is thus found by summing up the
contributions from all the elements of Ω. We are interested in the flux through
the boundary of Ω, so this constitutes a surface integral,

−
∫

∂Ω
[−κ∇T + ρU~v] ·~n dS,

where the negative sign comes from the definition of the flux.

Energy production and consumption take place in two ways: either by external
sources, or by work done on or by the system. The external sources are given
by a heat source qT. Adding the contributions from all the infinitesimal volume-
elements of Ω gives that the external sources in all of Ω are found through∫

Ω
qT dΩ.

Considering the work in the system, we have to use the work rate, as we are
working with a system that is changing. We are for brevity going to neglect
gravitational work. This can be done because the dimension of the z-direction
in a reservoir is small compared to the other directions. The work rate is given
by force times velocity. When an element crosses a cross-section ∆A of a volume-
element of Ω, the force it exerts on ∆A is determined by the pressure applied
on the cross-section. This force is given by p∆A~n, and the rate of work over the
cross-section is thus given by

−p∆A~v ·~n.

The negative sign comes from the fact that work done on the system is positive,
and ~v ·~n < 0 when the fluid is flowing into dΩ. The work rate in Ω is then
given by summing up over the boundary of Ω,

−
∫

∂Ω
p~v ·~n dS.
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2.2 multiphase flow

Gathering all the terms results in a new formulation of the law of conservation
of energy, namely∫

Ω

∂

∂t
[φρU +(1−φ)ρrUr] dΩ = −

∫
∂Ω

[−κ∇T+ ρU~v] ·~ndS+
∫

Ω
qT dΩ−

∫
∂Ω

p~v ·~n dS.

The derivative is placed inside the integral because Ω is fixed. Using the diver-
gence theorem, and the fact that the enthalpy is given as H = U + p

ρ , we have
that ∫

Ω

[
∂

∂t
[φρU + (1− φ)ρrUr] +∇ · (ρH~v)−∇ · (κ∇T)− qT

]
= 0.

As this is true for every control volume Ω, the integrand must be zero, and we
get that the heat equation is given by

∂

∂t
(φρU + (1− φ)ρrUr) +∇ · (ρH~v)−∇ · (κ∇T) = qT.

2.2 multiphase flow

Now that we have our single-phase equations, we want to generalize to multi-
phase, multicomponent flow. That is because natural reservoirs generally con-
sist of more than one fluid. In fact, there are usually multiple fluids, or phases,
in the reservoir, which again consist of multiple components. The phases might
include oil, water, gas, etc., while the components might be, among others, nat-
ural and dissolved gas, or methane, ethane and propane. We are going to start
by deriving the equations for flow, before continuing with heat.

The mechanisms that determined the flow for the single-phase case still deter-
mine the multiphase, multicomponent flow. These mechanisms will again lead
to equations describing bulk flow and heat, where the continuum hypothesis is
still in place.

2.2.1 General Continuity Equation for Multiphase, Multicompo-
nent Flow

The derivation of the multiphase, multicomponent flow equation is fairly sim-
ilar to the one previously shown for single-phase flow. We still have a control
volume Ω. It contains i = 1, · · · , M different components, and j = 1, · · · , N dif-
ferent phases. When we looked at the mass continuum law for a single phase,
we said that the mass of that phase had to be conserved. It would therefore
seem natural to say that the mass of each phase has to be constant over time
when we extend the conservation law to multiphase flow. However, since the
different components can cross over to other phases, the assumption that the
mass of each phase is conserved in time does not hold true. The mass of the
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components, on the other hand, must stay constant. When we find the general
multiphase, multicomponent flow equations, we therefore use the conservation
of mass for component i,

rate of change of i in Ω = mass of i transported across ∂Ω
+ mass production/consumption of i in Ω.

To find how much mass of i there is in Ω, we need to find how much of i is in
each of the N phases, and then sum up all the phases. Just as with the single-
phase case, we study an infinitesimal volume-element dΩ of Ω. To determine
the amount of i in phase j, there are two different schools. Some, like [14, 22]
use mass fractions, while others, such as [3], use partial densities and volume
fractions. We are going to follow [14, 22] and use mass fractions, as I found that
to be easiest to understand.

Let xij be the mass fraction of the i’th component in the j’th phase. In other
words, xij tells us how much of component i is present in phase j. We have that

M

∑
i=1

xij = 1, ∀j.

Furthermore, let sj be the saturation of j, i.e., the volume fraction of phase j
present in the pores of the rock, where

N

∑
j=i

sj = 1.

We can then, with the help of the porosity, saturation and density of phase j,
ρj, find the mass of j in the infinitesimal volume-element, namely φρjsjdΩ. The
mass of component i in the part of phase j that is in dΩ will thus be given by
φρjsjxij dΩ. To find the mass of i in all of dΩ, and not just in the part of the
volume-element that contains phase j, we have to sum up the mass of i from all
the N phases, φ ∑N

j=1 ρjsjxij dΩ. The rate of change of component i in the entire
volume Ω, can now be found by adding all the infinitesimal volume-elements,
and by taking the derivative with respect to time:

∂

∂t

∫
Ω

φ
N

∑
j=1

ρjsjxij dΩ =
∫

Ω

∂

∂t

(
φ

N

∑
j=1

ρjsjxij

)
dΩ.

The derivative can be placed inside the integral because Ω is fixed.

To find the mass transport over ∂Ω, we need to know how much of component i
in phase j crosses the boundary. As the flux of phase j is given by −ρj~vj, we have
that the proportion of i in the flux is given by −ρjxij~vj. Accumulating all the
phase fluxes, that is, taking ∑N

j=1 ρjxij~vj, gives the total flux of component i. Only
the normal component of the flux crosses the surface, and we therefore have to
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2.2 multiphase flow

multiply the flux with ~n, the normal vector. The overall transport through ∂Ω is
found by adding the contributions from all surface elements of Ω, and we get

−
∫

∂Ω

N

∑
j=1

ρjxij~vj ·~n dS.

The mass production/consumption of i is, once again, given by sources. For
component i, the overall production/consumption in Ω will be given by∫

Ω

N

∑
j=1

qixij dΩ,

as we have to add the contribution from all the phases.

Now we just have to sum the different integrals, use the divergence theorem and
use the fact that the resulting integral is true for any volume Ω. This leads to
the general multiphase, multicomponent flow equations, which are of the form

∂

∂t

(
φ

N

∑
j=1

ρjsjxij

)
+∇ ·

(
N

∑
j=1

ρjxij~vj

)
=

N

∑
j=1

qixij, i = 1, · · · , M. (2.1)

These equations will have more unknowns than we are able to solve for, and we
therefore need some additional equations. To get a link between the different
phase pressures in the system, the capillary pressure is used. It is the pressure
needed for the phases to invade different sized pores already filled with another
fluid phase. The smaller the pores, the more capillary pressure is needed. The
pressure is given as a function of the phase saturations, and gives the relation-
ship capillary pressure = non-wetting phase pressure - wetting phase pressure. Which
phase is the wetting phase and which is the non-wetting phase depends on the
reservoir. For instance, in an oil-gas system, the oil is usually the wetting phase,
while the gas is the non-wetting phase. In an oil-water system however, the
water will be the wetting phase, while the oil is the non-wetting phase.

Extending Darcy’s law to multiple phases is basically done by treating each
phase as the single phase from Section 2.1, except we now have to keep in mind
that a phase’s ability to flow might be affected by the other phases. So, when
we look at the multiphase version of Darcy’s law, we have to add the relative
permeability, which is the ratio of the effective permeability, i.e., the ability to
transmit a fluid when other fluids are present, to the absolute permeability, the
permeability the phase would have had if there had been only one phase present.
The Darcy velocity of each phase is then given by

~vj = −K
krj

µj
(∇pj − ρjg∇z),

where krj is the relative permeability of phase j, µj is the viscosity, and pj the
phase pressure.
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2.2.2 Black-Oil Equations

Even though the compositional flow model derived above accurately describes
flow in porous media, it is comprehensive and not straightforward to derive and
solve. We will therefore use a simplified model, namely the black-oil model. It
is often used in reservoir simulation, as it is quite simple, while it at the same
time manages to describe low-volatile oil systems in a good way.

The black-oil fluid model represents a reservoir where there are three compo-
nents, one water component and two hydrocarbon pseudo components. The
two hydrocarbon pseudo components are oil and gas, which each may contain
multiple chemical species. The three components constitute three phases, one
water phase containing the water component, one oil phase containing mostly
the oil component and one gas phase containing the gas component. It is as-
sumed that there is no mass transfer between the water phase and the two other
phases. This means that the water phase only contains the water component.
Similarly, the gas phase will only contain the gas component. The oil phase, on
the other hand, contains components of oil and components of dissolved gas.
The gas component can thus be transferred between the gas and oil phase.

We are here going to derive the black-oil equations for all three components and
phases, but later, when we apply the numerical methods on the equations, we
will neglect gas. The reason why we still include gas in the derivation of the
black-oil equations is that we want our understanding of the equations to be as
broad as possible.

In an attempt to make things easier, we are going to follow a common conven-
tion from the literature and denote the components with capital letters, and the
phases with lowercase letters. The three components are thus W, O, G, and the
three phases are w, o, g.

Using (2.1), the water component of this three-component, three-phase model is
described by

∂

∂t
(φρwswxWw) +∇ · (ρwxWw~vw) = qW xWw, (2.2)

as the only phase that contains the water component is w. Similarly, as the only
phase that contains the oil component is o, the oil component is given by

∂

∂t
(φρosoxOo) +∇ · (ρoxOo~vo) = qOxOo. (2.3)

The gas component is present both in the oil and the gas phase. The equation
for the gas component will hence be given by

∂

∂t
(
φρosoxGo + φρgsgxGg

)
+∇ ·

(
ρoxGo~vo + ρgxGg~vg

)
= qOxGo + qGxGg. (2.4)

10
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The water phase will only contain the water component, and xWw will thus
equal one. Equivalently, the gas phase will only contain the gas component,
and xGg = 1. Let WOo be the weight of the oil component in the oil phase, and
WGo be the weight of the gas component in the oil phase. The fraction of the
oil component in the oil phase will then be given by xOo = WOo

WOo+WGo
, while the

fraction of the gas component in the oil phase will be given by xGo =
WGo

WOo+WGo
.

The black-oil equations focus on the conservation of volume, rather than the
conservation of mass. It is easy to switch between the two as long as we have
the volumes and densities. The gas solubility factor, Rso is given as the ratio of
volume of the gas component in the oil phase and volume of the oil component,
both measured at standard conditions, Rso = Vs

G/Vs
O. Using the weights of the

oil and gas components in the oil phase from above, we have that

Vs
O =

WOo

ρs
O

, Vs
G =

WGo

ρs
G

,

where ρs
O, ρs

G are the oil and gas densities at standard conditions. From this, we
get that

Rso =
WGoρs

O
WOoρs

G
.

Furthermore, we introduce the formation factors, Bj, j = w, o, g, defined as the
ratio of Vj to Vs

i , i = W, O, G. That is, Bj = Vj/Vs
i , where Vj is the volume of j’s

phase measured at reservoir conditions, and Vs
i is the volume of i’s component

measured at standard conditions. We have already defined Vs
O and Vs

G. Let

Vs
W = WWw

ρs
W

, Vo = WOo+WGo
ρo

, Vg =
WGg

ρg
and Vw = WWw

ρw
. It can then be concluded

that
ρo = bo(ρ

s
O + Rsoρs

G), ρg = bgρs
G, ρw = bwρs

W ,

where we have introduced the inverse formation factors bj, given by bj = 1/Bj.
The inverse formation factors are important quantities, as they can be used to
model the densities ρj.

The mass fraction of the oil and gas components in the oil phase can now be
found as,

xOo =
boρs

O
ρo

, xGo =
boRsoρs

G
ρo

.

Using the derived densities and mass fractions in Equations (2.2) to (2.4), and
by factoring out the densities given at standard conditions, the equations used
to model flow in the black-oil model are given by

∂

∂t
(φbwsw) +∇ · (bw~vw) = bwqw,

∂

∂t
(φboso) +∇ · (bo~vo) = boqo,

∂

∂t
(
φboRsoso + φbgsg

)
+∇ ·

(
boRso~vo + bg~vg

)
= boRsoqo + bgqg,

11
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where the source terms are given by qj = qi/ρj.

To get a relationship between the different phase pressures, we will use capillary
pressure. Let water be the wetting phase when we look at water and oil, and let
oil be the wetting phase when we look at oil and gas. We then have that po −
pw = pcow, while pg − po = pcgo. With this we have the derived multiphase flow
equations, and we are now ready to continue with the multiphase expansion of
the heat equation.

2.3 multiphase heat equation

The derivation of the multiphase heat equation is similar to the derivation of the
single-phase heat equation. While we for the multiphase continuity equations
had to look at the different components, we can now look at the entire system,
as the energy can be transported all over without caring about what kind of
components are present. We do, however, have to add all the elements from the
different phases. As the derivation follows that of the single-phase closely, we
only give the most important details here. Just as with the single-phase, we use
the law of conservation of energy:

rate of change of energy in Ω = energy transported across the boundary ∂Ω
+ energy production/consumption in Ω.

The thermal energy of the rock is again given by (1− φ)ρrUr. Remember from
Section 2.1 that the thermal energy of the fluid in the single-phase case over
an infinitesimal volume-element is given by φρUdΩ. It is then reasonable that
the thermal energy of all the phases over an infinitesimal volume-element in
the multiphase case is given by φ ∑N

j=1 ρjsjUj, where Uj is the internal energy
of phase j. Th, neglecting gravitational and kinetic forces, the rate of change of
energy in Ω is given by

∂

∂t

∫
Ω

(
φ

N

∑
j=1

ρjsjUj + (1− φ)ρrUr

)
dΩ.

Energy transportation will again happen in two ways, through conduction and
flow. Conduction happens through heat flux, again described by Fick’s law,
−κ∇T. Transport of energy with the flow of phase j is, just as with the single
phase, given by ρjUj~vj, and we find the part of the thermal energy that is trans-
ported through the flow by adding all the phases in the system. Net transport
across ∂Ω is thus

−
∫

∂Ω

(
−κ∇T +

N

∑
j=1

ρjUj~vj

)
dS.

The energy production and consumption is given by external sources and work.
We have to add all the sources from the different phases,

∫
Ω ∑N

j=1 qT
j dΩ. The
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work rate is again given by force times velocity. As all the phases have their
own force and velocity, we have to add up all the different contributions. The
force for a phase is given by the pressure exerted on that phase, and in the end,
the work rate for the multiphase fluid is

−
∫

∂Ω

N

∑
j=1

pj~vj ·~n dS.

Collecting all the different contributions, applying the divergence theorem, us-
ing the enthalpy for phase j, Hj = Uj +

pj
ρj

, and using the fact that Ω is a random
control volume, we get that the multiphase heat equation is given by

∂

∂t

(
φ

N

∑
j=1

ρjsjUj + (1− φ)ρrUr

)
+∇ ·

(
N

∑
j=1

ρjHj~vj

)
−∇ · (κ∇T) =

N

∑
j=1

qT
j .

2.4 final set of equations

To get an overview of the equations used, a brief summary is included.

The equations used to model the flow is given by the black-oil equations. We
have derived the equations for the three phases water, oil and gas, but in the
rest of this thesis we are going to neglect gas. We are thus going to use the
two-phase black-oil model, where the two phases and two components present
are water and oil. It is assumed that the oil does not dissolve in the water phase,
and that the water does not dissolve in the oil phase. To get the two-phase
black-oil equations, we use the fact that the weight of the gas component is zero
for all phases, WGj = 0. When this is true, we lose all dependency on the gas.

The conservation equations thus consist of the two-phase black-oil equations
and conservation of energy, and are

∂

∂t
(φbwsw) +∇ · (bw~vw) = bwqw,

∂

∂t
(φboso) +∇ · (bo~vo) = boqo, (2.5)

∂

∂t
[φ(ρs

WbwswUw + ρs
ObosoUo) + (1− φ)ρrUr]

+∇ · (ρs
Wbw~vwHw + ρs

Obo~voHo)−∇ · (κ∇T) = qT
w + qT

o .

The densities are still modeled through the inverse formation factors, but now
we have that the oil density is given by ρo = boρs

O, while we still have that
ρw = bwρs

W .
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The velocity of phase j is given by Darcy’s law, and is

~vw = −K
krw

µw
(∇pw − ρwg∇z) ,

~vo = −K
kro

µo
(∇po − ρog∇z) .

(2.6)

The primary variables of this system are the pressure p, the temperature T and
the saturation s. It is normal to solve for oil pressure and water saturation,
and this will be done in this thesis as well. As most of the functions in the
equations above depend on both pressure and temperature, it constitutes a non-
linear system. To be able to solve it, an appropriate numerical method must be
applied.

14



3

S TA N D A R D D I S C R E T I Z AT I O N
M E T H O D

Having found the model equations is all very well, but we cannot do anything
unless we are able to solve them. The equations constitute a large non-linear
system, which is not possible to solve analytically. A numerical approach must
therefore be used. The standard method is to use a so-called fully implicit solver,
where we implicitly discretize in time and use a space discretization of our
choosing, before the discretized system is linearized and solved with a Newton-
Raphson method. In this chapter the fully implicit method is defined, with all
the discretizations and models needed to produce it. The method will later be
used as a reference solution when the more efficient methods are introduced.

3.1 the fully implicit method

To solve the non-linear model equations (2.5) numerically, we discretize in time
and space. To discretize in space, we use discrete div and grad operators de-
fined in SINTEF’s MATLAB Reservoir Simulation Toolbox (MRST) [15]. The op-
erators will be discussed below. To discretize in time, we use the backward
Euler method, which is an implicit method. The backward Euler method does
not have a restriction on the time steps, so we are, in principle, able to use large
time steps if that is desirable. In practise, however, we find that the solver breaks
down when the time steps are too large. This is generally not a problem, as we
are still able to use adequately large time steps when we solve the non-linear
system.

If we for now disregard the discretization in space, and write the equations on
residual form, we have

R =


Rw = 0,
Ro = 0,
RT = 0,

(3.1)
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where

Rw =
1

∆t

[
(φbwsw)

n+1 − (φbwsw)
n
]
−∇ · (bw~vw)

n+1 − (bwqw)
n+1 = 0,

Ro =
1

∆t

[
(φboso)

n+1 − (φboso)
n
]
−∇ · (bo~vo)

n+1 − (boqo)
n+1 = 0,

RT =
1

∆t

[
(φρs

wbwswUw)
n+1 + (φρs

obosoUo)
n+1 + ((1− φ)Ur)

n+1

−(φρs
wbwswUw)

n − (φρs
obosoUo)

n − ((1− φ)Ur)
n]

+∇ · (ρs
wbw~vwHw + ρs

obo~voHo)
n+1 −∇ · (κ∇T)n+1

− (qT
w)

n+1 − (qT
o )

n+1 = 0.

(3.2)

To find the numerical solution to (2.5) we thus have to loop through all the time
steps, and for each time step we have to solve the system given by (3.1). There
are many ways to solve this system, but one of the easiest is to use the Newton-
Raphson method. Let x be the vector with the unknowns, x = [po, T, sw]T, where
we just as easily could have solved for pw and so. The Newton-Raphson method
iterates over

xk+1 = xk − J−1(xk)R(xk), (3.3)

until the residual is below a prescribed tolerance. The matrix J denotes the Ja-
cobian of the system. It is defined as J = dR

dx , or Jij =
∂Ri
∂xj

on component form.
Finding these derivatives analytically is difficult, and the Jacobian can be labo-
rious to find. To sidestep this problem, we use a method known as automatic
differentiation, which will be discussed below. The solution to the present time
step is given by xn+1 = xK+1, where K is the converged iteration. As an initial
guess we use the solution from the previous time step, x0 = xn.

To solve the fully implicit system we thus follow the procedure outlined below:

Newton-Raphson Loop

x0 = xn

xk+1 = xk − J−1(xk)R(xk)
||R(xk)|| < tol?

No Yes

xn+1 = xk+1
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3.2 well equations

Partial differential equations need boundary conditions to be well posed. Oil
reservoirs are, quite naturally, often made up of a closed region, where no fluid
can leave unless we insert external sources that pick up the fluid. There might be
aquifer in the system, but other than that, the only way to add or extract fluids
is through wells. These wells will, in addition, make the phases flow through
the reservoir. We have two types of wells, production and injection wells. The
production wells remove the fluid from the reservoir, while the injection wells
inject liquid, usually water, to increase production by forcing the fluids towards
the production wells. As the wells are so important, it is crucial to handle them
correctly.

The dimensions of a reservoir can be huge, and expand hundreds or thousands
of meters in the lateral directions. It is therefore natural to use a spatial step
size that is relatively large. The wells on the other hand, are a different matter.
The radius of the wellbore, the drilled hole of the well, is given in centimeters
instead of hundreds of meters. It is therefore difficult to represent the wells cor-
rectly using the cells. The wells are placed in the cells along the well pathways
in the numerical solver. But, as the well is so small compared to the cells, it is
difficult to relate the pressure inside the well and the pressure outside, see [31]
for more. One way to solve this problem is to locally refine the cells that contain
the wells. We are going to use a different approach, however, namely a well
model.

