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Abstract
This thesis presents five papers on theoretical spintronics. Four of the papers describe
antiferromagnets and the interactions between the magnetic order parameter and ex-
ternal forces induced by charge currents, spin waves, magnetic fields, and stochastic
temperature fluctuations. The fifth paper studies the ultrafast magnetic response of a
ferromagnet after rapid heating by a laser pulse.

A significant part of the presented work is devoted to describing dynamics of the an-
tiferromagnetic order parameter. To this end, we develop the conceptually simple col-
lective coordinate equations of motion and demonstrate that the dynamics of antifer-
romagnetic textures are equivalent to the inertial motion of classical particles subject
to external forces and dissipation-induced friction. We apply the collective coordinate
method to describe the dynamics of antiferromagnetic domain walls. First, we study
a domain wall under the influence of a charge current. Second, we describe the in-
teractions between a domain wall and antiferromagnetic spin waves and show that
the resulting domain wall dynamics depend crucially on the polarization of the spin
waves. Third, we demonstrate the possibility of accurately controlling the position
of an antiferromagnetic domain wall using external magnetic fields. The interactions
between inhomogeneous magnetic fields and antiferromagnetic domain walls result
from the intrinsic magnetization of textures in the order parameter.

By applying the fluctuation-dissipation theorem, we include finite temperature effects
to the dynamic equations of motion for a homogeneous antiferromagnet. We calculate
that the heat current between an antiferromagnetic insulator and an adjacent normal
metal is substantial and carried by a staggered spin current. We complete the trans-
ition to the high-temperature regime by developing a theory of out-of-equilibrium ul-
trafast spin dynamics in a ferromagnetic metal based on electron-magnon scattering.
The theory includes the effects from a nonthermalized magnon distribution function
and the out-of-equilibrium spin accumulation among the itinerant electrons.
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To the non-physicist
Most people are familiar with the elusive particles called electrons. They are popularly
visualized as orbiting around the atomic nuclei almost like a miniature analog of the
planets in the solar system. In metals, the outermost electrons are so loosely bound to
the nuclei that they roam freely around in the crystal grid of atoms and form a sea of
charged particles. Because of their elementary charge, an electric potential (voltage)
can transform this electron sea into a flowing river of charge current, which humanity
has learned to exploit for electricity.

However, the charge-current river does not run still. There is resistance. The electrons
crash into each other emitting light and heating up their proximity. Sometimes, the
heat or the light from electricity is a desirable effect, for example on cold and dark
Norwegian winter nights. In other situations, the electronic heat waste is a nuisance,
for example when your laptop burns your thighs or your smart phone needs rechar-
ging twice a day. For the electronics industry, the ability to process information with
less energy loss is one of the foremost technological challenges of our time because
information processing represents a significant share of our total energy consumption.

Now, imagine that we could send information as ripples on the surface of a calm
electron sea instead of along violent rivers of colliding electrons. In addition to its
charge, the electron possesses another fundamental property, namely its spin. Because
electrons are “point-like” particles, the electron spin is a property that arises from
quantum mechanics. Still, we typically visualize the electron as a small spherical
particle rotating around its own axis. The axis of rotation is called the spin axis.
Because electrons in magnetic materials influence each other through their spins, it is
possible to transmit signals without moving the electrons at all.

There exists a special type of materials, called ferromagnets, in which it is energetic-
ally favorable for an electron to align its spin axis along the spin axes of its neighboring
electrons. A huge ensemble of quantum spins with their spin axes aligned is respons-
ible for a macroscopic phenomenon that has been well known for thousands of years:
magnetism. The subfield of condensed matter physics that deals with nano-magnetism
is called “spin electronics”, or spintronics. In addition to revealing the complex in-
terplay between electron spins, charges, and magnetic fields, the technological goal
of spintronics is to develop devices for information processing that are faster, more
energy efficient, and more flexible than those which are predominantly used today.

The main focus of this thesis is on a different type of magnetic materials, called anti-
ferromagnets. In these materials, it is energetically favorable for neighboring electrons
to align their spins in an antiparallel configuration. Because the spins in this way can-
cel each other out, antiferromagnets, in contrast to ferromagnets, have no macroscopic
magnetization and will not stick to your refrigerator door. In this thesis, I describe
the highly ordered spin state of these materials and their interactions with charges,
currents, and magnetic fields. Many of the presented phenomena are richer, faster,
and more interesting than their analogous ferromagnetic counterparts.
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Preface
This thesis concludes four years of study at the division for theoretical condensed
matter physics at the Department of Physics at the Norwegian University of Science
and Technology (NTNU). The scientific work presented in this thesis can be categor-
ized within spintronics, a subfield of condensed matter physics that describes physical
phenomena originating from the spin properties of the electrons. As the title suggests,
the main focus of this thesis is on a class of highly ordered magnetic materials called
antiferromagnets, which exhibit no macroscopic magnetization, in contrast to the more
commonly known ferromagnets.

The thesis is organized as follows. The main body of scientific work submitted for
the degree of Philosophiae Doctor are the five papers [1–5] that are presented at the
end of this dissertation. [1, 2] are published in Physical Review Letters and [3–5] are
published in the Physical Review B.

In the introductory chapters of this thesis, I present the most important concepts and
motivations behind the five succeeding papers. These introductory chapters do not in-
clude any new results. Nor do they include any significant supplemental discussions
of the main results in the published articles, which are assumed to stand on their own.
The main purpose of the introductory part of this thesis is rather to present theoretical
and conceptual formalism that, hopefully, can be helpful for new PhD students who
are faced with similar problems as those that are presented in my papers.

The introductory chapters consider the papers in conceptual rather than chronolo-
gical order. At the beginning of each chapter, I present a short motivation for the
subsequent discussion and define the context with respect to the appended papers.
At the end of each chapter, I include a short outlook that discusses the consequences
of the presented work and guides the reader to follow-up literature.

Chapter 1 includes a short layman’s introduction to the field of (antiferromagnetic)
spintronics.

Chapter 2 discusses the definition of the antiferromagnetic order parameter, the trans-
ition from discrete spins to the continuum limit, and the presence of domains and
domain walls in antiferromagnets. In this chapter, two important concepts from Pa-
per [5] are presented: the intrinsic magnetization of textured antiferromagnets and the
nonequivalence of two different parametrization procedures for the antiferromagnetic
continuum fields.

Chapter 3 describes interactions between antiferromagnetic textures and external forces
such as currents, fields, and spin waves. From Paper [1], I present the collective co-
ordinate description of antiferromagnetic dynamics, demonstrating that antiferromag-
netic textures can be viewed as inertial quasiparticles that react to external current-
and magnetic field-induced forces. This chapter also includes two central concepts
from the theory of spin-wave-induced antiferromagnetic domain wall motion in Pa-
per [2]: the spin wave response to a localized excitation field and the difference
between linearly polarized and circularly polarized antiferromagnetic spin waves.
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Chapter 4 includes finite-temperature effects to the dynamic equations for an antifer-
romagnetic insulator. From Paper [4], I present the fluctuation-dissipation theorem
and discuss how the interfacial heat currents between an antiferromagnetic insulator
and adjacent normal metals differ from the analogous problem in ferromagnetic in-
sulators.

Chapter 5 describes the high-temperature regime of laser-induced ultrafast spin dy-
namics. In this chapter, I leave the antiferromagnetic models to describe the ultrafast
demagnetization of a ferromagnetic metal via electron-magnon scattering. Two im-
portant concepts from Paper [3] are introduced in this chapter: the nonthermalized
distribution of the excited magnons and the out-of-equilibrium spin accumulation
among the itinerant electrons.

There exists a natural progression from the effective zero-temperature equilibrium
considerations in Paper [5], via the external-force-induced domain wall motion in
Papers [1, 2], and the small stochastic temperature fluctuations in Paper [4], to, finally,
the extreme high-energy limit of ultrafast magnetization dynamics in Paper [3]. The
same path also progresses from a classical description of spin vectors on a lattice to
a fully quantum mechanical treatment of collective spin excitations. Although the
main focus of this thesis is on antiferromagnetic dynamics, Paper [3] deviates from
this focus and describes ultrafast spin dynamics in a ferromagnetic metal. However,
as I discuss at the end of Chapter 5, a natural next step is to extend this theory to
multi-sublattice models. This extension provides the connection to the other articles
which focus on antiferromagnets.

Note on the numerical analyses
In Papers [1–3] and [5], I have performed numerical calculations to test the validity
of the analytical results. The numerical models have been made in the mathematical
computation program Mathematica1. After spatial discretization (energy discretization
in [3]), the equations of motion have been solved using a partial differential equation
algorithm that utilizes the numerical method of lines with an adaptive time control.
Because the numerical analyses are considered supplemental to the analytical main
work of this thesis, I will not describe in detail the numerical method or results from
the numerical analyses in these introductory chapters.

Note on the figures
All figures in this thesis have been produced by myself using Mathematica, the open-
source vector graphics editor Inkscape2, or Microsoft PowerPoint, except Fig. 4.1, which
has been produced by the second author of Paper [4].

1Wolfram Research, Inc., Mathematica, Version 9.0, Champaign, IL (2012).
2http://inkscape.org
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Chapter 1

Introduction

“We live in a society exquisitely dependent on science and technology,
in which hardly anyone knows anything about science and technology.”

Carl Sagan, Skeptical Inquirer (1990)

In this chapter, I introduce and motivate the field of spintronics and, in particular, the
subfield of antiferromagnetic spintronics, which is the main focus of this thesis. Sec. 1.1
briefly presents the historical and present technological challenges of information pro-
cessing, which is arguably one of the most defining features of the modern world.
In Sec. 1.2, I present the idea of utilizing the electron spin as an information carrier,
which is the main objective of spintronics research. Sec. 1.3 discusses the differences
between ferromagnetic and antiferromagnetic materials and motivates the new and
upcoming field of antiferromagnetic spintronics. In Sec. 1.4, I present an outline of
the subsequent introductory chapters of this thesis.

1



2 Introduction

1.1 Information processing and energy consumption
One of the strongest driving forces for human technological development is the ability
to share, store, and process information. Throughout human history, our information
processing has evolved from ancient oral storytelling, via the written languages and
the printing press from the 15th century, to analog recordings of images, sounds,
and live video in the early 20th century. Today, the vast majority of the information
we share is stored and processed in a digital language, meaning that information is
encoded in memory bits and transistors that only have two states: “1” (on) or “0” (off).

50 years have passed since Gordon R. Moore’s famous prediction [6] that the number
of transistors per integrated circuit would grow exponentially fast due to the techno-
logical development in the semiconductor electronics industry. Indeed, up until today
(2016), we have seen a doubling of the processing power of computers roughly every
18 months [7]. In the recent years, however, there is a tendency that this rapid techno-
logical development, which has mainly been fueled by more efficient manufacturing
technologies, is slowly coming to an inevitable halt [8].

The problems that arise when electronics components become so small that quantum
effects from single electrons start to play a role are of a more fundamental nature and
may require a shift toward more energy-efficient technology. Due to the coulombic
interactions between electrons at room temperature, the thermal noise in nanoscale
electronics components can become of comparable strength to the signal contrast and
it is difficult to get rid of the excessive heat. An important goal for advancing inform-
ation processing technology is, therefore, to develop logic elements (e.g., transistors
and memory bits) that do not heavily rely on electric currents.

1.2 The electron spin
As an alternative to conventional semiconductor-based microelectronics, the central
technological motivation behind the field of spintronics is to carry information via the
spin of the electrons rather than their charge. Although the intrinsic spin of the electron
is a property that arises from the quantum mechanical Dirac equation [9], it is useful
to apply a quasi-classical view of the electron as a rigid sphere rotating around its own
axis, see Fig. 1.1. According to classical electrodynamics [10], a rotating charge density
with total charge -e creates a magnetic dipole with the magnetic dipole moment

μ = − ge
2m

L , (1.1)

where g is known as the g-factor, m is the rotating mass1, and L is the vector of angular
momentum. Applied to the quantum mechanical intrinsic spin angular momentum

1Note that the magnetic dipole moment is inversely proportional to the rotating particle’s mass.
As a result, the electron dipole moment is orders of magnitude larger than the dipole moment of the
nuclei. However, the nuclear dipole moment also has important technological applications, e.g., within
magnetic resonance imaging (MRI)
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Se

Figure 1.1: The quasi-classical picture of a free-electron spin arising from the rigid spherical
electron with total charge −e spinning around its own axis. The intrinsic spin is Se with
magnitude |Se| = h̄/2. Although modern physics views the electron as a “point-like” particle,
the classical picture is still popular and widely used due to its intuitive form.

of the electron, Se, the equation for the electron spin magnetic dipole moment is

μs = −γSe , (1.2)

where γ = geμB/h̄ is the gyromagnetic ratio, ge ≈ 2 is the electron g-factor, μB is
the Bohr magneton, and h̄ is Planck’s constant. The intrinsic spin of a free electron
is a vector quantity with a direction and a magnitude |Se| = h̄/2. Accordingly, the
magnetic dipole moment has dimensions JT−1.

All chemical elements consist of a finite number of electrons, which often minimize
their energy by arranging themselves in pairs of spin-“up” and spin-“down” electrons
due to the Pauli exclusion principle [11]. As a result, the total intrinsic spin of the elec-
tron cloud around the atomic nucleus vanishes for many elements. However, some
materials (typically transition metals) have an unpaired electron in their outermost
(valence) shell. The total spin magnetic moment of such materials is finite, and they
are, for historical reasons, called magnetic materials.

The electrons in magnetic materials can influence neighboring valence electrons through
their spins. This interaction is called the exchange interaction, see Fig. 1.2. The two
dominant types of exchange interactions are the ferromagnetic and the antiferromag-
netic couplings. In the former, it is energetically favorable for an electron to align
its spin axis along the spin axes of its neighboring electrons. The antiferromagnetic
coupling, on the other hand, favors antiparallel alignment of neighboring spins.

There exists several different types of magnetic materials. In paramagnets and dia-
magnets, the electron spins align parallel and antiparallel, respectively, to an applied
external magnetic field. The spin alignment enhances (paramagnets) or diminishes
(diamagnets) the magnetic field strength inside the material, but the effect vanishes
as soon as the external magnetic field is turned off and the spins randomly diffuse.
In ferromagnets (FMs) and antiferromagnets (AFMs), on the other hand, the mutual ex-
change interaction between neighboring electrons is so strong that magnetic ordering
is upheld even without the influence of an external magnetic field.

The ordering of magnetic materials is lost when the material is heated above a certain
critical temperature, called the Curie2 temperature (TC) for FMs and the Néel3 tem-

2after Pierre Curie.
3after Louis Néel [12].
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Exchange

FM

Exchange

AFM

Figure 1.2: Neighboring valence electrons influence each other through the spin-spin exchange
interaction. Materials with ordered spin states at equilibrium typically minimize their energy
by aligning neighboring spin axes in a parallel (top) or antiparallel (bottom) configuration.
These exchange couplings are called ferromagnetic and antiferromagnetic, respectively.

perature (TN) for AFMs. Above these temperatures, most magnetic materials become
paramagnetic. Below TC, FMs exhibit macroscopic magnetization from the statistical
average of the electron spins. This magnetization has been well known and exploited
for thousands of years, e.g., in compasses that couple to Earth’s magnetic field. Be-
cause the magnetization direction of FMs can be easily measured and manipulated,
they are exciting candidates for basic logic elements and have been extensively stud-
ied in the last decades. The field of spintronics is mainly focused on the interplay
between the ferromagnetic magnetization and charges, currents, and magnetic fields.

One of the most successful discoveries within this field is the giant magnetoresistance
(GMR) effect [13, 14], which describes that the electrical resistance of magnetic mul-
tilayers depends on the magnetization direction of each layer. This discovery was
awarded the Nobel Prize in Physics in 2007 and has later generated widespread
industrial importance as a fundamental part of magnetic random access memory
(MRAM) cells. Another prominent result of spintronics is the spin transfer torque (STT)
effect [15], which describes how a spin-polarized current can modify the ordered state
of a ferromagnetic layer by exerting a torque on the magnetization.

An intriguing possibility in spintronics is to reduce the thermal noise in logic ele-
ments by using insulating materials instead of metals or semiconductor. In insulat-
ors, information can be carried between stationary spins via the exchange interaction
(e.g. spin waves) rather than by moving electrons in charge currents.

1.3 Antiferromagnetic spintronics
In contrast to ferromagnetic materials, neighboring electron spins in AFMs cancel each
other out and the statistical average of the magnetic moments vanishes. As a result,
AFMs do not exhibit macroscopic magnetization and are harder to detect than FMs.
In fact, the antiferromagnetic phase was first discussed in the mid-20th century after
the discovery of the intrinsic spin of the electron. Despite their different macroscopic
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behaviors, FMs and AFMs are both types of materials with a strong magnetic ordering
on the microscopic level. Reminiscent of the magnetization in FMs, the magnetic order
of AFMs can also be measured and manipulated. However, the interactions between
the antiferromagnetic order and external forces can be very different from analogous
interactions in FMs.

Although they do not (yet) generate the same amount of scientific interest as FMs,
antiferromagnetic materials have played important roles as passive components in
conventional spintronics circuits for several decades. Most notable is the exploitation
of the exchange bias effect [16], which describes the extraordinary strong exchange
coupling across the interface between a ferromagnetic layer and an antiferromagnetic
layer. This effect can been used to “pin” the magnetization direction of ferromagnetic
layers in multilayered stacks used for GMR [7].

The field of antiferromagnetic spintronics studies the possibility of using AFMs as active
information carriers in spintronics circuits [17–19]. AFMs have many properties that
make them attractive alternatives to FMs for playing active roles in spintronics com-
ponents. One of their most important properties is the lack of magnetic stray fields,
which allows closer packing of antiferromagnetic elements that do not interfere with
the magnetic order of neighboring components. However, the vanishing stray field
of AFMs is a double-edged sword: it makes the detection and manipulation of the
antiferromagnetic order more challenging than detecting the magnetization in FMs,
but it can also lead to stable components that show strong resilience against external
perturbations like magnetic fields. Furthermore, the antiparallel exchange interaction
between neighboring spins in AFMs leads to very fast dynamics. The order parameter
of AFMs can be switched optically on ultrafast time scales [20] and antiferromagnetic
spin waves operate coherently at THz frequencies [21], which is much faster than their
ferromagnetic counterparts.

1.4 Outline
In the following introductory chapters, I present some of the most important concepts
that motivate the main results in Papers [1–5]. The idea is for the reader to have a
better understanding of the theoretical and conceptual formalism before embarking
on the discussion of the scientific results presented in the subsequent papers. At
the end of each chapter, I provide a short summary of the present and potential
implications of the presented concepts. For a full discussion of the scientific results, I
refer the reader to the papers appended after these introductory chapters.
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Chapter 2

The antiferromagnetic order

The concepts presented in this chapter are mainly related to the discussion of the
discrete-to-continuous transition for AFMs developed in Paper [5]. The work leading
up to this paper was motivated by a series of seemingly contradictory results in the
literature concerning one-dimensional antiferromagnetic domain walls: Refs. [22–24]
predict that textures in the order parameter are associated with a finite magnetization
density, whereas other studies [25–28] do not mention the same connection. Although
this discrepancy had been noted in some of the earlier studies, the explanations for the
deviating results were rather vague: “[...] some of the finer details of such a reduction
[to a continuum model] have been mistreated” [23] and “[...] Haldane [in Ref. [26]]
used a different procedure of passing to the continuum limit which did not conserve
the total number of degrees of freedom” [22]. The main motivation behind Paper [5]
was, therefore, to clear up this confusion using a systematic approach.

In this chapter, Sec. 2.1 presents the transition from the discrete classical Heisenberg
Hamiltonian to the continuum model in the exchange approximation. This proced-
ure establishes that antiferromagnetic textures are, indeed, associated with a finite
magnetization density. In Sec. 2.2, I discuss typical antiferromagnetic domain wall
structures and their properties. I further identify the seemingly contradictory res-
ults in the literature as arising from different definitions of the continuum fields in
Sec. 2.3, where I compare the discrete-to-continuous Hamiltonian approach (applied
in Sec. 2.1) with an alternative parametrization procedure called Haldane’s mapping.
Surprisingly, this comparison shows that the two procedures define continuum fields
that have critically different physical interpretations. This discrepancy seems so far to
have eluded parts of the community. In Sec. 2.4, I include a brief discussion of some
of the implications of the presented theory.

7



8 The antiferromagnetic order

Si-1 Si+1Si Si+2… …

Siα Siβ Si+1α Si+1β ……
Figure 2.1: (Top) Sketch of a one-dimensional spin chain with ferromagnetic nearest-neighbor
exchange coupling. In the following, we use arrows to represent single spins, meaning im-
plicitly that each spin is carried by a single electron. For a total of N spins in the spin chain,
where S is the magnitude of each spin, the total magnetic moment of the ferromagnetic chain
is M = −γNS. (Bottom) Sketch of a one-dimensional spin chain with antiferromagnetic
nearest-neighbor exchange coupling. For an even number of spins in the chain, the total
magnetic moment M of a (homogeneous) antiferromagnetic spin chain vanishes.

2.1 From discrete spins to the continuum limit
Our goal is to describe the antiferromagnetic order and (later) its dynamics via clas-
sical continuum fields. Naturally, such a representation breaks down if the spin sys-
tems that are modeled consist of only a few (e.g., < 10) spins. In such systems, one
should expect that the quantum nature of the individual spins plays a relatively more
important role and that a classical continuum model is insufficient to describe the
spin states. However, because most spin systems of technological importance, at least
in 3D, still consist of a large number of spins (e.g., > 100), we expect continuum mod-
els to be important descriptive tools for both ferromagnetic and antiferromagnetic
systems.

Our starting point is the Heisenberg Hamiltonian due to the exchange coupling
between classical spin vectors on a lattice [29]:

H = J ∑
�α,β�

Sα · Sβ , (2.1)

where the positive exchange energy, J > 0, describes an antiferromagnetic ground
state.1 See Fig. 2.1 for a schematic comparison between a one-dimensional spin chain
with ferromagnetic and antiferromagnetic exchange coupling. In Eq. (2.1), �α, β� de-
notes a sum over all nearest-neighbor lattice sites described by the two sublattice
indices α and β, where each spin at an α-site has ND nearest neighbors of type β, and
vice versa. α and β must in general be interpreted as D-dimensional vectors, where D
is the dimensionality of the AFM. We proceed by describing the simplest model, the

1Note that this Hamiltionian describes the ferromagnetic state when J < 0. In this state, the spins
Sα and Sβ are equivalent and indistinguishable.
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(i+1,j)j)(i 1

(i,j+1)

(i,j)

(i,j,k)

(a)

(b) (c)

Figure 2.2: For higher-dimensional systems, identifying the antiferromagnetic unit cell be-
comes increasingly more complicated. (a) In 2D, the antiferromagnetic centered squared unit
cell can be identified at a 45◦ angle to the array of spin chains. In 3D, one possibility is the (b)
body-centered cubic unit cell, which is symmetrically different from the (c) simple cubic anti-
ferromagnetic configuration. There exists several different compensated and uncompensated
antiferromagnetic spin configurations that can give different dynamics, see, e.g., Ref. [30].
In Paper [5], we study the linear lattice in 1D, the centered squared lattice in 2D, and the
body-centered cubic lattice in 3D.

D = 1 antiferromagnetic linear spin chain with easy-axis anisotropy. In Paper [5], we
show that the following results generalize to the centered squared lattice in 2D and
the body-centered cubic lattice in 3D, see Fig. 2.2.

Let us consider a linear spin chain with 2N atomic lattice sites, where the spins on
half of the lattice sites, indexed by α, minimize their energy by aligning their spins
antiparallel to the spin axes of their N1 = 2 nearest neighbor lattice sites, indexed by
β, and vice versa. We impose the boundary conditions that the spin on the left end
of the spin chain is of type α, whereas the right end of the chain is occupied by a β
site. Therefore, in the ground state, the AFM is fully compensated and the total spin
vanishes. We define the z axis as the magnetic easy axis. The classical Heisenberg
Hamiltonian including the easy-axis anisotropy is

H1D = J
2N−1

∑
�α,β�

Sα · Sβ − K

(
N

∑
α

S2
αz +

N

∑
β

S2
βz

)
, (2.2)

where K is the anisotropy energy. The classical ground state of the Hamiltonian (2.2)
is degenerate, (Sα, Sβ)0 → ±(Sẑ,−Sẑ), where S (in units of h̄) is the spin angular
momentum on a single atomic lattice site.

We proceed by introducing the standard definitions2 of the magnetic and staggered

2See Sec. 2.3 for a comparison with an alternative definition that is occasionally mistaken to be
equivalent to the present model.
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order parameters, mi and li, on a two-sublattice linear lattice indexed by i [25]:

mi =
Si

α + Si
β

2S
, (2.3a)

li =
Si

α − Si
β

2S
, (2.3b)

where we have paired the sublattice spins Si
α and Si

β in each unit cell running over a
total of N antiferromagnetic unit cells. In this convention, m2

i + l2
i = 1 and mi · li = 0.

Accordingly, the two spin vectors in unit cell i can be expressed as

Si
α =S(mi + li) , (2.4a)

Si
β =S(mi − li) . (2.4b)

After inserting the above definition of the sublattice spins in the Heisenberg Hamilto-
nian, Eq. (2.2) reduces to a sum over antiferromagnetic lattice points:

H1D =JS2
N−1

∑
i
(mi − li)[(mi + li) + (mi+1 + li+1)] + JS2(m2

N − l2
N)

− KS2
N

∑
i

[
(mi + li)

2
z + (mi − li)

2
z

]
. (2.5)

We continue by using the identities 2mimi+1 = m2
i +m2

i+1 − (mi+1 −mi)
2 and (limi+1 −

mili+1) = li(mi+1 − mi)− mi(li+1 − li) to rewrite the bulk part of Eq. (2.5) to

H1D ≈ 2JS2
N

∑
i
(m2

i − l2
i ) +

JS2

2

N−1

∑
i

[
(li+1 − li)

2 − (mi+1 − mi)
2
]

+ JS2
N−1

∑
i

[mi(li+1 − li)− li(mi+1 − mi)]− 2KS2
N

∑
i
(m2

i,z + l2
i,z) , (2.6)

where we have disregarded the vanishingly small energy contribution −JS2(m2
1 +

m2
N − n2

1 − n2
N)/2 from the edge spins.

In the large-N limit, we may take the continuum approximation, Δ ∑i →
∫

dz [31],
allowing us to write the above Hamiltonian as

H1D ≈
∫
(dx/Δ)H1D(l, l�, m, m�) , (2.7)

where Δ = 2d is the length of the linear antiferromagnetic unit cell and d is the
nearest-neighbor distance. dz is an infinitesimal length element along the spin chain
axis (chosen to be the z axis), and l� and m� are the (dimensionless) spatial derivatives
of the staggered field and the magnetization field, respectively. After neglecting a
constant contribution, the energy density (in units of energy) is

H1D(l, l�, m, m�) =JS2
[
4|m|2 + |l�|2 − |m�|2 + (m · l� − l · m�)

]

− KS2
[
(l · ẑ)2 + (m · ẑ)2

]
. (2.8)
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Sα Sβ

SαSβ …

…
Hα, β

Hβ,α 

Figure 2.3: For a linear spin chain with antiferromagnetic exchange coupling, the Heisenberg
Hamiltonian is not invariant under sublattice exchange (Sα ↔ Sβ) if the order parameter is
spatially inhomogeneous, e.g., Hα,β �= Hβ,α. This property can be visualized by a simplified
sketch of a linear spin chain with spatially varying antiferromagnetic order, pictured before
(top) and after (bottom) the permutation of the sublattices. Whereas the internal exchange
energy within each unit cell is invariant under such a permutation of the sublattices, the
increased deviation from the antiparallel configuration between the unit cells creates a more
disordered phase that costs additional exchange energy. In the continuum limit, the energy
penalty of the sublattice permutation is captured by the parity-breaking term in the energy
functional.

We see that the fourth term in Eq. (2.8) has an unusual parity-breaking form [32, 33]
because it is an odd function of the order parameter l.3 This term results from the
procedure of breaking the lattice into pairs [22], and its symmetry properties destroy
the energy invariance under sublattice exchange (α ↔ β), which is occasionally for-
mulated as a symmetry requirement for continuum models in AFMs [10]. Fig. 2.3
conceptually demonstrates that the energy of an inhomogeneous antiferromagnetic
linear spin chain is not invariant under exchange of the two sublattices. The permuta-
tion of the sublattices creates a more disordered phase that costs additional exchange
energy.

To describe domain wall dynamics in AFMs, it is useful to work in the exchange
approximation [10], |J| � |K|, and consider slowly varying antiferromagnetic tex-
tures. In this case, |m|2 � |l|2, and we can disregard terms that are of higher order
than |m|2, such as the magnetic anisotropy energy and the magnetic stiffness terms in
Eq. (2.8). We also introduce the normalized staggered vector field n(z) ≡ l(z)/|l(z)|
and, consequently, write the energy density (2.8) as a function of the deviations ∂zn
(≡ ∂n/∂z) and m from the homogeneous ground state, in which m and ∂zn vanish.
After integrating by parts, we arrive at the free energy density for the linear antifer-
romagnetic spin chain to the lowest order in the deviations from the homogeneous
state [34]:

H1D(n, ∂zn, m) =
a
2
|m|2 + A

2
|∂zn|2 + L(m · ∂zn)− Kz

2
(n · ẑ)2 . (2.9)

3Note that this term is not identical to the similar-looking exchange term introduced by Lifshitz and
Pitaevskii [10] that lead to an anisotropic spin-wave dispersion relation. See the discussion in Paper [5].
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Figure 2.4: (Top) Domains in FMs form to lower the stray-field energy, popularly visualized as
magnetic field lines around a magnetic dipole. (Bottom) The boundary regions between two
domains are called domain walls. These regions exhibit locally increased exchange energy
penalties because the spin states deviate from the parallel configuration.

This equation has the following parameters: the homogeneous exchange energy a =
8JS2, the exchange stiffness terms A = Δ2 JS2 and L = 2ΔJS2, and the anisotropy
energy Kz = 2KS2. Here, L parametrizes the parity-breaking term in the energy
functional.

2.2 Antiferromagnetic domain walls
In bulk FMs, the formation of domain structures can be intuitively understood as
resulting from energy minimization: A large number of electrons with their spin
axes aligned in the same direction create a strong magnetic dipole with stray fields
that can extend to and influence neighboring magnetic materials. Consequently, it is
energetically favorable for FMs to lower their stray-field energy by forming domains
of magnetic order with magnetization pointing in different directions [11]. See Fig. 2.4
for a schematic presentation of domains and domain wall formation in FMs.

The formation of magnetic domains come at the cost of an increased exchange energy
penalty in the boundary regions between the domains. These regions, in which the
direction of the magnetization changes from one domain into the other, are called
domain walls. The distribution of domain sizes is determined by a competition between
the “macroscopic” dipole energy and the “microscopic” exchange energy. The former
favors smaller domains and the latter favors alignment of all neighboring spins.

It is not obvious that antiferromagnetic materials should exhibit similar domain struc-
tures as those observed in FMs. Homogeneous AFMs have no stray fields because the
total magnetic moment vanishes at equilibrium. Consequently, other mechanisms
than a competition between the dipole energy and the microscopic spin exchange
must be responsible for the formation of domains in the antiferromagnetic order. One
suggested mechanism for the spontaneous formation of domains in AFMs is via crys-
tal imperfections such as dislocations, grain boundaries or crystallographic twins [35].
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P-domain wall

O-domain wall

Figure 2.5: One-dimensional antiferromagnetic domain walls can be categorized into two
groups, the 180◦ phase domain walls and the 90◦ orientational domain walls [43]. The former is
more prominent in antiferromagnetic materials with substantial easy-axis anisotropy energy.
The latter may prove to become more technologically important because of the optical (XMLD)
and electrical (AMR) contrast between perpendicularly directed domains.

One can also argue that domains of antiferromagnetic order arise spontaneously at
finite temperatures below TN due to entropy considerations: There are many different
ways to combine domains, but only one state that is homogeneous. Additionally, at
temperatures slightly above TN, many antiferromagnetic materials exhibit a ferrimag-
netic precursor phase, in which the magnitudes of the magnetic moments are different
for the two sublattices. Ferrimagnets have a macroscopic magnetization and can form
magnetic domains that survive into the antiferromagnetic state after slowly cooling
below TN [36]. Yet another way to design domain structures in AFMs is via the strong
exchange coupling to FMs. An antiferromagnetic layer grown on top of a ferromag-
netic layer will typically align its spins along the domain configuration of the FM due
to the exchange bias effect [37].

