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Abstract 

The hippocampus supports several important cognitive functions known to undergo 

substantial development during childhood and adolescence, e.g. encoding and consolidation 

of vivid personal memories. However, diverging developmental effects on hippocampal 

volume have been observed across studies. It is possible that the inconsistent findings may 

attribute to varying developmental processes and functions related to different hippocampal 

subregions. Most studies to date have measured global hippocampal volume. We aimed to 

explore early hippocampal development both globally and regionally within subfields. Using 

cross-sectional 1.5T MRI data from 244 healthy participants aged 4-22 years, we performed 

automated hippocampal segmentation of seven subfield volumes; cornu ammonis (CA) 1, 

CA2/3, CA4/dentate gyrus (DG), presubiculum, subiculum, fimbria and hippocampal fissure. 

For validation purposes, seven subjects were scanned at both 1.5T and 3T, and all subfields 

except fimbria showed strong correlations across field strengths. Effects of age, left and right 

hemisphere, sex and their interactions were explored. Nonparametric local smoothing 

models (smoothing spline) were used to depict age-trajectories. Results suggested non-

linear age functions for most subfields where volume increases until 13-15 years, followed 

by little age-related changes during adolescence. Further, the results showed greater right 

than left hippocampal volumes that seemed to be augmenting in older age. Sex differences 

were also found for subfields; CA2/3, CA4/DG, presubiculum, subiculum and CA1, mainly 

driven by participants under 13 years. These results provide a detailed characterization of 

hippocampal subfield development from early childhood.    
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Introduction  

A growing number of studies suggest that diverse cognitive functions are selectively 

associated with distinct hippocampal subregions (Fanselow and Dong, 2010; Kesner, 2007; 

Maguire et al., 2000; Poppenk and Moscovitch, 2011; Rempel-Clower et al., 1996; Strange et 

al., 1999; Teicher et al., 2012), indicating that the hippocampal formation should not always 

be treated as a single functional entity (Gogtay et al., 2006). For instance, Poppenk and 

Moscovitch (2011) recently showed that while overall hippocampal volume did not predict 

memory performance, larger posterior and smaller anterior hippocampal segments did. 

These findings raise the fundamental question of how hippocampal subregions develop. 

Magnetic resonance imaging (MRI) enables in vivo characterization of overall hippocampal 

volume (Giedd et al., 1999; Jernigan et al., 1991; Sowell et al., 2002). Recently, a 

computational method for segmenting hippocampal subfields was presented, making a finer 

differentiation possible (Van Leemput et al., 2009). Previous research has reported 

differential volumetric changes in posterior and anterior hippocampal sub-regions (Gogtay et 

al., 2006). However, no MRI study covers early brain development in hippocampal subfields, 

limiting our understanding of the structural brain foundation for the development of diverse 

memory-related functions.  

 

The aim of the present study was to characterize early hippocampal development globally 

and regionally within subfields in the age range from 4 to 22 years. Previous developmental 

MRI studies have found early volume increases in grey matter, followed by decreases in 

older children and adolescents (Giedd et al., 1999; Jernigan et al., 1991; Lenroot et al., 2007; 

Reiss et al., 1996; Shaw et al., 2008; Sowell et al., 2002; Tamnes et al., 2013; Tamnes et al., 
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2010; Wilke et al., 2007), but subcortical structures show heterogeneous developmental 

patterns (Brain Development Cooperative Group, 2011; Østby et al., 2009). Specifically, the 

hippocampi have shown a prolonged volumetric increase, followed by relatively smaller age-

related differences in adolescents (Tamnes et al., 2013; Uematsu et al., 2012; Østby et al., 

2009). Based on these findings, we tentatively hypothesised; 1) a nonlinear increase in 

volume of the hippocampus as a whole, with decelerating increase in early adolescence. This 

tendency should also be seen for different subfields, but regional variation is expected due 

to differential neurobiological processes. The nature of these is not yet known, but likely 

includes neurogenesis, synaptic growth, dendritic arborisation, pruning, vascularisation and 

myelination (Huttenlocher, 1990; Lenroot and Giedd, 2006). For instance, postnatal 

neurogenesis is known to be largely restricted to dentate gyrus (DG) (Cayre et al., 2009; Toni 

et al., 2008), but it is unknown whether MRI measures are sensitive to such differences. 2) 

Greater hippocampal volumes in males than females in development, in accordance with 

previously found sex differences (Giedd et al., 2012; Giedd et al., 1996; Murphy et al., 1996; 

Uematsu et al., 2012). We will further explore whether sex differences are uniform across 

subfields and age. 3) Hemisphere effects with greater right hippocampal volumes, possibly 

interacting with age and sex (Thompson et al., 2009; Uematsu et al., 2012; Utsunomiya et al., 

1999). In sum, we will investigate whether age, sex and hemisphere effects differ across 

hippocampal subfields. 

