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Abstract
DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene

(COI) has proven to be successful for species-level identification in many animal groups.

However, most studies have been focused on relatively small datasets or on large datasets

of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit

species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae) by using dif-

ferent analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytar-

sini (Diptera: Chironomidae) with more than 400 species worldwide, some of which can be

notoriously difficult to identify to species-level using morphology. Our dataset, based on

sequences generated from own material and publicly available data in BOLD, consist of

2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining

tree of this dataset comprises 131 well separated clusters representing 121 morphological

species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For

our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6%

of the Tanytarsus species recognized through prior morphological study. Deep intraspecific

divergences exist in some species complexes, and need further taxonomic studies using

appropriate nuclear markers as well as morphological and ecological data to be resolved.

The DNA barcodes cluster into 120–242 molecular operational taxonomic units (OTUs)

depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD),

Generalized Mixed Yule Coalescent model (GMYC), Poisson Tree Process (PTP), subjec-

tive evaluation of the neighbor joining tree or Barcode Index Numbers (BINs) are used. We

suggest that a 4–5% threshold is appropriate to delineate species of Tanytarsus non-biting
midges.

Introduction
Genetic variation between species in cytochrome c oxidase subunit 1 (COI) gene sequences has
been proven informative for species identification in many animal taxa, including non-biting
midges, the Chironomidae (Insecta, Diptera) [1–5]. The mutation rate in COI can be fast
enough to provide informative characters for delineation of closely related and sibling species
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and even to analyze phylogeographic patterns within a single species [6–9]. Many chironomid
species, especially in the larval life stage (Fig 1), are difficult to identify and partial COI gene
sequences as DNA barcodes have been shown appropriate to delimit and identify species as
well as associate life stages in this family [3, 10–14]. In general, partial COI sequences show a
high-level of divergence between species in Chironomidae, so high that the marker performs
poorly in phylogenetic reconstructions [3, 15]. Nevertheless, COI has been used to infer the
phylogenetic relationship within family Chironomidae [16, 17].

The dipteran family Chironomidae is the most ubiquitous and usually most abundant insect
group in all types of freshwater and even saltwater [18]. At present, there are more than 6000
described species worldwide (P. Ashe pers comm.) and certain species can reach densities up to
15600 individuals per m2 at favorable conditions [19]. Due to their high abundance and diver-
sity, chironomid larvae occupy a key position among benthic macroinvertebrates, they are
important as freshwater indicator organisms [20] and as food items for fish. In addition, larval
head capsules are preserved in lake sediments and have been shown to be useful in climate
reconstructions since species composition varies with water temperature as well as other envi-
ronmental factors. However, identification of chironomid larvae to species-level via morphol-
ogy usually is arduous, time-consuming and expensive, and more effective identification
techniques such as DNA barcoding can greatly improve the use of chironomids in biological-
assessments of freshwater ecosystems [21–23]. Recently, this was exemplified with a next-gen-
eration sequencing protocol analyzing 1015 tropical chironomids at a cost of less than $1 per
specimens [24]. At present, there are few publications that investigate the performance of DNA
barcoding in species-rich genera. A couple of studies are known from plants [25–27], but there
are currently no papers that explore how efficient DNA barcodes are in delineation of species
in larger genera (>200 species) of insects.

The genus Tanytarsus van der Wulp, 1874 is the most species-rich genus of the tribe Tany-
tarsini in subfamily Chironominae with more than 400 described species worldwide. Species of
the genus Tanytarsus (Fig 2) are eurytopic, and immatures occur in all types of freshwater.
There are even species with larvae and pupae in marine or terrestrial environments[28]. The
genus was erected by van der Wulp [29] and various species groups and regionally distributed
species have been revised over the last few decades [30–37]. A morphological determination of
some Tanytarsus species group can be extremely challenging. Moreover, there are many
unknown and cryptic species in Tanytarsus and it is difficult to associate the immature stages
with adults through rearing since it is time-consuming and not always successful. In general,
identification at the species-level strongly relies on the morphological characters of adult
males. However, diagnostic characters might be unreliable due to intraspecific morphological
variation even for this life stage and phenotypic plasticity [38] in morphometric ratios and
hypopygial structures caused by different temperature regimes and food quality has been
observed in several chironomid species [39]. Moreover, artifacts created in the slide-mounting
process can also obscure species specific characteristics.

