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Abstract

This master thesis investigates possible effects from nonlinear wave loading on
bottom fixed offshore wind turbines. The resonant phenomena springing and
ringing are reviewed with focus on their cause, and their possible occurrence in
a bottom fixed wind turbine.

To investigate the effect of a nonlinear wave load model on a wind turbine, the
calculation scheme in the wind turbine design-tool FAST has been extended with
a new wave load model. The proposed load model was chosen because it could
be coupled with fully nonlinear incident waves, and it is also expected that it
can predict some aspects of the loads leading to ringing in a structure. The
load model was developed by Rainey, and is based on conservation of energy
arguments.

The new load model is compared with experiments on a cylinder in regular waves,
and with the existing load model in FAST (Morison’s equation). The numeri-
cal wave generation has been performed with a nonlinear Fourier approximation
method, developed by Fenton. Results show similar prediction of the first har-
monic load, which is slightly underpredicted by both. Good comparison is present
for the second harmonic for low kr-values for both models. However, for larger
kr-values significant overprediction is present, with Rainey predicting the largest
values. Reasonably good agreement is found or the high kA-values for the third
harmonic, when calculated by Rainey, while some underprediction is present when
calculated by Morsion. The results also indicates that for slender structures, the
nonlinearities in the incident waves, give a larger contribution to the loads than
nonlinearities originating in the load formulation.

Simulations performed on a full scale turbine, have shown small differences be-
tween the two load models for turbine with a running rotor. Differences between
results with a linear irregular sea and a fully nonlinear irregular sea are somewhat
larger, but still the effect on improving the wave model is limited. This is due to
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the fact that the motion of the turbine is governed by the aerodynamic forces.

When the rotor has been set in a parked condition, sever springing occurs for
all sea states investigated. The springing in a parked condition sometimes has a
burst-like increase in amplitude, and time evolution of the tower top deflection
is close to the one observed for ringing. However, no clear cases of ringing have
been observed in these simulations. Both load models predicts the resonant
oscillations, when used with either linear or fully nonlinear waves. The amplitude
of the resonant oscillations are however dependent on the incident wave model. In
general the fully nonlinear incident wave model leads to larger amplitudes in the
resonant oscillations. For the case of fully nonlinear waves, there is a difference
between the two load models, which is not present when linear waves are used.

Wave induced resonant oscillations have not been encountered when the turbine
is running, which indicates that the reason for the resonant oscillations in a
parked condition is the lack of aero-elastic damping. Some signs of a transient
resonant phenomena is seen in strong winds, with additional indication that it is
not triggered by waves, but the amplitude of the oscillations might be affected
by the wave loading.
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Sammendrag

Denne masteroppgaven undersøker mulige effekter fra ikkelinære bølgekrefter på
en bunnfast offshore vindturbin. De resonante fenomenene “springing” og “ring-
ing” blir undersøkt med tanke på kjennetegn og årsaker som kan skape dem.
Videre blir muligheten for at de inntreffer i en bunnfast offshore vindturbin un-
dersøkt.

For å undesøke effekten av ikkelinære bølgelaster på en vindturbin, har bølge-
lastmodellen i beregningsprogrammet FAST blitt utvidet med en ny lastmodell.
Den nye lastmodellen er basert på bevarelse av energi i fluiden, og har blitt valgt
på bakgrunn av dens mulighet til å bli brukt med fullstendig ikkelinære innkom-
mende bølger, og dens mulige evne til å produsere laster som fører til ringing i
strukturen.

Den nye lastmodellen har blitt sammenlignet med eksperimentelle data for en
sylinder i regulære bølger, og også med den eksisterende lastmodellen i FAST,
som er Morisons ligning. De innkommende bølgene har i simuleringene vært en
bølgemodell basert på Fourier-rekker, utviklet av Fenton. Resultater viser at de
to estimerer like laster for den første harmoniske lastkomponenten, og at begge
underestimerer denne lastkomponenten sammenlignet med eksperimentelle resul-
tater. For den andre harmoniske lastkomponenten er det forholdsvis bra samsvar
mellom eksperiement og estimat fra begge lastmodellene, for sylindere med liten
diameter relativt til bølgelengden. En betydelig overpredikasjon er tilstede et-
terhvert som bølgelengden minker, og Rainey overpredikerer mest. Rimelig bra
samsvar er tilstede for den tredje harmoniske lastkomponenten for simuleringer
med Rainey, mens Morison underestimerere noe for denne lastkomponenten. Re-
sultatene synes å indikere at for slanke strukturer, er ikkelinearitetene i de innk-
ommende bølgene viktigere enn ikkelinære komponenter som oppstår som følge
av lastmodellen som brukes.

Simuleringer utført på en fullskala vindturbin med fungerende rotor, har vist små
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forskjeller i resultatene fra de to ulike lastmodellene når man studerer bevegelsene
til toppen av vindturbintårnet. Forskjellene mellom å bruke linære irregulære
bølger og fullstendig ikkelinære irregulære bølger er derimot større, selv om også
disse er små. Årsaken til de små forskjellene skyldes at når rotoren fungerer(dvs.
ikke er parkert) er det de aerodynamiske kreftene som dominerer tårntoppens
bevegelser.

Dersom rotoren parkeres, oppstår springing i alle undersøkte sjøtilstander. Am-
plituden i de resonante oscillasjonene gjennomgår enkelte ganger en voldsom økn-
ing, hvor amplituden nærmest dobles fra en oscillasjon til den neste. Dette er
den observerte oppførselen som er nærmest tidsforløpet til ringing. Ingen tilfeller
er observert der tidsforløpet er likt det klassiske ringingforløpet. Amplituden på
de resonante oscillasjonene har vist seg å være avhengig av både bølgemodell og
lastmodell.

Bølgeinduserte resonante oscillasjoner har ikke blitt observert når rotoren er virk-
som, noe som indikerer at oscillasjonene observert i parkert tilstand skyldes man-
gel på aero-elastisk demping. Små tegn til kortvarige resonante oscillasjoner er
observert i sterk vind, med videre indikasjoner på at de ikke skyldes bølger, men
at bølgelasten kan påvirke amplituden i oscillasjonene.
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1 | Introduction

The need for greener energy sources is pushing investments towards renewable
energy sources, e.g. wind power, solar power, wave power etc. According to
Sclavounos et al. (2007) wind is the fastest growing renewable energy source,
increasing with an annual rate of 25%. In 2007 a worldwide installed capacity of
wind energy was approximately 74 [GW]. The vast majority of this came from
onshore wind farms.

The growth of wind power is limited by the availability of areas where it is
possible to place a wind farm, as well as the visual impairment they make on
the landscape. Wind farms need large areas, with good wind conditions, but still
close to where the energy is needed e.g. big cities.

The possibility of placing wind turbines offshore removes most of the problems
with onshore turbines. A 5 [MW] wind turbine placed 30 [Km] from shore will
be beyond the horizon, and will also be subject to stronger and steadier winds
(Sclavounos et al., 2007).

However, the effect of higher order wave loads on offshore wind turbines has
been of some concern. More specifically the phenomena springing and ringing
might be important for both the maximum wave loads and for fatigue of the
structure. Springing is usually considered to be steady state resonant oscillations
in a structure, and ringing is transient resonant oscillations. These phenomena
are normally governed by nonlinear effects, since most structures are designed so
the natural frequencies lies well outside the range of linear wave forcing. Usually
a ringing response is triggered by very steep waves that are on the verge of
overturning or have already broken.

It is of interest to investigate the existing models developed in order to predict
ringing, and try and couple one of them with the framework of a wind turbine
design tool. If this can be performed, it will lead to better predictability of
resonant phenomena in offshore wind turbines.
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Chapter 1. Introduction

Further, it is interesting to investigate the effect of nonlinear loads on a turbine
and the differences between nonlinear calculations and the existing scheme of
linear theory.

The problem can be split into two parts; Formulating a load model that will be
able to predict the loads that produce ringing, and predicting the wave kinematics
so waves can be correctly modelled, also for the steepest waves.

The current practice in wind turbine simulation tools is to use linear irregular sea
with a stretching technique to obtain wave kinematics, or alternatively weakly
nonlinear regular waves to model incident waves. Highly nonlinear effects in the
incident waves might be important for the ringing phenomenon and for the wave
loads in general.

This thesis takes aim at implementing an improved load formulation into an
already existing wind turbine simulation tool. The load formulation will be com-
pared with the existing load formulation, and also with reports from experiments
with a cylinder in waves. The effect of the higher order wave forcing will also be
investigated, and if ringing is predicted, the phenomena will be further investi-
gated.

In this thesis the effect from breaking waves that induce a slamming load on the
structure will not be considered.

This Master thesis is a continuation of a project thesis I wrote last semester. In
the project thesis several aspects of hydrodynamic loads on a offshore turbine
was investigated. For completion it is necessary to repeat some of the topics
previously covered.

1.1 Outline of Thesis

It has been an attempt at to structure this thesis so that it follows a natural
progression of the topic, with increasing complexity.

Firstly the wind turbine structure is defined in terms of dimensions and weights.
The environmental loads that it can be subjected to are defined. The structure
is also defined in terms of which wave loads that dominates the force.

Secondly a short summary of how simulations on wind turbines are performed
are given. This is a summary of the same topic covered in my project thesis.

Thirdly a review of nonlinear effects are given, in terms of the origin of nonlinear
wave loads, and the possible responses in the structure of ringing and springing.
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1.1. Outline of Thesis

Fourthly improved load models are investigated, and a choice of one model to
be implemented in the open source wind turbine design-tool FAST is performed,
based on what is needed in order to predict ringing. Two improved wave models
are presented, which both have been implemented in FAST.

Fifthly the changes made to FAST are verified, before the load model is compared
with the present load model, and experiments on a cylinder in regular waves.
The comparison is performed over a range of kA and kr-values. The goal of such
simulations is to have a impression of the possible error present in the simulations.

Lastly a set of fully coupled simulations are performed. The main goal of these
simulations is to investigate the differences between the two load models in a re-
alistic load condition. Both linear irregular waves, and a fully nonlinear irregular
sea are used to generate the incident waves. A secondary goal is to investigate
any eventual resonant phenomena more in depth.

Throughout these steps I try to answer the following questions:

• Are there any significant differences between a linear incident wave model,
and a fully nonlinear wave model

• Are there any significant differences between the load formulation used to
calculate the wave force

• How good is the prediction of loads from the different wave models, when
compared to idealised experiments with a cylinder in waves

• How important are the nonlinear effects for the operation of a offshore wind
turbine

• Can the investigated structure experience the resonant phenomena ringing
and springing

3



2 | Problem Description

This chapter is devoted to defining the wind turbine and the environment it might
be subjected to.

2.1 Geometry

In this thesis, the structure of interest is a 5 [MW] reference turbine defined by
National Renewable Energy Laboratory(NREL). It is a much used turbine in
research due to it’s specifications being openly available.

The reference wind turbine consists of a monopile which is driven into the seabed,
the tower which sits on top of the monopile, the rotor which consists of the blades
which is fastened to a hub, and a nacelle which is the connection between the
tower and rotor. It is in the nacelle the generator is placed, which means that the
structure will have a significant amount of weight on the tower top. In this thesis
the boundary condition at the seabed will be assumed clamped. The dimensions
of the structure can be summarised by figure 2.1.

All the properties of the structure will not be discussed in detail in this thesis,
since they are not relevant for the wave loading and the structural response. The
most important features are summarised in table 2.1.

More detailed data can be found in Jonkman et al. (2009) or in Jonkman and
Musial (2010).
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2.1. Geometry

20[m]
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Figure 2.1: Dimensions of the wind turbine structure.
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Chapter 2. Problem Description

Rating 5[MW ]
Rotor orientation, configuration Upwind, 3 blades
Control Variable speed, collective pitch
Drivetrain High speed, multiple-stage gearbox
Rotor, hub diameter 126[m], 3[m]
Hub height 90[m]
Cut-in, rated, cut-out wind speed 3[m/s], 11.4[m/s], 25[m/s]
Cut-in, rated rotor speed 6.9[rpm], 12.1[rpm]
Rated tip speed 80[m/s]
Overhang, shaft tilt, precone 5[m], 5[◦], 2.5[◦]
Rotor mass 110, 000[kg]
Nacelle mass 240, 000[kg]
Tower mass 347, 500[kg]
Coordinate location of overall center of mass (CM) (−0.2, 0.0, 64.0)[m]

Table 2.1: Summary of wind turbine characteristics taken from (Jonkman and
Musial, 2010)

2.2 Axis Definition

The origin of the coordinate system is chosen to be at the still water level, at
the centre of the structure. The positive z-direction is upwards, and the positive
x-direction is downwind as shown in figure 2.1.

2.3 Environment

The focus of this thesis is not to investigate site specific loads on a turbine, but
to investigate of higher-order effects, so no exact location is used. However, it is
necessary to have input regarding the environment it might be subjected to.

To have some wave statistics, a location somewhere between Norway, Great
Britain and Denmark in what is known as the North Sea has been chosen. In
parts of this area the water is shallow, so a bottom fixed solution is possible. In
addition there is also a fairly short distance to major cities and power consumers,
so it is not an unrealistic placement of such a turbine.

When one describes the sea environment it is common to divide it into short-
term and long term sea states. Short-term is one sea state where one assumes
stationary significant wave height (Hs) and Peak period (TP ). According to
Veritas (2010) the duration of a sea state can be from 20 [min] to 3-6 [hours].
In order to say something about the wave conditions that the structure will be
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2.3. Environment

subjected to over time, long term statistics for the area is needed. Values from
the long terms statistics may be used as input to a short term wave statistics
model to simulate one sea state.

For short term statistics, irregular seas may be represented with a suitable wave
spectrum. The North sea is usually described with the JONSWAP spectrum,
defined mathematically as:

S(ω) = αg

ω5 e
− 5

4 (ωpω )4
γe
−

( ω
ωp
−1)2

2σ2 (2.1)

where γ is a peakedness parameter between 1 and 7, σ =
{
0.09, for ω ≤ ωp
0.07, for ω > ωp

and α is a constant related to the wind speed and fetch length, typically in the
region of α = 0.0081− 0.016 (Myrhaug, 2007).

