
Flavor Oscillations of High-Energy
Neutrinos

Sergio Sánchez Navas

MSc in Physics

Supervisor: Michael Kachelriess, IFY

Department of Physics

Submission date: May 2016

Norwegian University of Science and Technology



 



Flavor Oscillations of High-Energy Neu-
trinos

Sergio Sánchez Navas

Physics
Submssion date: May 15, 2016
Supervisor: Michael Kachelrieß

Norwegian University of Science and Technology
Department of Physics



Abstract

In this thesis, we study neutrino oscillations in vacuum and in the presence of a
Dark Matter halo in the Milky Way. For that purpose, first describe the particle physics
of neutrinos through an historical introduction. Then we focus on the Quantum Field
Theory describing neutrinos in the Standard Model, weak interactions and electroweak
unfication. We also discuss the methods and techniques of neutrino astronomy before
finally making use of the data collected by IceCube and our numerical simulations to
analyse high-energy neutrino oscillations. We conclude that relevant information about
the cosmic sources could be extracted from the track-to-shower ratio of events when more
precise statistics can be derived after more years of observation. We also consider the
effects of Dark Matter on the oscillation probabilities and find that the mixing angle and
the neutrino energy are the most relevant parameters.
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Chapter 1

Introduction

The purpose of this Master Thesis is to describe neutrino oscillations in the context
of High Energy Starting Events (HESE) as detected by IceCube in Antarctica. Neutrino
oscillation is an experimentally observed process included in what is called physics beyond
the Standard Model (SM), whose study was motivated by two major problems: the at-
mospheric neutrino problem and the solar neutrino problem. The Nobel Prize in Physics
2015 was awarded to Takaaki Kajita from the Super-Kamiokande Collaboration, Univer-
sity of Tokyo, Japan, and Arthur B. McDonald from the Sudbury Neutrino Observatory
Collaboration, Queens University, Kingston, Canada, “for the discovery of neutrino oscil-
lations, which shows that neutrinos have mass” [1].

The body of this work is divided into four chapters, where we provide different ap-
proaches to neutrino physics. First of all, we cover the historical perspective of the
discovery of the neutrino as an elementary particle, its peculiar nature and its three fla-
vors as well as the need for neutrino oscillations to explain the observations of the second
half of the 20th century. We then focus on the mathematical description of neutrinos as
part of a Quantum Field Theory in the search for an explanation to their masses. Later,
we dedicate a chapter to neutrino astronomy, including plausible sources for high-energy
neutrinos and an overview on the detection methods with special attention to the IceCube
detector as the state-of-the-art source of high-energy neutrino data. In the last chapter of
this thesis we present our approach to two different applications of neutrino oscillations:
the study of vacuum oscillations to obtain infomation about the sources and the study of
oscillations in matter in the specific case of a Dark Matter halo (DM) in the Milky Way.

Throughout this work we will use the Lorentz-Heaviside convention of units } = c =
ε0 = 1 for derivations and calculations, if not stated otherwise.
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Chapter 2

About neutrinos

In this Chapter we will introduce the neutrally charged particles called neutrinos in
their historical context of discovery in order to justify the main purpose of this work,
neutrino oscillations. We will then describe this process first in vacuum and then in
presence of matter referring to experimental evidences to support the conclusions. The
main source for the two firs Sections is David Griffith’s textbook on particle physics [2]
that we recommend reading for more details and anecdotes.

2.1 Early history and motivations

The story of the neutrino goes back to 1930 and the nuclear beta decay problem,
where a radioactive nucleus splits into a lighter nucleus and an electron. In the center-
of-mass frame the kinetical energies of this two-body decay are fixed and the outgoing
particles appear back-to-back. However, experiments showed that the energy of the emit-
ted electron was variable, challenging the conservation of energy law. Pauli proposed that
a neutrally charged particle was carrying away the missing energy, leaving no track in a
cloud chamber. He proposed to call it neutron [3]. Unfortunately there was little support
for this theory and was mainly ignored, specially after Chadwick used that name in 1932
for his heavy neutral nucleon [4]. Later on, Fermi presented an accurate model for the
β-decay of a neutron that included Pauli’s idea as well as Dirac’s concept of the positron,
also suggesting this new particle to be extremely light, therefore calling it neutrino [5].
This decay would be then described by the reaction

n→ p+ + e− + ν. (2.1.1)

The kinematical argument for the two-body decay was also used by Powell in 1947
in the pion decay model. He published a picture in which a pion is seen to decay into
a muon, that emerges with a 90◦ angle [6]. This clearly indicates that another particle
must have emerged at the same time in the opposite direction. This particle has to be
neutrally charged in order to leave no track on the cloud chamber, and the neutrino was
again suggested,

π− → µ− + ν. (2.1.2)

A second picture was published by the same group that showed the decay of the latter
muon into an electron, again with 90◦ (Fig. 2.1). This time it was suggested that the
neutral missing item was actually two neutrinos instead of one, since the energy of the
muon after the pion decay was fixed by experiments but the energy of the last electron
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was varying [7]. This meaning that the final state consisted of at least three bodies, two
of them neutral and lighter,

µ− → e− + 2ν. (2.1.3)

However, it was not until the mid-1950s that any exerimental evidence was found to
justify these theories.

Figure 2.1: Pion decay into muon and neutrino. The muon then decays into an electron and
two neutrinos [7].

2.2 Detection and aditional problems

Neutrinos rarely interact with matter and therefore an intense source is needed. Cowan
and Reines studied the β-decay at the Savannah River nuclear reactor in the US. They
thought that neutrinos would interact with protons to give neutrons and positrons, so
they focused on detecting the number of positrons per hour to check with the predicted
number of interactions from their initial flux. Their results gave experimental evidence
to the existence of neutrinos [8],

p+ + ν → n+ e+. (2.2.1)

Since this new particle is neutrally charged, there was a big debate on whether it was
its own antiparticle, like the neutral pion and the photon, or on the other hand it was
not, like the antineutron. Following special relativity arguments, the crossed reaction also
must happen,

n+ ν → p+ + e−. (2.2.2)

Therefore the question was if the same reaction could happen using antineutrinos,

n+ ν̄ → p+ + e−. (2.2.3)

This reaction was not found so Davis and Harmer determined that the neutrino and
the antineutrino are indeed different particles [9].

In 1953, Konopinski and Mahmoud proposed the law of conservation of lepton number,
where the sum of the lepton number on both sides of a reaction had to agree [10]. They
assigned the value L = +1 to the electron, the muon and the neutrino, while a value
L = −1 was given to the positron, the positive muon and the antineutrino. Following
this reasoning, the neutron would only react with neutrinos to give protons and electrons.
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Also according to this law, the β-decay and the inverse β-beta decay should involve only
antineutrinos and thus be written as

n → p+ + e− + ν̄,

p+ + ν̄ → n+ e+, (2.2.4)

the charged pion decays as

π− → µ− + ν̄,

π+ → µ+ + ν, (2.2.5)

and the muon decays as

µ− → e− + ν + ν̄,

µ+ → e+ + ν + ν̄. (2.2.6)

However, it has never been observed an event in which a muon decayed into an electron
plus a photon, even though the lepton number is conserved. This means that another
conservation law must be preventing it,

µ− 9 e− + γ. (2.2.7)

The solution to this question was a conservation of lepton number for each generation
and associating one type of neutrino to the muon and another to the electron. In order to
verify this, a dedicated experiment was conducted at Brookhaven where they used muon
antineutinos from the π− decay to check if they reacted with protons to produce antimuons
and neutrons[11]. If this rule was not correct, they expected to find also positrons as a
result. The conclusion was that only muons were detected, confirming the two-family
hypothesis,

ν̄µ + p+ → µ+ + n. (2.2.8)

Therefore we have to adjust again the previous reactions to follow this new law,

n → p+ + e− + ν̄e

π− → µ− + ν̄µ

π+ → µ+ + νµ

µ− → e− + νµ + ν̄e

µ+ → e+ + ν̄µ + νe. (2.2.9)

2.3 The third generation

“The letter τ is from Greek τριτoν for third - the third charged lepton.”
-Martin L. Perl

Until the late 1960s, lepton physics remained calm. Many research groups focused
their attention on finding a correlation between the electron and the muon [12], probing
different paths such as special interactions with hadrons. This was not a fruitful field and
some other directions were taken, like the existence of more types of charged leptons. In
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this way, the sequential lepton theory was suggested by Perl and Rapidis in 1972 to refer
to the hypothesis of pairs [13]

e− νe

µ− νµ

µ
′− ν

′

µ

µ
′′− ν ′′µ (2.3.1)

with further terms meaning heavier leptons.

The search for these new particles was based on e−e+ annihilation at particle acceler-
ators such as the SPEAR e−e+ storage ring in 1973. The design proposed for the Mark
I detector followed the idea of the decay of the muon into electron plus neutrino and
antineutrino [14]. High-energy pairs of electron and positron would annihilate and create
pairs lepton-antilepton that would then decay into electrons, muons and the corresponding
netrinos,

e− + e− → l− + l+

l− → e− + νl + ν̄e

l+ → µ+ + νµ + ν̄l, (2.3.2)

and all other combined posibilities. The detector would then look for an excess in e− µ
events with missing energy carried out by neutrinos.

The detector started working with an energy of 4.8 GeV with useful luminosity and a
top energy of 8 GeV and by 1975 a relevant number of events involving an electron and a
muon of oposite charges and no other charged particles or photons were detected. These
events could not be explained with the existing methods and the heavy lepton solution
became the main option [15]. It was proposed that a pair of new particles each from 1.6
to 2 GeV decayed into electrons, muons and missing neutrinos. Perl called this unknown
particle U . The name τ was later suggested by P. Rapidis. Speculation began around the
posibility of these events being a misinterpretation of the decay of the recently discovered
charmed particles, as there were found excess of electron and muon events but the pion
decay mode was still not found, setting an upper limit for the branching ratio with a lower
value than the predicted by theory,

τ− → π− + ντ (2.3.3)

Finally, during 1978, the branching ratio associated to this reaction was confirmed to
be close to the expected 10% [12]. This confirmed also the existence of a third flavor of
neutrinos.

2.4 Neutrino oscillations

Primary cosmic rays consist of high-energy charged particles that interact with the
nucleus of oxygen and nitrogen atoms in the atmosphere. Protons collide with this nu-
clei and produce mainly pions, that will decay into muons and neutrinos as described
in Eq. (2.2.9). These will also decay into electrons or positrons and neutrinos, so that
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the expected atmospheric neutrino beam would consist of approximately twice as many
muon-neutrinos as electron-neutrinos. These neutrinos can interact with the nuclei of
heavy atoms in large detectors and produce muons or electrons, which can then be ob-
served via the Cherenkov effect in water, as we will discuss in Chap. 4. However, the
experimental data at Kamiokande [16] showed a deficit in muon-neutrinos, while the num-
ber electron-neutrinos agreed with expectations. The analysis of the systematic effect and
the study of the experimental data suggested that the explanation was that the missing
muon-neutrinos had oscillated into tau-neutrinos. This could only happen if neutrinos
have nonzero mass, so that the three families are a mixed state in which the weak eigen-
states νe, νµ and ντ are a superposition of three mass eigenstates ν1, ν2 and ν3. Therefore,
if the muon-neutrino produced in the pion decay was a mixture of two mass eigenstates,
these would propagate with slightly different velocities so they would get out of phase
and a different flavor could be detected. This could never happen if neutrinos were truly
massless.

If we now assume two-flavor mixing, the weak and mass eigenstates can be related as

νe = ν1 cos θ + ν2 sin θ

νµ = ν2 cos θ − ν1 sin θ, (2.4.1)

where θ is the mixing angle. The time dependence of these eigenstates is

ν1(t) = ν1(0)e−iE1t

ν2(t) = ν2(0)e−iE2t. (2.4.2)

Inserting this dependence in the previous equations we can find the probability that
an electron-neutrino oscillates into a muon-neutrino as

Pνe→νµ =

[
sin(2θ) sin

(
E2 − E1

2
t

)]2

(2.4.3)

or in terms of distance traveled z ≈ ct and mass differences

Pνe→νµ =

{
sin(2θ) sin

[
(m2

2 −m2
1)

4E
z

]}2

. (2.4.4)

In this way we can define an oscillation distance as

L =
2πE

(m2
2 −m2

1)
, (2.4.5)

where the oscillation probability is maximum.

