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Abstract

There has been an increase in ship traffic in Arctic waters the later years, this chal-
lenges today’s ship design. One of the challenges is the contact loads that occur, due
to ice blocks encountering the ship propeller. The ice propeller interaction is a com-
plicated process, and more knowledge on the effect of the ice propeller interaction on
the ship propulsion drive train is needed.

This master thesis focus on improving the dynamic mathematical model of one of the
ship propulsion drive train components, namely the flexible coupling. The model de-
veloped is based on the Geislinger flexible coupling, and is developed using the bond
graph approach with the 20-sim simulation software. It takes in to account the major
dynamic effects of the radially aligned springs and the oil flow between the oil chambers.

Simulations show that the dynamic stiffness and damping coefficient of the flexible
coupling model developed in this project, is heavily dependent on the deflection fre-
quency and velocity. Both the damping factor and stiffness increases with frequency.
This is due to an increase in both the amount of oil that is compressed, and the pres-
sure difference between the oil chambers increases, with increasing deflection velocity.

Simulations show that the static stiffness is mainly dependent on the geometry of the
radially aligned springs, and that the dynamic stiffness is heavily dependent on the
coefficient of discharge describing the oil flow between the oil chambers of the coupling.

The coupling model was implemented in to a marine propulsion drive train established
in another project, which was subjected to torsional ice impact loads, and compared
to the original model. Simulations did show that the oil compressibility caused the
flexible coupling to become stiffer than the reference model, during the rapid change
of oil chamber volume. While the oil chamber volume change was less, the flexible
coupling became less stiff than the reference model.

It is recommended that the tapering of the radially aligned springs is included in the
model as this affects the flexible coupling stiffness, especially during impact loads.
Also it is recommended that CFD simulations are performed to verify the coefficient
of discharge used in the model.
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Sammendrag

Den økte skipstrafikken de senere år stiller økte krav til dagens skipsdesign. En av
utfordringene er kontaktkreftene som oppst̊ar i det isblokker treffer propellen til skipet.
Propell-is-interaksjonen er en komplisert prosess og det trengs mer kunnskap ang̊aende
effekten propell-is-interaksjonen har p̊a skipets framdriftsmaskinerisystem. Denne
masteroppgaven fokuserer p̊a å forbedre den matematiske modellen som beskriver en
av komponentene i framdriftsmaskinerisystemet, nemlig den elastiske koblingen mel-
lom propellakslingen og framdriftsmaskinen.

Den matematiske modellen som beskriver dynamikken til den elastiske koblingen er
utviklet basert p̊a den elastiske koblingen produsert av Geislinger, og er utviklet ved å
bruke b̊andgrafmetoden i simuleringsprogrammet 20-sim. Hovedeffektene som inng̊ar
i modellen er den statiske og dynamiske stivheten til de radielle fjærene som inng̊ar
i den elastiske koblingen, og effekten fra oljen som befinner seg i kamrene rundt fjærene.

Simuleringer viser at den dynamiske stivheten og dempningsfaktoren til den elastiske
koblingen, avhenger av hastigheten og frekvensen som koblingen vrides med. B̊ade
dynamisk stivhet og dempingsfaktor øker med frekvens. Dette kommer av at meng-
den av olje som komprimeres og trykkforskjellen mellom oljekamrene øker ved økende
vridningsfrekvens og hastighet.

I tillegg viser simuleringer at den statiske stivheten er hovedsakelig avhengig av ge-
ometrien til radialfjærene, og at den dynamiske stivheten er i stor grad avhengig av ol-
jegjennomstrømningskoeffisienten som beskriver størrelsen p̊a oljestrømmen pga. tryk-
forskjell mellom oljekamrene.

B̊andgrafmodellen av den elastiske koblingen ble implementert i en b̊andgrafmodell
av et framdriftsmaskinerisystem etablert i et annet prosjekt. Framdriftsmaskinerisys-
temet ble utsatt for lastene som oppst̊ar ved is-propell-interaksjoner og sammenlignet
med den originale modellen. Simuleringer viser at p̊a grunn av oljens kompressibilitet
blir stivheten til den elastiske koblingen større n̊ar volumendringen av kammeret er
stor, og mindre n̊ar volumendringen er liten, i forhold til sammenligningsmodellen.

Det anbefales å inkludere radial fjærer med varierende tverrsnittsareal ettersom dette
vil være spesielt viktig ved impulslaster. I tillegg anbefales det å foreta CFD
simuleringer for å verifisere oljegjennomstrømingskoeffisienten.
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Chapter 1

Introduction

1.1 Background

There has been an increase in ship traffic in Arctic waters the later years. One reason
for this, is that the northern sea route was opened by the Russian federation for traffic
in 2009 (Erikstad and Ehlers, 2012). Another reason is the development of oil fields
in the Barents Sea.

Ships operating in Arctic waters will encounter ice and the challenges caused by ice
ship interactions. Examples of such challenges are the increased resistance which leads
to increasing propulsion demands, increased loads acting on the ship hull which leads
to higher strength demands.

Another challenge is when ice blocks come in contact with the ship propeller. This
happens as ice blocks collide with the ship bow and get submerged. As the ship ad-
vance in the water, the ice pieces are brought in to the vicinity of the propeller and are
sucked into the propeller. The propeller hits the ice block and the ice block is crushed.
An illustration of this is shown in figure 1.1. The ice propeller interaction may cause
bending and breakage of the propeller due to the impact. In addition, the ice propeller
interaction is a cyclic load, which with the right frequency and magnitude may lead to
noise or harmful vibrations in the propulsion drive train. The harmful vibrations may
occur if loads from the propeller ice interaction has harmonic components, close to a
natural frequency, of the propulsion drive train.

The propulsion drive train referred to here is a marine propulsion drive train consisting
of a engine, propeller shaft, flexible coupling and a propeller.

To ensure safe and reliable operations, the harmful vibrations must be avoided. This
is done by careful design of the propulsion drive train using proper modelling tools,
which account for the most important dynamics of the propulsion drive train

1



1.2. SCOPE

Figure 1.1: Figure showing a marine propulsion drive train being subjected to ice
impact loads (Polic et al., 2013)

The ice-induced vibrations is most likely to be harmful when the propulsion drive
train operates at frequencies close to resonance. At these operating conditions, the
system response is mainly controlled by damping. The vibration damper is one of the
major components of the propulsion drive train exerting damping behaviour. For this
reason, the damper is one of the main components controlling the propulsion drive
trains response when operating in frequencies close to resonance.

1.2 Scope

The scope of this master thesis includes:

• Develop a mathematical model of the Geislinger flexible coupling using the bond
graph approach. The model should include the effects of the radially aligned
spring and the oil transfer between the oil chambers. The model is to be
implemented in to the 20-sim simulation software.

• Compare the model to the empirically found dynamic stiffness and damping
provided by the coupling manufacturer.

• Investigate the effect of changing the model parameters on the dynamic stiffness
and damping.

• Implement the mathematical model of the Geislinger coupling in to a marine
propulsion drive train, where the propeller is to be subjected by representative
ice propeller interaction loads.

2



CHAPTER 1. INTRODUCTION

• Compare the drive train model including the mathematical model of the
Geislinger flexible coupling to existing model.

1.3 Thesis structure

• In chapter 1 the context of the problem is established and the problem to be
solved is explain.

• In chapter 2 the theory which is needed for developing the flexible coupling and
the drive train model is explained.

• In chapter 3 the development of the flexible coupling model is explained.

• In chapter 4 the model parameters is established and the model behaviour is
verified.

• In chapter 5 the Geislinger flexible coupling bond graph model is implemented
in a marine propulsion drive train bond graph model and a simulation case is
performed.

• In chapter 6 are conclusions and recommendations for further work presented.

3





Chapter 2

Theory

2.1 Classification Requirements

One of the reasons for the need of a proper model of the flexible coupling is the re-
quirements of classification societies.

To operate in Arctic water, ships will have to comply with certain classification re-
quirements and rules. One of the classification societies that offers to classify ships for
this purpose is DNV GL.

In the rules for classification of ships part 5 chapter 1 (DNV, 2013b), the classification
impose requirements regarding the propulsion drive train. One of the requirements is
that the maximum response torque along the propeller shaft line Qr shall be deter-
mined through a detailed vibration analysis. This is if there exist harmful resonances
at a first order blade frequency within the operating range of the propulsion drive train
with a 20% margin.

The maximum response torque serves as a design requirement for all the major com-
ponents of the propulsion drive train: intermediate shaft, flexible coupling, reduction
gears, crank shafts, flange connections, shrink fit connections etc.

DNV GL requires that the ice induced torsional loads are described as a series of blade
impacts which is half sine shaped pulses. A more thorough discussion of the ice in-
duced torque is done in section 2.4

Both to ensure that harmful resonances doesn’t occur and to find the maximum
response torque, accurate models of the major components of the propulsion drive
train is needed. These models must be capable of dealing with the ice induced impulse
loads.

Another requirement stated in (DNV, 2013b) is that the vibration calculations shall
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be done by solving differential state-equations in the time domain.

2.2 Damping and Hysteresis

Before the model which is used today is explained, some key concepts regarding flexible
couplings is explained.

A flexible coupling is often seen as shown in figure 2.7. The FBD shows two masses
connected through a flexible element and a damper.

Figure 2.1: Free body diagram of a flexible coupling

The flexible element, or spring, will transfer a torque which depend on how much the
two masses are deflected relative to each other. Here this deflection is the difference
between the angle θ1 and θ2, and is defined as the twist ϕ. The relation between the
flexible torque and the twist is called the spring law:

TFlex = K (θ1 − θ2) = Kϕ (2.1)

Next is the damper. The damper transfers a torque Tdamper which is expressed using the
hydrodynamic damping coefficient b. The hydrodynamic damping coefficient relates
the damper torque to the time derivative of the twist, which is the difference between
the rotational velocities.

TDamper = b
(
θ̇1 − θ̇2

)
= bϕ̇ (2.2)

One of the key concepts when working with damping is hysteresis.
To illustrate this, the damper in figure 2.7 is subjected to a harmonic load. Figure
2.2 shows a time series of the damper twist angle and its time derivative. Since the
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excitation is harmonic and the stiffness and damping coefficient is linear, the twist
response is harmonic and can be described by equation 2.3

ϕ = Acos(ωDt) ϕ̇ = −ωDAsin(ωDt) (2.3)

A Deflection amplitude
ωD Excitation frequency
ϕ Twist angle
τ Excitation period

The flexible torque and damping torque from equation 2.2 and 2.1 is evaluated for
entire loading cycle, from ϕ(t = 0) to ϕ(t = τ). and plotted against the twist in figure
2.3

Figure 2.2: Twist angle and its time derivative as a flexible coupling is subjected to
a harmonic load.

The work done by twisting the coupling during this period of time is the opposing
torque times rotational velocity integrated over the time period. By use of variable
change, it can be shown that this is the same as the area under the torque curve when
evaluated at different twist angles.

W =

τ∫
0

T ϕ̇dt =

ϕ(τ)∫
ϕ(0)

Tdϕ (2.4)

W Energy dissipated during a loading cycle
T Excitation torque

The flexible torque during one loading cycle shown in figure 2.3 follows the same path
as the spring is loaded and unloaded, hence the area enclosed by the curve is equal to
zero and no work is done during one cycle. This is since the spring torque acts in the
same direction as the twist motion as the spring is unloaded.
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2.2. DAMPING AND HYSTERESIS

Figure 2.3: Twist torque relation for a damping element, TDamping, and a flexible
element TFlex.

The damping torque however, does not follow the same path as the damper is un-
loaded and therefore the area enclosed by the torque graph is not equal to zero and
some energy is dissipated during the loading cycle.