Currently, there are several approaches to analyze how DNA barcode data form separate
genetic clusters potentially corresponding to biological species. In this context, evaluation of
neighbor joining [40] ID-trees perhaps represents the most widely used method for the direct
comparison of DNA barcodes. In general, neighbor joining trees are easy and fast to compute
with appropriate bootstraps replicates even for big datasets. Furthermore, methods such as
Automatic Barcode Gap Discovery (ABGD) [41], the Generalized Mixed Yule Coalescent
model (GMYC) [42–44], the Poisson Tree Process (PTP) [45], Objective Clustering [46], and
the Barcode Index Numbers Algorithm (BINs) [47] also have been proven to represent effec-
tive approaches to group hypothetical species in a sequence alignment. ABGD aims to assign
sequences into Operational Taxonomic Units (OTUs) based on a statistically inferred barcode
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gap in an initial partitioning, conducting a second round of splitting through recursive parti-
tioning [41, 48]. ABGD performs well for standard prior maximum intraspecific divergences
except for datasets including less than three sequences per species [41]. The GMYCmodel is a
likelihood method for delimiting species by fitting within and between species branching mod-
els to gene trees [43] while the Poisson Tree Process (PTP) is a method for species delimitation
based on rooted phylogenetic trees [45]. The PTP-model assumes that intra- and interspecific
substitutions follow two distinct Poisson processes, and that intraspecific substitutions are
discernibly fewer than interspecific substitutions [44]. The Objective Clustering method of the
software Species Identifier aims to explore intra- and interspecific genetic distances of cluster
sequences based on pairwise distances [46]. Species Identifier allows the comparison of clusters
generated using preset thresholds by users with existing taxonomy [49–51]. The Barcode Index
Numbers Algorithm (BIN) is incorporated in the Barcode of Life Data Systems (BOLD, www.
boldsystems.org) [47, 52]. BIN analysis generates one number of OTUs for each set of DNA
barcode sequences using the Refined Single Linkage algorithm [48]. The BIN algorithm has
been effectively tested on numerous taxonomic groups and shows potential for applications in

Fig 1. Tanytarsus sp.10XL, larva.

doi:10.1371/journal.pone.0138993.g001
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species abundance studies and environmental barcoding [47]. Nevertheless, few studies have
compared the performance of the novel analytical methods for the DNA barcode-based delin-
eation of OTUs [48].

In this study, we have used 2790 Tanytarsus DNA barcodes to test the utility of COI bar-
codes for species identification in Tanytarsus. Furthermore, we used DNA barcodes and mor-
phology to evaluate potentially cryptic species within this genus. Finally, we compared the
number of OTUs using ABGD, GMYC, PTP, Objective Clustering and the BIN algorithm to
see which of these methods correspond best to morphological species concepts in Tanytarsus
and which level of intraspecific divergence we should expect within this genus.

Materials and Methods

Taxon sampling and data collection
The Tanytarsus sequences used in this study originated from specimens that were collected in
many different parts of the world. Own field work was conducted mainly in Northern Europe,
China and Canada during recent years, but chironomids were also collected in Central Europe,
North and Central America, Africa and Australia. Specimens were identified morphologically
using taxonomic revisions and species description [31, 32, 34–36, 53–64].

In addition to own data, we searched for public COI barcodes in BOLD belonging to genus
Tanytarsus that were longer than 500 base pairs and lacked stop codons, indicating absence of
dysfunctional copies of mitochondrial genes (NUMTs). Searches were done January 17, 2015.

Fig 2. Tanytarsus occultusBrundin, 1949, adult male.

doi:10.1371/journal.pone.0138993.g002
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Hits were combined with own data and are available through the dataset “Tanytarsus DNA
barcoding 2015 (DS-TABAC)” on BOLD, DOI: dx.doi.org/10.5883/DS-TABAC.

The complete dataset includes 2790 COI sequences of which 164 originated from Gen-
Bank, 340 from our own lab at the Department of Natural History, NTNU University
Museum, and the remaining 2286 sequences from various projects in BOLD. In our dataset,
1242 of 2790 specimens were not examined by us and only identified to genus-level. Since
this would make analyses of intra- and interspecific distances difficult, we re-named the
1242 sequences by the clusters they belonged to in a standard neighbor joining tree based on
Kimura 2-Parameter (K2P) [65] distances (S1 File). In cases where unidentified sequences
matched named morphospecies, we gave them this name; in cases where there was no
matching morphospecies name, we gave all sequences in that cluster the same distinguish-
able group name.

