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Abstract

Some dangerous failures of safety-instrumented systems (SISs) are detected almost immediately
by diagnostic self-testing as dangerous detected (DD) failures, whereas other dangerous failures
can only be detected by proof-testing, and are therefore called dangerous undetected (DU) failures.
Some items may have a DU- and a DD-failure at the same time. After the repair of a DD-failure is
completed, the maintenance team has two options: to perform an insert proof test for DU-failure
or not. If an insert proof test is performed, it is necessary to decide whether the next scheduled
proof test should be postponed or performed at the scheduled time. This paper analyzes the effects
of different testing strategies on the safety performance of a single channel of a SIS. The safety
performance is analyzed by Petri nets and by approximation formulas and the results obtained by
the two approaches are compared. It is shown that insert testing improves the safety performance
of the channel, but the feasibility and cost of the strategy may be a hindrance to recommend insert
testing.
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1. Introduction

Safety-instrumented systems (SISs) are widely used in many industries (e.g., process, nu-
clear, oil and gas industry) to prevent hazardous events and to mitigate the consequences of such
events [2, 3]. International standard [2] uses safety integrity, the probability of a SIS satisfacto-
rily performing the specified safety instrumented function under all the stated conditions within a
stated period of time as a performance measure.

A SIS has at least three subsystems: senor, logic solver and final element subsystems. A
sensor subsystem (with one or more sensors) detects possible undesired event and send signals
to the logic solver subsystem (with one or more logic solvers), which can interpret these signals
and decides which actions should be taken. The final element subsystem also can have one more
elements that take prescribed actions to prevent harm to plants, processes or machineries, namely,
equipments under control (EUCs) [16]. Each subsystem may have one or more channels, which
can independently perform a safety function.

In terms of safety integrity assessment of SISs, many researches have been carried out, e.g.
for measuring the effects of system architectures [6, 14, 20], effects of testing strategies [11, 19],
different demand modes and associated measures [1, 7, 9, 13], and varying modeling methods
[2, 5]. More information about research achievements and directions of SISs can be found in
[15, 16].

In literature, dangerous failures is regarded to occur once a SIS has no capability to response
to a demand, which can be an event or a condition [16]. After such failures, the SIS will fall into
a dangerous fault state. In fact, most modern SISs have built-in diagnostic self-testing capabilities
that can detect many dangerous failures almost immediately such that a repair action can be ini-
tiated. These dangerous failures are called dangerous detected (DD) failures. It should be noted
that diagnostic tests seldom discover all dangerous failures/faults, and the percentage of faults that
can be revealed is called as diagnostic coverage (DC). Dangerous failures that are not detected by
diagnostic testing are called dangerous undetected (DU) failures and are only revealed in proof
tests that are carried out at regular intervals (e.g., once per year).

The mean time from a DD-failure occurs until the function is restored, MTTR, is usually
rather short (e.g., 5-8 hours), and DD-failures will therefore not be a main contributor to the safety
unavailability of a SIS that is operated in low-demand mode (i.e., where demands for the safety
function do not occur more often than once per year). The average probability of failure on demand
(PFD,,,) in a (long) period is always used as the performance measure of a SIS/SIS subsystem/SIS
channel [2, 3, 10].

For some channels, DD-failures can be repaired on-line while the process is running as normal
during the repair. In most cases, however, the EUC has to be brought to a safe state (most often
stopped) during the repair of the DD-failure. For some channels, DD- and DU-failures can be
present at the same time and repairing a DD-failure does not guarantee that a DU-failure is not
remaining in the channel. In some cases, it may be possible to proof-test for a DU-failure as part
of the repair of the DD-failure.

Such proof tests can be regarded as insert tests between two scheduled tests, such that the total
number of proof tests in a certain time period will increase. This means that the average length of
the proof test interval will be reduced. Because the length of the proof test interval has a significant
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influence on the unavailability of a SIS [17], the new proof tests induced by DD-failures should
also have influence. Thus, the objective of this paper is to model the relationship between such
proof tests induced by DD-failures and SIS performance, and to study the effects of these tests.

