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Abstract—The dependability of ICT systems is vital for today’s
society. However, operational systems are not fault free. Providers
and customers have to define clear availability requirements and
penalties on the delivered services by using SLAs. Fulfilling the
stipulated availability may be expensive. The lack of mechanisms
that allow a fine control of the SLA risk may lead to over-
dimension the provided resources. Therefore, a relevant question
for ICT service providers is: How to guarantee the SLA avail-
ability in a cost efficient way? This paper studies how to combine
different fault tolerant techniques with different costs and prop-
erties, in order to economically fulfill a given SLA requirement.
GEARSHIFT is a mechanism that enables ICT providers to set
the fault tolerance technique (gear ratio) needed, depending on
the current service conditions and requirements. We illustrate
how to use the proposed model in a backbone network scenario,
using measurements from a production national network. Finally,
we show that the total costs of delivering an ICT service follow
a simple convex function, which allows an easy selection of the
optimal risk by tuning properly the combination of fault tolerant
techniques.

Index Terms—fault tolerance; SLA; renewal theory; accumu-
lated downtime; network recovery; risk optimization.

I. INTRODUCTION

The importance of ICT services in today’s society has
increased tremendously. However, failures in ICT systems
are unavoidable events that produce considerable negative
consequences ( [19], [8], [10]). A Service Level Agreement
(SLA) is a tool to define among others, the service availability
that a provider should deliver. In that sense, customers are
aware of the unavoidable existence of failures, but providers
are obligated to deliver the resources needed in order to
guarantee the signed agreements.

Delivering highly dependable ICT services is expensive (e.g.
[23] and [6]). Therefore, finding the right balance between the
SLA availability fulfillment, and the cost of the technology to
be used is a main concern for providers. One of the main
tools to improve the control on the SLA development is the
capability of modeling accurately the accumulated downtime
over a finite interval. This problem was first addressed by
Takács [22]. However, an explicit solution is only given for
exponentially distributed up/down times. This work inspired

several further works, among them, the work presented in [12],
where several fundamental related concepts were proposed,
analyzing different time distributions in systems that allow
failures and repairs to occur. Finally, the probability that a
service provider meets the contracted availability was first
studied in [13] by Goyal and Tantawi, making it one of the
main references for further SLA availability related works.

Previous studies have addressed the combination of more
than one fault tolerance technique in ICT systems. The work
presented in [7] studies a method for combining logical
ring protection and mesh restoration mechanisms, in order to
recover link and node failures in optical networks. In [20],
a hybrid model that uses network protection and restoration
schemes for two-link failures was proposed. These works do
not consider SLA scenarios, and they focus on the efficient re-
covery of single downtime events rather than the accumulated
downtime. The work presented in [11] proposes the combi-
nation of two different virtual machine restoration techniques,
assuming negatively exponentially distributed processes, with-
out considering financial consequences. Yallouz et al. propose
a tunable network survivability approach in [25]. This work
provides flexibility in the routing path selection in order to
target a specific survivability level. However, it performs static
decisions based on steady state failure probabilities, without
considering the dynamics of the transient solution.

GEARSHIFT is a work that proposes how to build a
risk map that leads fault tolerance shifts, considering i) the
accumulated downtime under generally distributed fault toler-
ance processes, and ii) optimal shifts based on the minimum
financial costs, allowing ICT service providers to operate their
resources in a cost efficient way.

This paper is organized as follows. Section II provides a
general framework on the SLA context addressed in this paper,
including the definition of the density of the accumulated down
time and the SLA risk. In Section III, we define the SLA risk
target, and we describe how to build the GEARSHIFT risk
map. Section IV shows how to use GEARSHIFT in a backbone
network scenario, based on real measurements obtained from
a production national network [2]. In Section V, we evaluate



the performance of GEARSHIFT using network recovery as
a case study. Section VI illustrates how to select the optimal
SLA risk target that minimizes the total costs of delivering a
service. Finally, Section VII concludes the paper.

II. THE ACCUMULATED DOWN TIME AND THE SLA RISK

In this section, we present a general formulation for the
accumulated downtime in terms of the probability density of
single up and down periods, and based on this, we define
the SLA Risk and the SLA success probability. Since the
complexity of this formulation may be impractical, the second
part of this section presents an approximation that makes the
computation of the density of the accumulated downtime more
tractable, using conventional renewal theory concepts.

A. The density of the accumulated down time and the SLA
risk

The availability guarantee αA is a fundamental SLA param-
eter. In this work, we deal with the SLA maximum allowed
accumulated downtime α, which is obtained by mapping
directly αA into the time domain as α = (1− αA)τ .

