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Summary

The main focus of this thesis is to find implementation strategies for the op-
timal operation of processes during transients. That is, we do not focus on
the algorithms to solve a given dynamic optimization problem, but on how
to implement the solution in practice using control. The underlining theme
is based on the general idea of finding feedback policies that give acceptable
performance even in the presence of model uncertainties and disturbances.
By ’acceptable’ we mean that important constraints should always be sat-
isfied and the economic performance should be near the optimal. In this
thesis we considered different classes of applications, each one with their
own particularities and challenges.

The first part of the work deals with the optimal operation of thermal
energy storage systems. We consider the optimal operation of energy stor-
age in buildings with focus on the optimization of an electric water heating
system. The optimization objective is to minimize the energy costs of heat-
ing the water, with the requirement that we should satisfy the uncertain
demand at any time. The main complications in this problem are the time
varying nature of the electricity price and the unpredictability of the fu-
ture water demand. First, we present a detailed problem formulation which
may also be suitable similar problems. Many insights into the optimization
problem formulation are given and guidelines on implementation strategies
including feedback control structures are proposed.

Next, we use the hot water system as an example to illustrate our pro-
posed implementation strategy based on hierarchical decomposition of the
optimization-control problem. In our approach, economic objectives and
control objectives are decoupled using a two-layer cascade feedback struc-
ture. We show that the decomposed optimization problem can be written
as a simple linear program (LP) which can be solved very efficiently. The
main result is that great economical benefits can be obtained at a very low
computational cost and suitable for low cost embedded hardware.

Part two of the thesis is dedicated to an intelligent anti-slugging con-



Summary

trol system for offshore oil production maximization. Existing anti-slug
control systems are not robust and tend to become unstable after some
time, because of inflow disturbances or plant dynamic changes, thus, re-
quiring constant supervision and retuning. A second problem is the fact
that the ideal setpoint is unknown and we could easily choose a suboptimal
or infeasible operating point. Here we present a method to tackle these
problems. Our complete control solution is composed of an autonomous
supervisor that seeks to maximize production by manipulating a pressure
setpoint and a robust adaptive controller that is able to quickly identify and
adapt to changes in the plant. Our proposed solution has been tested in a
experimental rig and the results are very encouraging. An analysis of the
robustness and optimality of different linear controllers for slug mitigation
is also carried out in this part of the thesis.

In the last part of the thesis we discuss near-optimal operation strategies
using simple feedback control. First, we generalize the neighbouring ex-
tremal control design that has been presented in the literature (Gros et al.|
2009b) to explicitly handle measurement noise and implementation errors.
The benefits of our method are illustrated in a case study where we show
that the sensitivity of the controller performance to measurement noise is
considerably reduced. Finally, we extended the concept of self-optimizing
control (Skogestad,, 2000; Alstad and Skogestad, [2007) for the near-optimal
operation of transient processes. The main idea is to find a function of the
measurements whose trajectory is optimally invariant to disturbances and
then track the trajectory using standard feedback controllers. Doing so re-
sults in near-optimal economic operation in spite of disturbances without
the need for re-optimization. We show that the invariant trajectories can
be computed as linear combinations of the measurement vector, where the
time-varying combination matrix is easily obtained from optimal sensitivi-
ties.
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Chapter 1

Introduction

In this chapter we define the scope of the thesis, motivate the work and put
the thesis chapters into perspective. An overview of the thesis and a list of
the publications emerging from this thesis are given.

1.1 DMotivation and scope

Optimal operation is essential for improved productivity and profitability
of process plants. The general economic objective is to achieve maximum
profit while meeting environmental, safety and product requirements. Dur-
ing operation of chemical processes we have available degrees of freedom
that we want to use in order to optimize the process behaviour. We are
here not concerned with the optimization of these systems but rather on
how the decisions are implemented. The main challenge in implementing
the right decision is the presence of disturbances. These include variations
in exogenous variables, such as energy prices, changes in the process dynam-
ics and operating conditions, parameter variations in the system as well as
model uncertainties.

For processes whose economics are mainly defined by the steady-state
behaviour the concept of self-optimizing control was introduced by [Skoges-
tad| (2000). Self-optimizing control focus on selecting a set of controlled
variables that, when kept at constant setpoints, indirectly result in optimal
economic operation in spite of disturbances. Diverse systematic methods
are available to find the right variables to control for steady-state problems.
Skogestad and Postlethwaite| (2005a)) proposed the Maximum Gain Rule to
select individual measurements. |Alstad and Skogestad (2007) presented the
Null Space method to select optimal linear combinations of measurements
to be controlled. An extension of that work was presented in [Alstad et al.
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(2009), where measurement noise is also considered. Jaschke and Skogestad
(2012) extended the scope of self-optimizing control to polynomial systems.

The focus of this thesis has been on processes where the dynamic be-
haviour is important in terms of economic performance. Optimal economic
operation of many processes may be in general formulated as a dynamic
optimization problem. This includes problems that are transient in nature,
where the dynamic behaviour must be considered, such as batch operations,
grade changes and start-up and shut-down of continuous plants (Biegler,
2010). We have identified the following main cases which are treated in
three different parts of this thesis:

e Optimal dynamic use of inventories (storage) to take advantage of
time varying electricity prices. Our main case study here is on thermal
energy storage in buildings with focus on the hot water system. This
is the topic of Part 1.

e Operation of dynamic systems where the optimal operation point is
at the limit of dynamic infeasibility. Our application is the anti-slug
control problem which refers to the problem of stabilizing severe flow
oscillations in offshore multiphase pipelines (Jahanshahi et al., 2013)).
This is the theme of Part II.

e Optimal operation of batch systems under uncertainties. This is pre-
sented in Part I1I of the thesis.

The main focus of this thesis is to find implementation strategies for the
optimal operation of dynamic systems. That is, we are not only interested
in obtaining the optimal solution to a given dynamic optimization problem,
but even more so on the practical implementation (using feedback control),
where the important issue is to remain optimal in spite of unknown dis-
turbances. In other words, we are interested in the integration between
optimization and control objectives. The overall goal is to find implemen-
tation strategies which give acceptable performance in terms of constraint
violation and economic loss in the face of disturbances and uncertainties.

In the next subsection we present an illustrative example which is used
to highlight the key concepts and challenges that are discussed throughout
the thesis.

Motivational example

Consider the problem of driving a hypothetical unidimensional car from a
given initial point z(tp) = 0 to a desired final position x(tf) = Ztarger in

2



1.1. Motivation and scope

minimum time t;. The end position is at the edge of a steep cliff so we
must ensure that the final velocity is zero, that is v(tf) = 0. The only
degree of freedom is the acceleration/breaking force u which is bounded
Umin < U < Umqz. The main complicator for this problem is the unknown
disturbance d. This disturbance may represent unmodelled forces such as
friction and wind resistance. The optimization problem can be formulated
as

mints (1.1)
u
subject to

T=wv (1.2)
v=u-+d

Umin < U < Umag,

v(ty) =0

x(tf) = Ttarget

Figure depicts an optimal solution to the above problem for a nomi-
nal case, that is, without uncertainties (d = 0). In this example we have
Ttarget = 900, Umae = 10 and U, = —10. Notice in the bottom plot in
Fig. [[.I] that the optimal input trajectory consists of two constraint seeking
arcs: first we drive with maximum acceleration (4 = Upqz) and then we
switch to maximum break force (u = —upq,) until the car stops right at
the edge of the cliff. Because the breaking force is limited, it is necessary to
start breaking before we reach the cliff.

Naturally, the optimal control trajectory depends on perfect knowledge
of the system’s dynamics and disturbances. Figure shows the result of
implementing the open-loop solution (in blue) in the presence of a small
disturbance d = 0.5. This disturbance is equivalent to a uncertainty in the
control input effectiveness, which is common in practice. For comparison we
also show the optimal solution (in red) for the disturbed system. The pres-
ence of such a small disturbance makes the open-loop solution unacceptable:
we waited too long to start breaking and we are not able to stop in time,
resulting in a catastrophic constraint violation. This example shows that
even in the simplest cases, some flavour of feedback control is necessary to
ensure an acceptable operation. By ’acceptable’ we mean that the result-
ing operation must be feasible and the economic loss small. Nonetheless,
it is not always clear what the implementation strategy should be. For in-
stance, we may choose to drive the car slowly so that we have enough time
to stop before the cliff, but this may result in a big loss of optimality. If the

3
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maximum expected disturbance is known, we could compute the last safe
position to start breaking after full acceleration is applied. This strategy,
however, fails in the presence of other unmodelled dynamics or disturbances.

Position

Full accelearation

Input force
(e}

I Full break
0 2 4 6 8 10 12 14

Time [s]

Figure 1.1: Optimal solution without uncertainty (d = 0). Under ideal
conditions we are able to stop right at the edge of the cliff
and we sucessfully finish the trajectory in minimum time.

In general the choice of the control and optimization integration ap-
proach is not straightforward. The control objectives are typically related
to satisfying constraints and maintaining the system near a desired trajec-
tory or operating point, whereas the optimization objectives are related to
economic performance. There are two main paradigms for such an integra-

tion.
e On-line optimization (paradigm 1) : where the optimization
problem is solved in real time with the arrival of new measurements

to update the inputs. The inputs may be setpoints to a lower level
control layer or the actual physical inputs, such as valve openings.

e Offline analysis (paradigm 2): where we use model base offline
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=
8
.‘5
o
[l
0 ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14
10
g 5+ — open loop
8
= 0 optimal
a
S =5
—10 + : : - - ‘ >
0 2 4 6 8 10 12 14
Time [s]

Figure 1.2: Simulation with constant disturbance (d = 0.5). The presence
of such a small disturbance is enough to yield the open-loop
solution unnaceptable: our ficticious car unfortunately falls
off the cliff.

optimizations, simulations, physical understanding, etc., to gain valu-
able insights into the key characteristics of the optimal solution. These
insights are then translated into strategies that are implemented on-
line using control. The goal to find a policy that gives near-optimal
results without the need for online optimization.

It is worth pointing out that combinations of the two paradigms are possible
and, in many cases desirable. By selecting a good control structure using
an offline analysis we may be able to simplify considerably the formulation
and implementation of the online optimizer. This is discussed in Chapter
3 with application to a domestic hot water system. Paradigm 2 is closely
related to the concept of self-optimization control (Skogestad, 2000), where
the goal is to find a control structure that gives acceptable operation under
all conditions with constant setpoints for the controlled variables. This is
the theme of Chapter 8, where we extend the concept of self-optimizing
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control to tackle transient problems.

In our car problem, when applying paradigm 1 we would solve the op-
timization problem — at every sample time in order to obtain the
optimal input force u(t). In addition, an observer would be used to estimate
unmeasured variables such as the disturbance d. When using paradigm 2,
in an offline stage we would study how the optimal solution of —
is affected by variations in d and try to find a function of the available
measurements (e.g. position and speed) whose optimum is insensitive to
the disturbance. Then, during operation, online, we would use a simple
controller to track this function and if a good ”self-optimizing” function is
chosen, this will lead to an acceptable performance.

In paradigm 1 we still need to decide on the hierarchical configuration of
the overall system. We may opt for merging economic and control objectives
into a single layer, where the control actions are obtained directly from the
economic optimization solution. An example of such an approach is the
so called Economic model predictive control (EMPC) (Ellis et al. 2014).
In the thesis, Chapter 4 is devoted to the implementation of an EMPC
for a domestic heating system aiming at minimizing electricity bill while
respecting operational constraints related to comfort and air purity.

Conversely, we may decompose the overall problem of economic opti-
mization and control into simpler sub-problems by using a cascade feedback
structure (Ellis and Christofides| 2014)). In this scheme the bottom layer is
a regulatory control layer that follow the setpoints specified by an optimizer
in the upper layer. The choice of the variables that link the optimization
and the control layers is a critical decision and must be analysed for every
specific case. The correct choice may simplify the optimization problem for-
mulation and reduce the need for high frequency optimization as we will see
in Chapter 3. We may consider this strategy as a combination of paradigms
1 and 2.

Another challenge which becomes evident in the car problem is how to
satisfy the constraints (such has the final constraint) in the presence of un-
certain dynamics and disturbances. For maximum profitability we usually
want to operate the uncertain system near its limits but without violating
any operational constraints. Nevertheless, due to uncertainty in the dynam-
ics and changes in the operation condition, such a limit might be unknown
a priori. This is the challenge addressed in Chapter 5. Generally speaking,
our proposed method attempts to find the most economically beneficial op-
erating point for the system while adapting to dynamic changes to ensure
a stable operation. It turns out, in our anti-slug control application the
optimal operating point lies at the boundary between stable and unstable

6



1.2. Summary of the chapters in this thesis

operations, but this limit is unknown and it may change. The job of our
proposed control system is to find such a boundary without ’'falling from the
cliff’. Other examples for which this approach could be applicable include
the control of compressors near surge and the operation of airfoil systems
near the stability boundary to achieve greater power efficiency in aircraft
(Wilson and Robinett} 2013).

1.2 Summary of the chapters in this thesis

In Chapter 2, we consider the optimal operation of energy storage in build-
ings with focus on the optimization of an electric water heating system. We
present a detailed problem formulation which may also be suitable sim-
ilar problems. Many insights into the optimization problem formulation
are given and guidelines on implementation strategies including feedback
control structures are proposed.

In Chapter 3, we use the hot water system presented in Chapter 2
as an example to illustrate our proposed implementation strategy based
on hierarchical decomposition of the optimization-control problem. In our
approach, economic objectives and control objectives are decoupled using a
two-layer cascade feedback structure.

In Chapter 4, we discuss the implementation of an EMPC for a do-
mestic heating system aiming at minimizing electricity bill while respecting
operational constraints related to comfort and air purity. We also show how
to integrate online optimization and self-optimizing control.

In Chapter 5, we present the details and results of our innovative adap-
tive anti-slug control system for offshore oil production maximization.

In Chapter 6, we discuss the robust design of baseline (stabilizing) feed-
back controllers for slug control. This is an important step in the complete
anti-slug control system presented in Chapter 5.

In Chapter 7, we generalize the neighbouring extremal control design
that has been presented in the literature (Gros et al., 2009b) to explicitly
handle measurement noise and implementation errors.

In Chapter 8, we extend the concept of self-optimizing control to dy-
namic optimization problems.

Except for Chapter 7, which deals with steady-state optimization, all
this thesis is concerned with the optimal operation of systems during tran-
sients. In the authors opinion, Chapters 2, 3 and 5 are the main contribu-
tions of this PhD work.
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Optimal operation of energy
storage systems
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Chapter 2

Optimal operation of energy
storage in buildings: Use of
the hot water system

We consider the optimal operation of energy storage in buildings
with focus on the optimization of an electric water heating sys-
tem. The optimization objective is to minimize the energy costs
of heating the water, with the requirement that we should satisfy
the uncertain demand at any time. The main complications in
this problem are the time varying nature of the electricity price
and the unpredictability of the future water demand. In this
paper we use the water heating system as an example for for-
mulating a general framework which could easily be applied to
similar problems with energy storage capacity. Feasibility and
optimality are discussed and the main points are illustrated in
the simulation case studies.

Published in the Journal of Energy Storage, vol. 5, 2016.

2.1 Introduction

Recently, considerable attention has been paid to renewable energy sources
like wind turbines and photovoltaic parks. These alternative energy sources
suffer a major drawback, however, due to their strong dependence on un-
controlled and varying weather conditions. This is an important limitation
since the energy production is expected to cover the demand at any given
time.
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Chapter 2. Optimal operation of the hot water system

A possible approach for handling these fluctuations in the production is
to shift the consumer load to periods where a lot of energy can be produced
cheaply. This is referred to as demand side load management (Molderink
et al 2009). Field tests in the USA have demonstrated that such an opti-
mization of domestic energy consumption can significantly reduce load peaks
(Hammerstrom), [2007; |Faruqui and Sergici, 2010). This can be achieved
by manipulating the energy price according to demand information and
weather forecasts. Electricity consumers are thus encouraged to consume
electricity more prudently in order to minimize their electric bill. The dy-
namic energy pricing for demand load management is in itself a non-trivial
problem and it is currently an active research area. The interested reader
may check the literature (Mardavij Roozbehani and Mitter, [2010; Boren-
stein, [2005; |Goudarzi et al., 2011) for more information, as this problem is
outside the scope of this work.

Local energy storage in such setting provides several benefits for the con-
sumer without having to adjust their consumption pattern. In particular,
it enables

1. Higher peak capacity. For example, one may heat extra hot water in
the morning to make sure there is enough water for everyone to have
a shower.

2. Taking advantage of varying energy price. Energy can be purchased
when prices are low and it can be used when the prices are high. (Since
human users typically have a weak response to energy prices (Zhou
et al.; 2012)), automatically controlled consumers are better suited for
a variable pricing scenario.)

3. Taking advantage of favourable outdoor conditions (e.g. cooling at
night or heating during the day )

Energy storage devices could include hot water tanks, batteries, ice
banks, liquid nitrogen, thermal storage building mass thermal capacity and
compressed air storage (Zhou et all 2012).

Recently, there has been significant research activity around the problem
of optimal usage of energy storing devices. For example, in [van de Ven et al.
(2012) the problem of optimizing the end-consumer energy storage policies
is considered. The proposed idea is to charge batteries when the electricity
price is low and use the stored energy when the price is high. The authors
show that the optimal policy has a simple structure based on two threshold
levels: if the battery level is below a certain lower threshold value, the
optimal policy is to charge it as close to the lower threshold value as possible.
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If the battery level lies above some upper threshold value then it is optimal
to use the stored energy from the battery instead of purchasing from the
grid. The difficulty lies in the computation of the optimal threshold levels
which are a function of the varying energy price. However, analytical results
can be derived for a few simplified cases, e.g. assuming perfect efficiency for
charging and discharging the battery.

Ericson| (2009) presented results from a large scale Norwegian project
where load control was applied on domestic hot water heaters. The main
idea was to disconnect the water heaters from the electricity grid during
peak hours in order to reduce the peak load. Electrical consumption of 475
households were investigated over a six month period from November 2003
to May 2004. The results show significant peak shavings in consumption
during disconnection of hot water heaters. However, the researchers ob-
served a considerable increased consumption after the reconnection of the
heaters, which may have the adverse consequence of causing a new peak in
the system.

Henze et al. (2004) consider the optimization of the cooling system in
commercial buildings. The authors propose shifting the thermal load by pre-
cooling the buildings structure at night, in addition to using active storage
means such as ice thermal storage. The ultimate goal is to take advantage
of ambient conditions and of real-time pricing to maximize the energy cost
savings. The simulations show that the cost savings and on-peak demand
reductions can be substantial (up to 57% and 50%, respectively) if a good
model and accurate weather predictions are used.

Many recent contributions use model predictive control (MPC) solutions
for this problem. In|Avci et al.|(2013) a MPC controller is used to minimize
a multi-objective function which trades off energy cost and comfort level in a
dynamic real-time pricing scenario. They show that there is a good potential
for savings compared to traditional control strategies. Not surprisingly, it
is shown that the energy cost increases as the comfort level increases.

In this paper, we focus on the optimization of an electric water heating
system which provides hot water for domestic usage. The optimization
objective is to minimize the energy costs while obeying some operating
constraints. The main idea is to use the heat capacity of the water tank to
store energy in times when electric power is cheap and use it to match the
demand when energy is expensive. The main contribution of this paper is
to provide a systematic comparison between different strategies to operate
the system. The idea here is to have a better understanding of the potential
benefits of using energy storage in this problem. A comparison of the various
strategies will be presented. We will distinguish between the following cases:
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Chapter 2. Optimal operation of the hot water system

e [deal case, where the optimal solution is computed assuming perfect
knowledge of the future demand. This is a theoretical limit which
cannot be achieved in practice, unless the future demand is known
exactly.

o Maximum storage policy, where we maintain maximum storage in the
tank at all times. This is achieved by fixing the tank temperature
setpoint T and tank volume setpoint V; at their maximum allowed
value. This is the safest policy in terms of avoiding constraint violation
caused by unforeseen high demand as it minimizes the risk of not
having enough hot water.

o Simple variable storage policy, an intuitive money saving strategy in
which we buy and store as much energy as possible during the night to
be used during the day. The idea is to activate a ’storage mode’ during
night, when we set the energy storage setpoint F, to its maximum,
and a ’saving mode’ during the day when we set E; to a lower value.
This policy is analogous to the work of van de Ven et al.|(2012), where
the setpoint Fs plays the role of the switching threshold discussed in
that paper.

o Optimal variable storage policy, where the temperature setpoint T and
tank volume setpoint Vs are updated at every time step using a moving
horizon optimization (MHO) approach. The optimization algorithm
relies on a simple forecast model to predict the future demand. A
detailed derivation of this method is presented in an accompanying
paper (de Oliveira et al. 2016).

Additional contributions of this paper include:

1. A detailed general problem formulation which may also be suitable for
different applications involving dynamic optimization, energy storage
and variable energy prices.

2. Guidelines about implementation strategies including control struc-
tures.

The paper is organized as follows: Section 2 presents the process mod-
elling; Section 3 formulates the optimal control problem; In Section 4, in-
sights into the implementation strategies are given; In Section 5 we detail
different strategies for control and optimization of the system; Section 6 de-
tails a simulation study comparing various approaches. Section 7 presents
a discussion on the subject and Section 8 concludes the paper.

16



2.2. Process model for hot water storage tank

Tew [K]
Cold water din [M3/3]
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T [K] Tsu‘r'r
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Qout [M3/3] Mixer e [m?/s]

Cold water

Figure 2.1: Simplified process flow scheme

2.2 Process model for hot water storage tank

The process we are dealing with consists of a heater which provides hot water
for domestic usage. A sifnplified process flow scheme is shown in Figure 2.1
where the important notation is presented. The system includes a cold
water source, a thermally insulated tank, a heating coil with adjustable
power and control valves that regulate the cold water inflow ¢;, and the hot
water outflow ¢,,:. A somewhat unusual feature of this system is that the
hot water that leaves the tank (goy:) is mixed with a cold water stream (gey)
from the same water source. This extra mixer is to allow extra flexibility
and implies that the water in the storage tank (T, = T') can be heated to
a higher temperature than the hot water to the consumer (Tj,,).

We defined the tank as our control volume and derive a dynamic model
from mass and energy balances for the water in the tank. The mass balance
for the tank is

d(pV)
dt

= Pin4in — PoutGout [kg/s] (21)
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where V [m?] is the volume of the tank. We will assume constant fluid
density (p = pin = pout). Assuming constant pressure and no mechanical
work and neglecting kinetic and potential energy, the energy balance for the
tank becomes (e.g, Skogestad| (2009))

dH

E = hzn - hout + Q - Qloss [J/S] (22)

where Qjoss [J/5] is the heat loss to the surroundings, H [J] is the enthalpy
of the system, hiy, [J/s] and heyut [J/s] is the enthalpy of the streams and
Q@ [J/s] is the added power. The standby heat loss from the heater to the
surroundings is

Qloss = UA(T - Tsurr) (23)

where UA [W/K] is the heat transfer constant and Ty, is the temperature
of the surroundings. Assuming constant heat capacity c,, no phase change
and perfect mixing (T, = T'), the enthalpies are given by (Skogestad, 2009)

H = pVe,(T —Trey) [J] (2.4)
hin = inncp(Tcw - Tref) [J/S] (2'5)
hout = pQOuth(T - Tref) [J/S] (2‘6)

where T, [K] is a fixed reference temperature, g [m?3/s] is the flowrate and
Tew is the temperature of the cold water from the network. Combining
equations and , with the assumption of constant ¢, and p, the
dynamic model of the tank becomes

dv

7, — 4in — qou 2.
a4 Gout (2.7a)
dT 1 Q - Qloss

-, = in Tcw -T 2.7b
o= v [T =T 5 (2.70)

where T is the tank water temperature and T, is the temperature of the
inlet flow. Note that T;..; drops out of the equations.

Similarly, we may write mass and energy balances for the mixer system,
which is assumed to be a static process. The mass balance is given by

Ghw = Qout + Gew (28)

The steady sate energy balance for the mixer is given by
hhw = hcw + hout [J/S] (29)
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2.2. Process model for hot water storage tank

where h, and hyp, are the enthalpies of the cold and hot water streams,
which are defined as

hew = pchcp(Tcw - Tref) (210)
hhw = thpr(Thw - Tref) (2-11)
Rearranging ([2.9) gives the hot water temperature

_ QOutT + QCchw
qhw

Thw

2.2.1 Energy storage and demand

In this subsection we introduce some terms that will be useful for analysis.
We define the energy stored in the tank relative to the current cold water
supply temperature (T¢,) as

E = pcp, V(T — Tew) [J] (2.13)
We define the power demand at any given time as

Qdemand = PCpGhw (Thw - Tcw) [J/S] (214)

This is the power we would need to supply at any given time if there were
no energy storage. Upon combining (2.2) and (2.9) we obtain the overall
energy balance of the combined tank-mixer system

dH

g = hzn + hcw - hhw + Q - Qloss (215)

By introducing E and Qgemand, the energy balance can be written in the
following alternative form (see Appendix [Al for derivation)

dE dT e

E = Q - Qdemand - Qloss - pVCp dt (216)
which will be useful for analysis of the system. Note that for the case with
constant cold water supply temperature (drgiw = 0), which is also assumed
in the case study, we simply get

dE
% = Q - Qdemand - Qloss (217)

that is, the change in the stored energy is the difference between the current
heating (Q — Qoss) and current use Qgemand- 1t is also relevant to define
the maximum energy capacity as

Emax = PCmeax (Tmax - Tcw) (218)
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and the minimum energy amount that needs to be satisfied at all times as
Emin = pcpvmin(Tmin - Tcw) (219)

The bounds for volume and temperature Vyin, Vinaz, Tmin and Tp, are
discussed in section [2.3.2] For analysis it will be helpful to define the scaled
stored energy
_ E(t) — En;
Emaa: - Emin

which lies between E,nin = 0 and Epey = 1.

