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Abstract

This master thesis is a part of the MARFLIX (MARitime FLeet size

and mIX) project. The research project MARFLIX is a collaboration

between NTNU, MARINTEK, DNV and WWL. The overall aim for

the MARFLIX project is to develop and test methods for improved

support for fleet size and mix decision-making through quantitative

methods.

Wallenius Wilhelmsen Logistics (WWL) is a global liner shipping

company which delivers shipping and logistics solutions for manu-

facturers of car, trucks, heavy equipment and specialized cargo.

In this master thesis a framework model that is able to test and verify

deployment models was developed. This framework model contains

a simulation part and an optimization part. The simulation model

is constructed to simulate the day to day operations of a fleet. In

the day to day operation disruptions will occur. These disruptions

are simulated by the use of two different probability distributions and

Monte Carlo Simulation. Disruptions occur regularly in a global liner

shipping network. About 70-80 % of the vessels experience delays in

at least one port during each roundtrip. When a disruption occurs

in a liner shipping network, the impact on the network should be

minimized.

When a disruption occurs, the simulation model will first try to re-

gain the delay by speeding up the delayed vessel. If speeding up is not

sufficient, a rescheduling process is initiated. The simulation model

will then call on the optimization model to perform a rescheduling.

The optimization model considers omitting and changing the order

of port calls, and space chartering cargo as possible recovery actions.

It will then find the best way to recover from the delay. The new



solution will then be implemented as new schedules for the vessels in

the fleet.

The optimization model is modeled as a set partition model, which

can take use of the beneficial structure that appears in transportation

problems. To solve a set partition model a column generation algo-

rithm is needed. The column generation algorithm implemented in

our model is a complete enumeration algorithm, which generates all

possible routes that the vessels can sail. A benefit with the complete

enumeration algorithm is that the same routes can be used for all

reschedulings during a simulation.

There are several incidents, e.g. machinery problems, extreme weather

and collision, that can cause delays for a vessel and with that create

a need for a rescheduling. Each of these incidents have different

impacts on ships, e.g. reduced speed, delayed, changed resistance,

port call canceled etc.

The simulation and optimization model have been tested on several

different problems with a different composition of ports, vessels and

cargos. The time required to solve the different test instances varied

between 30 and 240 seconds. The tests showed that the required com-

puting time increased exponentially with an increase in the number of

ports. The tests also showed that when the chartering cost increased,

the number of chartered ships decreased and the rescheduling cost

increased.

The new routes generated and implemented by the optimization

model show similarities with the original routes; in most scenarioes

only one or two port calls are changed or left out. This is done

contrary to what many shipping companies usually do when they

experience delays; they often speed up until the delay is regained.

The simulation and optimization models developed in this thesis are

able to test and verify the MARFLIX deployment model. In case of

a delay the models are able to find good schedules for the fleet within

a reasonable amount of time. The different output values provided

by the simulation model should be sufficient to verify the deployment

model.



Sammendrag

Denne diplomoppgaven er en del av MARFLIX-prosjektet (MAR-

itime FLeet size and mIX). Forskningsprosjektet MARFLIX er et

samarbeid mellom NTNU, MARINTEK, DNV og WWL. Det overordnede

m̊alet for MARFLIX-prosjektet er å utvikle og teste kvantitative

metoder for økt beslutningsstøtte av fl̊atestørrelse- og kombinasjon-

problemer.

Wallenius Wilhelmsen Logistics (WWL) er en global linjefartoperatør

som leverer skipsfart og logistikkløsninger for fabrikanter av biler,

tungt rullende last og spesialisert last.

I denne diplomoppgaven er det utviklet en rammemodell som er i

stand til å teste og verifisere en distribusjonmodell. Denne ram-

memodellen inneholder b̊ade en simulerings- og optimeringsmodell.

Simuleringsmodellen er konstruert for å simulere den daglige driften

av en gitt fl̊ate. I den daglige driften kan det forekomme forskinkelser.

Disse forskinkelsene er simulert ved bruk av to forskjellige sannsyn-

lighetsfordelingerog Monte Carlo-simulering. Forskinkelser forekom-

mer regelmessig for et globalt linjefartoperatør. Ca 70-80minst en

havn for hver rundtur. N̊ar en forskinkelse oppst̊ar, m̊a innvirkningen

p̊a fl̊aten være minimal. Ved en forskinkelse vil simuleringsmodellen

først prøve å gjenvinne forsinkelsen ved å øke farten til det forsinkede

fartøyet. Hvis dette ikke fjerner forskinkelsen, vil simuleringsmod-

ellen kalle p̊a optimeringsmodellen for å gjennomføre en reruting.

Optimeringsmodellen bruker forskjellige løsningsmetoder, blant an-

net å utelate og endre rekkefølgen p̊a havneanløp, og leie lasteplass p̊a

andre b̊ater. Etter at optimal løsning er funnet vil optimeringsmod-

ellen sende denne til simularingsmodellen som fortsetter simulering

av den daglige driften. Optimeringsmodellen bruker en to trinns



løsningsmetode. Det første trinnet g̊ar ut p̊a å generere samtlige

mulige ruter. De genererte rutene brukes n̊ar man i trinn to finner

den optimale ruten. De ferdig genererte rutene bidrar til en god

struktur p̊a problemet. Rutegenereringen er en tidkrevende prosess.

Rutene krever dog bare å bli generert en gang per simulering, og kan

gjenbrukes hvis det skjer flere optimeringsprosesser per simulering.

Simulerings- og optimeringsmodellen har blitt testet p̊a flere forskjel-

lige problemer. Problemene har hatt forskjellige sammensetninger av

skip, havner og last. Totalt brukt tid varierer fra 30 ti 240 sekunder.

Testene viste at beregningstiden økes eksponensielt med en økning av

antall havner. De valgte rutene av optimeringsmodellen er relativt

like de opprinelige rutene. Som regel endres kun et eller to anløp.

Dette er ikke det samme som hva de fleste operatører pleier å gjøre,

som er å øke farten til skipet helt til forskinkilsen er gjenvunnet.

Simulerings- og optimeringsmodellen utviklet i denne avhandlingen

er i stand til å teste og verifisere MARFLIX’ sin distribusjonsmodell.

Ved forskinkelser i en fl̊ate er modellen kapabel til å finne en optimal

rute innenn en forsvarlig tid.
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1

Introducton

Maritime transport is the major channel of international trade. According to

UNCTAD (2011), trade by sea has in terms of weight more than doubled from

1990 to 2010. The largest increase has been in container trade and dry bulks.

Measured by weight, more than 80 % of world trade is carried by seagoing

vessels (IMO et al., 2009). The shipping industry has almost monopoly on

transportation of large volumes of cargo among the continents (Christiansen,

Fagerholt, Nygreen, et al., 2007). Liner shipping vessels carry about 60 % of all

goods measured by value moved internationally by sea every year (worldshipping

2012).

Efficient transportation is becoming more important in the maritime trans-

port industry. Transportation costs can sometimes account for 20 % of the total

cost of a product (Hoff et al., 2010). Increased consumption, growth in the

economy, and globalization tend to increase the need for transportation. The

competition between transport companies and between cargo owners are strong,

this lead to higher demand for efficiency, cost reduction, and customer service

in transportation (Hoff et al., 2010).

The Roll on/Roll off (RoRo) vessel industry is no exception for strong compe-

tition. RoRo vessels transport cars, trucks, farming equipment and other rolling

cargo. In 2011 the global car trade grew by 12 %. Between 2006 and 2012 there

was a 3 % growth in number of RoRo vessels, but an 11 % growth in overall

deployed lane meters (MDS Transmodal 2012). In 2012 the RoRo fleet counted

more than 2 400 vessels. However, more than half of the fleet is vessels smaller
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1. INTRODUCTON

than 10 000 dwt. Compared with the container shipping fleet, that counts more

than 4 300 vessels, the RoRo fleet is small. The difference is more significant

when comparing the number of deep sea RoRo vessels against deep sea container

vessels (Lindstad, Asbjørnslett, and Pedersen, 2012). This is a threat for the

RoRo industry; the container shipping segment can obtain a more efficient short

sea feeder traffic out and in of the ports. The RoRo industry must continuously

improve so that cars and other wheeled cargo are not transported by container

ships.

In international vehicle trade, RoRo vessels sail between different regions of

the world according to a predefined plan. Planning of operations in the maritime

industry can be divided into three main categories by the time horizon. The first

category is strategic planning; it has usually a planning horizon of several years.

Strategic planning often involves fleet size and mix decisions. Planners decide

how many and which ships to operate and own. The second category is tactical

planning; it usually has a time horizon of several months. Tactical planning relies

on the strategic plan, and often involves determining which vessels should serve

which routes, and when they should arrive and leave each region. Operational

planning is the third category. The time horizon for operational planning is often

days or weeks. Decisions related to operational planning are often associated to

a given voyage, such as vessel speed, weather routing and delays. Tactical plans

are used as input in the operational plan. In case of disruption the planners

have to decide how to get the vessels back on schedule with as little impact and

cost as possible. In these planning levels the shipping company has to decide

the robustness of their fleet.

In liner shipping networks disruptions and delays will cascade through the

network and influence other ports and ships. This is given by the nature of

many liner shipping networks (Theo Notteboom and Rodrigue, 2008). Maritime

shipping networks are an example of transport mode that operates around the

clock. In addition, the ships almost never get empty at any points, and freight

forwarding obligations must be met during the recovery period. These facts

make it hard to get a delayed vessel back on schedule; it can take days, or even

weeks (Andersen, 2010). The operational planning phase can also be used to

verify the tactical plan. If the shipping company constantly need to increase the

vessel speed, omit port calls or charter in vessels to deliver the cargo on time,

2



it can be advisable to do some changes on the tactical level, or maybe even on

strategic level.

The planners have to balance the complexity and the scope when making

these plans. Planning for longer periods and for a greater part of the fleet

simultaneously increase the scope, and provides more flexibility. This can give

good synergy effects, but planning a bigger problem makes it harder to solve.

In addition solving larger problem requires more information.

Much of the maritime business environment has changed over the last decades,

but Christiansen, Fagerholt, Nygreen, et al. (2007) claim the business methods of

many shipping companies are still the same. Shipping companies are often con-

servative, low risk family businesses. As a result, several companies still rely on

intuition and experience when doing strategic, tactical and operational planning.

In many other industries operation research has been a popular area of study.

The airline industry is one of the most successful examples of applying operation

research methods and tools for the planning and scheduling of resources (Clausen

et al., 2010). Operation research has in the later years also become more popular

in the maritime transport industry. The reasons for harder competitions between

the shipping companies are, decreasing margins for the companies, more complex

operations through integrated planning into terminal operations and hinterland

transport and a rapid development in computer technology. Operation research

has been used extensively to design an optimal ship fleet, and to find good ways

to managing a fleet of ships (Pantuso, Fagerholt, and Hvattum, 2013). On the

other hand there has not been done much research in disruption management in

liner shipping and in the maritime transport in general (Kjeldsen et al., 2012). In

our work, we have only found two studies that deal with disruption management

in liner shipping. Both studies are published within the two last years.

Disruption management in the maritime transport industry consists of get-

ting ships and cargo back on schedule after a delay or disruption, with as little

cost and impact as possible. In this thesis delay is used if a vessel is behind

schedule. A disruption is an unplanned event which can cause a ship to be

either ahead or behind schedule, i.e. a disruption does not need to cause a ship

to be delayed. Vessels can experience delays due to mechanical breakdowns,

bad weather and increased port time. Methods used to get a vessel back on the

schedule can be to increase the vessel speed, to omit a port of call, and charter

in an extra vessel. A route specifies the order in which the ports are to be

3
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called, while a schedule also specifies the time when the ports are to be called.

Disruption management models can also be used to verify the deployment model

already developed. To our knowledge, there is no studies that use a distruption

management model to investigate the qualities of the corresponding deployment

model in the maritime transport segment.

Maritime transport is an industry that experiences a high degree of uncer-

tainty. A reason for this uncertainty is delays that occur during sailing or in port.

Ship’s long life time, often exceeding 30 years, influence on the uncertainty, due

to the unknown marked situation.

This master thesis is a part of the MARFLIX (MARitime FLeet size and

mIX) project. The research project MARFLIX is collaboration between NTNU,

MARINTEK, DNV and WWL. The overall aim for the MARFLIX project

is to develop and test methods for improved support for fleet size and mix

decision-making through quantitative methods. The MARFLIX project intends

to make a fleet size and mix (FSM) proposal. Since the time horizon for the

MARFLIX deliverable is based on ship chartering contracts of 25-30 years, the

model has some limitations with respect to routing, scheduling and day to day

operations. A given FSM might look good in the MARFLIX model, but when

encountering tactical and operational problems it may fall short. There has to

be a verification process in which these problems are tested to the given fleet

size and mix. The verification process has two steps, a 6 month deployment

perspective and a day to day operational perspective. In this master thesis we

are going to develop an operational model framework. In this operational model

framwork the deployment model from the MARFLIX model can be implemented.

It will then be possible to examine how the fleet from the MARFLIX project is

operating in a day to day perspective. The operational model can be used to

verify the strategic and the tactical plan in the MARFLIX project. You may

find an illustration of this in figure 1.1.

The operational model framework can be used to validate the deployment

model, which is validating the fleet size and mix model. The operational model

will check if the given deployment and FSM are valid in the daily business. Both

the FSM proposal and the deployment proposal may work well, but if the fleet

fail on operational level some changes have to be made. First on the tactical

level, but if that is not sufficiant there will be neccesary with changes on strategic
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Figure 1.1: Planning categories in the MARFLIX project -

level. Different deployment scenarioes can be tested and the best proposal can

be found.

To our knowledge there are none that have used a simulation optimization

model to investigate the day to day operation of a liner fleet.

The remainder of this paper is organized as follows: Section 2 describes

disruption management and our problem more in depth, section 3 presents

WWL briefly. The literature review is presented in section 4, in the litterature

review some different distruption management models and other litterature

are presented. Section 5 contains a review about the maritime transportation

segment, while section 6 investigates the use of operational research in the

maritime transport industry. Potential incidents causing delays are handeled

in section 7. Rescheduling actions are discussed in section 8. Probability of

incidents and impacts and different distributions are discussed in section 9. In

section 10 the models presented in section 4 are discussed, and different solution

approaches for our problem are also discussed. Our optimization model is also

presented in this section. In section 11 the choice of column generation algorithm

is discussed and the chosen algorithm is presented. The simulation model is

presented and discussed in section 12. In section 13 different input parameters

are calibrated, and the effects of changes in these are discussed. The results are

presented in section 14. In section 15 assumptions and the use of the model is

discussed. Section 16 concludes the thesis.
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2

Problem Description

Liner shipping companies normally have a large set of published schedules. These

schedules consist of sequences of ports where the time of each port call is fixed.

A Europe – North America trade from WWL is illustrated in figure 2.1 below.

In addition the network will be such that transshipping cargo between different

services is an integrated part of operating the network. Most transshipments

take place in designated hub ports which are frequented by two or more routes.

Figure 2.1: Europe-North America trade -
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Disruptions occour often in a global liner shipping network. According to T

Notteboom (2006) approximately 70-80 % of vessel roundtrips experience delays

in at least one port. When a disruption happens in a liner shipping network,

the effect on the network needs to be limited both in time and space. The time

limitation leads to a decision on which time the vessels and cargoes must be

back on schedule. The space limitation leads to a decision on which vessels and

port calls to be used in getting the network back on schedule. All vessels and

ports that are directly in involved in the disruptions are included in getting the

vessels and cargoes back on schedule. However, other vessels and ports may

also be included, depending on their position relative to the disruption and their

perceived ability to alleviate the effects of the disruption (Kjeldsen et al., 2012).

It is a challenge to find new schedules and cargo routings, given the capacity

and port productivity, which are minimizing the operational cost. The opera-

tional cost consists of fuel cost and other costs for the vessels, all port related

costs, transshipment costs and costs that concern delays.

An example from Brouer et al. (2013) illustrates the problem. Maersk Sarnia

was deployed on a route between South–East Asia and Central America. The

route is displayed in figure 2.2 below. During the pickup of cargo in South–East

Asia the weather conditions cause the vessel to suffer a 30 hours delay when

leaving Kwangyang in South Korea. The delay may cause the vessel to miss

a scheduled port call in the transshipment port of Balboa in Panama. As a

result of the missed port call, large parts of the cargo will miss their onward

connections and most cargoes will not be delivered on time.

Maersk Sarnia has several options to mitiage the negative effects of the

disruption. It can speed up significantly to try to reach Balboa on time, swap

the port calls of Lazaro Cardenas an Balboa, omit one of the upcoming port

calls, or it can accept the delay and catch up schedule returning to Asia from

Bilboa.

The shipping company chose to increase the speed of Maersk Sarnia to

recover from the delay, but nevertheless the speed increase did not ensure timely

delivery of the cargo to the hub port of Balboa. The final recovery was done

returning to Asia. As a result all the cargo was delayed and some of the

cargo missed the onward connection at the hub. A recovery model proposed

by Brouer et al. (2013) suggested omitting the last port call in Asia reaching

the transshipment port without increasing the vessel speed. The cost saving,
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Figure 2.2: Asia-Central America trade - (Brouer et al., 2013)

including a delay penalty, of the suggested solution was more than 20% (Brouer

et al., 2013).

In this master thesis we are to build a model framework that can take in

the deployment model from the MARFLIX project and investigate how well the

deployment model operate on a day to day basis. The deployment model may

look good in itselves, but on a day to day basis there can be some problems. The

model framework can check if there is the right amount of slack and robustness

in the vessel schedules proposed by the deployment model.

If there is too little slack the vessels need to omit ports, increase the speed,

and vessels need to be chartered in to meet the freight forward obligations. This

gives an high extra cost that is not included in the deployment model. If there

is too much slack in the vessel schedules the vessels may wait in port or stay idle

for some time. A fleet of vessels where the vessels spend much time waiting in

port is a fleet that is not well utilized. The operational model we are to develop

will find the best way to distribute robustness to the vessel schedule.

In some cases an entire port can be shut down, e.g. due to labor strike, such

events can be implemented in the operational model. It is possible to see how a

fleet of vessels work under such conditions.
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3

Wallenius Wilhelmsen

Logistics

Wallenius Wilhelmsen Logistics (WWL) is a company which delivers shipping

and logistics solutions for manufacturers of car, trucks, heavy equipment and

specialized cargo. WWL is also specialized in handling complex project cargoes

such as rail cars, power generators, mining equipment and yachts. The core

business is the ocean transportation, but provides other services in the field of

supply management as well, such as terminal handling, inland distribution and

technical services.

In 2011 WWL transported 4.3 million units, 1.8 million by sea and 2.5

million inland. The company is owned by Wallenius Logistics AB of Sweden

and Wilhelmsen Ships Holding Malta Ltd. WWL employs 3 500 people and has

around 60 RoRo vessels in operation, servicing 18 routes to six continents. The

main trades are:

• Asia – North America

• Asia – Europe

• Europe – North America

• North America – Europe

11



3. WALLENIUS WILHELMSEN LOGISTICS

• Europe/ North America – Oceania

• Europe – Oceania

The schedule will not be the same for all ships serving the same trade. The

trade gives which areas the ship visits, not the specific port calls, which depends

on the current demand and supply in each port.

WWL’s fleet is heterogonous. To detect the different types of vessels, the

fleet is divided into four vessel categories:

• PCC – Pure Car Carriers

• PCTC – Pure Car Truck Carriers

• LCTC – Long Car Truck Carriers

• RORO – Roll-on Roll-off Carriers

All of the vessels are Roll-on Roll-off carriers, but WWL defines RoRo as

vessels which has High and Heavy and Non-Containerized Cargo as the main

cargoes, and cars are just supplementary cargo.

WWL’s fleet consists mostly of PCTC, LCTC and RoRo-vessels. For more

about the vessels, visit WWL’s home page www.2wglobal.com.
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4

Literature Review

During the last decades research on maritime transportation has increased (Chris-

tiansen, Fagerholt, Nygreen, et al., 2007). Much research has been done in how

to design an optimal ship fleet, and how to manage a fleet of ships (Pantuso,

Fagerholt, and Hvattum, 2013). On the other hand, there has not been done

much research in disruption management in liner shipping and in maritime

transport. In other transport segments and especially in the airline industry

there have been made a significant amount of research on disruption management

(Kjeldsen et al., 2012).

4.1 Optimization Models

4.1.1 Liner Shipping Models

In liner shipping, Kjeldsen et al. (2012) and Brouer et al. (2013) have to our

knowledge written the only papers that studies disruption management. The

first study that dealt with distruption management in liner shipping was the

doctoral thesis was Rescheduling Ships and Cargo in Liner Shipping in the

Event of Disruptions by (Kjeldsen et al., 2012), the study was written in 2012.

This thesis introduces a mathematical model for rescheduling ships and cargoes.

Kjeldsen et al. suggest a model that constructs a set of ship schedules and cargo

routings that allows resumption of scheduled service at the end of the planning

period while minimizing the operating cost.
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To get the fleet of vessels back on schedule after one or more delays, the

vessels can speed up, or cargo can be transshiped by another vessel than orginaly

intended. Omitting port calls and swapping port calls are also possible recovery

actions the model. Kjeldsen et al. (2012) allow other vessels than the delayed

vessel to take part in the recovery when a vessel gets distrupted. This yields a

better utilization of the vessel fleet.

Kjeldsen et al. formulate the simultaneous ship and cargo rescheduling in

the event of disruptions problem as a multicommodity flow problem with side

constraints on a time-space network. The time-space network is given by a

multigraph G = (V,A) with vertex set V and arc set A. The elements V and A

are described below.

Ports, origins of ships and destinations of ships are represented by different

vertices. The three sets are mutually exclusive. VP represent ports, VO repre-

sents origins of ships and VD represents destinations of ships. The notation Vpt

is used to denote the vertex representing location p ∈ V at time t. The arc set

A is composed of a number of different types of arcs, representing flows of ships

and cargoes. Any arc (i, j) ∈ A is directed from i = Vpt to j = Vp′t′ where t′ > t.

For the ships there are three different types of arcs: Voyage arcs that repre-

sent ships that sail from one port to another, berthing arcs that represent ships

berthed and under operation in a given port, and waiting arcs that represent

ships waiting in a given port. There are also four types of arcs for the cargoes:

Onboard arcs that represent a given cargo transported on a given ship, port arcs

that represents a given cargo waiting in a given port, loading arcs that represent

a given cargo loaded in a given port on a given ship, and discharge arcs that

represent a given cargo discharged in a given port on a given ship. All these arcs

are presented more in depth below.

Kjeldsen et al. (2012) let the binary variable x(Vpt, Vp′t′)
h
V OY take the value

1 if the corresponding arc is used, and the value 0 otherwise. Moreover they let

xh(i+) denote the sum of x-variables associated with voyage arcs for ship h out

of vertex i ∈ V . xh(−i) is then the sum of x-variables associated with voyage

arcs for ship h into vertex i ∈ V . In addition, Xh is the set of all voyage arcs

for vessel h. Since the vessel speed is a variable, there can be several voyage

arcs fram a given Vpt. There are two different costs assosiated with each voyage

arc; the first is the fuel cost, the second is the cost associated with calling on

the next port. SChij denotes the fuel cost, where i = Vpt and j = Vp′t′ , for vessel
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h from location p to p′ at the speed corresponding to to the time span t′ − t.
PChj is the cost associated with the port call, which includes all one-off costs

incurred when a vessel calls a port, such as pilotage and harbor dues (Kjeldsen

et al., 2012).

(Vpt, Vp,t+1)
h
B represent that ship h is berthed and under operation in port

p from time t to time t + 1. The binary variable yh(i+) take the value 1 if the

berthing arc out of i = vvp is used. Similarly, let the binary variable yh(−i) take

the value 1 if the berthing arc into i = vvp is used. The cost BChi of a berth

arc is the cost having ship h berthed at port p for one time unit. If a port is

closed due to a disruption, the flow on the associated berthing arcs is fixed to 0

(Kjeldsen et al., 2012).

(Vpt, Vp,t+1)
h
W represent that ship h is waiting in port p from time t to time

t + 1. The binary variable wh(i+) take the value 1 if the waiting arc out of

i = vvp is used. Similarly, let the waiting variable wh(−i) take the value 1 if the

waiting arc into i = vvp is used. A berthing arc can appear both after a voyage

arc and between two berthing arcs. There is no cost associated with the waiting

arcs (Kjeldsen et al., 2012).

The set of cargoes is denoted M . Each cargo m designated by a volume

Gm, an origin vertex Omc = Vpt, where p is the origin port and t is the time

cargo m gets available for loading, and a destination vertex Dm
c = Vp′t′ , where

p′ is the destination port, and t′ is the planned delivery time. Kjeldsen et al.

(2012) let Bm
− denote the set of vertices representing the destination of cargo m

at the various times in the planning period at which cargo m may be delivered

at the destination. Bm
+ denote the set of vertices representing the destination of

cargo m at the various times after the planning period at which cargo m may

be delivered at the destination.

Each cargo has a given a unique delay cost, FCmi , which is the cost of

delivering cargo m at time(i). If the cargo is not late, i.e. time(i) ≤ time(Dc
m)

the cost will be 0.

In addition to the vessel arcs above, there are four types of cargo arcs. The

first one is the onboard arc. (Vpt, Vp′t′)
mh
O represents the transport of cargo m

onboard ship h from Vpt to Vp′t′ . Each vessel h has a given capacity, CAP h. The

continious variable u(Vpt, Vp′t′)
mh
O denotes the fraction of cargo m transported

on ship h from Vpt to Vp′t′ . Moreover let umh(i+) denote the sum of u-variables

associated with onboard arcs for cargo m on ship h out of vertex i ∈ V . umh(−i)
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is then the sum of u-variables associated with onboard arcs for cargo m on ship

h into vertex i ∈ V . In addition, Umh is the set of all onboard arcs for cargo m

on vessel h (Kjeldsen et al., 2012).

(Vpt, Vp,t+1)
m
P represent that cargo m is waiting in port p from time t to t+1.

The continuos variable zm(i+), where i = Vpt represent the fraction of cargo m

being held in port p from time t to t+ 1. Similarly, let the continuous variable

zm(−i), where i = vpt, represent the fraction of cargo m being held in port p

from time t− 1 to t (Kjeldsen et al., 2012).

(Vpt, Vp,t+1)
mh
L represent that cargo m is being loaded on vessel h in port p

from time t to t + 1. The continuos variable smh(i+), where i = Vpt represent

the fraction of cargo m being loaded on vessel h in port p from time t to t+ 1.

Similarly, let the continuous variable smh(−i), where i = vpt, represent the

fraction of cargo m being loaded on vessel h in port p from time t − 1 to t

(Kjeldsen et al., 2012).

Finally, (Vpt, Vp,t+1)
mh
D represent that cargo m is being discharged from vessel

h in port p from time t to t+ 1. The continuos variable rmh(i+), where i = Vpt

represent the fraction of cargo m being unloaded from vessel h in port p from

time t to t + 1. Similarly, let the continuous variable rmh(−i), where i = vpt,

denote the fraction of cargo m being discharged from vessel h in port p from

time t− 1 to t (Kjeldsen et al., 2012).

When loading and discharging cargo, the productivity PRhj of a port p for a

given ship h must be taken into consideration. The transshipment cost per TEU,

TCj , in port j is incurred for any cargo m which requires a load on another ship

in order for the cargo to arrive at location(Dm
c ), i.e., the cost is incurred for all

cargos except those for which port j is the destination location(Dm
c ) (Kjeldsen

et al., 2012).

Given the time-space network above, as well as the operating constraints

Kjeldsen et al. formulate the model as a mixed integer program. The objective

is to minimize cost when reschedule the vessels and cargoes after a disruptions

that have appeared. The model is formulated as follows:
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min
∑
h∈H

∑
(i,j)h∈X

x(i, j)hV OY (SChij + PChj )

+
∑
h∈H

∑
i∈V

yh(i+)BChi +
∑
h∈H

∑
m∈M

∑
i∈B

FCmi r
mh(−i)

+
∑
h∈H

∑
m∈M

∑
i∈V\B

rmh(−i)GmTCi,

(4.1)

subject to:

yh(Oh+) + wh(Oh+) + xh(Oh) = 1, ∀h ∈ H, (4.2)∑
i∈D

xh(−i) = 1, ∀h ∈ H, (4.3)

yh(1+) + wh(i+) + xh(i+)− yh(1−)

−wh(i−) + xh(i−) = 0, ∀h ∈ H, i ∈ V (4.4)∑
h∈H

(smh(Omc +) + umh(Omc +)) + zm(Omc +) = 1, ∀m ∈M, (4.5)∑
h∈H

(
∑
i∈B−

rmh(−i) +
∑
i∈B+

umh(−i)) = 1, ∀m ∈M, (4.6)

∑
h∈H

(smh(i+) + rmh(i+) + umh(i+)) + zm(i+)

−
∑
h∈H

(smh(−i) + rmh(−i) + zmh(−i))

−zm(−i) = 0, ∀m ∈M, i ∈ VP (4.7)∑
m∈M

(smh(i+) + rmh(i+))Gm ≤ yh(i+)PRh(i+), ∀h ∈ H, i ∈ V\VD

(4.8)∑
m∈M

u(i, j)mhO Gm ≤ x(i, j)hV OY CAP
h, ∀h ∈ H, (i, j) ∈ Xh

(4.9)∑
m∈M

u(i, j)mhO Gm ≤ (yh(i+) + wh(i+))CAP h, ∀h ∈ H, (i, j) ∈ Umh,
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port(i) = port(j)
(4.10)∑

c∈H
(rmc(−i) + zm(−i) = smh + zm(i+), ∀h ∈ H,m ∈M,

i ∈ VP \{Bm
− ∪Omc }

(4.11)

umh(−i) ≥ rmh(i+), ∀h ∈ H,m ∈M,

i ∈ VP (4.12)

smh(−i)umh(−i) ≥ umh(i+), ∀h ∈ H,m ∈M,

i ∈ VP (4.13)∑
m∈M

u(i, j)mhO Gm ≤ x(i, j)hV OY CAP
h, ∀h ∈ H, (i, j) ∈ X

(4.14)∑
m∈M

u(j, i)mhO Gm ≤ x(j, i)hV OY CAP
h, ∀h ∈ H, (i, j) ∈ X

(4.15)

yh(vpt+) = yh(vp,t+1), ∀h ∈ H, p ∈ VO ∪ VP,

∀t ∈ {0, . . . ,T-1}
(4.16)

wh(vpt+) = wh(vp,t+1), ∀h ∈ H, p ∈ VO ∪ VP,

∀t ∈ {0, . . . ,T-1}
(4.17)

umh(i+) =
∑

j|(i,j)∈U

u(i, j)mhO , ∀m ∈M, h ∈ H,

i ∈ V (4.18)

umh(−i) =
∑

j|(j,i)∈U

u(j, i)mhO , ∀m ∈M, h ∈ H,

i ∈ V (4.19)

zh(vpt+) = zh(vp,t+1), ∀m ∈M, p ∈ VO ∪ VP,

∀t ∈ {1, . . . ,T-1}
(4.20)
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smh(vpt+) = smh(vp,t+1), ∀m ∈M, p ∈ VO ∪ VP,

∀t ∈ {1, . . . ,T-1}
(4.21)

rmh(vpt+) = rmh(vp,t+1), ∀m ∈M, p ∈ VO ∪ VP,

∀t ∈ {1, . . . ,T-1}
(4.22)

x(i, j)hV OY ∈ {0, 1} ∀h ∈ H, (i, j) ∈ Xh

(4.23)

xh(i+), yh(i+), wh(i+) ∈ {0, 1}, ∀h ∈ H,∈ V (4.24)

0 ≤ u(i, j)mhO ≤ 1, ∀m ∈M, h ∈ H,

(i, j) ∈ U (4.25)

0 ≤ umh(i+) ≤ 1, ∀m ∈M, h ∈ H,∀i ∈ V

(4.26)

0 ≤ zm(i+) ≤ 1, ∀m ∈M,∀i ∈ V (4.27)

0 ≤ smh(i+) ≤ 1, ∀m ∈M, h ∈ H,∀i ∈ V

(4.28)

0 ≤ rmh(i+) ≤ 1, ∀m ∈M, h ∈ H,∀i ∈ V

(4.29)

There are four terms in the objective function. The first term is the fuel

cost of sailing the chosen routes and the cost associated with the port calls. The

second term is the cost of the vessels staying at berths. The third term is the cost

associated with delaying the cargo past the original delivery time. The last term

is the cost associated with transshipping cargoes. Constraint 4.2 and constraint

4.5 ensures that each vessel and each cargo enter the planning period exactly

once. Trough the constraints 4.4, 4.6 and 4.7 the model ensures that both vessels

and cargoes sail to its destination port and that there is a connected flow through

the arcs. Constraint 4.8 guarantee that cargo is only loaded or discharged form a

vessel in port if the ship is really in port. Constraint 4.9 and 4.10 ensure that the

amount of cargo onboard a vessel have to be less or equal to the total capacity

of the vessel. Constraint 4.10 ensures that a given cargo can only be onboard a

vessel between two ports if the vessel is sailing between these ports. Cargo has to

be handled in right order; constraint 4.11 ensures that before a cargo is eligible
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for loading or for waiting in port it must have been discharged from a ship or

already waiting in the port. Constraint 4.12 guarantees that a cargo is onboard

in the period prior to any attempt of discharging the cargo from the ship. If a

cargo is onboard a ship in a given period, constraint 4.13 ensures that the cargo

was either onboard the same ship or loaded onto the ship in the previous period.

Constraint 4.23 and 4.24 that ensure the variables pertaining to the ships are

binary, and constraints 4.25 - 4.29 ensure that the variables pertaining to the

cargo are continuous and remain between one and zero (Kjeldsen et al., 2012).

It is possible to solve the mathematic model with a commercial solver.

Kjeldsen et al. (2012) developed a heuristic so that they were able to solve the

model faster than with the commercial solver. The heuristic they developed was

a Large Neighborhood Search (LNS). LNS is a general heuristic search paradigm

that was originally proposed by Shaw (1998). It also closely resembles to the

Ruin and Recreate heuristic presented by Schrimpf et al. (2000). The purpose of

the LNS is to create a new feasible schedule for the ships and new routings for the

cargos after one or more disruptions have appeared. Kjeldsen et al.’s heuristic

contains two phases, construction and repair, which are repeated until a given

computing time is reached. In the construction phase the focus is on constructing

a feasible schedule for the ships after there has been a disruption. Starting with

the initial solution Kjeldsen et al. try to construct feasible schedules for each

ship by advancing delaying and canceling port calls. The heuristic does not

allow the amount of time set aside for a port call to be below two time periods,

in addition port calls not affected by the disruptions will not be changed. The

aim of the repair phase is to repair the cargo routings by changing the schedules

which must retain feasibility. In order for the solution to remain feasible, none

of the port calls are moved or deleted. Instead the repair phase uses different

procedures in an attempt to increase the length of the existing port calls and

the possibility of adding new port calls between existing ones.

In order to diversify the search, randomness is included in both the con-

struction and repair phase. Instead of generating a new initial solution, the

original schedule is used as the initial solution. This approach was chosen due

to the complexity of generating a feasible initial solution and because the original

schedule was a good solution at the time of its creation. After a disruption the

original schedule is no longer operable, but good alternative solutions closely
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related to the original schedule are likely to exist, which makes the original

schedule a good starting point for the search for good solutions.