DNA extraction, PCR amplification, sequencing and alignment
Sampled specimens were preserved in 75–96% ethanol and stored dark at 4°C before molecular
analyses. Depending on size, a single or three legs were removed from the majority of speci-
mens and sent to Canadian Centre for DNA Barcoding, the Biodiversity Institute of Ontario
(Guelph, Ontario, Canada) for DNA extraction, PCR and bi-directional Sanger sequencing as
part of the International Barcode of Life project. In addition, DNA of 102 specimens was
extracted from the thorax and head using GeneMole DNA Tissue Kit on a GeneMole

1

instru-
ment (Mole Genetics, Lysaker, Norway) at the Department of Natural History, NTNU Univer-
sity Museum. The standard protocol was followed with exception that 4 μl Proteinase K was
mixed with 100 μl buffer for overnight lysis at 56°C. The final elution volume was 100 μl. After
DNA extraction, the exoskeleton was washed with 96% ethanol and mounted in Euparal on
the same microscope slide as its corresponding antennae, wings, legs and abdomen following
the procedure outlined by Sæther [66]. Vouchers are deposited at the Department of Natural
History, NTNU University Museum, Trondheim, Norway and College of Life Sciences, Nankai
University, Tianjin, China (Chinese specimens).

A 658 bp fragment of the COI region was PCR-amplified using the universal primers
LCO1490 and HCO2198 [67]. DNA amplification was carried out in 25 μl reactions using
2.5 μl 10x Takara ExTaq pcr buffer (CL), 2 μl 2.5 mM dNTP mix, 2 μl 25 mMMgCl2, 0.2 μl
Takara Ex Taq HS, 1 μl 10 μM of each primer, 2 μl template DNA and 14.3 μl ddH2O. Amplifi-
cation cycles were performed on a Biorad C1000 Thermal Cycler (Bio-Rad, California, USA)
and followed a program with an initial denaturation step of 95°C for 5 min, then followed by
34 cycles of 94°C for 30 s, 51°C for 30 s, 72°C for 1 min and 1 final extension at 72°C for 3 min.
PCR products were purified using illustra ExoProStar 1-Step (GE Healthcare Life Sciences,
Buckinghamshire, UK) and shipped to MWG Eurofins (Ebersberg, Germany) for bidirectional
sequencing using BigDye 3.1 (Applied Biosystems, Foster City, CA, USA) termination.

Sequences were assembled and edited using Sequencher 4.8 (Gene Codes Corp., Ann Arbor,
Michigan, USA). Sequence information was uploaded on BOLD (www.boldsystems.org) along
with an image and collateral information for each voucher specimen.

The sequences names were edited using MESQUITE 2.50 [68]. Alignment of the sequences
was carried out using the Muscle algorithm [69] on amino acids in MEGA 6 [70] (S2 File).

The nucleotide statistics and pairwise distances using the K2P model were calculated in
MEGA 6 (S1 Table). The neighbor joining tree was conducted using K2P substitution model
with 500 bootstrap replications and the “pairwise deletion” option of missing data in MEGA 6.
The K2P model was used to make our results comparable with most other DNA barcode stud-
ies on insects.
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To estimate the number of OTUs, the aligned sequences were subjected to Objective Clus-
tering at 2–7% threshold in Species Identifier (TaxonDNA 1.6.2) [46]. In addition, the aligned
sequences were sorted into hypothetical species using ABGDmethod with a prior P that ranges
from 0.005 to 0.1, and the K2P model, following the default settings. The number of BINs in
the dataset was counted as they appeared in BOLD on March 28th, 2015. Furthermore, a
reduced dataset with 1250 unique sequences (haplotypes) was generated using ElimDupes
(https://hcv.lanl.gov/content/sequence/ELIMDUPES/elimdupes.html) and manual inspection
for use in both GMYC and PTP. The ultrametric tree required for the GMYCmethod was
obtained using BEAST 1.8 [71] on the reduced dataset. The MCMC chain was run for 50 mil-
lion generations under the HKY substitution model with two partitions (positions 1+2; posi-
tion 3) and the Yule speciation model. Runs using more complex and fit models of substitution
(e.g. GTR+I+G) was also attempted, but MCMC failed to start in BEAST due to low initial like-
lihoods even with UPGMA and ML starting trees. Prior settings are available from the authors.
The MCMC log on prior and posterior values was examined in Tracer 1.6 [72] and a burn-in
of 10 million generations was used to avoid suboptimal trees in the final consensus tree. The
single-threshold GMYC method was applied using the splits package [73] in R [74] with step-
by-step guides available on Tomochika Fujisawa’s blog (https://tmfujis.wordpress.com/2013/
04/23/how-to-run-gmyc/). For PTP-based OTU estimation, the needed rooted phylogenetic
input-tree was constructed with RAxML [75] using raxmlGUI v1.3 [76] with the GTR+G+I
substitution model. The PTP model was implemented following the default parameters
and 500 000 generations on the bPTP web server (http://species.h-its.org/ptp/) [45] as well as
1 000 000 generations on the stand-alone version in a Linux environment.