A second important parameter is the duration of the SLA
contract, obtained when the running time T is equal to τ . The
state of an ICT service can be modeled as a function T with
a random process O(T ), which is equal to 1 if the service
is working at T , or 0 otherwise. The duration of each down
period (O(T )=0) is assumed independent and identically dis-
tributed with density h(t) and cumulative distribution function
(CDF) H(t). The duration of each up period (O(T )=1) is also
assumed i.i.d. with density g(t) and CDF G(t).

The accumulated downtime D(T ) of an ICT service at time
T is a random variable that measures the total time that the
service has been down during the interval [0, T ]. At the end
of the SLA (T = τ ), it may be defined as D(τ) = τ −∫ τ
0
O(T ) dT .
The CDF and the density of D(τ) will be defined as Ω(τ, t)

and ω(τ, t) respectively. The SLA Success Probability is the
probability that the accumulated downtime will be equal or
smaller than α, and it can be defined as:

S(τ, α) =

∫ α

0

ω(τ, t) dt = Ω(τ, α). (1)

The complementary function (1−S(τ, α)) will be defined as
the SLA risk (P [ω(τ, t) > α]), and it represents the probability
that the SLA availability requirement will not be met.

The evaluation of Expression (1) demands the definition
of ω(τ, t) or Ω(τ, t) alternatively. A general expression for
Ω(τ, t) was derived by Takács in [22] as follows:

Ω(τ, t) =

∞∑
n=0

Hn(t)[Gn(τ − t)−Gn+1(τ − t)] (2)

where the subindex n represents the n convolution.
However, due to the complexity posed by the convolution of

general CDFs, expression (2) is difficult to compute. For fail-
ure and repair processes negatively exponentially distributed

(n.e.d.), a complete result was obtained by Takács in [22].
Previous studies (e.g., [19], [8]) as well as Section IV have
shown that Weibull and gamma distributions are representative
to model the behavior of real failure/repair processes. In the
literature there is no explicit expression that describes Ω(τ, t)
for these two distributions. Therefore, the next section shows
an approximation for Ω(τ, t) and ω(τ, t) that makes their
computation more tractable.

B. Approximation of the density of the accumulated down time

Assuming a fixed number of n down events when T = τ ,
the realization of the accumulated downtime of a service D(τ)
is simply the addition of the realization of each individual
downtime hi, i.e., D(τ) = h1 + h2 + ...+ hn. Using this line
of thinking, the density of D(τ) is given by the convolution
ωn(τ, t) = h1(t) ∗ h2(t) ∗ ... ∗ hn(t). Therefore, if the number
of down events is deterministic, ω(τ, t) can be obtained.
However, this quantity (n) is also a random variable.

In order to compute ω(τ, t) considering the stochastic
properties of the number of down events, one can assume
that the downtime duration is very small compared to the
duration of uptimes (realistic assumption in most ICT sys-
tems). Therefore, the probability P (N(τ) = n) of n down
events during τ may be approximated considering only the
number of renewals of the failure process which is ruled by the
density g(t), i.e., D(τ) is not considered for the computation
of P (N(τ) = n). This approximation represents an upper
bound, since P (N(τ) = n) ≥ P (N(τ − D(τ)) = n), and
hence a conservative and safer way to estimate the SLA risk.

This approximation overcomes the complexity of Equa-
tion (2) by dividing the problem in two, first by making the
convolution of only the downtime distribution, and second
by obtaining P (N(τ) = n), which is ruled only by the
uptime distribution. The approximated density of the total
accumulated ω

′
(τ, t) downtime is given as

ω
′
(τ, t) =

∞∑
n=0

P (N(τ) = n)h∗n(t) (3)

This approximation (3) makes easier the computation of
the distribution of the accumulated downtime. For instance,
the probability of n renewals during τ for n.e.d. uptimes
follows the Poisson distribution. The convolution of expo-
nential functions can be easily obtained applying the Laplace
transform. In [24], Winkelmann defines a count-data model
that computes P (N(τ) = n) when the times are gamma
distributed. The convolution of gamma distributed downtimes
is obtained directly by using the Laplace transform. For the
case of Weibull distributed uptimes, P (N(τ) = n) can
be obtained by expanding the Weibull function as a Taylor
series as presented in [18], and the convolution of Weibull
distributed downtimes may be approximated using the Saddle
Point Approximation [15]. Finally, several numerical methods
can be used to approximate convolution operations like the
ones shown in [17] or the Fast Fourier Transform.
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Fig. 1. Evolution of the accumulated downtime during a SLA period.