In this thesis, Peacemans well model [23] will be used, where the wells are
modeled as point sources. Peaceman introduced his model in 1978, and it has
since become the standard model for representing wells. The sources will be
determined through the phase flux, as the flow rate determines how much of
the fluid reaches the wells. We assume that the fluid is immediately carried to
the surface and recovered when it reaches the well. Peaceman looked at single
phase flow in a two dimensional uniform grid, but his findings can be extended
to multiphase flow in more complex grids.

As the wellbore is round, Peaceman used Darcy’s law for radial flow as a model
for the sources,

q =
2πKh

µ

pc − pW

ln(ro/rw)
.

Here, h is the formation thickness, pW is the well pressure, rw is the wellbore
radius, and pc is the cell pressure. Peaceman defined ro to be the radius at
which the analytical steady-state pressure p in the well is equal to the numer-
ically calculated pressure pc for the well cell. By doing, among other, numeri-
cal experiments where he compared the numerical and analytical single-phase
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steady-state pressure on a homogeneous two dimensional uniform grid with
different grid sizes and spacing ∆x, he found that

r0 = 0.2∆x.

We can thus define the Peaceman well index,

WI =
2πh

ln(0.2∆x/rw)
,

which relates the flow rate q to the pressure drawdown, the difference between
the reservoir pressure and the well pressure, pc − pW

q = WIλ(pc − pW).

Anyone familiar with Peaceman’s well index knows that our WI is slightly mod-
ified from the original well index. Peaceman included the mobility in the index,
but we have let the mobility be an individual factor in the equation for the flow
rate. This way, we can use the same well index for the different phases when
we extend the model to multiphase flow. The expansion is done by using the
fact that the flow rate of each phase in each well is given by Peaceman’s model.
This gives our well-model,

qj = WIλj(pc − pW)

where j = o, w.

For the heat equation to be well posed we need to define the temperature source
terms, qT

j . To find them, we use the sources defined above, qj. If we are looking
at the injection wells, external heat will flow from the wells throughout the reser-
voir with the flow rate qj. This external heat will depend on the temperature
in the wells. We therefore have to multiply the enthalpy of the well, calculated
with the well temperature and pressure, with the flow rate from the well, as this
is the amount of heat that will flow from the wells. If we are looking at a produc-
tion well, the source terms will carry the heat up the wells, and the temperature
source terms are thus determined by multiplying the enthalpy calculated with
the pressure and temperature from the cells defining the wells, with the source
terms defined above. The temperature source terms are thus given by

qT
j =

{
Hj(pW , TW)qj if injection well,
Hj(pc, Tc)qj if production well,

where TW is the temperature in the well, and Tc is the temperature in the well
cell.

If wells are not monitored and controlled, blowouts can occur. It can lead to
damage of equipment, and even loss of life. It is therefore important to have
mechanisms that control the well, to prevent blowouts from happening. Wells
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are usually controlled by the bottom-hole pressure or the flow rate in the wells.
This will therefore also be enforced when we model the wells. We can have
different controls on different wells. The bottom-hole pressure is the sum of
all the pressures acting on the bottom of the wellbore, and by controlling this
quantity we are able to control, among other, the hydrostatic pressure drop
which might cause the blowouts. To enforce the controls we add extra control
equations to our overall system. A constant value, Cbh,W or Cq,W , depending on
whether we have bottom-hole or flow rate control, is prescribed per well. Per
well, the control equation will then be of the form

RC = pbh − Cbh, or RC = q− Cq,

where pbh is the bottom hole pressure and q is the net flow in the well. We also
check that the surface rates for each phase, qs

j , equals the flow rate for the phase
in the well,

Rq,j = qs
j − ∑

c∈CW

qj[c] = 0,

where CW is the set of cells containing the well.

Our overall system will now consist of the equations on residual form, (3.1),
where the well source terms have been added to the equations, and the control
equations. As the source terms only contribute to the system in the grid cells
defining the wells, we only need to worry about the source terms in these cells.
It is therefore natural to first find the main part of the equations for the whole
reservoir, and then subtract the sources in the respective cells. But one can, of
course, do as one pleases. In the end, the system to be solved will look like

0 = R = [Rw,Ro,RT,Rq,w,Rq,o,RC]
T,

where we solve for x = [po, T, sw, qs
w, qs

o, pbh]
T.

3.3 matlab reservoir simulation tool-
box

To aid in the numerics, we are, as previously stated, going to use SINTEF’s MAT-
LAB Reservoir Simulation Toolbox (MRST). We will here go through the MRST
functions and operators that will be used in our simulations. MRST is a toolbox
designed to simulate various models, for instance flow in porous media. It uses
rapid prototyping, a process that builds the model level by level. MRST consists
of two parts, the core, containing the methods that are unlikely to change over
the years, and various add-on modules, containing functions and methods subject
to change with new research. We will use both parts. See [15, 13, 26] for a
thorough introduction to MRST.
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MRST’s methods are developed to work on different kinds of grids. The grids
defined through the toolbox are therefore expressed in the same way, through
a class structure. The grids are divided into different cells, and the boundaries
of each cell are divided into faces. See Figure 3.1 for an illustration. The grid
class gives certain information about the grid, for instance the number of cells,
the cell positions and the faces. MRST has also developed tools to make it easy
to calculate, among others, the volume and centroids of the cells. The class
structure ensures that the grids easily can be switched when a solver is used.

Figure 3.1: Simple grid with faces given in bold numbering, while the cell num-
bering is placed in the middle of the cell.

Space Discretization

We have already shown how to discretize the equations in time. To discretize
in space, we use vector functions defined in MRST. The operators we have to
discretize are the divergence and gradient operators. Let f be a face shared
by cells N1( f ) and N2( f ). Thus, if we are looking at face number 6, which
is shared by cell number 2 and 3, then N1(6) = 2, N2(6) = 3, see Figure 3.1.
MRST’s grad operator looks at the difference over the face, so if we have an
arbitrary expression of the form ∇h, we will with MRST use

[∇h] f ≈ grad(h)[ f ] = h[N2( f )]− h[N1( f )].

MRST’s div operator, on the other hand, looks at the cells. Let c be the cell in
question. The div operator is found by adding up the contributions from all the
faces belonging to the cell,

[∇ · h]c ≈ div(h)[c] = ∑
f∈ f (c)

sgn( f )h[ f ],

where

sgn( f ) =
{

1 if c = N1( f ),
−1 if c = N2( f ).

To get a better understanding, we refer to Figure 3.1. The faces are given in
bold numbers. If we look at the gradient over face 6, it will be given by the
cells belonging to the face, grad(h)[6] = h[3] − h[2]. The divergence of cell 2,
on the other hand, will be given by the faces belonging to the cell, div(h)[2] =
h[6] + h[7]− h[3]− h[5].
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Automatic Differentiation

As a way to avoid laborious computations when finding various derivatives,
we use, as previously mentioned, automatic differentiation (AD). It is, as the
name applies, a method that finds the derivatives automatically. This section
explains how MRST performs AD. The values of functions and their correspond-
ing derivatives are updated simultaneously in matlab. AD takes advantage of
the fact that derivation follows simple rules, and as long as we follow these
rules we can differentiate complex expressions. Rules like addition, the product
rule for multiplication and the chain rule form the foundation for derivation of
all functions, and these rules are not complex, even though the function in itself
might be.

When matlab applies an operator on a function, it determines the kind of func-
tion it is dealing with before applying the operator. Multiplication between
matrices is for instance different than multiplication between two scalars. The
two types of multiplication still use the same notation though, namely ∗, or else
matlab would be a confusing language to use. To be able to have operators that
change depending on the type of function, matlab uses a class system. When
implementing AD, these ideas are developed further. A class system is used,
where the function and derivatives are updated simultaneously, the function
with the help of the original matlab operators, and the derivatives with the
derivative rules. So, when matlab encounters multiplication, it has to apply
the correct form of multiplication on the functions, and it must use the product
rule on the derivatives.

To see how the functions and derivatives can be updated simultaneously, let us
look at two variables, x and y. We know that ∂x

∂x = 1 and ∂x
∂y = 0. We will thus

have that
x → x, 1, 0 in matlab,

where the first variable is the normal function, the second is the derivative with
respect to x and the last is the derivative with respect to y. One could always
use more or less variables of course. With the chain rule, we get that

(3xy)2 → (3xy)2, 2 ∗ 3xy ∗ 3y, 2 ∗ 3xy ∗ 3x in matlab.

If the program also knows a bit more complex rules, like the fact that ∂ cos(x)
∂x =

− sin(x), we can update complex functions with AD:

(3xy)2 + cos(x2y4) sin(3x5)→ (3xy)2 + cos(x2y4) sin(3x5),

2 ∗ 3xy ∗ 3y− 2xy4 sin(x2y4) sin(3x5) + 5 ∗ 3x4 cos(x3y4) cos(3x5),

2 ∗ 3xy ∗ 3x− 4x2y3 sin(x2y4) sin(3x5).

To see how this will look in matlab, we can look at the expression z = xy2

for the values x = 3 and y = 4. Notice that ∂
∂x x
∣∣∣
x=3,y=4

= 1, ∂
∂y x
∣∣∣
x=3,y=4

=
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0, z|x=3,y=4 = 48 and ∂
∂x z
∣∣∣
x=3,y=4

= 16.

If we now want to apply AD, we simply type

[x, y] = initVariables(3, 4);
z = x ∗ y.̂ 2;

in matlab. This gives:

x = ADI with properties: y = ADI with properties: z = ADI with properties:

val : 3 val : 4 val : 48
jac : {[1] [0]} jac : {[0] [1]} jac : {[16] [24]}

which correspond to the correct values and derivatives.

To see how we can find the Jacobian of a system of equations in matlab, which
is what we will use AD for, we look at f (x, y) = (xy2, 3x + y), when x = 3 and
y = 4. Again we start with the commands

[x, y] = initVariables(3, 4);
z1 = x ∗ y.̂ 2;
z2 = 3 ∗ x+ y;

To bound them together in a system, we simply type

eqs = {z1, z2};
eq = cat(eqs{:});

and the Jacobian of the system is now automatically given by typing eq.jac{1}

full(eq.jac{1})=
16 24

3 1

Upwind Discretization

The flow of phase j over cell face f will in large scale depend on the relative
permeability krj. It will also depend on the inverse formation volume factor bj,
as bj helps model j’s density. To deal with krj, we have to look at the mobility, as
λj = krj/µj. As a result, to properly handle the flow, λj and bj must be properly
handled in our simulations.

Let us look at the flow through f , from cell i to j. The mobilities and the inverse
formation factors need to reflect the flow over the face. When we have reached
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residual saturation for a phase in i, the mobility needs to be zero as flow from
i has stopped. This is implemented through an upwind selection, where we will
use i’s λ if the velocity over f is greater than zero. This is to reflect the fact that
we still have flow over the face. If this is not the case, however, we will use j’s λ.
The same holds true for the inverse formation volume factors. In matlab and
MRST, this is implemented as follows,

upw(h)[ f ] =
{

h[N1( f )], if v[ f ] > 0,
h[N2( f )], otherwise,

where h is some random function or variable.

Now that we have gone through all the discretization methods, it is fairly
straightforward to find the discretized equations. For instance, the discrete oil
equation from (3.2), will in matlab look like

1
∆t

[
(φboso)

n+1 − (φboso)
n
]
− div(upw(bo)vo)

n+1 − (boqo)
n+1 = 0,

where

vo = −upw(λo)Tp (grad(p)− gavg(ρo)grad(z)) .

We have used the arithmetic average of the density, avg(ρo). As a model for
the permeability, we use transmissibilities, which is a measure of how much
the phase can be transported through the medium. The discrete grad operator
introduced above will only give the exact derivative for certain grids. For gen-
eral grids, however, the operator will need additional factors which include the
geometry of the cells in order to give a good approximation for the derivative.
This is obtained through the transmissibilities, which use, among other, the cell
geometry to be computed. By using the transmissibility as well as the grad oper-
ator, we get a better approximation for the derivatives than if we had just used
the grad operator. In the equation above, the transmissibility is given by Tp,
the permeability transmissibility. The thermal conductivity will also be given
by transmissibilities, TT. The different transmissibilities can be found in many
different ways, for instance through the finite volume method.
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4

S E Q U E N T I A L F O R M U L AT I O N

The fully implicit method is a good method in that it is robust and compre-
hensible. A problem with the method, however, is the fact that the system can
become very big. It will then use a lot of computer memory, and the compu-
tation time might be long. Another drawback is that it is sometimes desirable
to apply different numerical methods on the different variables in the system.
The equations exhibit various characters, and as different numerical methods
work on different types of equations, we could apply distinct methods on the
separate parts if everything was not all in one system.

To account for these problems, we are going to use a splitting method, which
we in the next chapter will augment by applying a multiscale method. As the
name suggests, the splitting method splits the fully implicit system, making it
possible to solve for one variable at the time. Several different splitting methods
have been introduced, such as IMPES, see for instance [25, 2], explicitly coupled
methods [21, 32] and sequential splitting, see for instance [29, 28]. We will use
the latter. These methods usually look at isothermal models, but they are fairly
straightforward to extend to thermal models. We will here explain the structure
of the isothermal methods, before describing how we proceed when we add
temperature. The methods start out by decoupling the equations in the fully
implicit system. Keeping the saturations fixed, usually using the values from
the previous time step, the methods solve for pressure using a pressure equation
found through the decoupled equations. When the pressure has been found,
saturation is solved for, using special saturation equations where the newly
found pressure is used as the pressure variable. While the fully implicit method
uses an implicit solver for the whole system, IMPES uses an implicit method to
solve for pressure, and an explicit method to solve for the saturations. Explicit
solvers are only conditionally stable, so IMPES requires relatively small time
steps when it solves for the saturations. This might be restrictive, for instance
when we want to simulate very long sequences. We are therefore going to use a
slightly different approach. Our sequential splitting method will use an implicit
solver for all equations, to ensure that we are always able to use whatever time
step we want. We will decouple the fully implicit system into three systems, one
system that solves a pressure equation, one that solves a temperature equation,
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sequential formulation

and one that solves a transport equation. We will thus first solve for pressure,
using the pressure equation, keeping the temperature and saturations from the
last time step fixed. Next, we will solve for temperature, using the newly found
pressure, and the saturations from the last time step. Lastly, we use the net
flux to express the pressure gradient in Darcy’s law, and use this to update the
saturations. The pressure and temperature variables are the updated pressure
and temperature from before. The sequential splitting method will thus be of
the form

pressure→ temperature→ transport.

4.1 pressure equation

In order to find the equation used to find the pressure, i.e., the pressure equa-
tion, we use the semi-discretized equations defined by (3.2). To discretize in
space, we use the div and grad operators defined in Section 3.3. As we are only
solving for one variable, we need to find one equation that is independent of the
temperature and saturations of the next time step, Tn+1, sn+1. All three equa-
tions in (3.2) depend on pressure, so we want our pressure equation to be a
combination of the three equations. We therefore assume that there are factors
βw, βo and βT such that

R̃p = βwRw + βoRo + βTRT = 0

is independent of Tn+1 and sn+1. Notice that R̃p equals zero, as Rw,Ro and RT
all equal zero. Now, choosing the factors

βw =
1

bn+1
w

, βo =
1

bn+1
o

, βT = 0,

lead to the pressure equation

R̃p =
φn+1

∆t
− φn

∆t

[
(bwsw)n

bn+1/3
w

+
(boso)n

bn+1/3
o

]
− ∇ · (bw~vw)n+1/3

bn+1/3
w

− ∇ · (bo~vo)n+1/3

bn+1/3
o

− qn+1
w − qn+1

o = 0.

The velocities and the inverse formation factors are now taken at time step n +
1/3, as the equation only is independent of temperature and saturations of next
time step when bn+1/3

w = bw(pn+1, Tn), bn+1/3
o = bo(pn+1, Tn) and

~vn+1/3
w = −K

krw(sn
w)

µw(pn+1, Tn)

(
∇pn+1

w − ρwg∇z
)

,

~vn+1/3
o = −K

kro(sn
o )

µo(pn+1, Tn)

(
∇pn+1

o − ρog∇z
)

.
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4.2 temperature equation

The time step n+ 1/3 signifies the fact that there are three steps in the sequential
algorithm, where this first step uses values that will be updated in step two and
three. The porosity and source terms are still taken at time step n + 1, because
these are only dependent on pressure. That is, φn+1 = φ(pn+1), qn+1

j = qj(pn+1).

The control equations for the wells are also incorporated into this system. The
equations are calculated just as in Section 3.2, and the pressure system is then
expanded to include the equations,

0 = Rp = [R̃p,Rq,w,Rq,o,RC]
T.

We can now solve for pn+1
o (or pn+1

w if that is desirable, as po − pw = pcow) by
using Rp and the Newton-Raphson method, where the primary variables are
[po, qs

w, qs
o, pbh]

T.

As we only have one equation that describes the pressure, we can for practical
purposes treat it as a single-phase equation with constant temperature. After all,
we are only solving for one phase pressure, and the saturations and temperature
are constants. This is in many ways an advantage, as we can now employ meth-
ods designed to work on single phase flow. This can speed up the numerical
process.

4.2 temperature equation

We get the temperature equation by taking RT from (3.2), using the newly up-
dated pressure, and saturations from the last time step. That is, every time (3.2)
use pn+1 and sn+1, we are now going to use p̄ and sn, where we have called
the updated pressure p̄ in an attempt to make things simpler. The functions
that use a combination of p̄, Tn+1and sn will be denoted n + 2/3, as this is the
second step in the sequential algorithm. As an example, we can look at the
inverse formation factors. In (3.2) we use the formation factors from the next
time step, bn+1

j = bj(pn+1, Tn+1), as well as bn
j = bj(pn, Tn). Here, the formation

factor from the next time step will be replaced with bn+2/3
j = bj( p̄, Tn+1), while

we keep the formation factor from the last time step as it is. Doing this with
all functions that include pn+1 and sn+1, leads to a temperature equation that is
independent of pressure and saturation of the next time step. Keeping all this
in mind, we find that the temperature equation equals

RT =
1

∆t

[
sn

w · (ρs
WφbwUw)

n+2/3 + sn
o · (ρs

OφboUo)
n+2/3 + ((1− φ)Ur)

n+2/3

−(φρs
WbwswUw)

n − (φρs
ObosoUo)

n − ((1− φ)Ur)
n]

+∇ · (ρs
Wbw~vwHw + ρs

Obo~voHo)
n+2/3

−∇ · (κ∇T)n+1 − (qT
w)

n+2/3 − (qT
o )

n+2/3 = 0.
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sequential formulation

As ρs
i is a constant, it will not need to be updated. It is shown here with a

time step just to try to make the temperature equation easier to read. The
conduction term is denoted with the time step n+ 1 because it is only dependent
on temperature. When a function has time step n it means that all its variables
are taken from the last time step. Furthermore, we have that

φn+2/3 = φ( p̄),

Un+2/3
j = Uj( p̄, Tn+1),

Un+2/3
r = Ur( p̄, Tn+1),

Hn+2/3
j = Hj( p̄, Tn+1),

vn+2/3
j = ~vj( p̄, Tn+1, sn).

The only unknown in the temperature equation is therefore Tn+1, which is the
entity we solve for.

Backward Euler has been used to discretize time. The velocity is very similar
to the velocity used for the pressure equation, but now we use Tn+1 (and p̄)
instead;

~vn+2/3
w = −K

krw(sn
w)

µw( p̄, Tn+1)
(∇ p̄w − ρwg∇z) ,

~vn+2/3
o = −K

kro(sn
o )

µo( p̄, Tn+1)
(∇ p̄o − ρog∇z) .

Just as with the pressure equation, the temperature equation is solved with the
Newton-Raphson method. Again we have an equation that mimics a single-
phase equation, which enables us to apply appropriate numerical methods.

4.3 transport equation

To be able to update the saturations, we first look at the total flux ~vT = ~vw +~vo,
where ~vw and ~vo are given in (2.6). This is done in order to get a fractional
formulation for the Darcy velocities, making it easier to solve for saturation. By
looking at the total flux we find an expression for ∇po, which we can reinsert
into the expression for the phase fluxes. This way, we get phase fluxes that
depend on the total velocity instead of on the pressure gradient. Remembering
that po − pw = pcow, we have that the total flux is given by

~vT = ~vo +~vw = −K
kro

µo
(∇po − gρo∇z)−K

krw

µw
(∇(po − pcow)− gρw∇z) .

Which, with the mobilities λo =
kro
µo

and λw = krw
µw

, yields

∇po = −
~vT

K(λo + λw)
+

g∇z
λo + λw

(λoρo + λwρw) +
λw

λo + λw
∇pcow.

28



4.4 solving the sequential system

Now, by reintroducing this expression into Darcy’s law (2.6), and presenting the
fractional flow fo =

λo
λo+λw

, we find that the oil phase flux is given by

~vo = −K
kro

µo
(∇po − gρo∇z)

= −Kλo

[
− ~vT

K(λo + λw)
+

g∇z
λo + λw

(λoρo + λwρw) +
λw

λo + λw
∇pcow − gρo∇z

]
=

λo

λo + λw
[~vT + K(−g∇z(λoρo + λwρw)− λw∇pcow + (λo + λw)gρo∇z)]

= fo [~vT + Kλw(ρog∇z− ρwg∇z−∇pcow)] .

Following the same procedures yields the water phase flux

~vw = fw [~vT −Kλo(ρog∇z− ρwg∇z−∇pcow)] ,

where we instead of fractional flow for oil use the fractional flow for water,
fw = λw

λo+λw
.

