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In the scenario of global warming and climate change, heat stress is a serious threat
to crop production worldwide. Being sessile, plants cannot escape from heat. Plants
have developed various adaptive mechanisms to survive heat stress. Several studies
have focused on diversity of heat tolerance levels in divergent Arabidopsis thaliana
(A. thaliana) ecotypes, but comprehensive genome scale understanding of heat stress
response in plants is still lacking. Here we report the genome scale transcript responses
to heat stress of 10 A. thaliana ecotypes (Col, Ler, C24, Cvi, Kas1, An1, Sha, Kyo2,
Eri, and Kond) originated from different geographical locations. During the experiment,
A. thaliana plants were subjected to heat stress (38◦C) and transcript responses were
monitored using Arabidopsis NimbleGen ATH6 microarrays. The responses of A. thaliana
ecotypes exhibited considerable variation in the transcript abundance levels. In total, 3644
transcripts were significantly heat regulated (p < 0.01) in the 10 ecotypes, including 244
transcription factors and 203 transposable elements. By employing a systems genetics
approach- Network Component Analysis (NCA), we have constructed an in silico transcript
regulatory network model for 35 heat responsive transcription factors during cellular
responses to heat stress in A. thaliana. The computed activities of the 35 transcription
factors showed ecotype specific responses to the heat treatment.
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INTRODUCTION
Climate change is increasingly viewed as a current and future
cause of hunger and poverty (Lobell et al., 2011; Wheeler and
von Braun, 2013). In the scenario of global climatic change, dif-
ferent environmental stresses are severe threats to agricultural
production worldwide (Brown and Funk, 2008; Ahuja et al.,
2010). Among all stress conditions, elevated temperature is seen
as the most serious threat to crop production (Wheeler et al.,
2000; Ciais et al., 2005; Semenov and Shewry, 2011). Recurrent
heat stress also affects disease resistance in plants by suppress-
ing plant immunity, as plant heat stress and defense responses
share important mediators such as calcium ions and heat shock
proteins (HSPs) (Lee et al., 2012). Climate data suggest that heat
waves became more common during the twentieth century (Stott
et al., 2004). Recently, Bita et al. reviewed the effects of high
temperature stress on physiology, biochemistry, and gene reg-
ulation pathways in plants leading to catastrophic loss of crop
productivity (Bita and Gerats, 2013). Transient or continuous
high temperatures cause a range of morphological, physiologi-
cal, and biochemical changes in plants which affect growth and
development and may lead to a drastic reduction in economic
yield (Richter et al., 2010). Plants are highly sensitive to temper-
ature and can differentiate minute variations of as little as 1◦C
(Mittler et al., 2012). Upon exposure to heat stress, seed germi-
nation, and photosynthetic efficiency decline (Endo et al., 2009).
Considering the predicted severity of changing climatic situation,

dissecting the molecular basis of heat stress responses in plants,
and identifying key components of the heat stress sensing and
signal transduction pathways, are becoming major concern of
present time (Bita and Gerats, 2013; Qu et al., 2013). Such knowl-
edge could be used toward developing plants and crops with
enhanced tolerance to heat stress (Zhang et al., 2000; Mittler and
Blumwald, 2010).