(2.20)

2.3 Problem formulation

2.3.1 Independent variables
Control degrees of freedom

From Fig. the system has four independent variables, namely, Q, gew,
qhw and g;,. However, as discussed next, two of these variables (gp,, and
Jew) are used to satisfy demand requirements on the hot water flow and
temperature, respectively. The remaining two degrees of freedom (decision
variables) for control and optimization are the power input @ and the cold
water inlet flow g;,.

Disturbances

The hot water flow rate, gs.,, and the hot water temperature setpoint, Th,, s
are set by the user and are considered disturbances from a control point
of view. We assume perfect temperature control (Tj, = Thw,s) Whenever
feasible. By ’whenever feasible’ we mean whenever the tank temperature
is above the delivery setpoint, T' > T, ;. In this case, the flows gu,¢ and
Qew are given by and with Ty = Thw,s. For the case when
T < Thy,s, we cannot achieve the desired setpoint and we set g, = 0 in
order to maximize the delivery temperature T},,, and we get gout = Gnyw and
Thew =T.

The main disturbances for the optimization are related to the user de-
mand (T}, s and gpy), the cooling water temperature (7¢,,) and the price of
electricity (p) and can be regarded as stochastic variables. The cold water
temperature (T,,,) can vary significantly in the long term (e.g. from summer
to winter), but this variation is not important in our time scale (which is
from minutes to hours). From an operational point of view, the effect of
changes in both gy, or Thy s, is a change in the power demand Qgemand-
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Therefore, for simplicity, we here assume that T},, s is constant and consider
disturbances in the hot water demand, ¢p,,. In the case study we assume
T, is constant.

2.3.2 Constraints

The operation of the system should respect constraints related to physical
limitations, safety and specifications. Firstly, in terms of inputs, the heating
power and water inflows are limited, so that

0<Q < Qnmax (221)
0 < ¢in < Gmaz (222)

In terms of output constraints, the temperature of the water should be
bounded above (Tjuq.) for safety reasons and indirectly bounded below
(Thw,s) to guarantee that the desirable temperature of the hot water is
achievable. Naturally, the volume is bounded by the size of the tank. There-
fore, we have

T (2.23)
maz (2.24)

where Thpin = Thu,s-

2.3.3 Optimal control problem formulation

In its simplest form, the objective we would like to minimize is the future
energy cost
ty
J= / p(1)Q dt (2.25)
to

where p(t) is the time-varying electricity prices, Q(t) is the power we buy
at time t, 7 is the initial time and ¢ is the final time. In addition, we want
to satisfy the operational constraints (2.21)), (2.22)), (2.23) and (2.24) and
we have to satisfy the process dynamics ([2.7)). Notice that the process dy-
namics introduce nonlinearity into the optimization problem, which makes
the problem more difficult to solve.

2.4 Insights into the optimal solution

In this section we will present some properties of the solution that can be
used to simplify the optimization problem. In addition, these insights will
be used to derive simple implementation strategies for this system.
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2.4.1 Ideal liquid level

When a target for the energy storage E is specified (e.g. by an optimization
algorithm) a decision on the appropriate values for T" and V' that achieve
the given energy storage needs to be made. This is because of the non-
uniqueness in the energy storage £ = pc,V (T'—1T,,) in terms of temperature
and volume. In practice, to reduce the heat loss, we want to keep the
temperature T as low as possible, which for a given energy storage (E)
is achieved by maximizing the tank filling. We then have the following
important insight:

For a given energy storage E it is optimal to keep the liquid V in the
tank as large as possible to minimize energy losses.

This means that we will keep V' = V.4, as long as the temperature in
the tank 7' is above the hot water setpoint T}, s. When the temperature 7'
reaches T}, s we may have to reduce the refilling cold water, which means
that V' will drop below V4. However, note that for safety reasons we
always have to keep V' > Viin.

2.4.2 Initial condition and terminal state constraint

The electricity price tends to be at its lowest during night and it typically
peaks in the morning when the demand is high. The hot water demand pro-
files show a similar behaviour, with demand peaking early in the morning.
Based on this observation we have the following insight

It is optimal to have mazimum energy stored (V = Vyue and T =
Tinaz) late in the night.

This is an important insight because it means that we can always consider a
24 hours optimization horizon, even when the actual horizon (¢s) is longer.
For an optimization horizon of 24 hours this implies that we should have

T(to) = T(to + 24h) = Trnaz (2.26)
V(to) = V(to + 24h) = Vinao (2.27)

where the initial time tg should be appropriately chosen. For example, it
could be some time after midnight. This suggests that the optimization
of every 24-hours interval may be performed independently because the
terminal constraints decouple the optimization problems of two consecutive
days.
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2.5. Solution approaches

2.5 Solution approaches

In this section we will describe in more details the different approaches that
will be compared.

2.5.1 The ideal solution

The solution to the optimization problem requires the characteriza-
tion of future price p(t) and demand gp,(t) for the horizon of interest. In
the ideal case, we assume perfect knowledge of the future demand gp,,. The
term ideal refers to the fact that this assumption is generally not satisfied
and this solution should be regarded as a theoretical limit. The results ob-
tained in this case are very useful to benchmark the performance of any
other policy.

2.5.2 Maximum storage policy

This is the simplest policy, where we maintain maximum energy storage
in the tank at all times. This is achieved by fixing the tank temperature
setpoint T and tank volume setpoint V; at their maximum allowed value.
The control structure that can be used is shown in Fig. This is the safest
policy in terms of avoiding constraint violation caused by unexpectedly high
demand, but it does not seek to reduce the electricity costs.

2.5.3 Simple variable storage policy

The observations and insight presented in Section [2.4.2] suggests a simple
money-saving strategy in which we attempt to store as much energy as
possible during the night. Therefore, the idea is to manipulate the energy
storage setpoint Eg using a simple time-based feedforward rule

E, =FE oz during night (storage mode)
Es = Enin + Foackof  during day (saving mode)
(2.28)
Where the positive constant Fyackof is a backoff from the constraint to re-
duce the risk of frequent constraint violation caused by large demand during
the day. The backoff should be adjusted such that the amount of constraint
violations is acceptable for the given case. Using F; = Fp,4; at night ac-
complishes two things: takes advantage of more favourable electricity prices
at night and it anticipates for a high consumer demand in the morning.
The main problem here is to determine the most beneficial times to switch

Simple policy: {
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between the setpoints. One approach is to use historical price data to com-
pute the time interval with the lowest price in average. Such time interval
should be long enough to ensure a full tank with maximum temperature
before entering the ’saving mode’.

Simple policy: temperature and volume setpoints

For a practical implementation using control it is convenient to know what
the simple policy means in terms of temperature and volume set-
points. During ’storage mode’ we obviously have T = T},,4. and Vi = Viaa.
On the other hand, during ’saving mode’ we need to use the insight in
Section to compute the setpoints which for small backoff (Epackoff)
becomes

Ts = Thw,s

Emin + Ebackoff
Vs = = Vi Vi
s ey (Thw,s — Tcw) min T Vbackoff

where the constant Viackor = M%Zi% is non-negative. When the
backoff Ey,ckoff is large enough we will have Vs = V4, and the temperature
setpoint needs to be greater than the lower bound (Ts > Thy ).

After switching from one mode to another, there will always be a tran-
sient period where we are not meeting the energy storage setpoint Fs. Dur-
ing the transition from storing to saving mode (night to day) we don’t want
to add any power ) because of the high price in this period. In addition,
to reduce heat losses we should let the temperature T drop to the setpoint
T before we start reducing the volume to the new setpoint. This can be
easily achieved by keeping Vs = V4, while T > Tj,, s and only when the
temperature reaches the new setpoint (1" = T}, s) we switch the volume
setpoint to the desired ’saving mode’ level (Vs = Vinin + Vbackoft)-

On the other hand, during the transition from day to night operation
we should first increase the tank level until V' = V,,.: and then we start
increasing T' to reduce losses. This can be achieved by setting QQ = Qmaz
while using the water refilling to keep T = T}, s until the tank is full
(V' = Vinaz). At this point then switch to the structure in Fig. for the
night operation.

Simple policy: Implementing insights using control

The policy during ’storage mode’ can be implemented using feedback con-
trol:
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e Use the water refilling (¢;,) to keep V' at constant setpoint Vi,qs.
e Use the power input (Q) to control T" at constant setpoint Tyaz-

Figure depicts the control structure for this case. During ’saving mode’
(after the transient) a similar structure can be used. However, for large
disturbances the temperature controller might saturate (Q = Qmaz) and it
is not advantageous to have V = V; = Vi + Vhackost @s it will force T to
drop below T}, s and we should let V' drop. A simple way to achieve this
is to use split range control as shown in Fig. The basic idea is that a
single controller uses both the power input ) and the level setpoint V; to
control the temperature when the setpoint is Ty = Ty, s. The temperature
controller computes a virtual control action v which is translated to values
for @ and V; according to a defining function as depicted in Fig. When
the volume setpoint reaches the lower bound V; = V,,;, the temperature
control is lost and 1" drops below T}, .

2.5.4 Optimal variable storage policy

The main idea here is to use a moving horizon optimization (MHO) scheme
to solve the problem. At each time sample a model-based dynamic opti-
mization problem with horizon A is solved using the information that is
currently available. However, only the first portion of the optimal profile
corresponding to t € [to,tp + At] is implemented, where t( is the initial
time and At is the sample time. Within this framework we find two different
implementation philosophies:

e Single layer strategy in which optimization and control are inte-
grated; Here, optimization problem is solved using a moving
horizon approach and the optimal inputs (g, and Q) are re-computed
directly (by the optimizer) at every time sample. This is, in theory,
the optimal approach. However, it requires high computational power
as the full optimization problem needs to be solved at every time sam-
ple. In the literature this strategy is sometimes called economic model
predictive control (Ellis et al., 2014).

e Two level strategy where the optimization problem is decomposed
in two simpler problems where the economic objectives are decoupled
from the control objetives.

The second strategy is our preferred and is the approach used in this paper.
The basic idea is to decompose the overall problem of economic optimiza-
tion and control (Eq. (2.25)) into simpler sub-problems by using a cascade
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Cold water

Figure 2.2: Proposed control structure when Ts = Tjq, and Vi = Ve
(Simple policy (2.28)) during night).
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Taut Tcw

Qout qecw

G
- Thu,s
Hot water “

Figure 2.3: Split range control structure, used when T = T}, s and V;
may vary between Viin + Vhackof and Vmin; see Fig.
(Simple policy during day). The lower temperature
controller, where extra cold water is mixed in, is not ac-
tive during normal day operation. In the transition period
between night (Fig. and day (Fig. operation, we
set @ = 0 and first let T,y drop from Tiap t0 Thy s (With
Vs = Vinae) and then set ¢, = 0 and let V' drop from V4,
to szn + Vbackoﬁ-
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Scaled control input, %

100

Vs — Vmin + ‘/ba‘(:koff Q = Q’m@il’

Vm, n

0 1

Control action u

Figure 2.4: Simple representation of a split-range control where both the

28

power @ and the level setpoint V; are used to control the
temperature when the setpoint is Ty = T},,. Note it is not
necessary to have u = 0 as the point where you switch; this

value may be used to equalize the scaled process gains for the
two inputs.



2.6. Case Study

feedback structure. In this scheme the bottom layer is a regulatory control
layer that follow the set-points specified by an optimizer in the upper layer.
In our problem the regulatory control layer is similar to that of Fig. and
the task of the optimizer is to update the setpoints T and Vi. Our idea is
to write a simplified optimization problem in terms of the energy storage F
only and then translate the optimal energy level E,,; into setpoints Vs and
Ts.

A detailed derivation of this method is presented in the accompanying
paper [de Oliveira et al. (2016]). Inde Oliveira et al. (2016)) it is shown that
the remaining optimization problem for the upper layer can be written as
a simple linear program (LP) which can be solved very efficiently at a low
computational cost.

An important factor for the success of this optimization scheme is to
have relevant information about the user demand and the future price. An
idea is to construct a demand model based on the empirical distribution of
hot water consumption for every time step using historical data. This model
can be updated online as new measurements become available, making it
possible to adapt to new consumption patterns when necessary. However,
our simulation studies suggest that even simpler models (e.g. assume con-
stant demand) can give satisfactory results if the optimization problem is
resolve frequently enough. For simplicity, we will assume the electricity
price is known 24h in advance.

As in the simple policy , it may be necessary to include a backoff
FEhackot from the constraint in order to reduce the probability of breaking
the constraints due to large disturbances. The idea is to shift the current
desired energy level Es (computed by the optimizer) if it is too close from
the boundary E,,;, so that Es > E,.;n + Epackofi-

2.6 Case Study

In this section we will show a simulation example of the methodology pre-
sented in the previous section. The idea here is to have a better under-
standing of the potential benefits of using energy storage in this problem.
A comparison of the various strategies will be presented.

2.6.1 Electricity prices

For simulation and optimization we used the electricity price data available
in the archives of Nord Pool spot market (NordPoolSpot, [2014). A sample
of the electricity price for the first 10 days of February, 2012 in Trondheim,
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Chapter 2. Optimal operation of the hot water system

Norway is shown in Fig. Although Norway currently does not use real-
time pricing for the end-user, the spot prices provide a reasonable real-time
pricing estimates. The resolution of the price data is one hour.

2.6.2 Realistic hot water demand

For a realistic comparison, we emulate hot-water flow demand (gp,,) profiles
based on the empirical probability distributions published by |Jordan and
Vajen| (2001)). The consumption profiles have a resolution of one minute and
correspond to a single family house with a mean load volume of 350 litres
per day. An example of a consumption profile is depicted in Fig. where
twenty unique hot-water profiles were generated. For simplicity, we will
assume constant temperature setpoint Tj,, s and cold water temperature
Tew-

2.6.3 Heat loss

The typical heat loss from a domestic hot water tank is approximately
0.1kWh/h at a temperature of 75°C (Ericson, 2009). For a room tempera-
ture Ty = 25°C it follows from that the heat transfer constant (U A)
for domestic water heaters is approximately

Qloss 0.1
UA = o = 25 = 0,002 [KW/K] (2.29)

which we assume constant throughout the simulations. Additional impor-
tant parameter values for our case study are presented in Table

Table 2.1: Parameters for case study

‘ Parameter ‘ Description Value ‘ Unit ‘
Qmaz Maximum power 5 kW
Qmin Minimum power 0.0 kW
Tinaz Temperature upper bound 90 °C
Vinaz Volume upper bound 150 1
Vinin Volume lower bound 50 1
Tew Cold water temperature 5 °C
r Hot water temperature 50 °C

p Heat capacity of the water | 4.19 | kJ/kg/K
UA Heat transfer constant 0.002 kW/K
Towrr Room temperature 25 °C
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Figure 2.5: Electricity price and hot water demand.

2.6.4 1Ideal case

To compute the ideal solution, we discretize the optimal control problem
using orthogonal collocation in a simultaneous approach (Biegler] |1984).
In this approach, the differential equations are converted to algebraic ones
by orthogonal collocation which should be satisfied only at the solution
of the optimization problem (Biegler, 1984). The key characteristic here
is that both states and manipulated variables profiles are approximated,
with the same accuracy, by orthogonal polynomials, resulting in a large
scale nonlinear programming problem (NLP). An interesting characteristic
of this method is that it can efficiently handle problems with constraints on
states and control inputs.
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Chapter 2. Optimal operation of the hot water system

We formulate the problem in Matlab and solve it using the sparse NLP
solver SNOPT (Gill et al., |2002). This solver employs a sparse SQP algo-
rithm with quasi-Newton approximations to the Hessian. Gradient infor-
mation is obtained using a symbolic differentiation approach. The interface
between Matlab and SNOPT is handled by the optimization environment
TOMLAB.

The optimization for every day is carried out independently, where we
consider the initial time ¢y = 4h in the morning and a horizon h = 24 hours.
The tank is always initially full (E(tg) = Emqe) and we impose the terminal
constraint E(t) = Epqe. The penalty terms p} and p5 were adjusted so that
a constraint violation (Tp,, s —T') of 20 degrees results in a compensation of
p*(T) = 2 NOK/kWHh, slightly above the highest electricity price observed.

2.6.5 Simple variable storage policy

The main decision in the design of the simple policy is the time to
switch the temperature setpoints. The duration of the ’storage mode’ period
(Atpignt) should be long enough to ensure that maximum storage energy
(E = Epq4) can always be reached at the end of the interval. This value
depends on the size of the tank, the maximum water inflow rate and the
installed electric power. After determining the minimum duration At,;gn,
we can use historical price data to determine the period of the day with
duration At,;gn; with the lowest price in average. In this case study we
have chosen to activate the ’storage mode’ only from 2 am to 6 am. In
this example, we have chosen the backoff level Epackot = 0.2(Emaz — Emin),
which corresponds to Vackor = 50 1.

2.6.6 Optimal variable storage policy

As in the ideal solution, we include the terminal constraint E(¢ f) = Fnas
into our optimization problem. This suggests a shrinking horizon approach
where the optimization horizon h is periodically decreased according to

hi = hp_1 — At (2.30)

where At is the time between two consecutive optimizations. When h, = At
we have to reset it to the initial horizon hg. The initial horizon is chosen
as hg = 24 h. The electricity price changes every hour so we discretize the
optimization problem with sample time At, = 1h. Note that At, may differ
from the time between consecutive optimizations At. In that case, we may
need to vary the size of the first step of the discretized problem in order to
synchronize with price variations. To estimate hot water consumption we
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used the simplest model where the predicted flow g, is assumed constant
throughout the day. Here we have chosen Gp,, = 0.2431 1/min to match
the daily average consumption of 350 1/day. The backoff level Ey,ckofr was
chosen the same as in the simple policy .

2.6.7 Simulation results

Figures and show a comparison between the costs achieved by the
various strategies when subjected to the disturbances in price and demand
shown in Fig. The figure includes the result for the optimal variable
storage policy with time between consecutive optimizations At = 5 min.
The first thing to notice from these results is that all methods give substan-
tial savings compared to the maximum storage policy. The optimal variable
storage approach results in close-to-ideal performance even with very limited
information about the demand available to the optimizer. More remarkable
is the performance of the simple variable storage policy. Without any opti-
mization algorithm or information about the price or demand it is able to
give results comparable to that of the optimization-based approach. This
finding should encourage practitioners to implement such simple polices to
manage their energy storage units even when limited resources for advanced
computer control are available.

The behaviour of the different methods can be analysed by looking at
the tank volume and temperature in Fig. We chose to show only the
first three days to facilitate the visualization. Information about price and
demand for the first three days is repeated in Fig. The simple variable
storage policy, the optimal variable storage and the ideal solution show very
similar temperature trends. However, they differ in terms of volume. During
the day, both the optimal and the simple variable storage policy try to keep
the volume above a certain level Vi = Viin + Vbackot Which is function of
the backoff Fp.com. On the other hand, the ideal case is able to bring the
volume close to the limit V,,;, without violating constraints.

The information of temperature and volume can be summarized by the
energy levels E given by the different approaches, as shown in Fig. [2.10
The scaling is done according to to ease the analysis. Because of the
perfect knowledge of the demand the ideal solution is able to take maximum
advantage of price variations by letting the energy levels drop close to min-
imum. This is in contrast with the simple and the optimal variable storage
policies, which enforce an additional buffer to ensure feasibility. In addition,
the knowledge of future price allows the optimization-based approaches to
buy cheaper energy in advance. This behaviour can be exemplified in the
first and third days as seen in Fig. Nonetheless, all strategies show
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similar behaviour during the night, when they seek to maximize the stored
energy.
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Figure 2.6: Electricity price and hot water demand. First three days.

2.7 Discussion

2.7.1 Choice of the method

We presented several strategies for operation of the water heater aiming at
taking advantage of the flexibility given by the energy storage. The sim-
ple variable storage policy gives big savings compared to the maxi-
mum storage policy, with performance comparable to that of more complex
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Figure 2.7: Accumlated cost for the different strategies.

optimization-based approaches. However, the question of whether or not
the increased complexity and computational load in the optimal variable
storage policy is justified will depend on the specific case. In scenarios in
which the time intervals with the lowest price vary considerably from day
to day we can expect the optimization-based method to be more beneficial.
This is because the performance of the simple policy is sensitive to
our definition of 'day’ or 'night’.

The ideal solution has two fundamental advantages compared to other
approaches: knowledge of the future price, which allows it to buy cheaper
energy in advance; and its perfect knowledge of the demand, which makes it
possible to operate closer to feasibility limits. Although perfect knowledge
of future demand is not realistic for this problem, there might be cases where
the demand is more predictable, for instance, when the demand is linked to
a contract between supplier and consumer.
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Figure 2.8: Accumlated cost for the different strategies. First three days.

2.7.2 Power consumption

Figure shows the hourly average of 20 days of electric power consump-
tion. The figure shows the reduction of electricity consumption during the
peak hours by using an appropriate strategy. Notice that the total con-
sumption is equal in both cases, but in the ideal case we are able to shift
the load to a more beneficial period. During the peak hours in the morning
(from 6am to 10am) we are able to reduce the average consumption from
1.3 kW to 0.43 kW. This indicates that the flexibility given by the thermal
energy storage capacity of water heaters can be a good allied for reducing
the peak demand in the electricity grid.
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Figure 2.9: Tank volume and temperature. Red lines: ideal case. Green
lines: simple variable storage policy. Blue lines: maximum
storage policy. Violet lines: optimal variable storage policy.

2.7.3 Design considerations: benefits of increasing storage
size

The amount of savings that can be achieved strongly depends on the storage
capacity. Ideally we would like to have enough capacity so that all the
demand during high price period can be supplied with energy purchased at
the lowest price. The electricity price may show large variations within a
day where the price is usually the lowest during the first hours. Therefore,
an appropriate tank capacity should exceed the average daily consumption
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Figure 2.10: Energy level E (scaled) currently stored in the tank for the
different strategies. The scaling is such that FE,,,, when
scaled equals one and FE,,;, scaled equals zero. Red line:
ideal case. Green line: simple variable storage policy. Blue
line: maximum storage policy. Violet line: optimal variable
storage policy..

of the household.

In order to study this aspect of the problem we have computed ideal
solutions to the optimization problem for a specific day where we varied
the maximum tank capacity (Vinqz) from 60 to 600 liters but kept the same
price and demand profiles. The chosen price and demand profiles represent
the first day shown in Fig. 2.5 Figure[2.12]depicts the optimal savings with
respect to the maximum storage policy for different capacities. The savings
obtained by the simple variable storage policy are also shown. The saving
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is defined as follows

*

*
Saving = M x 100 (2.31)
Jbase
where J}, . is the cost (including the penalty as in ) for the maximum
storage policy and J ;4 is the cost for a particular approach.

The study showed that there is a substantial benefit in increasing the
tank size. For small tank capacities (below 100 liters) the simple variable
storage policy performs worse than the maximum storage policy because of
frequent constraint violations. In these cases the simple policy is not storing
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enough energy to handle the demand variations. However, for large capaci-
ties the simple policy performs very well and eventually becomes optimal.

Another interesting conclusion is that the savings flatten out for capaci-
ties above a certain level. The tank size after which the savings flattens out
depends on the size of the demand for a given day. The total demand for
this period in terms of energy is given by

to+24
Edemand = / Qdemand (t) dt (232)
t

0

For the ideal case there is not benefit in increasing the tank size when
E(ty) = Fdemand + Emin. If we assume E(tg) = Epnes wWe can compute
the ideal tank volume using Vi = %. For this particular day
Vopt = 272 liters. The ideal tank size for the simple variable storage policy
can be computed in a similar way. The only difference is that we need to
take the backoff Fy,ckor into consideration so Vi, = Ed?m;g:&fzﬁ;fu")”“”“.
In this case the ideal tank size for the simple policy is Vi = 297 liters.

2.7.4 Alternative applications

The methodology and insights presented in this paper could help solving
other problems involving energy storage. An example is a district heating
system with storage capacity. Although these systems are typically closed,
in which the volume of the heating medium is constant, there might be a
possibility of manipulating volume and temperature at different parts of
the system if more than one storage tanks are in place. This would allow a
straightforward application of the strategies presented here.

The simple policy or the optimal variable storage policy could be
directly used to control home batteries, which can help electricity consumers
avoid paying peak rates.

2.7.5 Comments on the modelling assumptions

In the derivation of the dynamic model we made use of the simplifying
assumption of perfect mixing in the tank. This assumption is unlikely to
hold for domestic hot water systems, where vertical thermal stratification
is often observed (Khalifa et al.l [2009; |AI-Nimr, 1994). Nevertheless, this
assumption does not affect the actual results in terms of operating policies.
This is because the standby losses to through the walls are approximately
the same whether we consider an homogeneous temperature or a vertical
temperature of the water in the tank. In addition, the economical perfor-
mance depends mainly on the relation between the power that we supply
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Figure 2.12: Trade-off study showing the benefits of increased storage ca-
pacity for a specific day. The savings are relative to the
maximum storage policy. The nominal capacity for the case
study is 150 liters.

(Q) and remove (Qgemand) and the current energy stock (E), and is not
affected by the temperature distribution in the tank.