We thus have expressions for the fluxes that depend on the total flux vT, instead
of depending on pressure. The total velocity is held constant throughout the
transport simulation, and is found by adding the fluxes after having solved for
pressure. By keeping vT fixed, we will have phase fluxes where the saturation is
the only unknown, as the variables that originally depend on pressure use the
already updated pressure. The phase fluxes at time n + 1 used to update the
saturations are thus

~vn+1
o = f n+1

o

[
~vT + Kλn+1

w (ρog∇z− ρwg∇z−∇pn+1
cow )

]
,

~vn+1
w = f n+1

w

[
~vT −Kλn+1

o (ρog∇z− ρwg∇z−∇pn+1
cow )

]
.

These expressions are used in one of the conservation equations, Rw,Ro or RT,
from (3.2), to find the saturations. As we have already found pn+1 and Tn+1, and
as so + sw = 1, we would overdetermine the system if more than one equation
were to be used. Furthermore, as RT was used as the temperature equation,
the method works best if we choose Rw or Ro to find the saturations. We have
mostly used Ro in this thesis.

To discretize the equation in time, the backward Euler method is once again
used to prevent the dependency on small enough time steps. To solve the trans-
port equation we use the Newton-Raphson method.

4.4 solving the sequential system

There are a lot of different components to consider when solving the three non-
linear systems arising from the sequential formulation. We have therefore pro-
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sequential formulation

vided a flowchart to get a better overview. Each subsystem in the overall se-
quential system is at each time step solved using the Newton-Raphson method,
(3.3).

The sequential and fully implicit solution will differ to a certain extent. But, the
smaller the time steps, the closer the solutions will be. This makes it easy to
check if the sequential solution is wrong, because if the two solutions do not
converge as the time steps decrease, something is wrong. It is important to
know that the sequential system is implemented correctly, because we are later
going to apply a multiscale method on the sequential system. To make sure the
multiscale method is correct, the sequential system will be used as a reference
solution. The solutions should in principle also converge if we apply outer iter-
ations in the sequential method, as it will drive the residual towards zero. That
is, we can place a loop on the pressure and temperature system so that after
the temperature system has converged we go back to the pressure system and
resolve it. We then proceed to the temperature system and resolve that. This is
done n1 times. We can also place a loop after the transport equation has con-
verged, so that after having found the saturations we go back and resolve the
pressure and temperature, keeping the n1 iterations if that is desirable, and then
proceed to resolve the transport system. This is done n2 times, where n1 and
n2 are small. Instead of a fixed number of iterations n1, n2, we could also check
whether we have reached a preset tolerance, and iterate if it is not the case. If
we apply the outer iterations after the temperature has converged, or at the end
of each time step, the overall fine scale residual should decrease.

In the end, the three steps executed each time step in the sequential algorithm
are:

Let pi=0 = pn
o , T = Tn, s̄ = sn.

Iterate over

pi+1 = pi − J−1
p Rp(pi, T, s̄),

until convergence is reached.
At convergence: pn+1

o = pi+1.
Compute the total flux ~vT.

Pressure loop

Let p̄ = pn+1, Ti=0 = Tn, s̄ = sn.
Iterate over

Ti+1 = Ti − J−1
T RT( p̄, Ti, s̄),

until convergence is reached.
At convergence: Tn+1 = Ti+1.

Temperature loop
Let p̄ = pn+1, T = Tn+1, si=0 = sn.
Choose whether to solve for
j = o, w or T.
Using ~vT, iterate over

si+1 = si − J−1
j Rj( p̄, T, si),

until convergence is reached.
At convergence: sn+1 = si+1.

Transport loop

Iterate?

Iterate?

30



4.5 examples

Here, Jp is the Jacobian of Rp, Jw is the Jacobian of Rw, Jo is the Jacobian of
Ro and JT is the Jacobian of RT. The Jacobians are found using automatic
differentiation.

4.5 examples

To check the correctness of the sequential method, we are going to compare the
solver to the fully implicit solver, checking whether the discrepancies between
the methods are small. We present two examples, which both model two-phase
flow. The first example is rather simple. It has a homogeneous permeability
field, and is included as a first test to check that everything is implemented cor-
rectly. The second example has a more complex permeability field, making it
more difficult to solve correctly. Both examples have water and oil as their two
phases.

To check that the sequential method is correct, we consider the discrepancies
between the fully implicit solutions and the sequential solutions. The discrep-
ancies are measured in L2 and L∞ norms, and are

e2 =
||xFI − xS||2
||xFI ||2

=

(
n
∑

i=1
|xFI,i − xS,i|2|Ωi|

)1/2

(
n
∑

i=1
|xFI,i|2|Ωi|

)1/2 ,

e∞ =
||xFI − xS||∞
||xFI ||∞

=
maxi=1,··· ,n |xFI,i − xS,i|

maxi=1,··· ,n |xFI,i|
,

(4.1)

where xFI is the fully implicit solution, xS is the sequential solution, |Ωi| gives
the volume of cell i and n is the number of fine cells in the system.

The two examples use some of the same values and functions. The thermal
conductivity will be that of granite, so that κ = 4.0 W/(mK). Furthermore,
the initial temperature inside the wells is set to be 300K. As for the different
functions needed in the heat equation, we have that the enthalpy for phase j
will be given by

Hj = cr · T + (1− ch · Tref)
p− pref

bjρ
s
j

, (4.2)

where cr = 2.17 · 106, Tref = 310 K, ch = 10−4, pref = 300 bar, ρs
W = 1000 and

ρs
O = 700. The internal energy of the rocks is given by

Ur = crT, (4.3)

while the internal energy is given by

Uj = Hj −
p

bjρ
s
j
.
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sequential formulation

Lastly, the inverse formation volume factors are given by

bj =
ρr

ρs
j

(
1 + c f (p− pref)

)
e−ch(T−Tref),

where ρr = 850 kg/m3, and c f = 10−3 bar−1. These functions are similar to
what was used in [13], though that paper looked at single-phase flow.

Machinery

The following tests were performed on an Ubuntu 12.04 LTS 64-bit OS, with
an Intel Core i7-2600 CPU processor, having 7.8 GiB memory. The tests were
executed using MATLAB 2013b. SINTEF’s MATLAB Reservoir Simulation Toolbox
(MRST) was in addition used heavily. The newest release, version 2015b, was
released in December 2015. It can be downloaded from http://www.sintef.

no/projectweb/mrst/downloadable-resources/download/. See [15] for more
information about MRST.

4.5.1 Test Case: Homogeneous Permeability

We start by presenting a test case consisting of a 20× 20× 5 Cartesian grid, or
4000 fine cells, modeling a 200× 200× 50 m3 two-phase reservoir with homo-
geneous permeability of 0.030 Darcy, where the two phases are oil and water.
The model has two wells, one production well and one injection well. They are
situated in opposite corners, and will make the fluids flow through the reservoir.
The producer well is controlled by a bottom-hole pressure of 4000 psia, and the
injector is controlled by the surface rate.

The discrepancies in the temperature and pressure at times t = 5, 100, 200 days,
measured in the norms defined in (4.1), are given in Table 4.1. A time step of
∆t = 5 days was used, and the simulation ran for 40 time steps, or 200 days.
The tolerance of the fully implicit solver was tol = 10−6, as was the tolerance for
the pressure, temperature and transport equation in the sequential solver. As
can be seen from the table, the accuracy of the sequential model is good. The
first pressure solution, t = 5 days, has a little high discrepancy, but it decreases
as the simulation proceeds. This error is most pronounced in the supremum
norm. The difference between the two solutions occur initially at the injection
well, before the discrepancy decreases and spreads a little. The temperature
solutions for the last time step (t = 200 days) for both the fully implicit system
and the sequential system are given in Figure 4.1. The figure is in line with the
error findings, and the two solutions are identical to the naked eye.
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4.5 examples

Table 4.1: Temperature and pressure discrepancy for the test case, for t =
5, 100, 200 days. The discrepancy in temperature is given by eT, while
the pressure discrepancy is given by ep.

Time (days) L2 L∞

eT

t = 5 0.00024 0.00295

t = 100 0.00041 0.00189

t = 200 0.00053 0.00197

ep

t = 5 0.08699 1.42820

t = 100 0.00387 0.00927

t = 200 0.00149 0.00344

(a) Fully implicit (b) Sequential

Figure 4.1: Fully implicit and sequential temperature solutions for the final time
step, t = 200 days, in the test case simulation.

The pressure and temperature discrepancy as a function of time is given in Fig-
ure 4.2. The same parameters as above are used. Again we see that the two
solvers match, because the discrepancies are small for all times, except for the
very first pressure discrepancy which we already know from Table 4.1 is bigger.
The temperature discrepancy increases slightly for both norms, but seem to sta-
bilise as time goes on. This is confirmed when we let the simulation run for
longer times as well.

The sequential solution should converge to the fully implicit solution when the
time step decreases. While we in Table 4.1 and Figure 4.1 used a time step of
5 days, the time steps used in Figure 4.3 are ∆t = 0.3125, 0.625, 1.25, 2.5, 5, 10, 20
days. The temperature discrepancy is plotted as a function of ∆t when t =
20, 100, 200 days. It is easy to see that the error decreases when ∆t decreases,
which is satisfactory. The tolerances used were 10−6.
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sequential formulation

(a) Pressure (b) Temperature

Figure 4.2: The L2 and L∞ pressure and temperature discrepancy for the test
case versus time. A time step of ∆t = 5 days was used.

Figure 4.3: Temperature discrepancy for the test case as a function of ∆t. The
discrepancy for time t = 20, 100, 200 days is plotted for ∆t =
0.3125, 0.625, 1.25, 2.5, 5, 10, 20 days.

It is possible to add outer iterations to our sequential method. There are two
places to add outer loops. Either after having solved the temperature system,
or after having solved the transport system. That is, we can have n1 pressure-
temperature iterations and n2 pressure-temperature-transport iterations. The
latter encompasses the pressure-temperature iterations as well. Whenever we
add the outer iterations our sequential system will be of the form

34



4.5 examples

where p denotes the pressure system, T denotes the temperature system and Tr
denotes the transport system.

Up to now, we have had n1 = n2 = 0. In testing we found that the second
outer iteration, the one that iterates after the transport equation has converged,
is more effective at driving the discrepancies between the fully implicit solver
and the sequential solver towards zero. We consider some cases to illustrate
the point. In the first case, we go back to solve the pressure equation after the
temperature equation has converged. That is, n1 = 1, n2 = 0. In the second case,
we have added an iteration after the transport equation, so now n1 = n2 = 1.
We then added a second iteration after the transport equation, but dropped
the iteration after the temperature equation, n1 = 0, n2 = 2. This iteration is
included in the fourth case, where n1 = 1, n2 = 2. We thus have the four cases

case 1 : n1 = 1, n2 = 0

case 2 : n1 = 1, n2 = 1

case 3 : n1 = 0, n2 = 2

case 4 : n1 = 1, n2 = 2.

The temperature and pressure discrepancies measured in the L2 norm between
the sequential and fully implicit solver for t = 20, 100, 200 days are given in Ta-
ble 4.2. A time step of ∆t = 20 days was used, the Newton tolerances were 10−6

and the simulation ran for 200 days. The first column in the table represents
the discrepancy obtained when no iterations are used, n1 = n2 = 0. Comparing
with the next column, where we have an iteration after the temperature equa-
tion, we see that the iteration does improve the accuracy of the temperature
solution, the discrepancy is more than halved, but it does not really affect the
pressure discrepancy. Adding an iteration after the transport equation has a
big effect, however, which can be seen from case 3 in the table. The accuracy
has improved both for the pressure and temperature equation, the accuracy for
the pressure equation has actually improved by an order of 2. The outermost
iteration is thus the iteration that is able to really drive the discrepancies down.
This can also be seen when we compare the original case with case 3 and 4. If
we apply two outermost iterations (case 3), the discrepancies for both temper-
ature and pressure drastically decrease compared with the original case. If we
then add an iteration after the temperature system, and keep the two outermost
iterations (case 4), we see that the discrepancies remain fairly similar to those
of case 3, and in some instances, it has increased a tiny bit. This inner iteration
is thus not as good at driving the discrepancies towards zero.

One of the advantages of the sequential method is that it converges quicker than
the the fully implicit method. The fully implicit method uses approximately 33

seconds to converge, while the sequential method with the same simulation
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Table 4.2: Temperature and pressure discrepancies between the fully implicit
and sequential methods, measured in the L2 norm for t = 20, 100, 200
days, as well as the run time for the sequential method for the all the
different cases. The run time of the fully implicit method was t ≈ 33
sec. The temperature discrepancy is given by eT, while ep denotes the
pressure discrepancy.

Time (days) Original Case 1 Case 2 Case 3 Case 4

eT

t = 20 5.842 · 10−4 3.007 · 10−4 2.888 · 10−5 5.500 · 10−6 4.190 · 10−6

t = 100 6.596 · 10−4 2.509 · 10−4 3.567 · 10−5 3.906 · 10−6 4.475 · 10−6

t = 200 7.533 · 10−4 2.470 · 10−4 3.735 · 10−5 4.057 · 10−6 4.614 · 10−6

ep

t = 20 1.212 · 10−1 1.223 · 10−1 1.734 · 10−3 4.065 · 10−5 4.067 · 10−5

t = 100 1.508 · 10−2 1.505 · 10−2 2.284 · 10−4 4.944 · 10−6 5.145 · 10−6

t = 200 5.793 · 10−3 5.738 · 10−3 7.385 · 10−5 1.551 · 10−6 1.580 · 10−6

Run time (sec) 11.3 15.7 28.8 24.5 37.6

properties and no outer iterations uses 11.3 seconds, see the first column in Ta-
ble 4.2. Applying outer iterations will increase the run time of the sequential
method however, which can be seen from the other columns of the table. The
more iterations applied, the longer the run time. The run time of case 4 is in fact
higher than the run time of the fully implicit method, and as the discrepancy
is smaller for case 3, it would be sensible to use the outer iterations outlined
by case 3. When applying outer iterations you thus have to weigh the goal of
high accuracy to the goal of a fast solver when deciding on the number and
placement of iterations.

Another way to add outer iterations, would be to use tolerances instead of set-
ting a fixed number for n1 and n2. This way, we check whether the pressure
residual has reached the tolerance either after temperature or transport has con-
verged. If tolerance is reached, we continue to the next time step, or else we
go back to solving the pressure system. With this approach, we get a higher
number of iterations for the first time steps, before the number of iterations
gradually declines. We are going to study this approach at the end of the next
example.

4.5.2 SPE10, Layer 5

As the second example we study a model taken from the Tenth SPE Comparative
Solution Project [4]. The project looked at two different models, and we are using
Model 2. It is made up of 60× 220× 85 cells, on a regular Cartesian grid. As
this model is large (it has 1,122,000 fine cells to be exact), we are only going to
be looking at one of the layers in the model. Layer 5 comes from the Tabert for-

36



4.5 examples

mation, which is represented on the 35 first layers. The Tabert formation depicts
a prograding near shore environment, and changes in the permeability field are
smooth. The bottom 50 layers represent Upper Ness, a fluvial deposition. This
formation thus consists of a permeability field with abrupt changes.

We assume the reservoir contains the two phases water and oil. To be able to
extract the oil, we place five wells in an inverted five-spot pattern in the model.
There are four production wells controlled by the bottom hole pressure, and one
injection well controlled by the surface rate. The production wells are placed in
each corner, while the injection well is placed in the middle of the layer. The
permeability field of Layer 5, as well as the placement of the wells, are shown
in Figure 4.4.

Figure 4.4: The logarithm of the permeability field of Layer 5 from the SPE10

data set, with the five wells used in this example.

The discrepancies between the fully implicit solution and the sequential solu-
tion are given in Table 4.3 for both pressure and temperature. Contour plots
of the two temperature solutions for t = 200 days are given in Figure 4.5. The
sequential contours are given in black, while contours given in color belong to
the fully implicit solution. The time step used is ∆t = 5 days, and the simula-
tion ran for 200 days. The fully implicit, pressure, temperature and transport
tolerances are all set to be 10−6, and we have gone back to using n1 = n2 = 0.
As can be seen from the table and figure, the two solutions match, though they
are not completely identical. The contour plot shows that the sequential solver
slightly overestimates the propagation of the heated region.

Test of ∆t: The time steps used to generate Table 4.3 and Figure 4.5 are relatively
small, a ∆t = 5 days was used. Increasing the time step leads to an increase
in the discrepancy, but not by much, see Table 4.4, where ∆t = 20 days was
used. The increase in error is by no means surprising, it is a known fact that
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Table 4.3: Pressure and temperature discrepancy for SPE10, Layer 5. The tem-
perature discrepancy is given by eT, while ep denotes the pressure
discrepancy. We have ∆t = 5 days, the different tolerances are 10−6

and the simulation ran for 200 days
Time (days) L2 L∞

eT

t = 20 0.00029 0.00402

t = 100 0.00039 0.00261

t = 200 0.00049 0.00251

ep

t = 20 0.00092 0.00629

t = 100 0.00039 0.00539

t = 200 0.00029 0.00337

Figure 4.5: Contour plot of the fully implicit temperature solution and the se-
quential temperature solution when t = 200 days. The sequential
contours are black, while the fully implicit solution has colorful con-
tours.

most numerical methods tend to be less accurate when larger time steps are
used. It is more surprising that the increase in the error is so small. This might
mean that there is a weak connection between temperature and pressure, so
an increase in the time step will not significantly alter the overall solution. If
we were to use even bigger time steps, the fully implicit solver stops working.
This happens around time steps of ∆t = 25 days, and arises from the fact that
negative formation factors occur. This is unphysical, and leads to non-finite
values on the right hand side of the system. To account for this problem, one
could use a slightly smaller time step. Interestingly enough, the sequential
solver appears to have no such restriction on the time step ∆t, and works even
with a time step of 200 days. This is, of course, an advantage of the sequential
solver over the fully implicit solver. Lastly, we would just like to note that the
model from the previous example, the test case, accepts a little bigger time steps
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before the fully implicit system breaks down. That system breaks down with
a time step of ∆t ≈ 28 days. The fact that the time step is slightly larger is
not surprising, as that example is an easier model to simulate. For the example
above, the dimensions were Dx = 200, Dy = 200, Dz = 50. All in all, we found
that the simulator accepts larger time steps ∆t when the dimensions are bigger,
and smaller time steps when the dimensions are smaller. When, for instance, the
dimensions are Dx = 400, Dy = 400, Dz = 100, the system breaks down with
time steps ∆t ≈ 31 days, while the dimensions Dx = 100, Dy = 100, Dz = 25
leads to a breakdown when ∆t ≈ 19 days. The simulator seemed especially
sensitive to changes in Dz. Equivalently, the solver tends to accept smaller ∆t’s
when a higher number of grid points are used. The solver breaks down for the
test case with ∆t ≈ 5 days when 30× 30× 20 grid points are used, while a grid
with 10× 10× 5 cells does not break down before a time step of ∆t ≈ 95 days
is used.

Table 4.4: Temperature error for the second example with larger time steps, ∆t =
20 days. The Newton-Raphson tolerance is 10−1 and the simulation
ran for 200 days.

Time (days) L2 L∞

t = 20 0.00062 0.00663

t = 100 0.00067 0.00439

t = 200 0.00076 0.00407

Figure 4.6 shows the difference between the fully implicit pressure and tempera-
ture solution and the sequential pressure and temperature solution for different
time steps, ∆t. We have looked at ∆t = 0.3125, 0.625, 1.25, 2.5, 5, 10, 20 days,
while the tolerances, n1, n2 and end time are kept as before. As can be seen
from the figure, the error increases with larger time steps, it tends to be smallest
when ∆t = 0.3125 days, and largest when ∆t = 20 days. This is just as it should
be, as the sequential solution should converge to the fully implicit solution as
the time step decreases.

Test of tolerance: Up until now, a Newton-Raphson tolerance of tol = 10−6 has
been used for all the different systems. Changing the tolerance to tolT = 10−1

for the temperature equation RT in the sequential formulation does not affect
the solution discrepancies to a large degree, see Table 4.5. The discrepancies are
still of the same order as before. This is true for both the small and the larger
time steps. The fact that we only have a small change in the error might be
because the sequential system solves three different systems, pressure, temper-
ature and transport. The change in the temperature tolerance will not affect the
overall solution to a large degree, as the temperature does not affect the pressure
and transport equation in the same manner as the pressure affects temperature
and transport. When we change the pressure tolerance for Rp, using the smaller
temperature tolerance again, we find that the difference between the discrepan-
cies are somewhat bigger than when we changed the temperature tolerance, see
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(a) Pressure (b) Temperature

Figure 4.6: Discrepancies between the fully implicit pressure and temperature
solution and the sequential pressure and temperature solution as a
function of different time step sizes. The L2 and L∞ errors for t =
20, 100, 200 days are shown for ∆t = 0.3125, 0.625, 1.25, 2.5, 5, 10, 20
days.

Table 4.5. The difference is not significant however, the errors are still mostly of
the same order as the original errors. There is a difference between the plots of
the sequential solution for the last time step, and the fully implicit solutions for
the same time step. The difference is small enough to ignore however, and the
plots have been omitted here for brevity. When we changed the temperature
tolerance, the pressure errors were not affected. When changing the pressure
tolerance, however, both the temperature and pressure error are affected. This
might indicate that the change in temperature follows the change in pressure,
as a difference in the sequential pressure solution leads to a difference in the
sequential temperature solution, but not the other way around. Changing both
the temperature and the pressure tolerances leads to even bigger discrepancies,
naturally. We have omitted these results from Table 4.5, in an attempt to make
the table easier to read. The discrepancies are still of the same order, but they
are bigger than before.