 

Material and methods 

Participants 
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Two hundred and forty four participants (128 females) were included in this study. The age 

range was from 4 to 22 years of age (M = 12.3, SD = 4.8), and subjects were drawn from two 

different projects run by Research Group for Lifespan Changes in Brain and Cognition (LCBC) 

at the Department of Psychology, University of Oslo, Norway. The youngest children (N = 77, 

with age M = 6.7, SD = 1.4, range = 4.1- 9.3, 41 females) were recruited from the Norwegian 

Mother and Child Cohort Study (MoBa) undertaken by the Norwegian Institute of Public 

Health (Magnus et al., 2006). Older children and adolescents (N = 167, with age M = 14.8, SD 

= 3.4, range = 8.2-21.6, 87 females) were included from the project Neurocognitive 

Development (Tamnes et al., 2010; Østby et al., 2009). The research projects were approved 

by the Regional Committee for Medical and Health Research Ethics. Written informed 

consent was obtained from all participants from 12 years of age and from the 

parent/guardian for participants <18 years. Oral informed consent was given by participants 

<12 years of age. Participants included in the current analysis were required to be fluent 

Norwegian speakers and have normal or corrected to normal vision and hearing. Exclusion 

criteria were history of injury or disease known to affect central nervous system (CNS) 

function, including neurological or psychiatric illness or serious head trauma, being under 

psychiatric treatment, use of psychoactive drugs known to affect CNS functioning, preterm 

birth (less than 37 completed weeks) or low birth weight (less than 2500 g), and MRI 

contraindications. Children and adolescents from the Neurocognitive Development project 

were all recruited to be right handed. Participants recruited for the MoBa study were not 

excluded based on handedness, but left handed participants (n = 4, age M = 6.3) were 

excluded from all analysis where volumes were not averaged across hemispheres. All 
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children underwent a practice session in a mock scanner to get familiarized with the scan 

procedure, small space and the sounds of the MRI-scanner. 

 

Among the 254 children and adolescents who met the inclusion criteria, two participants 

(both 4 years old) had no useable MRI scans because of movement artifacts. Because great 

caution must be taken when conducting MRI on children to ensure high quality, all scans 

were manually checked for movement artifacts. All participants’ scans were also examined 

by a neuroradiologist, which led to the exclusion of two additional participants. All 

segmentation results were visually inspected by a trained operator (SKK) and rejected if 

errors were observed. Data from six participants were excluded due to minor segmentation 

errors identifying by the borders of hippocampal subfields; where either the subfield 

mistakenly included white matter and/or cerebral cortex, overestimating total hippocampal 

volume, or the segmentation underestimated total hippocampal volume where cerebral 

cortex was extended into the hippocampus. In order to quantify possible outlier values, 

Studentized Deleted Residuals (SDR) from hippocampal volume predicted by age were 

calculated. None of the subjects had SDR values at or exceeding +/-3 (SDR ranged from 2,73 

to -2,52), leaving the total number of participants to 244.  

 

MRI acquisition and processing 

MRI data were collected using a 12-channel head coil on the same 1.5 T Siemens Avanto 

scanner (Siemens Medical Solutions). The pulse sequence used for morphometric analyses 

were two 3D T1-weighted magnetization prepared rapid acquisition gradient echo (MP-

RAGE) scans with the following parameters: repetition time (TR), 2400 ms; echo time (TE), 
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3.61 ms; inversion time (TI), 1000 ms; flip angle, 8°; acquisition duration of 7 min 42 s. Each 

volume consisted of 160 sagittal slices with voxel sizes of 1.25 x 1.25 x 1.20 mm. The total 

scan time was on average 50 min. For the children recruited for the MoBa study we used a 

parallel imaging technique (iPAT), using the same scan parameters, acquiring multiple T1-

scans within a short scan time (acquisition duration of 4 min 18 s.), enabling us to discard 

scans with residual movement and average the scans with sufficient quality. Here, the total 

scan time was on average 30 min. For both projects, the T1-scans were acquired first in the 

scanning protocol. Raw datasets were de-identified and transferred to Linux workstations for 

processing and analyses at the Neuroimaging Analysis Lab, LCBC, University of Oslo. Each 

MP-RAGE was visually inspected and only scans deemed to have no or minimal movement 

artifacts were included in the analyses. The two MP-RAGE volumes were averaged to 

increase signal-to-noise ratio and brain volume estimation reliability in both samples. In our 

experience, artifacts in smaller children due to movement can be greatly reduced by running 

several shorter sequences with iPAT. This is important when scanning children down to the 

age of four, as in the present study. 

