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Abstract 

 
Recently, the topic of lighting quality has become very significant in the lighting 
research community. With the dynamic exploration of the visual and non-visual effects 
of light on human bodies and their well-being, theories that light has a powerful impact 
on quality of life have become known as scientific truth.  

No formal interpretation of lighting quality has been prescribed by any official source, 
though the most generally accepted description was published in the Lighting Handbook 
of Illuminating Engineering Society of North America (IESNA): ‘Lighting quality: the 
integration of human needs, architecture, and economics and the environment’. This 
description is based on Veitch (1998)’s model of lighting quality, which includes the 
parametres of individual well-being, architecture and economics (Veitch 1998). Each 
can be further broken down into other aspects: visibility, social communication, health 
and safety in individual well-being; form, composition, codes and standards in 
architecture; and maintenance, energy and environment in economy, respectively. With 
proper balancing of these elements, good lighting quality can be achieved. 

Light modelling is a small but important part of the lighting quality concept. It 
determines not only the capability of the eye to detect any objects in a space but also its 
ability to discriminate contours, shapes and details, the most important visual 
characteristics of any object. These are essential and significant indicators that allow a 
person to analyse and ascertain another person’s state of health, the freshness of food, 
the mood of the interlocutor and many other key characteristics of visual environments. 
Thus, light modelling is an essential aspect important in various architectural spaces, 
from museums to hospitals to offices. 

To date, few studies have been dedicated to light modelling. Some basic knowledge has 
been achieved from studies on pedestrian visibility and road lighting. However, few 
investigations have been performed in day-lit interiors. Thus, the light modelling topic 
remains underestimated and insufficiently studied. 

To address this gap, the present research aims to develop the concept of light modelling 
of real 3D objects in day-lit environments. The author will propose the metrics of 
contour, shape and details distinctness of the examined units as the most critical 
aspects of light modelling. Based on the idea that light and colour are mentally 
inseparable in the human perception of visual environments, it is of great importance to 
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create experimental conditions that provide both of these principal concepts (light and 
colour). The high dynamic range (HDR) imaging technique will be used as part of the 
experimental research methodology, giving reliable, analysable, numerical data 
obtained from luminance maps. 

Three experiments and their outcomes form the basis of this dissertation. Work on this 
dissertation began with general research questions regarding studies of chromatic 
interiors using HDR images, examining the possible effect of achromatic and chromatic 
colours and colour combinations on the perception of room illumination (Experiment 
1). The focus then turned to the development of the appropriate luminance-based 
metrics of real 3D achromatic and chromatic objects placed in a room illuminated by 
daylight (Experiment 2). These metrics were then verified in a real room study and 
repeated through computer simulation (Experiment 3). 

The results obtained from these experiments indicate that majority of the proposed 
luminance-based metrics correlate very well with subjective assessments that deem 
contour, shape and details to be distinguishable in different degrees. The metrics also 
indicate considerable variations among 3D objects with different luminance and 
chromatic contrasts. These luminance-based metrics outperformed currently used 
modelling index and cylindrical illuminance metrics. Furthermore, these luminance-
based metrics can be used both in real architectural spaces and computer simulations.  

Considering these advantages, the author of this dissertation proposes that luminance-
based metrics should be recommended for practical use to ensure light modelling; 
specifically, to better guarantee the distinctness of objects’ contours, shapes and details. 
The metrics have some limitations dictated by existing experimental conditions and 
therefore require further testing if they are to be made universally applicable. These will 
be further discussed in the present dissertation, as will some proposals for possible 
future research. 
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1. Introduction 
 
1.1 Thesis outline 

The body of this thesis frames the research activities performed within the current study 
project. The details of the methodology, results and conclusions of each conducted 
experiment are included in articles in Chapter 8, while the repetition of minute 
explanations was minimised in the thesis body. Special attention was paid to developing 
a structured narrative to include details concerning fulfilled works that were not 
included in articles or needed additional explanation. Readers can consult the following 
synopsis to obtain key information, but a reading of the collection of appended papers is 
recommended for a more extensive understanding of the experimental settings and 
methods, detailed results and discussions involved in this thesis. These papers serve as a 
basis for the current dissertation and represent the successive steps of this research 
project. 

Chapter 1 introduces topic of the study to the reader. The five research questions are 
formulated here, which determine the structure and stages of the work. 

The main body of the dissertation begins in Chapter 2 (State of the art), where an 
overview of the relevant studies of light1 and colour, lighting quality, luminance-based 
design and light modelling is provided.  

Chapter 3 describes the overall project’s development. Each experiment is briefly 
introduced, with particular attention paid to the proposed metrics. This information was 
not explained in the published papers and therefore required expanded commentary. 

In Chapter 4, a theoretical overview of the methods adapted from previous studies to 
explore the stated research questions is presented. The possible limitations and 
advantages of these methods are discussed, while detailed methodologies regarding 
each experiment are found in Chapter 8. 

Two types of analysis of the data obtained from the experiments are provided in 
Chapter 5: luminance maps analysis and statistical analysis. The luminance maps 
analysis represents the more technical approach to information processing. The 
statistical analysis describes the methods of data analysis used in the research project, as 

                                                 
1 The text highlighted in bold, grey, italic, underlined font indicates a term defined in the Glossary. 
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well as work related to a questionnaire analysis that pairs data with the results of the 
luminance maps examination. 

Results of the three experiments are discussed in Chapter 6, divided into three 
subchapters to correspond with each experiment. All supplementary data, such as tables, 
graphs and metric values, can be found in Papers I–V. The study’s main findings, 
limitations and performance of the results and metrics are described. 

Finally, Chapter 7 summarises the achievements of the present dissertation and 
discusses possible directions for future work beyond the doctoral studies. 

Chapter 8 contains the papers (published or being under review) that formed the basis 
for this dissertation. 

The most essential and frequently used terms of this dissertation are explained in the 
synapses text, while less important concepts, their definitions and interpretations could 
be found in the Glossary. 

1.2 Points of departure and research motivation 

Daylight is a natural source of illumination that is fundamental for life. The quantity and 
quality of natural light varies according to time (rapidly or slowly, per day and season) 
and space (from different geographic regions to the local brightness variation in a room) 
(Tregenza & Wilson 2011).  

A day-lit space at any moment in time is unique. In fact, ‘the quantity and character of 
daylight in a space will depend on: the size, orientation and nature of the building 
apertures; the shape and aspect of the building and its surroundings; and, the optical (i.e. 
reflective and transmissive) properties of all the surfaces comprising the building and its 
surroundings’ (Mardaljevic 2013). However, it is very important to note that people 
react to light in terms of what is recognized and felt, but not to measurable physical 
values. Therefore good lighting should be considered from different sides: from human 
wellbeing aspect, from the aspect of creation of interesting atmosphere at a place, and 
from the ability to affect architecture, surrounding and create a ‘place’. (Tregenza & 
Wilson 2011). 

At the beginning of the 20th century, recommendations on daylighting in architectural 
spaces were based on the illuminance levels needed for the efficient performance of 
typical visual tasks (Cuttle 2013). Task visibility was viewed as the primary goal of 
lighting. In many countries, design guides that recommended illuminance levels 
depended on the task and/or settings to be produced (Mardaljevic 2013). According to 
Mardaljevic,  
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Recommended illumination levels were conceived primarily for the purpose of 
designing artificial lighting systems, and not for the daylighting design of 
buildings because the variation in the provision of natural daylight is such that 
it is virtually impossible to deliver specific natural illumination levels without 
huge fluctuations occurring. For buildings therefore, design guidance was 
formulated in terms of building properties which are evaluated under a single, 
static “worst-case” daylight condition: an overcast sky. This is the basis of the 
daylight factor (Mardaljevic 2013). 

These metrics are still in active use for the following reasons: they are well defined and 
easy to interpret; have criterion levels for different conditions; and are simple to 
calculate with formulae, obtain through computer simulation or measure with a lux 
metre. 

The disadvantage of illuminance-based metrics, particularly the daylight factor (DF), is 
that they can only approximately predict and reflect real situations and the appearance 
of observed spaces, objects or tasks. This is because: i) the human eye is relatively 
insensitive to absolute levels of light (illuminance) (Tregenza & Wilson 2011); ii) the 
DF cannot account for prevailing climate (meaning the totality of sky and sun 
conditions) or building/site orientation (Mardaljevic 2013). Despite these disadvantages, 
however, the DF still remains the dominant metric for daylighting analysis among 
architects and is often the only measure of natural illumination applied in architectural 
daylight evaluation.  

At the end of 1990s, the attention paid to the daylighting of buildings increased due to 
the widespread idea of energy efficiency and natural light as its key factor. Tregenza 
and Wilson noted: ‘Lighting is a central component of sustainable architecture… The 
two ratios, between sunlight and skylight and between daylight and electric lighting, 
determine a building’s sustainable performance’ (Tregenza & Wilson 2011). By letting 
daylight into a building, windows can reduce the need for electrical light; in addition, 
windows may contribute positively to the energy economy if the sunlight energy will be 
intercepted and stored for later use for heating of the building (Matusiak 2012). 

In addition to energy efficiency, the findings of different studies show that daylight 
exposure may have an effect on human health, state of mood, well-being and 
productivity (Farley & Veitch 2001; Veitch 2001; Veitch 2004; Veitch et al. 2008). 
Daylight supports our circadian rhythms, cures Seasonal Affective Disorder (SAD) and 
initiates the synthesis of vitamin D (Terman et al. 1989; Monk et al. 1997; Rastad et al. 
2011; Reeves et al. 2012; Premkumar et al. 2013; Boubekri et al. 2014). Therefore 
daylight has become directly associated with human health, life comfort and 
effectiveness at work. In light of these scientific movements, increasing attention is 
being paid to lighting quality and visual comfort. 
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Peter Dehoff delivered an important manifest at the conference of The International 
Commission on Illumination (CIE) 2014 dedicated to lighting quality and energy 
efficiency:  

Lighting quality should become the equal driver as energy efficiency. For life of 
humans lighting quality plays an essential role. It might be difficult to measure 
the benefits reached by lighting quality in the same way as savings can be 
calculated by using energy efficient lighting solutions. On the other hand the 
consequences from bad lighting might be worse than expected: lesser wellbeing, 
lower productivity, higher cost of labour, slower recovering and less sales in 
retail might be a result. Sometimes people are not even aware about these 
consequences. Therefore it is of higher importance to find the best way to 
describe what lighting quality means and how it may be achieved. It should be 
an essential part of standards and regulations even more than it is already 
incorporated (Dehoff 2014). 

Researchers seek to develop new alternative metrics to deliver better lighting quality 
and surpass existing methods in their predictive performance (Cantin & Dubois 2011; 
Leslie et al. 2012; Mardaljevic et al. 2009; Reinhart et al. 2006; Saraiji & Oommen 
2014). 

The fact that visual comfort metrics and others related to visibility and aesthetic 
judgement influence the subjective assessment of visual environment and conditions 
motivates some researchers to apply to luminance. They estimate that luminance-based 
metrics may correlate with subjective acceptance and preference measures better than 
illuminance-based metrics, as luminance more closely relates to the human perception 
of brightness (Van Den Wymelenberg & Inanici 2014; Van Den Wymelenberg & 
Inanici 2015). In their studies, Van Den Wymelenberg and Inanici (2014; 2015) actively 
apply the High Dynamic Range (HDR) imaging technique. This technique is also 
called luminance mapping, and HDR images are sometimes referred to as luminance 
maps when used for luminance analysis. 

HDR imaging technique enables one to record a scene of wide luminance range by 
merging a series of photographed images at different exposures. The luminance and 
chromatic data of the captured scene is stored in the file from which it can be retrieved 
easily. According to Anaokar and Moeck, ‘the true advantage of luminance maps 
obtained from HDR imaging is the luminance measurement of small details as well as 
gradients. Hence, this technique will be preferable compared to using a luminance metre 
to map the luminance in the scene’ (Anaokar & Moeck 2005). Inanici (2006) notes,  

It is not suggested that HDR photography is a substitute for luminance metre 
measurements. It requires calibration against a point or area of a reliable 
standard target with a reliable luminance metre to have absolute validity. Yet, it 
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provides a measurement capability with the advantage of collecting high 
resolution luminance data within a large field of view quickly and efficiently, 
which is not possible to achieve with a luminance metre (Inanici 2006). 

The current study uses this technique as the primary method for research which allows 
broad comprehensive facilities. This presents a new opportunity to study the topic of 
interest through the examination of luminance maps (HDR images) and through the 
provision of reliable luminance data over each pixel of an image. 

As a part of the lighting quality theory, the light modelling concept was chosen for the 
present study, as it seemed to be the most fascinating. Light modelling involves the 
ability of light to reveal a 3D object’s form and characteristics (contour, shape and 
details). As explained by Phillips (2004), ‘modelling of a shape derives from its 
physical form, whether round, square or otherwise, coupled with the way in which light 
plays on its surfaces… this provides a form which is perceived by the eye as having 
meaning, unambiguous’ (Phillips 2004). 

Good light modelling is one of the necessary conditions for lighting quality. It is 
essential in situations where good visual performance and communication are 
prioritised, but it is also significant in workplaces, museums and scenic performances. 
For architects, light modelling is especially valuable, as ‘interior spaces are judged to be 
pleasant, bright or gloomy as a result of the effects of modelling and interiors are judged 
by the way in which the spaces and the objects within them are seen during the day to 
be natural, or accord to our experience of the natural world’ (Phillips 2004). People 
need to perceive various 3D objects accurately, especially faces at the time of 
communication with others. The correct interpretation of human facial expressions is 
crucial and depends on the light distribution on the face and background (Zaikina et al. 
2014). Tregenza and Wilson (2011) carefully note that, 

Perception is, in essence, the process of linking immediate sensory information 
with remembered experience. The distribution of the brightness and colour that 
constitutes our visual environment is never treated as an abstract, meaningless 
pattern . . . our awareness of a place goes beyond mere recognition: what we 
see governs our expectations and our satisfaction, it affects our mood, our 
confidence, our approach to our activities there, and how we react with other 
people (Tregenza & Wilson 2011). 

It is important to pay particular attention to the above citation’s mention of the 
distribution of the brightness and colour. This is a seldom discussed topic in modern 
scientific works, as very few studies consider the interaction of light and colour in built 
spaces as a solid theme (Fridell Anter 2012). According to Klarén et al. (2013), ‘colour 
and light in built spaces influence our experiences and feelings, our comfort and 
physiological well being. Colour and light have great impact on health and can promote 
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visual clarity, functionality, orientation and sense of security’ (Klarén et al. 2013). 
Although these two topics are often treated as separated fields of knowledge, in the 
architectural context, they should be united. Humans explore space and shapes through 
the simultaneous perception of the colour and character of light, which helps them to 
understand the state of the world around them (Fridell Anter 2012). These two concepts 
are mentally inseparable in terms of perception, and therefore it was deemed 
particularly important to study both of them as a whole during this research project.  

In the present study, it was decided to focus on luminance-based metrics of light 
modelling of coloured (achromatic and chromatic) 3D objects illuminated by daylight 
as the principal aim of this work.  

1.3 The problem and research questions 

To structure and clarify the problem, research objectives and research questions were 
formulated for the present study. 

The first general objective was to better analyse the lighting quality topic and to single 
out important aspects that need improvement or have not been developed enough. This 
was mostly done through an initial literature review. 

The second objective was to relate the aspects of lighting quality in architectural 
environments to the visual perception of built spaces where light and colour 
intrinsically exist and interact with each other. This objective also included the aim to 
figure out how strongly colour affects observers’ process of perceiving and evaluating 
interiors and to examine the resources of the HDR imaging technique when studying 
these types of interiors. The following research questions were formulated to address 
the objectives: 

RQ 1. How does colour affect the perception of light level in an architectural space? 

RQ2. Is the HDR imaging technique a reliable tool for studying interiors with 
chromatic surfaces? 

These questions were addressed in Experiment 1 (Paper I). 

The third objective was to study coloured (achromatic and chromatic) 3D objects in 
day-lit interiors through: i) the implementation of HDR imaging and ii) the subjective 
evaluation of the objects’ characteristics (contour, shape and detail). This objective also 
aimed to develop a set of luminance-based metrics of light modelling for the studied 
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objects and, if possible, to register their numerical values. The following question was 
formulated: 

RQ 3. What are possible and reliable luminance-based metrics of light modelling for 
achromatic and chromatic 3D objects in day-lit interiors? 

This question has been answered in Experiment 2 (Papers II, III and IV). 

The performance and precision of the proposed metrics have been verified with the help 
of photographed and simulated luminance maps. Suggested luminance-based metrics 
were also compared with the currently used illuminance-based modelling index and 
cylindrical illuminance. The following concluding questions were posed: 

RQ 4. How effective are the suggested luminance-based metrics compared to the 
existing illuminance-based metrics of light modelling?  

RQ5. How high are the error rates of the luminance-based metrics obtained from 
simulated luminance maps compared to photographed luminance maps?  

These last two questions have been answered in Experiment 3 (Paper V).  

Together, these research questions form the consistent, logical structure of the current 
project and the strategy for work needed to complete the proposed study satisfactorily. 





2. State of the art

Daylight is the natural source of illumination to which the human visual apparatus has 
adapted over millions of years. Light enables us to see and gather essential information 
about the physical world. It also occurs in architectural contexts, both interior and 
exterior (Rea 2000). Among other qualities, daylight allows us to experience the natural 
colours of our environments. The human visual system compensates for the natural light 
changes from morning to night to maintain colour constancy (Valberg 2005) in our 
experience of the colours we regard as ‘natural’ (Phillips 2004). Proper lighting can 
accentuate architectural form and composition, assist occupants’ orientation and 
understanding of a space, facilitate the observation of true colours, increase the visual 
interest of an environment, diversify the appearance of a room by variability throughout 
the day and season and affect the occupant’s state of mood and well-being. 

Scientific interest in light and lighting has increased considerably in the past few 
decades. The discovery of the ganglion cell (ipRGCs) involved into the synchronisation 
of human circadian rhythms, a new type of electrical lighting (solid state lighting) and 
other achievements and events such as the proclamation of 2015 as the International 
Year of Light and Light-based Technology have solidified beliefs in the potential of 
lighting to contribute to quality of life (Boyce 2015). 

In everyday architectural practice, designers follow laws and regulations pertaining to 
daylighting design. These laws and regulations, usually produced by governmental 
institutions, describe general principles and regulate important objectives from ensuring 
the health and safety of a building’s occupants to energy saving arrangements. 
Regulations contain quantitative prescriptions for applying laws and can be 
complemented by various guides. All regulating documents are based on metrics. A 
metric can be interpreted as a measure applicable by the designer for (daylight) design 
evaluation. A metric should be quantitative, easily implemented during the design 
process, be calculated or verified after the completion of works and lead to desired 
objectives such as a good lighting quality (Boyce & Smet 2014). 

However, an important question must be asked: do all the currently used metrics 
provide good lighting and lead to high-quality lighting? Some researchers believe that it 
is an unrealistic to expect to achieve good lighting quality based only on photometric 
quantities (Boyce 2003). 
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2.1  Light and colour 

Before having a detailed discussion regarding lighting quality and its metrics, it is 
essential to have a look at light and colour correlations and the studies dedicated to their 
spatial interaction.  

Looking at real architectural environments, many people note that these two notions—
light and colour—are interdependent and inseparable (Arnkil et al. 2012). Humans 
intuitively perceive visual environments and the surfaces and objects within them as 
solid patterns of light, shadows and colours. Light enables us to see objects and their 
colours, and the colour of any observed surface depends on several physical factors—its 
structure (matte, polished, etc.), its spectral reflectance and the geometry and spectral 
distribution of the illumination (Valberg 2005). The human eye has adapted best to 
sunlight, which lends the best ability to recognise the natural colours of any surface. 

However, colour and light are to a large extent treated in academic works as separate 
fields of knowledge, and usually those studies do not touch the topic of the spatial 
interaction of colour and light (Fridell Anter 2012). Fridell Anter (2012) performed a 
thorough literature study based on a large number of international publications, journals 
and conferences from 2006 to 2011, discussing the scientific works that deal with 
colour or light. She states, 

Research on colour and/or light in directly architectural contexts is not 
common. When it occurs, it most often deals with the colouring of specific 
buildings, towns or time periods. Sometimes it includes also illumination and the 
use of daylight. The perspective is most often that of architectural history or 
building conservation, and the interaction between colour and light is most often 
not analysed (Fridell Anter 2012). 

In the past few years, researchers became increasingly interested in the topics related to 
colour and light in complex situations and realistic spatial contexts. Billger (2004) 
reported consistent results regarding the perception of a painted room and interaction of 
colours and light within it. One of her focuses was on how the coloured surfaces 
affected the perception of light and the atmosphere in the room. Among her conclusions 
was that daylight often dulled yellow colours but made blues more vivid; in 
incandescent light, however, blue colours appeared gloomy while reds and yellows 
became lively (Billger 2004). Hårleman (2007) investigated how windows that face 
north or south affect the perception of colour and the ways in which colour is 
experienced, causing a clear shift in hue and nuance. He aimed to develop a colour 
design tool based on these findings (Hårleman 2007). Other researchers have examined 
how the experience of colours and space can vary in rooms with different types of 
glazing (Pineault & Dubois 2008), how colours in interiors with modern glazing change 
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its appearance (Angelo et al. 2012), and how the atmosphere of a room can be changed 
by colour, intensity and type of light source (Vogels et al. 2008). 

Some studies apply 3D-vizualisations of virtual rooms to investigate how precise the 
appearance of colour and light in such a room will be (Stahre et al. 2007; Wästberg et 
al. 2015). An evaluation of a virtual room modelled in the software 3Ds Max Design 
2015 and rendered using Mental Ray and Vray techniques showed incorrect 
reproduction of contrast effects and interreflections between angled surfaces (Wästberg 
et al. 2015). Another study investigated the feelings and reactions of people at a virtual 
railway station designed with different combinations of colour and light (Van Hagen et 
al. 2009). The authors concluded that even though colour and light are perceived 
subconsciously, the combination of the two had significant effect on people’s estimates 
of waiting time on the platform. According to their results, respondents estimated the 
waiting time at the platform as shorter when warm colours in combination with dimmed 
lighting were used, whereas cooler colours and a more intense lighting were less 
preferred. 

Even though interest in the field of the research regarding colour and light has increased 
in the past few years, Fridell Anter (2012) asserts that ‘there is a great need for further 
research on the spatial interaction between light and colour. Initially this requires a 
development of methods that can include several aspects of experience at the same 
time’ (Fridell Anter 2012). 

The current research project is an architectural study that develops luminance-based 
metrics of light modelling in built environments and interiors; as such, it was of 
particular significance to include both topics (colour and light). This theme is especially 
important in terms of human visual perception and processing of information on the 
spatial interaction of light and colour. Luminance and colour, while treated 
independently at early stages of visual processing, begin to interact at later stages (Clery 
et al. 2013). This topic has not been fully investigated in previous studies, and there are 
still a number of ongoing projects examining the various features of simultaneous 
and/or separate luminance and colour stimuli. Some of these studies have shown that 
depth perception is directly dependent on the luminance contrast, and that colours alone 
do not elicit any depth (Clery et al. 2013). Another study states that colour improves 
object recognition (Wurm et al. 1993). To conduct the current project, it was essential 
from the very beginning to determine whether generic interiors that normally include 
achromatic and coloured objects and surfaces can be examined using luminance-based 
techniques, as well as whether the luminance data corresponds with subjective 
evaluations of such interiors. 

The importance of the mutual study of light and colour was the motivation to 
experiment with both of these quantities (colour and light) and to address to luminance 
quantity and subjective assessments in the observed scenes. 
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Figure 2-1. Lighting quality: the integration of human needs, architecture, and economics and the 
environment. 
(c) National Research Council of Canada. Used by permission. 
Adapted from Veitch, J. A. (1998). Commentary: On unanswered questions. In Proceedings of the 
First CIE Symposium on Lighting Quality (CIE-x015:1998, pp. 88-91). Vienna, Austria: CIE.  
Adapted with permission. 

2.2  Lighting quality 

Lighting quality is a goal of excellence, which lighting designers, architects and 
engineers are eager to reach in their respective practices. At present, there is no 
particular definition of the term lighting quality accepted by official institutions. 
Nevertheless, some researchers have tried to make this concept more clear and 
understandable through discussion in their articles (Veitch 1998; Veitch 2001, p.20; 
Veitch 2004; Dehoff 2014). By generalising various approaches, it can be concluded 
that the lighting quality concept includes several groups of parametres concerning 
human needs, economics, the environment and architecture (Fig. 2-1). The proper 
balance of these (sometimes conflicting) dimensions helps to achieve good lighting 
quality (Veitch 2001). This understanding of the term lighting quality has been 
accepted by the CIE (Veitch et al. 1998) and also represented in The IESNA Lighting 
Handbook: Reference & Application (Rea 2000). 

The human needs category includes various aspects from visibility to health and 
aesthetic judgment. According to The IESNA Lighting Handbook, the visibility of 
objects and/or surroundings is one of the most important aspects that allows us to obtain 
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information from our visual environment; to be more precise, it is not only the 
recognition of the objects or facial expressions that is important but also the huge 
spectrum of related activities, even when the bright light is not needed, such as 
relaxation in the dim atmosphere of a café. Contrast, luminance, time and size are all 
crucial variables affecting the visibility of the objects around us (Rea 2000). 

In terms of Architecture category, light can support a built environment, contribute to 
space understanding and should be applied according to specified codes and standards. 
Lighting may be brought into play to affect the appearance of surroundings, particularly 
those of indoor spaces, to create interesting variance in lighting and prevent flat, overly 
even or boring atmospheres. As Baker and Steemers (2002) wrote, 

. . . the understanding and manipulation of light goes to the heart of the 
architectural enterprise. Vision is the primary sense through which we 
experience architecture, and light is the medium that reveals space, form, 
texture and colour to our eyes. “More and more, so it seems to me, light is the 
beautifier of the building” (Frank Lloyd Wright). More than that, light can be 
manipulated through design to evoke an emotional response—to heighten 
sensibilities. Thus, architecture and light are intimately bounded (Baker & 
Steemers 2002).  

 
The daylight in built environments has both aesthetic and functional purposes, and a 
harmonious balance between them leads to sustainable and aesthetically pleasing 
architecture. 

Economics and the environment are additional dimensions of lighting quality. 
Daylighting can have significant impact on the overall energy performance of a 
building. To demonstrate, ‘lighting accounts for between a third and a half of the energy 
use in commercial buildings and significant savings in energy can be obtained where the 
positive use of daylight has been planned’ (Phillips 2004). In addition to the rigorous 
design of daylighting systems in a building, other aspects can also impact economics: i) 
lighting controls, which provide flexible use of natural and artificial light; ii) integration 
of lighting with heating and air-conditioning systems to save energy for cooling and 
heating purposes; and iii) maintenance programmes.  

However, the most prioritised modern economic needs should not be the only decision-
making drivers, as quality lighting, and particularly users’ needs and comfort, are also 
important. Environmental conditions that affect the health and well-being of occupants 
indirectly influence their life quality, business performance and, therefore, economy 
(Aries et al. 2010). 

Possible new metrics for the various aspects of lighting quality have been studied 
effectively in past years. Finding or establishing new quality lighting metrics might 
allow designers to identify, scale, compare and thus give priority to aspects of the 
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quality of a luminous environment (DiLaura 2009). To make this process more 
successive, the lighting quality concept should be better formulated and described. Its 
metrics should be strongly inscribed in regulations and standards to become a clear and 
practically achievable goal for designers. 

2.3  Visual comfort 

In an effort to meet occupants’ needs and study users’ preferences in day-lit spaces, 
modern researchers focused their studies on developing the important metrics for visual 
comfort. Visual comfort is an essential human need frequently associated with the 
absence of uncomfortable elements such as glare, insufficient visual contrast or 
disturbing sun patches within a field of view (Jakubiec & Reinhart 2013). Boyce (2003) 
describes the aspects that can cause visual discomfort as ‘too little light, too much light, 
too much variation in illuminance between and across working surfaces, disability glare, 
discomfort glare, veiling reflections, shadows, and flicker’ (Boyce 2003). In poor visual 
comfort conditions, a person can experience distracting symptoms such as red and itchy 
eyes, headache or back pain associated with bad posture trying to compensate for 
uncomfortable illumination. Whether any or several lighting aspects will lead to visual 
discomfort depends on the context in which the lighting is installed, as illumination that 
is undesirable in one context might be attractive in another. For instance, diffuse 
lighting is comfortable in an art gallery, but too even and monotonous in buildings with 
higher levels of activity. 

Delivering lighting quality through the elimination of visual discomfort could form an 
effective strategy for lighting designers, but is it sufficient? Rather, removing visual 
discomfort is a means to prevent bad quality lighting and poor lighting conditions, but 
not necessarily ensure the best ones (Boyce 2003).  

The importance of visual comfort in affecting occupants’ satisfaction should not be 
underestimated. In addition, studies dedicated to this topic are particularly interesting 
and important because of the methodology used in many of them, namely the 
luminance-based technique. The fundamentals of this technique will be described in 
sections 2.4 and 2.5 of the present paper, and examples of the most crucial studies of 
visual comfort using the luminance-based method will be discussed in section 2.6. 

2.4  HDR imaging 

HDR images store a depiction of a photographed or simulated scene in a range of 
intensities equal to those in the real scene. HDR imaging is referred to as radiance 
maps or luminance maps. The conventional images suitable for representation with 
current display technology are called Low Dynamic Range (LDR) images. HDR images 
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are not so inherently different from LDR images, but there are many more ways to 
create, store, use and display them, as well as other creative opportunities for image 
implementation (Reinhard et al. 2010).  

It is important to explain the term dynamic range. This is a dimensionless quantity that 
for images alludes to the ratio between the brightest and darkest pixels. The dynamic 
range of conventional digital cameras is limited to around two orders of magnitude 
(Jacobs & Wilson 2007), retained as a byte for each of the red, green and blue channels 
per pixel (Reinhard et al. 2010). However, it is evident that the real world produces a 
much larger range. For example, sunshine at noon may be 100 million times lighter than 
starlight. The human visual system is capable of adapting to lighting condition 
fluctuations of approximately 10 orders of magnitude, while within one scene it may 
cope with a range of around five orders of magnitude simultaneously (Reinhard et al. 
2010). 

 

HDR imaging adopts scientific ideas and theories related to light and colour. This type 
of image can be created in two different ways: with rendering algorithms (or other 
computer graphic techniques) or by merging a sequence of LDR images into one HDR 
image (see Figure 2-2) (Reinhard et al. 2010). A simple digital camera can be used to 
take LDR images with different exposures appropriate for further processing, either 
with the integrated automatic exposure bracketing function (AEB) or without it. The 
amount of light captured by the camera’s sensor can be regulated by several methods, 
including setting the aperture, exposure and ISO value or using neutral density filters. 
However, the best option is to capture images by changing the exposure time. Altered 
ISO values may cause noise, whereas adjusting the aperture size will affect not only the 
amount of light incident upon the sensor but also depth of field, which is highly 
undesirable especially in terms of scientific application of HDRIs. 

It is important to describe thoroughly the process of data depiction (see Figure 2-3), as 
this is significant for understanding the principle of HDR imaging. When the picture is 
just taken, the shutter remains open for a certain amount of time (depending on settings, 
and more precisely, the exposure time). During this moment, the light focused by the 

Figure 2-2. Sequence of 10 exposure-bracketed images, separated by one f-stop. These LDR images 
can be fused into one HDR image. 
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lens propagates into the objective and hits the image sensor separated into a number of 
small pixels the light over a small area. These records of pixels may be modelled by 
measurement equation, and voltages extracted from the camera sensor may therefore be 
related to radiance (Reinhard et al. 2010). 

Because the camera records radiance, and the photometrically weighted radiance is 
luminance [see Equation 1], one may conclude that luminance is the most pertinent 
photometric unit for HDR imaging. The importance of luminance in HDR imaging lies 
in the fact that it provides a natural boundary for the visible wavelength; there is no 
need for wavelengths undetectable to the human eye to be recorded, stored or 
manipulated (Reinhard et al. 2010). 

 ,                                    [Equation 1] 

where Lv is luminance value, Le is radiance and V( ) is the CIE photopic luminous 
efficiency function. 

Many programmes are available for processing LDR images into HDR ones. The three 
experiments performed for the current PhD research used Photosphere software (Ward 
2002), created by Gregory J. Ward. In 2003, Ward proposed the use of an alignment 
operator on the median of the pixel values that is fairly robust against changes in 
exposures: 

Input to our alignment algorithm is a series of N 8-bit grayscale images, which 
may be approximated using only the green channel, or better approximated from  

grey = (54*red + 183*green + 19*blue) / 256                  [Equation 2]. 

One of the N images is arbitrarily selected as the reference image, and the 
output of the algorithm is a series of N-1 (x,y) integer offsets for each of the 
remaining images relative to this reference. These exposures may then be 
recombined efficiently into an HDR image using the camera response function, 
which may be computed using either Debevec and Malik’s original SVD 
technique (Debevec & Malik 1997), or using the polynomial method of 
Mitsunaga and Nayar (Ward 2003). 

Figure 2-3. Image Acquisition Pipeline shows how scene radiance becomes pixel value for both film 
and digital cameras. 
Adapted from Debevec and Malik (1997). 
Adapted with permission. 
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Figure 2-4. The information that can be gained from HDR 
images and its accuracy depend on the level of calibration. 
Adapted from Jacobs A. (2007).  
Adapted with permission. 

This image registration works very precisely for the majority of cases and can 
successfully align hand-held image sequences (Jacobs 2007).  

At present, three HDR image formats exists: High Dynamic Range (HDR), Tagged 
Image File Format (TIFF) and The EXtended Range format (EXR), of which one 
format can support multiple encodings. The HDR format (used in the current research 
project) is also known as the Radiance format (*.hdr, *.pic). It was introduced in 1989 
and spread widely in the HDR photography and image-based lighting community. The 
RGBE (red mantissa, green, blue and exponent) components of this format—the RM, 
GM, BM of the pixel data (also presented as XYZE, according to CIE)—are converted 
from the scene-referred colour by specified formulas (Reinhard et al. 2010). 

The dynamic range of these encodings is larger than 76 orders of magnitude and 
precision is very high, making them applicable for most applications, including 
scientific ones.  

While it might seem sufficient to combine LDR image sequences into one usable HDR 
image, it is obvious that some 
errors are present. To eliminate 
these errors, the image must be 
calibrated (see Figure 2-4). The 
first calibration type is called 
response curve calibration. 
Combining a number of 
exposure-bracketed images into 
one HDR image involves 
determining the camera’s 
response function. This 
automated process used to relate 
the pixel values to real-world 
luminances. Camera response 
curves vary considerably 
between different cameras, so 
radiometric self-calibration has 
to be applied to each of them. 
The only input to the process is 
a set of multiple exposure 
photographs, and once the 
camera response curve is 
determined, the Photosphere 
programme can fuse any 
photograph sequence taken by 
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this camera into an HDR image (Inanici 2006).  

The second calibration type is photometric calibration. The easiest way to improve the 
accuracy of luminance maps is to compare the luminance reading of the photographed 
image with those obtained from manual measurements using spot luminance metres. 
The calibration factor can be implemented further in Photosphere to correct the 
luminance values of the photographed scene. 

