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Abstract— Diagnosis of actuator faults is crucial for aircraft
since loss of actuation can have catastrophic consequences. For
autonomous aircraft the steps necessary to achieve fault toler-
ance is limited when only basic and non-redundant sensor and
actuators suites are present. Through diagnosis that exploits
analytical redundancies it is, nevertheless, possible to cheaply
enhance the level of safety. This paper presents a method for
diagnosing control surface faults by using basic sensors and
hardware available on an autonomous aircraft. The capability
of fault diagnosis is demonstrated obtaining desired levels of
false alarms and detection probabilities. Self-tuning residual
generators are employed for diagnosis and are combined with
statistical change detection to form a setup for robust fault
diagnosis. On-line estimation of test statistics is used to obtain
a detection threshold and a desired false alarm probability. A
data based method is used to determine the validity of the
methods proposed. Verification is achieved using real data and
shows that the presented diagnosis method is efficient and could
have avoided incidents where faults led to loss of aircraft.

I. INTRODUCTION

One of the main challenges when dealing with autonomous
aircraft is diagnosis and handling of faults in sensors and
actuators. Loss or partly loss of actuation is particularly
critical for the aircraft. Since price and weight are impor-
tant competition parameters for unmanned aerial vehicles
(UAVs), cheap materials and solutions are sometimes used,
which increase the risk of faults. Diagnosis of such faults
can enhance the safety and usability of UAVs and thereby
increase their value both in terms of economy but more
importantly in terms of safety.

The subject of fault diagnosis (FDI) and fault tolerant
control (FTC) for general aircraft is a huge field of interest
in academia as well as in industry. In a recent survey [1]
analyzed different approaches to FDI and FTC were. Meth-
ods using observer-based design, on-line recursive parameter
estimation, sliding mode control with control allocation and
predictive control were all investigated. Recent FDI work for
general aircraft also include [2] and [3] where model based
approaches were treated and [4] where the methods used by
Airbus were explained. A general structural analysis were
conducted in [5] for a non-linear aircraft model, and struc-
tural detectability and isolability properties were determined.

Loss of control surfaces was the topic of [6] and [7]
where a flight controller robust towards partial loss of flaps
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was designed for a general aircraft. Oscillations in control
surfaces for large passenger aircraft were investigated in [8]
that also covered performance monitoring of the surfaces.

Extensive research has been conducted for UAVs related
to control surface faults. These include [9] and [10] where
the focus was on how faults directly affect the UAV’s ability
to maneuver. Reconfigurations of the control and guidance
systems were done to accommodate the reduced capabilities
of the aircraft. The FDI was achieved by using an extended
version of multiple model adaptive estimation (MMAE) first
reported in [11]. The faults were modelled as an unknown
signal controlling the actuators, which were then estimated
by extended Kalman filters in the enhanced MMAE method.
In [12] FTC for a small UAV subject to control surface faults
was investigated. The authors estimated the reduction of
UAV’s flight envelope and used active FDI to isolate faults on
the control surfaces. Methods using linear parameter varying
methods were dealt with in [13]. The problem of probability
of timely diagnosis and recovery was dealt with in [14].

The subject of this paper is also FDI for control surfaces
of a small UAV. A low-order model between the aircraft
control surface deflections and the measured angular rates
is estimated online and utilized to create a set of residual
signals. These signals indicate faults and are used directly for
the detection. Statistical methods are used to accept or reject
hypothesis about the UAV’s condition. A salient feature is
shown to be that self-tuning is possible during a flight. In the
paper, this is demonstrated using real data from both normal
and faulty flights. Although only a few cases of actual faults
were recorded, this will be shown to allow us to investigate
the performance in diagnostic terms of detection and false
alarm probabilities from real data.

The paper is organized as follows. Introduction and a brief
description of the UAV used in the tests is followed by,
a general FDI setup with parameter adaptation in residual
generators, whereafter model structure and adaptation algo-
rithm are elaborated. A statistical framework leading to a
hypothesis test is then introduced and performance of the
system is discussed based on processing of real data. A
conclusion summarizes the paper.