 

Volumetric analysis 

All brain volumes were estimated using FreeSurfer 5.1 

(http://surfer.nmr.mgh.harvard.edu/). First, the whole hippocampal formation was 

segmented using the standard segmentation procedure (Fischl et al., 2002). The procedure 

automatically labels each voxel in the brain as one of 37 structures (Fischl et al., 2002) using 

a probabilistic brain atlas (Han et al., 2006). The segmentation puts constraints on allowable 

locations of structures in relation to each other based on the training set (e.g., hippocampus 

http://surfer.nmr.mgh.harvard.edu/
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is never anterior to amygdala). The border between the amygdala and hippocampus has 

been found difficult to segment due to the similar subcortical intensity of the structures 

(Fischl et al., 2002). Still, FreeSurfer is more accurate in hippocampus segmentation than 

other automated tools, especially in the head and tail of hippocampus (Morey et al., 2009). 

The automated segmentations have been found to be statistically indistinguishable from 

manual labeling (Fischl et al., 2002), and reproducibility errors between scan sessions has 

been shown to be less than 2.3% for left hippocampus and less than 1.2% for right 

hippocampus in young adults (Jovicich et al., 2009). The hippocampal segmentation 

procedure from our analysis was manually inspected for accuracy for each participant before 

automated segmentation of hippocampal subfields was performed using a recent technique 

in FreeSurfer 5.1. This procedure uses Bayesian inference and a probabilistic atlas of the 

hippocampal formation based on manual delineations of subfields in ultra-high T1-weighted 

MRI scans from a number of different subjects (Van Leemput et al., 2009). Seven 

hippocampal subfield volumes are calculated: cornu ammonis (CA) 1, CA2/3, CA4/DG, 

presubiculum, subiculum, fimbria and the hippocampal fissure. The segmentation of the 

larger subfields (e.g. CA2/3 and subiculum, presubiculum and CA1, respectively) has been 

shown to correlate well with manual volume estimates (Dice coefficients ranging from 0.74-

0.62), while segmentation of the smallest subfields (e.g. fimbria and the hippocampal fissure) 

is not as accurate (Dice coefficients of 0.51 and 0.53) (see Discussion p. 18) (Van Leemput et 

al., 2009). All seven subfields generated from FreeSurfer were included in the current study, 

although fimbria and the hippocampal fissure must be interpreted with great caution due to 

reliability issues.  
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We hypothesized substantial volume increases over the age-range studied, but these are not 

expected to be so large as to invalidate the subfield segmentation results for the youngest 

participants. Tissue contrast and overall subfield organization is not expected to change 

dramatically either. These features, in combination with manual inspections of the individual 

segmentations, have convinced us that the subfield segmentations are accurate even for the 

youngest participants, not being subject to any age-bias. A study specifically addressing the 

question of image registration procedures in the age-range 4-11 years across commonly 

used software concluded that registering children's brains to a common space does not 

result in an age-associated bias between older and younger children, making it feasible to 

accurately compare structural properties and patterns of brain activation in children from 

ages 4 to 11 (Ghosh et al., 2010). Still, it should be noted that the presently used subfield 

segmentation scheme has not been validated on children, and validation studies comparing 

the automated procedure with manual labeling down to the age of four years would be 

welcome. 

 

Segmentation results from hippocampal subfields were also visually inspected for errors in 

all datasets, yielding exclusions (see above), but in order to keep the results unbiased, no 

manual edits were done. Figure 1 shows the hippocampal subfield segmentation in one of 

the participants. Differences in size and reliability of the subfield segmentations may 

influence results, and this will be discussed. Finally, total intracranial volume (ICV) was 

estimated by use of an atlas-based normalization procedure, where the atlas scaling factor is 

used as a proxy for ICV, shown to correlate highly with manually derived ICV (r = .93) 

(Buckner et al., 2004). 
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[Insert Figure 1 about here] 

 

