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Abstract

In recent years, thruster assisted position mooring systems have become more commer-
sially available, especially in the oil industries. The vessels tend to operate in harsh
weather more frequently, and the desire for a larger weather window is inevitably present.

For harsh weather, nonlinear effects dominate the dynamics to a larger extent than for calm
weather. The low frequency dynamics of a moored vessel are excited by second order wave
drift forces. To counteract the low-frequency resonant dynamics of the mooring system,
proper control methods are derived and carefully applied. For this purpose, several control
laws have been selected and studied.

The control objectives are reduction of fuel consumption, increased redundancy, and
higher stationkeeping precision for harsh weather. The control methods studied include
reduction of coupled dynamics by implementation of a roll and pitch damping controller,
optimal setpoint chasing based on a structural reliability criteron, and a backstepping
control law based on the same reliability criterion. These three methods, combined with a
nonlinear passive observer, have been studied and found both stable and robust. Especially,
a theoretical six degrees of freedom Lyapunov stability analysis is performed, which
renders the combined PID, and roll and pitch damping controller globally asymptotically
stable. Stability properties for all considered control methods have been clarified.

A simulation model for testing of the different control methods is derived and implemented
in Matlab Simulink. The simulation model is based on a typical full scale semi-
submersible anchored with mooring cables in a circular anchor configuration. A nonlinear
passive observer is implemented and tuned to give satisfactory estimates for all six degrees
of freedom.

Model tests are performed in the Marine Cybernetics Laboratory at NTNU using the 1:100
model semi-submersible CyberRig I. Model tests are performed for regular and irregular
waves, with and without thruster force input. The process of obtaining sufficient closed-
loop wave-filtered roll and pitch angular velocity estimates in model scale has proved
challenging.
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Sammendrag

I de senere årene har thrusterassisterte oppankringssystemer blitt mer kommersielt tilgjen-
gelige, spesielt i oljeindustrien. Fartøyene har en tendens til å operere i tøffere værforhold
oftere, og trangen for et større værvindu er uunngåelig tilstede.

For tøffe værforhold vil ikke-lineære effekter dominere dynamikken i større grad enn
for rolig vær. Den lavfrekvente dynamikken til det forankrede fartøyet blir eksitert av
andreordens bølgedriftkrefter. For å dempe den lavfrekvente resonante dynamikken i
forankringssystemet, må riktige kontrollmetoder utledes og anvendes omhyggelig. Flere
kontrollere har blitt utvalgt og studert for dette formålet.

Målsetningene for kontrollalgoritmene er reduksjon av drivstoffforbruket, økt redundans
og høyere stasjonær presisjon. Metodene studert i denne masteroppgaven omfatter
reduksjon av koblede bevegelser ved implementasjon av en dempekontroller i rull
og stamp, optimalt settpunktjag basert på et strukturelt pålitelighetskriterium, og en
tilbakekoblet kontrollov basert på det samme pålitelighetskriteriet. Disse tre metodene,
sammen med en ikke-lineær passiv observatør, har blitt studert og funnet å være både
stabile og robuste. Verd å trekke frem er en teoretisk Lyapunov stabilitetsanalyse i seks
frihetsgrader for rull- og stampdemperen kombinert med en PID-regulator. Analysen
gir global asymptotisk stabilitet for den kombinerte kontrolloven. Det er gjort rede for
stabilitetsegenskapene til alle de nevnte kontrollmetodene.

En simuleringsmodell for testing av kontrollmetodene er utviklet og implementert i
Matlab Simulink. Simuleringsmodellen er basert på en typisk fullskala halvt nedsenkbar
plattform oppankret med en sirkulær ankerkonfigurasjon. En ulineær passiv obervatør er
implementert og finstemt til å gi tilfredsstillende estimater i alle de seks frihetsgradene.

Modelltester er utført i MC-Laben på NTNU ved bruk av den 1:100 modellplattformen
CyberRig I. Modellen er testet i regulære og irregulære bølger, både med og uten
thrusterpådrag. Prosessen med å fremskaffe tilstrekkelige estimater for bølgefiltrerte
vinkelhastigheter i rull og stamp i lukket sløyfe i modellskala har vist seg å være
utfordrende.
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Chapter 1

Introduction

In recent years, thruster assisted position mooring systems have become more commer-
sially available, especially in the oil industry, according to Sørensen (2011). Both turret
moored systems and spread moored systems are widely used. For semi-submersibles, it is
suitable to use spread moored systems.

Lately there have been reported a number of cases where excessive roll and pitch
motions have caused operational difficulties for semi-submersibles. Because of the semi-
submersible’s shape, with small-waterplane-area columns and relatively small pontoons,
the inertia, damping and restoring forces in roll and pitch are small in comparison with
other constructions of equal mass. It should be mentioned that excessive motions in heave
due to first order loads in rough seas is yet another reason for concern. This issue will not
be mentioned further.

The excessive roll and pitch motions are found to be resulting from both linear and
nonlinear effects, that is, both wave-frequency and low-frequency effects. Counteracting
the wave-frequency roll and pitch motions by thruster force is quite useless. It is the low-
frequency motions that should be damped, which means that sufficient low-pass filtered
roll and pitch rotational velocity estimates need to be obtained. This places great demands
on the performance of the observer.

In order to reduce slow resonant motions and obtain stability in thruster assisted position
mooring, several control laws have been proposed and studied. The control objectives
are reduction of fuel cost, increased redundancy, and higher station keeping precision.
The methods studied in this Master’s Thesis include reduction of coupled motions by
implementation of a roll and pitch damping controller, optimal setpoint chasing based on a
structural reliability criteron, and a backstepping control law based on the same reliability
criterion. These three methods along with a nonlinear passive observer have been studied
and proven to be both stable and robust.

1



Chapter 1. Introduction

1.1 Previous Scientific Work

To fully understand the current status of position mooring today, some of the theoretical
development from the early start till today is reviewed.

1.1.1 Mooring

In the offshore industry, the first attempt at coring using a moored ship was conducted
offshore California in 1953 at 120 [m] depth, Faÿ (1990). Prior to this, coring had only
been performed from fixed structures. One year later, the first floating vessel was used for
drilling in the Gulf of Mexico.

Unfortunately, when going for deeper waters, the passive mooring system has got too
much horizontal elasticity and too little hydrodynamic damping to keep the vessel in a
position steady enough to perform safe drilling operations. The cost and the complexity
of the mooring system are also increasing with depth. These drawbacks contributed to the
development of the dynamic positioning system.

1.1.2 Dynamic Positioning

Phase one of the Mohole Project was conducted in 1961, where the vessel CUSS 1 held
position within a circle of radius 180 [m] by manual control of thrusters, as narrated in
Faÿ (1990). Later that year, another vessel called Eureka was equipped with the first
computer based positioning system. After this, there has been a steady evolution of
dynamic positioning systems. Among the highlights are the invention of Kalman Filtering
and the dive into optimal control theory.

In the 1990’s, an approach towards even smarter design methods for dynamic positioning
systems started. This development was pushed forward by the desire for a control system
which could take system dynamics and limitations into account. One method, which
several functions have been built upon later, is model-based design. A model-based control
system design was presented in Sørensen, Sagatun, and Fossen (1996).

The model-based passive nonlinear observer was introduced in Fossen and Strand (1999).
The nonlinear passive observer yields global exponential stability (GES), while the linear
Kalman Filter (KF) theory does not.

A roll and pitch damping (RPD) controller was introduced in Strand and Sørensen (2000),
and proved to damp horizontal motions by exploiting the hydrodynamic couplings between
surge and pitch, and sway and roll degrees of freedom.

The theory of hybrid control was first implemented in air- and land-based vehicles. During
the course of previous years, hybrid control has also been applied in dynamic positioning.

2



Chapter 1. Introduction 1.1 Previous Scientific Work

The need for stability in the total control system, including the switching logic, places
special requirements on the control system design. Hybrid control is discussed in, among
others, Teel, Sanfelice, and Goebel (2011), Nguyen (2006), and Nguyen and Sørensen
(2009b).

1.1.3 Position Mooring

Mooring the vessel is a low cost solution, offering stationkeeping steady enough for most
operations performed in shallow water and calm weather conditions. Dynamic positioning,
on the other hand, is a high-cost solution compared to passive mooring only. The third
option is a merge between mooring and dynamic positioning, called thruster assisted
mooring or position mooring (PM). For PM systems, the passive mooring system provides
most of the horizontal damping. The thrusters must assist the passive mooring system
for environmental or operational conditions which challenge the properties of the passive
mooring system.

The first published combination of thruster assistance and mooring was presented in
Strand, Sørensen, and Fossen (1998). Position keeping based on adjusting the mooring
line lengths using winches was proposed by Aamo and Fossen (1999). Adjusting the
mooring line lengths impose large and oscillating forces on the winches, causing wear and
tear, even if only the LF motions are to be counteracted. The theory of implementing this
control method is therefore not used in the industry.

Imposing a structural reliability criterion on riser angles was done in Leira, Sørensen,
and Larsen (2002). In Fang et al. (2013), setpoint chasing based on mooring line tension
was performed. The task of reaching the desired setpoint is handled by a control law,
e.g. PID. A nonlinear feedback control law based on the same structural reliability
criterion was derived by Berntsen, Aamo, and Leira (2006) using backstepping techniques.
The structural reliability criterion was originally used in the field of construction. The
implementation of one of the mentioned algorithms could minimize the risk of mooring
line failure to a large extent. Position mooring was first merged with hybrid control in
Nguyen and Sørensen (2009a). Hybrid control is believed to be tomorrow’s solution for
both DP and PM.

1.1.4 Official Standards

In terms of rules and legislation, position mooring has been regulated for several years.
The DNV Offshore Standards on Position Mooring, DNV (2013), is updated on a regular
basis. As of today, mooring systems are designed to handle the loss of one anchor line out
of twelve. A requirement for the system being able to handle the loss of two mooring lines
is being dicussed (autumn 2013) and added as an optional requirement. If the mentioned
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Chapter 1. Introduction

requirement should become effective, a robust and fault detecting position mooring system
might become required for high-risk operations.

1.2 Motivation

The main objective of this Master’s Thesis is to study the interaction between a thruster
assisted mooring system and its passive mooring system. The main goal is increased
stability for all degrees of freedom for harsh weather. Some of the other objectives that
can be achieved through a successfull merge between mooring and thruster assistance, are:

• Reducing fuel consumption compared to regular DP systems (no mooring)

• Increasing positioning accuracy compared to passive mooring only

• Decreasing the possibility of mooring line breakage

• Ensuring mooring line integrity

• Larger operational window

• Increasing dynamic stability

An algorithm that manages to combine the dynamics of both the mooring system and the
thrust allocation system in a good manner, is the key to a stable and robust thruster assisted
position mooring system.

Position mooring for a rig operating in the North Sea is studied. There are several
possibilities for control system improvement related to position mooring. The North Sea
is a harsh environment where storms and bad weather often lead to downtime for offshore
operations. Position mooring system might decrease downtime by expanding the weather
window for several conditions.

Position mooring is able to make traditional mooring safer, by using safety criteria which
account for loss of mooring lines, anchors or mooring line buoyancy elements. By making
offshore operations safer, one can prevent unwanted scenarios from happening. Some of
the more common unwanted consequences of loss of position or large drift are listed:

1. Loss of human life or injury

2. Hydrocarbon spill

3. Collision

4. Vessel capsizing

5. Damage to expensive equipment

6. Abortion of operation

4



Chapter 1. Introduction 1.3 Main Contributions

1.3 Main Contributions

The contributions of this thesis are focused on different solutions for thruster assisted
position mooring and their qualities. The roll and pitch damping control law is
emphasized. Stability analyses are carried out. A Matlab Simulink model is made, and
used in the analysis of the performance of the total thruster assisted position mooring
system. The control system performance is also tested in model scale using the model
semi-submersible CyberRig I in the Marine Cybernetics Laboratory at NTNU.

• Previous scientific work on the topic is reviewed

• The roll and pitch damping controller is studied

• Lyapunov stability analysis is performed for the RPD control law

• A setpoint chasing algorithm based on a structural reliability criterion is reviewed

• A nonlinear feedback control law based on the same reliability criterion is reviewed

• A simulation model is developed, including vessel, mooring system and a position
mooring control system

• Model tests are carried out using the model semi-submersible CyberRig I

• The steady tilt phenomena for regular waves was detected during model tests

1.4 Outline of the Thesis

This Master’s Thesis is built up around the modelling, simulation and model scale testing
of thruster assisted position mooring systems.

Chapter 2: The mathematical modelling of the vessel, the mooring system and the
environmental forces is carried out. The low-frequency model and the low-frequency
environmental loads are emphasized in the modelling process. The data used in the full
scale simulation model is scaled up from the data available for CyberRig I.

Chapter 3: The chapter on control system design is entitled to the different control
algorithms available for thruster assisted position mooring systems. Roll and pitch
damping, a setpoint chasing algorithm, and a backstepping control law are included.

Chapter 4: This chapter presents the simulation and model test set-up and results.
Simulations and model tests are performed for two cases; open-loop and closed loop with
PID and RPD controllers.
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Chapter 5: Discussion and comparison of the simulation results and the model test
results relative to theory are included.