Changing the fully implicit tolerance leads to some changes as well. There is a
change between the discrepancies of course, the discrepancies arising from the
larger tolerance are larger than the ones with the smaller tolerance, just as ex-
pected. But, when you look at the well reservoir oil rate, qOr, you see that the
fully implicit solution is odd when a less strict tolerance is used, regardless of
the fact that the discrepancy is still small, see Figure 4.7. The figure shows that
the fully implicit solution is jagged when a fully implicit tolerance of 10−1 is
used. A time step of ∆t = 20 days is used, and the simulation ran for 200 days.
The simulations shows the same tendencies for all the production wells in the
system, and shows similar tendencies for the total well surface rate as well. In-
creasing the tolerance for the sequential method does not affect the oil rates in
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Table 4.5: Temperature and pressure discrepancies between the fully implicit
and sequential solutions. The temperature discrepancy is denoted eT,
while the pressure discrepancy is denoted ep. A time step of ∆t = 20
days was used, The first two columns used a tolerance of 10−6 for the
fully implicit system, the pressure equation and the temperature equa-
tion. The tolerance of the next two columns was tol = 10−1 for the
temperature equation and 10−6 for the fully implicit system and pres-
sure equation, and the tolerance for the last two columns was 10−1

for the pressure equation and 10−6 for the fully implicit system and
temperature equation.

tol = 10−6 tolT = 10−1 tolp = 10−1

Time (days) L2 L∞ L2 L∞ L2 L∞

eT

t = 20 0.000624 0.006633 0.000625 0.006629 0.000634 0.006647

t = 100 0.000666 0.004394 0.000668 0.004406 0.000672 0.004406

t = 200 0.000761 0.004073 0.000764 0.004081 0.002287 0.004656

ep

t = 20 0.004442 0.14645 0.004442 0.14645 0.004436 0.14627

t = 100 0.012775 0.01927 0.012776 0.01927 0.012767 0.01925

t = 200 0.011744 0.01339 0.011744 0.01339 0.012806 0.01666

the same way. The curves produced with the sequential method and a tolerance
of 10−1 are still smooth and mimic the ones produced with a tolerance of 10−6

to a large degree. We thus need a smaller tolerance when working with the fully
implicit system, adding to the advantages of the sequential system. The strange
behaviour also disappears if we use a smaller time step ∆t, so if we do not want
to use a smaller fully implicit tolerance, a smaller time step can be used.

(a) tol = 10−6 (b) tol = 10−1

Figure 4.7: Reservoir oil rate for the first production rate, with different toler-
ances for the fully implicit system. The tolerance for the sequential
system is kept at 10−6.
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Switching the order of pressure and temperature: As previously described,
the sequential system is solved by first solving the pressure equation, before
continuing and solving the temperature equation and transport equation. It
is therefore interesting to see what happens if we solve the temperature equa-
tion first, before solving the pressure equation and then the transport equation.
There is, after all, no theoretical reason why this should not work. But, when
we try to solve for temperature first, we find that the temperature solver does
not converge for the first time step, and the simulation breaks down. It has been
a little difficult to figure out what causes the breakdown though. It probably
has something to do with the advection term, because the method will often
run if we change the enthalpy or flux velocities, thereby changing the advection
term, but the problem is that the method then produces the wrong solution. The
shape of the solution might be correct, but the values are wrong. The fact that
the problem arises with the advection term does make sense, because advec-
tion describes the heat flow with the phases, and this depends on the pressure
change. So we might have to solve for pressure first in order to have the correct
pressure change. As the method seems to work well when we solve for pres-
sure first, we are going to discard the idea of solving for temperature first and
continue as normal.

Testing different enthalpies and internal energies: The sequential water sat-
uration for the last time step is given in Figure 4.8. The figure also gives the
temperature solution for the last time step. It is the same figure as the sequen-
tial solution in Figure 4.5. The time step used is ∆t = 5 days, and the tolerance
is tol = 10−6.

(a) Water saturation (b) Temperature solution

Figure 4.8: Sequential water saturation and sequential temperature solution for
the last time step, t = 200 days.

As can be seen from Figure 4.8, the temperature solution has the same form as
the saturation plot. We can thus conclude that the temperature is transported
through the reservoir by means of the water flow. It follows the motion of the
fluid from the injection well throughout the reservoir. The temperature solution
is thus strongly determined by the advection term in the temperature equation.
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This all changes, however, if we change the internal energy or the enthalpy of
the system. This is quite natural as the advection term depends on the enthalpy.
Changing these quantities can thus make the contribution from the advection
term smaller, and the solution will depend more on the dispersion term. We
then find that the temperature moves throughout the reservoir independently
of the flow, the warmer temperature will be able to flow to the colder parts on
its own accord.

There are several ways of changing the temperature equation’s dependency on
the flow. In Figure 4.9 we have made three different changes to the system.
In Figure 4.9a, we have changed the constant cr in the enthalpy equation and
the equation describing the internal energy of the rocks, Equation (4.2) and
Equation (4.3) respectively, to cr = 0.5 · 103. In Figure 4.9b we have changed the
internal energy to be Uj = CUT, where CU = 4.1813 · 106 for j = w, o. While we
in Figure 4.9c have used this new internal energy, and cr = 0.5 · 103. That is, we
have three cases, where

case 1 : cr = 0.5 · 103,

case 2 : Uj = CUT,

case 3 : cr = 0.5 · 103, Uj = CUT.

In the two first figures, Figures 4.9a and 4.9b, you can still see a little of the
shape of the saturation. Here, the temperature moves both with the flow, and it
moves through the reservoir on its own accord. The solution is thus dependent
on both the advection and the diffusion term, the enthalpy and internal energy
are such that the advection term is not too small. In the last figure, Figure 4.9c, it
is clear that the temperature is less determined by the flow, it can move through
the reservoir independently of the fluids.

The error between the fully implicit system and the sequential system arising
with the new enthalpy and internal energy changes is given in Table 4.6. As can
be seen, the error is still small with these new enthalpy and internal energy val-
ues. The time step used was ∆t = 5 days, n1 = n2 = 0, and the tolerances were
all sat to be tol = 10−6. If we again look at the effects of changed time steps and
tolerances, we find that changing the fully implicit tolerance influences the error
the most when the enthalpy is changed. The discrepancy difference is not big
however, and the results have therefore been omitted for brevity. Changing the
time steps also has a small effect on the error. Changing only the temperature
tolerance does not have that much to say, but this might come from the fact
that the pressure and transport tolerances are still small, which might make the
discrepancy stay somewhat the same. The temperature tolerance does not affect
the error to a large degree when the internal energy or when both the internal
energy and the enthalpy are changed either. When these are changed, it is the
time steps that has the most to say for the errors. As we saw no significant
change, we have also omitted these results for brevity.
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(a) Case 1: Changed enthalpy (b) Case 2: Changed internal energy

(c) Case 3: Changed internal energy
and enthalpy

Figure 4.9: The effect of different enthalpies and internal energies on the tem-
perature solution.

Table 4.6: Temperature discrepancy for the figures in Figure 4.9. The first two
columns represents the enthalpy change, the next two columns repre-
sents the change in internal energy, and the two last columns repre-
sents the change of both internal energy and the enthalpy.

Case 1 Case 2 Case 3

Time (days) L2 L∞ L2 L∞ L2 L∞

t = 20 0.00116 0.00862 0.00069 0.00269 0.00116 0.00374

t = 100 0.00139 0.00352 0.00239 0.00414 0.00399 0.00533

t = 200 0.00195 0.00368 0.00372 0.00450 0.00654 0.00705

Test of run time: Just as with the first example, the sequential solver is faster
than the fully implicit solver. The run time of the sequential solver when ∆t = 20
days, and the simulation run for 200 days is 16.8 seconds, while the run time of
the fully implicit solver with the same parameters is 40.3 seconds. The original
enthalpies and internal energies are used, and the different Newton-Raphson
tolerances are 10−6.
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We have previously seen that we are able to further improve the sequential
method by applying outer iterations, but that this comes at a cost of a less
efficient method. We have previously operated with a fixed number of outer
iterations, n1 and n2, but we could also check the pressure residual after the
transport system has converged and if the residual is higher than a preset outer
tolerance, tolouter, we re-run the time step. This way, we can control the final
residual, but we will not be able to control the number of outer iterations, n2,
which of course will affect the run time. Figure 4.10 gives a comparison of the
computational time for the fully implicit method and the sequential method
where different outer tolerances have been used. We have tested the run time
for tolouter = 10−1, · · · , 10−10. As can be seen from the figure, the run time of
the sequential method is less than the run time of the fully implicit method as
long as the outer tolerance is less than 10−9. We thus have a flexible method that
even with strict outer tolerances for the pressure residual is more efficient than
the fully implicit method. As the outer iterations help drive the discrepancy
between the two methods to zero, and as the method often is still more efficient
than the fully implicit method, outer iterations should be seriously considered
when the sequential method is used. We can also see that the sequential method
uses approximately the same time for the first five outer tolerances (tolouter =
10−1, · · · , 10−5) so if we choose to use outer iterations, there really is no reason
to choose the most relaxed tolerances because we get better results with the
more strict tolerances with approximately the same run time.

Figure 4.10: Run time of the fully implicit (FI) method, as well as the se-
quential method with ten different outer tolerances tolouter =
10−1, · · · , 10−10. The numbering on the x-axis corresponds to the
power of the outer tolerance for that run. So bar number 4 cor-
responds to the run time of the sequential method with an outer
tolerance of 10−4. A time step of ∆t = 20 days has been used for all
runs, and the simulations ran for 200 days.
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When we talk about computational cost, it is important to remember that part
of the code, like automatic differentiation, is not built for speed. The run times
presented in Figure 4.10 could therefore be significantly reduced if we were to
go through the code and optimize with respect to efficiency.

4.6 summary and observations

The sequential method solves our model equations (2.5) by decoupling the sys-
tem we obtain with the fully implicit method into three subsystems, one for
pressure, one for temperature and one for transport. This results in a more
flexible method that in addition is more stable and more efficient than the fully
implicit method. By adjusting different parameters, like the size of the time step
∆t and different tolerances such as the Newton-Raphson tolerance and the outer
tolerance, we can improve the accuracy of the sequential method. This comes
at a cost of efficiency, however. The method has a restriction in that we have to
solve for pressure before temperature, as the method fails when we try to solve
for temperature first.

To further improve the efficiency, we can apply numerical methods on each sub-
system. This will be done in the next chapter, where we introduce a multiscale
method to the system.
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T H E M U LT I S C A L E M E T H O D

From Chapter 4, we know that the Newton-Raphson method is used extensively.
This method requires the inverse of the Jacobian matrix. With the sequential
method, we have three different Jacobians; one for the pressure equation, one
for the temperature equation and one for the transport equation. The sizes of
the different Jacobians will generally be of size n × n, where n is the number
of cells in the grid. The Jacobian of the pressure system will be slightly larger,
as this system includes the wells, though the wells constitutes a relatively small
part of the system. For the kinds of problems we are studying, the grid will be
quite large as it represents a reservoir. This in turn makes the Jacobians large.
Finding the inverse of the matrices can thus be time consuming and difficult.
Sometimes we might even run into memory problems. The time consuming
property of the inverse might have been okay if we were to find the inverse only
once. This is not the case, however. For each time step, we have three different
rounds of the Newton-Raphson method, and in each Newton-Raphson iteration
we have to find the inverse of a Jacobian matrix. This leads to a high number of
inverses of Jacobians, which again reduces the efficiency of the code. We there-
fore want to apply a numerical method to the system in order to speed up the
process of solving ∆x = J−1

j Rj, where the advantage of speedup does not come
at the cost of inaccuracy. This is where the multiscale method comes in.

Multiscale methods have been the interest of an active research field in recent
years, and there are thus several different multiscale solvers one could use
[11, 7, 9, 1, 17, 6, 12]. We are going to use a fairly recent method, namely the
multiscale restriction-smoothed basis (MsRSB) method [19, 20, 18, 8]. The method
has previously been proven to work well on isothermal systems, and it is inter-
esting to see how it reacts when we introduce the temperature system. We will
therefore apply the method on the pressure and temperature equations, while
the transport equation will be solved through normal means. Herein comes a
thorough study of the MsRSB method, before we in the last section apply the
method on numerous examples to vigorously test the method.
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5.1 multiscale restriction-smoothed

basis method

The idea behind MsRSB and other multiscale methods, is to compress the equa-
tions to a smaller, coarser grid than the original, fine grid, and solve the system
on the coarse grid. We are thus making the overall system smaller, with fewer
unknowns. After having solved the smaller system, we expand the solution
back to the fine grid. To do this, we need operators that make the system small,
and operators which can take the coarse scale solution and expand it back to its
original size.

To introduce the MsRSB method, we start by introducing the grids and opera-
tors. Let Ω be the fine grid, which encompasses i = 1, · · · , n cells. Similarly,
let Ω be the coarse grid, with j = 1, · · · , m grid blocks, where m < n. The
coarse grid is defined through a partition of the fine grid, and a cell from Ω can
only belong to one coarse block. There are thus no overlap of the blocks. The
operator that expands the coarse system is called the prolongation operator and is
denoted P. It is a sparse matrix of size n×m, and consists of basis functions that
map unknowns from blocks to cells. We have one basis function for every grid
block, and each column in P constitutes a basis function. Let x denote either
the fine scale pressure solution, or the fine scale temperature solution. Then, if
we have already found the coarse scale solution xc, the fine scale solution can
be approximated by

x ≈ Pxc.

We will not be able to recreate the fine scale solution exactly, the operator will
only give an approximation. But this approximation will in many cases be able
to imitate the fine scale solution closely, and we are satisfied.

The operator that compresses the fine scale system into the coarse scale system
is an m× n sparse matrix called the restriction operator, and is denoted R. This
R should not be confused with the R used for the equations on residual form.
At each Newton-Raphson iteration k, we want to solve the fine scale system
Jx,k∆xk = −Rx,k, where ∆x = xk+1 − xk and x = p or T. To do so, we use the
two operators to find a coarse scale system from which we can find a coarse
scale solution and then approximate the fine scale solution through ∆x ≈ P∆xc.
By applying the two operators, and omitting the iteration number, we find that
the coarse scale system is given by

JxP∆xc = −Rx,
RJxP∆xc = −RRx,

Jx,c∆xc = −Rx,c.

Notice that Jx,c = RJP is a matrix of size m×m, which makes this new system
less costly to solve, at least as long as its sparsity structure and condition num-
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ber are not significally worse than that of J.

Now that we have shown how to find the coarse scale system, we are ready to
define the prolongation and restriction operators. We first define the restriction
operator, as this operator is easiest to define. We are going to use a control
volume summation operator for R,

Rij =

{
1, yj ∈ Ωi
0, otherwise.

We thus have that Rij = 1 if cell j belongs to coarse block i. Applying R to a
vector or matrix is therefore equivalent to adding up these cells. We are thus
adding the variables defined in the cells. Other operators could also be used
as the choice for R. But, as the control volume summation operator works well
for the MsRSB method, this choice of R ensures the important property of mass
conservation, and as it is the standard for both the MsRSB and the multiscale
finite volume method [19, 11], we are going to use R as defined above.

When it comes to the prolongation operator P, MsRSB uses, as many of the other
multiscale methods, basis functions to define P. Where the other methods use
localized flow problems that in different ways depend on the fine grid to find
the basis functions, MsRSB uses an iterative scheme to find the functions. This
way we can forgo the complicated set-up of the local problems. The scheme
is defined so that the method can be used on as many, and as complex, grid
types as possible. It is further designed to ensure that the basis functions are
independent of time, and that they have partition of unity.

As we want a method that works on general grids, we will focus on the error in-
stead of the given grid, and try to find basis functions that keep the coarse grid
error smooth when we interpolate to the fine scale. Generally, when we restrict
a problem to a coarser grid, the multiscale method is able to handle so-called
global errors. That is, we are able to recreate global tendencies, factors such as
gravity effects that are present on the coarser grid. These global errors are er-
rors that iterative numerical methods, often used as smoothers in such methods
as multigrid, are not able to dispose off quickly. The errors are therefore often
called smooth errors or, to prevent confusion with geometrical smooth errors, al-
gebraically smooth errors [5]. Instead of focusing on the given problem when we
design the prolongation operators, we focus on the algebraically smooth errors.
Having handled the global error on the coarse scale, we want to preserve the
small algebraically smooth errors when we prolong to the fine scale, and the
prolongation operators should therefore be defined accordingly. We thus want
prolongation operators that ensure that if we have an algebraically smooth so-
lution on the coarse grid, then the fine scale solution is smooth as well. If we
always manage to keep ∆x algebraically smooth, the method can work on many
different problems, independently of what type of grid and physical properties
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we have.

Algebraically smooth errors are characterized by small residuals [5]. We have
a residual whose norm is given by ||r|| = ||R+ JP∆xc||. To minimize this, we
have to minimize JP, as the other factors are already known and thus unable to
be minimized. To find the prolongation operator, MsRSB therefore employs a
method that minimizes ||JP||1. We thus have to minimize JPj for all j, where Pj
is basis function j, placed in the jth column of P.

If we have to change P every time we are to apply the multiscale method, we will
use a lot of time finding the operator, and the method will be less efficient. The
MsRSB method will therefore use a slightly different matrix than the Jacobian
when finding the prolongation operator. It uses a matrix that enforces the sum
of the fluxes to be equal to zero. This means that we use a local system that
is similar to the solution of an elliptic Poisson system. By doing this, the basis
functions will be fairly similar to steady-state basis functions, and we have lost
the time dependency of the functions. The matrix MsRSB uses is of the form

JP =
1
2

Jx + JT
x − In×n

(
Jx + JT

x

) 1
...
1


 ,

where In×n is the n× n identity matrix, and [1 · · · 1]T is a column vector of ones
of length n. By studying Jp, one can see that we have ∑j JP,ij = 0 ∀i, and the
sum of the fluxes will be zero.

In addition, we want the basis functions to have partition of unity. A function
that has partition of unity will sum all its function values to one, i.e., ∑ h(y) =
1 ∀y. For the basis functions, this is equivalent with

∑
j

Pij = 1.

The desire for partition of unity comes from the fact that the basis functions
approximate the fine scale solution x through

xi ≈ x̄i =
m

∑
j

Pijxc,j,

which means that if we have found a coarse solution such that xc,j = xi and if
Pj has partition of unity, then

x̄i = ∑
j

Pijxc,j = xi ∑
j

Pij = xi,

and the approximation will give the exact solution for cell number i.
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5.1 multiscale restriction-smoothed basis method

We can now introduce the iterative scheme. To minimize JPPj, MsRSB uses a
weighted Jacobi method. Let w be a relaxation factor, usually set to 2/3, and let D
be a diagonal matrix containing the diagonal part of JP. Furthermore, let n be
the iteration number of the iterative scheme. The method used to find the basis
functions is then given by

Pn+1
j = Pn

j − wD−1 JPPn
j . (5.1)

The iterations carry on until the prolongation operator is sufficiently smooth,
that is, until the error in the iterative scheme has reached a preset tolerance. We
also have to make sure the iterative scheme does not produce basis functions
that cover the whole domain. This will be discussed further below. First we
introduce the initial guess for the basis functions, which will be given as a
constant function for each coarse block,

P0
ij =

{
1, if cell i belongs to coarse block j,
0, otherwise.

Said differently, we have that P0 = RT.

For our initial guess of P, partition of unity is inherently true, as ∑j P0
ij = 1 by

definition. Further, we have that MsRSB ensures the updated basis functions to
have partition of unity as well. Remember from above that ∑k JP,ik = 0 ∀i. By
assuming that the basis functions have partition of unity for iteration n, which
we already know is true when n = 0, we have that

∑
j

Pn+1
ij = ∑

j
(Pn

ij −
w

JP,ii
∑
k

JP,ikPn
kj)

= ∑
j

Pn
ij −

w
JP,ii

∑
j

∑
k

JP,ikPn
kj

= 1− w
JP,ii

∑
k

JP,ik ∑
j

Pn
jk = 1.

The partition of unity is thus maintained for all n.

It is not enough to just introduce the weighted Jacobi method and show parti-
tion of unity when designing the basis functions. We also have to restrict the
iterative scheme, or else it will eventually give basis functions that cover the
whole domain. We therefore define support regions that determine the support
of the basis functions. This of course, means that the functions are nonzero only
inside the regions. How MsRSB defines these support regions will be discussed
below. We first want to show examples of the actual functions. Figure 5.1 gives
two different basis functions. Note that the functions are only defined inside a
region, the support region. The figures to the left, Figures 5.1a and 5.1c, give
the logarithm of two different permeability fields, both inside the support re-
gion of the middle block, while the figures to the right, Figures 5.1b and 5.1d,
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(a) Homogeneous permeability (b) Homogeneous basis

(c) Non-homogeneous permeability (d) Non-homogeneous basis

Figure 5.1: The logarithm of two different permeability fields inside the support
region for the middle coarse block and their resulting basis function.
The topmost permeability is a homogeneous permeability, while the
bottom permeability is taken from layer 5 of the SPE10 data set [4].
The grids are equal for the two different examples, and both the fine
and coarse scale grids can be seen.

give the resulting basis functions. The top figures have a homogeneous perme-
ability field, while bottom have a heterogeneous permeability field. The fine
and coarse scale can both be distinguished in the figures. As can be seen, the
basis functions are not equal, the functions are able to adjust depending on the
permeability field. The fact that MsRSB’s prolongation operator is able to adjust
to the physical properties of the problem and captures the influence of the per-
meability is convenient as the permeability field is important to the flow.