Results and Discussion

Barcode analysis
The aligned 2790 sequences ranged from 507 to 658 base pairs, including 798 sequences with
full barcode length. In total, there were 338 variable sites (51.4%), of which 301 (89.1%) were
parsimony informative. Most variable sites occurred in the third codon-position. The
sequences were heavily AT-biased specifically in the third position with an average AT-compo-
sition of 87.6% (Table 1).

Our dataset included 1548 barcode sequences which before analysis were identified to spe-
cies-level and 1242 barcodes which were identified to the genus-level. The number of DNA
barcodes per morphospecies (n = 93) and DNA barcode cluster (n = 131) ranged from 1 to 430
(Fig 3).

Average intraspecific divergence was 2.14% (S2 Table) with maximum intraspecific diver-
gence observed in Tanytarsus brundini Lindeberg (21.1%). This was even beyond the average
interspecific divergence (15.9%) and sequences belonging to this morphospecies clustered
clearly in four genetically divergent groups, indicating cryptic species. A similar situation was
also observed for other morphospecies (see below). When disregarding obvious cryptic species
complexes, the maximum intraspecific divergence was 8.5% (for Tanytarsus occultus Brundin).

Table 1. Variable and informative sites, and average nucleotide composition in the aligned COI gene sequences.

Nucleotide Position Variable Site (%) Informative Site (%) T (%) C (%) A (%) G (%) AT (%) GC (%)

1st 25.7 22.6 26 17.3 29.2 27.4 55.2 44.7

2nd 9.2 4.9 43 27.2 13.3 16.5 56.3 43.7

3rd 65.1 72.4 45 8.9 42.6 3.1 87.6 12.4

All 51.4 89.1 38.1 17.8 28.4 15.7 66.5 33.5

doi:10.1371/journal.pone.0138993.t001
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The maximum interspecific divergence was 26.7% between Tanytarsus mendax Kieffer and
Tanytarsus nigricollis Goetghebuer. The minimum interspecific divergence was 0.9% between
Tanytarsus unagiseptimus Sasa and Tanytarsus kiseogi Ree & Jeong, but this case probably was
due to a misidentification of specimens not available to us for morphological examination and
might also indicate a taxonomic synonym (see below).

In general, our data showed distinctly larger interspecific (S3 Table) than intraspecific diver-
gences, but due to the presence of cryptic species diversity and a few misidentifications, there
was no clear “barcode gap” in the pairwise K2P distances (Fig 4). In addition, there are some
cases of low genetic divergence between morphologically distinguishable species, likely due to
recent speciation. For instance, three related morphospecies in the lugens species group, Tany-
tarsus lugens Kieffer, Tanytarsus bathophilus Kieffer and Tanytarsus heliomesonyctios Langton
cannot be well-differentiated by DNA barcodes having interspecific pairwise distance up to
about 3.2% (Fig 5).

Species discrimination
The neighbor joining tree based on 2790 DNA barcodes comprises 131 well separated clusters,
representing 77 named and 44 unnamed morphological species of Tanytarsus (S1 File).
Among these unnamed species, 16 identified morphological species might be new to science,
while 28 barcode clusters were not otherwise assignable to valid morphospecies. The results

Fig 3. Number of DNA barcodes per morphospecies and barcode clusters based on the neighbor joining tree.

doi:10.1371/journal.pone.0138993.g003
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showed that DNA barcode clusters in general corresponded well with morphological species
concepts in Tanytarsus; 94.6% (88/93) of the species identified based on morphology matched
divergent barcode clusters.