The amount of energy dissipated is found by substituting the flexible torque expression
equation 2.2 into equation 2.4

W =

τ∫
0

bϕ̇2 +Kϕϕ̇dt (2.5)

For the harmonic twist case the work done during one cycle is:

W =

τ∫
0

b(ωDAsin(ωDt))
2dt = πA2bωD (2.6)

If the flexible torque and damping torque is summed, the result is the hysteresis curve
of the flexible coupling which is shown in figure 2.4.

The curve is a useful tool for explaining the behaviour of a damping element and is a
part of the documentation required by the DNV GL rules for classiciation (DNV, 2008).

Plotting the hysteresis loop is in addition a way of determining the damping coefficient
b. In (DNV, 2008) and in (Pedersen, 2013), is the damping ratio ψ defined as the ratio
between the maximum potential energy of the system U = K 1

2
φmax and the energy

dissipated during one cycle, W .

ψ =
WD

1
2
Kφ2

max

(2.7)

By inserting the work done during one cycle and the maximum potential energy for

8



CHAPTER 2. THEORY

Figure 2.4: Torque twist relation for a flexible coupling

the harmonic twist case, the relation becomes as shown in eq 2.8, and can easily solved
for the damping coefficient.

ψ =
2πbωD
k

→ b =
kψ

2πωD
(2.8)

This is useful since the damping coefficient of a damper can be found by plotting the
hysteresis loop and evaluating the area of the curve. In the Geislinger coupling cata-
logue (Geislinger, 2013) is the damping presented using the non dimensional damping
factor. This is related to the damping ratio as shown in equation 2.9.

κ =
ψ

2π
(2.9)

In (DNV, 2008) is the rotational stiffness of the coupling defined as:

K =
∆Tel

∆φ
(2.10)

Where ∆Tel is the difference between the torques at maximum and minimum deflec-
tion and ∆φ is the difference in maximum and minimum deflection.

2.3 The Geislinger Flexible Coupling

There exist several vibration damper designs in the industry today. However, in
this project the focus is on a specific design. Namely the Geislinger damper. A
Geislinger damper with major components; inner star, flange, radially aligned springs
and intermediate piece, is shown in figure 2.5.
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2.3. THE GEISLINGER FLEXIBLE COUPLING

Figure 2.5: Drawing of a Geislinger coupling, naming the major components of the
coupling (Geislinger, 2013)

Figure 2.6: Geislinger coupling detail view (Geislinger, 2013)

The springs, inner star and intermediate piece forms cavities which in the Geislinger
flexible coupling is oil filled. Figure 2.6 shows a detailed view of the oil chambers and
the gap between them.

As the inner star and the flange rotates relative to each other, the springs will have to

10



CHAPTER 2. THEORY

deflect. The deflection of the spring causes the volume of oil chamber B to decrease
and the volume of oil chamber A to increase, which causes a pressure drop that induced
an oil flow from chamber B to chamber A. As the oil flows from chamber B to chamber
A through the gap ∆Kr, there is an pressure drop due to the flow resistance over the
gap. This flow resistance is the source of the damping in the Geislinger damper.

2.3.1 How the Geislinger damper is modelled today

In (Geislinger, 2013), the manufacturer gives enough data to build a simple damping
model shown in figure 2.7. The model consists of the inertia of the inner star, JI and
the inertia of the flange JF , connected through a damper and a spring. The damping
coefficient bd relates the damping torque to the rotational velocity of the two masses
as shown in equation 2.11, while the rotational stiffness relates the flexible torque to
the deflection of the flexible coupling as shown in equation 2.12.

TDamping = bd

(
θ̇1 − θ̇2

)
(2.11)

TFlex = Cdϕ = Cd (θ1 − θ2) (2.12)

Figure 2.7: FBD of flexible coupling

Further the manufacturer states that they have found the damping coefficient and
stiffness values for the damper are found through measurements done on both test
rigs and full scale installations using Geislinger couplings. Geislinger also states by
using these values, the correct critical speed and loads in every part of the system
can be found. The parameters depend on the vibratory frequency ωD of the damper
deflection, where the damper deflection ϕ, is the difference between θ1 and θ2.
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2.3. THE GEISLINGER FLEXIBLE COUPLING

Flexible coupling stiffness

How the dynamic torsional stiffness varies with the vibratory frequency of the damper
deflection is described by the manufacturer using these equations:

When
0 ≤ ω ≤ ωo

CTdyn = CTstat ·
(

1 + 0.37
ωD
ω0

)
(2.13)

When
ωo ≤ ω

CTdyn = CTstat ·
(

1.1 + 0.27
ωD
ω0

)
(2.14)

Where

CTdyn − Dynamic torsional stiffness [MN m rad−1]
CTstat − Static torsional stiffness [MN m rad−1]
ωD − Vibratory frequency of the damper deflection [rad s−1]
ω0 − Characteristic coupling frequency [rad s−1]

The static torsional stiffness is the stiffness experienced when the damper deflection is
constant. Since this values does not depend on the magnitude of the deflection, and
the fact that the radial spring of the Geislinger coupling has varying cross section, it
can be assumed that the value is only valid for small deflections of the damper.

The characteristic coupling frequency is a parameter that relates the damping and dy-
namic stiffness of the Geislinger coupling to the vibrational frequency. It is a function
of the radial clearance ∆Kr and the viscosity of the oil used in the coupling. Both the
parameters are given for the individual coupling sizes and designs by the manufacturer.

The dynamic stiffness for vibrational frequencies between 0 rad s−1 and 2 times the
characteristic coupling frequency is shown in figure 2.8. (Geislinger, 2013) explains
that the stiffness increases with frequency due to the displacement of oil, without
specifying any further.

Flexible coupling damping

(Geislinger, 2013) describes the damping using the non-dimensional damping factor κ,
which is related to the damping coefficient by , b, equation 2.15:

b =
κ · CTdyn
ωD

(2.15)
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Figure 2.8: Dynamic stiffness of the flexible coupling

For Geislinger couplings with pressurized oil supply, the non-dimensional damping
factor is given for different vibrational frequencies by (Geislinger, 2013) as shown in
equations 2.16 to 2.18:
When 0 ≤ ωD ≤ 0.3

κ = 0.02 + 1.1
ωD
ω0

(2.16)

When 0.3 ≤ ωD ≤ 1

κ = 0.2 + 0.5
ωD
ω0

(2.17)

When ωD ≤ ω0

κ = 0.7 (2.18)

The non dimensional damping factor evaluated at different vibrational frequencies is
shown in figure 2.9. Using equation 2.15, the damping coefficient is calculated and
shown in 2.10. The damping coefficient decreases with increasing vibratory frequency,
and goes to infinity for small vibrational frequencies. The fact that the damping goes
to infinity for small values does not make physical sense and might be due to numerical
limitations of equation 2.15.

Figure 2.9: Non dimensional damping factor for the flexible coupling
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Figure 2.10: Damping coefficient for the flexible coupling

Limitations

In general, it seems that there are several limitations to the modelling procedure pre-
sented in citegeislingercoupling that are not mentioned by the manufacturer:

• The vibrational frequency is needed which is not always straight forward to
obtain.

• It also demands that the coupling deflection is periodical. This is not the case
when the propulsion drive train is subjected to transient loads, e.g. clutch en-
gagement, during ice-propeller interactions

• The static and dynamic stiffness is only valid for small twist angles. How small
is not specified by the manufacturer

In addition doesn’t the model include the effect of the twist limiter being hit, which is
a requirement in (DNV, 2013b)

The flexible coupling with the rest of the propulsion drive train experience both tran-
sient loads, and loads that are so large that the twist buffer of the flexible coupling
might get hit. In this case will the model presented by Geislinger not be sufficient,
and another model capable of incorporating these things will have to be used.
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2.4 Ice Propeller Interaction

In his studies (Veitch, 1995) describes the different stages of the propeller interaction
by three steps. approach, blockage and contact:

Approach. When ships are operating in ice covered waters, the ship hull tend to
break off pieces off ice and submerge them. As the ship advance in the water, the ice
pieces are brought in to the vicinity of the propeller, sucked into the propeller and
crushed by the propeller blades. According to Veitch, the approach stage begins when
the ice piece experiences relative motion between the fluid and the ice piece due to
the propeller suction. During this stage, the only effect is the change in hydrodynamic
performance of the propeller owing to the change in inflow.

Blockage. The blockage stage starts as the ice piece is in the vicinity of the propeller
so that the wake influence on the propeller come to its maximum.

Contact. The contact stage is initiated as the propeller blades comes in direct contact
with the ice. In this stage, the forces acting on the propeller are the direct contact
forces and hydrodynamic forces.

The problem is describing the forces acting on the propeller. In his Ph.D. Thesis,
(Wang, 2007) describes the different loads acting on the propeller blade during ice-
propeller interactions: When the ice block blocks the water inflow in front of the
propeller, the propeller experience a difference in inflow conditions. corresponding to
a lower advance coefficient. This leads to higher thrust and torque coefficients. This
is described by Wang as the blockage effect.

Due to the proximity of the ice, the propeller experience unstable inflow conditions
and increased gap flow. This results in varying loads and increased risk of cavitation.
Wang describes this as the proximity effect. The proximity effect and the blockage
effect are referred to as inseparable hydrodynamic loads.

The contact loads depends on different things as described by citeVeitch:95 the ice
mechanics, mass and size of the ice, in what way the ice is constrained and the hydro-
dynamics connected to the ices movement.

In (Wang et al., 2007), the authors mention several complexities present during pro-
peller ice interaction: “ High strain rates, complexity of the flow around the circumfer-
ence of a propeller, and the randomness in shape and the way of an ice piece interacting
with a propeller ”
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The ice-propeller interaction process is a complicated phenomenon and there have
been done several attempts of describing the physics and making proper mathematical
models of the interaction process. Both (Wang et al., 2007) and (Veitch, 1995) recom-
mends that the effects the drive train dynamics has on the ice interaction process is
investigated.

2.5 Modelling the ice propeller interaction

The method of describing the ice impact load which is most suitable for the model
developed in this project is the method described in (DNV, 2013b) and (Polic et al.,
2013).

Depending on the size of the propeller relative to the maximum size of the ice block, the
maximum ice-induced torque that arise from the interaction between ice and propeller
on one propeller blade is found from the formula:

Qmax = 10.9 ·
[
1− d

D

]
·
[
P0.7

D

]0.16

· (nD)0.17 ·D3 [kNm] (2.19)

When D ≤ 1.8 ·HIce

Qmax = 20.7 ·
[
1− d

D

]
·
[
P0.7

D

]0.16

· (nD)0.17 ·D1.9 ·H1.1
Ice [kNm] (2.20)

When D > 1.8 ·HIce

Where

Qmax − Maximum ice-related torque on a propeller blade [kNm]
d − External diameter of propeller hub [m]
D − Propeller diameter [m]
P0.7 − Propeller pitch at 0.7 radius [m]
HIce − Maximum ice block thickness [m]
n − 0.85 times the rated engine speed [RPS]

16



CHAPTER 2. THEORY

The torque acting on the propeller shaft as a function of time (or angular position) is
according to DNV described as

Q(ϕ) = Cq ·QMax · sin
(
ϕ

(
180

αi

))
[kNm] (2.21)

Where

Q(ϕ) − Propeller torque [kNm]
Cq − DNV/IACS parameter describing the torque amplitude [-]
ϕ − Propeller rotational position [-]
αi − DNV/IACS parameter describing the ice impulse duration

This is the torque on the propeller shaft from the ice forces acting on one blade. To
get the total load on the shaft, the contributions for each of the propellers have to be
summed. Between the first blade contact and the last, the number of revolutions is
found from:

NQ = 2 ·HIce (2.22)

Where NQ is the number of revolutions during contact

2.6 Oil Compressibility

The specific volume of a fluid is a function of both temperature and pressure. Accord-
ing to (Çengel et al., 2010) is the specific volume of a fluid a function of both pressure
and temperature, using tailor series expansion it can be shown that the density can be
written as:

ρ ≈ ρ0+

(
∂ρ

∂T

)
P=const

(T−T0)+

(
∂ρ

∂P

)
T=const

(P−P0) = ρ0

(
1 + α(T − T0) +

1

β
(P − P0)

)
(2.23)

Where:
ρ Fluid density
T Fluid temperature
P Fluid pressure
ρ0 Initial density of the fluid
T0 Initial temperature of the fluid
P0 Initial pressure of the fluid
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α is defined as the coefficient of volume expansion and shown in equation 2.24. This
describes how the density of unit volume of fluid changes with changing temperature
and constant pressure.