Some researchers go further in their attempts to improve HDR image quality by 
performing lens vignetting effect corrections. This is an optional correction process 
rather than a calibration. Vignetting correction helps to eliminate the reduction of image 
brightness at the periphery of the image compared to its central region, which occurs 
due to the optical construction of the camera and the lens and strongly depends on the 
device’s aperture size (Jacobs & Wilson 2007). Fisheye lenses usually have more 
noticeable vignetting, and if it is negligible in the centre of the image, the peripheral 
pixels can have even higher pixel errors. By capturing the set of LDR images of the 
scene in 5° (sometimes 10°) intervals and producing a polynomial function, it is 
possible to correct the image. This function can be applied to create a digital filter or 
mask for the image that will compensate for the luminance loss (Inanici 2010). 

2.5  Luminance-based technique as a research method 

Over the course of the past decades, the HDR imaging technique has been constantly 
developing. Now it is widely applied in different fields, including lighting design and 
research such as glare analysis, visual comfort studies and road and pedestrian lighting 
investigations. The root of the implementation of luminance maps is the fact that 
brightness as a human perceptual aspect closely relates to measures of luminance. As 
vertical visual tasks have become increasingly dominant (e.g. working with a computer 
or projector screen), it is assumed that luminance-based measures from the occupants’ 
point of view may better correlate with subjective assessments of visual comfort in built 
spaces than illuminance-based measures (Van Den Wymelenberg & Inanici 2015). 

In developing the HDR imaging technique, and because HDRI photography was not 
specifically developed for lighting measurements (Tyukhova & Waters 2014), 
researchers have shown interest in assessing the technique as a scientific method and 
testing its capability to capture luminance values within a scene accurately. However, 
this technique is still under examination as new lighting sources are being developed 
and new applications of luminance maps proposed. 

Some of the most significant studies dedicated to HDR imaging will be discussed here. 
In 2005, the results of the study performed by Anaokar and Moeck were published 
(Anaokar & Moeck 2005). The authors investigated the impact of light spectra, spatial 
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frequency, vignetting and thermal noise on the accuracy of luminance measurements 
obtained from HDR images of Munsell chips of different hues, values and chromas to 
determine potential errors. They found that warm hues had the least errors while cool 
hues resulted in larger errors. In general, saturation increment led to error increment; 
the error in reflectance increased as the Munsell value decreased. The error in 
reflectance was independent from the lighting conditions of the scene. Saturated greens 
and blues were found to produce the largest errors (up to 80%). The most reliable 
results were obtained for warm colours with high Munsell values, while high- to 
medium-reflectance blues and greens were shown to produce reliable readings down to 
Munsell value N5. The authors concluded that HDR images would be useful in most of 
research studies because saturated and dark hues are not frequently found in building 
materials and the error percentage would peak at around 20%, which is acceptable as 
luminance metre measures can have errors of 2 to10% (Anaokar & Moeck 2005). 

Inanici (2006) thoroughly studied the capacity of HDR images and the relative errors 
for a large number of coloured and grey targets under different lighting conditions (both 
day- and electrical lighting). The author found that the average error percentage was 
within 10%; to be more precise, total, greyscale and coloured targets were 7.3%, 5.8%, 
and 9.3%, respectively (Inanici 2006). The previously discussed tendency when more 
saturated colours showed larger errors in luminance readings was noted in this study in 
accordance with the findings of Anaokar and Moeck (2005). 

Another study investigated the HDR imaging technique in terms of variation of the 
calibration factor for a day-lit scene under various indoor daylight levels. Testing the 
HDR images of the X-Rite Colour Checker chart with 24 colour chips, no statistically 
significant difference in calibration factor for any colour chip of the chart or indoor 
vertical illuminance was found. The authors concluded that the calibration factors of 
each colour over the investigated range of daylight levels might be averaged, so that for 
any scene with dominant colour the same as one of the 24 colours of the chart, 
calibration from HDR luminance to real luminance can be achieved by multiplying the 
calibration factor of that colour (Chung & Ng 2010). These findings support the 
application of HDR imaging as a luminance data acquisition system.  

Cai and Chung performed a study to find optimal parametres for HDR imaging 
dedicated to scientific use and to find error rates depending on various technical and 
experimental conditions (camera and lens type, colour of the surface, camera aperture 
size, type of illumination, etc.) (Cai & Chung 2011). Their conclusions were exclusively 
applied to the Canon EOS 350D fitted with the Sigma lens 10–20mm F4-5.6 EX 
operating under fluorescent lighting. In their study, the average error percentage of the 
six HDR images with the highest quality (i.e. f/5.6, ƒ=10, 14 or 20 mm, with Jacobs’ 
EV ranges, low or full ambient light) was 2.8% ± 0.6% for grey surfaces, 10.1% ± 
0.1% for colour surfaces, 1.5% ± 1.3% for black surfaces and 6.6% ± 4.0% for light-
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emitting surfaces. They also found that: i) large apertures (e.g. f/5.6) produced higher 
quality HDR images than small ones (e.g. f/22); ii) focal length had no significant 
impact on the quality of HDR images photographed at a large aperture f/5.6; iii) using 
more LDR images (EV steps) within the photography session significantly increased the 
quality of HDR images of colour, black and luminous surfaces, but not grey surfaces in 
the middle dynamic range (i.e. 4.8 to 212.9 cd/m2); and iv) a higher ambient light level 
significantly improved the quality of HDR images of light-emitting surfaces and front 
grey targets. 

Another study performed and presented by Cai (Cai 2011) investigated the accuracy of 
HDR imaging in acquiring non-uniform luminance for different types of light sources, 
including incandescent, tungsten halogen, fluorescent T8, CFL, mercury, MH, HPS, 
LPS and LED. The researcher found that error percentages were 29.4% +/- 28.4% if 
the averaged luminous pixels were larger than 500 cd/m2, or 29.5% +/- 33.5% if 
manually retrieved using the provided square selection tool in the Photosphere 
programme. However, the error percentage between luminance values of the 
approximately uniform white patch of the Macbeth colour checker obtained from field 
measurements and those from the HDR images were found to be much smaller at 1.5% 
+/- 1.2%. The metal halide lamp and incandescent lamp showed the highest error level. 
The final conclusion was that, based on the outcomes of this pilot study, HDR images 
may be used to measure the luminance of light sources with enhanced accuracy.  

Tyukhova and Waters (2014) continued to study the ability of HDR imaging to capture 
the luminance data of an electrical light source. They tested a single light-emitting diode 
(LED) chip using two conventional methods (the use of a luminance metre with a close-
up lens, deriving luminance from illuminance measurements, source area and distance) 
and HDR imaging technique. Their results showed that luminance data derived from 
HDR images compared very well to a luminance value determined with 
goniophotometre measurements and calculations. This research supported confidence in 
the ability of HDR imaging to capture the luminance of a very small and bright light 
source, such as a single LED chip (Tyukhova & Waters 2014). 

As a part of the experiment conducted in 2012 and the current PhD study, the 
capabilities of HDR images as a method for lighting studies of interiors painted in low 
saturated colours have been examined (Zaikina 2012). The findings showed that the 
luminance-based technique is a reliable method for studies of these types of interiors 
and can be used for further investigation of chromatic and low saturated architectural 
spaces and spaces that includes chromatic objects of low chromaticity. 

The above described studies demonstrated very thoroughly the capacity and level of 
precision of the HDR imaging technique (luminance mapping) for application in various 
lighting measurements. Not all the described studies used daylight as the main or sole 
light source. Moreover, in each particular situation (digital camera model, lens, 



2. State of the art 

21 
 

experimental conditions and target position), certain camera’s adjustments should be 
used to achieve the best possible results, while a general approach could also be derived 
(Cai & Chung 2011). Further studies using luminance mapping for natural light analysis 
might verify or assume luminance error levels individually and optionally, as was done 
in the study performed by Wymelenberg, Inanici and Johnson (Van Den Wymelenberg 
et al. 2010). 

2.6  Studies applying the luminance mapping technique.  
Luminance-based metrics 

The most common luminance-based metric referenced by design guides and reported by 
daylighting research is that of luminance ratios, which typically occur between a task 
and its background or between a bright light source and the task. Patterns of light on the 
task plane are quite important as they can affect task visibility, visual comfort of the 
observer and overall perception of a space or an object. The task plane varies according 
to the application; it could be a desktop in an office or the floor in the corridor. Two 
separate phenomena are influenced by luminance ratios within a field of view: dark and 
light adaptation and disability glare. To limit the effects of these phenomena, 
luminance ratios generally should not exceed certain recommended values. However, it 
is not practically and aesthetically desirable to maintain these ratios throughout the 
entire environment, as visual interest in the space is also important (Rea 2000). 

A recent study of Van Den Wymelenberg and Inanici investigated architectural spaces 
illuminated by daylight or a combination of daylight and electrical light. The study 
noted that: i) existing literature does not explicitly state how the recommended 
luminance ratios should be calculated in spaces with daylight; and ii) the result is 
strongly affected by the method (Van Den Wymelenberg & Inanici 2014). Current 
recommendations by the Illuminating Engineering Society (IES) list the maximum 
luminance ratios in daylight settings as ‘20:1 between daylight-media and daylight-
media-adjacent-surfaces’. No specific references are offered for the IES’s 20:1 
recommendation, and other ratios cite the previous handbook (Rea 2000), which also 
lacks substantial reference to original research. The authors concluded that future 
research on luminance ratios in spaces with daylight is warranted to establish a 
consistently applicable calculation method and defensible recommended criteria (Van 
Den Wymelenberg & Inanici 2014). 

In visual comfort-related studies, the HDR imaging technique is a frequently applied 
method. Visual comfort studies are also interesting and important due to the frequent 
goal of researchers to find and develop new metrics or even sets of the metrics of visual 
comfort, including those based on luminance data. 
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Recently, new studies have been performed to examine the relationship between scene 
luminance and occupant assessments of visual comfort using HDR images. One such 
study was done by Konis (Konis 2014). The goal of the research project was to develop 
and test 15 visual discomfort predictors. These were: interior vertical illuminance, 
interior global horizontal daylight illuminance, the Daylight Factor, average luminance 
and maximum luminance of an upper two rows of windows, average luminance and 
maximum luminance of lower rows of windows, the Daylight Glare Index, Daylight 
Glare Index of a glare source seven times greater than the average scene luminance, 
Daylight Glare Index of a glare source greater than 2000 cd/m2, the Unified Glare 
Rating, the CIE Glare Index developed by Einhorn, the ratio of maximum window 
luminance to a vertical visual task of 200 cd/m2, the ratio of average window luminance 
to task luminance and the ratio between the window region and some interior surfaces. 
According to the results of this study, the models developed from discomfort indicators 
based on luminance contrast ratio limits and from absolute measures of vertical 
luminance were found to be the most accurate in predicting discomfort responses. 
However, contrast ratios based on maximum values of a region were more effective 
compared with ratios based on averaged luminances. In addition, the horizontal daylight 
illuminance and the daylight factor were found to be two of the least effective predictors 
of visual discomfort. 

Another convincing study was performed by Van Den Wymelenberg, Inanici and 
Johnson (2010) and was dedicated to the ability of common illuminance and advanced 
luminance-based measures to differentiate between participants’ ‘most preferred’ 
luminous environment and those with ‘just disturbing’ glare (Van Den Wymelenberg et 
al. 2010). Over 150 different illuminance and luminance metrics were tested in this 
research. The most meaningful finding was that mean luminance of glare sources 
metrics based on various task and scene mean luminance multipliers consistently 
emerged within the top 10 metric rankings for the Likert items. Moreover, the standard 
deviation of the entire scene luminance was proven as a good predictor of satisfaction 
with general visual appearance. 

In the recent study performed by Van Den Wymelenberg and Inanici (2014), existing 
visual comfort metrics were reviewed and criticized based on their ability to explain the 
variability in human subjective responses in a day-lit private office laboratory 
environment. Luminance-based metrics were also included in the scope of the study. 
The authors provided the results of a six-month human factor research project replete 
with extensive lighting data collection in an office space with daylight only and with 
both daylight and electric light (integrated lighting). The results showed that vertical 
illuminance and simple luminance metrics (mean and standard deviation of scene 
luminance) outperformed more complex metrics (such as DGP and DGI, or luminance 
ratios) for inquiry on subjective satisfaction with the amount of light for computer work. 
The authors concluded that establishing reliable vertical illuminance- and luminance-
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based metrics and design criteria that can be referenced in design stages, through 
additional research, should lead to improved occupant satisfaction in spaces adhering to 
these criteria. However, the luminance ratio between the mean luminance of the 
daylight source and the mean luminance of the circular task did not yield squared 
correlation coefficients as high as other existing metrics with regard to the subjective 
visual comfort ratings. This metric was even recommended by the authors to be entirely 
dismissed. The authors concluded that commonly reported luminance-based metrics do 
not appear to have greater predictive ability than common illuminance-based metrics. 
Even if luminance measures closely relate to human perceptions of brightness, it is 
probable that luminance-based metrics will correlate with subjective acceptance and 
preference ratings more closely than illuminance-based measures. Therefore, the 
authors illustrated the necessity to develop a new luminance-based analysis metrics in 
the future (Van Den Wymelenberg & Inanici 2014). 

These authors took the results of the 2014 experiment even further. In 2015, their article 
was published with new findings. Here, they asserted that despite previous conclusions, 
luminance-based metrics outperformed illuminance-based metrics (Van Den 
Wymelenberg & Inanici 2015). Namely, luminance-based metrics had higher squared 
correlation coefficients (r2 = 0.425 for standard deviation of the window luminance 
metric) than illuminance-based metrics (r2 = 0.298 Evertical at the top of the monitor 
measured in the participants’ viewing direction) for all subjective questionnaire items. 
The authors particularly emphasised three the most promising metrics that, with 
additional research, may support lighting design recommendations aimed at improving 
visual comfort in spaces with daylight. These metrics were: standard deviation of 
window luminance, 50th percentile luminance value from the lower window and mean 
luminance of the 40° horizontal band. 

The authors of another study (Piccablotto, et al. 2011) described the results of an 
experiment on lighting quality assessment in a museum (museum showcases). Lighting 
and visibility conditions were estimated with the help of luminance-based lighting 
quality metrics, an evaluation of the light distribution in exhibits and showcases and 
through assessing discomfort glare for visitors. A luminance-based analysis of the three 
LED fittings layouts showed the usefulness of luminance contrast images (the images 
that showed the ratio between each image’s pixel luminance and the average target 
luminance) as the first step to estimate visibility conditions, rather than a borderline 
between discomfort glare caused by primary sources and distracting or annoying glare 
caused by reflections (Piccablotto, et al. 2011). 

All the above mentioned studies prove the suitability of the luminance-based technique 
and demonstrate appropriate luminance-based metrics to be highly consistent and 
precise in the research studies related to subjective assessment of lit environments, 
visual appearance of spaces and visual comfort of occupants. However, the use of 
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luminance does not guarantee the assured success of any luminance-based metric (Van 
Den Wymelenberg & Inanici 2014). This methodology is also actively applied in glare 
studies, which is not in the scope of current thesis.  

The application of luminance-based techniques remains primarily within the research 
community, and it has not gained popularity among design practitioners (Van Den 
Wymelenberg & Inanici 2014). Like the illuminance-based method, the luminance-
based technique suffers from an established lack of confidence or consensus by the 
research and design communities regarding what metrics should be implemented and 
what criteria are recommended. At present, there is a lack of sufficient and adequate 
research to support consensus-based design recommendations (Van Den Wymelenberg 
& Inanici 2014). Thus, it is very important to identify the strengths and limitations of 
existing and newly proposed metrics, and to the continue research process to develop a 
new set of luminance-based metrics. 

2.7  Light modelling 

Living in a 3D world, humans obtain the majority of their information about the 
surrounding world through vision, constantly detecting objects and people and 
discriminating their qualities. Discrimination is the ability to identify an object or 
image after distinguishing it from its background, and this process usually requires more 
contrast than detection (Valberg 2005). The basic purpose of visual perception is to 
enable the recognition of object attributes, such as to judge whether fruit is in a good 
state to eat or whether a child is sick. The light that we require in our everyday lives has 
to provide not only for discriminating detail and colour but also object characteristics 
(Cuttle 2008). 

By changing the directivity, eliminating or accentuating of shadows and contrast, light 
reveals or conceals the depth, shape and texture of an object. Usually this phenomenon 
is called light modelling. Appropriate light modelling is critical in various types of 
buildings. In hospitals, it is crucial to correctly determine the health status of patients; in 
industrial applications, modelling is essential for assessing material and finish quality 
and consistency; in museums it is needed to address visitors’ attention towards the 
displayed objects; in offices it is important for pleasant communication and productive 
cooperation. When we communicate with each other at work and at home, a high 
percentage of communication is nonverbal; it is especially important that the pattern of 
light on faces enables clear recognition and interpretation of expressions (Rea 2000).  

It was discussed earlier that the concept of lighting quality proposed by Veitch (Veitch 
et al. 1998) include several groups of parametres concerning individual well-being, 
economics and architecture. There are a great number of particular parametres and 
measures that can be analysed and applied to obtain the best lighting solution for a 
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particular building, room or situation. Light modelling (telling how well the light 
describes a 3D object in a given place) is one of the lighting quality parametres that 
might be related to both individual well-being and a functional requirement of an 
architectural space (Zaikina et al. 2015b). 

In the European Standard EN 12464-1:2011 Lighting of Workplaces, light modelling is 
defined as ‘the ratio between cylindrical and horizontal illuminance at a specific point 
and should be between 0.3 and 0.6’ (CEN 2011). Useful as this definition may be, the 
current study did not rely on this light modelling index because it is based on 
illuminance values. Though commonly used metrics for daylight design are based on 
horizontal illuminance, and some researchers state that the daylight factor (as a ratio of 
the simultaneously measured horizontal illuminance inside and outside the building) can 
be applied as a predictor of the appearance of a space (Cuttle 2008), methods based on 
luminance values might be more reliable and useful, as was described in the previous 
chapter. 

In the current study, the term light modelling represents the degree to which light 
describes 3D objects so their contours, shapes and details are clearly visible. The better 
the light modelling, the easier 3D objects can be discriminated from the background and 
the more correctly their 3D shapes and specific characteristics read. 

It is necessary to discuss here the most significant studies related to light modelling. In 
the book Human Factors in Lighting, studies on face recognition from various distances 
were presented (Boyce 2003). Studies from the 1980s were based on semi-cylindrical 
illuminance that later became a basis for the modelling index used in the European 
Standard EN 12464-1:2011. Following the work of Caminada and van Bommel 
(Caminada & van Bommel 1980), semi-cylindrical illuminance was used as a measure 
of the lighting conditions required for easy visual recognition of distant pedestrians. 
Rombauts et al. (Rombauts et al. 1989) identified a minimum semi-cylindrical 
illuminance of 0.6 lx on the face as necessary to ensure confident identification at 4m 
(4m is the so-called public space surrounding an individual). Other authors found that 
people considered the lighting of facial features to be well balanced when the 
vertical/semi-cylindrical illuminance ratio was in the range 1.1–1.5. Assuming a 
desirable vertical/semi-cylindrical illuminance ratio of 1.3, the results convert to a 
vertical illuminance of 33 lx for confident face recognition at 17 m and 0.8 lx at 4 m 
(Boyce 2003).  
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Another example of the study on light modelling was performed by Cuttle (2008), based 
on illuminance measurements using a six-sided illumination metre (Figure 2-5) (Cuttle 
2008). The author proposed a theory of cubic illumination at a point in space that could 
be defined by six measured or predicted illuminance values on the facets of a small cube 
centred at the point. This method enabled the estimation of a range of spatial 
illumination metrics, including the illumination vector, and scalar and mean cylindrical 
illuminance values. According to the author, this method could also be used to predict 
the shading patterns of various objects or the distribution of eye illuminance at a given 
point (Cuttle 2008; Cuttle 2014). However, although this technique was reliable for 
outdoor applications, its reliance on calculations of direct illuminances of the cube sides 
made it insufficient for indoor lighting, especially where indirect light was dominant 
and directional. 

A different method suggests using a modelling sensor to predict light distribution on a 
3D object, the occurrence of light spots, cast shadows and register light direction 
(Matusiak 2002). The modelling sensor is a comprehensive instrument consisting of 
three elements: the matte white sphere that shows an illumination pattern revealed by 
the variation of illuminance over its surface; the black glossy sphere that reveals the 
highlight pattern; and the open lattice-like cube that generates the shadow pattern on the 

Figure 2-5. Vertical axis cubic illumination metre. Six silicon photodiodes are aligned on the faces of 
a cube and tilted so that one long axis is vertical.  
Adapted from Cuttle (2008). 
Adapted with permission. 
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white vertical partition (Figure 2-6). The shadow pattern made by the open cube reveals 
information about the number of light sources, the angle of incidence of light from the 
respective sources and how concentrated and how strong the light from the respective 
light sources is. In most cases, the way in which light describes the appearance of 
illuminated opaque objects exposed on a vertical background should be examined; the 
modelling sensor is supposed to be used in places where light falls preferably on the 
front of the shape (as seen by the observer) (Matusiak 2002).  

The approaches described by Cuttle and Matusiak are very interesting because they 
represent two different methodologies: the numeric illuminance-based method and 
another more visually or perception-oriented method (Zaikina et al. 2015b)  

The authors of a recent article used the luminance-based design method to develop new 
metrics for the lighting of pedestrians (Saraiji & Oommen 2014). They studied the 
target’s (pedestrian) visibility at night on an unlit street and developed the concept of 
dominant contrast (Figure 2-7). Dominant contrast is the contrast of any part of the 
target that provides the highest target visibility and is considered a useful measure for 
visibility models. Therefore, understanding the usability of luminance-based measures 
related to object distinctness and detail discrimination could be important and useful 
both for science and practice in the field. Interestingly, the researchers also tested semi-
cylindrical illuminance and vertical illuminance metrics to compare driver’s detection 

Figure 2-6. Photos of the sculpture and the modelling sensor taken in the artificial sky. 
Adapted from Matusiak (2002). 
Adapted with permission. 
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distance and reaction time in the presence of pedestrians. Despite the common use of 
vertical illuminance as a design target for pedestrians, Saraiji (2014) found the ‘vertical 
illuminances to be minimal in significant portions of the street that satisfy the IESNA 
horizontal illuminance requirement (Illuminating Engineering Society of North 
America. Roadway Lighting. ANSI/IESNA RP-8.00. New York: IESNA, 2005)’. In 
other words, the minimum vertical illuminance (Ev(min) 1.5m above ground) can be zero 
even if the horizontal illuminance on the street satisfies IESNA recommendations 
(Saraiji 2009a; Saraiji 2009b). This study on dominant contrast is highly significant 
because luminance contrast values were proposed here as a basic for the dominant 
contrast metric, namely luminance contrast values associated with object visibility and 
object distinctness from its background. 

 

The small number of existing studies on light modelling in built environments (and 
especially under the real daylight conditions) leaves the topic open for further research. 
Light modelling is an important attribute of quality lighting and comfortable visual 
communication, naturalness of observed objects and faces in a surrounding space. The 
understanding that light modelling is a basic need for convenient visual communication 
with humans and objects in the real world and the consistency of current metrics 
(modelling index) demonstrates the need for new light modelling metric investigations. 

2.8  Summary  

This chapter provided an overview of the existing studies relevant to the current 
research project. Despite the number of studies that investigated the various aspects of 
lighting quality over the past few decades, this topic remains insufficiently studied. 

Figure 2-7. Average dominant contrast of the left pedestrian at grid 42.5 and D=10 m. 
Adapted from Saraiji and Oommen (2014). 
Adapted with permission. 
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Modern advanced and rapidly developing technologies and computer programmes now 
facilitate the innovative study of these issues. Many of the examples reviewed in this 
chapter, especially the studies on visual comfort, successfully applied HDR imaging as 
their source of luminance data. This technique is well-studied, with comprehensive and 
available user recommendations and possible error descriptions. Although the various 
luminance-based metrics proposed by researchers were actively examined in a relatively 
short period of time, they have already proven themselves as promising tools that 
outperform some illuminance-based metrics. 

The topic of light modelling remains an open question despite the importance of the 
issue for most day-lit spaces. The studies that proposed illuminance-based metrics of 
light modelling could not effectively predict the appearance of 3D objects in a space or 
account for certain qualities of the objects and their backgrounds. Quantification of the 
amount of light at a point in space, even when captured from different directions (as 
cylindrical illuminance or cubic illumination), is a useful method that had been used for 
decades. Still, this absolute value of light falling on a point or object in space is unlikely 
to correlate with subjective observer assessments of the object’s visibility. Thus, 
luminance-based metrics could become very useful, serving as a simple tool to achieve 
better light modelling prediction results. 

  



2. State of the art 

30 
 

 



 

Figure 3-1. To the left: arrangement of the models in the laboratory under Artificial Sky during the 
experiment, photographing and measuring illuminance. To the right: form and sizes of scale models 

3. Project development 

 
Before starting the discussion of methods, results and conclusions, a short overview of 
the overall project’s development will be presented in this chapter. The most significant 
points include the choice of the metrics, and important findings will be described in 
detail (though a thorough review will be provided in Chapter 6). 

This thesis is based on three empirical investigations described in the dissertation as 
Experiments 1, 2 and 3. Since the major goal was to develop appropriate and verified 
luminance-based metrics of light modelling in architectural spaces, each performed 
experiment represents a significant step towards the main objective. 

3.1 Experiment 1 

The current project is an architectural study wherein both colour and light are examined. 
It was important to figure out how the chromatic properties of the interiors painted in 
low saturated equiluminant (isoluminant) colours and colour combinations affect the 
perception of light levels in the spacce. It was also important to examine whether the 
luminance maps of chromatic and achromatic interiors would reflect similarly (in 
numeric values) those tendencies particular to observers’ subjective assessments of the 
interiors.  

The experiment conducted in the Daylight Laboratory under the Artificial Sky included 
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Figure 3-2. The observation of the scale 
models placed in the laboratory under the 
Artificial Sky by one of the participants. 

Figure 3-3. Appearance of the striped scale model 
photographed through the opening for observation. 

the careful observation by 32 participants of eight scale models and answering a 
questionnaire form. Also a single photographing session of each of the observed scale 
models was done. The scale models were divided into two groups according to their 
colouration: one-coloured models (yellow, green, grey, blue, pink) and striped models 
(striped patterns of various colour contrasts: yellow/blue, red/green, grey/blue) (see 
Figure 3-1). 

Participants were asked to evaluate light levels in the models by placing them in 
descending order from bright to dark. Three questions in the questionnaire form 
addressed perceptions of comfortable lighting, personal preferences of the respondents 
and self-reporting on colour’s degree of influence on the perception of light levels. The 
questionnaire answers were analysed using the Fridman test. A series of LDR images of 
each scale model was processed into eight HDR images, respectively. The results 
showed that the differences in the perceived light levels among five one-coloured 
rooms were not statistically significant. The respondents admitted in their comments 
the difficulties in the evaluation of these models as the light levels seemed almost 
identical. The differences in the perceived light levels among the striped models were 
statistically significant. Similarly to those of subjective evaluation, the quantitative 
results obtained from luminance maps of striped models were also different. In 
general, even poorly saturated colours had an impact on the subjective perception of 
light levels in the observed spaces. However, the difference in the perceived level of 
illumination that was statistically significant was also detectable in luminance maps. 

These findings form an essential basis for further research, as they support the evidence 
needed to study the architectural spaces and objects of various low saturated colours 
with the help of HDR imaging.  
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A detailed description of Experiment 1 and its results can be found in Paper I, Chapter 
8. 

3.2 Experiment 2 

After finishing the first experiment, focus turned to possible new luminance-based 
metrics of light modelling as part of the lighting quality concept. A new experiment was 
performed under overcast daylight conditions in the mock-up room built in the Room 
Laboratory.  The interior resembled a generic room with one window shielded from the 
participants’ view and two shelves with 18 randomly painted Venetian masks (see 
Figure 3-4). The colouration of those masks was identical to the colours used and tested 
in Experiment 1. Two types of coating were used (glossy and matte). Thirty-two 
participants observed the Venetian masks and evaluated the distinctness of their 
contours, shapes and details using the provided questionnaire form. For each pair of 
subjects, a set of 11 LDR images of the scene was taken.  

The data from the questionnaire forms were statistically analysed, and 18 HDR images 
were generated for further examination. Numerical values of the proposed luminance-
based metrics were paired with the subjective assessments of the visibility of the 
contours, shapes and details of the masks. Certain reliable metrics were revealed. 

3.2.1 Proposed luminance-based metrics 

It is important to elaborate on the choice of appropriate light modelling luminance-
based metrics. The metrics based on luminance contrast were considered the departing 
point in the study. Contrast perception is a fundamental ability of our visual system that 
enables us to discriminate, among other things, a target from its background (Valberg 
2005). Perception of contrast depends on the size of the observed object, its form and 

Figure 3-4. The experimental room from the 
observers’ point of view. 

Figure 3-5. Two participants of the experiment 
observing the masks and answering the 
questionnaires. 
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temporal variation. In good illumination, sensitivity to static contrasts with sharp 
borders is greatest for objects that are larger than 0.2° in visual angle. If the borders are 
less distinct (as is often the case of shadows), sensitivity for larger areas is reduced. The 
sensitivity for pure chrominance contrast, however, still increases for objects larger than 
0.2º. It is also not affected by blurred or sharp borders. Thus, chromatic and achromatic 
objects were included in the present study as examples of luminance and chromatic 
(chrominance) contrasts. 

Numerous scientific investigations of luminance and chrominance contrasts and their 
threshold values have been carried out in fully controlled conditions in research 
laboratories for decades (Watson et al. 1983; Mullen 1985; Kelly 1994; Edwards et al. 
1995; Valberg et al. 1997). However, it is not known what contrast threshold values are 
necessary for the detection of the contour of objects—for example, human faces—in 
real full-scale rooms illuminated by daylight with its typical gradation of illuminance, 
and how those threshold values may differ depending on the optical characteristics of 
both object and background surfaces (Zaikina et al. 2015a). These questions arose in the 
current study and were examined in Experiment 2. 

Regarding thresholds, it is needed to note that subjective impressions are always 
qualitative and it is simpler to measure a magnitude of the physical stimulus that gives 
rise to the smallest subjective impression (threshold) in order to quantify perceived 
value (Valberg 2005). The minimum numerical values of the metrics tested previously 
by researchers and then possibly subscribed by norms and regulations helped only to 
prevent poor or unwanted lighting conditions. In the case of Experiment 2, low 
illumination was used to create conditions with hardly visible objects to help detect the 
luminance values corresponding to their contour, shape and details discrimination. 

Any stimulus to the visual system can be described by five parametres: its visual size 
(appropriate angular measure), luminance contrast, colour difference, retinal image 
quality, and retinal illumination. These parametres commonly determine the extent to 
which the visual system will be able to detect and identify the stimulus (Boyce 2003). In 
Experiment 2, lighting was kept at a relatively low level (thus creating a low retinal 
illumination), so the contours of the masks, their shapes and details were hardly visible. 
Therefore, luminance- and chrominance contrasts were the major factors affecting 
objects’ distinctness, and these factors were adapted as predictors of contour and shape 
distinctness in the statistical analysis. Thus, luminance- and chrominance contrasts were 
chosen as possible luminance-based metrics. 

The angular size of the objects observed from the observer’s point of view was almost 
equal, varying only from 2.7º to 3.6º vertically and 1.5º to 2.1º horizontally. Therefore, 
the differences in the masks’ angular size were not taken into account. 
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The possible choice of metrics was also limited by the technical options of the software 
used for image analysis, which provided only a few tools for selecting areas of interests 
in the images and obtaining their luminance values. 

 

Two sets of four metrics each were proposed to perform the contour, shape and details 
distinctness analysis. The contour distinctness metrics were: 

 Contrast (Luminance contrast calculated as the Weber ratio) 
 Luminance ratio (Luminance(foreground)/Luminance(background)) 
 Percentage of the invisible part of the contour 
 Mean point luminance ratio (LR) 

The shape and detail distinctness metrics were: 

 Luminance of the foreground 
 Luminance ratio (Luminance(foreground)/Luminance(background)) 
 Ratio between the maximum luminance value of the mask and the mean 

luminance 
 Standard deviation of the foreground luminances  

The choice of metrics based on luminance contrast has already been discussed in this 
section.  

The ‘percentage of the invisible part of the contour’ metric and ‘mean point luminance 
ratio (LR)’ were founded on 12 paired point luminance measurements around the 
contour of the mask. The first point of the pair was measured at the mask, and the 
second point was measured at the background. The percentage of the invisible part of 

Figure 3-6. Example of the selection for the analysis regions at the HDR image of the mask, in red 
colour: foreground or object (a), background (b). 
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the contour was also based on the analysis of the participant’s drawings (i.e. relative 
length of the outlined invisible part of the contour of the mask to the total length of its 
contour), which was contrasted with luminance measurements of the 12 paired points. It 
was assumed that because this metric was based on the pixels close to the border 
between the mask and its background, and because it took into account the subjective 
assessments of the participants, it might better reflect the contour distinctness of the 
observed masks. 

The mean point LR was based on 12 paired point luminance measurements around the 
contour of the mask; simply put, it was the arithmetic mean of those measurements. It 
was recommended because reducing the measurements up to 12 pairs was beneficial 
and time-saving. 

The luminance of the foreground (the Venetian mask) metric was chosen as the simplest 
possible measure of shape and detail distinctness and was imposed under the logical 
assumption that shadows that reveal the visibility of various forms are more visible on 
lighter objects. 

The ratio between the maximum luminance value of the mask and the mean luminance 
of the mask was chosen due to the presumption that higher ratios of this metric might 
reflect better detail visibility of the observed object. Similar arguments were applied to 
the ‘standard deviation of the luminances of the foreground’ metric for shape and detail 
distinctness. 

The additional factors considered during the statistical analysis of the results included 
lightness of the background, type of colouration of the object (chromatic/acromatic), 
and type of surface (matte/glossy). 

The analytical comparison of the questionnaire data with numerical values of examined 
luminance-based metrics showed that the contrast metric, luminance ratio between the 
average luminance of the object and average luminance of the background, mean of 
the paired point luminance ratio (mean point LR) measurements around the contour 
of the object and the percentage of the invisible part of the contour were good 
predictors of contour distinctness in the observed 3D objects. The luminance ratio, 
mean luminance of the object and standard deviation of the object’s luminances 
exhibited the strongest correlations with the subjective perceptions of the 3D objects’ 
shapes and detail distinctness. The proposed metrics expressed in numerical values are 
comprehensive, easy to obtain and could be practically applicable after further 
development. 
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Figure 3-7. Experiment 3 with achromatic and coloured 3D objects (Venetian masks) presented in real 
room and simulated in Rhinoceros and DIVA programmes. 

3.3  Experiment 3 

As discussed in section 2.4, HDR images can also be obtained through computer 
simulation tools. Light transport and reflection/refraction/transmission algorithms 
implemented in modern, physically based rendering tools (e.g. Radiance) simulate the 
properties of light in complex environments with reasonable accuracy (M. N. Inanici 
2004). This computational method enables the completion of lighting calculations and 
analysis that are too complex to be carried out manually, or which are required for 
already designed but not yet constructed buildings. This method is popular among 
architects, lighting designers and consultants.  