Some decades ago, experimental information about antiferromagnetic domains were
hard to obtain and mostly restricted to neutron diffraction studies [38]. Recently, in-
fomation about domains in AFMs has become more experimentally accessible, e.g.,
via the experimental technique X-ray magnetic linear dichroism (XMLD) [39–41]. This
technique is based on the different absorption coefficients for X-rays in AFMs de-
pending on the direction of the antiferromagnetic order parameter. Domain walls in
AFMs are observed to be as different (if not more so) as their ferromagnetic counter-
parts. Domain walls in the antiferromagnetic insulator NiO have been observed to be
approximately 100 nm wide [42]. On the other hand, using spin-polarized scanning
tunneling microscopy, domain walls in monolayers of antiferromagnetic Fe on W(001)
have been reported to be only a few lattice spacings wide [43]. Signatures of domains
in the elemental AFM Cr also suggest short domain wall widths [44].

In this thesis, we study two types of short one-dimensional antiferromagnetic domain
walls [43]: the 90◦ orientational domain walls in Paper [1] and the 180◦ phase domain
walls in Papers [2, 5]. Fig. 2.5 presents a schematic comparison between these types
of antiferromagnetic domain walls. Studies of domain wall motion in FMs almost
exclusively focus on the most common 180◦ domain walls. In AFMs, there is also
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the possibility that 90◦ domain walls form in systems with low anisotropy. One of
the potentially technologically important properties of the antiferromagnetic order
parameter is the presence of anisotropic magnetoresistance (AMR) [45–47]. Because
the magnetoresistance effects arise from the spin-orbit coupling [48], the AMR in
AFMs can be as prominent as in FMs. The AMR contrast is obtained for domains that
are rotated 90◦ (perpendicular) to each other.

The tailoring of 90◦ orientational antiferromagnetic domain walls would typically
require some pinning at the boundaries, e.g., via the exchange bias effect with FMs [1].
In such systems, the domain wall shape must be determined from the boundary
conditions. For 180◦ phase domain walls, on the other hand, the equilibrium shape of
domain walls (solitons) can be calculated by minimizing the energy functional (2.9).
At equilibrium, the continuum field configuration that minimizes the energy can be
found from the variation of the free energy with respect to the staggered field n(z)
and the magnetization field m(z). The functional derivative of U[ f (x), f �(x)] with
respect to an arbitrary function f (x) is defined as

δU
δ f (x)

=
∂u
∂ f

− d
dx

∂u
∂ f �

, (2.10)

where u[ f (x), f �(x)] is a density of the functional such that U =
∫

udx. The func-
tional variations δH1D/δn0 = 0 and δH1D/δm0 = 0, where we enforce the constraints
|n0|2 = 1 and m0 · n0 = 0 by adding Lagrange multipliers, lead to the coupled equa-
tions for the equilibrium configurations n0 and m0 of the staggered field and the
magnetization, respectively:

n0 ×
[

A∂2
zn0 + L∂zm0 + Kz(n0 · ẑ)ẑ

]
= 0 , (2.11a)

am0 + L∂zn0 = 0 . (2.11b)

The above result is important because Eq. (2.11b) establishes that textures in the
staggered field n0 induce a finite magnetization density m0 = −(L/a)∂zn0 even at
equilibrium. This relation arises from the parity-breaking exchange term in Eq. (2.9).
The validity of this continuum representation and the presence of such an intrinsic
magnetization of antiferromagnetic textures was numerically tested and verified in
Ref. [23]. Nevertheless, this intrinsic contribution to the total spin of textured AFMs is
commonly overlooked in theories describing antiferromagnetic domain wall dynam-
ics. We discuss the probable cause for these oversights by comparing our procedure
to a different model that does not include the intrinsic magnetization in Sec. 2.3.

Taking the spatial derivative of Eq. (2.11b) and eliminating m0 from Eq. (2.11a), lead
to a closed equation for the equilibrium staggered field

n0 ×
[

A∗∂2
zn0 + Kz(n0 · ẑ)ẑ

]
= 0 , (2.12)

where A∗ = A − L2/a is a renormalized exchange stiffness. To find solutions for
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(a)

(b)

Figure 2.6: (a) Sketch of an antiferromagnetic head-to-head Néel (in-plane) domain wall in
the discrete staggered field (green arrows), including the intrinsic magnetization (red arrows,
not to scale) associated with the textured order parameter. (b) A Bloch (out-of-plane) domain
wall in the discrete staggered field including the associated intrinsic magnetization.

Eq. (2.12), we introduce the spherical coordinate system with the unit vectors

r̂ = [sin θ cos φ, sin θ sin φ, cos θ] , (2.13a)

θ̂ = [cos θ cos φ, cos θ sin φ,− sin θ] , (2.13b)

φ̂ = [− sin φ, cos φ, 0] , (2.13c)

where, by definition, n0 = [sin θ0 cos φ0, sin θ0 sin φ0, cos θ0]. After rewriting in the
spherical coordinates, a series of solutions for Eq. (2.12) can be found from

∂zφ0 = 0 , (2.14a)

∂2
zθ0 =

1
λ2 sin θ0 cos θ0 , (2.14b)

where λ =
√

A∗/Kz is the effective exchange length. Inserted the exchange stiffness
and the anisotropy parameter, λ = d

√
J/K is given by a competition between the

exchange energy and the anisotropy energy scales, as expected. A trivial solution
to the above equations is φ0 = 0 and θ0 = 0, which corresponds to a homogeneous
AFM with all spins polarized along the positive or negative z axis. The excited state
can be found by introducing the substitutions sin θ0 → ±sech(z/λ) and cos θ0 →
±tanh(z/λ) so that θ0 → 2 arctan [exp(z/λ)]. These solutions describe 180◦ Walker
domain walls [49] in the Néel (in-plane) configuration, where λ is the domain wall
half-width.

There exists also other possible solutions to Eq. (2.12), depending on the boundary
conditions, e.g., the Bloch domain wall or spin spirals. See Fig. 2.64 for a sketch
of a Néel and a Bloch domain wall, including the intrinsic magnetization. In the
following, we always mean the Néel configuration when considering 180◦ domain
walls in AFMs.

4Note that the discrete representation of the continuum fields ni and mi in Fig. 2.6 is nice for visual
representation of domain wall structures, but it can also be misleading because the arrows do not
represent classical spin vectors in this case.
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Hamiltonian approach:

Haldane’s mapping:

Siα Siβ Si+1α Si+1β

S2i-1 S2i S2i+1 S2i+2

……

[ni, mi] [ni+1, mi+1]

Figure 2.7: (Top) In the Hamiltonian approach, Eqs. (2.3) define discrete values for the
staggered field ni and the magnetization field mi at the center point of all antiferromagnetic
unit cells indexed by i. The continuum fields are defined from linear combinations of the
sublattice spins Si

α and Si
β. (Bottom) In Haldane’s mapping, every single spin Si is mapped

onto two continuum fields, the Néel field ñi and the “canting” field m̃i.

2.3 The Hamiltonian approach vs. Haldane’s mapping
The procedure (described in Sec. 2.1) of breaking the antiferromagnetic lattice into
spin pairs before transitioning to the continuum limit is called the Hamiltionian ap-
proach [31]. A recurring source of confusion while working on the details of Paper [5],
were the existence of different parametrization procedures for the continuum fields
that we originally assumed were conceptually equivalent to our approach. It turns out
that the nonequivalence of these different parametrization procedures is the key for
clarifying the seemingly contradictory results in the literature concerning the intrinsic
magnetization. To shed light on this issue, we include a direct comparison between
the Hamiltonian approach and Haldane’s mapping [26, 50, 31] of the antiferromag-
netic order parameter.

In contrast to the spin pairing described by Eqs. (2.3) and (2.4), Haldane’s paramet-
rization maps each spin in the linear spin chain onto two continuum fields such that

Si/S = (−1)iñi

√
1 − |m̃i|2 + m̃i , (2.15)

where ñ is the unitary Néel field and m̃ is the “canting” field.5 Fig. 2.7 compares
the spin indexing in the Hamiltonian approach with that of Haldane’s mapping. By
equating the expressions for Si

α and Si
β in Eqs. (2.4) and their corresponding expres-

sions in Haldane’s parametrization, we find the relationship

mi + ni

√
1 − |mi|2 =− ñ2i−1

√
1 − |m̃2i−1|2 + m̃2i−1 , (2.16a)

mi − ni

√
1 − |mi|2 =ñ2i

√
1 − |m̃2i|2 + m̃2i . (2.16b)

In the exchange approximation, m � n and m̃ � ñ, and we can safely disregard the

5Note that this mapping introduces extra degrees of freedom, which must subsequently be reduced
by limiting the Fourier components of the fields ñ and m̃ to include only long-wavelength excita-
tions [50]. Without this reduction, the continuum fields are not unambiguously defined.
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square roots in the above expression. It follows that

ni ≈− 1
2
(ñ2i−1 + ñ2i) +

1
2
(m̃2i−1 − m̃2i) , (2.17a)

mi ≈− 1
2
(ñ2i−1 − ñ2i) +

1
2
(m̃2i−1 + m̃2i) . (2.17b)

We proceed by assuming that there are only small-angled spatial variations in the
continuum fields. For such a situation, we may apply the gradient approximation
ñi+1 ≈ ñi + (Δ/2)∂zñ (and similar for the canting field), where Δ/2 = d is the nearest
neighbor distance. In particular, to directly compare the two parametrization pro-
cedures, we define continuum field values for ñ and m̃ at the center point of each
unit cell: ñi+1/2 ≈ ñi + (Δ/4)∂zñi (and similar for m̃). Inserting these lowest order
gradient approximations into Eqs. (2.17), results in a one-to-one mapping between the
continuum fields of the Hamiltonian approach and Haldane’s parametrization:

n →− ñ + (Δ/4)∂zm̃ +O(|m̃|2) , (2.18a)

m → m̃ − (Δ/4)∂zñ +O(|m̃|2) . (2.18b)

This important result establishes that the continuum fields ñ and m̃ of Haldane’s
mapping are not identical to the staggered and magnetization fields n and m of the
Hamiltonian approach. By inserting this mapping into the energy functional (2.9)
and keeping only terms of the order |m̃|2 in the exchange approximation, we find the
continuum limit energy functional of Haldane’s mapping:

HHal(ñ, ∂zñ, m̃) =
a
2
|m̃|2 + A

2
|∂zñ|2 − Kz

2
(ñ · ẑ)2 . (2.19)

The above result has two obvious implications: (1) The parity-breaking exchange term
in Eq. (2.9), which leads to the intrinsic magnetization, vanishes after a transformation
of the continuum fields, e.g., m → m̃ − (Δ/4)∂zñ. (2) The physical interpretations of
the magnetization field m and Haldane’s canting field m̃ are critically different. The
magnetization field m can be interpreted as a magnetization density in the sense that
the total spin (both intrinsic and dynamic) of the AFM can be found from integration,
M/S =

∫
m dV. The canting field m̃, on the other hand, represents only the dynamic

magnetization induced by temporal variations of the Néel field ñ and not the total
magnetization.

An overall requirement, however, is that the physics remains the same for the two pro-
cedures, including the existence of the intrinsic magnetization. Although the canting
field m̃ in Haldane’s mapping does not include the intrinsic contribution to the mag-
netization density, the total spin can be found from M/S ≈ ∑2N

i=1[(−1)iñ(zi) + m̃(zi)].
The intrinsic magnetization can be identified as arising from the first terms in the
sum. For a slowly varying ñ in, e.g., the ẑ direction, ∑2N

i=1(−1)iñ(zi) · ẑ ≈ [ñz(z1)−
ñz(z2N)]/2 [51], which is generally nonzero for textured order parameters.
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2.4 Outlook
In Paper [5], we demonstrate with analytical results and supporting numerical ana-
lysis that the intrinsic magnetization of antiferromagnetic textures can alter the dy-
namics of collective modes that are under the influence of external forces that couple
directly to the intrinsic magnetization. In particular, we show that an inhomogeneous
but static magnetic field creates a potential energy landscape for a one-dimensional
domain wall. This effect can possibly be used to accurately pin the position of anti-
ferromagnetic domain walls.

The results presented in this chapter are the most recent in this thesis. Although
the earlier papers on antiferromagnetic domain wall motion do not take the intrinsic
magnetization into account, the retroactive effects on the earlier publications are not
dramatic: Paper [1] studies the current-induced dynamics of a 90◦ orientational do-
main wall. Although (spin-polarized) currents also couple to the intrinsic magnet-
ization, the dynamic effects of this coupling are indirect and of higher order in the
small parameter

√
K/J than the direct coupling identified in Ref. [52]. Therefore,

these corrections can safely be assumed to be small or negligible. In Paper [2], only
internal (spin-wave-induced) forces act on the 180◦ domain wall. In such a situation,
the magnetization field m is a slave variable that can be eliminated from the equations
of motion and the intrinsic magnetization plays no role in the dynamics. In Paper [4],
we describe expansions around a homogeneous antiferromagnetic state without any
macroscopic textures. Consequently, the results are not affected by the intrinsic mag-
netization.



Chapter 3

Dynamics in antiferromagnets

The previous chapter developed tools for describing textures in the antiferromagnetic
order via spatially varying continuum vector fields. In this chapter, we progress to
describe the dynamics of these continuum fields. The concepts presented in the fol-
lowing sections come mainly from Papers [1, 2], which study two different scenarios of
antiferromagnetic domain wall motion. The motivation behind Paper [1] was to express
the phenomenological theory of current-induced torques in AFMs [27] via the con-
ceptually much simpler collective coordinate description [53]. Paper [2] was motivated
by the theory of magnon-driven spin transfer torque (STT) on a ferromagnetic domain
wall [54]. The magnon-driven STT effect originates from a phase shift of the spin
waves when traversing the ferromagnetic domain wall. A notable result from the nu-
merical analysis of the magnon-domain wall interaction is the complicated excitation
frequency dependence of the domain wall velocity. We were interested in describing
the analogous problem of spin waves interacting with domain walls in AFMs.

In Sec. 3.1, I present the equations of motion for the magnetization in FMs and
describe ferromagnetic spin waves for later comparison with the theory for AFMs.
Sec. 3.2 develops the coupled equations of motion for the antiferromagnetic con-
tinuum fields. The collective coordinate approach is presented in Sec. 3.3. In Sec. 3.4,
I introduce the concept of antiferromagnetic spin waves, and later, in Sec. 3.5, demon-
strate that the spin-wave amplitude depends crucially on the spatial distribution and
frequency of the excitation source. Sec. 3.6 describes the interaction between spin
waves and domain walls in AFMs. This interaction results from transfer of linear mo-
mentum rather than angular momentum. In Sec 3.7, I compare the radically different
properties of linearly polarized and circularly polarized spin waves in AFMs.

Note that this chapter follows the notation of Papers [1, 2] and uses Haldane’s unitary
Néel field ñ and the dimensionfull canting field m̃ (in units of Am−1), for which I
suppress the tilde notation such that ñ → n and m̃ → m.

19
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Figure 3.1: The precession of a macroscopic magnetization M around the direction of an
effective magnetic field Heff, described by the LLG equation (3.1). A finite Gilbert constant α
damps the precession such that, in time, the magnetization aligns with the effective field.

3.1 Ferromagnetic spin wave theory
Before describing spin wave excitations in AFMs, let us repeat the analogous problem
in FMs as a reference for the subsequent discussion. Consider a one-dimensional
ferromagnetic spin chain with easy-axis anisotropy so that all spins point along the
positive z direction at equilibrium. The local magnetization can be described by the
continuum vector field M(z, t). The ferromagnetic dynamics are described by the
Landau-Lifshitz-Gilbert (LLG) [55, 56] equation

Ṁ = −γM × Heff +
α

Ms
M × Ṁ , (3.1)

where γ is the gyromagnetic ratio, α is the dimensionless Gilbert damping parameter,
Heff is the effective magnetic field, and Ms is the saturation magnetization. Eq. (3.1)
describes the precession of the magnetization around an axis defined by the direction
of the effective field, where a finite damping relaxes the precession angle such that, in
time, the magnetization aligns with the effective field, see Fig. 3.1.

The effective magnetic field is defined as the (negative) functional derivative of the
energy functional UF(M) of the FM: Heff ≡ −δUF(M)/δM. We consider here a simple
uni-axial and one-dimensional FM with easy axis along the z direction. The energy
functional is

UF(M) =
∫

dz
[

A
2
|∂M

∂z
|2 − Kz

2
(M · ẑ)2

]
, (3.2)

where A and Kz (in the appropriate dimensions) parametrize the exchange stiffness
and the anisotropy energy, respectively. The first term in Eq. (3.2) represents the
energy cost of an inhomogeneous magnetization and the second term represents the
energy gain from aligning the magnetization along the easy z direction. From the
definition of the functional derivative (2.10), we calculate the effective magnetic field
as Heff = A∂2

zM + KzMzẑ.

To describe spin-wave excitations on top of the homogeneous FM, we apply the an-
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satz that the magnetization field can be described by M(z, t)/Ms = ẑ + hmx(z, t)x̂ +
hmy(z, t)ŷ, where mx and my are small perpendicular excitations around the homo-
geneous ferromagnetic state. Inserting this ansatz into the LLG equation (3.1) and
expanding to first order in the small excitation parameter h, give

1
γ

[
ṁx(z, t) + αṁy(z, t)

]
= A∂2

zmy(z, t)− Kzmy(z, t) , (3.3a)

1
γ

[
ṁy(z, t)− αṁy(z, t)

]
= −A∂2

zmx(z, t) + Kzmx(z, t) . (3.3b)

We further assume that the magnetic excitations are harmonic oscillations in space
and time, mx(y) = m0 exp [i(kz − ωt)], where k and ω are the wave vector and fre-
quency of the spin waves, respectively. After introducing the left-circularly and right-
circularly polarized modes m± = mx ± imy, we can combine Eqs. (3.3a) and (3.3b) to
give the familiar quadratic dispersion relation for spin waves in FMs [10]:

ω(1 + iα) = γ(Ak2 + Kz) , (3.4)

which shows that the spin-wave spectrum is gapped with the collective excitation (or
“macrospin”) frequency given by ωK = γKz.

The LLG equation (3.1), inserted the effective field but without damping, can be re-
written as [54]

Ṁ = −γKzMzM × ẑ − ∂zJ , (3.5)

where J = γA(M× ∂zM) defines the spin-wave spin current [57]. From Eq. (3.5), we can
construct a continuity equation for the spin angular momentum along the z direction
as

Ṁz + ∂z Jz = 0 , (3.6)

where Jz is the z component of J. For the right-circularly polarized and left-circularly
polarized harmonic oscillations m± = ρm exp [i(kz − ωt)], where ρm is the complex
spin wave amplitude, Jz = ±γ|ρm|2Ak [54]. The sign of the spin current is determ-
ined by the spin-wave helicity. When passing through a ferromagnetic domain wall,
the spin waves change their phase, causing the spin-wave spin current to change sign.
This transfer of spin angular momentum between passing spin waves and the domain
wall is the driving force for the magnon-induced domain wall motion. In the follow-
ing sections, we develop a similar formalism for antiferromagnetic spin waves and
describe the coupling between travelling spin waves and antiferromagnetic domain
walls.

3.2 The Landau-Lifshitz equations of motion for AFMs
Let us return to antiferromagnetic dynamics, which is described via the dynamic
equations of the unitary Néel field n and the canting field m. The coupled equations
of motion for n and m that are analogous to the ferromagnetic LLG equation (3.1)
can be found from several different approaches. A popular procedure is to develop
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linear combinations of the two LLG equations for the sublattice magnetic moments
Mα and Mβ [23, 58, 24]. We used a similar method to compute the antiferromagnetic
coupled equations of motion in Paper [4], which is further discussed in Chapter 4. Yet
another approach was used by Hals et al. [27], who phenomenologically constructed
the equations of motion for n and m from symmetry relations [59].

Here, we apply a somewhat different, but fundamentally equivalent, approach, fol-
lowing the presentation in Paper [5]. We construct the Lagrangian density and dir-
ectly compute the dynamic equations for n and m from the principle of least action
and the Euler-Lagrange equations. The Lagrangian density is defined as L = K− U ,
where K is the kinetic energy and U is the potential energy. In FMs, the kinetic
term for a single spin is constructed from the spin Berry phase, resulting in KF =
ρFφ̇(cos θ − 1) [60, 61], where ρF is the magnitude of the spin per lattice point, θ is the
polar angle and φ is the azimuthal angle in the spherical coordinate system.

Analogous to the procedure for constructing the kinetic term for a single spin in a
ferromagnet, K for AFMs can be defined from the Berry phase of the spin pair Sα + Sβ

that constitutes the antiferromagnetic unit cell:
∫

Kdr = −ρAF

2

[
∑
α

Aα · Ṡα + ∑
β

Aβ · Ṡβ

]
, (3.7)

where ρAF = 2Sh̄ is the magnitude of the staggered spin angular momentum per unit
cell and Aα(β) is a gauge potential for the kinetic energy of the sublattice spins.

Several different gauges may lead to the correct equations of motion. For AFMs, it is
convenient to choose the gauge potential such that the spin pair Berry phase (3.7) van-
ishes in the strictly antiparallel configuration, Sα = −Sβ. One such choice of gauge is
Aα(β) = −φ̂α(β) cos θα(β)/ sin θα(β), which is identical to that which is normally used
to describe the kinetic energy of a single spin in FMs [61], but generalized here to
include both spins in the antiferromagnetic unit cell.

By expanding the spin-pair Berry phase in small deviations from the antiparallel con-
figuration, θβ → π − (θα + δθ) and φβ → π + (φα + δφ), and transferring back to the
[n, m] basis, disregarding terms of the order |m|4 and higher to be able to describe the
kinetic term via the unitary Néel field n, the antiferromagnetic Lagrangian density in
the exchange approximation is given by [26, 22]

L =
1
γ

m(ṅ × n)− U . (3.8)

We continue by varying this Lagrangian with respect to the Néel field n and the
canting field m, δL/δn = 0 and δL/δm = 0. The resulting coupled equations of
motion are

(ṅ × n) = γ
δU
δm

, (3.9a)

2(m × ṅ) + (ṁ × n) = γ
δU
δn

, (3.9b)
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where U(n, m) is the antiferromagnetic free-energy functional.

After taking the cross product with n, and using the constraints |n|2 = 1 and m ·n = 0
(which transforms to ṁ · n = −m · ṅ after taking the time derivative), we arrive at the
same equations of motion that were developed from a phenomenological approach in
Ref. [27] based on the interrelated symmetries of the continuum fields:

ṅ = γfm × n , (3.10a)
ṁ = γfn × n + γfm × m , (3.10b)

where fn = −δU/δn and fm = −δU/δm are effective Néel and canting fields, re-
spectively. These Landau-Lifshitz type equations for the antiferromagnetic continuum
fields are used as starting points for developing the collective coordinate equations of
motion in Paper [1] and to describe the interaction between antiferromagnetic spin
waves and domain walls in Paper [2].

In Sec. 2.1, following the derivation in Paper [5], we show that the antiferromagnetic
energy functional (2.9) that follows from the one-dimensional Heisenberg Hamilto-
nian includes a parity-breaking term that is responsible for the intrinsic magnetization
of antiferromagnetic textures. Because Paper [5] is the most recent work in this thesis,
the preceding Papers [1, 2, 4] on antiferromagnetic dynamics do not include such
a parity-breaking term in the energy functional. However, as discussed in Sec. 2.3,
energy functionals without this parity-breaking term are still valid continuum repres-
entations of AFMs, provided that the continuum field m is interpreted as Haldane’s
nonequilibrium canting field.

To calculate the effective Néel and canting fields, we use the energy functional

U =
∫

dr

[
a
2
|m|2 + A

2 ∑
i=x,y,z

|∂in|2 − Kz

2
(n · ẑ)2 − H · m

]
, (3.11)

where a is the homogeneous exchange constant, A is the exchange stiffness, Kz is
the anisotropy energy, and H represents the external magnetic field. This energy
functional describes an easy axis model, in which it is energetically favorable for the
spins in the AFM to align along the positive or negative z axis. Taking the functional
derivatives of Eq. (3.11) results in the effective fields

fn = −δU
δn

= A∇2n + Kz(n · ẑ)ẑ , (3.12a)

fm = − δU
δm

= −am + H . (3.12b)

However, this procedure does not take into account that the Néel field n and the
canting field m are dependent quantities and follow the constraints n · m = 1 and
|n|2 = 1. These constraints can be enforced in the variation, e.g., via the method
of Langrange multipliers. The resulting effective fields that enforce these constraints
are [27]

f∗n = An × (∇2n × n) + Kz(n · ẑ)n × (ẑ × n)− (H · n)m , (3.13a)
f∗m = −am + n × (H × n) . (3.13b)
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Figure 3.2: Instead of calculating the full dynamics of the order parameter vector field (blue
arrows), the collective coordinate approach describes the dynamics of the soft modes while
assuming that the texture remains rigid during the dynamics. This figure presents a simple
example of three collective coordinates defined for a Bloch domain wall configuration in the
order parameter (ferromagnetic or antiferromagnetic). We can define collective coordinates
for, e.g., the domain wall center, r(t), the helicity, φ(t), and the domain wall half-width, λ(t).

where both f∗m and f∗n by definition are perpendicular to n. We note that because the
canting field m is a slave variable that can be eliminated from the equations of motion
(3.10), the resulting effective dynamic equation for the Néel field n is invariant with
respect to whether the constraints are enforced in the calculation of the effective fields
(3.13) or not (3.12).

3.3 The method of collective coordinates
In FMs, the shape of magnetic textures (e.g., domain walls, vortices, or other solitons)
is often rigid and does not transform even when they are influenced by external
forces. In such situations, only a few, soft modes dominate the magnetization dy-
namics, as described in the seminal work of Schryer and Walker on ferromagnetic
domain walls [49]. The temporal evolution of these soft modes can be described by
the dynamics of a finite set of collective coordinates. This approach greatly simplifies
the understanding of complex magnetization dynamics, making it possible to approx-
imately describe the low-energy dynamics by considering only the dynamics of a few
soft modes while assuming that the underlying magnetic texture remains rigid. See
Fig. 3.2 for an example of how the collective coordinates can be defined for a Bloch
domain wall profile.

The collective coordinate approach was recently revived to describe the dynamics of
a vortex domain wall in a ferromagnetic nanostrip [53, 62]. This method transforms
the LLG equation (3.1) into a series of equations of motion for the collective modes
that are simpler and more intuitive for the physical interpretation of the magnetiza-
tion dynamics. The coupled equations of motion for the antiferromagnetic continuum
fields (3.10) are hard to solve exactly for general order parameter textures. Therefore,
motivated by the collective coordinate description of ferromagnetic dynamics, we ad-
opted a similar approach in Paper [1] to develop the equations of motion for collective
coordinates in AFMs.
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First, let us introduce magnetization dissipation to the description of the antiferro-
magnetic dynamics. In the Lagrangian formalism, dissipation is typically introduced
via the Rayleigh dissipation functional [63, 52, 28]. Alternatively, Hals et al. [27] intro-
duced dissipation to Eqs. (3.10) by phenomenologically adding the lowest order terms
that are allowed by symmetry. The equations of motion including dissipation take the
form

ṅ = (γfm − G1ṁ)× n , (3.14a)
ṁ = (γfn − G2ṅ)× n + (γfm − G1ṁ)× m , (3.14b)

where G1 and G2 are phenomenological Gilbert damping parameters for the canting
field and the Néel field, respectively. Symmetrical two-sublattice models [58, 4] pre-
dict that G1l = G2/l. However, to the best of the author’s knowledge, there is yet no
experimental evidence of the strengths of these dissipation terms. Later, we discuss
the relative strengths of the G1 and G2 dissipative terms based on considerations of
the modeled system.

From Eq. (3.14a), inserted Eq. (3.14b) and the effective magnetic field (3.13b), we derive
an expression for the canting field

m = −1
a

n × (
1
γ

ṅ + n × H + G1fn) , (3.15)

where we have disregarded the nonlinear terms in Eq. (3.14b). From this equation, we
can conclude that the canting field m is a slave variable that is fully determined by
the dynamics of the Néel field n. As a result, we can eliminate m and derive a closed
equation for n by taking the time derivative of Eq. (3.14a) and combining with the
linear terms in Eq. (3.14b) and Eq. (3.15). The resulting effective equation of motion
for the Néel field is

n̈ = aγ2fn − γn × Ḣ + γG1ḟn − aγG2ṅ , (3.16)

which is valid in linear response. This equation is a second order differential equa-
tion for n and establishes that the Néel field dynamics in AFMs are fundamentally
different from the dynamics of the magnetization in FMs, which is described by the
first order differential LLG equation (3.1).

We note that the G1 dissipative term in Eq. (3.16) scales as AG1/(λτ), where λ and
τ are characteristic length and time scales of textures in the order parameter. The
G2 dissipative term, on the other hand, scales as aG2/τ. In analyzing the relative
strengths of these two dissipative terms, we use the relation between the inhomogen-
eous exchange constant and the exchange stiffness, a ∼ A/(l2d2) [64, 5], where d is
the lattice constant and l = |l0| is the length of the antiferromagnetic order parameter,
e.g., the staggered magnetic moment per unit cell. Dissipation in metallic FMs arises
from the spin-orbit interaction in combination with electron scattering [65]. It is likely
that similar mechanisms in AFMs have comparable effects on the Néel field and the
canting field such that G1l ≈ G2/l � 1. From this we can conclude that the G2 dissip-
ative term dominates for textures that are significantly larger than the lattice constant,
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λ � d. This is the case for most realistic systems, including the models of domain
walls we study in Papers [1, 2, 5] and, therefore, we safely disregard the G1 dissipative
term in the following.

Eq. (3.16) can be transformed by requiring that the time dependence of the textured
Néel field is described by a set of collective coordinates {bi(t)} such that n(r, t) ≡
n(r, {bi(t)}). The time derivative is then ṅ = ḃi∂bi n. Similarly, n̈ = b̈i∂bi n +O(ḃ2

i ),
where the second term can be disregarded in a linear response analysis because it is
quadratic in the driving forces. We continue by taking the scalar product of Eq. (3.16)
with ∂bj n and integrate over the space. The resulting equations of motion for the
collective modes {bi(t)} can be cast as

Mij(b̈j + γaG2ḃj) = Fi , (3.17)

where Mij is an effective mass and Fi are the forces acting on the collective coordinates
bi. This equation implies that rigid antiferromagnetic textures can be interpreted
as inertial quasi-particles with an effective mass. Their dynamics are similar to the
motion of classical particles subject to dissipation-induced friction and external forces,
e.g., Newton’s second law. Contrasting the description of external torques acting on
FMs [66], antiferromagnetic textures move as a response to external forces and not
torques.

The effective mass tensor is given by

Mij =
1

aγ2

∫
dV∂bi n · ∂bj n . (3.18)

The total force Fi is a sum of several different contributions. In particular, we make
the distinction between internal and external forces. The internal forces are

Fi
X(bi) =

∫
dV∂bi · fn = ∂biUX , (3.19)

where UX denotes the effective material-specific forces that act on the AFM through
the exchange interaction and the magnetic anisotropy. The external force from a mag-
netic field can be expressed as

Fi
H(bi) =

1
aγ

∫
dVḢ · (n × ∂bi n) , (3.20)

which shows that only time-varying magnetic fields and not constant magnetic fields
exert forces on antiferromagnetic textures. In Paper [5], we identify yet another mag-
netic field-induced force, proportional to the spatial derivative of an external magnetic
field [∼ (∂bi n · ∂iH)]. This force from inhomogeneous magnetic fields should be added
to the above equations of motion due to the influence of the intrinsic magnetization
of antiferromagnetic textures.

