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Preterm birth and very low birth weight (VLBW, ≤1500 g) are worldwide problems that burden survivors with
lifelong cognitive, psychological, and physical challenges. In this multimodal structural magnetic resonance
imaging (MRI) and diffusion MRI (dMRI) study, we investigated differences in subcortical brain volumes
and white matter tract properties in children born preterm with VLBW compared to term-born controls
(mean age = 8 years). Subcortical brain structure volumes and cortical thickness estimates were obtained, and
fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were gener-
ated for 18 white matter tracts. We also assessed structural relationships between white matter tracts and corti-
cal thickness of the tract endpoints. Compared to controls, the VLBW group had reduced volumes of thalamus,
globus pallidus, corpus callosum, cerebral whitematter, ventral diencephalon, and brain stem, while the ventric-
ular systemwas larger in VLBWsubjects, after controlling for age, sex, IQ, and estimated total intracranial volume.
For the dMRI parameters, group differences were not significant at thewhole-tract level, though pointwise anal-
ysis found shorter segments affected in forcepsminor and left superior longitudinal fasciculus – temporal bundle.
IQ did not correlate with subcortical volumes or dMRImeasures in the VLBW group.While the deviations in sub-
cortical volumes were substantial, there were few differences in dMRImeasures between the two groups, which
may reflect the influence of advances in perinatal care on white matter development.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Preterm birth (gestational age b 37 weeks) is a worldwide problem,
affecting 15 million newborns each year and burdeningmany survivors
with lifelong cognitive, psychological, and physical challenges (Chang
et al., 2013; Lawn et al., 2014; Saigal and Doyle, 2008). Advances in peri-
natal care, including the introduction of surfactant therapy for preterm
infants, led to improved survival rates starting in the 1990s (Wilson-
ory Medicine, Children's and
ty of Science and Technology,

. This is an open access article under
Costello et al., 2005).While survival rates have improved andprevalence
of severe focal brain injuries, including intraventricular hemorrhages
grades III and IV and cystic periventricular leukomalacia, has decreased,
adverse long-term neurological outcomes are common in preterm-born
individuals (Ferriero, 2004; Back et al., 2007). Low IQ and poorer atten-
tion/executive functions and academic outcomes have frequently been
associated with very low birth weight (VLBW, birth weight ≤ 1500 g)
and preterm birth (Løhaugen et al., 2010; Aarnoudse-Moens et al.,
2009; Lund et al., 2012). Diffuse white matter injury including axonal
abnormalities and gliosis is considered the dominant neuropathology
in preterm-born infants and is believed to underliemany of these cogni-
tive and sensorimotor deficits (Volpe et al., 2011; Haynes et al., 2011).

White matter near the lateral ventricles and in centrum semiovale
has long been known to be especially vulnerable to perinatal injury
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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among preterm-born individuals (Banker and Larroche, 1962), and
hypoxia-ischemia and inflammation are considered the underlying
causes behind periventricular white matter injury in preterms (Ortinau
and Neil, 2015). Diffusion magnetic resonance imaging (dMRI), which
measures Brownian motion of water diffusion of white matter bundles
in the brain (Le Bihan and Johansen-Berg, 2012; Johansen-Berg and
Behrens, 2014), has been used to identifywhitematter tracts that appear
particularly sensitive to the effects of preterm birth and VLBW, such
as corpus callosum and long-range association tracts (Counsell et al.,
2008; Constable et al., 2008; Skranes et al., 2007; Eikenes et al., 2011;
Ment et al., 2009; Mento and Bisiacchi, 2012; Hintz and O'Shea, 2008).

In line with thewidely reported “encephalopathy of prematurity” of
diffuse white matter injury and tissue loss typical among preterms,
deviations in volumes of subcortical structures have also been reported
in the VLBW population (Volpe, 2009; Boardman et al., 2010). Cerebral
white matter, thalamus, globus pallidus, nucleus accumbens, and cor-
pus callosum volumes may be vulnerable to neonatal risk factors such
as VLBW (Bjuland et al., 2014). Deep gray matter abnormalities have
been found in tandem with diffuse white matter injury among infants
(Boardman et al., 2006), toddlers (Lowe et al., 2011), and school-aged
children (Murray et al., 2014).

In a recent paper (Sølsnes et al., 2015), we reported significant
differences in cortical architecture in our cohort of term-born controls
recruited from the Norwegian Mother and Child Cohort Study and
VLBW children born between 2001 and 2007, with increased cortical
thickness frontally and occipitally, and reduced cortical surface area in
widespread regions in the VLBWgroup, consistentwith previous reports
Fig. 1. Overview of participation and retention. Abbreviations: DW
from year cohorts of VLBW teenagers born in 1986–88 (Skranes et al.,
2007, 2013; Eikenes et al., 2011; Bjuland et al., 2013; Martinussen
et al., 2005). It is not known whether these cortical deviations are sec-
ondary to the reported abnormalities in white matter tracts connected
to these cortical regions or represent primary cortical injury.

This study therefore aimed to investigate subcortical volumes, white
matter properties, and possible relationships between white matter
tracts and the cortical changes previously reported in the same cohort
of school-aged children. We explored group differences in fractional
anisotropy and diffusivity using TRACULA, a novel tool for automated
reconstruction of 18 major white matter tracts, as well as subcortical
structure volumes using FreeSurfer. Moreover, we assessed structural
relationships between white matter tracts of interest and cortical thick-
ness of the tract endpoints. We also investigated possible relationships
between neuroimaging findings and full-scale IQ scores and perinatal
risk factors.