As noted previously, luminance-based metrics studied in Experiment 2 were acquired 
from photographed HDR images. As such, it was important to figure out if those 
metrics would be consistent with the metrics obtained from simulated images. This 
information would support or reject the idea of using the proposed metrics with 
simulated luminance maps. 

A new experiment was set up in an existing meeting room in one of the university 
buildings in Trondheim. The same Venetian masks as used in Experiment 2 were used 
here as well. The masks were placed at certain points in the room one by one. A set of 
11 LDR images was taken for each mask to total eight HDR images. The same real-
world scene was replicated in the 3D computer model (see Figure 3-7) using Rhinoceros 
and DIVA software (DIVA-for-Rhino 2014). The hypothesis assumed that the 
numerical differences of the luminance-based metrics of contour, shape and detail 
distinctness of the 3D objects obtained from photographs versus simulated luminance 
maps would remain within the permissible range. Authors of previous studies that 
compared photographed HDR images with physical instrumented measurements of the 
chromatic and achromatic targets reported the following possible average error levels: 
up to 5.8% for grey surfaces, 1.5% for black surfaces, 10.1% for colour surfaces and 
6.6% for light emitting surfaces (Anaokar & Moeck 2005; Inanici 2006; Cai & Chung 
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2011).  

The luminance-based metrics obtained from both the photographed and simulated 
images were compared with currently used illuminance-based metrics (cylindrical 
illuminance and modelling index). The luminance-based metrics (consequently colour 
and specularity dependent) showed considerable variation among the examined masks, 
verifying the impact of colour and specularity on the visibility of contour, shape and 
detail. 

The analysis of the results showed that the mean value of the relative error of all the 
luminance-based metrics tested for the set of eight masks (four glossy and four matte 
masks) was 14.78%. Only one metric exhibited a high relative error rate at 27.75% 
(percentage of the invisible part of the contour); the average error rate was not higher 
than 16.6%, and the minimum error rate was 7.91% (ratio between mean luminance of 
the mask and mean luminance of the background). Of all the average errors among the 
metrics obtained from simulated and photographed images, 42.86% stayed under the 
10% error limit, and 71.4% of them stayed within the 20% error limit. In general, glossy 
objects had higher error rates than matte objects.  

These results confirm that luminance-based metrics tested as predictors of light 
modelling, and in particular of the contour, shape and detail distinctness of day-lit 3D 
objects can be successfully used with simulated luminance maps. 

 



 

4. Methodology 

 
In this chapter, the methodology applied in the three fulfilled experiments will be 
discussed so as to evaluate the reliability of the final findings and results. The research 
questions that were raised for investigation required several approaches. Experimental, 
simulation and modelling research were combined. Multiple experiments were 
performed to provide mutual support to the final results. The experiments included 
simulation studies with scale models, mock-ups, computer simulations, real room 
studies and surveys. The simulation methodology was used first to validate the ability of 
the luminance maps in application for lighting studies of the chromatic interiors 
(Experiment 1). Then, the luminance-based metrics of contour, shape and detail 
distinctness for real 3D objects (Venetian masks) were investigated (Experiment 2). In 
the final phase, these metrics were verified with the help of simulated luminance maps, 
then compared with illuminance-based metrics currently prescribed by lighting 
guidance (Experiment 3). 

4.1  Experimental research 

Experimental research is widely used in various scientific fields and can be applied in 
architectural research. It allows researchers to credibly establish a cause-effect 
relationship. In some literature, experimental research is also called stimulus/response 
relationships (Boyce 2003). This method measures the subject’s response to the 
stimulus under certain controlled conditions. There are independent, dependent and 
control/intervening variables. Independent variables are manipulated by the researcher 
define the conditions of the experiment. A dependent variable is a measure of the 
response to those conditions. Control or intervening variables are all those factors that 
can influence the relationships between the independent and dependent variables and 
that are possible to register. 

Experimental research can involve a wide variety of tactics, from strongly controlled 
laboratory experiments to field site studies, from firmly adjusted physical manipulations 
to less controlled nonphysical conditions. In the current research project, laboratory 
settings were combined with exclusively instrumented measures of physical outcome 
variables (both manual instrument measurements and HDR photography). Thus, the 
outcome variables included both technically obtained readings and subjective ratings of 
3D objects’ contour, shape and detail distinctness. 
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The experimental design method is frequently criticised due to its possible 
shortcomings, such as its efficacy and validity, misapplication of experimental 
procedures and ethical concerns (Groat & Wang 2002). Validity—particularly external 
validity—concerns the assumption that the most real-life settings are too complex to be 
reduced to a small setting with controlled variables. This concern cannot be ignored; 
however, a solution may be possible, such as repeating the experiment under slightly 
different conditions to lend additional valuable results. This method is even more useful 
in situations when the complexity of experimenting in real environments can lead to 
failure.  

Despite the weaknesses of experimental research, it is especially useful in technical 
areas. Combining the strength of the experimental method with the advantages of other 
research methods (in the present case, those of simulations) is the best strategy to avoid 
the described limitations while accessing all the method’s benefits (Groat & Wang 
2002). 

4.2  Simulation research 

Simulation research originates from human curiosity and the fascination with 
replicating real-world conditions. Simulation research is characterised by the generation 
of data that can be analysed, manipulated or rectified, then returned to the real world in 
an improved state. Simulation studies may be performed in scale modelling, mock-up 
constructions, computer simulations and any other kind of reproduction of 
environments, conditions or situations. This research method is useful when researchers 
are dealing with issues of scale or complexity, is cost effective, provides an safe 
alternative when studying harmful or dangerous constructions or conditions, and finally, 
it is useful for developing and testing theories (Groat & Wang 2002). 

4.2.1 Scale model studies 

Scale model studies were performed in Experiment 1: Light level perception in 
interiors with equiluminant colours (see Paper I). Scale model studies allow the 
investigation of spaces and fenestration systems that are more complex than can be 
evaluated using simplified computational methods (formulas). Scale models provide a 
simple means of changing one variable at a time (e.g. window geometry, shading 
systems or surface reflectance), allowing the designer to easily manipulate variables and 
select optimum conditions. The models’ performance may be evaluated outside or in a 
laboratory, under artificial or overcast sky conditions.  

In the experiment on light level perception (see Paper I), the scale models were tested 
under a simulated overcast sky (see Figure 4-1). The testing model was 1:20 in scale at 
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Figure 4-1. Experiment 1 with scale models inside the Artificial Sky (to the left). Example of the room 
interiors (one-coloured and striped). 

25cm × 35cm × 20cm, which represented a room of 5m × 7m × 4m. The size was 
chosen to be large enough for comfortable observation and to facilitate good conditions 
for taking photos of the interior. All eight scale models of the rooms were placed under 
the Artificial Sky installation (see http://www.ntnu.edu/bff/laboratories; 
http://www.ntnu.no/ab/dagslyslab), which reproduced the luminance distribution of the 
CIE standard overcast sky. The equality of the illumination (that simulated overcast sky 
light) was a necessary condition that allowed equivalent comparison of the perceived 
light levels in the rooms. The scale model simulation enabled repeated access to the 
observed rooms if needed and saved costs and time. 

 

The scale model studies (Experiment 1) examined three main issues—the degree to 
which colour affected perceived light levels in the scale models; the ability of 
luminance maps to adequately represent chromatic interiors and/or objects; and the 
ability of the luminance maps to reflect in numerical values the difference in light levels 
similar to those registered by the observers. The results of these scale model studies 
adequately represented or equalled real room studies; as such, the findings of this stage 
were very valuable to the future research phases. 

4.2.2  Full-scale mock-up room study 

The main advantage of this type of study was its ability to recreate the conditions 
maximally close to the real world while enabling relatively easy control over the 
independent and intervening variables. The aim of the experiment in the mock-up rooms 
(Experiment 2) was to investigate day-lit 3D objects and their luminance maps and to 
propose appropriate luminance-based metrics of contour, shape and details distinctness 
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Figure 4-2. Experiment 2 with achromatic and coloured 3D objects (Venetian masks) presented in a 
full-scale mock-up room (Room Laboratory). 

for those objects by pairing luminance values of the metrics with subjective assessments 
of the participants. 

In the experimental-simulation research performed in the mock-up room in the Room 
Laboratory (see Papers II, III, IV and Figure 4-2), a certain degree of abstraction was 
created deliberately. This included the choice of the 3D objects presented for 
observation and the environment in which participants observed them. Let us suppose 
that participants were to observe realistic objects that resembled human faces (e.g. head 
sculptures) even more than abstract masks. In a real room, these realistic 3D objects 
would be presented on shelves of realistic design and in different painted cells. These 
conditions may have an unpredictable effect on subjective responses: participants might 
like or dislike the head sculptures; some might prefer female heads more than male ones 
and vice versa; they might also react to certain attributes of those faces (e.g. facial 
expressions, attractiveness or the presence of other elements). Further, observation of 
the heads painted in different colours, sometimes in unnatural hues, presented at first 
sight on the randomly painted shelves would likely cause abruption and negative 
reactions among the respondents. Therefore, experimentation in a mock-up space with a 
relatively realistic design was deemed a more suitable option for the experiment than 
real environment settings. 
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4.2.3 Computer simulations 

Computer-based simulation methods offer flexibility that scale-model studies and 
manual methods sometimes cannot. They are especially valuable when the complexity 
of a building would make a scale model too costly and complicated to construct, or 
when there is a need to evaluate several proposed design alternatives. Computer-based 
simulations provide a convenient means to parametrically evaluate designs against other 
design alternatives (Rea 2000). Another undoubted advantage of computer simulations 
is their high performance speed and the easiness of modelling complex objects with 
small details.  

Modern software packages allow simulations to be performed with daylight and 
electrical lighting, usually using radiative transfer and/or ray tracing approaches. The 
utility of these computational techniques is usually dictated by the nature of the 
information required. Ray tracing is an advanced approach capable of handling almost 
unlimited geometric complexities to produce realistic images. It is ‘based on following 
one-dimensional rays, where each ray is defined by an origin point and a vector 
direction. In a rendering algorithm, each ray is followed until it intersects a visible 
surface, where new rays may be spawned in a recursive process. In light-backwards ray 
tracing (as in Radiance), each view ray is traced from the point of measurement to the 
contributing light sources’ (Larson & Shakespeare 1998). Ray tracing produces 
reasonably accurate renderings of environments and surfaces with a wide variety of 
optical effects, such as reflection and refraction, scattering and dispersion phenomena 
(e.g. chromatic aberration). 

The computer simulation approach was used in the verification study of the proposed 
luminance-based metrics of contour, shape and detail distinctness (Experiment 3) (see 
Paper V and Figure 4-3). In this computer simulation, the real-world context of the 
experiment performed in a real meeting room at a university building in Trondheim was 
replicated by 3D computer model. Through the creation of the virtual room and most of 
its characteristics, the research issues was examined. Thus, the hypothetical metrics 
proposed for application in lighting analysis and design that may be performed both in 
real spaces and in computer programmes were verified. The 3D model was built with 
the help of the Rhinoceros software. The lighting analysis was performed using DIVA 
2.0 (Jakubiec & Reinhart 2011).  

 

The DIVA is a highly optimised, sustainable analysis plugin for the Rhinoceros 3D 
Nurbs modelling programme for integrating detailed daylighting analysis using 
Radiance/DAYSIM with thermal load simulations using EnergyPlus (Jakubiec & 
Reinhart 2011). DIVA allows the automatic coupling and visualisation of daylight and 
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energy consequences as peak loads, and the amount of heating, cooling and lighting 
necessary each year in a space can be changed by designers through formal decisions, 
the design of shading systems, the amount of glazed area and the choice of materials. 
All can be analysed visually, photometrically and energetically from within DIVA 
(Jakubiec & Reinhart 2011).  

It is also important to note the advantages of the integration of the Radiance programme 
for daylight simulation. Radiance is a physically-based rendering system tailored to the 
demands of lighting design and architecture. The programme uses a light-backwards 
ray-tracing method with extensions to efficiently solve rendering equations under the 
most conditions, namely specular, diffuse and directional-diffuse reflection and 
transmission in any combination to any level in any geometry. The fusion of 
deterministic and stochastic ray-tracing techniques facilitates the best balance between 
speed and accuracy in its local and global illumination methods (Ward 1994). 
Therefore, the use of the simulation programme with integrated Radiance and the 3D 
model of optimal geometry ensures the best possible outcomes. 

4.2.4  Other activities within the simulation research 

Simulation research often requires activities from the researcher that are not directly 
related to the simulation itself (Groat & Wang 2002). These could be interviews, 
checking records or documents or other qualitative field work. All three simulations for 
the experiments in the present study, whether they involved scale models, masks in 
mock-up rooms or computer modelling research, included some preparatory work.  

Figure 4-3. Two HDR images of the grey glossy mask. To the left: photographed image; to the right: 
simulated image 
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For the experiment with scale models, paints were manually mixed and checked in the 
laboratory. Their luminance values were measured under Artificial Sky to calculate their 
reflectance factors and ensure the equiluminance of the paints (see Figure 4-4). Also 
the illuminance values were measured at the central point on the floor inside each scale 
model, arranged under the Artificial Sky installation (see Figure 4-5). This not only 
enabled access to the existing illuminance readings inside the models but also allowed 
the researcher to check and analyse differences in light levels inside the models. 

Before the second experiment was started, thorough preparations were conducted, 
including weather monitoring and testing of the participants with the following: visual 
acuity test using a Snellen chart; Ishihara test for color vision; and a contrast sensitivity 
test (Vigra programme, see Glossary). Normality of 3D vision was self-reported by the 
respondents (according to their ability to see the depth of the space and stereoscopic 
videos using 3D glasses). 

The 3D computer simulation of the masks placed in the meeting room model required 
thorough preliminary measurements to be taken in the real room. These measured the 
size of the room, the objects within it and the facilities; the luminance of most of the 
surfaces in the real room respective to the grey and white reference cards (for further 
reflectance calculations); and colour registration of all the achromatic and chromatic 
colours of the real room with help of NCS COLOUR SCAN 2.0. In addition, simulation 
on the investigation of the specularity and roughness values of the glossy masks’ 
material was performed (see Paper V). 

 

Figure 4-4. Example of the luminance measurements of two samples of the paints used in scale models. 
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The simulation research method served as the core element of the current doctoral 
study. The complete methodology includes other strategies, such as surveys 
(questionnaires), luminance mapping and some manual instrumented measurements, 
which will be discussed in greater detail in the sections below. Simulation research 
enables researchers to capture the complexity of real-world behaviors without reducing 
them to a limited number of discrete variables; it is often able to reveal unexpected 
results useful for analysis (either to be taken into account or not) and for future work 
(Groat & Wang 2002). 

4.3  Questionnaire survey 

Questionnaire surveys were used in two of the performed experiments: the scale model 
experiment and the full-scale mock-up room experiment with Venetian masks. In the 
full scale mock-up room experiment, the simulation method was combined with 
correlational research, allowing the researcher to seek and predict the relationships 
among several variables. A questionnaire was used for data collection in addition to 
luminance mapping. To conduct statistical analysis of correlation research, the 
regression method is frequently employed (Groat & Wang 2002). The current 
experiment used ordinal regression analysis, which is explained in greater detail in 
section 5.2. 

The structure and design of the questionnaire was crucial, as these factors can determine 
the range of the responses toward a pre-selected area of interest. The questionnaire 
needed to be easy to understand, simple to fill out and elicit honest answers (Stamatis 
2012). It could also be administrated differently, such as by paper and pencil, by 
computer or by phone. Several advantages of the questionnaire, particularly the on-the-
spot questionnaire used in the current research project, may be noted; these include the 
immediate collection of information from respondents, the possibility to ask questions 

Figure 4-5. Measurement of illuminance inside the yellow scale model at floor level. 
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from the survey manager as they are raised and the ability to survey groups of people at 
a time.  

4.3.1  Questionnaire survey: Experiment 1 

Thirty-two respondents participated in Experiment 1 regarding light level perception in 
interiors with equiluminant colours. Participants were master’s students of architecture 
(14), physicists (5), PhD candidates in architecture (5), engineers in computer science 
(3) and a few people from other academic fields (5). The ages of participants varied 
from 21 to 42 years, and all of them had normal colour vision.  

As the respondents observed two different groups of scale models (one-coloured models 
and models painted in striped patterns) (see Paper I), two similar but separate 
questionnaires were distributed (Figure 4-6). Each consisted of two parts. The first 
contained one question from the Perceptive Spatial Analysis of Colour and Light 
(PERCIFAL) questionnaire (Arnkil et al. 2011; Fridell Anter, Häggström, et al. 2012; 
Matusiak et al. 2011). The intention was to elicit spontaneous answers to the question: 
do you experience the room to be dark or bright? The participants made a mark on a 
seven-step scale that ranged from very dark to very bright. The second part included 
four more questions about lighting in the scale models and demanded more 
conscientious answers. Answering the questions from this part of the questionnaire, 
observers had to arrange the rooms into descending order. The questions were:  

1. Which room has the highest light level (the brightest room)?  
Arrangement had to be from the brightest to the darkest.  

2. Which room has more comfortable lighting? 
Arrangement had to be from the most to the least comfortable. 

3. Indicate your personal preferences among these rooms (in lighting).Why? 
Arrangement had to be from most to least preferable room.  

4. How much do you think colour affects your perception of light levels? 
The subject had to mark the level of the influence of colour and colour 
compositions (in the case of the striped rooms) on light level perception on the 
proposed scale (see Figure 3-4). 
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Figure 4-6. Questionnaire from Experiment 1 on light level perception in interiors with 
equiluminant colours 

The first question of the second part of the questionnaire was the main source of the 
necessary data. The two questions concerning comfortable lighting and personal 
preferences in lighting among the rooms served to verify the reliability of the results by 
comparing answers. The overall design of the questionnaire form was effective; 
participants easily understood the questions they had to answer. The obtained data 
provided significant results, mostly due to the questions asked in the questionnaire, 
which have been discussed in the article Light level perception in interiors with 
equiluminant colours (Zaikina 2012) (see Paper I).  

4.3.2 Questionnaire survey: Experiment 2 

The experimental design and research questions used in the study on the contour, shape 
and detail distinctness of the Venetian masks required a modified form of the 
questionnaire. It had to be very simple, because respondents placed in relatively dark 
lighting conditions were observing 36 separate masks painted in different colours and 
presented in differently coloured boxes. It was expected that these conditions might tire 
the observers, which was highly undesirable. Thus, only one simple question was asked 
about the distinctness of the contour of each mask, and a similar question made up the 
second part of the questionnaire concerning the masks’ distinctness of shape and detail 
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Figure 4-7. Questionnaire form from Experiment 2 

(see Figure 4-7 and Papers II, III and IV). This allowed participants to answer the 
questions quickly using a four-point ordinal scale to indicate the range of contour, shape 
and detail distinctness. 

Participants chose from the following options: 

• Indistinguishable (invisible contour/shape and details) 
• Just distinguishable (barely visible contour/shape and details or some details) 
• Well distinguishable (well-visible contour/shape and details except some parts or 
elements) 
• Perfectly distinguishable (the whole contour/mask is well visible) 

 

Participants were allowed to start their evaluation from any mask presented on the shelf, 
although this was not systematically implemented as participants chose themselves. To 
collect more information on the visibility of particular areas of the masks, the 
respondents were asked to specify indistinguishable and perfectly distinguishable zones 
of the contour or the whole mask (in the cases of shape and detail distinctness) in the 
form of drawings included in the questionnaire form. These drawings consisted of a 
simple, not too small outline graph of the mask, convenient for the participants to draw 
upon. The graphical information obtained from the participant’s drawings was then used 

during the luminance measuring and analysis process.  

This type of the questionnaire worked well in the present experiment, as most of the 
participants were able to complete the experimental session (including other parts such 
as an explanation of the terms and a photographing session) within one hour, through 
there was no time limit. Very few answers were missed and the proposed questions 
were answered. 

Questionnaires are a very important part of the present experiments related to human 
perception of visual environments as they provided the necessary empirical data. The 
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questionnaires used in this research project were closely related to the purpose of each 
particular study and provided consistent information. 

4.4  Luminance mapping 

Luminance mapping was used as a specific technique in all the experiments performed 
during the current research project (see Papers I through V). Luminance maps obtained 
through HDR photography (luminance mapping) were one of the main data sources 
intended for further statistical analysis. The theoretical background of this technique has 
already been discussed in section 2.3. Here, the way the luminance mapping was 
performed in each separate case will be discussed and an outline of the general rules, 
advantages and weaknesses of this method will be presented. 

Thorough and useful guidance on how to perform HDR photography was developed by 
Reinhard (2010). Reinhard’s strategy is applicable to most cases, though it may vary a 
bit depending on target, illumination or camera type. This technique was indispensably 
used in all three experiments according to the following directions: 

1. Use aperture priority or manual exposure mode so that only the exposure 
time is allowed to vary. This reduces problems associated with vignetting (light 
fall-off toward the edge of the image). 
2. Fix the camera’s white balance on a specific setting for the entire sequence—
preferably daylight (a.k.a. D65). 
3. If the camera offers an “optimised colour and contrast” mode, switch it off. 
The more settings you can fix manually, the less likely the camera will alter the 
expose function between exposures. This especially goes for automatic ISO/ASA 
and programmed exposure modes. 
4. Use a tripod if possible, and control your camera via a tether to a laptop 
computed if this option is available. The less touching of the camera during a 
sequence, the fewer alignment problems will be experienced. 

It is helpful to calibrate the camera’s response one time, and then reuse this 
calibration for later exposure sequences. In this way, the scene and exposure 
sequence may be optimized for camera response recovery. For such a sequence: 

 Set the camera on a tripod and use a tether if available.  
 Choose a scene with large, grey or white surfaces that provide 

continuous gradients for sampling. The closer your scene is to a neutral 
colour, the less likely colour transforms will undermine the response 
recovery process. 

 Choose a scene with very bright and very dark areas, then take a long 
sequence of exposures separated by 1 EV (a factor of two in exposure 
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time). The darkest RGB values should have no RGB values greater than 
200 or so, and the lightest exposure should have no RGB values less than 
20 of so. Do not include an excess of exposures beyond this range, as it 
will do nothing to help with response recovery and may hurt. 

 If you have access to a luminance metre, take a reading on a grey card 
or uniform area in your scene to provide absolute response calibration. 

Once a camera has been characterised in this way, it is possible to combine 
hand-held bracketed sequences that are too short to reliably recover the 
response function (Reinhard et al. 2010). 

The stable lighting conditions provided by the Artificial Sky installation used in 
Experiment 1 (see Paper I) allowed the set of the images of the scale models to be taken 
at any suitable moment during the experiment. The sets of 13 low-dynamic images for 
each room were made with a Canon EOS300D digital camera, which was mounted on a 
tripod and situated in the plane of the subject’s eye to simulate the viewing position of 
the observers. Changes of exposure were made manually due to a lack of other suitable 
controlling devices; as such, some blurry after-effects may have occurred after image 
alignment. The luminance readings were taken with a calibrated handheld luminance 
metre. The readings were used for absolute response calibration of the luminance maps 
as recommended in the literature.  

Experiment 2 took place in a full-scale mock-up room built in the Room Laboratory 
(see Papers II - IV) under the real daylight conditions. One daylight opening in the room 
provided soft illumination from an overcast sky. It was absolutely necessary to operate 
the process under a stable overcast sky with preferably minimal fluctuations in the light 
level; only eight days within two weeks in August 2013 met these conditions. The 
photographing session had to be done with minimal differences in time with the 
answering of the questionnaire in order to reduce the risk of possible light fluctuation 
and distinctions of illumination/light distribution on the photo and during the 
observation process. Sets of 11 LDR images were done before the respondents (two 
persons at a time) started to fill in the questionnaire. Luminance measurements were 
then taken manually, and the terms used in the questionnaire were orally explained. The 
low dynamic images were taken within a period of 1–2 min, and the manual luminance 
measurements were conducted immediately after. The whole process (photographing, 
measuring and explanating) took approximately 10–15 min, depending on the 
respondents’ questions. During this time, participants were able to adapt to the lighting 
conditions in the room. The survey itself took 1 hour for each pair of respondents. The 
Nikon D600 digital camera and a full-frame (AF DX Fisheye-Nikkor 10.5mm f/2.8G 
ED) lens providing 180° diagonal angle of view were used. To ensure sharpness, the 
camera was mounted on a tripod and situated between the participants’ chairs. All 
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camera settings were adjusted virtually via Nikon Camera Control Pro software, which 
prevented luminance maps from developing unwanted fuzziness. 

Experiment 3 was fulfilled in the real meeting room on the 8th floor of Sentralbygg 1, 
Gløshaugen campus, Norwegian University of Science and Technology. As in the 
previous experiment, overcast sky conditions were chosen, and fluctuations in the light 
level stayed within 17.3%. The settings of the experiment enabled very short pauses 
between photographing sessions for each of the eight studied masks. First, the point 
illuminance measurements and manual luminance measurements were taken (1–2 
minutes). Next, the masks were placed one-by-one on the tripod at a height of 1.2 
metres, and photographing session was performed (1–2 min each). Short pause followed 
while the masks were changed, and then the procedure was repeated. The whole 
experiment in the real room took only 50 min in total, of which approximately 6.5 
minutes were used for the work with each mask. The same equipment (camera, lens and 
software) as in the previous experiment was used; all the recommendations for 
successful application of the luminance mapping technique were followed. 

 

The HDR imaging procedure was developed and tested previously, and useful 
recommendations for its application were suggested. The alignment of the low dynamic 
images is an automatic process that can be performed using a number of free computer 
programmes, including Photosphere (Ward 2002), hdrscope (Kumaragurubaran & 
Inanici 2013) and WebHDR (Jacobs 2007; Jacobs n.d.). HDR photography has some 
weaknesses and limitations that the user should be aware of. Two such limitations are 
the ability to capture images of static scenes only (at least during the photographing 
sequence) and the need for calibration against the luminance metre reading of a reliable 
standard target. Nevertheless, the luminance mapping method provides a measurement 
capability that has the advantage of collecting high resolution luminance data within a 
large field of view quickly and efficiently, which is not possible to achieve with a 
luminance metre. The method uses equipment at reasonable prices that both 
practitioners and researchers may purchase. Moreover, the self-calibration algorithm in 
Photosphere provides quick and easy camera response functions. Though not a 
substitute for any currently used instrument, this method is still a useful tool for 
capturing luminance values over a wide range within 10% accuracy (Inanici 2006).  

4.5 Manual quantitative instrumented measurements 

Instrumented measurements are usually used to quantify a luminous environment and 
thereby indirectly measure or monitor stimuli to the visual system (Boyce 2003). They 
are also frequently used to establish relationships between the physical measure of 
lighting and subjective judgment of the lighting. 
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As discussed in section 4.4, photographing the sequence of LDR images to be used for 
luminance map creation required instrumented luminance measurements to provide 
absolute response calibration of the HDR images. This procedure was performed using 
a Minolta LS-100 luminance metre. In Experiment 1, which involved scale models, a 
single measurement in six pre-defined points inside each of the eight scale models was 
used. In Experiment 2 (with the Venetian masks), 17 luminance measurements were 
performed accordingly to 17 sets of images for luminance maps. Luminance was 
measured at four target points in the mock-up room, and the procedure was repeated for 
each new photographing session. In the real room experiment (Experiment 3), the 
luminance measurements were done twice (before and after the photographing session). 
This procedure was repeated with each of the tested masks (i.e. eight times). In addition 
to the photometric calibration of HDR images, taking the measurement before and after 
the photographing process enabled the researcher to monitor light changes during the 
experiment. The luminance of all surfaces in the experimental room was measured in 
reference to Kodak grey and white cards. Based on these measurements, the reflectance 
factors of those surfaces were calculated. 

In addition to luminance measurements, illuminance levels were also important in the 
conducted experiments. Illuminance measurement is the most widely used quantifier of 
light, and it is usually measured on a horizontal plane at the point of interest, frequently 
at the working plane level. In the experiment with scale models, illuminance was 
measured using a lux metre with a small, detached photocell. It was convenient to put 
this photocell into the scale models through small openings for observation. The 
illuminance was measured in the centre of the room at floor level. These measurements 
were needed to estimate the equality of the illumination inside all the scale models 
under the Artificial Sky installation. 

For the experiment in real meeting room, more instrumental measurements were taken. 
First, the outside illuminance values were registered before each new photographing 
session. These outside illuminance values were used later in computer simulations 
(replicating existing lighting conditions) and allowed the researcher to track internal and 
external illuminance fluctuations. Simultaneous to the outside illuminance registration, 
the internal horizontal illuminance measurement was conducted as well. This was a 
point in the room where each mask was mounted and the photocell was fixed to the 
horizontal element of the tripod. Exactly after this measurement, two semi-cylindrical 
illuminance measurements (with a difference of 180 ) were performed at the same 
point. Based on these horizontal and semi-cylindrical illuminance measurements, the 
modelling indeces at this point in the room were calculated. 

The instrumented measurement is an inherent and necessary technique in various 
experimental studies. This method does the following: 



4. Methodology 

54 
 

i) ensuring of good experimental conditions through monitoring of changes in 
light levels that could lead to error if not recorded; 

ii) correction or adjustment of the generated HDR images according to the 
instrumental readings for more reliable luminance values; 

iii) measurement of the illuminance values for illuminance-based metrics 
calculations needed for their further comparison with luminance-based 
metrics;  

iv) measurement of luminance of the various surfaces (relatively to reference 
grey and white Kodak cards) of experimental spaces used for reflectance 
factor calculations. 

All these instrumented measurements improved the quality of the results of all three 
experiments through the supplement of additional verifying data. 

 



 

5. Analysis 

 
Several statistical methods were used to analyse the data obtained from the three 
experiments. The analyses were determined by the data type and the research questions 
raised in each particular case. As luminance maps were one of the main data sources in 
all the studies performed, their analysis method will be explained separately in section 
5.1 of this dissertation. A brief description of the statistical analysis methods will be 
provided, as these methods were systematically implemented for data analysis. 

5.1  Analysis of the luminance maps 

The low dynamic images taken of the scene were generically aligned into one HDR 
image file, after which the photometric calibration could be performed in any HDR 
image analysis and processing programme. The current study used the Photosphere 
programme (Ward 2002). After calibration, the image data was analysed, again with the 
help of the chosen programme. The Photosphere software was rather limited in its 
choice of tools for image examination; options included measurements of the whole 
area of the picture, squared areas of interest and point luminance measurements. These 
tools were actively used in the experiment with scale models where the luminance 
readings were taken in six pre-determined points in the interior, and in selected 
rectangular regions of walls (see Paper I).  

Another valuable option provided by Photosphere (and most other programmes for 
HDR imaging) is the false colour picture tool. In this particular case, the false-colour 
picture was an image that displayed the existing luminance values in specific colours. In 
other words, it was a graph in which each newly assigned colour signified a particular 
luminance value. This was a helpful analytical tool that facilitated image study, 
especially in terms of visual representation for observation. The distribution of 
luminance values in the image were more clearly displayed here, which was useful for 
analysing the single-coloured and striped rooms. The scales of the luminance values 
from maximum to minimum (the luminance ranges) were equally set in the compared 
pictures. Luminance distribution patterns depicted in false colours allowed comparison 
among images (Paper I). Overall, this method is highly useful when the objects in a 
luminance map are not clearly visible, or generic pictures do not satisfactorily represent 
light distribution (bright or dark spots) on the surface and visual investigation is of 
critical importance. 
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In other experiments (with masks in the full-scale mock-up room and real meeting 
room) the hdrscope programme was used alongside Photosphere. In addition to the 
simple functions provided by Photosphere, hdrscope enables the user to examine 
multiple selected regions of interest and figures of complex geometry 
(Kumaragurubaran & Inanici 2013). Moreover, this programme allows the user to 
obtain and save raw luminance data from any selected region (in this case, the 
information regarding each pixel in the scene or selected zone, its luminance values, the 
number of pixels with equal luminance, et cetera). Those data may be operated and 
manipulated further in any programme intended for statistical analysis. All these options 
were adopted for luminance data collection used for proposed luminance-based metric 
test and for the histogram analysis of specific chosen masks (see Papers II-V). 

5.2 Statistical analysis 

In the experiments that included surveys, the data outcome was ordinal data, meaning 
that possible responses could be arranged in order. The numbers assigned to the 
responses facilitated this organisation, but the actual distances between the numeric 
codes were not interpretable (Stamatis 2012), as there was no fixed pitch between 
values. When the differences between the ranks of the scale are not equal (or unknown), 
means and variances are in error and nonparametric procedures may be used to test 
hypotheses (Sheldon et al. 1996). Thus, the Friedman test served as the main tool for 
statistical analysis of the results from Experiment 1 (with scale models). 

The Friedman test is a nonparametric statistical procedure for comparing more than two 
related samples. The parametric equivalent to the Friedman test is the repeated measures 
analysis of variance (ANOVA) (Corder & Foreman 2009). Results obtained through 
Friedman testing usually show that at least one sample is different from the others, but 
do not identify where the difference(s) occurs or how many are present. To determine 
such information, other tests (sample contrast, or post hoc tests) among specific sample 
pairs are necessary (Corder & Foreman 2009). 

In Experiment 1, the stated null hypothesis suggested that all one-colour rooms (5 scale 
models) and striped rooms (3 scale models) had the same distribution of scores on the 
different measures represented by the conditions. Namely, there was no difference in 
perceived light level scores among the different one-colour rooms and striped rooms. 
According to the statistical analysis of the one-colour rooms, differences were small and 
not statistically significant. Analysis of the striped rooms showed a highly significant 
difference in perceived light level scores in the different striped rooms. More detailed 
information can be found in Paper I. 
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In Experiment 2, which used Venetian masks in a mock-up room, respondents 
evaluated contour, shape and detail distinctness of the masks using a four-point ordinal 
scale in the provided questionnaire. The categories were the following: 

• Indistinguishable (invisible contour/shape and details). 
• Just distinguishable (barely visible contour/shape and details or some detail) 
• Well distinguishable (well-visible contour/shape and details except some parts or 
elements) 
• Perfectly distinguishable (the whole mask and its contour are well visible) 

The ordinal regression analysis was chosen as the main statistical method. Regression 
analysis is a technique that provides many individual ways to identify variation and 
relationships. Specifically, regression analysis finds an equation that relates a variable 
of interest (the dependent variable) to one or more other variables (the independent or 
predictor variables). To clarify, the independent variable is a quantity that can be 
manipulated within the experiment and cause change in the dependent variable, which 
represents output. A regression analysis estimates the strength of relations between the 
dependent variable and the independent variables (controlled for each other). Ordinal 
regression is a technique that is used to predict ordinal level dependent variables’ 
behaviour with a set of independent variables. The dependent variable is the order 
response category variable, and the independent variable may be categorical (label or 
means of identification) or continuous (it can assume any of a range of values). 

For the experiment with Venetian masks in the mock-up room, the experimental design 
involving 32 participants who assessed 36 masks each resulted in a data structure 
wherein 36 evaluations were nested with each respondent. This means that the personal 
characteristics of each person affected their ratings of all 36 masks. This led to a 
dependency of the ratings of each person, violating the assumption of unrelated 
residuals in a normal regression analysis. Therefore, a multilevel regression analysis 
was used instead of single-level one. The main analysis was conducted at the object 
level, but the person-specific variance in the evaluations across all masks was modelled 
simultaneously and taken out of the regression equation at the mask level.  