Ref. [27] introduced the current-induced reactive (adiabatic) torque τη = ηγ(Jc · ∇)n
and the dissipative (non-adiabatic) torque τβ = βγ(Jc · ∇)n × n to Eqs. (3.14a) and
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(3.14b), respectively, where Jc is the charge current and η(β) parametrize the adiabatic
(nonadiabatic) current-induced torque. In the collective coordinate description, these
torques are converted into the current-induced forces

Fi
J(bi) =

∫
dV

[
η

aγ
∂bi n · (J̇c · ∇)n + β∂bi n · (Jc · ∇)n

]
, (3.21)

where alternating currents (ac) are responsible for adiabatic forces and direct currents
(dc) give rise to nonadiabatic forces.1

The collective coordinate equation of motion (3.17) is model independent. There-
fore, by studying the dynamics of antiferromagnetic textures under the influence of
external forces, Eq. (3.17) can be used to decipher experimental values for the in-
homogeneous exchange constant a or the damping constant G2, which can otherwise
be difficult to determine experimentally. In Paper [1], we apply the collective coordin-
ate description to the dynamics of a 90◦ exchange-bias-pinned orientational domain
wall (see Fig. 2.5) under the influence of a direct charge current. We show that the
dynamics of the domain wall center coordinate follow a harmonic oscillator equation.
We also describe how these oscillations could possibly be experimentally detected via
the AMR effect.

3.4 Spin waves in AFMs
Antiferromagnetic spin waves can be excited by applying local time-varying external
magnetic fields that cause the spins in a confined part of the AFM to resonate at
the driving frequency of the external fields. In this section, our goal is to study
how spin-wave excitations in the continuum fields n and m can be described. The
starting point is the energy functional for a homogeneous AFM with easy-axis aniso-
tropy, Eq. (3.11). At equilibrium, all spins point along the positive or negative z axis,
n0 = ẑ, and the canting field m vanishes. A perpendicularly directed external field
Hext(z, t) = Hx(z, t)x̂ + Hy(z, t)ŷ leads to a relative canting of the spins in the vicinity
of the excitation source.

Spin waves in AFMs can be described as linear deviations of the Néel field n and
the canting field m around their equilibrium values. We adopt a similar approach
as the ferromagnetic definition in Sec. 3.1 to describe the excitation of spin waves in
a one-dimensional antiferromagnetic spin chain. We expand n(z, t) and m(z, t) for
small excitations h around the homogeneous state

n(z, t) = ẑ + h
[
nx(z, t)x̂ + ny(z, t)ŷ

]
, (3.22a)

m(z, t) = h
[
mx(z, t)x̂ + my(z, t)ŷ

]
. (3.22b)

By inserting this ansatz into the full equations of motion (3.14) and expanding to

1Note that in Paper [1], the reactive torque was parametrized by η + βG1 instead of only by η.
However, for most systems, if one considers η ∼ βl, the second dissipative contribution to the reactive
torque is negligible.
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Figure 3.3: A confined harmonically oscillating external field with driving frequency ω0 > ωK
excites parallel canting field oscillations (red) and perpendicular Néel field excitations (green).
This figure shows linearly polarized ny-waves.

linear order in the small parameter h, we find

ṅx(z, t) = γHy(z, t)− γamy(z, t)− G1ṁy(z, t) , (3.23a)
ṅy(z, t) = −γHx(z, t) + γamx(z, t) + G1ṁx(z, t) , (3.23b)

ṁx(z, t) = −γKzny(z, t) + γA∂2
zny(z, t)− G2ny(z, t) , (3.23c)

ṁy(z, t) = γKznx(z, t)− γA∂2
znx(z, t) + G2nx(z, t) . (3.23d)

These equations show that spin-wave excitations in AFMs consists of coupled and
phase-shifted excitations in the Néel field and the canting field, see Fig. 3.3 for a
sketch of linearly polarized antiferromagnetic spin waves. Note that antiferromag-
netic spin waves are good analogs of electromagnetic waves, with the Néel field ex-
citations playing the role of the electric field, polarized perpendicular to the canting
field excitations.

We see that we can combine the equations above and eliminate mx and my. After
taking the time derivative of Eqs. (3.23a) and (3.23b) and inserting Eqs. (3.23c) and
(3.23d), we find the equations

n̈x(z, t) =γḢy(z, t) + aγ2
[

A∂2
znx(z, t)− Kznx(z, t)

]
− aG2ṅx(z, t) , (3.24a)

n̈y(z, t) =− γḢx(z, t) + aγ2
[

A∂2
zny(z, t)− Kzny(z, t)

]
− aG2ṅy(z, t) , (3.24b)

where we have safely disregarded the G1 dissipative term because the spin waves
have wavelengths that are significantly longer than the lattice constant, λsw � d (see
Sec. 3.3 for the discussion of the relative strengths of the G1 and G2 dissipative terms).

Let us first assume, analogous to ferromagnetic spin waves, that a precessing external
magnetic field oscillating at the driving frequency ω, Hext → h(ix̂ ± ŷ) exp (iωt),
excites circularly polarized travelling harmonic oscillations in the Néel field: n± ≡
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nx ± iny = n0 exp i(kz − ωt). The Néel field excitations are phase shifted with respect
to the excitation source because the external field couples to the canting field m.
Without dissipation, the combination of Eqs. (3.24) inserted the harmonic excitation
source gives the familiar antiferromagnetic spin-wave dispersion [10]

(ω ± γh)2 = aγ2(Ak2 + Kz) , (3.25)

which, in contrast to the ferromagnetic dispersion relation (3.4), is linear far away
from the collective macrospin frequency ωK = γ

√
aKz. The frequencies of spin-wave

excitations in AFMs are typically larger than for FMs due to their dependence on
the large exchange parameter a. Antiferromagnetic spin waves have been shown to
operate coherently in the THz regime [21].

Eqs. (3.24) reveal another important property of antiferromagnetic spin waves that is
different from the analogous problem (3.3) in FMs. Whereas magnetic excitations in
the perpendicular directions x̂ and ŷ are intrinsically coupled in FMs, these perpen-
dicular modes are decoupled in AFMs. The result is that ferromagnetic spin waves
in easy-axis FMs are always circularly polarized. Spin waves in AFMs, on the other
hand, can have arbitrary polarizations depending on the excitation source, e.g., an
excitation field polarized along the x direction excites Néel field excitations that are
polarized along the y direction, and vice versa.

3.5 Calculating the spin-wave amplitude
One prominent feature of the ferromagnetic magnon-driven domain wall motion [54]
that, in our view, lacked a proper explanation, was the strong frequency depend-
ence of the resulting domain wall velocity. In the following, we explain this feature
by demonstrating that the spin-wave amplitude, and therefore also the spin-wave-
mediated forces, depend crucially on the spatial distribution of the excitation field
and not only on its strength. Our calculation is done for antiferromagnetic spin waves,
but a similar dependence can also be found for ferromagnetic spin waves.

For simplicity, we study linear excitations of the Néel field, but the result general-
izes also to circularly polarized spin waves. After inserting the harmonically oscillat-
ing excitation field Hext = Hext(z) exp (−iω0t)x̂ in Eq. (3.24b) and taking the Fourier
transform in the spatial (z) and temporal (t) coordinates, we find the relation

ñy(k, ω) =

√
2πγω0δ(ω − ω0)H̃ext(k)

ω2 − aγ2(Ak2 + Kz) + iωaG2
, (3.26)

where ñy(k, ω) ≡ Fz,t{ny(z, t)} is the spatio-temporal Fourier transform of the Néel
field excitations, δ(ω) is the Dirac delta function and H̃ext = Fz{Hext} is the spatial
Fourier transform of the excitation source. The delta function makes the temporal in-
verse Fourier transform trivial and we directly see that the excited spin waves oscillate
at the driving frequency ω0.

We want to describe the spin-wave amplitude as a function of the spatial distribution
of the excitation field Hext(z), which we assume is placed/centered at z = 0. The
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inverse Fourier transform of Eq. (3.26) in the spatial coordinate is complicated. How-
ever, we note that in the limit of low dissipation (G2 → 0), the wavelength spectrum
is strongly peaked around the resonance condition k0 → ±[(ω2

0 − aγ2Kz)/(aγ2A)]1/2,
where we assume that ω2

0 > aγ2Kz so that ±k0 are real wave numbers. Driving fre-
quencies below the gap frequency ωK do not excite traveling spin-wave excitations [2].

At resonance, the denominator of Eq. (3.26) has complex poles at k → ±k0. We
expand the denominator in small deviations from the most resonant wave vectors,
k ≈ ±k0 + δk, to find the two solutions

ny±(z, t) ≈ ei(±k0z−ω0t)γω0H̃ext(±k0)
∫

d(δk)
eiδkz

∓2aAγ2k0δk + iωaG2
, (3.27)

where we have shifted the integration variable in the inverse Fourier transform from
k to δk. This integral can be solved, giving two solutions for the spin-wave excitations:

ny±(z, t) ≈ γ

vg
H̃ext(±k0)Θ(±z)ei(±k0z−ω0t+π/2)∓γaG2z/(2vg) , (3.28)

where vg ≡ ∂ω0/∂k0 = γ2aAk0/ω0 is the spin-wave group velocity and Θ(z) is the
Heaviside step function. These spin-wave solutions have several properties that are
intuitively easy to appreciate: They describe waves traveling in opposite directions
out and away from the excitation source centered at z = 0. The spin waves are
phase shifted by π/2 with respect to the excitation field because Hext first induces
the small canting mx along the perpendicular direction. A nonzero Gilbert damping
parameter G2 leads to an exponential damping of the amplitude as the spin waves
travel. The spin-wave amplitude is highly sensitive to the driving frequency and the
spatial Fourier transform of the excitation source.

A typical modeling scheme for the excitation of spin waves in FMs and AFMs is to
apply locally oscillating excitation fields at fixed positions along the spin chain. The
frequency of the spin waves is subsequently controlled by varying the external field
driving frequency [54, 67, 2]. Eq. (3.28) shows that the resulting spin-wave amplitudes
depend crucially on the shape of the excitation source and that different amplitudes
must be expected for different driving frequencies. This leads to a strong frequency
dependence for the spin-wave-induced domain wall motion.

3.6 Spin waves interacting with domain walls in AFMs
In this section, we describe the interaction between spin waves and domain walls in
AFMs. In Paper [2], we chose to study a 180◦ Néel (in-plane) domain wall (see Sec. 2.2)
given by the Walker configuration n0(ξ, t) = [sech ξ cos φw, sech ξ sin φw, tanh ξ], where
ξ = (z − rw)/λw is the dimensionless spatial coordinate, rw is the domain wall center
coordinate, φw is the helicity, and λw is the domain wall half-width.

Analogous to the description in Sec. 3.4, the spin waves can be described by the ansatz
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n(ξ, t) → r̂ + h
[
nθ(ξ, t)θ̂ + nφ(ξ, t)φ̂

]
, (3.29a)

m(ξ, t) → h
[
mθ(ξ, t)θ̂ + mφ(ξ, t)φ̂

]
, (3.29b)

where the notations nθ(φ) and mθ(φ) describe linear order excitations of the Néel field
and the canting field in the θ̂(φ̂) directions, perpendicular to the domain wall con-
figuration. Inserting this ansatz into Eqs. (3.10) and expanding the Néel field to the
linear order in the small excitation parameter h, lead to the equations of motion for
the spin-wave excitations

n̈θ(φ) = aKzγ2[∂2
ξnθ(φ) + (2sech2ξ − 1)nθ(φ)]− aγG2ṅθ(φ) , (3.30)

where we have disregarded the G1 dissipative term as in Sec. 3.4. We note that far
to the left and to the right of the domain wall, sech ξ → 0, and the above equations
reduce to the homogeneous spin-wave equations (3.24), as expected. We also note
that the nθ and nφ modes are decoupled, which allows arbitrary polarizations for the
antiferromagnetic spin waves. By separating the temporal and spatial dependence of
the spin waves as nθ(φ)(ξ, t) = nθ(φ)(ξ)exp(−iωt), Eq. (3.30) can be cast as

Ĥnθ(φ)(ξ) = q2nθ(φ)(ξ), (3.31)

where the operator Ĥ = [−∂2
ξ − 2sech2(ξ)]. The eigenvalues q2 = [ω2/(γ2aKz) −

1 + iωG2/(γKz)] define the dispersion relation of the antiferromagnetic spin waves.
Eq. (3.31) is a time-independent Schrödinger-type equation with the Pöschl-Teller po-
tential. However, when G2 �= 0, Ĥ is non-hermitian and has complex eigenvectors.
Without dissipation, a striking property of the Pöschl-Teller potential is that it is reflec-
tionless and offers exact solutions in the form of travelling-wave eigenfunctions [68].

For real (G2 → 0 and ω2 > γ2aKz) eigenvectors q, the solutions to Eq. (3.31) represent
propagating wave excitations that are superimposed on the domain wall texture, see
Fig. 3.4. These solutions can be written as

nθ(φ)(ξ, t) = ρqeiΩ(tanh ξ − iq) , (3.32)

where ρq is the eigenvector-dependent spin-wave amplitude that we later map to the
result presented in Sec. 3.5. Ω = qξ − ωt, so that Re{Ω} is the general phase of the
wavelike excitations. When G2 > 0, the imaginary part of q leads to the exponential
damping of the spin-wave amplitude. We must demand that this imaginary damp-
ing term is small to find an approximate expression for the domain wall velocity.
However, close to the macrospin resonance frequency, this assumption breaks down
because Re{q} → 0. Consequently, we are not able to describe the interaction between
ultra-long-wavelength spin waves and domain walls with this description.

Spin waves are linear excitations of the Néel field in the small excitation parameter h.
Analogous to the magnon-induced spin-transfer torque in FMs [54], capturing the dy-
namic interactions between spin waves and antiferromagnetic domain walls requires
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Figure 3.4: Sketch of a spin wave interacting with an antiferromagnetic domain wall. Linearly
polarized spin waves incoming from the left attract the domain wall center coordinate, and
the domain wall moves to the left.

that we expand n(ξ, t) and m(ξ, t) to quadratic order in h around the equilibrium
texture r̂. Accordingly, we propose the extended ansatz

n(ξ, t) →
[

1 − h2

2
(|nθ|2 + |nφ|2)

]
r̂ + h

(
nθ θ̂ + nφφ̂

)
, (3.33a)

m(ξ, t) → h2m(2)
r r̂ +

(
hmθ + h2m(2)

θ

)
θ̂ +

(
hmφ + h2m(2)

φ

)
φ̂ , (3.33b)

where we have also included the quadratic-order excitations of the canting field, m(2)
θ(φ)

and m(2)
r = −(mθnθ + mφnφ), which results from enforcing the constraint m · n = 0

to quadratic order in h. We assume that the spatial coordinate ξ depends on time
through the dynamics of the domain wall center coordinate rw(t). We also treat the
out-of-plane angle φw(t) as a collective coordinate in the same manner as rw(t). This
collective coordinate approach is equivalent to assuming that the domain wall moves
and rotates as a rigid object, and that any distortion of the domain wall shape is
captured by the linear-order excitations nθ and nφ.

We proceed by inserting the ansatz (3.33) into the full equations of motion (3.14)
including the effective fields. We further assume that the domain wall center accelera-
tion r̈w(t) and chirality acceleration φ̈w(t) are quadratic effects in the parameter h and,
therefore, are proportional to the square of the spin-wave amplitudes. In this way, we
can distinguish between the linear-order equations that lead to the spin-wave equa-
tions (3.30) and the quadratic-order equations that contain the interactions between
the spin waves and the domain wall. After eliminating m and integrating over the
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space as in Sec. 3.3, we find to the order h2 the relations
∫ ∞

−∞
dξsech ξ(r̈w + aγG2ṙw) = aγ2Kzλ2

w

∫ ∞

−∞
dξsech ξ(nφ∂ξnφ + tanh ξ |nθ|2) , (3.34a)

∫ ∞

−∞
dξsech ξ(φ̈w + aγG2φ̇w) = aγ2Kzλw

∫ ∞

−∞
dξsech ξ nφ(∂ξnθ − tanh ξ nθ) . (3.34b)

Although the above equations predict that the interactions between antiferromagnetic
spin waves and domain walls can be complicated in the general case, we note that spin
waves linearly polarized parallel (nφ = 0) or perpendicular (nθ = 0) to the domain
wall plane do not lead to an acceleration of the chirality, φ̈w → 0. Therefore, we
follow Paper [2] and describe the interactions resulting from linearly polarized nφ-
waves transverse to the domain wall plane. For such a simplified system, we find that
the above dynamic equations reduce to

r̈w + aγG2ṙw =
aγ2Kzλw

2π

∫ ∞

−∞
dξ sech ξ tanh ξ |nφ|2 , (3.35a)

φ̈w + aγG2φ̇w = 0 , (3.35b)

where we have used integration by parts to express the integral in this form. In
Paper [2], we describe the spin wave excitations via real harmonic functions2 and
subsequently take the temporal average of the spin waves to calculate the force on the
coordinate rw. Here, we apply the equivalent procedure of calculating the force on
the domain wall from the absolute square of the complex spin waves in Eq. (3.32).

Without dissipation (G2 → 0), q → kλw = [ω2/(aγ2Kz) − 1]1/2, where k is the real
wave number of the spin waves at the driving frequency ω. In such a situation, the
integral on the right-hand side of Eq. (3.35a) vanishes because the integrand is an odd
function around the domain wall center coordinate rw. This does not imply, however,
that nφ-waves leave the domain wall unaffected, but rather that the domain wall is
allowed to move with a constant velocity.3 However, if we include a finite dissipation
(G2 > 0), the spin waves are exponentially damped and the integrand in Eq. (3.35a)
acquires an even component. From this component, we can calculate the steady-state
velocity ṙw. For small damping, Re{q} ≈ kλw and Im{q} ≈ Q/2 = γaG2/(2vg),
where Q is the spin-wave damping factor.

Far to the left (ξ → −∞), the domain wall has no influence on the spin waves such
that |nφ(−∞)|2 → |ny+|2, where ny+ is the right-going mode in Eq. (3.28). Applying
the small dissipation approximation Q � kλw, we find the relation

ρ2
q =

(γH̃ext/λw)2

vgωk
e−Q(|z−z0|) , (3.36)

2Note that Eq. (7) in Paper [2] misses a factor λw to get the correct dimensions. Eq. (8) is a small-
G2 approximation of the real spin-wave solutions. This can be slightly misleading, because the small
damping limit that leads to the main result, Eq. (9), is ultimately taken to solve the integral in Eq. (7).

3In this case, the acceleration phase of the domain wall is caused by the transient spin-wave fronts,
which we cannot describe by this quasi-equilibrium approach.
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where z0 is the position of the spin-wave excitation source. Plugging this relation back
into the integral on the right-hand side of Eq. (3.35a), and solving for the steady state,
r̈w → 0, the domain wall drift velocity becomes

ṙw = −1 + 3(kλw)2

6vg

(
γH̃ext

kλw

)2

e−Q|ξ0| , (3.37)

where |ξ0| = |rw − z0|/λw represents the (dimensionless) distance from the excitation
source to the domain wall. Contrasting Eq. (9) in Paper [2], the above result expresses
the domain wall velocity directly as a function of the spatial Fourier transform of the
excitation field H̃ext.

Eq. (3.37) predicts that the domain wall is attracted toward the excitation source and
that the velocity depends quadratically on the excitation field strength, as expec-
ted. The velocity also depends crucially on the spatial distribution of the excitation
source. The group velocity of antiferromagnetic spin waves vanishes for extreme long-
wavelength spin waves. Accordingly, Eq. (3.37) predicts that low frequency excitations
just above the macrospin frequency ωK are most effective for attracting antiferromag-
netic domain walls with linearly polarized spin waves. However, the expansion in
terms of a small damping factor Q breaks down in this limit, and the spin-wave
group velocity vg sets a physical upper limit on the domain wall velocity.

3.7 Circularly polarized spin waves interacting with do-
main walls

In Paper [2], we demonstrate that the interactions between circularly polarized spin
waves and domain walls are qualitatively very different from the interactions with
linearly polarized spin waves described in the previous section. Instead of attracting
the domain wall, circularly polarized spin waves scatter off and push the domain wall
away from the excitation source with a resulting velocity that is an order of magnitude
larger than for the attractive motion caused by linearly polarized waves. The domain
wall also acquires a net angular velocity φ̇w.

In this section, we briefly discuss this critical dependence of the domain wall dy-
namics on the spin-wave polarization. The spin-wave equations (3.30) allow arbitrary
polarization angles because the oscillations in the perpendicular θ̂ and φ̂ directions
are decoupled. We can construct right- and left-circularly polarized spin waves by
phase shifting one of the components with respect to the other:

χ±(ξ, t) = nθ(ξ, t)θ̂ ± inφ(ξ, t)φ̂ . (3.38)

There is an important difference between linearly polarized and circularly polarized
antiferromagnetic spin waves. The latter carry spin angular momentum whereas the
former do not. To elucidate this phenomenon, let us consider the equation of motion
for the canting field (3.14a) without dissipation but inserted the effective fields (3.13).
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Analogous to Eq. (3.5) for FMs, the equation of motion for m can be cast as

ṁ = −γKznzn × ẑ − ∂zJm , (3.39)

where Jm = γA(n × ∂zn) is the spin-wave-mediated spin current through the AFM.
Analogous to the similar expression for FMs [57, 54], the z component of Eq. (3.39)
has the form of a conservation law for spin angular momentum: ṁz + ∂z Jmz = 0. In
the coordinate system of the domain wall, we find that the spin-wave-mediated spin
current in the z direction is

Jmz(ξ) =
γA
λw

(nθ∂ξnφ − nφ∂ξnθ)tanh ξ =
γA

2iλw
(χ±∂ξχ∗± − χ∗±∂ξχ±)tanh ξ , (3.40)

from which we can conclude that Jmz vanishes for linearly polarized spin waves
and that circularly polarized spin waves are associated with the spin current Jmz =
±γAkρ2

q, where the sign depends on the helicity. Furthermore, the spin current
changes its sign when passing through the domain wall. Because angular momentum
is conserved, the traveling spin waves deposit their spins on the domain wall. In con-
trast to the situation for FMs, where this transfer of angular momentum is responsible
for the domain wall motion, the strong exchange interaction in the AFM counteracts
the buildup of an increasing local magnetic moment.

The result of the spin transfer from circularly polarized spin waves passing through
a domain wall is that the domain wall starts to precess and that the reflectionless
Pöschl-Teller potential is destroyed. The spin waves transfer linear momentum to the
domain wall on reflection, and the domain wall is propelled away from the excitation
source.

3.8 Outlook
The collective coordinate approach of Paper [1] (presented in Sec. 3.3) has a wide
range of applicability because of its model independence. Variations of the concepts
presented in this paper have recently been applied to describe the thermophoresis of
antiferromagnetic solitons [69], antiferromagnetic magnonic crystals [70], and the dy-
namics and formation of antiferromagnetic skyrmions [71]. Following the publication
of Paper [2], Kim et al. [28] provided an extensive study of the interactions between
circularly polarized spin waves and antiferromagnetic domain walls. They found that
the domain wall motion in this case results not only from spin-wave reflection, but
also has a component due to the redshift of the spin-wave frequency on transmission
through the domain wall. By considering the large precession frequency of the do-
main wall and the associated Doppler shift, they calculated a more general expression
for the resulting domain wall velocity than Eq. (12) in Paper [2].
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Chapter 4

Including temperature effects

In the preceding chapters, I have described the antiferromagnetic order parameter and
its dynamics well below the ordering temperature TN. In this regime, the temperature-
induced spin fluctuations in magnetic materials are typically negligible compared
to the external forces induced by currents or magnetic fields. The subfield of spin
caloritronics [72], on the other hand, deals with the intermediate-temperature regime
and describes the interactions between magnetic materials and heat gradients, both in
the bulk and across interfaces in magnetic heterostructures.

One of the central concepts in spin caloritronics is the spin Seebeck effect (SSE) [73],
which describes how a temperature gradient induces a spin current in FMs. The re-
ciprocal effect, that a spin accumulation can induce a heat current, is called the spin
Peltier effect (SPE). Spin caloritronics effects in AFMs are not so well known, but a re-
cent study predicts that the SSE vanishes in AFMs [74]. In Paper [4], we challenge this
prediction and demonstrate that the thermal coupling between an antiferromagnetic
insulator (AFI) and a normal metal (N) is relatively strong despite a vanishing SSE.
The heat current across the interface is carried by a staggered spin current, and not a
regular spin current. The staggered SSE can, therefore, be substantial in such systems.

In this chapter, Sec 4.1 describes how temperature fluctuations can be included into
the equations of motion for the antiferromagnetic order parameter and the magnet-
ization via the fluctuation-dissipation theorem. In Sec. 4.2, I discuss the interfacial heat
current between an antiferromagnetic insulator and an adjacent normal metal and de-
scribe how the result differs from the analogous problem in FMs. Sec. 4.3 presents a
short discussion of the consequences of the theory and preludes the next chapter.

Note that Paper [4] uses the notation n and m for the dimensionless antiferromagnetic
order parameter and the magnetization field, respectively. To avoid further confusion
with the unitary Néel field in the preceding chapters, I continue using l for the order
parameter in this chapter, following the notation in Chapter 2.
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Figure 4.1: An antiferromagnetic insulator (AFI) sandwiched between two normal metals N1
and N2. A temperature gradient between the two normal metals, ΔT = T2 − T1, induces a
heat current IQ that flows along the heat gradient in the AFI and across the AFI | N1 interface.
We assume that N1 (to the left) is a good spin sink, whereas the interface coupling between
AFI and N2 (to the right) is weak. A and d are the cross section and the thickness of the
heterostructure, respectively.

4.1 The fluctuation-dissipation theorem
The coupled antiferromagnetic Landau-Lifshitz-type equations (3.10) do not include
temperature effects and describe staggered dynamics well below the Néel temper-
ature. However, dissipation in magnetic materials is intrinsically coupled to tem-
perature fluctuations and normally increases with higher temperature. For FMs,
this coupling to the temperature can be included in the LLG phenomenology via
the fluctuation-dissipation theorem [75, 65], which adds temperature-induced fluctu-
ations to the LLG equation in the form of stochastic torques that give random kicks to
the magnetization depending on the local temperature. We aim to add such torques
to the dynamic equations for AFMs.

Let us consider an (initially homogeneous) antiferromagnetic insulator (AFI) sand-
wiched between two normal metals N1 and N2, see Fig. 4.1 for a sketch of the model.
The equations of motion1 for the staggered order parameter and the magnetization
are

l̇ =ωm × l + ωl × m + τl , (4.1a)
ṁ =ωl × l + ωm × m + τm , (4.1b)

where the effective staggered field (in units of s−1) ωl = −(γ/l)δU/δl and effective
magnetic field ωm = −(γ/l)δU/δm are functional derivatives of the energy func-
tional U. l = |l0| is the magnitude of the staggered magnetic moment at equilibrium,
and τl and τm are fluctuation-dissipation torques that act on the staggered order and

1Note that Eqs. (4.1) are defined for the order parameter l and not the unitary Néel field n = l/|l|.
The resulting equations of motion have a symmetrical form that is useful for describing homogeneous
AFMs or expansions around the homogeneous state. The unitary Néel field description in Eqs. (3.10)
is, in turn, more useful for describing textures such as domain walls.
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the magnetization, respectively. The energy functional is

U =
l

2γ

∫
dr

[
ωE(l2 − m2)− ωA(l2

z + m2
z) + ωA ∑

i=x,y,z

[
(λl∂il)2 + (λm∂im)2

]]
, (4.2)

where ωE and ωA (in units of s−1) are exchange and anisotropy energies, respectively.
λl and λm denote exchange lengths associated with l and m. The resulting effective
fields from the functional derivatives are

ωl =ωEl + ωA(l · ẑ)ẑ + ωA(λl∇)2l , (4.3a)

ωm =− ωEm + ωA(m · ẑ)ẑ + ωA(λl∇)2m . (4.3b)

Following the phenomenological introduction of the dissipative terms in Ref. [27], we
write the fluctuation-dissipation torques as

τl =(hm − αṁ)× l + (hl − αl̇)× m , (4.4a)

τm =(hl − αl̇)× l + (hm − αṁ)× m , (4.4b)

where hl and hm are fluctuating stochastic fields and α is the damping parameter.
Importantly, we note that the stochastic fields and the damping parameter have con-
tributions both from the bulk and from the interface scattering. For homogeneous
macrospin excitations, α(b) describes the bulk Gilbert damping, whereas α(b) + α(p)/d
is the damping at the interface, where α(p) is the enhanced dissipation due to spin
pumping [76]. To distinguish between the bulk and interfacial effects of the fluctu-
ating forces, we decompose the coordinate r = (x, ρ) into a longitudinal coordinate
x ∈ [0, d] and the two-dimensional in-plane coordinate ρ, see Fig. 4.1. The fluctuation-
dissipation torques can then be represented as τν(r) → τ

(b)
ν (r) + δ(x − x0)τ

(p)
ν (ρ),

where x0 = 0+ is infinitesimally close to the AFI | N1 interface, and the index ν
denotes li or mi, where i is one of the cartesian components x, y, and z.

Although the averages and cross correlations of all the stochastic fields vanish, the
fluctuation-dissipation theorem implies that there is a connection between the vari-
ance of hl and hm and the damping constants in the bulk AFI and at the AFI | N1
interface:

�h(p)
ν (ρ, t)h(p)

ν (ρ′, t�)� =γα(p)R(t − t�, T1)

lπ
δ(ρ − ρ�) , (4.5a)

�h(b)ν (r�, t)h(b)ν (r�, t�)� =γα(b)R(t − t�, TA)

lπ
δ(r − r�) , (4.5b)

where the correlation function R(t, T) depends on the local temperature profile, TA(x).
In Eq. (4.5a), we assume that the spin-current fluctuations at the AFI | N1 interface
depend on the temperature T1 of N1, analogous to the situation for FMs [77].
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4.2 Heat current
Because the external forces in this system do not change, the heat current can be found
from the continuity equation for the energy

�U̇�+∇jU = 0 , (4.6)

where jU can be identified as the heat current density. Furthermore, the total heat
current across the AFI | N1 interface can be integrated up as IQ =

∫
dρ(−x̂ · jU).

Using the continuity equation (4.6) and the equations of motion for the continuum
fields (4.1), the interfacial heat current can be expressed as

IQ =
L
γ
�ωAλl∂xl · l̇ + ωAλm∂xm · ṁ�|x=0 , (4.7)

where �� denotes a temporal average. IQ can be calculated in the linear response by
assuming that the stochastic fields hm and hl induce the small perturbations mx(y) and
lx(y) on top of the equilibrium configuration l = ẑ and m = 0. For the full calculation
of the heat current IQ in terms of the stochastic fields hl and hm and the correlation
function R(t, T), we refer to the treatment in Paper [4]. However, as a prelude to the
next chapter, we consider the final result for the heat current

IQ =
∞

∑
N=0

1

t(p)
N

∫ ∞

0
dωDN(ω)h̄ω { f (ω, T2) [1 − f (ω, T1)]− f (ω, T1) [1 − f (ω, T2)]} ,

(4.8)
where we have included that the continuum field perturbations can be viewed as an
ensemble of excited magnons. The magnons in the AFI and the electron-hole pairs in
N1 and N2 follow quantum statistics and is distributed according to the Bose-Einstein
distribution function f (ω, T). DN(ω) is the mode-dependent density of magnon
states. The heat current that flows across the AFI | N1 interface is inversely pro-
portional to the spin-pumping-induced spin-wave (magnon) relaxation time

1/t(p)
0 =

α(p)

d
ωE , (4.9a)

1/t(p)
N �=0 =

2α(p)

d
ωE , (4.9b)

which shows that the heat current is proportional to the exchange energy ωE. This
result differs from analogous expressions for spin-wave relaxation rates in FMs, which
are proportional to the much smaller magnon energy ω.

The heat current (4.8) has an intuitive form because it describes the difference in
magnon scattering probabilities at the two interfaces AFI | N1 and AFI | N2. These
probabilities depend on the distribution of magnons in the AFI and the distribution of
empty states in the normal metals, given the temperatures at the interfaces. Because
the scattering probabilities are, in general, different for the two interfaces, a magnonic
current flows from N2 to N1 across the AFI. The total heat current is then given by a
sum over all staggered-spin-carrying longitudinal magnon modes N integrated over
all frequencies ω.
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4.3 Outlook
A similar procedure as the one presented in the preceding chapters, including the
fluctuation-dissipation theorem, was used in Ref. [69] to describe the thermally in-
duced dynamics (thermophoresis) of an antiferromagnetic soliton via the collective
coordinate approach.