III. HYBRID MODEL FORMULATION

There is a tradeoff between fulfilling the SLA availability,
and the amount of resources needed in order to do so. This
section shows how to address this issue, through the proposal
of a hybrid model. Figure 1 illustrates the evolution of the
accumulated downtime under two different fault tolerance
techniques named here technologies A and B. In general,
our model assumes that technology A has better recovery
properties than B. The density of the duration of individual
downtimes using technology A or B will be defined as hA(t)
or hB(t) respectively. In addition, we assume in general that
the operation of technology A is more expensive and demands
more resources than technology B. Otherwise, the selection of
the fault tolerance technique to be used would be trivial.

The density of the accumulated downtime using technology
A or B (ωA(τ, t) or ωB(τ, t)) can be calculated using the
mechanisms provided in Section II-B. Due to the better
dependability properties of technology A, the density ωA(τ, t)
will be concentrated in values of D(τ) much smaller than
ωB(τ, t), as Figure 1 illustrates.

Section II showed that the accumulated downtime is a
continuous random variable with a range from zero to infinity.
Therefore, having a SLA risk equal to zero is not realistic.
Based on this fact, here we define the SLA risk target φ as
the maximum value that the service provider allows for the
probability that the SLA will be violated: φ = 1 − Ω(τ, α).
The selection of φ allows a better planning on the SLA needs
and consequences, but it is an open value that the provider
should select based on a proper financial assessment. Section
VI will present how such assessment may be done.

The maximum accumulated downtime allowed α is the
parameter that defines if ωA(τ, t) or ωB(τ, t) may produce
an acceptable SLA risk, according to φ. In this context, there
are three possible scenarios: i) 1−ΩB(τ, α) is smaller than the
risk target. In this case, there is no reason to use technology
A, since technology B is able to handle the risk alone. ii)
1− ΩA(τ, α) is larger than the SLA risk target. In this case,
reaching φ is not possible. Therefore, the SLA should not be
signed, the risk target should be relaxed (with the economic
implications that it may bring), or new and better technologies
than A should be used (if available). iii) 1−ΩB(τ, α) is larger,
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Fig. 2. Two potential hybrid fault tolerance approaches.

and 1 − ΩA(τ, α) is smaller than the risk target respectively.
In this case, only technology A can handle the desired risk.
However, using this solution during the entire SLA period may
not be the most cost efficient approach.

This work is focused on the last mentioned case, where there
is room for a hybrid solution that through the combination of
technology A and B may deliver precisely the desired risk
target φ, as Figure 1 illustrates.

In this paper, two intuitive ways to combine the use of fault
tolerance technologies A and B are studied. i) Spend and Save.
ii) Save and Spend. In addition, at the end of this section, a
generalization of the hybrid model will be proposed.

A. Approach 1: Spend and Save

Spend and Save is a hybrid fault tolerance approach that
uses technology B at the beginning of the SLA. This initial
phase is called spend, since the probability of having a large
increase in the accumulated downtime after a failure is much
higher with technology B. In this way, one can say that the
allowed downtime before paying penalty is spent quickly.

In order to have a tight control on the risk of violating the
SLA availability parameter, the provider has the opportunity
to switch to technology A at any time, starting the save phase.
However, it is desired to delay this shift as much as possible,
due to the higher cost implied.

The main challenge of this approach is to find the appropri-
ate point W to switch to technology A. The term appropriate
here is based on two criteria:
• Criterion 1: The decision has to avoid a late transition

that increases the SLA risk beyond φ.
• Criterion 2: The switching decision has to be delayed as

much as possible to have a cost efficient operation.
In the spend and save approach, the switching decision will

be made only after the recovery process because: i) If the
service is working correctly, DB(T ) moves horizontally (no
increase in the accumulated downtime) as Figure 1 illustrates,
and hence the SLA risk is not affected negatively. ii) When
a failure event happens, the service has to face the downtime
associated with the currently fault tolerance technique in use.

Based on that, when the recovery process successfully ends
at time T1, the accumulated downtime for that service will be
DB(T1), as Figure 2 shows. At this point in time, the service
provider has the following options:
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(Forwarding recurrence time).

1) Option 1: The service switches to technology A.
2) Option 2.1: The service continues using technology B,

but after the next coming failure there is a transition to
A (only one additional down event under technology B).