This statistical technique enabled the researchers to identify relationships between the 
visual distinctness of contour/shape and details, proposing seven luminance-based 
metrics or predictors. Some factors, such as surface type (glossy or matte), colouration 
(chromatic or achromatic), background lightness (white, medium dark and dark) and the 
order of observation of the shelves, were included in the analysis as additional control 
variables. Detailed results can be found in Papers II, III and IV. 

Besides this analysis, probability calculations were performed. Probability plots are 
presented in Papers II, III and IV. Probability theory provides a mathematical model for 
the study of randomness and uncertainty, referring to the likelihood of occurrence. By 
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informally defining the probability, it can be said that the probability of an event is a 
measure (number) of the chance with which one can expect the event to occur. A 
number between 0 and 1 is assigned inclusive to the probability of an event. A 
probability of 1 means that one is 100% sure of the occurrence of an event, and a 
probability of 0 means that one is 100% sure of the non-occurrence of the event. The 
probability of any event (A) in the sample space (S) is denoted by P(A) (Ramachandran 
& Tsokos 2015). In order to express regression analysis results in terms of probability, 
the dependent variable (probability) must be transformed into a quantity (logit) ranging 
from -∞ (when P=0) to ∞ (when P=1). Logit transformation consists of two steps: i) 
conversion of the observed probabilities into odds and ii) obtaining logits by taking the 
logarithm of the odds (which is given by the ratio P/[1-P]). 

In the present study, the probability plots displayed the probability of four types of 
observed Venetian masks (matte/achromatic, matte/chromatic, glossy/achromatic, 
glossy/chromatic) being evaluated as proposed in the questionnaire (indistinguishable, 
just distinguishable, well distinguishable or perfectly distinguishable contour/shape and 
details) and corresponding values of the main predictor (proposed luminance-based 
metrics). Using this result, it was possible to specify threshold values for most of the 
predictors and metrics, allowing the worst-case scenarios (when the object was invisible 
or hardly visible) to be eliminated. Several tables were created based on an 80% 
probability for some of the tested predictors that were statistically significant. These 
comprehensive tables indicated clear values of the tested measures that were also 
applied as numeric reference points, ensuring perfect visibility of the contour/shape and 
details of the 3D objects. Additional details are provided in Papers III and IV. 

Within the analysis of the observed Venetian masks’ contour distinctness, a cross-
classified regression analysis was performed. The cross-classified regression has as a 
single data point, an observation on a particular individual’s assessment of the masks’ 
contour, shape and detail distinctness, as well as other variables such as the peculiarities 
of each mask. Cross-classification allowed the researchers to control the variance 
components from two nesting levels (masks and people) that were parallel to each other.  

In the current study, the cross-classified regression analysis for a binary dependent 
variable (0 = the contour in this part of the mask is visible; 1 = the contour in this part of 
the mask is invisible) tested the relationship between the individual point measures of 
the luminance ratios and the subjective rating if the area was visible. The cross-
classified analysis controlled the people factor and mask factor, which both impact the 
results on their second levels, respectively. This allowed the correlation between each 
individual pair of luminance readings and indistinguishable contour to be tested as 
being marked by the participants. 

Results showed a high statistical significance (see Paper IV) for both sides of the 
contrast with medium to strong correlations, which can be interpreted as an indication 
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that the data regarding areas of invisible contours obtained from the questionnaire 
matched with the luminance ratios closest to 1 measured in the pairs of points belonging 
to these areas. This shows that the participants were able to reliably report the 
invisibility of the contour in certain areas of the masks. 

In Experiment 3, which used a real room, the main focus was on the verification of the 
proposed luminance-based metrics of contour, shape and detail distinctness through a 
comparison of those obtained from photographed HDR images with simulated 
luminance maps. The indicator used for analysis and comparison of the data from 
simulated and photographed luminance maps was relative error, given by:  

                     [Equation 3], 

where Msim is the value of a certain metric of simulated luminance maps and Mphoto is 
the value of the same metric obtained from the photographed luminance map. 

The relative error indicator is a simple method by which to evaluate the difference 
between two quantities. It expresses the relative size of the error of the measurement in 
relation to the measurement itself. 

The variation of luminance-based metric values obtained from simulated and 
photographed HDR images were compared with variations in the illuminance-based 
modelling index. However, no statistical method was implemented for this purpose. 

 

When planning the experiment to investigate the present research questions, it was 
necessary to ensure that the measurement process was simple, that the study could be 
concluded in a reasonable time frame and that it would produce reliable data. The 
experimental design determined the basic characteristics of the data collected. These 
data were then processed using statistical analysis techniques, with goals being 
determined by the experimental objectives. Conclusions were obtained by looking at the 
results of the statistical analyses (Ramachandran & Tsokos 2015). In summary, it may 
be concluded that the multiple methods used to collect the empirical material increased 
the credibility of the present study, and the statistical analysis adopted at all the stages 
of the research project and in all the experiments produced reliable results. 
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6. Discussion of the results 

 
In this chapter, the results from three experiments (and appended papers) are 
summarised. The main results and contributions of each experiment have been compiled 
into several articles that form the basis for this thesis will be described further in 
sections 6.1, 6.2 and 6.3. 

The general direction of the study was towards the new possible luminance-based 
metrics of lighting quality. To compensate for the broadness of the topic, the research 
began with general questions first, progressing to the more particular and detailed ones 
as the study went on. The more extensive topics were investigated in Experiment 1, 
including: i) the influence of colour/colour combinations on the perception of light 
levels in interiors painted in equiluminanat colours/colour combinations; and ii) the 
capabilities of HDR images to depict correctly the luminance data in photographed 
luminance maps of coloured interiors. These questions are addressed in Paper I.  

The primary interest of the research project was that of the light modelling topic, 
particularly the contour, shape and detail distinctness of observed 3D objects. This 
problem was investigated in Experiment 2. Here, several luminance-based metrics of 
light modelling were proposed, tested and paired with subjective responses. The results 
are reported in Papers II, III and IV. 

Finally, all the proposed luminance-based metrics obtained from the photographed HDR 
images were verified against the simulated HDR images. The metrics were then 
compared with currently used cylindrical illuminance and modelling index metrics 
(CEN 2011). Experiment 3, performed in a real room under real daylight conditions and 
replicated in computer model, facilitated a more thorough verification of the metrics 
(explained in Paper V). 

6.1 Findings from Experiment 1 
‘Light level perception in interiors with equiluminant colours’ 

As discussed in Chapter 2, light and colour in architectural spaces should not be studied 
separately. Colour and light are tightly interconnected concepts in our experience of the 
world and together form our visual experience of space (Fridell Anter, Arnkil, et al. 
2012). The current study’s hypothesis assumed that the perceived light level in a room 
is affected not only by luminance but also the chromatic properties and contrasts of wall 
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colours. This was tested in model studies using low saturated equiluminant colours 
normally used in interiors and combinations of equiluminant colours of contrasting 
hues. In addition, an examination of the capabilities of HDR images as a method for 
lighting studies of interiors painted in low saturated colours was performed. 

Through this experiment with scale models, it was determined that even poorly 
saturated colours have a qualitative impact on the human perception of light levels in 
spaces. This impact can be strong, as with colour contrast (in striped rooms) when 
higher hue contrast can affect perception, or it can be weak, as with one-coloured 
models wherein the differences among the ratings on perceived light levels in the 
differently painted rooms were not statistically significant. Regardless, this impact 
should be taken into consideration when using the luminance-based method for lighting 
design analysis. 

According to the statistical analysis, the interiors of three striped models were perceived 
by the participants as rooms with different levels of illumination. The model painted in 
the blue/yellow striped pattern was evaluated as the brightest one, and the blue/grey 
model the darkest. Similar to subjective evaluation, significant differences were 
registered among the luminance maps of the striped models. Differences were noted 
through both visual examination of false-colour images of the interiors and numerical 
analysis of the luminance values within the selected regions at the HDR images. Results 
for the one-coloured models were not so straightforward, showing insignificant 
differences in subjective evaluations of the light levels among five one-coloured rooms, 
similar to the results of the examined luminance maps of those models. 

In general, the results have not contradicted the stated hypothesis and appear to prove 
the reliability of luminance maps in capturing luminance data of chromatic interiors 
painted in low saturated colours. 

6.2 Findings from Experiment 2 
‘Luminance-based metrics of contour, shape and detail 
distinctness of 3D objects as important predictors of light 
modelling: A full-scale study pairing proposed metrics with 
subjective responses’ 

The second experiment was performed in a mock-up room under real daylight 
conditions. It was possible to propose a set of several luminance-based metrics 
predicting a large gradation in the distinctness of contours, shapes and details of the 
observed 3D objects (Venetian masks). The hypothesis stated that certain numerical 
luminance values or luminance ratios obtained from HDR images might adequately 
describe the distinctness of contour, shape and details of day-lit 3D objects as being 
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observed by subjects, thus forming the metrics of contour, shape and detail visibility 
(light modelling). Results showed that all the tested metrics of contour distinctness 
(contrast, luminance ratio, percentage of the invisible part of the contour and mean point 
LR) were significant (p-values) and almost equally strong predictors (due to β values). 
For shape and detail distinctness, the analysis showed that some of the proposed 
metrics—such as the mean luminance of the masks, standard deviation of the 
luminances of the masks and luminance ratio between mean luminances of the object 
and its background—correlated very well with subjective assessments of the masks’ 
shape and detail distinctness. The luminance ratio between the highest luminance value 
of the masks and their mean luminances showed rather weak and limited results 
applicable only to matte objects on darker backgrounds. 

Based on the obtained numerical values of the proposed metrics, it was possible also to 
create tables showing the threshold values formed by an 80% probability for tested 
predictors (metrics) that are statistically significant (see Tables 1 and 2). These 
comprehensive tables clearly indicate certain values of the tested metrics that may also 
be applied as numeric reference points to ensure perfect visibility of contour, shape and 
details of 3D objects. These tables are very useful and easy to apply, especially taking 
into account the optical characteristic of the object’s surface (glossiness and 
chromaticity).  

TABLE 1. Threshold values for luminance ratio, contrast and mean point LR measures of contour 

visibility 

 

  

 
Perfectly distinguishable contour, 80% probability 

 
Matte/achromatic 
combination 

Matte/chromatic 
combination 

Glossy/achromati
c combination 

Glossy/chromatic 
combination 

Luminance Ratio ≤ 1 0.49 0.42 0.59 0.52 

Luminance Ratio ≥ 1 13 14 13 14 

Contrast ≤ 0 -0.5 -0.57 -0.4 -0.47 

Contrast ≥ 0 11.5 12.5 11.5 12.5 

Mean Point LR ≤ 1 0.46 0.44 0.6 0.59 

Mean Point LR ≥ 1 23 22.5 23 22.5 
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TABLE 2. Threshold values for masks’ mean luminance, luminance ratio between maximum luminance 
of the mask and mean luminance of the mask (excluding situations with the strong negative contrast, 
namely masks #5, 8, 12, 15) and standard deviation of the luminances of the mask metrics of shape and 
detail distinctness 

Despite the fact that the metrics for contour and metrics of shape and details were 
analysed separately, some similar tendencies were observed in both groups of metrics. 
First, due to the mathematical properties of the measures based on luminance contrast 
(luminance ratio, Weber contrast, mean point LR and ratio between the highest 
luminance of the mask and its mean luminance), the two basic types of the 
object/background combinations (light on darker background, conditionally positive 
contrast and dark on lighter background, conditionally negative contrast) should be 
studied separately, regardless of whether they are chromatic or achromatic, matte or 
glossy. Their values below and above a certain contrast point cannot be equally 
compared; whereas negative contrast can only vary between 0 and −1, positive contrast 
can vary between 0 and positive infinity. 

The next issue was that of factor glossiness. The appearance of objects is fundamentally 
affected by the bidirectional reflection distribution function, or the BRDF. One type of 
BRDF is known as Lambertian reflectance, when the incoming light is scattered in all 
directions to the same degree. The orientation of view is therefore irrelevant for 
luminance as long as the surface patch is not obstructed from sight. Such surfaces are 
usually called matte surfaces. By adding a specular lobe to the Lambertian reflectance 
the BRDF will be changed and the object will look glossy instead of matte. Specular 
highlights are found at those points on the surface where the illumination direction 
mirrors the viewing direction in the surface normal (Nefs et al. 2006). According to 
Nefs et al. (2006), 

The intensity of specular highlights is usually higher than the maximum intensity 
in Lambertian shading. This increases the luminance contrast, and possibly also 
the colour contrast in the image. Finally, specular highlights are not point-like 
but are of finite size and therefore have shape. Highlight shape might be useful 
for the perception of surface relief, although no one has yet investigated how the 
highlight shape is related to the object shape (Nefs et al. 2006). 

 Perfectly distinguishable shape and details, 80% probability 
Matte/ 

achromatic 
combination 

Matte/ 
chromatic 

combination 

Glossy/ 
achromatic 

combination 

Glossy/ 
chromatic 

combination 
Mean luminance of the mask, (cd/m2) 49 52 43 46 
Luminance ratio between maximum 
luminance of the mask and mean 
luminance of the mask (excl. masks # 
5, 8, 12, 15) 

3.55 3.65 - - 

Standard Deviation of the 
luminances of the mask 30 32.5 26 28.5 
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In terms of spatial appearance, two identical shapes of matte and glossy surfaces look 
slightly different. Qualitatively, the glossy object looks more convincingly three-
dimensional than the matte one. Some recent research findings (Norman et al. 2004; 
Nefs et al. 2006) indicate that highlights sometimes help and, in worst cases, do not 
counteract quantitative shape perception while observing fine (with defined borders) 3D 
shapes. 

Empirical research on the visual perception of 3D shape has generally adopted the same 
modular approach as in theoretical analyses, using stimuli that contain a single type of 
visual feature presented in isolation (Norman et al. 2004). In our study, the masks were 
observed in natural daylight conditions and the stimuli was relatively complex. 
However, the tendency described in previous studies of glossiness (or highlights existed 
on the observed surfaces) to improve shape perception was also registered in the current 
research. Thus, glossiness was added into the statistical analysis as an additional 
variable affecting shape and details distinctness; it was a statistically significant extra 
factor for mean luminance of the mask, luminance ratio and standard deviation metrics, 
and all types of the masks tested. Glossiness slightly enhanced the visibility of objects’ 
shape and details in comparison to matte objects, which corresponds to previous results 
described in the literature (Norman et al. 2004; Nefs et al. 2006). In terms of contour 
distinctness, glossiness was a significant factor only for the mean point LR metric and 
only for dark objects on lighter backgrounds. For the luminance ratio metric of contour 
distinctness, glossiness was barely significant p=0.049), though it still improved the 
contour visibility of the dark masks on light backgrounds. 

Chromaticness was significant for all metrics except luminance ratio as a metric of 
shape and detail distinctness. As in the previous experiment with scale models, this one 
showed that low saturated colours in a room interior influence light level perception; 
here, similar chromatic colours had a significant effect on the discrimination of contour, 
shape and detail of the Venetian masks. 
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It is known through several neurophysiological experiments that colour and shape 
information interacts in object recognition, and colour facilitates object recognition 
(Wurm et al. 1993). At small spatial frequencies, human chrominance contrast 
sensitivity is higher than luminance contrast sensitivity (see Figure 6-1) (Valberg 2005). 
Thus, colour improves object recognition more when spatial resolution is low (blurred) 
or when shape information is less specific (fruits and vegetables vs man-made objects) 
(Wurm et al. 1993). If to express the size of the mask used in the experiments in terms 
of spatial frequency, it would be equal to about 0.42 cycles per degree (Figure 6-1). 
From first sight, the fact that colour makes the object recognition better seems 
contradictory to the results obtained from our experiment. The ordinal regression 
analysis results showing that ratings of contour, shape and detail distinctness of the 
masks with chromatic combinations (either object or background was chromatic, or 
both of them were chromatic) had lower rates. Simply put, it was more difficult for 
participants to distinguish contour, shape and detail when the objects were of chromatic 
combinations. However, the measurement of respondent reaction time in naming a type 
of object as seen in psychophysical experiments, which produces a contrast sensitivity 
function (see Figure 6-1), is different from the evaluation of the visibility of contour, 
clarity of shape and object detail conducted in the present experiment; the two different 

Figure 6-1. Spatial contrast sensitivity for luminance and isoluminant chrominance ratings 
Adapted from Valberg A. Light, vision, colour. 2005. 
Adapted with permission. 
The approximate spatial frequency of the mask is represented by the violet colour. 
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assignments and procedures seek distinct results. This allows us to conclude that in 
terms of evaluating the shape and detail visibility of 3D objects under real daylight 
conditions, chromaticness slightly complicated the process of shape and detail 
distinctness assessment. 

There is a theory speculating that contours defined by colour differences may provide 
more reliable information about object shape in the natural world than luminance 
contours because shadows and occlusion boundaries also produce luminance contours 
(De Valois & Switkes 1983). However, such a tendency has not been observed here due 
to the low saturation of the used colours. 

An interesting inference could be done through observation of the probability plots of 
tested metrics of shape and detail distinctness. Here, glossy/chromatic and 
glossy/achromatic objects required slightly lower values of the proposed luminance-
based metrics (for all categories, from not distinguishable to perfectly distinguishable) 
than did the matte/chromatic and matte/achromatic objects. It may be concluded that for 
shape and detail distinctness, glossiness has a higher effect than chromaticity. However, 
for contour distinctness, this tendency is not that straightforward, as it is similar to the 
above noted tendency among dark objects on lighter backgrounds and almost 
diminished by chromaticity for light objects on darker backgrounds.  

Another significant observation that should be described here concerns the distinctness 
of the shapes and details of the Venetian masks in terms of histogram analysis. While a 
detailed explanation of the processing of HDR image luminance data can be found in 
Paper IV, the important conclusions are presented here. The histogram shows at one 
graph the two regions of interest selected at the HDR image (foreground and 
background), specifying the distribution and frequency of luminance values of the 
selected mask and its background. This may be a useful tool for predicting objects’ 
shape and detail distinctness. Excluding overlapping areas or areas with equal 
luminance values (based on certain threshold values that can be determined by the 
researcher in each particular case), it is practicable to interconnect the remaining areas 
with a subjective evaluation of shape and detail visibility. In other words, certain 
remaining areas of the luminance values on the histogram may indicate the determined 
degree of shape and detail distinctness of the observed object. Through application of 
more advanced tools (e.g. MATLAB software), these histograms may become a new 
tool for predicting a real 3D object’s visibility. 

The proposed luminance-based metrics showed high consistency with subjective visual 
perception of the contour, shape and detail distinctness of the observed 3D objects and 
were expressed numerically to reflect several levels of visibility. Although the obtained 
results were restricted by experimental conditions such as illumination, type of object 
and coloration, further development might result in a simple and useful tool for light 
modelling prediction. These metrics are basic and simple to obtain; they complement 
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each other and are good instruments for analysing and predicting 3D objects’ visibility. 
In addition, their threshold values might be useful and promising for further research 
and practical use. 

6.3 Findings from Experiment 3 
‘Verification of the accuracy of luminance-based light modelling 
metrics by numerical comparison of photographed and 
simulated HDR images’ 

In the third experiment, the previously proposed luminance-based metrics of contour, 
shape and detail distinctness of day-lit 3D objects were examined with the help of 
photographed and simulated HDR images. This experiment was set up in a real room 
where a scene with the Venetian masks (previously used and placed one by one) was 
photographed with different exposures. To verify the reliability of the proposed 
luminance-based metrics obtained through simulated HDR images, an identical scene 
was simulated using a 3D-modelling programme (Rhinoceros). The lighting renderings 
were performed using the Radiance-based software, DIVA. In addition, semi-cylindrical 
illuminance (in two opposite directions) and horizontal illuminance measurements were 
taken in the real room for further calculation of cylindrical illuminance values and 
modelling indices of the masks. Variations in the numerical values of luminance-based 
metrics obtained from the simulated and photographed HDR images occurred because 
of contrast between objects and their backgrounds were compared to the variations 
observed in the illuminance-based modelling index. 

The results revealed a mean relative error between all the metrics obtained from the 
photographed and simulated luminance maps at 14.78%. Of these errors, 71.4% were 
below the 20% border, and 42.9% were below 10%. The minimum and maximum mean 
error values varied from 7.91% (ratio between mean luminance of the mask and mean 
luminance of the background) to 27.75% (percentage of the invisible part of the 
contour). The high relative error of this metric could be explained by the method of its 
calculation. The metric is based on 12 paired point luminance measurements taken with 
equal steps around the contour of the mask, close to its border. This means that each 
point and area between the measured points is equal to 8.33% of the whole contour 
length. The estimation of possible belonging of the points to invisible or visible parts of 
the contour was performed by the author according to the data from Experiment 2 
(namely, based on the maximum, minimum and standard deviation of luminance values 
that were specified and registered in the invisible part of the contour of the masks). 
However, even a single point difference between the invisible contours of the simulated 
and photographed masks will produce a significant error. Also, due to the mathematical 
properties of the relative error formula, it is clear that the fewer points an invisible part 
of the contour has, the higher the error level will be, even if the actual difference is only 
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one point of 12. A possible solution in this case could be to increase of the number of 
measured points around the contour of the object.  

It is important to note that the numerical parametres for outside illuminance values were 
set in the DIVA programme accordingly to the instrumented readings measured during 
the experiment. The photographing session took approximately two minutes and, with 
additional instrumented measurements and mask changes, the time period between each 
photographing session totalled five to six minutes. The illumination may have changed 
a bit within this short time span, even though the weather status was an overcast sky, the 
registered maximum light change (between maximum and minimum registered values) 
was 17.3% and the coefficient of variation (relative standard deviation) was only 6.33 
%. This indicates that any difference in illumination that could have occurred during the 
five to six minute period was very low, but still might have introduced minor error to 
the final simulation results.  

Glossy masks showed slightly higher error rates in comparison to matte masks. The 
difference in errors of metrics between achromatic and chromatic masks was not 

Figure 6-2. Probability plot with curves for ‘perfectly distinguishable’ shape and details category, standard 
deviation metric and four types of the 3D objects (specified in the legend). At the enlarged area of the plot, three 
pairs of points are indicated:  

1p - value of the standard deviation metric (SD=4,79) obtained from photographed HDR image of white 
glossy mask; 

1s - value of the standard deviation metric (SD=4,02) obtained from simulated HDR image of white glossy 
mask; 

2p - value of the standard deviation metric (SD=3,31) obtained from photographed HDR image of pink matte 
mask;  

2s - value of the standard deviation metric (SD=3,08) obtained from simulated HDR image of pink matte 
mask;  

3p - value of the standard deviation metric (SD=4,39) obtained from photographed HDR image of pink glossy 
mask;  

3s - value of the standard deviation metric (SD=3,38) obtained from simulated HDR image of pink glossy 
mask.  
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examined, as only two of the eight masks were chromatic (pink glossy and pink matte). 

The higher errors in luminance-based metrics between the photographed glossy and 
simulated glossy masks may be explained by the numerical characteristics describing 
the materials used for the simulation. In the Radiance programme, the necessary 
variables describing opaque material properties are reflectivity (defined through the 
amount of red, green and blue), specularity and roughness (Larson & Shakespeare 
1998). For glossy masks, the specularity and roughness parametres were found by trial 
and error simulations of one glossy mask placed in a black box, and by visual 
comparison of the simulated and photographed HDR image of this scene (see Paper V). 
Through multiple repetitions of the visualizations and adjustments of the specularity and 
roughness parametres, the most reliable parametres were found (e.g. when the simulated 
mask closely resembled the real one) (see Figure 3). These parametres were then 
applied to the main simulations of the glossy masks. This method facilitated the 
identification of important parameters needed for further simulations of glossy masks in 
the experimental model of the room when more reliable methods of instrumented 
measurements were unavailable. Although these numbers were obtained through 
repeated simulations, they are not as precise as advanced instrumented measurements 
could be; this can explain the higher error rates observed among the glossy masks. If all 

Figure 6-3. Probability plot with curves for ‘perfectly distinguishable’ contour category, contrast 
(Weber ratio) metric and four types of 3D objects (specified in the legend). 
At the left part of the graph, a pair of points is indicated where: 
3p - value of the contrast metric (-0,616) obtained from photographed HDR image of dark grey 
glossy mask 
3s - value of the contrast metric (-0,5688) obtained from simulated HDR image of dark grey glossy 
mask   
At the enlarged area of the plot, another pair of the points is shown, where:  
2p - value of the contrast metric (0,606) obtained from photographed HDR image of pink glossy 
mask  
2s - value of the contrast metric (0,462) obtained from simulated HDR image of pink glossy mask. 
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the characteristics of the surfaces of the real scene could be measured instrumentally 
with the highest possible precision (i.e. RGB colour coordinates, reflectance and 
specularity), the error level would be lower. As this was not possible in our case and 
only the Natural Colour System (NCS) colour coordinates and reflection factors were 
measured, certain errors related to specularity and roughness values in the simulation 
occurred. 

Other factors resulting in higher error values among glossy masks could be: i) 
inaccurate matching of shapes between the simulated and real masks (even if the 
simulated mask looked very similar to original one, small differences may exist); and ii) 
small deviations in the masks’ positioning, as each of the eight masks were manually 
changed with every photographing session while the simulated masks remained as 
modelled. The presence of one person performing the measuring and photographing 
operations, the laptop and some other instruments in the room during the real time 
experiment may have affected the final readings as well. 

By transferring the results of the luminance-based metrics obtained from photographed 
and simulated images to probability plots generated in Experiment 2 in similar daylight 
conditions, even errors within a 20% span were relatively small (see Figures 6-2 and 6-
3). 

It is also interesting to examine the modelling index values in comparison to the 
proposed luminance-based metrics. The results of the analysis of all the metrics are 
presented in Table 1. It is easily noticeable that the numerical values of cylindrical 
illuminance and modelling index had little variance among the different masks, and the 
modelling index stayed within the range recommended by CEN (CEN 2011). According 
to these recommendations, values higher than 0.3 provide adequate modelling of an 
observed object. The masks examined in Experiment 3 had values from 0.482 to 0.552, 
demonstrating that they all had good modelling. 

However, luminance-based metrics provide much higher variability and precision. For 
instance, both mean luminance of the mask metrics and standard deviation metrics 
reflected low values for the dark grey masks (glossy and matte) and significantly higher 
levels for the light masks. Values of the glossy masks were slightly larger than the 
corresponding values of matte masks, proving again the previous finding that glossiness  

 as a factor enhances the shape and detail distinctness of 3D objects. Through estimating 
Lmean (mask) and SD values of the eight masks, it became clear that their shapes and 
details will likely be only just distinguishable (poor light modelling due to the low 
numerical values of the metrics) compared to conclusions based on modelling index 
results. 
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Notably, contrast (Weber ratio) and mean point LR as metrics of contour distinctness 
also demonstrated compelling output. The contrast and mean point LR values of the 
dark grey masks equalled -0.616 (glossy)/-0.615 (matte) and 0.475 (glossy)/0.35 
(matte), respectively, indicating very good contour distinctness in these masks. This 
would be impossible to evaluate using the standard modelling index. 

The response of the visual system in terms of perception is related to the stimulus 
received, but not the stimulus alone. Perception also depends on the state of adaptation 
of the visual system, and it is influenced by the way the luminous environment is 
organised into patterns (types of foreground and background). Finally, perception is 
guided by our present knowledge and past experience of the luminous environment, 
which determines the assumptions we make about objects and the ways they are usually 
lit (Boyce 2003). Thus, it is possible to conclude that the proposed luminance-based 
metrics of contour, shape and detail distinctness have significant advantages over the 
existing illuminance-based measures. These metrics take into account essential 
characteristics of the observed object: its background, coloration and surface/coating. 
However, it must be noted that the proposed metrics were only studied in certain 
lighting conditions with particular types of object and backgrounds, even if these 
combinations were the most typical in real life conditions. This represents a respectively 
restricted stimulus, thus limiting possible conclusions regarding the proposed metrics. 
For these reasons, further studies should be conducted. 
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GLOSSY MASKS MATTE MASKS 
Avr. 
relative 
error, 
% 

Dark 
grey 

White  Pink  Light 
grey 

Dark 
grey  

White  Pink Light 
grey  

 

Lmean(mask), cd/m2 
photographed 1.32 7.1 6.36 5.54 1.35 6.16 5.16 4.96 

14.25 Lmean(mask), cd/m2 

simulated 
1.41 5.81 4.9 4.75 1.25 4.96 4.54 4.32 

Relative error, % 6.818 18.169 22.956 14.26 7.407 19.48 12.016 12.903 

SD (mask), photographed 1.14 4.79 4.39 3.74 0.97 3.96 3.31 3.21 

11.62 SD (mask), simulated 1.11 4.02 3.38 3.28 0.89 3.39 3.08 2.91 

Relative error, % 2.632 16.075 23.006 12.299 8.247 14.39 6.95 9.346 

Lmean(mask)/Lmean(bkgr), 
photographed 

0.384 1.797 1.606 1.505 0.385 1.755 1.564 1.585 

7.91 Lmean(mask)/Lmean(bkgr), 
simulated 0.431 1.609 1.463 1.471 0.394 1.595 1.450 1.421 

Relative error, % 12.37 10.462 8.927 2.315 2.524 9.124 7.237 10,325 

Contrast (Weber), 
photographed -0.616 0.798 0.606 0.505 -0.615 0.755 0.564 0.585 

16.59 Contrast (Weber), 
simulated 

-0.569 0.609 0.463 0.471 -0.606 0.595 0.450 0.421 

Relative error, % 7.703 23.58 23.657 6.894 1.577 21.21 20.076 27.984 
Mean point LR, 
photographed 0.475 1.479 1.761 1.621 0.35 1.756 1.415 1.570 

11.89 Mean point LR, 
simulated 

0.416 1.571 1.342 1.382 0.379 1.531 1.372 1.354 

Relative error, % 12.303 6.22 23.816 14.731 8.454 12.823 3.054 13.75 

Lmax/ Lmean(mask),  
photographed 

6.545 3.597 4.383 4.598 3.659 2.32 2.376 2.476 

13.45 Lmax/ Lmean(mask),  
simulated 7.972 3.411 3.651 3.577 2.84 2.256 2.216 2.231 

Relative error, % 21.789 5.166 16.713 22.2 22.39 2.748 6.739 9.869 

Percentage of the inv. 
part of the contour, phot. 50.0 16.67 33.33 33.33 75 33.33 33.33 33.33 

27.75 Percentage of the inv. 
part of the contour, sim. 50.0 25.0 16.67 8.33 91.67 41.61 33.33 33.33 

Relative error, % 0 49.97 49.985 75.008 22.23 24.84 0 0 

TABLE 3. Numerical values of the metrics obtained from photographed and simulated luminance 
maps and their relative errors. 
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7. Conclusions and ideas 
for future research 

 
From a design perspective, architectural lighting is a decision-making process that 
affects lighting quality and, consequently, occupants’ visual comfort and performance. 
Various lighting design options cannot be evaluated or compared through a single 
quantity or performance indicator. Lighting design is a ‘multitasking’ process, and it is 
impossible to have a universal recipe for choosing the best solution to fulfil different 
criteria and goals. Satisfying set codes, recommendations and legislations are but a few 
of many requirements (M. Inanici 2004). Eventually, it could be possible for many 
inputs to be set together to form one composite performance metric, but at present, 
studying the separate dimensions of day-lit environments independently is likely to be 
more informative (Mardaljevic et al. 2009). Thus, lighting quality may be described by 
different criteria, of which light modelling is one. Light modelling can be also measured 
using diverse metrics; illuminance- or luminance-based, quantitative or qualitative, 
research grade (advanced) or professional grade (officially accepted and used by 
practitioners). Yet, the most useful metrics have an intuitive meaning so they can be 
easily understood or interpreted, and should also be measured directly for validation. 
Previously known measures for light modelling in general have been based on 
illuminance. The present research project, however, used a method based on luminance 
and HDR imaging because luminance, in forming what our eyes see, correlates better 
than illuminance with the subjective perception of a visual environment. 

From the information presented above, it can be concluded that the luminance-based 
metrics of contour, shape and detail distinctness of 3D objects are important predictors 
of the light modelling concept, and thus are good instruments for analysing and 
predicting a 3D object`s visibility. They demonstrate higher precision, variability and 
consistency than the currently used illuminance-based metrics. Luminance-based 
metrics can be used to predict the distinctness of various 3D objects and their attributes 
(details) object and background colours and types of surfaces. These measures are 
simple to obtain from photographed or simulated images, and HDR images offer huge 
amounts of information that can be processed in a variety of ways. The existing 
limitations of the available tools of the programmes dedicated to luminance maps’ 
analysis could be overcome through the creation and integration of comprehensive 
algorithms into existing computer programmes, which would allow the automatic 



7. Conclusions and ideas for future research 

76 
 

performance of simple calculations, similar to how hdrscope programme easily acquire 
the contrast value of selected regions of an image. Another possibility is to use more 
advanced software—such as Matlab—for luminance maps analysis (M. Inanici 2004; 
Inanici 2006; Lu et al. 2014; Araji & Boubekri 2011). 

Luminance imaging (and therefore the use of luminance-based metrics) is also 
beneficial in terms of economic cost, as consumer-grade digital cameras and free 
software can be used instead of the expensive professional equipment needed for 
advanced illuminance-based measurements. Moreover, simulated luminance maps can 
be used for image analysis and to obtain the numerical values of luminance-based 
metrics, as demonstrated in the previous chapter of the current dissertation. Simulations 
may help because architectural spaces often need to be examined at different periods 
throughout the year, when different sky conditions and different times of the day/year 
have to be considered. The temporal dynamics of daylight also influence daylight 
design, while the usual approach is to select critical situations, prioritise and/or optimise 
objectives and assess performance accordingly (M. Inanici 2004). Simulations using 
modern software may be extremely helpful, save time and allow the testing of numerous 
alternatives in terms of temporal light variation. 

Complementing each other and other existing useful metrics, the proposed luminance-
based metrics are a promising and useful tool for analysing and predicting 3D objects’ 
contour, shape and detail distinctness, and their threshold values may be utilised for 
further development and practical use. These metrics have greater predictive ability than 
the cylindrical illuminance and modelling index. As this is a new approach, the present 
study represents the first step towards finding reliable luminance-based measures for 
light modelling. It is thus too early to claim that the suggested tested metrics are all-
sufficient and ready for practical use.  