By considering the heat current (4.8) as resulting from interfacial electron-magnon
scattering, where the magnons follow quantum statistics and are distributed accord-
ing to the quantum mechanical Bose-Einstein distribution, we have made the import-
ant classical-to-quantum crossover. In the next section, we complete the transition
from classical models of magnetic materials to the quantum description of collect-
ive spin excitations and describe the ultrafast spin currents in a ferromagnetic metal
induced by rapid heating with a femtosecond laser pulse.
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Chapter 5

Transition to the ultrafast regime

In the previous chapter, I described how to add temperature effects to the Landau-
Lifshitz phenomenology for AFMs via the fluctuation-dissipation theorem. This the-
orem expresses a fundamental link between stochastic temperature-induced spin fluc-
tuations and the magnetization dissipation, both in the bulk and at the interfaces
between magnetic materials and adjacent normal metals. However, this procedure is
limited to stochastic forces that are relatively weak compared to the exchange forces
that are responsible for sustaining the magnetic order. In the opposite high-energy
limit, we find the subfield of ultrafast magnetization dynamics [78, 79], which studies
the rapid demagnetization resulting from ultrafast excitation of a magnetic material
by a femtosecond laser pulse.

One of the main motivations behind Paper [3] was a range of recent observations [80–
82] showing that ultrafast demagnetization in magnetic heterostructures lead to sec-
ondary effects such as the generation of ultrafast spin currents in normal metals ad-
jacent to the magnetic materials. Our idea was that these effects may be related to
intermediate-temperature spin caloritronics phenomena such as the spin Seebeck ef-
fect [83, 72]. However, no theoretical formalism existed that united the description
of the ultrafast demagnetization in the bulk and across interfaces in magnetic hetero-
structures with the phenomena taking place at lower energies.

Sec. 5.1 describes the subfield of ultrafast magnetization dynamics and some of its
challenges from a spintronics point of view. I proceed by presenting our model for
ultrafast demagnetization in a ferromagnetic metal, including the important concept
of splitting the electrons into itinerant s states and localized d states. In Sec. 5.2, I
present the calculation of the s-d spin current following Fermi’s Golden Rule. A key
concept is the nonthermalized magnon distribution function. Sec. 5.3 expresses the
out-of-equilibrium spin accumulation among the itinerant electrons and the accom-
panying equations of motion for the spin accumulation and the magnon distribution
function. In the last section (Sec. 5.4), I discuss how the ideas of Paper [3] can be
extended to treat interface scattering and multi-sublattice materials.
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5.1 Modelling ultrafast magnetization dynamics
The field of ultrafast magnetization dynamics [84, 78, 79] studies the dynamic reaction
of magnetic materials after rapid excitation by femtosecond laser pulses. These laser-
induced perturbations are so fast and violent that they challenge the highest energy
scale associated with magnetic order: The microscopic exchange energy that governs
the ordering temperature TC. Several different mechanisms and scenarios have been
proposed to explain the rapid quenching of the magnetic moment observed after laser
excitation. Some theories propose that the demagnetization results from direct spin
transfer from the laser field to the magnetic material via the inverse Faraday effect [85]
or other effective magnetic fields induced by the irradiating laser light [86]. Although
such laser-induced effective magnetic fields may play a role in magnetization switch-
ing close to the Curie point TC [87], we adopt the view that ultrafast laser-induced
demagnetization is predominantly a result of incoherent heat transfer from the laser
pulse to the electron system [88, 89].

The magnetization dynamics resulting from rapid laser heating are predominantly
longitudinal, contrasting the low-frequency ferromagnetic resonance (FMR) [90], in
which only the direction of the magnetization varies and not its magnitude. FMR ef-
fects in FMs are well described by the transverse LLG phenomenology [Eq. (3.1)] [10,
56]. For finite temperatures below TC, the Landau-Lifshitz equation can be extended
to include temperature-dependent longitudinal magnetization relaxation via stochastic
Langevin terms [75] [similar to Eqs. (4.5)]. The resulting longitudinal Landau-Lifshitz-
Bloch (LLB) equation [91] has been shown to accurately describe the temperature-
dependent average magnetization of FMs up to the phase transition at TC.

In ultrafast magnetization experiments, however, the temperature of the itinerant elec-
trons in magnetic metals increases to Ts ≥ TC on a time scale typically less than 100
fs. This regime is beyond the validity of the LLG phenomenology, which is designed
to address low-energy magnetization dynamics. Relaxation terms based on the LLB
treatment [92] should also be treated with scepticism because the Langevin correl-
ation terms of such models are based on a simple Markovian environment without
any feedback or internal dynamics. For high-energy perturbations such as femto-
second laser pulses, no subsystem can be viewed as a featureless reservoir for energy
and angular momentum. Consequently, we assume that the statistical average of the
transverse magnetization during ultrafast demagnetization vanishes for all practical
purposes. The remaining dynamics can be described via rate equations for longitud-
inal spin transfer between the electronic subsystems.

One of the main assumptions of our model of ultrafast magnetization dynamics, is
the distinction between two different groups of electrons [93]: the itinerant s electrons
that are loosely bound to the atomic nuclei, and the localised d electrons that are
responsible for the macroscopic magnetization. See Fig. 5.1 for a simplified sketch of
the electron energy levels. We note that such a clear distinction may not be realistic
for all ferromagnetic metals, where the continuum of electron states below the Fermi
energy εF are typically well described by Stoner-like models [94]. Accordingly, the
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Energy
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εF + kBTs

εF − kBTs
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TsTT

TsTT
Pumped s-electrons

Probed d-electrons
F

Figure 5.1: For a typical pump-probe experiment of laser-induced ultrafast magnetization
dynamics [95], it is useful to distinguish between two types of electrons based on the energy
level on which they interact with the laser pulse. The “pump” laser pulse (red) excites itinerant
s electrons in an energy region ±kBTs around the Fermi level εF. The magnetization of the
magnetic material, however, is typically “probed” (blue) at a higher laser frequency, e.g., at a
deeper energy level, where the spin-carrying d electrons can be assumed to be localized.

grouping of the electrons as “itinerant” or “localized” is somewhat semantic.

However, the distinction is justified when the electrons operate and interact at dif-
ferent energy scales. This is typically the situation in pump-probe experiments used
for studying ultrafast magnetization dynamics, in which the pump laser pulse excites
(itinerant) electrons in a small energy region in the vicinity of the Fermi level. On the
other hand, the experimental methods for optically probing magnetization are usu-
ally tuned to the absorption edge of (localized) electron orbitals buried deeply below
the Fermi level [96, 95], and may, therefore, be largely insensitive to the spin density
of the s-electrons, which is deposited close to the Fermi energy, see Fig. 5.1.

Our model is based on the assumption that the primary interaction channel between
the laser-excited s electrons and the magnetic d electrons can be described via the
electron-magnon scattering. Central to this description, is the assumption that the
energy of the itinerant s electrons thermalize rapidly due to Coulombic scattering
and can be described by a Fermi-Dirac distribution. The same quasi-equilibrium
assumption cannot be made for the localized spins, which thermalize via the much
slower magnon-magnon interactions.

We have now presented the basic concepts and ideas behind our theory and proceed to
formalize the model. Let us consider a ferromagnetic metal (F) in which the electronic
continuum can be grouped into itinerant s-electron states and localized d-electron
states. The Hamiltonian that describes F is Ĥ = Ĥ0 + Ĥsd, where Ĥ0 consists of
decoupled s- and d-electron energies, including the kinetic energy of the itinerant
electrons, the d-d exchange energy, the dipole interactions, and the crystalline and
Zeeman fields. We are interested in describing the s-d exchange interaction, which
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can be formulated via the Hamiltonian

Ĥsd = Jsd ∑
j

Sd
j · s(rj) , (5.1)

where Jsd is the exchange energy and Sd
j [s(rj)] is the d-electron (s-electron) spin vector

(spin density) at lattice point j. We conveniently rewrite the d-electron spin vectors Sd
j

via the following Holstein-Primakoff transformations [97]:

S+
j = Sx

j + iSy
j =

√
2Sa†

j

√
1 −

a†
j aj

2S
, (5.2a)

S−
j = Sx

j − iSy
j =

√
2S

√
1 −

a†
j aj

2S
aj , (5.2b)

Sz
j = a†

j aj − Sj , (5.2c)

where S is the saturation value of the spin density (in units of h̄), and the Fourier
transforms a†

q(aq) = ∑j exp (−iq · rj)a†
j (aj) are bosonic creation (annihilation) operat-

ors for magnons with wave number q = |q|. These operators satisfy the commutation
relation [a†

q , aq� ] = δqq� . Following Refs. [98, 99], we keep only the first order contribu-
tions in the Holstein-Primakoff transformations (5.2) and express the s-electron spin
density via electronic field operators. The s-d Hamiltonian (5.1) becomes

Ĥsd = ∑
q,k,k�

Vqkk�aqc†
k↑ck�↓ + H.c. , (5.3)

where c†
kσ (ckσ) is the creation (annihilation) operator for s electrons with momentum k

and spin σ. Ĥsd describes the electron-magnon interaction, in which an s electron with
momentum k flips its spin while creating or annihilating a magnon with momentum
q and spin h̄. The scattering strength is determined by the matrix element Vqkk� .

5.2 s-d spin current following Fermi’s Golden Rule
This section presents the derivation of the s-d spin current starting from Eq. (5.3). We
assume that the dephasing effects are large enough for the system to be described by
the density matrix ρ̂sd = ρ̂s ⊗ ρ̂d, and that all the energy scales in the system (Eq, Ek,
and Ek�) are smaller than the Fermi energy �F. As described in the previous section,
we assume that the kinetic energy of the hot s electrons quickly thermalize due to
Coulombic scattering and we can define

〈
c†

kσck�σ�
〉
=Tr

[
ρ̂sc†

kσck�σ�
]
= nFD(Ek − μσ)δkk�δσσ� , (5.4a)

〈
a†

qaq�
〉
=Tr

[
ρ̂sa†

qaq�
]
= n(Eq)δqq� , (5.4b)

where nFD(Ek − μσ) is the quasi-equilibrated (thermalized) Fermi-Dirac distribution
function at the chemical potential μσ and the s-electron temperature Ts � TF, where
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TF = �F/kB is the Fermi temperature. There are initially no restrictions on the form
of the magnon distribution function n(Eq). It thermalizes toward the Bose-Einstein
distribution via magnon-magnon interactions if the system is allowed to relax. The
thermalization rate, τ−1

th ∼ h̄−1�m[�m/(kBTC)]
3 [100], where �m is a characteristic en-

ergy of the thermal magnon cloud, is typically much lower than the demagnetization
rates after laser pulse excitation. Consequently, the magnon distribution should be
treated as nonthermalized on the relevant time scales of the demagnetization process.

When Ĥsd is not the dominant part of the Hamiltonian, it can be treated as a per-
turbation. Following a mean-field approach, we apply Fermi’s Golden Rule to the
lowest order in the s-d interaction Ĥsd. Fermi’s Golden Rule states that the transition
rate between two states can be calculated from the matrix elements of the perturbing
potential between the final and the initial states [101]. Accordingly, the spin transfer
from s to d states can be expressed as

Isd =
2π

V ∑
q,k,k�

[
Tr

{
V∗

qkk�a
†
qc†

↓kc↑k� ρ̂sdVqkk�aqc†
↑kc↓k�

}

− Tr
{

Vqkk�aqc†
↑kc↓k� ρ̂sdV∗

qkk�a
†
qc†

↓kc↑k�
}]

δ(Eq + Ek� − Ek) , (5.5)

where V is the volume of the ferromagnet and the total spin current is given by
the imbalance between the creation and annihilation of magnons due to spin-flip
scattering of s-electrons. The delta function ensures energy conservation. Using the
above definitions of the electron and magnon distribution functions (5.4), Isd simplifies
to

Isd =
2π

V ∑
q,k,k�

|Vqkk� |2δ(Eq + Ek� − Ek)

×
{
[nFD(Ek − μ↑)][1 − nFD(Ek� − μ↓)][1 + n(Eq)]

− [nFD(Ek� − μ↓)][nFD(Ek − μ↑)][n(Eq)]

}
. (5.6)

Next, we apply the identities nFD(x)[1 − nF(y)] = nBE(x − y)[nFD(y) − nFD(x)] and
1 + nBE(x) = −nBE(−x) [101], where nBE is the Bose-Einstein distribution function.1

After rearranging, the spin current becomes

Isd =
2π

V ∑
q,k,k�

|Vqkk� |2δ(Eq + Ek� − Ek)

× [nFD(Ek − μ↑)− nFD(Ek� − μ↓)][nBE(Eq − μs)− n(Eq)] , (5.7)

where we have defined the out-of-equilibrium spin accumulation μs = μ↑ − μ↓ as
the difference in the chemical potential of spin-up and spin-down itinerant electrons.

1Note that these manipulations are applied only to the s-electron distribution function, whereas the
form of the magnon distribution function n(Eq) remains arbitrary at this point.
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Because the s-electron-hole pairs are all distributed in close to the Fermi level �F,
we can safely assume that their densities of state are approximately described by
the density of state at the Fermi level, D↑(�) ≈ D↓(�) ≈ Ds(�F). Next, we insert
1 =

∫
d�q

∫
d�

∫
d��δ(�q − Eq)δ(� − Ek)δ(�

� − Ek�). After integration over � and �� and
using the identity

∫
dx[nF(x)− nF(x + y)] = y, we find that the spin current can be

expressed as

Isd =
∫

d�qΓ(�q)D(�q)(�q − μs)[nBE(�q − μs)− n(�q)] , (5.8)

where D(�q) is the magnon density of states. The form of Eq. (5.8) reveals that the s-d
spin transfer depends on the distribution of magnons and electron-hole pairs (empty
scattering states) among the excited s electrons. Naturally, the electron-magnon scat-
tering is quenched by a large spin accumulation μs, which serves as a feedback effect
that limits the number of available scattering states. The scattering rate is defined
as [99]

Γ(�q) =
2πV2

D(�q)

∫ d3k
(2π)3

d3k�

(2π)3
d3q

(2π)3 |Vqkk� |2δ(� − �F)δ(�
� − �F)δ(Eq − �q). (5.9)

We do not directly calculate the scattering rate Γ(�q), but posit that the s-d scattering
rate increases for high-energy magnons according to the transverse spin diffusion [98].
Accordingly, we can write Γ(�q) = Γ0 + χAq2, where χ parametrizes the enhanced
scattering of high-energy magnons, and A is the stiffness of F. This energy depend-
ence is different in the bulk than for scattering across interfaces. For low-temperature
scattering across the interface between a FM and a normal metal, the interfacial scat-
tering rate Γi(�q) is relatively weakly energy-dependent [99].

In Paper [3], we show that for the low-energy coherent magnetic precession of FMR,
Γ0 → 2α, where α is the Gilbert damping constant that is accessible through FMR ex-
periments. This provides the link between the macrospin description at low energies
and the high-energy scattering. In the ultrafast regime, however, the demagnetization
rate Γ(�q) is predominantly governed by the effective Gilbert damping α∗ ≈ χ�b, where
�b is the magnon energy at the edge of the Brillouin zone.2

5.3 The out-of-equibrium spin accumulation
We orient the coordinate system such that the local spin density points in the negative
z direction at equilibrium. The total spin density in the z direction becomes Sz = nd −
S, where we have defined the out-of-equilibrium magnon density nd. We assume that
the magnons follow a quadratic dispersion, �q = �0 + Aq2, where �0 is the magnon
gap. The total spin density in the z direction is determined by a thermal average
over the excited magnon states. It follows that �a†

qaq� � = n(�q)δqq� defines the magnon

2Note that it is necessary to introduce a high-energy cut-off in the s-d scattering integral (5.8) at
the bandwidth �b because of the nonexistence of magnons with wavelengths shorter than the lattice
spacing.
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Figure 5.2: (a) For metallic ferromagnets with macroscopic spin density vector S, the itiner-
ant electrons are spin polarized due to the mean-field exchange interaction mediated by the
localized d electrons. The electron bands are, therefore, shifted by the exchange gap Δxc. (b)
After a laser pulse rapidly heats the itinerant electrons, two effects lead to a change in the
out-of-equilibrium spin accumulation μs: electron-magnon scattering and a lowering of the
exchange gap by δΔxc because the total spin density of the d electrons is reduced by a finite
magnon density nd.

distribution function n(�q), which is related to the total magnon density through
nd =

∫ �b
�0

d�qD(�q)n(�q), where the density of magnon states D =
√

�q − �0/(4πA3/2).

In an ultrafast demagnetization scenario, the out-of-equilibrium spin accumulation
among the s electrons has two contributions: one from the change in the density of
states and one from the temperature-induced variations in the distribution function,
see Fig. 5.2 for a sketch of the electronic bands. We proceed by developing an expres-
sion for the spin accumulation. The density (in units of h̄) of spin-up(down) electrons
is defined as

n↑(↓) =
∫

d�D↑(↓)(� − Δ↑(↓)) f (� − μ↑(↓)) , (5.10)

where D↑(↓)(� − Δ↑(↓)) is the density of states for spin-up(down) electrons given the
band edge Δ↑(↓), and f (� − μ↑(↓)) is the electron distribution function given the chem-
ical potential μ↑(↓). To find an expression for the out-of-equilibrium spin density, we
expand n↑(↓) = n0

↑(↓) + Δn↑(↓), where n0
↑(↓) is the spin-up(down) electron density at

equilibrium. The resulting out-of-equilibrium spin density for spin-up(down) elec-
trons is

Δn↑(↓) =− δΔ↑(↓)
∫

d�
∂

∂�
D↑(↓)(� − Δ↑(↓)) f (� − �F)

− δμ↑(↓)
∫

d�D↑(↓)(� − Δ↑(↓))
∂

∂�
f (� − �F)

≈− δΔ↑(↓)D
�F
↑(↓) − δμ↑(↓)D

�F
↑(↓) , (5.11)
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where δΔ↑(↓) is a small change in the band edge, δμ↑(↓) is a small change in the chem-
ical potential, and D�F

↑(↓) is the density of states at the Fermi level. In the last transition
in Eq. (5.11), we have used integration by parts and assumed that all electronic excita-
tions are close to the Fermi level, so that the derivative of the distribution function can
be approximated to a delta function. From the above relation and assuming charge
conservation, Δn↑ = −Δn↓, we calculate an expression for the out-of-equilibrium spin
accumulation

μs = δμ↑ − δμ↓ =
δns

D
+ δΔxc , (5.12)

where δns is the out-of-equilibrium spin density, D = 2D�F
↑ D�F

↓ /(D�F
↑ + D�F

↓ ), and
δΔxc = δΔ↑ − δΔ↓ is the dynamics-induced out-of-equilibrium change in the exchange
splitting [102].

We can now formulate the equations of motion for the spin accumulation μs and the
magnon density nd. We neglect the contribution from all other relaxation channels of
the d-electron spin than the s-d interaction. Therefore, ∂tnd = Isd/h̄ and the equations
of motion are given as

∂

∂t
μs =

μs

τs
+

ρ

h̄
Isd , (5.13a)

∂

∂t
n(�q) =

Γ(�q)

h̄
(�q − μs)

[
nBE(�q − μs)− n(�q)

]
, (5.13b)

where ρ = −1/D − Δxc/S. τs describes the spin-orbit relaxation time of the s-electron
spin density to the lattice, and is typically of the order of picoseconds [103]. τs repres-
ents the only channel for dissipation of spin angular momentum out of the combined
electron system.

The equations of motion (5.13) describe the coupled dynamics of the hot s electrons
and the excited magnons via the spin accumulation μs and the distribution function
n(�q). Initially after rapid heating of the s-electron bath to Ts ≥ TC, the magnon
distribution function is empty. In this stage of the demagnetization process, the s-d
scattering mainly excites magnons close to the Brillioun zone edge �b because high-
energy states are populated much faster than are low-energy states. We have written
Eq. (5.13b) as an energy-resolved equation to emphasize the nonthermalized state of
the excited magnons.

Ref. [104] presents a bulk demagnetization theory that is conceptually similar to ours,
but where the magnons are treated as thermalized, following a Bose-Einstein energy
distribution at the magnon temperature Tm. The itinerant electrons are assumed to
have a vanishing out-of-equilibrium spin density. In our view, the nonthermalized
state of the excited magnons and the out-of-equilibrium spin accumulation are central
ingredients in the description of ultrafast magnetization dynamics. Atomistic mod-
elling of thermally induced switching in ferrimagnetic GdFeCo supports the notion
that the excited magnons are distributed in nonequilibrium states [105]. In particular,
retaining a finite out-of-equilibrium spin accumulation is important to describe the
laser-induced ultrafast spin currents that arise in magnetic heterostructures [81, 82].
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Figure 5.3: The high-energy electron-magnon scattering describes two different ultrafast heat-
ing scenarios: (1) F is directly heated by a femtosecond laser pulse. The temperature of the s
electrons rapidly increases by ΔTs. This temperature jump induces a finite magnon density nd
via the s-d spin current Isd (5.8) and a finite spin accumulation μs in F. (2) F can be demagnet-
ized indirectly via the interfacial spin current Ii after rapid laser heating of the electrons in N.
Ii leads to a finite spin accumulation μN that subsequently diffuses into N as an ultrafast spin
current. In addition to Isd and Ii, we must also include the interfacial spin current IsN , which
describes the spin-dependent transport between itinerant electrons in F and N.

5.4 Outlook
In Paper [3], we have presented the basic building blocks of a theory of ultrafast de-
magnetization in a bulk ferromagnetic metal via the s-d electron-magnon interaction.
One of the main strengths of our theory is that the formalism can also be used to de-
scribe interfacial scattering between magnetic materials and adjacent normal metals
in magnetic heterostructures, see Fig. 5.3. In such a scenario, the interfacial scatter-
ing between the spin-carrying d electrons in F and the itinerant electrons in N can
be described by a similar rate equation as Eq. (5.8), but with a different interfacial
scattering rate Γi(�q). For long-wavelength magnons, the interfacial spin current can
be described in the language of spin pumping, and the low-energy scattering rate can
be identified as Γi

0 = g↑↓/(πS), where g↑↓ is the spin-mixing conductance (per unit
area) [106, 107]. This identification demonstrates that our procedure can be used to
unify the description of ultrafast spin-current generation at the interfaces in magnetic
heterostructures with the low- and intermediate-temperature phenomena, which are
all parametrized by the spin-mixing conductance [108].

Fig. 5.3 presents two possible scenarios for ultrafast magnetization dynamics in mag-
netic heterostructures that both can be described by our model. One can either rap-
idly heat the s electrons in F or the itinerant electrons in the adjacent normal metal N.
Both scenarios lead to the demagnetization of F through electron-magnon scattering
in the bulk or at the F | N interface. Varying the magnetic layer thickness (and other
material-specific parameters) results in different demagnetization rates because the
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bulk scattering rate is governed by the effective Gilbert damping parameter whereas
the interfacial scattering rate is governed by the effective spin-mixing conductance.

In contrast to the other papers in this thesis, which focus on dynamics in AFMs, Pa-
per [3] describes ultrafast magnetization dynamics in a FM. However, the connection
between this paper and AFMs is clarified by considering the natural next step of the
theory of high-energy electron-magnon scattering. In the field of ultrafast magnet-
ization dynamics, multi-sublattice ferrimagnetic materials such as GdFe have long
been studied because their magnetic states can be switched using only ultrafast laser
pulses [79, 109]. This behavior is normally explained as a combination of two effects:
Heat-induced demagnetization and a strong antiferromagnetic exchange interaction
between the two magnetic sublattices [92]. In the high-energy limit, the clear dis-
tinction between antiferromagnetic and ferrimagnetic materials is somewhat erased
because the response to ultrafast excitation may differ for the different sublattices.
Consequently, there is a possibility that AFMs also induce (transient) ultrafast spin
currents as well as ultrafast staggered spin currents after rapid heating by femto-
second laser pulses. To model such a system would be an interesting and natural next
step from the theory presented in Paper [3].
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Antiferromagnets can be used to store and manipulate spin information, but the coupled dynamics of

the staggered field and the magnetization are very complex. We present a theory which is conceptually

much simpler and which uses collective coordinates to describe staggered field dynamics in antiferro-

magnetic textures. The theory includes effects from dissipation, external magnetic fields, as well as

reactive and dissipative current-induced torques. We conclude that, at low frequencies and amplitudes,

currents induce collective motion by means of dissipative rather than reactive torques. The dynamics of a

one-dimensional domain wall, pinned at 90� at its ends, are described as a driven harmonic oscillator with

a natural frequency inversely proportional to the length of the texture.

DOI: 10.1103/PhysRevLett.110.127208 PACS numbers: 85.75.�d, 75.50.Ee, 75.78.Fg

New developments have created opportunities for using
antiferromagnets (AFMs) as active components in spin-
tronics devices [1]. AFMs are ordered spin systems which
lack a macroscopic magnetization in equilibrium because
neighboring spins compensate each other. Analogous to
ferromagnets, in AFMs domain walls can be engineered
[2], the anisotropic tunneling magnetoresistance (AMR) is
substantial [3], spin-wave logic gates can be useful [4], and
the order parameter can be switched ultrafast by light [5].
Additionally, AFMs have no stray fields, and high-
temperature antiferromagnetic semiconductors can be
realized [6], enabling control of the carrier concentration
governing all transport properties.

In magnetic materials, currents induce torques on the
magnetic moments [7]. In ferromagnets, these torques can
be used to switch the magnetization, induce steady state
precession in magnetic oscillator circuits, or move
domain walls. Theoretical [8] and experimental [9] results
indicate that current-induced torque effects are present in
AFMs as well, and that these effects are of the same
order of magnitude as in ferromagnets. However, several
aspects are fundamentally different. For instance, the
dynamics in AFMs are described by coupled equations of
the staggered field and the (out-of-equilibrium) magneti-
zation. Current-induced torques affect these variables
differently.

In AFMs, the staggered field may spatially vary and is
influenced by external magnetic fields and currents.
Traditionally, understanding the complex behavior of the
temporal- and spatial-dependent order parameter requires
solving a set of coupled equations with many degrees of
freedom. In this Letter, we formulate a conceptually sim-
pler theory of how external forces influence the staggered
field and magnetization dynamics in AFMs in terms of a
few collective coordinates. Our description is based on
the phenomenological theory of insulating AFMs [10],

extended to account for charge current flow [11], making
the theory valid also for metallic and semiconducting
AFMs. It includes the effects of dissipation, external mag-
netic fields, and both reactive (adiabatic) and dissipative
(nonadiabatic) current-induced torques in slowly varying
inhomogeneous antiferromagnetic textures.
Consider a basic AFM lattice consisting of two magnetic

sublattices, with magnetic moments m1ðr; tÞ and m2ðr; tÞ,
so that the total magnetization is mðr; tÞ ¼ m1ðr; tÞ þ
m2ðr; tÞ, and the antiferromagnetic order parameter is
lðr; tÞ � m1ðr; tÞ �m2ðr; tÞ. In the absence of magnetic
fields and textures, the equilibrium magnetization vanishes
and lðr; tÞ is finite and homogeneous. Below, we consider
the dynamics of the magnetization vector and the unit Néel
vector nðr; tÞ ¼ lðr; tÞ=lðr; tÞ.
To the lowest order in textures and magnetizations, the

AFM free energy reads [10,11]

U ¼
Z

dr

�
a

2
m2 þ A

2

X
i¼x;y;z

ð@inÞ2 �H �m
�
; (1)

where a and A are the homogeneous and inhomogeneous
exchange constants, respectively.H represents the external
magnetic field. From the free energy [Eq. (1)] and the
constraints jnj ¼ 1 and m � n ¼ 0, which are valid for
temperatures well below the Néel temperature, we can
construct the effective fields fn¼��U=�n¼An�
ðr2n�nÞ�mðH �nÞ and fm¼��U=�m¼�amþn�
ðH�nÞ. In all our results, we may generalize the free
energy [Eq. (1)] by adding anisotropy terms, e.g., the
easy-axis anisotropy Kzn

2
z=2.

Hals et al. [11] introduced phenomenological reactive
(adiabatic) and dissipative (nonadiabatic) current-induced
torque terms, as well as dissipation. With these additional
terms, the equations of motion are
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_n ¼ ð�fm �G1 _mÞ � nþ ��ðJ � rÞn; (2)

_m ¼ ½�fn �G2 _nþ ��ðJ � rÞn� � nþ Tnl; (3)

where� is the gyromagnetic ratio,G1 andG2 are phenome-
nological Gilbert damping parameters, and � (�) parame-
trize the adiabatic (nonadiabatic) current-induced torque
terms. Throughout this Letter, we disregard all nonlinear
terms that are contained in Tnl [11]. Equations (2) and (3)
are the AFM analogs to the Landau-Lifshitz-Gilbert-
Slonczewski equation for ferromagnets. By combining
these equations, the magnetization can be expressed in
terms of the antiferromagnetic order parameter, giving a
closed equation for the staggered field vector n to the linear
order in the out-of-equilibrium deviationsm, @tn, J, andH:

€n

~�
¼ �n� _HþG1

_fn þ ð�þG1�Þð _J � rÞn
þ a½�fn �G2 _nþ ��ðJ � rÞn�: (4)

Here ~� � �=ð1þG1G2Þ is a modified effective gyromag-
netic ratio in the presence of dissipation. Equation (4) is
the starting point for deriving the collective coordinate
equations of motion for AFMs.

In ferromagnets, magnetic textures are often rigid, so
that only a few, soft modes dominate the magnetization
dynamics, as in the seminal work of Schryer andWalker on
domain wall motion [12]. The evolution of these soft
modes can be described by a finite set of collective coor-
dinates. This approach greatly simplifies the understanding
of complex magnetization dynamics, making it possible to
approximately describe the dynamics at low energies by
considering only a few soft modes.

The collective coordinate approach has recently been
applied to magnetization dynamics in ferromagnets [13].
We now present how the equations of motion for the
collective coordinates can be constructed for AFMs. We
transform Eq. (4) by requiring the time dependence of the
Néel field to be described by a set of collective coordinates
fbiðtÞg: nðr; tÞ � nðr; fbiðtÞgÞ. The time derivative of the

staggered field is then _n ¼ _bi@bin. Similarly, €n ¼
€bi@binþOð _b2i Þ, where the second term is disregarded in

our linear response analysis since it is quadratic in the
driving forces.

The dissipation is described in Eq. (4) via the termsG1
_fn

and aG2 _n. The first term scales asG1A=ð�2�Þ, where � and
� are characteristic length and time scales of the staggered
field texture. The second term scales as aG2=�. In analyz-
ing the relative strengths of these dissipative terms, we use
the fact that the homogeneous and the inhomogeneous
exchange constants are related through a� A=ðl2d2Þ
[14], where d is the lattice constant and we have introduced
the antiferromagnetic order parameter l above. Dissipation
in metallic ferromagnets is small since it arises from the
spin-orbit interaction in combination with electron scatter-
ing [15]. It is likely that similar mechanisms in AFMs are

also weak, and that they have comparable effects on the
staggered field and the magnetization: G1l � G2=l � 1.
From this we can conclude that ~� � � and that the second
dissipative term aG2 _n dominates in realistic systems,
where the typical size of the texture � is such that ��d.