Observations from Kamiokande and SuperKamiokande [17] proved this hypothesis and
provided a mixing angle and a mass difference

θatm ≈ π/4, ∆(m)2
atm ≈ 3× 10−3eV2. (2.4.6)

Another relevant scenario that helped greatly to accept the theory of neutrino oscil-
lations was the resolution to the Solar neutrino problem, which was awarded a Nobel
Prize in 2015. In 1938, Hans Bethe proposed that the Sun is indeed a nuclear fusion
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reactor and that the radiation we receive from it comes primarily from hydrogen burned
to helium. This explained both the luminosity and the longevity of the Sun better than
previous theories based on gravity or fission as sources of radiation. In this process, called
proton-proton chain, protons in the solar core combine to produce helium nuclei, or al-
pha-particles, in a series of reactions involving fusion, that emit photons, and β-decays,
that emit neutrinos in the range 0.1-10 MeV. 86% of solar neutrinos are produced in
the first step, where two protons form a deuteron neucleus and emit a positron and a
neutrino. 14% are emitted when 7Be decays into 7Li capturing an electron. Finally, the
most energetic 0.02% are emitted when 8B decays into 8Be plus positron plus neutrino.
This reactions produce only electron-neutrinos, so the Sun is a pure source of this flavor.
In 1968, Ray Davis et al. [18] detected the first flux of solar neutrinos at the Homestake
mine, as we will describe in Sec. 4.3. However, they reported a deviation of about 70%
from the expected number of events based on their model. Other experiments such as
Kamiokande and SuperKamiokande [19] also reported similar deviations from the pre-
dicted flux.

In 1957, Bruno Pontecorvo suggested that neutrinos could oscillate, as an analogy to
the K0/K̄0 oscillations [20]. He later recovered this idea and proposed that those neutri-
nos might have changed into another flavor or into antineutrinos, so that the experiment
designed specifically to detect electron-neutrinos was blind to them [21]. The Super-
Kamiokande experiment was designed using water as detector, so that Cherenkov radia-
tion could be observed in every elastic neutrino-electron scattering event. This method is
sensitive to all neutrino flavors, although the actual flavor of the incoming neutrino could
not be determined and the detector efficiency was 6.5 times larger for electron-neutrinos
than for the other two. In 2001 they reported the detection of 45% of the predicted flux.

A similar experiment was carried out at the Sudbury Neutrino Observatory (SNO)
using heavy water, which is sensitive to the elastic scattering process and other two
reactions,

ν + e → ν + e (2.4.7)

ν + d → n+ p+ ν (2.4.8)

νe + d → p+ p+ e. (2.4.9)

In the summer of 2001, the SNO collaboration reported the detection of 35% of the
predicted electron-neutrino flux, so that the 10% extra detected at SuperKamiokande
could be due to muon- or tau-neutrinos [22]. In April 2002 they presented the measure-
ments of both the total neutrino flux and the electron-neutrino flux [23], confirming the
oscillation hypothesis (and therefore that neutrinos have mass) and provided the mixing
angle and the square mass difference for the electron-neutrinos changing into the other
flavors as

θsol ≈ π/6, ∆(m2)sol ≈ 8× 10−5eV2. (2.4.10)

Equation (2.4.10) suggests that one mass splitting is rather small, while equation
(2.4.6) indicates that another mass splitting is much larger. The third mass difference is
then dependent on the other two. If we consider ν3 as the heaviest, we can construct the
normal neutrino mass hierarchy. However, it can be that the structure is the opposite
and we get the inverted hierarchy where ν3 is the lightest, as shown in Fig.2.2.
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Figure 2.2: Normal and inverted neutrino mass hierarchies. The colours represent the estimated
flavor composition in each mass eigenstate. Credit: [24]

Neutrino oscillations are thus a quantum mechanical consequence of the existence of
non-zero neutrino masses, neutrino mixing and of the relatively small splitting between
the neutrino masses. We can view the flavor and mass eigenstates of the neutrinos as the
components of two vector and then rewrite Eq. (2.4.1) using a mixing matrix, that must
be unitary. For the three neutrino flavors we have νe

νµ
ντ

 = U3×3

 ν1

ν2

ν3

 , (2.4.11)

In the two-flavor oscillation frame, U has one nontrivial free parameter, the mixing
angle θ. For three [resp. n] families, the mixing matrix would have three [resp. 1

2
n(n−1)]

nontrivial angles θj . In addition, for Dirac neutrinos it has one [resp. 1
2
(n − 2)(n − 1)]

Charge-Parity(CP)-violating phase(s), and three [resp. 1
2
n(n − 1)] nontrivial phases for

Majorana neutrinos. However, only the number of phases given by the Dirac case can
be measured via neutrino oscillation experiments. We find the Maki-Nakagawa-Sakata
(MNS) matrix for three flavors as

U3×3 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12c23 − c12s23s13e
iδ −c12c23 − s12s23s13e

iδ c23c13

×
 1 0 0

0 eiα1/2 0
0 0 eiα2/2

 ,

(2.4.12)
where cij ≡ cos θij, sij ≡ sin θij, δ is the CP-violating phase and α1, α2 are the Majorana
phases. This matrix is often called PMNS-matrix, to credit Pontecorvo for his original
suggestion of neutrino oscillations.

Experimentally, we cannot measure directly the values of the mixing angles and the
CP-phase, only the squared value of the sines and cosines of the angles. A global fit
using present data was made by Gonzalez-Garcia et al. [25] and it is shown in Table 2.1.
These values are inconsistent with tribimaximal neutrino mixing (θ12 = θ23 = 45◦ and
θ13 = 0◦). This analysis also disfavours θ13 = 0 and θ23 equal to exactly 45 degrees, which
would imply maximal mixing between the second and third neutrino mass eigenstates. It
is interesting to mention that θ23 is the only PMNS matrix parameter which is strongly
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Table 2.1: Three-flavor oscillation parameters after the Neutrino 2012 conference [25]. The lower
range of θ23 is favoured for the normal mass hierarchy, while the higher range is for inverted
hierarchy.

best fit ±1σ 3σ range

sin2 θ12 0.302+0.013
−0.012 0.267→ 0.344

θ12(◦) 33.36+0.81
−0.78 31.09→ 35.89

sin2 θ23 0.413+0.037
−0.025 ⊕ 0.594+0.021

−0.022 0.342→ 0.667

θ13(◦) 40.0+2.1
−1.5 ⊕ 50.4+1.3

−1.3 31.09→ 35.89

sin2 θ13 0.0227+0.0023
−0.0024 0.0156→ 0.0299

θ13(◦) 8.66+0.44
−0.46 7.19→ 9.96

δCP (◦) 300+66
138 0→ 360

∆m2
21(×10−5eV2) 7.50+0.18

−0.19 7.00→ 8.09

∆m2
31(×10−3eV2)[Normal] +2.473+0.070

−0.067 +2.276→ +2.695

∆m2
32(×10−3eV2)[Inverted] −2.427+0.042

−0.065 −2.649→ −2.242

sensitive to the mass hierarchy of the neutrino masses and the two different ranges are
called first quadrant and second quadrant values. The data favor the first quadrant value
over the second quadrant value in a normal hierarchy but there is no statistical preference
between the two values in the case of inverted hierarchy [25].

2.5 Oscillations in presence of matter

Neutrino oscillations are affected by interactions in matter due to weak interactions,
that we will discuss in Sec. 3.2, as discovered by Wolfenstein in 1978 [26]. Coherent
forward-scattering mediated by a W boson contributes a term to the mixing matrix that
is not present in vacuum and can be described as the potential [27]

V =
√

2GFne, (2.5.1)

where GF is the Fermi constant and ne is the electron number density in the medium.
This potential is actually the difference of the potentials for the neutrino flavors, that
causes an aditional phase difference in the propagation. We can define the refraction
length as

l0 =

√
2π

GFne
, (2.5.2)

which is similar to the oscillation length described before.
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This potential modifies the evolution Hamiltonian as

H = H0 + V , (2.5.3)

where H0 is the Hamiltonian in vacuum. It also changes the eigenstates and eigenvalues
so that in the two-flavor scenario Eq. (2.4.1) becomes

νe = ν1m cos θm + ν2m sin θm

νµ = ν2m cos θm − ν1m sin θm, (2.5.4)

causing that also the mixing angle will depend on matter density and neutrino energy.

If we plot the dependance of the parameter sin2 2θm on the ratio of oscillation lenght
over refraction lenght

x ≡ lν
l0

=
2EV

∆m2
, (2.5.5)

we can see that it presents a resonant behaviour (Fig. 2.3). The mixing becomes maximal

Figure 2.3: The dependence of the effective mixing parameter sin2 2θm on the ratio x = lν/l0 for
two different values of the vacuum mixing: sin2 2θ = 0.825 (red) which corresponds to the LMA
solution and sin2 2θ = 0.08 (green) which is at the upper bound on 1-3 mixing. The semi-plane
x < 0 corresponds to the antineutrino channel. Credit: [27]

(sin2 2θm = 1) at the resonance condition θm = π/4 so that:

lν = l0 cos 2θ. (2.5.6)

For small vacuum mixing angles we see that the oscillation length becomes a good
approximation of the refraction length. However, for large angles this does not hold and
we find again a variation of the frequencies. Independently of the vacuum mixing, the
resonance has physical meaning both for small and large mixing angles. The flavor mixing
is maximal and the level splitting is minimal, so that in a uniform medium (constant
mixing θm) the oscillation length is maximal. In this kind of medium, the flavors of the
eigenstates do not change as well as the admixtures or mass proportions. This means
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that ν1m and ν2m are the eigenstates of propagation and that ν1m ↔ ν2m transitions do
not occur. We can see this in Fig. 2.4 for the dependence of the eigenvalues Him on the
parameter x, or the level crossing scheme. Another remarkable characteristic is that the
increase of the phase difference is monotonous.

Figure 2.4: Level crossing scheme. Dependence of the eigenvalues of the Hamiltonian in matter,
H1m and H2m, on the ratio x = lν/l0 for two different values of vacuum mixing sin2 2θ = 0.825
(solid red) and sin2 2θ = 0.08 (dashed green). Credit: [27]

Neutrinos crossing the Earth’s mantle are a good example of oscillations in a medium
with (nearly) constant density.

Oscillations in a medium with varying density are described by the MSW effect
(Mikheyev-Smirnov-Wolfenstein) [26, 28]. Inside the Sun, for example, density varies
following an exponential profile. The electron-neurinos interact with the electrons of the
medium and forward scattering takes place. This process does not occur for muons or
taus inside the Sun, so the hamiltonian interaction for electron-neutrinos is enhanced
with respect to the other two flavors. The non-uniformity of the medium will make the
Hamiltonian and the mixing angle dependant on time, so the (instantaneous) eigenstates
are not the proper eigenstates of propagation aymore and the transitions ν1m ↔ ν2m are
allowed. However, if the density changes slowly enough, these transitions can be neglected.
This is called adiabaticity condition and reads as

γ =

∣∣∣∣ θ′m
H2m −H1m

∣∣∣∣� 1, (2.5.7)

where θ′m = dθ/dr determines the energy of the transition and |H2m − H1m| gives the
energy gap between levels. The nonadiabatic evolution takes place in a localized region,
with a center at the point of maximal violation of adiabaticity (PMVA). We will describe
in more detail this process applied to the specific case of a Dark Matter profile in the
Milky Way in Sec. 5.3.
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Chapter 3

Neutrinos as spin 1/2 particles

After a descriptive picture of neutrinos, we will focus in this Chapter on their math-
ematical properties in the context of the Standard Model of particle physics (SM). We
will discuss weak interactions, that are the responsible of the creation of neutrinos and
antineutrinos. Then we will provide a detailed derivation of the electroweak unification in
order to find a justification for the neutrino mass. We will finally explore different options
beyond the SM that try to explain the hidden nature of neutrinos. Let us start with a
formal representation of neutrinos as particles with half-integer spin, called fermions, and
some of their properties. For a more detailed discussion and derivation we reccomend our
main sources for this Chapter, [29, 30].