α =
1

ρ0

(
∂ρ

∂T

)
P=const

(2.24)

The bulk modulus of elasticity β, describes how a unit volume of fluid changes density
with pressure at constant temperature as shown in equation 2.26. Due to conservation
of mass and the fact that Pressure is inversely proportional to volume, the bulk modulus
of elasticity can be rewritten as:

β = ρ0

(
∂P

∂ρ

)
T=const

= −V0

(
∂P

∂V

)
T=const

(2.25)

V Fluid volume
V0 Initial fluid volume

The bulk modulus is a quantity that changes with pressure as shown in figure 2.11. The
gradient of the volume curve decreases with increasing pressure. The bulk modulus is
also a function of temperature as it decreases with increasing temperature.

Figure 2.11: Volume change with pressure of a compressible fluid (Hodges, 1996)

The graph above shows how the compressibility of a pure fluid changes with pressure,
however in hydraulic appliances such as the flexible coupling will there always be some
air present in the fluid. The air trapped in the fluid will have a lower bulk modulus
than the fluid and the total bulk modulus of the system will decrease. However at
increasing pressure, the volume percent of air present in the fluid will decrease and
the effect of the air on the total bulk modulus will decrease. In (Hodges, 1996), the
effective compressibility, βEff , of a hydraulic system containing air is described as:

18



CHAPTER 2. THEORY

βEff = ΦSβ (2.26)

Where Φ is the correction coefficient. It is a function of amount of air present in the
hydraulic fluid and the absolute pressure of the system. Figure 2.12 shows how the
bulk modulus correction coefficient changes with amount of air in the fluid and the
pressure.

Figure 2.12: Bulk modulus correction coefficient of a fluid containing undissolved air
(Hodges, 1996)

Another contribution to the effective bulk modulus of a hydraulic system is the
compressibility of the body that contains the fluid. This is especially important in
hydraulic appliances where tubes and thin pipes are used. The total effective bulk
modulus in a system containing hydraulic fluid, trapped air and flexible boundaries
can be compared to a series of springs with the total bulk modulus (or stiffness) as
shown in equation 2.27 (McCloy and Martin, 1980).

1

βEff
=

1

βFluid
+

1

βBoundary
+

VAir
VTotal

1

βAir
(2.27)

VAir

VTotal
Volumetric ratio of air present in the total fluid

βFluid Bulk modulus of the hydraulic fluid
βAir Bulk modulus of the Air present in the hydraulic fluid
βBoundary Bulk modulus of the body containing the fluid
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Chapter 3

Model Development

Geislinger offers a variety of different spring designs, depending on the use of the
coupling. Things like if the coupling is going to be reversed, the size of the torque
that is going to be transferred , and the required stiffness are things that decide what
spring design to use. This project will focus on one of the spring designs, namely the
reversible double spring design. In (Geislinger, 2013), the manufacturer presents the
spring designs as shown in figure 3.1.

Figure 3.1: Illustration of the dual spring design by (Geislinger, 2013)

What is characteristic for this design is as it name implies that it consists of pairs
of springs. The springs are tapered, with the largest cross sectional area towards the
outer end of the spring. The stiffness is equal for both positive and negative twist since
the tapering is symmetrical about the

3.1 Torque transfer

What is interesting when making a mathematical model of the flexible coupling is the
relationship between the torque T1 and rotational velocity θ1 at the node on engine
side and the effort and flow at the node on the propeller side, T2 and θ1.
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To find this relationship, the forces that contribute to torque transfer between the two
bodies, the inner star and the outer member is considered. The inner star and the
outer member are seen as solid bodies, i.e. it has infinite stiffness, and the mass and
inertia can be seen as concentrated in two points. The engine side node and propeller
side node respectively. The forces that act on the two bodies is in this master thesis
divided in to two categories: the forces and moments from the spring acting on the in-
ner and outer member and the oil pressure acting on the oil chamber walls and spring.
These forces are indicated in figure 3.2

Figure 3.2: Spring support forces and oil pressure acting on the inner and outer
member of the coupling.

Where
M2 Clamping moment between the outer edge of the spring and the outer member
F1 Tangential contact force between the inner member and the inner edge the spring
F2 Tangential contact force between the outer member and the outer edge of the spring
T1 External torque acting on node one (inner member)
T2 External torque acting on note two (outer member)

θ̇1 Rotational velocity of node one

θ̇2 Rotational velocity of node two

Only forces that have tangential components will contribute to the torque transfer,
so the size of the tangential component and the distance between its point of attack
and the shaft axis determines the size of the torque contribution. Forces that act in
other directions might off course affect the size of the torque generating forces, but
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this contribution is indirect.

The net tangential pressure force acting on the the oil chamber walls, ~FP−Net, is found
by evaluating the tangential component of the net pressure force, which is found by
integrating the pressure at position ~r, and time t, times the tangential vector of the
surface ~nT , over the surface S, as shown in equation 3.1

~FP−Net (t) =

∫∫
S

p (~r, t)~n dS (3.1)

The pressure distribution is however simplified so that the pressure is constant
throughout the chamber volume. This simplification means that the net force pressure
force is simply the pressure at time t, times the surface area of the wall:

~FP−Net (t) = p (t)

∫∫
S

~n dS = p (t)AS (3.2)

Since we are only interested in the tangential component of the pressure force, only
the tangential component nT of the normal vector is used and equation 3.2 becomes
as shown in equation 3.3, where AT is the tangential projection of the wall surface.

FP (t) = p (t)

∫∫
S

nT dS = p (t)AT (3.3)

The only surfaces that have tangential projections is the spring surfaces and surface
A and B. Since the oil chambers are symmetrical is the tangential projection of the
inner oil chamber found from equation 3.4.

AT = (r2 − r2)wChamber (3.4)

Where r2 and r1 is the distance between the inner and outer chamber wall and the
coupling axis as shown in figure 3.3, and wChamber is the width of the oil chamber.
The torque generating force acting on surface A and B, FA and FB is then found from
equation 3.5.

FB = pB(t)AT , FA = pA(t)AT (3.5)

Where pA(t) and pB(t) is the pressure in chamber A and B.

The pressure that acts on the spring force is included in the spring force and is dis-
cussed further in section 3.3.

The spring is seen as simply supported at the end facing the inner star and fixed rela-
tive to the outer member, in addition is the maximum deflection of the coupling small
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so any radial component of the force transmitted by the spring is neglected.

Assuming this is the supporting force at the inner and outer end of the spring F1 and
F2 in addition to the clamping moment at the outer end M2, the direct contributions
from the spring to the torque transfer between the inner and outer member.

Figure 3.3: The forces acting on the inner and outer member of the coupling
producing torque

The torque generated by these forces is found by multiplying the size of the force by
the distance between its point of attack and the shaft axis. The distances are indicated
in figure 3.3.

The global coupling relations is then found by summing the external torques acting on
the nodes T1 and T2 with the torques from the spring and the oil pressure, in addition
to the inertia of the inner and outer member as shown in equation 3.6. The sign
convention is defined from figure 3.3. Since there are several chamber and spring pairs
(or cells) and these are assumed to deform uniformly is the torque acting on one cell
the total nodal torque divided by the number of cells ncells.
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T1
ncell

= F1r1 + J1θ̈1

T1
ncell

= − (FB − FA) rP − F2r2 − J2θ̈2 −M2
(3.6)

Multiplying the equations above with the appropriate rotational velocities of the nodes,
θ̇1 and θ̇2, yields the power relations of the inner and outer members. This power
relation corresponds to the bond graph relation shown in figure 3.4

θ̇1T1 = θ̇1F1r1 + θ̇1J1θ̈1

θ̇2T2 = −θ̇2 (FB − FA) rP − θ̇2F2r2 − θ̇2J2θ̈2 − θ̇2M2
(3.7)

Figure 3.4: Global power bond relations of the flexible coupling. The inner and outer
member are not connected.

Next these are the torques acting on the nodes related to each other, starting with the
torques from the oil hydrodynamics before we continue with the spring dynamics.

3.2 Modelling the spring

The spring model is developed based on the method for modelling lumped models of
continua through separation of variables presented in (Karnopp et al., 2012a). Which
is a approximation method for solving the the Euler Bernoulli beam equation of motion
(equation 3.8), using a finite number of flexible modes.

To model the spring, the free free boundary conditions are used. This is since both
the inner star and outer member rotate. As shown in equation 3.8 and figure 3.5,
there is a force and torque, F1 and M1, acting on the beam at position 1 and a force
and torque,F2 and M2, acting on the beam at position 2. These forces and torques
represents the boundary conditions
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Want to solve the beam equation by using separation of variables.

Figure 3.5: Torques, Forces, rotation and translation of a free-free beam

EI
∂4w

∂x4
+ ρA

∂2w

∂x2
=F1δ(x− x1) +

∂2(M1∂(x− x1))

∂x2

+ F2δ(x− x2) +
∂2(M2∂(x− x2))

∂x2

(3.8)

E Young Modulus for spring material
I Area Inertia of the spring profile
ρ Density of the spring material
A Area of the spring profile
x Position along the spring
w Spring deflection
δ(x− x1) Diracs Delta function
F1 External force acting at position x1

F2 External force acting at position x2

M1 External torque acting at position x1

M2 External torque acting at position x2

3.2.1 solving the homogenous differential equation

To solve the beam equation of motion by separation of variables, the mode shapes
and Eigen frequencies are needed. These are found by first solving the homogeneous
differential equation 3.9.

EI
∂4w

∂x4
+ ρA

∂2w

∂x2
= 0 (3.9)
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To do this, it is assumed that the deflection can be described as the product of a
function of time,f(t) and a function of position,Y (x),.

w(x, t) = Y (x)f(t) (3.10)

In addition, by convention is,ω (omega) defined by f(t) as shown in equation 3.11.
Next k is defined in equation 3.12.

ω2 = − 1

f

d2f

dt2
(3.11)

k4 =
ρA

EI
ω2 (3.12)

Substituting the definition of k and ω in addition to the deflection as shown in equation
3.10, into the beam equation, the result is a differential equation with Y as the variable.

d4Y

dx
− k4Y = 0 (3.13)

For flexible modes, this differential equation is assumed to have the general solution
shown in equation 3.14.

Y (x) = A cosh(kx) +B sinh(kx) + C cos(kx) +D cos(kx) (3.14)

The constants A, B, C, D and k in the assumed solution is found by using the force
and moment free boundary conditions:

d2w

dx2
(x = 0) =

d2w

dx2
(x = L) = 0 (3.15)

d3w

dx3
(x = 0) =

d3w

dx3
(x = L) = 0 (3.16)

Where L is the length of the spring.
Using equation 3.10, the boundary conditions can be rewritten to:

d2Y

dx2
(x = 0) =

d2Y

dx2
(x = L) = 0 (3.17)

d3Y

dx3
(x = 0) =

d3Y

dx3
(x = L) = 0 (3.18)

For the solution to satisfy the boundary conditions, the solution must also satisfy the
frequency equation 3.19.

cosh(kL) cos(knL) = 1 (3.19)
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This equation has several solutions for k, and must be found numerically. The equa-
tion has n solutions where kn = 0 is one.

When kn is found, the Eigenfrequencies can be found from equation 3.11.
One solution to the beam equation of motion that satisfies both the frequency equation
and the boundary conditions is shown in equation 3.20.

Yn = sin(knx) + sinh(knx) +

(
sinh(knL)− sin(knL)

cos(knL)− cosh(knL)

)
(cos(knx) + cosh(knx)) (3.20)

This is also satisfied by the two solid body modes, which describes translation and
rotation.