2.8 Conclusion

In this paper we discussed the optimal operation of the water heater system.
We aimed at presenting a problem formulation that is sufficiently general
to be used in similar problems that include energy storage and variable
energy price and uncertain demand. The goal is to exploit the flexibility
given by the energy storage capacity to take advantage of varying electric-
ity prices. We showed that the economical benefits of energy storage can
be large for the consumer, and they increase with the storage capacity. In
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addition, we showed that such strategies can help reducing the power con-
sumption during peak hours, which will benefit the electricity producers.
We presented several alternatives strategies for operation of the system and
we showed that simple policies can give very good performance when com-
pared to more complex, optimization based approaches. This finding should
encourage practitioners to implement such simple polices to manage their
energy storage units even when very limited resources are available.
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Chapter 3

Hierarchical control
structure for dynamic
optimization of energy
storage systems

We consider the dynamic optimization of thermal energy stor-
age systems in a fluctuating energy price scenario with uncertain
time-varying demand. We will focus on a domestic hot water
system as a case study. For this problem we propose an imple-
mentation strategy based on hierarchical decomposition of the
optimization-control problem. The economic objectives and con-
trol objectives are decoupled using a two-layer cascade feedback
structure. We show that the decomposed optimization problem
can be written as a simple linear program (LP) which can be
solved very efficiently. The main result is that great savings can
be obtained at a very low computational cost and suitable for
low cost embedded hardware.

3.1 Introduction

Local energy storage technologies are beneficial for electricity consumers as
they enable taking advantage of electricity price and environmental condi-
tions variations and enable higher peak capacity (de Oliveira et al., 2015).
Thus, energy storage gives the user more degrees of freedom which can be
exploited to yield optimal economical performance. In particular, this flexi-

43



Chapter 3. Hierarchical control for dynamic optimization

bility means that energy consumption can be shifted temporally, so that an
optimal objective can be achieved. The optimal operation of such systems
is dynamic in nature due to the time-varying behaviour of the energy price
and demand. Thus, a dynamic optimization scheme is needed to compen-
sate these variations while minimizing the energy cost.

A popular approach to solve such problems is economic model predic-
tive control (EMPC) (see for instance [Ellis et al.|(2014)) where the economic
optimization and the control (tracking) problems are solved simultaneously
at each sample time in one single control layer. Although EMPC is theo-
retically the optimal strategy, it has some important practical drawbacks.
Considering that EMPC must use a sufficiently large prediction horizon to
account for a time-varying economic cost, the optimization problem may be
difficult to solve fast enough to control the system in real-time. Addition-
ally, compared to traditional hierarchical control strategies, EMPC requires
more detailed and complex models are in order to ensure that the constraints
are satisfied, which makes the problem more difficult to be solved efficiently.
Finally, it can be difficult to balance the two different objectives of optimal
economics and desired dynamic control performance, including robustness
and stability in a single controller.

In this paper we propose a hierarchical optimization/control structure
for the optimal operation of storage systems where the problem is decom-
posed into an upper layer, responsible for the economic (real-time) optimiza-
tion, and a feedback control control layer that follows setpoints computed
by the upper layer. As a case study we consider the optimization of an
electric water heating system which provides hot water for domestic usage.
The main idea is to use the heat capacity of the water tank to store energy
at times when electric power is cheap and use it to match the demand when
energy is expensive.

In this paper we formulate a simplified optimization problem in terms
of the energy storage E (the optimization degree of freedom) only and then
translate the optimal energy level into volume and temperature setpoints
(the controlled variables for the regulatory layer). We define the energy
storage as

E = pc, V(T — Tew) (3.1)

where V is the water volume in the tank, T is water temperature in the
tank, T, is the temperature of the cold refilling water from the network,
p is the water density and ¢, is the heat capacity of the water. It turns
out the reformulated optimization problem in terms of E is linear, which
greatly facilitates the numerical solution of the problem.

In order to make our approach applicable to other problem areas, it is
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necessary to distil the key elements and ideas which enable us to simplify

our problem.

1.

Choice of the right decision variables for the optimization problem. In
this case the transformation to stored energy FE allows the formulation
of a linear program.

Use of time-scale separation. By selecting appropriate decision vari-
ables and by introducing a feedback control layer running in a faster
time scale it is possible to reduce computational the load of the opti-
mization problem.

Use of process insight to reformulate the problem such that it becomes
simple.

Make use of Periodic behaviour of the system to reduce the size of the
infinite time horizon dynamic optimization problem by decomposing
it into smaller independent sub problems that are solved sequentially.

By carefully examining the problem and exploiting the key elements
above, we can achieve significant benefits, for optimizing the operation e.g.
a domestic hot water system in a smart grid environment. In particular:

e Minimum modelling efforts are needed.

e Decisions about how to handle constraints on temperature and volume

can be decoupled from the economic optimization problems.

The lower control layer ensures feasibility of the output constraints
whenever it is possible. This implies that it is not necessary to re-
solve the optimization at each sample time, but instead depending on
the nature of the price and demand variations.

We show that the decomposed optimization problem can be written
as a simple linear program (LP) which can be solved very efficiently.
The main result is that great savings can be obtained at a very low
computational cost, making it suitable for low cost embedded hard-
ware.

We believe that our framework can be used as a starting point to solve
similar problems involving energy storage systems, such as district heating
systems. Moreover, we hope that the development of these low-cost solu-
tions will allow the widespread use of energy storage systems, which in term
helps the integration of renewable energy sources into the grid.

45



Chapter 3. Hierarchical control for dynamic optimization

The chapter is organized as follows: Section 3.2 presents the process
models and introduces relevant notation; Section 3.3 formulates the optimal
control problem; In Section 3.4, the proposed method is detailed; Section
3.5 details a simulation study comparing various approaches. Discussions
and conclusions are presented in Section 3.6 and Section 3.7, respectively.

3.2 Process description

Tcw [K]
Cold water Qin [M3 /3]
S
T K]
Heater ZQ "
V [m?]

Tout =T Tcw [K]

Qout [md/s] Gew [7”'3/5]

Cold water

Figure 3.1: Simplified process flow scheme

The process we are studying in this paper consists of a heater that pro-
vides hot water for domestic usage. This is the same application considered
in |de Oliveira et al. (2015). A process flow scheme is shown in Figure
where the important notation is presented. The system includes a cold wa-
ter source, a thermally insulated tank, a heating coil with adjustable power
and control valves that regulate the cold water inflow ¢;, and the hot water
outflow gou:. A somewhat unusual feature of this system is that the hot
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water that leaves the tank (gou¢) is mixed with a cold water stream (gew)
from the same water source. This extra mixer is introduced to allow for
extra flexibility because the water in the tank can be heated to a higher
temperature than the hot water to the consumer (T}, ).

3.2.1 Energy storage and demand

In this subsection we introduce some terms that will be useful for analysis.
We define the energy stored in the tank relative to the current cold water
supply temperature (T, ) as

E = pcp,V(T — Tew) [J] (3.2)
We define the energy demand at any given time as

Qdemand = PCpYhw (Thw - Tcw) [J/S] (33)

This is the energy we would need to supply at any given time if there were
no energy storage. The dynamics of the energy storage F can be written as
(see the accompanying paper (de Oliveira et al., 2015) for derivation)

dE

dt - Q - Qdemand - Qloss (34)
that is, the change in the stored energy is the difference between the net
current heating (Q — Qoss) and current use Qgemand- In some cases, because
the insulation of the tank, the heat loss may be neglected (Qoss = 0)
resulting in the simple dynamics

dE
5, = - eman 3.5
7 Q — Qdemand (3.5)

The assumption of zero heat loss is made here to further simplify the opti-
mization problem formulation.

3.3 Problem formulation

In this section the original optimization problem formulation is presented.
Here, the operational constraints as well as the optimization objectives are

defined.
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3.3.1 Independent variables
Control degrees of freedom

From Fig. the system has four independent variables, namely, Q, gew,
dhw and g;,. However, as discussed next, two of these variables (gp,, and
dew) are used to satisfy given demand requirements on the hot water flow
(gnw) and temperature (Tp,,), respectively. The remaining two degrees of
freedom which can be used to optimize the system with respect to economics
are the power input ) and the cold water inlet flow g;,.

Disturbances

The hot water flow rate, gy, and the hot water temperature setpoint, T, s
are set by the user and are considered disturbances from a control point
of view. The hot water temperature Tj,, is controlled by manipulating ge
while the flow rate gp,, is controlled using quu¢- The main disturbances
for the optimization are related to the user demand ¢, and the price of
electricity p. The cooling water temperature T, and hot water temperature
setpoint T}, s are assumed constant.

3.3.2 Constraints

During operation the system must respect constraints related to physical
limitations, safety and specifications. Firstly, in terms of inputs, the heating
power and water inflows are limited, so that

0 S Q S Qmam (36)
0 < gin < Gmaz (3'7)

In terms of output constraints, the temperature of the water is be bounded
above by T}, for safety reasons and indirectly bounded below by T}, s to
guarantee that the desirable temperature of the hot water is always achiev-
able. Naturally, the volume is bounded by the size of the tank. Therefore,
we have

T ez (3.8)
Vinaz (3.9)

where Thnin = Thu,s-
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3.3.3 Optimization objective

The operational objective is to minimize the energy costs

J= /t Y 00 dt (3.10)

0

where p(t) is the time-varying electricity prices, ¢y is the initial time and
is the ﬁnal tlme In addition, we want to satisfy the constraints ,

. and ( and the process dynamics.

3.4 A hierarchical control approach for real time
dynamic optimization

As stated earlier, for online optimization there are two different implemen-
tation philosophies:

e Single layer strategy (EMPC) in which optimization and control
are integrated; Here, the optimization problem is solved using
a moving horizon approach and the optimal inputs (g;, and @) are re-
computed directly (by the optimizer) at every time sample. This is, in
theory, the optimal approach. However, it requires high computational
power as the full optimization problem needs to be solved at every time
sample.

e Two level strategy where the optimization problem is decomposed
in two simpler problems where the economic objectives are decoupled
from the control objetives.

The second strategy is our preferred and will be further detailed in this
section. The basic idea is to decompose the overall problem of economic op-
timization and control (Eq. (3.10)) into consistent and simple subproblems
by using a cascade feedback structure. In this scheme the bottom layer is a
regulatory control layer that follow the set-points specified by an optimizer
in the upper layer. The idea is exemplified in Fig. where K is the reg-
ulatory controller and H is the controlled variable (CV) selection matrix.
All the measured quantities are represented by the variable y while ¢ are
the controlled variables. We will show that, because of this decomposition,
the remaining optimization problem for the upper layer can be written as
a simple linear program (LP) which can be solved very efficiently at a low
computational cost. The LP is solved online using a model predictive con-
trol (MPC) approach. The basic differences between the EMPC and the
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proposed two-layers approach for our problem is depicted in Fig. and
Fig. In the remaining of the section we will detail this idea.

Predictions for price and demand Demand
Optimizer | Cs e U
(MPC) K System
T fast
! Yy
| “+ H |
7777777777 sow

Figure 3.2: Hierarchical control structure

In order to successfully apply the hierarchical approach we follow these
main steps:

1. Define the problem formulation (economic objective, constraints and
decision variables) for the optimizer (upper layer).

2. Choose the controlled variables ¢ that are used to link the two layers.
3. Design a robust regulatory control layer for tracking the reference c,.

A key requirement for the hierarchical approach is a time scale separation
between the layers. The optimization layer updates the setpoints at every
At time units, while the control layer updates the control inputs every At,
time units, where At. << At. We assume here that the control layer reaches
steady state in less than At time units.

In the sequel we will discuss the details of step 1 and step 2. In addi-
tion, we will present other important elements in this framework. The first
element is the demand model, which is central in the optimization scheme.
Another important aspect is the use of back-off for the setpoints, which is
necessary to minimize the risk of violating the constraints caused by unex-
pected high demand. This is important due to the stochastic nature of the
hot water consumption. At the end of this section we will propose simple
strategies for implementation of these elements.
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Figure 3.3: Schematic of the process controlled by EMPC. The optimiza-
tion and control objectives are combined into one layer, which
manipulates the degrees of freedom (@ and ¢;;,) of the system
directly.

3.4.1 Problem formulation for the optimization layer (step
1)

We consider the simple alternative energy balance . We would like to
have a discrete-time formulation to facilitate implementation and solution
of the optimal control problem. Considering that the optimization problem
is discretized with sampling time At,, the model can be written in discrete
time domain using an Euler discretization as:

Epi1 = B + Ato(Qr — Qk demand) (3.11)
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Figure 3.4: Schematic of the process controlled by the proposed approach.
The control and the optimization objectives are decoupled.

where k is the current time step; and we assume a constant heat input Q.
and energy demand @ demand during the interval At,. This means that
we consider an average demand for the each time interval. Note that the
sampling time At, used to discretize the optimization problem may differ
from the time between two consecutive optimizations At.

At every sample time At we attempt to minimize the following cost

N-1

TN =Y prQrAt, (3.12)
k=0

subject to the dynamics (3.11) and the constraints 0 < @ < Qqr and
Enin < E < E,q where N is the horizon length given in sample times.
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The constraints on the energy storage E are defined as

Erez = pcpvmax(Tmax - Tcw) (313)

and
Emin = pCmein(Tmin - Tcw) (314)

Soft-constraints

For unexpected large disturbances it may happen that the energy level E
drops below the minimum FE,,;,. Therefore, to avoid feasibility problems
we can use a formulation based on soft-constraints. In this case the cost
function becomes

N-1 N
IN =Y pkQrlto+ > plex]” (3.15)
k=0 k=1

where ¢, = E, — Epin, and we make use of the notation [y]~ = max(0, —y).
The penalty parameter p is a positive scalar constant. The linear penalty
function is chosen because it is exact in the sense that minimizing also
minimizes the original cost function provided that p is large enough
and that the original problem is feasible (Nocedal and Wright, [2006]).

Terminal state constraint and optimization horizon size

The electricity price tends to be the lowest during night when the overall
electricity consumption is reduced, and it peaks in the morning when the
demand is high. The hot water demand profile shows a similar behaviour,
where the demand peaks early in the morning. Based on this observation
we have the following insight

It is optimal to have mazimum energy capacity stored (E = Epqaz)
late in the night.

This means that a final constraint Fy = E,.., may be included in the
optimization problem. This constraint reduces the dimension of the problem
because it decouples the optimization problem of two consecutive days. In
addition, the insight suggests that a shrinking horizon approach may be
used where N is reduced at every step as we approach the end of the 24h
horizon. After the end of the horizon is reached (N = 1), a new optimization
day starts and the problem should be reset with a full 24h horizon.
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Eliminating the heat input from the decision variables

The formulation with the heat input () as the decision variable may re-
quire short discretization time At, in order to allow for fast changes in the
manipulated variable. However, we can redefine the optimization problem
using the energy levels F; as the only decision variables. This is done by
rearranging equation and using the following expression

in the optimization problem formulation. Q% dgemand Mmust be computed us-
ing an appropriate forecast model as discussed later. This results in the
following moving horizon LP:

N-1 N
min Jn = Z Pr[Er+1 — B + AtoQk demand) + Z pler]”
k=0 k=1
subject to:
Emin — &k < Ek < Emaac <317)
0< (EkJrl - Ek)/Ato + Qk,demand < Qma:v (318)
EN = Emax <319)

Here, k = 0 is the current time and Ej is the current state measurement.
Notice that our decision variable is the ideal energy levels E}, at each time
step. One of the main advantages of this formulation is that it results in
a linear programming problem (LP) which can be solved very efficiently
compared and is suitable for low cost hardware.

Comments on the cost function and the sampling time

Assuming feasibility for the entire horizon (¢ = 0) we can rewrite the cost
function as

N-1 N-1
T = > Erlpe-1 — i) || Y PrALoQk demand | +Enpy—1—Fopo (3.20)
k=1 k=0

This allows us to draw some interesting insights about the optimization
problem. We see that for a constant price scenario the first term in the right-
hand side is zero and thus the total cost is fixed by the problem parameters
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(the initial condition (Ep), the final state constraint Fx and the demand
profile Qj demand) and does not depend on the decision variables. This
implies that any solution that satisfies all the constraints is indeed optimal.

For a time-varying price scenario, the first term in becomes rele-
vant from which we get another important insight: there is no economical
benefit in discretizing the optimization problem with sampling time At,
smaller than the update frequency of the energy price pi. For instance, if
the prices are updated in an hourly basis, there will be no economic benefits
in choosing At, = 10 min, since variations in Ej within the hour will not
affect the total cost. This indicates that we can choose At, = 1 hour, fact
that greatly reduces the computational burden. Nevertheless, when large
discretization time At, is used we might be dynamically infeasible. That
is, we might violate the constraint for a short period, even though we have
E,. > E,.;, at the end of the time interval k. This is because the peak
demand gets average out when large sampling times At, are used. This
restriction may become important when the size of the demand is large
compared to the tank capacity.

On the other hand, a short time between optimizations (At) can be
very beneficial. Since the demand is very uncertain, short At provides fast
feedback from the current state to the optimization algorithm allowing it
to improve its solution based on updated information. Nevertheless, At
should be bounded below to ensure a time-scale separation between the
optimization and the control layer.

3.4.2 Computation of the back-off

Generally is not possible to ensure £ > E,,;, at all times because of the high
uncertainty and stochastic nature of the demand profile. To decrease the
probability of violating the constraints we may back off from the constraint if
the current desired energy level Fs (computed by the MPC) is too close from
the boundary FE,,;n. A straightforward approach is to enforce an additional
energy buffer AEy,ffer so that Ey > Epin + AEy,ffer. The energy buffer
level should be adjusted such that the amount of constraint violations is
acceptable for the given case.

3.4.3 Selection of the controlled variables (step 2)

The solution of the LP problem presented above gives the optimal energy
levels E at every time step but does not tell us directly what the control
inputs should be. Using the fact that E = pc,V (T — T¢y) we see that the
tank temperature 1" and volume V are suitable candidates for controlled
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variables. However, there are infinite combinations of level V' and tempera-
ture T that result in a specific energy level E at any given time, indicating
non-uniqueness in the choice of the setpoint values for the control layer.
To minimize energy losses, which have not been included in the model, we
would like to minimize the temperature T', which is achieved by having V
at its maximum feasible value (V,;). For a given energy level E, the max-
imum feasible is the highest allowed volume in the tank that still ensures
T > Thw,s whenever this is possible. Thus, it follows from the definition of
FE that the desired temperature setpoint can be obtained from

E
Ts=——F"-+4T, 3.21
° pCqub +ew ( )

3.4.4 Regulatory control

The control objective can be achieved by the regulatory control layer struc-
ture shown in Figure where we use the water refilling (¢g;,) to control V'
and use the heat input (@) to control 7. However, for large disturbances the
temperature controller might saturate (Q = Qmaqz) and, when Ts = Tj,, ,
it is not advantageous to have V' = V; as it will force T" to drop below T}, s
and we should let V' drop. A simple way to achieve this is by the split
range control structure shown in Fig. [3.6l The basic idea is that a single
controller uses both the power input ) and the modified level setpoint V'
to control the temperature when the setpoint is T = T}, The modified
level setpoint lies within the lower bound V,,;, and the setpoint computed
by the optimizer layer Vs, that is Vi, <V < Vi. The temperature con-
troller computes a virtual control action u which is translated to values for
Q@ and V" according to a defining function as depicted in Fig. [3.7] To ensure
that the control loop gains do not change with Vy, we could vary the upper
bound for the virtual control action u according to the current value V.

3.4.5 Constructing a demand model

An important factor for the success of this approach is to have relevant
information about the user demand. An approach is to construct a demand
model based on the empirical distribution of hot water consumption for
every time step using historical data. This model can be updated online
as new measurements become available, making it possible to adapt to new
consumption patterns when necessary.

A simple idea is to compute the average demand Qgemand = PCpQhw (Thw—
T.w) for every time interval (for example, for every hour of the day) using
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Cold water

Figure 3.5: Regulatory control structure, used when T > T, s.

the available data. Note that we require measurements of the hot water flow
Qhw, the hot water temperature Tj,, and the cold water temperature Tr,.
Parameters p and ¢, can be considered constant. The estimates Qdemand can
be updated online using a day-to-day update rule based on, for example,
an exponential moving average filter. For every time interval in which we
discretized the day we have a day-to-day update rule in the form

Qdemand = aneas, demand + (1 - a)@previous, demand (322)

where a € (0,1) is the discount factor, Qmeas demand is the measurement of
the demand for the current day, and @ previous,demand is the previous estimate
for the demand.
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Cold water

' = Thus
Hot water @ rs

Figure 3.6: Split range control structure, used when T = T}y, .

3.5 Case Study

In this section we show a simulation example of the methodology presented
in the previous sections. The idea here is to have a better understanding of
the potential benefits of using energy storage in this problem. A comparison
of the various strategies will be presented.

3.5.1 Electricity prices

For simulation and optimization we used the electricity price data available
in the archives of the Norwegian Nord Pool spot market (NordPoolSpot),
2014). A sample of the electricity price for the first 10 days of February, 2012
in Trondheim, Norway is shown in Fig. Although Norway currently
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Figure 3.7: Simple representation of a split-range control where both the
power () and the modified level setpoint V" are used to control
the temperature when the setpoint is T = Th.,.

does not use real-time pricing for the individual end-user, the spot prices
provide a reasonable real-time pricing estimates. The resolution of the price
data is one hour.

3.5.2 Realistic hot water demand

For a realistic comparison, we emulate hot-water flow demand (gp,,) profiles
based on the empirical probability distributions published by
. The consumption profiles have a resolution of one minute and
correspond to a single family house with a mean load volume of 350 litres
per day. An example of a consumption profile is depicted in Fig. [3.9] where
twenty unique hot-water profiles were generated. For simplicity, we will
assume constant temperature setpoint T}, s and cold water temperature
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Tew. In addition, we neglect heat losses (Qoss = 0). Additional parameter
values for our case study are presented in Table

Table 3.1: Parameters description

Parameter Description Value Unit
Qmaz Maximum power 5 kW
Qmin Minimum power 0.0 kW
Tnaz Temperature upper bound 90 °C
Vinaz Volume upper bound 150 1
Vinin Volume lower bound 50 |

Tew Cold water temperature 5 °C
v Hot water temperature 50 °C

Cp Heat capacity of the water ~ 4.19  kJ/kg/K
Qloss Heat loss 0 kW

3.5.3 Demand models

In order to construct our demand model in terms of QQgemand We generate
thirty unique flow gy, profiles based on distributions given in [Jordan and
Vajen| (2001) with a duration of 24h each. Then, we compute the average
demand Qgemand for every time interval of the day. Here we chose to dis-
cretize the day in a hourly basis (At = 1 h), and therefore we computed 24
averages Qkydem(md. For comparison we also constructed a very simple de-
mand model where we assume constant demand throughout the day. Figure
3.8 shows examples for these models. Both models are used to estimate the
expected consumption in the MPC algorithm.

3.5.4 Ideal case (EMPC with known future disturbances)

To compute the ideal solution, that we use as a benchmark for comparing our
simplified method, we discretize the original full nonlinear optimal control
problem using orthogonal collocation in a simultaneous approach (Biegler,
1984])). In this approach, the differential equations are converted to algebraic
ones by orthogonal collocation which should be satisfied only at the solution
of the optimization problem (Biegler] [1984)). The key characteristic here is
that both states and manipulated variables profiles are approximated, with
the same accuracy, by orthogonal polynomials, resulting in a large scale
nonlinear programming problem (NLP). An interesting characteristic of this

60



3.5. Case Study

—— Const. demand model
—— Avg. demand model

—_
ot
Il

A

Demand model Qgemand, kKW
—_

_ LPUHJLL

e
o

0 : : : :
0 6 12 18 24

Time, h

Figure 3.8: Simple demand models used in the MPC algorithm.

method is that it can efficiently handle problems with constraints on states
and control inputs.

We formulate the problem in Matlab and solve it using the sparse NLP
solver SNOPT (Gill et al., 2002)). This solver employs a sparse SQP algo-
rithm with quasi-Newton approximations to the Hessian. Gradient infor-
mation is obtained using a symbolic differentiation approach. The interface
between Matlab and SNOPT is handled by the optimization environment
TOMLAB.

The optimization for every day is carried out independently, where we
consider the initial time ¢y = 4h in the morning and a horizon h = 24 hours.
The tank is always initially full (E(tg) = Emqee) and we impose the terminal
constraint E(t) = Epaq-
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3.5.5 Simplified MPC

As in the ideal solution, we include the terminal constraint E(¢ f) = Fnas
into our optimization problem. This suggests a shrinking horizon approach
where the optimization horizon h is periodically decreased according to

hy = hj_1 — At (3.23)

where At is the time between two consecutive optimizations. When hy = At
we have to reset it to the initial horizon hg. The initial horizon is chosen
as hg = 24 h. The electricity price changes every hour so we discretize
the optimization problem with sample time At = 1h. Note that At may
differ from the time between consecutive optimizations A¢. In that case,
we may need to vary the size of the first step of the discretized problem in
order to synchronize with price variations. The LP problem in the MPC
layer has at most n = 2 x 24 = 48 decision variables (24 energy levels + 24
slack variables), resulting in very low computational requirements, making
it suitable for implementation in low-cost embedded hardware.

3.5.6 Maximum storage policy (Base case)

For comparison we include simulations of a very simple policy where we try
to maintain maximum storage in the tank at all times. This is achieved
by fixing the tank temperature setpoint 75 and tank volume setpoint V; at
their maximum allowed value. This is the safest policy in terms of avoiding
constraint violation caused by unforeseen high demand, but it does not try
to compensate for price variations.