3.1 Spinors, helicity and chirality

We define spinors as the smallest non-trivial representation of the Lorentz group
SO(3,1), with spin 1/2 and dimension two. Group theory is beyond the scope of this
work, but we will include the generators of rotation (J) and boost (K) in the definitions
of the two-component spinors

φL : (1/2, 0), J (1/2) = σ/2, K(1/2) = +iσ, (3.1.1)

φR : (0, 1/2), J (1/2) = σ/2, K(1/2) = −iσ, (3.1.2)

which we call left-chiral and right-chiral Weyl spinors. The components of σ are the Pauli
matrices. These spinors transform by exponentiating the generators as exp(−iJα+iKη),
where α and η are the rotation angle and boost parameters, so that,

φL → φ′L = exp

[
−iσα

2
− ση

2

]
φL ≡ SLφL, (3.1.3)

φR → φ′R = exp

[
−iσα

2
+
ση

2

]
φR ≡ SRφR. (3.1.4)

We can define helicity (h) as the phase e−ihα gained by a plane wave rotated an angle
α around the propagation axis. Therefore, both spinors have helicity h = 1/2. They
transform the same way under rotations but opposite under boosts.

We cannot transform a right-chiral spinor into a left-chiral one (or viceversa) because
K transforms as a polar vector under parity change but J transforms as an axial vector.
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This means that for Px = −x, the velocity changes sign v = −v but the angular
momentum remains invariant. Thus, (1/2,0) becomes (0,1/2) and so φL becomes φR (and
viceversa). For this reason, we have to consider these spinors as components of a single
object, called four-spinor, Dirac spinor or bi-spinor,

ψ =

(
φL
φR

)
. (3.1.5)

Dirac spinors satisfy the Diract equation,

(iγµ∂µ −m)ψ = 0, (3.1.6)

where m is the mass of the particle and γµ are the 4× 4 matrices,

γµ =

(
0 σµ

σ̄µ 0

)
, (3.1.7)

satisfying
(γ0)2 = 1, (γi)2 = −1, γµγν = −γνγµ,
γ0 = γ0† and γi = −γi†,

(3.1.8)

where µ 6= ν and i = 1, 2, 3.

A specific combination of these matrices will be very relevant for our further analysis
and therefore requires a special definition,

γ5 ≡ γ5 ≡ iγ0γ1γ2γ3. (3.1.9)

Since the γ matrices and the Lorentz transformations are complex, the field ψ satisfy-
ing Eq. (3.1.6) is also complex and has four degrees of freedom. Dirac equation describes
particles with spin 1/2, which carry 2 spin degrees of freedom (2s+1) for the particle
and 2 more for the antiarticle. Thus, the number of components of ψ is the same as the
number of physical states.

The Dirac equation becomes for plane waves with m > 0 and E = p0 = |p| > 0,

(p/−m)u = m(γ0 − 1)u = 0,

(p/+m)v = m(γ0 + 1)v = 0,
(3.1.10)

where we introduce the Feynman slash (A/ ≡ Aµγ
µ), so that p/ = mγ0 in the rest frame,

and the bi-spinor u for particles and v for antiparticles,

u(m,+) = N


1
0
0
0

 , u(m,−) = N


0
1
0
0

 , v(m,−) = N


0
0
1
0

 , v(m,+) = N


0
0
0
1

 ,

(3.1.11)
which are orthogonal,

ū(p, s)u(p, s′) = v̄(p, s)v(p, s′) = N 2δs,s′ . (3.1.12)
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We will normalise these spinors using the factor N =
√

2m that avoids singularities in
the m→ 0 limit and makes the phase space volume identical to the one of bosons.

The Lagrangian density L can be expressed in terms of the Dirac field as

L = ψ̄(iγµ∂µ −m)ψ, (3.1.13)

with ψ and ψ̄ treated as independent fields. The Lagrane equation for ψ̄ gives trivially the
Dirac equation, while for ψ gives the adjoint. We can rearrange terms using the gamma
matrices and the chiral representation to obtain the Dirac Lagrangian,

L = iφ†Rσ
µ∂µφR + iφ†Lσ̄

µ∂µφL −m(φ†LφR + φ†RφL). (3.1.14)

All these terms are Lorentz invariant, so the Dirac equation is also Lorentz invariant.
The mass terms are Lorentz scalars invariant under parity transformations, as well as the
combinations of the kinetic energies of φL and φR.

We can also express the Dirac Lagrangian in the chiral representation by splitting any
field ψ that is solution to the Dirac equation as

ψL = 1
2
(1− γ5)ψ and ψR = 1

2
(1 + γ5)ψ, (3.1.15)

to obtain

L = iψ̄L∂/ψL + iψ̄R∂/ψR −m(ψ̄LψR + ψ̄RψL). (3.1.16)

We can then identify the Dirac bi-spinors ψL/R with the Weyl spinors φR/L at Eq. (3.1.14)
as

ψL =

(
φL
0

)
and ψR =

(
0
φR

)
, (3.1.17)

so we can define the left- and right-chiral components of any Dirac field in an arbitrary
representation. The mass term that mixes lef- and right-chiral fields is called Dirac mass
and is also invariant under chiral transformations. This term will be very relevant in our
discussion about neutrino masses.

The helicity operator measures the projection of the spin of a particle on its momentum
and commutes with the Dirac Hamiltonian because there is no orbital angular momentum
in the direction of propagation. Particles with positive helicity are called right-handed and
those with negative helicity are called left-handed. For massive particles, this quantity is
frame-dependand because h changes sign if we choose a frame that moves in the direc-
tion of propagation of the particle but faster, so that the particle moves in the opposite
direction. We cannot find such a frame for massless particles and thus helicity becomes
a Lorentz invariant. This property is extremely relevant in our topic because neutrinos
(as we know them up to now) are only left-handed, while antineutrinos are only right-
handed. If the antagonic particles exist, they do not interact following the laws we know
and the literature refers to them as sterile neutrinos. Helicity and chirality can then be
understood as complementary. The first state is conserved and frame-dependent, while
the second is frame-independent but not conserved.
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3.2 Weak interactions

Neutrino emission is an exclusive characteristic of weak interactions, which are medi-
ated by heavy intermediate vector bosons. Their measured masses are [31]

MW± = 80.385± 0.015 GeV, MZ = 91.1876± 0.0021 GeV. (3.2.1)

Since they have spin s = 1, they also have three polarization states ms = 1, 0, − 1,
while massless particles as photons or gluons have two. Therefore we only impose the
Lorentz condition to the polarization vector εµ

εµpµ = 0 (3.2.2)

to reduce the number of free parameters from 4 to 3. The resulting propagator is therefore

−i(gµν − qµqν/M2
V )

q2 −M2
V

(3.2.3)

The weak force is the only one of the four fundamental interactions that change flavor
of particles and violate charge-parity symmetry. It affects all the fermions of the Standard
Model as well as the Higgs boson.

We will discuss now the two different weak interactions based on their intermediate
vector bosons: charged current (CC) and neutral current (NC) interactions.

l νl

W−

(a)

l l

Z0

(b)

Figure 3.1: Tree-level Feynman diagrams of the two fundamental weak interactions. Charged
current CC (Fig.3.1a) and neutral current NC (Fig.3.1b).

3.2.1 Charged current interactions

The fundamental leptonic vertex of the charged weak interaction is shown in Fig.3.1a,
where a charged lepton becomes its corresponding neutrino through the emission of a W−.
The reverse and crossed reactions are also allowed, exchanging particles for antiparticles
where needed.
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The vertex factor is always
−igw
2
√

2
γµ(1− γ5), (3.2.4)

where gw =
√

4παw is the weak coupling constant. The term (1− γ5) repreents the vector
minus axial vector (V − A) nature of this interaction. Only γµ would be a vector cou-
pling, while γµγ5 would be an axial vector coupling. This term is resposible for the non
conservation of parity, something characteristic of weak interactions.

As a relevant example of this interaction we will consider the inverse muon decay, as
seen in Fig.(3.2), where a muon-neutrino interacts with an electron to produce a muon
and an electron-neutrino. The momentum of the vector boson is q = p1 − p3 and we will

W−(q)

e−(p1)

νµ(p2)

νe(p3)

µ−(p4)

Figure 3.2: Inverse muon decay. A muon-neutrino interacts with an electron and produce a
muon and an electron-neutrino through exchange of a W.

assumme that is much smaller than M2
W to simplify the propagator. Thus, the amplitude

is,

M =
g2
w

8M2
W

[ū(3)γµ(1− γ5)u(1)][ū(4)γµ(1− γ5)u(2)], (3.2.5)

so that after applying Casimir’s trick, evaluating the traces and neglecting neutrino masses
we find, ∑

spins

|M |2 = 4

(
gw
MW

)4

(p1 · p2)(p3 · p4). (3.2.6)

To average over initial spins we need to consider that the electron has two spin states
and neutrinos only have one. This gives us a factor 1/2. If we neglect the mass of the
electron as well, we find in the CM frame

〈
|M |2

〉
= 8

(
gwE

MW

)4{
1−

(mµ

2E

)2
}
, (3.2.7)

where E is the incident electron or neutrino energy. The differential cross section is
isotropic and reads

dσ

dΩ
=

1

2

[
g2
wE

4π(MW )2

]2{
1−

(mµ

2E

)2
}
, (3.2.8)
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and the total cross section is

σ =
1

8π

[(
gw
MW

)2

E

]2{
1−

(mµ

2E

)2
}
. (3.2.9)

Now we will focus our attention in some mechanisms that produce neutrinos as out-
going particles

Muon decay The reaction shown in fig. 3.3 is theoretically and experimentally the
simplest of all weak processes. The amplitude associated is

M =
g2
w

8M2
W

[
ū(3)γµ(1− γ5)u(1)

] [
ū(4)γµ(1− γ5)v(2)

]
(3.2.10)

from which we obtain

〈|M |2〉 = 2

(
gw
MW

)4

(p1 · p2)(p3 · p4). (3.2.11)

W−

µ− νµ

ν̄e

e−

Figure 3.3: Decay of the muon into an electron, one neutrino and one antineutrino.

Pion decay This reaction may be studied as the scattering process of two quarks that
are bound together, as seen in Fig. 3.4. The amplitude for any lepton family l has the
form

M =
g2
w

8M2
W

[ū(l)γµ(1− γ5)v(ν)]F µ, (3.2.12)

where F µ is a form factor describing the interaction between the pion and the W. It has
to be a four-vector to contract with the gamma matrix and can only be the momentum
since the pion has spin zero. Therefore it must be a scalar times the momentum vector
F µ = fπp

µ. Therefore we find

〈
|M |2

〉
=

(
gw

2MW

)4

f 2
πm

2
l (m

2
π −m2

l ). (3.2.13)
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W−

d

(π−)

ū

ν̄µ

µ−

Figure 3.4: Pion decay.

The decay ratio is then described by the formula

Γ =
S|p|
8πm1

〈
|M|2

〉
, (3.2.14)

where |p| is the outgoing momentum expressed as

|p| = 1

2mπ

(m2
π −m2

l ). (3.2.15)

We find

Γ =
f 2
π

πm3
π

(
gw

4MW

)4

m2
l (m

2
π −m2

l )
2. (3.2.16)

Since we ignore the value of the constant fπ we cannot calculate the lifetime of the pion.
However, we can calculate an estimate for the ratio of the decay rate of the electron and
muon channels as

Γ(π− → e− + ν̄e)

Γ(π− → µ− + ν̄µ)
=
m2
e(m

2
π −m2

e)
2

m2
µ(m2

π −m2
µ)2

= 1.283× 10−4. (3.2.17)

It looks surprising that the electron channel is strongly suppressed in favour of the
muon channel even though the mass difference is larger. However, we see in Eq. (3.2.16)
that if the electron was indeed massless, the channel would be forbidden. This can also
be expained through spin and helicity. The pion has spin 0 and therefore the antineutrino
and the electron emerge with opposite spins and equal helicity. Antineutrinos are always
right-handed, so the electron must also be right-handed. On the other hand, if the electron
was trully massless, then the 1 − γ5 term in the weak vertex would only couple to left-
handed electrons, in the same way as it only couples to left-handed, neutrinos therefore
suppressing this pion decay channel. Experimental measurements of the helicity of the
muons determined that they are always right-handed in this process, which confirms that
antineutrinos are right-handed. The process for π+ gave the opposite results, confirming
that neutrinos are always left-handed.