Environmental stress is a key factor driving the genome
regulation, evolutionary history, and geographical distribution
of organisms including plants (Alonso-Blanco et al., 2009).
Intraspecific natural variation or within-species phenotypic vari-
ation caused by spontaneous, favorable mutations contribute
to the local adaptations of plants (Mitchell-Olds and Schmitt,
2006). Such natural variation in crop plants has been exploited by
human society for the selection of developmental traits and physi-
ological features beneficial for agriculture (Weigel and Nordborg,
2005; Doebley et al., 2006). Additionally, studying natural vari-
ation in wild species can tell us about the molecular basis of
phenotypic differences related to plant adaptation to diverse nat-
ural environments (Borevitz and Nordborg, 2003). There have
been very few studies conducted till date focusing on the diversity
of heat tolerance in phenotypically divergent ecotypes (Alonso-
Blanco and Koornneef, 2000; Larkindale et al., 2005; Al-Quraan
et al., 2012). Thus, the molecular basis of the natural variation
during heat stress response in plants at genome scale is not fully
understood yet (Yeh et al., 2012).
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Transcriptomics, proteomics and metabolomics approaches
have been frequently used to identify heat stress-responsive genes,
proteins, and metabolites in plants (Kaplan et al., 2004; Jagadish
et al., 2010; Pecinka et al., 2010; Weston et al., 2011; Zou et al.,
2011b; Rocco et al., 2013). Transcript profiling is a major tool to
identify genes exhibiting transcriptional regulation in response to
changing environmental conditions. For such studies in plants,
A. thaliana remains a model system (Somerville and Koornneef,
2002). Variation in experimental conditions and protocols makes
it difficult to extract and compare information from data sets
produced by individual laboratories (Moreau et al., 2003). To
overcome such problems, 10 ecotypes of A. thaliana were sub-
jected to 5 individual stress treatments and 6 combinations of
these stress treatments under the same experimental set up and
profiling protocols (Rasmussen et al., 2013). We have consid-
ered all the heat experiments conducted on 10 ecotypes from this
published dataset (GEO accessionGSE41935) to explore genome-
scale transcriptomic response signatures of A. thaliana during
heat stress treatment. Being highly dynamic in nature, any bio-
logical system changes in response to environmental and genetic
perturbations. Differential dynamic network mapping facilitates
the exploration of previously unknown interactions (Ideker and
Krogan, 2012). While the A. thaliana genome has ∼1922 TFs
(Guo et al., 2005), experimentally confirmed regulatory relations
are available for less than 100 TFs, as per information from the
AGRIS database version updated in September, 2012 (Davuluri
et al., 2003). Tirosh et al. (Tirosh and Barkai, 2011) have explained
how regulatory relationships can also be deduced from patterns
of evolutionary divergence in molecular properties such as gene
expression (Keurentjes et al., 2007). To compensate the lack of
information on transcription factor activity at the genome-scale,
computational algorithms have been developed to identify regu-
latory modules and their condition-specific regulators from gene
expression data (Alter et al., 2000; Segal et al., 2003; Herrgard
et al., 2004). Network Component Analysis (NCA) is such an
approach, which has been successfully implemented in species

including A. thaliana to determine both the activities and regu-
latory influences for a set of transcription factors on target genes
(Liao et al., 2003; Kao et al., 2004; Wang et al., 2011). Using
the NCA method, we have predicted ecotype specific regulatory
relationships which generated new information toward under-
standing the natural variation in heat response pattern among
different ecotypes of the model plant A. thaliana.

RESULTS
DIFFERENT TRANSCRIPTOME SIGNATURES OF 10 Arabidopsis
ECOTYPES RESPONDING TO HEAT STRESS
To cover a wide array of phenotypic variations, 10 natural acces-
sions of A. thaliana representing their originally reported habitats
from 16 to 56.5◦ north latitudes were selected during the ERA-PG
Multi-stress project. These accessions or ecotypes were- Cvi (Cape
Verde Islands), Kas-1 (Kashmir, India), Kyo-2 (Kyoto, Japan), Sha
(Shakdara, Tadjikistan), Col-0(Columbia, USA), Kond (Kondara,
Tadjikistan), C24 (Coimbra, Portugal), Ler (Landsberg, Poland),
An-1 (Antwerpe, Belgium), Eri (Erigsboda, Sweden) (details in
Table 1). We chose a cut-off p ≤ 0.01 to define a gene as differen-
tially stress regulated. Using the results from the 10 ecotypes, we
examined the differences in transcript abundences that occurred
during early hours of heat treatment (38◦C). The results (Table 1
and Figure 1) indicated that the A. thaliana ecotypes have vis-
ibly different transcriptome level signatures in response to heat
stress. Variable numbers of transcripts were up or down regulated
among the ecotypes (Table 1). Kas-1 (797) and Cvi (776) exhib-
ited higher numbers of differentially regulated transcripts while
Col-0 (143) had comparatively few differentially regulated tran-
scripts. A unified list of 3644 differentially regulated transcripts
(p < 0.01) was generated from the 10 ecotypes (Table S1A.)
Surprisingly, 3114 (85%) transcripts were differentially regulated
in only one of the 10 ecotypes. Figure 2 displays fold change val-
ues (treatment vs. control) calculated from normalized expression
index for the top 1000 most significant genes from the 10 eco-
types. Global observation of the heat map indicates differentially