Hence G1
_fn can be safely disregarded in the equation of

motion [Eq. (4)].
Our main result is the equations of motion for the soft

modes:

Mijð €bj þ �aG2
_bjÞ ¼ Fi: (5)

This equation is derived by introducing the collective
coordinates to Eq. (4), taking the scalar product with
@bjn, and integrating over the space. The dynamics are

equivalent to the classical motion of a massive particle
subject to dissipation-induced friction and external forces.
This equation is model independent and can be used to
determine the parameters of AFMs, e.g., the Gilbert damp-
ing G2 and the homogeneous exchange constant a, which
are usually difficult to identify in experiments.
In Eq. (5), Mij is the effective mass arising from the

exchange interaction between the spins. The total force
inducing motion of the collective coordinates, Fi ¼ Fi

X þ
Fi
J þ Fi

H, is a sum of the exchange force, the current-
induced force, and the external field force:

MijðbÞ ¼ 1

a�2

Z
dV@bin � @bjn; (6a)

Fi
XðbÞ ¼

Z
dV@bin � fn; (6b)

Fi
JðbÞ ¼

Z
dV

�
�@bin � ðJ � rÞn

þ �þG1�

a�
@bin � ð _J � rÞn

�
; (6c)

Fi
HðbÞ ¼

1

a�

Z
dV _H � ðn� @binÞ: (6d)

More generally, Eq. (6b) can also be expressed as Fi
X ¼

@biU, to include the effective material-specific forces

which act on the AFM through the exchange interaction
and magnetic anisotropy. Equation (6c) includes the reac-
tive and dissipative current-induced forces, both of which
are important for the dynamics of the collective coordi-
nates bi. Equation (6d) represents the response to an
external magnetic field. Note that in the linear response
regime, only time varying external magnetic fields affect
the dynamics of the collective coordinates in AFMs, in
contrast to the situation for ferromagnets [13], making the
collective motion in AFMs more resistant to stray fields.
We now apply the general collective coordinate descrip-

tion Eq. (5) to an isotropic one-dimensional antiferromag-
netic texture, an orientational domain wall [16], in which
the antiferromagnet is pinned in the x and z directions at
z ¼ 0 and z ¼ �, respectively. The staggered field nðz; tÞ
varies slowly in the z direction (see Fig. 1). The pinning
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can be achieved by placing the antiferromagnet in contact
with ferromagnets, as schematically shown in Fig. 1(c).
In general, the staggered field can be expressed in
terms of two angles � and �: nðz; tÞ ¼ fcos� cos�;
cos� sin�; sin�g. In equilibrium � ¼ �eq and � ¼ 0, with

�eqðzÞ ¼ �z=ð2�Þ. Without loss of generality, we assume

that the out-of-plane angle � remains zero when a current
passes through the system, which gives an antiferromag-
netic texture varying in the x-z plane only.

In the steady state regime with a constant current along
the z direction J ¼ Jẑ the solution of Eq. (4) is �sðzÞ ¼
�
2 ð1� eQzÞ=ð1� eQ�Þ, where Q ¼ �J=A. As a collective

coordinate representing the softest mode, we use the de-
viation of the texture center r from its equilibrium position
z0, which is the point where the x component of the
staggered field vector equals the z component, �ðrÞ ¼
�=4. In equilibrium, when there are neither applied cur-
rents nor external fields, the center coordinate is z0 ¼ �=2.
Motivated by the steady state solution �s, expanding for
small Q in the low current regime to the linear order in the
deviation r from equilibrium, we use Eq. (5) with the
ansatz that the staggered field can be fully described by
the sine and cosine of a function �ðz; rÞ:

�ðz; rÞ ¼ �z

2�

�
1þ 4ðz� �Þr

�2

�
: (7)

Using this ansatz and the equation of motion Eq. (5), we
find that the deviation from equilibrium r obeys

M €rþ � _rþM!2
0r ¼ FJ þ FH; (8)

where M ¼ �=ða�2Þ is the effective mass, !0 ¼
�ð10AaÞ1=2=� is the natural frequency of the system, and

� ¼ �G2=� is the damping coefficient. There are two
contributions to the external forces: one from the current,
FJ ¼ �5�½�J þ ð�þ �G1Þ _J=ða�Þ�=4, and the other
from time-varying external fields, FH ¼ 5�2 _Hy=ð2�a�Þ.
For dc currents, the reactive (adiabatic) force parametrized
by � plays no role, and only the dissipative (nonadiabatic)
force parametrized by � is important for the texture dy-
namics. When the driving forces are independent of time,
Eq. (8) describes damped harmonic oscillations about a
new perturbed position rnew ¼ ��J�2=ð8AÞ. This solution
is valid as long as rnew � �=2. Hence, using �� ¼
�Jd=A ¼ �0:005, the approach works well for systems
with lengths up to several hundred lattice constants.
Numerical values for the natural frequency can be esti-

mated for antiferromagnetic metals. For example, in FeMn,
the inhomogeneous exchange constant is A ¼ 0:94�
10�14 J=m [17], the lattice constant is dFeMn ¼ 3:6 �A
[18], and the magnetic moment per sublattice is 1:65�B,
with �B being the Bohr magneton, giving a natural fre-
quency of approximately 1 GHz for a FeMn texture with a
length of 100 lattice constants.
In Fig. 2, the solution of the time-dependent equation of

motion Eq. (8) for r has been compared to numerical
results of a micromagnetic simulation of the coupled equa-
tions Eqs. (2) and (3), with the boundary conditions
described in Fig. 1. The equations were first written in
dimensionless form by scaling the z axis with the lattice
constant d, and the time axis with ~t ¼ ð�alÞ�1. Other
dimensionless quantities, as well as the numerical values
used in the simulation presented in Fig. 2, are summarized
in Table I.
Figure 2 shows that the complex spatiotemporal dynam-

ics of the antiferromagnetic texture can be described by
the motion of the single soft mode r. Fitting the simple
equation of motion Eq. (8) to experimental data, e.g., from

Numerics
Eq. 8
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FIG. 2 (color online). Transient response of the deviation r
from the equilibrium position z0 ¼ �=2, after a constant current
has been applied at time t ¼ 0. The antiferromagnetic texture
shows damped oscillations around a new perturbed position. The
magnitude of the perturbation depends on the system length and
the current density. The inset shows the response when the
current density is tripled.

(a)

(c)

(b)

FIG. 1 (color online). A one-dimensional antiferromagnetic
texture pinned at a relative angle of 90� in the left and right
reservoirs. (a) shows the equilibrium orientation of the staggered
field, (b) depicts how a current J exerts a torque on the staggered
field vector, forcing the center coordinate z0 to be displaced by r,
and (c) shows schematically a setup of an AFM between two
pinning ferromagnets.
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AMR measurements, can provide good estimates of the
phenomenological parameters in AFMs. The generality of
Eq. (5) also makes the collective coordinate approach a
powerful tool for investigating the dynamics of more com-
plex antiferromagnetic textures with more than a single
soft mode.

The staggered dynamics represented by the center coor-
dinate r can be measured via the AMR effect. The magni-
tude of the AMR in bulk AFMs is not known, but since the
tunneling AMR [3] is significant, we believe its bulk value
will be too. A plausible assumption is that the simplest
possible phenomenological model of AFM AMR is similar
to the AMR in ferromagnets, but with the AMR depending
on the orientation of the staggered field rather than the
magnetization: �ðnÞ ¼ �0 þ �aniðn � ẑÞ2, where �0 is the
isotropic resistivity and �ani is the anisotropic resistivity.
Integrating the resistivity over the system, using the ansatz
in Eq. (7), and expanding to linear order in r, gives the
effect of the antiferromagnetic texture on the resistance as
RðtÞ ¼ R0 þ �ani½�=2� 8rðtÞ=�2�. Therefore, it should be
possible to observe the effects of both dc and ac currents.
For dc currents, the total resistance RðtÞ will be enhanced
or reduced depending on the current direction. For ac
currents, by sweeping the frequency, one should observe
enhanced deviations of the resistance when the frequency
equals the natural frequency of the texture. This setup
offers the possibility of measuring the effect of the
current-induced torque on the staggered field, a phenome-
non which is, in general, difficult to observe
experimentally.

We can also apply our collective coordinate approach to
an AFM domain wall described by the Walker ansatz:

tanð�wÞ ¼ eðz�rwÞ=�w . Here we introduce the easy axis an-

isotropy Kz, defining the domain wall width as �w ¼ffiffiffiffiffiffiffiffiffiffiffiffi
A=Kz

p
. To the best of our knowledge, the experimental

values of Kz for antiferromagnetic materials are still not
available. However, anisotropy energies in AFMs can be
comparable to, or even stronger than, those in ferromagnets
since they often involve heavy elements with a strong spin-
orbit interaction [19]. We also reintroduce the out-of-plane
tilt angle�w, and use the center of the domain wall rw,�w,
and the domain wall width �w as the three collective
coordinates. In agreement with the simplified treatment
in Refs. [11,20], by applying a constant current, the domain
wall motion gradually relaxes to a steady state, where the

wall moves with the constant velocity _rw � ���J=G2.
Our approach shows that the out-of-plane tilt angle is a
hard mode, which can only be excited by a time varying
external magnetic field. This is very different from the
motion of domain walls in ferromagnets, where a moving
domain wall also has a finite tilt angle [21]. Additionally, in
the linear response regime, there is no distortion of the
domain wall width for AFMs.
In conclusion, we have derived equations of motion for

the collective coordinates corresponding to soft modes of
antiferromagnetic textures to the linear order in currents,
magnetization, and external magnetic field. In contrast to
ferromagnets, the dynamics are second order in time de-
rivatives, e.g., the effective particles described by the soft
coordinates acquire a mass, and have no first-order contri-
bution from time-independent external magnetic fields. We
have applied our theory to a one-dimensional model of a
slowly varying antiferromagnetic texture pinned at 90� at
the edges, and have found the natural frequency and devi-
ations of the center coordinate in terms of the system
parameters. The results show that the dissipative (nonadia-
batic) current-induced torque is crucial for the dynamics of
the antiferromagnetic textures.
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C. H.W. Swüste, W. J.M. de Jonge, J.M. Gaines,
J. T.W.M. van Eemeren, and K.M. Schep, Phys. Rev.
Lett. 82, 1020 (1999); F. Y. Yang and C. L. Chien, Phys.
Rev. Lett. 85, 2597 (2000).

[17] Y. Xu, S. Wang, and K. Xia, Phys. Rev. Lett. 100, 226602
(2008).
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Spin waves in antiferromagnets are linearly or circularly polarized. Depending on the polarization,
traversing spin waves alter the staggered field in a qualitatively different way. We calculate the drift velocity
of a moving domain wall as a result of spin wave-mediated forces and show that the domain wall moves
in opposite directions for linearly and circularly polarized waves. The analytical results agree with
micromagnetic simulations of an antiferromagnetic domain wall driven by a localized, alternating magnetic
field.
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Antiferromagnets (AFMs) are promising candidates
for future spintronic devices for the following reasons:
(1) They can be integrated with ferromagnetic components,
)2 ) switching occurs at very high frequencies, and (3) there
are no stray fields, allowing small independent devices to
be created [1,2]. The dynamics of AFMs are fundamentally
different from those of ferromagnets (FMs) because the
equations of motion are second order in frequency rather
than first order [3,4]. Furthermore, AFMs are affected by
both charge and spin currents, as was recently shown
theoretically [5] and experimentally [6]. The antiferromag-
netic order can be probed, e.g., via the anisotropic tunneling
magnetoresistance effect [7]. Additionally, a change in the
spin texture of the AFM affects both the longitudinal and
Hall resistivities [8].
In AFMs, domains usually result from crystal imperfec-

tions [9], but theymay also inherit the domain structure of the
ferrimagnetic precursor layer as they undergo a phase tran-
sition to the antiferromagnetic phase [10]. Antiferromagnetic
domains [11] and several forms of domain wall (DW)
structures in AFMs have been observed [12]. Furthermore,
DWsinAFMscanalsobe induced,controlled,andengineered
by exchange bias pinning forces [3,13].
Progress in the field of antiferromagnetic spintronics

requires the development of novel methods for exciting
AFMs at the nanoscale. Many AFMs are insulating and
cannot be affected by currents in the bulk; however, other
approaches can be employed to excite an AFM.We suggest
the use of antiferromagnetic spin waves (SWs) as a new
and exciting way of manipulating the order of AFMs. The
advantage to this method is that SWs in AFMs operate
coherently in the THz regime [14], which is orders of
magnitude faster than the frequency of typical ferromag-
netic SWs.
In this Letter, we demonstrate that SWs move DWs

in AFMs. We show that this phenomenon is considerably
richer than the analogous SW-DW interaction in FMs due
to the inherent complexity of antiferromagnetic SWs [15].
In contrast to SW-driven DW motion in FMs, we find that

the direction of DW motion in AFMs is governed by the
nature of the SW excitation modes. This behavior enables
superior control of DW motion induced by SWs in AFMs
compared to the same phenomena in FMs.
Spin-polarized currents can induce magnetization

dynamics in magnetic materials [16]. However, DWs in
FMs can also be moved by the transfer of spin angular
momentum from traveling SWs, eliminating the additional
dissipation cost associated with the electric current. Several
theoretical [17], experimental [18], and numerical [19]
studies have demonstrated that DW motion from magnonic
spin transfer is possible. The reciprocal phenomenon has
also been reported: DW motion in FMs induces local
excitations of SWs [20].
In AFMs, circularly polarized SWs carry spin angular

momentum whereas linearly polarized SWs do not. In a
scenario in which a circularly polarized SW passes through
an antiferromagnetic DW, the spin angular momentum flow
associated with its motion is reversed. However, because the
total spin angular momentum is conserved and antiferro-
magneticDWs cannot absorb the constant transferred flux of
spin angularmomentum,we show that this scenario does not
arise. Instead, circularly polarized SWs are reflected so that
linear momentum is passed to the DWs. Here, we demon-
strate that linearly polarized SWs, carrying no spin angular
momentum, can pass through DWs without any reflection,
as shown schematically in Fig. 1. As a result of this radical
difference in the behavior of circularly and linearly polarized
SWs, DWs move in opposite directions in response to the
different modes of SW excitations.
Themagnetizations on adjacent sublattices in anAFMare

equal in magnitude but are oppositely directed. We consider
a two-spin lattice, where the antiferromagnetic order param-
eter is defined as lðr; tÞ ¼ m1 −m2, and we introduce the
normalized staggered vector field nðr; tÞ ¼ lðr; tÞ=l, where
l ¼ jlðr; tÞj. The total magnetization field mðr; tÞ ¼ m1 þ
m2 is zero at equilibrium for AFMs. We also make use of
the constraint n ·m ¼ 0, which is valid in the exchange
approximation.
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The equations of motion for the staggered field and the
magnetization are as follows [4]:

_n ¼ ðγfm − G1 _mÞ × n; (1)

_m ¼ðγfn −G2 _nÞ × nþ ðγfm − G1 _mÞ ×m; (2)

where γ is the gyromagnetic ratio and G1 and G2 are
phenomenological Gilbert damping constants. The effec-
tive fields fm ¼ −δmU and fn ¼ −δnU are functional
derivatives of the free energy U of the AFM with respect
to the magnetization and the staggered order, respectively.
We consider a one-dimensional texture, e.g., an insulating

antiferromagnetic nanowire. In this case, the free energy
is U ¼ R

dr½am2=2þ Að∇nÞ2=2 − Kzn2z=2�, where a and
A are the homogeneous and inhomogeneous exchange
constants, respectively; a and A are related through
a ∼ A=ðl2d2Þ [21], where d is the lattice constant of the
AFM. Kz denotes the easy axis anisotropy along the wire,
which is defined as the z axis. We consider a DW created by
pinning the AFM to adjacent FMs in different directions in
the left and right reservoirs. The equilibrium shape of the
DW is now determined by the competition between the
exchange energy A and the anisotropy energy Kz.
To study the interaction between SWs and a DW, we

perform a unitary transformation of the present coordinate
system into the coordinate system of the DW, making use of
the spherical unit vectors r̂ ¼ ½sin θ cosϕ; sin θ sinϕ; cos θ�,
θ̂ ¼ ½cos θ cosϕ; cos θ sinϕ;− sin θ�, and ϕ̂ ¼ ½− sinϕ;
cosϕ; 0�. For a Walker DW [22], the equilibrium solution
of Eqs. (1) and (2) is given by m ¼ 0 and θ0 ¼ 2 arctan ×
expðξÞ. ξ depends on time through the DW center position,
rwðtÞ; ξ ¼ ðz − rwÞ=λ, where the DW width is defined as

λ ¼ ffiffiffiffiffiffiffiffiffiffiffi
A=Kz

p
. We also treat the out-of-plane angle ϕwðtÞ as a

dynamic variable in the same manner as rwðtÞ.
SWs in AFMs are linear deviations of the staggered

order nðξ; tÞ and the magnetization mðξ; tÞ around their
equilibrium textures. The SW-DW interaction requires that
we expand nðξ; tÞ and mðξ; tÞ to second order for small
excitations h around the equilibrium DW texture r̂,

nðξ; tÞ ¼
�
1 −

h2

2
ðn2θðξ; tÞ þ n2ϕðξ; tÞÞ

�
r̂

þ h½nθðξ; tÞθ̂ þ nϕðξ; tÞϕ̂�; (3)

mðξ; tÞ ¼ h2mð2Þ
r r̂þ ½hmθðξ; tÞ þ h2mð2Þ

θ ðξ; tÞ�θ̂
þ ½hmϕðξ; tÞ þ h2mð2Þ

ϕ ðξ; tÞ�ϕ̂; (4)

where the notations nθðϕÞ and mθðϕÞ describe first-order
excitations in the θ̂ðϕ̂Þ direction of the staggered field
and the magnetization, respectively. We also include the
second-order excitations in the magnetization mð2Þ

θðϕÞ and
mð2Þ

r ¼ −ðmθnθ þmϕnϕÞ.
Using the Ansätze Eqs. (3) and (4) in Eqs. (1) and (2) and

expanding the staggered field to the first order in h, we
arrive at the equation of motion for SW excitations

n̈θðϕÞ ¼ aKzγ
2½∂2

ξnθðϕÞ þ ð2 sech2ðξÞ − 1ÞnθðϕÞ�
− aγG2 _nθðϕÞ: (5)

For simplicity, we have assumed that G2 dominates G1,
simplifying the description of the SW dynamics. This
assumption has been made only in the analytical treatment
and is not included in the numerical results presented
below. We conclude that excitations in the directions θ̂ and
ϕ̂ are decoupled in AFMs, which is fundamentally different
from the behavior of SWs in FMs [17]. This result implies
that both linearly and circularly polarized antiferromagnetic
SWs exist.
Using nθðϕÞðξ; tÞ ¼ nθðϕÞðξÞ expð−iωtÞ, Eq. (5) reads

ĤnθðϕÞðξÞ ¼ q2nθðϕÞðξÞ; (6)

where the operator Ĥ ¼ ½−∂2
ξ − 2 sech2ðξÞ�. The eigenval-

ues q2 ¼ ½ω2=ðγ2aKzÞ − 1þ iωG2=ðγKzÞ� define the dis-
persion relation of the antiferromagnetic SWs. Equation (6)
is a time-independent Schrödinger-type equation with the
Pöschl-Teller potential. This potential is reflectionless
and offers exact solutions in the form of traveling wave
eigenfunctions [23].
When q is purely imaginary, the solutions to Eq. (6),

nθ0ðϕ0Þ ¼ ρ0sechðξÞ, where ρ0 is an arbitrary amplitude,
describe localized states, centered around the DW. These
“Goldstone modes” [24] are distortions of the DW caused
by the system being forced out of equilibrium and are
naturally included in the formalism by considering the DW

10 5 0 5 10
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FIG. 1 (color online). Sketch of an antiferromagnetic DW
displaced to the left as a result of linearly polarized SW
excitations, where the SWs travel through the DW without
reflection.
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center rwðtÞ and chirality ϕwðtÞ to be collective dynamic
variables of the system.
For complex q, the solutions to Eq. (6) represent

propagating wave excitations superimposed on the stag-
gered field texture. These solutions can be written as
nθðϕÞðξ; tÞ ¼ ρkeiΩð tanhðξÞ − iqÞ, where ρk is the wave-
vector-dependent SW amplitude. Ω ¼ qξ − ωt so that
RefΩg is the general phase of the wavelike excitations.
Similar bound and travelling SW modes are also present in
antiferromagnetic Bloch DWs [9].
We use the Ansatz that the accelerations of the DW

center coordinate ̈rwðtÞ and chirality ϕ̈wðtÞ are proportional
to the square of the amplitude of the SWs and, thus, are
second-order effects for the small excitation parameter h.
In the following, we assume that the antiferromagnetic

SWs are linearly polarized transverse to the plane of theDW,
along ϕ̂ [nθ ¼ 0 with ϕð0Þ ¼ 0]. Circularly polarized SWs
demand a different treatment and are discussed later. After
combining Eqs. (1) and (2), inserting the effective fields
fn ¼ Kznzẑþ A∂2

zn and fm ¼ −am, expanding to order h2,
and integrating over space, we find that ϕ̈w þ aγG2ϕ̈w ¼ 0,
and the equation of motion for the DW coordinate rw is

̈rw þ aγG2 _rw ¼ aγ2Kz

π

Z
∞

−∞
dξhn2ϕisechðξÞtanhðξÞ; (7)

where hn2ϕi denotes a temporal average. By carrying out
this average, we disregard temporal oscillations of the
coordinate rw as the DW moves.
Equation (7) (without dissipation) is a result of the

conservation of linear momentum density. As an explan-
ation, let us consider the Lagrangian density of the AFM
L ¼ _n2=ð2aγ2Þ − Að∇nÞ2=2þ Kzn2z=2 [25]. Noether’s
theorem implies a continuity equation for the linear
momentum density along z, dTzt=dtþ dTzz=dz¼ 0, where
Tzjðj ¼ z; tÞ ¼ ð∂zq∂∂jq − δzjÞL is defined as in Ref. [26]
and q ¼ θ;ϕ; nϕ. After integration and time averaging, we
find that the continuity equation is identical to Eq. (7)
(without dissipation).
The real part of the SW solutions for a small dissipation

G2 is

Refnϕg ≈
ρk

ð1þ k2λ2Þ1=2 e
−Qðξþjξ0jÞ=2

× ½cosðkλξ − ωtÞtanhðξÞ þ kλ sinðkλξ − ωtÞ�;
(8)

whereQ ¼ G2ω=ðγKzkλÞ, ξ0 ¼ ðrw − z0Þ=λ, z0 is the posi-
tion of the excitation source, and k ¼ ½ω2=ðaγ2KzÞ − 1�1=2=λ
is the real wave vector of the monochromatic SWs at the
driving frequency ω. The SW amplitude depends on the
form of the excitation source Hextðz; tÞ through its spatial
Fourier transform: ρk ¼ ωF kfHextðz; tÞg=ðaγAkÞ.

Inserting Eq. (8) into Eq. (7) and solving for the
steady-state (̈rw → 0) velocity, we obtain

_rw ¼ −ρ2ke−Qjξ0j ð1þ 3k2λ2Þω
6k

: (9)

Equation (9), which is our first central result, shows that the
steady-state DW drift velocity induced by linearly polar-
ized SWs is independent of the dissipation G2 for high
frequencies ω. In the long-wavelength limit, when kλ → 0,
the DW velocity becomes large when the driving frequency
is close to resonance, ω → ω0 ¼ ðaγ2KzÞ1=2. Naturally, the
expansion in terms of a low dissipation G2 breaks down
close to this limit.
To verify Eq. (9), we conduct a micromagnetic simu-

lation of Eqs. (1) and 2 for a one-dimensional antiferro-
magnetic nanowire with a Néel DW in the x-z plane as the
initial condition. We add the external magnetic field source
term Hextðz; tÞ to the free energy, U → U −

R
drHext ·m.

We then write Eqs. (1) and (2) in dimensionless form by
scaling the time axis by ~t ¼ ðγalÞ−1 and the z axis by the
lattice constant d. The simulation is based on the numerical
method of lines with a time step control that is adaptive.
The length of the wire is set to 1000 lattice constants, and
the DW is initally positioned at z ¼ 0. We impose absorb-
ing boundary conditions at z ≤ −400 and z ≥ 400. The
SWs are excited in the region z ¼ ½−72;−68� by a
homogeneous and dimensionless magnetic field source
hextðtÞ ¼ ~h sin ð ~ωtÞx̂, where ~ω ¼ ω=ω0. DW widths in
AFMs are expected to be small [12], and therefore, we
choose λ ¼ 5d. Other dimensionless constants are listed in
Table I.
Figure 2 shows the simulated DW velocity as a function

of excitation frequency. The velocity is given in units of
v0 ¼ γA=ðldÞ. For frequencies close to ω0 the long-
wavelength resonance peak is easily discernible. The
velocity drops to zero for ~ω ≈ 4, which is a result of the
step shape of the excitation source.
Although we consider an antiferromagnetic nanowire

with easy axis anisotropy, we estimate the magnitude of the
DW velocity using parameters for the antiferromagnetic
insulator NiO, which has easy plane anisotropy in the bulk.
We use ANiO ≈ 5 × 10−13 J=m, dNiO ≈ 4.2 Å, and a mag-
netic moment per sublattice of 1.7μB [27], with μB being
the Bohr magneton. With these parameters v0 ≈ 500 m=s,

TABLE I. Dimensionless numerical constants.

Constant Composition Value

~a al2d2=A 1
~G1 G1l 0.002
~G2 G2=l 0.002
~Kz Kzd2=A 5−2

~h h=ðalÞ 0.05
~z0 z0=d −70
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and the resonance frequency ω0 ≈ 200 GHz. The DW drift
velocity induced by long-wavelength linearly polarized
SWs in NiO is then approximately 5–10 m=s directed
toward the SW source.
Next, we discuss the very different interactions that arise

between circularly polarized SWs and DWs. Numerically,
when we excite circularly polarized antiferromagnetic
SWs, hextðtÞ ¼ ~h½sin ð ~ωtÞx̂þ cos ð ~ωtÞŷ�, we observe that
the SWs are reflected from the DW structure (SW behavior
not shown). The DW now moves in the same direction
as the incoming SWs. This DW behavior is opposite to that
observed for linearly polarized SWs. Additionally, circu-
larly polarized SWs also cause the DW to acquire a net
angular velocity _ϕw.
To elucidate this phenomenon, consider Eq. (2) with the

effective fields inserted but without dissipation,

_m ¼ −γn × Kznzẑ −∇Jm; (10)

where Jm ¼ γAn ×∇n is defined as the spin wave spin
current [28] through the AFM. The z component of
Eq. (10) has the form of a conservation law for spin
angular momentum ∂tmz þ ∂zJmz

¼ 0, where Jmz
ðξÞ ¼

γAðnθ∂ξnϕ − nϕ∂ξnθÞtanhðξÞ=λ. The spinwave spin current
vanishes for linearly polarized SWs, whereas circularly
polarized SWs carry Jmz

¼ �γAkρ2k, where the sign depends
on the SW helicity. After integration over space, we find

∂tMz ¼ −½Jmz
ð∞Þ − Jmz

ð−∞Þ�; (11)

where Mz is the total magnetization in the z direction.
There are two possibilities for circularly polarized SWs.

In the first scenario, the SWs are transmitted through the
DW, causing the spin current to change its sign after
transmission. In this case, the right-hand side of Eq. (11) is

finite, which leads to the buildup of a local magnetic
moment around the DW. In the second scenario, the SWs
are reflected, and the right-hand side of Eq. (11) vanishes.
Only the second scenario is possible in the steady state
because the strong exchange interaction in the AFM
counteracts the buildup of an increasing local magnetic
moment.
Having established that circularly polarized SWs are

reflected, we calculate the DW velocity by means of linear
momentum transfer from reflected SW packets to the DW.
From the Lagrangian density, we calculate the linear
momentum density in the z direction Tzt ¼ ∂zq∂ _qL [26],
with q ¼ θ;ϕ; nθ; nϕ. After integrating over space, we
find that the total linear momentum in the z direction
Pz ¼

R
dzTzt can be split into a DW part and a SW part:

PDW
z ¼ 2_r=ðaγ2λÞ and PSW

z ¼ R
dzðn2θ þ n2ϕÞkω=ðaγ2Þ.

When considering SW packets, the continuity equation
for linear momentum density in the z direction becomes a
conservation law for the total linear momentum Pz, accor-
ding to Noether’s theorem, and we find 0 ¼ dPz=dt ¼
d=dtðPDW

z þ PSW
z Þ. A train of reflected SW packets

exerts a force ΔPSW
z =Δt ¼ ρ2kkωðvg − _rwÞ=ðaγ2Þ, where

vg ¼ aγ2Ak=ω is the SW group velocity. Balancing this
force to the force on the DW, dPDW

z =dt¼2ðr̈wþaγ2G2 _rwÞ=
ðaγ2λÞ, gives the resulting DW velocity in steady state as

_rw ¼ vg
1þ aγG2

ρ2kλkω

; (12)

which is our second and final central result. For low
damping, the DW is accelerated to the SW group velocity
vg, which is several hundred meters per second for typical
AFMs. Therefore, the DW motion induced by circularly
polarized SWs is oppositely directed and much faster than
the motion caused by linearly polarized SWs. Numerically,

Numerics

Eq. 9
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FIG. 2 (color online). Negative DW velocity −_rw in units of
v0 ¼ γA=ðldÞ, as a function of the applied excitation field
frequency ~ω, for linearly polarized SWs. The DW is attracted
towards the SW source. Blue circles represent the results of
numerical simulations, and the red line indicates the analytical
result based on Eq. (9).
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FIG. 3 (color online). DW velocity _rw as a function of the
applied field frequency ~ω for circularly polarized SWs. The DW
is pushed away from the SW source due to reflection. Blue
crosses represent the results from numerical simulations, the red
line indicates the analytical result based on Eq. (12), and the
dashed blue line shows the group velocity vg of the SWs.
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we see in Fig. 3 that Eq. (12) captures the DWmotion well,
especially at low applied frequencies. We speculate that
the assumption of total SW reflection will break down for
higher frequencies.
In conclusion, we have investigated the manner in which

antiferromagnetic SWs move DWs in AFMs. Linearly
polarized SWs drive DWs towards the SW source, analo-
gous to the effect of magnon spin transfer torque in FMs.
In contrast to the ferromagnetic case, where the DW moves
due to the conservation of angular momentum, the
SW-driven antiferromagnetic DW motion can be under-
stood as arising from the conservation of linear momentum
density. Circularly polarized antiferromagnetic SWs are
scattered by the DW to prevent the buildup of a local
magnetic moment around the DW center. This behavior
causes the DW to move away from the SW source at
velocities of several hundred meters per second.
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We present a theory of out-of-equilibrium ultrafast spin dynamics in magnetic heterostructures based on the s-d
model of ferromagnetism. Both in the bulk and across interfaces, the exchange processes between the itinerant
s and the localized d electrons are described by kinetic rate equations for electron-magnon spin-flop scattering.
In our treatment, the magnon distribution function remains nonthermalized on the relevant time scales of the
demagnetization process, and the relaxation of the out-of-equilibrium spin accumulation among itinerant electrons
provides the principal channel for dissipation of spin angular momentum from the combined electronic system.
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Controlling spin flow in magnetic heterostructures at
ultrafast time scales using femtosecond laser pulses opens
intriguing possibilities for spintronics [1]. These laser-induced
perturbations [2,3] stir up the most extreme regime of spin
dynamics, which is governed by the highest energy scale
associated with magnetic order: the microscopic spin exchange
that controls the ordering temperature TC . In contrast, at
microwave frequencies the ferromagnetic dynamics in the
bulk are well described by the Landau-Lifshitz-Gilbert (LLG)
phenomenology [4], which has been successfully applied to
the problem of the ferromagnetic resonance (FMR) [5]. At
finite temperatures below TC , the spin Seebeck and Peltier
effects [6,7] describe the coupled spin and heat currents
across interfaces in magnetic heterostructures. Despite their
different appearances, the microwave, thermal, and ultrafast
spin dynamics are all rooted in the exchange interactions
between electrons. It is thus natural to try to advance a
microscopic understanding of the ultrafast dynamics based
on the established phenomena at lower energies.

Although some attempts have been made [8,9] to extend
the LLG phenomenology to describe ultrafast demagnetization
in bulk ferromagnets, no firm connection exists between the
ultrafast spin generation at interfaces and the microwave
spin-transfer and spin-pumping effects [10] or the thermal spin
Seebeck and Peltier effects. In this Rapid Communication, we
unify the energy regimes of microwave, thermal, and ultrafast
spin dynamics in magnetic heterostructures from a common
microscopic point of view, so that the parameters that control
the high and low energy limits of spin relaxation originate
from the same electron-magnon interactions. In addition to the
unified framework, this Rapid Communication’s unique con-
tributions are the history-dependent, nonthermalized magnon
distribution function and the crucial role of the out-of-
equilibrium spin accumulation among itinerant electrons as
the bottleneck that limits the dissipation of spin angular
momentum from the combined electronic system.

The first reports on ultrafast demagnetization in Ni [11]
challenged the conventional view of low-frequency magneti-
zation dynamics at temperatures well below TC . A multitude of

*Corresponding author: erlend.tveten@ntnu.no

mechanisms and scenarios have been suggested to explain the
observed quenching of the magnetic moment. Some advocate
direct coherent spin transfer induced by the irradiating laser
light as the source of demagnetization [12]. Alternative theo-
ries argue that ultrafast spin dynamics arise indirectly through
incoherent heat transfer to the electron system [13,14]. Recent
experiments have demonstrated that nonlocal laser irradiation
also induces ultrafast demagnetization [15], and atomistic
modeling [16] supports the view that heating of magnetic
materials is sufficient to induce ultrafast spin dynamics.