3) Option 2.2: The service continues using technology B
for a number of n additional down events.

In order to evaluate the option to be selected, we need
to define a transition frontier W , based on the SLA risk
assessment described in Section II.

Computing the SLA risk for Option 1, means to consider
only downtime events with a distribution hA(t). However, the
obtained SLA risk may go against the Criteria 2 previously
mentioned, since there may be yet space for the use of
technology B. In order to know if there is still room for
technology B at the service state (T1, DB(T1)), we need to
make a SLA risk assessment considering the scenario with the
two involved fault tolerance densities (hB(t) and hA(t)), as
defined by Option 2.

Since the downtime duration under technology B is a
stochastic variable, finding a transition frontier W is chal-
lenging because several failure events under technology B may
happen without putting in danger the SLA risk target selected.
In other words, it is unknown the number of downtime events
(renewals) with distribution hB(t) before the transition to
technology A. In order to solve this problem, we use renewal
theory, following the model illustrated in Figure 3.

A common scenario in Option 2.1 and 2.2 is the existence
of a single last down time with distribution hB(t) before
the transition to technology A. We are interested in finding
the distribution of the downtime after the transition point W
h

′

B(x). Following the rationale explained in [5], one can define
that the last down time with distribution hB(t) lies in the
interval (x , x+ ∆x) if:
• The recovery from the first down event f finishes in the

interval (W + x , W + x+ ∆x).
• For a given U , a failure event (renewal) occurs in the

interval (W−U , W−U+δU ), and the recovery finishes
in the interval (U + x , U + x+ ∆x).

Considering the previous conditions, the probability density
function of h

′

B(x) will be defined as:

h
′

B(x) = hfB(W + x) +

∫ W

0

r(W − U)hB(U + x) du (4)

Where r(W − U) is the renewal density function.
Using renewal theory, one can assume that when W →∞,

hfB(W ) → 0, and the renewal density tends to the expected

value of hB(t) (r(W − U) → 1/E[hB ]]), as shown in [5].
The asymptotic behavior of h

′

B(x) may be defined as:

lim
W→∞

h
′

B(x) =
1

E[hB ]

∫ ∞
0

hB(U + x) du =

1

E[hB ]

∫ ∞
x

hB(v) dv =
1−Hb(x)

E[hB ]
(5)

This results agrees with the function of the limiting dis-
tribution forward recurrence time [5]. The derivation of the
non-asymptotic distribution of the forward recurrence time has
been widely studied, where several accurate approximations
have been formulated by the use of numerical methods [9],
[17]. Among them, one of the most common approaches is the
discretization of hB(t) (hB[n]), followed by the formulation
of a system of equations that may be solved using recursive
methods ( [17], [9] and [3]). For instance, in [3] h

′

B(x) may
be approximated using the expression:

hB
′

W+1[n− 1] = hB
′

W [n] +
hB

′

W [0] · hB[n]

1− hB[0]
(6)

where hB
′

1[n] = hB[n+ 1]/(1− hB[0]).
Now, the total density of the accumulated downtime after

the transition point W will be the density accumulated under
the process ruled by h

′

B(t), plus the density of the next
coming down events under technology A. Based on the results
obtained in Section II-B, the density of the accumulated
downtime and the SLA success probability after W for the
spend and save approach may be obtained as follows:

ω
′

1(τ − T1, t) = P (N(τ − T1) = 0) + (7)

P (N(τ − T1) = 1)h
′

B(t) +

∞∑
n=2

P (N(τ − T1) = n)hY ∗n (t)

S1(τ−T1, α−DB(T1)) =

∫ α−DB(T1)

0

ω
′

1(τ−T1, t) dt. (8)

where hY ∗n (t) is the convolution of one distribution of
the downtime under the process ruled by h

′

B(t), with the
n− 1 convolution of the distributions of the downtime under
technology A, i.e., hY ∗n (t) = h

′

B(t) ∗ h1A(t) ∗ ... ∗ hn−1A (t).
Finally, the transition to technology A will be made if:

1− S1(τ − T1, α−DB(T1)) > φ (9)

Equation (9) will be used from now on to compute the
transition frontier when the spend and save approach will be
used during the rest of the paper.

B. Approach 2: Save and Spend

Save and Spend is a solution where the network connection
uses technology A at the beginning of the SLA period.
This initial phase is called save, since there is a very high
probability of having a shorter downtime duration when a
failure occurs. On the other hand, the use of technology A



implies more costs and resources. Therefore, switching to
technology B as early as possible is of interest. We will define
the time when transition from A to B happens as T2.