This spectrum has been developed based on data from a relatively shallow area
close to the shore, and it has been developed to describe sea states that are not
fully developed (Myrhaug, 2007).

According to Veritas (2010) the mean value for γ is 3.3, but if this is not known
for a specific location, some relations exist that might be used:

γ =


5 for Tp√

HS
≤ 3.6

e
5.75−1.15 TP√

HS for 3.6 < TP√
HS

< 5
1 for 5 ≤ TP√

HS

(2.2)

This relations will be used in FAST to generate linear irregular sea.

Long terms statistics of Hs(Significant wave height) and Tz(Mean zero-crossing
period) in the area where the turbine is located, has been gathered from Hogben
et al. (1986), and is presented on an annual basis, with incident waves from all
directions, in table 2.2. The data has been gathered somewhere in the North-sea,
and is expected to be a reasonably realistic choice for the wave environment the
turbine might be subjected to.

This table is based on the zero crossing period, and not the peak period which
is used in the JONSWAP spectrum. The two can be related by the following
relation, taken from Veritas (2010)

Tz
TP

= 0.6673 + 0.05037γ − 0.006230γ2 + 0.0003610γ3 (2.3)
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Chapter 2. Problem Description

Hs[m]|Tz[s] < 4 4− 5 5− 6 6− 7 7− 8 8− 9 9− 10 10− 11 11− 12 12− 13 > 13 Total
0-1 19 86 94 41 10 2 - - - - - 252
1-2 3 49 121 99 40 10 2 - - - - 324
2-3 1 17 63 73 40 13 3 1 - - - 211
3-4 - 6 27 39 26 10 3 1 - - - 112
4-5 - 2 11 19 14 6 2 1 - - - 55
5-6 - 1 4 9 7 4 1 - - - - 26
6-7 - - 2 4 4 2 1 - - - - 13
7-8 - - 1 2 2 1 1 - - - - 7
8-9 - - - 1 1 1 - - - - - 3
9-10 - - - 1 1 - - - - - - 2
10-11 - - - - - - - - - - - 0
11-12 - - - - - - - - - - - 0
12-13 - - - - - - - - - - - 0
13-14 - - - - - - - - - - - 0
>14 - - - - - - - - - - - 0
Total 23 161 323 288 145 49 13 3 0 0 0 1005

Table 2.2: Wave Statistics for the North Sea, taken from (Hogben et al., 1986),
area 11.

By using this relationship with the mean value of γ = 3.3, then the ratio between
TP and Tz is given as:

Tp
Tz

= 1.2843 (2.4)

Which gives the following table for TP

Tz[s] 4 5 6 7 8 9 10 11
Tp[s] 5.137 6.421 7.706 8.990 10.274 11.558 12.843 14.127

Table 2.3: Peak periods of the observed sea states

The waves and the local wind is considered to be uncorrelated, but some kind
of relationship must be used. It is for instance unrealistic with large waves, and
low wind speed. Here it is possible to utilise the values for sea states and the
corresponding wind in the North Atlantic ocean given in Faltinsen (1990), and
reproduced in table 2.4. This is not in the same area as the wave statistics have
been gathered from, so care should be used when utilising it.

TM is the modal wave period, which is equal to the period of the peak in the
wave spectrum, i.e. TM = TP . The mean sustained wind velocity is given at 19.5
[m] above the sea surface, to convert to another amplitude Ht2, the following
relation can be used(Faltinsen, 1990):

V2 = V1(Ht219.5) 1
7 (2.5)
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2.4. Natural Frequencies of Structure

Sea State Range Hs [m] Mean Hs [m] Range TM [s] Most prob. TM [s] Mean Sust. wind vel.[kn]
0-1 0-0.1 0.05 - - 3
2 0.-0.5 0.3 3.3-12.8 7.5 8.5
3 0.5-1.25 0.88 5.0-14.8 7.5 13.5
4 1.25-2.5 1.88 6.1-15.2 8.8 19
5 2.5-4 3.25 8.3-15.5 9.7 24.5
6 4-6 5 9.8-16.2 12.4 37.5
7 6-9 7.5 11.8-18.5 15 51.5
8 9-14 11.5 14.2-18.6 16.4 59.5

Table 2.4: Annual sea state occurences in the North Atlantic, reproduced from
Faltinsen (1990)

The main purpose of table 2.4 is to obtain some relationship between the wind
speed and the sea state. This will be used in chapter 10 to run realistic load
cases on the turbine. By comparison it appears to be some difference in the
range of TP for the wave heights, with the data in table 2.2 shows somewhat
lower periods (Note that the period in table 2.2 is with the mean zero crossing
period, so comparison needs to be done with the periods calculated in table 2.3).

This means that the two tables are not totally compatible with each other, so
care should be taken when utilising table 2.4 to obtain wind speeds for the data
in table 2.2. Nevertheless, since the the reported range of TP in table 2.4 contains
elements of the data in table 2.2, the reported relations between sea state and
wind speed will be used. It is believed that the wind speeds at the chosen location
will be lower than the reported values, since the wind speed is gathered from the
North Atlantic Ocean and the turbine is placed in the north sea, reasonably close
to shore. This means that using the relationship between waves and wind in table
2.4 will be conservative.

2.4 Natural Frequencies of Structure

The natural frequencies of the structure, can give valuable information of the
sensitivity of the structure to wave loading. If for instance the natural frequency
of the tower is close to the wave frequencies, it might experience large deflections.

The open source wind turbine design tool FAST will be used to calculate the
natural frequencies of the structure. For the theory on the workings of how FAST
does this, the reader is referred to the user guide Jonkman and Buhl (2005).

The rotor speed will affect the natural frequencies of especially the blades, but
other coupling effects might also occur. Therefore, in order to investigate the
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Degree of freedom Natural Frequency [Hz]
1st tower side-to-side bending mode DOF 0.2764
1st tower fore-aft bending mode DOF 0.2800

1st Blade Collective flapwise 0.6955
1st Blade Asymmetric flapwise pitch 0.6690
1st Blade Asymmetric flapwise yaw 0.6660

1st Blade Collective edgewise 3.6227
1st Blade Asymmetric edgewise pitch 1.0891
1st Blade Asymmetric edgewise yaw 1.0787

2nd Blade Collective flapwise 2.019
2nd Blade Asymmetric flapwise pitch 1.8845
2nd Blade Asymmetric flapwise yaw 1.9326

2nd tower side-to-side bending mode DOF 2.3562
2nd tower fore-aft bending mode DOF 2.3965

Nacelle yaw DOF 6.1344
Drivetrain 0.6174

Table 2.5: Results of eigenvalue analysis(frequencies are undamped)

basis of the structure, the rotor speed is set to zero. The natural frequencies of
the degrees of freedom are reported in table 2.5

The bending modes for the blades are defined with respect to the local structural
twist. That means that the mode shapes twist with the blade, are given in three
dimensions and will generally not lie withing a single plane. Therefore a pure
flapwise deflection of the blade will lead the tip to deflect both in the edgewise
direction and in the flapwise direction. Thus, there will be natural frequencies
relating these motions for a pure flapwise/edgewise bending.

By blade assymetric flapwise/edgewise pitch/yaw it is meant that these blade
asymmetric modes will couple with the nacelle yaw and pitch motion, i.e the
tower top deflection.

Since tower and support structure are isotropic, the source of the difference be-
tween the side-to-side and front-to-aft could be either coupling between the blades
and the tower, or the fact that the mass of the rotor is not at the centre-line.

The results calculated here might be validated against the results obtained as
part of a major validation project in Jonkman and Musial (2010), because the
structure is the same as in their study and also one of the solvers studied there
has been used. By comparison with Jonkman and Musial (2010, figure 6) the
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results seems quite similar, which is a clear indication that the solver has been
used correctly.

By comparing with the long term statistics in table 2.2 it is observed that all
frequencies are well outside the frequency range of most incident waves. This
means that the natural frequencies should not be significantly excited by linear
wave forces. The natural frequencies of the tower should however be within
the range of second or higher order sum forces. This is an indication that it is
important to investigate how the turbine behaves when nonlinear wave loads are
taken into account.

2.5 Theoretical Basis

The governing equation for the motion of water is Navier-Stokes’ equation. This
equation has no general analytical solution, and to solve it directly using numerics
is very time consuming, and also needs large computer resources.

Hence it is common to assume an incompressible, irrotational and invicid fluid,
which is called an ideal fluid. This reduces the governing equation of the fluid
domain to the continuity equation, and conservation of momentum. For com-
pleteness some aspects of the basic theory is covered here, but for a thorough
treatment the reader is referred to e.g White (2008) or Newman (1977)

The velocity V = (u, v, w) = (u1, u2, u3) must satisfy the two mentioned equa-
tions, written as (Einstein notation is used throughout this section where it is
convenient, meaning that a repeated index implies summation over all indexes):

∂ui
∂xi

= 0 (2.6)

ρ
∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ 1
ρ
Fi for i = 1, 2, 3 (2.7)

It is possible to define a mathematical function which we call velocity potential

φ = φ(X, t) where X = (x, y, z) = (x1, x2, x3) (2.8)

The velocity potential is defined as follows:

∂φ

∂xi
= ui (2.9)
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By using the definitions above in the continuity equation, eq. (2.6):

∂ui
∂xi

= ∂

∂xi

∂φ

∂xi
= ∂2φ

∂2xi
= 0 (2.10)

This is the Laplace equation which describes the conservation of mass for the
fluid domain. In vector notation it reads :

∇2φ = 0 (2.11)

Laplace’s equation governs the solution in the fluid domain, and the theory of
ideal fluid flow is usually called potential theory, named after the velocity poten-
tial φ. By using the velocity potential to express the velocities in Euler’s equation
(eq. 2.7), and integrate over the spatial coordinates, it is possible to show (see
Newman (1977) ) that it reduces to:

∂φ

∂t
+ 1

2( ∂φ
∂xj

)2 = −1
ρ

(p+ ρgx2) + C(t) (2.12)

Equation 2.12 is more commonly known under the name Bernoulli’s equation and
is a relation between the pressure, and the velocity potential in the fluid. When
the pressure in the fluid is known, forces can be found by integrating the pressure
over the area, and since φ is a function of t the time variation of the forces can
be found.

This method is by far the most utilised way to obtain the forces on a body, but
there exists another way, which takes conservation of energy in the fluid as a base
for force calculations.

In order to satisfy the physics of what is happening on the boundaries of the fluid
domain, a set of conditions must be imposed on the boundaries. The physical
conditions that needs to be satisfied are:

1. No flow through an object that is moving or is stationary in the fluid

2. No flow through the seabed

3. Fluid particles on the surface, stays on the surface

4. The pressure on the sea surface is constant and equal to the atmospheric
pressure p0

The mathematical description of the first item means that the velocity normal
to the surface needs to be the same velocity as the surface itself has, i.e.

∂φ

∂n
= U · n on SBody (2.13)
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U = (Ux, Uy, Uz) = (U1, U2, U3) is the velocity of the structure in the principal
directions (x, y, z) of a point on the structure. The normal vector n = (n1, n2, n3),
has different conventions, some use the convention of it pointing into the fluid,
and others pointing into the body. Throughout this text the definition is that it
is pointing into the fluid domain, unless otherwise stated.

The second boundary condition follows straight from the first, except that the
seabed is not moving.

∂φ

∂n
= 0 on SSeabed (2.14)

The third condition is usually called the kinematic free surface condition and
can be described mathematically by the following (see e.g. Newman (1977) or
Faltinsen (1990) for derivation).

Let ζ(x, y, t) be the free surface, then the following condition must be satisfied:

D(z − ζ)
Dt = ∂ζ

∂t
+ ∂φ

∂x

∂ζ

∂x
+ ∂φ

∂y

∂ζ

∂y
− ∂φ

∂z
= 0 On z = ζ (2.15)

The last boundary condition can be obtained by utilising Bernoulli’s equation for
the pressure, and setting that equal to the atmospheric pressure on z = ζ,

− 1
ρ

(P − Pa) = ∂φ

∂t
+ 1

2(∇φ)2 + gz = 0 on z = ζ (2.16)

This is the exact dynamic free surface condition, to be satisfied on the free surface.

In marine hydrodynamics, these boundary conditions are where the problems
stems from, the equations are nonlinear, and must be applied on the unknown
surface z = ζ. The process of obtaining a velocity potential that satisfy all
boundary conditions exactly is very difficult, but some techniques exists that
makes the problem more manageable. This topic will be further discussed in
section 4.1.

Laplace’s equation is linear, which is important, because this makes it possible
to create the total solution as a sum of solutions to different sub-problems. The
solution is then usually made up of two contributions: The diffraction, where the
incident waves and the diffraction flow satisfy the impermeability of the body, and
the radiation where the structure is forced to oscillate, and it creates radiating
waves.
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Figure 2.2: Relative importance of mass, viscous drag and diffraction forces,
reproduced from (Faltinsen, 1990).

2.6 Load Regime

The last section stands as the theoretical introduction to the equations that
governs the problem. In this section simple engineering approximations is used
to gain some insight into the load regime such a wind turbine might be subjected
to.

To obtain some initial information about which kinds of loads that are domi-
nating, it is possible to look at the ratio between wave length(λ) and cylinder
diameter(D), in addition to the ratio between wave height(H) and cylinder diam-
eter. Figure 2.2 is reproduced from Faltinsen (1990) and shows where the various
components of wave forces dominates. The ratio λ/D ≈ 5 is the usual border
between the long wave length regime and the diffraction regime.