Y00 = 1 (3.21)

Y0 = x− L

2
(3.22)

3.2.2 Finding the forced response

To find the forced response it is assumed that the response can be represented by a
weighted sum of n natural modes:

w(x, t) =
∞∑
n=0

Yn(x)ηn(t) (3.23)

This sum is then substituted into the forced equation of motion 3.8. Next, each side
of the equation is multiplied by an arbitrary mode shape, denoted m, and integrated
over the length of the spring, which yield:

L∫
0

∞∑
n=0

ρAω2
nYmYnηn(t)dx+

L∫
0

∞∑
n=0

ρAYmYnη̈dx =

L∫
0

Ym(x)

(
F1δ(x− x1) +

∂2(M1∂(x− x1))

∂x2
+ F2δ(x− x1) +

∂2(M2∂(x− x1))

∂x2

)
dx

(3.24)
Due to the orthogonality of the mode shapes, the only contribution from the summation
is the n=m mode. In other words, terms including the product of a mode shape and
any other mode shape than itself is zero. Next step is defining the modal mass and
modal stiffness as in equations 3.25 and 3.26. Now the left hand side of equation 3.24
can be written as equation 3.27:
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mn =

L∫
0

ρAYn
2dx (3.25)

kn = mnωn
2 (3.26)

L∫
0

∞∑
n=0

ρAω2
nYm

2ηndx+

L∫
0

∞∑
n=0

ρAYm
2η̈dx = knηn(t) +mnη̈n (3.27)

Since the area between Dirac’s delta function and the x axis is equal to one, the right
hand side of equation 3.24 can be written as:

L∫
0

Ym(x)

(
F1δ(x− x1) +

∂2(M1∂(x− x1))

∂x2
+ F2δ(x− x1) +

∂2(M2∂(x− x1))

∂x2

)
dx

= Yn(x1)F1 +
dYn
dx

(x1)M1 + Yn(x2)F2 +
dYn
dx

(x2)M2

(3.28)
The result is the modal equation of motion:

knηn +mnη̈n = Yn(x1)F1 +
dYn
dx

(x1)M1 + Yn(x2)F2 +
dYn
dx

(x2)M2 (3.29)

The modal equations of motion for n modes can be written on matrix form:

[M ]
−→̈
η + [K]−→η = [r1]

−→
F (3.30)

Where the parameter matrices are

[M ] =


m1 0 · · · 0
0 m2 · · · 0
...

...
. . .

...
0 0 · · · mn

 (3.31) [K] =


k1 0 · · · 0
0 k2 · · · 0
...

...
. . .

...
0 0 · · · kn

 (3.32)

[r1] =


Y1(x1) ∂

∂x
Y1(x1) Y1(x2) ∂

∂x
Y1(x2)

Y2(x1) ∂
∂x
Y2(x1) Y2(x2) ∂

∂x
Y2(x2)

...
...

...
...

Yn(x1) ∂
∂x
Yn(x1) Yn(x2) ∂

∂x
Yn(x2)

 (3.33)

And the modal displacement, modal acceleration and force vectors are respectively:
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−→η =


η1

η2
...
ηn

 (3.34)
−→̈
η =


η̈1

η̈2
...
η̈n

 (3.35)
−→
F =


F1

M1

F2

M2

 (3.36)

The modal equation of motion, eq 3.29, states that the sum of the modal inertia force
and modal stiffness force is equal to the modal excitation force, with the time deriva-
tive of the modal displacement as the common flow variable.

In bond graph notation, this summation of efforts is done in the 1-junction as shown
in figure 3.6.

Figure 3.6: Bond graph representation of the modal equation of motion

As previously mentioned, the displacement at any point can be found from equation
3.23. Taking the time derivative of this equation gives the relationship between the
deflection velocity and the n-number of modal velocities.

ẇ(x) =
∞∑
n=0

Yn(x)η̇n (3.37)

This summation of flows is shown using bond graph notation in figure 3.7.
The same can be done for the beam slope and its time derivative, using the mode
slope, instead of the mode shape.

θ̇(x) =
∞∑
n=0

dYn(x)

dx
η̇n (3.38)

Combining figure 3.6, 3.7 and 3.8 for two modes is shown in figure 3.9.

30



CHAPTER 3. MODEL DEVELOPMENT

Figure 3.7: Bond graph representation of the spring deflection velocity found as a
weighted sum of mode shapes

Figure 3.8: Bond graph representation of the spring deflection slope velocity found
as a weighted sum of mode shapes

In this figure only two modes are included. If more modes were to be included they
would be added to the zero junctions. If more modes were to be included, the model
would become messy. Therefore the field bond graph notation will be used further.

Developing the field bond graph is straight forward using equation 3.31. One challenge
is however that due to the two zero frequency modes, the K-matrix has elements that
are zero along the diagonal, which makes it impossible to invert. To avoid this, the K
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3.2. MODELLING THE SPRING

Figure 3.9: Scalar bond graph representation of the spring including two modes.

matrix is reduced to a n-2 by n-2 matrix, omitting the two zero frequency modes. The
vector power bond is reduced using a TF-element with the relation shown in equation
3.40 (the subscript denotes the matrix dimension).

~η[n−2] = [r2]n×(n−2)~η[n] (3.39)


η̇3

η̇4
...
η̇n

 =


0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . . 0

0 0 0 0 0 1





η̇1

η̇2

η̇3

η̇4
...
η̇n


(3.40)

The field bond graph representation of the finite mode distributed parameter model
of the spring is shown in figure 3.10

The bond graph model, shown in figure 3.10, only give the spring deflection at the
boundaries. To find the volume of the Geislinger damper oil chambers, the deflection
along the length of the spring is needed. As stated in (Karnopp et al., 2012a): “. . . Any
location on the rod can be used as an output. We simply consider any desired output
point as a location for a force input equal to zero”
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Figure 3.10: Field bond graph representation of the spring including n modes and i
output positions

In this model, this is done by increasing the number of excitation forces and moments,
i, acting on the spring and letting them act evenly distributed over the spring as shown
in figure 3.11.

Figure 3.11: Spring with evenly distributed output positions

For i output positions, the n by 2i ,r1 matrix relating the modal velocities and deflection
velocities is shown in equation 3.41. The second dimension of the matrix is 2i since
both the mode shape and mode shape slope evaluated at the i positions is needed.

[r1] =


Y1(x1) ∂

∂x
Y1(x1) Y1(x2) ∂

∂x
Y1(x2) · · · Y1(xi)

∂
∂x
Y1(xi)

Y2(x1) ∂
∂x
Y2(x1) Y2(x2) ∂

∂x
Y2(x2) · · · Y2(xi)

∂
∂x
Y2(xi)

...
...

...
... · · · ...

...
Yn(x1) ∂

∂x
Yn(x1) Yn(x2) ∂

∂x
Yn(x2) · · · Yn(xi)

∂
∂x
Yn(xi)

 (3.41)
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3.2.3 Damping

As with most physical motion, there is loss associated with the spring response. The
loss, or damping, is in reality spatially distributed, similar to the spring stiffness and
inertia mass. Including damping in the same way as stiffness and inertia is however
difficult. As stated in (Borutzky, 2010), “. . . the well known separation-of-variables
approach, in general, is only applicable it there is no damping term in the differential
equation.”. further states that it is possible to obtain useful results by including
damping to each mode using a resistor with linear damping coefficient. According to
(Karnopp et al., 2012a) and (Borutzky, 2010), the linear modal damping coefficient is
presented as shown in equation 3.42, a function of the modal mass, the Eigen frequency
and the modal damping ratio. The mentioned modal damping ratio is usually found
experimentally.

bn = 2ξnωnmn (3.42)

Where:
bn Modal damping coefficient
ξn Modal damping ratio
ωn Natural frequency of the mode
mn Modal mass

The modal equation of motion including damping, is shown in equation 3.43, and the
corresponding bond graph model is shown in figure 3.12, with the modal damping
matrix as shown in equation 3.44.

knηn + bnη̇ +mnη̈n = Yn(x1)F1 +
dYn
dx

(x1)M1 + Yn(x2)F2 +
dYn
dx

(x2)M2 (3.43)

Figure 3.12: Field bond graph representation of the spring including n modes and i
output positions
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[R] =


b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · bn

 (3.44)

3.2.4 Residual compliance

As explained in (Borutzky, 2010) and (Karnopp et al., 2012a), is only a finite number
of modes needed to give correct response at a given frequency range. The numbers
of modes should be between 2 and 5 times the maximum frequency experienced. The
reason for this is that below a natural frequency, it is only the stiffness of the mode
that contribute to the response. The mass and damping does not.
By solving the modal equation of motion it can be shown that the modal displacement
for high values of ωn can be simplified to:

ηn = Cn

(
Yn(x1) · F1 +

dYn(x1)

dx
·M1 + Yn(x2) · F2 +

dYn(x2)

dx
·M2

)
(3.45)

In (Borutzky, 2010) and (Karnopp et al., 2012a) it is shown how the residual
compliance of a element can be developed. This is done for the radial springs next
The number of modes at which inertia damping and stiffness is included is from now
on reffered to as n. The compliance terms of the remaining modes, from mode n + 1
to ∞ , defined as the residual compliance, is developed next.

The beam displacement w found as a weighted sum of mode shapes and modal
displacements shown in equation 3.23, can be split into two parts as shown in equation
3.46. Here w′ is including modes 1 to n, and wres includes the modes from n + 1 and
up.

w(xi, t) = w′(xi, t) + wres(xi, t) (3.46)

w′(xi, t) =
n∑
v=0

Yv(xi)ηv (3.47)

w(xi, t)res =
∞∑

v=n+1

Yv(xi)ηv (3.48)

Substituting the modal displacement from equation 3.45 into the residual deflection
expression 3.48 gives the expression for the residual compliance shown in equation
3.49.
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w(xi, t)res =
∞∑

v=n+1

Yv(xi)Cv

(
Yv(x1) · F1 +

dYv(x1)

dx
·M1 + Yv(x2) · F2 +

dYv(x2)

dx
·M2

)
(3.49)

Expanding the residual deflection to include the deflection and rotation at i positions
the expression becomes as shown in equation 3.50 with the residual compliance matrix
defined from equation 3.51

−→w res = [r1,res]
T [C] [r1,res]

−→
F i = [Cres]

−→
F i (3.50)

−−→wres =



w1,res

θ1,res

w2,res

θ2,res
...

wi,res
θi,res


(3.51)

[Cres] = [r1,res]
T [C] [r1,res] =


Cn+1 0 · · · 0

0 Cn+2 · · · 0
...

...
. . .

...
0 0 · · · Cv

 (3.52)

[r1,res] =


Yn+1(x1) ∂

∂x
Yn+1(x1) Yn+1(x2) ∂

∂x
Yn+1(x2) · · · Yn+1(xi)

∂
∂x
Yn+1(xi)

Yn+2(x1) ∂
∂x
Yn+2(x1) Yn+2(x2) ∂

∂x
Yn+2(x2) · · · Yn+2(xi)

∂
∂x
Yn+2(xi)

...
...

...
... · · · ...

...
Yv(x1) ∂

∂x
Yv(x1) Yv(x2) ∂

∂x
Yv(x2) · · · Yv(xi)

∂
∂x
Yv(xi)


(3.53)

Here, the [r1,res] and [C] matrices are the same as the ones described in the previous
section , only now they include modes n+1 and upwards. The residual compliance
matrix is an i by i matrix, relating efforts and displacements, which corresponds to a
C-field. The summation of the displacements in equation 3.46 is taken care of by a 0
junction and the resulting bond graph is shown in figure 3.13.