As previously stated, we need to make sure that the individual basis functions
do not cover the whole domain. This is done through support regions, which
determine the support of the basis functions. To find the support region for
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5.1 multiscale restriction-smoothed basis method

coarse block i, MsRSB first collects all the coarse blocks that share a face with i,
and the blocks that share a single point with i, which for instance occurs on the
corners of i when the grid is a regular Cartesian grid. We then make a triangu-
lation between all the selected block centroids and block face centroids. In the
end, the support region for block i consists of all cells within this triangulation.
The process is illustrated in Figure 5.2. We want to find the support region of
the middle block, the one used in Figure 5.1. We start by collecting the blocks
that share a face or a single point with the block, as shown in Figure 5.2a. In
Figure 5.2b, the triangulation is made, before the support region is defined in
Figure 5.2c.

(a) Collect blocks (b) Triangulation

(c) Support region

Figure 5.2: Illustration of the process required to find the support region of the
middle coarse block.

As the support regions are found through block and face centroids, and as these
are fairly easy to find no matter how complicated the grid structure is, it is clear
that the support regions can be found for many different grid structures. This
again means that the basis functions can be found for many different grid struc-
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tures, without having to change the implementation for each grid.

As we have now defined the support regions, we can proceed to show the full
iterative method MsRSB uses to update the basis functions. Let n be the n’th
iteration in the scheme to find the j’th basis function. Each iteration follows four
steps. First, we define

dj = −wD−1 JPPn
j .

This is just the update from Equation (5.1). As previously stated, this update
will grow to cover the whole domain unless we use the support regions to
restrict dj. To enforce this, we will have three different cases: One for when we
are outside the support region, one for when we are inside only one support
region, and one for when we are on the boundary of another support region.
The boundary of a support region is given by the cells that are adjacent to the
outermost cells in the region. The last case occurs because the support region
of a block generally is defined a little outside of the block, not just on the block,
and each block might thus have several support regions defined on its area,
see Figure 5.3 for an illustration. If we are outside of the support region of j,

Figure 5.3: Support boundaries for all the coarse blocks in the coarse grid. Each
boundary is given by a different color and form a box around its
coarse block. The support boundary of the middle block is given
in orange, and the support boundary of the uppermost corner on
the left side is given in light blue. Where there are many colors, the
support boundaries overlap. As can be seen, a coarse block can have
several support boundaries defined on its area.

then we must have dj = 0, so that Pj = 0 outside the support region. If we
are inside the support region, and not on a boundary of another region, we
will not have any problems, and we have that dj = dj as defined above. This
automatically preserves partition of unity. When we encounter a cell i that is
part of the boundary of one or more support regions, we have to normalize over
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5.1 multiscale restriction-smoothed basis method

the cell’s support regions in order to keep the partition of unity. This means

that we have dij =
dij−Pn

ij ∑k∈Hi
dik

1+∑k∈Hi
dik

, where Hi gives the support regions that cell i is

on the support boundary of. If we let Ij be the support region of basis function
j and G consists of all the cells in all support boundaries, then all of this yields
the second step in the algorithm, namely

dij =


0, i /∈ Ij,
dij, i ∈ Ij, i /∈ G,
dij−Pn

ij ∑k∈Hi
dik

1+∑k∈Hi
dik

, i ∈ Ij, i ∈ G.

We can now proceed to the third step, which updates the basis function,

Pn+1
j = Pn

j + dj.

As a quick aside, we can show that this really does preserve partition of unity.
We assume the property is true for iteration n, that is, we assume ∑j Pn

ij = 1.
Then we have

∑
j

Pn+1
ij = ∑

j
(Pn

ij − dij).

Now, if dij = 0, we already have the answer. Similarly, we have already shown
that the functions have partition of unity when dij = −wD−1 JPPn

j . All that
remains is thus to show that the statement is true when i ∈ Ij, i ∈ G. Then, we
have that

∑
j

Pn+1
ij = ∑

j
(Pn

ij − dij) = ∑
j∈Hi

(Pn
ij − dij)

= 1− ∑
j∈Hi

dij − Pn
ij ∑k∈Hi

dik

1 + ∑k∈Hi
dik

= 1 +
1

1 + ∑k∈Hi
dik

(
− ∑

j∈Hi

dij + ∑
j∈Hi

Pn
ij ∑

k∈Hi

dik

)

= 1 +
1

1 + ∑k∈Hi
dik

(
− ∑

j∈Hi

dij + 1 · ∑
k∈Hi

dik

)
= 1.

It is thus clear that MsRSB’s basis functions truly preserve partition of unity.

To decide whether we have found the converged basis function, we continue to
the last step, which checks the local error outside the boundary regions

ej = max
j

(|dij|), i /∈ G.

If ||ej||∞ < tol, we have found our basis function. If the opposite is true we go
back to the first step and start a new iteration by finding dj.
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To apply the MsRSB method we thus have to find R through the volume sum-
mation operator, and then find the support regions so we can produce P with
the iterative method. This is then used to produce the coarse scale system
Jx,c∆xc = −Rx,c, from which we can find the coarse scale solution ∆xc. Finally,
we use P to find the approximation of the fine scale solution through ∆x ≈ P∆xc.

To further improve the approximation, one could introduce an iterative proce-
dure to the multiscale method, aimed to drive the fine scale residual towards
zero. This results in an iterative multiscale method, which we will now discuss.

5.2 iterative multiscale

The multiscale method is not the only method that interpolates a solution on
a coarse grid to a solution on a fine grid. This is also the basic idea behind
the class of numerical solvers known as multigrid methods. There are many dif-
ferent types of multigrid methods, some designed to solve specific problems
while others are designed to handle a broader spectre of problems. They are all
based on a few defining steps, however, which utilize a hierarchy of grids. The
methods are built on the fact that global, low frequency errors, which many it-
erative numerical methods use a long time to solve, can be removed on a coarse
grid, while local, high frequency errors can be removed quickly by the iterative
methods. The multigrid methods are thus built on a recursive call of the general
steps:

1. Smoother: Removes high frequency error,
2. Restriction: Downsizes the problem to a coarse grid and finds the coarse

scale solution,
3. Interpolation: Prolong the coarse solution to the fine scale.

Going back to the multiscale method, we know that the method will generally
not give the exact fine scale solution. The method will only give an approxima-
tion of the solution, as the prolongation operator is only able to approximate
the fine scale solution. The multiscale method is good at capturing the global
tendencies, but not as good at capturing smaller, more local tendencies, such as
density change. Still, we want to capture the local effects, because we want the
multiscale solution to be as close to the fine scale solution as possible. To do this,
we are going to use some of the same ideas as the ones used in the multigrid
methods. The method we are going to use is called an iterative multiscale method.
This idea has been used for other multiscale methods as well, for instance [7, 17].

The iterative multiscale method is, as the name suggests, an iterative method.
Just as the multigrid methods, it uses the fact that many linear solvers are able
to remove high frequency errors quickly. It therefore employs ns steps of a fine
scale smoother to drive the fine scale residual towards zero and thus remove
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the local errors. To remove the global errors, it applies the multiscale method
to solve a coarse scale system that is then prolonged back to fine scale. Each
iteration is thus similar to a 2-level multigrid method, where we start with a
smoother to remove high frequency errors before we downsize to a coarse grid
with the restriction operator R and lastly interpolate the coarse solution to the
fine scale with the prolongation operator P.

Let l denote the iteration number in the iterative multiscale scheme. We first
apply a smoother on the so-called defect dl to correct the local error. The defect
should contain the high frequency error. The smoothing step is denoted yl =
S(dl), where S(·) is the smoothing method, an inexpensive linear solver. To find
the defect, we remember from above that we for each Newton-Raphson iteration
solve JcUc = −Rc instead of solving the fine scale system, where we use U = ∆x
in an attempt to make the notation simpler. By applying the multiscale method
to the fine scale system, the local effects will be lost and the local error remains
more or less unchanged. Thus, to capture the local effects, the defect at iteration
l will be given by the fine scale system,

dl = −R− JUl,

where Ul denotes the iterative multiscale solution for iteration l.

Instead of finding the Newton update U by directly solving the coarse system
and prolonging back to the fine scale, we are now going to apply the iterative
multiscale method to find the update U. We want an iterative method that finds
the Newton update and captures both the local and global effects. We have
already found the local effects through y, and we know that the global effects
can be captured through the multiscale method. Further, we know that U =
xk+1 − xk = −J−1R, which is where we will start. The iterative Newton update
is found by simple arithmetic tricks like adding and subtracting variables, and
by using the fact that Jc = RJP, and thus J = R−1 JcP−1. We have

U = −J−1R+ U −U

= U − J−1(R + JU)

= U + J−1d + y− y

= U + J−1(d− Jy) + y
= U + PJcR(d− Jy) + y.

The iterative scheme is thus given by

Ul+1 = Ul + PJcR(dl − Jyl) + yl,

where yl = S(dl). One round of the smoother and update is called a multiscale
cycle.
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We let the iterative scheme run until a predefined tolerance is reached, or, in
some cases, until we have reached a predefined limit on the maximum number
of iterations. The new Newton iteration can be found when the method has
converged, and it will be given by

xk+1 = xk + UL,

where L is the last iteration in the iterative multiscale method.

It should be noted that the terms iterative multiscale and multiscale are used in-
terchangeably in the rest of this thesis. Both terms will refer to the use of the
multiscale cycles unless otherwise specified.

When it comes to the smoother, there are many methods one could choose. As
long as it is inexpensive, you can basically pick as you like. Methods such as the
Jacobi method, the Gauss-Seidel method and the incomplete LU factorization
are all good choices. We are mostly going to use the latter, and will therefore
give a quick review of the method.

Incomplete LU factorization

We will look at the general case and consider the system Ax = b. Most matrices
can be factored into two matrices, a lower triangular matrix L and an upper
triangular matrix U, such that A = LU. The system can then be solved by first
solving Ly = b and then Ux = y. These two systems can be solved quickly, as L
and U are triangular.

Even though A is sparse, there is no way to ensure that L and U are sparse. This
can lead to large matrices, even though they are triangular, which in turn leads
to increased memory usage. It is therefore possible to enforce the two matrices
to be zero everywhere A is zero. This is the incomplete LU factorization with
zero fill-ins, generally denoted ILU(0). The incomplete LU factorization will of
course only be an approximation to the original matrix A, and as such LUx = b
will only give an approximation to the solution that would have been obtained
from Ax = b. The approximation will be found quickly, however. As we only
require a solution that will rapidly smooth the local error, but not an exact solu-
tion to the overall system, the incomplete LU factorization is a good method for
us to use as our preconditioner.

Matlab has developed a good function for the incomplete LU factorization, and
this has been utilized in this project. We will therefore not go into detail about
how to find the L and U matrices. The interested reader can consult various
books and papers on the LU factorization, for instance [24].
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5.3 overview

There have so far been some twist and turns. To solve Equation (2.5), we need
to use quite a few different methods. We refer to the flowchart on the next page
to get a better overview of each time step.

For each time step, we need to go through three different Newton-Raphson
loops, one to solve the pressure equation Rp, one to solve the temperature
equation RT and one to solve the transport equation Rα, α = w, o or T. We start
the given time step by using the pressure, temperature and saturation values
from the last time step. The first thing we do is to go through the Newton loop
to find the pressure. In each Newton iteration we want to find ∆p = −J−1

p Rp.
We solve this system by finding an approximation to the Newton update with
the help of the iterative multiscale method. When the multiscale cycles have
converged, we can proceed to the next Newton iteration. When the Newton-
Raphson method has converged for pressure, we can continue with temperature,
which is found in the same way as pressure. Finally, we use the total velocity to
find the saturations through the means of the transport equation, solved through
the normal Newton-Raphson method. Here, we do not apply the multiscale
method. When this last Newton method has converged, we have the pressure,
temperature and saturation solutions for the given time step, which we in turn
can use to solve the next time step. All in all, the procedures needed to solve
one time step are given in the flowchart on the next page.
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Pressure Newton Loop Temperature Newton Loop

Transport Newton Loop

Want to solve pi+1 = pi − J−1
p Rp(pi, Ti=0, si=0):

Iterative Multiscale:
dl = −Rp − J∆pl

for i = 1, · · · , ns
yl = S(dl)

end
∆pl+1 = ∆pl + PJcR(dl − Jyl) + yl

resMS = ||Rp − Jp∆pl+1||

resMS < toliter?

Yes

No

multiscale
converged!

pi+1 = pi − ∆pl+1

||Rp|| < tol?

Yes

No

Newton
converged!

pn+1 = pi+1
Compute vT etc.

pi=0 = pn

Ti=0 = Tn

si=0 = sn

Want to solve Ti+1 = Ti − J−1
T RT(pn+1, Ti, si=0):

Iterative Multiscale:
dl = −RT − J∆Tl

for i = 1, · · · , ns
yl = S(dl)

end
∆Tl+1 = ∆Tl + PJcR(dl − Jyl) + yl

resMS = ||RT − JT∆Tl+1||

resMS < toliter?

Yes

No

multiscale
converged!

Ti+1 = Ti − ∆Tl+1

||RT|| < tol?

Yes

No

Newton
converged!

Tn+1 = Ti+1

Choose whether to solve for α = o, w or T.

Using vT,
si+1 = si − J−1

α Rα(pn+1, Tn+1, si)
||Rα|| < tol?

No Yes
Newton
converged!

sn+1 = si+1

pn+1, Tn+1, sn+1
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5.4 examples

We are now going to present some examples that vigorously test the multiscale
method. We are going to compare the solutions resulting from the multiscale
method with the solutions obtained by the sequential splitting method. Unless
otherwise specified, the enthalpy, internal energy, internal energy of the rock
and initial values are all defined as in the beginning of Section 4.5. The same
machinery as was used in Section 4.5 is used for these new tests. To test the
accuracy of the multiscale method, we use the L2 and L∞ norms defined in
Equation (4.1) except that we now use the sequential method as the reference
solution and the multiscale method as the tester,

e2 =
||xS − xMS||2
||xS||2

=

(
n
∑

i=1
|xS,i − xMS,i|2|Ωi|

)1/2

(
n
∑

i=1
|xS,i|2|Ωi|

)1/2 ,

e∞ =
||xS − xMS||∞
||xS||∞

=
maxi=1,··· ,n |xS,i − xMS,i|

maxi=1,··· ,n |xS,i|
.

We have that xS is the sequential solution, xMS is the multiscale solution and
|Ωi| gives the volume of cell i.

The basis functions will be kept fixed for all the examples given below. That
is, we will only find the prolongation operator once per example, and use this
operator every time step. The improvement of the accuracy when the functions
were updated throughout depended on the example, but it always came at a
cost of noticeable difference in run time. As the accuracy was good with the
fixed basis functions, we accept the loss of precision in order to have a more
efficient code.

To get a thorough test of the multiscale method, we will start by testing the
method on a case with only one phase, before we expand to multiphase flow.
When looking at multiphase flow, the two phases will always be oil and water,
while the single-phase is oil.

5.4.1 Single-Phase

The single-phase example that will be presented is taken from my Specializa-
tion Project [30]. Data from SPE10 will be used, and as Layer 5 was used in
Section 4.5, it will be used here as well. We place a horizontal well in the cells
i = 2, j = 2, · · · , 219, that is, along the boundary in the y-direction. The ini-
tial temperature is 300 K, while the initial pressure is 200 bar. The enthalpy,
internal energy and internal energy of the rock are the single-phase restric-
tions of the multiphase functions defined in Section 4.5, where we have used
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ρs
W = 750 km/m3, cr = 0.5 · 103 and all other variables are as in Section 4.5 We

let the simulation run for 550 days, and a time step of ∆t = 7.02 days is used.
The Newton-Raphson tolerance is 10−4. We let the iterative multiscale run for
20 iterations each step, and 5 iterations of the Jacobi method have been used as
a smoother. A coarse grid of 6× 22× 1 is used. This constitutes a coarsening-
factor of 100.

Anyone who has read my specialization project knows that I encountered a prob-
lem with my implementation of the iterative multiscale solver. I encountered
’spikes’ in the first time steps in my temperature solution. The mistake occurred
because I, instead of applying the iterative multiscale method on the equation
xi+1 = xi − J−1

i Ri inside the Newton-Raphson method, applied the multiscale
method with zero multiscale cycles, and then after the Newton-Raphson method
had converged, applied the iterative multiscale on the converged update. This
lead to an overestimation of the first time steps.

The pressure and temperature discrepancy between the correctly implemented
iterative multiscale method and the sequential, fine scale, method is given in
Table 5.1. Contour lines for both the sequential and multiscale temperature so-
lution for t = 550 days are shown in Figure 5.4b. The sequential lines are given
by the continuous lines, while the multiscale contours are dotted. Here you can
also see the well, and you can clearly see how the heat spreads from the well
throughout the reservoir. As one can see from the figure, the multiscale solution
is not able to fully recreate the sequential solution near the well, and there are
some noise on the purple contour line. The difference near the well might come
from the actual well. The well will cause a lot of change, and the multiscale
method is not able to pick up all the nuances. The noise is a bit unexpected, but
as it occurs on the first heat wave from the well, it might indicate that the mul-
tiscale method needs a little time to adjust. Other than these two occurrences,
we can be see from the table and figure that the multiscale method manages to
reproduce the sequential reference solution to a large degree.

Table 5.1: The pressure and temperature L2 and L∞ discrepancy between the
sequential method and the correctly implemented iterative multiscale
method for the single-phase case.

eT ep
Time (days) L2 L∞ L2 L∞

t ≈ 21 1.160 · 10−5 2.156 · 10−4 1.894 · 10−6 1.059 · 10−5

t ≈ 250 1.989 · 10−4 2.000 · 10−3 8.242 · 10−5 1.267 · 10−4

t ≈ 550 6.091 · 10−5 6.408 · 10−4 2.729 · 10−5 8.491 · 10−5
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(a) Maximum iteration = 100 (b) Maximum iteration = 20

(c) Maximum iteration = 10 (d) Maximum iteration = 2

Figure 5.4: Contour lines of the multiscale (dotted lines) and sequential (contin-
uous lines) temperature solutions for t = 550 days when the maxi-
mum number of iteration in the iterative multiscale method is 100,
20, 10 and 2.

It is important to check that the spikes we encountered in the specialization
project actually have gone. Figure 5.5 shows the maximum and minimum
temperature for each day for the sequential method and the correct multiscale
method. As one can see, the two solutions closely resemble each other and the
spikes have completely disappeared.

To check that the method works as expected, we check what happens when the
maximum number of iterations change, and what happens when we change the
dimensions on the coarse grid. The accuracy between the sequential method
and the multiscale method tends to improve as the maximum number of it-
erations increases, see Figure 5.4. When the opposite is true, the discrepancy
increase. Table 5.2 shows the temperature and pressure discrepancy between
the sequential and multiscale method when the maximum number of iterations
was set to 10. Comparing with the results in Table 5.1, where the maximum
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Figure 5.5: The maximum and minimum temperature per day generated by the
sequential (S) method and the multiscale (MS) method.

iteration number was 20, we see that we now have a higher error between the
two methods.

Table 5.2: Pressure and temperature discrepancy between the sequential and
multiscale method for t ≈ 21, 250, 550 days, when the maximum num-
ber of iterations are 10. The temperature discrepancies are given by
eT, while the pressure discrepancies are given by ep.

eT ep
Time (days) L2 L∞ L2 L∞

t ≈ 21 2.243 · 10−5 3.666 · 10−4 6.638 · 10−6 4.207 · 10−5

t ≈ 250 2.707 · 10−4 3.313 · 10−3 1.760 · 10−4 2.769 · 10−4

t ≈ 550 1.364 · 10−4 1.497 · 10−3 8.022 · 10−5 3.695 · 10−4

This can also be seen when comparing the sequential temperature solutions for
t = 550 days with the multiscale temperature solution for the same time found
by using different maximum iteration numbers. This can be done by studying
Figure 5.4, which depicts four contour plots, one where the maximum number
of iterations is 100, one where it is 20, one where it is 10 and one where it is 2.
The sequential solutions are given by the continuous lines, while the multiscale
solutions are dotted. Though the temperature solution found by the multiscale
method when the maximum number of iterations is 10 still resembles the se-
quential solution, the results are in no way as good as before. It is clear that
the two contour lines do not align. By reducing the maximum number of iter-
ations further, the two solutions are even more spread apart, as can be seen in
the bottom right plot in Figure 5.4, where the maximum number of iterations
is 2. We also have that the noise and error by the well we encountered when
20 iterations were used has increased. So, all in all, we have that by decreasing
the maximum number of iterative multiscale iterations, the accuracy decreases,
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just as one would expect. If we increase the maximum number of iterations the
accuracy improves, as can be seen by studying the upper left plot in Figure 5.4.
Here we can see that when the 100 iterations are used, the sequential method
and multiscale method perfectly align.