The algorithm developed has an 1800 seconds upper time limit. However,

the algorithm was tested on 20 different test instances with varying size, and

the best objective value for all test instances were found within 152 seconds

(Kjeldsen et al., 2012).

Published in 2013, the second paper on disruption management in liner

shipping is The Vessel Schedule Recovery Problem - A MIP model for handling

disruptions in liner shipping by Brouer et al. (2013). This paper presents and

solves the Vessel Schedule Recovery Problem (VSRP) to evaluate a given disrup-

tion scenario and to select an appropriate recovery action. The recovery action

will balance between increased bunker consumption and the impact on cargo

in the remaining network and the customer service level. The model addresses

frequently occouring disruption scenarioes in the liner shipping industry. Brouer

et al. (2013) built their model to fit to a container vessel fleet.

This paper focuses on utilizing the findings in disruption management tools

for the airline industry in order to construct a mathematical model of the

VSRP to handle disruptions in the context of the liner shipping business. The

mathematical model created by Brouer et al. (2013) is particularly based on

the work within aircraft recovery with speed-changes by Marla, Vaaben, and

Barnhart (2011). Brouer et al. (2013) use a time space graph as the underlying

network, but reformulate the model to address the set of available recovery

techniques, which are applicable to the VSRP.

Three recovery actions are permitted by Brouer et al. (2013) to get the

delayed vessels back on schedule: increase the speed on the delayed vessel,

omitting a port, and swap the order in which ports are being visited. Figure 4.1

illustrates the different recovery actions used by Brouer et al. (2013).

Brouer et al. (2013) created a mathematical formulation with a set of vessels,

V , a set of ports, P , and a time horizon consisting of discrete timeslots, t ∈ T .

For each vessel v ∈ V the current location and a planned schedule consisting of

an ordered set of port calls Hv ⊆ P are known within the recovery horizon. A

port call A can precede a port call B, A < B in Hv. A set of possible sailings,

i.e. directed edges, Lh are said to cover a port call h ∈ Hv. Each Lh represent a

sailing with a different speed. The disruption scenario includes a set of container

groups C with planned transportation scenarios on the schedules of V . A feasible
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Figure 4.1: Suggested recovery solutions in the time–space network. -

(Brouer et al., 2013)

solution to an instance of the VSRP is to find a sailing for each v ∈ V starting

at the current position of v and ending on the planned schedule no later than

the time of the recovery horizon (Brouer et al., 2013).

Brouer et al. (2013) define a binary vaiable xe for each edge e ∈ Es. The

variables are set to 1 if the edge is sailed and 0 otherwise. A binary variable zh
is also defined for all port calls h ∈ H. zh is set to 1 if port call h is omitted,

and 0 otherwise. For each container group c ∈ C that are transported there is

a binary variable oc that indicate whether container group c is delayed or not.

The binary variable yc indicates whether container group c is misconnecting or

not. Oce ∈ {0, 1} is a constant, set to 1 if container group c is delayed when

arriving by edge e ∈ LTc
The cost of a delay to container group c is denoted Cdc , the cost of one

or several misconnections to container group c is denoted Cmc , and the cost

associated with operating vessel v on edge e is denoted Cve .

Bc and Tc are defined as origin port and destination port for container group

c ∈ C, while Ic is defined as intermediate planned transshipment points for

container group c. Brouer et al. (2013) formulate the VSRP as follow:
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min
∑
v∈V

∑
h∈Hv

∑
e∈Lh

Cvexe +
∑
c∈C

[Cmc yc + Cdc oc] (4.30)

subject to: ∑
e∈Lh

xe + Zh = 1 ∀v ∈ V, h ∈ Hv (4.31)

∑
e∈n−

xe +
∑
e∈n+

xe = Snv ∀v ∈ V, n ∈ Nv (4.32)

yc ≤ oc ∀c ∈ C (4.33)∑
e∈LTc

Ocexe ≤ oc ∀c ∈ C (4.34)

zh ≤ yc ∀c ∈ C, h ∈ Bc ∪ Ic ∪ Tc
(4.35)

xe
∑
σ∈Me

c

xσ ≤ 1 + yc ∀c ∈ C, e ∈ {Lh|h ∈ Bc ∪ Ic ∪ Tc}

(4.36)

xe ∈ {0, 1} ∀e ∈ Es (4.37)

zh ∈ R+ ∀v ∈ V, h ∈ Hv (4.38)

yc, oc ∈ R+ ∀c ∈ C (4.39)

The objective function 4.30 aims to minimize the total cost of reschedule

after disruption. There are two terms in the objective function. The first

term summarizes all costs assosiated with operating the vessels at the given

speeds. The second term summarizes all costs assosiated with cargo delay and

misconnections. Constraint 4.31 ensures that all scheduled port calls are either

called by a vessel or omitted. Flow conservation is ensured by constraint 4.32.

A misconnection is by definition also a delay of a container group and hence

the misconnection penalty is added to the delay penalty. This is expressed in

constraint 4.33.

Constraint 4.34 ensures that oc takes the value 1 if container gruop c is

delayed, when arriving by edge e. Constraint 4.35 provides that if a port

call is omitted which had a planned load or unloading of container group c,

the container group is misconnected. Constraint 4.36 is a coherence constraint
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ensuring the detection of container groups’ miss-connections due to late arrivals

in transshipment ports. Finally constraint 4.37 ensures binarity for xe, while

constraint 4.38 and constraint 4.39 provides the remaining variables to be non-

negative.

When rescheduling, Brouer et al. (2013) only take the delayed vessel into

consideration, and look upone alternative schedules for the given vessel. The

schedules of the remaining vessels are taken as given.

Brouer et al. (2013) prove that their formulation is NP-hard. However,

the model is solved using a MIP solver and computational experiments indicate

that the model can be solved within ten seconds for instances corresponding to

a standard disruption scenario in a global liner shipping network (Brouer et al.,

2013).

Not only Kjeldsen et al. (2012) and Brouer et al. (2013) handle disruptions

and rescheduling for a liner shipping fleet. Andersen (2010) mentions disruption

management in liner shipping in his work, but only in a paragraph. He states

that the method developed in his work is able to solve a network recovery

problem. However, this is true only if the disruption has already happened

when the recovery problem is solved (Kjeldsen et al., 2012). If the rescheduling

starts while a disruption is taking place, or in the preparation for a known future

disruption Andersen’s solution method cannot be used (Kjeldsen et al., 2012).

Anderson’s solution method is created to solve the network transition problem,

which addresses the process of moving assets from operating an existing service

network to a new adjusted service network. Andersen describes the problem in

the context of liner container shipping, but it also finds applications in other

types of service networks. The paper addresses the problem of transitioning a

fleet of vessels from operating one liner based service network to being deployed

on another service network while meeting the freight obligations during the

period of the transition. To solve the problem he developed a general cooperative

adaptive neighborhood search framework (Andersen, 2010).

Anderson develops an LNS heuristic to solve the network transition problem.

The large neighborhoods allow for the search of broader regions of the solution

space thus mitigating some of the difficulties typically associated with tradition

local search. To allow for further diversification of the search, Andersen embeds

the LNS in a simulated annealing framework.
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The heuristic receives an initial solution as input and proceeds to initialize the

local best solution. In the implementation, each thread receives a different initial

solution. A new solution is constructed based on the current active solution. The

removal algorithm removes a subset of the currently serviced requests and the

insertion algorithm subsequently reinserts these requests.

The destruction methods receive a (possibly partial) solution as input and

proceeds to remove assigned requests from the routes according to a predefined

procedure. Removed requests are inserted into a pool of unserved requests. The

heuristic includes three different destruction methods. Common for all of them

is that they only remove assigned requests and never change the initial and final

visits of the individual routes. The simplest destruction algorithm is random

removal which randomly selects and removes requests from an intermediate

solution. The second destruction algorithm is related removal. This selection

strategy tries to identify requests that are somehow related measured in terms

of the constraints imposed on the assignment of requests to vessels. The last

destruction algorithm is subsequent removal. The principle behind subsequence

removal is to remove a series of requests related in time.

Once requests have been removed from an intermediate solution, the resulting

set of unassigned requests is again reinserted using a series of simple insertion

algorithms. Infeasible solutions are allowed during the search. The first repair

algorithm is greedy insertion. At each iteration the request that increases

the objective value least of all is inserted. The second repair algorithm is

randomized greedy insertion. This heuristic randomly selects a request from

the set of unassigned requests and determines the best insertion position among

the available routes and inserts the request into this position if a valid position

exists. The last repair algorithm is regret insertion. A problem with greedy

insertion algorithms is its tendency to perform short sighted decisions (Ander-

sen, 2010). When inserting a request, the greedy heuristic only evaluates the

best position for all the unassigned requests and inserts the best among those.

However, when solving the network transition problem situations where delaying

the insertion of a request because it is not currently the best will occur. The

regret insertion algorithm tries to mitigate this shortcoming by incorporating a

look-ahead mechanism into the greedy insertion algorithm. The main idea is to

insert the request that has the worst second best insertion cost relative to the

cost of the best insertion of that request. Used on a real life case, the algorithm
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developed by Andersen is able to reduce the total distance sailed with more than

10 % for a fleet with 11 vessels compared with the original schedule (Andersen,

2010).

4.1.2 Airline Industry Models

Disruption management is a much bigger field in the airline industry than in

the liner shipping segment. The airline industry is one of the most successful

examples of applying operations research methods and tools for the planning

and scheduling of resources (Clausen et al., 2010). Optimization-based decision

support systems have proven to be efficient and cost-saving for the scheduling

of aircraft and crew, not to mention the short term re-scheduling problems. In

short term re-scheduling problems modifications to the initial plans are required

before the final schedules can be executed (Clausen et al., 2010). Disruption

management research in the airline industry was in 1984 pioneered by Teodorovic

and Guberini (1984). In the article Optimal Dispatching Strategy on an Airline

Network After a Schedule Perturbation they tried to minimize the total passenger

delay when one or more planes were unavailable.

In the review article Disruption Management in the Airline Industry – Con-

cepts, Models and Methods written by Clausen et al. (2010) many different

disruption management strategies are presented. Disruption management in the

airline industry is divided into three parts in this review. The first part focuses

on crew recovery, the second on aircraft recovery, and the third on integrated

and passenger recovery. There are many possible ways to solve these recovery

problems. Often it depends on the objective function and how fast the solution

is needed.

If the objective is to minimize the number of cancellations and the solution

shall be found within three minutes, Løve et al. (2001) recommended a steepest

ascent local search (SALS) or a repeated SALS (RSALS). Løve denotes the set

of aircraft nodes A and the set of flights F . rf is the revenue of flight f , daf
is the delay incurred if aircraft a is assigned to flight f . There are two cost

multipliers: αf and βf that are associated with delay cost and cancelling cost

for flight f . The decision variable is:

xaf =

{
1 if aircraft a is assigned to flight f
0 otherwise.

(4.40)

26



4.1 Optimization Models

The objective function used by Løve et al. includes three terms, and is as follow:

max
∑
a∈A

∑
f∈F

rfxaf −
∑
a∈A

∑
f∈F\F

αfDFrfdafxaf −
∑
a∈A

∑
f∈F

βfDFrfxaf (4.41)

The first term is maximizing the total revenue, the second term is to minimize

the total cost of delay and the third component is minimizing the cost associated

with cancellations. A simplified structure of the SALS algorithm can be seen

below.

Figure 4.2: Simplified SALS structure - (Løve et al., 2001)

The initial solution is the original flight schedule. The local search is initiated

by a solution xaf in the form of a flight schedule. A best improvement strategy

is chosen so that all the neighbors to xaf are evaluated and the best solution

among the neighbors is used as a starting point for the next iteration. If the

latest local search iteration yields an improved solution it allows the algorithm to

continue. RSALS work the same way as SALS, but is repeated for different initial

solutions. SALS is a very fast algorithm and works well when local optimums

are close to the global optimum (Løve et al., 2001).

An optimization model for aircraft recovery (ARO) that reschedules legs and

reroutes aircraft by minimizing an objective function involving rerouting and

cancellation costs are presented by Rosenberger, E. L. Johnson, and Nemhauser

(2003). The model is set up like a set-packing problem, in which each flight

is either exactly one route or cancelled. Consider a set of aircraft A, a set of

disrupted aircraft A∗ ⊆ A, and a time horizon (t0, T ). For each a ∈ A, let r(a)

be the initial route of aircraft a, and let F = ∪a∈A r(a) be the set of all flights
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in the initial routes. For all f ∈ F , let bf be the cost of canceling flight f . Kf is

1 if flight f is canceled, and 0 otherwise. For each aircraft a ∈ A, let R(a,F ) be

the set of maintenance fesible routes of aircraft p that can be constructed from

flights in F . cr is the cost of assigning route r to aircraft p. xr is 1 if route r

is assigned to aircraft a, and 0 otherwise. Let U be the set of allocated arrival

slots, and Ru be the set of routes that include a flight that lands in arrival slot

u. C is the set of capacity constraints, for each capacity constraint c ∈ C there

is a restriction on the number of landings at a station within a time period to

capacity αc. Finally, let Rc be the set of routes that includes flights that land

during the time period of capacity constraint c, and for each route r ∈ Rc, let

H(r, c) be the set of flights in r that impact constraint c. The model is then

formulated as follows:

min
∑
a∈A

∑
r∈R(a,F )

crxr +
∑
f∈F

bfKf (4.42)

subject to: ∑
r∈R(a,F )

xr = 1 ∀a ∈ A (4.43)

∑
r3f

xr +Kf = 1 ∀f ∈ F (4.44)

∑
r∈R(u)

xr ≤ 1 ∀u ∈ U (4.45)

∑
r∈Rc

|H(r, c)|xr ≤ αc ∀c ∈ C (4.46)

xr ∈ {0, 1} ∀r ∈ Ra,F , a ∈ A (4.47)

Kr ∈ {0, 1} ∀f ∈ F (4.48)

The objective function 4.42 has two terms, the first is the cost associated

with assigning routes to aircrafts, and the second term is the cost of canceling

the unassigned legs. In the model constraint 4.43 and constraint 4.44 ensure

that each aircraft is assigned to one route and that each flight is either in a

route or canceled. Constraint 4.46 ensure that the passenger capacity is not
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violated. Constraint 4.47 and constraint 4.48 require integral solutions. Set-

packing problems are NP-hard; to overcome this difficulty an aircraft selection

heuristic (ASH) that efficiently determines a subset of aircraft to reroute is

developed (Rosenberger, E. L. Johnson, and Nemhauser, 2003).

In order to reduce the complexity of ARO, Rosenberger, E. L. Johnson, and

Nemhauser (2003) select a subset of aircraft A′ ⊂ A such that the optimal value

of solutions to ARO(A′) is near optimal value of a solution to ARO(A). For each

disrupted aircraft the ASH search for directed cycles with a minimum number of

aircrafts. When an efficient number of directed cycles for each disrupted aircraft

have been found, ASH returns A′ to ARO.

Andersson and Värbrand (2000) solve the flight perturbation problem. The

flight perturbation problem can be briefly stated as: Minimize the negative

consequences of a perturbation that has made it impossible for one or more

flights to depart on their scheduled time operated by their originally planned

aircraft (Andersson and Värbrand, 2000). They developed a mixed integer

multi-commodity flow model with side constraints. Further, to solve the re-

covery problem they reformulated the model into a set packing model using the

Dantzig-Wolfe decomposition. Their objective was to minimize the number of

cancellation and swaps.

Andersson and Värbrand have modeled the network with three different

kinds of nodes; aircraft source nodes, flight nodes and flight sink nodes. Every

node belongs to a station, in this case an airport. Each aircraft source node

represents a specific aircraft and belongs to the airport where the corresponding

aircraft is positioned at the start time, or where it will arrive if it is in the air at

the start time. All flight nodes and flight sink nodes represent a specific flight,

and the position in the network represents the planned departure time and the

departure station. In this network the end time often coincides with the end of

the day, since there is usually sufficient ground time during the night to cover any

delays. The arcs in the network represent feasible connections between sources

flights and sinks. When a disruption occurs and a flight arrive late, the source

node will appear when the aircraft is available again. A delayed flight departure

will cause the associated flight node to appear later in time. To capture and

take advance of the network structure, a mixed integer multi-commodity flow

formulation is developed by Andersson and Värbrand, and further reformulated

into a set packing model.
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Figure 4.3: Andersson and Värbrand’s connection network - (Andersson

and Värbrand, 2000)

Andersson and Värbrand introduce some variables: caij is the revenue gained

if aircraft a is assigned to flight j after flight i and ci is the cost per time unit for

delaying flight i. If i is the correct source node for aircraft a, sai is 1, otherwise

it is 0. tai is 1 if i is the correct sink node for aircraft a. ADi and AAj is

repectively the departure and arrival airport for flight i and j, while TDi and

TAj is repectively the departure and arrival time for flight i and j. Finally Ca

is the capacity of aircraft a, and Pj is the number of passengers on flight j. Two

variables are also introduced; xaij is 1 if aircraft a is assigned to flight j after the

aircraft has operated flight i, and di that expresses how much the departure of

flight i is delayed. The flight perturbation problem is then formulated as follow:

min
∑
i∈A∪F

∑
j∈A∪S

∑
a∈A

caijx
a
ij −

∑
i∈F

cidi (4.49)

subject to: ∑
j∈F∪S

xaij = Sai ∀i ∈ A, a ∈ A (4.50)
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∑
j∈F∪S

xaij −
∑
j∈A∪F

xaij = 0 ∀i ∈ F, a ∈ A (4.51)

∑
a∈A

∑
j∈F∪S

xaij ≤ 1 ∀i ∈ F (4.52)

∑
j∈A∪F

xaij = tai ∀i ∈ S, a ∈ A (4.53)

TAi + TGaij + di − (TDj + dj) +M(xaij − 1) ≤ 0 ∀i ∈ A ∪ F, j ∈ A ∪ S,

a ∈ A (4.54)

xaij(ADi −AAj) = 0 ∀i ∈ A ∪ F, j ∈ A ∪ S,

a ∈ A (4.55)

di ≤ Di ∀i ∈ F (4.56)

xaijPj ≤ Ca ∀i ∈ A ∪ F, ∀j ∈ F, ∀a ∈ A

(4.57)

xkij ∈ {0, 1} ∀i, j, a (4.58)

di = 0 ∀i ∈ A ∪ S (4.59)

di ≥ 0 ∀i ∈ F (4.60)

The objective function 4.49 in the model has two terms; the first term tries to

maximize the revenue, as the second term tries to minimize cost associated with

delaying flights. Constraint 4.53 and constraint 4.50 ensure that each airplane

starts at the right position and that the aircraft originally assigned to a certain

flight sink is the one that will be assigned to it in the solution. There is also

a flow conservation constraint(4.51) included in the model. Constraint 4.52

ensures that at most one aircraft can traverse each flight node. If the capacity

of the aircraft is less than the number of passengers assigned to a flight the

solution is prohibited; this is ensured through constraint 4.57. Constraint 4.54

and 4.55 make sure that the departure time of a given aircraft has to be later

than the arrival time plus necessary ground time for the aircraft (Andersson and

Värbrand, 2000) .

Further, by using the Dantzig-Wolfe decomposition Andersson and Värbrand

reformulate the model into a set-packing model. They define Rk as the set of

feasible solutions for aircraft a that is not dominated by any other solution, r

is a point in this set. barf is 1 if flight f is included in route r for aircraft a,

31



4. LITERATURE REVIEW

otherwise it is zero. xar is the binary variable that is one if aircraft a is assigned

to route r. The revenue parameter revar gives the revenue of assigning aircraft

a to route r. The set partition model can then be formulated as follow:

max
∑
a∈A

∑
r∈Ra

revarxar (4.61)

subject to: ∑
r∈Ra

xar = 1 ∀a ∈ A (4.62)

∑
a∈A

∑
r∈Ra

barf x
ar ≤ 1 ∀f ∈ F (4.63)

xar ∈ {0, 1} ∀a ∈ A, r ∈ Ra (4.64)

The problem is now represented by a set packing model with a generalized

upper bound constraint 4.62, which ensures that each aircraft is assigned to

exactly one route. The second constraint 4.63 ensures that each flight is not

included in more than one route. The feasible routes in each set Rk define paths

from the aircraft source node to the flight sink node. Each route may include

flights that the aircraft was not originally assigned to, and may also include

delayed flights. The costs for the swaps and the delays are subtracted from the

revenue that the particular route generates. The objective of the model is to pick

one route for each aircraft so that the total revenue is maximized (Andersson

and Värbrand, 2000).

Andersson and Värbrand solve their SPP model in two different ways. The

first approach they are using is branch and bound and thus iteratively solve the

LP relaxation of the problem. The second approach they use is to use Lagrangian

relaxation and sub-gradient optimization(Andersson and Värbrand, 2000).

In 2009 the French Operational Research and Decision Analysis Society an-

nounced a competition to make the best way to re-assign aircraft and passengers

simultaneously in case of disruptions, named the Airline Recovery Problem

(ARP). The winners where Bisaillon and his team. ARP consists in creating

a rotation for each aircraft available over the recovery period and in assigning

passengers that belong to the itineraries to the scheduled flights. In addition to

the flight delays and cancellations forced by the disruptions, one may voluntarily
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delay or cancel additional flights. The assignment of aircraft to flights may

be changed and new flights may be created and assigned to available aircraft.

All passengers traveling on a flight taking place during the recovery period

may be rescheduled on different flights (Bisaillon, Pasin, and Laporte, 2010).

Bisaillon et al. developed a large neighborhood search heuristic to solve the ARP.

The heuristic alternates between construction, repair and improvement phases.

Phase one and two aim to produce an initial solution, while the improvement

phase attempts to identify improved solutions (Bisaillon, Pasin, and Laporte,

2010). This large neighborhood heuristic has later been used in rescheduling in

liner shipping in events of disruption (Kjeldsen et al., 2012).

There are three types of costs that are considered in the ARP: operating

costs, passenger inconvenience costs, and inconsistency costs that are incurred

if the positions of the aircraft at the end of the recovery period do not match

the planned positions. The objective consists in minimizing a weighted sum of

these three types of costs. Two sets of constraints must also be satisfied by

any solution: operational constraints related to aircraft assignment and routing,

and functional constraints related to passenger assignment. The operational

constraints ensure that if an aircraft assigned to a flight is changed, the new

aircraft covering the route must belong to the same aircraft family as the one

that was originally assigned to the flight. The number of passengers travelling

with each aircraft cannot exceed the passenger capacity of the aircraft. Aircraft

rotations must ensure that each aircraft visits a specified maintenance station

before reaching the maximum allowed number of operation. Rotations must also

respect minimum turnaround times and transit times. Finally the operational

constraints impose upper bounds on the number of departures and arrivals at

each airport. When modifying the passenger itinerary some functional restric-

tions apply. The new itinerary must have the same final destination as the

original one and it cannot start before the planned departure time of the first

flight in the original itinerary. Finally, maximum delay at destination cannot

exceed a given number of hours (Bisaillon, Pasin, and Laporte, 2010).

The method developed by Bisaillon et al. proceeds in three phases, construc-

tion, repair and improvement, which are repeated until a stopping criterion is

met. The aim of the first two phases is to produce an initial solution that is

feasible with respect to the operational and functional constraints described in

the previous section. The third phase then attempts to identify an improved
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solution by considering large schedule changes while retaining feasibility. The

whole process is iterated by including some randomness in the construction phase

so as to diversify the search.

Figure 4.4: Overview of Bisallion et al.’s solution method - (Bisaillon,

Pasin, and Laporte, 2010)

The construction and repair phases are repeated several times by varying

the aircraft ordering used in the construction procedure. They stop after a

given computing time has been spent or after a given number of iterations have

been performed without improving the incumbent solution. The best solution

found during this process is then used as a starting point for the third and final

phase. When computing time allows, the whole process is repeated, starting

again from the construction phase. In the constructing phase, the first step is

to randomly sort the aircrafts so they can be treated in a different order each

time the construction phase is performed. Then, starting from the original flight

schedule, a feasible rotation for each aircraft is constructed if possible by delaying

and cancelling flights. The repair phase proceeds in three steps. In the first step

each aircraft is treated in the same order as in the construction phase. This

step tries to make the solution feasible with respect to the airport capacity

constraints that are still violated after the construction phase. The second
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step tries to reinsert the sequences that were removed during the construction

phase. In the third step the passengers are in focus. The passengers are tried to

be accommodated whose itineraries have been cancelled by repeatedly solving

shortest path problems. In the improvement phase the solution is tried improved

with a simple procedure that considers large changes to the solution. When no

further improvements are possible, this phase stops and the algorithm returns

to the construction and repair phase to generate new tentative solutions. The

improvement phase attempts to delay some flights in the hope of accommodating

additional passengers. Again, each aircraft is considered in turn and it is

attempted to delay each of its flights by a certain amount of time. The heuristic

was to solve the upcoming problems within 10 minutes each. The strength of the

algorithm can be explained in part by the fact that it aims to achieve feasibility

as quick as possible, and that is executing a very large number of simple and

fast moves (Bisaillon, Pasin, and Laporte, 2010).

There are many reasons for rescheduling in the airline industry. One of the

most frequent disruptions for airlines is the restriction of maximum number of

aircrafts on the ground (MOG) during periods of time at one or more stations.

The station capacity that was assumed during the earlier planning phase is no

longer available and the airline is forced to reduce the MOG for a particular

period of time. This is called the reduced station capacity problem (RSC) (M.

Yang, 2007).

M. Yang (2007) aims to solve RSC. He assumes that the following parameters

are known: the reduced MOG time period, [Ts, Te], where Ts is the start time

and Te is the end time. No more than M aircrafts are allowed on the ground

during the reduced MOG. The time period between the airlines get aware of the

MOG, TS , and when it is necessary that the original schedule is restored, TE , is

denoted recovery window.

The problem is modeled as a time-space newtork flow problem with side

constraints with two different kinds of arcs; grounding arcs and flight arcs.

The grounding arcs start and end at the nodes of the same station indicating

the aircraft remaining at the station during the time period. The flight arcs

possess start and end nodes at different stations. All arcs are directed downward

consistent with the orientation of the time axis. M. Yang (2007) let N be the

set of nodes, where each node n has an associated station sn and time tn. σn
is the flow supply at node n, and δn is the flow demand in node n. The set of
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entering nodes is denoted I(n), and the set of leaving nodes is denoted O(n).

S is the set of supply nodes, D is the set of demand nodes and R is the set

of nodes associated with both the reduced MOG time period and the reduced

MOG station. A is the set of arcs, and A′ is the set of arcs associated with

recovery window flights. Ca is the cost of arc a per unit flow, Pa is the type of

arc a. Let F be the set of flights f and F ′ the set of recovery windows flights.

The set of flight arcs associated with flight f is denoted G(f). βf is the cost

of cancelling flight f , while α is the penalty per aircraft of exceeding MOG.

In the mathematical formulation there are three different sets of variabes; xa,

the amount of flow on arc a, yf , cancellation indicator for flight f and zn, the

number of aircraft exceeding the reduced MOG capacity at node n ∈ R. The

model is formulated as follows:

min
∑
a∈A′

Caxa +
∑
f∈F′

βfyf +
∑
n∈R

αzn (4.65)

subject to: ∑
a∈O(n)

xa = σn ∀n ∈ S (4.66)

∑
a∈I(n)

xa = δn ∀n ∈ D (4.67)

∑
a∈I(n)

xa =
∑
a∈I(n)

xa ∀n ∈ N\(D ∪ S) (4.68)

∑
a∈G(f)

xa + yf = 1 ∀f ∈ F′ (4.69)

∑
a∈G(f)

xa = 1 ∀f ∈ F\F′ (4.70)

∑
a∈I(n)

xa +
∑

a∈K(n)

xa −M ≤ zn ∀n ∈ R (4.71)

yf ∈ {0, 1} ∀f ∈ F′ (4.72)

xa ∈ {0, 1} ∀a ∈ A (4.73)

zn ≥ 0 ∀n ∈ R (4.74)
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The objective function (4.65) is to be minimized and has three terms; the

first term is the sum of cancellation cost, the second term is sum of delay cost and

the last term is the sum of the penalty to the MOG violation. Constraint 4.66

to constraint 4.68 state the flow balance at the supply nodes, demand nodes and

the intermediate nodes respectively. Flight coverage is ensured by constraints

4.69 and 4.70. The left hand side of constraint 4.71 consists of three terms, and

enforces reduced station capacity. The first term is the sum of flows entering

node n. The second term is the sum of flight arcs entering the nodes which are

associated with the same station as node n, but have times later than node n,

but within the minimum turnaround time. The third term is the reduced station

capacity, M . Constraint 4.72 and constraint 4.73 ensures integer numbers for

xa and yf . Constraint 4.74 ensure that zn is greater or equal to zero.

M. Yang (2007) uses a one-pass algorithm to create a route solution from

the arc based solution. This solution becomes the initial solution used by a

tabu search algorithm. The tabu search algorithm is used to improve the initial

solution found (M. Yang, 2007).

In spite of all the research made at the planning level in the airline industry,

there has been relatively little work done at the operational level (Petersen et

al., 2012). Even though problems at the operational phase are much similar

to the problems at planning phase, there are two big differences. The first

are the additional operational complexities that arise. For example, suppose an

aircraft is approaching its destination but is unable to land because of convective

weather. The aircraft may be placed into a holding pattern, requiring additional

flying time for the cockpit crew. By the time the aircraft lands, the crew may not

be allowed to fly their subsequent leg because they have exceeded their allowed

flying time within a 24-hour period, rendering a disruption to the subsequent

legs (Petersen et al., 2012).

The second difference is the timing. Most airlines utilize an operations

control center (OCC) that provides a centralized decision making environment.

Unlike the planning phase in which problems are sometimes made more than a

year in advance of operations, OCC coordinators are constrained to making de-

cisions in as close to real-time as possible. Because decisions involving repairing

the schedule, aircraft, crew, and passengers are combinatorial in nature, using

an optimization-based approach may not be tractable because of the complexity

of solving each of these operational problems (Petersen et al., 2012). Petersen
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et al. (2012) define, formulate, solve, and analyze a fully integrated recovery

problem in a manner that is amenable to the constraints imposed by an OCC

in the paper An Optimization Approach to Airline Integrated Recovery. By

heuristically reducing the set of disreputable resources that are to be rescheduled,

they propose an optimization module that is to reassign the schedule, aircraft,

crews, and passengers within a given time horizon.

Petersen et al. (2012) define the airline recovery problem to comprise the

following four problems:

• The schedule recovery problem (SRP) seeks to fly, delay, cancel, or divert

flights from their original schedule. We call the solution to this problem

the repaired schedule.

• The aircraft recovery problem (ARP) assigns individual aircraft routings

to accommodate the repaired schedule that are feasible for the constraints

imposed by maintenance requirements.

• The crew recovery problem (CRP) assigns individual crew members to

flights according to the repaired schedule, to satisfy the complex legality

requirements.

• The passenger recovery problem (PRP) reassigns disrupted passengers to

new itineraries that deliver them to their destination.

Instead of a leg-based model, Petersen et al. (2012) utilize flight strings. A

flight string is a sequence of flights, with timing decisions, to be operated by the

same aircraft.

The size and complexity of the integrated recovery problem most likely

precludes the delivery of a globally optimal solution. In order to solve the

problem for reasonably large scenarios, careful consideration must be placed on

how to limit the size or scope of the problem (Petersen et al., 2012). The goal

of Petersen et al. (2012) is to deliver a solution within 30 minutes. There is

an inherent tradeoff between solution quality and runtime. A possible method

might be to develop a recovery scheme in a two-phased approach that first

seeks to recover the schedule, then to recover the other three components taking

the repaired schedule as given. Conflicting objectives almost certainly exist

between the schedule, crew costs, and passenger delays. Passing a single feasible
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schedule is too restrictive with respect to each of the second-stage problems.

The approach choosen by Petersen et al. (2012) aims to return a solution that is

globally optimal with respect to aggregate passenger delay, meaning passenger

assignments are globally optimal over all itineraries and all flight strings.

Because scheduling decisions affect repaired aircraft rotations, crew sched-

ules, and passenger itineraries, a Benders decomposition scheme is employed to

decompose the problem. Benders decomposition is a way to split complicated

mathematical programming problems into two, and thereby simplifying the

solution by solving one master problem and one subproblem. It is commonly

used for stochastic two-stage programs with recourse where the problem can be

split in the first and second stage problem, but it can be used for deterministic

problems too. Originally, Benders decomposition was written to solve integer,

non-stochastic programs.

Although the three subproblems are independent of each other, they are

solved sequentially. First, the SRP and PRP iterate until the aggregate passen-

ger delay cost is minimal. The ARM is then solved. If the ARP is infeasible,

a Benders feasibility cut is added to the rescheduling model. Otherwise, the

CRP is then solved. Again, a feasibility cut is added if the CRP is infeasible.

Otherwise, a tentative solution is found (Petersen et al., 2012).

4.1.3 Railway Models

Other transport segments such as railway and road transportation are also using

operational research when dealing with disruption management. The latest

review about disruption management in passenger railway transportation is

written by Jespersen-Groth, Potthoff, and Clausen (2009). They state that there

are many actors belonging to different organizations that play a role in disruption

management. The paper describes the different roles and the process they are

involved in. In the article the literature discussing disruption management in

passenger railway transportation is divided into three main groups. Timetable

adjustment is the focus in the first group, the second group focuses on rolling

stock, and the last group focuses on crew re-scheduling. There are many different

ways to solve disruption management problems in the railway industry.

Huisman (2007) defines and solves the Crew Re-Scheduling Problem (CRSP)

for train schedules. This problem aims to repair crew duties because of changes

in the underlying timetable and the rolling stock schedule. Huisman (2007) used
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a column generation approach to solve the CRSP. He introduced some terms to

be used in his model. A task is the smallest amount of work that has to be

assigned to a driver, and it has to start and end at a relief location. A relief

location is a place where a change of driver is allowed. A sequence of tasks on

the same rolling stock unit is called a piece. A duty consists of one or more

pieces of work with a minimum connection time between them. Each duty has

to follow some rules:

• A duty starts with a sign-on time, which depends on the type of the first

task, at the base of the crew member

• A duty ends with a sign-off time at the base of the crew member

• Each piece in a duty should not exceed a maximum length

• A duty should not exceed a maximum lenght according to the collective

labor agreement. This maximum length depends on the start and/or the

end time of the duty

• In each duty longer than a certain minimum length, there should be a meal

break with a certain minimum length at one of the relief locations with a

canteen

The author formulates the problem as a large-scale set covering problem. Let

N be the set of tasks, where Np ⊂ N is the set of passenger tasks, let B and ∆

be the set of crew bases and original duties. Furthermore, let Kδ be the set of

feasible duties which could replace original duties δ ∈ ∆. The cost of a duty k

corresponds to the original duty δ and is denoted cδk. The paramether bδik is 1 if

task i is a part of the this duty, and 0 otherwise. Finally, the decision variables

xδk indicate whether duty k is corresponding to the original duty δ. Huisman

(2007) formulated the crew re-scheduling problem as follow:

min
∑
δ∈

∑
k∈Kδ

cδkx
δ
k (4.75)

subject to: ∑
δ∈

∑
k∈Kδ

bδikx
δ
k ≥ 1 ∀i ∈ N\Np (4.76)
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∑
k∈Kδ

xδk ≥ 1 ∀δ ∈ (4.77)

xδk ∈ {0, 1} ∀δ ∈ ∆, k ∈ Kδ (4.78)

The objective function 4.75 aims to minimize the total cost of all duties. A

duty consists of one or more pieces of work for a crew member. Constraint 4.76

in the mathematical model guarantees that every work task is covered by at

least one duty. The model also includes constraint 4.77 that ensures that each

original duty is replaced by at least one new duty. A column generation based

algorithm is used to solve the problem (Huisman, 2007) .