II. TEST AIRCRAFT

The aircraft considered in this paper is a Banshee target
drone build by Meggitt Defence System [15] (Fig. 1). The
drone is a delta wing aircraft equipped with a small rear
mounted Wankel engine which gives thrust through a 2
bladed wooden propeller. It is launched from a catapult
system and lands by parachute. The aircraft is equipped with



a basic autopilot system and is operated from ground by
an operator. The aircraft can be flown by remote control
but this is only done rarely. During normal missions the
aircraft is flown by its autopilot and the operator merely
gives waypoints that it should follow.

The aircraft is equipped with only two actuators, in
addition to an engine throttle δt , which is not considered
in this paper. The actuators are ailerons δa and elevators δe.
Both are placed side by side on the delta wing. The aircraft
has a fixed tail without rudder. The pair of ailerons are locked
together in software such that actuation of one flap is not
possible without also moving the other. In the remaining
part of the paper the ailerons are treated as one actuator
and the same applies to the elevators. None of the flaps has
angle measurement attached, with the consequence that the
autopilot is vulnerable to stuck or disconnected surfaces.

Fig. 1. Banshee drone at a Danish Defense exercise. Foto: VFD

The Banshee is equipped with a barometric sensor which
measures the flying height, h and a pitot tube to measure
the airspeed, va. The onboard Inertial Measurement Unit
(IMU) estimates the attitude of the aircraft ΦΦΦ=

[
ϕ θ ψ

]T.
This is done based on measurements from inertial navigation
sensors such as the three-axis gyro measuring the aircraft turn
rates ωωω =

[
p q r

]T. Apart from these a standard GPS is
onboard to get the position of the aircraft and correct the
attitude estimate.

Telemetry data is send to a ground station over a radio
link. This is the data used for the FDI. Due to the limited
bandwidth of the radio link, sensor values are not available
at full rate. This entail that faster dynamics are lost and this
issue need be considered when designing the FDI system.

III. FAULT DIAGNOSIS MODEL
The FDI setup used in this paper is illustrated in Fig. 2.

The general idea is to use a model that is adapted, online,
to the smaller variations in aircraft and external conditions.
The output of this model is compared to the measurements
of the aircraft to form a residual signal. The adaptation is
achieved by feeding back the residual signals and change
model parameters to give a better fit in next iteration. The
residual signal is also monitored by a change detection

Fig. 2. Adaptive fault detection setup.

system, which stops the adaptation if a too abrupt change
happens. This would indicate that a fault has occurred on
the aircraft. By stopping the adaptation it is avoided to adapt
the model to a faulty state of the system.

The FDI setup is developed as an aid to the UAV operator
and is therefore not integrated in the autopilot hardware even
though this could easily be done. This means all processing is
done on telemetry signals send from the aircraft to the ground
station. The limited sample-rate available from the telemetry
entails that the chosen model does not need to include fast
dynamics as these will not be identifiable anyway. Since the
operator must act on the alarm signals coming from FDI
system it is important to investigate if the system is able
to raise alarms fast enough to give the operator sufficient
reaction time before the aircraft is lost.

IV. CONTROL SURFACE FAULT MODEL

An aircraft can be described by a 6 degree of free-
dom model including kinematic and dynamic equations (see
eg. [16]). Utilizing this model implies detailed knowledge
about the aerodynamic coefficients and this information is
not always available for cheaper UAV’s. For control surface
fault diagnosis the important feature is the relationship
between surface deflection and angular rates. In this paper
an adaptive model of this relationship is employed. The
following three relations for roll rate (p), pitch rate (q) and
yaw rate (r), calculated at sample k, is related to the aileron
deflection δa and elevator deflection δe.

p[k] = apaδa[k]+bpa (1)
q[k] = aqeδe[k]+bqe (2)
r[k] = araδa[k]+brar[k−1]+ cra (3)

where bpa, bqe and cra are bias terms and apa, aqe and
ara are gain factors. Equation (3) includes the integrating
effect between the aileron and yaw rate in the bra term. This
approach separates the lateral and longitudinal states in that
the aileron is only related to roll and yaw and the elevator
is related to pitch.