Table 1 | Summary of the ecotypes and their gene expression pattern during heat stress.

Eotype *Geographic origin Latitude

(◦North)

Total Total up Total down Unique (total) Unique (up) Unique (down)

Cvi Cape Verdia Islands 16 776 405 371 649 348 301

Kas-1 Kashmir, India 34 797 334 463 569 219 350

Kyo-2 Kyoto city, western part of Hoshu
Island, Japan

35.5 476 247 229 324 159 165

Sha Shakdara, Pamiro-Alay, Tadjikistan 39 355 178 177 206 92 114

Col-0 Columbia, United States 38.5 143 80 63 105 56 49

Kond Kondara, Tadjikistan 38.8 281 115 166 183 72 111

C24 Coimbra, Portugal 40 215 116 99 115 60 55

Ler Landsberg, Poland 48 276 138 138 224 113 111

An-1 Antwerpern, Belgium 51.5 670 226 444 450 137 313

Eri Erigsboda, Sweden 56 442 301 141 290 193 97

*Geographic origins of the ecotypes were collected from the donor, TAIR and the Arabidopsis 1001 Genome project database.

Geographic distribution of the 10 A. thaliana ecotypes and number of heat regulated genes in each of the ecotypes (p ≤ 0.01). Up and down regulation was calculated

based on fold change ratios compared to respective untreated controls in individual ecotypes. (Unique, Unique to the respective ecotype).
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FIGURE 1 | Numbers of differentially regulated transcripts in each of

the 10 ecotypes at significance level p ≤ 0.01. Ecotypes are on the x axis
and numbers of differentially regulated transcripts on the y axis. Blue bar
represents total number of differentially regulated transcripts, red bar the
number of positively regulated (up) transcripts and green bar represents
number of negatively regulated (down) transcripts.

regulated transcriptome signatures in response to heat treatment
in the 10 ecotypes. The significant list of differentially regulated
transcripts includes most of the previously documented heat reg-
ulated genes including Hsps (heat shock proteins) and Hsfs (heat
shock transcription factors) (Swindell et al., 2007).

ECOTYPE SPECIFIC HEAT REGULATED TRANSCRIPT LISTS CONTAIN
MANY TRANSCRIPTION FACTORS (TFs) AND TRANSPOSABLE
ELEMENTS (TEs)
The unified list of 3644 differentially regulated transcripts during
the heat stress contained 244 TFs (annotated in Table S1B). Only
AT5G57660 (CONSTANS-like 5 zinc finger family protein) was sig-
nificantly (p ≤ 0.01) upregulated in all of the 10 ecotypes. Two
other TFs, AT4G25480 (Dehydration response element B1A) and
AT5G24470 (Arabidopsis pseudo-response regulator 5), were sig-
nificantly upregulated in 9 ecotypes. MBF1C/AT3G24500 (mul-
tiprotein bridging factor 1C) was significantly down-regulated
in 8 ecotypes (Suzuki et al., 2008). Among others, 70 TFs were
significantly regulated in 2 ecotypes and 62, TFs were signifi-
cantly regulated only in one of the ecotypes. The differentially
regulated TFs included members of prominent TF families such
as ABF3,ADOF, AFO, AGL, NAC, AP1, AP2, Prr5, ARF, bZIP,
HSF, IDD, MYB, BLJ, DNAJ, JAZ, MYB, PHD finger, WRKY,
C2H2 zinc finger etc. Such differential regulation of diverse TF
families was obvious from the fact that apart from heat shock pro-
tein induction, other pathways involving ethylene, salicylic acid
(SA), and trehalose were shown to play crucial roles in plant
thermotolerance (Larkindale and Knight, 2002; Larkindale et al.,
2005).