3.5.7 Simulation results

Figure shows a comparison between the costs achieved by the various
strategies when subjected to price and flows shown in Fig. The figure
includes the result for the simplified MPC approach with time between
consecutive optimization At = 30min. The optimized profiles are able to
produce considerable savings when compared to the base case.

The behaviour of the different methods can be analysed by looking at
the tank volume and temperature in Fig. We chose to show only the
first 3 days to facilitate the visualization. Notice the temperature setpoint
variation for the simple rule depending on the time of the day. The volume
is kept at its maximum unless we needed to let it drop in order to maintain
T = Thin. The base case attempts to maintain maximum temperature and

62



3.5. Case Study

volume at all times. The simplified MPC and the ideal solution show similar
temperature trends. However, they differ in terms of volume.

The information of temperature and volume can be summarized by the
scaled energy levels E given by the different approaches, as shown in Fig.
Because of the perfect knowledge of the demand the ideal solution is
able to take maximum advantage of price variations by letting the energy
levels drop close to minimum. This is in contrast with the simplified MPC
which enforces an additional buffer to ensure feasibility.
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Figure 3.9: Electricity price and hot water consumption.
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Figure 3.10: Electricity price and hot water consumption. Zoom in the
first three days.

3.5.8 Effect of increasing optimization frequency

A very interesting observation is that the economic performance of the MPC
approach can be noticeably improved by decreasing the sample time At.
Figure shows the results obtained with At =60, 30, 10 and 2 minutes,
where we notice that the gap with respect to the ideal solution becomes small
for short sample times. Even though the MPC controller has very limited
knowledge of the actual demand profile, short sample times will result in
faster feedback from the disturbance to the optimization algorithm, allowing
it to improve the solution. It is worth pointing out, however, that the loss
of optimality can never be eliminated due to the uncertainty in the demand.
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Figure 3.11: Accumlated cost for the different strategies.

3.5.9 Effect of the demand model

Figure shows a comparison of the costs given by our approach using
two different models to estimate future demand. The green solid line shows
the cost when a constant flow model is used and the green dashed line is
the cost for the hourly-average demand model (as shown in Fig. . In
this case the benefit of having a more detailed model is around 2.3% after
20 days.
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Figure 3.12: Accumlated cost for the different strategies. First three
days.

3.6 Discussion

3.6.1 Remarks

In order to make our approach applicable in other problems it is necessary
to distil the key elements and ideas which enable us to simplify our problem.

1. The first element is the introduction of the concept of energy storage
F stock in the optimization problem. This concept is central to our
approach, allowing the formulation of a linear program.

2. The original optimization problem has two decision variables: the
heat input ) and the water refilling ¢;,. However, we are able to
formulate the problem using F as the decision variable. This change
of variables has important simplifying consequences. First, because of
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Figure 3.13: Tank volume and temperature. Red lines: ideal case. Blue
lines: maximum storage policy. Green lines: our simplified

MPC (At = 30 min).

our choice of reference temperature (Tp = Tp,,) used in the definition
E = pcp,V(T —Tey), the water refilling ¢;, has no effect on the current
stock E and can be left out of the problem formulation, thus, reducing
the number of decision variables. Second, eliminating @ as decision
variable implies that we do not need to solve the problem at very high
sampling frequency nor we need to discretize the problem very finely.
This is because the energy storage F varies in a much slower time scale
compared to the heat input Q. Another consequence is that detailed

67



Chapter 3. Hierarchical control for dynamic optimization

1

<
o0

e
>

e
S

Scaled stored energy

0.2 1

0 0.5 1 1.5 2 2.5
Time, Days

L Y

Figure 3.14: Scaled energy level E currently stored in the tank for the dif-
ferent strategies. Red line: ideal case. Blue line: maximum
storage policy. Green line: our simplified MPC (At = 30
min).

information about the demand in the fast time scale is not needed.

Nonetheless, such a change of variables implies that a regulatory con-
trol layer is in place to control temperature and volume to their opti-
mal setpoints. That is, the task of computing @ and ¢;, (and making
sure constraints in 7" and V' are satisfied)in the fast time scale is del-
egated to a feedback control layer underneath.

3. In the formulation of the optimization problem we neglect heat losses.
However, when the optimal energy storage Fs is unconstrained, that is
FErnin < Es < Epgz, we have the freedom to choose V' and T because
of the non-uniqueness of E = pc,V (T —T,,). In this is case, we want
the temperature T as low as possible to minimize heat losses. Thus,
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Figure 3.15: Accumlated cost achieved by our simplified MPC strategy
using different sample times At.

in our approach we do not need to model heat losses or include it
in the optimization problem but we are still able to achieve optimal
solutions.

4. Our problem shows a periodic behaviour where the eletricity price tend
to be lowest during night and the consumption the highest in early
morning. This suggests that it we should add a constraint to force us
to always have full tank (E = E,,4,) late in the night. This constraints
decouples the optimization problem of two consecutive days, thus,
reducing the size of the problem.

3.6.2 Comments on the problem formulation

The problem we are discussing in this paper is related to the optimization
and control of inventories in production systems with unknown (stochastic)
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Figure 3.16: Accumlated cost achieved by our simplified MPC strategy
using different sample times At.

demand where we usually observe:

e stochastic demands and supply;

e variable prices of the product and raw-material (the energy price in
our problem);

e economic penalty for not attending the demand;

e deteriorating inventory with state-dependent rate of deterioration (when
Q1oss # 0 in our problem)

Typically, due to the stochastic feature of this problem, the optimal policies
can be found by means of the dynamic programming principle (Bryson and
, where we seek for feedback polices that minimize the expected
costs. Examples of research in this area are (Boukas et al., [1999; Baten and|
Kamil, 2011} |Gallego and Hul, |2004)).
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Since the demand is stochastic, an alternative formulation is to use
chance constraints (Li et al., [2008]), where the goal is to minimize the cost
J subject to input constraints u € U and subject to state constraints which
are given as chance constraints, i.e.

PlzeX)>1-a (3.24)

where a € [0,1]. This constraint requires that the condition z € X is
satisfied with probability 1 — a.

An alternative problem formulation is the risk-averse approach, where
the goal is to minimize the risk of an undesirable outcome. For instance,
in oil production optimization problems they seek to minimize the risk of
negative profit. In this framework, a finite number of disturbance scenarios
is defined and the optimal profit measure v; for every case is computed.
Then, based on the stochastic distribution of ¢ an appropriate risk measure
R(¢) is computed. The decision is then to choose those strategies that
minimize the risk or that maintain the risk above an acceptable threshold.
A detailed discussion on the risk measures can be found in [Capolei et al.
(2015).

3.7 Conclusion

In this paper we discussed the optimal operation of the water heater system.
We proposed an implementation strategy to integrate dynamic optimization
and control objectives using a two-layers scheme. The main benefit of our
approach is that very good economic performance can be achieved at at
very low computational costs and requiring minimum modelling efforts. We
expect that the suggested framework can be used as a starting point to solve
similar problems involving energy storage systems. Moreover, we hope that
the development of these low-cost solutions will allow the widespread use
of energy storage systems, which in term helps the integration of renewable
energy sources into the grid.
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Chapter 4

Dynamic online optimization
of a house heating system in
a fluctuating energy price
scenario

We consider dynamic optimization of the energy consumption in
a building with energy storage capabilities. The goal is to find
optimal policies which minimize the cost of heating and respect
operational constraints. A main complication in this problem
is the time-varying nature of the main disturbances, which are
the energy price and outdoor temperature. To find the opti-
mal operable policies, we solve a moving horizon optimal con-
trol problem assuming known disturbances. Next, we proposed
simple implementation based on feedback control, which gives
near-optimal operation for a range of disturbances. The meth-
ods were successfully tested using simulation, which show that
there is a great economical gain in using dynamic optimization
for the case of variable energy price.

Published in the IFAC Proceedings series 2013. }63-468

4.1 Introduction

Due to increasing energy consumption and prices and greater concerns about
greenhouse gases emissions, more efficient electric power production and us-
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age is sought. Recently, great attention has been given to renewable gener-
ation sources like windturbine and photovoltaic parks. Although efficiency-
wise attractive, these alternative energy sources suffer a major drawback due
to their sharply varying energy production caused by wide-ranging weather
conditions. This is an important limitation since the energy production
should cover the demand at any given time.

One possible approach to overcome this, is demand side load manage-
ment where the large fluctuations in the load are tackled by peak shaving
and by shifting load to more beneficial periods (Molderink et al., [2009).
Field tests in the USA have demonstrated that optimization of domestic en-
ergy consumption with variables prices can significantly reduce load peaks
(Hammerstrom, 2007). This can be achieved by manipulating the energy
price according to demand information and weather forecasts. The dynamic
energy pricing for demand load management is in itself a non-trivial prob-
lem, and it is currently an active research area. The interested reader is
invited to check the references |Mardavij Roozbehani and Mitter| (2010]) and
Goudarzi et al.| (2011)) for more information. This problem is outside the
scope of this work.

In such a scenario, the adaptation of the energy consumption by the final
consumer is essential to the success of the approach. Thus, in this article
we focus on the local building heating system optimization where the goal
is the minimization of energy costs.

The case studied here consists of a single room comprised of a floor
heating device, a radiator and a ventilation system with adjustable flow.
We consider bounds on the floor temperature, the room temperature (air)
and the C'O4 levels. The floor heat capacity is assumed to be large enough
so that we can store a considerable amount of energy in it, hence, giving us
an extra degree of freedom for optimization. Other hardware configurations
could also have been employed. For example, one could use a insulated tank
filled with water.

The main complicating factor for this problem is the time-varying nature
of the disturbances in the outdoor temperature and energy price. We assume
that predictions of the temperature and price variation are available, but
they are not necessarily correct. Thus, a dynamic real time optimization
(DRTO) scheme is proposed to compensate this variations while minimizing
the energy cost. In this scheme, a dynamic optimization problem is solved
at each sample time with new states and disturbance measurements.

A drawback of the DRTO is the fact that the system operates in open-
loop in between two consecutive optimizations. This may yield sub-optimal
or even infeasible solutions in case of large disturbances. To deal with this

73



Chapter 4. Dynamic optimization of a heating system

problem, we propose simple solutions solely based on feedback and offline
analysis, where near-optimal control inputs are generated at low compu-
tational and maintenance costs. This extends the self-optimizing control
idea (Skogestad, [2000) to dynamic optimization problems. We show that
near-optimal solutions can be obtained by tracking optimally invariant tra-
jectories, which we defined here as being the function of the measurements
whose optimal profile does not change with disturbances.

The paper is organized as follows: Section 2 details the derivation of
the dynamic. Section 3 shows the formulation of the dynamic optimization
problem and describes the solution method used. In Section 4, the im-
plementation of the optimal control solution is discussed and various com-
parative results presented. Section 5 gives the concluding remarks of the
article.

4.2 Modeling

In this section, we develop a dynamic model based on energy and mass
balances. The model describes a single 25m? room comprised of a floor
heating device, a radiator and a ventilation system with adjustable flow.
It is assumed that all the heat lost by the floor is transferred to the air in
the room whereas the heat in the air can be lost both through the walls
and through the ventilation. The air entering is assumed to be at outdoor
temperature and behaves as an ideal gas. The C'Os accumulation due to
breathing is modelled as a constant feed and the consumption of Os is
neglected. To help visualizing the energy and mass flows in the system it
is useful to use system topology graph as shown in Fig. All state,
manipulated and disturbance variables are described in Table Other
constant parameters are summarized in Table
The energy balance for the floor is simply

dE;

Q=g 4.1
o =@, (4.1)

where the energy transfer to the room (air) g¢, is given by
5.r = UAp,(Ty = T5). (4.2)
Since the floor mass is constant we get

aTy _ Qp Uy,
dt  mygepyp  mygcpy

(Ty —T)) (4.3)
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Figure 4.1: The system topology

Table 4.1: Variables description

State variables Description Unit
Ty Floor temperature K
T Room temperature K
my Mass of air kg
w C'O9 mass fraction -
Manipulated variables Description Unit
Qy Floor heat input kW
Q- Room heat input kW
Min Air inflow kg /s
Disturbance variables Description Unit
T Outdoor temperature K
P Energy price $/kW

The energy balance for the room is

dE,
dt

=Qr+ qfr + 9o + Quall — Gryo (4-4)
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The mass of air in the room is not constant, therefore we get

dci = Cpr ,«d;n + cprmy dj;r (4.5)
Using the mass balance we have
L (46)
where
Mout = k(Pr — Po) (4.7)
mTRTr

is the out ﬂovv and P, = is the pressure inside the room. Combining

Eq. E 4.6| and ( with ( and using
Jo,r = mincp,rTo
qr.o = moutcp,rTr
Quall = UAT,O(TO - T?’)

we obtain
dT,
dat  mycp, mr
UA UA
+ LTy~ 1) + ——"(T, - T3)

Finally, the component mass balance of C'O; is given by

d(wm,.)
dt

using the product rule for differentiation we have

= MynWin — MoutW + B (4.9)

d(wm,) dw dm,

and using the total mass balance in Eq.(4.6) yields
dw mm B
— = — (Wi, — — 4.11
G, (Win mw)F (4.11)

For sake of simplicity in the notation, we define the control inputs u! =
[Qf, Qr,1in], the state vector T = [Ty, T,,m,,w] and the disturbances
d' = [T,,p]. Hence, we can pack the dynamics into the vector function f
such that ‘fl—f = f(z,u,d). In the next section we describe how to use this
model to find optimal heating polices.
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4.3 Dynamic optimization

This section presents the dynamic optimization problem and the approach
used to solve it. It starts off by presenting the continuous time optimal
control problem we would like to solve and evolves in a stepwise manner
presenting modifications that helps the solution. Finally, we present the
full discretization method based on orthogonal collocation as well as the
formulation of the nonlinear program. The implementation is discussed in
the subsequent section.

4.3.1 Problem definition

The optimization objective is to minimize the energy costs over an infinite
horizon. A solution method is to use a moving horizon approach where we
solve an optimal control problem within the fixed interval [to,to + h] where
the horizon h is large enough to capture important trends in the system.
At each time point ¢y a different optimization problem is solved with
different initial condition x( that is unknown in advance. We formulate our
moving horizon problem in the Lagrangian form as:

to+h
min / p(t)(Qf + Q) dt (4.12)
to
subject to
T = f(.’I},U, d)a $(t0) = Zo (413)
T > Thin (4.14)
Tt < Thax (4.15)
W < Winaz (416)
Qf < Qmax (417)
Q’r‘ S Qmaz (4.18)
QR Qr=>0 (4.19)

The above control problem is singular, which may create troubles when
direct numerical methods are used if accurate control profiles are sought. It
can be shown that the Hessian matrix becomes very ill-conditioned as the
time step size decreases (Biegler, 2010). To avoid convergence problems, we
modify the cost function by adding a quadratic term:

to+h
min/t ' pOBQf +Qr)* + (Qf + Qr)]dt (4.20)

u
0
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where the weighting factor [ is adjusted such that the linear term domi-
nates the expression. In a constant price scenario the two formulations are
equivalent since it would be optimal to simply minimize the input usage.

4.3.2 Disturbance modelling

The main disturbances are the outdoor temperature T,(¢) and energy price
p(t). For simplicity, we assume that p(t) is periodic and follows

p(t) = po + Apsign[sin(wyt + ¢p)] (4.21)

where parameters the A, and ¢, are uncertain. More general dynamic
pricing polices can also be treated in this framework in a straightforward
manner. We assume the weather predictions are available numerically from
weather models such that we can interpolate the predictions using polyno-
mials. Therefore, we assume we have the predictions 7,(t) = P(t) where P
is a polynomial fitted using the weather model data. For this case study we
have used weather prediction data from |Institutt| (2012). It would not be
realistic to embed a weather forecast model in the optimization loop due to
its highly complex nature.

4.3.3 Softening constraints

During operation is possible that a disturbance brings the system outside
the feasible region. The formulation based on hard constrains —
would then fail to produce a reasonable solution since the initial state would
already be infeasible. This problem can be overcome by softening the out-
put constraints —. It would not make sense to soften the input
constrains as they represent real physical limitations.

Firstly, we rewrite the output constraints in a vector form such that we
have h,(x,u) > 0. Next, we introduce a vector of slack variables £ and
define the following constraints in the optimization problem:

ho(z,u) >0—¢ (4.22)
e>0 (4.23)

Finally, the cost function is modified by adding penalties for the violation
of the constraints

to+h

min [ (pOBQs + QP+ @+ Q) pehdt (@420
to

The linear penalty function was chosen because it is exact in the sense that

minimizing (4.24]) also minimizes the original cost function (4.20|) provided

that u is large enough (Nocedal and Wright), 2006)).
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4.3.4 Simultaneous approach

The dynamic optimization stated so far is infinite dimensioned and in order
to solve it numerically, a discretization method is needed. We have decided
to discretize the problem using orthogonal collocation methods. In this ap-
proach, both the states and manipulated variables profiles are approximated
by orthogonal polynomials and their coefficients become the decision vari-
ables. The polynomial approximation of the states is required to respect the
model equations only at the solution of the optimization problem. This for-
mulation yields a large-scale sparse nonlinear program (NLP) and is known
as the simultaneous approach (Biegler} 2010]).

For simplicity, we first transform the problem to the Mayer form by
expanding the state vector with J = p(t)[3(Qf + Q,)> + (Qf + Q)] + - €
such that we have z7 = [z, J] and # = f(z,u,d). The equivalent dynamic
optimization problem is

min J(to + h) (4.25)

subject to the constraints (4.17)-(4.19) and the model 2 = f(z,u,d).

Proceeding to the discretization, we first divide the time interval into N
time periods. Within each time period i the control inputs are represented
by Lagrange interpolation

K
= Li(T)uy (4.26)

,7:

[y

where

K
|| (4.27)

T3 — T
k=15 1k

The collocation equations for the differential equations can be written as
K
le (k)21 — hi f (Wire, 2ik, dig) = 0 (4.28)
7=0

where i € [1,...,N], ke [1,..., K], [j(1) = % and K is the degree of the
polynomials. The length of the time intervals h; are considered fixed and
are not decision variables for the optimization problem. In fact, for this case
we have chosen N = 1 which leads to a pseudospectral method. This class of
methods can give very accurate solutions for dynamic optimization problems
with smooth profiles (Biegler, 2010). Finally, the collocation points 7 are
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chosen as the roots of the Gauss-Legendre orthogonal polynomials. The
resulting NLP is as follows:

min J(to + h) (4.29)
K . ~
s.t. Z li(tk)zj — hf(ug, 2, di) =0 (4.30)
=0
ho(2k, ug, di) > —€g, € >0 (4.31)
kell,... K| (4.32)

The above problem is formulated in Matlab and solved using the sparse NLP
solver SNOPT. This solver employs a sparse SQP algorithm with quasi-
Newton approximations to the Hessian. Gradient information is obtained
using automatic differentiation approach. The interface between Matlab
and SNOPT is handled by the optimization environment TOMLAB.

4.4 Implementation approaches

We propose the implementation of a dynamic real time optimization where
the optimal control problem is solved in a moving horizon fashion. At
each time sample, ty, a dynamic optimization problem is solved with a new
initial state and disturbance measurements. We specified a horizon length
h = 24h so that all the important dynamics are captured. However, only
the first portion of the optimal profile corresponding to ¢ € [ty + t4] is
implemented, where t; < h is the time between successive optimizations. In
this paper we assume limited computation power so that we need to have
ts = 2 h. During this period the optimal inputs are extracted by using the
Lagrange interpolation shown in (4.26]).

In order to improve the accuracy of the solution and improve the con-
vergence, the NLP is solved with successively larger number of collocation
points, where the solution to the previous lower dimensioned problem is
used as an initial guess for the next one. Here, we solve the NLP first with
K = 25 and then using K = 45 collocation points. Another important
point is the warm start of the NLP solver. This is done in two steps: first,
the control inputs from previous solutions are shifted to to the next time
window by assuming the inputs remain constant in the final time period.
Then, the shifted inputs are used to simulate the model and the states are
extracted. The shifted inputs and the simulated states are the initial guess
to the next optimization problem. The overall algorithm is summarized as
follows:
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Algorithm 1 Simple moving horizon optimal control

Initialize: g, h, ts, initial guess x4, and ug
while t <ty do
Solve the NLP —
Implement solution for ¢ € [to, to + 4]
Measure or estimate x(tg + t5)
Set xg + x(to + ts)
Shift previous solution wg <= uep(t) with ¢ € [tg + ts, to + ts + ]
Use uy to simulate the model from x¢ and obtain z,
Set ¢+ to -+ ts
end while

4.4.1 Nominal optimal solution

Assuming perfect predictions, the solution for a whole day obtained with
Algorithm [1] is shown. Figure depicts the nominal price variations, the
outdoor temperature variation and the accumulated energy cost. This tem-
perature profile corresponds to the temperature measured in Trondheim,
Norway on 03 January 2012 provided by the Norwegian Meteorological In-
stitute which made the data freely available in Institutt (2012).

For the sake of comparison, we also implemented the most trivial solution
to the problem where the room temperature is kept at minimum allowed
value by varying the heat input @, using a PI controller. To get a fair
comparison, the optimal air inflow was used. The second heat input,Qy,
was left unused. Note that keeping the room temperature at minimum
allowed value is, in fact, the optimal policy if we would like to minimize the
energy consumption instead of the economical cost.

A comparison between the optimal profiles and the simple strategy is
given in Figures [4.3] and Some interesting conclusions can be drawn
from this results. First, notice that it is optimal to overheat the room and
floor above the minimum constraint when the price is low. In this case,
when the energy is cheap we will store enough heat in order to meet the
temperature constraints until the next low price valley. We also confirmed
(not shown here for brevity) that the air inflow is increased just enough to
meet the C'Oq level constraint. This is trivial since over-ventilation would
unnecessarily cool the room down and it would require extra energy to keep
the temperature constraint.

The optimal energy cost for one day was $12.45, whereas the simple tem-
perature controller gave a cost of $21.62, which is considerably higher than
the optimal. The energy usage is 12.5 kWh; and 10.9 kWh, respectively. It
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is clear that this difference in the cost is proportional to the ratio between
high and low energy price. Notice that, in a constant price scenario, the
optimal is to keep the temperatures at the minimum allowed value.

Price, $/kWh

1 ! . . —

0 5 10 15 20
Time, h

Figure 4.2: Disturbances - energy price and outdoor temperature.

4.4.2 Near-optimal solution by tracking optimally invariant
trajectories

In this section, we propose a simple control implementation that gives near-
optimal solutions without the need for re-optimization online. The main
idea is to find a function of the measurements whose trajectory is optimally
invariant to disturbances and then track the trajectory using standard feed-
back controllers. The structure is shown in Fig. where ¢, (t) is the
optimally invariant reference trajectory that we wish to track. In the se-
quel, we will derive a procedure to obtain such trajectories.

We define y € R™ as the vector of known variables (measurements),
which may include states, disturbances and control inputs. The disturbance
model of price and outdoor temperature is parametrized by a vector of
constants dy. However, the real (unknown) parameters are denoted by d,
and we may have deviations Ad = d—dy. The nominal optimal measurement
trajectory is referred to as yo(t,dp).
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15 L L L L
0 5 10 15 20

Time, h

Figure 4.3: Temperatures - lines: optimal solution; lines:
simple temperature controller with constant setpoint.

It can be shown that if the cost function J is twice continuously dif-
ferentiable in a neighbourhood of the nominal solution and the linear inde-
pendence constraint qualifications and the sufficient second-order conditions
hold, then the optimal sensitivity matrix F' is well defined:

_ 8y0pt(t7 d)
N od

and, a first order, local approximation of the optimal solution in the
neighbourhood can be obtained from

F(t) (4.33)

yopt(t’ d) ~~ yo(t, do) + F(t)Ad (434)

Here, we are after a function of measurements c(y(t),d) whose optimal
value is independent of d, i.e., we want cout(y(t),d) = co(y(t),do) for any d
sufficiently small. A simple choice is a linear combination of the measure-
ments:

c(t) = H(t)y(t) (4.35)

where H(t) is a n, x n, matrix, and c(t) is a n, x 1 vector. This way
we can write

Copt (t, d) = H(t)[yo(t, do) + F(t)Ad] (4.36)
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Figure 4.4: Inputs and energy cost - lines: optimal solution;
lines: simple temperature controller with constant set-
point.

and we define the nominal combination of measurements:

co(t,do) = H(t)yo(t,do) (4.37)
By subtracting (4.37)) from (4.36)) we obtain:
Copt (t,d) — co(t,do) = H(t)F(t)Ad (4.38)

Therefore, the optimal combination cop(t, d) equals the nominal ¢y (¢, do)
for any d if we select H(t) such that H(t)F(t) = 0. This is always true if
H(t) lies in the left null space of F(t). Using this approach we obtain
a trajectory copt(t,d) that is optimally invariant due to disturbance. We
can transform the problem of implementing u(¢) in a 'open-loop’ manner
to a reference tracking problem with optimal setpoints ¢, (t,d) = cop(t, d)
(see Fig. 4.5)). By tracking ¢, a simple controller automatically generates
inputs u that are optimal for any disturbance d sufficiently small and thus,
the online optimization is avoided.

The whole procedure has offline and online steps which are summarized
as follows:

Offline:
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Solve the dynamic optimization problem with dy;

Select appropriate measurements y;

Compute the optimal sensitivities F'(¢) and the combination H (¢);

Compute the reference trajectories ¢, (t) = H(t)yo(t).
Online:
e Track the reference ¢, by a feedback controller.