To obtain the wavelength from this it is possible to utilise the linear dispersion
relation (equation 2.19), along with the definition of the wave number k and wave
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Figure 2.3: Classification of structure using realistic wave conditions.

frequency ω.

k = 2π
λ

(2.17)

ω = 2π
T

(2.18)

ω2

g
= ktanh(kh) (2.19)

The last equation is the linear dispersion relation for finite water, h being the
water depth in meters. A bit of algebra produces the following implicit equation
for the wave length at a water depth of 20 [m]:

λ = gtanh(2π
λ

20)T
2

2π (2.20)

By solving this with an iteration process, it is possible to obtain the wavelength
of a linear wave with wave period T .

With the values for TP from table 2.3, and also the wave heights from table 2.2
the two ratios have been plotted in figure 2.3.
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From the peak frequency plots it appears that all waves gives λ
D > 5. However

in an irregular sea state, there also exists waves that have a smaller period than
the peak frequency, so the structure will also be subjected to even shorter waves,
which will have λ

D < 5. It is however noted from the wave statistics that there
are relatively few sea states with such a low period. In addition the significant
wave height is also quite small which indicates that forces should be small. It is
thereby assumed that a long wave approximation is valid, and the structure will
be dominated by mass forces.

A structure in the long wavelength regime is beneficial from a force calculation
point of view. This is true, since the wavelengths are much longer than the
diameter of the structure, the incident waves will be more or less unaffected by
the structure.

This simplification means that it is not necessary to model the wave-structure
interaction that distorts the free surface, since it can be assumed that this does
not happen. The forces on the structure can then be found by integrating the
pressure in the waves as the structure was not there. In addition there comes
a force contribution from the diffraction potential which the structure sets up
to ensure impermeability. If these assumptions are used to find the solution to
a cylinder in linear regular waves, it will result in the inertia term in Morison’s
equation which is the current way of calculating wave forces in wind turbine tools
for bottom fixed turbines.
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3 | Simulation Tools

The art of performing accurate simulations on offshore wind turbines deserves a
small introduction. In this chapter a resumé of special aspects of a wind turbine
is given.

3.1 Coupled Nature of Wind Turbines

For secure operations of any structure, it is important that the environment can
not significantly excite any part of the structure at it’s natural frequency. If a
structure is constantly excited at it’s natural frequency it may collapse, like the
widely known Tacoma Narrows Bridge accident.

The wind turbine is in that aspect no different, as system of different components,
each with it’s particular weight and stiffness causing a range of natural frequen-
cies in the structure. The difference between a wind turbine and other offshore
structures, is the highly coupled nature of the wind turbine. An example might
be that large and fast oscillations of the tower will produce loads at the blade
root, and alter the loads on a blade from the incident wind. This is also true the
other way, where large oscillations of the blade may cause resonant oscillations
in the tower.

For onshore wind turbines these possible effects are recognised, and design tools
are labeled as “Aero-servo-elastic” codes, meaning that they use a fully coupled
system to incorporate effects from the aerodynamics, the control system and the
structural response to the applied loads. In an offshore environment there is an
additional load contribution from the sea, hence a simulation of such a turbine
would necessary need a fully coupled “Aero-hydro-servo-elastic” simulation.

Around the year 2004 the IEA-Wind (International Energy Agency - Wind) recog-
nised that there was a growing interest in offshore wind turbines, along with big
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challenges needed to be solved in order to have a safe development of turbines
located offshore. In order to gain knowledge and develop new technology, IEA-
Wind approved the startup of annex 23 (Jonkman and Musial, 2010). One of
the main purposes of this task, was to compare different solvers so the coupling
effect between the various elements of the turbine could be understood. This was
done in a subtask called OC3 - Offshore Code Comparison Collaboration. The
effort has been continued into a new task, including code comparison for more
advanced structures, called OC4.

OC3 is compromised by four phases, with a different structure to be compared
in each. Starting with a rigid foundation monopile in phase I, continuing with
a flexible foundation in phase II, a floating tripod turbine in phase III, and a
floating spar-like wind turbine in phase IV.

For phase I, which is the structure of interest in this thesis, all solvers used Mori-
son’s equation with linear incident waves with the possibility for using various
stretching methods. In later phases the ability to use stream theory has been
included in some codes, so it can be assumed that this is also valid for bottom
fixed turbines. For details regarding stream theory see e.g. Dean and Dalrymple
(1984).

OC3 is by no means a complete overview of what theories the solvers use, but it is
a good indication of what seems to be the established standards for calculations
on offshore wind turbines.

When solving problems of motion, there are two different approaches possible;
solving the motion in the frequency domain or in the time domain. The first
possibility means that the solution to the problem is assumed to be steady state.
This makes it possible to separate the time dependence of the problem, from the
frequency of the applied loads. The oscillation frequency of the solution is then
the same as the frequency of the applied load. This approach is much utilised for
the motion of different offshore structures, meaning that several well developed
tools for such calculations exists. The downside of the technique is that one
assumes that the solution is steady state, so the information about transient
events are not included.

The other approach is to solve the problem in the time domain. For this approach
there is not placed any limitation on the solution, but it needs to be found by
marching forward in time. If properly implemented, it will simulate transient
events, nonlinearities in the response and loads etc.. The solution will naturally
be more like a real world situation. The downside of this method is the increased
time spend on performing a simulation.

According to Cordle and Jonkman (2011) frequency domain tools has been used as

18



3.1. Coupled Nature of Wind Turbines

a proof of concept, to show that floating offshore wind turbines could be designed
so that the natural frequencies are outside the range of wave forcing. However,
as the following quote from the paper states, the technique is not acceptable in
a realistic design tool:

“ ...Frequency-domain calculations, however, also have important limitations.
They cannot capture nonlinear dynamic characteristics and cannot model tran-
sient loading events — both of which are important for wind turbines because
the nonlinear dynamics introduced through transient events and control system
actions are significant for loads analysis. ” (Cordle and Jonkman, 2011, page
1)

It is concluded that the solver to be used in wind turbine analysis needs to solve
the problem in the time domain. Regarding nonlinear wave effects, the need for
a fully coupled simulation in the time domain is advantageous, since it means
that as long as the forces from the waves are properly modelled, the different
nonlinear effects will be taken directly into account in the equation of motion.
This means that the global effect on the turbine from the waves are accurately
modelled, given that one manages to describe the forces accurately.

Common for all solvers in OC3 is that the possibility of nonlinear loads from
the waves are not completely taken into account. Morison’s equation will predict
higher order loads, if nonlinearities are present in the incident waves, or if inte-
grated to a moving free surface. Since the solvers allow for stretching to the free
surface, the current load formulation will provide some weakly nonlinear wave
loads. However, since linear incident waves are usually derived assuming kA to
be small, so that all terms dependent on (kA)2 are dropped, they depend on a
small wave steepness in order to be accurate. For steep waves this is not sat-
isfied, so linear waves will fail to accurately predict wave loads for the steepest
waves. Marino et al. (2013) has investigated the difference between the loads
from a linear incident wave, and a fully nonlinear incident wave. They find large
differences between the two in steep incident waves.

When it comes to the load formulation, there also exists alternatives to Morison’s
equation which contains higher order correction terms to increase the accuracy of
the load calculations. The effects of using more accurate wave and load models
are uncertain. Through experience gained in my project thesis, it was found
that the aerodynamics seems to be more important for the motion than the wave
loads. An improved wave load model might then not have such a large effect for
a running turbine. This is one of the aspects this thesis tries to address.

In appendix A a small introduction to Morison’s equation and wheeler stretch-
ing are given. It is noted that FAST uses a formulation of Morison’s equation
that takes the relative velocity between the structure and the water particles
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into account. It also implements a term that gives added mass loads from the
acceleration of the structure. The implementation can be written as:

dF = ρπ
D2

4 (1 + CA)dzax − ρCAπ
D2

4 dzU̇x + ρ

2CDDdz|u− Ux|(u− Ux) (3.1)

Where u is the horizontal velocity of the water particles, U̇x is the local structure
acceleration in and Ux is the local structure velocity. CA is the added mass
coefficient, CD the drag coefficient.

It can be shown by writing the drag term as a Fourier series, that the drag term
will include odd harmonics ( ω, 3ω, 5ω,...) and is thereby a source of nonlinear
forcing.

The procedure of stretching the kinematics, so one can integrate the the instan-
taneous free surface is in reality a nonlinear extension of the linear theory. This
is because an integration to a moving free surface will cause second order loads,
a feature that is shown analytically for a linear incident wave, wheeler stretching
and forces by the inertia term in Morison’s equation, in appendix A. The result
from this derivation is given in equation 3.2:

F = ρπr2(1 + CA)ω2 ζA
k

cos(ωt) + ρπr2(1 + CA)ω2 ζ
2
A

2kh sin(2ωt) (3.2)

By virtue of the current practise of stretching the kinematics, wind turbine solvers
includes some nonlinear wave loads. However, it is important to see how these
terms compare to the higher order forces if a more accurate load model is used.
Because the interest is in how the nonlinear wave loads affects the global system,
these comparisons must be performed within the fully coupled framework.
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Since this thesis focuses on nonlinear effects on offshore wind turbines, it is of
interest to investigate where the nonlinear effects come from, and what the effect
on the structure might be. In this chapter a review the phenomena springing and
ringing is performed, along with an introduction into nonlinear effects.

4.1 Higher-Order Effects

As discussed in section 2.5 the governing equation for the fluid flow is Laplace’s
equation, which is a linear equation. That would usually mean that it is simple
to solve. However, the boundary condition on the free surface is nonlinear. This
means that it will cause nonlinear effects in the solution for a velocity potential
that satisfies both Laplace’s equation and the prescribed boundary conditions.
Due to the fact that it is nonlinear and valid on a unknown position it is not
easily solved, hence a simplification is usually introduced.

To overcome the nonlinearity introduced by the boundary condition, a common
approach is to replace the problem with a set of equations that are linear. The
approach will be described shortly here in order to obtain a basic understanding
of nonlinearities.

The first step is to use a perturbation technique. Here we assume that the solution
can be written as a power series of ε = kζA, shown here for the velocity potential
and the free surface elevation:

φ = φ1ε+ φ2ε
2 + φ3ε

3 + ...

ζ = ζ1ε+ ζ2ε
2 + φ3ε

3 + ...
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Chapter 4. Nonlinear Effects

Where ε = kζA is the wave steepness, which must be assumed to be small for this
to be valid (e.g. the series converges). The classical assumption in a perturbation
approach is that the wave amplitude is much smaller than all other length scales.
ε will then be a measure of the nonlinearities in the problem (Greco, 2011).
As the order of ε is increasing for each term, the order of the wave amplitude
dependence will also increase for each term. When talking about higher order
terms, it is usually referred to terms which are dependent on (kζA)n, or just ζnA,
where n > 1. An mathematical effect of this procedure is that for each order,
another harmonic will be introduced, so that by the order n the solution will
contain a load contribution which oscillates with the nth harmonic of the base
frequency(e.g. the frequency of the incident waves).

Still we do not know the position of the free surface elevation where the boundary
condition is to be satisfied. To overcome this problem a Taylor expansion can be
used to transfer the free surface boundary condition from the free surface to the
mean sea level, i.e z = 0.

φ(x, y, ζ, t) = φ(x, t, 0, t) + ζ(∂φ
∂z

)z=0 + 1
2ζ

2(∂
2φ

∂2z
)z=0 + ... (4.1)

When using the Taylor expansion we express the needed quantities at the free
surface by their value at the z = 0. In this way the position where the boundary
condition must be satisfied is constant, and thereby it is possible to find solutions.

Further by substituting the perturbation series into the resulting expression, we
will end up with a set of linear equations for the boundary condition. The first
equation is a homogenious equation, and when solved it gives the first order/linear
solution to the problem. The second equation is inhomogenious and needs the
solution to the first order potential in order to be solved, and so on for each
successive term. This tells us that the linear solution does not depend on the
solution of the higher order potentials, but all the higher order potentials depend
on the solutions to all the lower order potentials.

The nonlinear boundary value problem has by the introduction of a perturbation
series and a Taylor expansion ended up as a linear boundary value problem for
each potential in the perturbation series. This makes it possible (at least in
theory) to find a solution to the velocity potential accurate to any given order.

The disadvantage of this solution scheme is that the equations become more al-
gebraically advanced, which leads to increasing difficulty in finding the analytical
solution to the higher order terms.

Since the governing equation of the problem(Laplace equation) is linear, it means
that the velocity potential for each order is a sum of the potential from incident
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4.1. Higher-Order Effects

waves, the potential the structure sets up in order to enforce impermeability and
the potential generated by oscillations of the structure. This means that nonlinear
loads can originate from the incident waves, the presence of the structure in waves
or the motion of the structure.

The nonlinear analytical solution to incident waves, based on a systematic power
series expansion in the wave amplitude, is called a Stokes expansion. These waves
satisfies the boundary conditions better than a linear incident wave. Newman
(1977) notes that already by including the second order corrections to the free
surface elevation, the wave obtains an appearance closer to what can be observed
in nature.

The biggest uncertainty with this procedure is the convergence of the perturba-
tion approach. If this converges then each successive term will be smaller than
the previous, and the sum will converge to a given value. When dropping terms
of say order εn it is certain that all dropped terms are small and only a small
error is introduced. If on the other hand the power series diverges, then the series
will not tend towards a given value, and the whole procedure is invalid.

The question of diverging in the Stokes expansion is important, as it will be
shown, ringing is believed to be caused by steep waves. These waves will contain
significant nonlinearities, which may not be represented suitably by a series so-
lution. According to Rainey (1995a, Appendix B) the stokes expansion seems to
have diverged for incident waves once the wave height is of comparable size to the
structural diameter. For the case of offshore wind turbines in steep waves it might
then be questionable if higher order load formulations based on a conventional
perturbation technique will give accurate forces.

Regarding the nonlinear forces on a structure, they are really a result of several
factors. The force on a structure might be found by integrating the pressure
over the surface, and the pressure can be found from Bernoulli’s equation. This
equation contains one linear term in the velocity potential, and one term with
the square of the potential. The first source of nonlinear forces is then the square
dependence on the first order potential, which causes second order effects. The
next source is the pressure from higher order potentials, which causes both forces
dependent on the same order as itself, and also forces of the squared order of
itself.