A suggestion for future research would be not to change the methodology, but to test the 
metrics under other experimental conditions and with different objects’ qualities. 
Certainly, objects with other chromaticity types could be studied (e.g. hue and 
saturation), as the current experiments tested only those with low saturation. Colour can 
be an important factor for enhancing visual search. Lighting can alter the colour 
difference between an object and its background when light sources with different 
spectral contents are used (Boyce 2003). Even though previous studies showed higher 
error among saturated colour chips (Anaokar & Moeck 2005), it would be interesting to 
examine how distinctive the contours, shapes and details of these objects will be, what 
values the luminance-based metrics will have, how different will they be in comparison 
to previously found numbers related to low saturated masks’ colours and how 
substantial the errors will be. This will supplement previous findings and, hopefully, 
increase the reliability of the suggested metrics. 
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Another possibility is to test the proposed metrics under different lighting conditions 
(e.g. light level variation or directivity). In the second experiment of the present study, 
two kinds of light directions were mixed with the surface type factor; in the future, these 
variables could be divided to form several separate groups: light directivity, light level 
in the room and type of surfaces of the observed object. Overall, the addition of light 
directionality as a separate complementing factor by which to analyse the suggested 
metrics could be exceptionally beneficial. Adequate directionality might distinguish the 
details of an observed object, reveal surface textures and model the 3D surfaces (Inanici 
& Navvab 2006). Directionality might also be solely evaluated, such as using the 
directional-to-diffuse luminance ratio proposed earlier by Inanici and Navvab (Inanici & 
Navvab 2006; M. Inanici 2004). They suggested that the diffuse and directional 
components of light be separated via the image subtraction method, and the ratio 
between directional and diffuse components be calculated using average luminance 
values. 

Even more beneficial may be to study elderly observers or people with poor vision. 
Older people tend to show reduced visual field size, increased absolute threshold 
luminance, reduced visual acuity, reduced contrast sensitivity, increased sensitivity to 
glare and poorer colour discrimination (Boyce 2003). In certain settings, such as in 
hospitals, the number of people with reduced vision is likely to be higher. In such 
conditions, the modelling of faces is important, and the numerical values of the 
suggested luminance-based metrics will probably be much higher. 

Finally, the histogram analysis technique might be developed further. Pairing histogram 
analysis results with subjective assessments of a masks’ shape and detail visibility could 
lead to useful results, enabling the thorough utilisation of this vast luminance 
information and possibly leading to the development of new metrics for 3D objects’ 
shape and detail distinctness. 

In the future, when luminance-based metrics are thoroughly studied and correct 
numerical values applicable to various situations are prescribed, their integration into 
computer programmes that perform advanced lighting design analysis will open up new 
opportunities for the researchers and professionals to understand, predict and design 
object light modelling. 
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ABSTRACT 

The visual experience of indoor environment depends on both colour and light. Usually 
these two concepts are studied separately although they are tightly intertwined. 
Luminance distribution in visual field is assumed to be crucial for perception of light 
level in space. Taking into consideration the fact that colours of surfaces may also affect 
light level perception, an impact of low saturated interior colors on light level 
perception was examined. The luminance-based approach as a perception-oriented 
method for lighting design was a complementary part of the study. 

Findings showed that even low saturated colours influence light level perception 
although magnitude can vary. From an architectural perspective it is important to note 
that the brightness of the visual environment is a perceptual phenomenon and not just a 
direct mapping of a light stimuli or linear function of the luminance. Nevertheless, 
luminance, as a basis for vision, can greatly develop lighting design methods as an 
applicable and effective tool. 
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BACKGROUND 

Humans get the major part of information about the world through vision. Our visual 
perception is based on a continuous stream of changing pictures created by light at the 
retina. We can see objects and colours because of light. Colour and light are 
inseparable. However, the established classical scientific tradition prevailing to date 
separates these concepts. In this essay we will show how strongly interdependent they 
are. 

It is important to specify particular definitions of concepts used in this paper. Thus, 
equiluminant (or isoluminant) colours are the colours equal in luminance (Valberg 
2005), which implies they may be chromatically different. Brightness is the perceptual 
dimension that runs from dim to bright. The physical counterpart of brightness is 
luminance, or put simply, brightness is perceived luminance (Gilchrist 2007). 
Perceptual attribute light level represents the appearance of the room as a whole as 
bright or dark. At the same time light level does not refer to how well or bad a person 
can see in the room or in a special place of the room (Liljefors 2003:13; 32-33). The 
appearance of the observed room (or its light level) was registered with the help of the 
PERCIFAL questionnaire (Matusiak et al. 2011), (Arnkil et al. 2011), (Fridell Anter, 
Haggstrom et al. 2012). Answers are marked on a scale ranging from very dark to very 
bright. The PERCIFAL method was developed by scientists from the SYN-TES group 
and is now recommended as a good analytical tool for professional application (Fridell 
Anter, Arnkil et al. 2012). This method is based on direct observations of the space and 
recording of these observations by verbal-semantic descriptions. 

Our visual apparatus is an intricate and complex system with amazing abilities such as 
luminance and colour adaptation and colour constancy. Furthermore, the Helmholtz-
Kohlrausch phenomenon is a visual effect, showing that more saturated colours appear 
brighter than less saturated colours at equiluminance. This may be explained by the fact 
that the human brain adds the information from the chromatic channel to the brightness 
channel. The Helmholtz-Kohlrausch phenomenon appears both in selfluminous and 
surface colours (Valberg 2005: 178-178), (DeCusatis et al. 1997: 338). 

Chromatic contrast is another strong effect that may influence brightness of surfaces, 
e.g. in interiors. At low spatial frequencies our sensitivity to chromatic contrasts is 
significantly higher than for achromatic contrasts (see Figure 1). In this context it is 
necessary to define the term spatial frequency. It represents a measure of numbers of 
periods per degree of a repetitive pattern (Valberg 2005: 432). Following the above, we 
can say that equiluminant chromatic pattern of colours with distinctly contrasting hues 
is the best representation of chromatic contrast effects. The perception of the contrast 
depends on the size and form of the observed objects, its temporal variation. The visual 
system deals with chromatic contrast in distinctly different ways than with luminance 
contrast (Valberg 2005: 182). 
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Figure 1. Spatial contrast sensitivity for 
luminance and isoluminant chrominance 
gratings. The sensitivity curves for pure color 
differences resemble low-pass filters, while the 
curve for luminance contrast sensitivity 
corresponds to a band-pass filter. When using a 
common cone contrast measure for luminance 
and chrominance, the results can be compared, 
and we see that contrast sensitivity is best for a 
red-green sinusoidal grating of low spatial 
frequency. Resolution is best for luminance 
contrast. The data are averages of 10 subjects 
(Valberg, 2005): 260). 

Figure 2. Correlated colour temperature of the 
Artificial Sky. 

Aims and hypothesis 

In this study we pursued two main objectives. The first question deals with the 
perception of the interior light level in relation to the colours of the room surfaces. We 
have formulated the hypothesis that the perceived light level is affected by not only the 
luminance but also the chromatic properties and chromatic contrasts of wall colours. 
This was tested in model studies using low saturated equiluminant colours that are 
normally used in interiors, and combinations of equiluminant colours of contrasting 
hues. The way that subjects responded to these stimuli is discussed in relationship to 
other scientists` previously published psychophysical experiments dealing with human 
response to chromatic contrast stimuli (Valberg 2005). 

The second objective was to examine the capabilities of high dynamic range (HDR) 
images as a method for lighting studies of interiors painted in low saturated colours. The 
High dynamic range image is a merged image of several conventional low range images 
taken with different exposures. In photography, the term dynamic range is a 
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Figure 3. To the left: arrangement of the models in the laboratory under Artificial Sky during 
experiment, photographing and measuring illuminance. To the right: form and sizes of scale models 

dimensionless quantity. It is a ratio of the lightest and darkest pixel (Reinhard et al. 
2010: 4). We can also use the term “luminance map” instead of HDR images, to 
accentuate that the picture has been used generally for the luminance values 
measurements. Luminance-based design is a new approach to lighting design using such 
pictures. It is currently being promoted by a number of scientists (Y. Nakamura, J. P. 
Skar, M. Fontoynont, and others – CIE TC 3-45) as a perception-oriented method for 
lighting design (Nakamura et al. 2011). The prime advantage of this method is that 
luminance is a basis that forms perception of the visual environment and its brightness. 

It is known from previous studies (Anaokar & Moeck 2005) that warm and low 
saturated colours has the highest accuracy in luminance representation at HDR images 
while cool and saturated colours have a higher level of errors. Therefore it is supposed 
that in the current experiment, the luminance of the surfaces painted in chosen low 
saturated colours will be represented with high precision. 

METHOD 

Experiment design 

The experiment was conducted in the Daylight Laboratory, under Artificial Sky, at the 
Department of Architectural Design, Form and Colour Studies, NTNU. It enabled us to 
get stable lighting conditions and equal illumination for all scale models (Matusiak & 
Arnesen 2005). The experiments could be carried out independent of weather conditions 
and time of the day. The Artificial Sky installation simulates a standard model of a 
perfectly cloudy sky, the CIE Overcast Sky in which the horizon luminance is equal to 
1/3 of the zenith luminance. The light is produced by fluorescent light tubes of the Cool 
Daylight type (PHILIPS MASTER TL5 HE 28W) (Matusiak & Arnesen 2005). 
According to measurements conducted by architect Julie Guichard in 2010 using 
“Spectra Scan 650”, the Correlated Colour Temperature inside the Artificial Sky is 5500 
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(Salvesen et al. 2012) (see Figure 2). 

Eight scale models of the rooms were prepared. The 1:20 scale model 25cm × 35cm × 
20cm represented a room 5m × 7m × 4m, see Figure 3. The size was chosen to be large 
enough for a comfortable observation as well as enable good conditions for taking 
photos of the interior. The walls, ceiling and floor were constructed using 1cm MDF 
boards. From the outside, the models were painted in black colour which helps to avoid 
light penetration from the Artificial Sky through splices of the boards. The window 
frame was made of opaque white cardboard. The models were also covered externally 
by black textiles to eliminate light penetration from the outside during the observation. 

The colouration of the walls in models was of two types, while colours of the ceiling 
and floor were identical for each model (see Figure 4, 5 and Table 1). The first type was 
striped pattern, i.e. a combination of low saturated equiluminant colours representing 
the chromatic contrast: red and green, yellow and blue, blue and grey (see Figure 4). 
The width of the stripes was 19 mm and according to the distance from the walls to the 
observers` eyes (35 cm), this pattern has a spatial frequency 0.161 c/deg. 

The second type of wall colouration was uniform, one-coloured, with the use of the 
same colours as in striped patterns, i.e. red, green, grey, yellow, and blue (see Figure 5). 
All the paints were matte. It was decided to paint the ceiling of the models in white 
colour and the floor in dark grey colour (see Table 1), similarly to many real rooms. 
Moreover, these colours are achromatic, which is an advantage in terms of studying the 
effects of chromatic colours of the walls. First, orientation colours with similar 
luminous reflectance factor (Y1) were chosen from the samples of the NCS Colour 
Atlas. Then paints were mixed manually and wooden pieces were painted. After drying, 
the luminance of each of them was measured using the MINOLTA Luminance meter. 
The process was repeated until equiluminance of the paints was reached, see Figure 6. 

Figure 4. The first type of the scale 
models` colouration – striped 
patterns:1-Yellow/blue; 2-Red/green;  
3-Blue/grey.  
The width of the bars is 19mm. 

Figure 5. Second type of the scale models` colouration – 
one-coloured:1-Blue; 2-Grey; 3-Yellow; 4-Red; 5-Green 
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The final colours were matched with the NCS colour samples again by two persons 
independently. In Table 1 you can find all the colour notations according to the NCS 
system (NCS samples that were the most approximate to used paints). Finally, all the 
models were properly painted and prepared for the experiment.  

Name of the 
colour will be 
used in the 
paper 

Linguistic 
description of 
the colour 

Nominal colour 
nearest NCS 
sample 

Approx. luminous 
reflectance factor 
according to NCS 
atlas (Y1) (nearest 5) 

NCS 
chromaticness as 
derived directly 
from NCS code 

Red Pink S 0515-R20B 75 15 
Green Yellowish green S 0520-G40Y 80 20 
Blue Greenish blue S 0510-B10G 80 10 
Yellow Greenish yellow S 0520-G90Y 85 20 
Grey Grey S 1000-N 75 0 
White White S 0300-N 90 0 
Black Black S 9000-N 5 0 
Dark grey Bluish grey S 5005-R80B 25 5 
Table 1.  Information about NCS colour samples consistent to coloures used in scale models. 

Lighting measurements and reflectance calculations 

Painted wooden samples were placed one by one in the center of the Artificial Sky 
together with grey and white reference cards for luminance measurements. Luminance, 
at the central point of each sample and grey and white cards were measured (see Figure 
6). Afterwards the reflectance of each sample was calculated according to the luminance 
readings of the reference cards. The illuminance was measured at the central point on 
the floor inside each scale model when it was arranged under the Artificial Sky (see 
Figure 3; 7; 12 and 13). It enabled us to not only to get illuminance values in models, 
but also to check and analyze differences of the lighting in terms of the models` 
arrangement. 

Figure 7. Measuring illuminance in a central 
point of scale model. During measuring 
process the scale model was covered with 
black fabric to stop light penetration from the 
outside. 

Figure 8. The view of the scale model; the 
photo was taken through the opening for the 
observation. 
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Survey and questionnaires 

The experiment was conducted in September 2012 in the Daylight Lab at the 
Gløshaugen campus of the Norwegian University of Science and Technology. All the 
scale models were placed in the laboratory under the Artificial Sky, see Figure 3. In 
total 32 observers were involved in the experiment. The subjects were mostly master 
students of architecture (14), a group of physicists (5), PhD Candidates in architecture 
(5), a group of engineers in computer science (3) and few people from other academic 
fields (5). The age of participants varied from 21 to 42 years, all of whom have normal 
colour vision. The models were lit through a window facing the Artificial Sky. The 
interiors of the models were observed through an opening made in the wall opposite the 
window; see Figures 2, 9 and 10. Each subject observed both groups of scale models 
(striped and one-coloured models) and answered the questionnaires. The order of the 
observation of one-coloured and striped models were random. Therefore one group of 
subjects started with striped models, while another part observed one-coloured models. 
This provided the necessary conditions for randomization. Randomized design allows 
the experimenter to avoid statistical errors and increase the chances of detecting 
differences among reactions (Stamatis 2012: 114-115). 

There were similar but separate questionnaires for each group of models. Each form 
consisted of two parts. 

Figure 6. Measuring the luminance of blue and dark grey samples (painted wooden pieces) according 
to white and grey reference cards. 

Figure 9. The observation of the scale models 
placed in the laboratory under the Artificial Sky 
by one of the participants. 

Figure 10. Scale models lit through the 
windows faced Artificial Sky. 
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Figure 12. Luminance values of the painted 
wooden samples, measured at the middle point 
of each sample in the center of Artificial Sky. 

Figure 13. Reflectance of the painted wooden 
samples calculated according to measured 
luminances. 

The first part contained one question from the PERCIFAL (Perceptive Spatial Analysis 
of Colour and Light) questionnaire (Arnkil et al. 2011), (Matusiak et al. 2011), (Fridell 
Anter, Haggstrom et al. 2012). The intention was to get spontaneous answers to the 
question: Do you experience the room to be dark or bright? The participant made a 
mark on a 7-step scale from very dark to very bright. The number of marks for each step 
and for each room was calculated, see Figure 15 and 19. 

The second part included four more questions about lighting in the scale models and 
needed more conscientious answers. In answering the questions from this part of the 
questionnaire, observers had to arrange rooms into descending order. The first question 
from this part was: Which room has the highest light level (the brightest room)? 
Arrangement had to be from the brightest to the darkest. All the answers (for each 
particular group of scale models) were calculated as a percentage of the total number of 
participants. Results are represented in Figures 16 and 20. 

The second question of the second part was: Which room has the more comfortable 
lighting? Answers were arranged from the most comfortable to the least comfortable. 
Results are presented in Figure17 and 21. 

The third question: Your personal preferences among these rooms (in lighting).Why? 
Results represented in Figure 18 and 22. 

These two questions (about comfortable lighting and personal preferences in lighting 
among the rooms) were needed to verify reliability of the results by help of comparison 
of the answers. 

Figure 11. The set of 13 low dynamic (LD) images of the Blue room, taken with different exposures, 
the step is 1 EV. 



8. Appended papers. Paper I 

99 
 

The last question in the questionnaire was: How much do you think colour affects your 
perception of light level? The subject had to mark the level of the influence of 
colour/colour compositions on the light level perception on the proposed scale. 

High dynamic range imaging (luminance maps) 

HDR images of all the interiors of the models were created. Afterward, 13 sets of low-
dynamic images for each room were made with a Canon EOS300D digital camera (see 
Figure 11). The camera was mounted on a tripod and situated in the plane of subject`s 
eyes to simulate the viewing position of the observers. The following camera settings 
were used: White balance – Daylight, Auto-Bracketing – off, Sensitivity – 100 ISO, 
Auto Focus – off, Aperture – fixed, f/4. Exposure variations mode with step 1 EV. 

In addition to the photos, references to physical measurements have been made with a 
calibrated hand held Luminance meter. The readings were used for further calibration of 
the HDR images. All the low dynamic range images were processed and combined into 
HDR images with the help of Photosphere software and were calibrated according to the 
measured luminance readings. 

Statistical analysis 

For the statistical analysis of the survey results, mode values were calculated as most 
representative in the experiment with ordinal data. Percentages represented on the 
graphs were calculated relative to the total number of participants. As a main tool for 
the statistical analysis the Friedman test was used. This is a nonparametric statistical 
procedure for comparing more than two samples that are related. The parametric 
equivalent to the Friedman test is the repeated measures analysis of variance (ANOVA) 
(Corder & Foreman 2011). 

RESULTS 

Measurements 

According to the manual measurements and further calculations, the difference in 
luminance values, measured in a central point of the painted wooden pieces under the 
Artificial Sky, is 3% (see Figure 12). Therefore, the difference in the reflectance of 
these samples is also 3% (Figure 13). Based on these data we can conclude that the 
colours of the walls in the scale models were equiluminant. 
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Figure 14. Illuminance in a central point inside 
the scale models. During the measurement 
process, models were arranged under the 
Artificial Sky as in Figure 3, the illuminance 
were measured at the floor level. 

Figure 15. Answers to the questionnaire about 
one-coloured models - Part 1 - “Do you 
experience the room to be dark or bright?” The 
unit of measurements is the amount of answers 
(mark at a certain cell of a scale from very dark 
to very bright. Total amount of the observers: 32. 

Illuminance values have a higher difference – 5.3% (Figure 14). However, these 
measurements are not comparable to luminance readings due to different measuring 
conditions. 

Perception of the light level in one-coloured models 

Part 1. The subjects were asked to evaluate the light level in models using a scale from 
dark to bright. It was not allowed to compare the rooms. The answer to the question had 

Figure 16. Answers to the questionnaire about one-coloured models- Part 2 - “Which room has the 
highest light level? (Put them into descending order)” The unit of measurement is a percentage 
relative to the total number of observers (32). 1: room with highest light level, 5: room with lowest 
light level. 
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Figure 17. Answers to the questionnaire about one-coloured models- Part 2 - “Which room has the 
most comfortable lighting? (Put them into descending order)” The unit of measurement is a 
percentage relative to the total number of observers (32). 1: room with the most comfortable lighting, 
5: room with the least comfortable lighting. 

to be done immediately and spontaneously. 

Results showed that the Yellow room was perceived as brightest, the Grey room as 
darkest, and the rest of the rooms were placed in medium positions, Figure 15. 

Part 2. In the second part of the questionnaire subjects compared appearances of 
observed rooms and made a deliberate ranking of the scale models. 

Which room has the highest light level (from brightest to darkest, in descending 
order)? 

Yellow and Red rooms were evaluated equally bright (25% correspondingly), see 
Figure 16. The Grey room was chosen as the darkest (31.25%). The rest of the rooms 
were placed in medium positions. However, according to the statistical analysis the 
differences were small and not statistically significant (Fr = 3.9612, critical value = 
9.49, ∂ = 0.05, df = 4). 

Which room has the more comfortable lighting (from the most comfortable to the 
least comfortable)? 

According to evaluation, the Blue room has the most comfortable lighting (28.13%), the 
Green room has less comfortable lighting (28.13%), the Red room has the least 
comfortable lighting (31.25%), Figure 17. Other rooms were placed in medium 
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positions. Results showed no significant differences between the rooms (Fr = 6.648, 
critical value = 9.49, a = 0.05, df = 4). 

Your personal preferences among these rooms (in lighting). Why? 

Results are shown in Figure 18. According to statistical analysis there was no 
significant difference between the rooms.(Fr = 3.5986, critical value = 9.49, a = 0.05, df 
= 4). 

However, it is interesting to analyze the subjects` spontaneous explanations which 
supported their decisions. Even if the question was about preferences in lighting, most 
of the people commented the colour of the room (examples of the explanations: grey is 
boring; I prefer non-chromatic interiors; red is not suitable for the walls). Others were 
not concentrated on colour itself but still estimated the atmosphere in the room as cold 
or warm (examples of the comments: colour affected the temperature of the room, but 
not light level; I prefer warm interiors). This observation illustrates how strongly one`s 
perception of the interiors depends on colour.  

How much colour affected your perception of light level? 

The last question about power of influence of colour on light level perception also 
showed interesting results: 87.5% of the participants considered that colour affected 
their perception of the light level. This effect was stronger for one-coloured models than 
for striped rooms.  

 

Figure 18. Answers to the questionnaire about one-coloured models - Part 2 - “Your personal 
preferences among these rooms (in lighting) Why? (Put them into descending order)” The unit of 
measurement is a percentage relative to the total number of observers (32). 1: the most preferable 
room, 5: the least preferable room. 
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Perception of the light level in the striped models 

Part 1. Spontaneous answers to question about the light level in the scale model showed 
that the Yellow/Blue model was perceived as the brightest room, the Red/Green as 
medium-bright and the Grey/Blue as the darkest one, see Figure 19. 

Part 2. 

Which room has the highest light level (from brightest to darkest, in descending 
order)? 

The Yellow/Blue model was evaluated as the brightest room by 43.75% of the 
participants, the Red/Green model was rated as the medium-bright room (50%) and the 
Grey/ Blue model was rated as the darkest room (75%), see Figure 20. Results showed a 
highly significant difference between the rooms (Fr = 12.9677, critical value = 5.99, a 
=0.05, df = 2). 

Which room has the more comfortable lighting?  

According to evaluation, the Red/Green room was chosen as a model with the most 
comfortable lighting by 56.25% of the participants. The Yellow/Blue room was 
evaluated as the room with medium-comfortable lighting (50%). The least comfortable 
lighting had the Grey/Blue model (50%), see Figure 21. Furthermore, there was a 
statistically significant difference between the rooms (Fr = 7.4666, critical value = 5.99, 
a = 0.05, df = 2). 

Your personal preferences among these rooms (in lighting).Why? 

Figure 19. Answers to the questionnaire about 
striped models - Part 1- “Do you experience the 
room to be dark or bright?” Unit of measurements 
is the amount of answers (mark at a certain cell of 
a scale from very dark to very bright. Total amount 
of the observers: 32. 

Figure 20. Answers to the questionnaire 
about striped models – Part 2 - “Which 
room has the highest light level? (Put 
them into descending order)” The unit of 
measurement is a percentage relative to 
the total number of observers (32). 1: the 
room with the highest light level, 3: the 
room with the lowest light level. 
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Results are shown in Figure 22. According to statistical analysis there was no 
significant difference in preferences between the rooms (Fr = 0.8125, critical value = 
5.99, ∂ = 0.05, df = 2). It is also important to note here that in striped models the same 
tendency in room appearance evaluation was observed. 

However, the subjects were more concerned with colour rather than the light in the 
rooms (example of the comments: Red/Green reminds me of Christmas, Yellow/Blue 
reminds me of summer). The subjects tended to observe the room as a whole rather by 
colour or light specifically (example of the notes: the high contrast between green and 
pink made the room feel darker; if the colour feels uncomfortable, the lighting also feels 
uncomfortable). 

How much colour affected your perception of light level? 

Answering the last question 81.25% of the participants considered that colour affected 
their perception of the light level. 

Luminance maps vs. questionnaires 

First, the obtained luminance maps of the scale models were converted using 
Photosphere software into false-colour pictures. In this particular case, the false-colour 
picture is a picture that shows specific representation of luminance values. In other 
words, the picture becomes a graph where newly assigned colours are not important 
themselves, but each of these colours pertains to particular luminance values. 
Furthermore, all the false-colour pictures were calibrated. The range of the luminance 

Figure 21. Answers to the questionnaire about 
striped models - Part 2 - “Which room has the 
most comfortable lighting? (Put them into 
descending order)” The unit of measurement is 
a percentage relative to the total number of 
observers (32). 1: room with the most 
comfortable lighting, 3: room with the least 
comfortable lighting. 

Figure 22. Answers to the questionnaire about 
striped models - Part 2 - “Your personal 
preferences among these rooms (in lighting) 
Why? (Put them into descending order)” The 
unit of measurement is a percentage relative to 
the total number of observers (32). 1: the most 
preferable room, 3: the least preferable room. 
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was set from 10 cd/m2 to 800 cd/m2. It was an important action to be able to compare 
luminance patterns of the images and parallel photos of the rooms. 

Significant differences between the luminance pictures of the striped models can be 
observed. Obviously, the Yellow/Blue room is the brightest one according to the 
luminance pattern of the false-colour picture as well as the luminance values (44.7/46.9 
cd/m2 on the window wall and 61.7/65.4 cd/m2 on the side walls). There is also a 
noticeable striped pattern on the walls here, see Figure 23. In the Red/Green room the 
pattern is less visible and luminance values are lower according to the graph (37.1/38.6 
cd/m2 on the window wall and 53.8/57.6 cd/m2 on the side walls). The darkest room is 
Grey/Blue, where the pattern is almost invisible and the luminance values are even 
lower (34/35.4 cd/m2 on the window wall and 49.3/50.8 cd/m2 on the side walls). This is 
consistent with the the test results from the experiment respondents. 

Results for the one-coloured models are not so evident, Figure 25. According to the 
luminance patterns on the false-colour pictures, two rooms have quite dark frontal 
window walls – Yellow (37.2/38.2 cd/m2) and Grey (35.4/37.7 cd/m2). At the same 
time, the side walls in the Yellow room are brighter (55.7/57.9 cd/m2) than in the Grey 
room (51.5/54.9 cd/m2). Therefore the Grey room can be considered the darkest model. 
This is consistent with the subject`s answers. The brightest room, according to the 
luminance patterns and values of false-colour pictures, is the Red model (40.7/41.4 

Figure 23. Images of striped models created using Photosphere software. To the right: HDR images of 
the rooms. To the left: false-colour pictures of respective photos. 
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cd/m2 on the window wall and 65.1/63.5 cd/m2 on the side walls). According to these 
results, the Red room, scored by 25% of the subjects, was the brightest room. This was 
equivalent to the Yellow room (25%). 

 

DISCUSSION 

This paper investigates the dependence of the perceived light level of space on 
unsaturated equiluminant colours and its combinations (colour contrast). The capability 
of luminance maps (as a possible method for lighting design) to reproduce this 
information is also a subject of interest. 

During the above described experiment eight scale models of the rooms were studied. 
All the scale models were identical except for the hue of the colours of the walls and a 
slight difference in saturation of these colours (see Table 1). Geometry, openings, types 
of surfaces, luminance and reflectance were equal for all the models. Nevertheless, 
some differences in light level perception of the scale models were found. 
Consequently, for the models painted in a striped pattern, the observed and 
subsequently statistically calculated difference was considerably significant (Fr = 
12.9677, critical value = 5.99, a = 0.05, df = 2). Here, the room painted in a striped 
Yellow/Blue pattern was chosen as the brightest one, the room painted in a striped 
Red/Green pattern was chosen as the medium-bright room, and the room painted in a 
striped Blue/Grey pattern was ascertained as the darkest model. This outcome can be 
partly explained by chosen colour composition of the patterns. Yellow/Blue and 
Red/Green patterns are examples of strong colour contrast, while Blue/Grey is a 
composition of achromatic grey colour and poorly saturated blue colour. The derived 
NCS chromaticness is 10. Chromaticness of Yellow/Blue is 20/10 and Red/Green is 

Figure 24. Measurements of luminance on the walls were done in Photosphere and represent an 
average luminance of the selected areas (highlighted in orange rectangles). It means that program 
performed luminance calculations for the selected zones. For all the scale models these zones were 
similar. 
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15/20. Chromaticness, as one of the variables of the colour in the NCS system, defines 
the portion of the chroma relative to white and black components of the chosen colour 
(Arnkil et al. 2012). It means that Yellow/Blue high chromaticness makes the hue 
difference more visible. It leads to a higher hue contrast that can also be a factor which 
affects perception. It should be noted that illuminance measured inside the Yellow/Blue 
model (see Figure 23) was the lowest among the striped models and therefore hardly 
had an impact on the subjective light level perception. Meanwhile, it was expected that 
the Red/Green room would be chosen as the brightest room but the final results were 
different. The reason that the Yellow/Blue model rather than the Red/Green model was 
scored as the room with highest light level could be the highest contrast in 
chromaticness of blue and yellow colour. At the same time, the size of the stripes of the 
patterns can play a great role in brightness evaluation due to fact that at high spatial 

frequencies the luminance 
contrast is prevailing 
(Valberg 2005). Luminance 
maps of the striped models 
corresponded with measured 
results (see Figure 23). 

However, for the one-
coloured models, the 
situation is more 
complicated. The difference 
in the perception of the light 
level was observed indeed, 
but it was not statistically 
significant. Participants also 
commented verbally on the 
difficulties in ranking one-
coloured scale models. 
Luminance maps 
observation of these models 
do not contradict the survey 
results. However, it was 
problematic for the subjects 
to point out the most bright 
or least bright rooms due to 
the minimal differences in 
luminance values. . Perhaps, 
in this case, the difference in 
stimuli was too low, almost 

Figure 25. Images of one-coloured models created using 
Photosphere software. To the right: HDR images of the rooms. 
To the left: false-colour pictures of respective photos. 
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at the threshold. According to luminance values obtained from luminance maps (see 
Figure 25), the Red room has the highest luminance values on the side walls (63.5/65.1 
cd/m2) and this room was scored by 25% of the subjects as the brightest room, which is 
equivalent to the Yellow room. Meanwhile, the Yellow room has lower luminance 
values – 55.7/57.9 cd/m2 on the side walls and 37.2/38.2 cd/m2 on the window wall. 
Even the Blue room has higher luminance values – 55/58.7 cd/m2 on the side walls and 
40.4/43.3 cd/m2 on the window wall, but it was scored as a relatively dark room. It can 
be explained for two reasons. First, there is a possible error of luminance values in 
representation of the cool hue of blue colour (Anaokar & Moeck 2005) For low 
saturated colours of cool hues, errors can be up to 20 percent. The second reason is the 
fact that the blue paint used in the scale models has very low NCS chromaticness – 10. 
The rest of the chromatic colours used in the models, e.g. Red, Green, Yellow and Blue 
have equal blackness (05), see Table 1. This means that the Blue colour has low 
saturation and therefore the Blue model has been perceived as quite a dark room. A 
Grey room has the lowest luminance values according to the HDR image – 35.4/37.7 
cd/m2 on the window wall, 51.5-54.9 cd/m2 on the side walls. This was also scored by 
subjects as the darkest room. We can conclude that, because of the low saturation of the 
colours, it was difficult for respondents to place the models in order. Still, the results 
were compatible with luminance maps that accurately replicated obtained data. 

The consistency between the answers to the question about light level from Part 2 
(Which room has the highest light level?) and to the question from Part 1 (“Do you 
experience the room to be dark or bright?”) helps to conclude that the results are quite 
reliable. Moreover, the participants’ responses to the questions about rooms with the 
most comfortable lighting and about their personal preferences varied. This means that 
the subjects were guided not by predilections, but by the subjective perception that was 
very similar to their responses to their first impression of the rooms. 

CONCLUSION 

A colour contrast and the Helmholtz-Kohlrausch phenomenon have been investigated 
and described in literature previously (Valberg 2005). In this experiment we transfer 
these phenomena into the field of architectural design and the perception of the visual 
environment. From an architectural perspective it is important to note that even poorly 
saturated colours have an impact on the human perception of light level in spaces. This 
impact can be strong, as with color contrast, or weak, as with one-coloured models. 
Nevertheless, this impact can be taken into consideration when using the luminance-
based method in lighting design. 
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ABSTRACT  

Most of the current lighting recommendations aim at ensuring a minimum quantity of 
light needed to see objects in the surrounding environment and to enable work or other 
activities.  

Authors believe that these recommendations and measures are not a guarantee for the 
lighting quality. The qualitative aspects of lighting are frequently discussed topics in the 
lighting community. One of the issues that the currently used measures touch only 
sporadically is e.g. light modelling. We set up an experiment where different measures 
of light modelling were studied with help of High Dynamic Range Imaging technique. 
The analytical comparison of survey results from 32 subjects and measures obtained 
from luminance maps showed that the Contrast measurement (calculated with the 
Weber formula) and the Ratio between average luminance of the object and average 
luminance of the background are both good predictors for contour distinctness of the 
observed objects.  

Keywords: Luminance maps, light modelling, luminance measurements, HDR images  

  



8. Appended papers. Paper II 
 

112 
 

1 Introduction 

We live in a three dimensional space and have a fantastic aptitude for constant 
perception of different qualities of objects i.e. size, shape and colour, depending on the 
way they are viewed (Boyce, 2003). Is an adequate visibility of 3D objects important 
for us? Apparently yes, and moreover, it is a vital ability that enables us to see the world 
around and to communicate with other human beings. The current building codes for 
daylighting design in buildings are very simplified and use, in most countries, the 
daylight factor as the fundamental measure (Mardaljevic et al., 2009); other 
recommendations are sparse and tell very little about qualitative aspects of lighting. On 
the other side, research tells us that providing better recommendations is crucial because 
creating a comfortable and pleasant environment for occupants may increase 
productivity and health, may indirectly improve their home life by reducing job related 
stressors, and thus indirectly increase economic benefits of the companies (Aries et al., 
2010).  

During the past few years, researchers tried to investigate new daylighting metrics. 
Some studies suggest particular techniques based on standardised climate datasets, so 
called Climate-based daylight modelling (CBDM) and development of certain luminous 
quantities associated with factors related to visual comfort and quality (Mardaljevic et 
al., 2009). Another study dedicated to assessing of the set of metrics based on 
illuminance, distribution, glare and directivity and suggested that these are the most 
useful measures for the determination of the daylighting quality of architectural spaces 
(Cantin and Dubois, 2011). In both these investigations luminance measurements were 
included to some extent. A “Daylighting dashboard” approach was suggested in another 
study where eight particular daylighting metrics were analysed. The main goal was to 
use average illuminance, coverage, diffuse daylight, daylight autonomy, circadian 
stimulus, glazing area, view and solar heat gain, as a determinant measures during the 
conceptual phase of architectural design (Leslie et al., 2012). 

The light modelling is one of several lighting quality characteristics, deprived of the 
attention of the researchers. With light modelling we mean the degree to which the light 
describes 3D-objects, so both the contour and shape are clearly visible. The better the 
light modelling is, the easier we distinguish 3D-objects from the background, and the 
more correctly we perceive its 3D-shape and their specific characteristics. A good light 
modelling is important in different spheres: from hospital lighting to museum or 
commercial lighting. The possibility to predict light modelling in particular rooms and 
spaces would be an undoubted advantage for architects and designers. 