The Nimblgen12-plex Arabidopsis microarray chip included
3822 transposable element (TE) probes. Of them, 203 TEs were
differentially regulated during heat stress (Table S1C). Except for
5, TEs, the rest were differentially regulated in single ecotypes.
The distribution of the differentially regulated TEs in ten ecotypes
were: Col-0 (10), Ler (24), Cvi (24), Eri (18), Kas2 (27), Kond
(23), Kyo2 (30), C24 (11), Sha (27), and An1 (14).

FIGURE 2 | Fold change values (treatment vs. control) calculated from

normalized expression index for top 1000 significant genes from all the

10 ecotypes. Hierarchical clustering (HCL) was performed with Pearson
correlation using average linkage method and 10,000 bootstrapping for the
top 1000 heat regulated transcripts based on fold-change ratios compared
to their respective controls.

GENE SET ENRICHMENT ANALYSIS (GSEA) INDICATES ACTIVATION OF
DIVERSE PROCESSES
To investigate functionally over-represented gene ontology cate-
gories, BinGO software was used on the list of 3644 differentially
regulated transcripts from the 10 ecotypes. No annotations were
retrieved for 60 genes which were eliminated from the final
analysis. In total, 82 statistically significant gene ontology cate-
gories were detected, including many parent categories such as
response to stimulus, stress, biotic stimulus, abiotic stimulus etc.
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(Table S2). Apart from these global terms, genes showing sig-
nificant variation in mRNA levels in A. thaliana during heat
stress were mainly belong to categories like response to heat, tem-
perature stimulus, water deprivation, light stimulus, wounding,
osmotic stress, oxidative stress, salt stress, and protein folding etc.
The rest of the differentially regulated genes covered various func-
tions, such as transcription, translation, signaling, metabolism,
and general stress response. These results indicated that, during
exposure to heat stress, plants extensively reprogrammed gene
expression, to limit damage caused by high temperatures.

Hsp GENES EXHIBIT DIFFERENTIAL EXPRESSION PATTERNS IN
Arabidopsis ECOTYPES DURING HEAT STRESS
A list of total 145 Hsps was generated containing the term “heat
shock protein” as per annotations available from TAIR10 database
(Table S3). Among them, 31 Hsps were significantly (p = 0.01)
differentially regulated in at least one of the 10 ecotypes. Most
of them were encoded for DNAJ heat shock N-terminal domain-
containing proteins. Other upregulated members were HSP70,
HSP21, HSP17, HSP18 etc. None of the 31 significant HSPs were

expressed in a similar pattern across all 10 ecotypes, which indi-
cated differentially regulated activity profiles of them across A.
thaliana ecotypes during heat stress responses (Figure 3).

RE-CONSTRUCTION OF A TRANSCRIPTIONAL REGULATORY NETWORK
DURING THE HEAT STRESS RESPONSE IN A. thaliana
By looking at the differential expression levels of a large num-
ber of TFs during the heat experiments, we wanted to explore
the pattern of regulatory interactions between the TFs and their
corresponding target genes (TGs) in the 10 A. thaliana ecotypes
using a benchmarked algorithm, NCA (Liao et al., 2003; Wang
et al., 2011; Barah et al., 2013). Simple correlation between the
expression profile of a transcription factor and its targets is not
obvious, and simple clustering based methods have not been
very successful in deciphering them (Qian et al., 2003). The
key assumption during predictions of interactions between TFs
and their target genes using gene expression data is that high
dimensional mRNA expression profiles contain hidden regulatory
signals which can be decomposed to low-dimensional regulatory
signals driven through an interacting network (Holter et al., 2000;

FIGURE 3 | Heat map of log2 fold change values of the 31

significantly regulated (p ≤ 0.01) HSP genes in 10 A. thaliana

ecotypes. Genes and ecotypes were clustered using Pearson’s

correlation coefficient with average linkage method. The P-values and
log2 fold-change values associated with all of the 145 Hsps are
provided in Table S3.
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Carrera et al., 2009). The lower dimensional regulatory signals
can be represented as a bipartite networked system of the tran-
scription factors and the target genes in which the gene expression
levels are transformed into weighted functions of the intracel-
lular states corresponding to the activity of the transcription
factors.