Validation analysis   

We have previous good experience with using the FreeSurfer hippocampal subfield 

segmentation on 1.5T MR scans (Engvig et al., 2012), but it is unknown which effect 

differences in image resolution have on the segmentation results. Therefore, we conducted 

a validation study where seven children (5 males), from 6 to 10 years of age (M = 8.4) were 

scanned on both the 1.5 T Siemens Avanto scanner and a 3T Siemens Skyra scanner. The 

same iPAT technique was used on both scanners. On the 3T Siemens Skyra scanner a 16-

channel head coil was used and the pulse sequence for the morphometric analysis was a 3D 

T1-weighted MP-RAGE scan with the following parameters: TR, 2300 ms; TE, 2.98 ms; TI, 850 

ms; flip angle, 8°; acquisition duration of 5 min 30 s. Each volume consisted of 176 sagittal 

slices with voxel sizes of 1 x 1 x 1 mm.  

 

In order to test for effects of field strength differences, hippocampal subfield segmentation 

results were correlated across the two imaging resolutions. The results showed a strong 

significant positive correlation between segmentation results from 1.5T and 3T for total 

hippocampal volume (r = .837, p = .019). Strong significant positive correlations (p = <.05) 

were also found for six subfields; CA1 (r = .834), CA2 3 (r = .971), CA4 DG (r = .959), 

presubiculum (r = .854), subiculum (r = .809), and hippocampal fissure (r = .803). No 

significant correlation was found for fimbria (r = .339, p = .458). These validation results will 

be further discussed (see section 4.3).  
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In addition, we tested the correspondence of the hippocampal subfield segmentation across 

the MP-RAGE sequence and the iPAT sequence (see MRI acquisition and processing for 

scanning parameters) where 24 children (15 males), from 4 to 9 years of age (M = 7.4) were 

scanned with both sequences. The results showed strong positive correlations between 

segmentation results from the MP-RAGE and iPAT for total hippocampal volume (r = .98) and 

for all subfields; CA1 (r = .90), CA2 3 (r = .98), CA4 DG (r = .98), presubiculum (r = .93), 

subiculum (r = .96), fimbria (r = .89) and hippocampal fissure (r = .70). These validation 

results will be further discussed (see Discussion, p.22) 

 

Statistical analyses 

PASW Statistics 18.0 (SPSS Inc., Chicago, Ill) and Matlab (Mathworks, Inc.) were used for the 

statistical analyses. For some analyses, left and right raw volumes were summarized, making 

total volume for each subfield. Total hippocampal volume was calculated by adding all seven 

subfields and the remainder of the hippocampus as segmented in FreeSurfer. The remainder 

is the tail of the hippocampus where the delineation no longer discerns between the 

different subfields (Van Leemput et al., 2009).  

 

A smoothing spline approach implemented in Matlab (Fjell et al., 2010) was used for 

estimation of age trajectories. To test for non-linear age-functions, we compared the 

Aikake’s Information Criterion (AIC) between the linear and smoothing spline models for 

each subfield. To alleviate the need for arbitrary choosing an appropriate smoothing level, 

we used an algorithm that optimizes smoothing level based on a version of AIC, i.e. the 
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smoothing level that minimizes AIC for each analysis was chosen. AIC offers a relative 

measure of amount of information lost when a model is used to describe a set of data, and 

can be said to describe the tradeoff between bias and variance in the construction of 

statistical models. AIC rewards goodness of fit, but also includes a penalty that is an 

increasing function of the number of estimated parameters. Thus, AIC attempts to find the 

model that best explains the data with a minimum of free parameters, in this case, with 

greatest possible smoothing level. With no smoothing, the smoothing spline will yield an 

extremely good apparent fit to the data, but the model would be predictively inaccurate. AIC 

takes this into account by penalizing for degrees of freedom (Fjell et al., 2010). To ease 

comparison of AIC between ordinary least squares (OLS) linear models and smoothing spline 

models, we used ∆I, which is the difference between AIC for the model and the lowest AIC - 

in this case, the difference between the smoothing spline model and the linear OLS model. 

As a rule of thumb, ∆I < 2 would indicate that the two models are essentially 

indistinguishable with regard to goodness of fit, ∆I > 4 would indicate considerable 

differences between the models, and ∆I > 10 would indicate that the model has essentially 

no support. These criteria were based on (Burnham and Anderson, 2002), justified from 

likelihood-ration theory, from which is can be shown that these offers protection from 

overfitting that aligns with the conventional alpha level of 0.05 for significance. 