In order to make a risk aware transition to B, the mechanism
has to verify that the saving at T2 is enough, i.e., the SLA
risk posed by using solution B from time T2 is equal or
smaller than the targeted risk φ. This case is much simpler
than the one explained previously, since there is no condition
that encourages a late transition, allowing its execution at any
time. The only condition to switch technology will be based
on the SLA risk assessment under technology B.

Using Figure 2 as reference, one can see that at T2,
the accumulated downtime of the service is DA(T2). The
remaining SLA time is τ−T2, and the remaining accumulated
downtime allowed will be α−DA(T2). With this information,
the accumulated downtime and the SLA success probability
after T2 may be obtained as follows:

ω
′

2(τ − T2, t) =

∞∑
n=0

P (N(τ − T2) = n)hZ∗n(t) (10)

S2(τ − T2, α−DA(T2)) =

∫ α−DA(T2)

0

ω
′

2(τ − T2, t) dt.
(11)

where hZ∗n(t) this time is the convolution of the dis-
tribution of n downtime events under technology B, i.e.,
hZ∗n(t) = h1B(t) ∗ h2B(t) ∗ ... ∗ hnB(t).

Finally, the transition to technology B will be made at any
time T2 if:

1− S2(τ − T2, α−DA(T2)) > φ (12)

C. Hybrid Fault Tolerance - A General Approach

Equations (9) and (12) define how to assess a potential
transition. Assuming that the provider is able to obtain g(t),
hA(t) and hB(t), it is possible to obtain the transition frontiers
for a shift in fault tolerance technology. Figure 4 presents a
Risk Map that contains the defined risk areas and the transition
frontiers, using the measurements and models that will be
presented in Section IV. The red dashed line represents the
transition frontier from B to A, and the solid green line
represents the transition frontier when the provider is allowed
to switch from A to B.

Using the information presented in Figure 4, we can gener-
alize our hybrid approach as follows:
• The hybrid concept applies for any ICT service where:

i) Specific availability constraints need to be fulfilled. ii)
Different fault tolerance techniques are available. iii) Cost
efficient operations is a matter of interest.

• Any ICT service will have specific coordinates
[Tx , D(Tx)] on the risk map that will allow the iden-
tification of the current service risk area, and hence the
fault tolerance technology to be used.

• If an ICT service is on the high risk area, the ICT provider
must deliver the service using the best fault tolerance
technology available.
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• The low risk area allows the use of the lowest cost
technology, without loosing control on the SLA risk.

• The flexible area has two implications: i) There is not
strict requirements for the use of a specific fault tolerance
technique. ii) If three or more fault tolerance techniques
are involved, this area may be subdivided accordingly.

IV. NETWORK RECOVERY

Backbone networks are the example of a classical scenario
where SLAs are important, and the existence of different
fault tolerance techniques is a fact. In order to illustrate
the implementation of the concepts previously presented, we
consider two commonly used network recovery mechanisms:
path protection and path restoration. They react to failures by
redirecting the traffic to alternative failure-free paths, and can
be linked with technology A and B respectively.

A. Path Restoration

In path restoration, when a connection is interrupted by a
failure, the packets are dynamically rerouted over a backup
path which is computed on demand when the failure is
detected. Restoration is considered a resource efficient mech-
anism, given that backup resources are only taken when they
are needed. We are aware of the resource utilization benefits of
restoration, but we are also aware that safer and faster network
recovery polices exist, e.g., path protection.

For a better illustration of the performance of path restora-
tion mechanisms, in this paper we performed measurements on
end-to-end connections between different cities in UNINETT
[2], Norwegian national research and education IP network.

Active measurements were performed between servers as
illustrated in Figure 5. End-to-end downtime statistics were
continuously collected during one year, from January to De-
cember 2013. In addition, traceroute was used in order to
identify the path between end-points.

The measurements were performed by sending an evenly
distributed stream of packets between server nodes represent-
ing end-to-end paths. The interval between probe packets was
chosen to be 10ms to have an acceptable accuracy in the
duration of the downtime. The end systems are synchronized
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Fig. 5. The UNINETT topology with applied measurement servers (M-nodes).

using NTP protocol. The programs used for the measurement
streams were rude/crude [1]. Each packet has a sequence
number and it is timestamped both on sending and receiving.
Hence jitter, loss and reordering can be obtained.