The NCA algorithm requires two inputs to calculate the hid-
den regulatory activity profiles: a series of gene expression profiles
and a pre-defined regulatory network. A list of 1922, TFs in A.
thaliana genome were collected from the Database of Arabidopsis
Transcription Factors (DATF) (Guo et al., 2005), The Arabidopsis
Gene Regulatory Information Server (AGRIS) (Yilmaz et al.,
2011), and the Plant Transcription Factor Database (PlantTFDB)
(Riano-Pachon et al., 2007). A list of 59 previously known heat
regulated transcription factors was generated from the Gene
Ontology database (Ashburner et al., 2000) under the annotation
category “response to heat” or containing the term “heat shock
factor.” The list of differentially regulated TFs in our transcrip-
tome data contains 35 out the curated list of 59 heat responsive
factors. A bipartite co-regulatory network (Alvarez and Woolf,
2011) was constructed from the gene expression values based
on correlation-coefficient threshold ≥ 0.8 between the 35 heat
regulated TFs and 1294, TGs (Table S4). The resulting network
contained 1947 connections. Of them, 687 connections were acti-
vations (positive) and 1260 were repressions (negative). Few of
the TFs in the network are highly connected (hubs), which sup-
ports the scale-free behavior of the predicted TF-TG network
(Albert, 2005). The number of connections for each of the TFs is
listed in Table 2. This co-regulatory network model was further
used as an input to the NCA algorithm to predict the activi-
ties of the TFs based on differential expression profiles (log2 fold
change values) of their linked TGs (Figure 4). Noticeable varia-
tion was observed in the activity profiles of the 35 TFs among the
10 ecotypes.

The predicted activity profiles of the 35 heat regulated TFs
clearly show the ecotype specific activities in the 10 A. thaliana
ecotypes. For example, transcription factor AT5G02810 (PRR7)
was highly active in the Kond ecotype. We identified both multi
responsive (active in more than one ecotype) and unique respon-
sive transcription factors (active only in one specific ecotype). The
detailed results are provided in Table 3. The majority of the eco-
type specific transcription factors were active in Cvi ecotype in
response to heat treatment. Multi responsive transcription factors
are mostly active in Kond, An-1 and Sha. The transcription factor
AT1G74950 (TIFY10B) is highly responsive in Kond, An-1 and
Sha.

DISCUSSION
Here we undertook an experiment to analyze the natural vari-
ation in genome-scale heat stress response in 10 A. thaliana
ecotypes at a single time point (3 h) of gene expression mea-
surement. The analysis indicated that the 10 A. thaliana eco-
types had significantly different transcriptome level signatures in
response to heat stress. It raises question about global accept-
ability of results generated from previously conducted plant
stress experiments based only on Col-0 and Ler as model
ecotypes.

Table 2 | Number of predicted regulatory connections for each of the

TFs.