We go back to the standard maximum iteration number of 20. When we change
the dimensions of the coarse grid, it is reasonable to assume that the accuracy
will change as well, at least if we keep the maximum number of iterations fixed.
Looking at Table 5.3, where we have used a coarse dimension of 5× 10× 1 we
see that the assumption is, indeed, correct, but mostly for the last time step. The
coarse grid used to generate the two columns to the right in Table 5.3 is coarser
than the grid used to generate the two columns to the left, and this last one
gives the same discrepancies as in Table 5.1. As all other parameters remain
unchanged, we can see that making the coarse grid coarser in this example,
gives a very small increase in the discrepancy between the sequential method
and the multiscale method. If we did not have a fixed value for the iterations,
and instead let the method run until it reaches a preset tolerance, the method’s
discrepancy would not be much affected by a coarser grid. The method would
converge even for very coarse grids, but it would need more iterations to do so.
This will be discussed in a later example.

The minimal change in the discrepancy for this example indicates that the mul-
tiscale method’s performance is good even when quite a coarse grid is used and
the number of iterations is fixed. Though it is important to remember that we
have used a relatively high value for the number of iterations here which en-
force good results. The sequential and multiscale temperature solution, as well
as the discrepancy between them, for t = 550 days is shown in Figure 5.6. This
also shows that the method remains good when coarser grids are applied. Even
though there is a discernible difference between the multiscale solution and the
sequential reference solution, the difference is small. Most of the difference be-
tween the two methods seems to arise because of the well. We can also see that
there are some correlation between the error and the permeability field. When
we make the coarse scale finer, the accuracy improves, the discrepancy between
the two methods decreases.

Table 5.3: The sequential and multiscale temperature discrepancy on two differ-
ent coarse grids.

6× 22× 1 5× 10× 1
Time (days) L2 L∞ L2 L∞

t ≈ 21 1.160 · 10−5 2.156 · 10−4 1.305 · 10−5 2.321 · 10−4

t ≈ 250 1.989 · 10−4 2.000 · 10−3 4.407 · 10−4 5.173 · 10−3

t ≈ 550 6.091 · 10−5 6.408 · 10−4 1.421 · 10−4 1.227 · 10−3
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(a) Sequential (b) Multiscale

(c) Error (d) Permeability

Figure 5.6: Sequential and multiscale temperature solution, as well as the differ-
ence between them, when t = 550 days, generated with a coarse grid
with dimensions 5× 10× 1. The permeability in logarithmic scale of
the layer is also displayed.

5.4.2 Homogeneous Permeability

When extending the multiscale method to multiphase flow, we are first going
to consider the simple test case from Section 4.5, namely the reservoir with the
homogeneous permeability. The dimensions, well placements, initial values and
all other parameters are as in Section 4.5.

The discrepancy for t = 20, 100, 200 days between the sequential and multiscale
pressure and temperature solution is given in Table 5.4. A coarse grid with di-
mensions 5× 5× 5 is used. This constitutes a coarse grid with 125 grid blocks,
making it 32 times as coarse as the fine grid. The time step used was ∆t = 20
days, the simulation ran for 200 days, and the sequential tolerance was 10−6.
The multiscale method uses a Newton-Raphson method which has a tolerance
of 10−6. For each Newton iteration, it applies the iterative multiscale method,
which runs until an iterative tolerance is reached. The first three rows in Ta-
ble 5.4 are the result of an iterative tolerance of 10−1. The table shows that the
discrepancy between the two methods is quite small for both the pressure and
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Table 5.4: The discrepancy between the sequential solution and the multiscale
solution for both temperature and pressure for the homogeneous per-
meability. Two different values for the iterative tolerance toliter were
used, as well as a time step of ∆t = 20.

eT ep
toliter Time (days) L2 L∞ L2 L∞

10−1
t = 20 9.045 · 10−5 5.071 · 10−4 1.112 · 10−5 3.122 · 10−5

t = 100 1.381 · 10−4 8.272 · 10−4 1.331 · 10−5 6.774 · 10−5

t = 200 2.753 · 10−4 2.519 · 10−3 3.749 · 10−6 1.351 · 10−5

10−6
t = 20 6.127 · 10−11 4.745 · 10−10 4.259 · 10−12 3.607 · 10−12

t = 100 3.625 · 10−10 1.465 · 10−9 3.796 · 10−10 1.115 · 10−9

t = 200 2.520 · 10−10 1.067 · 10−9 1.429 · 10−10 3.661 · 10−10

temperature solutions. However, when studying the second plot in Figure 5.7
we see that the multiscale method has not completely managed to converge to
the sequential solution. The figure gives the temperature solution when t = 200
days for the sequential and multiscale method, and, as can be seen, the mul-
tiscale solution differs slightly from the sequential solution when the iterative
tolerance is 10−1. This can be corrected for, however, by decreasing the iterative
tolerance, see the last three rows in Table 5.4 and the third plot in Figure 5.7.
An iterative tolerance of 10−6 has now been used, resulting in a drastically de-
creased discrepancy, and a multiscale and sequential temperature solution that
are identical to the naked eye. The figure also display the discrepancy between
the two methods for the last time for the two different iterative tolerances. Most
of the error seems to occur on the two sides that make the corner where the
production well is placed. Note the smaller order on the error when we use the
lower iterative tolerance. The multiscale method is thus, as can be seen, a good
method when the iterative tolerance is 10−1, but it is even better when we use
toliter = 10−6. It is important to remember that a homogeneous permeability is
the worst case scenario for the multiscale method, as there are no small-scale
structures for the prolongation operator to customize to. So the fact that the
method works well is reassuring.

Remember from Section 4.4 that we can add outer iterations in order to improve
the sequential method compared to the fully implicit method. It is therefore im-
portant to study the affect on outer iterations on the multiscale method as well,
to see if this make the multiscale solutions converge towards the fully implicit
solutions. There are, as previously stated, two places where we can add outer
iterations. We can have n1 iterations after the temperature system, and n2 itera-
tions after the transport equation.
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(a) Sequential (b) Multiscale, toliter = 10−1 (c) Multiscale, toliter = 10−6

(d) Error, toliter = 10−1 (e) Error, toliter = 10−6

Figure 5.7: The temperature solution for the last time step, t = 200 days, for the
sequential method and for the multiscale method, where two differ-
ent iterative tolerances have been used. The first used a tolerance
of 10−1, while the other used a tolerance of 10−6. The discrepancy
between the sequential solution and the multiscale solution for the
same time for the two different iterative tolerances are also depicted.

We will study the cases from Section 4.5,

case 1 : n1 = 1, n2 = 0

case 2 : n1 = 1, n2 = 1

case 3 : n1 = 0, n2 = 2

case 4 : n1 = 1, n2 = 2.

It turns out, that if we use a low iterative tolerance, then the outer iterations
will improve the multiscale solutions compared to the sequential solutions and
therefore also the fully implicit solutions. This is due to the fact that the iterative
tolerance is high, and the discrepancy will therefore change when the systems
are resolved. This does not really tell us much about the overall effect of the
outer iterations though, it is just a side effect of the iterative tolerance, and the
results are therefore omitted for brevity. If we use a lower iterative tolerance,
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the solutions are affected, but not to the same degree, see Table 5.5. The table
shows the pressure and temperature discrepancy between the sequential and
multiscale methods for the different cases when a coarse grid of [5, 5, 5] is used,
the iterative tolerance is 10−3 and the Newton-Raphson tolerance is 10−6. The
discrepancies are shown for t = 20, 100, 200 days, a time step of ∆t = 20 days is
used, and the simulations ran for 200 days. The run time of both the sequential
method and the multiscale method for the different cases are also displayed
in the table. As can be seen, the discrepancies actually increase with the first
case. As this case did not improve the sequential method compared to the
fully implicit method to a large degree either, this is clearly not the case to
use. In Section 4.4 we found that case 2 and 3 were the best cases for the
sequential method considering the accuracy and efficiency. Looking at Table 5.5,
we see that the discrepancies between the multiscale method and the sequential
method are relatively unchanged compared to the original case for these same
cases. Thus, if we wanted to improve the accuracy of the multiscale method
compared to the fully implicit method, while still keeping the multiscale method
efficient, these two cases should be considered.

Table 5.5: Temperature and pressure discrepancies between the sequential (S)
and multiscale (MS) solvers, measured in the L2 norm for t =
20, 100, 200 days, as well as the run time for the two methods for the
all the different cases. The temperature discrepancy is given by eT,
while ep denotes the pressure discrepancy.

Time (days) Original Case 1 Case 2 Case 3 Case 4

eT

t = 20 1.234 · 10−8 6.450 · 10−10 5.222 · 10−8 1.497 · 10−8 6.515 · 10−10

t = 100 6.415 · 10−8 1.438 · 10−6 8.309 · 10−8 2.412 · 10−7 8.947 · 10−9

t = 200 4.363 · 10−8 1.316 · 10−6 5.468 · 10−8 3.343 · 10−6 1.196 · 10−7

ep

t = 20 1.343 · 10−9 7.450 · 10−11 5.238 · 10−9 1.650 · 10−9 1.073 · 10−10

t = 100 1.091 · 10−9 2.338 · 10−8 2.781 · 10−9 6.457 · 10−9 3.418 · 10−10

t = 200 2.301 · 10−10 6.008 · 10−9 4.793 · 10−10 4.415 · 10−8 2.720 · 10−9

Run time S (sec) 11.2 16.4 28.7 24.6 40.4
Run time MS (sec) 10.8 16.6 29.4 24.6 41.4

Notice that the run time of the sequential and multiscale method is almost iden-
tical for all cases. In Section 4.5 we found the run time of the fully implicit
method to be approximately 33 seconds. The table shows that both methods
are quicker than the fully implicit method for the three first cases, as well as
for the original case where no outer iterations are used. This is a relatively
small system, and as both matlab and automatic differentiation have less of
a focus on efficiency, is it not to be expected that the methods are particularly
effective for this example. The fact that the sequential and multiscale methods
still outperform the fully implicit method is therefore positive. This is the end
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of the discussion of outer loops, and in the examples that follow, we will use
n1 = n2 = 0 for all.

Applying the multiscale method on a model with a fully homogeneous perme-
ability field holds to an extent no real value. The method uses the permeability
field when the basis functions are formed. When we have a homogeneous per-
meability field, the basis functions will be uniform functions and applying the
multiscale method will thus be the same as solving the solution on a coarse
grid, and then just expand to a fine grid. That is all well and good, but there are
many methods that does the same. It is therefore more interesting to see what
happens when we apply the multiscale method on a model with a changing
permeability field.

5.4.3 SPE 10, Layer 5

Again we are going to study the two phase model given by SPE 10, layer 5.
Remember from before that the fine scale system (the sequential system) has
60× 220× 1 cells, as we are only considering one layer. This means that the
fine scale system has 13,200 fine cells. We are going to start with a coarse scale
partition of 10 × 20 × 1 blocks. We thus have a coarsening factor of 66. The
discrepancies between the pressure and temperature solutions found with the
multiscale method and the sequential, fine scale method are given in Table 5.6.
The time step used was ∆t = 20 days, and the discrepancies are shown for t =
20, 100, 200 days. The simulation ran for 200 days, the sequential tolerance was
tol = 10−6, as was the Newton tolerance for the multiscale method. The iterative
multiscale tolerance was 10−1. As can be seen from the table, the multiscale
method mimics the sequential method. Especially the pressure solution is good,
but the temperature solution is acceptable as well.

Table 5.6: Temperature and pressure discrepancy for Layer 5. The discrepancy in
temperature is given by eT, while the pressure discrepancy is given by
ep. The time step is ∆t = 20 days, the Newton tolerance is tol = 10−6

and the iterative tolerance is 10−1.
Time (days) L2 L∞

eT

t = 20 6.962 · 10−5 1.727 · 10−3

t = 100 3.795 · 10−5 3.659 · 10−4

t = 200 3.222 · 10−5 2.366 · 10−4

ep

t = 20 1.002 · 10−5 6.200 · 10−5

t = 100 1.276 · 10−6 3.005 · 10−6

t = 200 1.128 · 10−6 5.652 · 10−6
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Test of ∆t: In Section 4.5, we found that the results were good even when rel-
atively large time steps were used. We therefore chose to use ∆t = 20 days
to generate Table 5.6. It is interesting to study what happens when we use
smaller time steps as well though, which we can do by studying Figure 5.8. The
figure shows the temperature discrepancy between the sequential and multi-
scale method for t = 20, 100, 200 days when ∆t = 0.3125, 0.625, 1.25, 2.5, 5, 10, 20
days, and as you can see, the discrepancies increase when ∆t is very small and
toliter = 10−1. The error depends on how accurately we solve the linear system,
and it is therefore natural that the error accumulate when we have a higher
number of time steps. The smaller ∆t will therefore lead to a higher discrep-
ancy. When we use a stricter iterative tolerance, toliter = 10−6, Figure 5.8 shows
that the discrepancies mostly decrease as the time step decreases. The smaller
tolerance is thus able to dispose of the accumulated error. The impact of the
iterative tolerance will be further discussed below.

(a) toliter = 10−1 (b) toliter = 10−6

Figure 5.8: Discrepancies between the sequential temperature solution and the
multiscale temperature solution as a function of different time step
sizes for two different values for toliter. The L2 and L∞ errors for t =
20, 100, 200 days are shown for ∆t = 0.3125, 0.625, 1.25, 2.5, 5, 10, 20
days.

Contour plots of the sequential and multiscale temperature solution for the last
time step, t = 200 days, when ∆t = 5 days and ∆t = 20 days are given in
Figure 5.9. The iterative tolerance is 10−1. All other parameters are unchanged.
The sequential contour lines are given as continuous lines, while the multiscale
contour lines are dotted. The figure gives a lot of information. First, notice that
the multiscale solution has contour lines that the sequential solutions does not
have, both when ∆t = 5 days and when ∆t = 20 days. These lines are espe-
cially apparent outside the main temperature change region, the circular region
where the contour lines are closest. But the additional multiscale lines are also
present inside the belt. These lines are easy to get rid of though. We have used a
fairly high tolerance for the iterative tolerance, a toliter = 10−1 was used and by
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having a smaller tolerance the excess contour lines will disappear. This will be
discussed further below. The figure also shows that if we disregard the excess
lines, the multiscale solution gives a good approximation to the sequential so-
lution. It is easy to see that the two solutions match closely in the belt for both
time steps. You can hardly see the difference between the sequential solution
and the multiscale solution in the belt area. The last thing to note is the fact that
it might seem like the multiscale method gives a better solution when ∆t = 20
days than when ∆t = 5 days. Looking again at Figure 5.8, we see that this is
in line with previous findings. Figure 5.8 shows that at time t = 200 days, the
multiscale solution is in fact a bit better when ∆t = 20 days is used, than when
∆t = 5 days.

(a) ∆t = 5 days (b) ∆t = 20 days

Figure 5.9: Contour plots of the multiscale and sequential temperature for t =
200 days. Two different step sizes have been used, ∆t = 5 days and
∆t = 20 days. The contour lines for the sequential solutions are
given as continuous lines, while the contour lines for the multiscale
solutions are dotted. The iterative tolerance is 10−1.

Remember from Section 4.5 that while we found there to be a bound on the
fully implicit step size ∆t, the same did not hold true for the sequential step
size. Similarly, we have not found an upper bound for the step size with the
multiscale method. We can therefore look at how the multiscale method per-
forms when ∆t = 200 days. We let the simulation run for ten time steps, or
until t = 5 years, 175 days. The other parameters have not changed. The tem-
perature solutions for t = 200, 1000, 2000 days are given in Figure 5.10. The
figure shows that the multiscale method gives a good approximation to the se-
quential solution, but the two methods are not identical. This is also shown in
Table 5.7, where the temperature discrepancy is displayed for the same times.
We can see from the table that the multiscale method is a good solver, especially
considering the high iterative tolerance, which is 10−1. The MsRSB method can
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to a large degree be considered a more accurate upscaling method with this
tolerance. The accuracy decreases as time goes on, but, as can be seen from the
figure, the multiscale solution is still able to imitate the sequential solution for
the last time step. By decreasing the iterative tolerance, the two solutions will
converge. As a sidebar, it is interesting to note that it takes a long time for the
heat from the injection well to spread throughout the reservoir. The tempera-
ture in the well is 300 K, and even after almost 5.5 years the well-temperature
has not spread all the way through the reservoir.

(a) Sequential solution (b) Multiscale solution

Figure 5.10: Sequential and multiscale temperature solution for t = 2000 days
when ∆t = 200 days.

Table 5.7: Temperature discrepancy for Layer 5. A time step of ∆t = 200 days
has been used. The Newton tolerance was tol = 10−6 and the iterative
tolerance was 10−1.

Time (days) L2 L∞

t = 200 7.815 · 10−6 8.980 · 10−3

t = 1000 4.639 · 10−4 3.982 · 10−3

t = 2000 3.323 · 10−4 2.593 · 10−3

Change of tolerance: Up to now, the tolerance of the iterative multiscale has
mostly been 10−1. Changing the tolerance to 10−6 has a dramatic effect on
the multiscale solution. Table 5.8 gives the temperature discrepancy between
the sequential and multiscale method for t = 20, 100, 200 days, when ∆t = 20
days and toliter = 10−6. All other variables remain the same. The table shows
a dramatic decrease in the error compared to Table 5.6. It is clear that the
multiscale method manages to recreate the sequential solution to a large degree.
If we also look at contour plots, Figure 5.11, which displays contour plots for
the six iterative tolerances toliter = 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, we see that
when toliter = 10−6 (Figure 5.11f) all excess contour lines from toliter = 10−1

(Figure 5.11a) are gone. In fact, the sequential and multiscale solutions look
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Table 5.8: Temperature discrepancy for Layer 5, when t = 20, 100, 200 days. A
time step of ∆t = 20 days has been used, while the iterative tolerance
was 10−6.

Time (days) L2 L∞

t = 20 1.674 · 10−10 2.778 · 10−9

t = 100 2.082 · 10−10 1.718 · 10−9

t = 200 1.440 · 10−10 1.234 · 10−9

identical when toliter = 10−6, as the lines for the two solutions align. When
∆t = 5 days and ∆t = 200 days the same occurred. An iterative tolerance of
10−6 is quite small, and as can be seen from the rest of the contour plots, the
noise disappears when an iterative tolerance of 10−3 is used. In fact, the four
last plots look identical. It is therefore not a necessity to use such a small itera-
tive tolerance as 10−6.

Choosing the iterative tolerance should be based on one’s needs. If we are
looking for a method that removes the noise from our multiscale solution, an
iterative tolerance of 10−3 is sufficient, at least for this example. Changing the
iterative tolerance in this example does not affect the run time to a large degree
though, so if we want a method that most accurately mimics the sequential so-
lution, a smaller tolerance should be used, see Figure 5.12. The figure shows the
multiscale and sequential temperature discrepancy as a function of the iterative
tolerance for different times. The time step was ∆t = 20 days. Again we see
that the discrepancy drastically decreases as the tolerance decreases. In fact, as
the iterative tolerance decreases, the multiscale solution converges towards the
sequential solution to computer precision for t = 20 days. Note also that the
errors are close for all t. The figure also shows a steep descent between the 10−2

and 10−3 tolerance. This fits with what we found in Figure 5.11, where we saw
that the noise in the multiscale solution disappears when we go from a tolerance
of 10−2 to a tolerance of 10−3.

Multiscale iterations: Let us study the number of multiscale iterations per time
step. Remember that for each time step we apply a Newton iteration that runs
until convergence, and for each Newton iteration, we apply the iterative multi-
scale until convergence. So, for each time step, the multiscale method might use
different number of iterations to converge, one for each Newton-Raphson itera-
tion. We will therefore consider an average. We will look at the average number
of iterations it takes for the multiscale method to converge for each time step.
Figure 5.13 shows the average number of multiscale iteration needed to solve
the pressure system Rp when the iterative tolerance is 10−6 and 10−1, and the
average number of iterations needed to solve the temperature system RT when
the iterative tolerance is 10−6. A time step of ∆t = 20 days was used, and the
simulation ran for 10 time steps.
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(a) toliter = 10−1 (b) toliter = 10−2

(c) toliter = 10−3 (d) toliter = 10−4

(e) toliter = 10−5 (f) toliter = 10−6

Figure 5.11: Contour plot of the multiscale temperature solution (dotted lines)
and the sequential temperature solution (continuous lines) for t =
200 days, when ∆t = 20 days for different iterative tolerances toliter.
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Figure 5.12: Temperature discrepancies between the sequential and multiscale
temperature solutions as a function of the iterative tolerance. The
time step used was ∆t = 20 days.

(a) Pressure, toliter = 10−6 (b) Pressure, toliter = 10−1

(c) Temperature, toliter = 10−6

Figure 5.13: Average number of multiscale iterations per time step. The pres-
sure iterations shows the average iterations to solve the pressure
system Rp, while the temperature iterations shows the average
iterations to solve the temperature system RT. A time step of
∆t = 20 days was used, and the simulation ran for 200 days.
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As can be seen, the multiscale method uses fewer iterations to find the temper-
ature solution than it does to find the pressure solution. When the iterative
tolerance is 10−1, the method uses an average of 1 iteration per time step to find
the temperature solution. This is the case both for a time step of ∆t = 20 days
and when ∆t = 5 days. When a smaller iterative tolerance is used, the number
of iterations increases slightly, but not by much. When the time step is ∆t = 5
days, the method uses an average of 2 iterations per time step, while a time
step of ∆t = 20 days leads to 4 iterations in the beginning, before it changes to
3 iterations, see Figure 5.13c. The number of iterations is higher for the larger
time step because when a smaller time step is used, the solution will be closer
to the solution from the last time step, as the system has not had a lot time to
vigorously change. The method will therefore find the solution to the next time
step quicker when smaller time steps are used, and the number of iterations
will be smaller.