When the body moves, it will modify the pressure over the surface of the struc-
ture. Since the motion of the structure is in turn dependent on the pressure, it
is clear that when the structure is allowed to move, a higher order dependence is
present.

The last source mentioned here is a varying wetted surface. This means that
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when integrating the pressure over the free surface, the surface is dependent
on the incident wave elevation. This will lead to a higher order term, since the
pressure is dependent on the incident waves and so is the integration limits. Other
sources of nonlinear effects might exist, but it is believed that the mentioned ones
are the most important for a general structure.

For a bottom fixed wind turbine, very small deflections are expected at the free
surface intersection. This is mainly due to the relatively short distance to the
seabed where the structure is fastened, and the stiffness of steel. Simulations
performed in chapter 10 shows maximum deflection of the tower top of ≈ 0.6[m]
in the most severe sea states. With such small deflections at 90[m] above the
mean sea level, even smaller deflections are present at the mean sea level. This
means that the motion of the structure can be neglected when the kinematics of
the incident waves are calculated.

When it comes to nonlinear effects from the higher order potentials, it is believed
that the most important nonlinearities are in the incident waves, because the
structure can be considered slender and only small contributions should originate
from it’s presence.

The effect of a changing wetted surface is currently enabled through the ability
to stretch the wave kinematics to the instantaneous free surface elevation.

When it comes to the potential effect of the nonlinear loads on the structure, it
is mainly two phenomena of interest for a wind turbine; Springing and ringing.
Common for both is the possible lack of ability to accurately predict them in the
existing design tool. The two following sections will review the two phenomena,
and investigate if the structure can be prone to these effects.

4.2 Springing

Springing is commonly defined as steady state resonant oscillations. The interest
here is to investigate if the waves can cause steady state resonant motion in the
structure.

As earlier stated, offshore structures are usually designed so that the natural
frequency lies well outside the range of linear wave forcing. This means that
resonant oscillations usually are the result of higher order forces. Springing is
often contributed to second order loads, since these can be large enough to be
significant all the time.

In this thesis the term steady state will be used slightly loosely; with steady state
resonant oscillations it is meant oscillations where the frequency is at the natural
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frequency, but the amplitude can vary. The oscillations will naturally need to
have a start and a finish, so they are not steady state in the term of infinite
duration. However, for the oscillations to be steady state it is assumed that they
are present for a long time, and that they do not show a clear decay pattern from
the start as a transient event would. The reason for such a definition is that it is
of interest to study how the turbine behaves in irregular sea. Naturally the load
on the structure will not be steady state, and so the response of the structure
can never obtain a truly steady state oscillation where the amplitude is constant,
and the oscillations goes on indefinitely.

The reference turbine studied in this thesis, has as shown a natural frequency
outside the range of linear wave forces. This is quite normal, but it also indicates
that it can only be excited by higher order sum-frequency forces. This makes it
important to accurately model such forces, in order to determine if the structure
can be prone to springing. With the natural frequency of the first bending mode of
approximately 0.28 [Hz] it is believed that the structure might in fact experience
springing.

4.3 Ringing

Sometime around the end of the 1980’s, transient oscillations at the natural
frequency in some of the tension leg platforms (TLP), and monotower platforms in
the North Sea were observed. The phenomenon was named ringing. It appeared
that ringing occurred when the structure was interacting with very steep waves,
and the wave amplitude was of the same order as the radius of the structure
(Grue, 2002) (Faltinsen et al., 1995). The natural frequency of the structures
was approximately three times the frequency of the waves, leading to the belief
that it was caused by third order effects. The classical shape of a ringing event
is presented in figure 4.1

Since it was believed that the cause was due to third order wave effect, effort
was put into obtaining a theory capable of handle such non-linearities. One
such example made by Faltinsen, Newman and Vinje (Faltinsen et al., 1995).
They performed a perturbation technique to the third order for wave loads in
the long wavelength regime. Their technique is not following the standard way
of assuming wave height being small compared to all other length scales. Instead
they assumed that the wave height was of the same order as the cylinder radius.
Malenica and Molin (1995) presented a conventional perturbation technique to
the third order with the regular assumptions of wave height small with respect
to all other length scales. Rainey (1989) presented a force formulation based on
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Chapter 4. Nonlinear Effects

Figure 4.1: Classical shape of a ringing event, copied from Grue and Huseby
(2002).

slender body theory, but instead of pressure integration it is utilising conservation
of energy arguments.

Welch et al. (1999) investigated the response of a vertical cylinder in breaking
waves, and suggest that the phenomenon might be excited by impact from a
plunging jet or a splashing jet(see original paper for definitions on the types). In
Grue and Huseby (2002) it is documented that ringing in the form of a tuned
resonant build up occurred even for the moderately steep waves in an irregular
sea environment. They report that the wave induced resonant oscillations are
characterised by a resonant build-up during a time interval of the order of one
wave period. This is not compatible with an impact from the waves, which should
give the largest oscillation at the beginning. This means that there is in fact at
least two different phenomena that may cause transient resonant oscillations in
the structure; an impact like wave force from steep to vertical waves that excites a
wide spectrum of structural modes, and a higher harmonic wave load from waves,
causing a resonant build up of the oscillations. To further confuse the picture,
several papers, among others Chaplin et al. (1997) and (Huseby, 2000, part 3),
reports of observations of a secondary load cycle shortly after the load from the
wave crest when ringing is observed.

In this thesis ringing is defined as wave induced transient resonant oscillations in
a structure, so both oscillations caused by a wave impact and those caused by
higher harmonic wave forces are considered as ringing.

The effect of a wave slamming into a structure, contains the same mechanics that
gives rise to the phenomena called whipping in ships. Whipping is caused by an
impact in the bow or stern of the ship causes the hull girder to vibrate at it’s
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4.3. Ringing

resonant frequency. Since breaking waves are not considered in this thesis, little
attention will be given to ringing induced by a slamming load.

The secondary load cycle seems to have gained much attention in several papers,
and Grue and Huseby (2002) states that it might have an important contribution
to the build up of the resonant oscillations in the body. They also found some
indication that when a pronounced secondary load cycle is present, ringing occurs.

From experiments in moderate scale they report that the secondary load cycle
seems to appear if kr < 0.33 and the following criterion for the Froude-number.

FN = ωζmax√
gD

> ≈ 0.4 (4.2)

In the small scale experiments it appears if kr < 0.33 and 0.3 < kζmax. According
to the same paper, the secondary load cycle is more pronounced in single waves
than in regular waves, but is has also occurred in regular waves.

According to Chaplin et al. (1997) the secondary load cycle has an amplitude
of up to 8% of the main peak for the smallest cylinders, and up to 12% in the
case of the larger cylinder. Grue and Huseby (2002) reports that the peak of the
secondary load cycle seems to appear ≈ 1

4 wave period later than the peak.

In Rainey (2007), the ringing phenomenon is contributed to hydraulic jumps
travelling around the cylinder. When waves are steep enough, the two hydraulic
jumps seems to be created at each side of the cylinder. These ride the wave front
and crash into each other on the rear side of the cylinder, causing large negative
pressure forces and the reported secondary load cycle.

If ringing is solely caused by hydraulic jumps, it is not feasible to solve the problem
using a perturbation technique. This is due to the strong non linearities present
in hydraulic jumps of this kind (Rainey, 2007). In the conclusion of Grue and
Huseby (2002) it is recommended that further work on the subject of a secondary
load cycle should allow for a local breaking phenomenon.

It is difficult to say exactly if this kind of ringing is only a result of higher order
forces, if it is a combination of higher order wave loads and hydraulic jumps or if it
is solely due to these hydraulic jumps. If indeed the case that two local breaking
waves are the true cause of the phenomenon, then the current theories should not
be able to predict it. This is due to the fact that such an interaction needs to be
modelled by a wave-structure technique, which allows for fully nonlinear effects.

Tromans et al. (2006) have performed an in-depth review of the existing knowl-
edge about ringing and nonlinear loads on gravity based structures. They have
reviewed the load formulation by FNV, and also Rainey’s slender body theory.
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They conclude that neither of the two model the nonlinear force components ad-
equately. They also show that the nonlinearities in the incident wave field plays
an important role. Further they conclude that in the absence of a possibility
to accurately model both the nonlinearities in the incident wave field and the
wave-structure interaction, the single most important step is to incorporate the
best possible description of the incident wave field. Regarding the secondary load
cycle they state:

“ The rapid force reversals are, in large part, dependent upon the time taken for
the fluid to move around the column. This is independent of the incident wave
frequency and, consequently, the applied forces will not be well modelled by a series
expansion based solely on the harmonics of the incident wave motion. Indeed,
such an approach would be expected to give miss-leading results.” (Tromans et al.,
2006, page 101)

It appears then that the cause of transient resonant oscillations in the structures
can be caused by either of the three; Higher order forces, usually said to be above
third order, a breaking wave that hits the structure or the secondary load cycle
that occurs.

It has been some concern, if offshore wind turbines might be subjected to ringing
oscillations which may affect the maximum loads on the structure, and possibly
affect the fatigue as well. The progress made to understand the phenomenon on
gravity based structures, can more or less be transferred directly to the case of
wind turbines.

In DNV - Design of Offshore Wind Turbine (Veritas, 2011) it is stated:

“ For evaluation of load effects from wave loads, possible ringing effects shall be
included in the considerations. When a steep, high wave encounters a monopile,
high frequency nonlinear wave load components can coincide with natural fre-
quencies of the structure causing resonant transient response in the global bend-
ing modes of the pile. Such ringing effects are only of significance in combination
with extreme first order wave frequency effects. Ringing should be evaluated in the
time domain with due consideration of higher order wave load effects.” (Veritas,
2011, page 77)

It is thus clear that ringing must be accounted for in the design of offshore
wind turbines, by demand from classification societies. As the quote states, the
nonlinear wave load effect is considered to be important to the ringing response.

At only 20 [m] water depth, it is expected that the turbine might be subject to
breaking waves. A breaking wave that hits the turbine, giving large slamming
forces, can excite a broad range of frequencies. This kind of wave loads will
correspond to the type of loading studied in Welch et al. (1999) which caused
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Figure 4.2: Areas where secondary load cycle should occur based on Grue and
Huseby (2002).

ringing. So it is possible that wind turbine can experience ringing excited by
breaking waves. This type of ringing will not be covered in this thesis, but more
information on this topic can be found in e.g. Marino (2011), Marino et al. (2011)
and Marino et al. (2013).

The criteria of the secondary load cycle in Grue and Huseby (2002) is here used
as a criteria for when ringing could occur. This is chosen because it is not certain
if the secondary load cycle will occur in the simulations, and evidence suggest it is
important for ringing. So if it should have been present by the criteria established
by Grue and Huseby (2002) and it does not appear, then it can be concluded that
even better load models must be used.

If we investigate when the secondary load cycle occurs based on equation 4.2,
for a cylinder with diameter 6[m], and use the requirement that kr < 0.33, then
figure 4.2 can be created.

In the figure linear waves has been assumed, meaning that ζmax = H
2 , and that

the linear dispersion relationship is used to find wave number. The two uppermost
curves shows the maximum values of the significant wave height observed, taken
from table 2.2 (and transformed from Tz to Tp using relation 2.3 with γ = 3.3),
and the minimum value of ζmax necessary for a FN > 0.4 as stated in equation
4.2.
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The two lower curves show the line for kr = 0.33 and also the value of kr for a
given T . The two lower curves has it’s y-axis set on the right side of the figure,
and the left y-axis is for the upper curves.

The two areas filled, with the two shades of green, shows the areas where the two
conditions are satisfied independently (and real waves exists). What is observable
is that for all values of TP where there is registered wave amplitudes high enough
to satisfy equation 4.2, the wave number is also low enough to satisfy kr < 0.33.

Since the significant wave height and peak frequency of the sea state have been
used to compare with the needed wave amplitude, only a small proportion of the
waves will actually have an maximum elevation high enough to make FN > 0.4.
Hence it is more correct to say that in the filled area there is sea states which
may contain several waves that can cause a ringing response in the structure.
Also outside the filled areas there is a possibility, albeit slim, for waves that can
generate the secondary load cycle. This is because the the plot has been made
on the statistical parameters Hs and Tp.

As a rule of thumb, based on figure 4.2 it appears that the wave amplitude needs
to be of the same order as the tower radius for the secondary load cycle to occur.
This is in line with the first observations of ringing where it was noted that it
occurred when the wave height was of the same order as the structure’s diameter.

The natural frequency of the tower’s first bending mode is ≈ 0.28[Hz] as shown
in section 2.4. This is within the range of third order wave forcing, meaning that
the structure might be excited at it’s natural frequency by a purely higher order
load (i.e. not necessarily one that produces a secondary load cycle).

To summarise this section; Bottom fixed offshore wind turbines might possibly
experience ringing oscillations. The dimensions of the turbine, and the environ-
ment it is subjected to, seem to give the possibility for both ringing caused by
wave slamming, from a secondary load cycle or from purely higher harmonic load.

To investigate the occurrence of ringing in offshore wind turbines, a load model
and wave model that are able to better predict higher order terms are possi-
bly needed. In chapter 5 several alternatives for the prediction of loads will be
reviewed. In chapter 6 two wave models that will be used are presented.
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To extend the capabilities of FAST to better include higher order loads, several
possibilities regarding the loads have been investigated. For predicting ring-
ing response there seems to be mainly four approaches; Faltinsen-Newman-Vinje
(FNV), Malenica-Molin (MM), Rainey’s slender body expressions and Computa-
tional fluid Dynamics (CFD).

A brief presentation of the characteristics of the four is given, so a choice of
which model to use can be made. Further the chosen model is looked upon in
more detail, along with a comparison with the existing load implementation in
FAST.