TAIR Short Number of Activations Repressions

locus annotations connections

AT1G74950 TIFY10B 258 238 20

AT4G11660 HSFB2B 182 21 161

AT1G28050 AT1G28050 149 120 29

AT5G49330 MYB111 131 114 17

AT5G16600 MYB43 123 79 44

AT5G47640 NF-YB2 120 97 23

AT5G44260 AT5G44260 99 36 63

AT5G57660 COL5 81 23 58

AT4G18880 HSF A4A 79 52 27

AT1G46264 HSFB4 67 61 6

AT3G24500 MBF1C 58 49 9

AT2G34720 NF-YA4 53 33 20

AT1G79700 AT1G79700 52 14 38

AT5G11590 TINY2 51 41 10

AT4G25480 DREB1A 49 37 12

AT5G44190 GLK2 47 37 10

AT5G02810 PRR7 36 28 8

AT5G24470 APRR5 35 23 12

AT4G34680 GATA-3 34 27 7

AT5G25190 AT5G25190 25 11 14

AT4G28190 ULT1 24 11 13

AT4G36990 HSF4 21 6 15

AT4G37260 MYB73 21 11 10

AT3G15540 IAA19 20 15 5

AT1G70700 TIFY7 17 10 7

AT2G40350 AT2G40350 15 7 8

AT3G51910 HSFA7A 15 10 5

AT3G62090 PIL2 14 6 8

AT4G29080 PAP2 14 13 1

AT3G50750 AT3G50750 12 2 10

AT3G59060 PIL6 11 7 4

AT3G47500 CDF3 10 3 7

AT1G71030 MYBL2 9 8 1

AT2G26150 HSFA2 9 6 3

AT4G37790 HAT22 6 4 2

Few TFs have higher connections than others supporting the scale-free behav-

ior of the predicted TF-TG network. Activations and repressions are calculated

based on positive and negative correlations, respectively.

Among the differentially heat regulated transcripts, 85%
showed ecotype specific expression patterns. Heat shock pro-
teins or molecular chaperones were the most prominent group
within the list of differentially regulated list of transcripts. Apart
from common, heat stress related functional categories, GSEA
of the differentially regulated transcripts uncovered many func-
tional categories related to other stress response. Profound tran-
scriptional reprogramming during heat stress involves extensive
regulation of transcription that affects a large part of the whole
transcriptome (Zeller et al., 2009; Zou et al., 2011a).

The differential expression of 243 TFs among the 10 ecotypes
indicates a complex level of transcriptional regulation during the
exposure of plants to heat stress. Due to the lack of experimentally
validated transcriptional regulatory information in A. thaliana,
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FIGURE 4 | Predicted the activities of the 35 TFs among the 10

ecotypes. The NCA algorithm predicts the activities of the TFs based on
differential expression profiles (log2 fold change values) of their linked TGs.
The predicted activity profiles of the 35 heat regulated TFs shows variations
in the 10 A. thaliana ecotypes.

an in-silico transcript regulatory network model during cellular
responses to heat stress in A. thaliana was constructed using the
homogeneous gene expression data. The predicted activities of
the heat regulated TFs showed significant variations among 10
ecotypes (Figure 4). The observed differential regulatory activ-
ities among the heat regulated TFs might contribute to high
temperature acclimation of the specific ecotypes. Swindell et al.
(2007) reported that multiple stress treatments interact with HSF
and HSP response pathways to varying extents, suggesting that
there is a basis of cross-tolerance in plant species through a shock
response network. Expression of HSPs confers heat stress toler-
ance in plants that leads to improved photosynthesis, assimilate
partitioning, water and nutrient use efficiency, and membrane
stability (Wahid et al., 2007). The function of HSPs in enhanc-
ing stress tolerance may vary among genotypes and also depends
on the nature of the stress imposed upon the cell. Such quan-
titative variation in the gene expression among the Hsp genes

Table 3 | Ecotype specific transcriptional activity profiles of the 35

heat responsive TFs.