Methods

Participants

VLBW group
Preterm-born VLBW subjects (birthweight ≤ 1500 g), born between

2003 and 2007, were recruited based on admittance to the Neonatal
Intensive Care Unit at St. Olav's University Hospital in Trondheim,
Norway. Sixty-three children were invited and 57 agreed to participate
in the study (Fig. 1). Age ranged from 5.0 to 10.5 years old (mean age=
I: diffusion-weighted imaging; VLBW: very low birth weight.
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7.8 years). Exclusion criteria were severe cerebral palsy (unable to com-
plete neuropsychological testing andMRI), severe sensory impairments,
and/or MRI contraindications. One child with retinopathy of
prematurity and one with grade 1 intraventricular hemorrhage and
mild cerebral palsy who successfully completed the neuropsychological
assessments and MRI were included in the analyses. Perinatal health
data collected included gestational age, birth weight, Apgar score (at 1
and 5 min), and number of days on mechanical ventilator after birth.
Thirty-six VLBW subjects had successful structural MRI and were
included in the subcortical volume analysis, and 19 with high-quality
diffusion data were included in the dMRI analysis.

Control subjects
The control subjects were recruited from the national Norwegian

Mother and Child Cohort Study, managed by the Norwegian Institute
of Public Health (Magnus et al., 2006), and born between 2001 and
2007. Age ranged from 5.3 to 10.7 years old (mean age = 8.3 years).
Control participants were living in the same geographical area as the
VLBWparticipants and had normal/corrected vision and hearing. Exclu-
sion criteria were current psychiatric treatment, use of psychoactive
drugs known to affect central nervous system functioning, birth weight
below 2500 g, and/or MRI contraindications. Subcortical volume analy-
sis included 103 control subjects, and 47 controls were included in the
dMRI analysis based on quality of their diffusion data (Fig. 1).

Cognitive measures
VLBW subjects were assessed with complete versions of age-

appropriate standardized Wechsler intelligence tests: Wechsler
Preschool and Primary Scale of Intelligence, 3rd edition (WPPSI-III)
(Wechsler, 2002) or Wechsler Intelligence Scale for Children, 4th
edition (WISC-IV) (Wechsler, 2003). Controls were assessed with
short forms of the corresponding age-appropriate tests: WPSSI-III
(four subtests) or Wechsler Abbreviated Scale of Intelligence (WASI)
(Wechsler, 1999). Full-scale IQ scores were used for analysis. At neuro-
psychological assessment, parents reported whether children had
received or planned to receive extra help, such as aid of an assistant or
help with specific subjects, at school/preschool.

Socio economic status
Hollingshead's (1957) two factor index of social position based on

education and occupation of one parent or the mean index of both
was used to calculate socioeconomic status.

MRI
MRI data were collected using a 12-channel head coil on a 1.5 T

Siemens Avanto scanner (Siemens, Erlangen, Germany). The total scan
time was on average 30 min. The pulse sequence used for morphomet-
ric analyses was a 3D T1-weighted magnetization prepared rapid acqui-
sition gradient echo (MPRAGE) scan with the following parameters:
TR = 2400 ms, TE = 3.61 ms, TI = 1000 ms; flip angle 8°, FOV
240 × 240 mm2, and TA = 4 min and 18 min. Each volume consisted
of 160 sagittal slices with voxel sizes of 1.25 × 1.25 × 1.20 mm3.

dMRI was acquired using a conventional 2D single shot balanced-
echo EPI sequence. The series acquired diffusion weighting along 30
non-collinear directions (b = 700 s/mm2), and with 6 images acquired
without diffusion weighting (b= 0). The acquisition parameters were:
TR=7700ms, TE= 70ms, FOV 256 × 256mm2, matrix size 128 × 128,
TA = 4:22, BW = 1396 Hz/px, and GRAPPA acceleration factor 2, slice
thickness 2mm. Number of sliceswas 64 (no gap),with isotropic voxels
of 2 × 2 × 2 mm3.

EachMPRAGE series and the dMRI data were visually inspected, and
only scans with no or minimal movement artifacts were included in the
analyses. Calculation of headmotion during dMRI was done as a part of
the TRACULA quality control processing (Yendiki et al., 2013).
Image analysis
All image analysis, including subcortical volumetric segmentation

and dMRI analysis, was performed with the freely available FreeSurfer
image analysis suite version 5.3.0 (http://surfer.nmr.mgh.harvard.
edu). The technical details of the FreeSurfer image processing proce-
dures are described in prior publications (Dale et al., 1999; Dale and
Sereno, 1993; Fischl and Dale, 2000; Fischl et al., 2001; Fischl et al.,
2002; Fischl et al., 2004a; Fischl et al., 1999a; Fischl et al., 1999b;
Fischl et al., 2004b; Han et al., 2006; Jovicich et al., 2006; Ségonne
et al., 2004). The subcortical volumetric analysis was based on MRI
from 37 VLBW children and 103 controls. The subcortical brain struc-
tures included in the analyses (see Table 2) were based on the automat-
ed segmentation and labeling procedure in FreeSurfer (Fischl et al.,
2002, 2004a), and each structure's volumes from both hemispheres
were combined to generate a bilateral volume value. For subcortical vol-
umes, analyses were controlled for estimated total intracranial volume
(Buckner et al., 2004).

TRACULA
TRACULA (TRActs Constrained by UnderLying Anatomy), as im-

plemented in FreeSurfer 5.3.0, was used for dMRI analysis and
tractography (Yendiki et al., 2011). Briefly, TRACULA applies probabilis-
tic tractography to diffusion data using an anatomical atlas of white
matter tracts as well as the subcortical segmentation labels from
FreeSurfer (Fischl et al., 2002, 2004a). TRACULA contains an algorithm
for automated global probabilistic tractography that estimates the pos-
terior probability of 18 pathways, based on a “ball-and-stick” model of
diffusion (Behrens et al., 2007) as well as a pathway prior term, which
incorporates prior anatomical knowledge on the pathways from a set
of healthy adult training subjects. The prior term expresses the proba-
bility of each pathway to pass through, or lie adjacent to, each anatom-
ical segmentation label, calculated separately for every point along the
pathway's trajectory. The anatomical segmentation labels come from
the cortical parcellation and subcortical segmentation of T1-weighted
MPRAGE images in FreeSurfer. Nineteen VLBWchildren and 47 controls
were included in the TRACULA analyses based on quality of diffusion
data. One subject wasmissing data for forcepsmajor, right corticospinal
tract, and right cingulate gyrus, but the remaining values were used for
group-level analysis. Eighteen of 19 subjects from the dMRI analysis
were also included in the subcortical volume analysis, while one
VLBW subject with too poor subcortical data to be analyzed in the vol-
ume analysis could be included in TRACULA (see Fig. 1).

Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity
(RD), and axial diffusivity (AD) were assessed in the 18 white matter
pathways reconstructed by TRACULA (see Fig. 2): anterior thalamic
radiation (ATR) left and right, cingulum–angular (infracallosal) bundle
(CAB) left and right, cingulum–cingulate gyrus, (supracallosal) bundle
(CCG) left and right, corticospinal tract (CST) left and right, corpus
callosum forcepsmajor, corpus callosum forcepsminor, inferior longitu-
dinal fasciculus (ILF) left and right, superior longitudinal fasciculus–
parietal bundle (SLFP) left and right, superior longitudinal fasciculus–
temporal bundle (SLFT, also called arcuate fasciculus) left and right,
and uncinate fasciculus (UNC) left and right.

Tract endpoint cortical thickness analysis
In order to explore the relationship betweenwhitematter tracts and

cortical thickness, we projected the endpoints of the various tracts onto
the cortical surface to assess the correlations between dMRI measures
from those tracts and the corresponding patch of cortical thickness
in the subjects' native space. We obtained regions of interest for the
endings of the 18pathways on the cortical surface bymapping the prob-
ability distribution of each of the two end regions of each pathway, as
computed by TRACULA, from its native diffusion-weighted imaging
(DWI) space to the space of the same subject's T1-weighted image.
We projected the tract endpoints onto the gray/white matter surface
by sampling along the surface normal vector, anywhere within 6 mm

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu


Fig. 2. Probabilistic reconstruction of 18 white matter tracts generated by TRACULA, illustrated here in a control subject.
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(3 DWI-space voxels) of the gray/white junction, and then smoothing
along the surface with a 2D Gaussian kernel of 6 mm full width at half
max.

Tractography pointwise analysis
TRACULA estimates the posterior probability distribution of each

pathway in the native DWI space of each subject and finds the maxi-
mum probability path, which is a 1D curve in that space. It then calcu-
lates the expected value of FA, MD, RD, or AD as a function of position
along the pathway by performing a weighted average of the values of
each of these four measures at each cross-section of the pathway.
These cross-sections are defined at each voxel along the maximum
probability path. This yields a 1D sequence of values for each of the
four measures, computed in the native space of each subject. These
sequences can be used for pointwise analyses of each measure along
the trajectory of a pathway.

In order to control the false positive rate, we have chosen to report
findings only if they showed significant group differences (p b 0.05)
over a contiguous segment of length greater than 2 cm along a given
pathway.

Statistical analysis
Matlab software suite 2011b (MATLAB and Statistics Toolbox

Release 2011b. The MathWorks, Inc., Natick, Massachusetts, USA) was
used for statistical analyses of subcortical and cortical morphometry
and dMRI data. The software package IBM SPSS 21 (Chicago, USA) was
used to generate group difference values and correlations betweenmor-
phometric, dMRI, IQ, and clinical measures. General linear models were
fitted for group comparisons of subcortical brain structure volumes and
dMRI data, controlled for age at scan, sex, and IQ; subcortical volume
analyses were additionally controlled for estimated total intracranial
volume as computed by FreeSurfer. Partial correlation tests, controlled
for age at scan and sex, were used to investigate the relationships be-
tween morphometry and dMRI and IQ and perinatal data. Data with
non-equal variances were analyzed with non-parametric tests and
Spearman's ρ. Group analysis for categorical data were tested for signif-
icance using Fisher's exact test. Tests for group × age interaction effects
were performed for all subcortical structures and for FA,MD, RD, and AD
in the white matter tracts. Holm–Bonferroni step-down (Holm, 1979)
was used to correct formultiple comparisons for all tests of groupdiffer-
ences and correlations.

Ethics
The Regional Committee for Medical Research Ethics approved the

study protocol (project number: 2010/2359), and written, informed
consent was obtained from the parents/guardians of all participants.

Results

Clinical and cognitive results

Clinical characteristics and full-scale IQ scores are presented in
Table 1a and b. VLBW subjects were approximately 6 months younger
than control subjects (7.7 vs 8.3 years) in the subcortical sample,
while the groups had mean ages of 8.5 and 8.7 years, respectively, in
the TRACULA sample. Additional perinatal characteristics for the
VLBW group are presented in Table S1.

Full-scale IQ scores were significantly lower in the VLBW group than
in controls by approximately 1 standard deviation from control mean,
both in the subcortical volume analysis (99 vs 108) and in the dMRI
analysis (97 vs 112). IQ scores were still significantly lower in the
VLBW group after additionally controlling for socioeconomic status
(p b 0.001). Controls in the TRACULA analysis had slightly higher IQ
scores (4.0 points) than controls in the subcortical volume analysis,
but VLBW IQ scores were similar between the analyses. The VLBW
group received more help in school and preschool than controls
(p b 0.0001). The control group had slightly higher average socioeco-
nomic score than the VLBW group.

Subcortical volumes

Compared to controls and after controlling for age, sex, and estimat-
ed total intracranial volume, the VLBW group had significantly reduced
volumes of thalamus, globus pallidus, hippocampus, cerebral white



Table 1
Overview of major clinical variables and full IQ scores in control and VLBW groups, shown for both (a) subcortical and (b) dMRI analyses.