The remainder of the paper is organized as follows: Section 2 presents the possible follow-up
test strategies of a single channel SIS after a DD-failure is revealed. Next, the modeling approach is
briefly introduced, and Petri net models for different strategies are studied in section 3. The effects
of different test strategies on the SIS availability performance are analyzed in section 4. And
then, general approximation formulas are proposed for more complex systems. Finally, section 6
presents conclusions and research perspectives.

2. Testing strategies induced by DD-failures

First, we study a simple SIS subsystem with only one channel. When a DD-failure in this
system is detected, the maintenance team can repair the SIS channel in a short time, and then they
have three options for testing the SIS for DU-failures:

e Strategy I: Do not perform any insert proof test for DU-failures.

o Strategy II: Perform an insert proof test for DU-failures, while keeping the proof-testing
schedule unchanged.

e Strategy III: Perform an insert proof test for DU-failures, and change the proof-testing sched-
ule (by postponing the subsequent proof test).

To illustrate the difference between strategies II and III, consider a solenoid valve that is sched-
uled to be proof-tested each April and assume that a DD-failure occurs in September. If strategy
IT is applied, a proof test for DU-failures is initiated immediately after having repaired the DD-
failure, and the next proof test is still carried out the next April. If, on the other hand, strategy I11
is applied, the next proof test is postponed till next September keeping the same interval between
two proof tests.

We use the long-term average probability of failure on demand, PFD,,,, to measure the safety
unavailability of the SIS. DU-failures are always the main contributor to the PFD,,, because they
may put the SIS in an unavailable state for a long time until a proof test is carried out. Fig. 1
illustrates possible shapes of the probability of failure on demand, PFD(t), as a function of the
time ¢ ,when test strategies II and III are applied, respectively.

In Fig. 1, #1, 15, ..., denote the times when DD-failures occur, and 7 is the test interval. It is
shown in Fig. 1(a) that the predefined proof-testing schedule is kept unchanged under strategy II,
and each proof test can reduce the value of PFD(¢) to 0. Fig. 1(b) for strategy III, illustrates that
the time to the next proof test is re-counted after an insert test induced by a DD-failure.

3. Petri Net Analysis

Petri nets are used in this paper to model the different testing strategies. Petri nets have been
adapted to SIS reliability analysis [5, 7, 16] especially for testing strategies of SISs [10, 12], and
is also a recommended modeling approach in IEC 61508 [2] and ISO 12489 [8].
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Figure 1: PFD for test strategies II (a) and III (b) as a function of time ¢, adopted from [12]

The international standard IEC 62551 [4] defines the terminology of Petri nets in dependability
analysis. Places (shown as circles in Fig. 2) and transitions (shown as bars) are two basic elements,
which are connected with directed arcs. Tokens are illustrated as bullets to express the movable
resources in the system and reside in the places. For each arc, a multiplicity is assigned to denote
the token delivering capacity of the arc. The distribution of tokens in the places is regarded as a
marking, and each marking represents a system state.

When all input places to a transition have at least as many tokens as the multiplicities of the
associate arcs to the transition, the transition is enabled. And then, the transition can be fired
to change the distribution of tokens in places. A firing time (delay from enabled to fired) can
be assigned to each transition. In IEC 62551 [4], a thin bar is used to represent an immediate
transition (zero firing time), a blank bar is for a transition with exponential firing time, and a filled
thick bar is for the transition with constant firing time.

In addition, an inhibitor arc (shown as a small circle at the end of an arc) is sometimes used
to prevent a transition from being enabled. Such a special arc enables its output transition when
there is no token in the associate place. More details for Petri nets can be found in IEC 62551 [4].

Petri net models in IEC 61508 [2] have in addition predicates and assertions, which are defined
in [2] and [18] as

e a predicate (identified by “?” or “??”) is a formula to control the enabling condition of a
transition;

6‘!9’ “!!”

e an assertion (identified by
transition is fired.

or ) is a formula used to update one variable when the

Such interpretations are also helpful in some ordinary Petri net, and may make the model more
compact and understandable.