Chapter 6: The concluding remarks are made, summarizing the main contributions of
this Master’s Thesis. Suggestions for further work are proposed.
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Chapter 2

Mathematical Modelling

The quality of a thruster assisted position mooring system can not be sufficiently
determined by static analyses alone. This is because a moored rig operating in the North
Sea is a highly dynamic system. To perform a qualitative verification of the thruster
assisted position mooring system, high-fidelity models, statistics, real-time simulations,
and model tests needs to be applied.

2.1 Kinematics

The study of dynamics can be parted in two, kinematics and kinetics. Kinematics define
the geometrical aspects of the dynamics, while kinetics consider the forces and moments
that create the dynamic behaviour.

2.1.1 Degrees of Freedom

The dynamics are modelled using position and velocity vectors as defined in Fossen
(2011). The first three degrees of freedom (DOF) in each vector, (2.1a) and (2.1b),
represent the translational motions, while the rest represent rotational motion.

η =

[
p

Θ

]
= [x, y, z, φ, θ, ψ]T , (2.1a)

ν =

[
v

ω

]
= [u, v, w, p, q, r]T . (2.1b)
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Chapter 2. Mathematical Modelling

For the horizontal control problem, only the horizontal degrees of freedom are considered.
For these problems, yet another set of vectors is defined:

ηh =

xy
ψ

 =

[
ph
ψ

]
, νh =

uv
r

 =

[
vh
r

]
. (2.2)

2.1.2 Reference Frames

The reference frames used are the Earth-fixed reference frame, and the body-fixed
reference frame.

Earth-Fixed Reference Frame

The Earth-fixed reference frame is in this case equal to the North-East-Down (NED) frame.
This reference frame is tangential to the Earth’s surface with the z-axis pointing downward
normal to the Earth’s surface, the x-axis pointing towards the true North and the y-axis
pointing toward the true East. The NED-frame is usually expressed in terms of {n} =

(xn, yn, zn) with origin on, but it can also be expressed in terms of latitude and longitude.
The position vector η is defined in NED-coordinates.

The Body-Fixed Reference Frame

The body-fixed reference frame is a coordinate system moving with the body. The
reference system is defined as {b} = (xb, yb, zb) with origin ob, which is usually located
in the horizontal midpoint in the waterline. The velocity vector ν is defined in body
coordinates. The motions of the vessel in the body reference frame are defined in Figure
2.1.

The Frame Relation

The 6 DOF relation kinematic equations are stated in Equation 2.3. The kinematic
equations relate the body frame and the earth frame through the transformation matrix.

η̇ =

[
ṗ

Θ̇

]
=

[
J1(Θ) 03×3

03×3 J2(Θ)

] [
v

ω

]
= J(Θ)ν (2.3)
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Chapter 2. Mathematical Modelling 2.1 Kinematics

Figure 2.1: 6 DOF motions, Fossen (2011).

The principal rotation matrices, J1(Θ) and J2(Θ) can be stated as

J1(Θ) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sψsθsφ −cψsφ+ sψcφsθ

−sθ cθsφ cθcφ

 , (2.4a)

J2(Θ) =

1 sφcθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

 , ∀θ 6= ±π
2
, (2.4b)

where c(·) = cos(·), s(·) = sin(·) and t(·) = tan(·). J1(Θ) and J2(Θ) are the
linear velocity transformation matrix and the angular velocity transformation matrix,
respectively. J(Θ) is the total transformation matrix.

Since the guidance system, see Section 3.1, operates only in the horizontal plane, a
horizontal rotation matrix is defined too. A matrix which relates the horizontal reference
frames is needed:

η̇h = R(ψ)νh ⇒ R(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (2.5)

Here, R(ψ) is the horizontal rotation matrix.
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Small angles of rotation

The transformation matrices can be simplified for small angles of rotation, η2 = δΘ.
For the moored semi-submersible, the angular rotations will all be small even in yaw,
due to the restoring forces of the mooring system. The reduced transformation matrices
are reduced as in Equation (2.6) from Fossen (2011). The total transformation matrix is
positive definite for small angles of rotation, that is, the eigenvalues of J(δΘ) are strictly
positive.

J1(δΘ) =

 1 −δψ δθ

δψ 1 −δφ
−δθ δφ 1

 (2.6a)

J2(δΘ) =

1 0 δθ

0 1 −δφ
0 δφ 1

 (2.6b)

J(δΘ) =

[
J1(δΘ) 03×3

03×3 J2(δΘ)

]
(2.6c)

2.2 Modelling of the Environment

The rig is assumed to operate in the North Sea. Operations in this area involves harsh
weather, especially during autumn and winter, and shallow depths. Because of the high
probability of harsh weather, the PM system must designed to handle largely varying
weather conditions in a reliable fashion. The fact that shallow depths can be assumed,
h < 600[m], lowers the requirements on the passive mooring system.

Harsh weather includes waves with high significant wave heigth, strong current, wind and
wind-generated waves and currents. Environmental parameters used in the simulations are
stated in Appendix B. An outline of the forces working on the rig can be seen in Figure
2.2.

2.2.1 Waves

Wave forces and moments are in theory the sum of first and second order wave-induced
forces and moments. Higher order forces exist, but are assumed negligible. This is stated
in Equation (2.7), see Fossen (2011).

τwave = τwave1 + τwave2 (2.7)
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Figure 2.2: The moored rig with environmental loads.

Second-order wave drift forces, τwave2, due to short crested waves, are dominant for
moored structures and will influence the low-frequency dynamics of the total system to a
large extent. The first and second order wave forces and moments can be calculated using
response amplitude operators (RAO).

For the simulation of waves in the North Sea, either the JONSWAP spectrum or the
Torsethaugen spectrum is normally chosen. The Torsethaugen spectrum includes swell
and newly generated waves, and can be found in Torsethaugen (1996). The JONSWAP
spectrum is empirically described by Equation (2.8). The parameters used are typical for
the North Sea; ω0 = 0.8 [s], γ = 3.3, and Hs = 5 [m]. The JONSWAP spectrum, along
with some other well-used spectra, are represented in Figure 2.3.

S(ω) = 155
H2
s

T 4
1 ω

5
exp

(
− 199

T 4
1 ω

4

)
γY (2.8a)

Y = exp

[
−
(

0.191ωT1 − 1√
2σ

)2
]

(2.8b)

σ =

{
0.07 for ω ≤ 5.24/T1

0.09 for ω < 5.24/T1
(2.8c)

T1 = 0.834T0 = 1.073Tz (2.8d)

The wave forces are calculated from the waves created according to the wave spectrum.
The wave height is calculated as in Equation (2.9).

ζ = A =

N∑
k=1

Ak cos(ωk + εk) =

N∑
k=1

√
2S(ωk)∆ω cos(ωk + εk) (2.9)
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Figure 2.3: Some of the spectra available, Fossen (2011).

Both the linear and second order wave forces for degree of freedom number i can be
calculated from Equation (2.10). The Newman approximation is used for the second order
wave forces. The approximation is only valid for the study of low frequency dynamics
because it creates additional non-physical high frequency effects. Since the rig is moored
and relatively stationary when anchored, the frequency of encounter is set equal to the
wave frequency: ωe = ω.

τ iwave1 =

N∑
k=1

ρg|F iwave1(ωk)|Ak cos(ωkt+ εk) (2.10a)

=

N∑
k=1

√
2S(ωk) cos(ωkt+ εk) (2.10b)

τ iwave2 = 2

(
N∑
k=1

√
T ickkAk cos(ωkt+ εk)

)2

(2.10c)
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2.2.2 Wind

Wind is a source of low frequency excitation and is implemented in the process plant
model through τwind, see Equation (3.20).

τwind =
1

2
ρaV

2
rw



CX(γrw)AFw
CY (γrw)ALw
CZ(γrw)AFw

CK(γrw)ALwHLw

CM (γrw)AFwHFw

CN (γrw)ALwLoa


(2.11)

For a semisubmercible, both pitch and roll wind forces needs to be considered in addition
to the horizontal wind forces. This is due to the large areas exposed above the sea surface.
In Equation (3.20), Vrw is the absolute relative wind speed, γrw is the angle of attack,AFw
and ALw are the projected areas, and HFw and HLw are the centers of the wind exposed
areas above the water line. For semisubmersibles, the wind force functions {CX , . . . , CN}
for huge floating ocean structures proposed by Kitamura, Sato, Shimada, and Mikami
(1997) can be used.

2.2.3 Current

Current is another type of slowly varying motion which contributes to low frequency
motions. The current forces are directly integrated in the system dynamics by use of the
relative velocity vector:

νr =
[
u− uc v − vc w p q r

]T
. (2.12)

The relative velocity vector is implemented in the system matrices, taking the effects of
current on the system dynamics into account.

2.3 Modelling of the Mooring System

The mooring system is subject to three types of excitation, according to Triantafyllou
(1990); large amplitude low frequency (LF) motion, medium amplitude wave frequency
(WF) motions, and small amplitude very high frequency (HF) vortex induced vibrations.
In the design of position mooring systems, only the low-frequency motions are considered.
The low frequency approach is in accordance with the control system objectives in this
Master’s Thesis
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2.3.1 Mooring Cable PDE

The partial differential equation (PDE) for cable dynamics, neglecting bending and
torsional stiffness, is stated in (2.13), see Aamo and Fossen (2001).

ρ0
∂v(t,s)
∂t = ∂

∂t (T (t, s)t(t, s)) + f(t, s)(1 + e(t, s)), (2.13)

where t is the time variable, s ∈ [0, L] is the distance along the unstretched cable, from
anchor to vessel, v : [t0,∞)× [0, L] is the velocity vector, and t is the tangential vector. L
is the length of the unstretched cable, ρ0 is the mass per unstretched unit length of cable,
T : [t0,∞) × [0, L] is tension, e : [t0,∞) × [0, L] is strain and f is the sum of external
forces acting on the unstretched cable. The accurateness of the solution increases with
node number, but so does also the computational time needed to solve the integral.

The cable is divided into several segments and nodes to keep the integral simple, as seen
in Figure 2.4. In Sørensen (2013a), is was shown that a node number of ≥ 10 gives an
adequat form for the mooring line forces to be estimated.

Figure 2.4: The FEM mooring model.

The external forces f acting on the cable are the sum of gravity and hydrostatic buouancy
forces f(hg), tangential and normal hydrodynamic drag f(dt), f(dn), and hydrodynamic
inertia forces f(mn):

f = f(hg) + f(dt) + f(dn) + f(mn). (2.14)

The gravity and hydrostatic forces are modelled according to

f(hg) = ρ0
ρc − ρw

(1 + e)ρc
g, (2.15)

where g is the gravitational acceleration, ρc is the cable density, and ρw is the surrounding
water density. The hydrodynamic drag forces are modelled according to Morison’s

14
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equation:

f(dt) = −1

2
CD,tDρw|vt|vt (2.16a)

f(dn) = −1

2
CD,nDρw|vn|vn (2.16b)

In (2.16), the forces are the tangential and normal hydrodynamic drag forces respectively.
Here, vt is the tangential velocity, vn is the normal velocity, CD,t is the tangential drag
coefficient, CD,n is the normal drag coefficient and D is the unstretched cable diameter.
The hydrodynamic added inertia force is described as

f(mn) = −CAρw
πD2

4
a, (2.17)

whereCA is the hydrodynamic mass coefficient, and a : [t0,∞)×[0, L] is the acceleration.

By compairing the diameter of the mooring line, which is in the order of 0.1 (m), to the
wave height, it is found that viscous forces will dominate for wave heights larger than 1

(m), see Faltinsen (1990). This means added mass can be neglected for rough sea states,
which are defined to have larger significant wave height and higher wind speeds. But for
the study of deep sea mooring, h > 600 (m), added mass needs to be considered.

In the PDE, a position vector r : [t0,∞) × [0, L] is introduced, such that t = 1
1+e

δr
δs .

Equation (2.13) can now be written

ρ0
∂2r

∂t2
=

∂

∂s

(
T

1 + e

∂r

∂s

)
+ f(1 + e). (2.18)

Introducing Hooke’s law yields

ρ0
∂2r

∂t2
=

∂

∂s

(
EA0

e

1 + e

∂r

∂s

)
+ f(1 + e). (2.19)

E is Young’s modulus of elasticity, and A0 is the cross-sectional area of the unstreched
cable.

Discretization into finite elements is done using the Galerkin method. The generalized
problem can be stated as∫ L

0

(
ρ0

∂2r
∂t2 −

∂
∂s

(
EA0

e
1+e

∂r
∂s

)
+ f(1 + e)

)
·w ds = 0. (2.20)

In Equation (2.20), w is a trial function used in the discretization. The trial function is
a linear combination of the basis functions. Basis functions are defined to be different
modes of deflection, or shapes, that the slender structure can have under impact from
external forces.
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2.3.2 Mooring Configuration

A vessel can be turret moored or spread moored. For turret mooring, the anchor lines
are fastened to a circular turret installed at some point along the centerline of the vessel,
often close to the bow. The vessel is free to rotate around the turret and weathervaning
can be used to control the heading. Turret mooring is prefered for long and slim vessels
and other vessels that can take advantage of weathervaning. Spread mooring systems have
widely allocated mooring points on the vessel, constraining the vessel from rotation about
its vertical axis. For vessels which are nearly as wide as they are long, weathervaning is
not contributing to stationkeeping anyhow.