TF ID Alias Ecotypes

AT1G74950 TIFY10B Kond, An-1, Sha

AT4G11660 HSFB2B Cvi

AT1G28050 AT1G28050 Kyo-2, An-1, Col, Sha

AT5G49330 MYB111 Cvi

AT5G16600 MYB43 Kas-1, Kond, An-1, Sha

AT5G47640 NF-YB2 Cvi, Eri,

AT5G44260 AT5G44260 An-1

AT5G57660 COL5 Cvi

AT4G18880 HSF A4A Kas-1, An-1

AT1G46264 HSFB4 Kas-1, Sha

AT3G24500 MBF1C Kas-1, Eri

AT2G34720 NF-YA4 An-1, Sha

AT1G79700 AT1G79700 Kond, An-1

AT5G11590 TINY2 Eri, Kond, Col

AT4G25480 DREB1A Cvi

AT5G44190 GLK2 Cvi, Kas-1

AT5G02810 PRR7 Kond

AT5G24470 APRR5 Col

AT4G34680 GATA-3 Cvi, Kas-1

AT5G25190 AT5G25190 Eri, Kond, C24, An-1

AT4G28190 ULT1 Kond, Sha

AT4G36990 HSF4 Cvi, Kas-1, Sha

AT4G37260 MYB73 Kas-1, Kond, Col

AT3G15540 IAA19 Eri

AT1G70700 TIFY7 Kas-1, An-1

AT2G40350 AT2G40350 Kyo-2, Eri

AT3G51910 HSFA7A Eri, Kond

AT3G62090 PIL2 Col

AT4G29080 PAP2 Kond

AT3G50750 AT3G50750 Col

AT3G59060 PIL6 Kas-1

AT3G47500 CDF3 Kas-1, C24, Sha

AT1G71030 MYBL2 Eri

AT2G26150 ATHSFA2 Ler, Kond, C24, Sha

AT4G37790 HAT22 Ler, Kas-1

This table presents, which of the 35 previously reported heat responsive TFs

are active among 10 ecotypes during our experiments based on their predicted

activity profiles using NCA algorithm.

in the 10 ecotypes is clearly visible from Figure 3. Heat stress
leads to direct denaturation of cellular proteins. Earlier, some
in vitro data indicated that HSPs acted as molecular chaperones
to prevent thermal aggregation of proteins by binding non-native
intermediates which could then be refolded in an ATP-dependent
fashion by other chaperones (Lee and Vierling, 2000). Therefore,
the molecular chaperone activity of the HSPs may contribute to
high temperature tolerance via prevention of protein misfolding
and removal of non-native aggregations.

The 203 differentially regulated transposable elements (TEs)
among the 10 ecotypes may play an important role in genome
adapting to local climatic temperatures (Fedoroff, 2012). In a
recent review, (Lisch, 2013) summarize the impact of stress
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activated retrotransposons on genome evolution in plants.
Natural populations can show diverse responses when exposed to
adverse environmental conditions because of their genetic vari-
ation as well as because of their epigenetic variations. Only a
few studies have reported that stress responses in plants affect
epigenetic regulation and require specific epigenetic regulators
(Chinnusamy and Zhu, 2009). For example, UV, cold, and heat
stress result in the reactivation of silent transgenes and endoge-
nous transposable elements, although without reductions in DNA
methylation and repressive histone marks (Grativol et al., 2012;
Popova et al., 2013). Pecinka et al. (2010) showed that several
repetitive elements of A. thaliana are under epigenetic regulation
by transcriptional gene silencing at ambient temperatures and
become activated by prolonged heat stress. A change in the epige-
netic state of TEs by heat stress might also contribute to regulatory
activities for adjacent genes. Recently, Wang et al. (2013) demon-
strated that both TE sequence polymorphisms and the presence
of linked TEs are positively correlated with intraspecific varia-
tion in gene expression. Some of the differentially regulated TEs
in our heat experiments may therefore, be potentially interesting
targets to explore diversity of heat stress responses among differ-
ent ecotypes. Further targeted experiments in this direction can
explore the molecular details of any potential role of these TEs on
genomic adaptation of the ecotypes to their local environment.