We monitored the network load and performed the measure-
ments in areas where congestion was not significant (lightly
loaded), in order to assure that service downtimes could
be attributed to network element failures and network miss-
operation of various kinds, rather than congestion. In spite of
this, certain down periods may be caused by temporary con-
gestion. In this case, these events were detected by observing
a continuous increase in the packet delay, and disregarded as
failure events.

The analyzed operational backbone network is currently
running IS-IS link state routing [14], i.e., only path restoration
is applied for link (and router) failures. Fault detection is based
on periodic ”hello”-messages on layer 3 (IP) exchanged be-
tween all neighboring routers. The message period is 1000ms.
Lack of two consecutive incoming messages results in a
fault condition for a link. Link state announcements (LSA)
are then flooded via (still connected) neighbor routers to all
other routers in the backbone network. The maximum one-
way delay between two routers in the backbone is around
17ms. On reception of a LSA, routers update their routing
information database (RIB), start recalculating shortest paths,
and finally update their forwarding information base (FIB).
A full recalculation including FIB update may take up to
250ms, but partial recalculations are more common and result
in approximately 50ms RIB+FIB update time. Summarized,
any single link failure should in theory be restored in 2 ∗
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Fig. 6. Measured downtime durations using path restoration.

1000 + 17 + 250 = 2267ms.
Figure 6 shows the cumulative distribution of the single

down time durations observed in one of the end-to-end mea-
surements performed. This case study presents a rich stochastic
behavior (wide downtime range) that may be generated among
others because: detection, new path calculation and route
propagation times, routing protocol convergence delays, si-
multaneous and/or reiterative failures, miss-operations, failure
detection issues, and other unidentified potential threats. An
important remark here is that this behavior motivates a proper
SLA risk assessment, instead of using directly the expected
values, usually mentioned on the protocol specifications. The
results obtained from these measurements may be associated
with technology B, as defined in Section III. For this specific
example, one can say that the distribution hB(t) presented
in Section III may be modeled using a Weibull distribution
with scale and shape parameters of 5079.97ms and 0.54
respectively.

B. Dedicated Path Protection

Path protection is a fault tolerance mechanism designed
for telecommunications networks, where backup resources are
pre-computed and reserved across the network topology. If any
failure occurs at any point in a working path, the end nodes
will move the traffic to or from the alternate route.

In Dedicated Backup Path Protection (DBPP) each working
path has its own dedicated backup path. In case of failure,
there is no need of additional signalling between the source
and the destination node in order to establish the backup path.
Therefore, the source node only needs to detect the failure and
switch the traffic over to the backup path, having recovery
times in less than 50ms. This performance does not only
depend on the use of redundant pre-reserved resources, but
in addition, it also relies on the use of sophisticated failure
detection mechanisms such as Loss of Signal (LOS) and
Bidirectional Forwarding Detection (BDF) [16].

Providing dedicated backup path protection to all users is
however very demanding for the network provider in terms of
bandwidth usage and costs. This concept fits with the features
of technology A, and it motivates the use of a hybrid approach.



Some case studies made in [21] and [23] found that the
downtime density of dedicated backup path protection (DBPP)
may oscillate between 40 to 50ms. These kind of results may
be optimistic, since they assume a perfect transition. In real
operations, DBPP does not always perform a perfect backup
switch, being failure correlation one of its main threats. Several
studies (e.g., [10] and [19]) show that failures in routers and
links in an IP backbone network may be simultaneous and/or
correlated, and they can be modeled with a conditional prob-
ability Ps. To cope with such situations, a connection using
DBPP should also get access to additional resources available
in case that the pre-configured backup path does not work,
i.e., DBPP should perform path restoration in those extreme
cases. For instance the work developed in [20] suggests that
in case of a simultaneous failure in the working and backup
path, an online re-routing (restoration) should be applied. In
order to address this issue, we propose a model that is able to
capture better the risk implications of implementing DBPP.

To calculate the probability density of the downtime dura-
tion with a DBPP scheme, two scenarios are considered: i).
Perfect condition: No simultaneous failures in the working and
backup path. ii). Flawed condition: Simultaneous failures that
force DBPP behave as a path restoration scheme.

We can use the density hB(t) obtained in Section IV-A in
order to model the downtime duration under restoration. On
the other hand, based on the results presented in [21], the
density of DBPP under perfect conditions can be modeled
using a density with values below 50ms, and it can be notated
as h

′

A(t). Thus, a more risk aware model for hA(t) can be
obtained as follows:

hA(t) = (1− Ps) · h
′

A(t) + Ps · hB(t) (13)

Alternatively, hA(t) can be obtained directly from network
measurements, as made in Section IV-A.