The advantage of including the residual compliance as a sum of the contributions from
the v modes, is that the sum converges after relatively few modes, and a finite amount
of modes is needed for a residual compliance matrix with satisfying accuracy. This
is since the modal compliance decrease at higher modes and the high order modes
contribution to the sum is eventually of no significance.
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Figure 3.13: Finite mode field bond graph representation of the spring, including
residual compliance

3.3 Modelling the oil flow

The hydraulic part of the coupling is modelled using the procedure described in Ped-
ersen and Engja (2008)

The hydraulic system is divided in to two control volumes Chamber A, chamber B
with the slit KSlit combining them as shown in figure 3.14.

Figure 3.14: Oil chambers A and B

As the inner and outer member rotate, will both the control volume surface facing the
spring ASpring and the control volume facing the inner wall At move causing the control
volume change. In addition there will be fluid flow through the slit KSlit and change
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of fluid volume due to the compressibility of the fluid. The relationship between the
volume change rates is shown in equation 3.54.

∆QA = QAspring −QAT −QSlit

∆QB = QSlit +QAT −QBspring
(3.54)

Where:
∆QA Rate of fluid compression in chamber A
∆QB Rate of fluid compression in chamber A
QAspring Volume change rate due to the moving spring in chamber A
QBspring Volume change rate due to the moving spring in chamber B
QAT Volume change rate due to the moving inner wall
QSlit Volume flow through the slit

The pressure in chamber A and B, which is assumed to be constant throughout the
chamber volumes is defined as PA and PB. By multiplying equation 3.54 by the
appropriate pressures the result is the energy change rate of the control volumes. This
relation corresponds to 0-junctions as shown in figure 3.16

Figure 3.15: FBD of hydraulic part of the geislinger coupling

Fluid compressibility

The bulk modulus of the system is as explained in section 2.6 dependent on the
temperature of the system, the amount of trapped air in the system and the stiffness
of the body containing the hydraulic fluid. The effect of air in the system is neglected,
and the stiffness of the flexible coupling is seen as large compared to the bulk modulus
of the fluid, so only the effect bulk modulus of the hydraulic fluid is included.
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Figure 3.16: Summation of flows to and from the oil chambers

The compressibility is included using the finite difference form of the bulk modulus as
explained in in (Pedersen and Engja, 2008), where the bulk modulus is defined as the
pressure change due to compression of a fluid volume:

β = −VCV
∆P

∆V
(3.55)

∆P = P (t)− P0 Finite difference in pressure at time t and initial pressure
∆V Finite volume change
VCV Size of control volume

The bulk modulus relates the chamber pressure to difference in volume flow rate as:

P = P0 +
β

VCV

t∫
t0

∆Q dt (3.56)

Which corresponds to a C-element with compliance C defined as:

C =
VCV
β

(3.57)

Where the compliance is a function of the chamber volume, which is the original volume
plus the change of control volume due to the moving boundaries as shown in equation
3.55.

VA = VA0 +
t∫
t0

QAT dt−
t∫
t0

QAspring dt

VB = VB0 −
t∫
t0

QAT dt+
t∫
t0

QBspring dt

(3.58)

Spring-Piston

The energy flow rate in to the control volume due to deformation of the control volume
is in (Çengel et al., 2010) defined as:
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ẆPiston =

∫
CS1

P (~V · ~n)dS (3.59)

Where:
P Pressure in control volume
~V Fluid velocity field
CS1 Surface of the control volume facing the spring
~n Normal vector of the control surface

Since the normal component of the velocity at the spring surface is equal to the time
derivative of the spring deflection ~V ·~n = ẇ along with the assumption that the pressure
is constant throughout the chamber, can equation 3.59 be rewritten:

ẆPiston =

∫
CS1

P (~V · ~n)dS = P

∫
CS1

(ẇ)dS (3.60)

For the hydraulic part of the model to comply with the spring model described in
section 3.2, the spring is seen as n evenly distributed pistons as shown in figure 3.19.
Each piston have an area Ai = ASpring

n
. Assuming this, equation 3.59 can be simplified:

ẆPiston =

∫
CS1

P (~V · ~n)dS ≈ P
n∑
i=1

ẇiAi (3.61)

The volume change rate due to the n pistons deforming the control volume is equal to
the sum of the contributions:

Q =
n∑
i=1

ẇiAi (3.62)

Equation 3.61 in combination with equation 3.62 corresponds to the power relations
for a 0-junction as shown in figure 3.17.

The resulting force from the pressure acting on the spring is equal to the pressure
times the area and the hydraulic part of the model can be related to the mechanical
part using TF-element as shown in figure 3.17 with the area of the spring elements as
modulus. The area of the spring elements is the total area of the spring facing the
control volume divided by the number of elements:

F/Ai = P (3.63)

Due to the large number of elements in the mechanical domain is the field bond graph
representation used, so the demux block in 20-sim is used to sum the flows as shown in

40



CHAPTER 3. MODEL DEVELOPMENT

Figure 3.17: Piston work by spring

Figure 3.18: Demux A

Figure 3.19: Demux B

figure 3.18. To make the model more comprehensible, the demux block and 0-junction
are collected in the sub model DemuxA.

The same can be shown for oil chamber B, only the difference is that the positive power
flow direction is defined as from the hydraulic domain to the mechanical domain as
shown in figure 3.20. To make the model more comprehensible, the demux block and
0-junction are collected in the sub model DemuxB.
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Figure 3.20: Spring piston simplification

Slit

Since the compressibility within the slit is neglected, the volume flow in and out of the
slit is the same, and the slit volume flow is defined as:

QSlit = QAout = QBout (3.64)

The pressure drop through the slit, which here is denoted ∆PSlit, is the difference
between the pressure in chamber A and chamber B. If equation 3.55 is multiplied by
QSlit, the result is the energy flow rate relation for the slit which corresponds to a
1-junction.

∆PSlit = PA − PB (3.65)

The pressure drop through the slit assumed to follow the orifice equation as given in
(Pedersen and Engja, 2008):

Q = sign (∆P )CdA

√
2

ρ
|∆P | (3.66)

Cd Coefficient of discharge
ρ Fluid density
ASlit Slit area
∆P Pressure drop

This is a non linear relation between an effort and flow which corresponds to a R-
element. The resulting bond graph relating the energy exchange through the slit is
shown in figure 3.21

Using equation 3.66 in its original form will however cause problems with the numerical
solver. As the pressure differences is close to zero will the volume flow gradient ∂Q

∂∆P

go towards infinity. A small change in pressure will then cause an enormous change
in fluid flow, which causes the system to vibrate. These vibrations are not physical.
This problem is however avoided by using the relation shown in equation 3.67. The
constants ,A,s and b are found through visual comparison of equation 3.67 and 3.66.
Figure 3.22 shows the two functions compared. The approximation equation will only
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Figure 3.21: Volume flow and pressure drop through the slit

be valid for the pressure difference range used when fitting the curve. s Is the slope of
the flow curve close to zero and b is the slope of the flow curve far from zero.

Q = CDASlit

(
2

π
A arctan(s∆P ) + b∆P

)
(3.67)

Figure 3.22: Comparison of the pressure flow relations in equation 3.67 and 3.66.

The final bond graph model relating the oil pressure to the spring deflection is shown
in figure 3.23
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Figure 3.23: Hydraulic part of the flexicoupling model

3.4 Bumper

In (DNV, 2013a) it is required that the effect of any twist limiting devise is included
in the model.

This is done in the Geislinger coupling when the spring hits the inner wall of the inter-
mediate piece. This happens when the twist ϕ exeeds a maximum twist angle ϕmax,
as shown in figure 3.24

To incorporate this in the model a bumper is used. A bumper is in essence a C element
with the stiffness of the system when the spring hits the wall. The C element is acti-
vated when the twist angle exceeds the maximum twist angle. In addition the bumper
consist of an R element that dampen out the vibrations caused when the limiter is hit
after a few Oscillations.

The damper is incorporated in to the model as shown in figure 3.26, between the 1-
junction representing the nodal velocities. The stiffness of the wall is added to the
stiffness of the flexible coupling.
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Figure 3.24: Detailed view of the flexible coupling as the maximum deflection is
reached and the spring hits the twist limiter

When the absolute twist angle is below the twist limiting value K and B is zero and
when the twist angle is above the twist limiting value K and B is set equal to KBumper

and BBumper.

3.5 Combining the coupling model

To be able to combine the spring model with the hydraulic model and the global
relations model, shown in figure 3.4, 3.13 and 3.23 respectively, the vector power bonds
are expanded to comply with the vector power bonds going in to the spring. This is
done using Se-elements with zero effort and mux/demux elements as shown in figure
3.25.
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Figure 3.25: Expanding of the field bond graphs to comply with the spring using
effort sources

The result is the power bond connected to the spring with the effort vector:

~F =



F1

0
FP1

0
FP2

...
F2

M2


(3.68)

To avoid causality conflicts,in the 1-junctions representing the nodal velocities, is con-
nection connection between the springs and the outer member not seen as completely
rigid. I.e the outer member will deform due to the linear force from the spring.
The spring connection will also inherit some damping, which is included using the
R-element.

Causality conflicts makes the set of differential equations impossible to solve and must
therefore be avoided.
Doing this, another state is included in the system, along with another natural
frequency. The state in is self is not interesting, but this is a necessity to avoid
causality conflicts.
The final Flexible coupling bond graph relating the external torques to each other is
shown in figure 3.26.
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Figure 3.26: Flexible coupling bond graph relating the external torques to each other
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Chapter 4

Model Verification

The flexible coupling model developed in chapter 3 is dependent on a number of param-
eters. Geometric parameters, material parameters and hydraulic parameters. Many of
these parameters are dependent on each other and few of them are given by the flexible
coupling manufacturer. The parameters which are not given by the manufacturer has
to be approximated.

In this chapter is a selection of initial parameters chosen and verified.

4.1 Initial Parameters

The chosen coupling is the coupling with designation: B 110/10/45 UC/L A.1.

The designation stands for: Type of connection flanges / Outer diameter of centre
part in centimetres. / Width of the spring pack in centimetres. / Stiffness series. /
Reversible or non-reversible. / Left or right hand rotation.

The coupling is chosen based on the flexible coupling parameters presented in Polic
et al. (2013), to get some reference. The limited information given by the manufacturer
in the coupling catalogue Geislinger (2013), used in this model is listed in appendix A.1.

Since the detailed drawings of the coupling is not available at the time, are the mea-
surements based on the drawings given in the Geislinger coupling catalogue Geislinger
(2013). The drawings given here are given for illustrative purposes and are not correct
for all the coupling models. This is however the only thing to base the dimensions on.
So to get some idea of the dimensions, the drawings from the catalogue are scaled to
fit the global dimensions presented in appendix A.1 using CAD software. The dimen-
sions are then found by measuring the scaled drawing. The measured dimensions are
presented in appendix A.2.
Using the measurements from the drawings and the parameters given by the man-
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ufacturer are the rest of the geometric parameters found by using simple geometric
relations. This is shown in appendix A.3.
The material of the spring is not given so the material properties of construction steel
is used. These are listed in appendix A.4.
To find the modal damping ratio of the springs, experimental data would be needed.
This is not available, however in (Karnopp et al., 2012a), it is argued that it is often
enough to use modal damping ratios in the range of 0.01 to 0.1. The reference value
is therefore set to 0.1.

4.1.1 Hydraulic parameters

In the coupling catlaogue given by (Geislinger, 2013) is it stated that the oil supply
can come from the driving machinery, which means that the coupling uses the engine
lubrication oil. The 2 stroke engine in the propulsion drive train, which the flexible
coupling model is intended for, presented in (Polic et al., 2013), uses an engine oil
presented in (Castrol, 2012). This is a mineral oil with a density of 890 kilo/m3 at 15
◦C and atmospheric pressure. The viscosity of the oil at 100 ◦C is 11.5 mm2 s−1. In
(Hodges, 1996) The typical bulk modulus of a mineral oil is given as 1.57 GPa.

In (Pedersen and Engja, 2008), the coefficient of discharge is said to lay within 0.6
to 0.65 for a valve opening if the orifice edges are sharp. The lower value is used for
reference.