Kaon decay The decay of this meson can serve as example of how heavier particles can
decay through different mechanisms and produce neutrinos. The pure leptonic decay is a
similar process as the pion decay shown in Fig. 3.4 where the difference is a strange quark
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plus an anti-up quark instead of a down quark plus an anti-up to produce the W−. The
decay rate would then be the analog of Eq. (3.2.16) with the mass and the form factor of
the kaon instead of the pion. Another source of neutrinos from the kaon would then be
the semi-leptonic decay, where the K̄0 decays into a pion, a lepton and the corresponding
antineutrino. The muon channel is shown in Fig. 3.5. The decay π− → π0 + e− + ν̄e
would be another example of the same process.

W−

d

s

d

u

ν̄µ

µ−

Figure 3.5: Decay of the K̄0 into a π+, a muon and one antineutrino.

Neutron decay The neutron is a composite particle consisting of three quarks and its
decay is really the decay of a d quark into a u quark so that the neutron becomes a proton,
as shown in Fig. 3.6. Following the same procedure as before we would find that

〈
|M |2

〉
= mn

(
gw
MW

)4

|p2|
(
m2
n −m2

p −m2
e − 2mn|p2|

)
, (3.2.18)

so that the differential decay rate as a function of the outgoing eletron energy is

dΓ

dE
=

1

π3

(
gw

2MW

)4

E
√
E2 −m2

e[(mn −mp)− E]2. (3.2.19)

Integrating over the electron energies we find the total decay rate

Γ =
1

4π3

(
gw

2MW

)4

m5
e

[
1

15
(2a4 − 9a2 − 8)

√
a2 − 1 + a ln(a+

√
a2 − 1)

]
, (3.2.20)

where we used

a ≡ mn −mp

me

. (3.2.21)

Inserting the physical values we find the neutron lifetime

τ =
1

Γ
= 1318 s, (3.2.22)

which does not really agree with the experimental data τ = 880.3± 1.1 seconds (Particle
Physics Booklet 2014 [31]). This is due to the inner structure of the neutron, that does
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not allow us to treat this decay as simple as we did. We must take into consideration
some corrections to the weak vertex caused by the strong interactions between the quarks,
such as

(1− γ5)→ (cV − cAγ5), (3.2.23)

where cV is the correction to the vector ‘weak charge’ and cA is the correction to the axial
vector part. Experimental results show that,

cV = 1.000, cA = 1.270± 0.003. (3.2.24)

This means that the vector weak charge is not modified by the strong interactions
inside the neutron, while the axial vector part is slightly altered. These are called ‘Con-
served Vector Current’ (CVC) and ‘Partially Conserved Axial Current’ (PCAC) hypothe-
ses. CVC was included in the Standard Model and the value of cV accepted as 1 exactly.

Inserting these values in the previous equations we find that the decay rate changes
by a factor of 1.46 so that the lifetime is,

τ =
1316 s

1.46
= 901 s. (3.2.25)

This is a better approximation but not an improvement, since there are other correc-
tions to be taken into consideration such as the d → u + W quark vertex, that carries a
factor involving the mixing angles of the quarks, or a small Coulomb correction due to
the attraction of the proton and the electron in the final state, but we will not go into
further detail.

W−

u
d

d

u
d

u

ν̄e

e−

Figure 3.6: Decay of the neutron into a proton, an electron and one antineutrino.

Other sources of neutrinos are for example nuclear fusion reactions in the Sun and
other stars, such as the first stage of proton-proton fusion

p+ + p+ → 2
1H + e+ + νe, (3.2.26)

and the carbon cycle
13
7 N→ 13

6 C + e+ + νe, (3.2.27)
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as well as much more energetic processes like Supernova explosions of very massive stars
that collapse under their own gravity. During this process, the electrons of the star core
are forced into the nucleus via inverse β-decay and electron-neutrinos are released.

3.2.2 Neutral current interactions

Figure 3.7: The first example of a single-electron neutral current. An incoming antineutrino
knocks an electron towards the left, creating a characteristic electronic shower with electron-
positron pairs. Credit: Gargamelle/CERN.

Most neutral weak processes are hidden by the equivalent electromagnetic one since
the photon can couple to everything the Z0 does and at low energies the photon mecha-
nism clearly dominates. Therefore, neutrino scattering was used to confirm the existence
of a neutral weak current, since neutrinos do not couple to the photon. In 1973, the
GARGAMELLE experiment at CERN [32] was able to produce the first image of a neu-
tral current interaction between a muon-antineutrino and an electron (Fig.3.7),

ν̄µ + e− → ν̄µ + e−, (3.2.28)

that suggested a neutral mediator as the theoretically predicted Z0 (Fig.3.8).

There were also observed some neutrino-nucleon scattering events that revealed the
neutral neutrino-quark interaction. The cross sections were much smaller than the cor-
responding charged current events, so that it needed to be a new interaction and not
higher-order processes.

The fundamental vertex of a neutral current interaction is shown in fig.3.1b, where
the same lepton enters and exits the reaction.

The vertex factor is in this case

−igz
2

γµ(cfV − c
f
Aγ

5), (3.2.29)
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Z0

ν̄µ

e−

ν̄µ

e−

Figure 3.8: Neutral current interaction between an incoming muon-antineutrino and an electron.

where gz is the neutral coupling constant and the vector and axial vector corrections
cfV and cfA depend on the fermion involved in the reaction. In the unified electroweak
theory (that we will discuss in section 3.3) all these parameters are determined by the
weak mixing angle or Weinberg angle θw, which also relates the electromagnetic and weak
coupling constants,

gw =
ge

sin θw
, gz =

ge
sin θw cos θw

, (3.2.30)

where ge is determined by the charge of the electron (ge = e
√

4π). The vector boson
masses are also related by this angle as,

MW = MZ cos θw. (3.2.31)

As an example of this kind of interactions, we will look at the elastic neutrino-electron
scattering process. We can use the Feynman diagram shown in Fig. 3.8 bearing in mind
that the incoming particle is a neutrino instead of an antineutrino. This will also serve
as a comparison with the charged current interaction shown in Fig. 3.2.

The amplitude of this process is

M =
g2
z

8M2
Z

[ū(p3)γµ(1− γ5)u(p1)][ū(p4)γµ(cV − cAγ5)u(p2)], (3.2.32)

so that 〈
|M |2

〉
= 2

(
gzE

4MZ

)4 [
(cV + cA)2 + (cV − cA)2 cos4 θ

2

]
, (3.2.33)

where E is the incoming neutrino or electron energy, θ is the scattering angle between
incoming and outgoing directions in the CM frame and we have used that cV and cA for
the neutrino are 1/2 [2]. The cross section then reads

σ =
2

3π

(
gz

2MZ

)4

E2(c2
V + c2

A + cV cA). (3.2.34)
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The theoretically predicted value was σ ∼ 10−41 cm2/electron at 1 GeV[32]. Inserting
the values from Table 9.1 in [2] we find a ratio of

σ(νµ + e− → νµ + e−)

σ(νµ + e− → νe + µ−)
=

1

4
− sin2 θw +

4

3
sin4 θw = 0.0900. (3.2.35)

This result show how unlikely these processes are to happen and justify the low number
of neutrino scattering events inside detectors and the time invested in collecting useful
data.

3.3 Electroweak theory

Fermi tried to explain the nuclear β-decay through a current-current interaction be-
tween two fermions,

LFermi =
GF√

2
Jµ(x)Jµ(x). (3.3.1)

When parity violation was found in weak interactions, the leptonic current was then
described as a V − A interaction,

Jµ(x) = ψ̄eγµ(1− γ5)ψν + h.c. (3.3.2)

However, this theory is included in the class of non-renormalisable theories and further
efforts were demanded. The first attempt to construct a renormalisable gauge theory was
the introduction of intermediate vector bosons W± with mass mW . The charged current
interaction can then be written using doublets of left-handed fermions,(

νe
e

)
L

and

(
u
d

)
L

. (3.3.3)

This doublet structure suggests the gauge group SU(2) for weak interactions, which is
often called weak isospin. Only left-handed fermions interact this way and therefore the
goup is usually denoted SU(2)L, while right-handed fermions transform as singlets. We
can now associate the vector bosons W∓ with the ladder operators τ∓ = (τ1± iτ2)/

√
2 so

the interaction becomes

LFermi =
GF

2
√

2

(
ν̄e ē

)
L

(
τ+W−

µ + τ−W+
µ

)
γµ
(
νe
e

)
L

. (3.3.4)

For an electroweak unification, we need to identify the τ3 with the photon, but there are
three inconvenients:

• The fermion mass term m(ψ̄RψL + ψ̄LψR) is not gauge invariant.

• The generators of SU(2) are traceless; multiplets must have zero net charge.

• The currents generated by τ± should have V −A structure but the electromagnetic
current has to be a pure vector current.

Glashow suggested that the gauge group of weak and electromagnetic interactions is the
product of two groups [33], while Weinberg and Salam included the idea of spontaneous
symmetry breaking using the Higgs mechanism [34, 35] so that

SU(2)L ⊗ U(1)Y → U(1)EM , (3.3.5)
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where Y stands for hypercharge. Let us now go into some more detail about this mecha-
nism.

A SU(2)⊗U(1) gauge theory contains four gauge bosons but only one should remain
massless. Using a complex SU(2) doublet to break the gauge symmetry would add four
real degrees of freedom, of which three will become longitudinal degrees of freedom for
the three massive gauge bosons and one physical Higgs field remains. This complex scalar
SU(2) doublet is

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (3.3.6)

The Lagrangian

L = (∂µΦ)† (∂µΦ) + µ2Φ†Φ− λ
(
Φ†Φ

)2
(3.3.7)

is invariant under global SU(2) and U(1) transformations of Φ,

Φ→ exp
{
iα·τ

2

}
Φ and Φ→ exp

{
iθY

2

}
Φ, (3.3.8)

where we have chosen the Pauli matrices τ as generators for the weak isospin transfor-
mations. The U(1) charge Y can take any value, so we choose Y (Φ) = 1 with a factor
1/2 added by convention.
We choose the vacuum expectation value in the φ0 direction to avoid an electrically
charged vacuum,

〈0|Φ|0〉 =

(
0
v√
2

)
. (3.3.9)

Electroweak symmetry breaking should leave Uem(1) invariant and this is achieved using
the combination 1 + τ3,

δΦ = iε(1 + τ3)Φ = iε

(
2 0
0 0

)(
0
v√
2

)
= 0. (3.3.10)

In the weak isospin space, the hypercharge generator is the identity matrix, so we
should associate the electric charge Q to the combination Y +τ3. In this fashion we expect
the photon as a superposition of the U(1)Y abelian gauge boson and the third component
of the SU(2)L non-abelian gauge boson. Applying Q ∝ Y + τ3 to the upper component
φ+ of the Higgs doublet we find the Gell-Mann−Nishijima relation 2Q = Y + τ3.