Some researchers tried to shed light onto the topic of light modelling earlier. Different 
approaches were used. One of them is illuminance measurement using a six-sided 
illumination meter for prediction of shading pattern of various objects or the distribution 
of eye illuminance at a given point (Cuttle, 2008). Another approach suggests using a 
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particular instrument, a modelling sensor, to predict light distribution on a 3D-object, 
occurrence of light spots, cast shadows and to register the light direction (Matusiak, 
2002).  

Another rather new technique offers new options in studying light modelling 
characteristics, namely High Dynamic Range Imaging (HDRI). The High Dynamic 
Range image is a merged image of several conventional low range images taken with 
different exposures that contains full luminance information of the photographed region. 
The term “luminance map” can also be used instead of HDR images, to accentuate that 
the picture has been utilized specifically for the luminance measurements. The 
luminance-based design is a new approach to lighting design applying such pictures. It 
is currently being promoted by number of scientists and by CIE Technical Committee 3-
45 as a perception-oriented method for lighting design (Nakamura et al., 2011). The 
prime advantage of this method is that the luminance is the measure that the visual 
perception can be most correctly described by, e.g. the perception of brightness as a 
function of luminance (Gilchrist, 2007). 

The aim of the current study was to develop measures of light modelling by exploration 
of a daylit environment (the full-scale mock-up room) furnished with achromatic and 
chromatic 3D objects with the help of luminance mapping technique. 

The hypothesis asserts that certain numerical luminance values or luminance ratios 
obtained from HDR images may adequately describe the modelling of daylit 3D objects 
as being observed by subjects. 

2 Methodology 
The real-life experiment consisted of the observation of 3D achromatic and chromatic 
objects placed in the full-scale mock-up room and simultaneous photographing of the 
observed environment. A previous experiment conducted by the authors showed that 
low saturated colours and interiors containing this type of colours could be successfully 
studied using luminance mapping technique (Zaikina, 2012). Therefore, it was decided 
to include coloured objects into the new experiment. The main data sources were 
subjective ratings of contour and shape visibility provided by participants in a 
quantitative questionnaire, graphical information i.e. drawings made by participants, 
and subsequently generated HDR images. In this case taking 180° HDR images or 
luminance maps was a method that enabled the technical-instrumental recording of the 
observed visual scene under the real conditions concurrently with surveying the 
subjects. The method of HDR Imaging is now well established and its reliability was 
previously tested regarding accuracy in different lighting conditions, different times of 
the day and representations of the different colours by a number of researchers (Inanici, 
2006; Anaokar and Moeck, 2005; Chung and Ng, 2010; Cai, 2011). The experiment was 
conducted under the real daylight conditions, on several days, from 09:00 to 13:00. A 
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number of female Venetian masks were chosen as 3D objects for observation. On the 
one hand, they are realistic enough to remind of a real human face and thus carry 
semantic importance for people, but nevertheless simplified and stylized so that no 
unnecessary noise is added to the data. On the other hand, masks possess the qualities 
typical for other non-face-like 3D objects: they have a well distinguishable convex 
shape and contain a number of small elements and details. 

2.1 Experiment design  

The experiment was performed in the Room Laboratory, the laboratory for construction 
of small full-scale spaces at the Faculty of architecture, Norwegian University of 
Science and Technology, Trondheim, Norway (http://www.ntnu.edu/bff/laboratories). 
Data was collected during eight days under stable overcast sky conditions within two 
weeks of August 2013. The experimental space was a full scale mock-up room with no 
particular function. It was a non-specific room with one daylit opening and walls made 
of portable wall elements. The size of the room was 4,8 m ×4,8 m, height was 2,5 m. 
Two shelves were placed in the room at two different but adjacent walls. One shelf was 
illuminated by reflected daylight and the other shelf was illuminated by side-light from 
the window. The glare was avoided with the help of a partition wall constructed in front 
of the window. The shelves were made of box-like cells    0,5 m × 0,5 m in size, that 
were painted in different achromatic and equiluminanat chromatic colours. The 3D 
objects (Venetian masks) were also painted in the same colours as the cells. Most of the 
colours were low saturated: grey, pink, green; additionally white and dark grey were 
used. Notations of the colours according to NCS colour system can be found in Table 1. 

Table 1 – Notations of the colours used in the experiment, according to NCS Colour System 

The combination of colours of the objects and colours of the cells (namely colour of the 
object and colour of the background) was different and unique for each cell; totally it 
was 18 different combinations. Positive and negative contrasts were provided for 
observation. The composition of the coloured objects and backgrounds was the same for 
both shelves, but the textures of the masks were different. The shelf with mostly diffuse 
lighting presented matte objects, while the shelf illuminated from the side presented 
glossy objects, see Figure 1. The light level in the experimental room was kept low, as it 
was of importance to create a situation with hardly visible objects. Two subjects 
observed the objects in the room and answered the questionnaires at the same time. 
They were sitting on adjoining chairs. The camera was placed between them at eye-
level, namely at a height of 1,2 m. A set of 11 low dynamic images were taken 
immediately before the participants started to answer the questions. During this 

Name of the colour 
used in paper 

Dark grey White Green Pink Grey 

Nominal colour 
nearest NCS sample S 6005-R80B S 0300-N S 0520-G40Y S 0510-R20B S 1002-B50G 
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Figure 1 – Picture showing (a) an overview of the experimental room, and (b) the plan of the 
experimental room 

photographing session that lasted approximately 10 minutes, participants were able to 
adapt to the lighting conditions in the room. 

 

2.2 Participants 

In total 32 subjects participated in the experiment. Age of the participant varied from 14 
to 74, the average age was 32 years, standard deviation was 10,76. Most of the 
respondents were naïve with such a type of experiment; they had a different educational 
background and professions.  Before staring the experiment, the vision of the 
participants was tested with the following vision tests: the visual acuity test using a 
Snellen chart, the Ishihara test for colour vision, a contrast sensitivity test (Vigra 
program); normality of 3D-vision was self-reported.  According to these vision controls 
all the respondents had normal or corrected to normal vision and were allowed to 
participate in the experiment. 

2.3 Questionnaire 

The questionnaire consisted of two main questions:  

1. How well can you distinguish the contour of the object?  
2. How well can you distinguish shape and details of the object?  

Both questions were asked about each of the 36 objects. The subjects were requested to 
mark their answers on a four-point ordinal scale with the following options:  

 indistinguishable 
 just distinguishable 
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 well distinguishable  
 perfectly distinguishable 

In addition, subjects specified indistinguishable and perfectly distinguishable zones at a 
drawing of the mask included in the questionnaire. When two participants 
simultaneously started the observation, one of them started with the evaluation of glossy 
masks while the other evaluated the matte objects first. After finishing the evaluation of 
one shelf with masks, they started to evaluate the second shelf without changing their 
position in the room.  The whole procedure with one pair of the participants took 
approximately 1 hour. 

2.4 Camera settings and manual measurements 

Totally, 17 sets of 11 low-dynamic images of the observed scene were made with a 
Nikon D600 digital camera. To ensure of sharpness the camera was mounted on a tripod 
and situated between participants’ chairs. The following camera settings were used: 
white balance – Cloudy, Auto-Bracketing – off, sensitivity – 200 ISO, auto focus – 
Auto, aperture – fixed, f/4. Exposure variations were achieved by varying the shutter 
speed in manual exposure mode with step 1 EV. All the camera settings were adjusted 
by dint of a computer and with the Nikon Camera Control Pro software. 

For further calibration of the HDR images the manual luminance measurements were 
taken in four specially marked points at the observed scene. For these purposes a 
Minolta LS-100 luminance meter was used. Manual measurements were repeated with 
each new photographing session and each new pair of respondents.  

All the low dynamic range images were processed and combined into HDR images with 
the help of the Photosphere software (Ward, 2005). After this step a calibration was 
applied according to the readings from the manual luminance measurements. 

2.5 Measurements from luminance maps 

Luminance measurements were done using two programs: the Photosphere (that was 
used during the preparation phase for merging of low dynamic images and calibration) 
and hdrscope (Kumaragurubaran and Inanici, 2013). In this particular case, both the 
general and the point measurements were taken in Photosphere program. Luminance 
measurements of multiple selected regions, complex figures and Contrast values were 
obtained from hdrscope software. The contrast is calculated in this program as the 
Weber ratio, i.e. the difference of the mean luminances of chosen foreground and 
background regions divided by the mean luminance of the background (Valberg, 2005), 
see equations 1 and 3. For convenience, we shell use the term Contrast further in this 
article. As a background the whole area of the cell were selected for analysis.  Another 
measure of interest was ratio between mean luminance of the mask and mean luminance 
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of the background (see equation 2 and 3), further will be called Ratio. The Ratio was 
calculated, but not generated by any of the used programs. 

                                                                                                        (1) 

where 

Lo is the luminance of the object; 
Lb is the luminance of the background. 
 

                                                                                                             (2) 

where 

Lo is the luminance of the object; 
Lb is the luminance of the background. 
 

                                                                                                    (3) 

where 

CR is the luminance ratio. 

To the authors’ opinion, this method provides a great opportunity of getting rich 
information based on luminance readings from different regions at the luminance 
maps.  

3 Statistical analysis and results 

In this paper the authors present the earliest results related to the first question i.e. 
contour distinctness. 

For the statistical analysis of the data a two-level ordinal regression analysis was 
chosen. The experimental design with 32 participants evaluating 36 masks each resulted 
in a data structure where 36 evaluations were nested within each participant. To 
eliminate the noise that each participants’ general answering patterns contributed to the 
data, the main analysis was conducted at the object level, but the person specific 
variance in the evaluations across all masks was modelled simultaneously (listed as 
Level 2 variance in Table 2 and 3). The regression analysis was conducted as an ordinal 
(and not linear) regression because the dependent variable “distinctness of the contour” 
had neither equidistant nor normally distributed answers across the categories. 

In two separate analyses (Table 2 and Table 3) the Contrast and the Ratio were assessed 
as main predictors of contour distinctness and as the dependent variable, while type of 
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the surfaces (glossy or matte), coloration (chromatic or achromatic) and order of 
observation were assessed as additional independent control variables. Because the 
characteristics of both main predictors are different below and above the zero contrast 
point (which is 0 for the Contrast and 1 for the Ratio) within each analysis to separate 
sub-analyses were conducted (left and right half of the table). 

 Results show that both measures (Contrast and Ratio) are equally good predictors of 

 
Ratio ≤ 1 Ratio ≥ 1 

B SE β p B SE β p 

Ratio -10,775 1,270 -0,803 < 0,001 0,322 0,022 0,577 < 0,001 

Glossiness 

(0=matte, 1=glossy) 
1,123 0,572 0,146 0,049 0,021 0,129 0,005 0,870 

Chromaticness 

(0=achromatic, 1=chromatic) 
-0,615 0,406 -0,080 0,130 -0,324 0,134 -0,073 0,016 

Order of observation 

(0=matte masks first,  

1=glossy masks first) 

-1,589 0,661 -0,213 0,016 -0,533 0,280 -0,120 0,057 

Level 2 variance "contour" 1,978 0,970 0,041 0,495 0,161 0,002 

R2level 1 0,764 
   

0,332 
   

Nlevel 1 255 
   

897 
   

Nlevel 2 32 
   

32 
   

 
Figure 2 – Probability curve for the „perfectly distinguishable“ category of the questionnaire, four 
combinations of control variables, and Ratio as a main predictor 

Table 2 – Regression analysis results: corellation between contour distinctness and Ratio. 
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the distinctness of the contour of the observed masks (see Table 2 and 3).  

As can be seen in Table 3 and Figure 3 the results are almost identical when the 
luminance ratio is substituted by the Contrast as main predictor. Here the cut-off for the 
zero Contrast is “0”. The Contrast is a highly significant and strong negative predictor 
for negative contrasts (better visibility the more negative the Contrast below 0 get) and 
it is a highly significant, strong positive predictor the more positive the Contrast is. The 

 Contrast ≤ 0 Contrast ≥ 0 

 B SE β p B SE β p 

Contrast -10,781 1,271 -0,803 < 0,001 0,341 0,023 0,569 < 0,001 

Glossiness 

(0=matte, 1=glossy) 
1,081 0,570 0,141 0,058 -0,004 0,129 -0,001 0,975 

Chromaticness 

(0=achromatic, 1=chromatic) 
-0,579 0,404 -0,076 0,152 -0,323 0,134 -0,073 0,016 

Order of observation 

(0=matte masks first,  

1=glossy masks first) 

-1,572 0,657 -0,212 0,017 -0,531 0,281 -0,120 0,058 

Level 2 variance "contour" 1,952 0,959 0,042 0,496 0,162 0,002 

R2level 1 0,761 
   

0,323 
   

Nlevel 1 255 
   

897 
   

Nlevel 2 32 
   

32 
   

Table 2 – Regression analysis results: corellation between contour distinctness and Contrast. 
 

 
Figure 3 – Probability curve for the „perfectly distinguishable“ category of the questionnaire, four 
combinations of control variables, and Contrast as a main predictor 
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closer to 0, the more difficult is it to perceive the contour. Again, glossiness and order 
of observation have a small but significant impact for dark masks on light backgrounds, 
and chromaticness has a small effect for light masks on dark backgrounds. 

 

 

4 Discussion and conclusion 

High quality lighting becomes an especially important issue in a time dominated by a 
dynamic technical development of new light sources and daylighting techniques. A 
good light modelling is one of the necessary conditions for lighting quality. It is 
essential both at workplaces and at homes. When we communicate with other people we 
need to accurately perceive various 3D-objects, especially faces; and we know that the 
correct interpretation of the human face expression depends on the light distribution on 
the face and the background. 

This experiment has shown that luminance measurements could be promising predictors 
of light modelling. In this particular case the Contrast and the Ratio were studied as 
predictors of contour distinctness of the observed Venetian masks. These are 
measurements that are easy to perform with help of computer software, which is why 
they became departing point of the current experiment. Correlation of the physical 
luminance measurements and peoples’ perceptions are complex and usually nonlinear, 
so they should be studied carefully. For this purposes we used a two-level ordinal 
regression analysis that took into account various interconnections between factors and 
was able to control for a number of variables, including answering style and other 
person related factors of the participants. The analysis shows clearly that easily 
measurable luminance values can predict a large amount of variance in the distinctness 
of the contours of the 3D objects. However, the conclusions should be tested by other 
researchers under other lighting conditions and/or with other objects to verify the 
relations with higher precision.  

This article presents only the first step in the whole study. We intend to extend the 
testing of the different luminance measurements in terms of contour and shape visibility 
and distinctness. We believe the findings will provide new and useful information 
helping to develop modern techniques for designing qualitatively comfortable lighting. 
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ABSTRACT 

This article presents possible luminance-based measures of contour distinctness of 3D 
objects observed under real daylight conditions. Contour distinctness is considered here 
as a component of the broader concept of light modeling and is a significant metric of 
quality lighting. We set up an experiment where different measures of contour 
distinctness were studied with the help of high dynamic range imaging techniques. 
Measures obtained from the luminance maps were brought into correlation with survey 
results from 32 subjects. The analytical comparison showed that the contrast 
measurement (calculated with the Weber formula), luminance ratio between average 
luminance of the object and average luminance of the background, mean of paired point 
luminance ratio (mean point LR) measurements around the contour of the object, and 
percentage of the invisible part of the contour are good predictors for contour 
distinctness of the observed 3D objects. The proposed measures expressed in numerical 
values are comprehensive and easy to obtain and can be practically applicable after the 
further development. 

KEYWORDS contour distinctness, high dynamic range images, luminance-based 
measurements, luminance maps 
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1. INTRODUCTION 

Most of the current lighting recommendations aim at ensuring a minimum quantity of 
light needed to see objects in the surrounding environment and to enable work or other 
activities. Nevertheless, this is not a guarantee for lighting quality or the occupants’ 
comfort. The present building codes for daylighting design in buildings are very 
simplified and use, in most countries, the daylight factor as the fundamental measure; 
other recommendations are sparse and give scant information about qualitative aspects 
of lighting. On the other hand, research tells us that providing better recommendations 
is crucial because creating a comfortable and pleasant environment for occupants may 
increase productivity and health and may indirectly improve their life at home by 
reducing job-related stressors, thus indirectly increasing economic benefits of the 
companies [Aries and others 2010]. 

Based on such considerations, researchers have recently pointed out that lighting quality 
should become equally important as energy-efficiency aspects in lighting design 
[Dehoff 2014]. The qualitative aspects of lighting are frequently discussed topics in the 
lighting community but less frequent among laypeople. Often laymen are even unaware 
of consequences of low-quality lighting. One of the issues that the currently used 
measures touch only sporadicallyn is light modeling, which is one of the lighting quality 
characteristics deprived of the attention of researchers. 

In the European Standard EN 12464-1:2011 “Lighting ofWorkplaces” the modeling 
term is explained as “the ratio between cylindrical and horizontal illuminance at a 
specific point and should be between 0.3 and 0.6 in. [European Committee for 
Standardization (CEN) 2011]. 

In the current study dedicated to measures of light modeling quality, we define the term 
“light modeling” as the degree to which the light describes 3D objects, so both the 
contour and shape are clearly visible. The better the light modeling is, the easier we 
distinguish 3D objects from the background and the more correctly we perceive their 
3D shape and their specific characteristics. A good light model is important in different 
spheres, from hospital lighting to museum or commercial lighting. The possibility to 
predict light modeling in particular rooms and spaces would be an undoubted advantage 
for architects and designers [Zaikina and others 2014]. 

2. BACKGROUND 

During the past few years, a number of researchers conducted studies on new 
daylighting metrics. One of them suggested particular techniques based on standardized 
climate data sets, so called climate-based daylight modeling, and development of certain 
luminous quantities associated with factors related to visual comfort and quality 
[Mardaljevic and others 2009]. Another study focusing on assessing a set of metrics 
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based on illuminance, distribution, glare, and directivity implied that these are the most 
useful measures for the determination of the daylighting quality of architectural spaces 
[Cantin and Dubois 2011]. In both studies, luminance measurements were included to 
some extent. A “daylighting dashboard” approach was proposed in another study where 
eight particular daylighting metrics were analyzed. The main goal was to use average 
illuminance, coverage, diffuse daylight, daylight autonomy, circadian stimulus, glazing 
area, view, and solar heat gain as determinants during the conceptual phase of 
architectural design [Leslie and others 2012]. 

Other researchers tried to shed light particularly onto the topic of light modeling. 
Different approaches were used. One of them is illuminance measurement using a six 
sided illumination meter for prediction of shading patterns of various objects or the 
distribution of eye illuminance at a given point [Cuttle 2008]. Another approach 
suggests using a particular instrument, a modeling sensor, to predict light distribution on 
a 3D object or the occurrence of light spots, cast shadows, and register the light 
direction [Matusiak 2002]. 

An original technique called high dynamic range (HDR) imaging offers new options in 
studying light modeling characteristics. The HDR image is a merged image of several 
conventional low-range images taken with different exposures that contains full 
luminance information of the photographed region. The term “luminance map” can also 
be used instead of HDR images to accentuate that the picture has been utilized 
specifically for the luminance measurements. The luminance-based design is a new 
approach to lighting design applying such pictures. It is increasingly used in the field of 
architectural daylight studies [Bellia and others 2013; Konis 2014; Van 
DenWymelenberg and others 2010]. Moreover, it is being promoted by a number of 
scientists and CIE Technical Committee 3-45 as a perception-oriented method for 
lighting design [Nakamura and others 2011]. The prime advantage of this method is that 
the luminance is the currently known measure that describes visual perception most 
correctly; for example, the perception of brightness as a function of luminance 
[Gilchrist 2007]. 

The aim of the study is to develop and compare simple, precise, and perception-oriented 
measures of light modeling by investigation of a daylit environment (a full-scale mock-
up room) furnished with achromatic and chromatic 3D objects by help of a luminance 
mapping technique. 

According to the stated provisional hypothesis, certain numerical luminance values or 
luminance ratios obtained from HDR images may adequately describe the distinctness 
of contour of daylit 3D objects as being observed by subjects and form possible 
measures for contour visibility. 
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It is important to note that measures based on luminance contrast were considered as a 
departing point in the current study. Contrast perception is a fundamental ability of our 
visual system that enables us to discriminate, among other things, a target from its 
background [Valberg 2005]. Numerous scientific studies of the luminance contrast and 
its threshold values have been carried out in fully controlled conditions in research 
laboratories for decades. However, we do not know what the threshold values of 
contrast are that are necessary for the detection of the contour of objects—for example, 
human faces—in real full-scale rooms illuminated by daylight with its typical gradation 
of illuminance and how those threshold values may differ depending on the optical 
characteristics of both object and background surfaces. By addressing these questions, 
this study presents a new angle. 

3. METHODOLOGY 

The real-life experiment consisted of the respondents’ observation of the contours of 3D 
objects placed in a full-scale mock-up room, answers to surveys, and photographing 
sessions of the observed scene. 

Although the visual system handles chromatic and achromatic contrast in different ways 
[Valberg 2005], 3D objects of both types were presented in the experiment because it is 
rare to see them completely separated from one another in real life. The effect of 
chromaticity was analyzed specifically. Moreover, a previous experiment conducted by 
the authors showed that low saturated colors and interiors containing the same type of 
colors could be successfully studied using the luminance mapping technique [Zaikina 
2012]. The main data sources for the current study were subjective ratings of contour 
and shape visibility provided by participants in a quantitative questionnaire, graphical 
information—that is, drawings made by participants—and subsequently generated HDR 
images. In this case, taking 180° HDR images or luminance maps was a method that 
enabled the technical–instrumental recording of the observed visual scene under real 
conditions concurrently with surveying the subjects. The method of HDR imaging is 
now well established, and its reliability was previously tested regarding accuracy in 
different lighting conditions, different times of the day, and representations of the 
different colors by a number of researchers [Anaokar and Moeck 2005; Cai 2011; 
Chung and Ng 2010; Inanici 2006; Tyukhova and Waters 2014]. 

The experiment was conducted under real daylight conditions, on several days, from 
9:00 AM to 1:00 PM. A number of female Venetian masks were chosen as 3D objects 
for observation. On the one hand, they are realistic enough to be reminiscent of a real 
human face and thus carry semantic importance for people; nevertheless, they are 
simplified and stylized so that no unnecessary noise is added to the data. On the other 
hand, masks possess the qualities typical for other non-face-like 3D objects: they have a 
well-distinguishable convex shape and contain a number of small elements and details. 
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3.1. Experiment Design 

The experimental room was built in the Room Laboratory, the laboratory for 
construction of small full-scale spaces at the Faculty of Architecture, Norwegian 
University of Science and Technology, Trondheim, Norway 
(http://www.ntnu.edu/bff/laboratories). Data were collected during 8 days under stable 
overcast sky conditions within 2 weeks of August 2013. The experimental space was a 
nonspecific room with one daylit opening and walls made of portable wall elements of 
half-matte white coat; see Fig. 1a. The size of the room was 4.8 m × 4.8 m, and the 
height was 2.5 m. Glare was avoided with the help of a partition wall constructed of the 
wall elements in front of the window. Two shelves were placed in the room at two 
different but adjacent walls. They were made of box-like cells 0.5 m × 0.5 m in size that 
were painted in different achromatic and equiluminant chromatic colors. The 3D objects 
(Venetian masks) were painted the same colors as the cells. Most of the colors were low 
saturated: grey, pink, and green; additionally, white and dark grey were used. Notations 
of all of the colors used, correspondingly to the Natural Color System (NCS) widely 
used in Scandinavian countries, can be found in Table 1. 

The shelves were identical in construction, size, and color combination of the cells. 
Nevertheless, they were lit diversely and contained objects with different types of 
surfaces (matte and glossy). One shelf was shielded by a partition wall and therefore 
illuminated by reflected and evenly distributed daylight; see Fig. 1a. It contained masks 
with matte coat. Another shelf was illuminated mostly by sidelight from the window 
and partly by the reflected light. Thus, shadow patterns were more strongly pronounced 
due to the side illumination. This shelf contained only glossy masks. The combination 
of colors of the objects and colors of the cells (that is, color of the object and color of 
the background) was unique for each cell of the shelf. The setup resulted in 18 different 

Fig. 1 (a) Overview of the experimental room and (b) plan of the experimental room. 
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combinations that were duplicated on both shelves. 

The light level in the experimental room was kept low, because it was important to 
create a situation with hardly visible objects. Even in similar overcast weather 
conditions that prevailed during all experimental days, light levels in the rooms 
fluctuated; vertical illuminance at the plane of the eye was calculated from the 
luminance readings of the luminance maps varied in the range from 3 lx (minimum 
value in the darkest lighting conditions) to 167 lx (maximum value in the brightest 
lighting conditions). Although the eye-illuminance variance is high, no significant 
difference in answers between participants who answered under the brightest lighting 
conditions and those in the darkest condition was found. 

During the experiment, no particular registration of the light changes over a single 
observation session was performed. However, the author monitored light changes 
visually and kept a diary of observations where the noticeable changes of the light level 
were marked. Visually noticeable light level fluctuations were detected only twice. 
However, it was decided to include the data from these two cases in the analysis 
because the participants claimed that those fluctuations did not affect their answers. 
Because the experimental room has a northeast orientation and translucent curtains were 
used on the windows, no direct sunlight or sunlight reflected from other buildings could 
penetrate into the room. 

In each session, two respondents observed the objects in the room and answered the 
questionnaires at the same time. This helped to reduce the time of the experiment by 
half, which was highly desirable considering changeable weather conditions, where only 
a cloudy state was acceptable. Participants were sitting on adjoining chairs. The camera 
was placed between them at eye level; that is, at a height of 1.2 m and with the angle of 
view oriented toward the window, capturing both shelves with the masks. This was 
done to get simultaneous results for two participants and to do it as quickly and as 
accurately as possible. Because the distance between the viewpoint of camera and the 
viewpoint of each participant was only 35 cm and the distance from each of those 
viewpoints to the objects was minimum 3.6 m, the difference in the view angle between 
the camera and a participant was maximum 4.63° and thus was negligible. This allows 
us to assume that the directivity of specular reflections that appeared on the glossy 
objects registered by the camera was similar to the participants’ vision. However, 
because a digital camera still is not an eye and human perception includes various 

Name of the colour 
used in the paper Dark grey White Green Pink Grey 

Nominal colour 
nearest NCS sample S 6005-R80B S 0300-N S 0520-G40Y S 0510-R20B S 1002-B50G 

TABLE 1. Notations of the colors used in the experiment, according to NCS 
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complex processes, it would be incorrect to state that images captured by the camera are 
completely equivalent to human perception, even in terms of the directivity of the 
specular reflections. 

Before respondents started to fill in the questionnaire, photographing of the set of 11 
low dynamic images, manual luminance measurements, and oral explanation of the 
terms used in the questionnaire were performed. The low dynamic images were taken 
within a period of 1–2 min and the manual luminance measurements were conducted 
immediately after. The whole process (photographing, measuring, and explanation) took 
approximately 10–15 min, depending on the respondents’ questions. During this time, 
they were able to adapt to the lighting conditions in the room. The survey itself took 1 h 
for each pair of the respondents, and they were not allowed to communicate with each 
other during this process. 

3.2. Participants 

Thirty-two subjects participated in the experiment. Their ages varied from 14 to 74; the 
average age was 32.1 years, the mode was 26 years, and the standard deviation was 10.9 
years. There were 20 female and 12 male participants of different nationalities. Most of 
them were naïve regarding such experiments and all had different educational 
backgrounds and professions. 

Before staring the experiment, the vision of each participant was tested with the 
following tests: the visual acuity test using a Snellen chart, the Ishihara test for color 
vision, and a contrast sensitivity test (Vigra program). Normality of 3D vision was self-
reported by the respondents due to unavailability of an appropriate test. According to 
the vision controls, all of the respondents had normal or corrected to normal vision 
(with the help of glasses or contact lenses). Therefore, all were allowed to participate in 
the experiment. 

3.3. Questionnaire 

The questionnaire was divided into two parts; each part dealt with one of two shelves 
with 3D objects. Every part included only two simple questions per object: 

1. How well can you distinguish the contour of the object # N? 
2. How well can you distinguish shape and details of the object # N? 

Both questions were asked about each individual mask; thus, 18 matte and 18 glossy 
masks were evaluated according to their contour and shape/details. The subjects were 
requested to mark their answers on a 4-point ordinal scale with the following options: 

• indistinguishable (invisible contour), 
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• just distinguishable (barely visible contour or parts of the contour), 
• well distinguishable (well visible contour except some parts or areas), 
• perfectly distinguishable (the whole contour is very well visible). 

The meaning of the each term used was explained to all of the respondents before they 
started to answer the questions. They were allowed to begin the evaluation from any 
mask presented on the observed shelf, which provided a partial randomization of mask 
observation, although this was not systematically implemented because participants 
chose themselves. Participants had no time limits for the observation process, though 
most kept it within one hour without any haste. 

Respondents specified indistinguishable and perfectly distinguishable areas at a drawing 
of the mask included in the questionnaire. These graphical drawings were an important 
part of the survey needed for the further luminance measurements and statistical 
analysis. When two participants simultaneously started the observation, one of them 
began with the evaluation of glossy masks and the other evaluated the matte objects 
first. After finishing the evaluation of the first shelf and answering the questions for the 
first part of the questionnaire, they changed the shelf of observation without changing 
their position in the room. This alternating order was accomplished to prevent 
disturbance by the other respondent and was controlled during the statistical analysis. 

3.4. Camera Settings and Manual Measurements 

For luminance measurements and analysis of the observed scene, 17 sets of 11 low 
dynamic range images were made with a Nikon D600 digital camera and a full-frame 
(AF DX Fisheye-Nikkor 10.5mm f/2.8G ED) lens (Japan Photo Trondheim, 
Munkegaten 35, 7011 Trondheim, Norway) that provides 180° diagonal angle of view. 
To ensure sharpness, the camera was mounted on a tripod and situated between the 
participants’ chairs. The following camera settings were used: white balance, cloudy; 
auto-bracketing, off; sensitivity, 200 ISO; auto focus, auto; and aperture, fixed, f/4. 
Exposure variations were achieved by varying the shutter speed in manual exposure 
mode with step 1 EV. All camera settings were adjusted by dint of a computer using 
Nikon Camera Control Pro software (Japan Photo Trondheim, Munkegaten 35, 7011 
Trondheim, Norway). 

For further calibration of the HDR images, manual luminance measurements were taken 
at four specially marked points of the observed scene. These areas were matte white 
surfaces placed in different parts of the experimental room and at various distances from 
the window. This helped to minimize error between manual luminance measurements 
and reading from luminance maps. Manual luminance measurements were performed 
using a Minolta LS-100 luminance meter and repeated with each new photographing 
session and each new pair of respondents. 
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All of the low dynamic range images were processed and combined into 17 HDR 
images using Photosphere software [Ward 2005] at a resolution of 3936 × 2624 pixels. 
After this step a calibration was applied in the same program, according to the metrics 
obtained by the luminance meter. 

3.5. Measurements from Luminance Maps 

Although two topics were investigated in this study—that is, contour distinctness and 
shape and details distinctness - this article presents the luminance measures for 
evaluation of contour distinctness only. These measures are luminance ratio, contrast, 
percentage of the invisible part of the contour of the observed mask, and mean point 
luminance ratio (LR). These measures are easy to perform because they are based on the 
luminance values obtained from selected regions of luminance maps. 

Luminance measurements were done using two programs: Photosphere (which was 
used during the preparation phase for merging of low dynamic images and calibration) 
and hdrscope [Kumaragurubaran and Inanici 2013]. In this particular case, the general 
measurements of the whole area of the image, measurements of squared areas of 
interest, and the point measurements were conducted in Photosphere. Luminance 
measurements of multiple selected regions, figures of complex geometry, and contrast 
values were obtained from hdrscope software. 

It is important to specify that selection of the regions of interest, namely, an object and 
its background, was performed by hand. Firstly, the mask intended for analysis was 
cropped from the HDR image. The background selected was the whole box or the cell 
where the mask was placed. The foreground area was selected as the whole mask 
including the eye areas. This was done for two reasons: the first one was caused by 
limitations of the applicable tools in the program (hdrscope), and the second was 
provoked by time constraints; exclusion of the eye area might make the time-consuming 
procedure even longer and more complicated. However, considering that the eye area 
constitutes at maximum 2.5% of the whole mask area (depending on the each mask 
placement; each mask was seen slightly differently due to its position on the shelf and 
distance from the observer), the possible error will not be high. 

The contrast (contrast measure) is calculated in hdrscope as the Weber ratio; that is, the 
difference of the mean luminance of the chosen foreground and background regions 
divided by the mean luminance of the background [Valberg 2005]; see (1) and (3). As a 
background the whole area of the cell was selected for analysis. 

Another measure of interest was the luminance ratio, which is the ratio between the 
mean luminance of the mask and the mean luminance of the background; see (2) and 
(3). The luminance ratio was calculated by the authors based on the luminance metrics 
from HDR images but not generated by any of the programs. It was expected before the 
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statistical analysis was performed that luminance ratio and contrast should lead to very 
similar results due to their straight mathematical interconnection. Nevertheless, during 
the working process both were tested, because they were acquired by different methods. 
hdrscope generated negative contrast values without the minus sign so that all data had 
to be checked thoroughly and the luminance ratio was used as a backup. 

                                                                                                        (1) 

where 

Lo is the luminance of the object; 

Lb is the luminance of the background. 

 

                                                                                                             (2) 

where 

Lo is the luminance of the object; 

Lb is the luminance of the background. 

 

                                                                                                    (3) 

where 

CR is the luminance ratio. 

Respondents specified in their questionnaires the areas where mask contours were 
indistinguishable as well as perfectly distinguishable; see Fig. 2. This information was 
used to test the validity of the interconnection between the invisible part of the contour 
marked by the participants, luminance values measured in 12 paired points around the 
contour of the mask, and evaluations of contour distinctness. This measure will be 
referred to as the percentage of the invisible part of the contour in the following 
sections. It was calculated as a relative area of the indistinguishable contour marked by 
the participant to the length of the whole contour of the observed mask and tested in 
comparison to obtained luminance readings. The results from each mask with the 
graphics from each participant were registered. 

Point luminance values were measured in 12 paired points around the contour of the 
mask; see Fig. 3. The first luminance reading in this pair was measured on the object 
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(numerator in the equation) and the second point measurement was taken from the 
background (denominator in the equation). Pairs of these point luminance 
measurements were within 30◦ of each other, so the pattern of the couple of points was 
reminiscent of a clock dial. We decided to make 12 pairs of measurements because this 
allowed measurement of four main positions (top, down, left, and right) and 

measurements between these main four 
spots. Analysis of luminance 
fluctuations around the contours of the 
masks, easily noticeable as false color 
images, helped us to conclude that two 
additional intermediate points 
supplementing the main four points 
would be enough to predict the 
distinctness of the mask’s contour. 

The last measure of contour 
distinctness tested in this study was the 
mean ratio of the 12 paired point 
luminance measurements, which will 
be referred to as mean point LR. Mean 
point LR was based on the previously 
described measurements and was 
important because it allowed us to 
reduce the measured area from the 
whole mask and its background as for 
ratio and contrast to 12 pairs of points. 

Fig. 2 Example of the questionnaire answer and participant’s drawing. 