Equations (1) to (3) can be described on the form

y[k] = φφφ[k]TΘΘΘ[k]+ e[k] (4)



TABLE I
FAULT DEPENDENCIES OF RESIDUALS

p q r δa δe
Rpa 1 0 0 1 0
Rqe 0 1 0 0 1
Rra 0 0 1 1 0

with e[k] being the unmodelled behavior. For (1) the param-
eters would be:

y[k] = p[k] (5)

φφφ [k] =

[
δa[k]

1

]
(6)

ΘΘΘ[k] =

[
apa
bpa

]
(7)

From the general expression given by (4) residuals are,

ε[k] = y[k]−φφφ[k]TΘΘΘ[k] (8)

Control surface defects will give rise to rapid change in the
input/output signals and hence in the prediction error (8) and
subsequently appear as a parameter adaptation to the faulty
case.

Three residuals are formed based on (8): Rpa from (1),
Rqe from (2) and Rra from (3).

Rpa = p[k]−apaδa[k]−bpa (9)
Rqe = q[k]−aqeδe[k]−bqe (10)
Rra = r[k]−araδa[k]−brar[k−1]− cra (11)

This gives rise to a binary dependency between residuals
and actuator faults as shown in Table I. To truly isolate a fault
the column-wise signature of each variable must be unique.
As seen from the table both q and the elevator deflection
δe has the column signature [0,1,0]. This means that if
residual Rqe indicates a fault but Rpa and Rra does not, it
is not possible to isolate whether the fault is caused by the
sensor for q or the elevator. Active fault diagnosis methods
are useful to isolate this type of fault. However since practical
experience with this particular drone shows that flap faults
are much more likely to occur than single faults on gyros, a
single indication on Rqe is interpreted as an elevator fault.

A. Online parameter estimation

The a, b and c parameters of the residuals (9)-(11) are
estimated online using recursive least squares (RLS),

ε[k] = y[k]−φφφ[k]TΘ̂ΘΘ[k−1] (12)

P[k] =
(
λ f P[k−1]−1 +φφφ[k]φφφ [k]T

)−1
(13)

Θ̂ΘΘ[k] = Θ̂ΘΘ[k−1]+P[k]φφφ[k]εεε[k] (14)

In this, λ f is the forgetting factor and P[k] is the estimators
covariance. The initial value of P[k] is found empirically
from several test flights. This is done by running the esti-
mator for data from steady wings-level flight and see what
value of P[k] settles at. The forgetting factor is tuned such
that past measurements does not influence the estimate too
much. This is done to decrease the risk of raising false alarms
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Fig. 3. Parameter estimates with initialization curve.

because of small unmodelled disturbances. Fig. 3 shows how
the parameters of the estimator for (11) develop over time.
The parameters are in this case initialized at 0 to see how
quickly they converges to a steady value. For ara and cra it
takes around 200 s to settle. To reduce the initial transient,
parameters are initialized with their expected normal values.

B. Residual whitening

By analyzing the residuals power spectrum density and
autocorrelation functions it is found that a heavy correlation
is present on the signals. This is illustrated for Rpa in the
leftmost two plots of Fig. 4. The correlation is due to the
low-order model used when generating the residuals. In order
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Fig. 4. Power spectrum density and autocorrelation of residual (9) before
and after whitening.

not to degrade the performance of the change detector by
this correlation the signals are run through a whitening filter
before further processing. A finite impulse response (FIR)
representation of a linear estimator can be used to estimate



the deterministic part of the signal

ε̂[k] =
J

∑
j=1

a jε[k− j] (15)

By subtracting the estimate ε̂[k] from the actual signal only
the stochastic part will be left.