5.1 Faltinsen - Newman - Vinje

Faltinsen, Newman and Vinje (FNV), have in (Faltinsen et al., 1995) developed a
procedure to take into account the third order loads from large waves. The basic
assumptions they have made are; infinite water, wavelength is long compared
to the cylinder diameter, and that the wave height is of the same order as the
cylinder diameter. The original paper considers regular waves, but the theory
has later been extended to include irregular waves in Newman (1996).

They argue that the usual linear velocity potential of an regular incident wave is
accurate to the third order if the dispersion relationship is written as:

ω2

g
= k[1 + (kA)2] (5.1)

An argument is made that in a regular perturbation analysis the wave amplitude
A is considered small. Not only to the wavelength λ, but also to the characteristic
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length scale of the structure. The waves of interest to ringing has however an
amplitude A of comparable size to the cylinder radius, and thus it is necessary
to reconsider the perturbation analysis under the assumption that A

r = O(1).

This theory is thus different from the regular long wave theory since it allows
for wave amplitude of comparable size to the cylinder radius. Because of this, a
trick they use is to decompose the solution into two sub domains; an inner and
an outer domain. In the outer domain a linear approach is valid, but in the inner
domain significant nonlinearities exists, which is associated with the boundary
condition on the free surface.

The solution of the velocity potential in the outer domain utilises the linear
solution to a cylinder placed in incident waves found by MacCamy & Fuchs.
Their solution is expanded to higher order under the assumption that kr << 1.

A similar approach is done in the inner domain, but a higher order potential is
introduced as a correction to include the nonlinear effects. Due to nonlinearities
related to the free surface boundary condition which the higher order potential
needs to satisfy, the usual approach where one uses a Taylor approach to transfer
the boundary condition to the plane z = 0 can not be used. They instead
perform a Taylor expansion around the free surface elevation of the linear incident
waves, meaning that the expansion is performed around a plane z = A ∗ sin(ωt).
This approach is unconventional, but is claimed to give convergence in the series
expansion.

In the paper, they have made the ad-hoc assumption that it can be used on finite
water depth if it can be assumed that pressure field in the free surface is not
significantly different from the case of infinite depth.

5.2 Malenica - Molan

In Malenica and Molin (1995) a classical perturbation technique has been carried
out to the third order, meaning (kA)3. The wave amplitude (or wave steepness)
is considered to be of order ε and the wavelength and radius of the structure
are unrestricted (of order 1). They assume a cylinder at a horizontal sea bed,
with water depth h. The free surface boundary condition is transferred to the
plane z = 0 in the usual way, and then the potential for the first three orders are
found. They do not set restriction on a long wave compared to the structure, so
these results are valid for all waves and structures, given the Stokes expansion
converges.
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5.3 Rainey’s Slender Body Expressions

Rainey has in several papers presented a slender body theory that extends Mori-
son’s equation. This not based on the usual approach of integrating pressure over
the surface, but on conservation of fluid energy. This development is done on the
basis of a paper by Lighthill (1979). Rainey’s arguments are presented in several
papers, for instance Rainey (1989) and Rainey (1995a). He argues that an ap-
proach where one considers conservation of fluid kinetic energy is more efficient
and require less knowledge about the flow. A simple 2D flow idealisation can be
used to calculate the forces on a section.

The basic assumption in his derivations is that the shape of the water surface
is unaffected by the presence of the structure, so that the the free surface can
be described as a “Wavy-lid” in the shape of the incident wave. In his words;
“This removes the free-surface degrees of freedom so the problem can be tackled
by classical energy arguments” (Rainey, 1989). This assumption is in line with
the classical long wave approximation where the presence of a slender structure
is assumed to not affect the incident wave. In the same paper he shows that
this approximation introduces errors of the third order in wave height, which is
located at the free surface. This choice of free surface can actually be different,
but this is merely the easiest choice. The important part is that the free surface
degrees of freedom are known.

Rainey argues that when compared to a regular perturbation technique this model
is accurate up to the second order with the error being of third order for the
limiting case of small diameter cylinders. The theory also includes a load at the
free surface which for a vertical cylinder will be of third order.

This process has not done a conventional expansion of the free surface to the
plane z = 0, which means that this process can handle any wave, contrary to
regular perturbation techniques where it is assumed that the wave height is small
compared to all other length scales. Important nonlinear effects in the incident
waves can be included in the force calculations since no requirements are placed
on the incident waves.

5.4 Computational Fluid Dynamics

An alternative is to use computational fluid dynamics (CFD) to calculate the force
on the structure from an incident wave. This will mean that the fluid domain is
divided into a number of elements, the proper boundary conditions are imposed
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and then the governing equation (Navier-Stokes) is solved for each point in the
domain for each time step. This method will solve the wave-structure interaction,
and solution is found in the time domain. This means that the solution of one
time step might affect the solution in the next time step. This solution will by
far yield the most accurate results, and gives the possibility of performing fully
nonlinear calculations. Computational fluid dynamics can solve all the three
potential causes for ringing; slamming, higher order loads or the secondary load
cycle.

The downside of CFD is that it is very time consuming, and might give unreliable
results if the user is not skilled in meshing and creating the model.

5.5 Rationale for Selecting a Model

When it comes to selecting a load model to extend calculations in FAST, besides
accuracy, one of the most important choices is how easy it can be implemented
into FAST. This means that the basic assumptions that FAST is working un-
der, should also be the same assumptions that the load model is based on. For
instance, will FAST generate the whole time series of the wave elevation and
the kinematics of the wave in the initialisation of the program, and are thereby
assuming that the free surface elevation is unaffected by the structure.

Considering accuracy and possibility to model highly nonlinear effects, a CFD
analysis is probably the best. CFD solution is the only one that should be able to
predict a heavy structure wave interaction leading to two small hydraulic jumps
travelling around the structure and colliding on the back. If this is indeed the
real cause of the secondary load cycle, then this seems like the only way able to
predict all aspects of ringing. However, the use of CFD is not feasible because
of the calculation flow in FAST as it is today. If one is to implement a CFD
calculation into the process, the free surface elevation of each time step, and it’s
interaction with the structure will influence the next, so that it is impossible to
initialise the whole free surface elevation at the beginning. This clearly breaks
with the how FAST works today, and means that lot of time must be spend on
rewriting the code to implement such a feature. Thus it is not practically feasible
within the scope of this thesis to perform such a work.

The FNV model is assuming deep water, but with the ad-hoc assumption that
it can be used on finite water if the pressure field is not significantly affected by
the sea bed. This assumption can not be assumed valid in the case of only 20 [m]
depth, and with wave heights up to (7-8) m. With the current problem, using
FNV will mean that it is applied outside the range of where it could be said to be

34



5.6. Detailed Investigation of Chosen Load Model

valid. Also the fact that this theory assumes a regular wave, developed by stokes
expansion, means that several highly nonlinear effects in the incident waves are
not accounted for. An example of the kind of nonlinearity not accounted for
would be the steep asymmetric waves.

MM’s approach is as mentioned to perform a regular perturbation technique. In
appendix B of Rainey (1995a) this technique is claimed to be diverging for the
case where the waves are at the same amplitude as the structural diameter. This
also utilises waves up to third order, so it might not take into consideration some
of the highly nonlinear effects in a real sea.

Rainey’s slender body expressions can handle any wave, as long as it is assumed
that the structure does not affect the wave elevation. This is the usual long wave
approximation, which is the one that FAST is presently using. The expressions
can be considered as an extension of the currently used Morison’s equation, which
means that it should be easy to extend the existing load model to this one.

Rainey’s expressions is the only model that can be easily coupled with FAST,
and can handle highly nonlinear waves, thereby making it the best candidate for
extending the load model in FAST.

When it comes to the possibility for predicting ringing, Tromans et al. (2006, p.
102) states that the high frequency force cannot be adequately modeled by the
present models (FNV and Rainey). However they state that the best available
solution seems to be Rainey’s equations, since these allow for the use of a fully
nonlinear wave model, allowing some nonlinear components in the wave to be
included.

The conclusion is to utilise Rainey’s expressions for the load and couple it with
nonlinear waves. It is not certain that this will be able to produce the load history
that is observed in experiment (specifically the second load cycle), but it seems
to be the best existing solution out there, which can easily be coupled with the
framework needed for wind turbine analyses.

5.6 Detailed Investigation of Chosen Load Model

As mentioned, the derivation of Rainey’s slender body expressions is based on
conservation of energy arguments. The derivation can be found in Rainey (1989).
It is quite difficult to follow, but the results he ends up with, partly summarised
in Rainey (1995a), are simple. The derivations will not be covered in detail, but
the basic assumptions needs to be discussed.
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As mentioned in section 5.3 the basic assumption in his derivations is that the
shape of the water surface is unaffected by the presence of the structure. This
is so that the the free surface can be described as a “Wavy-lid” in the shape of
the incident wave. In the case of a slender structure this is realistic, since the
structure will only set up a small diffraction potential which effect on the free
surface elevation may be neglected. The turbine of interest is already classified to
be mass dominated in the long wavelength regime in section 2.6. The assumption
of a “Wavy-lid” is not essential, it is merely the simplest choice. In the appendix
of Rainey (1995a) and in the main text of Rainey (1989), the error introduced by
the wavy-lid is investigated. When using conventional Stokes categorisation of
wave loads as first order, second order etc., where the order is dependent on the
wave amplitude, he states that the error introduced by the wavy-lid is of third
order.

The assumption of a slender structure leads to large errors if the structure is
in fact not slender. He states that if the wave length is shorter than about 10
cylinder diameters, it appears that the second order/second harmonic seems to
have serious errors. As seen in section 2.6 there are only observed a few sea states
where the peak period gives a wave length smaller than 10 cylinder diameters.

Comparison between slender body loads and diffraction loads is performed in
Taylor et al. (1992). They show that for cases where the wavelength is too short,
important contributions from the microseism effect, which is a non-slender effect,
is neglected by Rainey’s theory. Generally speaking, the use of a slender body
assumptions means that one is neglecting far field effects, such as the waves
generated by the structure.

The derivation gives the load from a potential flow on a slender structure, which
can be divided into five contributions:

• Force per unit immersed length

• Axial torque per unit immersed length

• Point loads at joints

• Point loads at surface intersections

• Point load at submerged ends

For an offshore wind turbine, with a constant circular cross section, there will be
no axial torque loads. This load can be thought of as a 2D example of the Munk
moment, which is present in all bodies with non-isotropic added mass (Rainey,
1995a). The case of a circular cross section has isotropic added mass, so no axial
torque should be present. There will neither be a point load at joints or loads
at submerged ends, since there are no joints in the structure and the end of the
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turbine is buried in the seabed. The terms which are not present for this kind of
structure will not be presented here, but can be found in Rainey (1995a).

The load on a submerged cross section is then given as:

dFI = ρ
πD2

4 [a − g]T + M[a + (l ·V′l)W]−M∂U
∂t

−2MΩWA + [(V′ + Ω)MW]T −M(V′ + Ω)WT

(5.2)

Where a is the acceleration vector including convective terms, M is the added
mass matrix, g is the gravitational acceleration vector, V ′ is the velocity gradient
matrix in the incident waves. U is the velocity vector of the center point of the
cylinder cross section, V is the velocity vector of particles in the incident waves, l
is a unit vector along the cylinder axis, W is the relative velocity between waves
and cylinder W = V-U, Ω is the matrix defined as Ωx = ω × x where x is
any vector and ω is the angular velocity of the structure. The suffixes A and T
denotes axial and transverse components.

According to Jefferys and Rainey (1994) the acceleration shall include the con-
vective terms. The same is used by Chaplin et al. (1997), Iwanowski et al. (2011)
and Tromans et al. (2006). The total acceleration for ax is given as:

ax = ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
(5.3)

Similar expressions for the other components in a = (ax, ay, az) are used.

According to Rainey (1995a), the first two terms agree with terms derived by
pressure integration independently by Manners in Manners and Rainey (1992).
The term M(l ·V′l)W is the axial divergence term, and a lengthy discussion of
the physical reason for the term is found in Manners and Rainey (1992). Here
it is sufficient to say that the term seems to be related to the rate of change in
added mass.

The third and fourth terms are extending the force to that of a moving cylinder,
where the first of the two are an added mass inertial reaction and the second is a
“negative centrifugal force” (Rainey, 1995a). If we assume that the yaw motion
of the wind turbine is negligible, then the fourth term may be dropped. From a
hydrodynamic point of view there is no force that creates a yaw motion, but, the
rotor may impose a yaw moment on the structure. However, since this is a steel
structure and it is considered clamped at the sea bed the yaw motion induced by
the rotor will be limited, hence it is safe to drop the this term.
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n
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α > 0

n′

n′
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l

t

α > 0

tan( ∂ζ∂x ) < 0
tan( ∂ζ∂x ) > 0

Figure 5.1: Definition of vectors and angles to be used in Rainey’s slender body
expressions. Case 1 is to the left and case 2 to the right.
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The last two terms terms will cancel each other out for a circular cylinder with
symmetric added mass.

The l-vector should be the instantaneous axis of the element. However to ease
the implementation, this has been set to be l = [0, 0, 1]. This can be done for two
reasons: The first is that this is a fairly stiff steel structure, with small deflections
at the tower top, thus deflections at the sea level are even smaller. The second
reason is that when FAST is utilising wave kinematics, all quantities have been
calculated at the undeflected position of the structure. This means that there is
already used an approximation of small deflections in FAST.

At the surface intersection the following force is present:

FSI = 1
2tan(α)[(t ·w)Mw − (t · (l×Mw))(l×w)] (5.4)

Where α is the angle between the cylinder axis and the surface normal of the
undisturbed wave, and t is a unit vector in their joint plane, normal to the
cylinder axis and pointing out of the fluid. The second term is zero for a case
of a vertical cylinder (Jefferys and Rainey, 1994). This has also been proved in
appendix B.3.

Figure 5.1 shows the definitions of the various vectors used in the expression. Two
different cases exists, defined by whether the wave crest has passed the centre
line or not. What is important to notice is that the different definitions of the
quantities.

The left side of the figure is to represent case 1, and the right side to represent
case 2.