Using the presented models, we found a huge gap between
the accumulated downtime densities of path protection and
path restoration, being this an additional motivation for im-
plementing here, the proposed hybrid approach.

V. HYBRID MODEL EVALUATION

Figure 4 presented the transition lines and risk areas of a
hybrid fault tolerance model that combines DBPP with path
restoration, based on the concepts and results presented in
Section IV, with a SLA risk target φ = 1%.

In order to see how to implement the guidelines provided
by this risk map (Figure 4), and see the accuracy on targeting
the selected φ, we use discrete event simulation. We con-
sider end-to-end network connections, where failures arrive
at unexpected times according to a n.e.d with expected value
of 15 days. As presented in Section IV, hB(t) is modeled
using a Weibull distribution with scale and shape parameters
5079.97ms and 0.54 respectively, and hA(t) follows Equa-
tion (13) with a measured value of Ps equal to 0.01. Those
failures make the network connection state move around the
risk map, generating at some point a shift on network recovery
mechanism.
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In Figure 7, one can see the CDFs of the accumulated
downtime under the two approaches presented in Section III.
The Save-and-Spend approach presents an early increase in
the cumulative probability,which means that very short ac-
cumulated downtime values have statistical significance. On
the other hand, the probability of having very small values of
D(T ) is much smaller in the Spend-and-Save approach, which
means that its density is more concentrated in intermediate
values, but smaller than α.

A very important remark is that the value of Ω(τ, α) is
the same for both approaches (99%), which fits with the
selected φ. Here, there are two important observations: i). If
the service provider wrongly considers hB(t) instead of h

′

B(t)
for the derivation of hY ∗n (t) in Equation (7), the SLA risk
obtained will be dangerously higher than φ, depending on the
failure/recovery process and the value of φ. For instance, for
the case study illustrated in Figure 7, the obtained SLA risk
was approximately 2.2% (Ω(τ, α) = 0.978). This approach
would only be valid if hB(t) is n.e.d. ii). If h

′

B(t) is computed
using the asymptotic value presented in Equation (5), the SLA
risk obtained wll be conservatively lower than φ, depending on
the failure/recovery process and the value of φ. For instance,
for the case study illustrated in Figure 7, the obtained SLA
risk was approximately 0.92% (Ω(τ, α) = 0.9908). Although
this difference is safer for the SLA, the risk target can be
precisely achieved using the numerical methods mentioned in
Section III-A ( [17], [9] and [3]).
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We are interested in evaluating the difference in the re-
sources needed by both approaches, and the influence of φ
on this. For this reason, in Figure 8, we present the utilization
percentage OA of DBPP during the SLA period, consider-
ing the two hybrid approaches and different φ values. The
lower utilization of DBPP obtained by the Spend-and-Save
approach is an interesting results that justifies its preference
in an implementation scenario. For instance, the difference
of approximately 36% obtained when φ= 1% may represent
a huge saving in network resources and operational costs,
without loosing control on the SLA risk.

Finally, we evaluate the influence of the burstiness of the
recovery process (downtime duration). For this, we variate the
shape parameter of the Weibull function, keeping the same
expected value in all cases by tuning the scale parameter.
Figure 9 illustrates this evaluation by fixing the SLA risk
target in 1%. We observe that a recovery process with smaller
burstiness (e.g., larger Weibull shape parameter) allows the
utilization of less resources, and hence we can assume a
less demanding SLA availability fulfillment. In addition, the
decrease of the burstiness (e.g., increase in the Weibull shape
parameter) also reduces slightly the difference between the
utilization of DBPP of the two hybrid approaches studied.
For instance, with a shape parameter equal to 1 (n.e.d.), the
difference is approximately 24%.

VI. OPTIMAL SLA RISK

As mentioned in previous sections, by combining a lower-
cost/higher-risk technology such as restoration with a higher-
cost/lower-risk technology such as protection, the probability
of failing the SLA can be controlled economically. One of
the main issues in the implementation of this combination
(hybrid model) is the selection of the SLA risk target φ.
In this section, we present a procedure that can be used to
determine the optimal value of φ, using network recovery as
a case study. More particularly, we seek a trade-off between
the higher operational costs incurred by protection, and the
higher expected penalty costs in case of using restoration.
The financial target is to minimize the total expected costs
CT , which consist of the expected penalty costs CP , plus the
expected operational costs CO, by using protection during a
period τ ·OA and restoration during a period τ · (1−OA).