3.1. Testing strategy |
In the following subsections, three Petri net models are established to illustrate the three testing
strategies in section 2 after the occurrence of a DD-failure.
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Figure 2: Petri net model for test strategy I

Fig. 2 shows the Petri net model for test strategy I. In this model, a DD-failure occurs when the
token in ppyw is removed by the transition 7pp and deposited to ppg. The occurrence of a DU-failure
is modeled in the same way with pyw, fuw and pyg. Both fpp and fpy are blank, meaning that the
failure times are exponentially distributed. In addition, an exponentially distributed transition fpg
is used to model the repair times of the SIS from the fault state due to DD-failures, respectively.

Proof tests are reflected by firing #1 and depositing a token to pr. The filled bar shows that
proof tests are carried out at constant intervals.

Transitions fyr and 7y express the two situations in a proof test. If a DU-failure in the SIS is
revealed, fyr can be fired; otherwise, #, can be fired. The inhibitor here is for enabling #, when
there is no token in pyr. No matter whether fyg or ¢, is fired, a token can be deposited to ps,
meaning that the test is finished and the test resources are restored and ready for the next proof
test. It should be noted that both #yr and #, are immediate transitions, ignoring the testing/repair
time, since they are much shorter than the testing interval.

It should be noted that the part describing the DD-failure is separate from the parts describing
the DU-failure and the proof test in this model. The movement of tokens between ppw and ppr
has no influence on other tokens.

It is also possible to model the operation with a Petri net with predicates and assertions (as
shown in Fig. 3). Places and transitions have the same meaning as those in Fig. 2. The description
“7DU=0" means that a necessary firing condition of fpy is the value of variable DU is equal to 0.
And the assertion “!DU=DU+1" means that after the firing of fpy, the value of the variable DU is
added with 1.

For the transition fyg, its predicate is “?T=1", meaning that a proof test is carried out. In fact
the two firing conditions of this transition are represented by the weight of its input arc in the figure
and the predicate respectively. While in case no DU-failure occurs, f is fired with the predicate
“7DU=0". It can be found that with predicates and assertions, the functions of inhibitors of Fig. 2
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Figure 3: Petri net model for test strategy I with predicates and assertions

can be identically realized in Fig. 3.

3.2. Testing strategy Il

Strategy II can also be modeled by a Petri net with predicates and assertions, as illustrated in
Fig. 4.

The impact of DD-failures can be modeled with introducing a variable DD. Initially, there is no
DD failure present and the value of DD is 0. When a DD-failure occurs, the value of DD becomes
1, and when the DD-failure has been repaired, the value of DD returns to 0. The value DD is also
a predicate of fyg, such that when a DU-failure is present, transition fyg can be fired either by a
proof test or a DD-failure.

There is no relation between the DD-failure part and the scheduled proof-testing part in this
model. Even if there is an insert proof test, the transition ¢ is still fired at the scheduled time.

3.3. Testing strategy III

The model for testing strategy III can follow Fig. 4 while building a relation between the proof
test and the test activated by a DD-failure as in Fig. 5. A predicate “?T=0" is added to the transition
fpp, and it also has a new assertion as “!T=T+1". Such controlling sentences are used to assign
the resource of proof-testing to the tests activated by a DD-failure, while removing the probability
that DD-failure and proof test occur at the same time. Then the testing resource can be allocated
back to proof-testing with the assertion 7pg as “!'T=T-1".

In other words, once a DD-failure occurs, the firing condition of #7 is stopped. The time
counting process for the next proof test is not re-initiated until the insert test is finished.

It should also be noted that such a model ignores the probability that a DD-failure and the
scheduled proof test take place at the same time. This assumption has little influence on the
following analyses since this probability is very low.
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3.4. Input data and assumptions

The formulas derived in the rest of the paper are illustrated by numerical examples. The
examples are based on the following data and assumptions:

e DU- and DD-failures occur independent of each other.
e A DU-failure and a DD-failure can be present at the same time.
e The dangerous undetected (DU) failure rate of the channel is Apy = 2 - 107 per hour.

e The initial dangerous detected (DD) failure rate is App = 2 - 10~ per hour. To illustrate the
effects of DD-failures, selected values of the DD-failure rate App between 2-107> and 2-10™*
per hour are studied. The corresponding DC-values are hence between 0.90 and 0.99.

e The mean repair time of a DD-failure is MTTR = 8 hours. The repair time of a DD-failure
also includes the time required to carry out an insert test for DU-failure and, if necessary,
to repair this failure. The safety function of the channel is regarded to be lost during the
MTTR.

e All failures are detected and repaired during the insert test, and after an insert test, the
channel is as-good-as-new.

e The mean time required to proof-test and, if necessary, restore/repair a DU-failure is ignor-
able compared with the proof test interval. The channel is as-good-as-new after the proof
test.

e The scheduled proof-testing interval is 7; = 8760 hours (i.e., one year). This is the time
from a proof test is initiated until the subsequent proof test is initiated.