1a. Subcortical analysis VLBW (n = 36) Control (n = 103) p-value

Mean SD Range Mean SD Range

Birth weight, grams 1019 361 416–1495 3661 485 2510–4950 b0.0001
Gestational age, weeks (days) 29 (0) 2 (6) 23 (4)–35 (1) Term-born –
Age at MRI, years 7.8 1.7 5.0–10.5 8.3 1.0 5.3–10.7 0.04
Full-scale IQ 99 9.9 82–132 108 13.6 73–139 b0.001
Socioeconomic status (n = 34, 84) 3.9 0.9 1–5 4.3 0.8 2–5 0.03
Sex: male/female 16/20 49/54 0.8
Subjects with twin 6 0 b0.0001
Received extra help at school, n (%) 10 (28%) 2 (1.9%) b0.0001

1b. dMRI analysis VLBW (n = 19) Control (n = 47) p-value

Mean SD Range Mean SD Range

Birth weight, grams 1103 365 500–1495 3692 531 2550–4950 b0.0001
Gestational age, weeks (days) 29(4) 3(1) 23(4)–35(1) Term-born --
Age at MRI, years 8.5 1.2 5.0–10.5 8.7 0.7 7.5–10.6 0.3
Full-scale IQ 97 8.1 82–117 112 13.7 73–134 b0.0001
Socioeconomic status (n = 18, 39) 4.0 0.9 2–5 4.4 0.8 2–5 0.07
Sex: male/female 9/11 22/25 0.9
Subjects with twin 4 0 0.005
Received extra help at school, n (%) 4 (21) 1 (2.1) 0.1

Displayed with p-values based on ANOVA between control and VLBW groups. Abbreviations: SD, standard deviation; VLBW, very low birth weight.
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matter, ventral diencephalon, brain stem, and in 4 of 5 corpus callosum
subsegmentations (Table 2). The ventricular system, comprising lateral,
inferior, third, and fourth ventricles, was larger in VLBW subjects. Fig. 3
illustrates the extent of the volume reductions as a percentage of the
control group mean for the brain structures that were significantly
smaller in the VLBW group.

Partial correlation analysis examined relationships between subcor-
tical volumes and birth weight, gestational age, and IQ, controlled for
age and sex and with Holm–Bonferroni step-down. Among VLBW sub-
jects, corpus callosum posterior subsegmentation volume correlated
significantly to gestational age (R = 0.55, p= 0.0007), and cerebellum
white matter volume correlated positively to birth weight (R = 0.53,
p = 0.001). No other correlations to gestational age, birth weight,
or IQ in the VLBW group reached significance. In controls, birth weight
correlated significantly to volumes of cerebellar white matter (R =
0.49, p b 0.0001), cerebellar gray matter (R = 0.36, p = 0.0002) and
brain stem (R= 0.42, p b 0.0001). IQ correlated to volumes of thalamus
(R = 0.37, p b 0.0001), hippocampus (R = 0.35, p b 0.0001), and
Table 2
Bilateral subcortical volumes (mm3) in VLBW and control subjects with p-values for group diff

Structure
VLBW

mean 95% CI

Amygdala 2840 (2752, 2928)
Brain stem 17,854 (17,373, 18,333)
Caudate 8099 (7811, 8386)
Cerebellar cortex 113,842 (110,519, 117,164)
Cerebellar white matter 23,376 (22,552, 24,200)
Cerebral white matter 400,892 (392,985, 408,799)
Corpus callosum anterior 759 (719, 798)
Corpus callosum central 317 (292, 341)
Corpus callosum mid-anterior 349 (324, 373)
Corpus callosum mid-posterior 301 (276, 325)
Corpus callosum posterior 660 (619, 700)
Globus pallidus 3499 (3383, 3614)
Hippocampus 7908 (7694, 8121)
Nucleus accumbens 1356 (1293, 1418)
Putamen 11,722 (11,332, 12,111)
Thalamus 14,039 (13,739, 14,338)
Ventral diencephalon 6859 (6708, 7009)
Ventricular system 20,766 (18,306, 23,225)

Group differences tested using the general linear model, controlled for age, sex, and estimate
threshold; significant results denoted by *. Abbreviations: CI, confidence interval; VLBW, very
cerebralwhitematter (R=0.37, p b 0.0001). In theVLBWgroup, receiv-
ing help at school was correlated negatively with corpus callosum vol-
ume (R = −0.46, p = 0.008, uncorrected), but this relationship was
not seen in controls. Correlation in controls between IQ and hippocam-
pus volume was not significant after correction for socioeconomic sta-
tus, and correlations in both groups were not significant with
correction for estimated total intracranial volume. There were no signif-
icant group × age interaction effects for subcortical structure volumes.
TRACULA results

Group differences
To assess differences in white matter microstructure between the

groups, we compared the VLBW group to the control subjects in terms
of FA, MD, RD, and AD in the 18 tracts generated by TRACULA. Means
and p-values for the dMRI measures for tracts with significant group
differences are presented in Table 3.
erences.

Control
p-value

mean 95% CI

2858 (2808, 2908) 0.73
18,974 (18,700, 19,247) 0.00015*
8128 (7963, 8291) 0.87

113,978 (112,084, 115,872) 0.95
24,527 (24,056, 24,996) 0.021

420,230 (415,722, 424,737) 7.5 × 10−5*
806 (784, 828) 0.045
391 (377, 404) 9.4 × 10−7 *
404 (390, 418) 0.00029*
384 (370, 398) 9.6 × 10−8*
774 (751, 796) 5.1 × 10−6*

3751 (3684, 3816) 0.00040*
8265 (8143, 8386) 0.0059
1395 (1359, 1430) 0.30

11,966 (11,743, 12,188) 0.30
14,703 (14,532, 14,873) 0.00031*
7109 (7023, 7194) 0.0062*

11,932 (10,529, 13,333) 1.7 × 10−8*

d total intracranial volume. Holm–Bonferroni step-down used to determine significance
low birth weight.