ε̃[k] = ε[k]− ε̂[k] (16)

In practice, a size of J = 5 in (15) was found sufficient
and the coefficients a j were found by optimization over a
representative data-set of each residual. This was done once.
In the right plots of Fig. 4 the autocorrelation is shown after
whitening. Although the signal is not perfectly white this is
found to be satisfactory for the change detection.

V. HYPOTHESIS TEST

Changes in the three residual signals are detected using
the Generalized Likelihood Ratio Test (GLRT). The GLRT
distinguishes between two different hypothesis about the
parameters, ΘΘΘ, of the involved probability distribution.

H0 : AAAΘΘΘ = ccc (17)
H1 : AAAΘΘΘ ̸= ccc (18)

The residual signals given in Table I is found to follow
the Laplacian distribution which have the following density
function

p(x;a,b) =
1
2b

exp
(
−|x−a|

b

)
(19)

where a is the median and b is the scaling. By running a
Kolmogorov-Smirnov test on the data it is possible to verify
that they follow the Laplacian distribution. This is done
for a sample of consecutive residual data which are tested
against a distribution where a and b in (19) are substituted
by their maximum likelihood estimates (MLEs). The result
is that with a p-value of 0.064 the data come from the same
distribution. A similar test is done for the MLE Gaussian
distribution but with a p-value of only 4.5×10−4, data cold
not be Gaussian. Both tests were done on the data after the
whitening process.

The nominal case, H0, for the residuals is when their
median value a is close to zero. A median different from
zero indicate a discrepancy between the aircraft model and
the measurements which in terms indicate a fault (See eg.
Fig. 2). The two hypothesis for fault detection are therefore

H0 : a = 0 (20)
H1 : a ̸= 0 (21)

The value of b is not known for either case and is therefore
to be estimated.

A. GLR test for Laplacian

A test statistic for the Laplacian distribution for changes to
the median a, can be formulated by the following expression

T ′
L(xxx) =

(
b̂0

b̂1

)N

> γ ′ (22)

TABLE II
GLRT PARAMETERS FOR RESIDUALS.

Window size (N) Threshold (γ)
Rpa 100 100
Rqe 100 100
Rra 75 50

with the MLE’s of the parameters given by

b̂0 =
1
N

N

∑
n=1

|x[n]| (23)

b̂1 =
1
N

N

∑
n=1

|x[n]−median(xxx)| (24)

When the value of T ′
L(xxx) is larger than the threshold value

γ ′ the H0 hypothesis is rejected and data indicate a median
significantly apart from 0.

To achieve an expression that is more suitable for practical
calculations and does not have numerical issues the following
conversion of (22) is done.

TL(xxx) = N log

(
b̂0

b̂1

)
> γ (25)

The threshold value γ should be chosen appropriately and a
data based method for doing this is given in the next section.
See eg. [17] for a details of the general GLRT.

VI. DETECTOR PERFORMANCE

The parameters for the detectors working on the three
residual signals are given in Table II.

The window size N is chosen such that a suitable batch of
data is treated in each recursion. The threshold is chosen
based on a statistical analysis of values from the GLRT
output, an approach first presented by [18] and applied in
airspeed sensor fault diagnosis for UAVs in [19]. Fig. 5
shows a probability plot of this output for two different
flights. The plotted time-history is from residual Rra, the
other residuals have a similar appearance. The output follows
approximately a Weibull distribution with the following
distribution function,

P(x;bw,kw) = 1− exp

(
−
(

x
bw

)kw
)

(26)

It is possible to estimate the scale parameter bw and shape
parameter kw by eg. MLE methods. By using the right-
tail probability Q(x;bw,kw) = 1−P(x;bw,kw) a measure of
the probability of false alarms PFA for certain thresholds is
given. For γ = 50 a probability of P(x;bw,kw) = 0.9999 is
achieved. This means that statistically 0.9999 of H0 data will
be located below the threshold which entail a PFA = 0.0001.
The residuals Rpa and Rqe is more noisy and therefore higher
values of γ are found for them.