The column generation was done in several steps. The first step was to

generate duties that looked similar to the original duties, i.e. the alternative

duties had to start and end in the same crew bases as the original duties, and

the start and end time of the duty should not deviate too much from those of the

original duties. The alternative duties were generated by complete enumeration

and chosen based on reduced costs. New duties were also found, by solving a

pricing problem for the original duties (Huisman, 2007).

When larger disturbances occur in a train or subway network, one of the

countermeasures is to take out entire trine lines (Jespersen-Groth and Clausen,

2006). The problem is to decide when the reinsertion shall start on each rolling

stock depot in order to resume scheduled service. Each originally scheduled train

that is taken out of operation due to disruption must be covered by new train

units, and hence reinserted into operation according to schedule. It must also

be decided from which depot the train should be reinserted from and when the

reinsertion should take place. As the process of resuming service is regulated

by a number of constraints, the task of calculation a reinsertion plan becomes

complex (Jespersen-Groth and Clausen, 2006). A mixed integer programming

model was developed by Jespersen-Groth and Clausen (2006) to minimize the

latest time to reinsertion. Each originally scheduled train has to be covered

with train units and hence reinserted in operation according to schedule. The

variables representing which train to be inserted from which and when are binary.

xijk =

{
1 if train i is inserted in time slot t from depot k
0 otherwise.

(4.79)
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Jespersen-Groth et al. introduce I the set of train that must be inserted,

K as the set of depots they can be inserted from and J as the set of available

slot for reinsertion. The model decides which trains will run, but it does not

consider which train units to use to cover the trains. It is assumed that the

information of distribution of train units across depots, Dk, k ∈ K is provided

as input and thereby sufficient in number to cover the trains. Terminal depots are

denoted KT and intermediate depots are denoted KI . The intermediate depots

are constructed by sets of two depots together denoting one intermediate depot

where reinsertion can be carried out in l where l ∈ L is the set of directions.

To assure that each train is inserted only once, it is necessary to take into

consideration the train sequences of each train describing in which time slot each

train is at the different depots. To handle this the constant inijk is introduced.

To model the order within stations two sets of integer variables are introduced:

startk and endk. Finally, the constant ck indicates how many trains has been

scheduled at depot k. The model for optimal reinsertion of cancelled train lines

is then formulated as follows:

min latest time to reinsertion

subject to: ∑
j∈J

∑
k∈K

xijk = 1 ∀i ∈ I (4.80)

∑
i

xijk ≤ 1 ∀j ∈ J, k ∈ K (4.81)∑
i∈I

∑
j∈J

xijk = Dk ∀k ∈ KT (4.82)

∑
i∈I

∑
j∈J

∑
k∈K

xijk =
∑
k∈K

Dk ∀l ∈ L, k ∈ KI
l (4.83)

∑
i∈I

∑
j∈J

xijk = DI
k ∀k ∈ KI (4.84)

DI
k ≥ b

Dk

2
c ∀k ∈ KI (4.85)

DI
k ≤ d

Dk

2
e ∀k ∈ KI (4.86)
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xijk ≤ inijk ∀i ∈ I, j ∈ J, k ∈ K (4.87)

startk +
∑
i∈I

∑
j∈J

xijk − 1 = endk ∀k ∈ K (4.88)

startk ≥ Ck + 1 ∀k ∈ K (4.89)

startk ≤ j +M(1− xijk) ∀i ∈ I, j ∈ J, k ∈ K (4.90)

endk ≥ j −M(1− xijk) ∀i ∈ I, j ∈ J, k ∈ K (4.91)

All the trains must be covered exactly once, this is guaranteed by partitioning

constraint 4.80. In each depot there are only a given number of available trains;

the model ensures through constraint 4.81 that not more than the given number

of available trains are inserted from each depot. Constraint 4.89 assures that

reinsertion can not begin before a train driver can arrive from the crew depot.

Constraint 4.87 ensures that the trains are inserted in a correct time slot, it is

necessary to take into consideration the train sequences of each train describing

in which time slot each train is at the different depots. Constraint 4.88 connects

the end and start veriables. When a reinsertion has begun on a depot, constraint

4.90 and 4.91 ensure that it is continuously in adjustment time slots (Jespersen-

Groth and Clausen, 2006).

If a disruption occurs, the train driver’s schedule needs to recover. To solve

this, Rezanova and Ryan (2010) have developed a set partition model. Their

solution method is based on solving the LP relaxation of a set partition prob-

lem with a dynamic column generation approach with the limited subsequence

strategy and an expanding disruption neighborhood (Rezanova and Ryan, 2010).

Rezanova and Ryan denote the set of train drivers involved in the recovery K

and the set of trains belonging to the drivers N . P k is the set of feasible recovery

duties for a driver k ∈ K. Each recovery duty p ∈ P k contains either a subset

of train tasks in N or does not contain any tasks. The cost ckp reflects the

unattractivness of the recovery duty p for the driver k. If duty p is included in

driver k’s recovery schedule the binary decision variable xkp is 1, otherwise it is

0. A binary parameter bkip is used to define whether or not task i is coverd by

duty p. The train driver problem can then be formulated as follows:

min
∑
k∈K

∑
p∈Pk

ckpx
k
p (4.92)
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subject to: ∑
p∈Pk

xkp = 1 ∀k ∈ K (4.93)

∑
k∈K

∑
p∈Pk

bkipx
k
p = 1 ∀i ∈ N (4.94)

xkp ∈ {0, 1} ∀p ∈ Pk, k ∈ K (4.95)

The objective function 4.92 aims to minimize the total cost of the recovery

solution. In the model constraint 4.93 ensures that each train driver is assigned

to exactly one recovery duty in the schedule. Constraint 4.94 provides that each

train task is covered exactly once in the recovery schedule (Rezanova and Ryan,

2010).

Rezanova and Ryan solve their problem with branch & price. Branch &

price is a method for solving large integer programming problems, where the

LP-relaxation of the IP problem is solved with column generation at each node

of the branch & bound tree (Rezanova and Ryan, 2010).

4.1.4 Other Models

Operational research is also used to solve the vehicle rescheduling problems

(VRSP). When a vehicle breaks down on a scheduled trip, one or more vehicles

need to be rescheduled to serve that trip and other service trips originally

scheduled for the disabled vehicle. Li, Mirchandani, and Borenstein (2009)

used a Lagrangean relaxation based insertion heuristic to solve the VRSP (Li,

Mirchandani, and Borenstein, 2009).

Mu et al. (2010) use a heuristic with a neighborhood search to solve the

vehicle disruption management problem.

Disruption management is also used outside the transportation business.

Hall and Potts (2004) are handling disruption management in their article Reschedul-

ing for New Orders, that is about machine scheduling. This article considers

scheduling problems where a set of original jobs has been scheduled to minimize

an objective, when a new set of jobs arrives and creates a disruption. The new

jobs have to be inserted into the existing schedule without excessively disrupting

it. Two different ways to solve the problem is suggested. The first way to solve

the problem is to minimize the scheduling cost of all the jobs, subject to a limit
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on the disruption caused on the original schedule. It is also possible to solve the

problem by introducing and minimizing a total cost objective, which includes

both the original cost measure, and the cost of disruption (Hall and Potts, 2004).

Disruption management studies can also be found in project scheduling

(Eden et al. (2002) and Zhu, J F Bard, and G Yu (2004)), production planning

(J. Yang, Qi, and Gang Yu, 2005) and supply chain coordination ( Xia et al.

(2004), Qi, Jonathan F. Bard, and Gang Yu (2004) and Xiao et al. (2005)).

4.1.5 Heuristics, Search Methods and Column Generation

When solving optimization problems modeled as networks there are many differ-

ent heuristics and search methods to use. Some of them are simulated annealing,

threshold accepting, the great deluge algorithm, and related Monte Carlo-type

optimization algorithms. These heuristics apply ideas of statistical physics

and applied mathematics to find near-to-optimum solutions for combinatorial

optimization problems. These are all iterative improvement algorithms. They

start with an initial configuration and proceed by small exchanges in the actual

or current solution to get a tentative new solution. The tentative new solution is

evaluated, i.e., its objective function, e.g., its total cost, is computed. Decision

rules whether we should accept the rebuilt structure or rather keep the original

one should be included. There are also many different decision rules that can

be applied. In a random walk every new solution is accepted. The greedy

acceptance accepts every solution which is better than the current solution.

Simulated annealing procedures accept every better solution and, with a certain

probability, also solutions being worse than the current solution. Threshold

accepting accepts every solution which is not much worse than the current

solution, where “not much” is defined by a threshold. The great deluge algorithm

rejects all solutions below a required quality level. It is decided if the tentative

new solution is kept as the current solution; in case of acceptance the new

solution is taken as the new current solution (Schrimpf et al., 2000).

Simulated annealing and related techniques have in common that a new

configuration is generated based on the actual one. No information about former

configurations is used (Schrimpf et al., 2000).

Genetic algorithms mostly use different kinds of crossover operators gener-

ating children from parent configurations, while evolution strategies concentrate

45



4. LITERATURE REVIEW

on mutations altering a member of the population (Schönenburg, Heinzmann,

and Feddersen, 1994)

Tabu search is a memory based search strategy to guide the system being

optimized away from parts of the solution space which were already explored.

This can be achieved either by forbidding solutions already visited or structures

some former solutions had in common, which are stored in a tabu list. This list

is updated after each mutation according to some proposed rules, which have to

guarantee that the optimization run never reaches a solution which was visited

before (Reinelt, Rinaldi, and Michael, 1994).

Searching for backbones compares results of independent optimization runs

for equal parts. These parts are supposed to be optimal, i.e. to be parts

of the optimum solution. This information is considered in the next series of

optimization runs in which these parts remain unchanged. The new solutions

are supposed to be better than the previous ones because the optimization could

concentrate on parts which are more difficult to solve optimally. This algorithm

is repeated iteratively until all optimization runs produce the same solution

(Schneider et al., 1996).

In the article Record Breaking Optimization Result Using the Ruin and Recre-

ate Principle by Schrimpf et al. (2000) they are introducing a search method

called ruin and recreate. The basic element of Schrimpf et al.’s idea is to obtain

new optimization solutions by a considerable obstruction of an existing solution

and a following rebuilding procedure. According to Schrimpf et al. (2000) it

is important to think about the kind and size of the disintegration steps and

how to recreate ruined parts. The ruin and recreate method proposes using

well-known concepts from simulated annealing and threshold accepting with

bold, large moves instead of smaller ones. For “simple structured” problems like

the traveling salesman problem there is no real need to use large moves. This

because algorithms usually deliver near-to-optimum solutions with very small

moves already. Dealing with more complex problems, however, Schrimpf et al

encountered in their research difficulties using these classical algorithms. If they

were considering wide area networks, or very complex vehicle routing tasks, they

faced troubles (Schrimpf et al., 2000).

Complex problems often can be seen as discontinuous: Taking only one step

from a solution to a neighbor solution, the heights or qualities of these solutions

can be dramatically different, i.e., the landscapes in these problem areas can
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be very “uneven”. Solutions of complex problems often have to meet many

constraints, and it is often even hard to get just allowed solutions. neighbor

solutions of complex schedules are usually inadmissible solutions, and it may

be very hard to walk in such a complex landscape from one allowed solution

to another neighbored allowed solution. Many forms of the classical algorithms

try to avoid the admissibility problem by modeling artificial penalty functions,

but they can get stuck in solutions which might not be allowed (Schrimpf et al.,

2000).

The ruin and recreate principle first ruins a quite large fraction of the solution

and then it tries to restore the solution as best as possible. The method shows an

important advantage; if a large part of the previous solution is disintegrated, a

lot of freedom to build a new solution is created. In this large space of solutions

it may be possible to find an improved solution (Schrimpf et al., 2000).

Large Neighborhood Search (LNS) developed by Shaw (1998) is another

search method. It works much in the same way as the ruin and recreate method

by Schrimpf et al. (2000). LNS is based upon a process of continual relaxation

and re-optimization. Shaw demonstrates LNS by solving VRP. Two factors can

affect the way in which the search operates: how the set of customer visits are

chosen for removal, and the process used to re-insert the visits. Shaw believes

in a general strategy for choosing visits to remove by choosing related visits.

One criterion for related visits are that the visits that are geographically close

to one another will be more related than visits that are more distanced. If

visits close to one another are removed from the routing plan together, there

is opportunity for interchange of positions and so on. No more customer visits

than necessary should be removed from the routing plan, as the re-insertion

process is more expensive for larger numbers of visits. Related visits might

also have similar allowable visiting hours, or be visited at similar times in the

current routing plan. For efficiency, one wants to remove the smallest set that

will yield an improvement in the cost when the visits are re-inserted. The

main advantage of using LNS is that the addition of side constraints can be

handled better than in other methods. A difficulty with problems with many

side constraints is that many of the simple move operations will be illegal due

to violation of the side constraints. Increasing numbers of side constraints

constantly reduce the number of feasible moves. This can make the search

difficult, as the search space can become pitted with local minima or even
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disconnected. LNS alleviates this problem somewhat by providing more powerful

far-reaching move operators that allow the search to move over barriers in the

search space created by numerous side constraints. Evaluation of cost differences

can be a time consuming phenomenon in local search techniques. This type of

search is very naturally suited to constraint programming technology, which

allows very general models of combinatorial problems to be specified (Shaw,

1998).

LNS is used by Kjeldsen et al. (2012), Andersen (2010) and Bisaillon, Pasin,

and Laporte (2010)

The main aim of an optimization algorithm can either be to achieve a new

best solution or to be used in practice. In the latter case a small variance in

the (good) results is even more important than the average quality or the best

solution that can be found by an algorithm (Schrimpf et al., 2000).

When solving disruption management problems it is important to know if

the problem should be solved to optimality, or that the best approach is to

find a good solution in a short time. There is a clear trade-off between the

solution quality and the computing time (Mu et al., 2010). It is also important to

consider the robustness of the model. If the optimization should be a knife-edge

solution optimal for one scenario only, or one should optimize on thoughts of

several scenarios. The solution will then be a good solution even if some changes

occur. Stochastic optimization gives a solution that has the highest possibility

to succeed, but not necessary best solution in any scenario (Nowak, 2012).

According to, among others Wilhelm (2002) and Lubbecke and Desrosiers

(2005), column generation has proven to be one of the most successful approaches

for solving large-scale integer programs.

As shown in section 4.1.2 and section 4.1.3, a much used method to solve

disruption management models is the set partition approach with column gener-

ation. When using this approach the mathematical model itself becomes small

and simple. The set partition model is much simpler to solve than the original

problem. The problem gets a simple structure and the LP solution is much closer

to the IP solution than for the original problem, this results in a smaller branch

and bound tree. With an SPP approach for a transport problem there is a large

flexibility in how to generate the routes. It is easier to include restrictions in the

route generation than in a mathematical formulation. The route generation and

the problem can be fitted togheter to perform as desired. The drawback with

48



4.2 Simulation

the SPP method is the complex route generation. To ensure an optimal solution

all possible columns have to be generated. In large problems it may be hard to

generate all the good routes.

It is almost five decades since Ford and Fulkeson (1958) suggested dealing

only implicity with the variables of a multicommodity flow. This fundamental

idea was pioneered by Dantzig and Wolfe (1960). They developed a strategy to

extend a linear program column-wise as needed in the solution process.

Wilhelm (2002) describes Type I, II and III column generation approaches.

Type I column generation involves using an auxiliary model to generate columns

and a restricted master problem (RMP) to prescribe the optimal subset of

generated columns. Type II comprises a more sophisticated approach in which

the RMP interacts with a priceout problem to select the entering variable at

each iteration of the Simplex method. Type III is based on Dantzig–Wolfe

decomposition in which one or more subproblems (SPs) are used to generate

improving columns for the RMP (Wilhelm, 2002).

In 2005 the review article Selected Topics in Column Generation by Lubbecke

and Desrosiers (2005) was published. This paper is a survey on column genera-

tion biased toward solving integer programs. The paper is divided in two parts.

The first part covers the theory that is needed to expose integer programming

column generation algorithms. i.e. classical decomposition principles and con-

vexification and discretization approaches for extending the decomposition prin-

ciple to handle integrality constraints. While the second part is the algorithmic

counterpart of the first part. For more about these topics see the review article.

4.2 Simulation

One way to verify disruption management plans is to use a simulation model.

Modeling is a constructed representation of a system, or as discussed by Fu

et al. (2009), A scientific model can be defined as an abstraction of some real

system, an abstraction that can be used for prediction and control.

Regarding Anu Maria (1997), a simulation of a system is the operation of

a model of the system. Simulation is a widely used power tool that requires a

computer to be executed. During the last decades, the rapid development of the

computer technology has increased the use of simulation. Currently, there are

a multiple number of simulation softwares, but regular script languages such as
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Python, JavaScript may also be applied to develope a simulation (Anu Maria,

1997).

Simulation may be used as a tool to analyze the current or future performance

of a proposed or existing system. Instead of executing and observing a real life

system, a simulation may be a more feasible and inexpensive solution. One of

the drawbacks with a simulation is that the mathematical model may not take

into account all the aspects of the reality. A validation of the result may be

executed to ensure the model reflects the reality.

A simulation model is a way to examine how a system is handling uncertainty.

In a simulation, the system is modeled as if the parameters are known. Then

for each uncertain parameter, a value is drawn from its probability distribution.

Under that regime, it is possible to analyze how a solution handles uncertainty

by collecting statistical data after running a large number of simulations (E.E.

Halvorsen-Weare, 2012).

During the development of a mathematical simulation model, one has to clas-

sify the model (Angeloudis and Bell, 2011). There are a number of classifications

that may be applied, each focusing on different aspects.

Static or dynamic: Static models simulate the state of the system indepen-

dent of time, e.g. a simulation of a structure with a certain load. A dynamic

model is dependent of the time, and usually the system is continuously changing

over time, e.g. seaport simulation. (Angeloudis and Bell, 2011)

Timing : A simulation may be or not be time dependent. There are also

some distinctions regarding the time aspect: continuous, discrete time or discrete

event (Angeloudis and Bell, 2011). Continuous models simulate the state of a

system at any point in time. To calculate this, differential equations with rates

of change may be used. In opposite of a continuous model, the evolution of the

state of the system in a discrete model happens discretely, time or event driven

(Angeloudis and Bell, 2011).

Deterministic or stochastic: A simulation may be based on given or stochas-

tic parameters. McCabe (2003) discusses the development of a probalistic model.

The paper is claiming that experts are comfortable estimating the most likely

values, but rather uncomfortable estimating the lower and upper limits. McCabe

(2003) believes that Monte Carlo Simulations can provide valuable information.

The lack of common knowledge about the technique is a major barrier when

using the Monte Carlo Simulation (McCabe, 2003).
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During a simulation, one has at least one performance measure to calculate

the performance of the modeled problem, e.g. factories’ profits over a period

of time. Most of the simulation optimizations do only have one performance

measure, but research for simulation optimizations with multiple performance

measures have been done. Rosen, Harmonosky, and Traband (2008) surveys

multiple performance measures methodologies and discuss strengths and weak-

nesses of each.

The airline industry is often using simulation models to verify their op-

timization models. One of these simulation models, SimAir, was developed

and described by Rosenberger, E. L. Johnson, Schaefer, et al. (2002) in the

article A Stochastic Model of Airline Operations (2002). SimAir is a modular

airline simulation that simulates the daily operations of a domestic airline. Its

primary purpose is to evaluate plans and recovery policies. SimAir does not

explicitly consider the sources for the delays that occur; it is then not necessary

to simulate them individually. There is a significant amount of randomness due

to mechanical failure and bad weather within airline transportation systems.

SimAir was developed in a flexible modular environment, and consists of

three modules. The Controller Module determines when a disruption prevents

the flights from flying as scheduled. When this occurs, the Controller Module

activates the Recovery Module. Then the Recovery Module proposes a revised

schedule, and the Controller Module can either accept the revisions or request

a different recovery proposal. The Event Generator Module generates random

ground time delays, additional block time delays, and unscheduled maintenance

delays. SimAir does not explicitly consider the sources of the delays, it is then

unnecessary to simulate them individually. Instead, the Event Generator uses

aggregate distributions for additional block time and ground time. The Event

Generator generates two random variables for unscheduled maintenance for an

aircraft. The first random variable determines whether there is a maintenance

delay. If there is a delay, then a second random variable is generated which

determines the length of the delay. Both random variables may depend on the

aircraft. When a flight is delayed, the Recovery Module need to find a recovery

action to respond to the delay. The Recovery Module may use a simple routine

which waits for the scheduled planes and crews regardless of their tardiness

(Rosenberger, E. L. Johnson, Schaefer, et al., 2002). The structure of the

simulation model is presented i figure 4.5.
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Figure 4.5: Structure of SimAir - (Rosenberger, E. L. Johnson, Schaefer, et al.,

2002)

Simulation has several other applications, e.g. in the recycling industry

(Hirsch, Kuhlmann, and Schumacher, 1998), railway industry (Sayarshad and

Ghoseiri, 2009), vehicle routing (Tavakkoli-Moghaddam et al., 2011), taxicabs

(Grant et al., 1987), fisheries (Hilborn, 1987), and aircraft maintenance (A. P.

Johnson and Fernandes, 1978).

Terzi and Cavalieri (2004) have written a survey about simulation in the

supply chain. The authors have reviewed over 80 papers. The reviewed papers

differs broadly in scope, objectives, processes and morphology.

Gurning and Cahoon (2011) do a simulation of a wheat supply chain be-
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tween Australia and Indonesia with extra focus on maritime disruptions. To

do the analysis, the Markov chain process is used. A Markov chain contains a

set of states and steps which represents the movement between the same (no

movement) or two different states. Each step has a given transition probability.

The study by Gurning and Cahoon (2011) assesses four major mitigation

strategies (inventory and sourcing mitigation, contingency rerouting, recovery

planning and business continuity planning) to determine their suitability for

managing potential disruptions in the wheat supply chain. During the period

when wheat supply chain plans are in effect, changes in supply chain performance

may be identified beyond the assumptions predicted in the planning stage.

An objective of the study by Gurning and Cahoon (2011), is to provide a

mitigation framework for the maritime service operators when responding to

various maritime disruptive events along wheat supply chains. The goal is to

alleviate the consequences of disruptions and risks, and then to increase the

robustness of a wheat supply chain through the maritime leg.

The Markov chain methodology has been found to be a general tool for mod-

eling network and dynamic maritime disruption systems. This due to its ability

to predict precedence, and concurrent and asynchronous events on a mathemat-

ical basis. Gurning and Cahoon (2011) creates a four-stage continuous time

period Markov chain. This application allows measurement and prediction of

supply chain costs and time functions in relation to disruptive events affecting the

transportation and distribution processes of millers, wholesalers, and retailers.

The four different mitigation approaches (inventory and sourcing, contingency

rerouting, business continuity plan and recovery planning) are implemented in

the simulation model. The Markov mitiation process by Gurning and Cahoon

(2011) works in three steps. First, the event sequence begins with the initial

risk state to a disruptive state that may come from one or more potential

disruptive events. Secondly, the probabilities of internal stages for each risk

event are further approached by using four different stages. The final stage is

to obtain the initial probability vector, which represents the possibility of each

disruption-state when a mitigating plan is implemented.

By analysing data collected from a maritime disruption survey, the initial

probability vector is calculated using formula 4.96 satisfied by the condition in

formula 4.97. The overall likelihood of each outcome is determined by mul-

tiplying conditional probabilities, the risk level is aggregated along potential
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consequences as shown in formula 4.96. Vj,i is the mitigation value index for

disruptive event type j, related to scenario i. Pi is the probability of scenario

i. DMj,i is the j-type mitigated consequences related to the i-scenario. The

potential consequence of selected mitigation DPj,i,m is determined by comparing

the impact areas i-th to supply chain links.

Vj,i = PiDMj,i (4.96)

DMj,i =
∑
m

(DPj,i,mVj,i,m) (4.97)

The Markovian-based methodology allows the issues to be addressed in re-

lation to multi-mitigation analysis. The integration and the comparison of each

scenario were obtained by considering the effects of each single scenario on

different sensitive targets. This is performed by defining a mitigation model

and related indicators for assessing the impacts.

In the maritime industry, simulation is used for several different problems.

Fagerholt (1999) developed a simulation model to design flexible cargo holds in

small sized bulk ships. The purpose of the model is to find the optimal cargo

hold configuration. The simulation study was performed with background from a

real ship planning problem faced by a major company engaged in production and

distribution of various dry bulk products. The company receives cargo requests

from their customers. Each cargo request consists of a designated quantity of

a particular product to be delivered to a given harbour within a specified time

interval.

Because of the characteristics of the various bulk products to be transported,

two different cargos cannot be mixed in the same cargo hold. The ships in the

fleet are equipped with moveable bulkheads which can be placed in a given

number of positions in the cargo hold. In this way, the ships’ cargo holds

can be partitioned into several smaller holds with flexible sizes so that several

cargos can be transported simultaneously by the same ship. A simulation model

was developed to find the optimal cargo hold configuration. The simulation

algorithm consists of two main steps. The first step is to generate a large

number of different cargo sets. The next step of the simulation procedure is to

make an optimal location of the moveable bulkheads. i.e. an optimal allocation

of the cargos of each set to the nominal compartments for the given cargo
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hold configuration. The optimal location of the bulkheads or cargo allocation

is defined as the one which maximizes the total tonnage transported by the

ship. This procedure is performed for a given number of predefined cargo hold

configurations to find the configuration which on average gives the best results.

Simulations for nine different cargo hold configurations was performed. 10 000

cargo sets consisting of three cargos and 10 000 sets consisting of five cargos are

generated with two different distributions.

Due to great variations on cargo quantities, an optimal cargo configuration

may increase the profit. Fagerholt (1999) and his model prove that the potential

savings are significant. The results also strongly indicate that configurations

with equal-sized nominal compartments give poor results.

Cheng and Duran (2004) simulated the logistics for the global crude oil

transportation. To do this, they developed a discrete-event simulator which

used the Markov chain queueing process. This model is described more in detail

in section 4.3.

There has been done a lot of research on simulation of seaport operations

(Angeloudis and Bell, 2011), (Hayuth, Pollatschek, and Roll, 1994), (Yi, S. H.

Kim, and N. H. Kim, 2002), (Gambardella, Rizzoli, and Zaffalon, 1998), (Nevins,

Macal, and Joines, 1998), (Thiers and Janssens, 1998), (Merkurjevs, 2006). Most

of them are developed in the intention of being used as a decision support system

during both the tactic and strategic operations of the port. The simulation

technology is now considered as an important asset by the operators of the

ports. Industrial research is therefore often graded as confidential (Angeloudis

and Bell, 2011). Thiers and Janssens (1998) have written a paper that describes

the development of a port simulator. The paper describes a simulation which

is modeled as a traffic simulation model. In other words, the vessel navigating

is treated in the terms of the time required for certain activities. The time

perspective is given in discrete time slots, hence, the simulation runs in discrete

time. Thiers and Janssens (1998) evaluate different boundaries of the model,

both controllable and uncontrollable, which are included in the model. But they

simplify their simulation model to be deterministic, apart from the generation

of the input data, e.g. harbor time, have stochastic elements. For the harbor

time, lognormal and gamma distributions are used, depending on the size and

type of the vessels.
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Yi, S. H. Kim, and N. H. Kim (2002) present a paper that describes a method

for modeling the dynamic behavior of harbor supply chains. This method may

also evaluate strategic and operational policies of the proposed harbor supply

chain by applying multi-agent systems and simulation. Multi-agent systems

is a collection of computational entities, that have their own problem-solving

capabilities and which are able to interact in order to reach an overall goal.

The simulation model that is developed is to determine which strategic and

operational policies are the most effective in smoothing the variations in the

sypply chain. The simulation model is developed for berth allocation and crane

assignment policies. The berth allocation policies simulate the movement of the

ship to the berth and assignment of the ship to the berth. The crane assignment

policies simulate the assignment of the cranes to the ship at the berth.

A supply chain is composed of several business entities, they can be viewed

as agents. Each business entity has its capability and capacity and can be

assigned to or take certain types of tasks. Also these capabilities, capacities and

organizational roles can be modeled as agents. Multi-agent systems focus on the

coordination and the communication among agents to collaboratively accomplish

tasks. Every agent is responsible for one or more activities interacting with

other in agents the supply chain, and each agent in the planning executetheir

responsibilities.

The multi-agent model contains two kinds of agents: physical agents and

logical agents. A physical agent represents objects, such as ships and cranes.

A logical agent represents a logical object with a information function, such as

scheduling agents and resource agents. The interaction of these agents enables

the flow of materials and information within an entity and to other entities that

are immediately adjacent to it in the supply chain.

To optimize performance, the supply chain must operate in a coordinated

manner and coordinate the revision of plans or schedules across the supply chain.

Using Markov decision’s recursive relationship, the solution procedure moves

backwards period by period until it finds the optimal policy in a given number

of iterations.

Yi, S. H. Kim, and N. H. Kim (2002) have studied a harbor supply chain with

ten ships, eight berths and sixteen cranes for import and export berth operations.

Based on the type of ship, the priority assignment for berth allocation was

implemented in order to improve the operations within the studied port. Priority
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assigned to the ships results in ship turnaround time. The ships that arrive at

the port are handled at the appropriate berths. Each berth was allowed at most

an allocation of three cranes. The cranes were located in serial order, and were

not allowed to cross or overtake each other. The assignment of the cranes to the

ship at the berth was based on three different constraints. The first constraint

is a fixed crane assignment based on the given priority. The second constraint

is a sharing crane assignment. When the ship is berthing, sharing of cranes is

allowed only between two berths adjacent to each other. For every ship, at least

one crane is available for the loading and unloading activities to begin. The

third rule is an available crane assignment based on the adjacent to other berth

for loading or unloading.

Yi, S. H. Kim, and N. H. Kim (2002) make use of fill rate and on-time delivery

for output performance measure, volume and delivery performance measure,

flexibility and inventory for flexibility level for resource performance measure.

4.3 Simulation and Optimization

April et al. (2003) stated that since the last years of the previous millennium

the research on merging optimization and simulation has grown rapidly. The

increase of computer processing power is one of the main reasons for this growth,

as simulation and optimization both requires huge amounts of calculations (April

et al., 2003). April et al. (2003) wrote an article that gives the reader a

practical introduction to simulation optimization. They describe optimization

of simulation models as “the situation in which the analyst would like to find

which of possible many sets of model specifications (i.e. input parameters and/or

structural assumptions) lead to optimal performance.” The input parameters

and structural assumptions of the simulation model are called factors. The

outputs of a simulation model are called responses. The goal of simulation

optimization is to find the combination of factors that maximize or minimize the

response, often subject to various constraints. Y. Carson and A Maria (1997)

define simulation optimization as the process of finding the best input variable

values from among all possibilities without explicitly evaluating each possibility.

They further explain that when the mathematical model of a system is studied

using simulation, it is called a simulation model.
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Figure 4.6: Simulation model - (Y. Carson and A Maria, 1997)

Simulation optimization is the process of finding the optimal input variables,

i.e. x1 . . . xn, which optimizes the output variables y1 . . . ym. A simulation

optimization model is shown in figure 4.7 below. The simulation is run with a

first set of input variables. The output is then used by an optimization strategy

to provide feedback on the progress of the search for the optimal solution. This

in turn guides further input to the simulation model (Y. Carson and A Maria,

1997).

Figure 4.7: Simulation optimization model - (Y. Carson and A Maria, 1997)

Fu (2002) distinguishes between simulation for optimization and optimization

for simulation. Simulation for optimization referes to a stochasitc programming

approach where a Monte Carlo scenario generatior is an add-on. This Monte

Carlo add-on generates scenarios for the mathematical programming formula-

tion. Optimization for simulation refers to a situation where an optimization

subroutine is an add-on that generates candidate solutions to a discrete-event

simulator.
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Simulation and optimization together is used in many different areas of

research. Zeng and Z. Yang (2009) are using simulation and optimization to

schedule loading and unloading of containers in container terminals. The paper

Integrating simulation and optimization to schedule loading in container ter-

minals (Zeng and Z. Yang, 2009) states that operation of container terminals

are a too complex problem to be solved analytically and by a mathematical

program alone. Instead of an analytical solution method the authors combine

simulation and optimization. The main disadvantage in simulation optimization

modulating is that running the simulation model is computationally expensive

(Zeng and Z. Yang, 2009). To increase the computation efficiency the authors

design a surrogate model to filter out obvious bad solutions.

The supply vessel planning problem consists of determining the optimal

fleet size and mix of supply vessels and the corresponding weekly voyages and

schedules. E Halvorsen-Weare and Fagerholt (2011) used simulation and op-

timization to address the problem of creating robust schedules to the supply

vessel planning problem. The study is done on a real planning problem faced

by Statoil, who with their current supply service is highly affected by weather

conditions. Operators of offshore oil and gas installations need to have a reliable

supply service. Temporarily shut-downs may in worst case be the result of

interruptions of such services, which again will result in lost income.

The objective of Halvorsen-Weare and Fagerholt’s study is to create more

robust solutions to the supply vessel planning problem. Robustness is here

the capability for a voyage or schedule to allow for unforeseen events during

execution. To solve the supply vessel planning problem, Halvorsen-Weare and

Fagerholt use a mathematical formulation for the voyage based solution method

developed in Fleet size and mix and period routing of offshore supply vessels

(E. E. Halvorsen-Weare et al., 2010). Several constraints are implemented to

take into account the weather impact and robustness of the solutions. The

prevailing weather conditions will affect the supply vessels’ sailing speed and the

unloading and loading operations at the offshore installations. This again may

have severe consequences for the offshore supply service, especially in the North

Sea during the winter season. The critical factor is the significant wave height

(E Halvorsen-Weare and Fagerholt, 2011).

E Halvorsen-Weare and Fagerholt (2011) let V be the set containing the

supply vessels available for time charter, and let N be the set of offshore instal-
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lations. Rv is defined as the set of pre-generated voyages that vessel v ∈ V may

sail. T is the set of days in the planning horizon, and L is the set containing all

possible voyage duration in days. H is the set with all possible visit frequence

values. Then set Rvl contains all candidate voyages of duration l ∈ L that vessel

v may sail, and set Nk contains all offshore installations that require k ∈ H visits

per week. There are some costs related to sailing and operational the vessels.