Fig. 3. VLBW subcortical volumes as percentage difference from control mean. Volumes controlled for age, sex, and estimated total intracranial volume. Corpus callosum volume
aggregated from all 5 subsegmentations.
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No group differences were significant after Holm–Bonferroni step-
down, though group differences in several structures were nominally
significant at the uncorrected p b 0.05 level. The VLBW group showed
higher AD in the left SLFP and SLFT, left and right CST, and left CAB.
The VLBW group had higher average FA in left CST and in left SLFT. RD
was lower in the VLBW group in left CST. Control and VLBW groups
did not differ in terms of head motion. There were no correlations
after Holm–Bonferroni step-downbetweendMRI values and subcortical
volumes in either group, and there were no significant group × age
interaction effects for any of the tracts with nominally significant
group differences.
Relationships between dMRI and clinical variables
In relating FA, MD, RD, and AD in all 18 tracts to full-scale IQ, birth

weight, and gestational age, we found significant correlations after
Holm–Bonferroni step-down in AD in left CAB in the VLBW group
with gestational age (R = 0.86, p b 0.0001). In the control group, birth
weight correlated with MD (R = 0.49, p = 0.0009) and AD (R = 0.46,
p = 0.002) in the right SLFP and AD in the left uncinate fasciculus
(R = 0.52, p = 0.0004). Post-hoc analysis revealed that the number of
Table 3
Mean values for FA, MD, RD, and AD in both groups and Cohen's d and p-values for group diffe

White matter
tract

FA MD [×10−4 mm2/s]

VLBW
mean

Control
mean

d p-value VLBW
mean

Control
mean

d p-v

ATR, left 0.44 0.45 −0.44 0.26 7.9 7.9 0.18 0.6
ATR, right 0.44 0.44 −0.23 0.59 8.0 8.0 0.14 0.7
CAB, left 0.35 0.37 −0.78 0.07 8.4 8.5 −0.17 0.6
CAB, right 0.38 0.39 −0.20 0.63 8.3 8.3 −0.24 0.5
CCG, left 0.54 0.54 −0.05 0.90 7.8 7.7 0.44 0.2
CCG, right 0.47 0.47 0.03 0.92 7.8 7.8 0.19 0.6
CST, left 0.58 0.56 1.03 0.015⁎ 7.9 7.9 −0.41 0.3
CST, right 0.56 0.55 0.42 0.29 8.0 7.9 0.36 0.3
Forceps major 0.62 0.63 −0.25 0.55 8.2 8.2 0.09 0.8
Forceps minor 0.59 0.61 −0.58 0.17 8.1 8.0 0.43 0.3
ILF, left 0.52 0.51 0.23 0.57 8.4 8.4 −0.26 0.5
ILF, right 0.53 0.52 0.46 0.27 8.4 8.5 −0.29 0.4
SLFP, left 0.45 0.44 0.44 0.28 7.9 7.8 0.59 0.1
SLFP, right 0.44 0.43 0.30 0.42 8.1 8.0 0.46 0.2
SLFT, left 0.49 0.47 0.93 0.034⁎ 8.0 7.9 0.25 0.5
SLFT, right 0.46 0.45 0.27 0.49 8.0 8.0 −0.04 1.0
UNC, left 0.43 0.43 0.08 0.85 8.3 8.3 −0.10 0.8
UNC, right 0.45 0.46 −0.48 0.25 8.2 8.2 0.11 0.7

∗ Denotes nominally significant (uncorrected) at the p b 0.05 level. Abbreviations: d, Cohen's d;
CST, corticospinal tract; ILF, inferior longitudinal fasciculus; UNC, uncinate fasciculus; ATR, ant
bundle; SLFP, superior longitudinal fasciculus–parietal bundle; SLFT, superior longitudinal fasc
days VLBW subjects spent on a ventilator after birth correlated nega-
tively with forceps major FA (R = 0.89, p b 0.001) and positively with
forceps major RD (R = 0.85, p b 0.001), with the five subjects who
were onmechanical ventilator in the neonatal period driving the corre-
lations. No other correlations survived Holm–Bonferroni step-down.
Tract endpoint cortical thickness analysis
None of the correlations between dMRImeasures and tract endpoint

cortical thickness reached significance after Holm–Bonferroni correc-
tion for multiple comparisons. However, there were several nominally
significant correlations (p b 0.05, uncorrected) (Fig. 4). In controls,
cortical thickness in the left SLFP parietal endpoint correlated with
mean tract MD (R = 0.30, p = 0.046) and RD (R = 0.34, p = 0.024),
and cortical thickness in the right SLFT temporal endpoint also correlat-
ed with mean tract RD (R= 0.32, p=0.034). In the VLBW group, right
ATR frontal endpoint cortical thickness correlated with mean tract
RD (R = 0.56, p = 0.024); left CCG cortical thickness in the posterior
endpoint correlated with mean tract AD (R = 0.67, p = 0.0044),
RD (R = −0.51, p = 0.045), and FA (R = 0.61, p = 0.0013); right ILF
cortical thickness in the occipital endpoint correlated with mean tract
rences.