2.3.3 Mooring Cable Implementation

The described mooring line model is developed by Aamo and Fossen (2001) and
implemented in a Simulink FEM model block. One block represents one mooring cable
and calculates the forces with respect to the mooring point position, current velocity, cable
velocity and depth. The calculations are performed fairly quickly, allowing the rest of the
simulation model to be accurate and also ensure relatively short simulation time.

The mooring forces are calculated for several mooring lines in a spread moored system in
the NED coordinate system. The forces are mainly dependent of the horizontal distance
between the anchor and the mooring point on the rig. The forces are then converted to
body coordinates through the transformation presented in Equation (2.21), as proposed by
Faltinsen (1990).

τmoor =

N∑
i=1

Ti

 cosαi
sinαi

(x̄i sinαi − ȳi cosαi)

 (2.21)

Here, αi is the relative angle between the rig heading and the horizontal direction of the
mooring force for mooring line i, and Ti is the horizontal mooring force for mooring line
i. x̄i and ȳi are the positions of the mooring points on the rig relative to the rig body
coordinate system. These vectors refer to the point on the rig where the mooring forces
act. The mooring forces are for simplicity only affecting the horizontal motions of the rig,
which are surge, sway, and yaw.

For mooring systems at shallow depths, h < 600 (m), it is assumed that only a quasi-static
mooring model is needed for the dynamic analysis. This is because the mooring system
nonlinear dynamics are less dominant for shallow depths. By studying the responses for
the nonlinear finite element method (FEM) mooring system, a mooring model linearized
around the working point can be obtained. Normally the working point is the point where
the sum of mooring forces is zero.
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The mooring system forces can be linearized as in Equation (2.22). The linearized mooring
forces can in turn be implemented in the control plant model in Section 2.4.8.

τmoor = −JT (ψ)gmo(η)− dmo(ν) (2.22a)

≈ −JT (ψ)Gmoη −Dmoν (2.22b)

The linearization is performed by partial derivation, see Equation (2.23).

Gmo =
∂gmo
∂η

∣∣∣∣
η=η0

, Dmo =
∂dmo
∂ν

∣∣∣∣
ν=0

. (2.23)

2.4 Modelling of the Rig Kinetics

The kinetics of a system connects the forces and moments to the motions of a system.

2.4.1 Rigid Body Forces and Moments

The forces and moments acting on the system are in equilibrium with the rigid body forces
and moments resulting from rigid body motion. This satisfies the Newton-Euler Equations
of Motion, Fossen (2011). The equilibrium can be stated according to

MRBν̇ + CRB(ν)ν = τRB , (2.24)

where MRB is the rigid body mass matrix, CRB is the rigid body Coriolis and centripetal
matrix due to rotations about the inertial frame, η and ν are stated in Section 2.1.1, and
τRB is the generalized vector of external forces and moments in body coordinates. The
rigid body matrices can be stated

MRB =

[
mI3×3 −mS(rg)

mS(rg) Ib

]
(2.25a)

CRB(ν) =

[
mI3×3 −mS(ω)S(rg)

mS(rg)S(ω) −S(Ibω)

]
(2.25b)

wherem is the vessel mass, Ib is the vessel inertia forces, S(·) is the cross product operator
as stated in Fossen (2011), and I3×3 is a 3 × 3 identity matrix. The vector rg defines the
distance from the origin to the center of gravity. In the case where the center of gravity is
placed in the geometric horizontal center in the waterplane, rg is equal to zero.
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2.4.2 Hydrodynamic Forces and Moments

The hydrodynamic forces and moments, τhyd, are dependent on the relative velocity
vector presented in Section 2.2.3.

τhyd = −MAν̇r −CA(νr)νr −DLνr −DNL(νr)νr (2.26)

In Equation (2.26), the matrix MA is the hydrodynamic added mass matrix, CA(νr) is
the hydrodynamic Coriolis and centripetal matrix, DL is the linear hydrodynamic damping
matrix, and DNL(νr) is the nonlinear hydrodynamic damping matrix.

2.4.3 Hydrostatic Forces and Moments

The hydrostatic forces and moments are equal to the buoyancy and gravity effects causing
restoring forces and moments in heave, roll and pitch. Since these three DOFs are
decoupled, we will have no coupled restoring forces. The only restoring forces are
restoring in heave due to heave motions, −Zz , a restoring moment in roll due to roll
motion, −Kφ, and a restoring moment in pitch due to pitch motion, −Mθ. Assuming
small rotations and knowing that the vessel is vertical sides in the waterline, one can write

G = diag{0, 0,−Zz,−Kφ,−Mθ, 0}
= diag{0, 0, ρgAwp(0), ρg∇GMT , ρg∇GML, 0}, (2.27)

where ρ is the water density, g is the gravitational acceleration, Awp(0) is the vessel
horizontal area in the water plane, ∇ is the displacement of the vessel, GMT and GML

are the transverse and longitudinal metacentric heights, respectively.

2.4.4 Forces and Moments Due to the Mooring System

The passive mooring system has characteristic low eigenfrequencies and slow horizontal
dynamics. That means that the horizontal motions are excited only for low frequency wave
loads, that is, the second order LF wave forces.

Since the rig has a spread mooring system, which means the mooring lines are attached at
distributed points on the rig, preferably the rig corners, the mooring system will impose
a yaw moment on the rig in addition to forces in surge and sway. This is the main
difference between turret moored and spread moored mooring systems. For a spread
moored rig, the low-frequency yaw dynamics as imposed by the mooring system needs
to be considered. The mooring forces, τmoor, in the rigid body equations of motion are
defined as in Equation (2.21).
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2.4.5 Thruster Dynamics

The dynamics of each single thruster can be stated as in Smogeli et al. (2005).

Q̇m =
1

Tm
(Qc −Qm) (2.28a)

Isω̇ = Qm −Qa −Qf (ω) (2.28b)

Qa = fQ(θm, ξm) (2.28c)

Ta = fT (θm, ξm) (2.28d)

Pa = Qaω (2.28e)

The thruster characteristics in Equation (2.28) are described by the following set of
parameters; the motor time constant Tm, the commanded torqueQc, the motor torqueQm,
the rotational intertia of the propeller including added mass Is, the shaft friction Qf (ω),
where ω is the rotational speed of the propeller, the propeller load torque Qa, the propeller
thrust Ta, and finally, the propeller power Pa. fQ and fT are general functions dependent
of fixed thruster parameters θm, and variable thruster parameters ξm.

The shaft friction is often assumed to be linear and the thrust and torque dynamics are
modelled using quadratic thruster characteristics:

Ta = KT ρD
4|n|n, (2.29a)

Qa = KQρD
5|n|n, (2.29b)

where KT and KQ are the thrust and torque coefficients, ρ is the water density, D is the
propeller diameter, and n is the rotational speed of the propeller in [RPM].

2.4.6 Control Allocation

The thrusters will, in the same manner as the mooring lines, operate in distributed
positions, creating moments about the rig’s center of gravity. The thrusters are installed
below the rig bottom and the rig is deeply submerged during most stationary operations,
including position mooring. Therefore, the thrusters will contribute with forces and
moments in surge, sway, roll, pitch, and yaw.

τ thr = T(α)Ku (2.30)

Equation (2.30) shows that the thruster force is a function of the actuator configuration
matrix, a efficiency/loss coefficient matrix K, and the control input vector u. The actuator
configuration matrix T(α) can be defined as a set of column vectors as in Equation (2.31),
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see Tyssø and Aga (2006).

T(α) = [t1, t2, . . . , tr] =



cosα1 . . . cosαr
sinα1 . . . sinαr

0 . . . 0

−lz1 sinα1 . . . −lzr sinαr
lz1 cosα1 . . . lzr cosαr

lx1
sinα1 − ly1

cosα1 . . . lxr sinαr − lyr cosαr


(2.31)

Here, αi, i = 1..r is the thruster angle for thruster i, and lxi , lyi , lzi are the thruster position
coordinates relative to the body coordinate system. The submerged depth lzi is the same
for all thrusters; {lz1 , . . . , lzr} = lz .

2.4.7 The Process Plant Model

The nonlinear 6 DOF low-frequency process plant model can according to Sørensen
(2013a) be stated

MRBν̇ + MAν̇r+CRB(ν)ν + CA(νr)νr

+DLνr+DNL(νr)νr + Gη (2.32a)

= τwind + τwave2 + τ thr + τmoor,

η̇ = JT (Θ)ν. (2.32b)

The relations, matrices and parameters used in Equation (2.32) are defined in Section 2.1.1
to Section 2.4.6.

2.4.8 The Control Plant Model

The control plant model is the simplified model used for design of the control system.
Only the physics that are most crucial for the controller design are included.

A Markov Process bias model is used

ḃ = −Tb
−1b + Ebwb, (2.33)

which is needed to prove the nonlinear passive observer (NPO) globally exponentially
stable in Section 3.3.1. In Equation (2.33), the matrices Tb and Eb reflect the bias
dynamics resulting from the bias disturbance wb and the actual bias b resulting from
current, wind and second order wave drift forces. The matrix Tb contains the bias time
constants and ensures low-pass filtering of the bias estimates.
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For control purposes, it is common to divide the modelling into a LF model and a WF
model. The wave frequency motion is represented by a state space model:

ξ̇ = Awξ + Ewww, (2.34a)

ηw = Cwξ, (2.34b)

where ηw are the linear wave induced motions. The disturbance ww is a zero-mean
Gaussian white noise vector. The system matrices are defined

Aw =

[
06×6 I6×6

−Ω2 −2ΛΩ

]
, (2.35a)

Cw =
[
06×6 I6×6

]
, (2.35b)

Ew =

[
06×6

Kw

]
. (2.35c)

In Equation (2.35), Ω is the diagonal frequency matrix, Λ is the diagonal damping ration
matrix, and Kw is the diagonal Gaussian disturbance matrix.

The LF control plant model is stated by

η̇ = JT (Θ)ν, (2.36a)

Mν̇ + Dν + JT (Θ)Gη = JT (Θ)b + τ + τmoor. (2.36b)

All matrices and parameters in Equation (2.36) are earlier defined. The resulting control
plant model is a gather-up of all the dynamics in the system:

ξ̇ = Awξ + Ewww (2.37a)

η̇ = JT (Θ)ν (2.37b)

ḃ = −T−1
b b + Ebwb (2.37c)

Mν̇ = −Dν − JT (Θ)Gη + JT (Θ)b + τ + τmoor (2.37d)

y = η + Cwξ + v (2.37e)

In Equation (2.37), the mass matrix M consist of both the rigid-body mass and the
hydrodynamic added mass present in the process plant model. The vector y is the
measurement vector from the reference system.

For the study of LF dynamics only, ξ is often neglected.
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Figure 2.5: The model CyberRig I.

2.5 CyberRig I

For the purpose of analysis and simulations, a typical vessel for spread mooring is chosen.
The rig model CyberRig I, as seen in Figure 2.5, is used in the physical model tests. The
model is designed and developed at the Department of Engineering Cybernetics and is fit
for the defined control objectives. For the analysis performed in Matlab Simulink, the rig
is scaled to full scale. Full-scale calculations and simulations are the norm in scientific
writing, and the results obtained will therefore be comparable to other scientific tests. The
model scale parameters are given in Appendix A, while the scaling laws used are presented
in Section 2.5.2.

2.5.1 System Matrices

The rigid body mass matrix along with the added mass matrix, the restoring matrix, and
the linear damping matrix for CyberRig I are calculated by WAMIT and presented in Tyssø
and Aga (2006). The mass matrix is diagonal, the added mass matrix has coupling effects
in roll-sway and surge-pitch, and the restoring matrix has no coupling terms. The matrices
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are stated in model scale in Equation (2.38).

MRB = diag{54.93, 54.93, 54.93, 1.24, 1.24, 13.73} (2.38a)

MA =



21.61 0 0 0 2.55 0

0 21.61 0 −2.55 0 0

0 0 70.67 0 0 0

0 −2.57 0 5.09 0 0

2.57 0 0 0 5.09 0

0 0 0 0 0 2.97


(2.38b)

DL = diag{16.15, 16.15, 0.03, 0, 0.06, 3.28} (2.38c)

G = diag{0, 0, 1.03, 0.16, 0.16, 0} (2.38d)

In addition, the linear and nonlinear damping in heave, roll, and pitch has been estimated
through decay tests on the model semi-submersible CyberRig I. Model test results are
presented in Chapter 4.