The calculations will be performed in a local coordinate system where the waves
are propagating in a local x−direction (This is explained in details in appendix
C.1). Then the following can be used for the definitions of α and t.

For case 1, t = [−1 0 0], and α = tan−1( ∂ζ∂x ). For case 2 t = [1 0 0], and
α = − tan−1( ∂ζ∂x ). In section 5.7 it will be shown that since the two changes sign
asymmetricly, then the force will be the same for both cases.

According to Faltinsen et al. (1995) Rainey and FNV are consistent for the loads
proportional to A2 and A3, but a significant error exists for the term proportional
to A3. These slender body expressions predicts a force 1

8 th of the results of FNV
(Faltinsen et al., 1995).

In Rainey (1995b) there is developed an additional force called surface distortion
force, to account for the discrepancy between FNV and this theory. This can
be derived by assuming that the additional force is due to the rate-of-change of
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the energy stored in the surface distortion. However in Chaplin et al. (1997) it
is argued that this should not be included, since in the case considered in that
paper,the incident waves based on Stokes expansion should have diverged, so that
it is irrelevant to compare with these theories. Comparison between experiments
in the paper supports the view that this force should not be included in steep
waves, and so it is not used in the load model implemented in FAST.

The model can be extended to include viscous drag by adding the drag term from
the classical Morison’s equation. This has been added with the relative velocity
between the water particles and the structure. This force component on a section
is calculated as:

dFD = ρ

2CDD|V−U|(V−U)dz (5.5)

where V is the particle velocity in the incident wave, and U is the velocity of the
structure cross section.

To find the total force on the submerged part of the cylinder, the force is inte-
grated over the instantaneous wetted surface.

5.7 Comparing the Old and the New Load Model

In appendix A.1, the load components on the tower when linear incident waves
with wheeler stretching is used, and forces are calculated by Morison’s equation,
have been calculated analytically. To be able to compare the two load models,
the same technique is performed here to identify the load components.

In order to make the mathematics manageable, the structure is assumed to be
a perfectly stiff vertical cylinder that is present in long crested incident regular
waves. Th waves are propagating in the x-direction, with a mean water depth of
20 [m]. The incident waves are given by linear theory, but with the modification
introduced by wheeler stretching.

First it is appropriate to extend the terms in the load on a submerged section.
For a stiff circular cylinder the terms present is the following:

dFI = ρ
πD2

4 aT + M[a + (l ·V′l)W] (5.6)
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dFI =

ρ
πD2

4

∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z
∂v
∂t + u ∂v∂x + v ∂v∂y + w ∂v

∂z

0

 +

mx 0 0
0 my 0
0 0 0

 ∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z
∂v
∂t + u ∂v∂x + v ∂v∂y + w ∂v

∂z

0



+

mx 0 0
0 my 0
0 0 0

 (

0
0
1

 ·

∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z


0

0
1

)

uv
w


(5.7)

The fact that the cylinder is stiff means that the relative velocity is just the
velocities in the incident waves, and that the l-vector is always vertical. Since
the waves are propagating in the x-direction, all quantities including the velocity
in the y-direction are zero. Since the waves are long crested waves, it means
that there will be no variation in the y-direction as well, so all differentiation
with respect to y are zero. By performing the operations, introducing the said
properties of the velocities, the equation reduces to the following:

dFx = (ρπD
2

4 +mx)(∂u
∂t

+ u
∂u

∂x
+ w

∂u

∂z
) +mx

∂w

∂z
u (5.8)

This result is valid for all incident waves towards a stiff circular cylinder.

We see that the first term is just the Morison inertia loading, except that the
acceleration has included the convective accelerations. Morison’s equation is usu-
ally used without these, especially when a linear waves are used. This is because
the additional convective terms are non-linear and would produce a higher order
load. The last term is the axial divergence term, which according to Manners
and Rainey (1992) seems to be producing a load related to the rate of change in
added mass.

To compare with the existing calculations, a linear incident wave is introduced
with wheeler stretching. The wave profile of this is given as:

ζ = ζasin(ωt− kx) (5.9)

Then the velocity component in the x-direction is given as:

u = ωζA
cosh(k(z + h))

sinh(kh) sin(ωt− kx) (5.10)
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In z-direction:
w = ωζA

sinh(k(z + h))
sinh(kh) cos(ωt− kx) (5.11)

In quick succession the needed differentiated quantities are given as:

∂u

∂t
= ω2ζA

cosh(k(z + h))
sinh(kh) cos(ωt− kx) (5.12)

∂u

∂x
= −kωζA

cosh(k(z + h))
sinh(kh) cos(ωt− kx) (5.13)

∂u

∂z
= kωζA

sinh(k(z + h))
sinh(kh) sin(ωt− kx) (5.14)

∂w

∂z
= kωζA

cosh(k(z + h))
sinh(kh) cos(ωt− kx) (5.15)

Introducing the quantities into equation 5.8, the following is obtained.

dFx = (ρπD
2

4 +mx)ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx)+

(ρπD
2

4 +mx) ∗ ωζA
cosh(k(z + h))

sinh(kh) sin(ωt− kx) ∗ −kωζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx)+

(ρπD
2

4 +mx) ∗ ωζA
sinh(k(z + h))

sinh(kh) cos(ωt− kx) ∗ kωζA
sinh(k(z + h))

sinh(kh) sin(ωt− kx)+

mx ∗ kωζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx) ∗ ωζA
cosh(k(z + h))

sinh(kh) sin(ωt− kx)

(5.16)

In appendix B.1 the details of the simplification of equation 5.16 is performed,
with the end result given in equation 5.17.

dFx = (1 + CA)ρπD
2

4 ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt)+

(CA sinh2(k(z + h))− 1)ρπD
2

4 kω2ζ2
A

1
sinh2(kh)

1
2 sin(2ωt)

(5.17)

Where CA is the added mass coefficient.
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This force can be integrated to the free surface elevation, and since wheeler
stretching is utilised, the modified coordinates should be used. The first line in
eq. 5.17 is equal to the term that is integrated in appendix A.1, so it will not be
treated here.

The force from the second line will be given by:

F =
∫ ζ

−h
(CA sinh2(k( z − ζ

1 + ζ
h

+h))−1)ρπD
2

4 kω2ζ2
A

1
sinh2(kh)

1
2 sin(2ωt)dz (5.18)

F = ρπr2kω2ζ2
A

1
sinh2(kh)

1
2 sin(2ωt)

∫ ζ

−h
(CA sinh2(k( z − ζ

1 + ζ
h

+ h))− 1)dz (5.19)

The integral is solved in appendix B.2, with the total force from this term given
in eq. 5.20

F = ρπr2kω2ζ3
A

1
sinh2(kh)

( 1
16CA

1
kh

sinh(2kh)− 1
4(CA2 + 1)) cos(ωt)

+ρπr2kω2ζ2
A

1
sinh2(kh)

(1
8CA

1
k

sinh(2kh)− 1
2h(CA2 + 1)) sin(2ωt)

+ρπr2kω2ζ3
A

1
sinh2(kh)

(1
4(CA2 + 1)− 1

16CA
1
kh

sinh(2kh)) cos(3ωt)

(5.20)

The total integrated force on the structure, including the solution to the first line
of equation 5.17 is then :

F = ρπr2ζAω
2[ (CA + 1)

k
+ ζ2

Ak

sinh2(kh)
( 1
16CA

1
kh

sinh(2kh)− 1
4(CA2 + 1))] cos(ωt)

+ρπr2ω2ζ2
A[ (CA + 1)

2kh + k

sinh2(kh)
(1
8CA

1
k

sinh(2kh)− 1
2h(CA2 + 1))] sin(2ωt)

+ρπr2kω2ζ3
A

1
sinh2(kh)

[14(CA2 + 1)− 1
16CA

1
kh

sinh(2kh)] cos(3ωt)

(5.21)

For the component at the free surface intersection, the force is given as:
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FSI = 1
2tan(α)[(t ·w)Mw − (t · (l×Mw))(l×w)] (5.22)

The value of tan(α) has two different definitions, as shown in figure 5.1. From
geometry considerations it is clear that

|α| = | tan−1(∂ζ
∂x

)| (5.23)

The case on the left side of figure 5.1 shows:

tan(α) = tan(tan−1(∂ζ
∂x

)) = ∂ζ

∂x
(5.24)

and on the right side

tan(α) = tan(− tan−1(∂ζ
∂x

)) = −∂ζ
∂x

(5.25)

As mentioned the t-vector is given as in section 5.6 with t = [−1, 0, 0] for the left
case, and t = [1, 0, 0] for the right case.

The details of the derivation of the load on the two cases can be found in appendix
B.3, with the end result given as:

Left case:

FSI = −1
2
∂ζ

∂x
mxu

2 (5.26)

Right case:

FSI = −1
2
∂ζ

∂x
mxu

2 (5.27)

So it is clear that the expression for the force will be exactly the same for both
cases in figure 5.1. This is because t and tan(α) will change signs asymmetrically.

Introducing the expressions for the velocity, and wave slope into equation 5.27.
Note that there is no need to change the coordinates, since the principle of wheeler
stretching is to use the wave kinematics from z = 0 at the free surface, it is simpler
to just put z = 0 at the un-stretched expression.

44



5.7. Comparing the Old and the New Load Model

FSI = −1
2(−kζA cos(ωt))mx(ωζA

cosh(kh)
sinh(kh) sin(ωt))2

= 1
2mxkζ

3
Aω

2 cosh2(kh)
sinh2(kh)

cos(ωt) sin2(ωt)
(5.28)

FSI = 1
2mxkζ

3
Aω

2 cosh2(kh)
sinh2(kh)

1
4(cos(ωt)− cos(3ωt))

= 1
8ρπr

2CAkζ
3
Aω

2 cosh2(kh)
sinh2(kh)

(cos(ωt)− cos(3ωt))
(5.29)

Introducing this into the expression in eq. 5.21 gives the total force on a stiff
cylinder in regular waves with wheeler stretching and forces by Rainey’s expres-
sions.
FRainey =

ρπr2ζAω
2[

(CA + 1)
k

+
kζ2

A

sinh2(kh)
(

1
16
CA

1
kh

sinh(2kh) −
1
4

(
CA

2
+ 1) +

CA

8
cosh2(kh))] cos(ωt)

+ ρπr2ω2ζ2
A[

(CA + 1)
2kh

+
k

sinh2(kh)
(

1
8
CA

1
k

sinh(2kh) −
1
2
h(
CA

2
+ 1))] sin(2ωt)

+ ρπr2kω2ζ3
A

1
sinh2(kh)

[
1
4

(
CA

2
+ 1) −

1
16
CA

1
kh

sinh(2kh) −
CA

8
cosh2(kh)] cos(3ωt)

(5.30)

The expression for the loading by the inertia term in Morison’s equation is de-
veloped in appendix A.1, and is given as:

FMorison = ρπr2(1 + CA)ω2 ζA
k

cos(ωt) + ρπr2(1 + CA)ω2 ζ
2
A

2kh sin(2ωt) (5.31)

By comparison it is clear that the important differences exist between the two
load models. For the first harmonic load there has been the inclusion of some
higher order terms that depends on ζ3

A. These terms are expected to be very
small due to the dependence on k

sinh2(kh) while the first order term is dependent
on (CA+1)

k .

The second harmonic term also includes additional terms, which are expected to
have a bigger contribution, since one of them depend on sinh(2kh)

sinh2(kh) which should
be more significant than the extra terms for the first harmonic.

Lastly, third harmonic loads are not present at all when using Morison’s equation.
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There are two reasons for why the wave model in FAST should be improved.
Firstly, there is a need to validate the proposed load model with experiments.
If a load model with more accurate kinematics is used in the validation, more
confidence can be put at the results. The experiments have been performed with
regular waves, so a need for a nonlinear regular wave model is present.

Secondly, the conclusion made in section 5.5, is to use Rainey’s slender body
expressions together with nonlinear incident waves. The nonlinear waves are
needed in order to obtain accurate kinematics also for steep waves. Steep waves
are known to have asymmetric front and back, this is a feature that a regular
wave train can not easily model.

In the project thesis several waves were reviewed, and the conclusion reached was
to use a mixed-Eulerian-Lagrangian method to simulate fully nonlinear waves.
This model is presented here, along with a wave model presented by Fenton
(1988) which will be used to create nonlinear regular waves. The Fenton model
was chosen because it is easy to implement into FAST, and due to it’s capability
of handling a large range of waves with varying degree of nonlinearity.

6.1 Fenton

In among others, Fenton (1988) presents a Fourier approximation method for
steady waves, along with the code for a Fortran program to solve the problem.
At the homepage of John D. Fenton 1 there is an updated version of the program
freely available.

1http://www.johndfenton.com/
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The technique is trying to overcome the difficulties regarding Stokes waves and
Cnoidal theory. Stoke waves, based on a conventional perturbation theory as-
sumes small wave amplitude, and breaks down in shallow waters. Cnoidal theory
is an explicit theory for shallow waters, which breaks down in deeper water. To
have an accurate representation, both are dependent on wave a height small with
respect to the wavelength. These methods are solving the problem analytically,
but the procedure proposed by Fenton is a numerical approximation.

The original paper gives a short history of the method of Fourier approximation,
and a link to other related methods such as Stream theory. Details of stream
theory can be found in e.g. Dean and Dalrymple (1984).

According to the user guide Fenton (2012), the method could be described as a
nonlinear spectral approach. First a series solution is assumed, where each term
satisfies the field equation, and then the coefficient for each term is found by
solving a system of nonlinear equations. In Fenton’s approach the coefficients
are found by solving the nonlinear governing equations by Newton’s method.
According to the user guide, the only numerical approximation introduced in the
calculations are the truncation of the Fourier series, and the numerical methods
can obtain accurate solutions up to the highest possible waves. This means that
this method should incorporate as much as possible of the nonlinearities in regular
waves.