The weekly time charter cost for vessel v, CTCv , and the sailing cost for vessel

v sailing voyage r ∈ Rv, CTCvr . Dvr is the duration of voyage r sailed by vessel

v. Si is the required weekly visit frequency to offshore installation i. Further,

Halvorsen-Weare and Fagerholt let Fv be the number of days vessel v can be

used during a week, nad Bt be the number of supply vessels that may be serviced

at the onshore supply depot on day t ∈ T . The binary parameter Avir is 1 if

vessel v visits offshore installation i on voyage r, and 0 otherwise. Gk ∈ [0, |T |] is

a number representing the length of a sub-horizon for the offshore installations

with visit frequency k. P k and P k are lower and upper bounds on the number

of visits during the sub-horizon of length Gk an offshore installation with visit

frequency k should receive. Finally, there are two binary variables. First, xvrt
that equals 1 if vessel v sails voyage r on day t, and 0 otherwise. Second, δv that

equals 1 if supply vessel v is chosen for time charter. The supply vessel planning

problem can then be formulated as follows.

min
∑
v∈V

CTCv δv +
∑
v∈V

∑
r∈Rv

∑
t∈T

CSvrxvrt (4.98)

subject to: ∑
v∈V

∑
r∈Rv

∑
t∈T

Avirxvrt ≤ Si ∀i ∈ N (4.99)

∑
r∈Rv

∑
t∈T

Dvrxvrt − Fvδv ≤ 0 ∀v ∈ V (4.100)

∑
v∈V

∑
r∈Rv

xvrt ≤ Bt ∀t ∈ T (4.101)

∑
r∈Rvl

xvrt +
∑
r∈Rv

l−1∑
v=1

xvr,((t+v)mod|T|) ≤ 1 ∀v ∈ V, t ∈ T, l ∈ L (4.102)
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P k ≤
∑
v∈V

∑
r∈Rv

Gk∑
v=0

Avirxvr,((t+v)mod|T|) ≤ P k ∀k ∈ H, i ∈ Nk, t ∈ T

(4.103)

δv ∈ {0, 1} ∀v ∈ V (4.104)

xvrt ∈ {0, 1} ∀v ∈ V, r ∈ Rv, t ∈ T (4.105)

The objective function 4.98 has two terms, and minimizes the sum of time

charter cost and the sailing cost. Constraint 4.99 ensures that all offshore

installations get the required number of visits each week. Constraint 4.100

ensures that a vessel is not in service more than it is available during the week.

Constraint 4.99 and constraint 4.100 together ensure that δv equals 1 if a vessel

is in service. The number of vessels to be serviced at the onshore depot on a

given week day is limited by constraint 4.101. Constraint 4.102 ensures that

a vessel does not start a voyage before it has returned to the onshore supply

depot. Constraint 4.103 spread the visits to the offshore installations evenly

throughout the week. Constraint 4.104 and constraint 4.105 ensures the binary

requirements for the variables.

The solution method developed combines optimization and simulation to

provide robust schedules to the supply vessel planning problem. It is a three-

step model that uses voyage generation and voyage simulation to return an

optimal fleet and optimal voyages and schedules. First all candidate voyages are

generated, then in the second step each candidate voyage are simulated and a

robustness measure is assigned. In the final step, the voyage based model with

robustness measures assigned to each voyage is solved. The model is presented

in figure 4.8.

Statistical data about the uncertain elements of the problem, e.g. weather

data, is used in the second step to calculate a robustness measure for each

candidate voyage. The robustness measure used is not delivered volume. This

is then used to create a robust weekly schedule for the supply vessel planning

problem by giving it a cost in the objective function in the voyage based model.

Figure 4.9 shows a flow chart of the simulation procedure.

For each simulation, a set of consecutive weather states are drawn from

their respective probability distributions. Each weather state has a given start

state probability. The next weather state will be dependent only on the current

weather state, a random process recognized as a Markov chain. When the
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Figure 4.8: Robust supply vessel planning - (E Halvorsen-Weare and

Fagerholt, 2011)

weather states are drawn, a voyage is simulated according to the necessary

reduction in sailing speed and increase in service times the prevailing weather

state demands. If the voyage cannot be completed within the maximum duration

of that voyage, the offshore installation with the least demand is removed from

the voyage. This process continues until the voyage can be completed. Then

the total cargo volume not delivered, calculated as the sum of the cargo volume

from the removed offshore installations, is stored and a new simulation is started.

The average cargo volume not delivered over all simulations for each voyage is

the output from the simulation procedure (E Halvorsen-Weare and Fagerholt,

2011).

The objective function 4.98 is then replaced with:

min
∑
v∈V

CTCv δv +
∑
v∈V

∑
r∈Rv

∑
t∈T

CSvrxvrt +
∑
v∈V

∑
r∈Rv

∑
t∈T

CPEvrxvrt (4.106)

Evr is the average demand not delivered for voyage r sailed by vessel v, and

CP is the penalty cost for each square meter cargo not delivered. The penalty

cost is estimated based on the real cost of not delivered volume: This volume
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Figure 4.9: Flow chart of the simulation procedure - (E Halvorsen-Weare

and Fagerholt, 2011)

has to be delivered at a later time. Either by one of the vessels in the fleet, a

vessel that are to be chartered in on short term at a higher costs, or by helicopter

at a much higher cost. Based on the simulation procedure described above, a

schedule simulation model was developed to test the different schedules after

using various solution approaches. In the schedule simulation model, a sequence

of weather states for the whole time period of a schedule is drawn. Then every

voyage sailed in the schedule is simulated. Extra slack, in form of idle days for

supply vessels, is added to the voyage sailed before such an idle day, giving the

voyage 24 hours (or more) of extra slack. The overall average square meters

of cargo not delivered is then calculated and multiplied by the penalty cost (E

Halvorsen-Weare and Fagerholt, 2011).

Cheng and Duran (2004) addressed the design and control of the inven-

tory/transportation system in a global crude supply chain in the oil industry,

and proposed a decision support system based on simulation and optimization.

A unifying simulation framework that integrates the simulation model and the

controller is constructed to simulate the controlled inventory/transportation
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system. It provides the decision makers valuable insights into the behavior of the

dynamic and stochastic system. It is also a powerful tool used to evaluate various

strategies for the design and operation of the system. The decision support

system was based on the integration of discrete event simulation and stochastic

optimal control of the inventory/transportation problem. They identified two

crucial characteristics of the combined inventory and transportation system:

• The system was dynamic as the state of the system changes over time

• The system was stochastic as there were so many uncertainties in some

elements in the system, e.g. crude prices and demand

In their studies only crude demand and tanker travel time was considered

uncertain. They considered only one central supply location and four major

demand regions around the world. There were one or more routes from the

supply location to the different demand locations. Cheng and Duran formulated

a simulation model that described the complexity of a real problem. The

simulation model could then be used to study what if. . . scenarios. The main

parts of their simulation model are shown below.

Figure 4.10: Simulation model of logistics for world-wide crude oil

transportation using discrete event simulation - (Cheng and Duran, 2004)

At a specified point in time the controller observes the state of the system.

Based on this state, the controller chooses a control action. The action then
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results in either a reward or a cost, and the system evolves into a new state,

which then again requires a new control action. A typical action could be to

charter in an extra ship. The optimal problem is then to find a sequence of

control actions such that total expected cost is minimized.

Because of the system’s complexity, the number of all possible configurations

would be around 2.58 ∗ 10520. In order to solve the problem to optimality,

the cost of each possible state has to be calculated. The large amount of

computing resources required renders the control problem not possible to solve

within a reasonable amount of time. Cheng and Duran therefore proposed

an approximation architecture to approximate the expected total cost. The

approximation architecture was similar to the one developed by Kleywegt (2002).

This was a two-stage method, first decomposing the whole system into several

subsystems, and then approximating the cost of each sub problem using a linear

function approximator.

To compute the simulation model, they first implemented the approximation

algorithm in MATLAB. They found that MATLAB did not calculate efficiently

enough for the model to be used on an industrial sized problem, and further work

on the computational platform and/or approximate schemes was still required.

(Crary, Nozick, and Whitaker, 2002) have produced a paper that aims to find

the optimal fleet size and mix for the US destroyer fleet. The authors have used

analytical hierarchy process (AHP) to gather expert opinions and then created

distributions used in a simulation.

A possible war has been divided in five missions, m, and four phases, p.

Given this structure the probability to win the war is defined as:

P (winningthewar) =
∑
p,m

WpCmpXmp (4.107)

Wp is the importance of phase p, Cmp is the importance of mission m in phase

p and Xmp denotes the effectiveness of the fleet at mission m during phase p.

15 senior officers in the Navy and Air Force have compared each mission

pairwise against the other missions in terms of importance for winning the

war. The result for the AHP is used to create a Dirichlet distribution that

is a multivariate generalization of the Beta distribution. Crary, Nozick, and
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Whitaker (2002) then use this distribution to simulate different scenarios of

importance.

An optimization model (MIP) is then developed and solved multiple times,

each time with different scenario of importance, and with a fixed fleet size and

mix to find the probability to win the war. The probability for each size and

mix are then compared and the best configuration is found.
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Maritime Transport

Maritime transport is the major channel of international trade. Measured by

weight, more than 80 % of world trade is carried by seagoing vessels. There has

almost been a doubling in transport volume since 1990 (IMO et al., 2009). The

shipping industry almost has monopoly on transportation of large volumes of

cargo among the continents. The only competitor is pipelines, but they can only

move fluids (Christiansen, Fagerholt, Nygreen, et al., 2007).

Compared with the other transport modes maritime transport is a low speed,

high volume transport. The characteristics that differ from the other transport

modes are continuous voyages with no general brakes, long roundtrip times,

repositioning take a considerable amount of time, large costs in ports and port

facilities (Nowak, 2012).

Other features that are characteristic for maritime transport are that ships

do not return to an origin or a hub, that ships can transport multiple products

at the same time, vessel-port compatibility may depend on the load due to the

draft and a larger operational uncertainty (Christiansen, Fagerholt, and Ronen,

2004). Sea transport is probably the least regulated mode of transportation

because the vessels usually operate in international water, and few international

treaties cover their operations (Christiansen, Fagerholt, Nygreen, et al., 2007).

There are three basic modes of operations of commercial shipping; tramp,

industrial and liner shipping (Lawrence, 1972). A vessel is engaged in the tramp

trade if it does not have a fixed schedule or published ports of calls. Tramp ships

are trading on the spot market; they follow the available cargoes, much similar
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to taxies. Tramp ships often engage in contracts of affreightment. Contracts

of affraightment are contracts where specified quantities of cargo have to be

transported within specified time windows for an agreed payment. Typical tramp

vessels are tankers and dry bulk carriers. Freight rates are influenced by supply

and demand. Ship owners that own tramp vessels try to maximize the profit

per time unit (Christiansen, Fagerholt, Nygreen, et al., 2007). In industrial

shipping the cargo owner also own the ships that transport the cargo. Industrial

operators try to minimize the cost of shipping their cargoes. Industrial operators

are usually more risk averse than average (Christiansen, Fagerholt, Nygreen, et

al., 2007).

5.1 Liner Shipping

Liner shipping is based on fixed and published schedules, and is often operated

on cyclic routes. Liner shipping is operated similar to a bus line. Within the class

of liner shipping there is a distinction between short sea and deep sea operations.

Short sea vessels often service both intra-region freight and provide feeder service

for the deep sea vessels. Deep sea vessels handle the main haul, typically over a

longer distance. Liner shipping operators usually control container vessels and

general cargo vessels. (Andersen, 2010).

Liner shipping vessels carry about 60 % of all goods measured by value moved

internationally by sea every year. Around 80 % of liner vessels are container

vessels (Worldshipping, 2012).

Schedules for the coming period are published by the liner shipping compa-

nies; they specify every voyage on the routes. A voyage includes a time window in

which a vessel starts its voyage from a given port. All voyages have an estimated

duration until it reaches the last port call. The estimated duration includes

both the sailing time and the time spent in the ports (Fagerholt, Johnsen, and

Lindstad, 2009).

Liner services involve higher fixed costs and administrative overhead than

tramp and industrial shipping. This is because liner vessels depart on fixed

schedules regardless of whether the ship is fully loaded or not. Tramp ships

may wait in port until they are fully loaded. In liner shipping, given a set of

ports, a fleet of ships, and a set of cargo to be delivered, the service network is

designed by creating the ship routes, i.e., the sequence of port visits by the given
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fleet of ships. In general, it is assumed that the ships move in cycles, referred

to as service routes, from one port to another following the same port rotation

for the entire planning horizon. The service network is utilized to deliver the

profit-maximizing cargo. Carriers decide which cargo to accept or reject for

servicing and which paths to use to deliver the selected cargo. The cargo is

allowed to travel on ships on several routes before reaching its final destination

(Agarwal and Ergun, 2010).

Liner shipping expanded from transporting 5,1 % in 1980 to 25,4 % in 2008

of the world’s dry cargo transported by sea. This is mainly a result of a huge

growth in volume of container carriers in liner shipping. Transported volume

has increased by 600 % the last 20 years (UNCTAD, 2011).

5.1.1 RoRo Vessels

Roll-on/roll-off (RoRo) ships are designed to transport wheeled cargo. Typical

cargos are cars, trucks, buses, construction equipment, railway wagons and heavy

machinery driven on board on their own wheels. RoRo vessels have built-in

ramps which allow the cargo to be efficient driven on and off the vessels. The

ramps can be placed in the bow, in the stern or at the side and a vessel may have

more than one ramp to make the loading and unloading more efficient. There

are many different types of RoRo vessels; ferries, cargo ships and barges. New

build cars are usually transported on pure car carriers (PCC) and pure car truck

carrier (PCTC) that are large RoRo vessels. The PCTCs have adjustable decks

to increase vertical clearance and decks that are designed to withstand heavy

cargo. Wilh. Wilhelmsen’s MV Tønsberg is a ship in the new Mark V class,

which is the largest RoRo class ever built, with a capacity of 8 000 cars.

Within the RoRo segment of the liner shipping industry, routes are not

required to be closed loops. Vessels do not have to operate on the same route

all the time, as it usual is for container vessels (Kjeldsen et al., 2012). For

companies involved in the RoRo business, it is often desired to secure long term

contracts with manufactures that produce cars, trucks, rolling equipment and

other cargo that can be transported.

Höegh Autoliners, NYK line, Mitsui O.S.K Lines, EUKOR Car Carriers and

WWL are examples of companies operating in the RoRo segment.

Below is the world’s RoRo fleet presented in table 5.1. From the table it is

possible to see that most RoRo vessels are small. However, the vessels that are
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Figure 5.1: Sideview of the Mark V class - Wilh. Wilhelmsen (2013)

larger than 25 000 dwt have a total capacity that exceed the capacity of the

small vessels.

Cars and other wheeled cargo can be containerized and transported with

container vessels. The RoRo vessel industry must improve continously to main-

tain its position as the dominating transport mode for rolling cargo (Øvstebø,

Hvattum, and Fagerholt, 2011b). Both RoRo vessels and container ships are

operated in the liner shipping segment. Container vessels often operate on

routes that are closed loops, in contrast to RoRo vessels. The world’s container

ship fleet is twice as big as the RoRo fleet measured in number of ships, and

measured in dwt the container fleet is five times larger (Lindstad, Asbjørnslett,

and Pedersen, 2012). This difference in fleet size is a threat for the RoRo

industry; the container shipping segment can obtain a more efficient short sea

feeder traffic out and in of the ports. Most research in the liner shipping segment

has been done with respect to container vessels due to the large share of cargo

transported by container ships.

One major difference between a RoRo vessel and a container ship is the

loading and unloading process and the port facilities needed. RoRo vessels are

equipped with one or more ramps which most of the cargo can use to load and

unload; there is no need for advanced and expensive port facilities. Container
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Vessel

size [1

000 dwt]

Number

of

ships

Average

dwt

Average net

pay load

capacity [ton]

Average

distance

per voyage

[nm]

Average

speed

[knot]

Days

per

voyage

35 - 20 44 603 38 000 8 500 18 31

25 -35 49 28 403 24 000 4 000 19 18

15 -25 360 18 565 15 600 1 500 19 10

5 -15 678 9 844 8 100 700 18 6

0 - 5 1 303 1 292 1 000 300 12 3

Table 5.1: The world’s RoRo fleet (Lindstad, Asbjørnslett, and

Pedersen, 2012)

ships need large specialized cranes, and equipment to move the containers in the

port.

5.2 Maritime Transport vs. Air, Road and Railway

Transport

There are many differences and similarities between the maritime transport

segment and other transport modes.

Compared with maritime transport, air transport is organized as a liner

service. For high speed intercontinental transport, air transport is the mode of

choice, but the limited capacity and high cost means it is mostly used to carry

low volume and time sensitive cargo, like packages and mail. However, airplanes

mostly carry passengers. The usual network configuration is the hub and spoke

where each destination is served by a flight from and to the hub. Daily routes

take the form of a shuttle service. Fixed charter routes and non-daily routes are

scheduled end-to-end. In the airline industry all is happening much faster than

in the maritime transport industry, and the airline companies have usually some

spare planes to replace delayed or broken down planes. Usually there is a time

of the day where most airplanes are not used. Due to these facts and due to the
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high speed, the repositioning can be done within hours (Nowak, 2012). Both

airplanes and ships require large capital investments, they both pay port fees,

and need port facilities (Kjeldsen et al., 2012).

Road transportation is organized the same way as tramp or industrial ship-

ping. Trucks are flexible, relatively fast, and can reach most locations, but they

have limited capacity and are relatively costly (Andersen, 2010). Compared

with maritime, air and railway transportation the investment costs are low, but

the operating and labor costs are high. The main advantage for road transport

is the possibility for door to door service. Time windows mainly exist for ferry

services, and pick-up and delivery. For the drivers there are limitations on work

hours. The road transport is divided into two main groups; long hauls and local

distribution (Nowak, 2012).

Railway transport operates in the same way as liner shipping or industrial

shipping companies. Railway transport competes with long haul road transport

with respect to general cargo, but the railway transport needs road-based in-

and out haul. Trains can carry large volumes of cargo, but suffer from rigid,

limited infrastructure and slow service, and it is limited to operating on the

same continent. This transportation mode requires less moving personnel, but

need additional personnel operating the infrastructure. The infrastructure is

limited and access to it is given on a schedule basis. The trains have their

own dedicated right of way, and cannot pass each other except for at specific

locations. Like in the maritime transportation, there are usually no breaks in

the railway cargo transportation (Nowak, 2012).

One major difference between the transportation at sea and transport by

trains is that for trains the power unit is not an integral part of the transportation

unit. In addition, by adding rail cars the transportation unit size for trains can

be enlarged which is not possible for ships (Kjeldsen et al., 2012).

The differences between the transport modes are presented in table 5.2 below,

provided by Christiansen, Fagerholt, and Ronen (2004).
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Operation characteristic
Sea

transport

Air

transport

Road

transport

Railway

transport

Fleet variety Large Small Small Small

Power unit is an integrated

part of the transport unit
Yes Yes Often No

Transportation unit size Fixed Fixed
Usually

fixed
Variable

Operating around the clock Usually Seldom Seldom Usually

Voyage length
Days or

weeks

Hours or

days

Hours or

days
Days

Operational uncertainty Larger Larger Smaller Smaller

Right of way Shared Shared Shared Dedicated

Port fees Yes Yes No No

Route tolls Possible None Possible Possible

Destination change while

underway
Possible No No No

Port period spans multiple

operational time windows
Yes No No Yes

Vessel-port compatibility

depends on load weights
Yes Seldom No No

Multiple products shipped

together
Yes No Yes Yes

Returns to origin No No Yes No

Table 5.2: Comparison of operational characteristics of freight transport

nodes (Christiansen, Fagerholt, and Ronen, 2004)
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Optimization Research in

Maritime Transport Industry

The maritime business environment has changed in the last decades, the industry

has been more globalized and there is tougher competition from other transport

segments. Despite for this the business methods of many shipping companies are

not changing. As mentioned in the introduction, shipping companies are often

conservative, low risk family businesses. As a result, several companies still

rely on intuition and experience when doing strategic, tactical and operational

planning (Christiansen, Fagerholt, Nygreen, et al. (2007), Ronen (1983)).

Christiansen, Fagerholt, Nygreen, et al. (2007) state four reasons for the low

attention drawn in the literature by maritime transportation planning problems.

The first reason is the low visibility. In most areas people see aircrafts, vehicles

and trains, but not ships. Furthermore, research is often financed by large

organizations. The majority of these organizations operate fleets of vehicles, but

few operate ships. The second reason is that maritime transportation planning

problems are often less structured than for the other transport segments. In

maritime transportation planning, there is a much larger variety in problem

structure and operation environment than in other transport segments. This

makes the decision support systems more expensive because they need to be more

customized. Over the last years more attention has been drawn to more complex

problems in transportation planning in general, this is also demonstrated by the
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maritime transportation. The third reason is that there is a high degree of

uncertainty in maritime operations. Ships may be delayed due to among others

bad weather condition, mechanical problems or increased port time. Due to the

high cost, minimal slack is built into the schedules. This results in a frequent

need of rescheduling. Compared to vehicles, ships usually have a long life time,

typically up to 30 years, which is contributing to an increase in uncertainty. The

final reason is that the shipping industry has a long tradition and is fragmented.

Ships have been around for thousands of years, and therefore the industry may

be conservative and not to open for new ideas. In addition, due to low barriers to

entry there are many small family owned shipping companies; small companies

may not have the capital to implement large and expensive operational research

systems.

6.1 Fleet Size and Mix

The article A Survey on Maritime Fleet Size and Mix Problems (Pantuso, Fager-

holt, and Hvattum, 2013) analyzes and summarizes the available literature on

fleet size and mix problems in the maritime transportation. The authors states

several aspects that make maritime fleet size and mix problems (MFSMP)

different to fleet size and mix problems in other transportation contexts.

The high level of uncertainty in the planning process is the first reason

mentioned in the article. In strategic planning much of the uncertainty comes

from the long lifetime of the vessels. Due to the long lifetime, investments in ships

require taking a long term view of the shipping company’s predictions for the

future market situation. The second aspect that are different from other types

of fleet size and mix problems, are the high amount of capital involved. New

vessels can cost hundreds of millions USDs. This is increasing the relevance of

the financing of the investment compared with other transport segments. Several

financing alternatives are often available, and the chosen one will influence the

capital cost of the vessel. According to Stopford (2009) the financing cost can

amount up to 42 % of the total running costs for a ten year old ship. Underlying

routing features also make the MFSMP different from other fleet size and mix

problems. Some of the differences in routing are listed by Ronen (1983) and

Christiansen, Fagerholt, and Ronen (2004): The diversity of capacities, speeds

and costs are much greater for ships than for other transport segments. Ships do
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not usually return to a hub, and there is more uncertainty present due to high

dependency on weather conditions. Finally, the vessel’s value function makes

the MFSMP different from other fleet size and mix problems. Vehicle’s value is

often modeled as a function of whose value decreases with increasing age and

mileage. A vessel’s value is a more complex parameter to model. Ådland and

Koekbakker (2007) claim that the second-hand value of a given type of ship can

be described as a non-linear function of three parameters; age, size and the state

of the freight market.

In their review Pantuso, Fagerholt, and Hvattum (2013) have 41 references.

Currently there is a clear trend towards increasing research in the field. Most

papers about MFSMPs are written in the 2000’s followed by the 1990’s. Most

of the reviewed papers assume that there is no existing fleet. Only one fifth

of the papers assume that there is an initial fleet that should be adjusted

by including or excluding vessels (Pantuso, Fagerholt, and Hvattum, 2013).

According to Fagerholt, Christiansen, et al. (2010), it happens rarely in real

life that a completely new fleet has to be determined. In their review, Pantuso,

Fagerholt, and Hvattum (2013) present four different points of discussion for

future research in MFSMPs:

• The appropriate level of detail in modeling the underlying routing of the

ships.

• The number of scenarios to use and the appropriate description of the

uncertain elements in the scenarios.

• The difference between different methodologies meant to handle uncer-

tainty.

• The comparison and eventual integration of stochastic and deterministic

models to achieve efficient solution algorithms.

Despite that there is a high level of uncertainty in the strategic planning;

methods for planning in a deterministic context have been proposed in most of

the reviewed papers (Pantuso, Fagerholt, and Hvattum, 2013).
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6.2 Tactical Planning

In spite of the reasons for the low attention drawn in the literature by mar-

itime transportation planning problems mentioned above, there is a considerable

growth of research in maritime transportation. In 1983, the first article reviewing

operations research in the maritime transportation was written by Ronen. He

traced papers back to the 1950s, and has almost forty references (Ronen, 1983).

Ronen also wrote the second review in 1993. This review has about the same

number of references, mostly of them are written during the decade since the first

review (Ronen, 1993). The last review was written by Christiansen, Fagerholt,

and Ronen (2004). This review has almost 80 references for the last decade.

These three reviews all focus on scheduling and ship routing problems, but they

also discuss problems on the tactical level and the operational level.

Review Ronen 1983 Ronen 1993 Christiansen et al. 2003

References from 1950 – 1983 1983 - 1993 1993 - 2003

Number of references Almost 40 Almost 40 Almost 80

Table 6.1: Review of routing and scheduling in maritime transport

When studying Ship Routing and Scheduling: Status and Perspectives by

(Christiansen, Fagerholt, and Ronen, 2004) some trends in the tactical planning

in the maritime transport can be observed. Most research has been done in the

industrial shipping segment, and remarkably less in the liner shipping segment,

despite the increase in container traffic and the large number of merges in

container shipping industry. However, there is an increasing amount of research

in how to operate container terminals (Crainic and K. H. Kim, 2007). There

is also an increasing focus on supply chains, both regarding design and how to

operate maritime supply chains. It is worth mentioning that a large share of

research in maritime transport planning is based on real applications. In other

transport segments, the problems discussed are not based on real cases but on

artificially generated data (Christiansen, Fagerholt, Nygreen, et al., 2007).
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6.3 Operational Planning

Compared with strategic and tactical planning, there have been few studies

in optimization research in operational planning. In addition to disruption

management and rescheduling, which are the focus in this project thesis, there

are several areas where operational planning can be used. Operational planning

can be used in environmental routing, speed selection and booking of single

orders. In several of these topics there have not been published any scientific

papers (Christiansen, Fagerholt, Nygreen, et al., 2007).

Vessels navigate in bodies of water and are exposed to currents, waves, tides

and winds. When a vessel sails between the ports, it has to decide which route it

should take. It can either sail the shortest distance, straight forward, sail around

an upcoming storm, or take benefit from a current. Environmental routing is

complicated because of the complexity of the continuous dynamic environment

in which it takes place, and because of the lack of the necessary timely reliable

data (Christiansen, Fagerholt, Nygreen, et al., 2007).

Under various operational situations the planners have to assign the available

fleet of vessels to transport a given amount of cargo between different ports.

An inherent part of the fleet scheduling is cruising speed decisions. Cruising

speed decisions affect both the capacity of the fleet and the operating cost

(Christiansen, Fagerholt, Nygreen, et al., 2007).

Vessels need to be loaded in a safe manner in order to prevent damage on

the ship or the cargo. During unloading and loading of cargo and during transit

the vessel needs to maintain stability. Not only the stability of the vessel has to

be assured, also the efficiency of cargo handling operations in the current and

following ports must be taken into account (Christiansen, Fagerholt, Nygreen,

et al., 2007).

The container stowage planning problem is a very complex problem. Re-

searchers are far from finding an optimal solution. This problem is discussed

in depth by Crainic and K. H. Kim (2007). Cargo stowage planning problems

are also hard in the RoRo shipping segment. Øvstebø, Hvattum, and Fagerholt

(2011a) are introducing and solving the RoRo ship stowage problem. In this

problem it has to be decided which cargo to carry, how much of each cargo to

carry, and how to stow each cargo onboard a RoRo vessel during a voyage. The

ships follow a predefined route, time usage is ignored and all cargo quantities

are fixed (Øvstebø, Hvattum, and Fagerholt, 2011a). The RoRo ship stowage
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problem has later been extended to a single-vessel RoRo ship routing and stowage

problem, where routing and scheduling decisions and the ability to select cargo

quantities are included. It is possible to formulate this problem as a MIP. A tabu

search can be developed to handle the routing and scheduling problem, and the

stowage part can be handled by a local search and squeaky wheel optimization

(Øvstebø, Hvattum, and Fagerholt, 2011b).

Optimization research can be used to decide if a ship owner should accept

a single booking order of a cargo. In liner shipping, a single cargo is often a

small fraction of the vessel capacity. It is normal to accept a cargo if there is

space available or suggest another departure time for the cargo if not. However,

it may sometimes be more beneficial to reject the cargo as there may appear a

better request later on. In tramp shipping a cargo is usually a bigger fraction

of the vessel capacity. As for liner shipping, sometimes it may be better to

reject a cargo as there may appear a better cargo request later on the route

(Christiansen, Fagerholt, Nygreen, et al., 2007).

6.4 Perspective

Optimization based decision support systems will probably be more accepted

in the future. There will probably also be a greater benefit from optimization

research and an increased need for it (Christiansen, Fagerholt, Nygreen, et al.,

2007).

Reasons for increased attention to optimization research in maritime trans-

port are various and complex. One reason is the increased profit margin for

shipping companies. During the last decades there has been a consolidation

in the manufacturing sector, resulting in bigger actors on the demand side for

maritime transport services. This has given the shippers an increased market

power compared with the shipping companies. As a result of bigger actors many

shipping companies have merged over the past decade. It is harder to determine

a fleet schedule and the right fleet size when dealing with a larger fleet and more

trades.

Traditionally planners and decision makers in maritime transport have often

been experienced people using pen and paper when planning. However, in recent

years shipping companies have started employing planners with less practical

background, but more academic background. These new planners are often more
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open to new ideas, such as using optimization research in planning of maritime

transport.

A rapid technological development in computer power and a significant al-

gorithm development are also increasing the attention towards optimization

research in maritime transport. It is possible to find good solutions to hard

problems in a reasonable amount of time. A trend towards an increased emphasis

on integrating maritime transport into the supply chain will also increase the

attention towards optimization research (Christiansen, Fagerholt, Nygreen, et

al., 2007).
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Potential Incidents Causing

Delays

There are many incidents which can cause delays for a vessel, and thereby create

uncertainty in the planning. These incidents may be caused by the weather,

political issues, human errors or mechanical problems.

The main reason for developing the simulation model in this project thesis

is to validate the deployment model in the MARFLIX project. The simulation

is intented to model the daily operation of a fleet, included disruptions. The

possible incidents and the following consequences will be discussed in this section.

Which incidents that can occur are dependent on the ship’s situation. A ship

may have a large number of different statuses, but in this thesis we have defined

four operation statuses:

• At sea

• Arrival in port

• Departure from port

• Alongside

In the shipping business, a planned dry-docking is usually done every fifth

year for a ship and may be detected as a status. To keep the simulation model
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simple, the docking process is neglected. There are several different incidents

which can cause a delay in each operating status. The consequences after an

incident is in this model:

• Reduced speed

• Delayed

• Changed resistance

• Off-hire

Reduced speed means the ship has to sail with reduced speed due to safety

and reliability issues. E.g. the engine has some mechanical problems and the

ship must sail with reduced speed until the problems are fixed. Weather may

also cause that the ship has to sail with reduced speed. Delayed means the

incident causes a delay in the ship’s schedule. At WWL, a ship is defined as

off-hire once the ship is unavailable for WWL (Foyen, 2012). In this thesis,

off-hire means the ship is out of service for several days due to dry-docking etc.

If a ship is off-hire, we assume it cannot be affected by more incidents until the

ship is on-hire. Some incidents can cause major damages on the ship and the

cost of repairing will be too high. The ship owner will then scrap the ship, those

extreme conditions are not included in this thesis. Responses to the incidents in

respect to the schedule are discussed in chapter 9, Probability of Incidents and

Impacts. To develop the simulation model further, and based on Vernimmen,

Dullaert, and Engelen (2007) possible incidents were found and conncted with

an operation status and a consequence. The results may be found in Appendix

A. These incidents and their consequences are applied later on in the simulation

model.

Weather is the main cause of delays during transit mode at sea, but there

are still some other incidents that can cause delays, both incidents on board and

in the surroundings. During arrival and departure of ports, the main incidents

which can cause disruptions are collisions, late arrival of tugs and pilots, and

even the tide water. During port stay, the ship is exposed to authorities and

stevedores. These are factors that may cause the ship to be delayed.
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7.1 Several Incidents in a Row

One incident may cause another incident to be rendered impossible, e.g. when

a ship experience headwind, it cannot experience tailwind at the same time.

This was implemented in the model by the use of matrices that specify what

incidents are not allowed to occur simultaneously. These matrices may be found

in Appendix B.
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Dealing with Delays

Disruptions and delays in liner shipping networks will cascade through the

network and influence other ports and ships. This is given by the nature of many

liner shipping networks (Theo Notteboom and Rodrigue, 2008). Maritime liner

based service networks are an example of a transport mode that operate around

the clock. In addition, the ships are almost never empty at any points, and

freight forwarding obligations must be met during the recovery period. These

facts make it hard to get a delayed vessel back on schedule; it can take days, or

even weeks (Andersen, 2010).

There are many different ways to deal with delays that occur. The possibil-

ities presented below are described by T Notteboom (2006) and Kjeldsen et al.

(2012).

The first way to deal with delays is to increase the speed of the vessel.

Increasing the speed of the vessel leads to higher fuel costs, as vessels use

more fuel per distance if they increase the speed. Vessels are often designed

to maintain a service speed at sea. Usually the service speed is some knots lower

than the vessels maximum speed, and is more fuel efficient. In modern container

ship design there is a trend towards an increasing speed margin (T Notteboom,

2006) i.e. a bigger difference between the service speed and the maximum speed,

this to maintain a sailing schedule with good dependability. The dependability

is better for a vessel with a high speed margin than for a vessel with a lower

speed margin as the vessel with the high speed margin can increase the speed

more if a delay has occurred. It can then catch up with the delay more easily.
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A shipping line is able to cancel one or more port calls to reduce port and

sailing time to get the vessel back on schedule. Omitting a port call can have a

huge impact on the pattern and cost of land transport. If a vessel cancels a port

call the cargo that was intended for that port ends up in another port. Ship

owners then have to arrange and pay for transport of the cargo so it ends up in

the right place. Cargo that was to be picked up in the omitted port has also to

be picked up later or at another place. Trains and trucks are quite often used

for this purpose in Europe, due to the relatively small distances. During the

2002 US West Coast lockout of longshoremen, cargo was discharged in Mexico

for intermodal transport to the US (Kjeldsen et al., 2012). Canceling port calls

might decrease customer satisfaction. A frequent canceling of port calls often

means that changes should be made in the schedule (Kjeldsen et al., 2012).

It is also possible to use the cut and run principle. This can be an option

when loading and unloading in a tide dependent port. The cut and run principle

is based on that the loading or unloading is ended before all of the cargo are

handled. Cargo that is left in the port has to wait for the next vessel to arrive, or

it has to be transported to the next port. A reason for the cut and run principle

can be to avoid unproductive port time caused by a low tide situation. The

vessel does not have to wait for next high tide to leave the port. As an example,

Maersk Sealand vessels sometimes leave Antwerp before they finished loading

cargo to benefit from favorable tidal windows (T Notteboom, 2006).

If a delay has occurred for a vessel, ship owners can deploy other vessels to

take its place. To compensate for a delay the ship owner can use a vessel that

is not in service for recovering the schedule. The delayed vessel is then to be

taken out of service and it is deployed again on demand. This policy is causing

periods where one or more vessels are out of service. It is also possible to charter

in a ship that can cover parts of a published schedule. Space chartering, when

the ship owner is chartering space on a vessel for one load of cargo is also an

opportunity.

One other way to handle a delay is to reshuffle the order of port of calls. In

some cases, this coincides with discharging more import cargo at the first port of

call combined with the transfer of cargo over land to destinations near ports that

will be called at a much later time than initially planned (T Notteboom, 2006).

It is also possible to increase the port productivity to recover from delays. This

possibility can only recover small amounts of time and it is a possibility only in a
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few ports worldwide (Kjeldsen et al., 2012). To increase the port productivity it

is possible to extend the hours of operation e.g. work at night instead of taking

the night off and it is possible to load and unload with double shifts (Le-Griffin

and Murphy, 2006).