Remark: It is only possible to choose H in the left null space of F' if the
number of independent measurements respect the condition n, > n, + nq
where ng and n, are the number of disturbances and inputs, respectively.
See |Alstad and Skogestad, (2007)) for proof.

Here, we assume the air inflow ¢;,, will remain at nominal trajectory such
that two manipulated variables are available. Thus, since we are considering
two disturbances we will need at least n, = 2 + 2 = 4 measurements and
we seek two trajectories ¢1(t) and ca(t) to track. Defining the measurement
vector y = [T, T, my,p]T we compute the optimal sensitivities F(t) for
the whole horizon and obtain H(t) and the reference trajectory c,(t). As
controllers, we use two decentralized P controllers. Note that the only way
to adapt to price changes is by measuring it explicitly as the model of the
physical process does not depend on price explicitly.

This idea was tested by considering a disturbance in the phase shift (¢)
of the energy price as well as a mismatch between prediction and actual out-
door temperatures. Figure |4.6| compares the predictions with the measured
disturbance values. We compare the proposed method with the moving
horizon strategy given in Algorithm [I] and with the true optimal solution
assuming perfect knowledge of the disturbances. Figure depict the in-
put trajectories for the three different cases. The economical comparison is
shown in bottom Fig. The proposed simple method works surprisingly
well for this case, given a relative loss of optimality of only 0.3175%. The rel-
ative loss given by the moving horizon strategy with imperfect disturbance
model was 24.4%, which is considerably higher.

One of the reasons for the success of the method is the fact that, in this
range of disturbances, the dynamics are close to linear and, therefore, the
linear approximation of the NLP ends up near the true solution. A drawback
of this approach is that it cannot explicitly handle constraints. Therefore,
for a realistic implementation the proposed method should be combined
with a periodic solution of the dynamic optimization where a new reference
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solution is obtained, and new invariant trajectories ¢(t) are computed. The
idea is to recompute the optimal sensitivities F'(¢) online after solving the
current NLP and then apply the approach shown in Fig in between two
successive optimizations. This requires, however, fast online calculations of
the sensitivities as those provided by the methods proposed by [H. Pirnay:
and Biegler. (2011). Similar idea has been published in \Wiirth et al.| (2009))
where the authors proposed to use sensitivity based neighbouring-extremal
updates combined with real-time optimization. In this way, the frequency
of optimizations can be greatly reduced.

o(t) e u(t)

Figure 4.5: Proposed implementation based on simple feedback

4.5 Conclusion

In this paper various solutions to the optimal heating of a room problem
have been proposed. We proposed a moving horizon dynamic optimiza-
tion method, which uses predictions to compute the optimal heating polices
and ensure feasibility. We showed that, in a scenario where the energy
price is time varying, the economical benefit of using a real time dynamic
optimization scheme is substantial. Finally, simple solutions based on feed-
back control and offline was derived and successfully tested. The simulation
exampled showed that very little loss of optimality could be obtained for
relatively small disturbances. The benefit of this method is the negligible
online computational cost and the simplicity of the implementation. The
ideas discussed here could also be applied to any other problem with energy
storage capabilities where the energy price changes, such as the dynamic
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optimization of supermarket refrigeration systems.

4.6 Model Parameters

Table 4.2: Parameters description

Parameter Description Value Unit
UAg, Heat transfer coefficient floor 0.1801 kJ/(s- K)
UA,, Heat transfer coefficient walls ~ 0.0216 kJ/(s- K)

my Mass of the floor 3000 kg
Cp,f Heat capacity of the floor 0.63 kg/kJ
Cpr Heat capacity of the air 1.005 kg/kJ

k Valve constant 100 kg/(bar - s)
Wip, COs fraction in flow 6.16 - 1074 -

B CO, generated by breathing  9.02- 1076 kg/s
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line: cost of a simple temperature tracking controller
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Part 11

Optimal operation of
dynamic systems at their
stability limit: application to
anti-slug control
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Chapter 5

An autonomous approach for
driving systems towards
their limit: an intelligent
adaptive anti-slug control
system for production
maximization

Anti-slug control in multiphase risers involves stabilizing an open-
loop unstable operating point. Existing anti-slug control systems
are not robust and tend to become unstable after some time,
because of inflow disturbances or plant dynamic changes, thus,
requiring constant supervision and retuning. A second problem
is the fact that the ideal setpoint is unknown and we could easily
choose a suboptimal or infeasible operating point. In this paper
we present a method to tackle these problems. Our complete
control solution is composed of an autonomous supervisor that
seeks to maximize production by manipulating a pressure set-
point and a robust adaptive controller that is able to quickly
identify and adapt to changes in the plant. The supervisor is
able to automatically detect instability problems in the control
loop and moves the system to a safer, stable operating point.
Our proposed solution has been tested in a experimental rig and
the results are very encouraging.
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Presented at the 2nd IFAC Workshop on Automatic Control in Offshore
Oil and Gas Production, 2015, Floriandpolis, Brazil.

5.1 Introduction

The severe-slugging flow regime which is common at offshore oilfields is
characterized by large oscillatory variations in pressure and flow rates. This
multi-phase flow regime in pipelines and risers is undesirable and an effec-
tive solution is needed to suppress it (Godhavn et al., 2005). One way to
prevent this behaviour is to reduce the opening of the top-side choke valve.
However, this conventional solution reduces the production rate from the oil
wells. The recommended solution to maintain a non-oscillatory flow regime
together with the maximum possible production rate is active control of the
topside choke valve (Havre et al. |2000). Measurements such as pressure,
flow rate or fluid density are used as the controlled variables and the topside
choke valve is the main manipulated variable.

From an economic point of view, we would like to have the lowest pos-
sible pressure (maximum valve opening) in the pipeline/riser system. This
translates into low pressures at the bottom hole of the wells which maxi-
mizes the fluid inflow from the reservoir. However, as the pressure setpoint
decreases the stabilization of the system becomes more difficult and, thus,
the choice of the ideal setpoint is hard task. In fact, the ideal pressure
setpoint is unknown and varies with the inflow conditions. Setting it too
high reduces the production. Setting it too low may be infeasible (uncon-
trollable), leading to slug flow. Consequently, constant monitoring of the
control system by the operators is needed.

Hence, we propose an autonomous supervisory system that safely drives
the process in the direction of minimum pressure for production maximiza-
tion. The main idea is to gradually decrease the pressure setpoint until just
before the control performance is no longer acceptable due to slugging. The
supervisor automatically assesses the performance and stability of the con-
trol loop and decides the direction in which we should change the pressure
setpoint in order to ensure stable operation. For example, if we detect slow
oscillations with growing amplitude in the output, the setpoint should be
increased since it is safer and easier to stabilize.

Nonetheless, the standard linear controllers are typically designed for a
given operating point and they may fail to give acceptable performance when
the setpoint changes considerably. Another problem are the disturbances in
the inflow, which greatly affect the dynamics of the plant.

For these reasons we implemented a robust adaptive anti-slug controller.
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For our application we chose the robust-adaptive output feedback control
design method proposed by [Lavretsky (2012). This method falls into the
model-reference adaptive control category (Lavretsky and Wisel 2013) and
fits well in our approach. This controller is able to quickly identify and
adapt to changes in the plant dynamics in order to recover the desired
performance.

Our complete control solution is composed of the autonomous supervi-
sor and the robust adaptive slug control. It turns out the combination of
these two elements results in a great synergy: the periodic setpoint changes
triggered by the supervisor gives enough excitement in the system for the
adaptation to work well; a well functioning adaptive controller allows the su-
pervisor to push the system closer to the limit for a wide range of operating
conditions.

Its worth to point out that this approach is very general and can be
applied in a variety of applications with similar characteristics: dynamics
change when approaching the (possibly unknown) operating limit of the
system.

This paper is organized as follows. Section 2 describes the pipeline-riser
system. The general approach that we proposed is described in Section 3,
where Details about the supervisor and the adaptive controller are found.
The results are presented in Section 4. Finally, we summarize the main
conclusions and remarks in Section 5.

5.2 Systems description

Fig. shows a schematic presentation of the system. The inflow rates of
gas and liquid to the system, wy ;, and wy ;,,, are assumed to be independent
disturbances and the top-side choke valve opening (0 < Z < 100%) is the
manipulated variable. A fourth-order dynamic model for this system was
presented by |[Jahanshahi and Skogestad| (2011]). The state variables of this
model are as:

e mgy,: mass of gas in pipeline [kg]
e my,: mass of liquid in pipeline [kg]
e mg.: mass of gas in riser [kg]
e my,: mass of liquid in riser [kg]
The four state equations of the model are

Tgp = Wy in — Wy (5.1)
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Figure 5.1: Schematic representation of system

My, = Wy i — Wy (

5.2)
Mgr = Wy — QW (5.3)
5.4)

The flow rates of gas and liquid from the pipeline to the riser, w, and w;, are
determined by pressure drop across the riser-base where they are described
by virtual valve equations. The outlet mixture flow rate, w, is determined
by the opening percentage of the top-side choke valve, Z. The different flow
rates and the gas mass fraction, «, in the equations — are given by
additional model equations given by Jahanshahi and Skogestad (2011). In
this paper we used the linearized version of this model for the control design
methods. Alternatively, empirical low-order models could have been used
(Jahanshahi and Skogestad, 2013a).

iy = w; — (1 — a)w (

5.3 An autonomous approach for driving systems
towards their limit

Here we propose an autonomous control system to drive a process towards
its operational limit. Our solution is composed of two main elements:

e supervisory system that overlooks the control loop, assess stability
and performance and makes a decision on which direction (increase or
decrease) the setpoint should move. In our application, the strategy
is to gradually reduce the pressure setpoint until a stability problem
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is detected (e.g., slow oscillations start to build-up). At this point the
supervisor should move the system to a safer operating point (increase
setpoint).

e a robust adaptive controller that regulates the system to the setpoint
specified by the supervisory controller. The controller must be able
to identify changes in the plant dynamics and compensate for it to
give acceptable closed-loop performance in a wide range of operating
conditions.

We believe that the combination of frequent setpoint changes by the su-
pervisor with and adaptive control scheme can be very fruitful because the
periodic setpoint changes triggered by the supervisor gives enough excite-
ment in the system for the adaptation to work well; a well functioning
adaptive controller allows the supervisor to push the system closer to the
limit compared to linear controllers.

5.3.1 Supervisory control

A key component in an autonomous supervisor is the ability to quickly de-
tect problems in the control loop. In our application the main problem is
the appearance of slugging flow which is characterized by growing (slow)
oscillations in the pressures and flows with a certain frequency. Such os-
cillations are a signal that the controller is having problems to control the
process at the given operating conditions and should move to a safer set-
point. Algorithm [2] exemplifies a basic supervisory scheme for the anti-slug
control problem. Pj, is the pressure setpoint and AP, represents the size
of the steps. The pressure can be measured at any point of the system (e.g.
riser base or riser top). Note that the amplitude of the step when increasing
or decreasing the setpoint may be different.

The basic idea is to periodically check for slow oscillations in the system
and decrease the setpoint only if nothing is detected. On the other hand, we
should quickly increase the setpoint if the amplitude of the oscillations are
starting to grow. In this case, it could be desirable to reset the adaptation
parameters to the previous good values using, for instance, a look-up table.

For a practical application, however, many other safeguards must be
included. For example, if a major disturbance occurs, the controlled variable
may drift away from the setpoint very rapidly and the oscillation detection
system may fail to perceive in time. In order to quickly detect these major
problems a second, independent check function must be implemented. In our
case we periodically analyse the mean control error over a short time horizon.
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A warning flag is raised if the mean error is increasing too quickly or if it
crosses some large threshold. We must also include a routine to detect high
frequency oscillations generally caused by having too high control gains for
the given operating conditions. In this case we should decrease the setpoint
instead. Other functions of the supervisor could include looking after the
adaptive control (e.g. we may want to turn off the adaptation during the
starting up period), fault detection, alarms, etc.

Algorithm 2 A simplified supervisory system algorithm

loop
analyse measured data

if slow oscillations detected then

if amplitude is increasing then

Py, <~ Py, + APy 1

return to previous adaptation values
else

wait longer

end if

else
Py, <~ Py, — APqp 0
end if
end loop

Oscillation detection system

A key component in an autonomous supervisor is the ability to quickly
detect slow oscillations in the closed-loop system. This can be achieved by
periodically applying a frequency analysis tool in the measured data (e.g.
pressures) in a moving-horizon manner. Our chosen approach is to estimate
the power spectral density using a fast Fourier transform and then check
if the main frequency component of the signal lies in a neighbourhood of
the slug frequency. If this is the case, a warning flag is raised. The same
frequency analysis can be used to estimate the amplitude of the oscillation,
allowing us to tell whether the oscillations are increasing or fading out.

Our practical experience has shown that this approach is quite robust
and it only requires knowledge of the slug frequency for the specific appli-
cation. No other tuning parameters are necessary.
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5.3.2 Robust Adaptive Control Design

We implemented the robust adaptive output feedback design method pro-
posed by |Lavretsky (2012)). This method falls into the model-reference
adaptive control category (Lavretsky and Wise, 2013). The main compo-
nents of this controller are: an observer-like reference model which specifies
the desired closed-lop response; a linear baseline controller that gives the
desired performance and robustness at nominal conditions; the adaptation
law which augments the input in order to recover the desired performance
despite the disturbances and uncertainties (See Fig. . For completeness,
we will outline in the following the design method that was used. We follow
the notation of |Lavretsky and Wise| (2013).
We assume that system can be described in the following form

i = Az + BA(u+ ©7®(x)) + Bgpzep (5.5)
y=Cux, z=CLx

where A € R™" B € R™™ C € RP*™ and C, € R"™" are known
matrices. Note that the matrices may have been augmented to include the
integral feedback connections. The vector x € R™ represents the system
states, y € RP are the available measurements, u € R'™ are the inputs and
z € R™ are the variables we wish to regulate to given setpoints zs,. The
uncertainties are described by an unknown diagonal matrix A, an unknown
matrix of coefficients © and a known Lipschitz-continuous regressor ®(x).
We assume that the number of available measurements p is larger than the
number of control inputs m. In this case, the system can be ’squared-up’
using pseudo-control signals to yield minimum-phase plant dynamics.

Representation fits well with our application. One of the main
challenges is the very large process gain variation as we change the pressure
setpoint. This can be represented by A. Furthermore, the poles and zeros
of the linearized dynamics move considerably as the pressure reduces. This
effect can be modelled by the term ©7®(x) as long as we make a good
choice for the regressor ®(x).

The first step is to design a reference model with the desired closed-loop
dynamics. In this case we compute an optimal state feedback Krgr by
employing the LQR method such that

Aoy = A— BK R (5.6)

as the desired dynamic characteristics. It has been shown (Lavretsky, [2012])
that the transient dynamics of the adaptation scheme can be improved by
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using an observer-like model reference. Thus, our reference model becomes

jjref = Aref:Eref + Lv(y - y’r‘ef) + Bspzsp (57)
Zref = szref

where L, € R™*™ is the prediction error feedback gain that is obtained by
solving a certain algebraic Riccati equation (Lavretsky, 2012)). The ’square-
up’ step of the plant dynamics should be performed prior to the design of
L,. More details can be found in Appendix B and Appendix C.

Our chosen implementation approach is to augment a baseline linear
controller with the adaptor instead of using a fully adaptive control. The
reasoning comes from the fact that in most realistic applications a stabiliz-
ing baseline controller might already be in place. This baseline controller
would have been designed to give satisfactory performance under nominal
conditions around an operating point. If the performance degrades due to
changes of operating conditions, we will attempt to recover the desired per-
formance by augmenting the baseline controller with an adaptive element.
The total control input is the sum of the components

U = Up] + Ugd (5.8)

where uy; denotes the baseline control input and u,q is the adaptive aug-
mentation control signal.
The adaptation increment wu,q is given by

Ugg = —Kyup — OT®(xyep) (5.9)

where © is an estimation of © and K, serves as an estimate of (Lnxm—A"1).
Given the adaptation rates I'g and I'y,, the adaptive law with the Pro-
jector Modification (Pomet and Praly, [1992) can be written as

de .
— = Proj(e, —To®(2ref)ey Ry " WST) (5.10)
dK, N
o= Proj(Ky, —Twuye, Ry “°WST) (5.11)
where
€y = Yref — Y (5.12)

is the output tracking error and the matrices Ry, W and S are selected to
ensure that the tracking error e, becomes small in finite time.

The projector operator Proj ensures that the adaptive parameters al-
ways lie inside a user-defined region and can never diverge. The robustness

99



Chapter 5. Intelligent adaptive anti-slug control

of this adaptive law can be improved by including a dead-zone modification
that stops adaptation when the error e, is too small. Such modification en-
sures that the adaptation parameters will not drift because of measurement
noise (Lavretsky and Wise, 2013)).

Remark 1 [t is interesting to note that upon combining (5.9) and (5.8) we
get

u=(1—K,)upy — 0T d(xrcr) (5.13)

where we see that the adaptor is in essence modifying the baseline controller

gain by a factor (1 — K,,). The second term in the right-hand side of the
equation tries to match and cancel the effect of the nonlinear uncertainties

in (5.3).

Remark 2 The observer-based model reference (5.7) works as a robust
closed-loop Luenberger estimator when we select the baseline controller

Upy = fKLQRJCref (5.14)

This leads to an output feedback controller equivalent to the loop transfer
recovery using the Lavretsky method, which has been proven to have excellent
robustness properties (Lavretsky and Wise, 2013). In our application,
was our baseline controller of choice because of its robustness properties and
its good performance observed in our erperiments. Nonetheless, any other
linear controller (e.g PI control) could have been selected for the baseline
layer. In fact, our experiments have shown that the adaptive control scheme
presented above is able to recover the desired performance even if a poorly

tuned PI controller is used in the baseline (See Figures and[5.19).

Remark 3 Another advantage of using the augmentation approach for the
adaptive scheme (rather than fully adaptive control) is that the adaptation
could be turned off when necessary without loosing control of the system.
This can be particularly important in some situations such as start-up.

5.4 Results

5.4.1 Experimental setup

The experiments were performed on a laboratory setup for anti-slug con-
trol at the Chemical Engineering Department of NTNU. Fig. shows a
schematic presentation of the laboratory setup. The pipeline and the riser
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Figure 5.3: Simplified block diagram of the proposed adaptive control
scheme

are made from flexible pipes with 2 cm inner diameter. The length of the
pipeline is 4 m, and it is inclined with a 15° angle at the bottom of the riser.
The height of the riser is 3 m. A buffer tank is used to simulate the effect
of a long pipe with the same volume, such that the total resulting length of
pipe would be about 70 m.

The topside choke valve is used as the input for control. The separator
pressure after the topside choke valve is nominally constant at atmospheric
pressure. The nominal feed into the pipeline is assumed to be at flow rates
4 1/min of water and 4.5 1/min of air. With these boundary conditions, the
critical valve opening where the system switches from stable (non-slug) to
oscillatory (slug) flow is at Z* = 15% for the top-side valve. The bifurcation
diagrams are shown in Fig. [5.5)

The desired steady-state (dashed middle line) in slugging conditions
(Z > 15%) is unstable, but it can be stabilized by using control. The slope
of the steady-state line (in the middle) is the static gain of the system,
k = 0y/0u = 0P;,/0Z. As the valve opening increase this slope decreases,
and the gain finally approaches to zero. This makes control of the system
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Figure 5.4: Experimental setup

with large valve openings very difficult.

5.4.2 Supervisory control

The main parameter for the implementation of the supervisory controller
is the period of the slug oscillation. This variable depends mainly on the
dimensions of the pipeline and riser, although the operating conditions (e.g.
valve opening) do have some effect on it. For our purposes it is enough
to have an estimation of the order of magnitude of the frequency of the
oscillations. In our application we observed variations in the oscillation
period ranging from 40 to 70 seconds. Thus, any oscillation in this frequency
range will be reported by the oscillation detection algorithm. The core idea
of our supervisor is Algorithm [2| The loop was executed every 20 seconds
to avoid strong interactions with the stabilizing control layer. The length
of the horizon for analyses in the oscillation detector was set to 90 seconds
to ensure that a full slug cycle would be detected.

5.4.3 Adaptive Controller

We designed our controllers based on the linearized version of the model
described on Section 2 for a valve opening Z = 30%. In the control algorithm
we consider measurements of both the inlet pressure of the pipeline (Pjy,)
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Figure 5.5: Bifurcation diagrams for experimental setup

and the pressure in the riser top (P,+). The regulated output in experiments
is z = P;,. The second measurement is used to ensure robustness properties
of the LTR baseline and the adaptive controllers.

In our application we chose as our baseline controller because
of its excellent robustness properties and its good performance observed
in our experiments. Prior to conducting the LQG/LTR controller design,
we augmented the plant dynamics to include the integrated inlet pressure
tracking error e = Py, — FPj,.

For the adaptive algorithm we chose as basis function ® the linear rela-
tionship

q)(wref) = szref = pm (5.15)

where ]5m is an estimation of the inlet pressure. From our analysis this
simple basis function is enough to describe the variation in the plant dy-
namics (zeros and poles) due to changes in the operating point (indicated
by Pi). The gain uncertainty is described by the unknown scalar parame-
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ter A. Therefore, our adaptation scheme is composed of two scalar adaptive
parameters only. The Projector Operator ensures that these parameters are
bounded and remain inside the interval [-5, 5].

To improve the quality of our adaptation and to ensure the overall ro-
bustness of the system, we switched on the adaptation only after a setpoint
change is made and for a limited amount of time (e.g. for 1 min). This pre-
vents the system to wrongly adapt to the disturbances. When the supervi-
sory layer detects a problem in the system and the setpoint is increased, the
adaptation parameters are reset to the closest previously computed value
for the given setpoint using a lookup table.

For comparison we have also implemented a PI controller in the base-
line layer. Our experiments have shown that the adaptive control scheme
presented in the previous section is able to recover the desired performance
even if a poorly tuned PI controller is used in the baseline (See Figures

and [5.12)).

5.4.4 Experimental results: nominal flow conditions

In this experiment the feed into the pipeline is set to be at constant flow
rates, 4 1/min of water and 4.5 1/min of air. Figures depict the results
for a 48 minutes run of the complete system. The setpoint is indicated by
the red solid line in the top plot. Note that the setpoint is only decreased
when the supervisor is sure it is safe. The detection of growing oscillations
is indicated by the red flag. In Fig. these can be seen around the
times 15.5, 27, 34 and 42 minutes. The supervisor is able to safely keep
the system at stable conditions at fairly high valve openings. Figure
shows the adaptation parameter for the same experiment. The adaptation
is switched on after 100 seconds to avoid the start-up dynamics. Its inter-
esting to note that at first the parameter K, increases ( the gain (1 — K,,)
decreases) indicating that initially the controller is a bit too aggressive for
the given conditions. However, as the supervisor reduces the setpoint for
P, the parameter K, decreases (the gain (1 — K,) increases) considerably
to maintain the desired performance. Note that we reset the adaptation
parameters when a problem is detected (red flag).

5.4.5 Experimental results: large change of operating con-
ditions

In this set of experiments we tested the more realistic and challenging con-
ditions in which the gas to liquid ratio varies considerably throughout the
experiment. Initially the feed into the pipeline is set to constant flow rates
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Figure 5.6: Experiment 1 : supervisory control and a well tuned LTR
baseline controller: adaptation is ON

4 1/min of water and 4.5 1/min of air. Then, a sequence of steps in the air
flow is applied: first we increase the air flow by 50% at ¢ = 5 min followed
by a 30% decrease at ¢ = 20 min (see Fig. [5.8). Changes in the air flow
and pressures naturally perturb the water flow. Note that these changes
represent very serious disturbances that have big effect in the dynamics of
the plant.

Figure depicts the performance of the control system. The more
serious disturbance here is when the air flow decreases (t = 20 min). The
pressure rapidly diverges since it became very difficult to stabilize the system
at these conditions. Nonetheless, the supervisory layer quickly detected the
problem and immediately moved the system to a safer operating point. Af-
ter stabilizing the process, the robust adaptive controller was able to adapt
its parameters for the new dynamics (see Fig. , making it possible to
reduce the pressure setpoint even under such harsh conditions. It is worth to
point out that slugging flow did not occur at any moment and the good per-
formance of the controller remained consistent, proving the great resilience
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Figure 5.7: Experiment 1: adaptive parameters

of our proposed solution. Such a result would not have been possible to
achieve without an autonomous supervisor and an adaptive controller.

5.4.6 Experimental results: using a poor baseline controller
and nominal flow conditions

For comparison, it is interesting to investigate the effect of the baseline
controller in the overall performance of the control system. The incentive
for doing so is clear: in most realistic applications a stabilizing baseline
controller might already be in place and perhaps we do not want to change
it.

For this purpose we consider as the baseline a poorly tuned PI controller.
Figure [5.11| shows the results of the autonomous supervisor with the PI
controller without any adaptation. We observe an overall poor performance
and the inability to operate with large valve openings.