2.5.2 Scaling Laws

The scaling laws from model to full size rig are given in Steen (2012). A scaling parameter
of λ = 100 [-] is assumed. The chosen scaling ratio corresponds well with the average
parameters of semi-submersibles operating in the North Sea. The parameters for CyberRig
I can be scaled according to

LF = λLM = 100 · LM , (2.39a)

mF =
ρF
ρM

λ3mM = 1025000 ·mM , (2.39b)

FF =
ρF
ρM

λ3FM = 1025000 · FM , (2.39c)

MF =
ρF
ρM

λ4MM = 102500000 ·MM , (2.39d)

aF = aM = aM , (2.39e)

vF =
√
λ · vM = 10 · vM , (2.39f)

tF =
√
λ · tM = 10 · tM , (2.39g)

where m are mass terms, F are force terms, M are moments, a is acceleration, v is
velocity, and t is time. The subscript F indicates full-scale, while subscript M indicates
model-scale. Equation (2.39a) is the definition of the scaling parameter λ. All system
matrices for CyberRig I can be scaled using the relations presented in Equation (2.39).
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Chapter 3

Control System Design

A good control system consists of several components, and all of them need to be well-
functioning and reliable, both separately and in cooperation with each other. A range
of sensors and navigation systems give feedback on the state of the vessel, an observer
estimates the correct states from the measured states, the filtered estimates goes into the
control system and forces are acting on the vessel through the thruster system. In addition
there is the human-machine interface (HMI), which allows an operator to give external
input to the control system.

3.1 Position Mooring Control System

A standard control system consists of a navigation system, a control system and a guidance
system, see Fossen (2011). These independent components can together fullfill the
objectives of the total thruster assisted position mooring system.

The navigation system consists of the signal processing and the observer. The navigation
system is responsible for the feedback on position, speed and acceleration of the vessel
to the controller. The observer will also consider the output from the control allocation
algorithm when estimating the motions of the vessel.

The guidance system has two components, the setpoint chasing algorithm and the
reference model. The guidance system provides the desired position and velocity for the
vessel, ensuring that the desired behavior is smooth.

The control system, including the Controller and the Control Allocation, receive the
desired position and velocity from the guidance system, and the current position, speed
and velocity from the navigation system. The controller will give a control input u to the
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control allocation algorithm, which distributes the input among the thrusters installed on
the vessel. The control system will try and decrease the error between the desired and
current position and velocity of the vessel.

The total control system is illustrated in Figure 3.1. The different control blocks and the
flow of information among them can be seen.

Figure 3.1: Overview of the position mooring system.

In Figure 3.1, mooring system forces and environmental forces are gathered in the
disturbance term. The setpoint calculated from the setpoint chasing algorithm is input to
the reference model. The controller consist of both the roll and pitch damping controller,
and the model-based controller found through backstepping techniques. The nonlinear
passive observer chosen for this purpose take in both the signals from the signal processing
block and the input from the control allocation block. The system is the moored semi-
submersible, represented by a full-scale model of CyberRig I.

3.2 Controller Objectives

The controller objectives in position mooring are first of all to make vessel stationkeeping
more reliable and safe. Injuries, loss of life, and hydrocarbon spill are some of the
unwanted scenarios. It is a known fact that a smart use of computational power in
stationkeeping contributes to increased reliability and safety. To reduce fuel consumption
and increase redundancy, the combination of mooring and DP is studied. On the control
side, the main objective is to combine the mooring system and the PM algorithms so as to
ensure a higher level of stationkeeping for harsh weather and at the same time utilize the
restoring and damping forces of the passive mooring system.
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Chapter 3. Control System Design 3.3 Observer

3.3 Observer

Including an observer in the control system enables filtering and state estimation. Noisy
signals will then be filtered and missing states in the available measurements can be
reconstructed through state estimation. The main objectives of an observer are position
and velocity estimation, bias estimation and wave filtering, see Sørensen (2013b).

3.3.1 Nonlinear Passive Observer

The idea of a nonlinear passive observer (NPO) was motivated by a wish for passivity
in the observer, meaning that the observer is not introducing additional energy into the
control loop, but might instead extract energy from the closed-loop system.

The NPO, as presented in Equation (3.1), was developed by Fossen and Strand (1999).
The control plant model used as basis for design of the NPO is presented in Section 2.4.8.
The NPO includes wave filtering, and position, velocity and bias estimation. The tuning
parameters are few, and each is directly coupled to the dynamics of the controlled system.
This is due to the fact that the observer is model-based by design.

˙̂ξ = Awξ̂ + K1(ω0)ỹ (3.1a)
˙̂η = J(Θ)ν̂ + K2ỹ (3.1b)
˙̂
b = −T−1b̂ + K3ỹ (3.1c)

M ˙̂ν = −DLν̂ − JT (Θ)Gη̂ + JT (Θ)b̂ + τ + JT (Θ)K4ỹ (3.1d)

ŷ = η̂ + Cwξ̂ (3.1e)

The nonlinear passive observer consist of a wave filter, the kinematic relation, the Markov
process bias estimator, the rigid-body kinetics, and the measurement vector, respectively.
Choosing the bias model to be represented by a Markov process, which means low pass
filtering is implemented in the observer, T < ∞, yields exponential stability for the bias
estimator dynamics.

3.3.2 Stability of NPO

The nonlinear passive observer in Equation (3.1) with tuned observer gain matrices is
proved to be passive and globally exponentially stable using a strictly positive real (SPR)
Lyapunov approach on the observer estimation errors. The observer estimation errors are
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defined in Equation (3.2).

ξ̃ = ξ − ξ̂ (3.2a)

η̃ = η − η̂ (3.2b)

b̃ = b− b̂ (3.2c)

ν̃ = ν − ν̂ (3.2d)

A new output vector is defined:

z̃0
∆
= K4ỹ + Gη̃ − b̃

∆
= C0x̃0, (3.3)

where

x̃0
∆
=

ξ̃η̃
b̃

 , w
∆
=

[
ww

wb

]
. (3.4)

The error dynamics can now be written in compact form:

M ˙̃ν = −Dν̃ − JT (Θ)C0x̃0 (3.5a)
˙̃x0 = A0x̃0 + B0J(Θ)ν̃ + E0w (3.5b)

By introducing new error terms,

εz
∆
= −JT (Θ)z̃0, εν

∆
= J(Θ)ν̃, (3.6)

a storage function is presented

S1 =
1

2
ν̃TMν̃ > 0. (3.7)

The time derivative of the storage function is calculated

Ṡ1 = −1

2
ν̃T (D + DT )ν̃ + ν̃T εz, (3.8)

which yields
ν̃T εz ≥ Ṡ1 + ν̃TDν̃. (3.9)

According to Definition 6.3 in Khalil (2002), the mapping εz 7→ ν̃ is state strictly passive.

Passivity and stability of the total error dynamics of the NPO can be proved if the
observer gain matrices are chosen such that the observer error dynamics satisfy the
Kalman-Yakubovich-Popov (KYP) Lemma, which corresponds to Lemma 6.3 in Khalil
(2002). The KYP-Lemma is fullfilled if the matrix A0 is Hurwitz, the error dynamics are
observable and controllable, and there exists matrices P = PT > 0 and Q = QT > 0
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Figure 3.2: Block diagram of the error dynamics, Fossen (2011).

such that

PA0 + AT
0 P = −Q, (3.10a)

BT
0 P = C0. (3.10b)

The stability of the system is only valid for decoupled systems. The tuning matrices are
therefore decoupled and diagonal. The transfer functions for each degree of freedom are
studied and plotted in bode plots. The transfer functions are gathered in a diagonal matrix

H(s) = diag{h1(s), · · · , h2(s)} (3.11)

connecting the error vectors

z̃(s) = H(s)εν(s) = H0(s)HB(s)εν(s) (3.12)

where

H0(s) = C0[sI + A0 −K0(ω0)C0]−1B0 (3.13a)

HB(s) = K4 + (sI + T−1)−1K3 (3.13b)

To be able to filter out the first order wave motions, the transfer functions h0i of the error
dynamics must have a given form. This form is given by yet another transferfunction:

hdi(s) =
s2 + 2λiω0is+ ω2

0i

(s2 + 2ζniω0is+ ω2
0i)(s+ ωci)

(3.14)
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To obtain the desired form for h0i , the following tuning rules are proposed:

K1i(ω0i) = −2(ζni − believedλi)
ωci
ω0i

(3.15a)

K1(i+3)(ω0i) = 2ω0i(ζni − λi) (3.15b)

K2i = ωci (3.15c)

Regaring the remaining tuning parameters, the rule

1

Ti
<
K3i

K4i
< ωoi < ωci (3.16)

is used to ensure passive estimation. In Equation (3.16), Ti is the low pass bias filtering
term, ωoi is the response frequency, and ωci is the cut-off frequency. The term K3i should
be sufficiently high to ensure proper bias estimation.

The NPO bode plots should all show a phase greater than -90◦ and less than +90◦ to satisfy
the KYP constraints regarding stability, see Sørensen (2013b).

3.3.3 Possible Observer Improvements

The observer can be improved by augmenting a new state, which is the low-pass filtered
innovation ỹ. The observer is then an augmented observer. The observer can be further
improved by assuming the wave parameters to be unknown and slowly varying. An
adaptive observer can be designed which estimates the varying sea state. The observer
can also be designed to count for extreme sea conditions by removing the wave estimator.
Hybrid control could be used to design a system which operates optimally for a range of
different sea states.

3.4 PID Controller

The proportional-integral-derivative controller dates back to the governor design in the
1890’s, and is still widely used for industrial purposes. The controller is simple by design,
and tuning of the controller is based on knowlegde of signal noise and empiricism.

3.4.1 Nonlinear PID control law

In Sørensen (2011), a nonlinear horizontal PID controller for moored vessels is proposed.

τPID = −RT
e KPe−RT

e KP,3f(e)−KDν̃ −RT (ψ)KIz (3.17)
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In Equation (3.17), the parameters {KP,KP,3,KD,KI} are the non-negative tuning
matrices for the nonlinear PID control law. e is the deviation from the desired position
and heading, RT (ψ) is the rotation matrix defined in Chapter 2, ν̃ is the deviation from
the desired speed, and z is the integrator states:

e = [e1, e2, e3]T = RT (ψd)(η̂ − η) (3.18a)

ν̃ = ν̂ −RT (ψd)η̇d (3.18b)

ż = η̂ − η (3.18c)

Re = R(ψ − ψd) ∆= RT (ψd)R(ψ) (3.18d)

The parameter ηd is the desired setpoint for the vessel, while the second term in Equation
(3.17) is a third order stiffness term. The nonlinear stiffness term ensures aggressive
restoring forces for large deviations from the desired position:

f(e) = [e3
1, e

3
2, e

3
3]T (3.19)

3.5 Wind Feed Forward

The forces produced by wind could be predicted and counteracted by a feed-forward wind
control law. The law is based on measured wind velocities from windsensors and a reliable
wind force model. For semisubmersibles, the wind force constants for huge floating ocean
structures, as proposed by Kitamura, Sato, Shimada, and Mikami (1997), can be used to
estimate feed-forward wind forces, τ̂wind.

τwff = −Kwindτ̂wind (3.20)

In Equation (3.20), Kwind is the feed-forward gain matrix. In this Master’s Thesis, it is
further assumed that the wind-forces are counteracted by the feed-forward wind control
law. Wind forces are therefore neglected in the simulations.

3.6 Roll and Pitch Damping

A horizontal controller can be expanded to include roll and pitch damping (RPD). This
control law will dampen undesired hydrodynamic coupling effects between the surge and
pitch, and roll and sway degrees of freedom. A feedback loop will result in the low
frequency roll and pitch angular velocities being incorporated in the surge and sway control
dynamics. If a linear formulation is used, the control law for 3 DOF can be formulated
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according to Strand and Sørensen (2000).

τ 3
rpd = −D3

rpd

[
p̂

q̂

]
= −

 0 dxq
dyp 0

dψp 0

[p̂
q̂

]
(3.21)

It can be shown that the roll and pitch damping controll law contribute to a larger total
damping of the system, reducing the motions resulting from the coupling effects.

For CyberRig I, which is symmetric fore to aft, there is no hydrodynamic coupling between
sway and yaw degrees of freedom. The roll and pitch damping gain for yaw can therefore
be set equal to zero; dψp = 0. Due to symmetry, the surge-pitch coupled dynamics and
the sway-roll coupled dynamics can be studied separately. The control law for a quadratic
and symmetric vessel then becomes

τ 3
rpd = −D3

rpd

[
p̂

q̂

]
= −

 0 dxq
dyp 0

0 0

[p̂
q̂

]
. (3.22)

The total control law can be formulated

τ 5
c = τwff + τ 3

pid + τ 5
wff . (3.23)

3.6.1 6 DOF Stability Analysis

If only the dynamics are studied, the total control laws in surge and sway can be reduced to
only the linearized PD controller and the RPD controller as seen in Equation (3.24). The
reduction is made possible by the assumption that the wind feedforward controller and the
integral control action will take care of the wind loads, the current loads and the mean drift
loads resulting from second-order wave forces.

τsurge = −gxx− duu− dxqq (3.24a)

τsway = −gyy − dvv − dypp (3.24b)

τyaw = −gψψ − drr (3.24c)

For a vessel with deeply submerged thrusters, such as CyberRig I when in operational
mode, the physical interpretation is somewhat different. The thrusters will in addition to
providing horizontal forces, also provide rotational forces due to the moment arm about
the center of gravity (CG). The resulting impact on the rig, assuming no losses, time delays
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or thruster dynamics, can be seen in Equation (3.29).