As mentioned in the Literature Review, in their article Brouer et al. (2013)

increase the speed on the delayed vessel, omit ports, and swap the order in which

ports are being visited to get the delayed vessels back on schedule. Figure 8.1

from Brouer et al. (2013) illustrates different recovery actions in a time-space

network environment.

Figure 8.1: Possible recovery actions in a time-space network - (Brouer

et al., 2013)
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When a ship needs to recover from a delay, the cost associated with each of

the different recovery strategies has to be found. The amount of time that can

be saved for each of the strategies also needs to be known. Additional cost and

time saved associated with a speed increase and increased port productivity are

easy to find. The cost incurred while sailing is closely related to the speed, as

the fuel consumption is strongly dependent on the speed (Perakis and Jeramillo,

1991). Costs associated with an increase in port productivity are depending on

which actions are taken to increase the productivity. It is harder to find the costs

associated with canceling a call of port, the cut and run strategy and the port

reshuffling strategy. With these strategies, the recovery costs are dependent of

the cost associated with transporting the cargo over land or by sea, so that it

ends up in the right port. Costs associated with land transport and sea transport

need to be found. It may be more cost efficient to not move the cargo and instead

just wait for the next vessel on the route. To implement this into the model the

cost associated with the cargo delay need to be found. The easiest way to find

the cost associated with space chartering and chartering in a ship is to create

a function where the cost is depending on the distance the cargo needs to be

transported and the amount of cargo that is to be transported.

Which ports that have the possibility to increase their productivity need to

be known, this also applies to which ports that are typical cut and run ports

due to tides. When our rescheduling model is searching for the best recovery

strategy it has not only to check all the different strategies, but also combinations

of them. A combination can be that a delayed vessel increases the speed and

then calls a port that increases its productivity. If a ship is ten hours delayed

it can increase the speed so that the delay is reduced with eight hours and then

the increased port productivity will handle the remaining two hours. It is also

possible to combine the cut and run strategy with space chartering. A ship will

then leave the port before it has loaded all the cargo, and the ship owner can

then charter space at another ship that will transport the remaining cargo. A

model also needs to calculate if it is best to cover the delay as fast as possible

or if it should be handled over a greater amount of time. A ship that is delayed

can either increase the speed on a leg and call next port on time, or it can adjust

the cruising speed on the two next legs so that she calls the next port with a

smaller delay, and calls port number two on time.
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The customer satisfaction may also be included in the rescheduling mode. If

the customers get to unsatisfied they may want to use another company. Some

of the recovery strategies might decrease the customer satisfaction a great deal.

It is possible to add a customer dissatisfaction fee to the objective function if

the strategy is lowering the customer satisfaction. The fee may be the same

each time or it may be raised for each time a recovery strategy is lowering the

customer satisfaction. The extra cost can also be set as a function since the last

recovery strategy was lowering the customer satisfaction. Different costumers

may have different dissatisfaction fees as they respond differently to delays and

unforeseen events, but it is easier to use the same strategy for all customers. A

typical recovery strategy that might decrease the customer satisfaction is cancel

port calls. If a ship is going to call a port that have tide windows the recovery

heuristic may check if the ship should increase the speed or decrease the speed

so it do not have to wait for entering the port, or it have to cut and run.

Commitments may have been made regarding time for start of servicing, and

a specific ship may have been nominated for transporting given cargoes in the

deployment model. In planning problems with a rolling horizon the planners are

interested in that the new rescheduled solutions are close to the current solution

(Fagerholt, Korsvik, and Løkketangen, 2009). In Ship Routing and Scheduling

with Persistence and Distance Objectives (2009) Fagerholt et al. present a

method to achieve solutions that is close to the baseline solution. They introduce

a persistence penalty function to penalize solutions deviating from the baseline

solution. The authors describe two kinds of penalties, a cargo-ship penalty and

a cargo-time penalty. A cargo-ship penalty is a penalty for transporting cargo

with a different ship in the new solution, and the cargo-time function is a penalty

per time unit difference in service start at a port. The authors are doing this for

a planning problem with a rolling horizon, but it may also be included in our

recovery heuristic. This is a method that can be used if it is important that the

rescheduled solutions are close to the baseline solutions.

A cost is associated with the recovery actions after a delay has occurred.

Figliozzi and Zhang (2009) have written a paper where they focused on es-

timating and understanding the costs and causes of transport related supply

chain disruptions. Under normal operating conditions, on average and per TEU,

logistic and supply chain managers are willing to pay $33 for a one day reduction

in transit time, and $198 for a 1% increase in on-time reliability. If a disruption
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takes place, the willingness to pay changes significantly for transit time, the

managers are willing to pay $180 for a one day reduction in transit time and

$383 for a 1% increase in on-time reliability. For the managers it is worth

expediting at least part of the shipment to mitigate stock-out costs and other

disruption costs. The article indicates that disruption costs include lost sales,

expediting costs, intangibles such as loss of reputation, and financial impacts on

the cash flows.
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9

Probability of Incidents and

their Impacts

Incidents may have different impacts on different ships and in different situ-

ations. A simulation model is deterministic if all input variables are known,

and stochastic if one or more of the input variables are randomly generated

(Banks and J. S. Carson, 1984). The incidents and their impacts are in our

simulation model randomly generated, hence the simulation model is stochastic.

Calculations of the random input variables are found by using probability theory.

The calculations used to find the probability of disruption are presented in this

section.

Some assumptions about the incidents regarding the probability distributions

were made:

All incidents, with some exceptions, are independent. This means:

P (A | B) = P (A),

where A and B are incidents.

The exceptions are the cases where another incident is blocking some inci-

dents to occur, as discussed in section 7.1, Several Incidents in a Row. It is also

assumed that the model is memory less, which results:
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9. PROBABILITY OF INCIDENTS AND THEIR IMPACTS

P (A; t) = P (A; t+ tR),

where A is an incident t is time tR is time needed to recover if incident A occurs.

9.1 Stochastic Distributions

The possible consequences have different stochastic distributions. The incidents’

impacts are divided into four different outcome categories:

• Reduced speed

• Delayed

• Changed resistance

• Off-hire

To find the probability of disruptions and their impacts, two different stochas-

tic distributions were applied.

9.1.1 Exponential distribution

The exponential distribution density function is given as:

f(x, µ) =

{
1
µe
− x
µ if x > 0

0 elsewhere

where µ > 0, µ is the mean of the exponential distribution, and x is time impact

(Walpole et al., 2007).

An example of an exponential density function with µ = 0, 1 can be found

below in figure 9.1.

The exponential distribution is applied for the following consequences:

• Reduced speed

• Delayed

• Off-hire
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9.1 Stochastic Distributions

Figure 9.1: Exponential density function with µ = 9, 77 -

The x-value of the distribution represents the duration of the consequence,

while the kind of impact depends on the consequence. For Reduced speed the

x-value represents the amount of time the ship has to sail at a reduced speed.

The reduced speed is given. The x-value for Delayed and Off-hire is the amount

of time the ship is delayed.

For all three consequences, it is habitual that the majority of the incidents

lasts for a shorter time and a smaller amount of the incidents lasts for a longer

time. Therefore an exponential distribution is applied for these consequences.

9.1.2 Weibull-distributions

The Weibull distribution density function is given as:

f(x, α, β) =

{
αβxβ−1eαx

β
if x > 0

0 elsewhere

where α > 0 and β > 0, the α represents a scale factor, and β represents a shape factor

(Walpole et al., 2007).

As an example a Weibull distribution with α = 3 and β = 2 may be found

in figure 9.2.
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9. PROBABILITY OF INCIDENTS AND THEIR IMPACTS

Figure 9.2: Example of a Weibull distribution -

Some incidents may cause the resistance of the ship to change. The Weibull-

distribution is applied for changed resistance-consequences in the simulation

model.

The changed resistance factor is by default set to 1, and is defined as the

maximum value of f(x, α, β) as shown below:

Whenf ′(x, α, β) = 0 and f ′′(x, α, β) < 0, then

Default changed resistance factor = x

Due to the nature of ship resistance, the hull speed and the impact of the

weather, the average resistance factor over a long time will always be greater

than default. For given α’s and β’s, the graphs

f(x, α, β) for x < Default changed resistance factor

and

f(x, α, β) for x > Default changed resistance factor

will be asymmetric around x=1. This makes the Weibull-distribution a good fit

for this consequence.
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9.2 Monte Carlo Simulation Approach

Weibull-distributions have in addition a rather simple cumulative function,

which is beneficial when performing a Monte Carlo Simulation, as mentioned

later on in this section.

An issue regarding both the Weibull and the exponential distributions is the

tail effects. The probability for a very large and unnatural impact will be small

in these distributions, but may occure during the simulation. This thesis looks

into the daily operation of the ships, where extreme situations with major time

impacts are neglected. To avoid simulations with major delays, the tail effects

are excluded. The distributions therefore have upper limits on the impact.

9.2 Monte Carlo Simulation Approach

The cumulative distribution can be calculated based on the probability density

function. The cumulative probability function F (x) of a continuous random

variable X with a density function f(x) is:

F (x) = P (X ≤ x) =

∫ ∞
−∞

f(x)dx, for −∞ < x <∞

According to Ross (2003) one may approximate the expected value E[g(x)]

of the impact of a consequence g(x) by applying the Monte Carlo Simulation.

The algorithm is described by the following terms:

• Generate an independent and random variable xi between 0 and 1

• Find the value of the impact of a consequence, g(xi)

• Repeat step 1 and 2 n number of times

• Proven by the strong law of large numbers, the expected value E[F (x)]

can be found by

lim
n→∞

g(xi) + · · ·+
n

= E[g(x)]

The Monte Carlo Simulation is implemented in our model by generating a

random variable between 0 and 1. This is done for each incident and each ship for

every time interval deltat. Since a large number of time intervals are included
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in each simulation run (> 700 for simulation of operation for six months), the

number of occured disruptions should be similar to the expected value of the

probability functions.

9.2.1 Monte Carlo Applied on Continuous Distributions

Given a probability density function, the Monte Carlo Simulation approach may

be used. A Weibull distribution is used here, but the method is applicable for all

given probability functions. The Weibull probability density function is given

as:

f(x, α, β) =

{
αβxβ−1eαx

β
if x > 0

0 elsewhere

where α > 0

where x is the time unit.

The cumulative function F (x) with α = 1 and β = 2 is shown in figure 9.3

below:

Figure 9.3: Cummulative function F(x)

The algorithm used in this thesis to calculate the delay is:
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9.2 Monte Carlo Simulation Approach

• Generate a random variable r − j between 0 and 1, e.g. rj = 0.1576

• Calculate x when the cumulative function F (x) = rj = 0.1576

• The delay is calculated to be x = 0.4141 for this incident

An illustration of the calculation may be found in figure 9.3, where F (x) is

represented on the vertical axis and x is represented on the horizontal axis.

During each simulation run, this algorithm will run significantly many times

and will therefore be valid due to the strong law of large numbers.

By applying this method, the model will calculate a delay for each incident

for each ship in each time slot. This results in a great number of minor delays

which have no relative impact on the schedule. To avoid neglectable delays, a

lower limit of the disruptions is applied.
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10

Development of the

Optimization Model

The aim of the optimization model is to reschedule vessels and cargos in a liner

fleet in event of disruptions and delays. The models by Kjeldsen et al. (2012) and

Brouer et al. (2013) have been important sources of inspiration for our model,

and have showed how it is possible to solve disruption management problems in

the liner shipping segment. Also disruption management studies from the airline

industry and the railway industry have been used as guidance. The model has

to meet some key requirements, these are listed below:

• Deliver all cargos to the correct port

• Deliver all cargos on time or with as little delay as possible

• Get the vessels back on schedule

• Minimize the costs related to the rescheduling

The purpose of a shipping company is to transport cargo from its origin

port to its destination port. A liner shipping company often has contractual

cargos that must be transported, usually on a monthly basis. If it is not possible

to transport the contractual cargos with the vessels available, the cargos have

to be transported with chartered vessels or by trains or trucks. There are
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considerable costs associated with transporting cargo on chartered vessels, trains

and trucks. If the cargos are not transported to the destination port on time,

the shipping company may get paid less and the costumer may be dissatisfied.

The vessels should be back on the original schedule within a short time period

after a disruption has occured. This is because the original schedule, found by

the deployment model, is the optimal schedule considering the fleet available

and the cargos to be transported. By not following the original schedule, there

will be a lot of extra work for the shipping company; they must among other

things cancel and reorder berth and make new schedules for crew members.

The optimization model ensures that the freight forwarding obligations are met

during the recovery period, and that the vessels get back on schedule with as

little additional expenses as possible.

From the Literature Review two main approaches that are used to solve large

and complex rerouting problems can be found. The first approach is to create a

time-space network and solve the problem with different types of heuristics and

search methods. The second approach is to model the problem as a set partition

problem and use different algorithms for generating columns.

Our model has to satisfy some constraints regardless of which approach we

choose to use. All the vessels and all the cargos have to enter the model once.

The vessels can only perform one activity at a time, i.e. either be at sea, waiting

in port or under operation in port. The cargos can also only perform one activity

at any given time i.e. on board a vessel, loaded onto a vessel, unloaded from a

vessel or waiting in port. It is not possible to load the vessel with more cargo

than its capacity. There has to be a constant connected flow of actions for each

vessel and each cargo. The cargos can only be discharged from a vessel if the

cargo is on board the vessel, and only be loaded on vessel if the vessel is in port.

The cargos also have to be waiting in the port to be able to be loaded onto a

vessel. Cargos can only be on board a vessel between two ports if the vessel is

sailing between these two ports.

102



10.1 Other Models

10.1 Other Models

10.1.1 Time-Space Network Models

From the Literature Review it is possible to see that Kjeldsen et al. (2012),

Andersen (2010), Bisaillon, Pasin, and Laporte (2010), M. Yang (2007) and Løve

et al. (2001) model their problems as time-space networks and use heuristics

and search methods to solve the problems. It may be possible to solve these

problems without the use of heuristics as Brouer et al. (2013) do, but the

computing time required drops drastically when heuristics are used. Kjeldsen

et al. (2012), Andersen (2010) and Bisaillon, Pasin, and Laporte (2010) all use

large neighborhood search (LNS), while Løve et al. (2001) use steepest ascent

local search (SASL) and repeated SALS (RSALS). M. Yang (2007) uses a limited

tabu search.

As mentioned in the Literature Review, LNS is a general heuristic search

paradigm that was first proposed by Shaw (1998). LNS also has many similarities

to the ruin and recreate heuristic presented by Schrimpf et al. (2000). Both

LNS and the ruin and recreate heuristics perform well in complex problems. An

advantage with these two methods is that when a large part of the initial solution

is removed, there is much freedom to build a new and improved solution. Another

advantage is the handling of the side constraints that occur. As mentioned in

the Literature Review; a weakness with many side constraints is that many of

the simple move operations will be illegal due to violation of the side constraints.

This can make the search difficult, as the search space can become pitted with

local minima or even disconnected. LNS and the ruin and recreate heuristics

handle side constraints better than other methods. They alleviate the problem

by providing more powerful and far-reaching move operators. The far-reaching

move operators allow the search to move over barriers in the search space created

by numerous side constraints. Shaw (1998) claims that this type of search is

very naturally suited to constraint programming technology, which allows very

general models of combinatorial problems to be specified. This type of search

method thus seems ideal for models involving complex real-world constraints

(Shaw, 1998).

If the solution space structure looks like the one in figure 10.1, where the

local optimums are close to the global optima, other search methods will perform

good. However, the problem solved in this case is non-linear.
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Figure 10.1: Geometric fitness landscape as a function of all

combinations of values assigned to decision variables - (Løve et al., 2001)

Løve et al. (2001) use SALS and RSALS to solve their problems when values

in the local optimums are close to the global optimum. Local search methods

like SALS are very rapid.

Also Mu et al. (2010) and Li, Mirchandani, and Borenstein (2009) solve their

problem with heuristics. Mu et al. (2010) use a heuristic with a neighborhood

search, while Li, Mirchandani, and Borenstein (2009) use a Lagrangean relax-

ation based insertion heuristic.

One benefit with formulating the problem as a time-space network is that

the heuristic and the search method used to solve the problem can be fitted

together to perform as desired. If the solution has to be calculated within a

short time period a simple heuristic can be used. If there is more time available

a more complex heuristic can be chosen. It is also possible to choose different

heuristics depending on the solution space structure. If the problem is solvable

to optimality with a commercial solver it is easy to find the goodness of the

heuristic solution.

The mathematical formulation when using the time-space network approach

can become highly complex. As an example, the mathematical formulation by

Kjeldsen et al. (2012) has 28 sets of constraints. Problems that are compre-

hensive and difficult to solve can be formulated this way. Both hard and soft

constraints can be included into a time-space network.
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From the Literature Review it is possible to see that there are some dif-

ferences in how to formulate disruption management models. The model in

Kjeldsen et al. (2012) is highly complex, while the mathematical time-space

network models in Brouer et al. (2013), Andersson and Värbrand (2000) and

M. Yang (2007) are less comprehensive. This shows that to reschedule a liner

fleet after one or more disruptions is a highly complex problem. A reason for the

complexity in reschedule a liner fleet is that the ships are almost never empty at

any points and freight forwarding obligations must be met during the recovery

period.

Kjeldsen et al. (2012) and Brouer et al. (2013) both aim to reschedule a

liner fleet after a disrution, but choose two different approaches. As mentioned,

Kjeldsen et al. (2012) use the LNS to solve their problem and Brouer et al.

(2013) use a commercial MIP solver. Kjeldsen et al. (2012) take the whole fleet

of vessels into consideration when rescheduling after a disruption, while Brouer

et al. (2013) only change the schedule for the vessel that is disrupted. With

the approach used by Kjeldsen et al. (2012) the fleet of vessels will be better

utilized than in the approach used by Brouer et al. (2013). In the real world,

shipping companies may change the schedule for more than the disrupted vessel

to recover from the delay. In this area the model by Brouer et al. (2013) is a

simplification of the model made by Kjeldsen et al. (2012).

In section 8, several recovery actions where presented. Brouer et al. (2013)

allow their vessels to increase speed, omit port calls and swap port calls to recover

from a disruption. In the model by Kjeldsen et al. (2012) vessels can speed up

to recover from a disruption and cargo can be transshipped by a different vessel

than orginally intended. Omitting port calls and swapping port calls are also

possible recovery actions in the model by Kjeldsen et al. (2012). The model

from Brouer et al. (2013) does not allow trasshipment as a recovery action. It

is the recovery actions that allow Kjeldsen et al. (2012) to take more than one

vessel into consideration when rescheduling after a disruption, while Brouer et

al. (2013) only change the schedule for the vessel that is disrupted. In section

8, a cut and run recovery action is described, but neither Kjeldsen et al. (2012)

nor Brouer et al. (2013) use this strategy.

The model developed by Kjeldsen et al. (2012) is larger and more complex

than the model developed by Brouer et al. (2013). One reason for that is the

fact that Kjeldsen et al. (2012) allow more than the delayed vessel to take part
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in the recovery. Another reason is that Kjeldsen et al. (2012) allow more than

one disruption for each problem, while Brouer et al. (2013) only solve problems

with one disruption. The model by Kjeldsen et al. (2012) finds the best value

within three minutes, while the model by Brouer et al. (2013) finds the optimal

value within 10 seconds. This is caused partly by the extra complexity due

to the recovery strategies, and partly because the problems solved by Kjeldsen

et al. (2012) are larger than the problems in Brouer et al. (2013). The largest

problem solved by Kjeldsen et al. (2012) contained 400 different cargos, 9 vessels,

16 different ports and 3 disruptions, while the largest problem solved by Brouer

et al. (2013) had 33 different cargos and 10 different ports.

Not only the recovery strategies and the size of the problem distinguishes

the two models. Both the solution approach and the mathematical formulation

differensiate the two models. The problems Brouer et al. (2013) solve are so

small that a commercial solver is sufficient, while Kjeldsen et al. (2012) deal

with problems that are larger and where an LNS heuristic is needed to solve

their problems.

The major difference in the mathematical formulations come from the choice

of set of variables. Brouer et al. (2013) have developed a model with four sets

of binary variables. The first variable, xe, is set to 1 if edge e is sailed, and 0

otherwise. If port call h is omitted the variable zh is set to 1, and 0 otherwise.

yc indicates if container group c is misconnected or not. Finally, oc is set to 1 if

container group c is delayed, and 0 otherwise. In the model by Kjeldsen et al.

(2012) the sets of variables are divided into two groups, one vessel group and one

cargo group. There are three sets of binary variables in the vessel group. These

constraints indicate if the vessels are in port, waiting or at sea. Five sets of

continuous constraints with the value between 0 and 1 form the cargo group. As

for the vessels, these constraints indicate whether the cargo is waiting in port,

loading, unloading or transported by a vessel.

The objective functions in the two models are very similar, in Kjeldsen et

al. (2012) an extra term for the transshipment cost is added compared to the

objective function in Brouer et al. (2013). There are many differences in the

constraints in the two mathematical formulations. The only constraints that

can be directly compared are constraint 4.4 and constraint 4.7 in Kjeldsen et al.

(2012) and constraint 4.32 in Brouer et al. (2013). These constraints ensure a

flow conservation. Kjeldsen et al. (2012) have included one flow conservation
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constraint for the vessels and one for the cargos, while Brouer et al. (2013) only

have one flow conservation constraint for the vessels. Many of the constraints in

the model in Kjeldsen et al. (2012) are included because of the high number of

variables and their interaction. This applies to constraint 4.2 to and including

constraint 4.7, and from constraint 4.11 to and including constraint 4.21 in

Kjeldsen et al. (2012). These constraints are therefore not needed in the model

in Brouer et al. (2013).

The mixed multicommodity flow model in Andersson and Värbrand (2000)

differs some from the models in Kjeldsen et al. (2012) and Brouer et al. (2013).

Andersson and Värbrand (2000) try to maximize the revenue when rescheduling

a fleet of airplanes after a disruption. This causes the problem to be a maximiza-

tion problem rather than a minimization problem as in Kjeldsen et al. (2012)

and Brouer et al. (2013). Otherwise the objective function 4.49 is quite similar.

Andersson and Värbrand (2000) do not pay any attention to the crew or the

passengers. The goal is to get the aircrafts back on schedule. This differs some

from the problems in Kjeldsen et al. (2012) and Brouer et al. (2013), where they

are trying to get the vessels back on schedule and at the same time deliver the

cargo on time.

Andersson and Värbrand (2000) allow aircraft swapping, flight cancellation

and the use of a spare aircraft to recover from a disruption. This implies that

the schedules of all the aircrafts in the fleet are evaluated, as in Brouer et al.

(2013). The model handels problems with more than one disruption at the time,

this is also similar to Brouer et al. (2013).

Constraint 4.50 and constraint 4.53 in Andersson and Värbrand (2000) cor-

respond to constraint 4.2 and constraint 4.3 in Kjeldsen et al. (2012). These

constraints initiate a flow of one unit from each aircraft/vessel source node,

and ensure that each aircraft/vessel gets to its destination on time. No such

constraints are found in the mathematical formulation in Brouer et al. (2013).

Constraint 4.56 and constraint 4.57 ensure that the delay does not exceed the

maximum allowed delay and that the number of passengers do not exceed the

capacity on the plane. There are no equivalent constraints in Kjeldsen et al.

(2012) or Brouer et al. (2013). The mixed multicommodyity flow model by

Andersson and Värbrand (2000) is later reformulated as an SPP problem.

M. Yang (2007) aims to solve the reduced station capacity problem (RSC). To

solve this problem he developed a time-space network model. It is possible for the
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whole fleet of airplanes to take part in the recovery. M. Yang (2007) allows flights

to be cancelled and delayed to get the airplanes back on schedule. As Andersson

and Värbrand (2000), M. Yang (2007) is only focusing on the airplanes when

he solving his problems. When the restriction of maximum number of aircrafts

on the ground (MOG) occur on an airport, this will inflict more than just one

flight and one aircraft. The model in M. Yang (2007) has to be able to handle

multiple disruptions at the time.

The mathematical formulation in M. Yang (2007) is not very complicated.

The objective function has the same structure as Kjeldsen et al. (2012) and

Brouer et al. (2013). M. Yang (2007) aims to minimize the cost assosiated

with the rescheduling. As in the mathematical formulation in Andersson and

Värbrand (2000) and Kjeldsen et al. (2012), M. Yang (2007) has included a set of

constraints in his model that initiate a flow of one unit from each aircraft/vessel

source node. There is also one set of constraints that ensures that each air-

craft/vessel gets to its destination on time. Constraint 4.67 in M. Yang (2007)

is equivalent to constraint 4.32 in Brouer et al. (2013). These constraints ensure

the flow conservation. Constraint 4.71, which is the reduced station capacity

constraint, is unique for the model in M. Yang (2007),

The mathematical formulations in Kjeldsen et al. (2012), Brouer et al. (2013),

Andersson and Värbrand (2000) and M. Yang (2007) show that rescheduling

both vessels/aircrafts and ”content”, i.e. cargos or passengers, is much harder

than rescheduling only the vessels/aircrafts. The models get larger and more

complicated when the ”content” is considered.

10.1.2 SPP Models

Set partition models are widely used to solve disruption management problems

in the airline industry and in the railway industry. Rosenberger, E. L. Johnson,

and Nemhauser (2003), Andersson and Värbrand (2000), Huisman (2007) and

Rezanova and Ryan (2010) all model their disruption management problems

as set partition problems (SPP). As mentioned in section 4.1.5, when using this

approach the mathematical model itself gets small and simple. The set partition

model is much simpler to solve than the original problem, e.g. there will be one

variable per route instead of one variable per leg. The problem gets a much

better structure and the LP solution is much closer to the IP solution than for

the original problem, which result in a smaller branch and bound tree. With

108



10.1 Other Models

an SPP approach there is a large flexibility in how to generate the routes. It

is easier to include restrictions in the route generator than in a mathematical

formulation. Similar to the heuristic approach, the route generation and the

problem can be fitted togheter to perform as desired. A simple route generation

algorithm provides a solution within a short time, while a more complex route

generation algorithm provides a better solution within a longer time.

In Andersson and Värbrand (2000), the difference in complexity between

the mathematical formulation for an original problem and an SPP is clear.

Andersson and Värbrand (2000) first model their problem as a mixed integer

multicommodity flow model before they reformulate the problem as an SPP

model. With its 11 sets of constraints, the original model is much more complex

than the SPP formulation which only has three sets. The number of variables

is also much higher for the original formulation. In the original model there are

two different sets of variables (xkij and di), while there is just one set of variable

in the SPP model (xar). Objective function 4.49 in the original formulation

contains two terms, while objective function 4.61 in the SPP formulation only

contains one term. The original mathematical formulation has to handle much

more information The information is at the same time not structured in the

same simple way as in the SPP formulation.

As discussed in section 4.1.5, the drawback with the SPP method is the

complex route generation. To ensure an optimal solution all possible routes

have to be generated. The routes have to be generated before the model can be

solved, which leads to a two-step solution approach. In complex problems where

all routes are not generated it may be hard to generate good routes.

The mathematical formulation in Andersson and Värbrand (2000), Huis-

man (2007) and Rezanova and Ryan (2010) have many similarities. There are

two small differences; the first is that Andersson and Värbrand (2000) aim to

maximize the revenue while Huisman (2007) and Rezanova and Ryan (2010)

aim to minimize the cost. The second difference is that the model by Huisman

(2007) is a set covering model instead of a set partition model. Huisman (2007)

demands that each original duty is replaced by at least one new duty. The

models by Andersson and Värbrand (2000) and Rezanova and Ryan (2010) are

modeled as set partition models. They demand respectively that each train

driver is assigned to exactly one recovery duty and that each aircraft is included

in exactly one route. All three models contain a set of binary constraints for
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the decision variables. A set of binary parameters is also included in all three

models. The characteristic of these three mathematical formulations is that they

are all simple and only contain a few simple sets of constraints.

The mathematical formulation in Rosenberger, E. L. Johnson, and Nemhauser

(2003) differs slightly from the mathematical formulation in Andersson and

Värbrand (2000), Huisman (2007) and Rezanova and Ryan (2010). The model

developed in Rosenberger, E. L. Johnson, and Nemhauser (2003) has two sets

of binary decision variables; one that decides which aircraft shall cover which

route, and one that decides which routes will be cancelled. The results of this

are two terms in the objective function instead of one and two more sets of

contraints. These extra sets of constraints are constraint 4.44 and constraint

4.48. In addition there is a set of constraints that ensures that the passenger

capacity is not exceeded. The formulation is still simple and contains only simple

sets of constraints.

Although there are major similarities in the mathematical formulations in

Rosenberger, E. L. Johnson, and Nemhauser (2003), Andersson and Värbrand

(2000), Huisman (2007) and Rezanova and Ryan (2010), there are differences

in how they solve their problems. Rosenberger, E. L. Johnson, and Nemhauser

(2003) search for directed cycles with a minimum of aircrafts. Andersson and

Värbrand (2000) solve their models with two different approaches; branch and

bound and thus iteratively solve the LP relaxation of the problem, and La-

grangian relaxation and then sub-gradient optimization. Huisman (2007) gener-

ates new duties that are similar to the original duties by complete enumeration

and chooses columns based on reduced cost. Then new duties are found by

solving a pricing problem for the original duties. A branch and price approach

is used by Rezanova and Ryan (2010).

Reasons for the different solution methods are the difference in size of the

problems and the difference in the computing time available. As an example

Andersson and Värbrand (2000) solve their models in 5 - 60 seconds. They

solve a problem with 32 airports, 30 aircrafts and 215 flights and where 4

flights are delayed. Huisman (2007) solves his problem within 15 hours, which

contains more than 8 500 tasks and 770 duties where around 800 tasks have to

be rescheduled due to disruptions.
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10.1.3 Other Methods

Petersen et al. (2012) propose a two-stage method to solve the airline integrated

recovery problem in the article An Optimization Approach to Airline Integrated

Recovery. Petersen et al. (2012) aim to repair the flight schedule, aircraft

rotations, crew schedule, and passenger itineraries in a tractable manner after

a disruption. This is not very different from our thesis, which seeks to repair

the vessel routes, the vessel schedules and the cargo schedules after one or more

disruptions have occured.

The solution method proposed by Petersen et al. (2012) first seeks to recover

the schedule, then to recover the other three components taking the repaired

schedule as given. As mentioned in the Literature Review, a Benders decom-

position scheme is employed to decompose the problem. The two-stage method

makes the problem much easier to solve. It divides the problem into several

manageable sections, and adds a Benders feasibility cut to the rescheduling

model if the problem gets infeasible. Another benefit with this approach is

that it is possible to focus on different parts when solving the problem. Petersen

et al. (2012) have chosen to focus on the passenger recovery. The model considers

a problem with a fleet that has 800 daily flights. A disruption in the hub that

leads to a one hour closure is solved within 18 minutes. A drawback with this

approach is that there can be many Benders feasibility cuts included in the

model before a solution is found.

10.2 Model Proposals

Our problem can either be formulated as a time-space network or as an SPP

model. In this section some alternative formulations are proposed and the

drawbacks and advantages are discussed. In addition to the SPP and time-space

network models, a model based on the two-stage method with Benders feasibility

cuts in Petersen et al. (2012) is proposed.

10.2.1 Time-Space Network Models

One way to solve our problem is to use the mathematical formulation from

Kjeldsen et al. (2012). The model used by Kjeldsen et al. (2012) is based on
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the model developed by Bisaillon, Pasin, and Laporte (2010). The model by

Kjeldsen et al. (2012) reschedules vessels and cargos after a disruption.

This model has already proven its qualities; a problem with 8 vessels, 16

ports, 449 cargos to transport and 2 disruptions was solved within two minutes.

There is one big difference from our problem to the problem solved by Kjeldsen

et al. (2012). As mentioned in the Literature Review, Kjeldsen et al. (2012)

model their problem as a multicommodity flow problem with side constraints

based on a time-space network. The model was developed for the simultaneous

rescheduling of ships and cargos in liner shipping in the event of disruptions.

They reschedule a given number of disruptions and minimize the operation cost

for the planning period, but no disruptions can occur during the planning period.

The cut and run recovery strategy described in section 8 is not included in the

model in Kjeldsen et al. (2012). The mathematical formulation needs some

changes if this recovery action should be included in the model.

Both Kjeldsen et al. (2012) and Bisaillon, Pasin, and Laporte (2010) use

LNS, which was first developed by Shaw (1998). To perform optimal for our

problem the heuristic approach may be changed. Either the LNS itself can

be changed or another heuristic may be used. However, LNS seems to be a

good heuristic approach to solve big and complex time-space network problems.

Andersen (2010) is also using an LNS heuristic to solve the network transition

problem. LNS is handeling side constraints better than many other heuristics.

As mentioned in the Literature Review, LNS alleviates the problem with many

side constraints by providing a powerful far-reaching move operator that allows

the search to move over barriers in the search space.

Another way to solve our problem is to use the mathematical model in Brouer

et al. (2013) as a starting point. Brouer et al. (2013) evaluate a given disruption

scenario and select a recovery action balancing the trade off between increased

fuel consumption and the impact on cargo in the remaining network and the

customer service level. Also this model has proven its qualities.

Some changes have to be done in the model if it should be used. In Brouer

et al. (2013) only the disrupted vessel are rescheduled after a delay. To utilize

the fleet in a better way our model also has the possibility to change the schedule

on more than the affected vessel. This change will makes model more complex

and the computing time required will increase. Depending on the problem size

a heuristic might have to be implemented to solve the model faster than with a
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commercial solver. Brouer et al. (2013) permit only one disruption per problem.

In our model it is possible that more than one disruption occurs during each

time period. Only three recovery actions are included in the model in Brouer

et al. (2013), other strategies are included in our model (see section 10.4). If

new recovery strategies are included, the mathematical formulation of Brouer

et al. (2013) has to be changed and adjusted.

It is possible to add an extra penalty term in the objective function in these

models. For an example can routes that differ too much from the original vessel

route be penalized. This extra term can be formulated as below in 10.1.

∑
v∈V

CPv pv ∀v ∈ V (10.1)

Cpv is the penalty cost for vessel v. pv is a parameter that indicates if there

should be added a penalty cost for vessel v. This parameter can be binary and

take the value 1 if vessel v exceeds some penalty limit, and take the value 0

otherwise. The parameter can also be a function, linear or non-linear, that adds

a higher cost if the changes are comprehensive.

10.2.2 SPP Models

If the problem is to be formulated as an SPP, there will be some different

formulations that are suitable. The first formulation is based on the models

by Andersson and Värbrand (2000), Huisman (2007) and Rezanova and Ryan

(2010), while the second and third formulations are based on the model by

Rosenberger, E. L. Johnson, and Nemhauser (2003).

In the first formulation, which is based on Andersson and Värbrand (2000),

Huisman (2007) and Rezanova and Ryan (2010), let V be the set of vessels and

Rv the set of routes for each vessel v ∈ V . The cost crv reflects all the costs

for vessel v when assigned to route r. A binary decision variable xrv equals 1 if

vessel v is assigned to route r, and 0 otherwise. A binary parameter brvi is used

to define whether or not the cargo i ∈ N is transported on vessel v on route r.

min
∑
v∈V

∑
r∈Rv

crvx
r
v (10.2)
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subject to: ∑
r∈Rv

xrv = 1 ∀v ∈ V (10.3)

∑
v∈V

∑
r∈Rv

brvix
r
v = 1 ∀i ∈ N (10.4)

xrv ∈ {0, 1} ∀r ∈ Rv, v ∈ V (10.5)

The objective function 10.2 aims to minimize the total cost. Constraint 10.3

ensures that each vessel is assigned to exacly one route. Constraint 10.4 ensures

that all the cargos are transported. Finally, constraint 10.5 ensures an integer

solution.