Now we gauge the model via covariant derivatives,

∂µΦ→ DµΦ =

(
∂µ +

ig

2
τ ·W µ +

ig′

2
Bµ

)
Φ, (3.3.11)

suppressing a unit matrix in isospin space in from of ∂µ and Bµ and introducing the
couplings g and g′ for the two groups. We obtain the field-strengths for the three SU(2)L
gauge fields W µ and the U(1)Y field Bµ as

F µν
a = ∂µW ν

a − ∂µW µ
a − gεabcW

µ
b W

ν
c (3.3.12)

Gµν = ∂µBν − ∂νBµ, (3.3.13)

where εabc is a completely antisymmetric tensor that corresponds to the structure con-
stants of SU(2). In this way, we find the Lagrangian describing the Higgs gauge sector
as

L = −1

4
F 2 − 1

4
G2 + (DµΦ)†(DµΦ)− V (Φ). (3.3.14)
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We are interested in the mass spectrum of physical particles and therefore we sponta-
neously break this theory using unitary gauge. We can achieve only one physical scalar
field if we use polar coordinates for the lower component, φ0 = ρeiθ and setting φ+ = θ = 0
by a SU(2) unitary transformation, which only changes the longitudinal components of
the SU(2) gauge bosons. We separate ρ into the vev v =

√
µ2/λ and fluctuations h(x),

Φ =

(
0

1√
2

(v + h(x))

)
=
v + h√

2

(
0
1

)
≡ v + h

2
χ. (3.3.15)

Inserting the part containing v into Eq. (3.3.14) we find the mass terms

Lm =
v2

2
χ†
(
g

2
τ ·W µ +

g′

2
Bµ

)(
g

2
τ ·W µ +

g′

2
Bµ

)
χ. (3.3.16)

Using (τ ·W )2 = W 2 and χ†τ ·W µχ = −W µ
3 after multiplying out the brackets, we

find

Lm =
v2

2

[
g2

4
(W 2

1 +W 2
2 +W 2

3 ) +
g′2

4
B2 − gg′

2
W µ

3 Bµ

]
. (3.3.17)

We see that the neutral fields W µ
3 and Bµ are connected so we rewrite the mass term as

Lm =
g2v2

8
(W 2

1 +W 2
2 ) +

v2

8
(gW µ

3 − g′Bµ)2. (3.3.18)

We can identify the two fields in the first bracket with the gauge bosons from the charged
current interaction in the Fermi theory,

W± =
1√
2

(W1 ∓ iW2)2. (3.3.19)

In the same way, we will identify the second bracket with a new neutral massive gauge
boson called Z that is a mixture of the W3 and B fields,

Zµ =
1√

g2 + g′2
(gW µ

3 − g′Bµ) = cos θWW
µ
3 − sin θWB

µ, (3.3.20)

where θW is the Weinberg angle, which parametrises the mixing of B and W3. The mixing
disappears for θW = 0 and the hypercharge equals the electric charge.

We can also identify the massless photon with the combination of W3 and B orthogonal
to Z since it does not appear in the mass Lagrangian,

Aµ =
1√

g2 + g′2
(g′W µ

3 + gBµ) = sin θWW
µ
3 + cos θWB

µ. (3.3.21)

The mass Lagrangian in terms of physical fields then becomes

Lm =
1

2
m2
W +W+

µ W
−µ +

1

2
m2
ZZµZ

µ, (3.3.22)

where the boson masses are

mW = gv
2
, mZ =

√
(g2+g′2)v

2
= mw

cos θW
and mA = 0, (3.3.23)
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as function of the unknown values of the coupling constants g and g′ and the vev v. We
see that the mass ratio of the gauge bosons is fixed at tree level by the Weinberg angle

mW

mZ

= cos θW . (3.3.24)

As mentioned in Section 3.2.2, g and g′ should be related to the electromagnetic
coupling e and the Weinberg angle θW . To find that, we will insert the physical fields Zµ

and Aµ in the covariant derivative (Eq. (3.3.11)) by inverting Eqs. (3.3.20) and (3.3.21)

gW µ
3 τ3 + g′Bµ1 = g(cos θWZ

µ + sin θWA
µ)1 + g′(− sin θWZ

µ + cos θWA
µ)τ3

= (g sin θW τ3 + g′ cos θW1)Aµ + (g cos θW τ3 − g′ sin θW1)Zµ.

(3.3.25)

Using tan θW = g′/g we find

g
W µ

3 τ3

2
+ g′

Bµ1

2
=

1

2
g sin θW (τ3 + 1)Aµ +

g

2 cos θW

(
τ3 − sin2 θW (τ3 + 1)

)
Zµ. (3.3.26)

We assigned the electric charge to the upper component φ+ so that DµΦ implies

e = g sin θW = g′ cos θW , (3.3.27)

while the lower component φ0 stays neutral.

3.4 Fermion mass and flavor mixing

In this section we will describe the mechanism that provides mass to fermions. The
term in the Lagrangian associated to fermion mass

m(ψ̄RψL + ψ̄LψR) (3.4.1)

needs to be gauge invariant. Therefore we need the parameter m to become a SU(2)
doublet. If we introduce a Yukawa coupling yf = m/v between the lepton doublet L, the
scalar doublet Φ and the lepton singlet eR,

LY = −yf
(
L̄ΦeR + ēRΦ†L

)
, (3.4.2)

we obtain a SU(2) invariant term. Knowing that Y (Φ) = 1 and Y (L) = −1, we can also
obtain a UY (1) invariant mass term if the lepton singlet has hypercharge Y (eR) = −2.
This satisfies the Gell-Mann-Nishijima relation 2Q = Y + 2T3. This coupling generates
masses and Yukawa interactions between the fermions and the Higgs. After inserting the
vacuum expectation of the Higgs, we find a Dirac mass term in the form

Lm = −yfv√
2

[(
ν̄e ē

)
L

(
0
1

)
eR + ēR

(
0 1

)
L

(
νe
e

)
L

]
= −mf (ēLeR + ēReL) = −mf ēe, (3.4.3)

and we generate the masses for the down-like fermions with τ3 = −1/2 like the electron.
For the up-like fermions we need the charge conjugated Higgs doublet iτ2Φ∗. In order to
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justify this, we show how quarks and anti-quarks transform under SU(2)L. The quarks
transform as

q → q′ = Uq = exp

{
−iα · τ

2

}
q, (3.4.4)

with

q =

(
u
d

)
, (3.4.5)

while the charged conjugated reads

q∗
′
= U∗q∗ = exp

{
−iα · τ

∗

2

}(
ū
d̄

)
. (3.4.6)

The bar denotes antiparticles and the conjugated Pauli matrices are

τ ∗1 = τ1, τ ∗2 = −τ2, τ ∗3 = τ3. (3.4.7)

The set
{
τ1
2
,− τ2

2
, τ3

2

}
satisfies the same Lie algebra as the original set and is an appropriate

basis for the antiquarks. This 2* representation and the original 2 representation must
be unitary equivalent . For any unitary matrix V,

V exp

{
−iα · τ

2

}
V −1 = exp

{
iα · τ

2

}
. (3.4.8)

This expression simplifies to
V (−τ ∗)V −1 = τ (3.4.9)

for infinitesimal |α|, so that V = iτ2. Therefore we obtain

V

(
ū
d̄

)
=

(
d̄
−ū

)
. (3.4.10)

This doublet transforms in the same way as the 2 representation, so we can use iτ2φ
∗ to

generate Dirac masses for neutrinos and up-like quarks.

The coupling yf and therefore the mass mf for the three generations of lepton and
quarks are 3x3 arbitrary matrices in flavor space, y and m. There is no particular reason
for y to be diagonal or hermitian so it can be diagonalized by a biunitary transformation
such as

S†mT = mD, (3.4.11)

where S and T are unitary matrices and mD is diagonal and positive. Following this,
the weak eigenstates ψ = {ψe, ψµ, ψτ} transform into mass eigenstates ψ′ = {ψ1, ψ2, ψ3}
as

ψ̄LmψR = ψ̄LSS
†mTT †ψR = ψ̄′LmDψ

′
R. (3.4.12)

The problem we encounter now is that these new eigenstates are not diagonal in the
interaction basis and this will produce flavor mixing. Evaluating the charged weak current
Jµ with the mass eigenstates,

Jµ = ν̄Lγ
µeL = ν̄′Lγ

µS†νSee
′
L, (3.4.13)

we find that there will be only one observable, U ≡ S†νSe. This gives us some freedom to
choose mixing only for neutrinos and down-like quarks, meaning Se = 1 andU = Sν . The
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U matrices for neutrinos and quarks are called respectively MNS-matrix (Eq. (2.4.12))
and CKM-matrix.

If we choose the neutrino masses to be zero following the SM, then Sν is abritrary
and we can set it equal to Se, so that U = 1 and no mixing occurs. This would lead
to the conservation of lepton number of each generation, which in turn guarantees that
perturbation loop theory does not generate neutrino masses. However, the observed non-
zero masses of the neutrinos confirm that leptons mix via the MNS-matrix and thus only
the total lepton number is a conserved quantity in the SM.

3.5 Dirac vs. Majorana Neutrinos

Dirac fermions are massive particles that carry a conserved U(1) charge, which allows
us to distinguish between particles and anti-particles. Neutrinos are the only particles of
the SM that do not carry electric charge and traditionally they were considered massless.
Let us describe now both cases independently.

First we will consider charged massless particles, called Weyl fermions. In the chiral
representation, the Dirac equation(

−m i(∂0 + σ∇)
i(∂0 − σ∇) −m

)(
φL(p)
χR(p)

)
= 0. (3.5.1)

decouples into the two Weyl equations

i(∂0 − σ∇)φL(p) = 0 (3.5.2)

i(∂0 + σ∇)χR(p) = 0. (3.5.3)

For a plane-wave we have that

χR(p) = χRe−iεpx and p0 = |p| = E, (3.5.4)

so for the limit m = 0 we get

(E − σp)χRe−iεpx = 0. (3.5.5)

Only the solution with positive helicity is allowed for a right-chiral Weyl fermion, since
the dispersion relation is E = ±|p| for both energy solutions ε = ±1. Helicity is frame
independent for a massless particle, so that right chirality (resp. left chirality) matches
with positive helicity (resp. negative helicity) and we can call these particles right-handed
(resp. left-handed). Therefore, Weyl fermions have two degrees of freedom: a left-handed
2-spinor with negative helicity and a right-handed 2-spinor with positive helicity.

Neutrinos were included in the SM as Weyl fermions and their conserved U(1) current
was the lepton number Ll for the three flavors, so that the difference in number of lep-
tons and anti-leptons of each family was conserved. However, neutrino oscillations mix
the flavors so that only the total lepton number is conserved. This is caused by massive
neutrinos only, so the discovery of neutrino oscillations is a sufficient condition to discard
neutrinos as Weyl fermions.
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Now we will focus on massive neutral fermions, called Majorana fermions. The
Dirac field has to be complex due to group transformations that we will not discuss
here, but a neutral field ψM only has half the degrees of freedom as a charged particle
because we cannot distinguish particles from anti-particles. We can achieve that by using
a self-conjugated field ψc = ψ,

ψM,1 =
1√
2

(ψD + ψcD) (3.5.6)

ψM,2 =
1√
2

(ψD − ψcD), (3.5.7)

in terms of the Dirac field, whereas in terms of Weyl spinors it is only composed of one
2-spinor and it conjugated

ψcM = ψM =

(
φL

−iσ2φ∗L

)
. (3.5.8)

A Majorana fermion has therefore two degrees of freedom as well: one left-handed and
one right-handed 2-spinor with both positive and negative helicities each.

A Dirac mass term connects the left-handed and righ-handed component of the same
field and ψ = ψL + ψR is a mass eigenstate. Therefore, if we define

ψcL ≡ (ψL)c =
1

2
(1 + γ5)ψc = (ψc)R (3.5.9)

we can obtain new Majorana mass terms as

−LL = mL(ψ̄cLψL + ψ̄Lψ
c
L) (3.5.10)

−LR = mR(ψ̄cRψR + ψ̄Rψ
c
R), (3.5.11)

or in terms of the new mass eigenstates

LL = −mLχ̄χ (3.5.12)

LR = −mRω̄ω, (3.5.13)

where χ = ψL + ψcL = χc and ω = ψR + ψcR = ωc.

A general mass term icluding Dirac and Majorana fields reads as

−LDM = mDψ̄LψR +mLψ̄
c
LψL +mRψ̄

c
RψR + h.c. (3.5.14)

=
1

2
mD(χ̄ω + ω̄χ) +mLχ̄χ+mRω̄ω. (3.5.15)

In order to have physical states with definite mass, we have to diagonalise the matrix

−LDM =
(
χ̄, ω

)( mL
mD

2
mD

2
mR

)(
χ
ω

)
, (3.5.16)

so we find the eigenvalues

m1,2 =
1

2

{
(mL +mR)±

√
(mL −mR)2 +m2

D

}
. (3.5.17)
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We cannot identify mL in a gauge invariant way with the vev of the Higgs field, so
Majorana mass terms of the type mL(ψ̄cLψL + ψ̄Lψ

c
L) for neutrinos do not appear in the

SM. Experimental detection of violation of lepton number as in neutrinoless double β-
decay would be a good proof of physics beyond the SM, but up to now it has not been
found.