However, DNA barcodes were not sufficient for identification in all cases. Previous studies
have shown that the presences of NUMTs [77–79], symbiotic bacteria [80], incomplete lineage
sorting [81–83], introgression [84, 85] and distant geographic areas can present obstacles in

Fig 4. Histogram of pairwise K2P distances of 2790 aligned sequences. The figure was a result of
analysis with ABGD using the K2Pmodel. The horizontal axis shows the pairwise K2P-distance, and the
vertical axis shows the number of pairwise sequence comparisons.

doi:10.1371/journal.pone.0138993.g004

Fig 5. Neighbor joining subtree of the Tanytarsus lugens species group.Numbers on branches
represent bootstrap support (>70%) based on 500 replicates; scale represents K2P genetic distance.

doi:10.1371/journal.pone.0138993.g005
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species delimitation [86, 87] using DNA barcoding. NUMTs and symbiotic bacteria, likeWol-
bachia have to our knowledge not yet been recorded in Chironomidae, but the three other
causes are possible explanations for the observed inconsistencies between morphological and
molecular species clusters.

A few examples of deep COI sequence divergence among specimens assigned to a single mor-
phospecies were detected. There were at least two divergent barcode clusters in Tanytarsus aterrimus
Freeman, Tanytarsus bathophilus Kieffer, Tanytarsus brundini, Tanytarsus glabrescens Edwards,
Tanytarsus guerlus (Roback), Tanytarsus heusdensisGoetghebuer, T. lestagei Lindeberg, Tanytarsus
occultus, Tanytarsus takahashiiKawai & Sasa and Tanytarsus telmaticus Lindeberg (S1 File).

For T. brundini, intraspecific pairwise K2P distances ranged from 0 to 21.1% and a total of
four well separated barcode clusters Western Europe and Canada were observed (Fig 6). Exam-
ination of the voucher specimens did not reveal any distinct morphological characters corre-
sponding with the clustering in COI sequences although some zoogeographical structure is
present. We therefore suspect that this morphological species contains several cryptic species.
A similar situation is present in T. heusdensis, another member of the Tanytarsus chinyensis
Goetghebuer species group. There were three distinct barcode clusters of T. heusdensis in the
result from our analyses, but no obvious morphological characters that will separate adult

Fig 6. Neighbor joining subtree of the Tanytarsus brundini species complex.Numbers on branches represent bootstrap support (>70%) based on 500
replicates; scale represents K2P genetic distance.

doi:10.1371/journal.pone.0138993.g006
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males from Germany and Norway (S1 File). Thus, it appears that geographically separated
populations of some species in the T. chinyensis group are genetically divergent, but difficult to
separate based on morphology. Identification of species in this group has also previously been
acknowledged as challenging [36, 55, 57], thus it is perhaps not surprising that hidden genetic
diversity is detected among members in the T. chinyensis group.

Members of the South African T. aterrimus also showed high intraspecific divergences with
pairwise K2P-distances of up to 13.9%. The DNA barcodes clustered into 3 groups (S1 File)
that so far could not be differentiated via morphology.

Another interesting case was observed in T. occultuswhere specimens fromNortheastern Asia
andWestern Europe separated into two distinct clusters with sequence divergences from 7% to 8.5%
(Fig 7). The adult male vouchers examined are as far as we can observe at present morphologically
indistinguishable. Also, DNA barcodes of a hitherto undescribed morphospecies from Tibet, Tany-
tarsus sp.3XL, showed high intraspecific divergences andmight be more than one species (Fig 8).

In addition to this previously undetected diversity, our results also suggest some new taxo-
nomic synonyms on the species-level. For example, three closely related species in Tanytarsus
eminulus species group, Tanytarsus oscillans Johannsen, T. unagiseptimus and T. kiseogi, dis-
tributed in China, Japan, South Korea, the Russian Fast East and Singapore, are differentiated
by subtle morphological differences in the adult male genitalia [32, 60]. DNA barcode data
indicate that T. kiseogi should be regarded as a junior synonym of T. unagiseptimus as the max-
imum interspecific divergence between specimens of these species was 1.5%. It is not clear if
the T. kiseogi specimens from which the COI-sequences in GenBank originates are part of the
type material, but they were possibly identified by one of the authors from the original species
description since he is co-authoring the DNA barcode paper that published these sequences.