All costs associated with the rescheduling process, both the vessel specific

costs and the cargo specific costs, should be included in the cost parameter.

The cost parameter includes fuel costs, port fees, transshipment costs if the

cargo is not tranported with the vessels available, and the costs associated with

late pickup and delivery. The binary paramter brvi together with constraint

10.4 ensure that all cargo is transported from the origin port to the destination

port and that the cargo is transported by exactly one vessel. The vessel cargo

capacity is considered in the column generator. The route generation connected

to this model is hard to construct, since the column generator has to be able

to generate routes where some cargos are transported by a chartered ship and

some are transported by train or truck.

Andersson and Värbrand (2000) use two different column generation ap-

proaches that may be appropriate for our SPP model. The size of of their

problem is similar to the problem we want to solve, and they solve their problem

relatively fast, which is the goal for our model. Andersson and Värbrand (2000)

use a branch and bound approach that iteratively solves the LP relaxation

of the problem, and a Lagrangian relaxation approach that then solves with

sub-gradient optimization. Both of these approaches may be implemented in

our SPP model to see which one performs best for our problem. Also other

column genaration approaches may be used.

An advantage with an SPP formulation is the simple and comprehensible

mathematical formulation. As most SPP models the mathematical formulation

itself is easy to solve. There is a large flexibility in how to generate columns that

do not violate the constraints.
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In the second SPP formulation, which is based on the model developed by

Rosenberger, E. L. Johnson, and Nemhauser (2003), let V be the set of vessels

and Rv the set of routes for each vessel v ∈ V . The cost crv reflects the costs for

vessel v when signed to route r. The cost fvi reflects the cost associated with

transporting cargo i on vessel v. All costs associated with the vessels, as fuel

costs and port fees are included in crv. f
v
i includes costs like the costs related with

late pickup and delivery and the transshipment costs. A binary decision variable

xrv equals 1 if vessel v is assigned to route r, and 0 otherwise. Another decision

variable yvit equals 1 if cargo i is transported on vessel v in time t ∈ T , and 0

otherwise. The time t is included in yvit because of the limited cargo capacity

for each vessel. For each vessel v ∈ V there is a limit on how much cargo it can

transport CAPv. Each cargo i ∈ N has a given size si.

min
∑
v∈V

∑
r∈Rv

crvx
r
v +

∑
v∈V

∑
i∈N

fvi y
v
it (10.6)

subject to: ∑
r∈Rv

xrv = 1 ∀v ∈ V (10.7)

∑
v∈V

yvit ≤ 1 ∀t ∈ T, i ∈ N (10.8)∑
i∈N

∑
t∈T

yvitsi ≤ CAPv ∀v ∈ V (10.9)

xrv ∈ {0, 1} ∀r ∈ Rv, v ∈ V (10.10)

yvit ∈ {0, 1} ∀v ∈ V, i ∈ N, t ∈ T (10.11)

The objective function 10.6 aims to minimize the total cost. There are

two terms in the objective function; the first term aims to minimize the cost

associated with the vessels, while the second term aims to minimize the cost

associated with the cargo. Constraint 10.7 ensures that each vessel is assigned

to exactly one route, just like constraint 10.3 in the first formulation. Constraint

10.8 ensures that each cargo is not transported on more than one vessel at any

time. Constraint 10.9 ensures that each vessel does not transport more than the

it’s capacity. This is in contrast to the previous model where the capacity of the
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vessels are considered in the column generation. The two last constraints ensure

an integer solution.

There is no link between the two sets of variables in the model, xrv and yvit,

except for in the objective function. The model has two seperate parts; one part

that takes care of the vessels and one part that takes care of the cargos. The

model could have been divided into two models.

A column generator has to be created also for this model. As the formulation

has been based on the model by Rosenberger, E. L. Johnson, and Nemhauser

(2003), it is also natural to use the column generation from Rosenberger, E. L.

Johnson, and Nemhauser (2003) as a starting point. Rosenberger, E. L. Johnson,

and Nemhauser (2003) use a column generation approach where they search for

directed cycles with a minimum number of aircrafts. The model by Rosenberger,

E. L. Johnson, and Nemhauser (2003) solves a much bigger problem than our

model solves. Rosenberger, E. L. Johnson, and Nemhauser (2003) allow their

model to run for many houres before returning a solution. Considering the

problem size and computing time the column generation probably has to be

altered to fit for our problem. Other column generation approaches should also

be considered if this SPP should be chosen.

Similar to the first SPP proposal this SPP formulation also has a simple and

comprehensive mathematical formulation. The first SPP proposal is a bit more

simple than the second one, but the column generation should be easier in the

second proposal because it is divided into two parts.

A third SPP proposal is also constructed. This SPP formulation is based

on the SPP model in Rosenberger, E. L. Johnson, and Nemhauser (2003). In

this formulation, let V be the set of vessels v, and r be the routes the vessels

v ∈ V can be assigned to. The cost associated with assigning vessel v to route r

is denoted Cvr. I is the set of cargos i that are to be transported. In this model

all cargos with the same index i have the same departure port and arrival port.

Ci is the cost associated with transport cargo i with a chartered vessel. T is

the set of time periodes t the model shall run. btirv is the number of times cargo

i is transported in route r in time period t multiplied by the cargo capacity

of vessel v, while Dt
i is the amount of cargo i that has to be transported in

time period t. As in the model in Rosenberger, E. L. Johnson, and Nemhauser

(2003), this formulation proposal has two sets of variables. This formulation

includes one set of binary variables and one set of non-negative variables instead
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of two sets of binary variables. xrv is equal to 1 if vessel v is assigned to route r,

and 0 otherwise, while δti is equal to the amount of cargo i in time period t is

transported with a chartered vessel.

min
∑
v∈V

∑
r∈R

Cvrx
r
v +

∑
i∈I

∑
t∈T

Ciδ
t
i (10.12)

subject to: ∑
r∈R

xrv = 1 ∀v ∈ V (10.13)∑
v∈V

∑
r∈R

btirvx
r
v + δti = Dt

i ∀t ∈ T, i ∈ I (10.14)

xrv ∈ {0, 1} ∀v ∈ V, r ∈ R (10.15)

δti ≥ 0 ∀i ∈ I, t ∈ T (10.16)

The objective function 10.12 aims to minimize the total cost. There are

two terms in the objective function. The first term aims to minimize the cost

associated with the route assigning for all the vessels, while the second term aims

to minimize the cost associated with transporting cargo on chartered vessels. All

costs except for transshipment costs and cost associated with cartering vessels

are included in the first term. Constraint 10.13 ensures that all vessels v are

assigned to a route r. This constraint is similar to constraint 10.3 and constraint

10.7 in SPP proposal one and two respectively. Constraint 10.14 ensures that all

cargos i that should be transported in time period t, are transported either by

a vessel in our fleet or by a chartered vessel. Constraint 10.15 ensures binarity

for the variables xrv. Finally, constraint 10.16 ensures that δti is non-negative.

As mentioned above this set partition formulation is based on the math-

ematical formulation in Rosenberger, E. L. Johnson, and Nemhauser (2003)

The objective functions 4.42 and 10.12 both contain two terms and try to

minimize the cost associated with the rescheduling process. The first term

in both of the objective functions aims to minimize the cost associated with

assigning routes to the vessels. The second term in Rosenberger, E. L. Johnson,

and Nemhauser (2003) aims to minimize the cost of canceling the unassigned

legs, while the second term in our model aims to minimize the cost associated

with transporting cargo on chartered vessels. This makes the two objective
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functions almost identical. Constraint 4.43 and constraint 10.13 both ensure

that all aircrafts/vessels are assigned to a route. Constraint 4.46 ensures that the

passenger capacity is not violated. Constraint 10.14 ensures that all cargos are

transported, either on a vessel in the fleet or a chartred vessel. Constraints 4.46

and 10.14 ensure that operational constraints are covered by the mathematical

formulation instead of by the column generation. The rest of the operational

constraints are in both cases covered by the column generation.

A column generator has to be created for this formulation. The column

generation method depends on the size of the problem and the solving time.

Complete enumeration, Lagrangian relaxation and branch & bound may all be

considered. The column generation model in Rosenberger, E. L. Johnson, and

Nemhauser (2003), which searches for directed cycles with a minimum number

of aircrafts, may also be used as a starting point.

The third SPP proposal is also a simple and comprehensible mathematical

formulation. It is a little bit more complex than the first SPP proposal because

of the two sets of variables. However, the extra complexity will make the column

generation easier. It is a trade off between extra complexity in the mathematical

formulation and in the column generation. In the third SPP proposal, the

mathematical formulation takes care of transshipment and chartered vessels,

while in the two first SPP proposals this is done in the column generation.

For many transport problems modeled as an SPP the assignment constraint

is usually relaxed. If this approach is chosen the formulation will then be a

set covering model instead of a set partition model, like the model by Huisman

(2007). A relaxation of a problem is easier to solve than the original problem.

For the three SPP proposals above the assignment constraint would then look

like this:

∑
r∈Rv

xrv ≥ 1 ∀v ∈ V (10.17)

Constraint 10.17 ensures that each vessel is assigned to at least one route,

instead of exactly one route. This constraint will therefore relax respectively

constraint 10.3, 10.7 and 10.13 in the three SPP proposals. However, for our

problem this is not a good approach. The vessels are to be assigned to only one

new route each before they are back on the original schedule. By choosing more
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than one route for a vessel it will take a longer time to get the vessels back on

their original schedules.

The three different SPP proposals have many similarities. However, there are

some vital differences in the composition and structure of the different proposals.

One of the most obvious differences is the number of variables. The first SPP

proposal contains only one set of binary variables, while the other two proposals

contain two sets of variables. This leads to a simpler mathematical model for

the first SPP proposal.

In the first SPP proposal the mathematical formulation assigns the vessels

to different routes and ensures that all cargo is transported from the origin

port to the destination port. In the second SPP proposal the mathematical

formulation also assign the vessels to different routes and makes sure that all

cargo is transported. Additionally the mathematical formulation ensures that

the vessel capacity is not violated. Also the mathematical formulation in the

third SPP proposal assigns the vessels to different routes and makes sure that

all cargo is transported, but the vessel capacity is handeled in the column

generation. In addition this model takes care of the transshipment and chartered

vessels in the mathematical formulation.

All the models have to execute the same tasks. Constraints have to be

considered either in the mathematical formulation or in the colum generation.

As an example; the column generation for the first two SPP proposals has to be

constructed so that it is possible to charter in vessels, while this is handled in

the mathematical formulation in the third SPP proposal.

The cargos are treated in two different ways in the model proposals. In the

first two SPP proposals each cargo is given a unique index and each cargo has

an origin port, a destination port, a pick up time and a delivery time. In the

third SPP proposal the cargos are not given a unique index; instead all cargos

that have the same departure port and arrival port are given the same index.

The cargos do not have a specified pick up time and a specified delivery time,

but there is a required number of cargos to be transported each month.

The cargo assigning to the vessels are solved differently in all of the three

SPP proposals. In the first SPP proposal the binary parameter brvi is used to

indicate whether or not a given cargo is transported with a given vessel. Together

with constraint 10.4, this parameter ensures that all cargo is transported. In the

second SPP proposal the binary variable yvit is 1 if a given cargo is transported
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on a given vessel, and 0 otherwise. Constraint 10.8 ensures that all cargos are

tranported. The third SPP proposal solves this problem in a different way. The

parameter in the third SPP proposal takes the value of the cargo capacity of the

vessel in question if the chosen route transports the cargo in question. Constraint

10.14 then ensures that all cargo types are transported the required number of

times.

For all three SPP proposals it is possible to add an extra penalty term as

in the time-space network models. This penalty term can be formulated in the

same way as for the time-space network models:

∑
v∈V

CPv pv ∀v ∈ V (10.18)

10.2.3 Other Methods

The model approach developed by Petersen et al. (2012) is also a possible way

to solve our problem. As mentioned earlier the problem solved by Petersen et al.

(2012) and our problem do not differ all to much. If our problem is solved by

this approach there will be one master problem and two sub-problems: repairing

the vessel routes and then repairing the vessel schedules and the cargo schedules.

The model will first recover the vessel routes and then assign vessels and cargos

to the routes. When using the approach from Petersen et al. (2012) there will be

two ways to solve the model. Either first assign vessels to the routes and then the

cargos to the vessels, or first assign cargos to the routes and then vessels to the

cargos. The Benders decomposition will in the first case allow vessel routes and

assign vessels so that the cargo will be transported. In the second case Benders

decomposition will allow vessel routes and cargo schedules so that the vessel can

be assigned the routes. In our problem it will probarbly be more appropriate to

create the vessel routes and vessel schedules first, and then assign the cargos to

the vessels.

The master problem can then be formulated as follow: let V be the set of

vessels and Rv the sets of routes for each vessel v ∈ V . The cost crv reflects

all the costs for vessel v when signed to route r. A binary decision variable xrv
equals 1 if vessel v is assigned to route r, and 0 otherwise.
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min
∑
v∈V

∑
r∈Rv

crvx
r
v (10.19)

subject to: ∑
r∈Rv

xrv = 1 ∀v ∈ V (10.20)

xrv ∈ {0, 1} ∀r ∈ Rv, v ∈ V (10.21)

The objective function 10.19 is the same as constraint 10.2 in the first

SPP proposal, and tries to minimize the total cost associated with the vessel

rescheduling. Constraint 10.20 ensures that each vessel is assigned to exactly

one route. The last constraint 10.21 ensures an integer solution. The model

is similar to the first SPP proposal; the difference lies in constraint 10.4 that

assigns cargos to the vessels.

The problem will then be solved by finding the solution when assigning cargos

to the vessels. Benders feasibility cuts will be included in the master problem

each time an infeasible solution is found.

For our problem this approach is quite simular to a ”regular” SPP approach.

Adding Benders feasibility cuts will complicate the model, and not attain the

same simple structure as an SPP model without Benders decomposition. The

problem solved by Petersen et al. (2012) is so divided that a Benders decom-

position has relevance. Our problem is not that divided, and the Benders

decomposition will make more trouble than gain.

10.3 Applied Optimization Model

As shown in the preceding sections there are several different ways to formulate

and solve our problem. There are advantages and drawbacks with all of the

proposals above.

One way to formulate our problem is to use a known time-space network

model. Both of the models in Kjeldsen et al. (2012) and Brouer et al. (2013)

have solved problems that are similar to our problem. The solution methods have

proven their qualities on disruption management problems in the liner shipping

segment. Both models are based on solution methods from the airline industry.
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10. DEVELOPMENT OF THE OPTIMIZATION MODEL

Kjeldsen et al. (2012) are based on the model developed in Bisaillon, Pasin, and

Laporte (2010), while the model in Brouer et al. (2013) is particularly based

on the work within aircraft recovery with speed-changes by Marla, Vaaben, and

Barnhart (2011).

Set partition models are also widely used to solve disruption management

problems in the airline industry. These kind of models are also used in the

railway industry. In section 10.2.2 we have proposed three different set partition

models. The first SPP proposal is based on models developed in Andersson and

Värbrand (2000), Huisman (2007) and Rezanova and Ryan (2010). The second

and third SPP proposals are based on a model developed in Rosenberger, E. L.

Johnson, and Nemhauser (2003).

A third and final strategy to solve our problem is to use the model developed

in section 10.2.3. This model is based on the work by Petersen et al. (2012).

This model divides the problem in subproblems and makes use of Benders

decomposition to solve the problem. As discussed in section 10.2.3 the model

based on Petersen et al. (2012) is quite simular to a ”regular” SPP approach.

Instead of making the model easier, the Benders feasibility cuts will complicate

the model.

As mentioned before, both the models devoloped in Kjeldsen et al. (2012) and

Brouer et al. (2013) are customized to solve disruption management problems

in the liner shipping segment. If we are to use one of these models as a starting

point we know that the model will perform well even if we are to make some

changes. The disruption management problem in the liner shipping segment is a

large and complex problem to solve. Models formulated as time-space networks

with side constraints are well suited to solve such problems. A heuristics may

be implemented if the problem is to be solved as a time-space network model.

It is possible to adjust the heuristic and the search method used to solve the

problem. As mentioned in section 10.1.1, a simple heuristic can be used if the

solution has to be found within a short period of time. A more complex heuristic

can be chosen if there is sufficient time available , and the solution should then

be better. It will also be possible to choose different heuristics depending on the

solution space structure. It is easy to find the goodness of the heuristic solution

if it is possible to solve the problem to optimality with a commercial solver. One

problem with many side constraints is that many of the simple move operations

will be illegal due to violation of the side constraints. A large number of side
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constraints constantly reduces the number of feasible moves, making a search

difficult. In section 4.1.5 LNS is described. LNS is a search method that handles

side constraints better than many other methods. LNS alleviates the problem

with many side constraints by providing a powerful far-reaching move operator

that allows the search to move over barriers in the search space. With the right

heuristic a time-space network model can be very efficient and give a good result.

The mathematical model can become large and complex when the problem

is solved as a time-space network model. As an example, there is a big difference

in size and complexity between the mathematical formulation in Kjeldsen et al.

(2012) and an SPP model. With a large and complex mathematical formulation

it may be hard to get a clear overview of the model. If some new operating

constraints or recovery actions are to be included in the model, there has to

be made some changes in the mathematical formulation. There is often a high

number of sets of variables in a such model. In a transport problem the structure

can be simple and comprehensive. A time-space model does not fully take

advantage of the simplicity in the structure.

However, if the problem is modeled as an SPP the model makes use of the

simple structure. The mathematical formulation becomes simple and small,

and there is often a low number of sets of variables. As a result, disruption

management problems are often modeled as SPPs in the airline industry and

railway industry. As for the heuristics in the time-space networks models, the

SPP models need the column generation algorithms to be adjusted to fit the

problem. Solving time and solution quality have to be decided when creating the

column generator. For an SPP the column generation handles the operational

constraints and the recovery actions. It can often be easier to include restrictions

in the route generation than in the mathematical formulation. It will therefore

not be necessary to do any changes in the mathematical formulation if any

operational constraints or recovery actions are added to the problem. There is a

large flexibility in how to generate the columns. As mentioned in section 4.1.5,

to ensure an optimal solution all possible columns have to be generated. If all

columns are generated the godness of the chosen column generator can be found.

It can prove difficult to produce a good column generator. Often it is hard

to find a way to be able to know for certain that all good columns are produced.

Most of the good columns may be easy to find, but the last percentage of good
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columns may be hard to locate and can therefore easily be left out by a heuristic

column generator.

Both the time-space network approach and the SPP approach seem to be

methods that will work good for our problem. Both methods have been used

to solve similar problems in the liner shipping segment, the airline industry and

in the railway industry. Although the time-space network approach has been

used to solve disruption management problems before, we chose to formulate

our problem as an SPP. This method is chosen so that the model can utilize the

simple structure that occurs in a transportation problem. The mathematical

formulation will then be small and easy to solve. Any changes in the oper-

ational constraints will be considered in the column generator, allowing the

mathematical formulation to remain unchanged. One of the most important

reasons to model the problem as a set partition model is that this approach

can take advantage of the simulation model. The column generation and the

simulation model will be closely linked togheter. The simulation model will then

make the column generation more efficient. It is possible to develop a column

generation algorithm that only has to generate the routes once per simulation,

instead of once per optimization. This makes the model more efficient if there

are several rescheduling actions per simulation.

In section 10.2.2 three different SPPs are presented and discussed. There

are advantages and drawbacks with all the SPP proposals. Similarities and

differences between the models are presented in section 10.2.2.

We have chosen to use the third SPP proposal as an approach to solve our

problem. The first SPP proposal has the simplest mathematical formulation,

but this simple formulation makes the column generation much harder to create

than in the chosen proposal. Transshipment and chartering of vessels have to be

considered in the column generation in the first two SPP proposals, while in the

chosen SPP proposal this is taken care of in the mathematical formulation. In the

second SPP proposal there is no link between the cargos and the vessels except

for in the objective function. This leads to a need for two column generators,

one for the vessels and one for the cargos. This will require more computational

time than if there is only one column generator.

The cargos are handled in a much better way in the third SPP proposal than

in the two other models. As mentioned in section 10.2.2; in the first two SPP

proposals each cargo is given a unique index and each cargo has an origin port, a
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destination port, a pick up time and a delivery time. In the third SPP proposal,

the cargos are not given a unique index. Instead all cargos that have the same

departure port and destination port have the same index. The cargos do not

have a specified pick up and delivery time, but there is a number of cargos that

has to be transported each month.

The chosen model, parameters and variables are for the readers convenience

punctually summarized below (for the complete model see page 116):

• xrv is equal to 1 if vessel v is assigned to route r, 0 otherwise

• δti denotes the amount of cargo i that is transported on a chartered vessel

in time period t

• Cvr is the cost of assigning vessel v to route r

• Ci is the cost of transporting cargo i with a chartered vessel

• btirv is the number of times cargo i is transported in route r in time period

t multiplied by the cargo capacity of the respective vessel v

• Dt
i is the amount of cargo i that has to be transported in time period t

min
∑
v∈V

∑
r∈R

Cvrx
r
v +

∑
i∈I

∑
t∈T

Ciδ
t
i (10.22)

subject to: ∑
r∈R

xrv = 1 ∀v ∈ V (10.23)∑
v∈V

∑
r∈R

btirvx
r
v + δti = Dt

i ∀t ∈ T, i ∈ I (10.24)

xrv ∈ {0, 1} ∀v ∈ V, r ∈ R (10.25)

δti ≥ 0 ∀i ∈ I, t ∈ T (10.26)

• The objective function 10.22 aims to minimize the costs associated with

the rescheduling process

• Constraint 10.23 ensures that all vessels are assigned to exactly one route
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• Constraint 10.24 ensures that all cargos are transported

• Constraint 10.25 ensures that xrv is binary

• Constraint 10.26 ensures that δti is non-negative

In the upcoming section (section 11) a column generation algorithm is de-

veloped and explained.

10.4 Recovery Actions

In section 8 different recovery actions are presented. The recovery actions are

obtained from papers written by T Notteboom (2006) and Kjeldsen et al. (2012).

Six different recovery actions are presented and discussed.

• Speed change

• Omit port

• Change order of port calls

• Space charter and transshipment over land

• Cut and run

• Change port productivity

Our model take use of four of these recovery actions. The cut and run

strategy and the change of port productivity are not handled by our model.

Our model reschedules the ships after a disruption in two steps. If the delay

is smaller than a given amount of time, the model increases the speed of the

affected vessel so that the delay is gained within the two next port calls. If the

delay is greater than the same given amount of time, the optimization model

will take use of three recovery actions; omitting a port call, transshipment and

space chartering and changing the order of port calls. The model can then use

a combination of the recovery actions to reschedule the fleet at a minimal cost.

The cut and run strategy is not a much used recovery strategy by big RoRo

vessels. The strategy is mostly used in ports that are tide dependent and in
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ports that are closed during the night and in the weekends. Around the world,

there are not many large ports that are tide dependent. Large RoRo vessels are

seldom calling ports that are closed during night and weekends. Due to these two

reasons the cut and run strategy is not taken into consideration by our model.

The recovery strategy that concerns ”change port productivity” is not taken

into consideration by our model. According to Kjeldsen et al. (2012) there

are only a few ports worldwide that can increase the port productivity by a

significant amount. In addtition, only a small amount of time can be recovered

by this strategy.

Kjeldsen et al. (2012) and Brouer et al. (2013) have produced disruption

models for the liner shipping segment. The model in Kjeldsen et al. (2012) uses

the same recovery actions as our model. Brouer et al. (2013) have chosen to

exclude the transshipment/space charter recovery action. Our model and the

model by Kjeldsen et al. (2012) allow that cargos are transported by a different

vessel than orginally intended. This is not allowed by the model by Brouer

et al. (2013), which only considers the schedule of the vessel that is delayed.

The model by Kjeldsen et al. (2012) and our model take the whole fleet into

consideration when a vessel is delayed. The model by Brouer et al. (2013) does

not take into account that the vessels are part of a fleet, which means it does not

take advantage of the fleet structure when rescheduling. The model developed

in this thesis and the model developed by Kjeldsen et al. (2012) are able to take

advantage of the fleet when rescheduling a delayed vessel. These two models

will then be able to represent the reality better than the model by Brouer et al.

(2013).
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Column Generation

To get a set partition model to work, there is need for one or more column

generation algorithms. The column generation is often the hard and complex

part of solving a SPP.

In section 4.1.2 and section 4.1.3 in the Literature Review, some column

generation algorithms are presented. The column generation algorithm will in

our case be a route generator that generates the routes that the vessels can

sail. There is a large variety in the different column generation approaches.

Rosenberger, E. L. Johnson, and Nemhauser (2003) solved their problem with

a column generator that searches for directed cycles with a minimum number

of aircrafts. Two different methods are presented by Andersson and Värbrand

(2000). The first approach they present is a branch and bound algorithm that

iteratively solve the LP relaxation of their problem. The second approach

presented by Andersson and Värbrand is a Lagrangian relaxation together with

sub-gradient optimization. Huisman (2007) generates new duties that are similar

to the original duties by complete enumeration and choose columns based on

reduced cost. Rezanova and Ryan (2010) use a branch and price algorithm.

More column generation algorithms are presented in e.g. the review articles by

Wilhelm (2002) and Lubbecke and Desrosiers (2005). One of the reasons for

the large diversity of column generation algorithms is that the column generator

needs to be adjusted to the problem. Solving time and solution quality have to

be considered when developing a column generation algorithm. There is a clear

trade-off between the solution quality and the computing time
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Compared to other problems, our problem is rather small and will probably

be solved within a short amount of time regardless of which column generation

algorithm that are used.

A complete enumeration algorithm is implemented in the model and tested.

Complete enumeration is among others used by Huisman (2007) to solve a

rather big disruption management problem. This is a simple column generation

algorithm that generates all possible routes for the vessels. A downside is the

generation of many bad and unnecessary routes. For our model there is one

great advantage with the complete enumeration algorithm. The optimization

part of the model runs every time the fleet is rescheduled. Instead of generating

new columns for each time the optimization model is to be run, the columns

have to be generated once per simulation. The model can then use the same

columns for the remainder of the simulation and optimizations. The number of

reschedulings per simulation depends on the amuont of time that is simulated

and on the number of vessels in the model. Test shows that with six months of

operation and 10 vessles the optimization model is run between three and four

times. If another column generation approach was used, it may have to calculate

new columns for each recheduling. Columns that work well for one situation,

may not work in the same good way in another situation.

As mentioned in previous sections; to ensure an optimal solution, all possible

columns have to be generated. This means that the mathematical formulation is

solved to optimality with the complete enumeration approach. Tests show that

with this column generation algorithm problems with 10 vessels and 7 clusters

of ports are solved within 60 seconds, and the columns are generated within 4

seconds.

The column generation algorithm consists of several smaller algorithms.

Each algorithm generates all possible routes between the given ports, but with

different schedule lengths. The first algorithm generates routes with only one

port in each schedule, the second algorithm generates routes with two ports and

so on. In our algorithm we generate all possible routes with up to six ports in

each route. The pseudo code below describes part of the algorithm.

In the figures below (figure 11.1 and 11.2) output sections from the column

generation algorithm are shown. Figure 11.1 shows routes with three ports while

figure 11.2 shows routes with six ports.
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Algorithm 1 Column Generation with one port

for all Ports do

Generate all possible routes which includes the given Port

end for

Algorithm 2 Column Generation with two ports

for all Ports do

for all Ports do

Generate all possible routes which includes the given Ports

end for

end for

Algorithm 3 Column Generation with five ports

for all Ports do

for all Ports do

for all Ports do

for all Ports do

for all Ports do

Generate all possible routes which includes the given Ports

end for

end for

end for

end for

end for
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Figure 11.1: Example from the column genration algorithm -

Figure 11.2: Example from the column genration algorithm -

In section 13 the column generation algorithm is calibrated. The computing

time required to generate all the routes depends on how ”far ahead in time the

algorithm looks” and how many possible ports there are to visit. The number of

possible routes increases exponentially both with the number of possible ports

to visit and with the number of ports each route should contain. However, the

solution quality gets better if there are more and bigger routes to choose from.

Consider the figures below for the relation between the of number of ports and

compution time.

If our problem is extended and the required computing time becomes too

long, other column generators should be developed and tested. The new column

generation algorithm must be much faster to solve than the complete enumer-

ation, because the new algorithm may run many times during each simulation.
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Our set partition model has many similarities with the model developed by

Rosenberger, E. L. Johnson, and Nemhauser (2003). Consequently it is naturally

to look into the column generation algorithm used in their model. A mix of

several algorithms may also work well. To generate routes and schedules that do

not differ to much from the original routes and schedules may also be a way to

solve the problem. When solving our problem with the complete enumeration

algorithm, the optimization model tends to choose routes that do not differ much

from the original routes. Often, only one or two port calls from the original route

are changed after a rescheduling action.

The complete enumeration algorithm may be a sufficient way to solve our

model even if the problems get much bigger. There are examples of large

and complex disruption management problems that are solved with a complete

enumeration algorithm. The problem solved by Huisman (2007) is a rather big

problem with more than 8 500 tasks and 770 duties where around 800 tasks have

to be rescheduled due to disruptions. His problems are solved within 15 houres.

If a new column generator is implemented, the complete enumeration algo-

rithm will give an indication on how well the chosen algorithm works, both in

terms of solution quality and in terms of solving time.
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12

Simulation Model

12.1 Problem Definition

The main objective of this thesis is to develop a framework model that can

investigate how a given fleet with given schedules will perform in day to day

operations. See section 2 for more information.

A simulation model, that simulates the operation of a fleet and exposes

the ships to disruptions, was developed (see electronic attachment). When a

large delay occurs due to these disruptions the model will reschedule the fleet

in attempt to regain the delay. As the simulation model in Thiers and Janssens

(1998), our model is a traffic model. This means that navigating the a vessel

is not treated in a technical way, but in terms of the time required for certain

activities, e.g. sailing a certain distance (Thiers and Janssens, 1998). Our model

is developed to work for liner shipping fleets, the same way SimAir (Rosenberger,

E. L. Johnson, Schaefer, et al., 2002) work for the airline industry; the primary

purpose is to evaluate schedules and recovery policies. However, there are some

key diferences between our model and SimAir. SimAir does not consider the

sources of a delay and does not simulate the delays individually, while our model

is interested in the delay sources. The delays are simulated individually, which

makes it possible to find out what incidents occur more often, and what incidents

result in the highest costs.
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12.2 Logical Structure of the Simulation Model

The simulation model’s purpose is to simulate the operation of a fleet. The

development of the model is based on read literature and our own judgement.

The simulation model was designed in a way that one part takes care of the sim-

ulation of the ships’ and cargos’ movements, one parts simulates disruptions and

impacts and a final part solves the rescheduling problem. These are explained

later on in this section.

After the basic concepts of the model was determined, a flow chart was

developed. Consider the flow chart illustrated in figure 12.1 on page 137.

The flow chart shows the logic used in the simulation. The model simulates

that the ships sail for a given amount of time T. As long as the accumulated time

in the simulation is less than T, the model will keep running. The simulation

model has information about the current positions of each ship, what the ships’

previous and next harbour is, what the current speed is and how much cargo

they carry. This information is updated every time step delta t. The next step

in the model increases the time t with a given time interval, delta t. The model

uses then calculations and random variables to find out if some disruption has

occurred to one or more of the ships during the current time interval. These

calculations follow the Monte Carlo principle, which is explained in section 9.2.

The next step finds out what kind of incident occured and calculate the amount

of delay. Based on the ships’ particulars and schedules, a rescheduling is done to

reduce or eliminate the delay. The rescheduling process is discussed in section 8

and in section 10.4. After the rescheduling is done, the simulation continues to

run by increasing time t and updating the ships’ positions. All ships will now

have new assigned routes. When these routes are finished, the ships will start

over in their original schedules, see section 15.1 for more.

12.3 Classification of the Model

As mentioned in section 4.2, Angeloudis and Bell (2011) assert that the model

has to be classified. A number of classifications may be applied, each classifica-

tion focuses on different aspects.
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Figure 12.1: Flow chart of the simulation
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Static or dynamic. Our model simulates the operation of a fleet for a longer

period of a time, where parameters and variables change continuously. Hence,

the model is dynamic.

Timing. Our simulation is time dependent. The model is modeled in discrete

time slots. The delay will be calculated in each time slot. This is in contrast

to Rosenberger, E. L. Johnson, Schaefer, et al. (2002) in the SimAir model,

that update their model each time a disruption occurs. Many simulation models

make use of the Markov chain process as a stochastic discrete time process. Our

model have some similarities with this methodology. One of these similarities is

that our model is memoryless, except that some incidents can not occur when

other incidents have happened. The probability of an incident only depends on

the vessel’s present state and whether a certain incident has happened.

Deterministic or stochastic. The disruptions occur randomly, therefore the

model is stochastic. A version of the Monte Carlo simulation is applied to

calculate the delay, for more about this see section 9.

12.4 Unit Overview

The following three units are used in the simulation:

• Ships (dynamic)

• Ports (static)

• Cargos (dynamic)

A unit is considered static when its particulars are consistent throughout

the simulation, and considered dynamic when its particulars change. Ships

and cargos change their positions during the simulation run and are therefore

considered to be dynamic. Ports are static objects in a set coordinate system

and are therefore static units.

All ships do by default have the same optional discrete speeds, but the

cargo capacity differs from vessel to vessel. Some ports in the world are not

accessible for all ships due to e.g. depth or length limitations. To account for

this some vessels are not able to enter all ports in the model, making the fleet

less homogeneous (see section 15.1.2 for more).
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All ports are plotted in a coordinate system. The distances between the

ports are calculated automatically in the script based on the coordinates. The

coordinates of the seven ports are shown in appendix D.

There is only one type of cargo included in the simulation model. Each cargo

has a specific origin and a specific destination port, and they are physically

transported between the ports by the ships. This means that if a rescheduling

happens and one of the ships changes its immediate port of destination, the

cargo on board will arrive in the wrong port, and a space charter has to be

arranged. This is a cost which is included in the optimization model.

12.5 Simulation Model Variables

The model has several different kinds of variables. They may be divided into

four groups:

1. Input variables

2. State variables

3. Monitoring variables

4. Output variables

12.5.1 Input Variables

The input variables are adjustable, and the values of some of the input variables

have a great impact of the performance and the properties of the simulation. This

is discussed in section 13. Several of the variables are used in the optimization

process as well. The most important input variables are presented below.

• t is the starting time.

• delta t is the time step.

• T is the total simulated time.

• Planning period is the time when the ships have to be back on the original

schedule.
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• Delay parameters are the parameters determining the delay.

• Cargo is an index showing port of origin and destination for all cargos.

• SC cost is the cost of a space charter (see section 15.1 for more).

In addition, there are several other input parameters. All of the input

parameters may be found in appendices A, B and D.

12.5.2 State Variables

State variables are used to define the current state of the dynamic units in the

simulation. The most important state variables are the ones defining the ships’

state. These are presented below.

• Operation status defines whether a ship’s status is (1) At Sea, (2) Arrival

in port, (3) Departure from port and (4) Alongside.

• Rescedule status defines if the ship (1) need to reschedule, (2) is sailing

with lower speed, (3) is sailing with higher speed and (4) is sailing with

max speed.

• Port schedule indicates the last and next port call.