Such assumptions are used for both approximation formulas and analysis based on Petri nets.

It also should be noted that the assumption of the ignorable test/repair time can be not valid
when DD-failures occur too often. If the frequency of DD-failure is very high, the times of
tests/repairs can become noticeable in comparison with testing interval, such that their contri-
bution to unavailability of a SIS cannot be skipped. But in this article, we do not consider such
extreme situations. As shown in the following example, DD-failure rate is up to 2 x 10~*, meaning
that testing interval even involving insert tests is still much longer than test/repair time. In addition,
costs factors in proof and insert tests are also skipped in this article.

3.5. Probability of failure on demand

The PFD,,, of the channel is determined by the contributions from DD- and DU-failures, and
for all the three testing strategies, PFD,,, can be calculated as:

PFD,y, = Pr(m(ppr) = 1) + Pr(m(pyr) = 1) — Pr(m(ppr) = 1) - Pr(m(pyr) = 1) (D

where Pr(m(ppr) = 1) denotes the average unavailability of the channel due to a DD-failure (i.e.,
the long term average probability that place ppr holds one token). Similarly, Pr(m(pyr) = 1)
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is equal to the average unavailability of the channel due to a DU-failure. Both Pr(m(ppr) =
1) and Pr(m(pyr) = 1) involve the probability of simultaneous DD- and DU-failures, such that
when calculating PFD,,,, the probability Pr [(m(ppg) = 1) N (m(pyr) = 1)] must be subtracted to
remove this overlap. For highly reliable channels, however, the probability of simultaneous DD-
and DU-failures is negligible.

The efficiency of the diagnostic testing for a channel is measured by the diagnostic coverage
(DC), which is the fraction of the rate of dangerous failures that are revealed by the diagnostic
testing relative to the rate of all dangerous failures.

3.6. Monte Carlo simulation

The PFD,,, for the single channel for each of the three test strategies is determined by Monte
Carlo simulations using the GRIF software.! The simulation is based on Petri net models with
predicates and assertions (see Figs. 3 and 4). Results are obtained by simulating a period of 87 600
hours (10 years) one million times. The initial value of the DD-failure rate, App = 2 - 107> per
hour is used in the simulations. Table 1 presents the obtained total PFD,,, and the contributions
from DD-failures [PFD,,pp)] and DU-failures [PFD,,,pu)] for each test strategy. It is seen that
the contribution from DD-failures is small compared to the contribution from DU-failures.

Table 1: PFD,,, of a single channel for three different test strategies

Strategy I Strategy 11 Strategy 11
PFD,ye0D) 0.16 - 1073 0.16 - 1073 0.16- 1073
PFD,yobu) 8.70- 1073 8.21-107° 8.30-107°
PFD,,, 8.86- 1073 8.37-1073 8.46-1073

The effect of test stategies II and III are not very significant in Table 1. The PFD of the best
strategy (II) is only 5.5% lower than the PFD of strategy I. The probability of a DD-failure in a test
interval is 1 — ¢™'°7 ~ (.16, meaning than less than one out of six test intervals will experience a
DD-failure and an insert test.

3.7. Varying rates of DD-failures

With strategies II and III, the channel is proof-tested after each DD-failure, and the rate of
DD-failures, App, therefore influences the contribution PFD,,pu) from DU-failures. To examine
this effects, we consider four different DD-failure rates from 2 - 107> to 2 - 10 per hour, while
keeping the DU-failure rate at 2 - 107 per hour. The other parameters are kept the same in all
the simulations. Table 2 presents the contribution PFD,,pu) due to DU-failures obtained with the
GRIF software.