Before concluding this section, it is worth mentioning the seessaw model. Assuming
that there exist left- and right-handed neutrinos, this model tries to explain why their
masses are so much smaller than those of the other fermions in the SM . The right-handed
νR is not affected by SM interactions and its mass will be taken to a value close to the
cut-off scale used just like a scalar particle. Therefore, the eigenvalues in Eq. (3.5.17)
become for mR � mD

m1 ≈
m2
D

2mR
and m2 ≈ mR. (3.5.18)

For mR ∼ 1014 GeV and mD ∼ 100 GeV we find light neutrino masses in the range of eV,
which agrees with observations.
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Chapter 4

Neutrino astronomy

Neutrinos are the most elusive elementary particles and their experimental study re-
quires advanced techniques and technology. Previously we have focused on the theoretical
description of neutrinos and throughout this Chapter we will try to provide a picture of the
current observation methods and the motivations to invest such an effort on this quest.
The last Section of this Chapter is devoted to the largest and most sensitive neutrino
telescope ever made, IceCube, which is our only eye to see high-energy neutrinos.

4.1 Astrophysical sources of high-energy neutrinos

High-energy neutrinos are considered in the range Eν ≥ TeV. If we were able to detect
their arrival directions with precision, they would directly point to their sources due to
the little or no interaction during their cosmic trip. The only sources capable of produc-
ing such an energy are the so-called cosmic accelerators, primarily Supernovas (SN) and
Active Galactic Nuclei (AGN). These high-energy neutrinos are very interesting to study
because the range of energies allows us to get rid of most of the background noise at the
detectors, that lies in the range of MeV for solar and up to TeV for atmospheric neutrinos.
Most galactic sources are result of SN type II and their remnants (SNR), while almost all
extragalactic sources are due to AGNs [36].

SN Type II or core collapse supernovae occur at the end of the fusion process in very
massive stars, 8-20 solar masses. After the core is completely fused to iron, no further
processes releasing energy are possible. Instead, photodisintegration destroys the heavy
nuclei via γ +56 Fe →4 He + 4n, and removes the thermal energy necessary to provide
pressure support. In the following collapse of the star, the density increases and the free
electrons are forced together with protons to form neutrons via inverse β-decay, emitting
around 99% of the total SN energy. When the core density reaches nuclear density, the
collapsing material rebounds and a shock wave propagates outwards heated by neutrino
emission from the neutron star.

Pulsars may be good candidates for high-energy neutrinos, specially if they are part
of a binary system. These objects are rapidly rotating neutron stars with a mass in the
range 1.4-3 solar masses as the result of the SN II explosions. If the mass of the com-
panion is large enough, the pulsar will orbit around it, since the center of mass of the
system would be inside the companion. Pulsars have an intense magnetic field that can
accelerate particles to very high energies. Protons for example will collide with the gas
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of the outer layers of the companion’s atmosphere and produce pions. Neutral pions will
decay into pairs of photons that would allow us to detect the source through telescopes,
whereas charged pions will decay through the process described in Sec. 3.2.1 to produce
energetic muon neutrinos, which will be detected as muons after another charged weak
interaction following the direction of the incoming neutrino.

(a) (b)

Figure 4.1: Two examples of Supernova Remnants. Left: M1, the Crab Nebula from Hubble.
Credit: NASA, ESA, J. Hester, A. Loll (ASU). Right: Vela Pulsar, a neutron star with rings
and jet. Image from Chandra X-ray Observatory. The arrow indicates that the neutron star is
moving along the direction of the x-ray jet. Credit: G.Garmire et al. (PSU), NASA.

AGN are compact regions at the centre of some galaxies that have a very high lu-
minosity over most of the electromagnetic spectrum. The radiation from an AGN is
believed to be a result of accretion of mass by a supermassive black hole at the centre of
its host galaxy, where dissipative processes in the accretion disc transport matter inwards
and angular momentum outwards, causing the accretion disc to heat up. Some accretion
discs produce one or two collimated jets that emerge in opposite directions following the
angular momentum axis of the accretion disc or the spin axis of the black hole. These
relativistic particles may suffer scattering processes and produce secondary particles that
would decay as described in Secs.3.2.1 and 3.2.2 to produce high-energy neutrinos. The
standard model of AGN classifies them into two families, called radio-quiet and radio-
loud. Radio-loud objects have emission contributions from both the jets and the lobes
produced by them, which dominates the luminosity of the AGN at radio wavelengths. Ex-
amples of radio-loud AGN are radio galaxies, some quasars (quasi-stellar radio sources)
and blazars (BL-Lac objects and OVV quasars). Radio-quiet objects are simpler since
jet and any jet-related emission can be neglected at all wavelengths. Examples of this
family are Seyfert 1 and Seyfert 2 galaxies as well as some other quasars. The above
mentioned standard model of AGNs proposes that different observational classes of AGN
are a single type of physical object observed under different conditions. The apparent
differences between different types of objects arise because of their different orientation
angle with respect to the observer, so that the quieter AGNs have their jets perpendicular
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to the line of sight while the louder ones have them pointing towards the observer.

Within our galaxy we can find examples like the Crab Nebula (Fig.4.1a), or the Vela
Supernova Remnant (Fig.4.1b). Extragalactic examples worth mentioning are the jet
from M87 (Fig.4.2a) and distant quasars (Fig.4.2b).

(a) (b)

Figure 4.2: Two examples of AGN. Left: A Jet from Galaxy M87, created by energetic gas
swirling around a massive black hole at the galaxy’s center. The jet is 5000 light-year long,
where electrons are ejected outward at near light-speed, emitting blue light during a magnetic
spiral. The dots of light surrounding M87’s center are large ancient globular clusters of stars.
Credit: J. A. Biretta et al., Hubble Heritage Team (STScI /AURA), NASA. Right: 3C175, a
Quasar Cannon. The central dot is quasar 3C175. Image recorded by the Very Large Array
(VLA) radiotelescopes. Shooting out from 3C175 is a thin jet of protons and electrons traveling
near the speed of light that is over one million light-years long. Credit: Alan Bridle (NRAO
Charlottesville) VLA, NRAO, NSF.

4.2 Cherenkov light

Neutrinos are not observed directly, but when they happen to interact with the ice
they produce electrically charged secondary particles that in turn emit Cherenkov light,
as a result of traveling through the ice faster than light travels in ice. The IceCube sensors
collect this light, which is subsequently digitized and time stamped. This information is
sent to computers in the IceCube Lab on the surface, which converts the messages from
individual DOMs into light patterns that reveal the direction and energy of muons and
neutrinos. Let us now cover the basics of Cherenkov radiation.

Cherenkov radiation is a well-understood phenomenon related to the passage of charged,
ultra relativistic particles through a dielectric medium, discovered by P. A. Čerenkov in
1934 [38]. When a charged particle is moving through a medium faster than the speed
of light in that medium, it causes the atoms in the medium to radiate. This radiation is
caused by the sudden change in the value of the electric field surrounding the atom as
the partice passes by. This radiation is emitted in the shape of a cone with axis in the
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Figure 4.3: Cherenkov radiation of a particle moving through a medium without dispersion. The
half-angle θ is formed by the direction of motion and the normal to the direction of radiation.[37]

direction of movement of the particle (Fig.4.3). The half-angle θ of this cone is

cos θ =
1

β · n
, (4.2.1)

where n is the refractive index of the medium and β is the relation between the speed of
light in the vacuum c and the velocity of the particle v (where v > c/n).

Its spectrum is given by the Frank-Tamm formula

Iν =
e2ν

2

(
1− 1

n2
νv

2

)
, (4.2.2)

where Iν is the energy radiated at frequency ν per unit frequency interval, per unit
distance travelled by the particle and e is the electric charge of the electron. This is the
characteristic glow observed in the core of nuclear reactors (Fig.4.4).

The ice in Antarctica is not isotropic, but consists of hexagonal crystals that are
oriented in the same direction [39, 40]. This orientation leads to an anisotropy, and
the Cherenkov radiation may depend on the direction of the ice orientation. This is of
particular interest because IceCube has already observed an anistropy in the ice, believed
to be due to the scattering depending on the azimuthal direction the photon follows
through the medium [41]. A theory of Cherenkov radiation in a uniaxial medium could
be required [42]. In anisotropic media, optical Cherenkov emission depends on the angle
between the relativistic charged particle and the optical axis of the medium. In oriented
ice crystals, the Cherenkov emission rate varies slightly, by 0.3%, and the emission angle
can vary by 0.4 degrees [43]. However, this results indicate that experiments like IceCube
can safely neglect the effect of crystal anisotropy in their data analysis.

4.3 Detecting neutrinos

The first dedicated neutrino oscillation experiment started operating in 1968 under
the direction of Ray Davis Jr and his group [18] and was based on the chlorine − 37
technique. It was designed to detect electron neutrinos from the Sun with a threshold
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Figure 4.4: Cherenkov radiation glowing in the core of the Advanced Test Reactor. By Argonne
National Laboratory, Idaho National Laboratory, USA.

energy of 0.814MeV using the reaction

ν +37
17 Cl→37

18 Ar + e−. (4.3.1)

The interaction of a neutrino with the chlorine isotope produces a radioactive iso-
tope of argon, which decays back to the same chlorine by capturing one of its own inner
orbital electrons while ejecting another one with a 2.8 keV energy. These emited elec-
trons are counted as a measure of the number of argon iotopes produced by neutrino
interactions. The detection rate was 2.23 ± 0.22 SNU. The solar neutrino unit, SNU,
corresponds to 10−36 captures per second per target atom. The expected rate from the
Sun is 7.3 ± 1.5 SNU and this disparity led to the solar neutrino problem before neutrino
oscillations were discovered. Davis shared the Nobel prize for physics in 2002 for his work.

The next generation of neutrino detectors were water-based and their primary objec-
tive was proton decay detection and not neutrinos [16]. The principle is Cherenkov radi-
ation form the products of neutrino interactions, namely electron scattering and inverse
β-decay. A high-energy neutrino of any flavor interacts with an electron and transfers
its energy, shooting the electron with a speed larger that the speed of light in water and
approximately in the same direction. On the other hand, in inverse β-decay, an energetic
positron is produced as described by Eq. (2.2.4). Both the positron and electron travel-
ing through water produce Cherenkov radiation in a cone around the direction of motion,
which is collected by photomultipliers. This radiation can be used to calculate the energy
of the incoming neutrino and the direction of arrival in case of a scattering event.

The muon neutrino interacts with a proton to produce a relativistic muon (see Eq.
(2.2.8)). The Cherenkov radiation of this muon leaves a characteristic ring of light, that
contrasts with the blurry ring left by the electron neutrino scattering due to the γ-ray pairs
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produced by the outgoing electron that create electron-positron pairs that also produce
Cherenkov light. SuperKamiokande was able to detect them and thus provided evidence
for neutrino oscillations in 1998. Due to pion decay after atmospheric interaction of cosmic
rays, there should be twice as many muon-neutrinos as electron-neutrinos (Eq. (2.2.9)).
However, SuperKamiokande found that this was true for neutrinos coming directly from
above but that the number of neutrinos of both flavors coming from the other side of the
Earth was roughly the same. The only explanation was that half of the muon-neutrinos
must have oscillated into tau-neutrinos. This was confirmed in 2000 by a 30% shortage of
the detected muon-neutrinos from the artificial source at the KEK laboratory at Tsukuba
[19].

This leads to our main interest, IceCube. This detector is located under more than
one kilometer of Antarctic ice, which is highly transparent due to the few impurities and
the pressure that has pushed out any air bubble. Therefore, Cherenkov radiation can be
easily detected by the photomultipliers.