The present program is said to break down in the limit of very high and very long
waves, where the Fourier series needs to represent the sharp crest and long and
virtually flat through. A solution for a wave with λ/h = 50 and H/h is shown in
the user guide.

The theory of the program might be found in both Fenton (1988) and also in the
appendix of the user guide mentioned (Fenton, 2012).

This method presents an simple, but accurate, way of obtaining nonlinear regular
waves that might be used in the calculations to validate the load model. Since
the solution to the various parameters is a Fourier series, it is easy to implement
them into the existing framework of FAST. The process of implementing these
waves is found in appendix C.1.2.

6.2 Mixed Eulerian-Lagrangian Approach

In Marino (2011) and Marino et al. (2011) a fully nonlinear wave model is de-
veloped in order to model breaking waves. The model has been developed based
on, among others, Longuet-Higgins and Cokelet (1976) and Nakayama (1990).
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Figure 6.1: Domain of simulation, taken from Marino et al. (2011).

The process is called a mixed-Eulerian-Lagrangian approach. This is a two step
procedure. First at time t the potential in the domain is solved using a higher
order boundary element method (HOBEM). Then in the second step the free
surface is stepped forward in time a distance ∆t with a Taylor expansion in time.
Then the boundary value problem is again solved using HOBEM, before another
time step is undertaken.

The usual assumptions of an ideal fluid is used, making the solution a potential
flow method.

An inertial coordinate system is fixed in the x direction, and has the y axis
pointing upwards. As can be seen on figure 6.1, points on the free surface are
tracked by the Lagrangian position vector r̄(p, t) = xf ēx + yf ēy, where ēx and ēy
are the unit normal vectors.

The velocity potential for each point in the domain Ω(t) can be described by
Laplace’s equation:

∇2φ(p, t) = 0 (6.1)

The domain is bounded by the four boundaries, Γi(t),Γo(t),Γb and Γf (t). For
all boundaries except the free surface, a Neumann-boundary condition is given
as:

V n(p, t) = ∇φ(p, t) · n̄ (6.2)

Where V n is the flux of the velocity through the boundary, and n̄ is the normal
vector.
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The dynamic free surface boundary condition can be written as

Dφ(p, t)
Dt

= −pA
ρ
− gζ + 1

2∇φ(p, t) · ∇φ(p, t) for p ε Γf (t) (6.3)

The kinematic free surface boundary condition is written as

Dr̄(p, t)
Dt

= ∇φ for p ε Γf (t) (6.4)

The boundary value equations are taken from Marino et al. (2011), and it is
observable that they are slightly different from the ones given in section 2.5, as
they are written in the Lagrangian reference system.

To solve the problem in the time domain, the geometry and velocity potential of
the free surface must be known at t = t0. This initial value, is then used as input
for the time marching algorithm.

To perform the time marching, and find the propagation of the free surface in
time, a Taylor expansion might be utilised, expanding the position vector r̄(p, t)
and velocity potential φ in time by:

r̄(p, t+ dt) = r̄(p, t) + Dr̄(p, t)
Dt

dt+ 1
2
D2r̄(p, t)
Dt2

dt2 +O(dt3) (6.5)

φ(p, t+ dt) = φ(p, t) + Dφ(p, t)
Dt

dt+ 1
2
D2φ(p, t)
Dt2

dt2 +O(dt3) (6.6)

The velocity potential to be expanded like this is the potential on the free surface.

The series expansion is truncated after the second order term. According to
Marino (2011) this seems to be the optimum choice because of numerical effort
to compute higher order coefficients. While stokes expansion is an expansion
in space, this expansion is in time. This means that the potential and position
vector is expressed at the next time step as a function of value this time step,
along with the “rate of change” and “rate of change in rate of change”. This is
completely analogue to the case of expressing position in the next time step as
a function of position this time step along with velocity and acceleration at this
time step.

In Marino et al. (2013) it is reported of a fourth order Runge-Kutta method for
the time marching, and it is stated that this is preferred over a Taylor expansion
due to better stability.
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The process of finding the Lagrangian derivatives are described in detail in Marino
(2011), and will not be treated here. It is however worth mentioning that the
second order coefficient/second order Lagrangian derivative is found by solving
a boundary value problem, and this is true for all coefficients of higher order
according to (Nakayama, 1990). This may sound time consuming, but in fact the
formulation of the problem is the same as for finding the velocity potential. The
geometry is the same, the only difference is in the boundary condition values.

By using this technique, two boundary value problems are solved for each time
step. The first is to find the velocity potential, and the second is to find the
solution to the problem ∇φ̇. These problems have been solved by utilising a
boundary element method, with higher order elements to discretise the boundary
value problem.

To summarise the method, it is easy to think of it as a two step procedure:

1. Eulerian step: At a time t, the free surface and the velocity potential on
the free surface is known. The flux on the boundaries Γi and Γo is also
known. Then the two fluxes ∇φ · n̄ and ∇φ̇ · n̄ on the free surface are found
by a boundary element method.

2. Lagrangian step: The free surface and the velocity potential on it are up-
dated in time, to the next time step, providing boundary values for the
next Eulerian time step.

According to Marino (2011) two instabilities occurred for this solution scheme.
The first one is a strong instability related to too large time steps. This is easily
managed by setting the time steps small enough. The second instability is what is
named a saw tooth instability, which means that the surface gets the appearance
of the working edge of a saw. This can be fixed by a smoothing technique where
the value of a node is smoothed with a 5 point smoothing formula. Longuet-
Higgins and Cokelet (1976) proposes a smoothing and regridding-scheme suited
for the calculations.

This method will describe fully nonlinear potential flow waves, since no assump-
tions have been made regarding the height of the waves. No restrictions have
been made regarding the nature of the velocity potential. If increased accuracy
is needed, then the time marching must be done more accurately.

For validation of the method, the reader is referred to Marino (2011).

In both Marino (2011), Marino et al. (2011) and Marino et al. (2013), this method
is connected to linear irregular sea, so a simulation with irregular fully nonlinear
waves are obtained.
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To investigate the problem of higher order wave loads on a bottom fixed turbine,
a solver named FAST is used. FAST is a fully Aero-Hydro-Servo-Elastic solver,
developed by National Renewable Energy Laboratory (NREL). It was among the
first solvers capable to perform a fully coupled analysis on floating offshore wind
turbines.

The main purpose of the solver was to develop a tool so floating wind turbines
could be analysed, but it can also be used to analyse bottom fixed turbines. Most
of the solver’s capabilities for offshore wind turbines was developed as part of the
Ph.D thesis of J. Jonkman (Jonkman, 2007).

FAST has been chosen to investigate the problem because it is free and has an
open source code, making it possible to alter the calculations in order to better
account for higher order wave loads. Another reason for choosing FAST, is that
there already exists an input-model of the reference wind turbine described in
chapter 2, which was used in OC3.

Parts of this chapter is a summary of my project thesis, but is included for
completeness.

7.1 Short Summary of Capabilities

In order to provide some information on the workings of FAST, a short intro-
duction to its calculation model is needed. Since FAST is a coupled aero-hydro-
servo-elastic solver, it is natural to mention some of the aspects regarding each
of the elements.

To calculate the aerodynamic forces on a blade, each blade is divided into a
number of sections and each section is assumed aerodynamically independent
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Chapter 7. FAST

from the others. The property of each section is given through an input file, and
it is possible to use the coefficients statically, or with a dynamic stall model. For
the wake of the turbine the user can choose between a classical blade element
momentum theory, or a generalised dynamic wake model. The theory of the
aerodynamic calculations is found in Moriarty and Hansen (2004).

FAST has the possibility of performing calculations on either a floating wind tur-
bine, or a bottom fixed one. The theory behind the calculation of hydrodynamic
forces will vary depending on which type of turbine one is studying. For the case
of a floating turbine, FAST calculates the linear diffraction and radiation forces,
in the time domain. Jonkman (2007) presents the calculations and rationale be-
hind them in depth. For a bottom fixed turbine, the wave forces are as mentioned
calculated by using Morison’s equation in the relative form covered in appendix
A.1.

Incident waves are limited to the case of linear waves, either regular or irregu-
lar. Three stretching techniques are possible; vertical, extrapolation or wheeler
stretching. FAST has also the possibility of introducing externally calculated
waves. This possibility will be used in this thesis for using fully nonlinear inci-
dent waves.

For a wind turbine it is necessary to be able to control the pitch and revolution
of the blades. This is done partially to maximise power generation on off-design
conditions and to be able to maintain control over the rotor in the event of strong
winds. In FAST, the control system can mainly be implemented as a coupling
with Matlab-Simulink, or as a dynamically linked library.

For the structure, FAST uses a modal approach. For the case of the tower, it
has two modeshapes in the front-aft direction, two in the side-side direction, and
one torsional mode. For the blades there are two modes in the flapwise direction,
and one mode in the edgewise direction. According to Langen and Sigbjørnsson
(2011) most vibration problems are governed by the lowest modeshapes and their
natural frequency. So including two modes will probably give an accurate enough
representation, given the tower deflection is reasonably small.

7.2 Implementing the Changes in FAST

The process of implementing the extended features in FAST has been quite com-
prehensive. It involves the calculation of the spacial derivatives for the existing
linear waves and also the wave slope. This is needed because Rainey’s expres-
sions needs these quantities. The Fenton generated waves are implemented as an
entirely new feature in FAST, which meant that some additions were made to the

52



7.2. Implementing the Changes in FAST

wave initialisation part in FAST. The fully nonlinear waves are read by FAST in
an already existing feature where an external calculated wave can be used. Only
slight modifications was needed to make this work.

These implementations are thoroughly described in appendix C. In the appendix
also how the solver calculates the force on the structure is covered, along with
an introduction to a small error in the linear incident waves which may cause
disturbances in the force. It has not been possible to include the source code for
the changes in the appendix, but in the digital appendix to this thesis, the source
code is present, along with a pre-compiled version which runs on a 64-bit Linux
machine.

The summary of the force implementation is that the force has been implemented
as presented in section 5.6 equation 5.2. The second line in the equation will be
zero for all circular cylinders with no yaw motion, and has not been implemented.
The l and t vectors have been implemented so the structure remains vertical for
all time instance. This is a simplification, but it is in line with the assumption
FAST is working under, with small deflections of the tower. It should be noted
that even though the forces are calculated with kinematics at x = 0, the actual
velocity of the element is used to calculate the relative velocities needed. More
details can be found in appendix C.
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8 | Verification of Implemen-
tations

8.1 Verification of Recompilation

FAST is originally developed for a Windows environment, but by following a
forum post made from a member of the community 1 , I was able to recompile
FAST for use on a 64-bit Linux operating system. The new version has been
recompiled using gfortran, an open source compiler. The recompiled version runs
significantly slower than the provided .exe file, probably due to not being able to
optimise as much as the commercial compiler used at NREL.

To verify that this process which involves some minor patches does not introduce
any errors, it is useful to compare two equal simulation, one on Linux and one
on Windows.

The main component which contains uncertainty is how the control system is
behaving after the port to Linux. Figure 8.1 shows the velocity of the rotor
subjected to the same wind input, for the case of simulations ran with the original
executable, and the case of recompilation.

As can be seen, the two show good comparison, but there seems to be a slight
phase difference. This is also seen in the incident waves, so it appears that a small
but constant phase difference is introduced. The reason for this phase difference
might be as simple as the use of different random numbers in the phase of the
incident waves. Since more variables are declared, the random number generation
in FAST, should give different results. This means that the time series of the force
is not identical, and so the results should not be totally identical. To conculde:

1https://wind.nrel.gov/forum/wind/viewtopic.php?f=4&t=588
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Figure 8.1: Comparison of the rotor speed for a Windows run, and a Linux run.

although some phase difference exists, it seems that the recompilation has not
introduced any errors in the control system.

8.2 Verification of Fenton Generated Waves

To validate the load model implementation, nonlinear regular waves are needed.
In chapter 6 it was decided to implement Fenton generated waves. The imple-
mentation of these should also be verified so that confidence can be put on results
obtained with these waves.

Since the wave elevation is calculated as a sum of components, a Fenton generated
wave with only one component should give approximately a linear wave. This
means that it is possible to compare the already existing feature of linear waves
and Morison’s equation, with the new feature of Fenton waves with Morison’s
equation. If the two yield the same results, for the case when Fenton is generated
with one component, this is an indication that the Fenton waves are implemented
correctly.

Two series of calculations have been made on the reference turbine. The wave
amplitude has been set to 2 [m] and the wave period to 12.4 [s]. Aerodynamic
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Figure 8.2: Comparison between the wave elevation for generated by linear theory,
and Fenton theory.

calculations have been turned off, so the only external force acting on the turbine
are the waves. In one of the series the existing linear waves have been used, and
in the other the Fenton generated waves have been used. As a first comparison,
it is beneficial to compare the wave elevation between the two.

Figure 8.2 shows the time realisation of free surface elevation. As can be seen, the
two have the same amplitude, but slightly different phase. The different phase
has no significance as long as the phase difference is constant, which it appears
to be.

Figure 8.3 shows the total force on the structure from the two different wave
models, and the two shows very good agreement. The phase difference is naturally
caused by the phase difference in the wave elevation.

Figure 8.4 shows the bending moment at the mudline, from the incident waves
and again the results are similar.

There seems to be some small disturbances in the bending moment at the top of
each cycle for the linear case, which is believed to be caused by numerical errors.
These errors are presented in detail in appendix C.1.5. Apart from that, all figures
shows excellent comparison, leading to the conclusion that the implementation
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Figure 8.3: Comparison between total force from incident waves generated by
linear theory, and Fenton theory.
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of Fenton generated waves in FAST is correct.

8.3 Verification of Load Model Implementation

In Chaplin et al. (1997) a series of experiments were conducted to compare the
slender body loads with experiments. The experiments were performed with a
frequency focusing technique that created steep, near breaking waves. A cylinder
was mounted, so that the waves interacted with it. Description of set-up and
characteristics of the cylinder can be found in the original paper. Seven different
waves was sent towards the cylinder, which was given the identities “745, 750,
755, 760, 765, 770, 775”.