Table 2 illustrates the reductions of PFD,pu) obtained by using the test strategies II and III.
It is found that PFD,,,puy, decreases with more frequent DD-failures and follow-up proof-testing
for DU-failures.

'A software developed by TOTAL for system analysis, more information can be found at http://
grif-workshop.com
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Table 2: PFD,ygpuy for a single channel with different DD-failure rates

PF])avg(DU)
App (per hour) Strategy I Strategy II Strategy III
2-107 8.70-1073 8.21-107° 8.30-107°
6-107° 8.70-1073 7.39 1073 7.83-107°
1-10~* 8.70-1073 6.61-1073 7.30- 1073
2-107* 8.70- 1073 5.27-1073 6.19 - 1073

4. Approximation Formulas for PFD,,,

Approximation formulas for PFD,,, for the three testing strategies are developed in this sec-
tion. To make it easier to follow our arguments, we have simplified the formulas. The results
are therefore not fully correct, but close enough for most practical purposes. The formulas are
exemplified by the same input data and the same assumptions as for the simulations based on Petri
nets by the GRIF software. We also compare the results with the results obtained by the GRIF
software. When developing the approximation formulas, it is assumed that the probability of two
or more DU-failures in the same proof test interval is negligible. With the given input data, this
probability is approximately 1.5 - 107,

4.1. PFD,,, due to DD-failures

Both DD- and DU-failures may cause dangerous downtime of the channel. The downtime
associated with DU-failures is, however, different from the downtime associated with DD-failures.
A DU-failure is undetected and the safety function of the channel may be unavailable over a
long time without our knowledge. We believe that the equipment under control is protected by
the channel, while it is in fact unprotected. DD-failures, on the other hand, are detected almost
immediately and the safety function is usually unavailable during a short time interval while the
DD-failure is repaired. During this downtime, we know that the safety function of the channel is
unavailable and may therefore take safety precautions.

The occurrence of DD-failures and the associated downtime are the same for all the three
testing strategies. Each time a DD-failure occurs, it is repaired and the mean repair time is MTTR.
For all the three strategies, the PFD-contribution from DD-failures is

PFDan(DD) = /lDD MTTR (2)

Whether or not the PFD-contribution from DD-failures should be taken into account depends
on the operational strategy and the configuration of the SIS.
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4.2. Strategy 1

For strategy I, with no insert tests after DD-failures, the contribution to the average PFD from

DU-failures, PFDglv)g(DU), is given by (e.g., see page 199 in [16])

1 ApuT
PFD{) 1, =1 - o (1-e7) ~» 22 3)

The approximation in (3) is always conservative and is considered to be adequate when Apyt
is small, e.g., less than 5 - 1072 (with our data, Apy7 = 1.75- 1072 and the error is less than 0.6% of
the correct value).

Assume that a DU-failure has occurred in a test interval (0, 7). Because the DU-failure is
undetectable, it is not known exactly when the failure occurred. But given that the DU-failure
is assumed to occur with an exponential distribution, the time of its occurrence is uniformly dis-
tributed over (0, 7). The mean time of occurrence of the DU-failure is therefore 7/2. The channel
will not be able to perform its safety function during the rest of the proof test interval and the mean
(dangerous) downtime (MDT) associated with the DU-failure is therefore 7/2 (e.g., see [16]).

Eq. (3) can therefore be written

PFD;lv)g(DU) ~ Apy - MDTY), 4)

Eq. (4) is a general approximation formula for the PFD,,, due to DU-failures [2, 16] and is

used in the rest of this paper.

4.3. Strategy 11

With strategy 11, the channel is tested for DU-failures and, if necessary, repaired as part of the
repair of DD-failures. This means that the channel is as-good-as-new each time a DD-failure has
been repaired.

Because all the proof test intervals have the same stochastic properties, we may restrict our
attention to the first interval (0, 7). Assume that a DU-failure has occurred in (0, 7) and let X be
the time of the occurrence of the DU-failure. Because we disregard the possibility of more than
one DU-failure in the interval, X is uniformly distributed over (0, 7). The probability density of X
is fy(x) =1/tforO0<x <.