Fig. 3 Twelve paired points around the contour of 
the mask where luminance was measured. 
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Luminance Ratio ≤ 1 Luminance Ratio ≥ 1 

B SE β p B SE β p 

Luminance Ratio -10.775 1.270 -0.803 < 0.001 0.322 0.022 0.577 < 0.001 

Glossiness 

(0=matte, 1=glossy) 
1.123 0.572 0.146 0.049 0.021 0.129 0.005 0.870 

Chromaticness 

(0=achromatic, 1=chromatic) 
-0.615 0.406 -0.080 0.130 -0.324 0.134 -0.073 0.016 

Order of observation 

(0=matte masks first,  

1=glossy masks first) 

-1.589 0.661 -0.213 0.016 -0.533 0.280 -0.120 0.057 

Level 2 variance "contour" 1.978 0.970 
 

0.041 0.495 0.161 
 

0.002 

R2level 1 0.764 
   

0.332 
   

Nlevel 1 255 
   

897 
   

Nlevel 2 32 
   

32 
   

TABLE 2 Regression analysis results: luminance ratio as a predictor of contour distinctness 

Thus, this could be a beneficial and time-saving quality of the measure. 

4. STATISTICAL ANALYSIS AND RESULTS 

As stated prevously, this article presents results related to analysis, detection, and 
prediction of contour visibility. 

For statistical analysis of the data, a two-level ordinal regression analysis was chosen. 
As an additional method for testing the correlation between mean point LR and 
indistinctness of the contour in a given point, a cross-classified analysis controlling for 
individual participant effects and mask effects was used. 

The experimental design with 32 participants evaluating 36 masks each resulted in a 
data structure where 36 evaluations were nested within each participant. To eliminate 
the noise that each participant’s general answering patterns contributed to the data, the 
main analysis was conducted at the object level, but the person-specific variance in the 
evaluations across all masks was modeled simultaneously (listed as Level 2 variance in 
Tables 2–5). The regression analysis was conducted as an ordinal (and not linear) 
regression because the dependent variable “distinctness of the contour” had neither 
equidistant nor normally distributed answers across the categories.  

In four separate analyses (Tables 2–5), the contrast, luminanceratio, percentage of the 
indistinguishable part of the contour of the mask, and mean point LR were assessed as 
main predictors of contour distinctness and as the dependent variable, and type of 
surface (glossy or matte), coloration (chromatic or achromatic), and order of 



8. Appended papers. Paper III 

135 
 

 
Contrast ≤ 0 Contrast ≥ 0 

 
B SE β p B SE β p 

Contrast -10.781 1.271 -0.803 < 0.001 0.341 0.023 0.569 < 0.001 

Glossiness 

(0=matte, 1=glossy) 
1.081 0.570 0.141 0.058 -0.004 0.129 -0.001 0.975 

Chromaticness 

(0=achromatic, 1=chromatic) 
-0.579 0.404 -0.076 0.152 -0.323 0.134 -0.073 0.016 

Order of observation 

(0=matte masks first,  

1=glossy masks first) 

-1.572 0.657 -0.212 0.017 -0.531 0.281 -0.120 0.058 

Level 2 variance "contour" 1.952 0.959 
 

0.042 0.496 0.162 
 

0.002 

R2level 1 0.761 
   

0.323 
   

Nlevel 1 255 
   

897 
   

Nlevel 2 32 
   

32 
   

TABLE 3 Regression analysis results: contrast as a predictor of contour distinctness 

observation of the shelves were assessed as additional independent control variables. 
The characteristics of some main predictors are different below and above a certain 
contrast point (0 for contrast and 1 for luminance ratio and mean point LR), as can be 
seen from the formulas to calculate them: whereas negative contrast, for example, can 
only vary between 0 and −1, positive contrast varies between 0 and positive infinity. 
This means that values below the zero contrast point cannot be compared to values 
above it. Therefore, two separate subanalyses were conducted (left and right half of the 
table). 

Results show that all the tested measures (contrast, luminance ratio, percentage of the 
invisible part of the contour, and mean point LP) are good predictors of the distinctness 
of the contour of the observed masks (see Tables 2–5). 

Table 2 presents the results for the ratio of the mean luminance of the mask and the 
mean luminance of the background. The luminance ratio has a highly significant and 
strong negative impact on the visibility of the contour in the area of negative contrast, 
which means the closer the ratio approaches 1 the more difficult it is to see the contour. 
For positive contrasts, the luminance ratio has a highly significant and strong positive 
impact, which means that the higher the luminance ratio value, the better the visibility 
of the contours. The type of surface has an impact on the visibility of the contour only 
for dark masks on light backgrounds, but the impact is small. This means that the factor 
“glossiness” enhances the visibility of the contour of dark masks (negative contrast). In 
addition, the order of observation (which shelf was attended first) had a small impact for 
dark masks on light backgrounds. Chromaticity had a small but significant impact for 
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light masks on dark backgrounds, where contours were slightly more difficult to see if 
the combination was chromatic. In these combinations, either both the mask and the cell 
or only one of them were chromatic. Figure 4 presents the probability plots for the each 
of the four categories (perfectly distinguishable, well distinguishable, just 
distinguishable, and indistinguishable contour) in the questionnaire depending on the 

 

 
Mean Point LP ≤ 1 Mean Point LP ≥ 1 

 
B SE β p B SE β p 

Contrast -9.666 1.418 -0.705 <0.001 0.555 0.039 0.572 <0.001 

Glossiness 

(0=matte, 1=glossy) 
1.450 0.583 0.234 0.013 0.009 0.127 0.002 0.944 

Chromaticness 

(0=achromatic, 1=chromatic) 
0.249 0.572 0.040 0.664 -0.467 0.131 -0.105 <0.001 

Order of observation 

(0=matte masks first,  

1=glossy masks first) 

-1.116 0.718 -0.182 0.120 -0.551 0.273 -0.125 0.043 

Level 2 variance "contour" 2.283 1.110 
 

0.041 0.467 0.153 
 

0.002 

R2level 1 0.648 
   

0.327 
   

Nlevel 1 225 
   

923 
   

Nlevel 2 32 
   

32 
   

TABLE 5 Regression analysis results: mean point LR as a predictor of contour distinctness  

 

 
B SE β p 

Percentage of the invisible contour of the mask  

as being marked by the respondents 
-0.128 0.005 -0.890 <0.001 

Glossiness 

(0=matte, 1=glossy) 
0.051 0.133 0.006 0.700 

Chromaticness 

(0=achromatic, 1=chromatic) 
0.304 0.133 0.037 0.023 

Order of observation 

(0=matte masks first,  

1=glossy masks first) 

-0.145 0.282 -0.018 0.606 

Level 2 variance "contour" 0.494 0.167 
 

0.003 

R2level 1 0.802 
   

Nlevel 1 1148 
   

Nlevel 2 32 
   

TABLE 4 Regression analysis results: percentage of the invisible part of the contour as a predictor 
of contour distinctness 
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four combinations of the control variables glossiness and chromaticity. The order of the 
shelves’ observation effect was controlled when calculating the probabilities. 

As can be seen in Table 3 and Fig. 5, the results are almost identical when the 
luminance ratio is substituted by contrast as the main predictor. Here the cutoff for zero 
contrast is 0. Contrast is a highly significant and strong negative predictor for negative 
contrasts (the better the visibility the more negative the contrast is below 0) and it is a 
highly significant, strong positive predictor the more positive the contrast is. The closer 
to 0, the more difficult is it to perceive the contour. Again, the order of observation has 
a small but significant impact for dark masks on light backgrounds, and chromaticity 
has a small effect for light masks on dark backgrounds.  

The next measure of interest that was statistically tested was percentage of the invisible 
part of the contour marked by the respondents. In fact, it is not an entirely independent 
measure based only on luminance measurements. In this study it was based on the 
analysis of the drawings of the participant and contrasted with luminance measurements 
of 12 paired points set close to the border between the object and background (Fig. 3). 
Nevertheless, the authors believe that a correct interpretation of this information allows 
us to make some significant conclusions that will be discussed further in the article. 
Therefore, percentage of the invisible part of the contour is a statistically significant 
measure of the 3D object’s contour distinctness. It also signifies that people were 

 
Fig. 4 Probability curve for the four categories of the questionnaire, four combinations of control 
variables, and luminance ratio as a main predictor. 
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consistent and specified those contours’ parts that are really characterized by low 
luminance. Glossiness has no impact here, which indicates that irrespective of the type 
of surface and light directivity, respondents marked similar parts of the invisible contour 
of the same glossy and matte masks. Chromaticity remains statistically significant but 
has a positive effect, which indicates that for chromatic masks/backgrounds the 
visibility is rated higher when the effects of the other predictors in the equation 
(especially percentage of visible contour) are controlled for. 

Looking at the probability plots we can see some interesting and quite consistent results 
(Fig. 6). For illustrative purposes, let us take a look at the probability of 60% for each 
category of the subjective distinctiveness. The value of 60% probability was chosen as 
being represented by measure percentage of the invisible contour of the mask at each 
particular category. The mask is evaluated as perfectly distinguishable by more than 
60% of the respondents if the percentage of the invisible part of the contour is less than 
4% for chromatic contributions and 2% for achromatic combinations. The invisible area 
of the contour of a mask evaluated as well distinguishable by more than 60% of the 
participants lies in the interval from 10% to 25% for achromatic combinations and from 
14% to 27% for chromatic combinations with peaks at 18% and 19%, respectively. 
When the contour of the mask is rated as just distinguishable by 60% or more, the 
invisible area lies between 34% and 64% for achromatic combinations and between 
37% and 66% for chromatic combinations. If the invisible part of the contour of the 

Fig. 5 Probability curve for the four categories of the questionnaire, four combinations of control 
variables, and contrast as a main predictor. 
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observed mask is more than 71% (achromatic) and 73% (chromatic), it is evaluated as 
indistinguishable. 

Considering the results of general descriptive statistics of the areas of the invisible 
contours of all 36 masks specified by respondents and further measured at luminance 
maps, we can conclude that the mean point LR in these areas was 1.449. The median, as 
a measure less sensitive to extreme values, was 1.05, and the standard deviation was 
0.728. If we compare these results to those taken from several particular masks that 
were evaluated by participants as having a just distinguishable contour with highest 
consistency, the values would be mean point luminance ratio = 1.026, median = 1.02, 
and standard deviation = 0.059. These results conform to each other and help us to 
conclude that part of the contour of 3D object could be evaluated as indistinguishable if 
the point luminance ratio is between 1 and 1.449. It could be below 1 and still perceived 
as indistinguishable, but for more precise conclusions further studies are required. 

The last measure that was investigated is the mean point LR, which is an averaged 
measure obtained from the 12 pairs of luminance measurements all over the contour of 
the mask. Results show that it is a statistically significant predictor of distinctness both 
for the light and dark masks (Table 5, Fig. 7). Glossiness has an impact on contour 
visibility for the negative contrast combination, again improving to a small degree 
contour distinctness of dark masks. Chromaticity has an opposite effect to light masks 
on dark background, decreasing visibility of the contours in chromatic combinations; 
that is, combinations where either object or cell was chromatic. 

Fig. 6 Probability curve for the four categories of the questionnaire, four combinations of control 
variables, and percentage of the invisible part of the contour as a main predictor. 
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Correlation SE p 

Ratio of paired luminance measurements ≤ 1 

(if belongs to indistinguishable area = 1,  

if belongs to visible area = 0) 

0.554 0.051 <0.001 

Ratio of paired luminance measurements ≥ 1 

(if belongs to indistinguishable area = 1,  

if belongs to visible area = 0) 

-0.391 0.024 <0.001 

TABLE 6 Cross-classified data analysis results 

Finally, a cross-classified regression analysis for a binary dependent variable (0 = the 
contour in this part of the mask is visible; 1 = the contour in this part of the mask is 
invisible) was performed to test the relation between the individual point measures of 
the luminance ratios and the subjective rating if the area was visible. The cross-
classified analysis controls the “people factor” and “mask factor,” which both impact 
the results on each their second level. This helped us to test the correlation between each 
individual pair of luminance readings and indistinguishable contour as being marked by 
the participants. Results show a high statistical significance (Table 6) for both sides of 
the contrast and medium to strong correlations, which can be interpreted as an 
indication that the data regarding areas of invisible contours obtained from the 
questionnaire matched with the luminance ratios closest to 1 measured in the pairs of 
points that belonged to these areas. This shows that the participants were able to reliably 
report the invisibility of the contour in certain areas of the masks. 

5. DISCUSSION 

The experiment reported in this article has shown that luminance measurements can be 
promising predictors of light modeling. In this particular case, the contrast, luminance 
ratio, percentage of the invisible part of the contour, and mean point LR were studied as 
predictors of contour distinctness of the observed Venetian masks. Correlation of the 
physical luminance measurements and participants’ perceptions are complex and 
usually nonlinear, so they should be studied carefully. For this purpose, we used a two-
level ordinal regression analysis that took into account various interconnections 
between factors and was able to control for a number of variables, including answering 
style and other individual factors of the participants. The analysis shows clearly that 
easily measurable luminance values can predict a large amount of variance in the 
distinctness of the contours of the 3D objects. However, the investigated measures gave 
partly identical and partly different results. 



8. Appended papers. Paper III 

141 
 

First, let us compare the results when using luminance ratio and contrast. These 
measures are simple and are based only on average luminance values of selected 
regions, namely, foreground and background. Their results are almost identical as 
expected at the beginning of the study. The only difference is the glossiness factor. For 
the luminance ratio, glossiness has an additional significant impact, whereas for contrast 
this effect does not show. However, both P values are quite close to 0.05, so this result 
is most likely random. The glossiness factor in fact combines two different conditions 
of the observed shelf with 3D objects that distinguishes it from the shelf with matte 

Fig. 7 Probability curve for the four categories of the questionnaire, four combinations of control 
variables, and mean point LR as a main predictor. 

 

 
Perfectly distinguishable contour, PROBABILITY 80% 

 
matte/achr. 
combination 

matte/chr. 
combination 

glossy/achr. 
combination 

glossy/chr. 
combination 

Luminance Ratio ≤ 1 0.49 0.42 0.59 0.52 

Luminance Ratio ≥ 1 13 14 13 14 

Contrast ≤ 0 -0.5 -0.57 -0.4 -0.47 

Contrast ≥ 0 11.5 12.5 11.5 12.5 

Mean Point LR ≤ 1 0.46 0.44 0.6 0.59 

Mean Point LR ≥ 1 23 22.5 23 22.5 

TABLE 7 Threshold values for Luminance Ratio, Contrast and Mean Point LR measures of contour 
visibility 
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mask: type or directivity of the lighting and type of surface of the mask. To generalize 
the significance of glossiness to all of the measures, we found that it affected only 
perception of the contour of the dark masks on the light background, slightly enhancing 
it. This can be explained by the appearance of a dark glossy object in a lighter 
environment. In this situation, the observer easily notices that not only do highlights and 
reflections appear brighter at the dark object but that the overall treatment of light and 
shade all over the object is more noticeable, which can indirectly affect contour 
visibility. Nonetheless, the influence of the glossiness factor always had a positive 
effect, slightly enhancing contour visibility, and therefore it is not a factor that should 
be avoided in studies of contour distinctness of various 3D objects. 

Chromaticity is a factor that affected the discrimination of the contours of all of the light 
masks on the dark background and appears in the results of all of the measures. For 
luminance ratio, contrast, and mean point LR, this influence is strongly negative 
(reduces visibility), whereas for percentage of the invisible part of the contour it is 
positive. This contradiction can be explained by the fact that the measure percentage 
was calculated for all of the masks irrespective of whether it was positive or negative 
contrast. Surely this factor should be taken into account during the process of contour 
distinctness analysis. Although it is important to emphasize that chromaticity slightly 
deteriorates contour detection, high consistency between measures and observations 
shows that chromatic objects can be studied using luminance maps considering the 
colors’ saturation. 

For a better understanding of the results, it should be noted that a comparison and 
examination of the probability plots can be done for any of the four measures. They 
express the probability of the evaluation of the contour of the mask as perfectly 
distinguishable, well distinguishable, just distinguishable, or indistinguishable. We can 
look at luminance ratio or contrast, mean point LP, or percentage of the invisible part of 
the contour and figure out which values of the particular measure the contour of the 
mask will be assigned to any of the represented categories. Another advantage of these 
plots is that threshold values of the proposed measures representative of each of the four 
categories can be found; see Table 7. We may find threshold values of the measures that 
guarantee perfect visibility of contour by 80% of observers. We may also find out how 
the threshold values differ depending on the optical characteristic of the object surface; 
that is, glossiness and chromaticity. Additionally, we may compare luminance ratio 
thresholds with the mean point LR. Interestingly, the thresholds of mean point LR ≥ 1 
are always higher than the thresholds for all object categories of luminance ratio ≥ 1. 

6. VALIDATION ISSUES AND FUTURE WORK 

High-quality lighting becomes an especially important issue in a time dominated by a 
dynamic technical development of new light sources and daylighting techniques. A 
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good light model is one of the necessary conditions for lighting quality. It is essential 
both in workplaces and in homes. When we communicate with other people we need to 
accurately perceive various 3D objects, especially faces, and we know that the correct 
interpretation of human facial expressions depends on the light distribution on the face 
and the background [Zaikina and others 2014]. 

We believe that the findings presented in this study will provide new and useful 
information to help develop modern techniques for designing qualitatively comfortable 
lighting. It is economically beneficial among designers today to shift to various 
computer simulation tools that allow them to simulate, test, and visualize different 
lighting scenarios and conditions. The measures from the current study can be useful 
not only for analysis of objects’ contour visibility in a real environment using HDR 
imaging techniques but also in simulated or virtual environments. Indeed, these 
measures should be tested with other objects and in different conditions to provide 
reliability of their use. However, the results show that measures of light modeling based 
on luminance mapping are promising tools that should be further developed to help 
lighting designers to create quality lighting in the future. 

7. CONCLUSION 

The aim of the current study was to study and propose some possible measures of light 
modeling, particularly distinctness of the contour of the 3D objects illuminated by 
daylight. These measures had to be reliable, easy to obtain, and reconciled with the 
perception of the real daylit environment and objects in it. The results of the current 
experiment showed that proposed luminance-based measures of the contour distinctness 
correlate well with subjective visual perception and expressed numerically reflect 
several levels of contour visibility. Although the obtained results are restricted by 
conditions such as illumination, type of object, its coloration, and others, further 
development can nevertheless form a simple and useful tool for contour visibility 
prediction. 
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ABSTRACT 

Nowadays it is very common to discuss the various aspects of lighting within a 
framework of energy efficiency. In addition, the questions concerning lighting quality 
and occupants’ comfort are another topic for active studies and debates. In the current 
investigation we tested one aspect of lighting quality—that is, light modeling—with the 
help of a luminance mapping technique. Here the degree of a 3D object’s shape and 
detail distinctness are associated with modeling quality; that is, directly related to the 
light modeling concept. The aim of the study was to comprehend whether luminance-
based design as a method, most perception oriented among others, could be applicable 
for the evaluation and prediction of the visibility of the shape and details of real 3D 
objects observed by people under daylight conditions and, further, to suggest 
luminance-based measures that can be developed into indicators of shape and details 
distinctness. Ordinal regression analysis of the survey results paired with several 
measures based on luminance values was performed. The tested measures were 
luminance ratio, mean luminance of the object, standard deviation of the luminances of 
the object, and the ratio between the highest luminance value of the object and mean 
luminance of the object. Among all of these measures the first three have the strongest 
correlations with subjective perception of 3D objects’ shape and detail distinctness. 

KEYWORDS: high dynamic range images, luminance-based measurements, 
luminance maps, light modeling, shape and detail distinctness 
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1. INTRODUCTION 

Lighting quality is a goal of excellence, which lighting designers, architects, and 
engineers are eager to reach. However, there is no particular definition of the term 
“lighting quality” that is accepted by official institutions. Some researchers have tried to 
make this concept clearer and more easily understood by discussion in their articles 
[Dehoff 2014; Veitch 2004]. By generalizing various approaches, it can be concluded 
that lighting quality includes several groups of parameters concerning individual well-
being, economics, and architecture. Such understanding of the term lighting quality has 
been accepted by the CIE [Veitch and others 1998]. There are a great number of 
particular parameters and measures that can be analyzed and applied to obtain the best 
lighting solution for a certain building/room/situation. Light modeling (telling how well 
the light describes a 3D object in a given place) is one of the lighting quality parameters 
that might be both individual well-being and a functional requirement of the 
architectural space. 

In the European Standard EN 12464-1:2011 Lighting of Workplaces, light modeling is 
defined as “the ratio between cylindrical and horizontal illuminance at a specific point 
and should be between 0.3 and 0.6” [European Committee for Standardization 2011]. 
Useful as this definition may be, we did not rely on this light modeling index because it 
is based on illuminance values. Though currently used metrics for daylight design are 
based on horizontal illuminance and some researcher state that the daylight factor (as a 
ratio of the simultaneously measured horizontal illuminance inside and outside the 
building) can be applied as a predictor of the appearance of the space [Cuttle 2008], 
methods based on luminance values might be more reliable and useful, especially for 
estimation of light modeling, as more perception-oriented. 

Luminance is a measure of the amount of light reflected from the surfaces that forms an 
image on the eye’s retina that is then processed by the brain. The human eye is sensitive 
to luminance and adapts to different luminance levels quickly and precisely. The 
perception of brightness of the surrounding surfaces and objects is also based on the 
luminance levels and may be interpreted as a function of luminance levels of an object 
and a background observed simultaneously by an observer [Hopkinson and others 
1966]. 

2. BACKGROUND 

The fact that the occupants’ requirements should be in agreement with the lighting 
solutions being applied in a building is widely discussed nowadays. Lighting quality is a 
broad concept consisting of various factors, and it may have serious consequences if not 
reached, among which are low productivity, fatigue, depression and slower recovery, 
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decreased well-being, higher cost of labor, lower sales in retail, and many others 
[Dehoff 2014]. Therefore, different aspect-oriented measures should be equally 
considered during the lighting and architectural design process or according to 
reasonable allocation of priorities. 

Modeling as a factor closely interconnected with the subjective perception of objects in 
space could be important in different spheres: from hospital lighting to museum or 
commercial lighting. The possibility to predict light modeling in particular rooms and 
spaces could be beneficial for lighting experts. 

In the current study the term “light modelling” represents the degree to which the light 
describes 3D objects so the contour, shape, and details are clearly visible. The better the 
light modeling is, the easier we discriminate 3D objects from the background and the 
more correctly we read their 3D shape and their specific characteristics. 

It is important to mention previous studies dedicated to light modeling. One of them 
was based on illuminance measurements using a six-sided illumination meter for 
prediction of shading patterns of various objects or the distribution of eye illuminance at 
a given point [Cuttle 2008]. Another suggests using a particular instrument, a modeling 
sensor, to predict light distribution on a 3D object, predict the occurrence of light spots, 
cast shadows, and register the light direction [Matusiak 2002]. Both approaches are 
highly interesting because they represent two different methodologies: numeric 
illuminance-based method and another more visually or perception-oriented method. As 
further evidence of the value of vertical surface illumination, Schielke [2013] recently 
reviewed and outlined the rationale and methods for lighting vertical surfaces. 

However, the methodology used in the current study combines advantages of numeric 
measures with visual assessment of the observed objects in terms of their shape and 
detail distinctness. This method, called high dynamic range imaging, and its prime 
advantage is that it is based on luminance values, and luminance is the currently known 
measure that describes visual perception most correctly; for example, the perception of 
brightness as a function of luminance [Gilchrist 2007]. The term “luminance map” will 
also be used further instead of high dynamic range image to accentuate that the picture 
was used for the luminance measurements. 

It is noteworthy that authors of one recent article focused on metrics for the lighting of 
pedestrians [Saraiji and Oommen 2014] also used luminance-based design as a method. 
They studied the target (pedestrian) visibility during the night time at the unlit street and 
developed the concept of dominant contrast. The dominant contrast is the contrast of 
any part of the pedestrian that provides the highest pedestrian visibility and is 
considered a useful measure for visibility models. Therefore, understanding of usability 
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of luminance-based measures related to objects’ distinctness and its detail 
discrimination can be important and useful both for science and practice in this field. 

The authors were eager to identify luminance-based measures that will enable 
evaluation and prediction of light modeling. We assume that a good light modeling is 
achieved only if both the contour of the object and the shape and details on the object 
surface are well visible. The results connected to the contour visibility have been 
published in Leukos [Zaikina and others 2015]. The four proposed measures were 
contrast (calculated with the Weber formula), the luminance ratio between the mean 
luminance of the object and mean luminance of the background, the mean of paired 
point luminance ratio measurements around the contour of the object, and the 
percentage of the invisible part of the contour. The ordinal regression analysis 
performed showed that those measures are good predictors for contour distinctness of 
the observed 3D objects; because they are expressed numerically, they are 
comprehensive and easy to obtain and can be practically applicable after the further 
development in other lighting conditions. 

In this article we focus at the object’s shape and detail visibility. The hypothesis is that 
certain luminance-based predictors of shape and detail visibility of real daylit 3D 
objects correlate very well with the human visual evaluation of shape and detail 
distinctness and might become important measures of light modeling. These will be four 
possible luminance-based measures for shape and detail distinctness of real daylit 3D 
objects, namely, luminance ratio (object–background), mean luminance of the object, 
standard deviation of the luminances of the object, and the ratio between highest 
luminance value of the object and mean luminance of the object. 

3. METHODOLOGY 

A real-life experiment was set up and conducted for this study in August 2013. It 
consisted of the respondents’ observations of daylit 3D objects placed in a full-scale 
mock-up room, survey answering using provided scale for the evaluation, and 
photographing sessions of the observed scene [Zaikina and others 2015]. 

Despite the fact that the visual system handles chromatic and achromatic contrast in 
different ways [Valberg 2005], 3D objects of both types were presented in the 
experiment to reconstruct a realistic real-life situation. Moreover, a previous experiment 
conducted by the authors showed that low saturated colors and interiors containing the 
same type of colors could be successfully studied using the luminance mapping 
technique [Zaikina 2012]. In addition the precision of the luminance maps of the scenes 
containing surfaces of various hue and color saturation were taken into account 
according the results of the study conducted by Anaokar and Moeck [2005]. 
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The main data sources for the present study were subjective ratings of shape and detail 
visibility provided by participants in a quantitative questionnaire, graphical 
information—that is, drawings made by participants— and subsequently generated high 
dynamic range images [Zaikina and others 2015]. High dynamic range imaging is a 
well-established method and its accuracy and reliability were tested by a number of 
researchers in different lighting conditions, at differenttimes of the day, and using 
different colors of light sources and surfaces in the interiors [Anaokar and Moeck 2005; 
Cai 2011; Chung and Ng 2010; Inanici 2006; Tyukhova and Waters 2014]. 

3.1. Experiment Design 

The experiment took place in the Room Laboratory at the Faculty of Architecture, 
Norwegian University of Science and Technology, Trondheim, Norway 
(http://www.ntnu.edu/bff/laboratories). A full-scale mock-up room 4.8 m × 4.8 m × 2.5 
m in size was built (Fig. 1). Daylight was provided through one daylight opening that 
was shielded by a partition wall constructed in front of the window. This construction 
prevented possible glare in the visual field of the participants. 

The experimental space contained two shelves (shelf A and shelf B) that were placed at 
two adjacent walls. They were made of box-like cells, 0.5 m × 0.5 m in size, which 
were painted in different achromatic and equiluminanat chromatic colors. 3D objects 
(Venetian masks) provided for observation during the experiment were placed in the 
middle of each cell. All of the cells and masks were painted in following low saturated 
colors: grey, pink, and green; additionally, white and dark grey were used. Notations of 
these colors, corresponding to the Natural Colour System®© (NCS) widely used in 
Scandinavian countries, can be found in Table 1. 

Two shelves were identical in construction, size, and color combinations of the masks 
and cells, whereas they were lit diversely and contained objects with different type of 
the surface (coating). Shelf A was illuminated mostly by sidelight from the window and 
partly by the reflected light; it contained masks with glossy coating. Due to dominant 
side illumination from the window, a shadow pattern was strongly pronounced on the 
masks presented here. Glossiness of the masks also created interplay of bright highlights 
and reflections that were quite easily noticeable. Shelf B was shielded from the window 
by a partition wall and therefore illuminated by reflected and evenly distributed daylight 
(Fig. 1a). It contained matte masks. Color combination of the object and its background 
was unique for each box of the shelf; therefore, the setup resulted in 18 particular 
combinations (chromatic and achromatic) that were duplicated on shelves A and B. 

From the observer’s point of view the vertical angular size of the observed Venetian 
masks varied from 2.7 to 3.63°, and the horizontal angular size varied from 1.5 to 2.1°. 
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The light level in the experimental room was kept low, because it was necessary to 
create a situation with hardly visible objects and their details. The orientation of the 
room was northeast and translucent curtains were used on the windows; therefore, no 
direct or reflected sunlight could penetrate into the room. 

Although the experiment was conducted in overcast weather conditions, the light level 
in the room fluctuated; eye illuminance calculated from the readings of the luminance 
maps varied in the range from 3 lx (minimum value in the darkest lighting conditions) 
to 167 lx (maximum value in the brightest lighting conditions). During the single 
experimental session no particular registration of the light level and its changes was 
performed. The noticeable light fluctuations were monitored visually and noted in the 
diary of the experiment. Only two cases had noticeable changes of light level within the 
experimental session. Because the participants claimed that those changes did not affect 
their answers, the above-described cases were included in the scope of the data for 
analysis. 

Data were collected during 8 days in August 2013. In each session two subjects 
observed the Venetian masks and answered the questionnaires. Participation of two 
people simultaneously helped to reduce the time of the experiment by half, which was 
highly desirable considering changeable weather conditions, where only a cloudy state 
was acceptable. Respondents were sitting on adjoining chairs and a digital camera was 
mounted between them at eye level (1.2 m). The camera was oriented toward the 
window and captured the scene with both shelves. This was done to get angle of view 
approximated to the participants’ angles of view and reduce the complexity of the 

Fig. 1 Picture showing (a) an overview of the experimental room and (b) the plan of the experimental 
room. 

Name of the colour used in the 
paper Dark grey White Green Pink Grey 

Nominal colour nearest NCS 
sample 

S 6005-
R80B 

S 0300-
N 

S 0520-
G40Y 

S 0510-
R20B 

S 1002-
B50G 

TABLE 1. Notations of the colours used in the experiment, according to NCS Colour System. 
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experiment but still photograph as quickly and as accurately as possible. Because the 
distance between the viewpoint of camera and the viewpoint of each participant was 
only 35 cm and the distance from each of those viewpoints to the objects was a 
minimum of 3.6 m, the largest difference in the view angle between the camera and a 
participant was 4.63° and thus negligible. This allows us to assume that directivity of 
specular reflections appearing on the glossy objects was registered by the camera 
similar to the participants’ vision but not equal to it because a camera is not a physical 
equivalent to the human eye. 

At the beginning of each experimental session the following procedure was performed: 
photographing of the set of 11 low dynamic range images that lasted one or two 
minutes, manual measuring of luminance in certain points of the observed scene (1–2 
minutes), and explanation of the terms used in the questionnaire and answering the 
participants’ questions. Normally it took approximately 15 minutes and allowed 
participants to adapt to the existing lighting conditions. The survey answering took no 
more than 1 hour, although the time was not limited. Participants were asked not to 
communicate with each other during this time. 

3.2. Participants 

Thirty-two subjects participated in the experiment (20 female, 12 male). Subjects were 
of different nationalities, had various educational and professional backgrounds, and 
were naïve to this type of experiment. Their ages varied from 14 to 74, with an average 
age was 32.1 years, mode of 26 years, and standard deviation of 10.9 years. 

To ensure normality of the respondents’ vision they were tested using a Snellen chart, 
the Ishihara test for color vision, and a contrast sensitivity test (Vigra program); 
normality of 3D vision was self-reported. According to performed controls all 
participants were allowed to participate in the experiment who had normal or corrected-
to-normal vision. 

3.3. Questionnaire 

A two-part questionnaire was provided for the survey. Each part was dedicated to one of 
the two shelves with the 3D objects and included two simple questions concerning 
contour distinctness of the observed object and its shape and detail distinctness. 

According to the short explanation given to the participants, the contour was associated 
with the border between the object and background; the shape represented the form of 
the object being concave or convex; and all face parts such as nose, eyebrows, cheeks, 
mouth, and forehead were related to the details of the mask. A four-point ordinal scale 
for the range of the contour, shape, and detail distinctness was provided in the 
questionnaire and contained following options:  



8. Appended papers. Paper IV 
 

154 
 

• Indistinguishable (invisible shape and details) 
• Just distinguishable (barely visible shape and details or some of the details of the 

mask) 
• Well distinguishable (well-visible shape and details of the mask except some 

parts or elements) 
• Perfectly distinguishable (the whole mask is well visible)  

Participants were allowed to start their evaluation from any mask presented on the 
particular shelf, which helped to provide randomization of mask observation, although 
this was not systematically implemented because participants chose themselves. 

Because the authors were eager to obtain more information on visibility of particular 
areas of the masks, the respondents were asked to specify indistinguishable and 
perfectly distinguishable zones as drawings included in the questionnaire form. This 
graphical information was considered during the luminance measuring and analysis 
process. An example from the participants’ questionnaire with outlined perfectly 
distinguishable and indistinguishable zones of the observed mask is presented in the last 
figure. 

During the experimental session, an alternating order of shelf observation was 
maintained. This means that participants observed different shelves during the first half 
of the experiment and others during the second part without changing their sitting 
position. This order was accomplished to prevent disturbance of one respondent by 
another and was controlled for during the statistical analysis (specified as “order” factor 
in Tables 2–5). 

3.4. Camera Settings and Manual Measurements 

A Nikon D600 digital camera fitted with a full-frame (AF DX Fisheye-Nikkor 10.5mm 
f/2.8G ED) lens was used for taking 17 sets of low dynamic range images assigned for 
further luminance measurements. The camera was mounted on a tripod to ensure 
sharpness of the photographs. It remained untouched during the experiment and was 
controlled by a computer with Nikon Camera Control Pro software. The following 
camera settings were used: white balance, cloudy; auto-bracketing, off; sensitivity, 200 
ISO; auto focus, auto; and aperture, fixed, f/4. Exposure variations were achieved by 
varying the shutter speed in manual exposure mode with step 1 EV. 

Calibration of the assembled HDR images requires manually measured luminance 
values as the reference; measuring was performed using a Minolta LS-100 luminance 
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meter. The four specific points were targeted in the scene and the procedure was 
repeated for each new photographing session. Merging low dynamic range images into 
high dynamic range images and calibration were performed using Photosphere software 
[Ward 2005]. The resolution of the final luminance maps was 3936 × 2624 pixels. 

3.5. Proposed Luminance-Based Measures 

An important task after finishing data collection was to determine the luminance-based 
measures that would be tested as predictors of shape and detail visibility of the observed 
3D objects. These should be easy to obtain, simple to interpret, precise, and universal 
for various objects and lighting situations. The possible choice of measures was limited 
by technical options of the software. 

Luminance measurements were performed using two programs: Photosphere [Ward 
2005] and hdrscope [Kumaragurubaran and Inanici 2013]. In particular, the 
measurements of the whole area of the image, squared areas of interest, and point 
measurements were conducted in the Photosphere program. Luminance measurements 
of multiple selected regions and figures of complex geometry were carried out using the 
hdrscope software. 