τsurge = −gxx− duu− dxqq (3.25a)

τsway = −gyy − dvv − dypp (3.25b)

τroll = lz · dypp (3.25c)

τpitch = −lz · dxqq (3.25d)

τyaw = −gψψ − drr (3.25e)

The moment arm lz is positively defined, that is lz = |lz|, and represents the physical
distance from the centre of gravity to the vertical position of the thrusters. The differing
sign for the moment in roll encountered in Equation (3.25c), can be explained by the
definition of rotational directions in Figure 3.3. A positive thruster force in y-direction
will lead to a negatively defined moment in roll.

A stability analysis based on the dynamic equations in surge-pitch, and sway-roll has been
performed in Strand and Sørensen (2000) and in Strand (1999). Unfortunately, it turned
out the analysis include a sign error which makes the stability proof invalid. The stability
analysis did also make the mistake of not taking the resulting thruster moments in roll and
pitch into account.

Figure 3.3: Outline of NED coordinate system with associated angular directions.

For the further analysis also, no thruster dynamics are considered, nor is the time delay in
estimated signals produced by the observer. By assuming that no thruster force losses are
present, the resulting forces and moments can be calculated:

τ 5
rpd = −D5

rpdν = −



0 0 0 0 dxq 0

0 0 0 dyp 0 0

0 0 0 0 0 0

0 0 0 −lz · dyp 0 0

0 0 0 0 lz · dxq 0

0 0 0 0 0 0


ν (3.26)

The resulting 5 DOF roll and pitch damping matrix D5
rpd needs to be positive semidefinite
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for the system to be stable. The eigenvalues of the 6 DOF matrix D5
rpd are stated in

Equation (3.27). It can be seen that the roll-to-sway gain dyp needs to be less than or equal
to zero to attain a positive semi-definite roll and pitch damping matrix.

λrpd = [λ1, · · · , λ6]T =
[
0, 0, 0, −lz · dyp, lz · dxq, 0

]T
(3.27)

If the forces and moments resulting from the linearized PD law are also taken into account,
the total resulting control output matrix will consist of a damping term, and a proportional
term:

τ 5
c = τ 5

c,D + τ 5
c,P (3.28a)

τ 5
c,D = −



dxu 0 0 0 dxq 0

0 dyv 0 dyp 0 0

0 0 0 0 0 0

0 −lz · dφv 0 −lz · dyp 0 0

lz · dθu 0 0 0 lz · dxq 0

0 0 0 0 0 0


ν (3.28b)

τ 5
c,P = −



gx 0 0 0 0 0

0 gy 0 0 0 0

0 0 0 0 0 0

0 −lz · gy 0 0 0 0

lz · gx 0 0 0 0 0

0 0 0 0 0 0


η (3.28c)

The simplified control plant model, as defined in Section 2.4.8, can be stated

η̇ = J(Θ)ν (3.29a)

Mν̇ + Dν + Gη = τ 5
c + τmoor, (3.29b)

τ 5
c = τ 3

pd + τ 5
rpd (3.29c)

= −KPη −KDν −D5
rpdν, (3.29d)

τmoor = −JT (ψ)Gmoη −Dmoν. (3.29e)

y = η (3.29f)

Put together, Equations (3.29b) to (3.29e) yield

Mν̇ +

Dtotal︷ ︸︸ ︷(
D + KD + D5

rpd + Dmo

)
ν +

Gtotal︷ ︸︸ ︷(
G + KP + JT (ψ)Gmo

)
η = 0. (3.30)
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The controller analysis is performed by studying the total dynamics. Since the system
is nonlinear due to the rotation matrix, Lyapunov analysis is used. A positive definite
Lyapunov function candidate (LFC) is chosen

V (η,ν) =
1

2
νTMν +

1

2
ηTβη > 0, ∀(η,ν) 6= (0,0), (3.31)

and the Lyapunov stability analysis can be performed:

V̇ (η,ν) = νTMν̇ + ηTβη̇ (3.32a)

= −νTDtotalν − νTGtotalη + ηTβ · J(Θ)ν (3.32b)

= −νTDtotalν − νT [Gtotal − J(Θ) · β]η (3.32c)

≈ −νTDtotalν − νT [Gtotal − I6×6 · β]η (3.32d)

= −νTDtotalν (3.32e)

≤ −λmin(Dtotal) · νTν (3.32f)

= −λmin(Dtotal) · ‖ν‖ ≤ 0 (3.32g)

In Equation (3.31), the virtual matrix β is set to be positive definite and equal to
Gtotal. The Lyapunov function candidate is then positive definite, radially unbounded
and decrescent. The derivative of the LFC is negative semi-definite. The search for a
better LFC could possibly result in a negative definite V̇ .

To prove that ν = 0 ⇒ η = 0, one needs to study Equation (3.30). The equilibrium
ν ≡ 0 implies ν̇ ≡ 0. Equation (3.30) is then reduced to

Gtotalη = 0 ⇒ η = 0. (3.33)

Krazowskii-LaSalle’s theorem is used to prove that the control system dynamics is globally
asymptotically stable (GAS). Krazovskii-LaSalle’s theorem is reproduced from Fossen
(2011) with some minor changes:

Krazovskii-LaSalle’s theorem (Fossen (2011), page 534)
Let V : Rn → R+ be a continuously differentiable positive definite function such
that

V (η,ν)→∞ as ‖(η,ν)‖ → ∞ (3.34)

V̇ (η,ν) ≤ 0, ∀(η,ν) (3.35)

Let Ω be the set where V̇ (η,ν) = 0, that is

Ω = {(η,ν) ∈ Rn|V̇ (η,ν) = 0} (3.36)

and M be the largest invariant set in Ω. Then all solutions (η(t),ν(t)) converge
to M. If M = {xe}, the the equilibrium point xe of Equation (3.30) is GAS.
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In this case, M = (0,0). The equilibrium point (η,ν) = (0,0) is now proved GAS.

Assumptions

The conclusion in Equation (3.32), which yields V (η,ν) > 0 and V̇ (η,ν) ≤ 0, builds on
the following assumptions:

• The total damping matrix Dtotal is assumed positive definite.

• The total restoring matrix Gtotal is assumed positive definite.

• The term J(Θ) is assumed positive definite and is approximated equal to the identity
matrix for small angles of rotation, as shown in Section 2.1.2.That is,

J(Θ) = J(δΘ) ≈ I6×6. (3.37)

The listed assumptions are verified through a study of parameters and dynamics. The
total damping and restoring matrices will consist of the hydrodynamical terms (hyd), the
mooring terms (mo), and the control terms (c). An outline of the form of the tota damping
matrix Dtotal can be studied in Equation (3.38). The total restoring matrix Gtotal will
have the same form. Both the mooring forces and the PD controller will lead to increased
stationkeeping both for damping forces and restoring forces. The roll and pitch damping
controller will lead to increased damping in roll and pitch.

D11,mo+hyd+c 0 0 0 D15,hyd+c 0

0 D22,mo+hyd+c 0 D24,hyd+c 0 0

0 0 D33,hyd 0 0 0

0 D42,hyd+c 0 D44,hyd+c 0 0

D51,hyd+c 0 0 0 D55,hyd+c 0

0 0 0 0 0 D66,mo+hyd


(3.38)

The rotation angles can be assumed small because semi-submersibles are realtively stable
in roll and pitch, and the yaw angle is restricted by spread mooring.

Regarding the dynamics, the following assumptions are made:

• Perfect thruster dynamics, actual thrust is equal to commanded thrust at all times

• No time delays in any part of the system

• Correct LF estimates of the rotational angular velocities p and q at all times

These assumptions will not hold in the practical control system, and the actual performance
of the control system can only be verified through simulations and model tests. The
simulation and model test results are presented in Chapter 4.
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Neglected Thruster Effects

When assuming that Equation (3.26) is valid, the following thruster effects and losses are
not considered:

• Thruster to thruster interaction, i.e. one thruster operating in the wake of another
thruster.

• Thruster to hull effects, i.e. the Coanda effect or not optimal incoming water on the
operational zone of the thruster.

• Unsteady inflow due to vessel motion.

• Thruster dynamics are neglected, which is a fair assumption when controlling LF
processes.

3.6.2 Acceleration Feedback

There exist several control concepts which can be used to improve an already well
functioning control law. Extending the roll pitch damping controller by adding an
acceleration feedback term has been tested by Xu et al. (2013). That is,

τ rp = −Drpd

[
p

q

]
−Krp,acc

[
ṗ

q̇

]
, (3.39)

where Krp,acc ∈ R3×2 is the acceleration feedback gain matrix. Despite the good
intentions, the study performed by Xu et al. (2013) resulted in better damping in roll and
pitch, but at the same time stationkeeping accuracy was clearly reduced.

3.7 Optimal Setpoint Chasing

A regularly used method in stationkeeping today, is keeping the vessel within a small
region around a desired reference point. This reference point can be set in a range of
different ways. By default, this point is set to the point of operation, e.g. above the
wellhead. Waves, wind and current will try and deviate the vessel body center away from
this point. These forces can be both slowly and rapidly varying. A simple controller, e.g.
PID, can ensure stationkeeping around a given setpoint.

The mooring system is installed in such a way that the vessel is in equilibrium in the
operating point for a condition of zero external forces. The mooring line forces will in
addition vary as external forces act on the vessel. One of the most critical failure modes
is the loss of one or more mooring lines. To prevent this, it is recommended to ensure
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that the mooring line forces are well below the critical tension level. Tension control
can be implemented by setting a desired setpoint to a point were all mooring line forces
are below the critical level. This method is called optimal setpoint chasing based on a
structural reliability criterion.

The idea of using structural reliability in marine control applications was first implemented
based on riser angles by Leira et al. (2002). It was discovered that the riser angles could
be used to estimate the position of the vessel, so no extra position references were needed.
Later, Nguyen and Sørensen (2009a) studied the use of setpoint chasing based on structural
reliability for PM. To ensure structural reliability, the statistics of mooring line tension
extremes are analyzed.

3.7.1 Extreme Values

The structural reliability index is based on a statistical analysis of mooring line tensions
in the current vessel and mooring setup. In Fang et al. (2013), such an analysis has
been performed for an FPSO, resulting in the Weibull distribution giving best fit for the
local maxima of mooring tension. The cumulative density function (CDF) for the Weibull
distribution is defined

F (y) = 1− exp

[
−
(
y

θw

)βe]
, (3.40)

where θw is the scale parameter, and βw is the shape parameter. For the statistics of
extreme values, a Gumbel distribution is normally used. The CDF for the Gumbel
distribution is defined equal to

F (Y ) = exp [− exp [−α(Y − u)]] . (3.41)

The relation between the Weibull and Gumbel distribution parameters is given by

u = θw(lnN)
1
βw , (3.42a)

α =
βw
θw

(lnN)
βw−1
βw , (3.42b)

where N is the number of local maxima. The expected extreme value can be calculated

Yex = θw

(
(lnN)

1
βw +

γ

βw(lnN)
βw−1
βw

)
. (3.43)

An alternative way of calculating the expected extreme value is used in Leira et al. (2004),
where a gust factor k is used.

Yex = kσ (3.44)
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In Equation (3.44), σ is the standard deviation of basic data series of the mooring line
tensions. The gust factor is normally in the range k = 3− 4.

3.7.2 Setpoint Chasing

The mooring line tension for each mooring line, when considering only the static and
linear behaviour of mooring lines, can be expressed as in Equation (3.45). T0i is the
working point for each mooring line, ci is the incremental stiffness tension at the present
instantaneous working point, and βi0 is the instantaneous mooring force angle, while β is
the course angle.

Ti = T0i + ci∆h (3.45a)

= T0i + ci∆r cos(90◦ − β − βi0) (3.45b)

= T0i + ci∆r sin(β − βi0) (3.45c)

A set-point chasing algorithm was introduced in Fang and Blanke (2011) which produces
an optimal position increment, ∆r, and an optimal direction of the position increment, β.

∆r =
K11 sinβ +K12 cosβ

K21 sin2 β + 2K22 sinβ cosβ +K23 cos2 β
(3.46a)

β = tan−1

(
K11K23 −K12K22

K21K12 −K11K22

)
(3.46b)

The constants Kij , for i = 1, 2, j = 1, 2, 3, depend on the mooring line geometry and are
evaluated in Equation (3.49).

3.7.3 Reliability Criterion

To ensure mooring line integrity, the mooring line failure load is quantified. This is solved
by introducing a reliability index for each mooring line. In Berntsen, Aamo, and Leira
(2006), the reliability index is defined

δi(t) =
Tci − Texi

σci
, i = 1, . . . , N, (3.47)

where Tci is the mean critical breaking strength of mooring line i, Texi is the extreme
value of the mooring line tension, and σci is the standard deviation of the critical strength.
The extreme mooring line tension kan be calculated according to Texi = Ti + kiσi, where
ki is the gust factor for mooring line i from Equation (3.44). In the reliability index, the
standard deviation of dynamic tension should have been included. Because of this, the
reliability criterion δi is defined larger than in reality.
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3.7.4 Optimal Setpoint Chasing

An object function covering all mooring lines is presented in Fang et al. (2013).