Given that a DU-failure occurs at x, and it will remain undetected until the proof test at time 7,
unless a DD-failure occurs in the interval (x, 7) and the DU-failure is detected and repaired as part
of the repair of the DD-failure. The downtime of the DU-failure is therefore the minimum of 7 — x
and the time until a DD-failure. The mean downtime is therefore [16]

T—X 1
MDT](;IG(X) ~1 f e—/lDDM du = — (1 _ e—/lDD(T—x)) (5)
0 DD

The mean downtime related to a random DU-failure can be calculated on the basis of the
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expected occurrence time of the DU-failure, and so

MDT.) = [MDT(H) (X) fMDT(H[}(x) Fr(x) dx

1 —AppT
- [1 T (1-e )] (6)

The corresponding average PFD is calculated according to mean downtime similarly with
eq. (4) as

1I 1I
PFD{) 1) * Apu - MDTpy) (7)

The results obtained by using eq. (7) are presented in Table 3 and compared with the results
obtained by simulating the Petri net model by the GRIF software. The results obtained by the
approximation formulas are seen to be very close to the results obtained by the GRIF software.
A reason for obtaining slightly higher values by the approximation formulas is that we have used
conservative approximations when we developed the formulas.

Table 3: PFD,,py) for a single channel with different DD-failure rates and with test strategy 11

PFl)avg(DU)
App (per hour) Petri net Approx. formula
2-107° 8.21-1073 8.26-107°
61073 7.39 1073 7.40-1073
1-10™ 6.61-107° 6.67-107°
2-107* 5.27-1073 5.28-107°

4.4. Strategy III

The main difference between strategy II and strategy III is that with strategy III, the time to
the next proof test is reset after each DD-failure. When the channel is repaired (either as part of
a proof test or an insert test), the channel is as-good-as-new and the time to the next test is equal
to the minimum of 7 and the time to a DD-failure. The length Y of the test interval is therefore a
random variable with probability density

Appe ™ for0<y<Tt

fY(y) { —AppT

fory=r1
The mean length of a test interval is
’ 1
E(Y)= f e dy = — (1 — ™" (8)
0 App ( )

Because a test interval is restarted after each DD-failure, no DD-failure can occur within the
test interval. All the test intervals have the same stochastic properties and we can therefore restrict
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our attention to a specific interval that is started at time # = 0. Assume that a DU-failure is observed
in the test (proof test or insert test) at time y. As for strategy II, the conditional occurrence time
X of the DU-failure is uniformly distributed over (0, y). The occurrence of the DU-failure is not
observable, but we denote the occurrence time x. The downtime associated with the DU-failure is
y — x and the mean downtime is MDT(HI)(y) = y/2, i.e., the conditional mean downtime when the
length of the test interval, in which the DU-failure occurred, is y.

When we know that a DU-failure occurred at time x, we also know that a DD-failure did not
occur in the interval (0, x). Because of the memoryless property, the time to the next DD-failure
is measured from time x. The time till the next test is therefore the minimum of 7 — x and the
time until a DD-failure. The conditional mean downtime associated to the DU-failure at time x is
therefore calculated according to eq. 8 as

1
) _—App(1-)
MDTp(x.y) = (1 e~op ) 9)

DD

The mean downtime (conditional on y, but not on x) is

1
MDT{V(y) = f MDTSD(x, ) fx(x) dx = f MDT{ D (x, y) - = dx
y

—ADDT

/lDD AppY

(eﬁDDy - 1) (10)

Because of the uniform distribution, the conditional mean occurrence time of the DU-failure
(given y) is in the middle of the test interval and on the average, the mean time until the DU-failure,
must be equal to the mean downtime, that is

E(X |y) =MDTIV(y)

This means that we can determine y and thereby the MDT related to the DU-failure by solving

1 e—ﬂDDT

Y_ - _
2 ADD A%Dy

(e® = 1) (11)

The solution is not very easy to be organized as a simple formula, so we used a computer to find
y from eq. (11). The mean downtime is MDT(HD(y) = y/2 and the results of PFD,,, are given in
Table 4. The results obtained by the approximation formulas are seen to be somewhat higher than
the results obtained by using the GRIF software, but still acceptable for most practical purposes.