The curve fitting constants used in equation 3.67, were found using visual comparison
between the fluid flow found from equation 3.67 and the approximation formula 3.66.
The result is shown in figure 3.22

4.1.2 Twist limiter

The twist limiter stiffness is in reality a result of how the coupling deforms as the spring
hits the twist limiter. To find a accurate value of this the coupling would have to be
modelled using the finite element method and the exact dimensions of the coupling,
which is not available as of now.

However to get some idea of the stiffness, the outer member is seen as rigid while the
twist limiter is seen as a bar subjected to longitudinal deformation. The stiffness of
the twist limiter is then 7e10 [N m rad−1]. The calculations are shown in section A.6.
This value is however too high as both the spring hitting the twist limiter and the
intermediate piece has stiffness. To get some reference, the bumper stiffness is set to
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one third of the maximum stiffness KBump = 2.35e10.

The bumper damping coefficient bbump, is found by visual interpretation of the bumper
deformation. The value is set such that the bumper deflection oscillations dies out
after a number of oscillations, when subjected to a sudden load. As a reference bBump
is set to the value of the bumper stiffness times 1e-5.

The stiffness and damping coefficient of the compliance element fixing the radial spring
to the outer member is comparable to the stiffness and damping coefficient of the twist
limiter since both depend on the stiffness of the outer member, and is therefore given
the same value. In other words, the uncertainty of both is comparable.

4.1.3 Fixing the coupling

To investigate how the coupling acts as it is subjected to harmonic loads, the coupling
is fixed at the outer member which is the node closes to the propeller. This is done
using a Sf element with zero velocity. To avoid causality conflicts, a C-element is added
between the coupling and the fixing point. This is comparable to connecting a short
piece of propeller shaft to the coupling and fixing one end. This adds another another
state to the coupling system, along with another natural frequency. The value of this
compliance is not important as long as it is high enough and does not affect the system
response at the operating frequencies experienced by the coupling.

4.1.4 Static stiffness

The natural place to start the parameter study the static stiffness of the coupling, as
it depends on the fewest variables. The static stiffness is given by the manufacturer,
and for the chosen coupling the values are shown in appendix A.1.

The static stiffness is the rotational stiffness of the coupling as the coupling is twisted
at low frequencies. The static stiffness depends on the geometry of the spring and the
inner and outer member. More specific the cross sectional area of the spring, the radii
of the inner and outer member and the number of spring/oil-cells.

In (Geislinger, 2013), the manufacturer states that the rotational stiffness of the cou-
pling is linear up to values 1.4 times the nominal torque. This means that the tapered
springs behaviour is close to a springs with constant cross sectional area below 1.4
times the nominal torque.

Figure 4.1 shows a torque versus twist plot of the damper as it is clamped in one end
and excited by a harmonic force with a low frequency (ω = 1[rad s−1]) and a amplitude
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equal to 10 % of the nominal torque. The force is completely reversed.

Figure 4.1: Hysteresis plot of the damper as it is clamped in one end and excited by
a completely reversed harmonic force with ω = 0.1[rad s−1] and a amplitude equal to
10 % of the nominal torque.

The stiffness is clearly constant in this region.
From figure 4.1, using equation 2.10 the static stiffness is found to be 10.98
[MN m rad−1], which is 233% of the value given by the manufacturer.

4.2 Improving the Static Stiffness

The stiffness value found in the previous section is too high. This means that one or
more of the geometric parameters chosen is wrong. Next the effect of changing the
spring cross sectional area and the spring length is investigated.
By changing the height of the spring profile, the static stiffness changes as shown in
figure 4.2.

Changing the spring length can be done in two ways, either changing the radius of the
inner member, or the radius of the outer member. Figure 4.3 and 4.4 shows how the
stiffness of the coupling changes with changing r1 and r2.

There is a infinite number of combinations within the boundary conditions given by the
manufacturer that produce the same static stiffness, so finding the correct dimensions
based on the static stiffness is impossible. However by changing the profile height
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Figure 4.2: Static rotational stiffness of the coupling at different spring profile heights

Figure 4.3: Static rotational stiffness of the coupling at different radii of the inner
member

to 26.3 mm, the coupling model exert the same stiffness as the data given by the
manufacturer and this will be used as a basis from now on.
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Figure 4.4: Static rotational stiffness of the coupling at different radii of the outer
member

4.2.1 Spring flexible modes

Having established the dimensions of the spring, the natural frequencies of the spring
can be found using equation 3.12 from section 3.2. The first natural frequency of the
spring is 6148 [rad s−1]. This is 8.9 times the characteristic coupling frequency of the
coupling and more five hundred times the rated RPM of the engine. It is therefore safe
to assume that the spring will not vibrate at any of the flexible modes. In (Karnopp
et al., 2012b) it is recommended to keep flexible modes with natural frequencies that
are from two to five times the frequencies experienced by the system.

The spring model is therefore reduced to the bond graph shown in figure 4.5. Where
all the flexible modes are included in the residual matrix. The transfer matrix contain
only contributions from the solid body motion modes as shown in equation 4.1, while
the modal mass matrix contains the mass and rotational inertia of the spring, mspring
and Jspring.

[r1] =

[
Y1(x1) ∂

∂x
Y00(x1) Y00(x2) ∂

∂x
Y00(x2) · · · Y00(xi)

∂
∂x
Y00(xi)

Y0(x1) ∂
∂x
Y0(x1) Y0(x2) ∂

∂x
Y0(x2) · · · Y0(xi)

∂
∂x
Y0(xi)

]
(4.1)

I =

[
mSpring 0

0 JSpring

]
(4.2)

Where the solid body motion modes are:

Y00 = 1
Y0 = x− L

2

(4.3)
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Figure 4.5: Bond graph model of the radial springs, including no flexible modes

And x, is position along the spring and xi is the output positions of the spring as
explained in section 3.2.

4.3 Dynamic Stiffness and Damping

Having established reasonable reference geometric parameters, the frequency response
of the flexible coupling can be investigated. The best means of comparing the flexible
coupling model developed in this master thesis with the original Geislinger flexible
coupling, is by comparing the dynamic stiffness and damping factor. These are as
shown in section 2.3.1, presented for a frequency range up to the characteristic cou-
pling frequency in (Geislinger, 2013).

The damping factor and stiffness of the coupling at varying frequencies is found us-
ing the method described in section 2.2. The hysteresis loop is found at different
frequenciesby clamping the coupling at the node facing the propeller and subjecting
the node facing the engine to a harmonic load. The load 10% of the nominal torque
of the flexible coupling. For the zero flow boundary to be possible to impose on the
coupling, a stiff compliance element is included between the zero flow boundary and
the coupling. This is comparable to connecting the coupling to a fixed base using a
short shaft element. The inertia of the inner and outer member is not included in the
simulations, as including them would would shift the hysteresis plot and the coupling
stiffness and damping would not be correct.

The displacements found from the simulations are not completely stable, in that the
displacement varies somewhat between the different loading and unloading cycles. This
is due to integration errors by the numeric solver in 20-sim. Since the results vary is
the data presented using the mean value and the coefficient of variance.
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The hysteresis loop of the coupling found using the parameters presented in appendix
A.1 and the spring profile height found in section 4.2, is shown in figure 4.6 and 4.7.
Figure 4.8 and 4.9 shows how the coupling stiffness and non dimensional damping
factor found from the simulations plotted against the values given by the coupling
manufacturer.

4.3.1 Results

Figure 4.6: Coupling twist through a loading cycle plotted agaisnt excitation torque
at different excitation frequencies
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Figure 4.7: Coupling twist through a loading cycle plotted agaisnt excitation torque
at different excitation frequencies

Figure 4.8: Coupling stiffness at different excitation frequencies found by simulation
plotted against the stiffness given the coupling stiffness given by the manufacturer
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Figure 4.9: Non dimensional damping factor at different excitation frequencies found
by simulation plotted against the stiffness given the coupling stiffness given by the
manufacturer

Figure 4.10: Maximum elastic potential energy and amount of energy dissipated by
the coupling through one loading cycle at different frequencies
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Figure 4.11 and 4.12 shows how the volume flow through the slit and pressure difference
between chamber a changes with changing excitation frequency

Figure 4.11: Volume flow through slit at different excitation frequencies

Figure 4.12: Pressure difference between oil chambers at different excitation
frequencies
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Figure 4.13 and 4.14 shows how the chamber volume of chamber A and chamber b
changes with changing excitation frequency throughout a loading cycle.

Figure 4.13: Chamber volume of chamber A throghout a loading cycle at different
excitation frequencies

Figure 4.14: Chamber volume of chamber B throghout a loading cycle at different
excitation frequencies
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Figure 4.15: Rate of coupling deflection, ϕ̇, at different excitation frequencies

4.3.2 Discussion

The gradient of the hysteresis loop increases with frequency within the frequency range
evaluated, as shown in figure 4.6 and 4.7. The difference between the minimum and
maximum coupling twist decreases while the difference between the torque at these
points increases. This causes the stiffness to increase as shown in figure 4.8.

Another thing that is apparent from the hysteresis plot (figure 4.6 and 4.7) is that the
maximum deflection occurs later and later relative to the maximum torque. This is
since the damping torque is phase shifted 90◦ relative to the elastic torque. As the
size of the damping torque increase, so will the phase shift between the deflection and
damping torque.

The stiffness increases at higher frequencies since to the change in oil chamber volume
has to happen faster at higher frequencies. Due to the volume flow-pressure relation
in equation 3.67, is a higher pressure required to increase the volume flow. Since less
oil escapes than the volume changes will the oil have to compress. The consequence is
that, as the excitation frequency increases so does the amount of oil that have to be
deformed.

The extreme cases would be; no flow restrictions and completely stopping the flow be-
tween the chambers. If there is no flow restriction the stiffness of the coupling would
be the same as the static stiffness, and if the flow was completely stopped would the
coupling inherit both the stiffness of the spring and the oil. Figure 4.8 shows that the
coupling stiffness at low frequencies is close to the static stiffness.

From figure 4.8 it can be seen that the stiffness gradient is a function of excitation fre-
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quency, and within the frequency range evaluated will decrease at higher frequencies.
Since the stiffness increases at higher deflection velocities, and because the amplitude
of the torque excitation is kept constant, the coupling deformation will become smaller.
As a consequence, the deformation rate does not increase linearly with excitation fre-
quency. Figure 4.15 shows how the change in coupling deflection rate reduces at large
velocities. Since the change in the coupling deflection rate is lower at high frequencies,
the change in oil flow velocity will follow the same trend. This causes the decrease in
the stiffness gradient.

Figure 4.10 shows how the maximum potential energy decreases at higher frequencies.
The reason for this is the increasing stiffness, which causes a smaller coupling twist at
higher frequencies.

The dissipated energy is as shown in equation 2.4, the excitation torque times the
coupling deflection rate, integrated over a period. The coupling deflection rate change
decreases as mentioned at higher excitation frequencies. This in addition to the fact
that the excitation period changes inversely with the excitation frequency, causes the
energy dissipated during one excitation cycle to increases until it reaches a maximum
value, then decrease. This can be seen from figure 4.10. This can also be observed in
the hysteresis curves shown in figure ?? and ??, since the dissipated work is the area
enclosed by the curve as explained in section 2.2.

The damping factor is as stated in section 2.2 defined as the relationship between the
dissipated energy and the maximum elastic energy during one loading cycle times 2π.
As shown in figure 4.10 is the gradient of the maximum potential energy during a cycle
times 2π , lower than the gradient of the dissipated energy. As a consequence increases
the damping factor as shown in figure 4.9.

4.4 Improving the Dynamic Stiffness and Damping

The stiffness and damping coefficient found in the previous section are not equal to
the values given by the manufacturer. Next is the effect of changing the coefficient
of discharge investigated, to see if it is possible to improve the dynamic stiffness and
damping characteristics of the flexible coupling model.