By using data from an incident related to aileron mal-
function it is possible to analyze performance of the change
detection system. Fig. 6 shows roll and pitch angles together
with commanded aileron deflection. The first observation
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Fig. 5. Probability plot of the test statistic output TL when the aircraft is
fault free.
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Fig. 6. Selected telemetry records from aircraft just before crash.

is that much of the dynamics of the aileron signal is lost
due to the low sample-rate of the telemetry data. Secondly
just before t = 4110 s the aircraft starts rolling right, even
though the autopilot commands a left roll. From this point
on there is no relation between the commanded signal and
the aircraft’s maneuvers. This clearly shows that the relations
of (9) is violated. The aircraft crashes shortly after and the
subsequent investigation of the crash determined that control
of an aileron was lost in flight.

To give an assessment of the diagnosis systems ability to
detect faults with the data chosen threshold value, analysis
of data belonging to the H1 case is done. Since the starting
point of a H1 condition is not known exact there is some
uncertainty in the following analysis. However it gives a fair
estimate of the actual detection probability, PD, under real-
life conditions. Fig. 7 shows TL for Rra for two different
cases where faults occurs on the ailerons of a Banshee. The
top plot is from a case where the linkage mechanism, which

10
−2

10
−1

10
0

10
1

10
2

10
3

0.01

0.05
0.1

0.25
0.5

0.75
0.9

0.99

P
ro

ba
bi

lit
y

T
L
 for fault I

10
−2

10
−1

10
0

10
1

10
2

10
3

0.0005

0.005 

0.05  
0.25  
0.75  
0.99  

P
ro

ba
bi

lit
y

T
L
 for fault II

Fig. 7. Probability plot of the test statistic output TL for two different fault
cases. The vertical dashed line indicates the detector threshold.

drives one of the flaps, slips in its gears causing an actuator
offset. This does not trigger a crash in this particular case
but could lead reduced maneuverability since the deflection
to one side is decreased. The PD for this case is 58%. The
bottom plot of Fig. 7 is the case of total loss of aileron
actuation illustrated in Fig. 6 that within shortly caused a
crash of the aircraft. This case has a PD of 98%.

Fig. 8 shows normalized histograms for Rpa for two
segments of flight. The nominal segment is centered around
0 as expected, and the faulty segment shows an shift in
median. The Laplacian shape of the H1 data are slightly
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Fig. 8. Histogram for a segment of Rpa of normal flight shown together
with a faulty segment. The switch in median value is apparent.

blurred because the fault does not affect the residual in a
sharp step but rather in a softer fashion. The hypothesis test
can, anyway, be done over a window size of 100 samples.

Fig. 9 depicts the time development for the three residuals
(9)-(11) for this flight. There is an indication of a change in
center value at the end of the plots.

Fig. 10 shows the test statistics for the three residuals (9)-
(11), In this figure the fault indication at around t = 4100 s
is more significant than on Fig. 9. The fault is detected
12−14 s before control of the aircraft is lost at t = 4116 s.
This fault signal could give the UAV operator enough time
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Fig. 10. Development over time for the three test statistics for a flight with
an aileron fault.

to react and deploy the parachute in order to bring down
the aircraft in a controlled manner, but a automatic fail-
safe mechanism integrated in the UAV’s autopilot could have
saved the aircraft.

VII. CONCLUSIONS

This paper investigated change detection methods used
for detection of control surface faults for UAVs. The sug-
gested method utilized that the control surfaces have direct
influence on the aircraft angular rates. A number of low-
order models relating these rates to the actuator deflections
were presented and by utilizing parameter estimation small
disturbances could be overcome. Results with real-life data
assessed the need for whitening filters before the GLRT

change detection methods could be used. The thresholds for
the test statics were found by analyzing segments of real-
life data. The suggested method does not require a large
amount on computational power and is therefore well suited
for implementation in an existing autopilot system.
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