RD [×10−4 mm2/s] AD [×10−4 mm2/s]

alue VLBW
mean

Control
mean

d p-value VLBW
mean

Control
mean

d p-value

7 5.9 5.8 0.31 0.46 12.0 12.0 −0.10 0.82
4 6.0 5.9 0.08 0.84 12.1 12.1 0.14 0.74
8 6.8 6.7 0.29 0.49 11.7 12.0 −1.01 0.018⁎

7 6.5 6.5 −0.02 1.00 11.8 11.9 −0.52 0.22
9 5.3 5.1 0.35 0.40 12.9 12.8 0.18 0.67
4 5.6 5.6 0.10 0.81 12.1 12.0 0.14 0.73
3 4.9 5.1 −1.00 0.018⁎ 13.8 13.6 0.86 0.042⁎

9 5.1 5.2 −0.19 0.65 13.7 13.5 0.85 0.045⁎

3 4.8 4.7 0.24 0.56 15.0 15.1 −0.31 0.46
0 5.0 4.8 0.59 0.16 14.4 14.5 −0.27 0.51
4 5.8 5.8 −0.24 0.56 13.6 13.7 −0.10 0.81
9 5.7 5.8 −0.40 0.34 13.9 13.8 0.14 0.73
6 5.9 5.9 0.07 0.87 11.9 11.6 1.17 0.0065⁎

8 6.1 6.0 0.10 0.81 12.0 11.8 0.71 0.09
4 5.7 5.8 −0.32 0.45 12.5 12.2 1.23 0.0043⁎

0 5.9 6.0 −0.21 0.61 12.3 12.2 0.26 0.53
2 6.3 6.3 −0.08 0.85 12.4 12.4 −0.05 0.90
9 6.1 6.0 0.35 0.40 12.5 12.6 −0.37 0.37

AD, axial diffusivity; FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity;
erior thalamic radiation; CCG, cingulum–cingulate gyrus bundle; CAB, cingulum–angular
iculus–temporal bundle; VLBW, very low birth weight.



Fig. 4. Examples of projections of left CCG posterior endpoints, left SLFT frontal endpoints, left SLFP frontal endpoints, and right ATR frontal endpoints onto inflated cortical surface,
illustrated in a control subject. The red–yellow overlays are the probability distributions of the position of the endings of the corresponding pathways on the surface. Cortical
parcellations are outlined based on the Desikan–Killiany atlas (Desikan et al., 2006). Abbreviations: ATR, anterior thalamic radiation, CCG, cingulum cingulate gyrus; SLFP, superior
longitudinal fasciculus–parietal bundle; SLFT, superior longitudinal fasciculus–temporal bundle.
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MD (R = 0.62, p = 0.011) and RD (R = 0.54, p = 0.030); left SLFT
cortical thickness in the frontal endpoint correlated with mean tract
MD (R= 0.64, p= 0.0076) and RD (R= 0.53, p= 0.036); and cortical
thickness in the left UNC orbitofrontal endpoint correlated with mean
tract MD (R = 0.57, p = 0.021), RD (R = 0.79, p = 0.00026), and FA
(R = −0.76, p = 0.0007). Group differences in cortical thickness
based on the 34 anatomical regions for each brain hemisphere defined
in FreeSurfer were previously reported by Sølsnes et al. (2015).

CCG posterior endpoints were primarily in the isthmus cingulate
cortex, and to a lesser extent in adjacent posterior cingulate and
precuneus. SLFT and SLFP frontal cortex endpoints were primarily in
the precentral gyrus and to a very limited extent in nearby pars
opercularis. Cortical ATR endpoints were found in the rostral middle
frontal gyrus.

Tractography pointwise analysis
To better localize affected white matter along the various tracts, we

conducted a pointwise analysis to identify tract segments with signifi-
cant group differences (p b 0.05) contiguously along at least 2 cm of
the tract. The forceps minor showed lower FA and higher RD in the
VLBW group along a medial segment of the tract. Left SLFT along the
middle of the tract showed higher AD in the VLBW group, which
drove the nominally significant group differences in that tract. Addition-
ally, AD in the VLBWgroupwas also higher in two sections of themiddle
of the right SLFT but did not reach the 2 cm significance threshold.

Discussion

This follow-up study of school-aged children born in the 2000s,
comparing those born preterm with VLBW and a term-born control
group, found smaller volumes of thalamus, globus pallidus, hippocam-
pus, cerebral white matter, ventral diencephalon, brain stem, and cor-
pus callosum, along with an enlarged ventricular system, in the VLBW
group. VLBW subjects had lower FA in a medial segment of forceps
minor and higher AD in the middle of the left SLFT, but dMRI measures
did not differ significantly between groups at thewhole-tract level. Ges-
tational age and birth weight in the VLBW group were generally not as-
sociated with subcortical volumes, and IQ did not correlate with either
subcortical volumes or dMRI measures in the VLBW group.

Subcortical structure volumes

We found smaller subcortical volumes and larger ventricles in the
VLBW group compared to controls, in agreement with earlier reports
(Miller et al., 2005; Inder et al., 2003). The VLBW children had reduced
volumes of subcortical gray matter, such as thalamus and globus
pallidus, and of cerebralwhitematter including corpus callosum. The in-
crease in ventricular size in preterms is likely due to perinatal deep
white matter loss influencing the volume and microstructural charac-
teristics of central white matter tracts (Volpe, 2009; Verney et al.,
2012; Judas et al., 2005). Abnormal thalamusmicrostructure and small-
er thalamus (Nagasunder et al., 2011), hippocampus (Aanes et al.,
2015), globus pallidus (Lax et al., 2013), and cerebral white matter
(Taylor et al., 2011) have been reported in the preterm-born population
and may reflect neuron loss and injury to myelinated axons. At their
young adulthood follow-up (Bjuland et al., 2014), our older study co-
hort born in 1986–1988 also showed significant volume reductions in
thalamus, cerebral white matter, and the posterior parts of corpus
callosum, similar to the findings presented here. This similarity may re-
flect the influence of in utero developmental processes, such as intrauter-
ine growth restriction, on subcortical structures, with consequences for
postnatal brain growth.