4.4 IceCube experiment

Figure 4.5: Design of the IceCube detector at the Amundsen-Scott base in Antarctica. Copy-
right: IceCube Collaboration. [44]

IceCube, the South Pole neutrino observatory, is a cubic-kilometer particle detector
made of Antarctic ice and located near the Amundsen-Scott South Pole Station. It is
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buried beneath the surface, extending to a depth of about 2,500 meters. A surface array,
IceTop, and a denser inner subdetector, DeepCore, significantly enhance the capabilities
of the observatory, making it a multipurpose facility [44].

As seen in Fig.4.5, the in-ice component of IceCube consists of 5,160 digital optical
modules (DOMs), each with a ten-inch photomultiplier tube and associated electronics.
The DOMs are attached to vertical strings in 86 holes, and displayed over a cubic-kilometer
from 1,450 meters to 2,450 meters depth. Each string holds 60 DOMs separated 17 meters
and they are deployed on a hexagonal grid with 125 meters spacing.

Eight of these strings at the center of the array were deployed more compactly, with
a horizontal separation of about 70 meters and a vertical DOM spacing of 7 meters. This
denser configuration forms the DeepCore subdetector, which lowers the neutrino energy
threshold to about 10 GeV, creating the opportunity to study neutrino oscillations and
perform searches for sterile neutrinos.

IceTop consists of 81 stations located on top of the same number of IceCube strings.
Each station has two tanks, each equipped with two downward facing DOMs. IceTop also
detects air showers from primary cosmic rays in the 300 TeV to 1 EeV energy range. The
surface array measures the cosmic-ray arrival directions in the Southern Hemisphere as
well as the flux and composition of cosmic rays.

IceCube was built to search for very high energy neutrinos created in the most extreme
cosmic environments. The improved performance at EeV energies has opened a window to
search for cosmogenic neutrino interactions, produced by the interaction of extragalactic
cosmic rays with photons of the cosmic microwave background (CMB).

IceCube has observed the first astrophysical high-energy neutrino flux ever, with sig-
nificance at the 5.7 σ level after analyzing three years of data (2010-2013) [45]. In this
search, they discovered three neutrino events with energies at the PeV level. These are
the highest energy neutrinos ever detected, shown in Fig. 4.6.

Figure 4.6: IceCube has detected the highest energy neutrinos ever recorded, with energies
reaching above 2 PeV. From left to right, Bert, Ernie and Big Bird, with energies of 1.0, 1.1 and
2.2 PeV.

39



40



Chapter 5

Flavor oscillations as detected on
Earth

After discussing the theoretical and experimental properties of neutrinos, it is time to
try to apply them to the specific case of the high-energy flux range. We will focus on two
specific models, as mentioned in previous Sections: vacuum oscillations and MSW effect
in presence of a DM halo in the Milky Way. For that purpose, we have collected some of
the latest publications on the topic and designed simple computer simulations using C++
[46]. For the vacuum model we apply the three-flavor theory but for the oscillations in DM
model we follow the literature on the MSW effect and apply the two-flavor approximation.

5.1 Tribimaximal expectation

As an introductory section, we will try to reproduce the tribimaximal expectation
of neutrino flavors as we would detect it. Decoherence of the flavor ratio occurs during
propagation over cosmic distances, so that oscillations are averaged and the detection
ratio is expected to be (1 : 1 : 1)⊕ [47]. We can calculate the expected flavor ratio from
any source ratio using Eq. (2.4.11),

{αj,⊕} =
∑
k,i

|Ujk|2|Uik|2{αi,S}, (5.1.1)

where {αi} is a vector whose components are the ratios of the three neutrino flavors
i = e, µ, τ . The index ⊕ stands for Earth, S stands for source and Uµν are the compo-
nens of the neutrino mixing matrix (Eq. (2.4.12)).

We calculate the expected neutrino ratio on Earth using the mixing angles and the
CP-phase presented in Table 2.1 for a fixed source ratio {αi,S} = (1 : 2 : 0)S . Those
parameters are given as a range, so we will use here three U matrices: one for the average
value of the angles, one for the maximum value and one for the minimum, always imposing
the unitarity condition. We then present our results in a double table to compare the two
disconnected ranges of θ23. These correspond to the normal and inverted mass hierarchies
(left and right panels respectively).

The results presented in Table 5.1 through the simulation are not far from the tribi-
maximal expectation (1 : 1 : 1)⊕. We observe that the best relation for us is obtained for
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Table 5.1: Neutrino flavor ratio on Earth for different values of the mixing angles and CP-phase
in the 3σ range [25]. The disconnected ranges of θ23 are separately presented in two tables:
the left one for the normal mass hierarchy and the right one for the hierarchy. The first row
corresponds to the best fit parameters, the second row is the maximum of the 3σ range, while
the last row is the minimum.

Input (◦) {αi,⊕}
θ12 = 33.36

(1.0918 : 0.9767 : 1.1131)⊕
θ23 = 40.00
θ12 = 8.66

δCP = 300.00
θ12 = 34.17

(1.0910 : 0.9777 : 1.0298)⊕
θ23 = 42.10
θ12 = 9.10

δCP = 366.00
θ12 = 32.58

(1.0342 : 1.0475 : 1.1790)⊕
θ23 = 38.50
θ12 = 8.20

δCP = 162.00

Input (◦) {αi,⊕}
θ12 = 33.36

(0.9555 : 1.0585 : 0.8275)⊕
θ23 = 50.40
θ12 = 8.66

δCP = 300.00
θ12 = 34.17

(0.9548 : 1.0903 : 0.7684)⊕
θ23 = 51.70
θ12 = 9.10

δCP = 366.00
θ12 = 32.58

(0.8968 : 1.0745 : 0.8930)⊕
θ23 = 49.10
θ12 = 8.20

δCP = 162.00

the maximal values of the mixing angles in the lower range of θ23.

The tribimaximal expectation is however disfavoured at 79% confidence level by sta-
tistical analysis of the IceCube data [48].

5.2 Vacuum oscillations at IceCube

In this section we will try to explore the flavor composition of neutrinos as detected
by IceCube focusing on High Energy Starting Events (HESE). The first issue is to dis-
criminate between shower and track events. This is a purely topological classification of
events in a detector that allows us to identify their nature. Showers are caused by neutral
current (NC) interactions of all neutrino flavors and charged current (CC) interactions of
νe and ντ (Fig. 5.1a), while tracks are the result of CC interactions of νµ (Fig. 5.1b).

Using the description of the IceCube detector published by the Collaboration [45] we
can calculate the expected number of events of neutrinos and antineutrinos as,

N = 4πT

∫
dE Φl(E)Al(E), (5.2.1)

where l stands for the lepton flavor l = e, µ, τ , Φ is an isotropic flux, T is the observation
time and Al(E) is the energy-dependent effective area of the detector, that include the
effects of neutrino cross sections, partial neutrino absorption in the Earth, detector effi-
ciency and specific cuts of the HESE analysis.

To calculate the track-to-shower ratio we separate contributions to the effective areas
and calculate the number of tracks and showers separately as,

NS = 4πT

∫ Ē

Ē0

dE {Φe(E)Ae(E) + Φτ (E)Aτ (E) + Φµ(E)[1− pT ]Aµ(E)}, (5.2.2)
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(a) (b)

Figure 5.1: Comparison between a shower and a track event in IceCube [45]. 5.1a- Shower event
of 2 PeV. Most energetic event registered by IceCube. 5.1b- Track event of 30.8 TeV.

and

NT = 4πT

∫ Ē

Ē0

dE Φµ(E)pTAµ(E), (5.2.3)

where pT is the probability that an observed event produced by a muon neutrino is a track
event. It depends mildly on the neutrino energy and its value is approximately 0.8 [49].
The integration limits are chosen based on the purposes of this work. We are focusing
on high-energy neutrinos and therefore we start the calculations with a lower limit Ē0 of
60 TeV. The cut-off energy Ē is chosen to be 3 PeV because the most energetic event
detected is in the neighbourhood of 2 PeV [45]. Cosmic neutrinos have been detected
isotropically, so their fluxes can be averaged over the directions and expressed by a power
law distribution up to a maximum value,

Φl(E) =
Fl · 10−8

cm2 s sr GeV

(
GeV

E

)2

, (5.2.4)

where Fl are adimensional non-negative coefficients for each neutrino flavor and α is the
spectral index that we chose to be 2, in agreement with experimental data [49]. Integrating
numerically we find the values

NS = 8.398× Fe + 0.976× Fµ + 6.504× Fτ (5.2.5)

NT = 3.907× Fµ. (5.2.6)

The track-to-shower ratio can then be calculated as

NT

NS

=
3.907× Fµ

8.398× Fe + 0.976× Fµ + 6.504× Fτ
. (5.2.7)
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Inserting the tribimaximal expectation in this equation we find the value,(
NT

NS

)
⊕

= 0.246. (5.2.8)

However, this hypothesis has been discarded after IceCube data and so we have to
go into further analysis. Using the calculations from Sections 2.4 and 5.1-5.2 and data
from [25] we perfom a Monte Carlo simulation of the neutrino flavor oscillations using
Eq. (5.1.1) including the margin of error for the measurements of the mixing angles and
the CP-phase. We then insert these flavor ranges in Eq. (5.2.7) to obtain a more realistic
distribution and explore some predictions for future upgrades of IceCube.

We present in Fig. 5.2 the expected track-to-shower ratio on Earth for the simulation
of 20.000 high-energy neutrinos in the range 60-3000 TeV generated by four different
mechanisms:

1. Charmed meson decay (1/2:1/2:0) in purple.

2. π decay (1/3:2/3:0) in green.

3. β-decay of neutrons (1:0:0) in light blue.

4. π decay with damped muons (0:1:0) in dark yellow.

We can see that the track-to-shower ratio corresponding to the tribimaximal approxi-
mation is favoured for neutrinos generated via decay of pions with damped muons, while
it is comletely excluded for neutrinos coming from neutron decay. It is marginally com-
patible with neutrinos generated by mesons.

Evaluating the data from IceCube we could add a distribution to that graph to compare
the ranges and areas of the expected and detected ratios and thus exclude some regions
and obtain information about the sources of neutrinos. Between the years 2010 and 2014,
IceCube has detected a total number of nT = 8 tracks and nS = 24 showers [45, 50]. This
is, however, not enough data to provide statistical information about exclusion regions or
to establish constraints on the production mechanisms. It will be interesting to observe
the results of more years of observations and compare them to this and other models.

5.3 Oscillations in a Dark Matter density profile

As a final section, we will explore a more exotic view of the Milky Way and how that
affects neutrino oscillations. The latest observations by the Planck Collaboration [51]
show that the abundance of Dark Matter (DM) is around 85% of the total amount of
matter and 23% of the total energy of the Universe. The matter composition of galaxies
is therefore dominated by DM and so neutrinos traveling across the Galaxy would be af-
fected by its presence through the MSW mechanism mentioned in Sec. 2.5. Let us briefly
justify the existence and importance of DM before proceeding [52, 53].

The need for DM comes from observational evidences. Rotation curves of galaxies
in the 1970s were the first indicator that most of the matter in the Universe was non-
baryonic. The motion of stars in galaxies was considered to follow the Kepler laws since
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Figure 5.2: Track-to-shower ratios for the four known production mechanisms of neutrinos as
expected on Earth. This result is given for 20,000 neutrinos sent from the source with the
different relative abundances using an algorith that includes the cross sections and simulated
detector parameters. This graph shows the dependance of the track-to-shower ratios on the
uncertainties of the mixing angles.

the famous German mathematician formulated them to explain the orbits of the planets
in the Solar System following Tycho Brahe’s observations. The orbital velocity resulting
from the equilibrium of the gravitational and centrifugal forces is

v =
√
GM/r, (5.3.1)

where G is Newton’s gravitational constant, M is the mass of the Sun and r is the radius
of the orbit (Fig. 5.3a).