Due to technical restrictions of the currently available programs for analysis of 
luminance maps, which provide simple basic tools for area selection by outlining 
particular zones, the process of selection of various regions of interest was performed 
manually. Therefore, while selecting the foreground or mask area, the eyes were 
included in the whole outline. Considering that the eye area constitutes at maximum 

 Mean luminance of the mask 
B SE β p 

Mean luminance of the mask 0.092 0.012 0.419 < 0.001 
Background colour 
(white backgrounds = 0, the medium dark bkgr. = 1,  
the dark bkgr.  = 2) 

0.455 0.089 0.143 < 0.001 

Glossiness 
(0=matte, 1=glossy) 

0.594 0.124 0.140 < 0.001 

Chromaticness 
(0=achromatic, 1=chromatic) 

-0.293 0.113 -0.069 0.010 

Order of observation 
(0=matte masks first, 1=glossy masks first) 

-0.723 0.367 -0.170 0.049 

Level 2 variance "shape and details" 0.975 0.278   < 0.001 
R2level 1 0.270       

Nlevel 1 1145    
Nlevel 2 32    

TABLE 2. Regression analysis results: mean luminance of the mask as a predictor of shape and 
details distinctness (controlled for background colour, glossiness, chromaticness order of 
observation, and person effects). 
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Luminance ratio ≤ 1 Luminance ratio ≥ 1 
B SE β p B SE β p 

Luminance ratio 1.978 0.501 0.259 < 0.001 0.075 0.017 0.156 < 0.001 
Glossiness 
(0=matte, 1=glossy) 2.343 0.304 0.531 < 0.001 0.576 0.130 0.150 < 0.001 

Chromaticness 
(0=achromatic, 
1=chromatic) 

-0.112 0.258 -0.025 0.664 -0.258 0.133 -0.067 0.052 

Order of observation 
(0=matte masks first, 
1=glossy masks first) 

-0.493 0.446 -0.115 0.270 -0.858 0.339 -0.224 0.011 

Level 2 variance 
"shape and details" 1.091 0.463  0.019 0.780 0.236  0.001 

R2level 1 0.278 0.102 

Nlevel 1 256 893 

Nlevel 2 32 32 

TABLE 3. Regression analysis results: luminance ratio as a predictor of shape and details 
distinctness (controlled for glossiness, chromaticness, order of observation, and person effects). 

 

2.5% of the total mask area (depending on the placement of each mask because they 
were seen slightly differently due to position on the shelf and distance from the 
observer), the possible error will not be high. 

The first measure used in the subsequent analyses was the mean luminance of the 
foreground (the Venetian mask). This measure was chosen as the simplest possible 
measure and was imposed by the logical assumption that shadows revealing visibility of 
the various forms are more visible on lighter objects. However, the kind of background 
can be a factor affecting perception and influencing adaptation of the visual system; 
therefore, the background factor was controlled for during the statistical analysis. 

The second measure tested was the luminance ratio; that is, the ratio between the mean 
luminance of the mask and the mean luminance of the background. This measure relates 
to the contrast, which might be significant factor for an object’s shape and detail 
distinctness. 

The third measure was the ratio between the maximum luminance value of the mask and 
the mean luminance of the mask, because it was presumed that higher ratios might 
reflect better detail visibility. Similar assumptions concerned the last measure of shape 
and detail distinctness, which was standard deviation of the luminances of the 
foreground. 

Additionally histograms and false color images of the obtained luminance maps were 
examined using hdrscope [Kumaragurubaran and Inanici 2013]. The program enables 
obtaining and saving the raw luminance data of the selected regions of interest, namely, 
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the information according to each pixel in the scene or selected zone, its luminance 
values, the number of pixels with equal luminance, et cetera. Results acquired from the 
analysis of  this information will be discussed further. 

4. STATISTICAL ANALYSIS AND RESULTS 

To process the data that might be affected by a wide spectrum of factors of a real daylit 
environment, a two-level ordinal regression analysis was chosen. The analysis was 
conducted as an ordinal (and not linear) regression because the dependent variable 
“distinctness of the shape and details” had neither equidistant nor normally distributed 
answers across the categories. 

The independent variables for statistical analysis were as follows: 

1. Mean luminance of the mask 
2. Luminance ratio 
3. Ratio between the maximum luminance value of the mask and the mean 

luminance of the mask 
4. Standard deviation of the luminance of the foreground  

The additional independent control variables were as follows: 

1. Type of surface (glossy or matte) 
2. Coloration (chromatic or achromatic) 

 Matte masks Glossy masks 
B SE β p B SE β p 

Ratio between maximum 
luminance value on the 
mask and mean 
luminance of the mask, 
Lmax/Lmean 

-0.681 0.091 -0.338 <0.001 0.030 0.022 0.061 0.179 

Chromaticness 
(0=achromatic, 
1=chromatic) 

-0.393 0.165 -0.098 0.017 -0.026 0.164 -0.007 0.872 

Order of observation 
(0=matte masks first, 
1=glossy masks first) 

-0.859 0.406 -0.214 0.034 -0.631 0.325 -0.171 0.052 

Level 2 variance 
"details" 

1.103 0.346   0.001 0.639 0.218   0.003 

R2level 1 0.183       0.033       

Nlevel 1 571    574    
Nlevel 2 32    32    

TABLE 4. Regression analysis results: luminance ratio between maximum luminance of the mask 
and mean luminance of the mask as a predictor of shape and details distinctness separated for 
matte and glossy masks (controlled for chromaticness, order of observation and person effects). 
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3. Lightness of the background (white, medium dark, and dark) 
4. Order of observation of the shelves 

These variables were controlled for by entering them as additional predictors in the 
regression analyses, which adjusts the regression weight for the main independent 
variables accordingly. The regression weights for the control variables are reported in 
the results tables (Tables 2–5). 

The dependent variable was shape and detail distinctness. 

The experimental design with 32 participants who assessed 36 masks each resulted in a 
data structure where 36 evaluations were nested within each respondent. This means 
that the personal characteristics of each person will affect the ratings for all 36 masks 
each person rated and so on. This leads to a dependency of the ratings of each person, 
which violates the assumption of unrelated residuals in a normal regression analysis. 
Therefore, a multilevel regression analysis was used instead. The main analysis was 
conducted at the object level, but the person-specific variance in the evaluations across 
all masks was modeled simultaneously and taken out of the regression equation at the 
mask level. For information purposes, the amount of variance located at the person level 
is listed as level 2 variance in Tables 2–5.  

The characteristics of the luminance ratio are different below and above the zero 
contrast point 1, because the values below this contrast point cannot be equally 
compared to values above it. Therefore, two separate subanalyses were conducted (left 
and right half of Table 3). 

Results show that three of the tested measures are good predictors of the distinctness of 
the shape and details of the observed masks. These measures are the luminance ratio, 

 All masks 
B SE β p 

Standard Deviation of the luminances of the mask 0.145 0.020 0.372 < 0.001 
Glossiness  
(0=matte, 1=glossy) 

0.585 0.126 0.141 < 0.001 

Chromaticness 
(0=achromatic, 1=chromatic) 

-0.391 0.114 -0.094 0.001 

Order of observation 
(0=matte masks first, 1=glossy masks first) 

-0.756 0.346 -0.183 0.029 

Level 2 variance "details" 0.853 0.246   0.001 
R2level 1 0.232       

Nlevel 1 1143    
Nlevel 2 32    

TABLE 5. Regression analysis results: standard deviation of the luminances of the mask as a 
predictor of shape and details distinctness (controlled for glossiness, chromaticness, order of 
observation and person effects). 
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mean luminance of the observed object, and standard deviation of the luminances of the 
object. The ratio between maximum luminance of the mask and the mean luminance of 
the mask appeared to be the least precise measure and suitable only for matte objects.  

Table 2 presents the results f or the mean luminance of the mask being the main 
predictor of the object’s shape and detail distinctness. It has a highly significant and 
strong positive impact for all masks, both glossy and matte. Background color was 
added here as an additional factor influencing perception. Background color has an 
impact on visibility of shape and details, showing that the darker the background, the 
better the visibility. The words “visibility” and “distinctness” will be used as synonyms 
defining the clarity and ease of an object being seen by subjects. The factor “glossiness” 
included not only the type of coating on the masks but also the kind of illumination 
because both aspects were confounded; that is, sidelit glossy masks on shelf A and 
diffusely illuminated matte masks on shelf B. This factor has a weak but still 
statistically significant impact on shape and detail distinctness. This means that 
glossiness slightly enhanced visibility; in other words, glossy sidelit masks received 
slightly higher distinctness ratings than matte objects. “Chromaticness” expresses the 
state of the mask being chromatic or achromatic and had a rather low impact, making 
the object’s shape and details a bit less visible in comparison to situations with 
achromatic color combinations. Order of observation is the factor that controlled the 
potential effect of the order of observation of the shelves, because it was noted already 
that two people started observation from different shelves—one from sidelit shelf A and 
another one from the diffusely illuminated shelf B. In this analysis the order is just a 
significant factor. 

Probability plots (Fig. 2) show the probability of four types of observed objects 
(matte/achromatic, matte/ chromatic, glossy/achromatic, glossy/chromatic) being 
evaluated as proposed in the questionnaire and corresponding values of the main 

 Perfectly distinguishable shape and details, 80% 
probability 

Matte/ 
achromatic 

combination 

Matte/ 
chromatic 

combination 

Glossy/ 
achromatic 

combination 

Glossy/ 
chromatic 

combination 
Mean luminance of the mask, 
(cd/m2) 49 52 43 46 

Luminance ratio between 
maximum luminance of the mask 
and mean luminance of the mask 
(excl. masks # 5, 8, 12, 15) 

3.55 3.65 - - 

Standard Deviation of the 
luminances of the mask 30 32.5 26 28.5 

TABLE 6. Threshold values for mean luminance of the mask, luminance ratio between maximum 
luminance of the mask and mean luminance of the mask (excluding situations with the strong 
negative contrast, namely masks # 5, 8, 12, 15), and standard deviation of the luminances of the mask 
measures of shape and details distinctness. 
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predictor. By using this result it is possible to specify threshold values for mean 
luminance (and other predictors tested) that will allow avoiding worst-case scenarios 
when the object is invisible or hardly visible.  

Table 3 represents the results for luminance ratio between the object and its background. 
This is a statistically highly significant predictor of shape and details visibility of masks, 
with a positive effect for both dark objects on a light background and light objects with 
a darker background. The results show that for dark masks on light backgrounds the 
closer the ratio is to one (which is the zero contrast point), the better the shape and detail 
distinction is. For light masks on dark backgrounds, the distinctness value increases as 
the distance from the zero contrast point increases. The control variables that are 
significantly influential include glossiness, which again has a positive effect, enhancing 
objects’ shape and detail discrimination, and order of observation. 

The luminance ratio between maximum luminance of the mask and mean luminance of 
the mask was proposed as a possible measure because it was assumed that the light 
areas on the mask could be anchoring elements for vision, which can affect mask 

 

Fig. 2 Probability curves for the four categories of the questionnaire, four combinations of control 
variables, and mean luminance of the mask as a main predictor. 



8. Appended papers. Paper IV 

161 
 

 

Fig. 3 Probability curves for the four categories of the questionnaire, two types of control variables, 
and luminance ratio between maximum luminance and mean luminance of the object as a main 
predictor. 

perception.  

In Table 4 the results are displayed separately for two types of objects—glossy and 
matte masks. This was done because the predictor luminance ratio between the 
maximum luminance of the mask and mean luminance of the mask is significant only 
for matte masks. The other factors are insignificant for matte masks. Further, we 
performed another version of this regression analysis and narrowed down the types of 
matte masks excluding four masks that had a strong negative contrast (dark mask on 
light background). Although it refined the results, it did not lead to fundamental 
changes. In the Figure 3 the probability plots referring to these results can be observed. 

The last predictor tested was the standard deviation of luminance values of the mask. 
This predictor is statistically significant and one of the most powerful. All of the other 
factors are also significant: glossiness has a highly significant and positive effect, 
making discrimination of the shape and details of the object a little easier; 
chromaticness complicates shape and detail discrimination; and order of observation has 
a rather low negative impact. 

Following the results from the probability plots it is possible to determine the threshold 
values for this predictor. Thus, the shape and details of the masks will be likely 
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evaluated as perfectly distinguishable by 80% of the observers if the standard deviation 
of the luminances of the object are not lower than 26 for glossy achromatic objects, 28.5 
for glossy chromatic objects, 30 for matte achromatic objects, and 32.5 for matte 
chromatic objects (Fig. 4, Table 6). 

Table 6 shows the threshold values based on an 80% probability for three of the four 
tested predictors that are statistically significant. This comprehensive table indicates 
clearly certain values of the tested measures that may also be applied as numeric 
reference points ensuring perfect visibility of shape and details of the 3D objects. 

Additional to the luminance-based measures testing, a histogram analysis of the masks 
and their backgrounds was performed. Unfortunately, due to restrictions in technical 
methods that could be used for histogram analysis, this analysis resulted only in general 
observations. In Fig. 5 the most explicit examples of the observation are presented. Four 
masks that were rated on average as “indistinguishable” to “perfectly distinguishable” 
are presented (matte mask #4, glossy mask #14, glossy mask #3, and glossy mask #17). 
These are the masks that were evaluated by most of the participants as belonging to 
each of the categories. Histograms of the images that were chosen for this example 
belong to a person who evaluated the masks in accordance with the majority of 
participants. 

 
Fig. 4 Probability curves for the four categories of the questionnaire, four combinations of control 
variables, and standard deviation of the luminance values of the object as a main predictor. 
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The statistical data of the selected regions of the masks (matte mask #4, glossy mask 
#14, glossy mask #3, and glossy mask #17, Fig. 5) was obtained using hdrscope 
[Kumaragurubaran and Inanici 2013]. The program allows saving the data from the 
whole luminance maps or selected regions of an image as an MS Excel file that can be 
analyzed in more detail. Thus, the information contained in the file consist of the type of 
region selected (circle/square/polygon), number of vertices of these regions, X and Y 
coordinates of each pixel of the selected regions, and their luminance values. Therefore, 
it is possible to perform analysis regarding the luminances of the background and 
foreground of the particular high dynamic range image. In our case, the graph was 

 
Fig. 5 Histograms and photos of the masks evaluated as belonging to each of four proposed 
categories by the majority of respondents. 
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created where common logarithms of luminances of both selected mask and background 
were represented on the X axis, and the count (Y axis) represented the frequency of 
certain luminance values that appeared on the background or foreground in logarithmic 
scale. This means that the graphs produced show the distribution and frequency of 
luminance values of the selected mask and its background. Therefore, it is easy to 
observe some important effects here. 

As can be seen in Fig. 5, the histograms for the two regions of interest (foreground and 
background) almost fully overlap for the mask with indistinguishable shape and details. 
The histograms of glossy mask #14 (just distinguishable) include more divergent zones 
of the object’s luminances and background luminances, although their peaks are still in 
a similar region of the histogram. The third histogram of glossy mask #3 with a well-
visible shape and details includes even more divergent zones with a less uniform 
distribution of the luminance values along the X axis and more prominent peaks for 
both regions of interest tending in opposite directions from each other. The last 
histogram for the “perfectly distinguishable” category shows a tendency similar to those 
from the “well distinguishable” category. The difference between foreground and 
background regions is a little more explicit here, although it could be challenging to 
compare these two histograms (well- and perfectly distinguishable shape and details) 
based only on general visual observation. 

However, excluding overlapping areas or areas with equal luminance values (based on 
certain threshold values that can be determined by the researcher in each particular case) 
from the high dynamic range image, it is practicable to interconnect the remaining areas 
with a subjective evaluation of their shape and detail visibility. In other words, certain 
remaining areas of the luminance values on the graph may indicate the determined 
degree of shape and detail distinctness of the observed object.  

In our case, the respondents’ drawings of masks evaluated as objects with perfectly 
visible shape and details showed clearly that all of the elements except the smallest are 
easily distinguishable (Fig. 6a), whereas the drawings from the “indistinguishable” 

 
Fig. 6 Drawing from the questionnaire of one of the participants. On the left side (a) the mask with 
perfectly distinguishable shape and details is presented, with perfectly visible areas specified by the 
dark hatching. On the right side (b) the mask with indistinguishable shape and details is presented. 
Invisible areas are outlined without any hatching. 
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category indicate that in most of the drawings only peculiar convex elements such as the 
nose were visible (Fig. 6b). These data can be analyzed using other currently available 
methods (but not included in the scope of the current study) as in a paper by Lu and 
others [2014] and could lead to interesting conclusions in the future, even if it is 
difficult to perform this kind of analysis using the current tools for high dynamic range 
image processing. After development of this method in terms of ease of use it could 
become a new tool for predicting a real 3D object’s visibility. 

Processing of the histograms of the selected foreground and background as described 
earlier seems to us as a tool with good perspectives. With the numerous options of 
image processing developed today, it could be possible to analyze and predict an 
object’s visibility based on its high dynamic range image. 

5. DISCUSSION 

Statistical analysis of the results demonstrated that luminance-based measures of 3D 
objects’ shape and detail visibility can be regarded as useful and promising measures of 
light modeling. Not all of the measures are equally precise and applicable for all types 
of the objects (glossy or matte, chromatic or achromatic, dark or light). However, 
finding the best possible measures, used separately or complementing other measures 
and methods, can provide an advantage for architects and lighting designers in 
predicting light modeling in real environments. 

In this article we focused on four possible measures: the mean luminance of the mask, 
luminance ratio between the mean luminance of the object and mean luminance of the 
background, luminance ratio between the highest luminance value of the mask and its 
mean luminance, and standard deviation of the luminance point measures of the mask. 

The mean luminance of the mask as a separate measure could be assessed as an 
uninformative measure as is. The main information that it provides is confirmation of 
the fact that the lighter the object is, the better its shape and detail visibility. At certain 
values of mean luminance of the mask (numbers obtained from the probability plots), 
the object’s shape and details are likely evaluated as perfectly visible. In our case, an 
80% probability that the masks’ shape and details are perfectly visible is reached at an 
average luminance of 43–52 cd/m2 depending on the type of mask (Table 6). However, 
an application of this measure alone could be problematic because the mean luminance 
value of the object itself seen in different lighting conditions and various surroundings 
theoretically may be interpreted differently, whereas in a similar lighting situation as 
was during the experiment, threshold values may be a rather useful tool. This means 
that below certain threshold values, determined according to probability plots, an 
object’s shape and details will be hardly visible. 
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The tests of the measure luminance ratio also yield contradictory results, because it is 
basically the lightness of the object (as in the first measure) that has an impact here. 
However, an interesting conclusion can be made based on the results that glossiness of 
the object also had a strong influence on perception, especially for situations where the 
object was dark. However, for light objects this factor was also important. Glossiness 
intensifies reflections on the masks and improves visibility of its shape and details. 

The next predictor tested was the luminance ratio between the highest luminance value 
of the mask and its mean luminance. Surprisingly, this measure showed rather weak or 
limited results in comparison to the other measures. It is applicable only for matte 
objects on a darker background. 

The standard deviation as a measure reflecting the variability of luminances at different 
points across the object showed promising results and high consistency with survey 
results. This measure is applicable for any of the tested objects, namely, glossy or matte, 
chromatic or achromatic, light or dark. Yet glossiness has an independent additional 
effect on shape and detail distinctness, again slightly enhancing its visibility. 
Chromaticity influenced in the other direction, reducing the visibility of details of the 
masks. 

It is necessary to point out that R2 values of the proposed predictors of shape and detail 
distinctness are slightly lower than those of contour distinctness described in a previous 
article [Zaikina and others 2015]. This is because shape and detail visibility is a more 
complex stimulus that is highly affected by other factors—for example, angular size of 
the object—that were not included in the analysis. In other words, more (unmeasured) 
factors seem to affect shape and detail distinctness than contour distinctness. 

6. FUTURE VALIDATION 

Light modeling is an important attribute of quality lighting and comfortable visual 
communication, naturalness of the observed objects, and faces in the surrounding space. 
New methods and fast developing technologies provide opportunities to study important 
aspects of lighting differently than it has been done before, and high dynamic range 
imaging is one of these new methods. 

A great number of lighting designers, architects, and engineers actively use computer 
simulation tools that enable modeling, testing, and visualization of architectural objects 
with various possible lighting solutions. Therefore, the luminance images obtained from 
the simulations as well as real high dynamic range images can become a rich source of 
data, and proposed luminance-based measures could be used as a tool for visibility 
prediction of 3D objects. Results described in this article are restricted by the existing 
conditions of the experiment and therefore they should be replicated with other objects 
and under different conditions to confirm reliability of their use. However, the results 
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show that luminance-based measures are highly correlated with subjective assessment 
of the objects’ visibility and therefore they are substantially useful instruments for light 
modeling in the near future. 

7. CONCLUSION 

The aim of the current study was to propose and test some possible luminance-based 
measures of 3D objects’ shape and detail distinctness as a component of the light 
modeling concept. Previously known measures for light modeling are based on 
illuminance, whereas we turned to a method based on high dynamic range imaging 
because luminance forms what our eyes see and therefore is closer to human perception. 
This is a new method and the article is a first step toward finding more reliable 
measures for light modeling. 

The analysis showed that some of the proposed measures such as the mean luminance 
of the mask, standard deviation of the luminances of the mask, and luminance ratio 
between an object and its background correlate very well with subjective assessment of 
the shape and detail distinctness of the masks. As simple-to-obtain and basic measures, 
they complementing each other and are good instruments for analysis and prediction of 
the 3D objects’ visibility; in addition, their threshold values might be useful and 
promising for further development and practical use. 
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ABSTRACT 
The study verifies the accuracy of previously developed luminance-based metrics 1,2 of 
light modelling (i.e. the distinctness of contour, shape and details of daylit 3D objects) 
trough comparison of numerical values of the metrics obtained from photographed and 
simulated HDR images. The analysis of the luminance data of eight photographed and 
eight simulated HDR images of Venetian masks showed that the mean relative error of 
all the tested metrics was 14.78%. The minimum average relative error was 7.91 %, and 
the maximum error (found for only one metric) was 27.75 %. The glossy objects had 
higher error rates than matte objects tested within the experiment. Additionally, the 
variation of luminance-based metric values obtained from simulated and photographed 
HDR images due to the colour of the mask versus the colour of the background was 
compared with variation of illuminance-based modelling index. It became evident that 
luminance-based metric showed larger variability of the numerical values and higher 
consistency with subjective perception of objects. It is remarkable since the set-up had 
low light level resulting with hardly visible shape and details of the objects. The results 
of this study makes an important contribution confirming that the developed metrics, if 
used in lighting simulations made with the advanced computer programs, will give 
results close to real room-real time study obtained with the help of HDR imaging 
technology. This confirms robustness of the metrics and encourages use of the 
luminance-based light modeling metrics also in computer lighting simulations.  
 
Keywords: luminance-based metrics, light modelling, photographed and simulated 
HDR images, modelling index, cylindrical illuminance.  
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Glossary 

 
This chapter contains terminology used in current thesis and the articles presented in 
Chapter 8 - Appended papers. All terms are presented in alphabetical order and are 
followed by their standard symbols or abbreviations, their defining equations, and their 
definitions.  

Most of the definitions in this glossary have been adapted from: 

1 – Light, vision, color book written by Arne Valberg (Valberg 2005) 

2 - The IESNA LIGHTING HANDBOOK, Ninth Edition (Rea 2000) 

 

Achromatic colours1 colours with no chroma, i.e. black, grey and white.  

Adaptation1 the ability of the visual organ to adjust its sensitivity and function to the prevailing light level 
and colour. The term can be used for the process itself or for the final state. The retina is said to be light 
adapted  (corresponding to photopic vision) or dark-adapted (scotopic vision). The size of the pupil plays 
only a minor role in adaptation. 

Chromatic adaptation2 the process by which the chromatic properties of the visual system are modified 
by the observation of stimuli of various chromaticities and luminances. 

Chromatic color2 perceived color possessing a hue. In everyday speech, the word color is often used in 
this sense in contradistinction to white, gray, or black. 

Chromaticity1 two-dimensional colour coordinates (r,g) in a unit colour triangle R + G + B = 1, or the 
(x,y)-coordinates in the CIE system for colour measurement, in a plane where the sum of tristimulus 
values X + Y + Z = 1. 

Chromaticness2 the attribute of a visual sensation according to which the (perceived) color of an area 
appears to be more or less chromatic. 

Color2 the characteristic of light by which a human observer can distinguish between two structure-free 
patches of light of the same size and shape. See light source color and object color. 

Contrast1 Michelson contrast, CMich = (Lmax - Lmin)/(Lmax + Lmin), is commonly used for periodic stimuli. 
Weber contrast, CWeb = (L – Lb)/Lb = L/Lb, where L stands for stimulus luminance and Lb for 
background luminance. Combined cone contrast, CLMS = [(1/3)(C L

 2 + CM
2 + CS

2)]1/2, where CL, CM and 
CS are the individual cone contrast for the absorptions (excitations) in L-, M- and S-cones.  

Contrast sensitivity2 the ability to detect the presence of luminance differences. Quantitatively, it is equal 
to the reciprocal of the brightness contrast threshold. 
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Daylight factor2 a measure of daylight illuminance at a point on a given plane, expressed as the ratio of 
the illuminance on the given plane at that point to the simultaneous exterior illuminance on a horizontal 
plane from the whole of an unobstructed sky of assumed or known luminance distribution. Direct sunlight 
is excluded from both interior and exterior values of illuminance. 

Discrimination1 the ability to identify an object or an image after distinguishing it from the background. 
Discrimination usually requires a larger contrast than detection. One talks about colour discrimination 
when one sees a qualitative difference between two colour stimuli.  

Glare2 the sensation produced by luminances within the visual field that are sufficiently greater than the 
luminance to which the eyes are adapted, which causes annoyance, discomfort, or loss in visual 
performance and visibility. See blinding glare, direct glare, disability glare, and discomfort glare. 

Note The magnitude of the sensation of glare depends on such factors as the size, position, and luminance 
of a source; the number of sources; and the luminance to which the eyes are adapted. 

Hue1 the hue of the colour can be characterized by relative proportions of the closest elementary hues 
yellow, red, blue and green. They can be ordered in a hue circle. 

Illuminance2, E = d /dA the areal density of the luminous flux incident at a point on a surface. 

Isoluminance1 a situation where different colour stimuli have the same luminance. 

Light2 radiant energy that is capable of exciting the retina and producing a visual sensation. The visible 
portion of the electromagnetic spectrum extends from about 380 to 770 nm. 

Note The subjective impression produced by stimulating the retina is sometimes designated as light. 
Visual sensations are sometimes arbitrarily defined as sensations of light, and in line with this concept, it 
is sometimes said that light cannot exist until an eye has been stimulated. Electrical stimulation of the 
retina or the visual cortex is described as producing flashes of light. In illuminating engineering, however, 
light is a physical entity--radiant energy weighted by the luminous efficiency function. It is a physical 
stimulus that can be applied to the retina. See spectral luminous efficacy of radiant flux and values of 
spectral luminous efficiency for photopic vision. 

Light adaptation2 the process by which the retina becomes adapted to a luminance greater than about 3,4 
cd/m2. 

Illuminance (footcandle or lux) meter2 an instrument for measuring illuminance on a plane. Instruments 
that accurately respond to more than one spectral distribution are color-corrected, that is, the spectral 
response is balanced to V(λ) or V'(λ). Instruments that accurately respond to more than one spatial 
distribution of incident flux are cosine-corrected, that is, the response to a source of unit luminous 
intensity, illuminating the detector from a fixed distance and from different directions, decreases as the 
cosine of the angle between the incident direction and the normal to the detector surface. The instrument 
is comprised of some form of photodetector with or without a filter driving a digital or analog readout 
through appropriate circuitry. 

Lambertian surface2 a surface that emits or reflects light in accordance with Lambert's cosine law. A 
lambertian surface has the same luminance regardless of viewing angle. 

Lambert's cosine law2, Iθ = I0 cos θ the law stating that the luminous intensity in any direction from an 
element of a perfectly diffusing surface varies as the cosine of the angle between that direction and the 
perpendicular to the surface element. 
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Luminance2, L = d2φ/(dω dA cos θ) (in a direction and at a point of a real or imaginary surface) the 
quotient of the luminous flux at an element of the surface surrounding the point, and propagated in 
directions defined by an elementary cone containing the given direction, by the product of the solid angle 
of the cone and the area of the orthogonal projection of the element of the surface on a plane 
perpendicular to the given direction. The luminous flux can be leaving, passing through, and/or arriving at 
the surface. 

By introducing the concept of luminous intensity, luminance can be expressed as L = dI/(dA cos θ). Here, 
luminance at a point on a surface in a direction is interpreted as the quotient of luminous intensity in the 
given direction, produced by an element of the surface surrounding the point, by the area of the 
orthogonal projection of the element of surface on a plane, perpendicular to the given direction. 
Luminance can be measured at a receiving surface by using L = dE/(dA cos θ). 

Note In common usage the term brightness usually refers to the strength of sensation that results from 
viewing surfaces or spaces from which light comes to the eye. This sensation is determined in part by the 
definitely measurable luminance defined above and in part by conditions of observation such as the state 
of adaptation of the eye. In much of the literature, brightness, when used alone, refers to both luminance 
and sensation. The context usually indicates which meaning is intended. Previous usage not withstanding, 
neither the term brightness nor the term photometric brightness should be used to denote the concept of 
luminance (IESNA). 

Luminance contrast2 the relationship between the luminances of an object and its immediate background. 
It is equal to (L1 − L2)/L1 or (L2 − L1)/L1 = L/L1 , where L1 and L2 are the luminances of the 
background and object, respectively. The form of the equation must be specified. The ratio L/L1 is known 
as Weber's fraction. 

Note See note under luminance. Because of the relationship among luminance, illuminance, and 
reflectance, contrast often is expressed in terms of reflectance when only reflecting surfaces are involved. 
Thus, contrast is equal to (ρ1 − ρ2)/ρ1, or (ρ2 − ρ1)/ρ1, where ρ1 and ρ2 are the reflectances of the 
background and object, respectively. This method of computing contrast holds only for perfectly diffusing 
surfaces; for other surfaces it is only an approximation unless the angles of incidence and view are taken 
into consideration. 

Luminance ratio2 the ratio between the luminances of any two areas in the visual field. 

Luminance threshold2 the minimum perceptible difference in luminance for a given state of adaptation of 
the eye. 

Modeling light2 illumination that reveals the depth, shape, and texture of a subject; key light, cross 
lighting, counter-key light, side light, back light, and eye light are types of modeling light. 

Munsell color system2 a system of surface-color specification based on perceptually uniform color scales 
for the three variables: Munsell hue, Munsell value, and Munsell chroma. For an observer of normal color 
vision, adapted to daylight and viewing a specimen when illuminated by daylight and surrounded with a 
middle-gray to white background, the Munsell hue, value, and chroma of the color correlate well with the 
hue, lightness, and perceived chroma. 

Munsell chroma2, C an index of perceived chroma of the object color defined in terms of the luminance 
factor (Y) and chromaticity coordinates (x, y) for CIE Standard Illuminant C and the CIE 1931 Standard 
Observer. 
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Natural Colour System1 uses a perceptual scaling based on the relative proportions of unique colours. 
Colour differences are therefore not equal everywhere in the NCS colour space  (as in the Munsell 
system). The coordinates are hue, chromaticness and black content. 

Overcast sky2 one that has 100% cloud cover; the sun is not visible. 

Perception1 subjective qualitative experience or impression of some sensory input (internal 
representation). Can also be used for our understanding, comprehension and ideas, and is therefore 
sometimes linked to hypothesis and interpretations of sensory information about the environment. 

Reflectance factor, R2 the ratio of the flux actually reflected by a sample surface to that which would be 
reflected into the same reflected-beam geometry by an ideal (glossless), perfectly diffuse (lambertian), 
completely reflecting standard surface irradiated in exactly the same way as the sample. Note the 
analogies to reflectance in the fact that nine canonical forms are possible that "spectral" can be applied as 
a modifier, that it can be luminous or radiant reflectance factor, and so on. Note that reflectance cannot 
exceed unity, but reflectance factor can have any value from zero to values approaching infinity. 

Saturation (colour vision)1 apparent amount of chromatic colour relative to achromatic colour of the 
same lightness. 

Saturation of a perceived color2 the attribute according to which it appears to exhibit more or less 
chromatic color judged in proportion to its brightness. In a given set of viewing conditions, and at 
luminance levels that result in photopic vision, a stimulus of a given chromaticity exhibits approximately 
constant saturation for all luminances. 

Sensitivity, s1 sensitivity (s) = criterion response (R)/physical stimulation (I), or s = R/ I at threshold 
( R being constant). 

Spatial frequency1 number of periods per degree of a repetitive pattern, for example a sinusoidal grating. 

Threshold1 the lowest intensity or energy of a stimulus that can be detected or discriminated in a given 
situation. The threshold value will depend on the task, the threshold criterion, the physical conditions, and 
on physiological and psychological states. 

VIGRA1 a specific 3 10 bit computer display system (videographic system) for the presentation and 
manipulation of a variety of visual stimuli on a colour monitor. 

Visibility2 the quality or state of being perceivable by the eye. In many outdoor applications, visibility is 
defined in terms of the distance at which an object can be just perceived by the eye. In indoor applications 
it usually is defined in terms of the contrast or size of a standard test object, observed under standardized 
viewing conditions, having the same threshold as the given object. See visibility (meteorological). 

Visual acuity1 a measure for the ability to resolve of small details of maximum contrast, often assessed by 
means of a letter chart (e.g. Snellen chart). Decimal acuity = 1/ , where  is the minimum angle of 
resolution (MAR), expressed in minutes of arc (1 arcmin = 1/60 ). Foveal acuity of 1.0 or better is 
regarded as normal. Another measure is log MAR = log . Resolution improves as luminance increases, 
and it decreases with the distance from the fovea. 

Visual angle2 the angle that an object or detail subtends at the point of observation. It usually is measured 
in minutes of arc. 
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Visual field2 the locus of objects or points in space that can be perceived when the head and eyes are kept 
fixed. Separate monocular fields for the two eyes can be specified or the combination of the two. See 
binocular portion of the visual field, central visual field, monocular visual field, and peripheral visual 
field. 

Visual perception2 the interpretation of impressions transmitted from the retina to the brain in terms of 
information about a physical world displayed before the eye. 

Note Visual perception involves any one or more of the following recognizing the presence of something 
(object, aperture, or medium); identifying it; locating it in space; noting its relation to other things; and 
identifying its movement, color, brightness, or form. 

Visual performance2 the quantitative assessment of the performance of a visual task, taking into 
consideration speed and accuracy. 

Visual task2 conventionally designates those details and objects that must be seen for the performance of 
a given activity, and includes the immediate background of the details or objects. 

Note The term visual task as used is a misnomer because it refers to the visual display itself and not the 
task of extracting information from it. The task of extracting information also has to be differentiated 
from the overall task performed by the observer. 

Workplane2 the plane on which a visual task is usually done, and on which the illuminance is specified 
and measured. Unless otherwise indicated, this is assumed to be a horizontal plane 0,76 m (30 in.) above 
the floor. 
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