The experiment was repeated with the same PI controller but now the
adaptation was switched on. The same reference model used in experiments
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Figure 5.8: Experiment 2: major disturbance in the inlet flow rates

1 and 3 is employed here. Figure depicts the results. Surprisingly, the
closed-loop performance was greatly improved compared to Fig. [5.11] and
we are able to operate at a larger valve opening. For a complete comparison,
we ran the same experiment using our well tuned LTR controller and
the adaptation switched on. Figure shows the result of this controller
where we observe good tracking performance throughout the experiment.
Table summarizes the results of the three experiments where we
compare the tracking performance based on the integrated square error
(ISE) and the ’economic’ performance based on the mean valve opening and
pressure. Note that the improvement from experiment 3 to 4 is substantial,
where we observe an increase of 31% of the average valve opening. On
the other hand, the improvement from experiment 4 to 5 is only minor.
Nevertheless, our recommendation is to always use a good robust controller
in the baseline. This will ensure safer operation during start-up (when the
adaptation is likely to be turned off) or during reset of the control system.
It is important to point out that the adaptive controller we implemented

107



Chapter 5. Intelligent adaptive anti-slug control

inlet pressure (controlled variable)
30 T T T T T T T T T
[

5 |

P, [kpal]
N RS

<+ magor problem flag

20 T * ]
18 1 1 1 1 1 1 1 1 1

5 10 15 20 25 30 35 40 45
t [min]
actual valve position (manipulated variable)
100 T T T T

80 -
T 60 4
NE 40|

20 -

5 10 15 20 25 30 35 40 45
t [min]

Figure 5.9: Experiment 2: major disturbance in the inlet flow rates. LTR
baseline controller: adaptation is ON

relies on the measurement of both top and bottom riser pressure. It would
be interesting to investigate the performance of this adaptive law for the
case when only one of the measurements is available.
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Table 5.1: Comparison of different controllers with same experimantal

conditions
Experiment Controller ISE Mean Z[%] Mean P, [kpa]
3 Bad PI - adapt. OFF 6.2 38.45 23.58
4 Bad PI - adapt. ON  0.76 50.42 22.33
) LTR - adapt. ON 0.64 53.23 22.29
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Figure 5.11: Experiment 3: supervisor control and a poorly tuned PI
control as the baseline: adaptation is OFF
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5.5 Production increase analysis

The effect of the proposed control system in the oil production was tested
with an OLGA simulation case taken from Jahanshahi| (2013). OLGA is
a commercial multiphase simulator widely used in the oil industry. The
details are repeated here for completeness. The model describes a 4300m
pipeline connected to a 300m vertical riser. The diameters of the pipeline
and the riser are 0.12 m and 0.1 m respectively. The inlet is modelled as a
pressure source.

VALVE

OUTLET

SOURCE
i PIPELINE

Figure 5.14: Simple representation of the OLGA pipeline-riser model

5.5.1 Supervisory and Adaptive Control design

Jahanshahi (2013) showed that the critical valve opening for this system is
Z* = 5% and the slug period is about 15.6 min. Above the critical valve
opening the system is open-loop unstable. We chose as the initial operating
point Z* = 10% and repeated the control design procedure using a linearized
version of the model described on Section 5.2. The model parameters have
been adjusted for the OLGA case. The measured variables are the pressures
at the riser bottom and riser top and the manipulated variable is the choke
valve opening.

5.5.2 Performance evaluation and discussion

For comparison purposes we designed a robust controller using the H, loop
shaping design approach. Such controllers have been shown to give good
trade-off between robustness and performance for this type of problems
hanshahi et al., 2014). The controller was designed for Z* = 10 and tuned
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to have the highest possible gain margin which still results in acceptable
control input usage. The controllers were implemented in Matlab which
was connected to Olga through an OPC server.

Starting from the initial operating point we would like to determine
how large of a valve opening can we safely reach with the controllers. To
ease comparison the autonomous supervisor was adjusted to stop decreasing
the setpoint when it reached the minimum stable point. The minimum
stable value was determined by in previous simulation runs. Figure [5.15
depicts the result of the closed-loop simulations for the H,, controller and
the adaptive controller. The adaptation gains can be seen in [5.16, We
have also included the simulation results for the commonly used strategy of
operating the system in open-loop with a valve opening below the critical
point to avoid slugs.

Table summarize the results for the different cases. As expected,
both closed-loop solutions perform significantly better than the open-loop
approach. In addition, the achievable stable valve opening is considerably
higher with the adaptive controller compared to the Ho, controller. Nev-
ertheless the resulting inlet pressure is not significantly lower and so the
production rate increase is only minor in this case. This is not surprising
because the steady state relationship between valve opening and pressure
as seen in the bifurcation diagrams (see for instance Fig. flattens out
soon after the critical point. The main benefits of the proposed solution
when compared to standard control solutions are however indirect. An
autonomous adaptive control system that is able to stabilize the flow ro-
bustly in a wide range of conditions will increase the overall efficiency of the
-production systems by reducing unplanned plant shut-downs due to pres-
sure and liquid surges, by reducing gas flaring and by increasing the safety
and reliability of the system. Other important benefits include reduction of
the need for frequent retuning of the control loop performed by an expert
and reduction of the work load of the operators. An interesting discussion
of the economic gains and additional benefits of advanced anti-slug control
systems can be found in (Campos et al.| (2015).

5.6 Conclusion

In this paper we proposed an autonomous control system that seeks to max-
imize oil production in off-shore oilfields. Our complete control solution is
composed of an autonomous supervisor that manipulates the pressure set-
point and a robust adaptive controller that is able to quickly identify and
adapt to changes in the plant. The supervisor was also able to automati-
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Figure 5.15: Performance of the controllers applied to the Olga model.
Blue lines: H, loop shaping controller; orange lines: adap-
tive LTR controller

cally detect instability problems in the control loop and moved the system
to a safer operating point when necessary. The experimental results are
very encouraging. The method demonstrated great resilience and good per-
formance in a variety of operating conditions. Our solution will lessen the
demand for manual supervision, will reduce the need for frequent retuning
of the controller and will maximize the oil production.
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Figure 5.16: Adaptation gains for the Olga case
Table 5.2: Production analysis of different approaches
Controller Max Z (%) Min P(bar) Max prod. (barrel/day)
Adaptive LTR 49 66.9 10200
Hoo 14 67.5 10150
Open-loop Z = 4% 4 75.5 9505
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Chapter 6

A comparison between
Internal Model Control,
optimal PIDF and robust
controllers for unstable flow
in risers

Anti-slug control of multiphase risers involves stabilizing an open-
loop unstable operating point. PID control is the preferred
choice in the industry, but appropriate tuning is required for
robustness. In this paper, we define PIDF as a PID with a
low-pass filter on its derivative action where the low-pass filter
is crucial for the dynamics. We compared a new PIDF tuning
based on Internal Model Control (IMC), together with two other
tunings from the literature, with an optimal PIDF controller.
The optimal PIDF tuning was found by minimizing a perfor-
mance cost function while satisfying robustness requirements
(input usage and complementary sensitivity peak). Next, we
considered two types of robust H., controller (mixed-sensitivity
and loop-shaping). We compared the controllers based on their
pareto-optimality, and we tested the controllers experimentally.
We found that the new IMC-PIDF controllers is the closest to
the optimal PIDF controller, but the robustness can be further
improved by H., loop-shaping.
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Based on article presented in the 19th World Congress of the Interna-
tional Federation of Automatic Control, 2014, Cape Town, South Africa.
The main contributions of the author to this article include the optimal
control problem formulation and solution approach; IMC and robust control
design and experimental result analysis.

6.1 Introduction

The severe-slugging flow regime which is common at offshore oilfields is
characterized by large oscillatory variations in pressure and flow rates. This
multi-phase flow regime in pipelines and risers is undesirable and an effec-
tive solution is needed to suppress it (Godhavn et al., 2005). One way to
prevent this behaviour is to reduce the opening of the top-side choke valve.
However, this conventional solution reduces the production rate from the oil
wells. The recommended solution to maintain a non-oscillatory flow regime
together with the maximum possible production rate is active control of the
topside choke valve (Havre et al. |2000). Measurements such as pressure,
flow rate or fluid density are used as the controlled variables and the topside
choke valve is the main manipulated variable.

Existing anti-slug control systems are not robust and tend to become
unstable after some time, because of inflow disturbances or plant changes.
The main objective of our research is to find a robust solution for anti-slug
control systems. The nonlinearity of the system is problematic for stabiliza-
tion as the gain changes drastically between different operating conditions.
In addition, another difficulty for stabilization is the effective time delay .

One solution is to use nonlinear model-based controllers to counteract
the nonlinearity (e.g. Di Meglio et al., [2010). However, we have found that
these solutions are not robust against time delays or plant/model mismatch
(Jahanshahi and Skogestad,, 2013b)).

An alternative approach is to use PID controllers to stabilize the un-
stable flow. The PI and PID controllers are still the most widely used
controllers in the industry and even from the academic point of view they
are unbeatable in combined robustness and performance.

The purpose of this paper is to verify different tuning rules when ap-
plied to anti-slugging control and to give recommendations about the most
appropriate rules to use. For this, we compare PID controllers with optimal
controllers in simulations and experiments.

Jahanshahi and Skogestad| (2013a) showed that a linear model with two
unstable poles and one stable zero is sufficient for designing an anti-slug
controller. They identified such a model from a closed-loop step test and
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6.2. Systems description

proposed a PIDF tuning based on Internal Model Control (IMC) for this
system. This tuning rules were slightly modified by including the derivative
action filter.

We here define a four-parameter PIDF controller as a PID controller
with filtered derivative action (Astrom and Hagglund, 2006).

Kz' KdS
K =K —
PIDF(S) »+ -+ Trs 11

(6.1)

where K, is the proportional gain, K; is the integral action gain, K is the
derivative action gain and T is the filter time constant. We differentiate
this from a standard PID controller, because the low-pass filter is a crucial
part of the controller for our application. That is, the filter time constant
cannot be reduced without sacrificing performance.

One of the optimal controllers used for the comparison, is a PIDF where
optimal tuning are found by minimizing a performance cost function while
specifying robustness requirement (input usage and complementary sensi-
tivity peak). Then, we consider use of two H robust controllers. H
mixed-sensitivity design minimizes &(S) for performance, a(7") for robust-
ness and low sensitivity to noise, and 7 (K S) to penalize large inputs. In H
loop-shaping design, we specify an initial plant loop shape, then the loop-
shaping procedure increases robustness by maximizing the stability margin
(Skogestad and Postlethwaite, 2005b)). The PIDF controller found by |Ja-
hanshahi and Skogestad| (2013al) is used to make the initially shaped plant
for the loop-shaping design.

For sake of completeness, we have also included in our study the simple
PID tuning rules for unstable processes proposed by |Rao and Chidambaram
(2006)) and |Lee et al.| (2006).

This paper is organized as follows. Section 2 describes the pipeline-riser
system. The new PIDF tuning is presented in Section 3, and the optimal
PIDF tuning is introduced in Section 4. Mixed-sensitivity and loop-shaping
designs are presented in Section 5 and Section 6, respectively. The results
are presented in Section 7. Finally, we summarize the main conclusions and
remarks in Section 8.

6.2 Systems description

Fig. shows a schematic presentation of the system. The inflow rates of
gas and liquid to the system, wy ;, and wy ;y,, are assumed to be independent
disturbances and the top-side choke valve opening (0 < Z < 100%) is the
manipulated variable. A fourth-order dynamic model for this system was
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P, P,

P in

Weine=p &~
Wiin =p

Figure 6.1: Schematic presentation of system

presented by Jahanshahi and Skogestad| (2011]). The state variables of this
model are as:

e mg,: mass of gas in pipeline [kg]

e my,: mass of liquid in pipeline [kg]
e mg.: mass of gas in riser [kg]

e my,.: mass of liquid in riser [kg]

The four state equations of the model are

Mgp = Wy in — Wy (6.2)
Mip = Wi i — Wy (6.3)
Mgr = Wy — QW (6.4)
my =w; — (1 — a)w (6.5)

The flow rates of gas and liquid from the pipeline to the riser, w, and wy, are
determined by pressure drop across the riser-base where they are described
by virtual valve equations. The outlet mixture flow rate, w, is determined
by the opening percentage of the top-side choke valve, Z. The different flow
rates and the gas mass fraction, «, in the equations — are given by
additional model equations given by |Jahanshahi and Skogestad, (2011)).

However, Jahanshahi and Skogestad, (2013al) showed that a second-order
model with two unstable poles and one stable zero is enough for the control
design purposes, and such a model can be identified by a closed-loop step
test.
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6.3. PIDF tuning based on IMC Design

6.3 PIDF tuning based on IMC Design

6.3.1 IMC design for unstable systems

The Internal Model Control (IMC) design procedure is summarized by
Morari and Zafiriou| (1989). The block diagram of the IMC structure is
shown in Fig. Here, G(s) is the nominal model which in general has
some mismatch with the real plant G, (s). Q(s) is the inverse of the mini-
mum phase part of G(s) and f(s) is a low-pass filter for robustness of the
closed-loop system.

The IMC configuration in Fig. cannot be used directly for unsta-
ble systems; instead we use the conventional feedback structure with the
stabilizing controller

Q) /(3 66
1—G(s)Q(s)f(s) .
For internal stability, Qf and (1 — GQf) have to be stable. We use the

identified model with two unstable poles and one stable zero (Jahanshahi
and Skogestad, [2013al) as the plant model:

C(s) =

. 615—}-?)0 . k:,(S-l-QO)
Gls) = s2—ais+ag (s—m)(s—m) (67)
and we get /
O(s) = (1/K')(s ;ZTZ(S — m2) (6.8)

We design the filter f(s) as explained by Morari and Zafiriou (1989), which

gives the following third order filter
2
a8 + 18+ g
f(s) = 3
(As+1)

where A is an adjustable closed-loop time-constant. We choose oy = 1 to
get integral action and the coefficients a; and a9 are calculated by solving
the following system of linear equations:

2 (05 3
m* m 1 ()\71'1 + 1) )
= 6.10
<7r22 U 1> Z; <()\7TQ +1)>» (6.10)

Finally, from the feedback version of the IMC controller becomes (Ja-
hanshahi and Skogestad, [2013al)

, (6.9)

[o55)(aas? + ars + 1)

Cls) = s(s+ )

(6.11)
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Figure 6.2: Block diagram of Internal Model Control system

6.3.2 PIDF implementation of IMC controller

The IMC controller in (6.11)) is a second order transfer function which can
be written in form of a PID controller with a low-pass filter.

Ki KdS
K =K — 6.12
PIDF (5) pt Trst1 (6.12)

where
Tr=1/p (6.13)
T

Kp = K,L'Oél - Ksz (615)
K= Kiap — K, T (6.16)

For the controller work in practice, we require that K, < 0 and Ky < 0;
and we must choose A such that these two conditions are satisfied.

6.4 Optimal PIDF control

For comparison purpose, we will define an optimal PIDF controller. How-
ever, optimality is generally difficult to define as we need to balance various
factors such as output performance, robustness, input usage and noise sen-
sitivity. We follow |Grimholt and Skogestad (2012)) and define the output
performance as a weighted sum of the integrated square error (ISE) for dis-
turbance at the plant input and output. However, a controller with good
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6.4. Optimal PIDF control

performance (low J) may not be robust. Thus, |Grimholt and Skogestad
(2012) proposed to optimize J for a given robustness (M, value). This
gives a set of pareto-optimal controllers. However, we found that for our
application it was necessary to add a third dimension to constraint the input
usage (Mys). This results in a pareto optimal surface.

6.4.1 Evaluation of performance, robustness and input usage
Performance:

Output performance is related to the difference between the measurement
y(t) and the setpoint ys, and can be quantified in several different ways. In
this paper we chose to quantify the performance in terms of a single scalar,
namely the integrated squared error:

ISE= [ ((t) ~.(0)? d (6.17)

To balance the servo/regulatory trade-off we choose a weighted average
of ISE for a step input load disturbance d; and ISE for a step output load
disturbance d,:

ISEqg, (K) n ISEq; (K)
ISES, ISES,

J(K)=0.5 [ (6.18)
where K is a PIDF-controller. The weighting factors ISE;, and ISE;  are
for reference PIDF-controllers, which for the given process is ISE-optimal

for a step load change on input and output, respectively. More details about
this formulation can be found in |Grimholt and Skogestad| (2012).

Robustness:

Robustness can be quantified in several ways. Most commonly used is the
sensitivity peak (M), complementarity sensitivity peak (M;), gain margin
(GM), phase margin (PM), and allowable time delay error (%). In this

paper we have chosen to quantify robustness as

M = max(M;, M) (6.19)
where My = ||S||cc = max|S| and M; = ||T'||c = max|T| for all frequencies
and v v

1 GK

S=ivex T iyck (6:20)
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|| [|oo is the Hoo-norm, which gives the peak value in the frequency domain.
A small M tells that large relative perturbations in the process transfer
functions are permitted (Astrom and Hagglund, 2006). Since our system is
unstable, we will normally have M = M;. For stable processes, however, we
would generally have M = Mj.

Input usage:

A major concern in our application is to limit the input usage. This can

be achieved by limiting the magnitude peak My, = || KS||cc = max|K S|,
w

where

K

KS=17GKk

(6.21)

6.4.2 Optimization problem:

The pareto optimal PIDF controller (K) was found by solving the following
optimization problem

ISEqe(K) | ISEg4(K)
ISES, ISES,

min  J(K)=0.5
K

s.t. M = m; Mks = Mis (622)

for various combinations of m (the desired M value) and my (the specified
bound in the magnitude of the input signal).

Computing the optimal controller:

We propose solving the above optimization problem using gradient based
nonlinear programming (NLP) techniques due to their fast convergence
properties. However, the reliability of such methods depends on the quality
of the gradients used by the NLP solvers. For this purpose, we use forward
sensitivity calculation to obtain the exact gradients (Vg .J) of the objective
function with respect to the parameters of the controller. The forward sen-
sitivity method principle resides on first calculating FF = CL%, where x are
the closed-loop states of the system, and then relating this to J through
chain-rule. Following the derivation by Biegler| (2010), E' can be obtained

by solving the system

AE _0f po 017

@ oWt g BO=0 (6:23)
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where f = fli—f = A(K)x + B(K)u represents the state-space model of the
closed-loop system. The gradient is then computed by

Vikd = giE(tf) + ng{ (6.24)
Note that the required partial derivatives may be computed using auto-
matic differentiation or symbolic differentiation tools. The analytical cal-
culation of the constraint gradients is more involved and should be further
investigated. Here, the constraint gradients are approximated by central
differences. It is worth to point out that, due to the nonconvexity of the
optimization problem, we are bound to converge to a local minimum. One
possibility to overcome this problem is to initialize the NLP solver with
several different initial guesses and then choose the best overall solution.
Alternatively, one may use a global optimization approach.

6.5 H., mixed-sensitivity design

We consider an H, problem where we want to bound @ (5) for performance,
o (T') for robustness and low sensitivity to noise, and (K S) to penalize large
inputs. These requirements may be combined into a stacked H., problem
(Skogestad and Postlethwaitel 2005b]).

W, KS
min |[N(K)|., N2 | WiT (6.25)
K WpS

where W,,, Wr and Wp determine the desired shapes of K.S, T" and S,
respectively. Typically, W, 1'is chosen to be small at low frequencies to
achieve good disturbance attenuation (i.e., performance), and W, is chosen
to be small outside the control bandwidth, which helps to ensure good
stability margin (i.e., robustness). W, is often chosen as a constant. The
solution to this optimization problem gives a stabilizing controller K that
satisfies (Doyle et al. [1989; |Glover and Doylel 1988):

T(KS(jw)) < ve(Wyl ()
7(T(w)) < 10 (Wy (<) (6.26)
a(S(jw)) < ve(Wp (jw))
yo is the particular output for feedback control in the generalized plant in
Fig. The value of 7 in equation ([6.26)) should be as small as possible for

good controllability. However, it depends on the design specifications W,
WT and Wp.
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GENERALIZED PLANT P(s)

W, m————>
"yl G(s) |—1—> Wr ——>
CONTROLLER
K(s) <

Figure 6.3: Closed-loop system for mixed sensitivity control design

6.6 H. loop-shaping design

Y

Ay

>
<

=
S

K

A

Figure 6.4: Hoo robust stabilization problem

We consider the stabilization of the plant G which has a normalized left
coprime factorization

G=M"'N (6.27)

A perturbed plant model G, can then be written as
Gp=(M+Ay) Y(N+Ap) (6.28)
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where Aj; and Ay are stable unknown transfer functions which represent
the uncertainty in the nominal plant model G. The objective of robust
stabilization is to stabilize not only the nominal model G, but a family of
perturbed plants defined by

Gy ={(M+Ax) " (N+ApN): |[An Au]lloo <€} (6.29)

where € > 0 is then the stability margin (Skogestad and Postlethwaite,
2005b). To maximize this stability margin is the problem of robust stabi-
lization of normalized coprime factor plant description as introduced and
solved by |Glover and McFarlane| (1989).

For the perturbed feedback system of Fig. the stability property is
robust if and only if the nominal feedback system is stable and

<

o[ -]

(6.30)

o0

Notice that yx is the Hoo norm from ¢ (see Fig. to { Z } and (I —

GK)~! is the sensitivity function for this positive feedback arrangement. A
small v is corresponding to a large stability margin.

6.7 Results

All the results (simulation and experimental) in this paper are based on the

following model.
~ —0.0098(s + 0.25)

52 —0.045 4 0.025
This model was identified by |Jahanshahi and Skogestad| (2013a) from an

experimental closed-loop step test around an operating point with the valve
opening of Z = 30%.

G(s)

(6.31)

6.7.1 Pareto-Optimality Comparison

The optimization problem was solved for a range of desired My and
M, values using the linear model (Here we assumed M = M; for all
cases since we have an unstable system). This results of the optimizations
form a Pareto front surface, which can be seen in Fig. For simplicity,
we did not include Ty as a degree of freedom in the optimization; instead,
we fixed Ty = 4. This choice makes the filter counteract the effect of the
zero of the plant, which is close to optimal this case. The NLP was solved
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Figure 6.5: Pareto optimal PIDF surface and IMC PIDF controller (red
line).

using SNOPT (Gill et al) 2005). Some points have been validated using
brute force extensive search.

Figure [6.5] clearly depicts the trade-off between robustness, performance
and input usage. The red line in Fig. is the result from the IMC PIDF
for different values of closed-loop time constant A\. By decreasing \ we get a
faster controller with larger input usage Mp,, but M; remains approximately
constant. Note that the performance of the IMC PIDF is close to the pareto
optimal surface for a large range of My;.

Figure shows a cross-section of the PIDF Pareto surface with M}, =
50, where the other controllers are also shown. All the controllers are tuned
to give My, = 50. Compared to Chidambaram-PIDF and Lee-PIDF, IMC-
PIDF gives a better trade-off between robustness and performance. Hoo
loop-shaping controller gives a better combined performance and robust-
ness. However, it is a higher order controller. Surprisingly, H, mixed
sensitivity gave a inferior performance compared to PIDF. Perhaps, a bet-
ter performance could be achieved by a finer tuning of the weighting transfer
functions Wp, W and W,.
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Figure 6.6: Pareto front for My, = 50 for PIDF with Ty = 4. Point
(a) represents the Ho, mixed-sensitivity controller; point (b)
represents the Ho loop-shaping controller.

6.7.2 Experimental setup

The experiments were performed on a laboratory setup for anti-slug con-
trol at the Chemical Engineering Department of NTNU. Fig. [6.7] shows a
schematic presentation of the laboratory setup. The pipeline and the riser
are made from flexible pipes with 2 cm inner diameter. The length of the
pipeline is 4 m, and it is inclined with a 15° angle. The height of the riser
is 3 m. A buffer tank is used to simulate the effect of a long pipe with the
same volume, such that the total resulting length of pipe would be about
70 m.

The topside choke valve is used as the input for control. The separator
pressure after the topside choke valve is nominally constant at atmospheric
pressure. The feed into the pipeline is assumed to be at constant flow rates,
4 1/min of water and 4.5 1/min of air. With these boundary conditions, the
critical valve opening where the system switches from stable (non-slug) to
oscillatory (slug) flow is at Z* = 15% for the top-side valve. The bifurcation
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diagrams are shown in Fig.

The desired steady-state (dashed middle line) in slugging conditions
(Z > 15%) is unstable, but it can be stabilized by using control. The slope
of the steady-state line (in the middle) is the static gain of the system,
k = 0y/Ou = 0P, /0Z. As the valve opening increase this slope decreases,
and the gain finally approaches to zero. This makes control of the system
with large valve openings very difficult.

P2
Top-side  Air to atm.

Valve Seperator

Riser

safety valve

[ Pump _ _ ——— 7 Water Recycle

Figure 6.7: Experimental setup

6.7.3 Experimental results

The controlled output in experiments is the inlet pressure of the pipeline
(P;,) and we use the same set of descending pressure set-points in all ex-
periments. As mentioned in above controlling the system with large valve
openings (low pressure set-points) is difficult. We decrease the controller
set-point to see if the controller can stabilize the system with lower set-
point. The controllers are tuned (designed) for a valve opening of Z = 30%,
and controllers with good gain margin can stabilize the system with larger
valve openings (lower set-points). To have an impartial comparison for ro-
bustness of the controllers, we tune the controllers with the same values of
input usage (Mys = 50). One interesting relationship for the K.S peak of
the PIDF controller in can be written as follows.

M, = —(Kd/Tf + Kp) (6.32)
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Figure 6.8: Bifurcation diagrams for experimental setup

Optimal PIDF:

Fig. and Fig. [6.10] show experimental result of two optimal PIDF con-
trollers, optimal PIDF (1) and optimal PIDF (2). The controller tunings
are given in Table. The optimal PIDF (2) was optimized for a smaller
values of M; which resulted in a better gain margin and less oscillations is
observed in Fig. [6.10| (better robustness). However, the optimal PIDF (2)
yields higher values for ISE (Table. .