Given that the Spend and Save approach provides a better
resource utilization by delivering the same risk, this approach
should be used in any scenario where financial targets are
important. The network provider is confronted with the deci-
sion problem to define the SLA risk target φ. The value of φ
has a direct implication on an earlier or later switching from
restoration to protection, by moving up or down the transition
frontier in the GEARSHIFT risk map. This affects directly the
utilization percentage time of network protection OA, and the
expected penalty costs generated by the violation of the SLA.

We assume that after exceeding the SLA maximum allowed
accumulated downtime α, the penalty costs increases linearly
with a gradient p. The penalty costs CP will depend on the
realization of the accumulated downtime D(τ, φ), which is
affected by the switching point that depends on the SLA risk
target φ. The penalty cost can therefore be defined as follows:

CP (φ) =

{
p · (D(τ, φ)− α) if D(τ, φ) ≥ α.
0 if D(τ, φ) < α.

(14)

We presented in Section V the impact of φ on the utilization
percentage of network protection OA, and the remaining
utilization percentage of network restoration (1 − OA) (e.g.,
Figure 8). In addition, we define the operational costs of
network protection as CA and the operational costs of network
restoration as CB . Based on this, we can define the operational
costs of our hybrid model as:

CO(φ) = CB · (1−OA(φ)) + CA ·OA(φ) (15)

Summarizing the decision problem can now be stated as:

minimize CT (φ) = E[CP (φ) + CO(φ)]
φ

(16)

There are some important considerations regarding the
problem stated in (16). When φ increases, there is a point φB
where it becomes very flexible, allowing the SLA risk target to
be fulfilled by using only restoration, i.e., 1− ΩB(τ, α) < φ.
Considering φ values bigger than φB does not have any sense
for the proposed hybrid model (see Section III). On the other
hand, when φ decreases, there is a point φA where it makes
compulsory the use of protection from the very beginning of
the SLA, i.e., the transition frontier is equal to zero at T = 0.
Therefore, in this case considering φ values smaller than φA
does not have any sense for the proposed hybrid model.

Using discrete event simulation, the expected total costs
presented in (16) can be evaluated for fixed values of φA and
φB respectively, by generating a large number of stochastic
replications that allow the evaluation of the total expected costs
CT with negligible error, as described by [4] in Section 11.3.2.

Following a local search heuristic approach, we generate
iterative steps by increasing and reducing φA and φB respec-
tively. We found that CT follows a convex function with a
single global minimum which makes feasible and simple the
successful implementation of our heuristic approach.
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In order to illustrate this, we implemented the proposed
local search approach in a scenario where the penalty gradient
p is equal to 0.2X cost units per unit of time. In addition,
in our case study the number of links in the backup path
is the same than in the working path. Therefore, we assume
a simplified scenario with double cost for CA. In this case
CA is equal to 2X cost units, and a cost CB equal to X
cost units. The cost behavior of this scenario is presented in
Figure 10. One can observe that for values of φ close to zero,
the operational cost is very high, since this high requirement
demands the use of protection a large percent of the SLA
time, but at the same time the expected penalty costs are
very small. The gradient of the function described by the
expected operational costs is negative and its absolute value
decreases quickly with the increment of φ. On the other hand,
the gradient of the function described by the expected penalty
costs is positive, and it decreases slightly with the increment of
φ. For the specific case illustrated in this section, we found that
the minimum total cost is obtained when the SLA risk target
is equal to 1%. A value that was found after 8 iterations of
the local search heuristic approach previously described.

VII. CONCLUSION

This paper describes how to build a risk map that can be
used to lead the use of different fault tolerance techniques,
depending on the current conditions and requirements of a ser-
vice. It considers the behavior of generally distributed failure
and recovery processes, and the financial impact generated by
the selection of a given risk. Simulation results show that by
following the transition frontiers defined in the risk map, the
provider is able to achieve a specific SLA risk target, having
a tighter control on the SLA. We show how to implement
GEARSHIFT in a network recovery scenario, using real mea-
surements from an operational backbone network. In addition,
those measurements show the importance of analyzing the
operational behavior of fault tolerance techniques, considering
their entire stochastic properties, instead of using directly the
expected values mentioned in protocol specifications. We show
that the burstiness of the fault tolerance processes has a strong
influence on the transition frontiers defined in the risk map,
and hence on the amount of resources to be delivered to a
service. Finally, we show that the total cost of the studied

hybrid fault tolerance scenario follows a convex function
that allows the optimal selection of the SLA risk target that
minimizes the provider expenses.
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