Figure 4.17, shows the effect of changing the coefficient of discharge on the coupling
stiffness, while figure 4.17 and 4.18 shows the effect on the coupling damping and
dissipated energy respectively. The values checked range from 0.5 to 0.7.
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Figure 4.16: Coupling stiffness at different excitation frequencies and different
discharge coefficients, found by simulation. Plotted against the stiffness given the
coupling stiffness given by the manufacturer

4.4.1 Effect of changing the coefficient of discharge

The results show that when using higher Cd values does the coupling stiffness gradient
decrease. The reason for this is that a lower pressure difference is required to obtain
a oil flow velocity. This means that the amount of oil that is compressed is smaller at
the same excitation frequency, and the stiffness is lower.

Using a discharge coefficient of 0.7 give similar coupling stiffness as the manufacturer
gives. This does however not mean that this is the correct value. The coefficient of
discharge times the slit area is from Pedersen and Engja (2008) given as:

CDA =
Q√
2
ρ
∆P

(4.4)

Where
CD Coefficient of discharge
∆P Pressure difference over the slit
Q Volume flow
rho Fluid density
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Figure 4.17: Non dimensional damping factor at different excitation frequencies and
different discharge coefficients, found by simulation. Plotted against the stiffness given
the coupling stiffness given by the manufacturer

An infinite number of CD and A values would produce the same pressure-flow rela-
tionship. The slit area is given explicitly by the manufacturer for a single oil chamber,
unfortunately is the number of oil chambers given directly and are found using the
approximation described in section 4.

However, both the stiffness and damping factor using the discharge coefficient of 0.7
are closer to the data given by the manufacturer than the other values as shown in fig-
ure 4.17. The reason for the damping factor decreasing at higher discharge coefficients
is that the amount of energy required to push a amount of fluid through is lower for a
higher discharge coefficient causing.

Since a discharge coefficient of 0.7 gives the closes results is this used next.

4.5 Discussion

The model developed in this master thesis, called coupling-M, has several limitations.
First of all does coupling-M not include the tapered radial springs as the Geislinger
model has. As mentioned in (Geislinger, 2013), does the spring stiffness behave lin-
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Figure 4.18: Maximum elastic potential energy, Ad, and amount of energy dissipated
by the coupling through one loading cycle, Ael, at different frequencies and different
discharge coefficients.

early up to 1.4 times the nominal torque. Up to this limit it can be assumed that
coupling-M spring stiffness is a good representation of the Geislinger coupling spring
stiffness. However at higher excitation torque values, as the ones experienced during
ice-propeller interactions, the coupling-M stiffness is not a good representation of the
Geislinger coupling spring stiffness.

Coupling-M does not include fluid inertance. This might be reasonable to assume as
the velocities at which the fluid travels is lower than the speed of sound in the oil, but
this has to be verified by including it in the model.

Another thing is that the volume change due to the spring deflection is a approxima-
tion, as explained in 3.3. Since the volume change is one of the things that affect both
the damping and stiffness, might this be of grate importance.

The effect of air in the oil on the compressibility is not included. The effect of including
the air compressibility is grates at low pressures. Low pressures might occur in the
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oil chamber where the volume increases, and depends on the initial pressure in the
chambers.

Even though the dynamic stiffness and damping factor of coupling-M are comparable
to the data given by the manufacturer, will there be an infinite amount of parameter
combinations that produce the same characteristics.

While some of the geometric parameters are given explicitly by the manufacturer, Is
most of the geometric parameters found as described in section 4 and there is uncer-
tainties connected to the them.

Last but not least is the coefficient of discharge assumed to be constant. This might
be reasonable but needs to be determined through CFD calculations.
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Chapter 5

Case Study

5.1 Drive train model

The coupling model developed in section is using the parameters found in section 4,
included in a propulsion drive train model as shown in figure 5.1. The model including
this coupling is referred to as coupling-M.

In (Polic et al., 2013), the author explains how the model is built up from a engine,
propeller shaft and propeller:

The engine is a effort source controlled by a PI regulator setting the torque based on
a RPM input. Included in the engine model is also the crank shaft inertia and me-
chanical loss using an I and R element respectively. One change is made however. The
engine torque of the original model is constant. This is not the case for a real propul-
sion drive train, as the gas forces acting on the piston and the pistons movement will
cause torsional vibrations in addition to the mean torque. As a reference is a harmonic
load of 1% of the nominal torque added to the torque constant engine torque. The
frequency of this harmonic component correspond the 7th engine order. Without this,
the coupling developed in this master thesis would not have had the correct damping
and stiffness characteristic.

Next, the propeller shaft is modelled using the finite mode superposition method de-
scribed in section 3.2 only for the torsional domain. In addition to the solid body
mode are three flexible modes included.

While the propeller model consists of the propeller inertia and the hydraulic resistance
working on the propeller described by the propeller law. In addition to the inertia
and hydraulic resistance does the R-element include the ice-propeller interaction law
explained in section 2.5.

In addition to this the original model uses a flexible coupling with linear damping
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coefficient and stiffness. The stiffness value used is the static stiffness of the coupling,
while the damping coefficient corresponding to a deflection rate of 43 [rad s−1]. The
flexible coupling parameters correspond to the same coupling as the coupling model
developed in this master thesis was developed from (Table A.1).

The original bond graph model including the coupling as a linear stiffness and damping
element is shown in figure 5.2. The model is used for comparing the performance of
couplin-M and is referred to as coupling-ref.

5.1.1 Difference between the flexible coupling model modules

The main differences between coupling-M and coupling-ref listed below: Coupling-
ref:

• The flexible coupling stiffness is included as a C-element with constant stiffness
with respect to coupling deflection magnitude and coupling deflection frequency
and velocity.

• The torque acting on both the engine and propeller side of the coupling is always
equal.

• The flexible coupling includes no twist limiting device.

Coupling-M:

• The radially aligned springs are included using constant cross sectional area,
making the spring stiffness linear with respect to deflection.

• The coupling stiffness changes with coupling deflection velocities. This is due
to the oil compressibility and fluid flow between the chambers as explained in
section 4.3.2

• The damping effect of the oil flow between the chamber is included, causing the
damping coefficient to change as a function of deflection velocity as explained in
section 4.3.2.

• The model includes a twist limiter, which causes significant change of coupling
stiffness as the maximum twist angle is reached and the twist limiter is engaged.

5.1.2 Loading conditions

The behaviour of coupling-M is compared to coupling-ref. This is done by subjecting
the propulsion drive train to the Ice propeller interaction torque designated ”Torque
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excitation Case 1” in (DNV, 2013b) for the ice class designated ICE 1A. The torque
profile is shown in figure 5.3. The engine torque is applied in two steps. After 5.5
second reaches the engine full speed. At this point is the ice propeller load introduced.
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Figure 5.1: Figure showing the bond graph model of a propulsion drive train
presented in (Polic et al., 2013) including coupling-M
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Figure 5.2: Original drive train model which the model shown in figure 5.1 based on.
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Figure 5.3: Shape of the propeller ice torque excitation for torque case 1 (DNV,
2013b). Cq = 0.75 ai = 90

72



CHAPTER 5. CASE STUDY

5.2 Simulation results 1

Figure 5.4: Figure showing the torque acting on the propeller using coupling-ref,
TProp,ref and coupling-M, Tprop,M , as the propeller is subjected to ice loads, T-ICE

Figure 5.5: Figure showing the torque acting on the propeller during the first four
ice impacts for coupling-ref, TProp,ref and coupling-M, Tprop,M , as the propeller is
subjected to ice loads, T-ICE.
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Figure 5.6: Figure showing coupling deflection of coupling-M, φ, and coupling-ref,
φref , as the propeller is subjected to ice loads. φlim is the twist angle at which the
twist limiter is engaged.

5.3 Discussion 1

Figure 5.4 and 5.6 shows the torques acting on the propeller of the drive train model
using the coupling developed in this master thesis, designated coupling-M, and the
drive train model using the coupling used in (Polic et al., 2013), designated coupling-
ref.

From figure 5.4 and 5.6 it can be seen that coupling-ref is under-dimensioned . Figure
5.6 shows how the maximum coupling twist, ϕLim, is reached before the engine reaches
full power. The consequence is that the spring hits the twist limiter , and the coupling
stiffness is the same as the bumper stiffness, as explained in section 3.4

The maximum torque is constantly increasing. The reason for this is that the engine
PI-controller observes that the propeller rotational velocity decreases and increases the
engine torque.

By comparing the torque acting on the propeller using coupling-M, TProp,with the
propeller torque using coupling-ref, TProp, shown in figure 5.5. It can be seen that
TProp is higher than TProp,ref . The reason for this is that coupling-M effectively stops
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Figure 5.7: Figure showing the torque acting on the flexible coupling using coupling-
ref, Tc,ref and coupling-M, as the propeller is subjected to ice loads, T-ICE. T1 is the
torque acting on the engine side of coupling-M, while T2 is the tourqe acting on the
propeller side of the coupling

Figure 5.8: Figure showing the torque acting on the flexible coupling using coupling-
ref, Tc,ref and coupling-M, T1 (engine side) and T2 (propeller side) , as the propeller is
subjected to ice loads, T-ICE. The figure shows the 6th and 7th ice impacts

deflecting after hitting the twist limiter. This causes the propeller velocity to change
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Figure 5.9: Figure showing coupling deflection of coupling-M, φ, as the propeller is
subjected to ice loads.φlim is the twist angle at which the twist limiter is engaged. The
figure shows the time interval of the first two ice impacts.

Figure 5.10: Figure showing shaft deflection, φShaft, as the propeller is subjected to
ice loads. The figure shows the time interval of the first five ice impacts.

faster, giving rise to higher torques.

The higher stiffness causes the incline of torque acting on coupling-M to be higher
than the incline of the torque acting on coupling-ref. The torque does however not
get as high as the torque acting on coupling-ref, as shown in figure 5.7 and 5.8. The
reason for this is that as the lack of damping in coupling-M causes the propeller shaft
to vibrate, as seen in figure 5.10 showing the shaft deflection and figure 5.9 showing
the coupling deflection.
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5.4 Simulation results 2

To see how the coupling performs while the twist limiter is not engaged, the number
of spring/oil chamber cells was increased from 12 to 36. Figures 5.11 to5.15 shows the
torque acting on the propeller and flexible coupling in addition to the coupling and
shaft deflection. Figure 5.16 to 5.18 shows the pressure drop between the oil chambers,
the volume flow through the slit and the chamber volume of the coupling.

Figure 5.11: Figure showing the torque acting on the propeller using coupling-ref,
TProp,ref and coupling-M, Tprop,M , as the propeller is subjected to ice loads, T-ICE.

5.5 Discussion 2

By increasing the number of spring/oil chamber cells in coupling-M, from 12 - 36,
the coupling stiffness is increased by a factor of 3. The coupling-ref stiffness is also
increased by the same amount. This way, both the couplings have the same static
stiffness. This is a way of investigating what happens when a coupling with more ap-
propriate size is used in the drive train model without changing the drive train model.

Figure 5.11 shows the new torque acting on the propeller when including coupling-M
and coupling-ref in the drive train model. Figure 5.12 shows that coupling-M does
not reach the limiting twist angle. This means that it is the springs and the oil that
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Figure 5.12: Figure showing coupling deflection of coupling-M, φ, and coupling-ref,
φref , as the propeller is subjected to ice loads. φlim is the twist angle at which the
twist limiter is engaged.

Figure 5.13: Figure showing the torque acting on the flexible coupling using coupling-
ref, Tc,ref and coupling-M. T1 is the torque acting on the engine side of coupling-M,
while T2 is the tourqe acting on the propeller side of the coupling

causes the stiffness and not the twist limiter. The propeller torque curve is steeper for
coupling-M than for coupling-ref. This is due to the effect of the oil compressibility
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Figure 5.14: Figure showing the torque acting on the flexible coupling during the
third ice impact, using coupling-ref, Tc,ref and coupling-M, T2

Figure 5.15: Figure showing shaft deflection, φShaft, as the propeller is subjected to
ice loads. The figure is zoomed up to show the time interval of the third ice impact.

increasing the stiffness of coupling-M. This is also apparent from the lower levels of
couplin-M twist angle compared to coupling-ref twist angle shown in figure 5.12.