Fig 7. Neighbor joining subtree of Tanytarsus occultus. Numbers on branches represent bootstrap
support (>70%) based on 500 replicates; scale represents K2P genetic distance.

doi:10.1371/journal.pone.0138993.g007
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However, a formal synonymy should await comparison of type material. Tanytarsus oscillans
and Tanytarsus unagiseptimus, on the other hand, probably are two valid species with a mini-
mum interspecific divergence at 7% (Fig 9). In this case, the subtle morphological difference
(i.e. extensively distributed microtrichia between the crests of the anal point in T. oscillans
compared to a smooth surface in T. unagiseptimus) was perfectly mirrored by COI divergence.

Some mismatches between barcode clusters and identifications might be a result of misiden-
tifications or differences in opinion between identifiers. This is to be expected because there are
several groups in Tanytarsus with challenging taxonomy. Moreover, this type of mismatch can
also occur if a reference database is used to identify unknown specimens but the identifications
of these are not updated at the same time as the original reference sequences(s) if these change
name. We found that T. glabrescens together with some unnamed Tanytarsus sequences
grouped into three well-differentiated barcode clusters, which might demonstrate potential
cryptic species within this species complex. One of the clusters was particularly interesting as
single individuals of both T. glabrescens and Tanytarsus buckleyi Sublette were present together
with many sequences from unidentified specimens (Fig 10). In case like this it is tempting to
regard the one T. glabrescens as a misidentification since the species name already is present in
two other clusters. However, it can only be clarified through examination of voucher specimens
and collaboration between identifiers. It is therefore a great advantage for the taxonomy of
challenging groups to deposit reference data in a database that facilitates communication

Fig 8. Neighbor joining subtree of Tanytarsus sp.3XL from Tibet, China. Numbers on branches
represent bootstrap support (>70%) based on 500 replicates; scale represents K2P genetic distance.

doi:10.1371/journal.pone.0138993.g008
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between contributors and identifiers, such as BOLD, and voucher specimens of the sequences
in an accessible collection [88].

A very similar situation was observed in the Tanytarsus lestagei aggregate which consists of
several almost identical species [36, 58]. Within the European populations, some specimens of
T. lestagei, T. telmaticus and Tanytarsus cf. longitarsis Kieffer grouped into the same cluster,
while remaining specimens of T. telmaticus, T. lestagei and Tanytarsus cf. dispar Lindeberg
could be well differentiated by DNA barcodes (Fig 11). However, there are currently several
species with multiple synonyms within this group. Thus, perhaps Lindeberg’s [58] separation
of sympatric species turns out to be closer to the true species boundaries within this aggregate
than Ekrem’s [32] interpretation (and synonymization) of species in the same group.

The Asian members of the T. lestagei aggregate, T. takahashii and Tanytarsus yunosecundus
Sasa previously have been distinguished from each other based on characters found in adult
males, e.g. differences in the fore leg ratio and the shape of the superior volsella [32]. Recently,

Fig 9. Neighbor joining subtree of Tanytarsus kiseogi, Tanytarsus oscillans and Tanytarsus unagiseptimus. Numbers on branches represent
bootstrap support (>70%) based on 500 replicates; scale represents K2P genetic distance.

doi:10.1371/journal.pone.0138993.g009
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Tadashi Kobayashi (pers comm.) suggested T. takahashii to be a junior synonym of T. yunose-
cundus. DNA barcodes of populations from China and South Korea revealed low interspecific

Fig 10. Neighbor joining subtree of Tanytarsus buckleyi and Tanytarsus glabrescens. Numbers on branches represent bootstrap support (>70%)
based on 500 replicates; the dots indicate the specimens identified morphologically; scale represents K2P genetic distance.

doi:10.1371/journal.pone.0138993.g010
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pairwise distance (2%) (Fig 12). However, a single DNA barcode of T. takahashii from Japan
downloaded from GenBank did not group with these sequences and was more than 13% diver-
gent based on K2P-distances. The single, divergent sequence was obtained from a pooled sam-
ple of male individuals (Richard Cornette pers comm.) and it is not unlikely that the barcode of
T. takahashii from Japan in GenBank belong to another species. We have examined specimens
from the same collection sample and can confirm that there are two superficially similar Tany-
tarsus and one Cladotanytarsus species present. Nevertheless, a synonymy of T. takahashii and
T. yunosecundus should be avoided until more specimens of these species are examined and
analyzed, especially from Japanese populations.

It should be kept in mind that there are no shortcuts to resolve the taxonomy of morpholog-
ically and genetically challenging species. Thus, further study using nuclear markers and more
thorough morphological analyses are needed to sort out species boundaries and conclude on
the potentially cryptic species within the different group treated above.