A complex constellation of neuropathological factors influences
brain and cognitive development among preterm VLBW individuals
through encephalopathy of prematurity (Volpe, 2009), affecting both
gray and white matter. Boardman et al. (2010) described a “common
neonatal image phenotype” among children born preterm, consisting
of diffuse white matter injury and tissue loss localized to the
dorsomedial nucleus of the thalamus, globus pallidus, white matter of
the corona radiata, posterior periventricular white matter, and the
central region of the centrum semiovale. Moreover, this abnormal phe-
notype was associated at 2 years of age with reduced developmental
quotient, suggesting that the influence of white matter injury on the
development of basal ganglia and thalami could have functional conse-
quences (Boardman et al., 2010). Our findings related to lower IQ and
greater need for help at school are consistentwith thismodel of restrict-
ed growth of the preterm brain in terms of impacts on subcortical
volumes and long-term functional deficits. We speculate that this per-
sistent postnatal growth restriction of the brainmay be due to a contin-
uation of mechanisms causing intrauterine growth failure, in line with
previous studies showing a relationship between lower IQ scores
in young adults born small for gestational age with intrauterine growth
restriction (Løhaugen et al., 2013; Østgård et al., 2014).

dMRI findings

In contrast to previous reports, the VLBW and control groups had
similar FA,MD, AD, and RD values in the 18whitematter tracts assessed
in this study. Group differences were only nominally significant and
limited to left SLFT (for FA and AD), left SLFP (for AD), left CST (for FA
and AD), right CST (for AD), and left CAB (for AD). We previously de-
scribed (Sølsnes et al., 2015) in an overlapping group from the same co-
hort significant surface area reductions amongVLBWchildren in the left
precentral gyrus, where we found a portion of the SLFP to terminate.
Cortical thickness in the white matter tract endpoints demonstrated
nominally significant correlations to dMRI values in several regions in
frontal, temporal, parietal, and occipital lobes. Our previous report
(Sølsnes et al., 2015) found significant differences in surface area and
cortical thickness between the VLBW and control groups in the several
of the same regions implicated in our cortical endpoint analysis.
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Using pointwise analysis, we also identified specific segments of
white matter tracts in the forceps minor and SLFT that showed greatest
differences between groups on diffusivity measures. While the clinical
significance remains to be established, these findings may indicate the
localization of the initial perinatal brain injury or delayed myelination.

Changes in FA and diffusivity in superior longitudinal fasciculus
(SLF) among individuals born preterm have been frequently reported
during infancy, childhood, adolescence, and adulthood (Skranes et al.,
2007; Pandit et al., 2013). The SLFT, which corresponds to the arcuate
fasciculus, links Wernicke's and Broca's areas (Catani et al., 2002), and
the SLFP connects parietal cortex and ventral premotor cortex, including
posterior Broca's area (Rushworth et al., 2014). SLFT has been linked to
phonological awareness and reading skills in children (Saygin et al.,
2013; Yeatman et al., 2011), and both SLFT and SLFP have been hypoth-
esized to be involved in mathematical processing (Jolles et al., 2015).
Myall et al. (2013) described possible axonal straightening and
increased axonal density in the SLFT, among other tracts, in case studies
of adolescents born pretermwith ventricular dilation. In our cohort, AD
differences in the VLBW group in these long-range association tracts
were still evident at early school age. AD and RD have been interpreted
in various ways in the neuroimaging literature, including as signifiers of
axonal injury andmyelin loss (Song et al., 2002), though cautious inter-
pretation of AD and RD is advised especially in clinical populations
(Wheeler-Kingshott and Cercignani, 2009).

Similar to our findings, several other studies have also reported very
limited difference in FA in preterms compared to controls in childhood
(Feldman et al., 2012), adolescence (Frye et al., 2010), and adulthood
(Kontis et al., 2009). Thompson et al. (2014) found global increases in
MD, RD, and AD in a very preterm group compared to full-term infants,
while FAwas similar across the groups. Taylor et al. (2011) showed that
both structural abnormalities and neuropsychological deficits were
more pronounced in VLBW adolescents who were at higher neonatal
risk based on birthweight, small for gestational age, severe abnormality
on cranial ultrasound, or chronic lung disease, and FA has recently been
more associatedwith complications of pretermbirth thanwith extreme
preterm birth in itself (Bonifacio et al., 2010).

In general, the limited dMRI pathology observed here in the VLBW
group was somewhat surprising based on previous reports of wide-
spread differences between preterms and controls in white matter
tracts among children (Nagy et al., 2003), adolescents (Skranes et al.,
2007; Mullen et al., 2011), and young adults (Allin et al., 2011;
Eikenes et al., 2011). Although total brain growth is affected in this co-
hort, with smaller volumes, reduced surface area, and signs of possible
cortical reorganization with frontal and occipital thickening (Sølsnes
et al., 2015), diffusion measures in the preterm-born children appear
similar to their peers born at term. We speculate that perinatal morbid-
ity especially influences white matter development, and that the less
severe perinatal morbidity seen in the more recent VLBW cohorts has
resulted in fewer deviations in the microstructure of the remaining
white matter (Favrais et al., 2014; Gagliardi et al., 2009).

Associations with cognitive performance

OurVLBWgroupgenerally scoredwithin thenormal IQ range,which
was higher than previous study cohorts (Løhaugen et al., 2010). We did
not find any relationship between IQ scores and dMRI findings in this
study, although diffusion properties in white matter tracts among
VLBW individuals have previously been linked to diverse cognitive
deficits, ranging from IQ scores (Yung et al., 2007; Eikenes et al.,
2011), language skills (Mullen et al., 2011), learning and memory
(Salvan et al., 2014), to visual-motor function (Sripada et al., 2015).
Significantly more VLBW children in our study received extra help at
school or preschool compared to controls (p b 0.0001), indicating affect-
ed cognitive abilities. Muetzel et al. (2015) showed that white matter
microstructure was associated with visual–spatial ability independent
of general intelligence in a large sample (n = 778) of normally
developing children at 6 to 10 years of age. It is also possible that
VLBW individuals exhibit plasticity to develop different neural network
trajectories and compensatory connections related to certain cognitive
functions (Mürner-Lavanchy et al., 2014; Gozzo et al., 2009;
Narberhaus et al., 2009; Van Braeckel et al., 2010; Ment et al.,
2009). Focusing on visual–spatial skills, working memory, motor
skills, or language-specific tasks, rather than general intelligence,
may have detected additional structure-function relationships in
our study sample.