MATERIALS AND METHODS
MICROARRAY DATA
We have considered all the heat stress microarray experiments
conducted on 10 ecotypes during the ERA-PG Multi-stress
project (Rasmussen et al., 2013) to explore genome-scale tran-
scriptome response signatures of A. thaliana during heat stress
(microarray data available at GEO with the accession GSE41935).
All experiments of ERA-PG Multistress project were performed
in environmentally controlled rooms at the plant growth facil-
ities at RISØ DTU National Laboratory for Sustainable Energy
(Roskilde, Denmark). A pilot study using wild type Col and Ler
plants was set up to find the appropriate conditions at sub-lethal
doses (Rasmussen et al., 2013). These initial observations indi-
cated that an optimal time before the onset of a phenotypic
response (e.g., wilting, dehydration) while avoiding tissue dam-
age was 3 h. 10 A. thaliana wild ecotypes (Table 1) were grown
in soil under long day photoperiod and 24◦C in a greenhouse
setting for one generation to amplify homogeneous seed for all
different genotypes. The seeds were then sown into trays and
grown in a Conviron growth chamber (Winnipeg, Manitoba,
Canada) under a 12h/12h photoperiod, 24◦C and standard A.
thaliana growth conditions. 3 week-old plants were then placed
for 3 h in the environmentally controlled growth rooms that
were preset to heat stress conditions (38◦C). Triplicated (biolog-
ical) trays with the wild type controls were subject to the heat
stress. After the stress treatments, leaf samples were collected and
promptly frozen in liquid nitrogen for subsequent microarray
experiments.

STATISTICAL ANALYSIS OF THE DATA
Resulting data from the microarray experiments was pre-
processed using the RMA (Irizarry et al., 2003) implementation

in the oligo package (Carvalho and Irizarry, 2010) in R
programming platform (R Core Team, 2012). Gene annotation
was acquired from TAIR10 (Lamesch et al., 2012) using the
BioMart data mining tool (Guberman et al., 2011). Differentially
expressed genes between control and treated plants were identi-
fied using t-test (p < 0.01). Genotype specific responses to stress
were identified by the interaction effect from a Two-Way ANOVA
(Kerr et al., 2000; Cui and Churchill, 2003) of the genotype and
treatment effect (p < 0.01). The union of stress responsive genes
were further used for network-based analysis. Heat maps were
plotted using TM4 microarray software suite (Saeed et al., 2006).

GENE SET ENRICHMENT ANALYSIS (GSEA)
The Biological Networks Gene Ontology (BiNGO) tool
(Maere et al., 2005), an open-source Java tool, was used to
determine Gene Ontology (GO) terms (Ashburner et al.,
2000) that were significantly overrepresented in our dif-
ferentially regulated gene lists (p-values were Bonferroni
corrected).

NETWORK COMPONENT ANALYSIS AND NETWORK
RECONSTRUCTION
Network component analysis is a computational method for
reconstructing the hidden regulatory signals (TFAs-Transcription
Factor Activities) from gene expression data with known con-
nectivity in terms of matrix decomposition (Liao et al., 2003;
Galbraith et al., 2006). The algorithm for NCA analysis is
implemented in MATLAB by Liao and colleagues and is
online for download (http://www.ee.ucla.edu/~riccardo/NCA/
nca.html). With NCA as a reconstruction method, we predicted
significant TFs and connectivity strength on target genes and
TFAs of TFs.
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Table S1 | List of differentially regulated transcripts during heat stress. (A)

List of all the transcripts whose expressions were altered, during heat

stress in the 10 ecotypes. Both p-values and log2 fold change values have

been included along with short annotations. (B) List of 244 transcription

factors (TFs) whose expressions were altered, during heat stress in the 10

ecotypes. Both p-values and log2 fold change values have been included.

(C) List of 203 transposable elements (TEs) whose expressions were

altered, during heat stress in the 10 ecotypes. Both p-values and log2 fold

change values have been included.

Table S2 | Results of Gene Set Enrichment Analysis (GSEA) using BinGO

software.

Table S3 | List of Heat Shock Protein coding genes (Hsps). List of all the

145 Hsps with corresponding p-values and log2 fold change values during

the heat stress treatment in 10 ecotypes.

Table S4 | TF-TG regulatory bipartite connections predicted using NCA

algorithm. TF-TG regulatory bipartite connections predicted using NCA

algorithm based on their expression profiles, using Pearson correlation

coefficient threshold (PCC) ≥0.80. Annotations and functional roles

(TF/TG) are also provided.
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