 

In PASW Statistics, we ran partial correlations between age and each subfield volume (CA1, 

CA2/3, CA4/DG, presubiculum, subiculum, fimbria and hippocampal fissure) as well as raw 

total volume, controlling for sex. The subfield analyses were Bonferroni-corrected by a factor 

of 7 (reflecting the seven subfields). These analyses were repeated additionally controlling 
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for ICV and in a separate analysis controlling for total hippocampal volume. The break point 

of the smoothing spline curves were inspected to identify an age that distinguish early and 

later hippocampal subfield development. Based on visual inspection of the soothing spline 

curve for total hippocampal volume, the hippocampal volume increase leveled off around 

the age of 13 years. The same partial correlation analyses were run for age and each subfield 

raw total volume for each of the two age groups separated by this point (<13 years vs. ≥13 

years), controlling for sex. In order to test effects of hemisphere, sex, age group and their 

interactions, we conducted general linear model (GLM) analyses with left and right 

hemisphere (left, right) × age group (<13 years, ≥13 years) × sex (female, male). Here, the 

left and right hemisphere refers to left total hippocampal volume and right total 

hippocampal volume, and the seven left and right hippocampal subfield volumes (CA1, 

CA2/3, CA4/DG, presubiculum, subiculum, fimbria and hippocampal fissure). 

 

Results 

Scatterplots including the local smoothing model for hippocampal subfields and total 

hippocampal volume are shown in Figure 2. Comparing AIC values for the linear and 

smoothing spline models for each raw subfield volumes, the results suggested considerably 

better fits for the smoothing spline model for the hippocampus as a whole, and for six out of 

seven subfields (Table 1), all showing steeper age-related volume increases in early 

childhood. For CA1, CA2/3, CA4/DG, presubiculum, subiculum and fimbria, as well as total 

hippocampal volume, the models estimated gradually decelerating volume increases until 

13-15 years, followed by little age-related changes (Figure 2). For the hippocampal fissure, a 

linear age-related volume decrease was found. Correlations between both subfields and 
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total hippocampal volume and age, controlling for sex, are shown in Table 1 for the total 

sample as well as divided in subgroups of children (< 13 years) and adolescents (≥13 years). 

The results showed significant corrected (p < .007) age-related volume increases for total 

hippocampal volume and all subfields except the hippocampal fissure for the total sample. 

The hippocampal fissure showed a significant age-related volume decrease. The subgroup 

analyses confirmed that total hippocampal volume and all subfields except the hippocampal 

fissure showed significant corrected (p < .007) age-related volume increases in childhood (< 

13 years), followed by only small changes in the age range 13-22 years (n.s). Further, the ICV 

corrected analysis (Table 2) for the total sample showed significant corrected (p < .007) age-

related volume increases for total hippocampal volume and subiculum, and significant 

uncorrected (p < .05) age-related volume increases for all subfields except from fimbria, and 

hippocampal fissure showed age-related volume decrease. The ICV corrected subgroup 

analysis showed significant uncorrected (p < .05) age-related volume increases for CA1, 

presubiculum, subiculum and total hippocampal volume in childhood (< 13 years). No 

significant age-related volume differences were found after the age of 13 years. For the total 

hippocampal volume corrected analysis (see Supplementary Table 1) for the total sample, 

results showed significant corrected (p < .007) age-related volume decrease for hippocampal 

fissure, and significant uncorrected (p < .05) age-related volume decrease for CA4/DG. No 

significant age-related volume differences were found for CA1, CA2/3, presubiculum, 

subiculum and hippocampal fissure in the total hippocampal volume corrected analysis for 

the total sample. The same significant (p < .007) age-related volume decrease for 

hippocampal fissure was found for the total hippocampal volume corrected subgroup 

analyses in childhood (< 13 years). No significant age-related volume differences were found 
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for CA1, CA2/3, CA4/DG, presubiculum, subiculum and fimbria for the total hippocampal 

volume corrected subgroup analysis in childhood (< 13 years). No significant age-related 

volume differences were found for the total hippocampal volume corrected subgroup 

analysis in adolescents (> 13 years). 