L(δm1, δm2, . . . , δmN ) =

N∑
i=1

αiδ
2
mi (3.48a)

=

N∑
i=1

αi(δ
2
ci − δ2

i ) (3.48b)

Solving the partial derivative of Equation (3.48) with respect to the optimal increment ∆r

of the vessel position, and setting the optimal position increment and the direction of this
increment equal to zero, yields the minimum value of the object function. This gives the
correct gains to be inserted into Equation (3.46):

K11 =

N−1∑
i=1

αici
σci

(
δci −

Tci − Texi
σci

)
cosβi0

+
αNcN
σcN

(
δcN − TcN − TexN

σcN

)
cosβN0 (3.49a)

K12 =

N−1∑
i=1

αici
σci

(
δci −

Tci − Texi
σci

)
sinβi0

+
αNcN
σcN

(
δcN − TcN − TexN

σcN

)
sinβN0 (3.49b)

K21 =

N∑
i=1

αic
2
i

σ2
ci

cos2 βi0 (3.49c)

K22 =

N−1∑
i=1

αic
2
i

σ2
ci

sinβi0 cosβi0 +
αNcN
σcN

sin2 βN0 (3.49d)

K23 =

N∑
i=1

αic
2
i

σ2
ci

sin2 βi0 (3.49e)

The updated vessel position and heading setpoint can be calculated

η = η0 + ∆r[cosβ, sinβ, 0]T . (3.50)

The set-point can be further developed to include a yaw angle set-point, meaning yaw
dynamics in the spread moored system is taken into account.
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3.8 Reference Model

To produce a smooth transition from the initial position to the set-point, a third order
reference model is introduced, (Sørensen, 2013b).

η̇d = vd (3.51a)

v̇d = −Γηd −Ωvd + Γxref (3.51b)

ẋref = −Afxref + Afηr (3.51c)

In Equation (3.51), ηd and vd are the desired position and velocity in the Earth-fixed
frame, respectively. xref is the filtered reference coordinates, and ηr is the new reference
coordinates. The reference coordinates may be given by the setpoint chasing algorithm in
Equation (3.50). The reference model is tuned through the parameters

Ω = diag[2ζiωi] ∈ R3×3 > 0, for i = 1, 2, 3, (3.52a)

Γ = diag[ω2
i ] ∈ R3×3 > 0, for i = 1, 2, 3, (3.52b)

Af = diag[1/ti] ∈ R3×3 > 0, for i = 1, 2, 3, (3.52c)

where Ω is the diagonal damping matrix, Γ is the diagonal stiffness matrix, and Af is the
diagonal set-point filter gain matrix.

3.9 Backstepping Control Law

In Berntsen, Aamo, and Leira (2006), a feedback controller is developed using backstep-
ping techniques. The control objective is to keep the vessel in place by ensuring mooring
line integrity. The control objective is accomplished by the control law and the set-point
chasing algorithm working toghether. Ensuring that this control objective is fullfilled will
lead to the closed-loop system meeting the expectations regarding both the geometric task
and the dynamic task. The geometric task in this case is to keep the vessel inside a given
radius from the operating point.

3.9.1 Control Law

A control law is proposed

τ = Mζ + Dν + g(η)−RT (ψ)b, (3.53)

and proved GES in the article by Berntsen et al. (2006). For the control law to be GES, the
control law variable ζ is given as a function of several variables, including mooring line

41



Chapter 3. Control System Design

parameters.

3.9.2 Stability Analysis

The control law ensures stability for the closed loop system. It should be noted that the
proof submitted in the paper Berntsen et al. (2006) does not make sense if δj > δs in
open loop. To solve this, the control law can be alterated to have an active region and one
inactive region defined by

τ̄ = f(δj)τ , (3.54)

where f(δj) is a nonlinear ramping function operating in the range f(δj) ∈ [0, 1]. Using
a nonlinear passive observer (NPO) as proposed by Fossen and Strand (1999), global
asymptotical stability (GAS) can be proved for the total system, i.e. the NPO and the
backstepping control law in closed loop. The stability property is of course based on the
standalone NPO being GES by proper tuning of the observer gain matrices.

3.10 Hybrid Control

There are several ways to merge PM and hybrid control, but the search for the best solution
is not yet ended. The outline for a hybrid control system can be seen in Figure 3.4. Hybrid
PM was first studied in Nguyen and Sørensen (2009a). The switching logic is here based
on estimation of the sea state, and switches according to a parametrical categorization
based on the sea state statistics. It is believed that the same switching could also be based
on the statistical state of mooring line tension.

Figure 3.4: Hybrid PM controller, Sørensen (2011).

The hybrid control system consists of a set of observers with associated controllers. The
switching logic decides which pair of observer and controller should be used for the current
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state. In this way, the control system will work optimally for a limited number of sea states,
conditions, and/or operational modes.
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Chapter 4

Simulation and Model Testing

The stability of the total control system in the frequency domain has been studied in
Chapter 3. The resulting performance in the time domain, however, is simulated with
all subsystem dynamics. Model tests are carried out to verify the simulation results and
detect errors and deficiencies in the simulation model.

4.1 Test set-up

The same mooring configuration is chosen for both the simulation model and the model
test. This is done for simplicity and to avoid problems regarding interpolation. The
simple mooring configuration chosen is seen in Figure 4.1. The four anchors are equally
distributed along the circular configuration.

4.2 Tuning Procedure

The tuning procedure used is the same for simulations and model tests. Before the control
laws can be tuned, the observer needs to produce sufficient estimates for the vessel states.

4.2.1 NPO

The NPO has fewer tuning parameters than an EKF. The tuning parameters are in addition
coupled to the model parameters, since the NPO is model-based by design. The diagonal
observer gain matrices are defined as in Section 3.3.2.
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Figure 4.1: Mooring configuration used in simulations and model tests.

Firstly, only the LF dynamics is implemented and tuned through the gain matrices K4 and
K2. Secondly, the wave filtering is applied with K1(ω0). Last, the bias estimation is
added, extracting the LF deviations from the estimates. The NPO gains can be studied in
terms of the KYP Lemma and bode plots. The combination of {K1,K2,K3,K4} must
satisfy the KYP Lemma for every DOF and the bode plots for each DOF must show a
phase shift inside the range [-90◦, 90◦].

4.2.2 PID

The nonlinear PID as defined in Section 3.4.1, is implemented to restore the vessel to
the preset setpoint using thruster force. A PID regulator is usually tuned in the following
order:

1. The KP gains are tuned to restore the vessel to position within a reasonable time
limit.

2. Nonlinear restoring is ensured for large deviations from setpoint by the gains in the
tuning matrix KP,3.

3. The rather aggressive P-controller is damped through the KD gains.

4. The steady state deviation from the given setpoint is eliminated by the KI gains.

The listed tuning order is repeated till satisfying stationkeeping is accomplished.
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4.2.3 RPD

The roll and pitch damping matrix gains, dxq and dyp, should be tuned sufficiently high as
to damp LF roll and pitch motions. Simultaneously, it should not excite further roll and
pitch motions. The effect on stationkeeping is used as a tuning criterion. For a symmetric
semi-submersible like CyberRig I,

dxq ≈ −dyp. (4.1)

4.3 Simulation

A simulation model is made to represent the dynamics in the time domain. The simulation
model consist of modelled environmental forces, the vessel dynamics, the mooring system
dynamics, the observer, the control laws, and the control allocation. It should be noted that
only a control plant model is used to simulate the vessel dynamics in the simulations.

4.3.1 Objectives

The objectives of performing simulations is related to the theory applied in the time
domain. Simulations serve as a link between theory and the real world.

• Model the dynamics in the time domain

• Verification of performance of the different subsystems in the time domain

• Provide a basis for comparison with model tests and full scale tests

4.3.2 Overview

The simulation parameters used in the Matlab Simulink models are listed in tables in
Appendix B. An overview of the Simulation model is seen in Figure 4.2.

Since a semi-submersible model block from the Simulink MSS Toolbox was used, the
nonlinear damping was added on the outside of the model based on the output velocities.
As for the theoretical study, current and wind is neglected.

The control law implemented in the simulations consist of the PID control law and the
RPD control law:

τ c = τ pid + τ rpd (4.2)
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Figure 4.2: Overview of Simulink model.

4.3.3 Results

The simulations have been conducted to demonstrate the theoretical performance of the
control systems, and to study how dynamics and time delays impact the control system
performance. Tests with and without control input have been performed to show the
improvement.

Nonlinear Passive Observer

The NPO has been tuned to give good estimates of the positions, velocities, and bias in the
system in addition to filtering out the dynamics resulting from first-order wave forces. A
Bode-diagram showing the frequency-domain performance of the observer in surge is seen
in Figure 4.3. The observer performance for all 6 DOF in the time-domain is presented in
Figure 4.4.
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Figure 4.3: NPO bode plot for surge.

Figure 4.4: NPO performance for all 6 DOF in full scale.

PID Controller

The PID controller helps ensure stationkeeping to a greater extent than the mooring system
can achieve alone, especially in harsh environments. The tuned PID gains are presented in
Table 4.1.
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Table 4.1: Final PID controller gains in full scale.

KP KD KI

Surge 105 107 101

Sway 105 107 101

Yaw 108 109 103

Roll and Pitch Damping Controller

The roll and pitch damping controller is implemented last. The RPD gains are tuned
according to Equation (4.3) in full scale.

Drpd =

 0 dxq
dyp 0

0 0

 =

 0 107

−107 0

0 0

 (4.3)

4.4 Model Testing

To show that the theory and the simulations match the real world, model tests are
conducted. The correctness of the assumptions are approved or disproved, and effects
not accounted for in the mathematical modelling are detected.

4.4.1 Objectives

The objectives of performing model tests are related to the real-time control system
performance. The most important are:

• Validation of model properties and parameters

• Validation of the dynamics of the model

• Verification of simulation results

• Tuning of the observer to give good estimates with short time delay

• Discovering nonlinear effects that shoul be included in the model

• Discovering probable failure modes for position mooring with roll and pitch
damping
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4.4.2 Test Facilities

The model tests are carried out in the Marine Cybernetics Laboratory (MCLab) at NTNU.
The model tank has dimensions L × B ×D = 40 × 6.45 × 1.5 [m], and is sufficient for
control testing purposes. Recommended scale ratio is λ = 50-150. The tank is equipeed
with a carriage which moves along the tank with a maximum speed of 2 [m/s], and a wave
maker. The wave maker is capable of producing both regular and irregular waves with
heights up to 0.25 [m] amplitude.

4.4.3 CyberRig I

For the tests of the control system performance, CyberRig I was chosen. The model
semi-submersible was built by Tyssø and Aga (2006) and is equipped with eight azimuth
thrusters. The model parameters and mooring configuration of CyberRig I can be found
in Appendix A. The model has a mass of m = 73 [kg] and is quite difficult to manage
practically. The horizontally anchored CyberRig I can be seen in Figure 4.5.

Figure 4.5: The moored CyberRig I in the MCLab.

4.4.4 Mooring System

A horizontal mooring configuration is chosen for the model tests. The horizontal
configuration is simpler to install, modify and maintain during the model tests. Each
mooring line is equipped with a linear spring, restoring the horizontal motions is surge,
sway and yaw. The mooring configuration can be seen in Figure 4.1.
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4.4.5 Hardware and Software

The data network used in the model test consists of the computer installed on CyberRig
I, the control computer, and the computer receiving signals from the positioning system
and calculating the position of the vessel. An overview of the data network can be seen in
Figure 4.6.

Figure 4.6: The model test data network.

Figure 4.7: Opal RT-Lab set-up.

In addition, the control allocation system on CyberRig I has a low-level fieldbus network.
The fieldbus network connects the step motors controlling the thrusters to the QNX
computer installed on CyberRig I. The fieldbus network is shown in Figure A.2.

Opal RT-Lab

The software Opal RT-Lab creates the connection between the Matlab Simulink model
on the console computer, the QNX computer on CyberRig I, and the data network. The
master subsystem is loaded and compiled to the QNX computer installed on CyberRig I
by RT-Lab. An overview of the system can be seen in Figure 4.7. The system is divided
into two subsystems; the console and the master. The observer, the control allocation and
the reference system signal receiver are placed in the master subsystem. The control laws,
on the other hand, is placed in the console subsystem. This allows for tuning of control
parameters during tests, but not for tuning of the observer gains after compilation. Since
tuning of the observer proved to be a cumbersome process, the lock on observer tuning
gains during tests created some extra difficulties.
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Reference System

The reference system consists of 3 cameras which together produce 6 DOF position
measurements

y = Hx =
[
x y z φ θ ψ

]T
= η. (4.4)

Velocity or acceleration measurements are not available in the current set-up.

4.4.6 Model Test Results

Decay tests to find the linear and nonlinear damping terms for all six degrees of freedom
were performed. Motion response test in regular and irregular waves were carried out. The
roll and pitch damping control law was tested in irregular waves.