The torque acting on the engine side and propeller side of coupling-M and coupling-
ref, presented in figure 5.13, shows how coupling-M isolates the peak torques from the
ice-propeller interaction loads from the engine. In addition to isolating some of the
engine torque pulses from the propeller side of the coupling. This is not achieved by
coupling-ref.

In figure 5.14 the torque acting on the coupling coupling during third ice-propeller
impact is shown. By comparing the gradients of the propeller side torque of coupling-
M and coupling-ref, it can be seen that coupling-M is more stiff than coupling-ref
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Figure 5.16: Oil flow between chamber A and chamber B of the flexible coupling
during the ice impacts

Figure 5.17: Pressure difference between chamber A and chamber B of the flexible
coupling during the ice impacts

while the ice impact load increase and decrease, while coupling-M is less stiff than
coupling-ref while the impact load is at its maximum. The reason for this is found
by inspecting figure 5.16 and 5.17. The pressure difference between the oil chambers
decreases at ones the maximum ice load is reached. The reason for this, is that the
oil pressure in the oil chambers depends on the amount of oil that is compressed. The
high compliance of the oil means that small change of oil causes a large change in
pressure. This means that only a small amount of oil has to escape the oil chamber
before the pressure change is significant. As the maximum ice impact load is reached,
and the outer member of the coupling stops moving relative to the inner member, the
pressure is at it highest causing a high volume flow between the chambers. Since the
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Figure 5.18: Volume of the oil chamber as the flecible coupling deflects due to the
ice impact loads. VA is the volume of chamber A, VB is the volume of chamber B and
V0 is the initial volume of the chambers.

geometric volume of the oil chamber has stopped changing at this point as shown in
figure 5.18, will volume flow out of the chamber cause pressure to drop quickly. This
means that the pressure force acting on the spring is lower and the coupling stiffness is
closer to the static stiffness. As the volume starts changing again due to the decreasing
ice impact load, the pressure difference increases, resulting in higher stiffness.

By comparing the shaft twist in figure 5.15 to the shaft twist in section 5.10, it can
be seen that the vibrations are avoided by increasing the stiffness of the coupling and
avoiding the twist limiter being engaged.
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Chapter 6

Conclusion and Recommendations
for Further Work

6.1 Conclusion

A model of a Geislinger type flexible coupling was developed using the bond graph
approach. The model includes radially aligned springs modelled using finite mode
superposition. Unlike the actual Geislinger flexible coupling which have springs with
tapered cross section, are the springs in the model included using constant cross section.
The effect of the oil compressibility is also included. In addition, is the pressure drop as
the oil flows between the chambers included in the flexible coupling bond graph model.

Some of the parameters used in the model are given explicitly by the flexible coupling
manufacturer. However, most of the geometric parameters are not given explicitly,
and were found by approximation within the limits given by the flexible coupling man-
ufacturer.

The coupling manufacturer provides stiffness and damping coefficient values at a range
of excitation frequencies. Simulations show that the stiffness at zero frequencies is ob-
tainable by changing the radius of the inner member, the radius of the outer member
and the height of the spring profile.

Using the spring profile height giving correct static stiffness, the first natural frequency
of the spring was found to be outside of the operating range of the flexible coupling.
The springs flexible modes was therefore omitted from the model.

Simulations showed that the coupling stiffness increases with frequency within the
frequency range investigated. The reason for this is that the amount of oil that is
compressed increases at higher frequency due to higher pressure drop as the oil travels
from one chamber to another. The gradient of the stiffness decreases at higher fre-
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quencies. The reason for this is that the increased stiffness at higher frequency causes
the oil chamber volume to change less.

In addition, did the simulations show that the damping factor increases with frequency,
while the gradient decreases. The reason for this is that the maximum potential en-
ergy of the coupling during one loading cycle decreases at higher frequencies. This is
due to the increasing stiffness and that the energy dissipated during one loading cycle
decreases after reaching a maximum value. The reason for the dissipated energy to
decrease. is that the increased stiffness causes the amplitude of the coupling deflection
to decrease at higher frequencies.

The damping factor and dynamic stiffness were found to be to high, compared to the
data given by the manufacturer. The parameter that has the highest effect on the fre-
quency response is the coefficient of discharge. This is since this controls the amount
of oil that escapes the oil chamber at a given pressure. Simulations did show that by
increasing the coefficient of discharge produced similar damping and stiffness coeffi-
cients as the values given by the manufacturer. This does not mean that the parameters
chosen are correct, as a number of parameter combinations would give the same results.

The bond graph model of the flexible coupling was implemented in a bond graph model
of a marine propulsion drive train, subjected to ice impact loads. Simulations did show
that the coupling stiffness was to low for excitation torque of the engine, so that the
twist limiter was engaged before the ice impacts occurred. This caused the coupling to
adopt the stiffness of the twist limiter and the damping characteristics of the flexible
coupling was lost, causing vibrations in the shaft.

The simulations were also performed by using a flexible coupling model with an in-
creased number of spring/oil chamber cells. During these simulations, the twist limiter
was not engaged. The simulation results did show that the flexible coupling model de-
veloped in this master thesis had a higher stiffness than the flexible coupling model
used for comparison. The stiffness was higher while the ice load gradient was large,
and while the load changed direction the stiffness became lower than the reference
model. The reason for this is that the oil compressibility causes the pressure acting on
the springs to decrease at once the oil chamber volume stops changing.

6.2 Recommendations for Further Work

The effect air trapped in the oil has on the compressibility of the oil is not included
in this model . This should be further investigated since this will cause the total com-
pressibility of the oil to change significantly under low pressures, which occur during
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impulse loads acting on the flexible coupling. In addition is the radially aligned springs
included without changing cross sectional area. The effect of the changing cross sec-
tional area is highest at large deflections, and should therefore be included to get the
correct response during impulse loads.

The vibratory excitation torque from the engine is modelled as a simple harmonic
function. Since the coupling characteristics were shown to change based on the nature
of the excitations is it recommended that a more realistic excitation torque is included
to investigate the response during impulsive loads.

The pressure-flow relation describing the volume flow between the chambers used in
the model was assumed to follow the orifice equation. As the pressure-flow relation is
one of the major effects that controls the coupling characteristics is it recommended
that CFD simulations are performed to verify the pressure flow relation.
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Appendix A

Coupling parameters for the refer-
ence model

A.1 Coupling parameters given by the manufac-

turer

The parameters given by the manufacturer in the coupling catalogue Geislinger (2013).

Parameter Value Unit Symbol
Nominal torque 218 [kN m] TKN
Static torsional stiffness 4.7 [MN m rad−1] CTstat
Characteristic coupling frequency 690 [rad s−1] ω0

Permissible damping torque 3620 [N m bar−1] Td.p
Radial misalignment 0.9 [mm] ∆Kr

Rotational inertia of inner member 21.70 [kg m2] J1

Rotational inertia of outer member 305 [kg m2] J2

External diameter 1.10 [m] D
Coupling width 0.249 [m] B
Width of the spring pack 0.10 [m] wSpring
Twist at nominal torque 0.045 [rad] ϕNominal

Table A.1: Coupling parameters given by the manufacturer for coupling - BC
110/10/45 UC/L (Geislinger, 2013)

A.2 Measured Coupling Dimensions

The measured dimensions are shown in figure A.1,A.3 and A.4. The measured
dimensions are also listed in table A.2.
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A.2. MEASURED COUPLING DIMENSIONS

Figure A.1: Drawing of the coupling from the catlaogue (Geislinger, 2013), scaled to
the measurements of the BC 110/10/45 UC/L-Coupling. Side view. Measurements in
mm
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Figure A.2: Drawing of the coupling from the catlaogue (Geislinger, 2013), scaled to
the measurements of the BC 110/10/45 UC/L-Coupling. Front view

Parameter Value Unit Symbol
Number of cells 12 [-] ncell
Inner radius of chamber 0.135 [m] r1

Outer radius of chamber 0.507 [m] r2

Height of the spring at the inner end 0.046 [m] h1

Height of the spring at the outer end 0.017 [m] h2

Distance between the twist limiter and spring 0.020 [m] DLim

Length of twist limiter 0.010 [m] LBump
Heigth of twist limiter 0.020 [m] hBump
Distance from center of twist limiter to r1 0.012 [m] rBump
Maximum twist 0.070 [rad] ϕLim

Table A.2: Geometric parameters measured from upscaled drawing
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A.2. MEASURED COUPLING DIMENSIONS

Figure A.3: Drawing of the coupling from the catlaogue (Geislinger, 2013), scaled to
the measurements of the BC 110/10/45 UC/L-Coupling. View A:1. Measurements in
mm

Figure A.4: Drawing of the coupling from the catlaogue (Geislinger, 2013), scaled to
the measurements of the BC 110/10/45 UC/L-Coupling. View A:2. Measurements in
mm
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A.3 Calculated coupling parameters

The geometric parameters in table A.3 are found using equations A.1 - A.8.

Parameter Value Unit Symbol
Effective length of spring 0.372 [m] LSpring
Average height of the spring 0.0315 [m] hSpring
Average area of the spring profile 0.00315 [m2] ASpring
Average polar moment of inertia of the spring profile 2.6e-7 [m4 IProfile
Area of the slit 0.00009 [m2] ASlit
Tangential projection of the inner wall area of the chambers 0.0372 [m2] AT
Distance between r1-r2 and the coupling axis 0.321 [m] rP
Initial oil chamber volume 0.000538 [m3] V0

Table A.3: Geometric parameters of the coupling found using equations A.1 - A.8.

Effective spring length:

LSpring = r2 − r1 (A.1)

Average height of the spring:

hSpring =
h1 + h2

2
(A.2)

Average area of the spring:

ASpring = hSpring · wSpring (A.3)

Average polar moment of inertia of the spring profile:

ISpring =
wSpringh

3
spring

12
(A.4)

Area of the slit:
ASlit = ∆KSlitwSpring (A.5)

Tangential projection of the inner wall of the oil chambers:

AT = (r2 − r1)wSpring (A.6)

Distance between the area center of the chamber and the coupling axis:

rp = r1 +
r2 − r1

2
(A.7)

Initial oil chamber volume

V0 =

(
LSpring · (DBump + LBump)

1

2
− (LBumphBump)

)
wSpring (A.8)
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A.4. SPRING PARAMETERS

A.4 Spring parameters

In (Johannessen, 2002), the modulus of elasticity and density of steel is given as shown
in table A.4.

Parameter Value Unit Symbol
Youngs modulus of the spring material 200 [GPa] E
Density of spring material 7850 [kg m−3] ρ
Modal damping ratio 0.01 [-] ξ

Table A.4: Spring parameters

A.5 Hydraulic parameters

A.6 Bumper parameters

The axial deformation related to the force acting on the twist limiter is (?):

wB = F
LB
ABE

(A.9)

wB Deformation of twist limiter
F External force acting on twist limiter
LT Length of the twist limiter seen as flexible
AT Area of the twist limiter facing the spring
E Modulus of elasticity of the twist limiter material

Where the force acting on the twist limiter found from using the torque acting on one
spring/chamber cell T/n and the distance between the center of the twist limiter to
the center of the coupling axis rb:

F =
T

rBn
(A.10)

Which give the maximum stiffness of the twist limiter as:

KMax = nrB
ABE

LB
(A.11)

Using the dimensions in table A.3 and A.3 the stiffness is: 7.056e10 [N m rad−1]
The angle between where the radial spring hits the twist limiter and the twist limiter
is measured in the same manner as described in section 4 and found to be 4◦or 0.07
rad as shown in section A.2, figure A.3.

VI
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