5. Number of Tests with the Three Strategies

Testing for DU-failures induced by DD-failures can improve the performance of a channel,
especially when the diagnostic coverage is high (e.g., DC > 90%). In the following, the number
of tests for DU-failures with the three strategies are calculated for a interval (0, m7), where m is an
integer.
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Table 4: PFD,opuy for a single channel with different DD-failure rates and with test strategy III

PFDavg(DU)
App (per hour) GRIF software Approx. formula
2-107° 8.30-107° 8.50-1073
6-107 7.83-1073 8.02-1073
1-107 7.30-1073 7.56-1073
2-107* 6.19-1073 6.44-1073

1. For strategy I, the scheduled proof tests are the only tests for DU-failures. During (0, m7),
the number, N}PT)(O, mT), of proof tests is

NP, mt) = m (12)

2. For strategy 11, all the m scheduled proof tests are carried out. In addition, insert tests for
DU-failures are carried out after each DD-failure. The mean number NET)(O, mt) of insert

tests during a period mt is given by
NP0, m) = dpp (mr — NjjP(0,mr)MTTR)

because each time a DD-failure occurs, the channel is inoperable during the repair time of
the DU-failure and the associated insert test. This gives

AppT
N, _ __ ™MmApT 13
u Om) = P TR s (13)

The total mean number of tests for DU-failures with strategy II is therefore

(T) _ a/PD) (IT) _ mAppT
NII (O,mT)—N” (0,mT)+N” (O,m‘r) —m+m (14)
3. For strategy III, proof tests are only carried out when the time since the previous DD-failure
or proof test is at least 7. The time to the next test for DU-failure is therefore the minimum of
the time to the next DD-failure and 7. The mean time between tests (MTBT) for DU-failures
(i.e., proof tests or insert tests) is therefore (e.g., see [17])

MTBT(7) = f el dr = % (1= ) (15)
0

DD

The total mean number , NSI)(O, m) of tests for DU-failures with this strategy is

mt — NP0, mr)MTTR
N(T) 0’ — 11\~
11 (0. m7) MTBT(7)

14



This gives
N, mr) = o 16
ur -7 =GB ) + MTTR (16)
The mean number of DD-failures (and insert tests) is not influenced by the test strategy, and
thus it is possible to use eq. (13) again here to calculate N;;,(0,m7). And then, the mean
number of proof tests with strategy III is equal to the number of total tests minus the number

of insert tests:

(PT) (D) mAppT
NIII (0, WIT) = NIII(O’ mT) - m

B mrt mAppT
~ MTBT(r) + MTTR ~ 1+ MTTRApp

(17)

Table 5 presents the mean number of proof tests and insert tests for strategies II and III with
the data in the case example, over a period of length 107 (i.e., ten years) .

Table 5: Average test numbers in ten years

Ao (per hour) Strategy II Strategy 11
PT IT PT IT
2-107° 10 1.75 9.13 1.75
6-107° 10 5.25 7.59 5.25
1-10°* 10 8.75 6.24 8.75
2-107* 10 17.49 3.67 17.49

6. Summary and research perspectives

This paper has studied follow-up activities after a DD-failure has been detected in a SIS chan-
nel. Insert proof tests to reveal DU-failures are found to be able to reduce the PFD of the channel,
especially when DD-failures occur frequently. Petri net models with predicates and assertions have
been developed to assess the PFD and the PFD has been quantified for tree testing strategies and
for different values of the DD-failure rate. Approximation formulas have been developed for the
three testing strategies and compared with the results obtained by the Petri nets models. Strategy
IT is found to give the lowest PFD, but leads a rather high number of tests. Strategy III also gives
an improved PFD, but this strategy may in practice be expensive to manage.

The main reason that approximation formulas have been developed is that we believe that the
user can get far more insight into the problem by studying the approximation formulas than by
obtaining the results by simulation. Another benefit is that the approximation formulas can be
evaluated without any dedicated software. A standard spreadsheet program is sufficient.

The current paper is restricted to a single channel of a SIS and it is assumed that all tests
perfect tests, in the sense that all failures are detected and that the channel is repaired to an as-
good-as-new condition. This assumption may not always be realistic and the authors are working
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with an extension of the paper where the insert tests are imperfect tests with a less than perfect test
coverage.

Studies of more complex SISs with several identical or non-identical channels are on-going

and will be reported in the future.
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