 

 [Insert Figure 2 and Tables I and II about here] 

 

GLM with left and right hemisphere (left, right) x age group (<13 years, ≥13 years) x sex 

(female, male) for total hippocampal volume showed a main effect of hemisphere (F (1,540) = 

11.87; p = .001) with different sizes of total hippocampal volume in left and right 

hemisphere. As can be seen from Table 3, there were larger right total hippocampus volume 

than total left hippocampus volume. The results also showed a main effect of age group (F 

(1,240) = 41.37; p = .001), caused by larger total hippocampus volume in adolescents (≥13 

years) than in children (<13 years). In addition, a main effect of sex (F (1,240) = 61.09; p = .001) 

was found, showing larger total hippocampal volumes in both left and right hemisphere for 

males than females in both age groups (see Table 3). There was a trend towards an 

interaction of hemisphere x age groups (F (1,540) = 3.51; p = .062), caused by a tendency for 

larger right total hippocampus volume than left total hippocampus volume being augmented 

in older age. The results also showed a trend towards interaction of hemisphere x sex (F 

(1,540) = 3.76; p = .054), caused by an overall larger difference in total hippocampus volume 

favouring right total hippocampus volume for males. There was only a trend towards an 

interaction of hemisphere x age groups x sex (F (1,540) = 31.51; p = .062). For the child group 

(<13 years) males showed marginal differences between right total hippocampus volume 
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and left total hippocampus volume, whereas right total hippocampus volume was larger 

than left total hippocampus volume for females. For the adolescent group (≥13 years) right 

total hippocampus volume was larger than left total hippocampus volume for both males 

and females.  

 

Further, the results showed a main effect of subfield (F (6,540) = 14264.6; p = .001). As can be 

seen from Table 3, the largest volumes were found for CA2/3 and subiculum, while the 

smallest subfields are fimbria and hippocampal fissure. There was an interaction effect of 

subfield x age groups (<13 years, ≥13 years) (F (6,540) = 27.84; p = .001), with greatest age 

differences for CA2/3, CA4/DG, subiculum, presubiculum and CA1, respectively, whereas 

there were almost no differences in volume for fimbria and hippocampal fissure between 

the age groups. The interaction effect of subfield x sex (F (6,540) = 37.48; p = .001) appears to 

be caused by smaller subfield volumes for females, especially for CA2/3, CA4/DG, 

presubiculum, subiculum and CA1 compared to males. There was a significant interaction of 

hemisphere x subfield x age groups (F (6,540) = 5.33; p = .001), where the results indicated 

greater right than left hemisphere volumes for CA1, CA2/3 and CA4/DG that were 

augmented in older age. Presubiculum and subiculum had larger left than right hemisphere 

volume. For the latter, the difference between left and right hemisphere volume decreased 

with older age, while the difference in presubiculum between left and right hemisphere 

volume did not change with older age. The fimbria showed an opposite pattern than the rest 

of the subfields, where left hemisphere volume increased with age and right hemisphere 

volume decreased with age. The hippocampal fissure showed decrease in both left and right 

hemisphere volumes with age and the right hemisphere volume appeared to decrease more 
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than left hemisphere volume in older age. There were no significant interactions of subfield x 

age groups x sex (p > .2).  

 

[Insert Table III about here] 

 

Discussion  

The present study showed that hippocampus undergoes rapid estimated growth in early 

childhood, before leveling off in adolescence, with regional differences across subfields, 

hemisphere and sex. These results indicate that age does not have a linear impact on 

hippocampal maturation, and that the speed of estimated growth varies substantially across 

developmental phases. Interestingly, there were similarities in age-trajectories between 

subfields, but also notable differences. The implications of the results are discussed in 

relation to the initial hypotheses. 

 

Is there a nonlinear increase in volume of the hippocampus as a whole, with decelerating 

increase in adolescence, and to what extent is this seen for different subfields?  

The results showed a nonlinear increase in volume of the hippocampus as a whole, with 

rapid initial volume increase, which gradually decelerated until age 13-15 years, after which 

little age-related changes were seen. As for the subfield development trajectories, a 

nonlinear increase was seen for six out of seven subfields. For the hippocampal fissure, a 

linear age-related volume decrease was found. The greatest age-related differences were 

found for CA2/3, CA4/DG, subiculum, presubiculum and CA1, respectively. The non-linear 
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developmental pattern is in accordance with the findings on total hippocampal volume from 

infancy by Uematsu et al. (2012). However, they found hippocampal volume increase until 

approximately 9 to 11 years of age. In contrast, hippocampal volume increase restricted to 

the right hemisphere only in females in the age range between 4 and 18 years has also been 

reported (Giedd et al., 1996), while others have demonstrated a significant volume increase 

in the hippocampus between 13–14 and 18–21 years only in males (Suzuki et al., 2005).  