Decay tests

Decay tests were performed in heave, roll, and pitch before the rig was anchored. After
it was moored, decay tests were carried out in 6 DOF. The results were used to determine
the relative damping and natural periods. A typical decay test time series, and the method
used to determine both the linear and the second-order damping parameters are presented
in Figure 4.8 and Figure 4.9, respectively.

Figure 4.8: Decay test in roll. Figure 4.9: Method for deter-
mining damping, Steen (2012).

The parameters obtained during free model tests are presented in Table 4.2. For evaluation
of the corresponding full scale periods, the periods in Table 4.2 are multiplied by a factor
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of 10, which is in accordance with the scaling parameters presented in Equation (2.39) in
Section 2.5.2.

Table 4.2: Decay test results, no mooring.

Damping ratio [-] Natural period [s]
Heave 0.0152 2.1994
Roll 0.0597 3.8488
Pitch 0.0659 3.8217

The natural periods obtained shows that CyberRig I has natural periods which correspond
well to those of a typical full scale semi-submersible operating in the North Sea. Natural
periods in heave, roll, and pitch for full scale rigs are normally in the range of 25-80 [s],
according to Sørensen (2013b).

When moored, the mooring system ensures restoring in surge, sway and yaw. The linear
and nonlinear damping is then estimated for all 6 DOF. Typical natural periods in surge and
sway for mooring depths between h = 100-500 [m], are 70-200 [s] according to Sørensen
(2013b).

Table 4.3: Decay test results for spread moored model vessel.

ξ1 [-] ξ2 [-] T0 [s]
Surge 0.0649 0.3347 16.6436
Sway - - 15.7633
Heave - - 3.5795
Roll 0.0348 0.3582 3.4970
Pitch 0.0319 0.5513 3.5859
Yaw 0.0123 1.0471 13.9242

In Table 4.3, ξ1 represent the linear relative damping ratio, while ξ2 represent the second
order relative damping ratio. Using these constants, linear and second order damping
terms for CyberRig I can be calculated. The damping ratios for sway and heave were not
calculated due to bad time series results, but it is assumed that the damping ratios in sway
can be estimated nearly equal to the damping ratios in sway. The damping terms in heave
are not considered important since heave is decoupled from the other DOFs and will not
affect the control system performance.

The measured natural periods of the moored model vessel in Table 4.3 are in consistence
with the theoretical eigenperiods of full size moored semi-submersibles. The undamped
eigenperiods T0 for the model are scaled up to full size by a factor equal to

√
λ = 10. This

is in accordance with the scaling laws presented in Section 2.5.2.
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Wave tests

The control system of the model semi-submersible is tested in irregular waves. The
irregular waves are produced using the JONSWAP spectrum with ω0 = 0.9 [s−1],
HS = 0.06 [m], and γ = 3.3. The JONSWAP spectrum is defined in Section 2.2.1.
To be able to evaluate the performance of the control system, the model is tested in waves
with no control input at first. The response spectra for surge and pitch are plotted in Figure
4.10 and Figure 4.11, respectively.

Figure 4.10: Surge response spectrum. Figure 4.11: Pitch response spectrum.

The time domain results of the performance with and without roll and pitch damping
control can be seen in Figure 4.12. Statistics were calculated from the timeseries presented,
and are listed in Table 4.4.

Table 4.4: Controller performance in model test, λ = 100.

Parameter Symbol No control RPD control Unit
Surge mean x̄ 0.0469 0.0010 [m]
Surge std. dev. σx 0.0475 0.0101 [m]
Pitch mean θ̄ 0.2594 -0.0308 [deg]
Pitch std. dev. σθ 0.6503 0.0575 [deg]

In Table 4.4 the statistics imply that both the mean and the standard deviation of both surge
and pitch decreases under influence from the roll and pitch control law. In Figure 4.12, it
can also be seen that the amplitudes are generally higher, and the low-frequent motion
dominates over the wave-frequency motions under influence from the RPD controller.
It should be mentioned that the test series with control input are relatively short due to
problems with the model semi-submersible.
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Figure 4.12: Resulting roll and pitch motions with and without control input.

Steady List Angle

The model semi-submersible was, in addition to irregular waves, also tested for regular
head waves. It was observed that the rig experienced a large steady roll angle after some
time, of about 10-15 [deg]. This phenomena is related to the work done by Voogt et al.
(2002).
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Discussion

Low frequency nonlinear dynamics dominate for a moored semi-submersible in harsh
weather. The dynamics of such a system and how to damp and control it, has been regarded
and discussed.

5.1 Position Mooring

Several methods for position mooring are studied and found both stable, reliable and
robust. The stability of the methods has been reviewed in terms on linear and nonlinear
stability analyses. Reliability is ensured through a structural reliability criterion based on
mooring tension statistics.

Making the system more reliable and robust requires a more complex and model-based
approach. Examples of such methods and functions are the structural reliability-based
setpoint chasing algorithm, and the structural reliability-based nonlinear control law
derived through backstepping techniques.

The setpoint chasing algorithm will give an input to an additional stationkeeping controller,
e.g. a PID controller. The algorithm ensures reliability in the manner of decreased
probability of failure, but stability and robustness may only be achieved by the chosen
stationkeeping control law. A controller suitable for the task could be a nonlinear PID
controller. The system could be further utilized by adding a RPD controller.

The backstepping controller based on a structural reliability criterion is proved GAS in
combination with a NPO. That is, a control system consisting of a backstepping controller
combined with a NPO is a stable and robust system. The structural reliability criterion
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contributes to making the controller reliable in manner of decreasing the probability of
mooring line loss and drift off.

However, these controllers will only provide sufficient performance for a given range of
parameters and conditions. The NPO, for instance, is not able to give optimal estimates
for both calm and harsh environments due to the wave filtering dynamics. The observer is
designed so as to be tuned optimal for one specific sea state.

Hybrid control systems are assumed to be the next step in terms of complexity and
robustness. The hybrid control system consists of a set of controllers with related observers
optimized for different sea states. The hybrid system toggle between the different observer
and controller pairs by a custom switching logic. The switching logic is based on an
estimation of the current state of the system, e.g. the sea state. For position mooring
systems, one of the controllers could even consist of none control input at all, being
switched on for calm seas. Then, the passive mooring system would ensure stationkeeping
with no additional help. For harsh weather, additional damping and control laws based on
structural reliability could be switched on. The switching logic may be based on either the
sea state estimation or the mooring line load state.

5.2 Special Focus

One of the main contributions in this Master’s Thesis is the theoretical study of the stability
of the roll and pitch damping law in Section 3.6. It was discovered that the theoretical
stability proof in Strand and Sørensen (2000) includes a sign error. Unfortunately, this
sign error leaves the proof invalid. The same error is also transferred to Strand (1999). A
Lyapunov stability analysis is conducted in its place, using the Krazovskii-LaSalle theorem
for autonomous systems. The stability analysis proved the total system, including the
linearized PD and the RPD control law, to be globally asymptotically stable. The reference
model give a smooth transition to the desired setpoint.

The faults detected in Strand and Sørensen (2000) may be the reason why the simulations
in Xu et al. (2013) did not work out quite as expected. Both of the papers clearly states that
the RPD controller gains should be strictly positive. As the stability analysis in Section 3.6
clearly states, the off-diagonal controller gains should have signs reflecting the coupling
between the surge-pitch and sway-roll.

Although the nonlinear passive observer has proven to produce good estimates in full
scale simulations, difficulties arose as the nonlinear passive observer was implemented
on the model scale semi-submersible. Only position measurements are available from
the reference system, and wave-filtered estimates for roll and pitch angular velocities are
needed for the roll and pitch damping control law.

There are several possible reasons for the bad observer performance. One of them is
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short model vessel eigenperiods, which, due to the scaling ratio, is 1/10 of the full scale
eigenperiods. For roll and pitch, the model scale eigenperiods are equal to 3.5 [s] for roll
and 3.6 [s] for pitch. Theoretically, the computation time in model scale should also be
scaled by a factor of 1/10. The computers used in the closed-loop model tests are at least
8 years old, and relatively slow. In the model tests, the phase shift between the actual
angular velocity and the actual output from the thrusters soon reached -90◦. It is a known
fact in control theory that phase shifts below -90◦ or above +90◦ lead to bad control system
performance. Direct angular velocity measurements could be obtained by installation and
implementation of a gyroscope. A low pass filter could be implemented and tuned to
provide the roll and pitch damping controller with LF angular velocity estimates.

Another source of error could be the solver method chosen in Simulink. The solver
methods work differently for derivation, integration and other closed-loop calculations.

Since the NPO is model based, wrong model parameters could impact the performance
of the observer. The properties of CyberRig I has changed due to structural upgrades.
For instance, the columns’ cross-sectional area have been expanded, a frame under the
platform deck is removed, and the original ballast system has been replaced by a new one.
The changes the parameters, e.g. the mass of the model semi-submersible has increased
from 55 [kg] in Tyssø and Aga (2006), to 73 [kg] today.

5.3 Special Phenomena

The model semi-submersible was tested for regular head waves with no control input.
It was observed that the rig experienced a large steady roll angle after some time. This
phenomena was first studied in Numata, Michel, and McClure (1975), and has been
observed and studied in model laboratories since then. In Voogt, Soles, and Dijk (2002),
the steady roll angle for regular waves, with variable draught and initial stability, is
adressed. The steady list is a result of vertical wave drift forces which increases as the
pontoon approaches the sea surface. The phenomena of steady list can be reduced by
increasing the cross sectional area of the stability columns or by increasing the operational
draught. The phenomena will probably only occur in model tanks and basins where strictly
regular waves can be obtained. This is because the vertical wave drift forces are constant
only for regular waves, and the waves in the North Sea are typically irregular.

5.4 CyberRig I

In Section 4.4.6, the eigenperiods for CyberRig I in heave, roll and pitch are found to be
correct in proportional to the eigenperiods of typical full scale semi-submersibles. The
model scale roll and pitch natural periods of oscillation are equal to 3.5 [s] for roll and
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3.6 [s] for pitch. Normal natural periods in roll and pitch for full scale semi-submersibles
ranges between 25-80 [s], and the scaling ratio for periods of oscillation is equal to TF =√
λ ·TM = 10 ·TM . The heave eigenperiod is also proved comparable to full scale results.

This implies that Cyberrig is an appropriate model for experimental testing of heave,
roll, and pitch dynamics. Excessive heave oscillation is a well-known problem for semi-
submersibles which is solved through structural heave damping. But if CyberRig I is to be
used in further experimental tests, a few changes and upgrades needs to be implemented.
Appendix E is devoted to proposals for improvement of CyberRig I.
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Concluding Remarks

6.1 Conclusions

The objective of this Master’s Thesis has been to study the low frequency dynamics of a
thruster assisted position mooring system. A selection of different approches to PM was
chosen and studied. Several methods added beneficial properties to the total system. Due
to the lack of published results for roll and pitch damping model tests, the combination of
RPD and PID was emphasized.

It was discovered that the theoretical stability proof in Strand and Sørensen (2000) includes
a sign error. Unfortunately, this sign error leaves the proof invalid. The same error is also
found in Strand (1999). A Lyapunov stability analysis is conducted in its place, using the
Krazovskii-LaSalle theorem for autonomous systems. The stability analysis proved the
total control law, including the PD and the RPD control law, to be globally asymptotically
stable.

A simulation model has been derived, based on a full-scale version of CyberRig I. This
model has been implemented in Matlab Simulink. The moored rig model is under impact
from environmental loads, and damped using a roll and pitch damping controller. The
controlled system is stable under given conditions, but is unreliable for harsh weather or
mooring line loss. For such conditions, more robust control methods are needed.

The physical model tests of RPD performance proved cumbersome. Although the
nonlinear passive observer proved to produce good estimates in full scale simulations,
difficulties arose as the nonlinear passive observer was implemented on the model scale
semi-submersible. Only position measurements are available from the reference system.
Adequate wave-filtered estimates for roll and pitch angular velocities are needed for the
roll and pitch damping control. The time delay in the nonlinear passive observer resulted

61



Chapter 6. Concluding Remarks

in a phase shift less than 90◦ between the actual angular velocity and the actual thruster
output. This instead lead to excited oscillations in roll and pitch in the model tests. One
solution could be installing a gyroscope on CyberRig I.

6.2 Further Work

From the conclusions it is clear that robust and reliable control methods should be
implemented and tested. The need for safe and reliable solutions is ever increasing with
the development of more complex systems and operations. The search for the optimal PM
control system continues, and hybrid PM is considered tomorrow’s solution.

The proposals for further work are:

• Upgrading from a control plant model to a process plant model in the simulation
model

• Implementation and testing of a setpoint chasing algorithm based on the principle
of structural reliability

• Implementation and testing of a nonlinear backstepping control law based on the
principle of structural reliability

• Implementation and testing of roll and pitch acceleration feedback

• Compare stability and robustness of the total control systems in 6 DOF, including
observer

• Study fault monitoring and fault recovery control, and discuss features to be applied
in the control system

• Merge position mooring control with hybrid control and use custom switching logic
for thruster assisted position mooring

• Upgrading of the model semi-submersible CyberRig I in terms of water resistance,
protection of equipment, and installation and implementation of a gyroscope

• Model scale and full scale testing of the control systems

The topic of this Master’s Thesis has proven both interesting and challenging. It is hoped
that this Master’s Thesis will stimulate further work in the field of thruster assisted position
mooring systems.
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Appendix A

Model Test Facilities

For model tests, CyberRig I and the MCLab with all of its equipment was offered for the
purpose of model testing. CyberRig I has an associated control computer which runs the
needed software for control of the semi-submersible and its thrusters.