Terahertz (THz) magnon excitations in metallic ferromag-
nets have recently been proposed as an important element
of ultrafast demagnetization by several authors [17,18]. The
elementary interaction that describes these excitations is the
electron-magnon scattering. Our theory is based on kinetic
equations for the low-frequency spin and charge transport
associated with the microwave magnetization dynamics in
heterostructures [19] and with the linear spin-caloritronic
response [7,20]. We extend these theories to treat far-from-
equilibrium spin dynamics, in which transport is dominated
by magnons and hot electrons. Electron-magnon scattering
plays a critical role in this regime. We base our understanding
of this interaction on the transverse spin diffusion [21] in the
bulk and the spin-mixing physics, e.g., spin transfer and spin
pumping [19,22], at the interfaces.

In our approach, we assume that the localized spins that
result in the experimentally detectable macroscopic magne-
tization [23] are distinct from the itinerant electrons at the
energy scales of interest. According to the accepted description
of relaxation in ferromagnetic metals, the loss of energy and
angular momentum from localized d electrons is mediated by
the exchange interaction to the itinerant s electrons. The spin
transfer from d to s states is accompanied by the relaxation
of the s electron spins to the lattice through an incoherent
spin-flip process caused by the spin-orbit coupling. Mitchell
formulated such a model several decades ago to describe the
longitudinal relaxation of ferromagnetic metals [24]. A similar
description was later employed to describe Gilbert damping in
ferromagnets at low frequencies [25,26].

In the following, we start by outlining the basic quantum-
kinetic formalism for ultrafast spin dynamics in bulk fer-
romagnetic metals. Later, we show that the ferromagnet

1098-0121/2015/92(18)/180412(5) 180412-1 ©2015 American Physical Society
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(F) | normal-metal (N) interfacial spin transport due to
electron-magnon interactions follows a similar essential struc-
ture, unifying the bulk and interfacial spin dynamics in
magnetic heterostructures. The Hamiltonian that describes F
is Ĥ = Ĥ0 + Ĥsd , where Ĥ0 consists of decoupled s- and d-
electron energies, including the kinetic energy of the itinerant
electron bath, the d-d exchange energy, dipolar interactions,
and the crystalline and Zeeman fields. The s-d interaction is

Ĥsd = Jsd

∑
j

Sd
j · s(rj ), (1)

where Jsd is the exchange energy and Sd
j [s(rj )] is the d-

electron (s-electron) spin vector (spin density) at lattice point
j . We express the s-d interaction in terms of bosonic and
fermionic creation and annihilation operators:

Ĥsd =
∑
qkk�

Vqkk�aqc
†
k↑ck�↓ + H.c., (2)

where a
†
q (aq) is the Holstein-Primakoff creation (annihilation)

operator for magnons with wave number q and c
†
kσ (ckσ )

is the creation (annihilation) operator for s electrons with
momentum k and spin σ . Ĥsd describes how an electron flips its
spin while creating or annihilating a magnon with momentum
q and spin �. The scattering strength is determined by the
matrix element Vqkk� .

In Eq. (2), we have disregarded terms of the form
∼ a

†
qaq �c

†
kσ ck�σ , which describe multiple-magnon scattering

and do not contribute to a net change in magnetization along the
spin-quantization axis. We have also disregarded higher-order
terms associated with the Holstein-Primakoff expansion. Fully
addressing magnonic correlation effects in the ultrafast regime
would require a rigorous approach, e.g., using nonequilibrium
Keldysh formalism [27]. However, when the s-d coupling (1) is
not the dominant contribution to Ĥ , we follow a mean-field ap-
proach and use Fermi’s golden rule to compute the spin transfer
between the s and d subsystems. We assume that all relevant
energy scales are much smaller than the Fermi energy �F ≡
kBTF of the itinerant s electrons. In this limit, the electronic
continuum remains largely degenerate, with electron-hole
pairs present predominantly in the vicinity of the Fermi level.

We orient the coordinate system such that the localized spin
density points in the negative z direction at equilibrium, with
saturation value S (in units of �). In the presence of a magnon
density nd , the longitudinal spin density becomes Sz = nd −
S. The magnons are assumed to follow a quadratic dispersion
relation �q = �ωq = �0 + Aq2, where �0 is the magnon gap
and A parametrizes the stiffness of the ferromagnet. �a†

qaq � � =
n(�q)δqq � defines the magnon distribution function n(�q),
which is related to the total magnon density through nd =∫ �b

�0
d�qD(�q)n(�q), where D(�q) = √

�q − �0/(4π2A3/2) is
the magnon density of states. The integral over D(�q) is cut
off at an energy corresponding to the bandwidth, �b ∼ kBTC ,
which is the magnon energy at the edge of the Brillouin zone.

Because of the s-d interaction (1), the itinerant s electrons
have a finite spin density at equilibrium (see Fig. 1). One of the
key driving forces of the out-of-equilibrium spin dynamics is
the spin accumulation μs ≡ δμ↑ − δμ↓. The bands for spin-up
and spin-down electrons are split by �xc ∼ JsdSa3, where a is

FIG. 1. (Color online) (a) Sketch of the density of s electron
states in a ferromagnetic metal with saturation spin density S. At
equilibrium, the exchange splitting �xc shifts the bands for spin-up
and spin-down electrons. (b) A laser pulse heats the s electron bath.
The out-of-equilibrium spin accumulation μs = δμ↑ − δμ↓ results
from two different mechanisms: (1) electron-magnon scattering
induces a spin density among the s electrons, and (2) the mean-
field exchange splitting is shifted by δ�xc by the induced magnon
density nd .

the lattice constant of F. By introducing a dynamic exchange
splitting, we can write μs = δns/D + δ�xc [28], where δns

is the out-of-equilibrium spin density of the s electrons,
D = 2D↑D↓/(D↑ + D↓), and D↑(↓) is the density of states
for spin-up (spin-down) electrons at the Fermi level. Because
the mean-field band splitting due to the s-d exchange vanishes
when the d orbitals are fully depolarized, δ�xc/�xc = ±nd/S,
where the sign determines whether the s and d orbitals couple
ferromagnetically (−) or antiferromagnetically (+).

The rate of spin transfer (per unit volume) between the s

and d subsystems due to electron-magnon spin-flop processes
is determined from Eq. (2) by Fermi’s golden rule [22]:

Isd =
∫ �b

�0

d�q�(�q)(�q − μs)D(�q)[nBE(�q − μs) − n(�q)],

(3)

where �(�q) parametrizes the scattering rate at energy
�q . In the derivation of Eq. (3) we have assumed that the
kinetic energy of the itinerant electrons and the empty states
(holes) thermalize rapidly due to Coulombic scattering
and that they are distributed according to Fermi-Dirac
statistics. Correspondingly, after standard manipulations [29],
it can be shown that the electron-hole pairs follow the
Bose-Einstein (BE) distribution function, nBE(�q − μs) =
{exp[βs(�q − μs)] − 1}−1, at the electron temperature
Ts = 1/(kBβs). The number of available scattering states is
influenced by the spin accumulation μs , as expected.

In contrast to the low-energy treatment in Ref. [22], the
derivation of Eq. (3) does not constrict the form of the
magnonic distribution n(�q) to the thermalized BE distribution

180412-2
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function. When the time scale of the s-d scattering is faster than
the typical rates associated with magnon-magnon interactions,
magnons are not internally equilibrated shortly after rapid heat-
ing of the electron bath, as also predicted by atomistic mod-
eling [30]. Consequently, the occupation of the magnon states
can deviate significantly from the BE distribution on the time
scale of the demagnetization process. Our treatment of this
central aspect differs from that of Ref. [31], in which the ex-
cited magnons are assumed to be instantly thermalized with an
effective spin temperature and zero chemical potential and the
thermally activated electron bath is assumed to be unpolarized.

The s-d scattering rate can be phenomenologically ex-
panded as �(�q) = �0 + χ (�q − �0), where �0 (which van-
ishes in the simplest Stoner limit [21]) parametrizes the
scattering rate of the long-wavelength magnons and χ (�q −
�0) ∝ q2 describes the enhanced scattering of higher-energy
magnons due to transverse spin diffusion [21]. In general, one
might expect other terms of higher order in q to be present in
this expansion as well. We will, however, limit ourselves to
extrapolating �(�q) up to the bandwidth �b, which should be
sufficient for qualitative purposes.

Neglecting any direct relaxation of magnons to the static
lattice or its vibrations (i.e., phonons), ∂tnd = Isd/�. The
equations of motion for the s-electron spin accumulation and
the d-electron magnon distribution function are

∂tμs = −μs

τs

+ ρ

�
Isd , (4)

∂tn(�q) = �(�q)

�
(�q − μs)[nBE(�q − μs) − n(�q)], (5)

where ρ determines the feedback of the demagnetization
on μs and τs is the spin-orbit relaxation time for the s-
electron spin density relaxing to the lattice. τs is typically
on the order of picoseconds [32] and represents the main
channel for the dissipation of angular momentum out of
the combined electronic system. In general, τs also depends
on the kinetic energy of the hot electrons after laser-pulse
excitation. However, this discussion is beyond the scope of this
Rapid Communication, and we assume that τs is independent
of energy. ρ = ρD + ρ� = −1/D ± �xc/S includes effects
arising from both the out-of-equilibrium spin density and
the dynamic exchange splitting. For ferromagnetic (−) s-d
coupling, these effects add up, whereas for antiferromagnetic
(+) coupling, they compete.

At low temperatures, low-frequency excitations result in
purely transverse spin dynamics. In the classical picture
of rigid magnetic precession, the transverse relaxation time
τ2 is determined by the longitudinal relaxation time τ1 as
follows: 1/τ2 = 1/(2τ1) = αω, where α is the Gilbert damping
parameter and ω is the precession frequency. Indeed, in the
limit (q,Ts) → 0, Eq. (3) yields

∂tnd → −�0

�
�0nd, (6)

which is identical to the LLG phenomenology, indicating
that �0 = �ω and thus �0 = 2α. This result establishes the
important link between the scattering rate �0 in this treatment
and the Gilbert damping parameter that is accessible through
FMR experiments.

FIG. 2. (Color online) Numerical solutions of Eqs. (4) and (5)
after Ts is increased from 102 to 103 K (TC) within 50 fs with a decay
time of 2 ps. �0 = 5 meV,A = 0.6 meV nm2,ρ = 6 meV nm3,τs =
2 ps, and α∗ = 10α = 0.1. (a) The itinerant electron-hole pair
distribution nBE(� − μs) is rapidly depleted by the spin accumulation
μs that is built up via electron-magnon scattering. (b) In the
magnon distribution n(�q ) the high-energy magnon states are rapidly
populated, whereas the low-energy states remain unaffected on short
time scales. (c) Time evolution of the spin accumulation μs(t) and
(d) the longitudinal spin density −Sz(t) with different decay times of
Ts : 0.15, 0.5, and 2 ps.

In the opposite high-frequency limit, pertinent to ultrafast
demagnetization experiments, we consider F to be in a low-
temperature equilibrium state before being excited by a THz
laser pulse at t = 0, upon which the effective temperature
of the itinerant electron bath instantly increases such that
Ts � TC . This regime is clearly beyond the validity of the
LLG phenomenology, which is designed to address the low-
energy extremum of magnetization dynamics. Dissipation in
the LLG equation, including relaxation terms based on the
stochastic Landau-Lifshitz-Bloch treatment [14,33], is subject
to a simple Markovian environment without any feedback or
internal dynamics. This perspective must be refined for high
frequencies when no subsystem can be viewed as a featureless
reservoir for energy and angular momentum.

To appreciate the nonthermalized nature of the excited
magnons, we consider the limit in which μs is small compared
with �0 and no magnons are excited [n(�q) = 0] for t < 0.
After rapid heating of the itinerant electrons at t = 0, the time
evolution of the magnonic distribution follows

n(�q,t) ≈ nBE(�q,t)[1 − e−�(�q )�q t/�]. (7)

This result implies that, initially, the high-energy states are
populated much faster than low-energy states. When μs be-
comes sizable, the coupled equations (4) and (5) must be solved
subject to a suitable Ts(t). Figures 2(a) and 2(b) present nu-
merical solutions of (4) and (5) when Ts is increased from 102

to 103 K within 50 fs with a decay time of 2 ps. By comparison,
internal magnon-magnon interactions equilibrate the distribu-
tion function on the time scale τ−1

eq ∼ �−1�m[�m/(kBTC)]3 [22],
where �m is a characteristic energy of the thermal magnon
cloud. For short times, Isd [Eq. (3)] dominates the magnon dy-
namics, and we expect the magnon population to significantly
differ from the thermalized BE distribution.
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When Ts > TC , the thermally excited electron-hole pairs
are populated in accordance with the classical Rayleigh-Jeans
distribution, nBE(�q − μs) → kBTs/(�q − μs). Assuming, for
simplicity, that the expansion for �(�q) is valid throughout the
Brillouin zone, Eq. (3) yields ∂tnd |t→0 = Isd (0)/� = [�0 +
3χ (�b − �0)/5]kBTsS/�. Thus, the demagnetization rate is
initially proportional to the temperature of the electron bath but
is reduced by the lack of available scattering states for high-
energy magnons within the time scale of the demagnetization
process. This finding conflicts with the results obtained
from a Langevin treatment of the LLG equation [34], in
which the magnetization relaxation rate is proportional to
the temperature difference at all times. Figures 2(c) and 2(d)
illustrate the time evolution of the out-of-equilibrium spin
accumulation μs(t) and the longitudinal spin density −Sz(t)
for different decay times of Ts .

In the ultrafast regime, the electron-magnon spin-flop
scattering is governed by the effective Gilbert damping
parameter α∗ ≡ χ (�b − �0). Experimental investigations of the
magnon relaxation rates on Co and Fe surfaces confirm that
high-q magnons have significantly shorter lifetimes than low-q
magnons [18]. It is reasonable to assume that the same effects
are also present in the bulk. The initial relaxation time scale in
the ultrafast regime is τi ∼ (α∗�−1kBTs)−1. This generalizes
the result of Koopmans et al. [8] for the ultrafast relaxation
of the longitudinal magnetization to arbitrary α∗ based on
the transverse spin diffusion [21]. The notion of magnons
becomes questionable when the intrinsic linewidth approaches
the magnon energy, which corresponds to α∗ ∼ 1. Staying
well below this limit and consistent with Refs. [18,21], we use
α∗ = 0.1. For TC = 103 K the initial relaxation time scale τi ∼
102(TC/Ts) fs, which is generally consistent with the demagne-
tization rates observed for ultrafast demagnetization in Fe [35].

We now show that the interfacial scattering follows a struc-
ture similar to that of the bulk scattering in a unified description
based on the electron-magnon interaction. Figure 3 presents
a schematic illustration of an F|N interface. In magnetic het-
erostructures and for stand-alone ferromagnets on a conducting
substrate, the demagnetization dynamics of F are also affected
by the spin accumulation in N μN(x), which can impact how
nonlocal laser irradiation (e.g., the heating of N alone) induces
ultrafast demagnetization of F [15]. By adding terms of the
form ∼ ∑

qkk� Uqkk�aq c̃
†
k↑c̃k�↓ to Ĥsd , where c̃

†
k↑ (c̃k�↓) describes

the creation (annihilation) of an electron with spin up (down)
at the F|N interface, the interfacial spin transfer (per unit area)
due to electron-magnon spin-flop scattering is [22]

Ii =
∫ �b

�0

d�q�
i(�q)

(
�q − μ0

N

)D(�q)
[
nBE

(
�q − μ0

N

)− n(�q)
]
,

(8)

where μ0
N ≡ μN(0) is the spin accumulation at the interface

and �i(�q) parametrizes the interfacial scattering rate.
The scattering of coherent long-wavelength magnons at

the F|N interface can be described in the language of spin
pumping/spin Seebeck effects [22], parametrized by the spin-
mixing conductance g↑↓ (per unit area) [19]. Motivated by
�(�q) in the bulk, we write for the interfacial scattering rate
�i(�q) = g∗

↑↓(�q)/(πS), where g∗
↑↓ reduces to g↑↓ for low-

energy scattering, �q → �0. The interface scattering [Eq. (8)]

FIG. 3. (Color online) Sketch of a metallic ferromagnet (F) cou-
pled to a normal metal (N). In the ultrafast regime, both the rapid
heating of s electrons in F by �Ts [labeled (1)] and the heating of
N by �TN [labeled (2)] can demagnetize F. Isd [Eq. (3)] induces
the spin accumulation μs in F, whereas Ii [Eq. (8)] induces the
spin accumulation μ0

N at the F|N interface. Subsequently, μN(x)
diffuses into N until it vanishes due to spin-flip dissipation to
the lattice. The additional interfacial spin current IsN, due to the
thermodynamic biases δμ = μs − μ0

N and δT = Ts − TN, can be
described by conventional thermoelectric parameters for longitudinal
spin-dependent transport [36].

dominates the microwave spin relaxation in thin ferromagnetic
layers of thickness dF � 10 nm [19,37]. This trend should
continue for higher frequencies and is relevant for ultrafast
spin dynamics in thin magnetic layers in heterostructures [1].
We expect the energy dependence of the effective spin-mixing
conductance to be relatively weak compared to that of the
bulk scattering �(�q), which can be severely constrained at
low energies due to momentum conservation [21]. For a finite
temperature bias δT across the interface and for magnons
thermalized at the temperature T < TC , the connection to the
thermal spin Seebeck and Peltier effects is made by identifying
S = ∂T Ii and � = T S/� [20] as the Seebeck and Peltier
coefficients, respectively.

In conclusion, we have extended the concepts of trans-
verse spin diffusion in bulk ferromagnets and the interfacial
spin-mixing physics to address the ultrafast spin dynamics
observed in rapidly heated magnetic heterostructures. In
the ultrafast regime, the relative importance of the bulk
scattering, parametrized by α∗, and the interfacial scattering,
parametrized by g∗

↑↓, can be extracted from measurements
of demagnetization strength and spin currents in magnetic
heterostructures. For metallic ferromagnets in the bulk, our
analysis shows that treating the magnonic subsystems as
quasiequilibrated and parametrized by an effective tempera-
ture is insufficient to describe the far-from-equilibrium spin
dynamics induced by pulsed laser heating. The magnon
distribution function remains nonthermalized on the relevant
time scale of the demagnetization process, in which the
relaxation of the out-of-equilibrium spin accumulation μs

limits the dissipation of spin angular momentum from the
combined electronic system.

The authors thank A. V. Kimel, G. E. W. Bauer, J. Barker, S.
Bender, H. Skarsvåg, and E. Fjærbu for valuable discussions.
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Antiferromagnetic insulators can become active spintronics components by controlling and detecting their
dynamics via spin currents in adjacent metals. This cross talk occurs via spin transfer and spin pumping,
phenomena that have been predicted to be as strong in antiferromagnets as in ferromagnets. Here, we demonstrate
that a temperature gradient drives a significant heat flow from magnons in antiferromagnetic insulators to electrons
in adjacent normal metals. The same coefficients as in the spin-transfer and spin-pumping processes also determine
the thermal conductance. However, in contrast to ferromagnets, the heat is not transferred via a spin Seebeck
effect which is absent in antiferromagnetic insulator-normal metal systems. Instead, the heat is proportional to a
large staggered spin Seebeck effect.

DOI: 10.1103/PhysRevB.92.180414 PACS number(s): 72.25.Mk, 72.10.Di, 72.20.Pa, 73.50.Lw

In spintronics, the properties which make antiferromag-
nets markedly different from ferromagnets also make them
attractive in a more dynamic role. Antiferromagnets operate at
much higher frequencies and may empower terahertz circuits.
They also have no magnetic stray fields, which therefore
enables denser spintronics circuits. Antiferromagnets are
usually passive spintronics components. However, they can
play a role as active components despite their lack of a
macroscopic magnetic moment [1–13] and even when they
are insulating [10,12,13].

We demonstrate that the thermal coupling between antifer-
romagnetic insulators (AFIs) and normal metals is relatively
strong. The strong thermal coupling facilitates several out-
comes: The interface coupling can lead to efficient cooling
of antiferromagnetic spintronics devices, might function as
heat sensors, and can reveal valuable information about the
high-frequency spin excitations in dc measurements that are
complicated to extract with other techniques.

Antiferromagnets can produce pure spin currents as large as
those produced by ferromagnets. We recently showed that spin
pumping may be as operative from antiferromagnets as from
ferromagnets [13], in apparent contradiction to naive intuition.
Furthermore, the efficiency of spin pumping from antiferro-
magnets to normal metals implies, via Onsager reciprocity
relations, that there is a considerable spin-transfer torque
on antiferromagnets from a spin accumulation in adjacent
normal metals. However, in the absence of external magnetic
fields, the spin Seebeck effect in antiferromagnet-normal metal
systems vanishes [14]. This fact seems to indicate that spins in
antiferromagnets decouple from, or are only weakly connected
to, heat currents and temperature gradients in adjacent normal
metals.

To the contrary, we find that the thermal coupling con-
stant is orders of magnitude stronger than its ferromagnetic
counterpart. This radical difference is caused by the large
exchange field in antiferromagnets that governs the heat
transfer rather than the much smaller anisotropy fields or
external magnetic fields in ferromagnets. The thermal coupling
between antiferromagnetic insulators and normal metals is

*Arne.Brataas@ntnu.no

associated with a staggered spin Seebeck effect rather than
via the spin Seebeck effect.

Spin caloritronics determines how spins are coupled to
currents and temperature gradients [15]. Measurements of im-
portant thermoelectric properties in ferromagnetic insulators,
such as the spin Seebeck effect [16], are central to this field.
In the spin Seebeck effect, a temperature gradient transfers
a magnon spin current in a ferromagnet into an itinerant
spin current in a normal metal [17,18]. This process is active
even in insulating ferromagnets [19]. The spin Peltier effect is
reciprocal to the spin Seebeck effect; a heat current generates
a spin accumulation [20,21]. These fascinating thermoelectric
properties can be useful to control the heat flow in spintronics
devices and in devices that recycle waste heat.

In explaining our calculations, we interpret the theories
on the spin Seebeck effect [15–18,22] as a combination of
three mechanisms. First, a precessing magnetization can pump
a spin current across a ferromagnet-normal metal junction
[23–25]. Spin pumping gives rise to an increased magne-
tization dissipation rate [23,26,27]. Second, the enhanced
dissipation implies that there is also an enhanced spin current
noise in terms of a fluctuating spin-transfer torque [28]. At
equilibrium, there is no thermal bias and the dc spin current
vanishes because the temperature-driven spin pumping and a
fluctuating spin-transfer torque exactly compensate each other.
Third, a temperature difference alters this balance and causes
a net spin current [17,18,22].

In this picture, to compute the heat transfer between
AFIs and normal metals, we first establish the fluctuating
spin transfer and staggered spin transfer in such hybrid
systems. Both quantum and thermal fluctuations are required
to determine the magnon occupations. Subsequently, we use
these results to define the thermal gradient-driven (staggered)
spin currents, which we then use to evaluate the heat current
from the AFI to the normal metal. We focus on insulating
antiferromagnets where the transport properties are magnon
driven. Generalizations to conducting antiferromagnets are
straightforward.

We model the AFI as a two sublattice system with
spatiotemporal magnetizations M1 and M2. The dynamics are
described by the staggered magnetizations L = M1 − M2 =
Ln and the magnetization M = M1 + M2 = Lm. These
fields satisfy the constraints n2 + m2 = 1 and n · m = 0. At

1098-0121/2015/92(18)/180414(5) 180414-1 ©2015 American Physical Society
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FIG. 1. (Color online) An AFI sandwiched between two normal
metals N1 and N2. The left normal metal (N1) is a good spin sink.
The electrons in the right normal metal (N2) are decoupled from
the magnons, e.g., the interface coupling is weak and/or there is no
spin-memory loss. A heat current between the normal metals flows
in response to an applied temperature gradient across the AFI. The
cross section is A and d is the AFI thickness. The heat flow IQ is
along the longitudinal coordinate x.

equilibrium, the staggered field is homogeneous and constant
in time, |L| = L, and the magnetization vanishes, M = 0,
i.e., n2 = 1 and m = 0. We consider an easy-axis AFI that
is described by the energy E = ∫

dr[ε(r) + εs(r)], where the
energy density is

ε = L

γ

[
1

2
ωE(m2 − n2) − 1

2
ωA

(
m2

z + n2
z

)]
, (1)

with the exchange frequency ωE and the smaller anisotropy
frequency ωA, ωA � ωE . When n and m spatially vary, the
stiffness contributions are

εs = L

2γ
ωA

∑
i=x,y,z

[(λn∂in)2 + (λm∂im)2], (2)

where λn and λm are exchange lengths associated with n and
m, respectively. The dynamic equations are

ṅ = ωm × n + ωn × m + τ n, (3a)

ṁ = ωn × n + ωm × m + τm, (3b)

where the effective fields are ωn = −(γ /L)δε/δn and ωm =
−(γ /L)δε/δm. In Eqs. (3a) and (3b), the dissipation and
fluctuation torques τm and τ n are essential to describe spin
caloritronics effects.

We consider a thin-film AFI of thickness d sandwiched
between two normal metals, the left one of which is a good
spin sink (e.g., Pt), and the right is only weakly coupled or
has little or no spin-memory loss (see Fig. 1). We assume
planar AFI-normal metal interfaces of cross section A. The
coordinate r = (x,ρ) is decomposed into a perpendicular co-
ordinate x (0 � x � d) and the two-dimensional (2D) in-plane
coordinates ρ. The fluctuation-dissipation torques have bulk
and (spin-pumping-induced) interface contributions, τν(r) =
τ (b)
ν (r) + δ(x − xI )τ (p)

ν (ρ), where xI = 0+ is infinitesimally
near the interface on the AFI side close to the spin sink and the
subscript ν denotes the product of either the subindex n or m

and a Cartesian component x, y, or z. The bulk torques arise
from the magnon-phonon interaction. At the AFI-N interface,
the torques are governed by spin pumping induced by the
coupling of the magnetic moments to itinerant electrons in
adjacent normal metals. In finding the torques, we introduce
dissipation in a similar way as in Ref. [7] and further generalize
this description to include quantum and thermal fluctuations.

The resulting fluctuation-dissipation torques are

τ n = (hm − αṁ) × n + (hn − αṅ) × m, (4a)

τm = (hn − αṅ) × n + (hm − αṁ) × m, (4b)

for both bulk and interface contributions where we have
suppressed the superscript [(b) or (p)] in τ , h, and α. The
bulk Gilbert damping constant is α(b). α(p) is a measure of
the spin-pumping-induced enhanced dissipation; for homoge-
neous macrospin excitations the enhanced damping constant
is α(b) + α(p)/d [25].

The fluctuation-dissipation theorem implies the exis-
tence of the fluctuating forces hm and hn. The average
of the independent fluctuating forces hm and hn and the
cross correlations between different fields vanish, but the
variance is

〈
h(p)

ν (ρt)h(p)
ν (ρ �t �)

〉 = γα(p)R(t − t �,T1)

Lπ
δ(ρ−ρ �), (5a)

〈
h(b)

ν (rt)h(b)
ν (r�t �)

〉 = γα(b)R(t−t �,TA)

Lπ
δ(r − r�). (5b)

The correlation function R(t,T ) depends on the (local) tem-
perature. As demonstrated for ferromagnets in Ref. [28], the
spin-current fluctuations associated with spin pumping depend
on the temperature in the normal metal close to the interface,
T1. We posit that the one-to-one correspondence between spin
pumping in ferromagnets and antiferromagnets [13] implies
that the spin-current fluctuations in antiferromagnets obeys
the same relationship, as in Eq. (5a). In the bulk of the
AFI, the phonon-induced fluctuations associated with the bulk
Gilbert damping depend on the temperature profile in the
antiferromagnet TA(x), as in Eq. (5b). The correlation function
only describes white noise in the (classical) high-temperature
limit, R(t,T ) ≈ 2πkBT δ(t). However, for the purpose of
computing the heat current, we need to take into account the
quantum behavior of the fluctuations, which we describe after
Eq. (15).

The effective fields determined by Eqs. (1) and (2) are

ωn = ωEn + ωA(n · ẑ)ẑ + ωA(λn∇)2n , (6a)

ωm = −ωEm + ωA(m · ẑ)ẑ + ωA(λm∇)2m. (6b)

In the absence of bulk (electron-magnon) Gilbert damping
represented by α, the energy current density jE is defined
via the continuity equation �∂t (ε + εs)� + ∇ · jE = 0. Because
there is no change in external parameters (e.g., spin accumula-
tion) in the system, the energy current can be identified as the
heat current. From this continuity equation and by using the
dynamic equations (3), with the interface surface normal x̂,
we find that the total heat current IQ = ∫

dρ(−x̂ · jE) across
the normal-metal–AFI interface is

IQ = L

γ

〈
ωAλ2

n∂xn · ∂tn + ωAλ2
m∂xm · ∂tm

〉|x=0. (7)

IQ contains products of the deviations from equilibrium of the
staggered field and the magnetization. It is therefore sufficient
to carry out the computation of n and m in linear response.

We use a circular basis so that n± = nx ± iny and m± =
mx ± imy are first-order corrections with respect to the
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equilibrium configuration n = ẑ and m = 0. Next, we Fourier
transform in the transverse coordinate ρ and time t so that
any function c(x,ρ,t) = ∑

q

∫
dωc̃(x,q,ω) exp i(ωt − q · ρ).

Using Eq. (3), the linearized dynamic equations of motion
become

{
iα(b)ω + ωA

[
1 + λ2

m

(
q2 − ∂2

x

)] + 2ωE

}
m̃±

= ±ωñ± + h̃
(b)
m±(x), (8a)

{
iα(b)ω + ωA

[
1 + λ2

n

(
q2 − ∂2

x

)]}
ñ±

= ±ωm̃± + h̃
(b)
n±(x). (8b)

In the coupled dynamic equations (8), the stiffness contribu-
tions (2) can be interpreted as arising from the continuity
equations for the staggered field and the magnetizations,
(∂tn)s + ∑

i ∂ijn,i = 0 and (∂tm)s + ∑
i ∂ijm,i = 0. In linear

response, the staggered spin current and spin current along the
x direction are jn,x = ωAλ2

mẑ × ∂xm and jm,x = ωAλ2
nẑ × ∂xn.

The boundary conditions for the linearized equation of mo-
tion (8) are obtained by integrating the dynamic equations (3)
across the AFI-N interface. This results in the continuity of the
staggered spin and spin currents in linearized forms at x = 0:

ωAλ2
m

∂m̃±
∂x

= iωα(p)m̃± − h̃
(p)
m,±, (9a)

ωAλ2
n

∂ñ±
∂x

= iωα(p)ñ± − h̃
(p)
n,±. (9b)

Similarly, at x = d , there is no loss of currents and the bound-
ary conditions are ωAλ2

m∂m̃±/∂x = 0 and ωAλ2
n∂ñ±/∂x = 0.

In typical antiferromagnets, ωE is much larger than all other
energy scales and we may employ the so-called exchange
approximation. This implies that we may disregard smaller
terms in the equation of motion (8a) so that it greatly simplifies
to m̃± = ωñ±/2ωE . By inserting this relation into Eq. (8b), we
find the equation of motion in the exchange approximation

λ2
n

(
q2

x + ∂2
x

)
ñ± = − h̃

(b)
n±

ωA

, (10)

which can be solved with the boundary conditions of Eq. (9b).
In the exchange approximation, to the lowest order in the
dissipation, we have introduced the longitudinal wave number
qx . The complex wave number qx is implicitly defined via the
relation ω = ωR + i/t (b), where the bulk resonance frequency
and the bulk lifetime are determined by

ω2
R = 2ωAωE

[
1 + λ2

n

(
q2

x + q2
y + q2

z

)]
, (11a)

1/t (b) = α(b)ωE. (11b)

The central results we will obtain can be interpreted in terms of
the eigenstates with the associated eigenfrequencies and life-
times in a thin-film antiferromagnet. The eigenstates are deter-
mined by expressing ñ± = A± exp (iqxx) + B± exp (−iqxx)
in Eq. (10) when the right-hand side (the fluctuations) vanishes.
The only nontrivial solution that satisfies both the boundary
conditions of Eq. (9b) at x = 0 (with no fluctuations) and
∂ñ±/∂x = 0 at x = d is determined by the secular equation

s(qx) = 0, where

s(qx) = qxλ
2
nωA

dω
tan (qxd) − i

α(p)

d
. (12)

In the absence of spin pumping and bulk damping, the solutions
of s(qx) = 0 are standing waves where qx = Nπ/d and N is
an integral number. When spin pumping is weak, the second
term in Eq. (12) is small and the solutions of s(qx) = 0 can be
expanded around the solutions obtained in the absence of spin
pumping. For the higher modes, when N �= 0, we expand the
wave vector qx to the first order in the deviations from Nπ/d

and insert the resulting imaginary part of the wave vector into
the dispersion relation of Eq. (11a) to find the spin-pumping
lifetime t

(p)
N . For N = 0, we carry out a second-order expansion

in terms of the small parameter qxd around 0 and insert this
result into the dispersion of Eq. (11a) to find the lifetime t

(p)
0 .