• Current speed

• Remaining time in harbor

• Delay status are the parameters indicating the current amount of delay.

12.5.3 Monitoring Variables

After a simulation is ran, the user may want to analyze the simulation run.

Monitoring variables are variables that only log the statistics of incidents, ship

movements, rescheduling actions taken etc. There is a lot of statistics available

after each simulation run, some of them are presented below:

• Frequency of each type of delay

• Total delay
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• Distance sailed

• Cargo delievered

12.5.4 Output Variables

Whenever a rescheduling takes place, the optimization software needs input from

the simulation model to be able to solve the optimization model. The input is

calculated by the simulation model and sent to the optimization software each

time a rescheduling takes place. These output variables are:

• Positions of the ships

• Cargo to be delivered the two following months

• The routes generated in the column generator

• What routes each ship is allowed to sail

• Data on what cargos are delivered in the generated routes

12.6 Scripts

The main script Main.m and the most important subscripts, i.e. Simulation.m,

DelayCalculator.m and Reschedule.m, are briefly explained in this section. For

a more detailed explanation, see appendix C.

12.6.1 Main.m

As mentioned in section 12.2, the simulation model is divided into three parts

where each part solves their own task. The three parts are handled by three

different scripts; Simulation.m, DelayCalculator.m and Reschedule.m. Main.m

is the main script in the simulation model, which allows the three aforementioned

scripts to run in the correct sequence. The script Main.m manages the time steps

and calls the others scripts to do the calculations. The algorithm is presented

below.
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Algorithm 4 Main.m

READ ScheduleInput.m

READ DelayInput.m

RUN Preperation.m

while t < T do

for all Ships do

RUN Simulation.m

RUN DelayCalculator.m

if Delay occured then

RUN Reschedule.m

end if

end for

t = t+ 1

end while

Print Output

12.6.2 Simulation.m

Simulation.m is the script that handles the movement of ships and cargos. This

script calculates the position of the ships, whether the ships are in port or in

transit, the physical movement of the cargo etc. The script uses ship speed, the

time step delta t, the distances between the ports and the ship schedules as its

most important variables.

12.6.3 DelayCalculator.m

For each time step delta t, the simulation model controls if a disruption have

occurred. These events are ship specific and do not affect the other ships in the

simulation, making the ships independent of each other (P(A)=P(A|B)). The

script DelayCalculator.m calculates the delay in the operation. The different

kinds of disruptions are discussed in section 7. The pseudo code for the script

may be found below.
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Algorithm 5 DelayCalculator.m

Ship and time is known

for all Incidents do

if Current Operation Status of Ship = Operation Status of Incident then

if Incident is not a Forbidden Incident then

Calulate consequence

if Consequence > LowerLimit then

Consequence impacts Ship

end if

end if

end if

end for

The calculations of the consequences are based on given distributions and

randomly generated numbers, as discussed in section 9. Whether an incident is

forbidden or not is discussed in section 7.1

12.6.4 Reschedule.m

The script Reschedule.m solves the rescheduling problem in two steps, (1) try

a simple algorithm and if this do not solve the problem, (2) run the developed

optimization model to solve the problem.

The simple algorithm’s only tool is changing the speed of the disrupted ship.

As defined in the model, there are only three discrete speed options availible,

(1) slow steaming, (2) normal speed and (3) high speed. If the change of

speed does not make the ship regain its delay within the given planning period,

the optimization model has to reschedule the fleet. The rescheduling process

reschedules all the ships so that all the freights can be done at a minimal cost.

It is a 2-step process using route generation and optimization.

The column generation algorithm calculates all possible routes and its total

distances. This is only done once in each simulation run, as the routes are

independent of ship positions. Then all the ships’ positions as well as the

distances from all ships to the first port in all generated routes are calculated.
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12. SIMULATION MODEL

The route generation ends by calculating what port each ship should sail to

after the new generated route has been sailed. The end ports should be the

ports where the ships are as close to their original schedules as possible, as it is

a goal to get all the ships back on their original schedule.
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Calibration of Input

Parameters

In section 12.5.1 some key input variables and parameters in the model were

presented. These are the starting point of the simulation, the time step, the

total simulation time, the planning period and the delay parameters. The

space charter cost is also an important input value. In this section these input

parameters are to be calibrated. The impact of changing the parameter values

is investigated. Some of the parameter changes will increase or decrease the

computing time required to solve the model, while other parameter changes will

have direct impact on the result.

The time step, δt, decides how often the simulation model is updated. Smaller

time steps results in more calculations needed to be done each time the simu-

lation is run. Fewer disruptions will occur for each time step with smaller time

steps. Instead of an accumulation of disruptions each time the simulation is

updated, the disruptions are more evenly spread out in time. This leads to a

more accurate and realistic model, but it also leads to a longer computing time.

Larger time steps causes a faster, but more inaccurate model. The time step size

is not used in the rescheduling process, making it a less important variable in

the simulation. It can therefore be set to a quite large number without affecting

the result. In our final simulation code we set the time step to six hours, as this
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leads to a quite accurate, but also fast simulation. The effect of the time step

on the computing time is presented in figure 13.1 below.

Figure 13.1: Simulation time and percentage change in total computing

time -

The total simulation time, i.e. the total amount of days to be simulated, is

denoted T. There may be some effects that a simulation that run for a short

time does not capture, e.g. in the beginning of each simulation all ships are in a

port. The simulation should therefore run for so long that it is not affected by

any start up effects. For this reason we want at least two rescheduling actions to

take place each time the simulation is run. The total time T is therefore set to

180 days. The computation time for the simulation part increases linearly with

T. The rescheduling process is not affected by this parameter.

Space chartering a cargo is more expensive than transporting the same cargo

with a vessel in the fleet. The amount of cargo transported with a chartered

vessel will change with space charter cost. If the price of space chartering

increases, the amount of cargo transported with chartered vessels decrease. An

increase in charter price also increases the rescheduling cost. We set the space

chartering cost to twice the cost of carrying the cargo with our own fleet. The

effects of the space charter cost are presented in figure 13.2.

Another parameter that is calibrated and tested is the size of the routes to be

generated in the column generation. The column generation takes longer time
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Figure 13.2: The effects on the solution when space chartering cost is

changed -

the more ports there are to be generated. The more ports there are in the routes

that are to be generated, the more possible routes there is (see section 11). The

number of possible routes increases with a factor of n−1 for each port call that is

added to the generated routes. The result of the rescheduling process gets better

if there are more routes to choose between. There is a tradeoff between time

used by the column generation algorithm and the rescheduling quality. In figure

13.3 below the effect of number of ports allowed in the recheduling algorithm is

shown.

The planning period is the time a given vessel has at its disposal to get

back on schedule. It is more costly to have a short planning period than a

long planning period. With a long planning period there is a greater freedom

in how to get the vessels back on schedule after a disruption. An increase in

the planning period will require a longer computing time for the model, this

because the optimization model will have more schedules to choose from. As

mentioned in the previous paragraph, for every additional port included in the

route generation, the number of additional routes increases by a factor of n− 1.

An increase in the planning period will have the same effect.

The delay input parameters were calibrated. Regarding Fagerheim (2013),
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Figure 13.3: Possible routes generated -

the total delay for one ship during one year is approximately 15-20 days excluded

distance deviation. This was the basis during the calibration. The final delay

input parameters may be found in appendix A. As discussed in section 9, a

lower limit is applied for delays. This was calibrated to be 15 hours and 36 for

respectively delayed and off-hire.
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Results

In this section the test instances are described and the results from the compu-

tational study are presented. MATLAB in a 64-bit Windows 7 environment was

used as the programming language for the simulation. The simulation is not very

comprehensive; therefore an advanced programming language with increased

control was not needed. MATLAB is at the same time a programming language

all of our group members have a basic knowledge and understanding of. The

column generation algorithm is also implemented in MATLAB. Xpress IVE was

used to solve the optimization problems. All computational experiments were

performed on a Lenovo ThinkPad W520, with an Intel Core i7-2820QM 2,3

GHz quad-core processor and 8 GB RAM. All reported times are rounded to

full secunds of CPU time.

To test the model, six test instances have been generated. The test instances

are characterized by the number of ships, the number of ports and the number of

different cargos to be transported as shown in table 14.1. For each test instance

six months of operation was simulated.

The different computing times varies for each individual run due to the

stochastic parameters in the model. Some of the runs experience many delays

and some runs experience few delays. Therefore each test instance was run 15

times, and the values presented in this section are based on the average values of

each test instance. Table 14.2 shows the average number of delays the different

test instances experienced each during each run.
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Test instance Ships Ports Cargos

1 6 6 6

2 6 7 8

3 8 6 10

4 8 7 12

5 10 7 10

6 10 7 12

Table 14.1: Test instances generated for testing the performance of the model

The number of incidents that need to be handled by the optimization model

increases when the problems get bigger and more vessels are involved. When

the model handles more vessels it is natural that more delays occur. It is the

same probability for each vessel to experience a delay, which means that when

the number of vessels increases the total number of delays has to increase as

well. The number of delays is not dependent on the number of ports and cargos.

The variations that occur when the number of ports and cargos is changed, as

shown in table 14.2, are due to the stochastic nature of the incidents.

Test

instance

Average number of

rescheduling incidents

1 2,3

2 2,0

3 3,0

4 2,7

5 3,8

6 3,2

Table 14.2: Average number of rescheduling incidents

The cost of rescheduling in the different test instances are shown in figure

14.1.
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Figure 14.1: Cost of rescheduling, MUSD -

The performance of the model for the generated test instances is summerized

in table 14.3.

Test

instance

Average

rescheduling

cost

Average

rescheduling

cost per ship

[MUSD]

Average computing

time optimization

[sec]

Average computing

time for simulation

and optimization

[sec]

1 1,43 0,24 12 30

2 1,46 0,24 30 84

3 2,33 0,29 18 33

4 2,56 0,32 45 108

5 3,28 0,33 53 234

6 3,55 0,35 60 192

Table 14.3: A summary of the results obtained from running the model on the

test instances

As expected, the model’s computing time increases as the size of the test

instances increases. The computing time increases heavily when the number of

ports increases. The different computing times vary for each individual run due

to the stochastic parameters in the model.

From table 14.3 it can be observed that the total cost of a rescheduling is
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more expensive when the problem to solve gets bigger. When more ships are

included in the simulation model, more disruptions will occur. For the problem

instances with the same number of vessels the total cost is slightly higher for the

test instances with the highest number of ports and cargos. More cargos have

to be transported and the vessels also have to transport cargo to more ports,

which makes the rescheduling more complex and the rescheduling cost larger.

The average rescheduling cost per vessel increases when the test instances

become larger. It might be natural to think that the average rescheduling cost

per vessel should have decreased due to the theory about economy of scale. With

a larger fleet there are more possible rescheduling actions to choose from, hence

there should be a larger freedom in the assignment of cargos. The reason for the

increasing rescheduling cost per vessel is that more cargos have to be transported

in the larger problems. More cargo to transport causes a tighter schedule. When

a tight schedule is disrupted the effects become more costly because more costly

solutions may have to be applied, e.g. the chartering of vessels.

In table 14.4 below some computing times for the column generation algo-

rithm is presented.

Number of ports 6 7 8 9

computing time [sec] 2 4 10 19

Table 14.4: Computing time for the column generation Algorithm

The table shows that the computing time increases when the number of ports

increases. When the problems get bigger, the computing time required by the

column generation algorithm becomes a larger part of the total optimization

time and the running time for the whole model.

When a disruption causes a delay that needs to be handled by the optimiza-

tion model, the vessels on the fleet are assigned to new routes. In table 14.5 the

original routes before a rescheduling for the different vessels are presented. In

table 14.6 the new routes after a rescheduling due to a delay is presented.

All the vessels have been assigned to new routes. The new routes do not

differ too much from the original routes; for most of the vessels only one or two

port calls are changed. A tendency in the new routes is that most ships have

port 2 or 3 as their first port call. The reason for this is that port 2 and port 3
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Port number 1 2 3 4 5 6

Vessel 1 2 3 1 2 4 3

Vessel 2 4 3 1 2 7 3

Vessel 3 3 1 2 4 3 1

Vessel 4 4 3 1 6 7 3

Vessel 5 2 3 1 2 4 3

Vessel 6 3 1 2 3 1 3

Vessel 7 6 3 7 3 4 6

Vessel 8 7 1 2 3 7 3

Vessel 9 3 1 2 3 1 2

Vessel 10 4 3 1 2 4 3

Table 14.5: Original routes

Port number 1 2 3 4 5 6

Vessel 1 3 1 2 4 3 4

Vessel 2 3 1 2 7 3 1

Vessel 3 3 1 2 1 2 3

Vessel 4 2 4 3 1 2 3

Vessel 5 2 6 5 4 3 1

Vessel 6 2 4 3 1 3 1

Vessel 7 2 6 7 3 7 3

Vessel 8 2 1 2 3 7 3

Vessel 9 2 6 2 3 1 2

Vessel 10 2 3 1 2 3 1

Table 14.6: New routes after a delay
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are in this simulation model the most busy ports where the most cargos are to

be transported to and from.

The model provides some output values after each simulation run. As shown

in the tables above the costs, computing times, number of reschedulings and the

routes are provided. In addition the model provides an event log that shows what

incidents occured during the previous simulation run. The event log provides

information on how many times each incident occured and on the total and

average delay due to each incident. In figure 14.2 an excerpt from the event log

is shown. The excerpt shows the impact on the model from machinery problems

and extreme weather. The event log can be used to investigate what incidents

caused the most delays. Often when a rescheduling takes place the delay incurred

to the ship in question is a result from two or more delays. E.g. first a delay due

to machinery problems occurs, then the ship starts sailing with reduced speed.

The accumulated delay grows so large that the model has to reschedule the fleet

to be able to deliver all cargos on time.

Figure 14.2: Excerpt from the event log -
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14.1 Compared With Other Models

14.1 Compared With Other Models

It is hard to compare different models. The same assumptions are not applied

to the different models and the problems that are solved are not the same. To

our knowledge there is no one that has developed a day to day simulation and

optimization model for the liner shipping segment. However, there are made

some disruption management models that handle disruptions and rescheduling

actions. It is then natural to compare the optimization part in our model with

other disruption management models in the liner shipping segment, i.e. the

models in Kjeldsen et al. (2012) and Brouer et al. (2013).

The model by Brouer et al. (2013) only takes the affected vessel into consider-

ation when rescheduling after a delay, which makes their model much faster than

our model and the model by Kjeldsen et al. (2012). In the last two models it is

the interaction between the vessels that is computational expensive. Therefore

it is hard to achieve an actual and fair comparison between our optimization

model and the model in Brouer et al. (2013).

Our model and the model by Kjeldsen et al. (2012) use the same recovery

actions when they try to get the ships back on schedule, which makes a compari-

son possible. Both in our thesis and in the study by Kjeldsen et al. different test

instances were generated to test the performance of the models. Test instance

2 in our thesis and test instance 6 in the study by Kjeldsen et al. include six

ships and seven ports. The number of cargos is eight in our test instance, while

it is 102 in the test instance by Kjeldsen et al. However, in our model a cargo

has a different meaning than in the study by Kjeldsen et al. (see section 10.2.2).

Kjeldsen et al. (2012) solve their test instance with a planning period of 10 days,

while in our model the planning period is 60 days. The time steps in our model

are set to six hours, while in the model by Kjeldsen et al. (2012) the time steps

are set to four hours. As explained in section 13, the time steps do not affect

our optimization model’s solving time. It is unknown if this affects the model

by Kjeldsen et al. (2012).

Our model solves the optimization part of the test instance on average within

30 seconds. Kjeldsen et al. (2012) solve the test instance with six ships and seven

ports within 205 seconds, but the best objective is found within 6 secunds.

The computing time of 30 seconds is a rather good result by our optimization

model compared to Kjeldsen et al. (2012). The computer used in this thesis has

approximatly the same processor speed (2,3 GHz vs 2,53 GHz) as the computer
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used by Kjeldsen et al. (2012). But due to more processor cores (4 cores versus

2 cores) and more availible RAM (1,8 GB versus 8 GB) in addition of being a

newer generation of processor, the total computing power of the computer used

in this thesis is quite superior. Without a direct comparison of computing power

it is impossible to know the exact impact in computing time this constitutes.

Comparison between the number of calculations needed in the optimization part

should therefore be considered, but this information is not provided by Kjeldsen

et al. (2012).

The solution quality is not compared, because there were given different

values on the costs associated with the operation of the fleet of vessels.
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Discussion

In this section we will discuss the development of the model, the assumptions

made, strengths and weaknesses found as well as the usefulness of the model.

To our knowledge, none has used a disruption management model to investigate

the qualities of a corresponding deployment model in the maritime transport

segment. Nor is there anyone that has solved a disruption management problem

in the liner shipping segment with a simulation optimization model. Only two

studies in the field of disruption management in liner shipping are produced, both

are recently published (2012 and 2013). These two studies have been important

inspiration when developing our model. The two disruption management models

by Kjeldsen et al. (2012) and Brouer et al. (2013) do not cover all subject that are

covered in this thesis. Hence other papers have also been important inspiration,

especially papers about airline and railway disruption management have been

used.

15.1 Assumptions made

Some assumptions and simplifications have been made when developing our

model, both in the optimization part and in the simulation part. In this section

the assumptions and simplifications and their impact on the result will be

discussed.
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15.1.1 Optimization Model

In our model a vessel with a minor delay will increase the speed so that the

vessel is back on schedule within the two next ports. If it is not possible to

regain the delay so that the ship is less than 24 hours late to the second port,

the optimization model will take use of the three recovery actions; omiting a

port call, transshipment and space chartering and changing the order of port

calls to get back on schedule. The 24 hour requirement is developed so that a

ship has to be very late to port before a costly rescheduling action takes place.

For vessels that are able to regain the delay within the two next port calls it may

be better to use one or more of the other recovery actions than speed increase

to regain the delay. Small delays may therefore be regained in a more efficient

way than by the method use.

In the column generation algorithm all possible routes for the vessels are

generated. The cost for assigning a ship to each route is then calculated. This

makes the long routes more expensive than the short routes. To overcome that

only short routes are chosen in the rescheuling phase, a ”penalty fee” is added to

all routes, depending on the length of the routes. The penalty fee is calculated

based on average sailing distances and port stays in the planning period of two

months. This leads to some inaccuracy in the total cost due to variances in the

total distance sailed and number of ports visited in the planning period, but it

should be sufficient. Observations show that the routes chosen for the ships are

largely similar to the original routes, implicating that the penalty fee does not

affect the optimal solution too much. Without the penalty fee the model would

choose only the shortest routes with only one or two port calls, excluding many

possible routes that might be better. Therefore the model is more accurate with

the penalty fee than without.

In the simulation model the vessels’ sailing speed has a discrete distribution.

There are only three steps in the speed for the vessels, one ”slow” speed, one

”normal” speed and one ”high” speed. The reason for choosing a discrete speed

distribution instead of a continuous distribution is to better represent a real

world situation. A ship will not change it’s sailing speed from e.g. 19 knots to

19.4 knots. The ship would most likely sail at a ”high speed” to regain it’s delay

before decreasing it’s speed back to normal transit speed. When the optimization

model is rescheduling it calculates new routes for all the vessels. These routes

are based on the same ”normal” transit speed for all vessels on all routes.
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15.1.1.1 Objective Function

There are also made some assumptions regarding the objective function (15.1).

Two terms are included in the objective function. The first term sums up the

costs assosiated with assigning routes to the vessels, and the second term sums

up the costs associated with space chartering.

min
∑
v∈V

∑
r∈R

Cvrx
r
v +

∑
i∈I

∑
t∈T

Ciδ
t
i (15.1)

In the model the cost associated with assigning routes to the vessels depends

on the distance sailed, number of port calls and the penalty fee because a short

route was selected. A cost is also added if the ship carries cargo and the first port

in the new route is not the destination port of the cargo. This is a simplification,

when there are other costs associated with the sailing and assigning routes to

the vessels. The cost of sailing is also dependent of cargo condition, it is more

expensive to sail a full loaded vessel than an empty one. The weather condition

also has impact on the sailing cost, it is more expensive to sail in bad weather

with high waves than in good weather with flat water. In reality, the cost

variation between the selected routes would most likely be greater. The cost

function also does not take into account that some cargos and ships are heavier

than others, treating all cargo and all ships equally in terms of transportation

cost.

The cost associated with space chartering, Ci is only dependent on distance

and size of the cargo transported. In real life this cost is dependent on more than

these two factors. Often it is more expensive per cargo unit to transport a small

amount of cargo than a large amount of cargo. This makes it more expensive to

tranport large amounts of cargo on a chartered vessel, and cheaper to transport

small amounts of cargo on a chartered vessel.

In the model it is possible to space charter all cargos, independent of the

required amount of cargo to be transported. This may not be the reality in the

real world.

In the real world there are also other costs associated with the reschedulig

after a delay. When rescheduling in real life there will be some extra work for

the shipping company that has to reorder and cancel port calls. This extra work

will have a cost that is not accounted for. This leads to that many and large
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changes in the schedule will be more expensive in real life than in the model,

and that few and small changes will be more expensive in the model compared

to real life. The variation in cost of administrating the rescheduling process is

considered small enough to be neglected.

15.1.1.2 Restrictions

Due to the assignment constraint (15.2) all vessels need to be assigned to new

routes. Our model always has to take all the ships into consideration when

rescheduling, and can therefore not exclude any ships from the rescheduling pro-

cess. This is not considered as a problem since all possible routes are generated,

which means that if an optimal solution is where some ships stay on their original

schedule, this will be a part of the optimal solution.

∑
r∈R

xrv = 1 ∀v ∈ V (15.2)

After all vessels are assigned to new routes, the delays that all ships already

have experienced are deleted. Delays that are currently occuring, like ships

sailing at reduced speed or with an increased resistance factor will still remain.

A downside of this is that these factors are not considered in the optimization

model.

Constraint 15.3 ensures that all cargos are transported and that the freight

demand is met. A given amount of cargo has to be transported.

∑
v∈R

∑
r∈R

btirx
r
v + δti = Dt

i ∀t ∈ T, i ∈ I (15.3)

The constraint only specifies the demand on a monthly basis, a result of this

is that it is possible to transport all the cargos in the same day. However, as the

model does not want ships to sail with ballast water, the cargo is evenly spread

out over the routes that are chosen. In reality there may be some operational

restrictions that our model does not consider, e.g. that the cargos must be

picked up three times a month with intervals of 10 days. Such operational

constraints are not considered in our model, resulting in a higher flexibility to
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generate routes than in real life, and will make the result better than without

this simplification. The simplification may also lead to the generation of routes

that are not operationally feasible. On the other hand, such constraints can

easily be implemented in the column generation algorthm if they were to be

considered.

15.1.2 Simulation

As mentioned in the Litterature Review; one of the drawbacks with a simulation

is that the mathematical model may not take into account all the aspects of the

reality. Many of the simplifications made in the simulation model have resulted

in a model that needs less calculations and thus is faster at a cost of realism.

The simulation model is made memory less, however this will not be true in

all cases. As an example, it is more likely that a storm with strong headwind

arises if there has been a strong headwind the day before. And engine trouble

is more likely to occur if there have been some mechanical breakdowns earlier

on. This simplification makes the simulation less accurate. Data on delays and

incidents’ probability distributions can be included so that the total number of

delays and disruptions that occur during the simulation is the same as in the

real world. This way the distributions and impacts are based on real life delays

where the connections between the delays are disregarded.

All the vessels in the simulation model operate independent of each other.

As a result of this, two different vessels that are in the same area can experience

two different weather systems. One of the vessels may be delayed due to bad

weather conditions, as the other vessel does not experience any bad weather.

This assumption will not influence the vessels individually, but the interaction

between the vessels may be disturbed. Rescheduling actions will be influenced

by the fact that all vessels operate independently in the simulation model. A

ship available for assistance in the simulation model might not be available in

real world.

Heterogeneous fleets are a common characteristic for the maritime transport

segment, this applies in particular for RoRo fleets. In our model the only features

that differ the ships apart are the cargo capasity and that some of the vessels

are not able to enter some of the ports. Except for this all vessels are treated

in the same way in the simulation model. Age and area of operation are not

accounted for. In the real world delays will occur more often for old ships than
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for new ships. They will also occur more often for ships that operate in areas

with harsh environments. In our simulation, all ships will be treated equally,

which leads to less variation in operation as none of the ships will experience

significant more disruptions due to the age of the ship or the area of operation.

RoRo vessels are mainly used to transport three types of cargo; cars, high

and heavy, and break bulk. In our simulation model there is no differantiation

between these cargos; instead of three types of cargos there is only one type of

cargo. This means that all vessels are able to transport all types of cargos, and

there is no limit in how much of any type of cargo a vessel can transport except

for the overall cargo capacity. This simplification makes both the optimization

and simulation simpler than if all three cargos had been implemented. Many

more calculations would have been necessary if this simplification had been left

out. This is also a simplification that leads to less variation in operation in the

model than in the real world. The route assigning is much easier when only

considering one type of cargo; all vessels can then be treated in the same way.

With three types of cargo, the cargo compatibility requirements for all the vessels

have to be considered while assigning the routes. The cargo simplification makes

it easier to compare the results from our model with the models by Kjeldsen et

al. (2012) and Brouer et al. (2013). These models are made for the container

shipping segment and only have one type of cargo. With three types of cargos

in our model and one type of cargo in their models the comparison would have

been more complicated.

In the simulation, all costs are homogeneous for all the vessels and all the

ports. In reality the costs are vessel, port and cargo specific. This makes the fleet

more homogeneous in the simulation model than in the real life. In the model

the fuel cost varies with the velocity difference squared (∆Fuel consumption =

f(∆V 2)). This is an assumption that is not true for all speed changes, but as

an overall function it is quite accurate.

Dry-docking is usually done every fifth year. In the simulation model, dry-

docking and bunkering is neglected. Incidents and delays related with these

states are accounted for.

The sailing distances between the ports are static. The same sailing route will

be sailed each time a vessel sails form port A to port B, and the same sailing route

will be sailed from port B to port A, just in the opposite direction. The ports

in the model are placed randomly in a coordinate system. They are modeled

162



15.1 Assumptions made

as islands and there are no other islands in the coordinate system. There are

therefore no obstacles the vessels have to take into consideration when sailing

between ports. In the real world the vessels are not able to sail the straight

line between two ports and the ships have to navigate through narrow straits

and around islands. Hence the distance sailed will normally be longer than the

straight lines between the ports. This can be accounted for by manually plotting

the distances between the ports instead of letting the preparation script in the

simulation model calculate the distances. In addition, no canals are included in

the model, which may be a source of disruption. Static distances also lead to

that there is no deviation in sailing distance between the sailings. The deviations

can be a result of different weather conditions, ocean currents etc. Therefore

sailing from port A to port B may take a longer time than sailing from port B

to port A.

The time spent in port is the same for all vessels and static. There is no

differentiation in terms of loading and unloading volume. In the real world the

length of the port stay is dependent on how much cargo that is to be handled

during the stay. It can also be dependent on which port the vessels are loading

cargo. This leads to less variation in operation for the vessels. The sum of the

time spent in port for all vessels will be correct, but for the small ships the time

spent in port will be longer in the simulation than in real life, and for the big

ships the time spent in port will be shorther in the simulation than in real life.

When the vessels are loading in the ports, they always load until they are

fully loaded. In the real world, the cargo on board may have different destination

ports. In our model, all cargo on board have the same destination port. This

leads to a more restrictive route assigning. If a cargo is to be transported between

port A and port B, one of the vessels in the fleet has to pick a route that is sailing

directly between these two ports without a visit in another port in between.

15.1.3 Incidents and Delays

During operation of a fleet, several incidents may occur. The intention of the

model is to validate deployment models for daily operations. Hence, the most

normal incidents are included, and the extreme incidents, e.g. tsunami, are

excluded.

To determine the incident’s frequency and impact, two stochastic distribu-

tions were applied; exponential and Weibull-distribution. Other literature
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Exponential distribution were represented the duration of sailing with re-

duced speed, delayed and off-hire. An exponential distribution may give a great

amount of minor delays and a minor amounts of major delays. The minor delays

may be handled easy by increasing the sailing speed of the vessel. Therefore, a

lower limit for valid delays were established. A consequence of this, is that the

majority of the delays will have a impact close to the lower limit. In figure below,

one may see the probability distribution for delay when machinery problem

occurs. The colored area under the graph represents the valid impact.

Figure 15.1: The probability distribution for an exponential function for

machinery problems with consequence delayed with µ = 9.77 -

When a ship has to sail with reduced speed, the master and his crew are

determining the speed based on the environment’s condition, in other words,

the term reduced speed do not represent one constant speed. In the developed

model in this thesis, the model calculates the duration of the reduced speed, and

not the speed. In this way, the impact on the schedule regarding reduced speed

varies. For the incident reduced speed, the ship’s reduced speed was assumed to

be 14 knots.

As discussed in section 13, the delay input parameters are calibrated based on

correspondance with Fagerheim (2013). Fagerheim (2013) informed that WWL

did not have any incident specific delay statistics currently available. Therefore,

the input parameters for the different incidents are just assumptions. Anyway,
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collecting data regarding delays and disruptions would increase the accuracy of

the simulation model.

15.2 Use of the Model

The goal of this thesis is to bulid a framework to evaluate the deployment

model in the MARFIX project. The model has more areas of use than to be a

verification model for deployment models. A shipping company may apply the

model to evaluate rescheduling policies, or to decide what recovery actions to

take use of in case of a disruption. The effects of vessel breakdowns and port

closures may also be investigated by the model. In this section the different

applications of the model will be discussed. Advantages and disadvantages with

the model developed are also discussed.

There can be some issues regarding use of theoretical models. Sometimes a

theoretical model shows results that are inconsistent with what the company’s

experience suggests. The reason may lie in the assumptions made to simplify

the model. A theoretical model should therefore be used as a guidance together

with other models and own experience.

15.2.1 Evaluation of a Deployment Model

In this thesis a simulation and optimization model is developed. This model

is made to analyze and verify a given deployment model considering the day

to day operation of the fleet. The model is developed in such a way that it is

easy to change and understand the input parameters. It is also made as general

as possible so that the model is able to handle many kinds of fleet and port

configurations. The probabilities and the distributions have to be customized to

the given fleet and area of operation.

If a shipping company want to verify their deployment model, they have to

add vessel data, port data, cargo data and route data into the model. Then

they have to run the model a sufficient number of times, this due to the random

numbers in the simulation. It is then possible to evaluate the behavior of the

deployment model. It will also be possible to make some small changes in the

deployment model, and investigate the result of these small changes. This way

the deployment model that best fulfills their criterias can be found.
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The model that is developed has weaknesses and strengths. The optimization

part of the model is modeled as a set partition model. This leads to a two-step

optimization model; first the routes have to be generated, then the mathematical

formulation can be solved. Both the set partition model and column generation

algorithm take advantage of the structure that occur in transportation problems.

The mathematical formulation is simple, small and easy to solve. Complete

enumeration is chosen as the column generation algorithm. The same routes

will then be used each time the fleet is rescheduled. The complete enumeration

generates many unnecessary and poor routes. If large problems that include

many different ports are to be solved, some problems might arise. The cal-

culations related to the optimization part will then demand a large amount of

computations. Our computer lacked sufficient RAM when the problem consisted

of 10 ships, 9 ports and 12 cargos. The number of vessels in the model does not

have the same impact on the computing time as the number of ports (see section

11). The computing time increases exponentially when more ports are included

in the column generation. This makes the model better built to handle problems

with a small number of ports than a problem with a large number of ports.

The simulation part and the optimization part are developed to match each

other. The simulation model calls on the optimization model when there is need

for rescheduling actions. The optimization model then uses the output from the

simulation as input parameters.

However, there are some uncertainties associated with such a simulation. In

the development of the model there are made many assumptions and simplifica-

tions. These are presented and discussed in section 15.1 above. The assumptions

and simplifications will affect the results.

15.2.2 Rescheduling after a Disruption

During the analyzation and verification of a deployment model, our model

optimizes the recheduling process. The model takes the input parameters,

including the vessel positions, the freight forward obligations and the original

schedules into consideration. This is the same that the model in Brouer et al.

(2013) does. This model is developed to evaluate a given disruption scenario and

to select an appropriate recovery action. Brouer’s model was applied to four real

life cases from Maersk Line and results were achieved in less than 5 seconds with

solutions comparable or superior to those chosen by the company’s operations
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managers. Based on the results, cost savings of up to 58% may be achieved by

the suggested solutions compared to realized recoveries of the real life cases.

There are also many simliarities between the recheduling by our model and

the model by Kjeldsen et al. (2012). The model by Kjeldsen et al. (2012)

constructs a set of vessel schedules and cargo routings that allows resumption

of scheduled service after a delay.

Both of the before mentioned models are developed to reschedule a liner

fleet after a delay. The optimization part of our model works in the same way

as these models, and should be able to solve such problems. In section 14.1 the

results from the model by Kjeldsen et al. (2012) and our optimization model is

compared to each other. This comparison shows that with the same number of

vessels and ports our model find new schedules much faster than the model by

Kjeldsen et al. The model by Kjeldsen et al. is able to find the best objective

value faster than our model, but has to run much longer to ensure that there is

no better objective to be found.

Some changes may have to be done in our optimization model if it is to

solve only rescheduling problems; the optimization model is now customized

to work together with the simulation model. As mentioned earlier the column

generation algorithm is due to the complete enumeration, tailored to solve more

rescheduling problems with the same columns. If the optimization model is to be

used to solve one rescheduling per time the column generation algorithm is used,

the algorthm may be changed. A column generator that generates routes that

do not differ to much from the original could be a good starting point. On the

other hand, the complete enumeration algorithm may be sufficient, especially

for fleets that are not visiting a large number of different ports. The number

of possible routes increases rapidly when the number of ports is increasing (see

section 11).

Christiansen, Fagerholt, Nygreen, et al. (2007) mention that several com-

panies prefer to rely on intuition and experience when doing strategic, tactical

and operational planning, instead of operational research. To our knowledge,

there have only been made two studies that concern disruption management in

the liner shipping segment. Historically, the usual way to get a vessel or fleet

back on schedule after a delay has been to increase the speed on the disrupted

vessel. The models by Kjeldsen et al. (2012) and Brouer et al. (2013) have

shown that there can be significant cost savings by using operational research

167



15. DISCUSSION

when rescheduling after a delay. The optimization model by Brouer et al. (2013)

solves real life cases. Computational results show similar or improved solutions

to historical data. The model tend to omit port calls and change the order of

port calls instead of increase the vessel speed.

Table 14.5 and table 14.6 in section 14 show that also our optimization model

tends to omit port calls and change the order of port calls. Our model also takes

all the vessels into concideration when rescheduling. Most of the vessels get new

routes after a rescheduling.

The results from these models show that optimization research has a future

in the day to day operation in liner shipping. Optimization models are able to

solve operational problmes in a new way, they are also able to handle much more

information than the operators handle today.

15.2.3 Other Applications

A shipping company can also use the model to check their rescheduling strategies

and the effect the decisions have. They can simulate the different rescheduling

strategeis they are using, and find what strategy that are most favourable. The

shipping company can then find if its daily rescheduling routines should be

changed.

The simulation and optimization model can be used by a shipping company

to investigate the effects on their fleet from bigger accidents. The effects of port

closures and vessel breakdowns can be investigated. As an example, in March

2011 many ports where closed down due to the nuclear disaster at the Fukushima

Daiichi power plant in Japan. How to react on such an incident can be hard to

decide. The model developed in this thesis could be an useful tool. By making it

impossible for all vessels to visit the closed ports, running the simulation model

with this as an input could give valuable guidance.