CyberRig I

The model scale measurements of CyberRig I are listed in Table A.1. These values were
adopted from Tyssø and Aga (2006).

Table A.1: CyberRig I parameters.

Parameter Description Value Unit
Loa Length over all 118.5 m
Boa Breadth over all 95.4 m
Lwl Length outside pontoons 84.5 m
Lwl Breadth outside pontoons 84.5 m
Hc Heigth to underside box structure 39.5 m
Ht Heigth to upper dech 40.0 m
Bp Pontoon breadth 39.5 m
Hp Pontoon heigth 8.4 m
Do Operating draught 23.0 m

In Table A.2, volumetric parameters for CyberRig I are listed. The abbreviationCB stands
for center of buoyancy.

The thrusters are allocated under CyberRig I as shown in Figure A.1.
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Table A.2: Cyberrig I volumetric parameters.

Parameter Description Value Unit
KBp Pontoon CB 4.2 cm
KBc Column CB 12.0 m
KBx Extra column CB 16.1 m
∇p Pontoon displacement 713.9 cm3

∇c Column displacement 661.3 cm3

∇x Extra column displacement 912.6 cm3

yc Length to center of column 33.9 cm
yx Length to center of extra column 44.2 cm

Figure A.1: The thruster configuration for CyberRig I.

The fieldbus network which connects the thrusters and the QNX computer is depicted from
above in Figure A.2.

The Marine Cybernetics Laboratory

For model testing, the environment is reproduced in model scale. At the Norwegian
University of Science and Technology (NTNU), control system model testing is made
possible in the NTNU Marine Cybernetics Laboratory (MCLab). The facilities available
is a long test tank with dimensions L×B×D = 40×6.45×1.5 [m]. The tank is equipeed
with a carriage which moves along the tank, and a wave maker. In this Master’s thesis,
only the wave maker have been used.
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Figure A.2: The fieldbus network on CyberRig I.

Figure A.3: Cyberrig I in MCLab.

The Wave Maker

The wave maker at the MCLab can produce both regular and irregular waves. The capacity
of the wave maker is found to be H < 0.25 [m], T = 0.3 − 3 [s] for regular waves, and
Hs < 0.15 [m], T = 0.6 − 1.5 [s] for irregular waves. Several wave spectrums are
available for the generation of irregular waves, including JONSWAP, Pierson-Moskowitz,
ITTC, etc.
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Qualisys Track Manager

The tracking system in the MCLab consists of three Oqus cameras attached to the carriage,
and a marker antler which is placed on top of CyberRig I. The Track Manager provide
measured positions for all six degrees of freedom; three longitudinal and three rotational
positions. The six states provided by the Qualisys Track Manager are the only measured
states in the feedback system, as illustrated in Equation (A.1).

y = Hx =
[
x y z φ θ ψ

]T
(A.1)
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Simulation Parameters

Environmental Parameters

The typical environmental parameters for the North Sea in Table B.1 are adopted from
Sørensen (2013a). The environmental parameters used for the creation of irregular waves

Table B.1: Simulation environmental parameters.

Parameter Description Size Unit
Hs Significant wave height ∈[0.5,12] m
H̄s Average significant wave height 2.7 m
Tp Peak period ∈ [1,18] s
Vw Wind speed ∈ [0,33.4] ms−1

V̄w Average wind speed 8.4 ms−1

Vc Current velocity ∈ [0,1.5] ms−1

in the model tests are listed in Table

Table B.2: Model test environmental parameters.

Parameter Description Size Unit
Hs Significant wave height 0.06 m
H̄s Average significant wave height 2.7 m
Tp Peak period 1/0.8 s
Vw Wind speed 0 ms−1

V̄w Average wind speed 0 ms−1

Vc Current velocity 0 ms−1
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Mooring System Parameters

The mooring system parameters are estimated based on Aamo and Fossen (2001) and
Sørensen (2013b). The stability of the system is strongly dependent on the ratios between
depth, mooring cable length, and mooring cable thickness. Some of the parameters are
listed in Table B.3, the rest can be found in the Matlab files in Appendix F.

Table B.3: Simulation mooring parameters.

Parameter Description Value Unit
d Depth 200 m
L Unstretched 300 m
Ra Anchor distribution radius 300 m
D Cable diameter 0.08 m
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Simulink Diagrams

The overview of the Simulink model can be seen in Chapter 4. The subsystems spand
from the mooring system in Figure C.1, to the control allocation system in Figure C.6.

Figure C.1: The Simulink model of the mooring system.
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Figure C.2: The Simulink model of wave environment.

Figure C.3: The Simulink model considering the nonlinear damping.
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Figure C.4: The Simulink model of the NPO.

Figure C.5: The Simulink model containing the control laws.
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Figure C.6: The Simulink model of the control allocation system.
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Matlab Code

The init.m file, which is run for the total model is displayed:

%% Closed Loop Simulation
clc
clear all

%% Initial values
sim_tid = 300;
eta_0 = zeros(1,6);
nr_elem = 20;
nu_c = zeros(1,6);
tau_moor = zeros(1,6);

%% Scaling parameters
rho_M = 1000;
rho_F = 1025;
lambda = 100;

% Model scale matrices for CyberRig I
MRB_M = diag([73.1,73.1,73.1,1.2360,1.2360,13.7334]);
MA_M = diag([21.6151,21.6151,70.6667,5.0898,5.0898,2.9725]);
MA_M(5,1) = 2.5743; MA_M(4,2) = -2.5743; MA_M(1,5) = 2.5461; MA_M(2,4) = -2.5461;
D_M = diag([16.1482,16.1481,0.0319,0,0.0552,3.2798]);
G_M = 1000.*diag([0,0,1.0284,0.1622,0.1622,0]);

% Scaling laws from Model scale to Full Scale
MRB(1:3,:) = rho_F/rho_M*(lambdaˆ3).*MRB_M(1:3,:);
MRB(4:6,:) = rho_F/rho_M*(lambdaˆ4).*MRB_M(4:6,:);
MA(1:3,:) = rho_F/rho_M*(lambdaˆ3).*MA_M(1:3,:);
MA(4:6,:) = rho_F/rho_M*(lambdaˆ4).*MA_M(4:6,:);
Minv = inv(MRB + MA);
D(1:3,:) = rho_F/rho_M*(lambdaˆ(2.5)).*D_M(1:3,:);
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D(4:6,:) = rho_F/rho_M*(lambdaˆ(3.5)).*D_M(4:6,:);
G(1:3,:) = rho_F/rho_M*(lambdaˆ2).*G_M(1:3,:);
G(4:6,:) = rho_F/rho_M*(lambdaˆ3).*G_M(4:6,:);

%% Thruster system
alpha_thr = [0,pi/2,pi/2,pi,pi,-pi/2,-pi/2,0]; % Thruster angles
R_thr = [57,52,-52,-57,-57,-52,52,57

40,45,45,40,-40,-45,-45,-40
-23,-23,-23,-23,-23,-23,-23,-23]; % Thruster positions

nr = 8; % Number of thrusters
K = eye(nr); % Thruster gain matrix
Kinv = inv(K); % invers of K
T = zeros(6,nr); % Thruster allocation matrix
t = zeros(6,1); % Allocation vector for each thruster
for i=1:nr

t = [cos(alpha_thr(i))
sin(alpha_thr(i))
0
- R_thr(3,i)*sin(alpha_thr(i))
R_thr(3,i)*cos(alpha_thr(i))
R_thr(1,i)*sin(alpha_thr(i))- R_thr(2,i)*cos(alpha_thr(i))];

T(:,i) = t;
end
Tpinv = pinv(T); % Inverse of T

%% Environmental forces

% Irregular wave model
start = 0.04;
Delta = 0.05;
stop = 4;
L = ceil((stop-start)/Delta);
omega_rand = zeros(1,L);
phase_rand = zeros(1,L);
F_wave = zeros(1,L);
A_wave = zeros(1,L);
i = 1;
for w = start:Delta:stop

omega_rand(i) = w + Delta*(rand()-0.5);
phase_rand(i) = 2*pi*rand();
i = i+1;

end
omega = omega_rand;
T1 = 2*pi/0.8;
Hs = 1;
gamma = 3.3;
F_bar = 0.1;
for i = 1:length(omega)

w = omega_rand(i);
if w(1,1) <= 5.24/T1

sigma = 0.07;
else

80



Appendix D. Matlab Code

sigma = 0.09;
end
Y = exp(-((0.191*w(1,1)*T1-1)/(sqrt(2)*sigma))ˆ2);
S = 155.*Hsˆ2/(T1ˆ4*w(1,1)ˆ5)*exp(-944/(T1ˆ4*w(1,1)ˆ4))*gammaˆY;
A_wave(i) = 2*S*Delta;
F_wave(i) = 1025*9.81*F_bar*A(i);

end

% Current
tau_current = zeros(1,6); % Zero current

%% Mooring system 6DOF
Gm = 10ˆ4.*diag([0.035,0.038,0,0,0,210]); % Linear stiffness mooring matrix
Dm = diag([0,0,0,0,0,0]);% Linear damping mooring matrix

%% Mooring system
% Positions of top points on the rig
R_tp = [59,-59,-59,59

47.5,47.5,-47.5,-47.5];
% Initialization
cable_param
depth = 200;
R_moor = 300; % Radius of anchor configuration
L_moor = 300; % Mooring cable unstretched lengths
N_moor = 4; % Number of mooring lines
cable_pos
alpha_0 = pi/180.*[45,135,-135,-45]; % Initial mooring cable angles

%% Reference model
% Tuning parameters
zeta_r = [0.1,0.1,0.1];
omega_r = [0.02,0.02,0.02];
t_r = [100,100,100];
% Reference model matrices
Omega = 2.*diag([zeta_r(1)*omega_r(1),zeta_r(2)*omega_r(2),zeta_r(3)*omega_r(3)]);
Gamma = diag([omega_r(1)ˆ2,omega_r(2)ˆ2,omega_r(3)ˆ2]);
A_f = diag([1/t_r(1),1/t_r(2),1/t_r(3)]);

%% Controller gains
% Roll-pitch damping controller
Grpd = (-1)*(10ˆ7).*[0,1;1,0;0.01,0];

% PID regulator gain matrices
Kp = 10ˆ5.*diag([1,1,1000]);
Ki = 10ˆ1.*diag([1,1,100]);
Kd = 10ˆ7.*diag([1,1,1000]);

%% Nonlinear Passive Observer
npo

%% RUN
% Run mooring system
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sim CyberrigI
% Plot Data
plotting

82



Appendix E

Proposed Improvements for
CyberRig I

The model semi-submersible CyberRig I is not easily managable in its present state.
During model test set-up and execution, the model rig offered several challenges:

• The ’wells’ containing the thruster step motors are not watertight and can acciden-
tally be filled with water. The stability of the rig might then be fatally reduced and
the step motors put out of action.

• The rig has a moonpool in the center, open only from below the platform deck.

• The yellow coating is old and easily cracked, that means, the rig can not withstand
rough treatment or encounter sharp objects.

• The added column cross-sections are not covered with waterproof coating, and tend
to absorb significant amounts of water while submerged.

• The model rig can only be tested for stationkeeping control systems due to the need
for cabled power supply and ethernet connection, i.e. CyberRig I is not wireless.

• The only computer compatible with the equipment installed on CyberRig I is about
7 years old. The same is true for the software used. The software installed is not
longer in use for any other models in the MCLab.

Extensive challenges inspires creative solutions:

• The wells can be covered using some plastic material, e.g. from plastic bags, to
avoid water dripping from above.

• Limiting the wave height for model tests can prevent flooding of the moonpool.
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• The power and ethernet cables were attached to crannies in the roof to avoid cable-
to-water contact and prevent the cables from imposing horizontal forces on the semi-
submersible. For the moored configuration, this proved a good solution.

On the other hand, some problems are not easily dealt with. The problem with easily
cracked coating is one of them. An extensive treatment with a plastic-type coating for the
hole submerged part of CyberRig I is suggested.

An other type of software is now being installed on all model vessel in the MCLab, except
for CyberRig I. The upgrading is done for several reasons. A simultaneous hardware and
software update for Cyberrig I should be considered.

As suggested in Chapter 5, a gyroscope might well be installed and implemented for
CyberRig I. Else, angular velocity estimates for the RPD controller will hardly be obtained.

Several of the mentioned problems can be dealt with in the short run. The problems with
the coating, on the other hand, should be assessed imeditately if CyberRig is intended for
use in future experiments.
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Appendix F

Attachments

In addition to the written Master’s Thesis, a zip-file is submitted. The zip-file contains the
following elements:

• Master exhibition poster (required for students submitting a Master’s Thesis at the
Department of Marine Technology, NTNU).
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