IMC PIDF :

We used the identified model in (6.31)) for an IMC design. We chose the filter
time constant A = 6.666 s to get My, = 50. The resulting IMC controller

becomes
_ —50(s* + 0.0867s + 0.0069)

Cls) = s(s+0.25)

(6.33)

Note that the integral time for this controller is 77 = Kp/Kk; = 8.58 s and
the derivative time is 7p = Ki/K, = 12.89 s. Since we have 77 < 47p,
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Figure 6.9: Experimental result of optimal PIDF (1) with K, = —3.089,
K;=—-162 Ky=—186.73, Ty = 4

the zeros are complex and the controller cannot be implemented in cascade
(series) form. The PIDF tuning resulted from this controller is given in
Table. and Fig. shows performance of the IMC-PIDF controller in
the experiment.

Chidambaram PIDF :

The Chidambaram tuning (Rao and Chidambaram, 2006) is for systems
with one zero, two unstable zeros and time delay. However, we do not
have time delay our system, and we expect the tuning rules with 6 = 0
are still valid. The problem with this controller is that it does not have a
low-pass filter on the derivative action; this results in a large K.S peak and
the controller becomes very aggressive. To solve this problem, we added the
same low-pass filter as the one used in the IMC-PIDF controller. With this
modification the Chidambaram tuning gives good results; the experimental
result of this controller is shown in Fig. We used 7. = 20.17 s to get
My, = 50; the resulting tuning is given in Table.

132



6.7. Results

inlet pressure (controlled variable)

|
|
|
< [
o
=, |
£ . \
o | e ey 7] B
| |
| | 4
| I I I I
0 5 10 15 20

t [min]
valve opening (manipulated variable)

80

z, 1%

0 5 10 15 20
t [min]

Figure 6.10: Experimental result of optimal PIDF (2) with K, = 0.15,
K;=-0.198, K; = —198.10, Ty = 4

Lee PIDF :

The Lee tuning (Lee et al., [2006]) is based on analytic IMC-PIDF for first-
order unstable systems with time delay. We had to approximate the model
in to a first-order model. We neglected the constant terms in the nu-
merator and the denominator which are small values. This is same as what
the model reduction toolbox of Matlab (modred routine with ‘Truncate’
option) does which preserves the high-frequency information. The reduced-
order model is given in , and we used A = 5.35 s to get My, = 50; the
experimental result is shown in Fig. [6.13

(6.34)
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Figure 6.11: Experimental result of IMC PIDF with K, = —11.84, K; =
~1.38, K4 = —152.65, Ty = 4

H~ loop-shaping:

We used the IMC-PIDF controller to obtain the initially shaped plant for the
Hoo loop-shaping design. The following fifth-order controller was resulted.

—188.49(s% + 0.02s + 0.005)(s2 + 0.087s + 0.0069)
s(s + 0.25)(s + 3.76)(s% + 0.082s + 0.0067)

O(s) = (6.35)

The experimental result of the controller in (6.35)) is shown in Fig. [6.14

Hoo mixed-sensitivity:

We design the Hoo mixed-sensitivity controller with the following design
specifications:

s/Ms+ wp
Wp(s) = é oA (6.36)
_ s/(10wp) + 1
Wrs) = “ois+1 (6.37)
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Figure 6.12: Experimental result of Chidam. PIDF with K, = 1.69, K; =
—0.15, Kq = —206.91, Ty = 4

W, = 0.0135, (6.38)

where My, = 1, wp = 0.14 rad/s and A = 0.01. We chose these design
specifications so that we achieve My, = 50 and good robustness properties.
We get the following fourth-order stabilizing controller.

—9.08x105(s + 100)(s2 + 0.0137s + 0.011)
(s + 1.8 x 105)(s + 112.5)(s + 0.231)(s + 0.0014)

O(s) = (6.39)

We achieved v = 1.21 with this controller; the experimental performance is
shown in Fig.[6.15

6.8 Conclusion

In this paper we developed and compared feedback controllers for unstable
multiphase flow in risers. The study included three sets of simple PIDF tun-
ing rules, optimal PIDF and two H ., controllers. The comparison was based
on Pareto optimality and experimental tests carried out in a prototype flow
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Figure 6.13: Experimental result of Lee PIDF with K, = —41.05, K; =
—3.42, Kg=—0.082, Ty = 4

Table 6.1: Comparison of different controllers in experiments

Controller ISE ISllc [T]loo [[KS]l.o GM DM
Optimal PIDF (1) 160.79  1.00 1.15 50 0.12  2.67
Optimal PIDF (2) 647.175  1.00 1.09 50 0.086 2.80

IMC PIDF 171.45 1.00 1.19 50 0.11  2.49

Chidambaram PIDF  864.75 1.13 1.09 50 0.084 2.81

Lee PIDF 726.88  1.20 1.62 50 0.17 1.70

H.o Loop Shaping  184.98 1.10  1.12 50 0.10 2.48
Hoo Mixed Sensitivity 330.25  1.00 1.18 50 0.15 3.00

system. We showed that for this case the IMC-PIDF controllers are very
close to the PIDF Pareto optimal surface for a large range of the tuning pa-
rameter. Better results can be achieved by the H., loop-shaping approach,
where we employ the IMC-PIDF controller to obtain the initially shaped

136



6.8. Conclusion

inlet pressure (controlled variable)

Pi N [kpa]

0 5 10 15 20
t [min]
valve opening (manipulated variable)

80

T
I
60 [Controller Off :
|
|

40

z, 1%

20

0 5 10 15 20
t [min]

Figure 6.14: Experimental result of loop-shaping Ho

plant. However, this method results in higher order controllers which may
not be desired by the practitioner. The H,, mixed-sensitivity design is more
involved as it requires tuning of many weights simultaneously. However, we
could not achieve better results than that of a PIDF controller for this case
and further investigation is needed.
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Chapter 7

Neighbouring-Extremal
Control for Steady-State
Optimization Using Noisy
Measurements

Optimal operation of chemical plants is usually accomplished by
finding the optimal steady state using the nominal set of distur-
bances and model parameters. The optimization is in most cases
model based and therefore subject to uncertainties. This may
lead to sub optimal control actions with significant economical
losses. One idea to tackle this problem is to use the available
measurements to adapt the inputs during operation in a feed-
back control scheme. This can be achieved by a neighbouring ex-
tremal controller that updates the inputs based on the deviation
of the measured outputs from their nominal value. In this pa-
per we generalize the neighbouring extremal control design that
has been presented in the literature to explicitly handle mea-
surement noise and implementation errors. The benefits of our
method are illustrated in a case study where we show that the
sensitivity of the controller performance to measurement noise
is considerably reduced.

Presented at the International Symposium on Advanced Control of Chemical
Processes, 2015, Whistler, British Columbia, Canada.

141



Chapter 7. Neighbouring-FExtremal Control

7.1 Introduction

We consider the context of steady state process optimization and robust im-
plementation of optimal policies. Our goal is to develop simple polices that
guarantee near-optimal operation under all conditions using feedback. Here,
‘under all conditions’ means for the defined disturbances, plant changes and
implementation errors.

One approach is the so called Neighbouring-Extremal (NE) control pro-
posed by |Gros et al.| (2009a)), where first-order approximations of the opti-
mal inputs are computed based on the deviations of the measured outputs
due to disturbances or parametric uncertainties. This method can be im-
plemented in a simple static output feedback control scheme, which results
in near-optimal operation at a negligible online computation costs. Figure
illustrates the implementation approach. The main idea with the NE
controller is to update the nominal control inputs based on the deviation
of the measurements to their nominal value. However, in practice the eco-
nomic performance of the NE controller can be severely impaired due to the
presence of measurement noise and implementation errors. In this paper we
generalize the NE design method to explicitly handle noise and implemen-
tation errors. The new design is based on a two-step approach. First, we
compute a static estimator which optimally estimates the disturbances using
noisy measurements. Then, based on the linearized necessary conditions of
optimality the optimal input updates are obtained. Finally, we show that
the method can be implemented as a simple static output feedback con-
troller. The strength of the new NE controller for process optimization is
illustrated on a continuous chemical reactor.

The paper is organized as follows. Section 2 presents the mathematical
preliminaries and the problem formulation; Section 3 shows how to extend
the NE approach to consider noisy measurements; Section 4 brings a sim-
ulation example to illustrate the method; In Section 5 you will find the
discussion and conclusions of the paper.

7.2 Problem formulation

7.2.1 Static optimization problem

We consider the following unconstrained static optimization problem

muin J(x,u,d) (7.1)
s.t. F(x,u,d) =0 (7.2)
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Measured

u,y
>

Au +

Yn,Un

Figure 7.1: Schematic of the neigbouring extremal control scheme. The
nominal inputs and outputs are represented by wu, and y,,
respectively.

where u € R™ are the degrees of freedom, z € R™ are the states and
d € R™ are the disturbances. Here the objective is J : R% T4 s R, and
F : RP=tnutna iy R7% denotes the model equations. The output equations

at steady-state read
y = R(z,u,d) (7.3)

with the mapping R : Rtetnutnd 3y R,

7.2.2 Optimality conditions

Let us define the Lagrangian function L(z,u,d, \) = J(z,u, d)+\T F(x,u, d)
where A are the multipliers. Under a suitable second-order condition and
constraint qualification such as LICQ, the necessary conditions of optimality

of problem ([7.1)-(7.2)) are

Ly=J,+\'F,=0 (7.4)
L,=J,+\'F,=0
Ly=FT=0

where the notation (-)x = %.
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We can combine ([7.4)-(7.5)) to have:

d
Ly=J,— J,F,'F, = cTi =0 (7.7)

where this total derivative is the (reduced) gradient of the cost function
with respect to u and will be denoted by the n,, dimensional vector g = ¢

=9
Here we assume that F, is invertible.

7.2.3 First-order variation of the NCO

We consider small variations in the disturbance Ad = d — d,,o,, around the
nominal value d,,,. The linearized optimality conditions can be written as
(Francois et al., 2014):

ALy ~ LyzAz + LyyAu+ FXAXN+ LygAd = 0 (7.8)
AL, ~ Lo Az + LyyAu + FTAN + LygAd =0 (7.9)
ALy~ FI'Az+ F'Au+ FFAd=0 (7.10)

where the notation A indicates the deviation of the variable with respect to
the nominal value.

We may use equations and to express the Az and A\ in terms
of Au and Ad

Az = —F 'F,Au— F,; ' FyAd (7.11)
A= —F "L, ,Ax — F; T LyyAu — Fy T LygAd (7.12)
Here the notation (-)~7 = (~)_1T. Combining (7.11)) and (7.12) with (7.8]
we get
ALy, = JuAu + JuqAd (7.13)
where
Juw = Luw — Ly F Y Fy — FTE T Ly + FTF T L FOUE, (7.14)
Jud = Lud — Luo By ' Fg = F Fy " Lya + F Fy T Lo Fy ' Fy o (7.15)
here Ju, = 4 is th duced Hessi trix and J,q = L2 i
where Jy, = g7 1s the n, x n, reduce essian matrix and Jyg = g7 1S

a Ny, X ng matrix.

The term AL, is the first order approximation of the reduced gradient
for the perturbed system, and we want to enforce it to zero. Therefore, the
variation Awu that is necessary to optimally offset the effect of Ad is

Atgpr = — ot JugAd (7.16)
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7.2. Problem formulation

If the variations Ad are known, it is straightforward to compute the
input corrections to keep the gradient equal to zero despite the disturbances.
However, Ad is generally unknown and the challenge is to infer it from the
noisy measurements.

7.2.4 Linear model

The linearized output equations is given by
Ay = R, Ax + R,Au+ RzAd (7.17)

Upon linearising the model equation (7.2) and solving for the state devia-
tions we get

Az = —F, 'F,Au— F,'F;Ad (7.18)
This results in
Ay = GAu + GgAd (7.19)
where
G =R, R,F'F, (7.20)
Gy=Ry— R, F;'F, (7.21)

7.2.5 Measurement noise and input disturbance

We assume that our measurements are corrupted with noise (ym, =y +1y)
and that the computed inputs (by the optimization/controller) w,, differ
from the actual plant inputs u due to input disturbances 7,. In deviation
variables we have

Aym = Ay + 1y (7.22)
Ay, = Au—ny (7.23)

where 7, and 7, are zero-mean Gaussian measurement noise. For simplicity,
we will use the following notation

0= [_’%] (7.24)
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d
Nu

. Process +

Figure 7.2: Plant setup with disturbances and noise

7.3 Dealing with measurement noise

7.3.1 Optimal static estimator open-loop

We would like to find an estimator in the form

Ad = [Hy H)] [ﬁiﬂ (7.25)
H

that optimally approximate the disturbance Ad in the case of noisy measure-
ments. By optimal it is meant here that we want to minimize the prediction
error

e=Ad—Ad (7.26)
Let us consider the augmented linear model
_|Ay| _ |G Ga
w—[Au]—[I}Au—I—[O}Ad (7.27)
aGw Gw

It can be shown that the prediction error is given by

e(H)=[-HGY (I-HGY) —H, - HG| (7.28)

Next, the magnitudes of the disturbances, measurement errors and inputs
are quantified by the scaling diagonal matrices Wy, Wy,, W, and W, re-
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spectively so that we can write

Au = W/ (7.29)
Ad = Wyd' (7.30)
Ny = Wnr]; (7.31)
e = Waull, (7.32)

where the elements u’, d’, 1;, and 1, are assumed to be normally distributed
with zero mean and unit standard deviation. The diagonal scaling matrices
contain the standard deviations of the elements in Au, Ad, n, and 7,. The
prediction error can be expressed by

M(H) U
!
e(H)=[-HG"W, (I-HGYYW, —HW, - HGWyl ;l, (7.33)
Yy
u

It can be shown that the expected value of the 2-norm of the prediction
error is

E([lell2) = | M(H)]I% (7.34)
See |Ghadrdan et al| (2013) for a similar proof. The matrix M can be
rewritten as

M=Y -HX (7.35)
where
Y =[0 Wy 0] (7.36)
X =[G*W, GYWy W, G“Wyl] (7.37)
and
W, = [Vgn] (7.38)

Minimizing the estimation error variance (||e||2) is equivalent to minimizing
|M(H)||%. The optimization problem can be written as

m}ji{n”Y—HXHF (7.39)
which we recognize as a least-squares problems with explicit solution
H=YXT (7.40)

Note that this is NOT the same as simply finding the least squares solution
for d from measurement equation ([7.19)), as has been propozed by |Gros et al.
(2009al).
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7.3.2 Neighbouring extremal control considering measure-
ment noise and input disturbances

The next step is to combine the optimal disturbance estimator (7.25) with
the optimal input update (7.16) to obtain the iterative control rule

Auk+1 = K, Aup 1 + I(yAmeC (7.41)
where

K, = —J.  JaH (7.42)
K, = —Ju_ulJude

Figure depicts a simplified block diagram of the proposed implementa-
tion approach. Note that the neighbouring extremal controller updates the
control input based on the deviation of the measurements to their nominal
value. In the next section we will illustrate the application of the method
for the optimization of a chemical reactor.

7.4 Simulation example

Consider the steady state optimization of an isothermal continuously stirred
reactor (CSTR) in which the reactions A+ B — C and 2B — D are taking
place, see Fig. The example is borrowed from Gros et al. (2009a). The
operational goal is to determine the feed rates g4 and gp of the components
A and B into the reactor to maximize the production of the component C
at steady state. This optimization problem can be formulated as

2 2
max J(u) = ccleat+ap)” 0.5(¢% + ¢%) (7.43)
v qA CAin
subject to
A A+
0= —kicacp + qVCAz’n - %CA
0= —kicacp — 2kach + qucBm _ w%
+
0= kicacp — w%
(7.44)

Where u = [ga, qB]T, cx describes the molar concentration of component

X, V is the volume of liquid in the reactor, k1 and ko are the rate constants
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qa [I/min] g [I/min]

Cain [mol/I] Cain [mol/I]

e

Ca C Cc Cp
L © tc ¢ ,

Figure 7.3: Schematic diagram of a CSTR

of the chemical reactions, c4;, and cp;, are the concentrations of the feed
streams. The nominal model parameters are given in table The main
disturbances are the rate constants ki and ky. Solving the optimization
problem under nominal conditions gives

ca 0.058
= |9 = |92 sl = | 0.05 (7.45)
gp] 077 cc 0.78

which are referred to as nominal optimal conditions.

7.4.1 Design of the new neighbouring extremal control

The task now is to design neighbouring extremal controllers to update the
nominal inputs to keep the process operating near optimal conditions despite
the uncertainties. The main disturbance d are the rate constants (d =
[k1, ko]T). Our measurement vector is defined as y = [ca,cp,cc]?. The
second order derivatives at the nominal point are

(7.46)

o [mar 1212 5o [-017 286
we = 1912 971 |0 T 1 0.06 229
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Table 7.1: Nominal model parameters and operating conditions

Parameter Value Unit
k1 0.65 1/(mol h)
ka 0.014 1/(mol h)
CAin 2 mol/1
CRBin 1.5 mol/l
v 500 1

The only information missing for the computation of the controller
is the matrix H = [H, Ha]. For this we need to compute the matrices G
and Gy of the linearized model . Using symbolic differentiation and
inserting the nominal optimal inputs we get

054 —0.36 —0.06 0.71
G=|-045 036 |, Gg=|-003 —0.73 (7.47)
034 —0.28 0.06 —0.71

Next, we assume the parameters k1 and ko may lie in the range +50% with
95% probability. This gives the scaling matrices W, = diag(0.1625,0.0035)
and W,, = diag(0.0017,0.0025). We also assume an expected measurement
noise of 10% standard deviation, resulting in W,, = diag(0.0003, 0.0003, 0.0039)
and Wy, = diag(0.0028,0.0038). Gathering all these pieces we are now able

to solve (7.40)) to obtain

—-11.69 —-11.95 0.29 0.84 0.24
H= [ 0.07 -0.71 —-0.25 —-0.27 0.21} (7.48)
which results in the following controller gains
—1.34 —-0.66 0.26 —-0.35 0.17
Ky = [—1.76 —-0.49 0.46} ’ Ku= [—0.57 0.32} (7.49)

7.4.2 Neighbouring extremal controller design ignoring noise

For comparison we will follow the neighbouring extremal approach of |Gros
et al. (2009a) where the estimation of the disturbance Ad comes from the
direct invention of the linearized model ((7.19)). This results in the following
gains

Gros __
Ky

~0.87 —042 086]  ,.Gros _ [0-015  0.08
~|-121 —0.07 1.21|° B

u 0.22 —0.06} (7.50)
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Table 7.2: Disturbance cases

Case Disturbance Optimal inputs
case 1 k1 = k1 nom + 20% ga = 0.57
ko = kg}nom +20% qgp = 0.78
case 2 k1 = k1 nom — 20% ga = 0.54
k‘g = kQ’nom — 20% qB = 0.75
case 3 k1 = k1 nom + 20% ga = 0.57
kQ = kQ,nom —20% qB = 0.79
case 4 k1 = k1 nom — 20% ga = 0.53

ko = kQ,nom +20% g = 0.74

7.4.3 Results

In this section we will compare the controllers for several disturbances re-
alizations and for different measurement noise levels. For completeness, we
also included the results for a trivial open-loop policy, in which the control
inputs are kept constant at their nominal values.

Table [.2l summarizes the different disturbance cases that were tested.
We compared the controllers using four levels of measurement noise: 0%,
5%, 10% and 20% standard deviation Gaussian noise. We ran every case
1000 times and computed the average performance. Figure shows the
results for cases 1 to 4. Both strategies are significantly better than the
open-loop policy in the noise-free case (top left plot in Fig. .

Not surprisingly, the neighbouring extremal controller , which was
designed neglecting the noise, results in better performance in the noise-free
experiment. Nonetheless, the economic benefits of decrease signifi-
cantly as the noise level increases. The proposed approach remain consis-
tently better than open-loop policy in all cases.

Figure|7.4]exemplifies the performance obtained for different noise levels.
In all cases we show c4 and cg measurements, the control inputs and the
objective function to be maximized. Measurement of c¢c was omitted from
the plot to ease the visualization. The red solid line is the NE controller
designed assuming perfect measurements; the solid line is the
proposed method; the dashed black line represent the open-loop solutions
using nominal inputs; the blue lines represent the optimal solution. The
objective function was normalized with respect to the optimal value.
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7.5 Discussion and Conclusion

It is worth pointing out that the NE control updates can be beneficial up to
some noise level, in which there would be no gain compared to the open-loop
strategy. This threshold, however, depends on the size of the disturbance
Ad, but it can be analytically computed as shown in |Gros et al. (2009a).
The intuition is that we need to be able to detect the effect of the process
disturbance in the noisy measurements y,,. For a fixed level of noise, the rel-
ative efficiency (with respect to the open-loop policy) of the NE approaches
improves with an increase in the magnitude of Ad.

Both NE control methods are based on linearization of the problem
around some operation point. For this reason we restricted our simula-
tions to a local neighbourhood of the nominal case. Due to the inherent
nonlinearity of real processes, little can be said about the performance NE
controllers for excessively large parameter variations. Nonetheless, in our
proposed method we are able to define the range of expected disturbances
and find the best option for the given range.

Our design approach is based on two steps: first we find the optimal
static estimator and then we combine it with the optimal sensitivities to
obtain the NE gains K, and K,. An interesting question that arises is
whether we can compute the optimal gains in one step, that is, can we
directly find gains K, and K, that minimizes the average loss? It is not
perfectly clear that the solution to this problem is equivalent to the solu-
tion obtained with the two step approach. More in depth analysis of these
questions will be presented in a future paper.
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Chapter 8

Null-space method for
optimal operation of
transient processes

We consider batch process optimization and robust implemen-
tation of optimal control policies. The dynamic optimization
of such processes is in most cases model based, and therefore
subject to uncertainties. This may lead to sub-optimal con-
trol trajectories with significant economical losses. In this paper
we extended the concept of self-optimizing control for the opti-
mal operation of transient processes. The main idea is to find
a function of the measurements whose trajectory is optimally
invariant to disturbances, and then track the trajectory using
standard feedback controllers. Doing so results in near-optimal
economic operation in spite of varying disturbances without the
need for re-optimization. We show that the invariant trajecto-
ries can be computed as linear combinations of the measurement
vector, where the combination matrix is easily obtained from op-
timal sensitivities. We illustrate the application of the proposed
method in a semi-batch reactor case study.

Chapter based on paper presented at DYCOPS-CAB 2016

8.1 Introduction

Optimal economic operation of chemical processes may be in general for-
mulated as a dynamic optimization problem. This includes problems that
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are transient in nature, where the dynamic behaviour must be considered,
such as batch operations, grade changes and start-up and shut-down of
continuous plants. The optimal solutions should not be implemented in an
open-loop manner in most cases because of uncertain and unknown distur-
bances, which may lead to large economic losses or even infeasibility.

Two paradigms exist for implementation of near optimal control: an
on-line approach, where the optimization problem is solved in real-time
at every sample time when new information is available. An example of
this approach is the economic model predictive control (EMPC)(Ellis et al.,
2014).

An example of the offline optimization paradigm is self-optimizing con-
trol, which combines an off-line analysis with an on-line implementation
using feedback control to track the optimal properties of the solution. For
processes whose economics are defined by the steady-state behaviour the
concept of self-optimizing control was introduced by [Skogestad| (2000)).

Self-optimizing control focuses on selecting a set of controlled variables
c that, when kept at constant setpoints, indirectly result in near-optimal eco-
nomic operation in spite of disturbances without the need for re-optimization.
Diverse systematic methods are available to find the right variables to con-
trol for steady-state problems. [Skogestad and Postlethwaite| (2005al) pro-
posed the Maximum Gain Rule to select individual measurements. |Alstad
and Skogestad| (2007)) presented the Null Space method to select optimal lin-
ear combinations of measurements to be controlled. The Null Space method
is very simple and yet gives zero economical loss if enough measurements
are available and measurement noise is negligible.

In this paper we extended the steady state Null Space method to opti-
mal control of batch processes. The main idea is to find a function of the
measurements ¢, (t) whose trajectory is optimally invariant to disturbances
and then track the trajectory using standard feedback controllers. By doing
so, the input trajectories are optimally updated in case disturbances occur.

In this paper, we show that the invariant trajectories can be computed as
linear combinations of the measurement vector. The optimal combination
matrix can be easily computed off-line using optimal sensitivity information,
which is easy to calculate. Our proposed control structure is shown in Fig.
where ¢, (t) is the optimally invariant reference trajectory that we track.
As illustrated in a fed-batch case study, the proposed method is very simple
and intuitive and yet is able to give near-optimal results.

There are alternative approaches for self-optimizing control of batch pro-
cesses currently available in the literature (see for instance (Grema et al.,
2015; |Jaschke et al., 2011; |Wuhua Hu|, 2012)). However, the method pre-
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l d
(b)) + u(t) System Y(t);

(@]
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c(t) H® y(t)
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Figure 8.1: Proposed implementation based on simple feedback

sented in this paper stands out for its simplicity and ease of implementation.
The paper is divided as follows: Section 2 outlines the proposed method;

Section 3 gives the results for the semi-batch reactor case study; Sections 4

and 5 show a discussion and the conclusion for the paper, respectively.

8.2 Null-scape method for transient processes

Consider the following dynamic optimization problem:

mgn J(x(ty),d) (8.1)
subject to:

&= f(x,u,d) (8.2)

y=g(z) (8.3)

p(z,u) <0

where t; is the final time, z € R"* are the state variables and u € R"v are
the control inputs. In addition, we define y € R™ as the vector of known
variables (measurements), which may include states, disturbances and con-
trol inputs. The optimization problem depends explicitly on the uncertain
parameters by d € R™. State and input constraints are summarized by
p(z,u). In this paper we make the assumption that the active constraint
set does not change with the disturbances and time.