If we assume that the majority of a galaxy’s mass is located near the center, we could
expect a velocity distribution for the stars around the galaxy similar to the previous re-
lation. However, the observed rotation velocities are almost constant for stars along the
galactic disc outwards (Fig. 5.3b). This suggests that the majority of the mass is not
situated in the nucleus of the galaxy but in the halo with a spherically simmetric density
distribution ρ ∝ 1/r2. Also, this matter does not emit light in any range of the electro-
magnetic spectrum and therefore receives the name “dark”.

Another indirect evidence of the existence of DM is the enhancement of the gravi-
tational lensing effect. Following the theory of General Relativity, the presence of large
masses bend the trajectories of the photons as they travel through space. This hypothesis
was proved through observtions of stars behind the Sun during a total eclipse in 1919 by
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(a) (b)

Figure 5.3: Rotation curves for the planets of the Solar System as a function of the distance to
the Sun (left) and for the stars, gas, disk and halo in the galaxy NGC 6503 as a function of the
distance to the galactic center (right). Credit: [53].

Eddington [54]. This effect is highly increased at cosmic scale when a galaxy or cluster
bends the light emitted by a further luminous object behind it (Fig. 5.4). A detailed
analysis of this effect is beyond the scope of this work, but it is worth mentioning that
mathematical derivations of the expected mass of these cosmic lenses do not match the
observed luminous mass. This disagreement supports the idea of dark matter as the in-
visible contribution dominating gravity.

The matter in galaxy cluster 1E 0657-56, known as the ”Bullet Cluster”, is shown in
Fig.5.5. Situated 3.4 billion light-years away, the cluster’s individual galaxies are seen
in the optical image data, but their total mass adds up to far less than the mass of the
cluster’s two clouds of hot x-ray emitting gas shown in red. Representing even more mass
than the optical galaxies and x-ray gas combined, the blue hues show the distribution
of dark matter in the cluster. Otherwise invisible to telescopic views, the dark matter
was mapped by observations of gravitational lensing of background galaxies. The bullet-
shaped cloud of gas at the right was distorted during the collision between two galaxy
clusters that created the larger bullet cluster itself. But the dark matter present has not
interacted with the cluster gas except by gravity. The clear separation of dark matter
and gas clouds is considered a strong evidence that dark matter exists.

Neutrinos were considered a good candidate for DM particle, since they do not emit
or absorb light and very rarely interact with ordinary matter. However, due to their
low mass, the number density required to add up to the calculated masses of galaxies
and clusters would too high. Another inconvenient is that neutrinos are ultrarrelativistic
particles, which would prevent from the formation of large cosmic structures in the prim-
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(a) (b)

Figure 5.4: Einstein ring (left) and Einstein cross (right). The massive galaxy in the center
of each image bends and distorts the light from the object perfectly aligned behind it. Credit:
ESA/Hubble & NASA (left), J. Rhoads (Arizona State U.) et al., WIYN, AURA, NOAO, NSF
(right).

Figure 5.5: Bullet Cluster, 1E 0657-56. The luminous galaxies (visible) and the DM halo (false
blue) continue without big interactions. The gas clouds (false red) are left behind after the
collision. This is one of the strongest evidences of the existence of dark matter in the universe.
Credit: NASA.
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itive Universe. This Hot Dark Matter is considered a only small contribution to the total
amount and current theories contemplate a picture dominated by Cold Dark Matter that
would be more massive and subrelativistic.

Having said this, we can proceed to evaluate the effect of DM in the Milky Way on
neutrino oscillations. We can assume a two-flavor oscillation scenario where νe change
into the combination νa = (νµ + ντ )/

√
2. Therefore, neutrino evolution is determined by

four parameters: the mass-squared splitting ∆m2, the mixing angle θ, the neutrino energy
Eν and the number density of the DM particles in the medium Nχ.

We will follow the same reasoning as for the solar neutrinos [55, 56], including a
spherically symmetric DM profile in the Galaxy intead of the infinite exponential profile
[57],

ρDM(r, rs, α, β, γ) = ρ⊕

(r⊕
r

)γ (1 + (r⊕/rs)
α

1 + (r/rs)α

)(β−γ)/α

, (5.3.2)

where r⊕ = 8 kpc is the distance of the Solar System to the Galactic Center (GC) r = 0
and ρ⊕ = 0.4 GeV/cm3 is the local DM energy density. We will focus in an isothermal
DM profile [58],

ρiso(r) = ρDM(r, 5 kpc, 2, 2, 0), (5.3.3)

that gives the distribution

ρiso(r) =
38.9

r2 + 25
(GeV/cm3), (5.3.4)

as shown in Fig. 5.6.

We have to solve Schrödinger’s equation

i
dφ

dt
= Hφ, (5.3.5)

where φ = (φ1, φ2)T is the vector whose components are the two neutrino sates, labeling
the heavier state as “2” so ∆m2 is positive and θ is in the range [0 : 2π]. The hamiltonian
is

H =

(
i∆m/(4Eνθ

′
m) −1

1 −i∆m/(4Eνθ
′
m)

)
, (5.3.6)

where

∆m =
√

(A−∆ cos 2θ)2 + (∆ sin 2θ)2 (5.3.7)

is the effective mass difference between the neutrino states and θm is the mixing angle in
matter expressed as

tan 2θm =
∆ sin 2θ

A−∆ cos 2θ
, (5.3.8)

where we define ∆ ≡ ∆m2/(4Eν).
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Figure 5.6: Dark matter density profile for the Milky Way as described by the isothermal model
as a function of the line of sight in kpc.

We can rewrite ∆m and θ′m in terms of θm as

θ′m =
sin2 2θm
2∆ sin 2θ

dA

dr
, (5.3.9)

∆m

θ′m
=

2∆2 sin2 2θ

sin3 2θm

1

dA/dr
, (5.3.10)

A =
∆ sin(2θm − 2θ)

sin 2θm
. (5.3.11)

The effective potential describing the interaction between neutrinos and the DM par-
ticles can be expressed in the flavor basis as [57]

Vαβ = λαβGFNχ, (5.3.12)

where λαβ is a hermitian matrix whose components are the effective couplings between
DM and neutrinos, that we will consider to be real, GF = 1.16637 · 10−5 GeV−2 is the
Fermi constant and Nχ is the DM number density, expressed as

Nχ =
ρDM

mDM

. (5.3.13)

Variations in the entries of the effective potential give similar results, so for simplicity
we will consider the effective potential to be the scalar quantity

A = |Vαβ| = V GFρDM, (5.3.14)
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where we have defined V = |λαβ|/mDM (in GeV−1) to take in consideration the two un-
known parameters of the theory altogether.

For a numerical simulation of neutrino oscillations in the isothermal DM profile, we
choose the Hamiltonian to be instantaneously diagonal throughout the whole process.
Also, the Solar System is not situated at the center of the Galaxy, so we will define the
line of sight distance s and the angle of observation φ so that the galactocengtric distance
reads as

r2 = s2 + r2
⊕ − 2sr⊕ cosφ. (5.3.15)

We will evaluate this process for different values of the vacuum mixing angle θ, the
observation angle φ and the effective potential V . Since we are considering high-energy
neutrinos, we will fix ∆ = 10−9 eV2/GeV. In Figs. 5.7, 5.8 and 5.9 we present the effect of
θ, φ and V over the probability of finding an electron neutrino or a non-electron neutrino
as a function of the line of sight. For each figure, we keep two parameters fixed and vary
the third one. The fourth plot in each figure shows how the mixing angle in matter is
affected by those parameters.

The first remarkable aspect of each figure is the change of the slope of the probability
curves around the GC, which coincides with the maximum value of the mixing angle in
matter. This is related to the condition of adiabaticity, Eq. (2.5.7), that is maximally
violated in this point (PMVA). The fast change of the mixing angle in matter enhances
this effect, as better seen in Figs. 5.7c, 5.8c and 5.9a and their corresponding θm curves.
The fast change in the density of the DM halo causes that neutrinos cannot keep the fast
pace of the instantaneous eigenstates of the Hamiltonian (Eq. (5.3.6)) and the transi-
tions ν1m ↔ ν2m (that we had avoided up to now) are present. These then modify the
probability of finding a flavour eigenstate in the non-adiabatic region affected by both the
vacuum mixing angle and the potential.

The oscillation is barely affected by the direction of the incoming neutrino, as we ob-
serve in Fig. 5.7. The Earth is situated very close to the GC compared to the dimension
of the DM halo and isotropy could be assumed. Only very small observation angles with
respect to the GC provide some variations.

The vacuum mixing angle, on the other hand, affects drastically the behaviour of the
oscillation, as seen in Fig. 5.8. Smaller mixing angles cause faster oscillations, while larger
values tend to reduce them.

Finally, we observe in Fig. 5.9 that the potential varies the length scale of the oscilla-
tion, suppressing it for values lower than the squared mass difference as well as for values
three orders of magnitude higher. The increase of V is equivalent to an increase of Eν [57],
so the effects of the DM profile would be more relevant to higher neutrino energies. This
could therefore explain non-standard neutrino flavor composition for high-energy fluxes
detected at IceCube, without contradicting lower-energy data. The variation of V can
also be inferred to estimate the mass range of the DM particles.

50



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-150 -100 -50  0  50  100  150

P
ro

b
a

b
ili

ty

s(kpc)

φ = π/12 (rad)

νe
νa

(a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-150 -100 -50  0  50  100  150

P
ro

b
a

b
ili

ty

s(kpc)

φ = π/3 (rad)

νe
νa

(b)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-150 -100 -50  0  50  100  150

P
ro

b
a

b
ili

ty

s(kpc)

φ = 3π/4 (rad)

νe
νa

(c)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

-150 -100 -50  0  50  100  150

θ
m

(r
a
d
)

s(kpc)

Mixing angle in matter

φ = π/12 (rad)
φ = π/3 (rad)

φ = 3π/4 (rad)

(d)

Figure 5.7: Probability of finding an electron neutrino vs non-electron neutrino for V= 10−8

GeV−1, θ= 45◦ and three observation angles φ: 15◦ (top-left), 60◦ (top-right) and 135◦ (bottom-
left). Comparison of the evolution of the mixing angle in matter in the three cases (bottom-right).
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Figure 5.8: Probability of finding an electron neutrino vs non-electron neutrino for V= 10−8

GeV−1, φ= 45◦ and three vacuum mixing angles θ: 60◦ (top-left), 45◦ (top-right) and 15◦

(bottom-left). Comparison of the evolution of the mixing angle in matter in the three cases
(bottom-right).
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Figure 5.9: Probability of finding an electron neutrino vs non-electron neutrino for φ= 45◦, θ=
45◦ and three values of V (in GeV−1): 10−7 (top-left), 10−8 (top-right) and 10−9 (bottom-left).
Comparison of the evolution of the mixing angle in matter in the three cases (bottom-right).
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Chapter 6

Summary and conclusions

Neutrinos have been presented as weakly interacting particles with very light but non-
zero mass whose three flavor eigenstates are mixed and oscillate during propagation. This
is an evidence of physics beyond the Standard Model and opens a whole new horizon for
investigations in the upcoming years.

The main goal of this thesis was to study the oscillation behaviour of high-energy neu-
trinos in the cases of vacuum oscillations of three flavors and matter affected oscillations
through MSW effect in the two-fflavor approximation. Based on both theoretical concepts
and experimental data, we have produced some coherent results that are compatible with
current observations and provide interesting options for future lines of investigation. Cur-
rent data from IceCube is still insufficient to elaborate a statistical comparison with our
results for the vacuum model. The future expansion of IceCube will provide a higher rate
of events that will allow us to improve the statistical analysis of the track-to-shower ratio,
which is the key to study the nature of cosmic sources of neutrinos. Furthermore, the
presence of DM in the Universe affects neutrino oscillations and the nature of this obscure
component could be better understood through more precise measurements. Our model
is sensitive to variations in the potential, which is described by the DM distribution of
the Galaxy. Sufficient data could allow us to infer a mass range for the DM particles and
establish constraints on the coupling constants to the particles in the SM as well as better
models of the spatial distribution throughout the Galaxy.

Further development of this work could be an expansion of the DM model to the
three-flavor eigenstates and apply the same procedure as for vacuum oscillations. Then
we could analyse the track-to-shower ratio under the effect of a galactic DM halo. This
could show new physics based on weak interactions outside the SM.
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