Another situation that can occur is that a ship is unavailable for a longer

time period. This can happend due to wreckage or breakdown on some vital

equipment as propeller, shaft or rudder. The vessel will then not be available to

perform its freight forward obligations. The effect of this can be investigated by

our model. The model can then be an useful tool to solve the problems thats

occur in a better way.

A shipping company may also use the model to investigate the effect of new

versus old equipment. With older equipment more and larger delays may occur.
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The shipping company can update the probability paramenters and examine the

effects of lower and higher probabilities for accidents. The shipping company

can then use the model as a support tool in investment decisions.
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Conclusion and Further Work

In this master thesis, we have developed and discussed a simulation optimiza-

tion framework model to verify and investigate deployment models in the liner

shipping segment. The framework model is able to test different deployment

models in a day to day operation. A fleet may look good on the strategic and

tactical levels, but it may fall short when it is exposed to disruptions and delays

on the operational level.

The framework model is tested on six different test instances. Each test run

simulated half a year of operations. Due to the stochastic simulation, multiple

runs for each test instance was performed and average values were found. The

solving time varied with the size of the problems; the smallest test instance

was solved within 30 seconds, while the largest test instance was solved within

234 seconds. When the problems get larger, the column generation algorithm

requires a larger ratio of the total solving time. The optimization model takes

all the vessels’ routes into consideration when rescheduling, which means all the

vessels are assigned to new routes. However, normally the new routes do not

differ much from the original routes. The test runs show that the model is well

suited to simulate day to day operations in the liner shipping segment. The

optimization part is also able to find good ways to recover from large delays.

The framework model consists of two parts, one simulation part and one

optimization part. The simulation model simulates the day to day operation of

a liner fleet. The simulation model is modeled as a dynamic, time dependent
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and stochastic model. It is made as general as possible, making it easy to im-

plement different fleet compositions into the model. SimAir, which is described

in Rosenberger, E. L. Johnson, Schaefer, et al. (2002), has been an important

inspiration when developing the simulation model.

The liner shipping disruption management models by Kjeldsen et al. (2012)

and Brouer et al. (2013) have been important sources of inspiration for the

optimization model. Also disruption management models from the airline in-

dustry and railway segment are used as inspiration. The optimization model

consists of a mathematical formulation and a column generation algorithm. The

mathematical formulation is modeled as a set partition model, which makes

it possible to utilize the structure that can occur in transport problems. By

using the set partition approach the mathematical model itself got small and

simple, and a column generation algorithm was included. We developed and

implemented a complete enumeration algorithm, which is a simple and often

time consuming algorithm that generates all possible routes for the vessels. The

reason this algorithm was chosen is that during a simulation there might be a

need of more than one rescheduling. The optimization model can then use the

same routes each time it is run and thus reduce the total computing time. The

optimization model considers omitting port calls, changing the order of port

calls and space chartering cargo as possible recovery actions.

A number of possible extensions of the framework model warrants further

research. The model developed in this master thesis is built as a framwork that

can test and verify deployment models. As this thesis is a part of the MARFIX

project it is natural to implement and test the MARFLIX deployment model.

The fleet and its schedule must be implemented together with appropriate proba-

bility distributions and impacts. The model is then able to test different versions

of the deployment model and find the best alternative.

If the MARFLIX deployment model or other deployment models are to be

tested in the framework model, the simplifications and assumptions discussed in

section 15.1 should be re-evaluated. A natural extension of the model would be to

allow the model to handle different types of cargos. RoRo vessels usually handle

three types of cargo; cars, high and heavy and break bulk. The MARFLIX

deployment model contains vessels that have different capacities for the three

types of cargos. The different kinds of cargo should therefore be implemented

in the model to test the MARFLIX fleet correctly.
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Another possible extension of the model is to allow each ship to simulta-

neously carry cargos with different destination ports. Real world liner vessels

usually transport cargos with more than one destination port at the same time.

This extention will create more freedom in the route assigning, and the model

will be more realistic.

It would also be interesting to make the model more heterogeneous by

differensiating on vessel age, area of operation and time of the year. E.g. older

vessels normally experience more and longer delays than newer vessels, and more

bad weather will occur in the winter than in the summer.

As mentioned in section 11, if large problems is to be solved with the

framwork model a new column generator algorithm has to be considered. The

amount of possible routes generated becomes too large for the optimization

software to handle; therefore a heuristic method should be developed for larger

problems.
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Ådland, R. and S. Koekbakker (2007). “Ship Valuation Using Cross Sectional

Sales Data, a Multivariate non-Parametric Approach”. In: Maritime eco-

nomics & Logistics 9, pp. 105–118 (cit. on p. 77).

Agarwal, R. and O. Ergun (Dec. 2010). “Network Design and Allocation Mech-

anisms for Carrier Alliances in Liner Shipping”. In: Operations Research

58.6, pp. 1726–1742. issn: 0030-364X. doi: 10.1287/opre.1100.0848. url:

http://or.journal.informs.org/cgi/doi/10.1287/opre.1100.0848

(cit. on p. 69).

Andersen, Martin W (2010). “Service Network Design and Management in Liner

Container Shipping Applications”. Ph. D. Thesis. Technical University of

Denmark. isbn: 9788773272107 (cit. on pp. 2, 24–26, 48, 68, 72, 87, 103,

112).

Andersson, Tobias and Peter Värbrand (2000). “The Flight Perturbation Prob-

lem”. In: Transportation Planning and Technology 27, pp. 97–117 (cit. on

pp. 29–32, 105, 107–110, 113, 114, 122, 129).

Angeloudis, Panagiotis and Michael G H Bell (Sept. 2011). “A review of con-

tainer terminal simulation models”. In: Maritime Policy Management 38.5,

pp. 523–540. issn: 0308-8839. doi: 10.1080/03088839.2011.597448. url:

http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448

(cit. on pp. 50, 55, 136).

April, Jay et al. (2003). “Practical Introduction to Simulation Optimization”.

In: (cit. on p. 57).

175

http://dx.doi.org/10.1287/opre.1100.0848
http://or.journal.informs.org/cgi/doi/10.1287/opre.1100.0848
http://dx.doi.org/10.1080/03088839.2011.597448
http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448


BIBLIOGRAPHY

Banks, Jerry and John S. Carson (1984). Discrete-Event System Simulation.

Prentice Hall,Englewood Cliffs, NJ (cit. on p. 93).

Bisaillon, Serge, Federico Pasin, and Gilbert Laporte (2010). “A Large Neigh-

bourhood Search Heuristic for the Aircraft and Passenger Recovery Prob-

lem”. In: 4OR: A Quarterly Journal of Operations Research 9, pp. 139–157

(cit. on pp. 33–35, 48, 103, 112, 122).

Brouer, Berit D. et al. (Jan. 2013). “The Vessel Schedule Recovery Problem

(VSRP) – A MIP model for handling disruptions in liner shipping”. In: Eu-

ropean Journal of Operational Research 224.2, pp. 362–374. issn: 03772217.

doi: 10.1016/j.ejor.2012.08.016. url: http://linkinghub.elsevier.

com/retrieve/pii/S037722171200639X (cit. on pp. 8, 9, 13, 21, 22, 24, 89,

101, 103, 105–108, 112, 113, 121, 122, 127, 155, 157, 162, 166–168, 172).

Carson, Y and A Maria (1997). “Simulation optimization: methods and appli-

cations”. In: . . . of the 29th conference on Winter simulation, pp. 118–126.

url: http://dl.acm.org/citation.cfm?id=268460 (cit. on pp. 57, 58).

Cheng, Lifei and Marco a. Duran (June 2004). “Logistics for world-wide crude

oil transportation using discrete event simulation and optimal control”. In:

Computers & Chemical Engineering 28.6-7, pp. 897–911. issn: 00981354.

doi: 10.1016/j.compchemeng.2003.09.025. url: http://linkinghub.

elsevier.com/retrieve/pii/S009813540300231X (cit. on pp. 55, 63, 64).

Christiansen, Marielle, Kjetil Fagerholt, Bjørn Nygreen, et al. (2007). “Maritime

Transportation”. In: Handbooks in Operations Research and Management

Science. Ed. by C. Barnhart and G. Laporte. Vol. 14. 06. Amsterdam: Trans-

portation, pp. 189–284. doi: 10.1016/S0927-0507(06)14004-9 (cit. on

pp. 1, 3, 13, 67, 68, 75, 78–81, 167).

Christiansen, Marielle, Kjetil Fagerholt, and David Ronen (Feb. 2004). “Ship

Routing and Scheduling: Status and Perspectives”. In: Transportation Sci-

ence 38.1, pp. 1–18. issn: 0041-1655. doi: 10.1287/trsc.1030.0036. url:

http://transci.journal.informs.org/cgi/doi/10.1287/trsc.1030.

0036 (cit. on pp. 67, 72, 73, 76, 78).

176

http://dx.doi.org/10.1016/j.ejor.2012.08.016
http://linkinghub.elsevier.com/retrieve/pii/S037722171200639X
http://linkinghub.elsevier.com/retrieve/pii/S037722171200639X
http://dl.acm.org/citation.cfm?id=268460
http://dx.doi.org/10.1016/j.compchemeng.2003.09.025
http://linkinghub.elsevier.com/retrieve/pii/S009813540300231X
http://linkinghub.elsevier.com/retrieve/pii/S009813540300231X
http://dx.doi.org/10.1016/S0927-0507(06)14004-9
http://dx.doi.org/10.1287/trsc.1030.0036
http://transci.journal.informs.org/cgi/doi/10.1287/trsc.1030.0036
http://transci.journal.informs.org/cgi/doi/10.1287/trsc.1030.0036


BIBLIOGRAPHY

Clausen, Jens et al. (May 2010). “Disruption management in the airline indus-

try—Concepts, models and methods”. In: Computers & Operations Research

37.5, pp. 809–821. issn: 03050548. doi: 10.1016/j.cor.2009.03.027. url:

http://linkinghub.elsevier.com/retrieve/pii/S0305054809000914

(cit. on pp. 3, 26).

Crainic, Teodor Gabriel and Kap Hwan Kim (2007). “Intermodal Transporta-

tion”. In: Handbooks in Operations Research and Management Science. Ed.

by C. Barnhart and Gilbert Laporte. Amsterdam: Transportation, pp. 467–

537 (cit. on pp. 78, 79).

Crary, Michael, L K Nozick, and L R Whitaker (2002). “Sizing the US Destroyer

Fleet”. In: Journal of the Operational Research Society 136.136, pp. 680–695

(cit. on p. 65).

Dantzig, G. B. and P. Wolfe (1960). “Decomposition Principle for Linear Pro-

grams”. In: Operations Research 8, pp. 101–111 (cit. on p. 49).

Eden, C et al. (2002). “The role of feedback dynamics in disruption and delay

on the nature of disruption and delay ( D & D ) in major projects”. In: The

Journal of the Operational Research Society 51, pp. 291–300 (cit. on p. 45).

Fagerheim, Geir (Feb. 11, 2013) (cit. on pp. 147, 164).

Fagerholt, Kjetil (1999). “A simulation study on the design of flexible cargo holds

in small-sized bulk ships”. In: Maritime Policy & Management 26.February

2013, pp. 105–109 (cit. on pp. 54, 55).

Fagerholt, Kjetil, Marielle Christiansen, et al. (Dec. 2010). “A decision support

methodology for strategic planning in maritime transportation”. In: Omega

38.6, pp. 465–474. issn: 03050483. doi: 10.1016/j.omega.2009.12.003.

url: http://linkinghub.elsevier.com/retrieve/pii/S0305048309001017

(cit. on p. 77).

Fagerholt, Kjetil, Trond a. V. Johnsen, and Haakon Lindstad (Oct. 2009). “Fleet

deployment in liner shipping: a case study”. In: Maritime Policy & Manage-

ment 36.5, pp. 397–409. issn: 0308-8839. doi: 10.1080/03088830903187143.

177

http://dx.doi.org/10.1016/j.cor.2009.03.027
http://linkinghub.elsevier.com/retrieve/pii/S0305054809000914
http://dx.doi.org/10.1016/j.omega.2009.12.003
http://linkinghub.elsevier.com/retrieve/pii/S0305048309001017
http://dx.doi.org/10.1080/03088830903187143


BIBLIOGRAPHY

url: http://www.tandfonline.com/doi/abs/10.1080/03088830903187143

(cit. on p. 68).

Fagerholt, Kjetil, Jarl Eirik Korsvik, and Arne Løkketangen (2009). “Ship Rout-

ing and Scheduling with Persistence and Distance Objectives”. In: Con-

ference Book, International Workshop in Distrubution Logistics. Ed. by Jo

A.E.E. Nunen, M. Grazia Speranza, and Luca Bertazzi. Vol. 619. Lecture

Notes in Economics and Mathematical Systems. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 89–107. isbn: 978-3-540-92943-7. doi: 10.1007/978-

3-540-92944-4. url: http://www.springerlink.com/index/10.1007/

978-3-540-92944-4 (cit. on p. 91).

Figliozzi, Miguel Andres and Zeyan Zhang (2009). “A Study of Transportation

Disruption Causes and Costs in Containerized Maritime Transportation”. In:

Annual Forum; Transportation Research Forum (cit. on p. 91).

Ford, L. R. and D. R. Fulkeson (1958). “A Suggested Computation for Maximal

Multicommidity Network Flows”. In: Management Science 5, pp. 97–101

(cit. on p. 49).

Foyen, Jørgen (Nov. 20, 2012) (cit. on p. 84).

Fu, Michael C (2002). “Optimization for Simulation: Theory vs. Practice”. In:

INFORMS Journal on Computing 14.3, pp. 192–215 (cit. on p. 58).

Fu, Michael C et al. (June 2009). “Logistics for world-wide crude oil transporta-

tion using discrete event simulation and optimal control”. eng. In: Maritime

Policy & Management. Lecture Notes in Economics and Mathematical Sys-

tems 38.2. Ed. by Array, pp. 897–911. issn: 0308-8839. doi: 10.1016/j.

compchemeng.2003.09.025. url: http://sim.sagepub.com/cgi/doi/10.

1177/003754979807100206%20http://www.tandfonline.com/doi/abs/

10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/

10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.

1177/003754979807000401%20http://www.tandfonline.com/doi/abs/

10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/

abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.

178

http://www.tandfonline.com/doi/abs/10.1080/03088830903187143
http://dx.doi.org/10.1007/978-3-540-92944-4
http://dx.doi.org/10.1007/978-3-540-92944-4
http://www.springerlink.com/index/10.1007/978-3-540-92944-4
http://www.springerlink.com/index/10.1007/978-3-540-92944-4
http://dx.doi.org/10.1016/j.compchemeng.2003.09.025
http://dx.doi.org/10.1016/j.compchemeng.2003.09.025
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100206%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807000401%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.com/retrieve/pii/S0305054808000993%20http://portal.acm.org/citation.cfm?id=1162128%20http://linkinghub.elsevier.com
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100206%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807000401%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.com/retrieve/pii/S0305054808000993%20http://portal.acm.org/citation.cfm?id=1162128%20http://linkinghub.elsevier.com
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100206%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807000401%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.com/retrieve/pii/S0305054808000993%20http://portal.acm.org/citation.cfm?id=1162128%20http://linkinghub.elsevier.com
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100206%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807000401%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.com/retrieve/pii/S0305054808000993%20http://portal.acm.org/citation.cfm?id=1162128%20http://linkinghub.elsevier.com
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100206%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807000401%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.com/retrieve/pii/S0305054808000993%20http://portal.acm.org/citation.cfm?id=1162128%20http://linkinghub.elsevier.com
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100206%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807000401%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.com/retrieve/pii/S0305054808000993%20http://portal.acm.org/citation.cfm?id=1162128%20http://linkinghub.elsevier.com
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100206%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807000401%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.com/retrieve/pii/S0305054808000993%20http://portal.acm.org/citation.cfm?id=1162128%20http://linkinghub.elsevier.com
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100206%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807000401%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.com/retrieve/pii/S0305054808000993%20http://portal.acm.org/citation.cfm?id=1162128%20http://linkinghub.elsevier.com


BIBLIOGRAPHY

com/retrieve/pii/S0305054808000993%20http://portal.acm.org/

citation.cfm?id=1162128%20http://linkinghub.elsevier.com (cit. on

p. 49).

Gambardella, L M, a E Rizzoli, and M Zaffalon (Aug. 1998). “Simulation and

planning of an intermodal container terminal”. In: Simulation 71.2, pp. 107–

116. issn: 0037-5497. doi: 10.1177/003754979807100205. url: http://

sim.sagepub.com/cgi/doi/10.1177/003754979807100205 (cit. on p. 55).

Grant, H et al. (1987). “A Simulation Analysis of Demand and Fleet Size effects

on taxicab service rates”. In: Winter Simulation Conference, pp. 838–844

(cit. on p. 52).

Le-Griffin, Hanh Dam and Melissa Murphy (2006). “Container Terminal Produc-

tivity: Experience at the Ports Of Los Angeles and Long Beach”. In: National

Urban Freight Conference 2006. Long Beach, pp. 1–21 (cit. on p. 89).

Gurning, Saut and Stephen Cahoon (May 2011). “Analysis of multi-mitigation

scenarios on maritime disruptions”. In: Maritime Policy & Management 38.3,

pp. 251–268. issn: 0308-8839. doi: 10.1080/03088839.2011.572701. url:

http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701

(cit. on pp. 52, 53).

Hall, Nicholas G. and Chris N. Potts (June 2004). “Rescheduling for New Or-

ders”. In: Operations Research 52.3, pp. 440–453. issn: 0030-364X. doi: 10.

1287/opre.1030.0101. url: http://or.journal.informs.org/cgi/doi/

10.1287/opre.1030.0101 (cit. on pp. 44, 45).

Halvorsen-Weare, E and Kjetil Fagerholt (2011). “Robust supply vessel plan-

ning”. In: Network Optimization, pp. 559–573. url: http://www.springerlink.

com/index/53163841566L854M.pdf (cit. on pp. 59, 62, 63).

Halvorsen-Weare, E.E. (2012). “Maritime Fleet Planning and Optimization Un-

der Uncertainty”. PhD Thesis. Norwegian University of Science and Tech-

nology, p. 147 (cit. on p. 50).

Halvorsen-Weare, Elin E. et al. (2010). “Fleet size and mix and period routing

of offshore supply vessels” (cit. on p. 59).

179

http://sim.sagepub.com/cgi/doi/10.1177/003754979807100206%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807000401%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.com/retrieve/pii/S0305054808000993%20http://portal.acm.org/citation.cfm?id=1162128%20http://linkinghub.elsevier.com
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100206%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807000401%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.com/retrieve/pii/S0305054808000993%20http://portal.acm.org/citation.cfm?id=1162128%20http://linkinghub.elsevier.com
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100206%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.597448%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205%20http://sim.sagepub.com/cgi/doi/10.1177/003754979807000401%20http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=993987%20http://linkinghub.elsevier.com/retrieve/pii/S0305054808000993%20http://portal.acm.org/citation.cfm?id=1162128%20http://linkinghub.elsevier.com
http://dx.doi.org/10.1177/003754979807100205
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205
http://sim.sagepub.com/cgi/doi/10.1177/003754979807100205
http://dx.doi.org/10.1080/03088839.2011.572701
http://www.tandfonline.com/doi/abs/10.1080/03088839.2011.572701
http://dx.doi.org/10.1287/opre.1030.0101
http://dx.doi.org/10.1287/opre.1030.0101
http://or.journal.informs.org/cgi/doi/10.1287/opre.1030.0101
http://or.journal.informs.org/cgi/doi/10.1287/opre.1030.0101
http://www.springerlink.com/index/53163841566L854M.pdf
http://www.springerlink.com/index/53163841566L854M.pdf


BIBLIOGRAPHY

Hayuth, Y., M.a. Pollatschek, and Y. Roll (Sept. 1994). “Building A Port Sim-

ulator”. In: Simulation 63.3, pp. 179–189. issn: 0037-5497. doi: 10.1177/

003754979406300307. url: http://sim.sagepub.com/cgi/doi/10.1177/

003754979406300307 (cit. on p. 55).

Hilborn, Ray (1987). “A General Mode for Simulation of Stock and Fleet Dy-

namics in Heterogeneous Fisheries”. In: pp. 1366–1369 (cit. on p. 52).

Hirsch, Bernd E, Thorsten Kuhlmann, and Jens Schumacher (Apr. 1998). “Lo-

gistics simulation of recycling networks”. In: Computers in Industry 36.1-2,

pp. 31–38. issn: 01663615. doi: 10.1016/S0166-3615(97)00095-X. url:

http://linkinghub.elsevier.com/retrieve/pii/S016636159700095X

(cit. on p. 52).

Hoff, Arild et al. (Dec. 2010). “Industrial aspects and literature survey: Fleet

composition and routing”. In: Computers & Operations Research 37.12, pp. 2041–

2061. issn: 03050548. doi: 10.1016/j.cor.2010.03.015. url: http:

//linkinghub.elsevier.com/retrieve/pii/S0305054810000699 (cit. on

p. 1).

Huisman, Dennis (2007). “A Column Generation Approach to solve the Crew Re-

Scheduling Problem”. In: European Journal of Oparational Research2 180,

pp. 163–173 (cit. on pp. 39–41, 108–110, 113, 118, 122, 129, 130, 133).

IMO et al. (2009). Second IMO GHG study. Tech. rep. International Maritime

Organization (cit. on pp. 1, 67).

Jespersen-Groth, Julie and Jens Clausen (2006). “Optimal Reinsertion of Can-

celled train lines”. PhD. Thesis. Informatics and Mathematical Modelling,

Technical University of Denmark. (cit. on pp. 41, 43).

Jespersen-Groth, Julie, Daniel Potthoff, and Jens Clausen (2009). Disruption

Management in Passenger Railway Transportation. Ed. by C.D. Zaroliagis
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Appendix A

Incidents

Incident Consequence on schedule Alpha Beta

Wind Delayed 0.45 3

Current Delayed 0.45 3

Table A.1: Incidents at sea with gamma distribution

Incident Consequence on schedule µ

Congestion Delayed 11.1702

Late arrival of pilot Delayed 13.9619

Collision in harbor Delayed 8.3771

Collision in harbor Off-hire 16

Late arrival of tugs Delayed 8.3771

Too low tide Delayed 11.1701

Too heavy weather Delayed 18.1512

Table A.2: Incidents for arrival to port with exponential ditribution
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A. INCIDENTS

Incident Consequence on schedule µ

Machinery down Delayed 9.7741

Machinery problems Reduced speed 11.1702

Break-down of vital parts of the ship Delayed 8.3771

Fire onboard Delayed 1.397

Fire onboard Off-Hire 14.4

Man Over Board Delayed 2.5142

Pollution spill Delayed 0.8383

Mutiny Delayed 0.2795

Sickness onboard Delayed 1.397

Fog Reduced speed 9.7741

Waves Reduced speed 12.1

Iceberg danger Reduced speed 1.397

Extreme weather Reduced speed 8.3771

Extreme weather Delayed 6.9807

Grounding Delayed 1.9543

Grounding Off-Hire 14.5

Collision with whales Delayed 0.8383

Collision with whales Off-Hire 15.5

Collision with other vessels Delayed 1.9543

Collision with other vessels Off-Hire 14

Collision with other things Delayed 2.234

Collision with other things Off-Hire 14.4

Piracy Delayed 6.9807

Piracy Off-Hire 16

Ships nearby in distress Delayed 8.3771

Table A.3: Incidents at sea with expenontial distribution
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Incident Consequense on schedule µ

Stevedores work too slow Delayed 17.6

Labor strike Delayed 4.4

Blockout Delayed 3.3

Cargo arrives too late to port Delayed 4.4

Deficiencies on Port State Control Delayed 8.8

Deficiencies on Classification Society Control Delayed 6.6

Deficiencies on Custom Control Delayed 7.7

Break-down of vital parts of the ship Delayed 8.8

Pollution spill Delayed 4.4

Moorings break Delayed 3.3

Mutiny Delayed 1.1

Table A.4: Incidents alongside with exponential ditribution

Incident Consequence on schedule µ

Late arrival of pilot Delayed 13.9619

Collision in harbor Delayed 8.3771

Collision in harbor Off-hire 14

Late arrival of tugs Delayed 8.3771

Break-down of vital parts of the ship Delayed 13.9619

Too low tide Delayed 11.1702

Too heavy weather Delayed 18.1512

Table A.5: Incidents departure from port with exponential ditribution
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Appendix B

Several Incidents in a Row

This cannot occur

Incident C
on

ge
st

io
n

L
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e
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l
of
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o
o
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w
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d

e

T
o
o

h
ea

v
y

w
ea

th
er

If
th

is
o
c
c
u

r

Congestion 1 1 1 1

Late arrival of pilot 1 1 1 1

Collision in harbor 1

Collision in harbor 1

Late arrival of tugs 1 1 1 1

Too low tide 1 1 1

Too heavy weather 1

Table B.1: Several incidents in a row: arrival to port
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B. SEVERAL INCIDENTS IN A ROW

This cannot occur

Incident L
at

e
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ri
va
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Late arrival of pilot 1 1 1 1 1 1 1

Collision in harbor 1

Collision in harbor 1

Late arrival of tugs 1 1 1 1 1 1 1

Break-down of vital parts of the ship 1 1 1 1 1

Too low tide 1 1 1 1 1 1 1

Too heavy weather 1 1 1 1 1 1

Table B.2: Several incidents in a row: departure from port
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This cannot occur

Incident S
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Stevedores work too slow 1

Labor strike 1 1 1

Blockout 1 1 1

Cargo arrives too late to port 1

Definciencies on Port State Control 1

Deficiencies on Classification Society Control 1

Deficiencies on Custom Control 1

Break-down of vital parts of the ship 1

Pollution spill 1

Moorings break 1

Mutiny 1

Table B.3: Several incidents in a row: alongside
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B. SEVERAL INCIDENTS IN A ROW

This cannot occur
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Machinery down 1

Machinery problems 1

Break-down of vital parts of the ship 1

Fire onboard 1

Fire onboard 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

I
f
t
h
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o
c
c
u
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Man Over Board 1

Pollution spill 1

Mutiny 1

Sickness onboard 1

Fog 1

Waves 1

Wind 1

Iceberg danger 1

Current 1

Extreme weather 1 1 1 1 1 1

Extreme weather 1 1 1 1 1 1

Grounding 1

Grounding 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Collision with whales 1

Collision with whales 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Collision with other vessels 1

Collision with other vessels 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Collision with other things 1

Collision with other things 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Piracy 1

Piracy 1

Ships nearby in distress 1

Denied access to scheduled port 1

Table B.4: Several incidents in a row: at sea
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Appendix C

The Simulation Model

Explained

This appendix explains each script included in the simulation model individually.

The input variables will be explained where an explanation is necessary. The

scripts are found in the electronic attachment.

C.1 Main.m

To run the simulation model, the user must open and run the script named

Main.m. This is the main script that, as explained in section 12.6.1, will run

each subscript in the correct order.

C.1.1 Input Scripts and Preparation

Main.m will begin by running the input script ScheduleInput.m, which contains

details the other scripts will need to run their tasks, e.g. port coordinates and

cargo departure and destination ports etc. See the tables in appendix D for

information on the input values used here.

The next script to be run is Preparation.m. In this script input values

from ScheduleInput.m are used to calculate several different values and indices
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C. THE SIMULATION MODEL EXPLAINED

used later on in the simulation model, e.g. the number of ships, route lengths,

distances between ports etc.

The scripts Print.m and Print2.m are output scripts that log important

simulation calculations related to the ships’ movements, delays, destinations and

sailing speed. This way the user is able to investigate how the delay occured and

accumulated, what speed the ships sailed at etc. The log is updated for every

time step delta t.

The last script to be run before the simulation starts is DelayInput.m. This

script contains important parameters for each disruption, which are used in

the calculation of the delay incurred and the probability of disruptions. See

appendices A and B for the full list of input variables.

C.1.2 The Simulation Scripts

After the previously mentioned scripts have been run, the simulation is run.

Main.m will now follow a three-step script run, which is followed for every

time step delta t and for every ship in the simulation. The three-step script

run is explained in section 12.6.1 and contains of three scripts: Simulation.m,

DelayCalculator.m and Reschedule.m.

The script Simulation.m calculates the ship movements based on given sched-

ules, ship speed, delays, time in port etc. It is one of the most comprehensive

scripts in the simulation model. Each time step the script has to update the

ships’ positions, what cargo they carry, whether they are in a port and if so,

what port to sail to next. When doing the calculations the script has to take

several variables and scenarios into consideration; whether the ship is sailing with

reduced speed, with increased speed or if it is sailing on a new schedule and if so,

consider if the ship in question is finished sailing in the new schedule and has to

start over again in the original schedule. All possible scenarios have individual

calculations and variables, and all of these have are included in Simulation.m.

When the position of a ship is updated, the script DelayCalculator.m will

calculate if a disruption has occured. The script will calculate a random number

for each incident and use Monte Carlo Simulation, as explained in section 9.2,

to find out if a disruption has happened and if the ship is delayed. The input

variables from DelayInput.m are used here.
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C.1 Main.m

C.1.3 Rescheduling after a Delay

If a ship experiences a delay, the script Reschedule.m will run. This script will,

as mentioned in section 12.6.4, try to regain the ship’s delay in two steps; first

increase ship speed and then reschedule. If a rescheduling is needed the script

Rerouting.m will run. This script runs a series of subscripts to calculate the

different input parameters used in the optimization model.

The first script, NextPorts.m, will calculate the next 12 ports the ships are

to visit and, based on these ports, calculate what cargo is to be transported in

the next two months of operation.

The next script, ShipPositions.m, will calculate the ships’ positions in the

coordinate system and based on that, calculate the distance to all ports in the

coordinate system.

If the column generator has not been run before in this simulation run, the

next scripts will be ColumnGen.m and MonthlyCargo.m. ColumnGen.m will

calculate all possible routes with up to six port calls and calculate the distance

of each of these routes. MonthlyCargo.m will calculate what cargo is transported

in each of the generated routes.

EndPorts.m is the next script to run. This script’s main objective is to find

out what port each ship should sail to after any given generated route. The end

port is chosen to be the port in the original route where the ship is as close to

the original schedule as possible after it has sailed the new route. The script

will also calculate the cost of sailing each route with each ship based on ship

positions, end port and route distance.

ObjectiveFunction.m will prepare the costs for each route and each ship so

that they may be sent to the optimization software in the correct format. It will

also calculate the cost of chartering cargos and the cost of not sailing to the port

where the current cargo was intended.

Restrictions.m will prepare the parameter values for each constraint so that

they can be sent to the optimization software in the correct format. It will also

modify the parameters to be ship specific, to account for the cargo capacity and

port accessibility of each ship.

MoreCargo.m will calculate the cargos that are transported in the remaining

planning period after each the ship is back on the original schedule. This varies

depending on ship capacity and what route the ship in question chooses to sail.
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C. THE SIMULATION MODEL EXPLAINED

The script is now ready to call on the optimization software. The output to

the optimization software is the different parameter values calculated previously

as well as information about the developed optimization model. The information

consists of the type of constraints and the lower bounds for the variables.

After the optimization software is run the script will process the solution and

turn the solution into new schedules for each ship. This is done in the script

NewSchedules.m.

When Rerouting.m is finished, Rescheduling.m will continue to run. It will

reset the ships’ delays and prepare some indices used in Simulation.m so that

the new schedules are followed in the simulation script.
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Appendix D

Input Variables

Cargo

number

Origin

port

Destination

Port

Cargo 1 1 2

Cargo 2 1 3

Cargo 3 1 7

Cargo 4 2 3

Cargo 5 2 4

Cargo 6 2 7

Cargo 7 3 1

Cargo 8 3 7

Cargo 9 3 4

Cargo 10 5 3

Cargo 11 6 4

Cargo 12 7 3

Table D.1: Cargo information
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D. INPUT VARIABLES

Port number X Y

Port 1 2500 2500

Port 2 100 200

Port 3 3000 -200

Port 4 1500 -2000

Port 5 -200 -2500

Port 6 -2000 -100

Port 7 -2000 1500

Table D.2: Port coordinates

Vessel number Capacity

Vessel 1 1

Vessel 2 1,2

Vessel 3 1

Vessel 4 1,3

Vessel 5 0,8

Vessel 6 1,5

Vessel 7 1,1

Vessel 8 0,4

Vessel 9 0,8

Vessel 10 1

Table D.3: Vessel capacity
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Vessel

Number
Status

Cargo on

board

Cargo on

board 2

% of leg

sailed

Operation

status

Vessel 1 0 0 0 0 0

Vessel 2 0 0 0 0 0

Vessel 3 0 0 0 0 0

Vessel 4 0 0 0 0 0

Vessel 5 0 0 0 0 0

Vessel 6 0 0 0 0 0

Vessel 7 0 0 0 0 0

Vessel 8 0 0 0 0 0

Vessel 9 0 0 0 0 0

Vessel 10 0 0 0 0 0

Table D.4: Current

Vessel Number Can not enter port Can not enter port

Vessel 1 0 0

Vessel 2 5 0

Vessel 3 5 6

Vessel 4 5 0

Vessel 5 7 0

Vessel 6 0 0

Vessel 7 5 0

Vessel 8 4 6

Vessel 9 5 0

Vessel 10 6 0

Table D.5: Forbidden ports
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D. INPUT VARIABLES

Vessel number 1 2 3 4 5 6 7 8 9 10 11

Vessel 1 1 2 3 7 2 4 3 7 2 5 3

Vessel 2 2 4 3 1 2 3 4 1 2 3 1

Vessel 3 2 3 1 2 4 3 1 2 3 1 0

Vessel 4 2 4 3 1 6 4 3 1 2 3 1

Vessel 5 3 1 2 3 1 2 4 3 1 2 4

Vessel 6 1 3 7 2 3 1 3 1 7 4 2

Vessel 7 3 1 3 4 5 1 3 5 3 4 5

Vessel 8 1 2 3 7 3 1 2 3 7 3 2

Vessel 9 2 6 7 3 1 2 3 1 2 6 7

Vessel 10 2 4 3 1 2 4 3 1 2 7 3

Table D.6: Vessel routes

204



Input variables and parameters,

SceduleInput
Value Explanation

t 0 Starting time

deltat 6 Time step

T 24*180 Ending time

Trec 24*60 Planning period

PortStay 30 Time used in port

Speed [19 23 17] Transit, high and low speed

RedSpeed 14 Reduced speed

CostPortDelay 50000 Cost of being late in port

Pot 2
The exponential power, used in

fuel consumption calculations

Cfuel 600 Cost of fuel, USD/mt

EngineS 20000 Engine size

FuelCon 176 Specific fuel consumption

ApproachingPortDistance 2
Used in defining operation

status

DeproachingPortDistance 2
Used in defining operation

status

distancecost 10

Cost of sailing 1 nautic mile,

based on about 5000 USD/day

when sailing at normal speed

portcost 1000 Cost of visiting 1 port

spotchart 15000 Spot chartering cost, USD/day

DurationChangedResistance 36
Duration of the impact

”changed resistance”

penalty 50000
Cost of not delivering a specific

cargo

VeryLargeNumber 99999999

Used in the objective functions

for ports where some ships can

not sail

LateinPort 24
How late a ship may be before a

rescheduling takes place

Table D.7: Values and explanation of input parameters
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