Assume the nominal optimal input sequence ug(t) and nominal optimal
measurements yo(t) for a given disturbance dy is known a priori. The goal
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is to obtain all the neighbouring solutions for deviations Ad = d — dy in
the problem parameters without the need for re-optimization. It can be
shown that if the cost function J is twice continuously differentiable in a
neighbourhood of the nominal solution and the linear independence con-
straint qualifications and the sufficient second-order conditions hold, then
the optimal sensitivity matrix F' is well defined:

_ ayozzt (t, d)
od

and, a first order, local approximation of the optimal solution in terms of
outputs y in the neighbourhood can be obtained from

F(t) (8.5)

yopt(t’ d) ~ yO(ta dO) + F(t)Ad (86)

To find the invariant measurement combination, ¢(y(t),d) whose optimal
value is independent of Ad, i.e., we want con(y(t),d) = co(y(t),dy) for
any Ad sufficiently small. A simple choice is a linear combination of the
measurements:

c(t) = H(t)y(t) (8.7)

where H(t) is a n, x n, matrix, and c(t) is a n,, x 1 vector. This way
we can write

Copt(tv d) = H(t) [y()(tv dO) + F<t)Ad] (88)

and we define the nominal combination of measurements:

co(t, do) = H(t)yo(t, do) (8.9)
By subtracting from (8.8)) we obtain:
Copt (t,d) — co(t,do) = H(t)F(t)Ad (8.10)

To have optimality with the given control policy, we must require that
Copt(t) = co(t) or

Copt (£, d) — co(t, do) = 0 (8.11)
H () (Yopt (t) — yo(t)) = 0 (8.12)
] H)F(t)Ad =0 (8.13)

Since this must hold for any value of Ad, we must select H(t) such that for
any t we have H(t)F(t) = 0. This is always true if H(t) lies in the left null
space of F'(t). The main result is summarized in the following theorem.
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Theorem 1 (Nullspace method for dynamic systems) Consider a dis-
turbance vector Ad consisting of perturbations in the initial value of cer-
tain system parameters, and let F(t) denote the optimal sensitivity ma-
triz of the measured outputs y with respect to these disturbances, that is,
%(d) = F(t)Ad. Then for a small disturbance (within a range where
F(t) is independent of the magnitude of Ad) the controlled system, with the
control policy c(t) = co(t), behaves optimally if we select H(t) such that it

lies in the nullspace of FT(t), that is
H(t)F(t)=0, Vt (8.14)

A non-trivial optimal solution H(t) of rank n, can always be found if we
have sufficient number of independent measurements y(t). This requires that
Ny 2 Ny + Ng.

In this approach there is an indirect assumption of 'perfect control’ since
we assume that we can adjust u(t) such that c(t) is kept at its setpoint cy(t)
for all . This may seem limiting but this is often not the case. First, we
know that there does exists a feasible u(t), because this is how we obtain
co(t) and 8%‘;’” (d) = F(t)Ad. Second, there may be fundamental limita-
tions, such as time delay, which limits perfect control, but this will not be
important for the economics if the time scale required for optimal dynamic
operation is much longer than the achievable closed-loop time constant for

control.

Using this approach we obtain a trajectory cop(t, d) that is optimally in-
variant due to disturbance. We can transform the problem of implementing
u(t) in a 'open-loop’ manner to a reference tracking problem with optimal
setpoints ¢, (t,d) = copt(t, d) (see Fig. [8.1). By tracking ¢,, a simple con-
troller automatically generates inputs u that are optimal for any disturbance
d sufficiently small and thus, the online optimization is avoided.

The whole procedure has offline and online steps which are summarized

as follows:
Offline:

e Solve the dynamic optimization problem with dy;
e Select appropriate measurements y;
e Compute the optimal sensitivities F'(¢) and the combination H (¢);

e Compute the reference trajectories ¢, (t) = H(t)yo(t).

Online:
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e Track the reference ¢, by a feedback controller.

The first step of the offline analysis is often the most time-consuming step
of the procedure because a large nonlinear optimization problem needs to be
solved in order to obtain ug and yo(¢). In the second step, the measurements
should be selected to ensure good controllability, which is achieved by having
high input-output gains.

An important assumption in our approach is the time-scale separation
between the (slower) dynamic evolution of the overall trajectory and the
(faster) optimal input update given by the feedback control. That is, the
local convergence to the setpoint (c(t) = cs(t)) is much faster than the
evolution of ¢4(t) and may be considered instantaneous from the slower
scale point of view.

Remark 4 The proposed approach is closely related to the neighbouring-
extremal (NE) control introduced in the seventies (see Bryson and HO, (1975)
for details). In NE control, and optimum state feedback law is applied to
compute fast corrections of the control trajectory for small deviations. How-
ever, the controller is obtained from a boundary value problem whose solu-
tion is not straightforward. Furthermore, differently from our approach, in
NE control all the states are required to be measured or estimated.

Remark 5 The optimal sensitivity has been used recently to compute on-
line fast optimal control updates in the context of nonlinear model predictive
control (as for example in|Zavala and Biegler (2009)) and real time dynamic
optimization as in| Waurth et al.| (2009). However, in both cases the proposed
methods required measurement or estimation of the disturbance/model un-
certainty Ad. Here we only require enough independent measurements y
and the solution is given by an simple output feedback controller.

8.3 Simulation example: Fed-batch reactor

Consider the fed batch reactor optimization problem studied in [Srinivasan
et al. (2003), |Jaschke et al. (2011)) and |Gros et al. (2009b)) where we have

two chemical reactions:
A+B—Cand B— D (8.15)

where C' is the product and D is the undesired side product. A is already
presented in the reactor while B is fed during the batch. The goal is to
maximize the difference between the amount of C' and D at the end of the
batch.The dynamics are given by:
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¢a = —kicacp — cau/V (8.16)
¢p = —kicacp — 2kacp — (cg — ¢, )u/V
V =u,

where c4 and cp are the concentrations [mol/l] of A and B respectively, V
[1] is the volume and w [l/min] is the inlet feed rate and cp,, is the inlet
concentration [mol/l]. The initial conditions c4(0) = ca9, ¢g(0) = cpp and
V(0) = Vp. Additionally, the initial product concentration is zero.

Concentrations c¢¢(t) and cp(t) are obtained from mass balance and are
written as:

colt) = %(CAOVO — AV (D) (8.17)
and
en(t) = ——[(calt) + cn,. — cn(E)V(E) — (cao+ s, —cso)Ve]  (8.18)

T v

The optimization problem is thus formulated as:
min J(ty) = —(cc(ty) — ep(ty)) (8.19)

subject to the dynamic model (8.16) and u < U4, and u > Upin. The final
time is fixed. All the problem parameters for the nominal conditions are
summarized in Table Rl

8.3.1 Nominal optimal solution

The input and output trajectories for the nominal conditions are given in
Fig. and Fig. respectively.

8.3.2 Disturbances and measurements

We consider here 20% disturbance on the kinetic parameters k1 and ko
(d = [k1, k2]T). Because we consider two disturbances (ng = 2) and we
have one manipulated variable (n, = 1), we will make use of thee measure-
ments to satisfy the condition n, > n, +ng = 3. We consider measurements
of concentrations c4 and cg in addition to the volume V. Thus, our mea-
surement vector becomes

]T

y=lca g V (8.20)
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Figure 8.2: Scaled input for the nominal case (optimal solution for d =
do)

8.3.3 Computing invariant trajectories

Once the important disturbances d and the measurement vector y have
been defined the next step is to compute the optimal sensitivity F(¢). A
simple practical method to obtain F' is to use finite differences, where we
recompute the optimal solution for a perturbed problem and approximate
the sensitivities using the deviation from the nominal solution, that is

d*
Yopt () — yo(t)
F(t)~ ptd* — dy

(8.21)
where d* is the perturbed parameter vector and yg;t is the optimized for
the perturbed problem. Note that the deviation ||d* — dp|| should be small
to bound the approximation error. Nonetheless, this approach may be com-
putationally demanding for large dimension problems with large number of
disturbances. For such cases, we may use more efficient methods for calcula-
tions of the sensitivities as those provided by |H. Pirnay and Biegler.| (2011]).
In that approach, the basic strategy is based on the application of the Im-
plicit Function Theorem to the KKT conditions of the NLP, where it can be
shown that sensitivities can be obtained simply by solving a linearization of
the KKT conditions. The main implementation idea is to take advantage
of the exact second derivatives used in the intermediate steps of the NLP
algorithm to computed exact parametric sensitivities with very little added
computation (H. Pirnay and Biegler. 2011]).

Finally, the final step is to compute the optimal invariant trajectory
co(t) = H(t)yo(t) such that F(t)H(t) = 0. The optimal combination matrix
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Figure 8.3: State variables for the nominal case (optimal solution for d =

do)

H(t) = [h1(t) ha(t) hs(t)] for our problem is depicted in the bottom of
Fig. Note that the weights are fairly constant, a fact that may simplify
the implementation tasks, such as the control tuning. Figure [8.4] also shows
the invariant co(t). The final step is the online implementation, where we
design a feedback controller to track the reference ¢o(t). The controller used
here is a simple PI.

8.3.4 Closed-loop evaluation

In this simulation study we consider four disturbance cases, which are sum-
marized in Table Figures [8.5 and show the performance of the
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Figure 8.4: Nominal inputs

proposed method in comparison with the reoptimized solution and the open-
loop nominal solution for the disturbance case 2 (see Table . Note in
Fig. that the optimal solution (red line) consists of a short boundary
arc u(t) = Umqn of about At = 2.5 min followed by a sensitivity seeking arc.
Interestingly, although the proposed controller starts with nominal values, it
rapidly catches up with the optimal input trajectory. As a consequence, the
state trajectories in the proposed method (shown in are nearly identical
to the optimal ones.

In |Gros et al.| (2009b) Neighbouring-Extremal (NE) controller for sin-
gular optimal control problems is proposed. The main idea of that NE con-
sists in linearizing the necessary conditions of optimality around an optimal
trajectory of the corresponding undisturbed problem leading to a state-
feedback control law. The NE feedback law computes directly the updates
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du to the nominal control input u, so that v = du + u,. We compare the
proposed controller with the one presented in |Gros et al. (2009b)) for dif-
ferent disturbance scenarios. Table summarizes the comparisons. As it
can be seen, the self-optimizing controller and N E() give very good results
for all cases. Both methods are based on linearized conditions of optimality
and should theoretically yield the same economic performance. However,
the implementation philosophies of both cases are fundamentally different.
In the NE approach the feedback law is derived directly from the linearized
optimization problem and we have no control over important closed-loop
dynamic properties, such as stability margins. In the proposed approach,
the optimization and the control objectives are decoupled, that is, the de-
sign of feedback controller is an independent decision that can be made after
the optimal invariant trajectories are obtained.

8.4 Discussion

A drawback of this approach is that it cannot explicitly handle constraints.
Therefore, for a realistic implementation the proposed method should be
combined with a periodic solution of the dynamic optimization where a
new reference solution is obtained, and new invariant trajectories c(t) are
computed. The idea is to recompute the optimal sensitivities F'(¢) online
after solving the current NLP and then apply the approach shown in Fig[8.]
in between two successive optimizations. Similar idea has been published
in Wiirth et al.| (2009) where the authors proposed to use sensitivity based
neighbouring-extremal updates combined with real-time optimization. In
this way, the frequency of optimizations can be greatly reduced.

For simplicity, in this paper we have assumed a fixed final time in the
dynamic optimization problem formulation. However, it is often necessary
to consider a variable final time to handle uncertainties. In fact, many
practical applications can be formulated as minimum time problems. The
main complication here is the fact that nominal and disturbed trajectories
may be misaligned in time. Thus, in order to apply our method in such
cases we would need to synchronize the different trajectories using a new
time variable (a 'warped-time’ variable) that is comparable in all cases. An
example of a typical candidate could be the distance between the current
measured state and an end-point state active constraint.
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8.5 Conclusion

In this paper we extend the concept of self-optimizing control to the dynamic
optimization of batch processes. The main idea is to find a function of
the measurements whose trajectory is optimally invariant to disturbances
and then track the trajectory using standard feedback controllers. The
invariant trajectory is computed as a time-varying linear combination of
the measurements and the optimal combination is obtained from optimal
sensitivities that are easily computed. The proposed method was tested
in a semi-batch reactor case study, where near-optimal performance was
achieved for various disturbances.
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Table 8.1: Nominal parameters values

Symbol  Value Unit

ky 0.053  1/(molxmin)
ka 0.128 1/(molxmin)

CB;n 5 mol/1
ty 250 min
Ugnin 0 1/min
Umaz 0.001 1/min
CA0 0.72 mol/1
CBO 0.0614 mol/1
cco 0 mol/1
€po 0 mol/1

Vo 1 1

Table 8.2: Disturbances

Case k1 ko

Nominal 0.0530 0.1280
Case 1  0.0424 0.1024
Case 2 0.0424 0.1536
Case 3 0.0636 0.1024
Case 4  0.0636 0.1536
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Figure 8.5: Case 2: Control input. Blue line: open-loop nominal input;

red line: optimal solution; green line: proposed approach.
Note that the input trajectory in our approach stays near the
optimal solution without the need for re-optimization.

Table 8.3: Results for different disturbances on ki and ka. J,, is the
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optimal cost with the perturbed system, Jgo. is the cost with
the proposed approach, Joy, is the cost of the open-loop strat-
egy, Jf\,E is the cost of the NE controller proposed in
considering the parametric uncertainty and Jyg
is the NE controller proposed in |Gros et al. (2009b)) ignoring
the uncertainty.

0
Case —Jopt _Jsoc _JOL _JNE _JNE

Case 1 0.2435 0.2434 0.2431 0.2435 0.2433
Case 2 0.1957 0.1957 0.1904 0.1956 0.1857
Case 3 0.3476 0.3474 0.3437 0.3475 0.3398
Case 4 0.2952 0.2952 0.2950 0.2952 0.2950
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Figure 8.6: Case 2: Measurements. Blue lines: open-loop nominal input;
red lines: optimal solution; green lines: proposed approach.
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Chapter 9

Conclusion and further work

9.1 Conclusions

The focus of this thesis has been on processes where the dynamic behaviour
is important in terms of economic performance, that is, its not sufficient to
assume pseudo steady state. We have selected three main cases which have
been treated in three different parts of this thesis.

Part I of the thesis was dedicated to the optimal operation of thermal en-
ergy storage systems, with focus on a domestic hot water system and a heat-
ing system. We presented a detailed problem formulation which may also
be suitable similar problems. Many insights into the optimization problem
formulation are given and guidelines on implementation strategies includ-
ing feedback control structures are proposed. Next, we use the hot water
system as an example to illustrate our proposed implementation strategy
based on hierarchical decomposition of the optimization-control problem.
In our approach, economic objectives and control objectives are decoupled
using a two-layer cascade feedback structure. The main result here is that
great economical benefits can be obtained at a very low computational cost
and suitable for low cost embedded hardware.

In Part II of the thesis we presented our intelligent adaptive anti-slug
control system for production maximization. Our complete control solution
is composed of an autonomous supervisor that seeks to maximize production
by manipulating a pressure setpoint and a robust adaptive controller that
is able to quickly identify and adapt to changes in the plant. Our proposed
solution has been tested in a experimental rig and the results are very
encouraging. In fact, based on this work a patent application has been
filed and dialogues with several companies are being carried out in order to
bring this technology to the market. Other examples for which this approach
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could be applicable include the control of compressors near surge and the
operation of airfoil systems near the stability boundary to achieve greater
power efficiency in aircraft.

In Part III of the thesis we presented contributions on the topic of find-
ing near-optimal operating strategies using simple feedback control. First,
we proposed a generalization of the neighbouring extremal control design
for steady-state optimization to explicitly handle measurement noise and
implementation errors. Finally, we present an extension of the previously
published null-space method (Alstad and Skogestad, [2007)) for near-optimal
operation of transient processes. We showed that optimally invariant trajec-
tories can be computed as linear combinations of the measurement vector,
where the time-varying combination matrix is easily obtained from optimal
sensitivities.

9.2 Further work

9.2.1 Implementation and evaluation of simple adaptive con-
trol rules

In Chapter 5 we presented an adaptive anti-slug control solution for produc-
tion optimization. One of the most important components of our solution
is the adaptive law. In this work, we have used some of the state-of-the-art
techniques for adaptive control available in the literature. However, their
design may require an in-depth expertise in control engineering, which may
create some resistance for its acceptance by the practitioner. An alterna-
tive is to develop simple fit-for-purpose adaptive rules which give acceptable
performance for this application. The main requirements for such rules is
that they intuitive and have very few tuning knobs.

9.2.2 Extensions to dynamic self-optimizing control

In Chapter 8 we presented an extension of the null-space method for the
operation of transient processes. A desirable improvement to our proposed
method is to be able to handle measurement noise and implementation
errors explicitly in the design. Another important issue is the time syn-
chronization of the nominal reference trajectories. Since the reference sig-
nal and the combination matrix are time-varying, it is relevant to ensure
that the 'computer time’ and the ’process-time’ are consistent to avoid im-
plementation errors. More generally, we would like to find a variable (a
'warped-time’ variable) which better describes the evolution of the process
during transients to be used in the algorithm. The basic requirements for
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a warped-time variable is that it should be strictly monotonic, easily mea-
surable and should have known initial and final values. This would allow
a straightforward application of the null-space method to cases where the
final time is variable. For example, in our car problem presented in Chapter
1 a good candidate for a 'warped-time’ would be the distance to the final
position.

9.2.3 Study on the effect of end-consumer polices in the per-
formance of the network

The first part of the thesis is dedicated to optimal policies for local energy
storage systems subject to real-time electricity pricing, with focus on an
individual end-consumers. An interesting question is what would be the
effect on the electric network if such policies are deployed in large scale
by many consumers. Because the entire system operates in a closed-loop,
questions of optimality and stability of the entire network would need to be
carefully analysed.
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Appendix A

Derivation of the alternative
energy balance

The energy balance of the overall system is
dH
E = in"‘ch _th+Q_Qloss (Al)
For sake of simplicity, we will use the notation RHS £ H;y, + Hey — Hpy +
Q — Quoss and LHS & 4L
The left hand side can be expanded as
1 dVv drT
—LHS = (T —Tyet)— +V— A2
,OCp ( Tef) dt + dt ( )
By adding and subtracting (7, cw% + degjtw) to the right hand side of (A.2))
we obtain

AV d(T = Tww) AV dTe,

1
—LHS = (T —Tpy)—— Tew—"Trer)— A.
pCy 5= Va TV Da Vg B3
p(‘;p z;;E/dt
The right hand side of (A.1)) is written as
1 - 08s
7(RHS) = Qin(Tcw _Tref) +QCw(Tcw _Tref) _Qhw(Tcw _Tref) + %
PCp PCp
(A.4)

Adding and subtracting gpu(Tew — Trer) to the right hand side of (A.4)),
after some rearrangements yields

dV/dt Qdemaigd/pcp
1 — Q - Qloss
(RHS) - (Tcw - Tref) (qin + Qew — Qhw) - qhw(Thw - Tcw) +
PCp PCp
(A.5)
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where we have introduced the mass balance:
av
dt

Finally, be equating (A.5) and (A.3)) we get the alternative form of the
energy balance:

= Qin t Gew — Qhw (A6)

dE AT

T - emand — 0ss Vv
dt Q —Qq a— Qi pVCp dt

(A.7)



Appendix B

Observer-based model
reference design procedure

Open-loop dynamics
First step is to define the open-loop plan dynamics:

&y = Apxy + Bpu (B.1)

Yp = Cpzp, 2 =Cpap

where A, € R™*™ B, € R"»*"™ (), € R™*™ and C,, € R"™*" are
known matrices. ¥, are the measured outputs and z are the regulated
outputs. Next, we augment the state vector x to include the integral of the
control error e = zg, — 2 and form the extended model

& = Ax + Bu+ Bgpzsp (B.2)
Ym =Czx, 2z=Cx

where

z = [{Uﬂ . C=[Imxm Cpl, Co=[Omxm Ciupl (B.3)

0 -C 0 1,
A — mXxXm zZ,p , B — mxXm , BS — mXxXm B.4
|:0np xm AP :| |: Bp :| P |:O”p><m:| ( )

The main requirement here is to have dim(y,,) > dim(u). In addition,
we must restrict the pair (A, B) to be controllable and the (A, C) to be
observable.
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Reference dynamics based on state feedback

Based on the extended dynamics we proceed to design a linear quadratic
regulator (LQR) controller and form the desired closed-loop dynamics. The
LQR design entails choosing weighting matrices (@, R) and solving the al-
gebraic Riccati equation

PA+ATP+Q-PB'BTP=0 (B.5)

to finally obtain the optimal state feedback gain K, = R'BTP. The LQR
design step should include a trade study where robustness, performance and
actuator constraints are well balanced. From the achieved state feedback
design we form the closed-loop reference dynamics

dref = A— BKJ,, %rep + Bapzep (B.6)
———

Aref

Observer-based reference model design

Our observer-based reference model is defined by
Tref = ArefTref + Lo(Y — Yref) + Bspzsp (B.7)
Zref = Coref
The observer gain L, is given by
L, = P,CTR;! (B.8)
where P, is the solution to the Riccati equation
P, AT + AP, +Q - P,CTR;'CP, +Q, =0 (B.9)

The process and measurement noise covariance matrices are parametrized
using a positive scalar v:

1\ _ _
Qv = Qo+ (”*) BBT, R,=

)
v+1

R B.10
” 0 (B.10)

where B is a matrix formed by adding "fictitious” columns to B, to make
B= [B X ] (this is called ’square-up step’) have its column rank equal to
the row rank of C, such that C'B becomes invertible and the corresponding
extended system C(sI — A)~!B is minimum phase. and letting v — 0 we

can show that the system asymptotically approaches strict positive realness
(SPR), which is a highly desired property.

4
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Squaring-up and transmission zero placement

The effect of the matrix @), is to shape the zeros of the feedback loop. In
fact, the observer transmission zeros are defined by

C(sI —A)™'L (B.11)

where @, = LT L. Placing the zeros in a desirable location is key to achiev-
ing a robust design because the eigenvalues of the observer A(A — L,,C') will
approach the observers finite zeros as v — 0.

Misra, (1992) showed that squaring-up problem can be transformed into
a state feedback problem in which we may place the transmission zeros
at desired locations. The idea is outlined in the following. Assume the
original system (A, B,C') has been transformed by means of orthogonal
state coordinate transformed to the form:

Ay — My, Ao B
R(A) = A21 A22 - )\Inzfny B21 (B12)
Ch 0 Ony xna

We would like to add columns to B to square the plant up.

A — My, Aio B 3;12
R(\) = A Ao — Mp,—n, B2 B (B.13)
Ch 0 Onyxny

Defining B; = [Bll Blg]n ‘n and By = [Bgl ng] it can be shown that
Y Yy
the rank of the Rosenbrock matrix R(\) is

rank(R(N)) = 2ny + rank(M,—n, — AJy + AL, BT BT (B.14)

where we see that the matrix R()\) loses rank at all the eigenvalues of AL, —
AL, BT BY and thus are transmission zeros of the original system. There-
fore, the problem reduces to finding By and By such that AL, — AT, B; T BT
has desired eigenvalues. LQR or pole placement techniques are readily avail-
able to solve such problem.



Appendix C

Robustification of adaptive
laws

Dead-zone modification

To improve robustness of adaptive laws in the presence of unmatched dis-
turbance such as process and measurement noise dead-zone modification is
advised. The idea is to stop the adaptation process when the norm of the
observation error e, = y,, — ¢ is small. This will prevent the adaptive pa-
rameters from drifting due to noise. Let © be the adaptive parameter and
assume for simplicity an adaptive law in the form

0 =Ted(z)e,F (C.1)

where F' is a constant matrix, ®(z) is a known regressor and I'g is the
adaptation gain. The modified adaptive law using dead-zone is

O — {F@@(x)eyF, if eyl > eo

0, if Jeyll < eo (©-2)

This dead-zone modification however is not Lipschitz and it may cause
undesirable effects such as chattering when the error is near the dead-zone
boundary. A smooth version of the dead-zone is then used. Choosing a
constant 0 < § < 1 we construct a modulation function in the form

u(]ley]l) = max <O,min (1, W)) (C.3)

The adaptive law becomes

6 = Tod(@)u(lle, e, F (C.4)
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The projection operator

The projection operator is essential to achieve robustness against paramet-
ric and nonparametric uncertainty and to ensure boundedness of adaptive
parameters. The projection operator is defined as

Proj(6.y) — 4V~ (vprepud, Hlf > 0and TV >0 o
’ Y, otherwise
where f is a convex function of the form
L+ ))0* - e
f6) = =20 (C6)

with 0,4, being the bound for the parameter 6 and e the projection toler-
ance. Note that

. Qm(zm

0) <0 if ||0] < C.7
f0) < 101 < e (C.7)
fO) <1 i |[0]] < Oaa (C.8)

Thus, by defining the parameter dynamics as
0 = Proj(6,y) (C.9)
we can ensure [|0] < 0,4, is always true as long as 6 initially lies within
tighter bounds defined by f’/%:e' The projection operator does not alter
the vector field y if ||0] < %oz, For fmer < ||| < pae the projection

T

1+e” V1+e

operator results in a smooth transformation that ensures boundedness of
the parameters.

The adaptive laws that are implemented in practice should always in-
clude both modifications: smooth dead-zone and projection operator. The
resulting adaptive law takes the form

O = Proj(0,Te®(x)u([leyl)e, F) (C.10)

Additional details and information regarding other modifications be
found in Lavretsky and Wise (2013]).
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