We compute that

1/t
(p)
0 = α(p)

d
ωE, (13a)

1/t
(p)
N �=0 = 2

α(p)

d
ωE. (13b)

In a striking contrast to ferromagnets, the spin-pumping-
induced scattering rate 1/t (p) (13) is proportional to the
exchange energy. Similar expressions for the spin-pumping
rates in ferromagnets scale with the ferromagnetic spin-
wave energy, which is several orders of magnitude smaller
than the exchange energy. We know that the spin-pumping-
induced effective Gilbert damping coefficients α(p) in insu-
lating antiferromagnet–normal-metal systems are comparable
to those of insulating ferromagnet–normal-metal systems
(Ref. [29]). We will see that the short spin-pumping-induced
AFI lifetimes of Eq. (13) imply a large heat conductance
between AFIs and normal metals. Interestingly, we find that the
spin-pumping-induced relaxation rate of the higher modes is
twice as large as the uniform, but independent of the transverse
(2D) wave vector q. This ratio agrees with our previous result
for the spin-pumping-induced ratio in thin-film ferromagnets
and can be used to distinguish the spin-wave modes [29].

Next, we solve the linearized dynamic equation (8)
with the fluctuating bulk forces and subject to
the boundary condition (9b) where the fluctuating
spin-pumping-induced forces appear. To compute the
heat current, we represent the solution at x = 0 as m̃+ =
χ

(p)
m+h̃

(p)
n+ + ∫ d

0 dx χ
(b)
m+(x)h̃(b)

n+(x) and ωAλ2
n∂xñ+/d =

χ
(p)
n�+h̃

(p)
n+ + ∫ d

0 dx χ
(b)
n�+(x)h̃(b)

n+(x). We find that χ
(p)
m+ =

−1/[2dωEs(qx)], χ
(b)
m+ = χ

(p)
m+ cos qx(d − x)/ cos qxd,

χ
(p)
n�+ = −qxλ

2ωA tan qxd/d2ωs(qx), and χ
(b)
n�+ =

−iα(p) cos qx(d − x)/d2s(qx) cos qxd.
We evaluate the variance of the fluctuating forces and

find the heat current, IQ = −(2dωE/π )Im
∑

q

∫ ∞
−∞ dω[η(p)

Q +
η

(b)
Q ], where the spin-pumping and bulk contributions are

η
(p)
Q = χ

(p)
m+

(
χ

(p)
n�+

)∗
α(p)R̃(ω,T1), (14a)

η
(b)
Q =

∫ d

0
dx χ

(b)
m+(x)

[
χ

(b)
n�+(x)

]∗
α(b)R̃(ω,TA(x)). (14b)
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At equilibrium, TA(x) = T1, the heat current vanishes, IQ = 0,
as expected. In linear response, the temperature varies linearly
in the AFI so that TA(x) = T1 + (T2 − T1)x/d. We then
compute that the heat current is IQ = (T2 − T1)κQ, where

κQ =
∑
qy,qz

∫ ∞

−∞
dω

α(b) α(p)

d

π |s(qx)|2 ζ (qx)
∂R̃(ω,T )

∂T
(15)

and ζ (qx) = 2
∫ d

0 dx| cos qx (d−x)
cos qxd

|2 x
d2 . By following the same

methods, we also compute that the temperature-driven spin
current, i.e., the spin Seebeck effect, vanishes, in agreement
with Ref. [14]. However, we find that the temperature-driven
staggered spin current is finite. Furthermore, the heat current
is directly proportional to the staggered spin current.

By comparing the equilibrium expectation value of the
spin-wave internal energy with the quantum-mechanical result
for a magnon gas or, alternatively, by using the fluctuation-
dissipation theorem represented by Eq. (4.9) in Ref. [30], we
identify that the correlation function R(ω,T ) represents the
mean energy at the temperature T of an oscillator at natural
frequency ω, R̃(ω,T ) = 1

2�|ω| + �ωf (|ω|,T ), where f (ω,T )
is the Bose-Einstein distribution function.

When damping is small, and the spin-pumping-induced
damping is smaller than the bulk damping, we can expand
the poles of the denominator of Eq. (15) around the spin-wave
resonance qxd = nπ in a similar way as in Ref. [22]. This
results in an intuitive expression:

IQ =
∞∑

N=0

1

t
(p)
N

∫ ∞

0
dω DN (ω)�ω{f (ω,T2)[1 − f (ω,T1)]

− f (ω,T1)[1 − f (ω,T2)]}. (16)

The heat current that flows between the normal metals via
the antiferromagnet, at each frequency, is proportional to the
spin-pumping-induced spin-wave relaxation rate 1/t

(p)
N , the

mode-dependent density of states, DN (ω) = ∑
qy,qz

2δ[ω −
(2ωAωE{1 + λ2

n[( Nπ
d

) + q2
y + q2

z ]})1/2]. Furthermore, the heat
current is determined by the Bose-Einstein occupation of
the magnons and the electron-hole pairs in the normal
metal. This expression (16) reveals that the thermal coupling
between normal metals and AFIs is relatively strong. The
heat current is proportional to the spin-pumping-induced
spin-wave scattering rates that are proportional to the ex-
change energy and the Gilbert damping coefficient and
therefore are orders of magnitude larger than in ferromag-
nets. At high temperature, we find IQ = Aπ2(kBT1)3kB(T2 −
T1)α(p)/(15

√
2A

3/2
ex

√
ωE�3/2), where Aex = �ωAλ2

n is the ex-
change stiffness. For example, using material parameters
from Refs. [31,32], we find κ/A ∼ 107 W/m2 for RbMnF3,
whereas a calculation for F-N yields a value ∼105W/m2 for
yttrium iron garnet, both at 30 K and assuming a spin mixing
conductance g = 5 × 1018 m−2.

Phonons also mediate heat currents between AFIs and
normal metals. Experimentally, the magnon-induced heat
current we predict here can be separated from the phonon
heat current by the different material, temperature, and length
dependence. For instance, at temperatures below the magnon
gap, magnons do not contribute to the heat conductance. Also,
different measurements in systems with normal metals that
couple strongly or weakly to the antiferromagnets can be
compared. Finally, one can use an external magnetic field to
change the magnon dispersion and consequently the spin-wave
density of states governing magnon-induced heat current of
Eq. (16).

In conclusion, we demonstrated a strong thermal coupling
between antiferromagnetic insulators and normal metals. The
heat current is directly proportional to the staggered spin
current.

We acknowledge support from the Research Council of
Norway, Project No. 216700.
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Antiferromagnets (AFMs) exhibit intrinsic magnetization when the order parameter spatially varies. This
intrinsic spin is present even at equilibrium and can be interpreted as a twisting of the homogeneous AFM into
a state with a finite spin. Because magnetic moments couple directly to external magnetic fields, the intrinsic
magnetization can alter the dynamics of antiferromagnetic textures under such influence. Starting from the discrete
Heisenberg model, we derive the continuum limit of the free energy of AFMs in the exchange approximation and
explicitly rederive that the spatial variation of the antiferromagnetic order parameter is associated with an intrinsic
magnetization density. We calculate the magnetization profile of a domain wall and discuss how the intrinsic
magnetization reacts to external forces. We show conclusively, both analytically and numerically, that a spatially
inhomogeneous magnetic field can move and control the position of domain walls in AFMs. By comparing
our model to a commonly used alternative parametrization procedure for the continuum fields, we show that
the physical interpretations of these fields depend critically on the choice of parametrization procedure for the
discrete-to-continuous transition. This can explain why a significant amount of recent studies of the dynamics of
AFMs, including effective models that describe the motion of antiferromagnetic domain walls, have neglected
the intrinsic spin of the textured order parameter.

DOI: 10.1103/PhysRevB.93.104408

I. INTRODUCTION

Measuring the ordered state of antiferromagnets (AFMs) is
complicated by the absence of macroscopic magnetization.
The promise of AFMs as candidates for active roles in
spintronics logic elements have increased the interest in
addressing this problem [1,2]. In particular, the observation
of tunneling anisotropic magnetoresistance in AFMs [3–6]
represents a clear experimental procedure to detect the anti-
ferromagnetic order. Furthermore, current-induced torques on
the antiferromagnetic order have been theoretically predicted
[7–10] and experimentally indicated in spin valve sys-
tems [11]. Also, the ferromagnetic concept of spin pumping
has been generalized to AFMs [12]. The possibility of ma-
nipulating the antiferromagnetic order parameter by external
forces has fueled renewed theoretical interest in domain-wall
motion in AFMs due to both charge [13–15] and spin [16–18]
currents. However, the reports on current-induced domain-
wall motion [19] are based on indirect observations and not
confirmed by other methods or groups. Therefore, there is
no straightforward method to reliably detect the dynamics of
textures in the antiferromagnetic order.

In this paper, we discuss the intrinsic magnetization
associated with an inhomogeneous antiferromagnetic order
parameter. We describe the origin of the intrinsic spin and
discuss whether it can be exploited to detect antiferromagnetic
texture dynamics, e.g., domain-wall motion. To revisit this
topic, which was pioneered for one-dimensional systems in
Refs. [20–22], we construct the continuum free-energy func-
tional for AFMs from the discrete Heisenberg Hamiltonian
in the exchange approximation. We use the Hamiltonian
approach to show that the intrinsic magnetization due to
textures in the order parameter arises from a parity-breaking
term in the energy functional that is absent in a commonly used

*Corresponding author: erlend.tveten@ntnu.no

alternative parametrization of the continuum fields. We clarify
the mapping between the two different parametrizations and
explain how the intrinsic magnetization can be easily missed
in models which are based on the alternative parametrization.
We further describe the shape of the intrinsic magnetization
density for an antiferromagnetic domain wall and discuss
its physical significance as a twisting of the homogeneous
spinless AFM into a state with a finite spin. The intrinsic
magnetization adds up in two- and three-dimensional extended
domain-wall systems and can affect the dynamics of domain
walls subject to external magnetic fields and spin-polarized
currents. We discuss how these consequences can go beyond
that of the purely quantum topological effects [23] observed
in one-dimensional spin chains.

Studies of domains in AFMs and descriptions of the shape
and properties of antiferromagnetic domain walls date back
several decades [24–26]. However, most of the experimental
evidence of such domains was restricted to studies of AFMs
in which the collinearity of the sublattices is broken due
to Dzyaloshinskii-Moriya (DM) anisotropy. In these studies,
when the DM field or the external field vanishes, so does
the equilibrium magnetization of the AFM. Consequently, the
detection of domain walls and their dynamics in compen-
sated AFMs remains an experimental challenge. However,
antiferromagnetic domain walls are known to exist and
have been experimentally observed, e.g., in monolayers of
antiferromagnetic Fe [27], in the elemental AFM Cr [28], and
in the antiferromagnetic insulator NiO [29]. Antiferromagnetic
domains and domain walls can also be tailored by manipulating
the ferrimagnetic precursor layer before cooling the AFM
below the Néel temperature [30]. Observation of individual
domains in AFMs can be done, e.g., using x-ray magnetic
linear dichroism [31,32].

A key aspect of detecting the dynamics of antiferromagnetic
domain walls is whether such solitons of staggered magnetic
order are associated with a spatially constricted magnetization

2469-9950/2016/93(10)/104408(13) 104408-1 ©2016 American Physical Society
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density. Reference [20] argued that such a magnetization exists
and that the earlier studies of antiferromagnetic spin chains
missed certain parity-breaking terms in the transition from
the discrete spin model to the continuum approximation. The
antiferromagnetic Heisenberg Hamiltonian has been mapped
to the nonlinear σ model for the continuous staggered order
parameter [24,25]. However, in Haldane’s seminal work on
large-spin Heisenberg AFMs [25], no apparent parity-breaking
terms survived the transition to the continuum model. In
Haldane’s mapping [33,34], the continuum field that is
conjugate to the antiferromagnetic order parameter describes
the dynamic magnetization only (see Sec. II D). Using a
slightly different parametrization of the antiferromagnetic
order and the magnetization field, Ivanov et al. [21,22]
later demonstrated that the energy functional based on the
one-dimensional antiferromagnetic Heisenberg model indeed
contains a parity-breaking term in the continuum limit and
that this term must be taken into account to describe the
equilibrium magnetization of a domain wall. The parity-
breaking term included in Refs. [21,22] is not equivalent
to the well-known “topological � terms” [35,36], which
arise in effective σ -model Lagrangians for one-dimensional
antiferromagnetic spin chains and are responsible for quantum
effects such as Haldane’s conjecture [25,33,36]. The recently
increased interest in AFMs as active spintronics components
has spawned a number of effective models for antiferromag-
netic dynamics [13,15–18]. These recent models mostly adopt
the nonlinear σ model without introducing a Hamiltonian
that includes parity-breaking terms that lead to the intrinsic
magnetization of antiferromagnetic textures. The absence of
parity-breaking terms in these models may be due to different
definitions of the continuum fields, or these terms may have
been disregarded in the transition to the continuum limit due
to specialized symmetry requirements, which only hold for
homogeneous AFMs. Whether the intrinsic magnetization of
extended two- and three-dimensional systems can lead to qual-
itatively new physics for the dynamics of antiferromagnetic
textures under the influence of external forces remains an open
question that we seek to address in this paper.

The intrinsic magnetization of antiferromagnetic textures is
small. A domain wall in a one-dimensional antiferromagnetic
spin chain exhibits intrinsic magnetization that is in total no
larger than the spin of one sublattice [20,21]. It is therefore
unlikely that such a small magnetic moment can be directly
detected in the near future. However, the presence of the small
spin of domain walls in one-dimensional spin chains manifests
itself through quantum effects [23,37]. In higher-dimensional
extended systems, such as synthetic AFMs, the magnetization
of a textured multilayer may be of appreciable size [38].
Furthermore, in thin films or in bulk AFMs, which is the focus
of our study, the intrinsic magnetization of a transverse domain
wall is additive in the perpendicular directions. The result is
a macroscopic magnetization that can be more easily excited
and detected and that can influence the dynamics of AFMs
beyond that of purely quantum effects.

The paper is organized as follows. In Sec. II, we take
the continuum limit of the Heisenberg Hamiltonian, describe
the origin of the intrinsic magnetization, and discuss the
consequences for the antiferromagnetic dynamic equations.
We also compare our model to Haldane’s alternative mapping

of the continuum fields. This comparison demonstrates that
the continuum fields in these two parametrization procedures
have critically different physical interpretations. In Sec. III,
we describe the magnetization profile of a domain wall and
discuss generalizations to higher-dimensionsal systems. We
show how the intrinsic magnetization leads to qualitatively new
physics and that the domain wall can be moved by a spatially
inhomogeneous magnetic field that couples to the intrinsic
magnetization. In Sec. IV, we present numerical results for the
motion and control of an antiferromagnetic domain wall and
show that we can create potential wells for the domain wall
with spatially constricted magnetic fields. In Sec. V, we discuss
the experimental consequences of the intrinsic magnetization
for extended systems in two (2D) and three (3D) dimensions.
Section VI concludes the discussion.

II. THEORY

Our starting point is the Heisenberg Hamiltonian due to
the exchange coupling between classical spin vectors on a
lattice [39]

H = J
�
�α,β�

Sα · Sβ , (1)

where the positive exchange energy J > 0 describes an
antiferromagnetic ground state. �α,β� denotes a sum over all
nearest-neighbor lattice sites described by the two sublattices
α and β, where each spin at α has Nn nearest neighbors of type
β, and vice versa. α and β are D-dimensional vectors, where
D is the dimensionality of the AFM. We proceed by describing
the simplest model, the D = 1 antiferromagnetic linear spin
chain with easy-axis anisotropy, and later generalize our results
to 2D and 3D in the Appendix. The focus of our subsequent
sections is on extended 3D AFMs in which the order parameter
varies along one dimension only.

A. Free-energy functional for 1D

We consider a linear spin chain with 2N atomic lattice
sites, where the spins on half of the lattice sites, denoted by
α, minimize their energy by pointing in the opposite direction
of the spins on their Nn = 2 nearest-neighbor lattice sites,
denoted by β, and vice versa. For the AFM, we impose the
boundary conditions that the spin on the left end of the spin
chain is of type α, whereas the right end of the chain is
occupied by a β site. Therefore, in the ground state, the AFM
is fully compensated, and the total spin vanishes. We define
the z axis as the magnetic easy axis. The classical Heisenberg
Hamiltonian including the easy-axis anisotropy is

H1D = J

N,N�
�α,β�

Sα · Sβ − K

⎛
⎝

N�
α

S2
αz +

N�
β

S2
βz

⎞
⎠, (2)

where K is the anisotropy energy. In typical easy-axis AFMs,
the exchange energy dominates, |J | � |K|. The classical
ground state of the Hamiltonian (2) is degenerate, (Sα,Sβ )0 →
±(Sẑ, − Sẑ), where S (in units of �) is the spin on a single
atomic lattice site. We now introduce the standard definitions
(see Sec. II D for a comparison with an alternative definition
that is occasionally mistaken to be equivalent to the present
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model) of the magnetic and staggered order parameters mi and
li on a two-sublattice linear lattice parametrized by i:

mi = Si
α + Si

β

2S
, (3a)

li = Si
α − Si

β

2S
, (3b)

where we have paired the sublattice spins Si
α and Si

β at unit
cell i running over a total of N antiferromagnetic unit cells. In
this convention, m2

i + l2i = 1 and the spins in unit cell i can be
expressed as follows:

Si
α = S(mi + li), (4a)

Si
β = S(mi − li). (4b)

After introducing the magnetization vector mi and the
staggered order parameter li , the Heisenberg Hamiltonian (2)
reduces to a sum over antiferromagnetic lattice points:

H1D = JS2
N−1∑

i

(mi − li)[(mi + li) + (mi+1 + li+1)]

+ JS2
(
m2

N − l2N
)

−KS2
N∑
i

[
(mi + li)2

z + (mi − li)2
z

]
. (5)

We continue by using the identities 2mimi+1 = m2
i +

m2
i+1 − (mi+1 − mi)2 and (limi+1 − mi li+1) = li(mi+1 −

mi) − mi(li+1 − li) to rewrite the bulk part of Eq. (5) as
follows:

H1D ≈ 2JS2
N∑
i

(
m2

i − l2i
)

+ JS2

2

N−1∑
i

[(li+1 − li)2 − (mi+1 − mi)
2]

+ JS2
N−1∑

i

[mi(li+1 − li) − li(mi+1 − mi)]

− 2KS2
N∑
i

(
m2

i,z + l2
i,z

)
, (6)

where we have disregarded the vanishingly small energy
contribution −JS2(m2

1 + m2
N − n2

1 − n2
N )/2 from the unit

cells at the edges.
Next, we go to the large-N limit and take the

continuum approximation, allowing us to write H1D ≈∫
(di/�)H(l,l�,m,m�), where � is the length of the antifer-

romagnetic unit cell and l� and m� are the (dimensionless)
spatial derivatives of the staggered field and the magnetization,
respectively. di is an infinitesimal length element along the spin
chain. For D = 1, � = 2d, where d is the nearest-neighbor
spacing in the linear chain. The energy density (apart from a

Sα Sβ

SαSβ …

…

Hα, β

Hβ,α 

FIG. 1. For a simple linear spin chain with antiferromagnetic
exchange coupling, the Heisenberg Hamiltonian is not invariant under
sublattice exchange, Sα ↔ Sβ , if the order parameter is spatially
inhomogeneous. (Top) A simplified sketch of a 6-spin 90◦ texture.
Exchanging the spins on sublattices α and β (bottom) creates
a more disordered phase that costs additional exchange energy,
hence, Hα,β < Hβ,α . In the continuum limit, this energy difference is
captured by the parity-breaking term in the antiferromagnetic energy
functional.

constant and in units of energy) is

H1D(l,l�,m,m�) =JS2[4|m|2+ |l�|2− |m�|2
+ (m · l�−l · m�)]−KS2[(l · ẑ)2+(m · ẑ)2].

(7)

We note that the fourth exchange term in Eq. (7) has an unusual
parity-breaking form [35,40] and is an odd function of the order
parameter l.

In the models of AFMs that we consider, the two-sublattice
linear lattice in 1D, the centered squared lattice in 2D,
and the body-centered-cubic lattice in 3D, the Heisenberg
Hamiltonian is not invariant under sublattice exchange (α ↔
β) if the order parameter is spatially inhomogeneous (see
Fig. 1). However, there is an ambiguity in the pairing of
spins Si

α and Si
β and the definition of the order parameter

li in Eq. (3b). One might as well choose l̃i = −li as the
order parameter, and consequently, one usually demands that
the bulk Hamiltonian is invariant under the transformations
li → −li and mi → mi [41] because the two possible choices
of the order parameter are physically equivalent. Under these
transformations, the definitions of Si

α and Si
β in Eqs. (4) also

change, and the fourth exchange term in Eq. (7) undergoes
an additional sign change. The energy functional is therefore
invariant with respect to the two equivalent definitions of the
order parameter but not invariant under sublattice exchange. In
the latter case, the ordering of the spins changes, resulting in a
larger exchange energy penalty for inhomogeneous AFMs. A
simplified sketch of this energy difference is shown in Fig. 1
for a 6-spin chain with a 90◦ texture. The permutation of the
two sublattices α and β leads to a more disordered phase that
costs additional exchange energy. This result generalizes to an
arbitrary number of spins in a linear textured spin chain.

To describe the order-parameter dynamics of the AFM, it
is useful to work in the exchange approximation [41] |J | �
|K| and consider slowly varying antiferromagnetic textures.
In this case, |m|2 � |l|2, and we can disregard terms that are
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of higher order than |m|2, such as the magnetic anisotropy
energy term and the magnetic stiffness term in Eq. (7). We
choose the spin chain axis to be along the z axis and introduce
the normalized staggered vector field n(z,t) ≡ l(z,t)/|l(z,t)|.
We can consequently write the energy density as a function
of the deviations ∂zn (≡ ∂n/∂z) and m from the ground state.
After integrating by parts, we arrive at the free-energy density
for the linear antiferromagnetic spin chain to the lowest order
in deviations from an equilibrium state [22]:

H1D(n,∂zn,m) = a

2
|m|2 + A

2
|∂zn|2 + L(m · ∂zn)

− Kz

2
(n · ẑ)2 . (8)

The equation has the following parameters: the homogeneous
exchange energy a = 8JS2, the exchange stiffness terms
A = �2JS2 and L = 2�JS2, and the anisotropy energy
Kz = 2KS2. Here, a finite L lifts the degeneracy of the
sublattice exchange.

B. Free-energy functional for D > 1

In the Appendix, we generalize the free energy of Eq. (8)
to 2D and 3D for the centered squared and the body-centered-
cubic unit cell, respectively. We find that the generalized free-
energy density in the exchange approximation is given by

H(n,∂in,m) = a

2
|m|2 + A

2

⎡
⎣�

i

|∂in|2 + 1

2

�
i �=j

(∂in · ∂j n)

⎤
⎦

+L
�

i

(m · ∂in) − Kz

2
(n · ẑ)2, (9)

where a = 4NDJS2, A = ND�2JS2/2, L = ND�JS2, Kz =
2KS2, and ND is the number of nearest neighbors. N1 = 2,
N2 = 4 for the squared lattice, and N3 depends on the
choice of unit cell, 6 for the simple cubic cell and 8 for
the body-centered-cubic cell. The stiffness part of the above
Hamiltonian density contains two apparent anisotropic terms:
∼(∂in · ∂j n) and ∼(m · ∂in). However, in the following, we
show that after eliminating the degrees of freedom associated
with m, the effective Lagrangian reduces to the nonlinear σ

model and the resulting antiferromagnetic spin-wave disper-
sion remains isotropic.

This isotropic dispersion is in contrast to the anisotropic
dispersion relation resulting from the exchange term identified
by Lifshitz and Pitaevskii [41], which is similar but not
identical to the third term in Eq. (9). Lifshitz and Pitaevskii
consider only the small deviation n⊥ (n → n0 + n⊥) from the
equilibrium homogeneous antiferromagnetic spin configura-
tion and add the exchange term ∼(m · ∂zn⊥ − n⊥ · ∂zm) to the
free-energy density. Compared to Eq. (7), this also results in a
surface anisotropy ∼(n0 · ∂zm), which (after integration over
the space) favors magnetization buildup on the edges of the
AFM. Consequently, the dispersion relation for this model is
anisotropic. The parity-breaking exchange term (∼L) in the
above free-energy density (7) differs from the term of Lifshitz
and Pitaevskii because it involves n rather than n⊥ and does not
violate the isotropic dispersion relation of antiferromagnetic
spin waves due to small variations in the staggered field n. This

is also the case for D > 1. Neglecting the parity-breaking term
as being of leading order in the exchange energy would imply
that an AFM at equilibrium exhibits no intrinsic magnetization,
even when textures in the staggered field are present.

C. Lagrangian density and equations of motion

The equations of motion for the staggered field n and
the magnetization field m can be found from, e.g., linear
combinations of the equations of motion for the sublattice
spins Sα and Sβ [20]. Equivalently, we may proceed by
constructing the Lagrangian density and directly compute
the dynamic equations for n and m from the variation of
the Lagrangian with respect to these fields. Our starting
point is the generalized free-energy density in the exchange
approximation (9). The Lagrangian density can be constructed
as L = K − H, where K is the kinetic energy term. Analogous
to the procedure for constructing the kinetic term for a single
spin in a ferromagnet [42,43], K can be constructed from
the Berry phase of the spin pair Sα + Sβ that constitutes the
antiferromagnetic unit cell:

�
K dV = −S�

⎡
⎣�

α

Aα · Ṡα +
�

β

Aβ · Ṡβ

⎤
⎦, (10)

where it is convenient to choose the gauge potential Aα(β)

such that the spin-pair Berry phase vanishes in the strictly
antiparallel configuration Sα = −Sβ . One such choice is
Aα(β) = −φ̂α(β) cos θα(β)/ sin θα(β) in the spherical coordinate
system, where θ is the polar angle and φ̂ is a unit vector
along the azimuth. This gauge is identical to that which is
normally used to describe the kinetic energy of a single spin in
ferromagnets [43] and generalized to a two-sublattice model
with antiparallel spin configuration. By expanding the spin-
pair Berry phase in small deviations from the antiparallel con-
figuration, θβ → π − (θα + δθ ) and φβ → π + (φα + δφ),
and transferring back to the [n,m] basis, the kinetic term in
the continuum approximation is given by [21,25]

K = ρm(ṅ × n), (11)

where ρ = 2S� is the magnitude of the staggered spin angular
momentum per unit cell and we have disregarded terms of the
order |m|4 and higher.

Varying the Lagrangian with respect to the magnetization
m and the staggered field n gives the coupled Landau-Lifshitz
equations of motion

ṅ = ωm × n, (12a)

ṁ = ωn × n + ωm × m, (12b)

where damping is typically phenomenologically intro-
duced [13]. In the transverse basis, where |n|2 = 1, no term
of the form ∼(ωn × m) (as present in the dynamics of l in,
e.g., Ref. [10]) appears in Eq. (12a), which is valid in the
exchange approximation and includes terms up to second order
in small deviations from equilibrium. The effective magnetic
and staggered fields (in units of s−1) are defined as functional
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derivatives of the total free energy H :

ρωm ≡ −δH

δm
= −am − L∂in, (13a)

ρωn ≡ −δH

δn
= A

(
∇2n + 1

2
∂i∂j n

)

+L∂im + Kz(n · ẑ)ẑ, (13b)

where we have defined the sum over spatial derivatives in all
directions as ∂i ≡ ∑

i=x,y,z ∂/∂i and ∂i∂j ≡ ∑
i �=j ∂2/(∂i∂j ).

In the Appendix, we discuss how these anisotropic differential
operators arise in 2D and 3D.

In the absence of external forces in the effective magnetic
field, Eqs. (12a) and (13a) give [21]

m = ρ

a
ṅ × n − L

a
∂in, (14)

which indicates that the magnetization field m is simply a slave
variable that follows the temporal and spatial evolution of the
staggered field n. We note that if we neglect the parity-breaking
term in the free energy (L → 0), the intrinsic magnetization of
a textured AFM vanishes at equilibrium. Our analysis shows
that for our particular parametrization of the continuum fields,
this parity-breaking term is an important part of the transition
from the discrete spin model to the continuum approximation
and cannot be disregarded.

Equation (14) allows us to eliminate m and write an
effective Lagrangian density for the staggered field and its
derivatives as

L(n,ṅ,∂in) = ρ2

2a
|ṅ|2 − A − L2/a

2

∑
i

|∂in|2

+ ρL

a

∑
i

∂in · (n × ṅ) + Kz

2
(n · ẑ)2. (15)

This Lagrangian density describes the anisotropic nonlinear σ

model with a kinetic topological term (third term) [25,40,44–
47]. This topological term is a by-product of the elimination of
m from the Lagrangian. It can be shown that this term has the
form of a total derivative [40]. Consequently, it has no effect
on the effective equations of motion for n or the domain-wall
dynamics that we describe in the next sections. We will not
discuss in any detail the quantum effects of the topological
term in the following.

D. Comparison with Haldane’s mapping

We digress for a moment to compare the one-dimensional
model described above with a commonly used alternative
definition of the continuum fields known as Haldane’s map-
ping [25,33,34] of the antiferromagnetic order parameter. We
include this comparison because the different parametrizations
are not equivalent and are, therefore, recurrent sources for
confusion. In contrast to the Hamiltonian approach described
by Eqs. (3) and (4), Haldane’s parametrization maps each spin
in the spin chain at cite i onto two continuum fields:

Si/S = (−1)i ñi

√
1 − |m̃i |2 + m̃i , (16)

Hamiltonian approach:

Haldane’s mapping:

Si
α Si

β Si+1
α Si+1

β

S2i-1 S2i S2i+1 S2i+2

……

[ni, mi] [ni+1, mi+1]

FIG. 2. In the Hamiltonian approach (top), Eqs. (3) define values
for the staggered field ni and the magnetization field mi at the center of
every antiferromagnetic unit cell labeled by i. In Haldane’s mapping
(bottom), every single spin is mapped onto two continuum fields: the
Néel field ñ and the “canting” field m̃.

where ñ is the unitary Néel field and m̃ is the “canting”
field. We note that this mapping introduces extra degrees of
freedom, which must subsequently be reduced by limiting the
Fourier components of the fields ñ and m̃ to include only
long-wavelength excitations [34].

Figure 2 compares the labeling of the spins in the Hamilto-
nian approach used in this work with that of Haldane’s map-
ping. By equating the expressions for Si

α and Si
β in Eqs. (4) and

their corresponding expressions in Haldane’s parametrization,
we find the relationship between the continuum fields in the
two different parametrizations:

mi + ni

√
1 − |mi |2 = −ñ2i−1

√
1 − |m̃2i−1|2 + m̃2i−1, (17a)

mi − ni

√
1 − |mi |2 = ñ2i

√
1 − |m̃2i |2 + m̃2i . (17b)

In the exchange approximation, m � n and m̃ � ñ. Keeping
only the lowest-order contributions in the magnetization m
and the canting field m̃, it follows that

ni ≈ − 1
2 (ñ2i−1 + ñ2i) + 1

2 (m̃2i−1 − m̃2i), (18a)

mi ≈ − 1
2 (ñ2i−1 − ñ2i) + 1

2 (m̃2i−1 + m̃2i), (18b)

where we have disregarded terms of the order |m|2 and |m̃|2
and higher.