When it comes to pressure, we see that the method uses more iterations. The
basis functions are kept fixed for both the pressure and temperature system, so
this should not affect the difference in the number of iterations. We especially
have many pressure iterations when we use a small iterative tolerance, see Fig-
ure 5.13a, but the number of iterations is also higher than the temperature iter-
ations when the tolerance is bigger, Figure 5.13b. We see the same tendencies
between the big and small time steps as with temperature, although we have
again skipped the plots. But, shorter time steps leads to fewer iterations, both
for the small and bigger tolerance.

We see again that the smaller tolerance leads to a higher number of iterations per
time step, which is natural, as the solver needs more iterations to reach a smaller
tolerance. Notice the dip in pressure iteration at time step 4, i.e., after 80 days.
This corresponds to the time step where the temperature iteration decreases as
well. The multiscale method will use more iterations in the beginning, as it
does not have previous time steps to build on, but will, generally, decrease and
stabilize as time goes on. The higher iteration number in the beginning might
also be due to initial transients in the solution that dissipate after a while. The
temperature system clearly uses more iterations in the beginning, and the same
tendencies are present for the pressure iterations as well, though it does have
a dip at the forth time step. The fact that the multiscale method needs more
iterations to solve the pressure system than it needs to solve the temperature
system might come from the fact that the pressure system includes the wells,
and there can be some difficulties with the link between the reservoir and wells.
We must also remember that the temperature system uses the updated pressure,
while the pressure system uses the temperature from the last time step. The
solver will therefore need longer time to solve for pressure.

We have also included a figure that shows the multiscale iterations for each
Newton iteration, Figure 5.14. The figure shows the iterations needed for both
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pressure and temperature, for both toliter = 10−6 and toliter = 10−1. A new
time step is indicated by a solid black line. Again we see that we need a higher
number of iterations when the iterative tolerance is strict. We also see that
while the temperature iterations remain constant for each Newton iteration in
a time step, the pressure system has more alteration. Though we do have the
same tendencies for each time step for the pressure system. For the pressure
system, we have a Newton iteration with zero multiscale iterations at the end
of each time step. This is because we at the end of each time step go through
a velocity reconstruction and this does not need any multiscale iterations to
converge for this example. Other than this zero iteration, we see that when
the stricter tolerance is used, toliter = 10−6, the multiscale iterations remain
relatively constant for each Newton iteration. The method must work more
to reach the tolerance, and all the multiscale iterations will be relatively high.
This is not the case when toliter = 10−1 is used, and we see that there are more
variety for each Newton iteration for this case. We can also note that both the
pressure and temperature system use a higher number of Newton iterations in
the beginning of the simulation than at the end.

(a) Pressure, toliter = 10−6 (b) Pressure, toliter = 10−1

(c) Temperature, toliter = 10−6 (d) Temperature, toliter = 10−1

Figure 5.14: Multiscale iterations for each Newton iteration. A new time step is
shown with the solid black lines.
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Residuals: The average pressure and temperature residual for the final multi-
scale iteration over the Newton iteration for each simulation step is given in
Figure 5.15. The figures are generated using a time step of ∆t = 20 days. When
looking at Figure 5.15c, note the larger residual for time step number 4. Re-
member that time step 4 was the time step that led to a decrease in the tem-
perature iteration in Figure 5.13c. The high residual explains why the solver
needed fewer iterations for this time step. For each time step, the residual has
decreased, until it, for time step 4, reached the tolerance with a smaller iteration
number. This time step’s residual will then be higher, because it has not had as
many iterations to drive down the residual. Looking at the pressure residuals,
Figures 5.15a and 5.15b, we see that the residuals for the fourth time step is high
also here, coinciding with the dip in iterations from Figure 5.13, though they are
not the highest residuals. The residual for the first time step in Figure 5.15b is
quite high, resulting in the lower iteration number for the first time step in Fig-
ure 5.13b. Both pressure plots in Figure 5.15 have residuals that oscillate, which
once again is explained by the fact that the residuals decrease until the solver
needs fewer iterations to push the residual under the tolerance.

(a) Pressure, toliter = 10−6 (b) Pressure, toliter = 10−1

(c) Temperature, toliter = 10−6 (d) Temperature, toliter = 10−1

Figure 5.15: Average multiscale residuals for the last iteration per time step. A
time step of ∆t = 20 days was used, and the simulation ran for 200

days.
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Test of different number of grid blocks: Changing the number of coarse grid
blocks in the multiscale system will change the accuracy of the solver. Using
a higher number of grid blocks will generally lead to a higher accuracy, as the
number of blocks in the system now is closer to the number of cells in the se-
quential system. When the number of coarse grid blocks equals the number
of fine cells, that is, when m = n, the multiscale method mimics the sequen-
tial method to computer precision. We have in Table 5.9 listed the discrepancy
between the multiscale and sequential temperature solutions for different de-
grees of coarsening. We have looked at coarse grid with 8, 66 and 3300 grid
blocks. For each coarsening, we looked at two scenarios. First we let the mul-
tiscale solver run until the set iterative tolerance was reached, just as we have
done with all other simulations. Then, we looked at what happened if we set a
maximum iteration number, itermax. That is, if the iterative multiscale method
has not reached convergence by itermax, we use the value from itermax. We
let itermax = 5. For all simulations, we let ∆t = 20 days, the iterative tolerance
was 10−3, while the other tolerances were 10−6. The simulation ran for 200 days.

The table shows that if we do not set a restriction on the maximum iterations,
the multiscale method is accurate even for very few blocks. This comes from
the fact that we iterate until the residual is small enough. Each iteration uses
the fine scale system when it applies the smoother, so when we can use many it-

Table 5.9: Temperature discrepancy between the sequential and multiscale solu-
tions for different coarse grid sizes. The iterative tolerance is 10−3,
while all the other tolerances are 10−6. When we have 66 blocks, the
coarse dimensions are 6× 11× 1, when we have 8 blocks, the coarse
dimensions are 2× 4× 1, and when we have 3300 blocks the coarse
dimensions are 30× 110× 1. The first three rows, the ones correspond-
ing to itermax = ∞ let the iterative multiscale run until reached toler-
ance, while the last three rows, itermax = 5 ran the iterative multiscale
five times unless tolerance was reached before said five iterations.

itermax = ∞ itermax = 5
Time (days) L2 L∞ L2 L∞

66 blocks
t = 20 8.356 · 10−8 1.559 · 10−6 4.130 · 10−6 7.252 · 10−5

t = 100 1.522 · 10−7 1.574 · 10−6 2.062 · 10−6 1.800 · 10−5

t = 200 1.652 · 10−7 1.658 · 10−6 1.788 · 10−6 2.107 · 10−5

8 blocks
t = 20 1.491 · 10−7 2.119 · 10−6 6.193 · 10−5 1.167 · 10−3

t = 100 1.132 · 10−6 3.131 · 10−5 1.454 · 10−4 2.773 · 10−3

t = 200 9.231 · 10−7 5.904 · 10−6 3.385 · 10−4 5.130 · 10−3

3300 blocks
t = 20 4.662 · 10−8 1.175 · 10−6 4.662 · 10−8 1.175 · 10−6

t = 100 1.032 · 10−6 1.494 · 10−5 1.032 · 10−6 1.494 · 10−5

t = 200 6.175 · 10−7 7.721 · 10−6 6.175 · 10−7 7.721 · 10−6
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erations the solutions will converge to the fine scale solutions. Even though the
discrepancy may be small, the iteration number may be high. If we apply max-
imum iterations on the other hand, we see that having very few blocks results
in poorer accuracy, though the results are still remarkably good considering the
few blocks. The accuracy improves as the number of coarse blocks increases.
Note that when 3300 blocks are used, the method uses less than 5 iterations to
converge, the two scenarios have the same discrepancies. When we look at the
results from 66 blocks, we see that we still get good results. Compared to the
original 13,200 fine cells, 66 blocks are few. So all in all, the multiscale method
seems to work really well.

Change of enthalpy and internal energies: We will again look at what happens
if we change the enthalpy and internal energies. We will use the same cases as
in Section 4.5. We will thus have three cases, where the first case changes the
constant in the functions for the enthalpy and internal energy for the rocks, the
second case changes the internal energy, and the third combines case 1 and 2,
and thus

case 1 : cr = 0.5 · 103,

case 2 : Uα = CUT,

case 3 : cr = 0.5 · 103, Uα = CUT.

The discrepancy between the sequential and multiscale temperature solution for
the three cases is given in Table 5.10. The iterative tolerance is 10−1, while the
other tolerances are 10−6. The time step used is ∆t = 20 days, and we have again
used a coarsening factor of 66. The table shows that the discrepancy between the
two methods is small for all three cases. Considering the relatively high iterative
tolerance, these values are very good. Though the errors for the three cases are
similar, we see that the multiscale method works best on case 3. Remember
from Section 4.5 that case 3 is the case that has the strongest diffusion term.
The heat equation’s character is determined by the advection and diffusion term.
The more dependent on the diffusion term, the more elliptic. This means that
the heat equation is more elliptic in character for case 3 than for the other cases.
The multiscale method usually works best on elliptic equations, which we can
see here by looking at Table 5.10, where the discrepancy is smallest for the third
case. If we compare the values from Table 5.10 to the values in Table 5.6, giving
the discrepancy for the first example where everything except the enthalpies
and internal energies are the same as now, we see that all the discrepancies
in Table 5.10 are smaller than the ones found in Table 5.6. Though many of
the discrepancies are close. This again shows that the multiscale method works
better on elliptic equations, as all three cases lead to a heat equation that is more
elliptic than the heat equation used to find the values in Table 5.6.
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Table 5.10: Temperature discrepancy between the sequential and multiscale solu-
tion for t = 20, 100, 200 days, when the enthalpy and internal energy
are changed. We have used ∆t = 20 days, the iterative tolerance is
10−1, while the other tolerances are 10−6.

Case 1 Case 2 Case 3

Time (days) L2 L∞ L2 L∞ L2 L∞

t = 20 5.397 · 10−5 7.505 · 10−4 4.746 · 10−5 1.280 · 10−3 3.218 · 10−6 2.873 · 10−5

t = 100 2.213 · 10−5 1.071 · 10−4 2.459 · 10−5 1.942 · 10−4 4.898 · 10−7 1.999 · 10−6

t = 200 2.180 · 10−5 8.515 · 10−5 2.104 · 10−5 1.524 · 10−4 6.405 · 10−7 3.990 · 10−6

To change the character of the heat equation, we could also change the thermal
conductivity coefficient κ. We have as previously stated, considered a simplified
case and used a homogeneous value for the conductivity instead of a heteroge-
neous one. However, the use of a heterogeneous conductivity would make the
problem more realistic, and it would also be interesting to study its impact on
the multiscale solution. This will therefore be studied in a later example, and
should be explored more in future works.

Figure 5.16 gives the contour plots of the sequential and multiscale temperature
solution for t = 200 days for the three cases. The same parameters as above are
used. We can again compare to the contour plots generated with the original
enthalpy and internal energy values, Figure 5.9. The iterative tolerance is 10−1

for both figures. For Figure 5.9 this relatively high tolerance leads to noise in
the multiscale solution in the form of contour lines that should not be there.
Comparing with the contour lines in Figure 5.16, we see that this is not the case
for our three cases. This time, we get very good results even with the high tol-
erance, the excess contour lines have completely disappeared. The multiscale
solution mimics the sequential solution to a large degree and the two solutions
are identical to the naked eye for all three cases. This is different than Figure 5.9,
where the sequential solution was visible in some, but few, areas. All in all, we
can conclude that the multiscale method works even better for these new cases.

If we study the average number of iterations per time step in the simulation
for the three cases, a lot is similar to the number of iterations for the original
case. The multiscale method uses fewer iterations to find the temperature solu-
tion than the pressure solution, but the number of iterations increases for both
solutions when the iterative tolerance decreases. Figure 5.17 shows the average
number of iterations used to find the temperature when the iterative tolerance
is 10−1. Figures 5.17b and 5.17c display a lot of what we have seen before. Case

2, i.e., Figure 5.17b, uses an average of one iteration per time step, just as the
original case, while Case 3, Figure 5.17c, uses less. The multiscale method goes
through the multiscale iteration one time before it applies the Newton-Raphson
method, to see if we already have the answer, and for case 3, the multiscale
method uses zero iterations to reach the tolerance in this first try. It uses an
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(a) Changed enthalpy (b) Changed internal energy

(c) Changed internal energy and en-
thalpy

Figure 5.16: Contour plots for the sequential and multiscale temperature solu-
tion when t = 200 days for case 1, 2 and 3. The sequential con-
tour lines are given in continuous lines, while the multiscale con-
tour lines are dotted. A time step of ∆t = 20 days is used, and
toliter = 10−1.

average of one iteration in the Newton-Raphson method, so it still follows the
normal pattern from above. When we look at case 1 and Figure 5.17a, we see
that though the case starts out as usual, with one iteration per simulation step,
it quickly rises to almost 2. Looking at the discrepancy for the case, Table 5.10,
we see that this rise fits with the discrepancy. The discrepancy is biggest when
t = 20, i.e. the first simulation step, before it decreases as time goes on. This is
reasonable considering the fact that more iterations are used for the other simu-
lation steps. If we were to use a smaller iterative tolerance, the average number
of iterations would increase for all three cases. The figures have been omitted
for brevity, though it should be said that for Cases 2 and 3, the increase is small
and we need fewer iterations than the original case. This fits with the fact that
the multiscale method is better at finding the solutions for elliptic equations.
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(a) Changed enthalpy (b) Changed internal energy

(c) Changed internal energy and en-
thalpy

Figure 5.17: The average number of temperature iterations in the iterative multi-
scale method as a function of time step for the three different cases
when the iterative tolerance is 10−1. The simulation ran for 10 time
steps for all the cases, and ∆t = 20 days was used.

The average number of iterations used to find the pressure solution when the
iterative tolerance is 10−1 is identical for all three cases, see Figure 5.18. the
multiscale method uses overall fewer iterations now compared to the number
of iterations used to find the pressure solution in the original case, Figure 5.13b.
The shape is similar to before, however, with a lower number of iterations for
the first time step and a dip for time step four. This is not unexpected, as we
have only changed the parameters in the heat equation. This will affect the
pressure equation as well, as it is dependent on the temperature, but the change
will be of a lower degree, as we can see from Figure 5.18. If we use a smaller
iterative tolerance, the iterations will increase.

Layer 80: As a quick test, we are also going to look at a layer from the Upper
Ness formation, which is considered to be a difficult model for multiscale meth-
ods. We are going to consider the 80th layer, which has the permeability field
given in Figure 5.19. We are going to keep the well placements and restrictions
from Layer 5. For the enthalpies and internal energies we are going to look at
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Figure 5.18: The average number of pressure iterations in the iterative multiscale
method as a function of the time step for case 1, case 2 and case 3,
when the iterative tolerance is 10−1. The simulation ran for 10 time
steps for all the cases, and ∆t = 20 days was used. The plot was
equal for all three cases.

the original values from above, and compare this to the values given by case 3

from above. All other values, parameters and functions remain unchanged.

Figure 5.19: The permeability given in logarithmic scale of the 80th layer of the
SPE10 data set.

The pressure and temperature discrepancies between the multiscale and sequen-
tial method are given in Table 5.11. The table shows the values for both the
original setting of the enthalpies and internal energies, and the discrepancies
obtained using case 3, resulting in the more elliptic version of the heat equa-
tion. As can be seen from the table, the multiscale method works a lot better
on the more elliptic case. This is also evident when we look at contour lines
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of the two methods for each case, given in Figure 5.20. The multiscale contour
lines are dashed, while the sequential ones are given as continuous lines. While
the contour lines match closely for the more elliptic case, Figure 5.20b, there
are unmatched lines in the original case, Figure 5.20a. The iterative tolerance is
10−1 though, so the results are relatively good for the original case as well. All
in all, we see that the multiscale method works well on this layer.

Table 5.11: Pressure and temperature discrepancies for SPE10, layer 80. The dis-
crepancies are shown for two different sets of enthalpies and internal
energies. The one denoted Original has values given in Section 4.5,
while the one denoted case 3 has values given above. The temper-
ature discrepancy is given by eT, while the pressure discrepancy is
given by ep.

Original case 3

Time (days) L2 L∞ L2 L∞

eT

t = 20 5.642 · 10−5 3.571 · 10−3 2.485 · 10−6 1.779 · 10−5

t = 100 4.835 · 10−5 1.322 · 10−3 1.452 · 10−6 1.919 · 10−5

t = 200 1.689 · 10−4 1.562 · 10−2 3.203 · 10−6 5.486 · 10−5

ep

t = 20 7.517 · 10−6 2.737 · 10−5 7.517 · 10−6 2.737 · 10−5

t = 100 2.784 · 10−6 2.395 · 10−5 3.436 · 10−6 3.941 · 10−5

t = 200 6.220 · 10−6 5.824 · 10−5 6.590 · 10−6 1.010 · 10−4

(a) Original (b) case 3

Figure 5.20: Contour lines for the multiscale (dotted lines) and sequential (con-
tinuous lines) temperature solution for SPE10, layer 80 with the
original setting and the more elliptic heat equation given with the
values presented in case 3. The solutions are shown for t = 200
days, a time step of ∆t = 20 days is used, and toliter = 10−1.
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5.4.4 The Johansen Formation

We are now going to look at the Johansen formation, which is a real life forma-
tion situated in the North Sea. The data pertaining the formation can be down-
loaded from SINTEF’s website, https://www.sintef.no/projectweb/matmora/
downloads/johansen/. It has a big and complex formation, containing faults,
non-smooth surfaces and different types of sand. The formation has been sug-
gested as a location for CO2 storage. This is not going to be the focus here,
however. We are interested in seeing how the multiscale solver handles compli-
cated grids in three dimensions, with realistic permeability and porosity values,
rather than seeing how well the reservoir is suited for CO2 storage. We are
therefore going to inject the reservoir with water, because that has been the
norm in this thesis. We are not going to include any production wells, however,
partly because the field is thought of as a storage area, and partly because the
formation has very low permeability values, which enforces changes to happen
slowly and this will make it difficult for the phases to reach the wells.

The Johansen formation is represented through a 100× 100× 11 grid, and con-
sists of several areas, made up of different types of rocks and thus different per-
meabilities. We are most interested in the layers with a little higher permeability.
We are therefore going to strip away the cells with very low permeabilities when
showing the solutions, to be able to properly study the change in pressure and
temperature. The permeability field of the whole model, as well as the perme-
ability field for the layers with higher permeability is given in Figure 5.21. The
figure also show the placement of the wells. We have placed three injection
wells in the system, each controlled by the surface rate. The wells penetrate the
10th layer of the model, which is part of the area with the higher permeability.

(a) Permeability - Whole reservoir (b) Permeability - Higher permeability

Figure 5.21: The permeability of the Johansen formation, as well as the perme-
ability in the cells that have not been stripped away because of very
low permeability.
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We have used a coarse grid with 20× 20× 3 grid blocks, and let the simulation
run until t = 5 years and 175 days has been reached. The end time is arbitrarily
chosen, but we needed a longer time in order to see some proper change in the
reservoir. This will be our end time for the rest of the examples. The pressure
and temperature discrepancies for different times t are shown in Table 5.12. The
Newton tolerance is 10−6, while the iterative tolerance is 10−1. As can be seen,
the multiscale method is able to recreate the sequential reference solution to a
large degree. This is especially impressive considering the complex grid.

Table 5.12: The temperature eT and pressure eT discrepancy for the Johansen
formation when the simulation ran for t = 5 years and 175 days. A
time step of ∆t = 20 days is used, and toliter = 10−1.

Time (days) L2 L∞

eT

t = 20 1.594 · 10−9 8.442 · 10−8

t = 1000 3.403 · 10−7 8.387 · 10−6

t = 2000 5.951 · 10−7 1.232 · 10−6

ep

t = 20 5.112 · 10−9 2.661 · 10−7

t = 1000 1.100 · 10−6 2.756 · 10−5

t = 2000 1.932 · 10−6 4.161 · 10−6

It might be a little surprising that the discrepancy is so small as it is. This is,
after all, an example that should be difficult to simulate. Figure 5.22 might give
an explanation. The figure shows the sequential and multiscale temperature
solution as well as the difference between them when t = 5 years and 175 days.
Because of the large dimensions of the reservoir, as well as the low permeability,
the temperature has not spread through the reservoir with these high times.
Similar results are found for pressure and saturation. And, as there have been
relatively little change in the system, the multiscale method does not have too
much problem mastering the simulation. Note that most of the error occur by
the well closest to the fault.

5.4.5 SAIGUP

As another realistic example of a petroleum reservoir, we are going to look at
a model from the SAIGUP project [16]. The project generated a broad spectre
of shallow-marine reservoir models, and one of these can be accessed through
MRST. The model in question constitutes a complex three dimensional geome-
try which contains faults and a realistic permeability field. The model is made
up of 40× 120× 20 fine cells, which we are going to partition into 10× 20× 5
coarse grid blocks. We are again going let the reservoir be filled with mostly
oil initially, which is then displaced by water throughout the simulation. Again
we will let the simulation run until t = 5 years and 175 days is reached. This
is done in order to see proper change in the data, and also because oil recovery
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(a) Sequential (b) Multiscale

(c) Error

Figure 5.22: Sequential and multiscale temperature solution, as well as the dif-
ference between them for the Johansen formation when t = 5
years and 175 days. A time step of ∆t = 20 days is used, and
toliter = 10−1.

goes over a long time. A time step of ∆t = 20 days will be used throughout.