 

To our knowledge, there has been no study investigating hippocampal subfield development 

within a large sample of children and adolescents. Research on gene expression and 

anatomical projection patterns argue that the hippocampus can be divided into separate 

anatomical structures and studies also indicate that diverse cognitive functions may be 

associated with different hippocampal subregions (Cayre et al., 2009; Dong et al., 2009; 

Fanselow and Dong, 2010; Lenroot and Giedd, 2006; Poppenk and Moscovitch, 2011; 

Thompson et al., 2008; Toni et al., 2008; Uematsu et al., 2012). Importantly, previous 

research has reported differential volumetric changes in posterior and anterior hippocampal 

sub-regions. In one study, the total hippocampal volume remained unchanged bilaterally 

between ages 4 and 25, while they found notable variability along the horizontal axis of the 

hippocampus over time (Gogtay et al., 2006). In contrast, our results indicated that most of 

the subfields, with some exceptions, showed similar structural developmental patterns as 

total hippocampal volume, although the presently used subfield demarcations do not adhere 

to an anterior-posterior division. The small age-related differences between subfields could 

be caused by neurobiological processes such as neurogenesis in DG, and myelination in 

subiculum and presubiculum that are known to continue until adulthood (Benes et al., 1994; 
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Toni et al., 2008; van Praag et al., 2005).  Complex interactions among genetic factors, 

environmental conditions, as well as changes in these factors, strongly contribute to volume 

changes in subcomponents of the brain (Lenroot and Giedd, 2006). This might result in 

individual variations within hippocampal development. 

 

Although the general developmental patterns were similar across subfields, there were 

some exceptions. Subfield volumes differ greatly and it is important to consider the 

differences in size and reliability when interpreting the developmental subfield trajectories. 

The biggest volumes are found for CA2/3, subiculum and CA4/DG, while the smallest 

subfields are fimbria and hippocampal fissure. The structures that are most difficult to 

segment reliably by the human operator are likely also the most difficult for the automated 

method. Automated segmentations for the smaller subfields are therefore expected to be 

less reliable. When calculating the average distance between the boundary of each 

structure’s manual segmentation and the boundary of the corresponding automated 

segmentation, results indicate that the relatively poor segmentation evaluation scores for 

hippocampal fissure are apparently caused by a systematic underestimation of the volume 

of the hippocampal fissure by the automated method (Van Leemput et al., 2008; Van 

Leemput et al., 2009).  

 

Are hippocampal volumes greater in males than females in development and to what extent 

are sex differences uniform across subfields? Are there differential hemispheric effects with 

greater right hippocampal volumes, and do these interact with age and sex?  
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Our results showed consistently larger right total hippocampus volume than left total 

hippocampus volume, and males showed substantially larger right total hippocampus 

volume than females. Further, trend effects indicated that the greater right than left total 

hippocampus volume seemed to be augmented in adolescents, and also a trend for an 

overall larger hemispheric difference for females than males, mainly driven by the child 

group. Sex differences were also found for most subfields, especially for CA2/3, CA4/DG, 

presubiculum, subiculum and CA1, whereas no sex differences were found for fimbria and 

hippocampal fissure. There were also interactions of hemisphere, subfields and age groups 

indicating greater right than left subfield volumes for CA1, CA2/3 and CA4/DG that seemed 

to be augmented in older age, whereas other subfields showed slightly greater left than right 

subfield volumes with different developmental patters between left and right hemisphere.  

 

In accordance with the findings of Uematsu et al. (2012), our results showed rightward 

volumetric hippocampal asymmetry in both males and females, although a somewhat 

smaller laterality difference was seen in young boys. These results were not consistent with 

previous findings, where Giedd et al. (1999) reported that the right hippocampus correlated 

with age only in females, and that the left hippocampus did not increase with age between 4 

to 18 years in males. Further, they also found greater right-than-left asymmetry in 

hippocampus, which did not change with age. Hu et al. (2013) have found a quadratic 

relation between volume and age for both boys and girls in hippocampus. Between 4 and 10 

years, the volumetric growth pattern for hippocampus was parallel for boys and girls with 

larger hippocampal volume for boys, which is in accordance with our findings. Although, 

with increasing puberty as measured by a self-rating scale, they reported decrease of 
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hippocampal volumes for boys, while for girls, the volumes of hippocampus were found to 

increase with the increasing puberty score. These latter findings might suggest that the rising 

levels of testosterone in boys and estrogen in girls might have opposite effects for 

hippocampus development (Hu et al., 2013). This implies that both sex and laterality can 

influence the developmental trajectories of hippocampus. Future studies should directly 

investigate effects of hormone levels on structural development of hippocampus and the 

rest of the limbic system, which could possibly contribute to explain the sex effects 

observed. Laterality might depend on the period of development, gestational age at birth, 

and mental health, and larger right hippocampal volume compared to left hippocampal 

volume has also been found in infants (Thompson et al., 2009).  