Fig 11. Neighbor joining subtree of European Tanytarsus lestagei aggregate.Numbers on branches represent bootstrap support (>70%) based on 500
replicates; scale represents K2P genetic distance.

doi:10.1371/journal.pone.0138993.g011
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We based our study on taxon samples from around the world, particularly from Australia,
China, Northern America andWestern Europe. As there are more than 200 described Tanytar-
sus species from Africa, Australia, Eastern Asia and Southern America [32, 37], we have only
about 1/3 of the known diversity of this genus. As shown above, a single or a few barcodes may
not represent the putative species as whole, especially for geographically widespread species.
Thus, restricted taxon sampling in many cases probably have led to an underrepresentation of
the complete genetic range and inaccuracies in estimation of species [89]. As mentioned above,
geographically separated populations of T. occultus showed high intraspecific variability. With-
out morphological taxonomic consideration, the two geographically separated populations
would be regarded as cryptic species. In this and other sister group cases in Tanytarsus, a more
detailed analysis is required to determine the current rate of gene flow between populations
and if there is speciation in progress. Despite several challenging and biologically interesting
incidents, DNA barcoding generally is effective for species identification in Tanytarsus, even
when taxa are sampled from multiple and large geographic areas. This is similar to what has
been recorded for Lepidoptera [90, 91] but opposite to findings for aquatic beetles [92]. Our
data and results also show that traditional taxonomic considerations and comprehensive sam-
pling are highly important for correct identification [87, 93] and that DNA barcodes in refer-
ence libraries provide an excellent starting point for taxonomic considerations and discussion
on the identity of challenging taxa.

Fig 12. Neighbor joining subtree of Asian Tanytarsus lestagei aggregate (Tanytarsus takahashii and
Tanytarsus yunosecundus). Numbers on branches represent bootstrap support (>70%) based on 500
replicates. It should be noted that “Tanytarsus talcahashii” is a misspelling of “Tanytarsus takahashii” in
GenBank; scale represents K2P genetic distance.

doi:10.1371/journal.pone.0138993.g012
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OTU estimation
Any particularly set threshold value for species separation will affect taxon diversity in any tax-
onomic group. Moreover, studies indicate that the same threshold is not appropriate for all
groups. In insects for instance, a 2% threshold provides effective identification at the species-
level of Ephemeroptera [94–96], Lepidoptera [97, 98], Plecoptera and Trichoptera [97]. While
a 2.2% threshold has been found appropriate for Heteroptera [99, 100], a 2.5% threshold has
been found suitable for aquatic beetles [101], a>3% threshold has been registered for several
dipteran groups [46, 102, 103].

In Chironomidae, average intraspecific divergences range from 0.9% to 2.32% [3, 104] and
when disregarding obvious cryptic species clusters, maximum intraspecific K2P distances can
be as high as 8.5%, considerably higher than comparable rates in Heteroptera, Hymenoptera
and Lepidoptera. In our study, morphologically determined Tanytarsus species had average
intraspecific divergences of 2.14% (S2 Table). This was the case even for heavily sampled spe-
cies such as T.mendax, where 430 sequences showed a mean pairwise divergence of 2.1%.

The number of OTUs in a DNA barcode dataset relies on both the method and threshold
value used. Thus, we tested different methods for OTU calculation to explore what might be an
appropriate threshold for Tanytarsus species.

Using Objective Clustering at threshold 2% yielded 217 clusters, while thresholds ranging
from 3% to 7% yielded 120–156 clusters (Fig 13). Applying the ABGDmethod with prior

Fig 13. The number of DNA clusters according to Objective Clustering at different thresholds.

doi:10.1371/journal.pone.0138993.g013
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intraspecific divergence ranging from 3%–5% yielded 123–129 OTUs (Fig 14). This is similar to
the number of divergent barcode clusters seen when subjectively evaluating the neighbor joining
tree. Analyses of the reduced dataset containing only unique haplotype sequences yielded 180
clusters with a confidence interval ranging from 164–193 using GMYC (Fig 15) and 224–225

Fig 14. The number of the OTUs by the prior intraspecific divergence calculated with ABGD online.

doi:10.1371/journal.pone.0138993.g014

Fig 15. Results of the GMYC analysis. The red vertical line (left) indicates the single threshold time between inter-intraspecific branching; y axis (left)
equals the number of lineages; y axis (center) equals the log likelihood of the single threshold GMYCmodel; the x axes (left and center) show substitutions
per nucleotide site; the red branches (right) on the gene tree indicate estimated delimited species.

doi:10.1371/journal.pone.0138993.g015
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clusters with PTP and bPTP (S3 File). Thus, GMYC yielded a more conservative number of spe-
cies than PTP, but still considerably higher than what was obtained with Objective Clustering
and ABGD using higher thresholds and our subjective evaluation of the neighbor joining tree.
The observed difference in the species estimate for PTPmay be associated with the unbalanced
number of individuals sampled per species as this can affect the species delimitation [45].