The horizontal permeability throughout the reservoir given in logarithmic scale
is shown in Figure 5.23a. There is, as can be seen, a big variance between the
values. We have placed ten wells in the system, five injection wells controlled
by the surface rate, and five producer wells controlled by the bottom hole pres-
sure. The wells can be seen in Figure 5.23b. The injection wells are placed in the
bottom 12 layers, while the production wells are placed in the topmost 14 layers.

The temperature and pressure discrepancies between the multiscale and sequen-
tial method when t = 20, 1000, 2000 days are given in Table 5.13. The Newton-
Raphson tolerance is 10−6 for both methods, and the iterative tolerance is 10−1.
The table shows two sets of discrepancies. One generated using the original
enthalpy and internal energy values used in the examples above, and the other
using the values from the third case in the SPE10-Layer 5 example. As can be
seen from the table, the multiscale method gives a good approximation for both
pressure and temperature for both cases. The results are especially good con-
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(a) Permeability (b) Geometry with wells

Figure 5.23: The horizontal permeability of the SAIGUP model given in logarith-
mic scale, as well as the geometry of the model with the placement
of the wells.

sidering the high iterative tolerance. This model is complex, and the fact that
the multiscale method works so well with the given tolerance is satisfactory.
Though both cases give good results, we see that the results are best for the
most elliptic case, case 3, at least for the temperature solution. This once again
indicates that the multiscale method works best on elliptic equations. The fact
that the pressure discrepancy does not change when the enthalpy and internal
energy change is not that surprising, as the pressure equation does not depend
on said functions.

Table 5.13: The temperature and pressure discrepancies for two different values
of enthalpy and internal energy. The original case has functions that
are used in the examples above, while case 3 was defined in the
example concerning SPE10-Layer 5. The temperature discrepancy is
given by eT, while the pressure discrepancy is given by ep. We have
toliter = 10−1.

Original case 3

Time (days) L2 L∞ L2 L∞

eT

t = 20 6.234 · 10−8 2.331 · 10−6 1.667 · 10−8 3.067 · 10−7

t = 1000 8.832 · 10−6 5.106 · 10−4 7.471 · 10−7 2.780 · 10−5

t = 2000 8.180 · 10−6 4.456 · 10−4 4.298 · 10−7 1.521 · 10−5

ep

t = 20 5.391 · 10−8 6.686 · 10−7 5.391 · 10−8 6.686 · 10−7

t = 1000 2.312 · 10−6 6.875 · 10−5 2.398 · 10−6 7.076 · 10−5

t = 2000 1.481 · 10−6 4.662 · 10−5 1.470 · 10−6 4.590 · 10−5
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Figure 5.24 gives the sequential temperature solution for t = 2000 days (that is,
t = 5 years and 175 days), for the whole reservoir, as well as the same solution
for the twelfth layer in the model. The more elliptic version (case 3) has been
used. The twelfth layer was chosen because this is a layer that is in between the
completion of the injection and projection wells, so it should notice the effects
from both types of wells and it is therefore interesting to see how the solutions
are affected. The multiscale temperature solution for the same areas and time
are also given, as well as the discrepancy between the two solutions. The dis-
crepancy is, as can be seen, small throughout. The biggest error occurs around
the biggest cluster of wells. This is consistent with findings from the other ex-
amples, where we found the difference between the two methods to be biggest
in the areas containing a production well. This is where there will be the biggest
change in the solution, and discrepancies will therefore occur. The fact that the
discrepancy is smaller for the twelfth layer than for the whole model is also not
that surprising, as we enforce the well values and the wells penetrate this layer.
Note the fractures in the twelfth layer in Figure 5.24. The multiscale method is
still able to give good results despite the faults.

If we look at the run time of the two solvers, we see that the multiscale method
outperforms the sequential method. While the sequential method used 3144.5
seconds, or 52.4 minutes, to generate the figures used in Figure 5.24, the multi-
scale method used only 853.3 seconds, or 14.2 minutes. The multiscale method
is thus nearly 4 times as fast as the sequential method for this complex example.
This illustrates one of the strengths of the multiscale method, because it uses a
relatively short run time and still gives a good approximation of the fine scale
solution.

Heterogeneous κ: We have, up to now, used a homogeneous value for the ther-
mal conductivity coefficient κ, where we have let κ = 4 W/(mK), the conductiv-
ity of granite. This is not realistic however. It would therefore be interesting to
see what happens if we use a heterogeneous κ. Here, we are going to use the
one given in Figure 5.25. The coefficient is found with the help of the porosity.
The reasoning is that the porosity gives the volume of the reservoir that can con-
tain fluid, and so where the porosity is zero or close to zero, there is most likely
a solid rock, and where the porosity is bigger, there might be a material that is
able to flow, like water or oil. The thermal conductivity of solid rocks ranges
from 2-7 W/(mK), depending on what kind of rock one are considering, while
the thermal conductivity of oil lies around 0.15 W/(mK) and the thermal con-
ductivity of water is 0.58 [27]. The porosity for the SAIGUP model ranges from
0.0093-0.2911. We have therefore let the thermal conductivity equal 7 W/(mK)
in the cells where the porosity is less than 0.07, because we figure this is pretty
much only solid rock, we have let the conductivity equal 2 W/(mK) in the cells
where the porosity is between 0.07 and 0.15, and we have let the thermal con-
ductivity equal 0.15 everywhere else. This gives the thermal conductivity given
in Figure 5.25. The figure also gives the porosity of the model. To get a more
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(a) Sequential, whole model (b) Sequential, Layer 12

(c) Multiscale, whole model (d) Multiscale, Layer 12

(e) Error, whole model (f) Error, Layer 12

Figure 5.24: Sequential and multiscale temperature solution, as well as the differ-
ence between them, when t = 2000 days. The solutions are shown
for the whole reservoir and for a single layer, namely the twelfth. A
time step of ∆t = 20 days is used, and toliter = 10−1.
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(a) Heat conductivity κ (b) Porosity

Figure 5.25: The heterogeneous heat conductivity κ used in the second part of
the SAIGUP example, as well as the porosity field used to generate
the conductivity.

realistic model, one should probably update κ throughout the simulation, as the
oil will move, and be replaced by water, but this is something we have ignored.

It turns out that the given κ does not affect the multiscale solution to a large
degree. Table 5.14 gives the temperature discrepancy between the multiscale
method and the sequential method when the homogeneous and the heteroge-
neous κ is used. We have used the more elliptic variant for the enthalpies and
internal energies (case 3) so the two first columns in Table 5.14 is equal to the
two last columns in Table 5.13. All other parameters are as used in Table 5.13.
As can be seen from Table 5.14, the accuracy of the multiscale method does not
really change with the new κ. We have a very slight decrease in discrepancy,
but there is no significant change.

Table 5.14: Multiscale and sequential temperature discrepancy when a homoge-
neous and heterogeneous value is used for the thermal conductivity
coefficient κ.

Homogeneous κ Heterogeneous κ

Time (days) L2 L∞ L2 L∞

t = 20 1.667 · 10−8 3.067 · 10−7 1.666 · 10−8 3.058 · 10−7

t = 1000 7.471 · 10−7 2.780 · 10−5 7.456 · 10−7 2.651 · 10−5

t = 2000 4.298 · 10−7 1.521 · 10−5 4.459 · 10−7 1.458 · 10−5

As can be seen from the depiction of κ, Figure 5.25, there is still quite a big
part of the variable that is non-changing, even though the value is now hetero-
geneous. There is for instance a big part of the reservoir that has a thermal
conductivity of κ = 7 W/(mK). This might be the reason why the discrepancy
change is so small. To truly get realistic examples, one should use actual κ

values from real reservoirs, or values that have been specifically designed to fit
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petroleum reservoirs. This is not something that we have access to, so we were
content with the given values, which let us study the impact on the multiscale
method. Having more realistic κ’s can impact the method in a way unbeknowns
to us, however, and it is therefore something that should be explored in future
works.

5.4.6 Norne Field

As a last example, we are going to look at the Norne Field. The reservoir is situ-
ated in the Norwegian Sea, and has been extracting oil through water injection
since 1997. Statoil and its partners have in collaboration with the Norwegian
university of science and technology (NTNU) released data from the field for
educational purposes [10]. This enables us to study the impact of the multi-
scale method on a petroleum reservoir with a real life grid representation and
petrophysical data. We are, in accordance with real life, going to let the oil be
displaced through water.

The reservoir is modeled through a grid with 46 × 112 × 22 fine cells, which
we partition into a coarse grid of 15× 20× 5 coarse grid blocks. As the Norne
field is an active reservoir, it of course has wells placed in strategic places. We
are going to disregard these wells, however, and arbitrarily place three produc-
tion and three injection wells in the reservoir. We have let the injection wells be
controlled by the surface rate, while the production wells are controlled by the
bottom hole pressure. All wells are vertical, the injection wells are completed in
layer 10-20, while the production wells are completed in the first ten layers. The
permeability field in logarithmic scale is given in Figure 5.26. The figure also
gives the placement of the wells. Note the irregularities of the grid, containing

Figure 5.26: The permeability given in logarithmic scale of the Norne field.
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faults and cracks. The reservoir also has a full layer of inactive cells, where the
wells supply communication between the separated layers.

We simulate the flow process for 5 years and 175 days, to get a more realistic feel
of the reservoir. As a time step, we use ∆t = 20 days, and the Newton-Raphson
tolerance is 10−6. This time around, the multiscale method breaks down when
we use an iterative tolerance of 10−1. The method produces a pivot that is zero,
which leads to break-down in the ILU(0) solver. This can be fixed either by
updating the basis functions more frequently, or decreasing the iterative toler-
ance. As the updates of basis functions leads to a less efficient code, we are
going to keep them fixed and instead use an iterative tolerance of 10−2. This
leads to good results, the temperature discrepancy in the L2 norm lies around
10−5, while the pressure discrepancy in the L2 norms lies around 10−6. The oil
saturation for t = 5 years, 175 days found by both the sequential and multiscale
method is given in Figure 5.27. The figure also show the difference between
the two methods. Again we can see that the multiscale method produces good
results. Note also that the oil saturation is greatly reduced, the reservoir initially
had an oil saturation of so = 0.8 throughout the reservoir.

To properly see that the multiscale method is able to give a good approximation
of the oil saturation we refer to Figure 5.28, which gives the oil saturation dis-
crepancy as a function of time. The figure first gives the discrepancy between
the multiscale method and the sequential method, which again shows that the
multiscale method gives a good approximation to the sequential oil saturation.
But, as it is really the fully implicit oil saturation we want to mimic, we have
also given the discrepancy between the fully implicit method and the multiscale
method as well as the discrepancy between the fully implicit method and the se-
quential method, Figure 5.28b. To the naked eye, the sequential method and the
multiscale method give the same fully implicit discrepancy. Note that the dis-
crepancy here is not as good as the one between the multiscale and sequential
method. But, as the discrepancy is so small between the multiscale method and
the sequential method, we can conclude that all error between the multiscale
method and the fully implicit method is the result of differences in the sequen-
tial and fully implicit method. This difference can be reduced by applying outer
iterations, and we can therefore conclude that the multiscale method is able to
mimic the fully implicit solution accurately.

Having verified that the multiscale method accurately solves the complex prob-
lem given by the Norne field, it would be interesting to study how the method
reacts when we adjust the advection and diffusion terms. This has also been
studied in the SPE10 example, as well as a small degree in the Joahnsen and
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(a) Sequential (b) Multiscale

(c) Error

Figure 5.27: Sequential and multiscale oil saturation, as well as the differ-
ence between the two methods, for the Norne field when t =
5 years, 175 days. A time step of ∆t = 20 days is used, and
toliter = 10−1.

SAIGUP examples, but we will try to study it more systematically here. If we
go back to Chapter 2, we know that our heat equation is of the form

∂

∂t
(T) +∇ · (A)︸ ︷︷ ︸

a

+∇ · (D∇D)︸ ︷︷ ︸
d

= C,

where we have called the ∇ · (A) term a for advection, and ∇ · (D∇D) = d
for diffusion. The question is what happens with the multiscale solver if we
adjust the advection term compared to the diffusion term. That is, will the
method be affected if the advection term is bigger or smaller than the diffusion
term. It turns out that, at least for this example, a smaller advection term com-
pared to the diffusion term does not really impact the accuracy of the method.
Having the advection term be bigger than the diffusion term does have an im-
pact, however. See Table 5.15 for the different discrepancies. The table shows
the temperature discrepancy between the multiscale and the sequential method
when the two terms are of the same order, when the order of the advection term
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(a) Sequential-MsRSB (b) Fully implicit - Sequential, MsRSB

Figure 5.28: Discrepancy in oil saturation between the sequential and multiscale
method given in both L2 and L∞ norms, as well as the oil saturation
discrepancy between the fully implicit method and the sequential
method and the fully implicit method and the multiscale method.

is 1000 times that of the diffusion term, and when the order of the advection
term is 1000 times smaller than the diffusion term. That is, when a = O(d),
a = O(103d) and when a = O(10−3d). As can be seen from the table, having
a = O(103d) leads to an increase in the discrepancy. The multiscale method is
thus not as accurate when the advection term is bigger than the diffusion term.
This is in line with our findings from the SPE10, Layer 5 example, where we
found that the multiscale method works best when the equation is more elliptic
and hence has a diffusion term that is more pronounced. Having a = O(10−3d)
does not really lead to any discrepancy change, however. This is a bit surpris-
ing, but might just be a result from our problem. By studying the temperature
solution for time t = 5 years, 175 days for the three different cases of advection,
Figure 5.29, we see that while the temperature solution changes when we use
a = O(103d) compared to a = O(d), the solution of a = O(10−3d) is very simi-
lar to that of a = O(d). It is therefore not too strange that the error is similar for
a = O(d) and a = O(10−3d), because the two cases produce nearly the same so-
lution. This is further proven by setting a = 0. This does not give a noteworthy
difference either, and it is clear that the advection term does not give too much
of a contribution when a = O(d) or less, and will only give a contribution by
raising the term, which leads to poorer results.

As a last discussion, we study the run time. Let us go back to the parameters
used to generate Figure 5.27. The Norne example has also been used in [18]. The
paper used the same multiscale method on the two-phase black-oil equations in
an isothermal system. The difference between that example and this one, is thus
that the temperature was not taken into account in the paper. The paper also
used other variables and parameters, as well as a different computer, but it is
still interesting to see the similarities of computational cost for that example and
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Table 5.15: The temperature discrepancy between the multiscale and sequential
method when the advection term and diffusion term are of the same
order, a = O(d), when the order of the advection term is 1000 times
bigger than that of the diffusion term, a = O(103d), and when the
order is 1000 times smaller than the diffusion term, a = O(10−3d). A
time step of ∆t = 20 days is used, and toliter = 10−1.

a = O(d) a = O(103d) a = O(10−3d)
Time (days) L2 L∞ L2 L∞ L2 L∞

t = 20 6.435 · 10−7 1.657 · 10−5 1.669 · 10−6 1.318 · 10−4 6.432 · 10−7 1.654 · 10−5

t = 1000 2.019 · 10−5 4.570 · 10−4 3.833 · 10−4 3.352 · 10−2 2.016 · 10−5 4.567 · 10−4

t = 2000 9.970 · 10−5 1.517 · 10−3 1.472 · 10−4 9.472 · 10−3 9.985 · 10−5 1.519 · 10−3

(a) a = O(d) (b) a = O(103d)

(c) a = O(10−3d)

Figure 5.29: The Norne temperature solution when t = 5 years, 175 days for the
three different cases of advection.

this one. The paper found that the multiscale solver was 2-3 times as fast as the
sequential solver. We have that the sequential solver uses 16.9 minutes to solve
our problem, while the multiscale solver uses 8.5 minutes to solve the same
problem. Our multiscale method is thus about 2 times faster than the sequential
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method. So even though we have added temperature to the system, the run
time of two multiscale methods seems to remain somewhat constant compared
to each other. This is good, because it indicates that the multiscale method
does not loose any of its already proven efficiency by adding temperature to the
system.
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6

C O N C L U S I O N

In this thesis we have looked at how two methods, the sequential method and
the multiscale restriction-smoothed basis method, solve equations that describe
flow and heat transfer in porous media. Here, we will give some concluding
remarks on both methods, and propose some ideas for further works.

sequential method

We have seen that the sequential method gives solutions that manage to mimic
the fully implicit solutions fairly accurately. This is true both for problems
with fewer cells and homogeneous permeabilities, as well as for more complex
problems with a higher number of cells and heterogeneous permeabilities. The
method is more efficient than the fully implicit method, both when it comes to
the easy test case, and the more complex one. In addition, we have with the
sequential method a more flexible solver than the fully implicit method, and by
adjusting properties such as step size, tolerances and outer loops, the sequential
method is able to systematically trade accuracy for efficiency. The sequential
method is also more stable than the fully implicit method, as we found no
restriction on the step size with the former method. This is an advantage in
reservoir simulation, where we often want to simulate processes over several
years, maybe even decades. A restriction we did find was that we have to solve
for pressure before solving for temperature, but this is not a big hindrance in
our opinion.

multiscale method

By applying the MsRSB method on the systems obtained from the sequential
method, we get a solver that more efficiently solves problems concerning non-
isothermal flow in porous media. The method produces accurate temperature
and pressure solutions for both single-phase and multiphase problems. Further-
more, it works well on both two dimensional and three dimensional grids, as
well as both structured Cartesian grids and complex unstructured grids with
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fractures, cracks and uneven surfaces. Just as with the sequential method, the
multiscale method is a stable and flexible method, where you can, by adjusting
different parameters, sharpen or lessen the accuracy to the sequential method.
Adjusting the iterative tolerance is especially effective on the accuracy. Further-
more, we have that the multiscale method produces accurate solutions when
quite coarse grids are used. We thus have a method that manages to mimic the
sequential method to a large degree, and by adjusting the sequential method’s
parameters, the multiscale method’s solutions will converge towards the fully
implicit solution. We have to be a little careful though. Adjusting the time step
∆t will make the sequential method’s solutions more accurate compared to the
fully implicit’s ones, but it will make the multiscale’s solutions less accurate
compared to the sequential method, and thus also the fully implicit. At least
when high iterative tolerances are used. So we have to find the right balance.

When it comes to efficiency, the multiscale method is best on complex grids and
complex permeabilities. When we have simpler problems with homogeneous
permeabilities, the multiscale method will not produce the solutions more effi-
ciently than for instance the sequential method, and there is not much of a point
of using the multiscale method. When we have more complex problems, how-
ever, the multiscale method is clearly more efficient than the sequential method.
We also have that the multiscale method works best on elliptical problems. By
using a more elliptic heat equation in the SPE10, Layer 5 example, we saw that
the noise previously encountered when the iterative tolerance was 10−1 disap-
peared. Moreover, by using a more elliptic equation we generally needed fewer
multiscale iterations for the solutions to converge, and by using a more hyper-
bolic heat equation, the accuracy decreased. The multiscale’s accuracy does not
seem to be much effected by a change of the heat conductivity κ. We did not
find much change in the accuracy by switching to a heterogeneous κ, but this
might come from the fact that κ still had large areas with constant values.

There does not seem to be any loss of accuracy or efficiency by going from
isothermal flow to thermal flow. Both the pressure and temperature discrep-
ancies are small, and the efficiency seems to be somewhat constant. In fact, a
previous paper [18] found that the multiscale method was two to three times as
fast as the sequential method on the Norne field when they studied isothermal
flow, and we found the multiscale solver to be about two times as fast when
we added temperature to the model. We also have that the temperature system
uses fewer multiscale iterations to converge than the pressure system.

All in all, we have a method that for problems with complex grids and per-
meabilities is flexible, stable and more efficient than the sequential and fully im-
plicit method, and which produces solutions that mimic the sequential solutions
accurately. The method has previously been proven to work well on isothermal
flow, but we can now conclude that it also works well when temperature is
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added to the model. By adjusting the parameters of the sequential method, the
multiscale method will further converge towards fully implicit method.

further work

When it comes to further work, we suggest studying the effects of a heteroge-
neous heat conductivity κ more thoroughly. Most of this thesis has employed a
homogeneous heat conductivity. Real reservoirs has a heterogeneous κ however,
and it is therefore important to know how the multiscale method is able to han-
dle this. As previously described, when we tested a heterogeneous κ it did not
lead to big changes in the accuracy. This was a bit surprising, as we would think
that the multiscale method would handle a heterogeneous κ differently than it
would handle a homogeneous one. We believe the small change is a result of
the relatively small change in the conductivity, though, especially considering
the fact that the permeability can vary over many orders. It would therefore
be interesting to study even more realistic cases of the heat conductivity. As
κ describes a materials ability to transfer heat, it is an important factor in heat
transfer in real life, and it is therefore important that our model is as accurate
as possible when a realistic value is used.

Another element that should be pursued is to study what happens when we
add gas to our model. Gas is a natural element of petroleum reservoirs, and the
methods should therefore be tested and verified on the full three-phase model
derived in Section 2.2.2. In addition to this comes the fact that adding a third
phase will lead to a slightly more complex model, and it would be intriguing to
see whether the methods are able to handle the added complexity or not.
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