 

Limitations and conclusion  

Further investigations are needed to confirm the present results in a longitudinal design, as 

longitudinal studies have the advantage of being more sensitive to individual differences in 

hippocampal developmental trajectories. In the present study, we used 1.5T scans 

(1.25 × 1.25 × 1.20 mm resolution) as compared with the 3T images (380 μm in-plane 

resolution; slice thickness 0.8 mm) used for the development of the subfield technique 

employed. However, we have previous good experience with using this segmentation 

approach to hippocampal subfields from 1.5T MR scans (Engvig et al., 2012) and visual 

inspection of our results (see Figure 1) suggest subfield identification and separation in 

agreement with results reported at 3 T (see Hanseeuw et al. (2011). The current FreeSurfer 

algorithm seems to provide adequate segmentation results at 1.5 T. Also, when directly 

comparing the hippocampal subfield segmentation across field strengths, the current 

http://www.sciencedirect.com/science/article/pii/S1053811912002571#f0005
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validation results showed strong correlations between the segmentation at 1.5T and 3T. This 

was found for total hippocampal volume and six subfields. Fimbria showed a weaker 

correlation compared with the rest of the subfields. As one of the smallest structures, 

fimbria has the lowest correlation between manual and automated volume estimates 

according to Van Leemput et al. (2009). The current weak correspondence across field 

strength in fimbria may thus possibly be partly attributed to the segmentation procedure 

and not image resolution alone. To avoid movement artifacts in the young age group (4-9 

years of age), we ran several shorter sequences with iPAT. When comparing the 

hippocampal subfield segmentation between the MP-RAGE sequence and the iPAT 

sequence, the validation results showed strong correlations between segmentation results 

from the MP-RAGE and iPAT for total hippocampal volume and all subfields. The correlations 

were similar to what would be expected if the same child was scanned twice with the 

identical sequence (Jovicich et al., 2009)  for total hippocampal volume (r = .98), CA2 3 (.98) 

and CA4 DG (.98). Correlations from .89 to .96 were obtained for CA1, presubiculum, 

subiculum and fimbria, also indicating substantial similarity. However, a lower correlation 

was observed for the hippocampal fissure (.70). The value for this subfield may hence be 

partially affected by the differing imaging protocols, as well as an overall less reliable 

automated segmentation procedure for this specific subfield. With this exception, however, 

the validation analysis indicated that the imaging protocol differences did only minutely 

affect the total hippocampus and subfield volume estimates. 

 

In order to use this segmentation procedure on children, we took great care to visually 

inspect every slice of every volume of every subject in the study to ensure that the subfield 
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segmentations were accurate. Within the field of clinical MRI, the hippocampal subfield 

technique has also improved sensitivity to detect small changes, such as atrophy in specific 

subfields. Compared to total hippocampal volume, hippocampal subfields segmentation has 

been shown to increase the sensitivity to diagnose amnestic mild cognitive impairment 

(aMCI) from 40% to 73% (Hanseeuw et al., 2011). The results from hippocampal 

segmentation in a clinical group demonstrated the sensibility and accuracy of the 

segmentation technique and we have reasons to believe that it captured the anatomical 

variability of the children and adolescents studied. Our cross-sectional data from the present 

age range yielded results that shed new light on hippocampal development. 

 

In conclusion, our results showed that hippocampus undergoes rapid estimated growth in 

early childhood, before leveling off in adolescence. Regional differences were found for 

hemisphere, volume and sex. Except for the hippocampal fissure, other subfields, including 

CA1, CA2/3, CA4/DG, presubiculum, subiculum and fimbria showed similar age–trajectories 

during childhood.    
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Figure legends  

 

Figure 1. The figure shows the result of the hippocampus segmentation for one 

subject superimposed on the subject's T1-weighted scan in sagittal, coronal, and axial 

views, respectively. Right column: Colour coded hippocampal subfield segmentation. 

The last volume labelled “hippo rest” is the tail of the hippocampus where the 

delineation no longer discerns between the different subfields. CA = cornu ammonis, 

DG = dentate gyrus, Fissure = hippocampal fissure. 

 

 

Figure 2. Scatterplots showing hippocampal subfields and total hippocampal volume against 

age, with local smoothing models. Volume is reported in number of 0.5 mm3 voxels and age 

is shown in years. Fissure = hippocampal fissure. Total hippocampus = total hippocampal 

volume where all subfields, including the tail of the hippocampus, is added together. 
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