Examining the dataset in BOLD, 2749 of 2790 barcodes were assigned a barcode index num-
ber and represented 242 BINs. In total, 2250 barcodes matched with morphospecies, represent-
ing 166 BINs, and 63 barcodes were singletons representing 63 BINs. Surprisingly, the 242
BINs in BOLD were approximately twice the number of divergent barcode clusters observed in
the neighbor joining tree (131) and even higher than the number of species estimated by PTP.
Thus, for Tanytarsus, the number of BINs generated by the BIN algorithm did not represent
morphological species well. One reason might be that numerous identical haplotypes move the
BIN-boundary upwards (Sujeevan Ratnasingham pers comm.). However, since BINs in BOLD
have been shown to coincide strongly with known species boundaries in other insect groups,
i.e. Coleoptera and Lepidoptera [97, 105], we suspect that it also is the starting threshold for
the BIN algorithm that is too low for Chironomidae. Comparison of the results of ABGD,
GMYC, PTP and objective clustering indicate that a 4–5% threshold is more appropriate for
species delimitation in genus Tanytarsus.

Conclusion and Future Prospects
The discrimination of Tanytarsus species by DNA barcodes was highly successful with unam-
biguous grouping of 94.6% of the species recognized through prior morphological study. Deep
intraspecific divergence existed in some species complexes, and further taxonomic studies are
required to resolve these issues. Such studies preferably should involve morphological exami-
nation of all life stages as well as analysis of relationships using nuclear markers. Morphological
re-examination of voucher specimens, in particular nominal types will be crucial to sort out
taxonomic challenges and provide the best barcode reference library possible. We suggest that
a 4–5% threshold on average is an appropriate level for species separation in Tanytarsus non-
biting midges. This threshold is considerably higher than it is for certain other insect groups as
well as the basis for the BIN-algorithm used in BOLD.

Supporting Information
S1 File. Neighbor joining bootstrap consensus tree for 2790 Tanytarsus barcodes.Numbers
on branches are bootstrap support (>70%) using 500 bootstrap replicates. The clade names in
blue represent 28 groups morphologically unidentified to the species-level, but clustering
together. The clade names in red represent 16 identified morphospecies which likely are new to
science but unpublished. The clade names in black represent morphospecies. For named spe-
cies with more than two clusters, indicating cryptic species or misidentifications, we have used
symbols with the same color and shape in front of the sequence names.
(PDF)

S2 File. Original alignment of 2790 Tanytarsus barcode sequences. Alignment of the 2790
sequences based on the Muscle algorithm (Edgar 2004) in MEGA6. Final length 658 bp.
(FAS)

S3 File. Maximum likelihood tree based on the PTP model.
(PDF)

S1 Table. Estimates of evolutionary divergence between sequences. Pairwise distance
between 2790 nucleotide sequences based on the K2P model calculated in MEGA6. The
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analysis included all codon positions and pairwise deletion of gaps for each sequence pair.
(XLS)

S2 Table. Estimates of average evolutionary divergence over sequence pairs within groups.
Average pairwise distances within species based on the K2P substitution model calculated in
MEGA6. The analysis included all codon positions and pairwise deletion of gaps for each
sequence pair. In order to calculate the intra- and interspecific distances including sequences
without species names in public databases, species names were added to 1242 DNA barcodes if
they matched named sequences in the neighbor joining tree.
(XLS)

S3 Table. Estimates of evolutionary divergence over sequence pairs between groups. Aver-
age pairwise distance between species based on the K2P substitution model calculated in
MEGA6. The analysis included all codon positions and pairwise deletion of gaps for each
sequence pair. In order to calculate the intra- and interspecific distances including sequences
without species names in public databases, species names were added to 1242 DNA barcodes if
the matched named sequence in the neighbor joining tree.
(XLS)
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