Several of the subcortical structures implicated in our group differ-
ences analysis are involved in working memory networks. McNab and
Klingberg (2008) identify the globus pallidus as essential for controlling
access to working memory, while functional and structural imaging of
basal ganglia and thalamus have recently shown promise in predicting
healthy children's visuospatial working memory two years later
(Ullman et al., 2014).

In our cohort born in the late 1980s, Bjuland et al. (2014) found that
in VLBW young adults (mean IQ = 89) subcortical volumes correlated
strongly with cognitive performance on full-scale IQ. Subcortical vol-
umes in that VLBW group were also strongly associated with birth
weight and days in the neonatal intensive care unit. The current study
identified volume reductions in nearly all the same subcortical struc-
tures, yet the close relationship in the VLBW group to IQwas not appar-
ent. An explanation for this lack of relationship may be the moderate
sample size and normal mean IQ scores in the VLBW group.

In Norway, high-risk preterm infants and their families are entitled
to special follow-up developmental health services. A quarter of our
VLBW participants have had extra help in school or preschool, com-
pared to only 2% of controls. It is plausible that the normal mean IQ
score and connectivity in our VLBW group, compared to previous
cohorts, reflect in part the availability of such higher-quality educational
interventions, although themean IQ score among VLBW children is still
approximately one standard deviation lower than mean IQ in controls.
As training and cognitive interventions have been shown to affect
white matter (Scholz et al., 2009; Sampaio-Baptista et al., 2013; Hu
et al., 2011), it would be worthwhile to explore the direct impact
of the combination of advanced medical care and childhood follow-up
services on white matter development and connectivity in the high-
risk preterm-born population.

Strengths and limitations

The results presented here will provide a useful baseline for follow-
up research on these VLBW and term-born cohorts. All subjects
underwent structural MRI and dMRI on the same scanner with stan-
dardized sequences andwere assessed with age-appropriate, standard-
ized cognitive tests. We used TRACULA for reconstruction of major
white matter tracts in subjects' native spaces and were able to combine
cortical thickness and dMRI data to investigate possible impacts at
the transition between white and gray matter. TRACULA's automated
reconstruction is based on healthy adult training subjects but has also
been used in pediatric populations (Yendiki et al., 2013; Saygin et al.,
2013; Koldewyn et al., 2014). The validity of the anatomical data pro-
cessing stream used in TRACULA for automated surface reconstruction
and segmentation of structural images and its lack of age-related bias
have been shown previously for children aged 4 to 7 (Ghosh, et al.,
2010).

TRACULA includes corpus callosum forcepsmajor andminor, but full
corpus callosum segmentation is not available in the current version.
Corpus callosum has been implicated in previous studies of VLBW chil-
dren showing deficits in diverse cognitive skills andwould have been an
important complement to the 18 tracts described here. Corpus callosum
volume, however, is included in our subcortical analysis.While diffusion
values for group differences were taken across the entire tract, we
examined pointwise to better localize affected white matter segments.
Moreover, we chose to control for age and sex; however, larger studies
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have shown associations between certain subcortical volumes and age
and sex (Koolschijn and Crone, 2013). However, this was a cross-
sectional study not intended to identify specific developmental changes
within this age range, and the study samplewas too small to investigate
sex differences within groups.

DWI is very sensitive to motion inside the scanner, which poses a
challenge especially for pediatric research. Due to movement artifacts
in both groups, the sample available in the TRACULA analysis was
about 47% the size of the sample used for subcortical volume analysis.
Moreover, a recent estimate suggests that up to 60–90% of all white
matter voxels contain multiple fiber orientations (Jeurissen et al.,
2013). High-angular resolution diffusion imaging (HARDI) and diffusion
spectrum imaging (DSI) are more sensitive than diffusion tensor imag-
ing (DTI) for investigating fiber orientations in areas with crossing fi-
bers (Abhinav et al., 2014; Groeschel et al., 2014) but require longer
scan times to measure more diffusion directions, which increases the
risk of data loss due to movement artifacts, especially in children.
DWI parameters for this study were designed to reduce scan time
to accommodate our young subjects and also to improve compatibil-
ity with scans from other cohorts. TRACULA does not rely on tensors
for tractography but instead uses a crossing-fiber model.

Subjects in the TRACULA sample were on average 5 to 18 months
older than those in the volumetric analysis, probably due to more
movement in the younger children. VLBW subjects had lower mean
socioeconomic status, although very few children in the study had low
socioeconomic status, and compared to controls the VLBW group still
had significantly lower IQ scores after correction for socioeconomic
status.
Conclusion

Consistent with previous reports, this study found significantly re-
duced volumes of gray andwhite matter structures including thalamus,
globus pallidus, cerebral white matter, and corpus callosum, along with
enlarged ventricles in the school-aged VLBW group. By contrast, group
differences in dMRI measures were minor and mostly seen in higher
AD in the preterm group. In addition, white matter tracts connected to
brain regions with cortical deviations showed some evidence of abnor-
mal diffusion measures. This VLBW cohort born in the 2000s showed
subcortical volume deviations consistent with previous reports, while
white matter connectivity seemed similar between the groups, poten-
tially reflecting different mechanisms on gray and white matter during
pre- and postnatal development.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.12.029.
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