For small-angle spatial variations in the continuum fields,
we use the gradient approximation to find the field values
for ñ and m̃ at the center of each unit cell: ñi+1/2 ≈ ñi +
(�/4)∂zñi and m̃i+1/2 ≈ m̃i + (�/4)∂zm̃i , where �/2 = d

is the nearest-neighbor distance and ñ(m̃)i+1/2 represents the
Néel (canting) field at the midpoint between the spins Si and
Si+1. Inserting these lowest-order gradient approximations
into Eqs. (18) results in a one-to-one relationship between
the continuum fields of the Hamiltonian approach and Hal-
dane’s parametrization. Correspondingly, the mapping be-
tween the two different representations reduces to n → −ñ +
(�/4)∂zm̃ + O(|m̃|2) and m → m̃ − (�/4)∂zñ + O(|m̃|2).

It is critically important that the continuum fields ñ and m̃
of Haldane’s mapping are not identical to the staggered and
magnetization fields n and m used in this work. By inserting
the mapping between the two parametrizations into the energy
functional in Eq. (8) and keeping only terms of the order |m̃|2
in the exchange approximation, we find the continuum limit
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energy functional of Haldane’s mapping:

HHal(ñ,∂zñ,m̃) = a

2
|m̃|2 + A

2
|∂zñ|2 − Kz

2
(ñ · ẑ)2. (19)

This result conclusively shows that the parity-breaking ex-
change term in Eq. (8), which is a result of the procedure
of breaking the lattice into spin pairs, vanishes after a
suitable transformation of the continuum fields, e.g., m →
m̃ − (�/4)∂zñ. In other words, when applying Haldane’s
mapping procedure, the parity-breaking exchange term does
not appear in the energy functional. An overall requirement,
however, is that the physics remains the same, including the
existence of the intrinsic magnetization.

Although the Hamiltonian approach used in this work and
Haldane’s mapping are both valid continuum representations
of spin systems with antiferromagnetic exchange coupling,
a crucial difference exists for the physical interpretations of
the continuum fields, which are not equivalent in the two
representations. The equilibrium value of the canting field m̃ of
Haldane’s mapping vanishes, also when ñ is inhomogeneous.
Therefore, m̃ represents the dynamic magnetization induced
by temporal variations of the order parameter ñ and not the
total magnetization. Consequently, the coupled equations of
motion for ñ and m̃ are not of the same form as Eqs. (12)
and (13). In particular, the expression for the canting field
m̃ ∼ ˙̃n × ñ, which is analogous to Eq. (14), does not include
a term proportional to the gradient of ñ. This fact may be
an important reason why the intrinsic magnetization is easily
missed in models based on Haldane’s mapping.

In the Hamiltonian approach, on the other hand, m can
be interpreted as a magnetization density in the sense that
the total accumulated spin (both intrinsic and dynamical) of
the AFM can be found from integration, M/S = ∫

m dV . For
antiferromagnetic textures, this integral is generally nonzero
even for static spin systems. Although the canting field m̃ in
Haldane’s mapping does not include the intrinsic contribution
to the magnetization density, the total spin can instead be
found from the relation M/S ≈ ∑2N

i=1[(−1)i ñ(zi) + m̃(zi)].
The intrinsic magnetization can be identified as arising from
the first terms in the sum. For a slowly varying ñ in, e.g., the
ẑ direction,

∑2N
i=1(−1)i ñ(zi) · ẑ ≈ [ñz(z1) − ñz(z2N )]/2 [44],

which is generally nonzero for textured AFMs. In the following
analysis, we continue using the Hamiltonian approach, in
which the continuum field m is interpreted as the total
magnetization density.

E. Antiferromagnetic spin waves and spin current

To study small harmonic excitations from a homogeneous
AFM, we construct the effective equation of motion for the
staggered vector field n by combining Eqs. (12a) and (12b)
while retaining the constraint |n|2 = 1:

n × (n̈ × n) = 1

ρ2
n × [(aA − L2)∇2n + aKz(n · ẑ)ẑ] × n.

(20)
The parity-breaking exchange term leads to the renormaliza-
tion of the exchange stiffness A → A∗ = (A − L2/a) = A/2
but otherwise leaves the equation of motion (20) invariant in
linear response [48]. The topological term in Eq. (15) has no
effect on the effective equations of motion for n, as expected.

Insertion of a small harmonic excitation from the ground
state in time and space n(r,t) → ẑ + δn⊥ exp [i(ωt − k · r)]
into Eq. (20) results in the usual “relativistic” antiferromag-
netic dispersion relation

ω2 = 1

ρ2
[aA∗k2 + aKz], (21)

where k = |k|. In the isotropic limit Kz → 0, which results in
the familiar linear dispersion

ωi = ck, (22)

where c = NDSJ�/(2�) is the spin-wave phase velocity. For
� = 2d/

√
D, where d is the nearest-neighbor distance, and

for hypercubic lattices, where ND = 2D, Eq. (22) agrees with
Eqs. (13) and (20) in the semiclassical treatment in Ref. [39],
as well as with Holstein-Primakoff calculations [49,50] and
Haldane’s D = 1 result [25]. We note that the parity-breaking
term (∼L) does not lead to an anisotropic dispersion relation,
such as the term in Lifshitz and Pitaevskii [41]. On the contrary,
the inclusion of such a term is important to arrive at the correct
dispersion relation in the classical continuum limit.

The intrinsic magnetic moment of antiferromagnetic tex-
tures will necessarily influence how spin currents in inhomo-
geneous AFMs are described. A continuity equation for the
spin angular momentum transfer in the AFM caused by the
exchange interaction can be constructed from Eq. (12b) as
ρṁ + ∑

i ∂iJs,i = 0. The spin current polarized along i is

Js,i = A∗∂in × n − ρL

a
ṅ, (23)

where we have used Eq. (14) to eliminate m. Equation (23)
explicitly shows that a time-varying antiferromagnetic texture
is equivalent to spin angular momentum transfer, a relationship
that can be missed by models for the staggered dynamics
that disregard the intrinsic magnetization. This result may
have implications for antiferromagnetic spin pumping from
textures [12] because the collective motion of the antiferro-
magnetic order parameter is equivalent to a current of spin
angular momentum. In one-dimensional textures, ρL/a =
S�d, thus indicating that textures that oscillate at frequency
T −1 produce a spin-current corresponding approximately
to a single spin moving one lattice spacing per period of
oscillation T .

F. Consequences for staggered dynamics

In effective models for the dynamics of the staggered vector
field n, the magnetization field m plays the role of a slave
variable that follows the temporal and spatial evolution of n.
When no external forces couple directly to the intrinsic spin
in the AFM, the parity-breaking term in the energy functional
(∼L) only leads to a renormalization of the exchange stiffness
and has no other effect on the dynamic equations. However,
we show in the following that by including external magnetic
fields or spin-polarized currents, the dynamics of the anti-
ferromagnetic order parameter can also be altered indirectly
through the excitation of the magnetization density field m.

The spin-transfer torque on ferromagnetic textures is nor-
mally considered a second-order effect in AFMs when acting
only on the small magnetization m(t) induced by the time
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variation of the staggered field ṅ. If AFMs also exhibit intrinsic
magnetization, the spin-transfer torque from spin-polarized
currents on the magnetization m may become more important.
However, because the magnetization is first order in the
spatial variation of the staggered field m ∼ ∂in, the Berger
spin-transfer torques [Eqs. (5) and (6) in Ref. [51]] are of the
order

√
K/J smaller than the driving forces acting directly

on textures in the staggered field, first identified in Ref. [16].
In this case, the intrinsic magnetization of AFMs leads to
higher-order corrections to the current-induced torques that
couple directly to the staggered field. In antiferromagnetic thin
films with strong surface anisotropy or in special cases in which
a strained geometry suppresses the torques on the staggered
field, the Berger torques on the textured magnetization could
become important. We will not discuss the effects of spin-
polarized currents any further in the following.

Instead, we focus on the effect of an external magnetic
field H that couples directly to the intrinsic magnetization
of antiferromagnetic textures. To illustrate this phenomenon,
we add the Zeeman interaction to the free-energy density
HH = H − ργ (H · m), where γ is the gyromagnetic ratio.
The external magnetic field induces a small magnetic moment
density in the AFM, and the magnetization field m is altered
according to

m = ρ

a
ṅ × n − L

a
∂in + γρ

a
n × (H × n), (24)

where the cross products enforce the constraint n · m = 0.
Inserting this result in the Lagrangian gives the effective
Lagrangian density for an AFM under the influence of an
external magnetic field H:

LH = ρ2

2a
(ṅ − γ H × n)2 − A∗

2

∑
i

(∂in)2

+Kz

2
(n · ẑ)2 + ρL

a

∑
i

∂in · (n × ṅ)

−γρL

a

∑
i

H · ∂in. (25)

This Lagrangian density agrees with that proposed in Ref. [48],
with the exception of the second to last topological term
and the last term, which couples the external magnetic field
and textures in the antiferromagnetic order. In the following,
we show how this coupling between magnetic fields and the
gradient of the staggered field allows the movement of domain
walls in AFMs to be controlled by spatially varying magnetic
fields. This result has not been reported previously.

Utilizing the method of collective coordinates [15,52],
we assume that the temporal dependence of the staggered
vector field n(r,t) is held by a set of coordinates {aj (t)}
that describe the time evolution of textures in the AFM,
such that n(r,{aj (t)}). In this case, the time derivative of the
staggered field can be written as ṅ = ∑

j ȧj ∂aj
n. We earlier

demonstrated that in AFMs, the collective coordinates can be
viewed as quasiparticles with an effective mass reacting to
external forces and following Newton’s second law [15]. The

equation of motion for the collective mode aj is

Mij

(
äj + aα

ρ
ȧj

)
= F i, (26)

where Mij = (ρ2/a)
∫

dV (∂ai
n · ∂aj

n) is the effective mass,
α is the phenomenological Gilbert damping parameter for
AFMs, and F i are the forces that act on the collective
excitations. F i = F i

int + F i
ext can be split into the internal

exchange forces F i
int = ∂ai

H , which are derivatives of the free
energy with respect to the collective modes, and the external
forces F i

ext. We focus here on an external magnetic field as the
only external force that acts on the AFM, giving

F i
ext = ργ

a

∫
dV [ρḢ · (n × ∂ai

n) + L(∂ai
n · ∂iH)], (27)

where, in addition to the previously identified reactive force
on the collective coordinates in AFMs due to time-varying
magnetic fields [15], we now identify a new force induced
by a spatially inhomogeneous magnetic field. This force
will necessarily influence how antiferromagnetic textures are
excited by external magnetic fields.

III. DOMAIN-WALL DYNAMICS

In this section, we return to systems where the order
parameter varies along one dimension and discuss how the
intrinsic magnetization influences the motion and detection
of solitons in quasi-one-dimensional AFMs. Although the
texture is assumed to vary only along one direction, the nearest
neighbors to each spin may also exist along two (2D) or
three (3D) axes. Later, we show how a Néel domain wall
can be accelerated and controlled by a stationary and spatially
inhomogeneous magnetic field.

A. Antiferromagnetic domain walls

In one-dimensional spin chains, the spatial variation of the
staggered field n is constricted to the spin-chain axis ẑ. At
equilibrium, the time evolution of the staggered field and the
magnetization vanishes, ṅ = 0 and ṁ = 0, and Eq. (20) gives

n0 × [
A∗∂2

z n0 + Kz(n0 · ẑ)ẑ
] × n0 = 0. (28)

By introducing spherical coordinates for the
normalized staggered vector field as n0(z) =
[sin θ0 cos φ0, sin θ0 sin φ0, cos θ0], a series of solutions
for the above equation can be found from

∂zφ0 = 0, (29a)

∂2
z θ0 = 1

λ2
sin θ0 cos θ0, (29b)

where λ = √
A∗/Kz. The trivial solution to Eqs. (29)

is θ0(z,t) → 0, which corresponds to a homogeneous
AFM where all the spins are polarized along the posi-
tive/negative z direction. The excited state is given by θ0 =
2 arctan[exp(z/λ)], the Walker domain wall [53]. In this Néel
configuration, sin θ0 = ±sech(z/λ) and cos θ0 = ±tanh(z/λ),
which ensures that n2

0 = 1. λ is the half-width of the domain
wall. Inserting the results from the Heisenberg model, we
find that the domain-wall half-width λ = d

√
J/K is given
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FIG. 3. Sketch of the intrinsic magnetization m(z) (red) (not to
scale) of one-dimensional (a) Néel and (b) Bloch (not used in the
calculations) domain walls in the order parameter n(z) (green). The
equilibrium magnetization profile was calculated from Eq. (14). We
note that the magnetization is so small that in a one-dimensional
system, the domain-wall spin must be treated quantum mechanically.
However, for higher-dimensional extended systems, the total spin
of domain walls could be of appreciable size because the intrinsic
magnetization is additive in the perpendicular directions.

by a competition between the exchange and anisotropy energy
scales, as expected.

The intrinsic magnetization associated with the antiferro-
magnetic domain wall at equilibrium is given by Eq. (14) when
ṅ = 0:

m0 = −L

a
∂zn0 = ± d

2λ

⎡
⎢⎣

sech(z/λ) tanh(z/λ) cos φ0

sech(z/λ) tanh(z/λ) sin φ0

−sech2(z/λ)

⎤
⎥⎦, (30)

where the sign determines whether the Néel domain wall
is head-to-head or tail-to-tail. The magnetization profile of
a head-to-head Néel domain wall and the profile of an
antiferromagnetic Bloch domain wall are presented in Fig. 3.
The total magnetic moment in the z direction contained in a
head-to-head domain wall configuration is [20,21]

Mdw
z = S

d

�
dz(m0 · ẑ) = S. (31)

This result demonstrates that domain walls in the antifer-
romagnetic order induce a finite magnetization proportional
to the spatial derivative of the staggered field and that
the direction of the magnetization depends crucially on the
boundary conditions of the AFM, e.g., in the case of the Néel
wall whether it is head-to-head or tail-to-tail. This result is
intuitively easy to appreciate: because both edge spins (at an α

and β site) point in the same direction, the 180◦ twist turns the
homogeneous spinless AFM into a spin-S object. The domain
wall is a nonlinear excitation of the homogeneous AFM and
carries the spin S. The creation of a domain wall can therefore
be interpreted as a twisting of the homogeneous spinless AFM
into a configuration with a finite spin S that is located around
the domain-wall center.

A consequence of the intrinsic magnetization of domain
walls in one-dimensional spin chains is that for AFMs with
half-integer S, the ground state, which is doubly degenerate,

occurs for stationary domain walls [21,37] and not for
precessing domain walls, as predicted in Ref. [25]. Another
consequence is that the motion of domain walls in AFMs is
equivalent to spin angular momentum transfer, as confirmed
by Eq. (23). The identification of antiferromagnetic domain
walls as single-spin carriers may become important for future
applications in antiferromagnetic spintronics.

B. Domain-wall motion

We consider a (slowly) moving tail-to-tail domain-wall pro-
file n[z,an(t)] corresponding to the dynamic soliton solution
θ (z,t) → 2 arctan(exp{[z − rw(t)]/λ}) and φ(t) → φw(t). The
domain-wall shape is assumed to be rigid, so that the temporal
dynamics is held by the collective coordinates {an(t)} →
{φw(t),rw(t)}, the domain-wall tilt angle with respect to the x-z
plane, and the position of the domain-wall center, respectively.
Dissipation in AFMs is typically added in a phenomenological
manner [13,18] and is naturally incorporated in the collective
coordinate approach [15]. We add to the system a spatially
varying magnetic field in the ẑ direction, H = {0,0,Hz(z)}.
To the lowest order in the small external field and the
velocities φ̇w and ṙw, we find that φ̈w vanishes (although a
constant precession φ̇w �= 0 is allowed in one-dimensional
easy-axis systems) and that the domain-wall center coordinate
is accelerated according to

r̈w + aα

ρ
ṙw = − γL

πρλ
H int

z , (32)

where α is the dimensionless Gilbert damping parameter of
the AFM. Depending on the spatial profile of the magnetic
field in the vicinity of the domain wall, the center coordinate
will feel a force. The integrated magnetic field contribution is

H int
z =

�
dz

�
sech

�
z − rw

λ

�
tanh

�
z − rw

λ

�
Hz(z)

�
, (33)

where any noneven profile Hz(z) around the domain-wall
center coordinate rw gives rise to a finite acceleration of
the domain wall. A homogeneous magnetic field does not
accelerate the domain wall. In the steady state, the domain-wall
velocity saturates at ṙw = γLH int

z /(πaαλ). We note that the
domain-wall velocity depends on the spatial distribution of the
external magnetic field. This dependence opens up the possibil-
ity that nanoscale magnetic probes can accurately control the
position of domain walls in, e.g., antiferromagnetic nanowires.
In particular, a spatially constricted magnetic field can act
as a potential well for the domain wall. In two-dimensional
antiferromagnetic thin films, a spatially concentrated magnetic
probe may attract spins from the edges of the AFM to form
vortex states (see Sec. V).

IV. NUMERICAL RESULTS

To conceptually test the effect of a spatially inhomogeneous
magnetic field on the dynamics of an antiferromagnetic
domain wall, we have conducted numerical simulations of
generalized versions of Eqs. (12a) and (12b) in which we
have phenomenologically included dissipation as in Ref. [13].
We write the equations of motion in dimensionless form by
scaling the time axis by t̃ = ρ/Kz and the spatial axis by
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FIG. 4. (a) Magnetic field strength as a function of distance
along the spin chain. The magnetic field has a constant gradient of
approximately 0.4 mT per lattice constant. (b) Time evolution of an
antiferromagnetic domain wall moved by the magnetic field gradient.
For clarity, only the region z �[−25,25] is shown. The domain wall
slows down due to the finite dissipation when it reaches the region
of the homogeneous external field. The maximum magnetic field
strength is H max ≈ 10 mT, and the Gilbert damping constant is set to
α = 0.01.

the nearest-neighbor distance d . We solve the dimensionless
equations of motion using the numerical method of lines with
an adaptive time control. The system size is z �[−500,500]
with the boundary conditions that nz(−500) = −1 and
nz(500) = 1.

Although domain walls in insulating AFMs, such as
NiO, are approximately 100 nm wide [29], we consider
here the much shorter and more technologically important
domain walls observed in antiferromagnetic Fe monolayers
on W(001) [27], for which the geometric anisotropy is
considerably larger. In such systems, the domain-wall widths
are only a few lattice spacings and the intrinsic magnetization
is therefore relatively more important. For spin- 1

2 particles, for
which the anisotropy energy per atom is 2.4 meV [54], the
time unit t̃ ≈ 1 ps, the velocity unit ṽ = d/t̃ ≈ 300 ms−1, and
the external field unit h̃ = ργ/Kz ≈ 0.3 T.

Figure 4 presents the motion of a domain-wall with
half-width λ = 4d due to a constant magnetic field gradient.
Because the domain-wall spin in this particular Néel domain
wall is −S, the wall drifts toward lower magnetic fields
to minimize its energy. The domain wall quickly reaches
a steady-state velocity of approximately 50 ms−1. Figure 5
presents how spatially concentrated magnetic fields can control
and pin the position of the domain wall. By switching the
pinning potential from the left to the right side of the domain
wall, the position of the wall can be accurately controlled. The
velocity of the center coordinate reaches more than 100 ms−1,
and the transition from the left to the right pinning potential
occurs in less than 100 ps.
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FIG. 5. (a) Magnetic field potential wells as a function of distance
along the spin chain. (b) Time evolution of an antiferromagnetic
domain wall controlled by the magnetic field potential wells. At t = 0,
the domain wall is attracted toward a potential well at z− = −10 due
to a spatially concentrated magnetic field in the ẑ direction with
the spatial profile Hz = H0sech[(z − z−)/10]ẑ. In the time interval
t = 140 → 160, the potential well to the left is turned off, and a
similar magnetic field-induced potential well is turned on to the right
at z+ = 10.

V. HIGHER-DIMENSIONAL EXTENDED SYSTEMS

In this section, we discuss the possible experimental
consequences for higher-dimensional textured systems, which
typically extend in one or two perpendicular directions to the
texture gradient axis. In such systems, the intrinsic magne-
tization can add up to a macroscopic number that is much
larger than the spin on one atomic site. We also discuss the
intrinsic magnetization of vortex states of the staggered order,
which are two-dimensional analogs of the domain wall in the
one-dimensional spin chain. At the end, we briefly discuss the
effects of pinning sites on the domain-wall dynamics.

A. Antiferromagnetic vortex states

For D = 2 and in quasi-two-dimensional systems, such
as antiferromagnetic thin films, nontrivial topological objects
such as vortices [55] can form due to DM fields or external
pinning. Figure 6 shows the intrinsic magnetization m(x,y)
associated with the spatially inhomogeneous staggered vector
field of such a two-dimensional object. The magnetization
profile is calculated from Eq. (14). We note that the intrinsic
spin of the vortex structure can be interpreted as a twisting
of the spins in the homogeneous spinless AFM induced by
spin rotations on the corners into a state with a finite spin
located around the vortex core. The staggered vector field
n(x,y) of this type of vortex structure is rotationally invariant
around the vortex core along an axis normal to the x-y plane.
The underlying spin structure, however, is not rotationally
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FIG. 6. (a) Sketch of a two-dimensional antiferromagnetic vortex
structure in the staggered order parameter n(x,y) (blue vector field).
The portions of the staggered field pointing in the perpendicular
direction close to the vortex core have been omitted for clarity. (b)
The resulting magnetization density profile m(x,y) (red vector field,
not to scale) of the vortex state, calculated from Eq. (14). This intrinsic
magnetization can be interpreted as a rearrangement of the spins on
the corners so that the center of the vortex structure acquires a finite
spin. (c) A simplified sketch of a vortex structure with six spins
along each edge ordered in centered squared unit cells with α (blue
arrows) and β (red arrows) sites. Although the vortex structure in
the continuous staggered field appears invariant under the rotation
of an arbitrary angle around the vortex core, the underlying spin
structure is only invariant under axis inversion [x̂,ŷ] → [−x̂, − ŷ].
The total integrated spin of the vortex structure is S, such as for the
one-dimensional domain wall. The direction of this intrinsic spin is
determined by the boundary conditions of the AFM.

invariant, which is captured by the finite magnetization density
m(x,y) of the vortex. The total spin of the vortex is S, as in the
case of a domain wall, and the direction of the intrinsic spin
depends crucially on the boundary conditions of the AFM, e.g.,
induced via exchange bias pinning to ferromagnetic neighbors.

The topological term in the effective Lagrangian den-
sity (15) for the staggered vector field n can possibly indirectly
influence the dynamics of two-dimensional objects in the
order parameter such as vortices or skyrmions. However,
the complex two-dimensional dynamics of such topological
objects is beyond the scope of this paper and will not be
discussed further.

B. Extended domain walls in 2D and 3D

Because the intrinsic spin of one-dimensional domain walls
and two-dimensional vortices totals no more than the spin on a
single atomic lattice site S, it is unlikely that the intrinsic mag-
netization associated with these antiferromagnetic textures can
be reliably detected in the near future. Furthermore, to predict
the correct excitation scheme of antiferromagnetic solitons,
the intrinsic spin must be treated quantum mechanically
because quantum fluctuations become important [21]. In
higher-dimensional systems such as thin films or bulk AFMs,
however, domain walls are not purely one-dimensional objects.

x

y

x

y

(a) (b)
n(x,y) m(x,y)

y

FIG. 7. (a) Sketch of a domain wall in the staggered order
parameter n(x,y) (blue vector field) in a two-dimensional AFM,
e.g., a nanostrip. The domain-wall configuration is repeated in the
perpendicular direction. (b) The magnetization vector field m(z,y)
(red vector field, not to scale) calculated from Eq. (14). Each spin
chain along the horizontal direction will contribute the spin Sx̂ to the
total spin of the two-dimensional domain-wall structure.

Although the order parameter can be defined as varying along
one axis only, the nearest neighbors of each spin can exist along
two (2D) or three (3D) perpendicular axes. In such systems, the
intrinsic magnetization of the domain wall accumulates over
the total number of spin chains that constitute the domain-wall
structure. An example of the intrinsic magnetization of such
an extended domain-wall structure in, e.g., a nanostrip is
presented in Fig. 7.

In bulk AFMs with domain structures in the order pa-
rameter, the intrinsic magnetization forms planes along the
domain boundaries. The total spin of these magnetization
planes can be of appreciable size. In addition, for synthetic
antiferromagnetic superlattices, in which the magnetization of
each single ferromagnetic layer is much larger than S, the
intrinsic magnetization associated with magnetic textures is
accordingly larger and may be detectable [38].

C. Effect of pinning sites on domain-wall dynamics

Pinning sites for domain walls can arise from impurities or
crystal defects in the underlying lattice of AFMs. Although
several studies have found that pinning effects in AFMs are
small [56–58], dislocations and impurities diffuse the effects
on a single spin. In quasi-one-dimensional spin chains, the
introduction of a single impurity atom can be enough to destroy
long-ranged antiferromagnetic order and domain-wall con-
figurations. From such a perspective, the scenario studied in
Sec. IV requires a perfect spin chain in strictly one-dimensional
systems. However, because three-dimensional domain bound-
aries are typically sums of many one-dimensional spin chains,
we expect the effects of pinning from impurities to be sig-
nificantly smaller for domain-wall systems that extend in the
perpendicular directions than for one-dimensional spin chains.

VI. CONCLUSION

Starting from the discrete Heisenberg Hamiltonian
with antiferromagnetic exchange coupling and easy-axis
anisotropy, we have rederived the continuum limit of the
free-energy functional in the exchange approximation and
conclusively shown that textures in the antiferromagnetic
order exhibit intrinsic magnetization. In recent effective

104408-10



INTRINSIC MAGNETIZATION OF ANTIFERROMAGNETIC . . . PHYSICAL REVIEW B 93, 104408 (2016)

models for the dynamics of the antiferromagnetic order
parameter, this intrinsic magnetization has been mostly
disregarded. By comparing the Hamiltonian approach that
we apply in this paper with a commonly used alternative
parametrization procedure called Haldane’s mapping, we have
shown that the continuum fields of the two parametrization
procedures have crucially different physical interpretations.
As a result, the intrinsic magnetization can be easily missed
in continuum models based on Haldane’s mapping.

We have demonstrated that parity-breaking terms in the
energy functional influence the dynamics of textured AFMs
affected by external forces that couple directly to the intrinsic
magnetization. For extended domain walls in 2D/3D, the in-
fluence of the intrinsic magnetization on the texture dynamics
goes beyond that of the quantum effects observed for one-
dimensional spin chains. By utilizing the method of collective
coordinates, we have shown that a spatially inhomogeneous
magnetic field represents a reactive force on antiferromagnetic
textures and can move a domain wall in an antiferromagnetic
nanowire. This effect is directly linked to the intrinsic
magnetization of the domain wall. Numerical simulations of
the coupled equations of motion for the staggered field and the
magnetization field confirmed that a spatially inhomogeneous
magnetic field can act as a potential well for the domain wall.
Finally, we have discussed how the intrinsic magnetization
of antiferromagnetic textures, which for one-dimensional
domain walls are not larger than the spin on one atomic
site, can be experimentally exploited in 2D and 3D. In such
higher-dimensional real systems the intrinsic magnetization
accumulates in the perpendicular directions and the total spin
can, therefore, be of appreciable size and may be detectable.
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APPENDIX: ENERGY FUNCTIONAL FOR D > 1

In this Appendix, we expand our calculation of the free-
energy functional of AFMs to two and three dimensions
to disclose the form of the parity-breaking term in higher
dimensions. For D = 2, we use the centered rectangular unit
cell, with two sublattices within each unit cell. Starting with
Eq. (1), we now assume that α and β are two-dimensional
vectors and that the coordinate pair {i,j} unambiguously
defines all antiferromagnetic unit cells. Next, we define

mi,j = Si,j
α + Si,j

β

2S
, (A1a)

li,j = Si,j
α − Si,j

β

2S
, (A1b)

Si,j
α = S(mi,j + li,j ), (A1c)

Si,j

β = S(mi,j − li,j ), (A1d)

where we must take into account the equivalence of inter-
changing li → −li , such as in the one-dimensional derivation.
The Heisenberg Hamiltonian can be written as a sum over
antiferromagnetic unit cells in the perpendicular i and j

directions

H2D = JS2
N−1,N−1∑

i,j

(mi,j − li,j )[(mi,j + li,j )

+ (mi+1,j + li+1,j ) + (mi,j+1 + li,j+1)

+ (mi+1,j+1 + li+1,j+1)]

−KS2
N,N∑
i,j

[
(mi,j + li,j )2

z + (mi,j − li,j )2
z

]
, (A2)

where we have disregarded a small energy contribution
from the edge spins like in Sec. II A. Equation (A2) is a
sum over the ND = 4 nearest-neighbor exchange couplings
and the anisotropy energies for each antiferromagnetic unit
cell. We use the identities 2mi,j mi+1,j = m2

i,j + m2
i+1,j −

(mi+1,j − mi,j )2 and (li,j mi+1,j − mi,j li+1,j ) = li,j (mi+1,j −
mi,j ) − mi,j (li+1,j − li,j ), etc., to rewrite Eq. (A2) to

H2D = NDJS2
N,N∑
i,j

(
m2

i,j − l2i,j
)

+ JS2

2

N−1,N−1∑
i,j

[(li+1,j − li,j )2 + (li,j+1 − li,j )2

+ (li+1,j+1 − li,j )2 − (mi+1,j − mi,j )2

− (mi,j+1 − mi,j )2 − (mi+1,j+1 − mi,j )2]

+ JS2
N−1,N−1∑

i,j

[mi,j (li+1,j + li,j+1 + li+1,j+1 − 3li,j )

− li,j (mi+1,j + mi,j+1 + mi+1,j+1 − 3mi,j )]

− 2KS2
N,N∑
i,j

(
m2

i,j,z + l2
i,j,z

)
. (A3)

To make the transition to the continuum limit, we define the
derivatives in the linear approximation

lim
|�i |→0

∑
i,j

(li+1,j − li,j ) ≈ 1

V

∫
[J (l)�i ]dV , (A4a)

lim
|�j |→0

∑
i,j

(li,j+1 − li,j ) ≈ 1

V

∫
[J (l)� j ]dV , (A4b)

lim
|�i(j )|→0

∑
i,j

(li+1,j+1 − li,j ) ≈ 1

V

∫
[J (l)�i + J (l)� j ]dV ,

(A4c)

where J (l) is the Jacobian matrix of the vector field l, �i( j )

is a vector between unit cells in the î(ĵ ) direction, and V is
the volume of the unit cell. For the centered squared unit cell,
|�i | = |� j | ≡ � and V = �2. We define similar derivatives
as in Eqs. (A4) for the magnetization field m.
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The procedure is analogous when including a third dimen-
sion, e.g., for a body-centered-cubic unit cell, repeating the
above calculation with {i,j} → {i,j,k}. Apart from a constant
contribution, the resulting free-energy density for AFMs in
dimensions D > 1, defined here as H2(3)D = �

(dV/V )H2(3)D,
is given by

H2(3)D = JS2ND

�
2m2 + 1

2

�
i

�2
i [(∂i l)2 − (∂im)2]

+ 1

4

�
i �=j

�i�j (∂in · ∂j n − ∂im · ∂j m)

+ 1

2

�
i

�i(m · ∂i l − l · ∂im)

�

−KS2[(l · ẑ)2 + (m · ẑ)2], (A5)

where we may define i and j to run over perpendicular direc-
tions {x,y,z}. The sum over first-order derivatives arises from
the relation J (l)� = �

i �i∂j (l), where � = {�i,�j ,�k}.

By considering squared or cubic lattices, � = 2d/
√

D and
d is the nearest-neighbor distance. We can express the free-
energy density in the exchange approximation |K| � |J | as

H2(3)D = a

2
m2 + A

2

⎡
⎣�

i

(∂in)2 + 1

2

�
i �=j

∂in · ∂j n

⎤
⎦

+L
�

i

(m · ∂in) − Kz

2
(n · ẑ)2, (A6)

where a = 4NDJS2, A = ND�2JS2/2, L = ND�JS2, Kz =
2KS2, and ND is the number of nearest neighbors.

In antiferromagnetic materials in which the exchange
energy is anisotropic due to, e.g., more complicated unit cells,
Eq. (A6) can still be used, although in this case a, A, and L

must be treated as tensors.
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