To obtain the wave kinematics from the recorded free surface elevations, they used
two different models in the paper; a crest fitting technique, and a regular wave
based on stream theory. To try to recreate the latter case the Fenton generated
waves from section 6.1 is used with FAST.

These waves will not be able to recreate the exact free surface elevation of the fo-
cused waves, because the focused waves are highly nonlinear and will be unsteady.
The Fenton generated waves are a steady solution to the wave propagation prob-
lem, and is a regular wave. It is thus not expected to fully recreate the experiment
and obtain good comparison with the results reported in the paper. The real pur-
pose of using the Fenton waves is however to compare with the results obtained
by Stream theory in the paper. Since Fenton waves and Stream function waves
stems from the same theory, the results obtained with Fenton should be compa-
rable to the reported results with stream theory. If these two are similar, then it
can be argued that the load model has been implemented correctly in FAST.

To compare the experimental realised waves, and the numerically Fenton gen-
erated, two plots that compares two cases has been made. The data from the
experiment has been read from Chaplin et al. (1997, figure 1), and is thus prone
to small errors. By comparing the smallest and the largest waves in the experi-
ment with the numerical waves, it is possible to get an indication of how accurate
the representation is.

It is clear from figure 8.5 that the crest of the lowest wave is represented satisfac-
tory by a Fenton wave, but that the trough is not as good represented. For the
largest case it is clear that the wave in the experiment contains strong asymmetry
in the vertical plane. The Fenton wave is not able to reproduce this asymmetry
and as can be seen in figure 8.6, it does not give as good a fit as for the low-
est wave. Since the wave in the experiment is unsteady and the Fenton wave is
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steady, it is only natural that the error towards ±1 is large where the Fenton
wave goes towards another crest. One would expect the error in the force calcu-
lation of the smallest wave to be quite small, but that the error will increase with
increasing wave height. Is is expected that based on Fenton waves, the forces on
the cylinder will be significantly underpredicted at the largest waves.

FAST is a wind turbine design tool, and needs all the components of a wind
turbine in order to work. A small version of a wind turbine has been created, so
that it has the same diameter and depth as the cylinder in the test. On top of this
a small rotor has been placed, which is more or less a scaled down version of the
rotor on the reference turbine. Since only the forces from waves are is interesting
in this context, the rotor was parked, and all aerodynamic calculations where
turned off. In the experiments the natural frequency of the cylinder/turbine-
tower was approximately 28 [Hz]. At first the small tower was made with this
natural frequency, but this lead to the need of extremely small time steps, so the
cylinder was made entirely stiff with no degree of freedom.

The waves were generated in a way that made it possible to send only one wave
crest to the tower. To get as similar conditions as possible, by trial and error a
time interval that made the wave elevation start with a trough was found for each
case. Figure 8.7 shows the realised time series for the different cases. The waves
will have slightly different propagation velocity, so the time has been shifted for
each case so that the top of the crest is at approximately t = 0. This is done only
for the purpose of comparison.

With the realised time series, calculations have been performed for each case.
The maximum moment has been extracted and made non-dimensional by the
following relation used in the original paper:

M ′max = Mmaxk

ρgπr2h
(8.1)

For all the cases, a series of calculations have been made with different compo-
nents of the slender body expressions. This has been done both to verify that
each component has been implemented correctly, but also to compare the differ-
ent components to the experiments. In figure 8.8 the following definitions has
been used: M-Morison inertiea force (with acceleration including convective ac-
celerations), A-Axial divergence force, I-Free surface intersection force, V-Viscous
force with CD = 1.

As can be seen from figure 8.8 there is reasonably good agreement with potential
forces and the experiments for the smallest waves. With the inclusion of the
viscous force, there is indeed very good agreement with the experiments up to
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Figure 8.7: Realised Fenton time series for the 7 different cases.

the two steepest waves. With the viscous drag force included the maximum
moment of the smallest waves are overpredicted.

The two largest waves contain a significant asymmetry with respect to the vertical
axis, and must be considered more nonlinear than the realised Fenton waves. This
means that if the exact wave had been recreated the results might have been closer
to the experimental results.

As can be seen from figure 8.8, there seems to be a significant difference between
results only containing mass the Morison inertia force, and the results also in-
cluding axial divergence force. The free surface intersection does not have much
influence, except for the steepest waves.

Excellent comparison is found between the implemented model in FAST with
Fenton generated waves, and the results calculated in Chaplin et al. (1997) with
Stream theory. The good agreement between the results is a strong indicator
that the load model has been implemented correctly in FAST.

In the paper, they report of a secondary load cycle, appearing shortly after the
main load peak. In their numerical calculations they did not succeed in repro-
ducing this load cycle. Neither in the calculations performed here has this load
cycle been seen.
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9 | Validation and
Comparison of
Load models

9.1 Introduction

Huseby and Grue (2000) have performed a series of experiments to investigate
the higher harmonic load components in regular waves. A cylinder has been
placed in a field of incident regular waves, and the force it is subjected to has
been measured. The force has been analysed by taking the Fourier transform of
the signal, meaning that the force F, is decomposed into it’s harmonics.

F = Re{F1e
iωt + F2e

i2ωt + F3e
i3ωt + F4e

i4ωt + F5e
i5ωt + ...} (9.1)

Where ω is the incident wave frequency.

The paper presents results for the first seven harmonics, for two cylinders with
radius r = 0.03[m] & r = 0.04[m], and for a range of kA and kr values. The
natural frequency of the cylinders in the experiment was around 25[Hz]. For the
characteristics of the experimental set-up, the reader is referred to the paper.

The experimental waves are in the paper said to be close to Stokes waves, gener-
ated by a pure sinusoidal signal to a wave maker. According to the paper these
experimental waves are prone to be disturbed by parasitic waves. They make
an argument how the measurements have been performed in order to avoid that
these waves disturb the experiment. In the parts of the time series that are free
from parasitic waves, the free surface elevation is regarded as being close to a
pure Stokes wave, and given by:
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ζ = A cos(kx− ωt) + a
(2)
l cos(2(kx− ωt)) + a

(3)
l cos(3(kx− ωt)) + ... (9.2)

This indicates that it is possible to describe fluid domain by the analytic velocity
potential:

φ = Re[Ag
iω
ekzei(kx−ωt)] +O(A4) (9.3)

The dispersion relationship must be written as: ω2 = gk(1 +A2k2).

This means that the incident wave kinematics ideally have only a single oscillation
frequency, so all higher harmonic forces are due to the wave-structure interaction.

Regarding the simulations with FAST, as for the case in section 8.3, a small
version of the reference turbine has been created in order to be able use FAST.
The simulations performed to compare the numerical model with the experiments
can be divided in two: Firstly a model with a completely stiff tower has been
placed in waves generated by linear theory. Wheeler stretching has been used
to obtain kinematics to the instantaneous free surface. Secondly a model with
flexible tower and Fenton generated incident waves was used.

The reason for a completely stiff cylinder in the linear wave case is that because of
the inherent error in the wave generation in FAST, mentioned in appendix C.1.5,
the elements must be very small. The smallest wave height in the experiment
is ≈ 4[mm], meaning that the elements should ideally be much smaller than
this. With a water depth of 0.6[m] this leads to the need for a large number
of element, making it practically impossible to satisfy this with the chosen wind
turbine. Also if this cylinder should be free to flex with two bending modes, the
time step would be extremely small. A guide for the time step needed for FAST
is dt < 1

10∗fn where fn is the highest natural frequency in [Hz].

Since there is a need for both small time step, and many structural elements, it
was concluded to perform calculations on a completely stiff model. This will lead
to inaccuracies, but since the first bending mode natural frequency is 25[Hz] in
the experiments, very small dynamic effects are expected. Even with this stiff
tower, it is difficult to use enough elements and still have a reasonable calculation
time. The results with linear waves seems to contain a number of higher order
disturbances, making the results a bit uncertain.

The calculations with linear incident waves has been performed with a viscous
drag coefficient set to zero. This is because a comparison can be made between
the only the inertia term in Morison’s equation and Rainey’s expressions without
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disturbances from the higher order viscous drag term. No calculations have been
made with viscous drag, because it is intended to compare with the analytical
expression presented in section 5.7, which has been made without viscous drag.

The second analysis with Fenton generated waves has been performed with a
flexible tower with a natural frequency of the first bending mode ≈ 26[Hz]. To
get conditions as close to the experiment as possible, only the tower bending
modes are free to move, and all other DOFs has been turned off. Both Rainey’s
slender body expressions and Morison’s equation have been used. In both cases
the drag coefficient has been varied, so one set was ran with CD = 0 and another
with CD = 1.0. In all cases the added mass coefficient has been set as CA = 1.

Calculations have not been performed with the exact same kA values as in the
paper, but spread evenly out over the range kA = 0.02 − 0.2. This is done
because the exact kA values of the waves used in the experiment have not been
reported. This makes it impossible to compare the time evolution of the free
surface elevation between the experiments and the numerical simulations.

Regarding the results, the amplitude of the nth harmonic has been made nondi-
mensional by dividing on ρgAnr(3−n). Where A is the incident wave amplitude,
r the cylinder diameter, ρ the water density and g the gravitational constant.

The time series used, are long enough to dampen out any eventual numerical
transients in the start up phase, and the data used has been gathered from the
tail of the time series to properly ensure steady state conditions.

A quick note on the legend of the plots. All results with forces by Morison
is represented with triangular marks/lines with triangles on, and all plots with
forces by Rainey is represented by crosses. A choice has been made regarding
the colors, so that each case studied has it’s own color. This makes it easy to
compare results by Rainey and Morrison, as it only reduces to comparing the
data of the same color.

9.2 Postprocessing

In the paper, time series consisting of 10 waves were used as a basis for the Fourier
transform to decompose the force into it’s harmonics. To ensure comparable
results, a routine has been made which selects exactly 10 cycles from the time
history of the force in the simulations performed. The Fourier transform is then
calculated using the build-in Matlab function FFT based on these cropped time
series. To find the correct amplitude of the various harmonics, the following
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Figure 9.1: Example of the Fourier transform of the force on the monopile. Here
shown for a wave with frequency 1.3 [Hz] and amplitude 0.029412 [m], Fenton
generated incident waves.

relation has been used to scale the output of the FFT:

Fn = 2
N
|F(fn)| (9.4)

Where Fn is the n’th harmonic force, N is the number of elements in the time
series, F(f) is the value of the Fourier transformation at the frequency f , and fn
is the frequency of the n’th harmonic of the wave frequency.

To automate the process, and also take into account that there might be small
discrepancies between the frequency with the local maximum in the |F(fn)| and
fn, the maximum value has been chosen in a small interval around fn
A plot of of the amplitude in the frequency spectrum for one of the cases is shown
in figure 9.1. The amplitude is calculated as given in equation 9.4.

As can be seen from figure 9.1 the force clearly contains higher harmonics of the
wave frequency. From the calculations, up to the 4th frequency can be observed
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for this case where a Fenton generated wave has been used. For waves with smaller
amplitudes, the 4th harmonic is not always observable. As the fourth harmonic
only appears for the biggest waves, it has been decided to only compare the first
three harmonic loads. In the figure the incident wave is Fenton generated, and
it is really clear that the time series only contain forces at the harmonics of the
incident wave frequency, which strengthens the belief that this wave model is
properly implemented into FAST.

Figure 9.1 also stands as a characteristic distribution of the force. From all the
calculations it appears that the first harmonic load is dominating, and the second
harmonic load is again larger than the third and so on.

9.3 Linear incident waves

For the case of linear incident waves, the first three components of the force
are presented in figs. 9.2 to 9.4. Here both experimental data, numerical data
with Morison’s loading, numerical data with Rainey’s loading and the analytical
expressions for the load by Rainey are presented. A deliberate choice has been
made to not include the analytical expressions for the load by Morison, since
this would make the figures more difficult to read. The drag coefficient has been
set to zero in order to be able to compare the potential part of the two load
formulations.

It is observable that the first order component seems to be slightly underpredicted
by both load models. There does not seem to be any significant difference between
the two, but Rainey’s expressions seems to predict slightly larger values as kA
increases. This is to be expected by the expressions presented in section 5.7,
where it is clear that Rainey’s expressions gives additional contributions to the
first harmonic load. It is clear that the analytically derived load of Rainey’s force
is similar to the numerically calculated by FAST.

For the second harmonic load there is quite good comparison with experiments.
For all kA values Rainey’s expression predicts the highest values, as is expected
in section 5.7. Also here, is it good agreement between the analytically calculated
results and the numerical calculated results. Small differences are present at the
lower kA values, but this is believed to be caused by numerical errors due to
small amplitude of the load, and the error (app. C.1.5) in the linear incident
waves, that generates noise in a Fourier transform.

For the third harmonic there seems to be generally bad agreement with exper-
imental results. This is true for both experimental results and the analytically
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Figure 9.2: First harmonic component of wave force, for various kr values. Linear
+ wheeler incident waves, and forces by both Morison and Rainey. No viscous
drag
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Figure 9.3: Second harmonic component of wave force, for various kr values.
Linear + wheeler incident waves, and forces by both Morison and Rainey. No
viscous drag.
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Figure 9.4: Third harmonic component of wave force, for various kr values.
Linear + wheeler incident waves, and forces by both Morison and Rainey. No
viscous drag.
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calculated values. There is however good agreement between analytical and nu-
merical values for the higher range of kA values, which indicates that the calcu-
lations have been implemented correctly. Again the error in the lower range is
expected to be due to numerical errors and noise.

The cause of the large discrepancies of the third harmonic load can be three-
fold. Either the load predicted is too small, the linear incident waves can not
accurately represent the waves in the experiment or the fact that the viscous
drag has been left out. The cause is probably a mix of the three cases, as the
waves in the experiment is said to be close to pure Stokes’ waves which have a
free surface elevation given as in equation 9.2. From the expression for the third
harmonic load is can be concluded that the free surface is important for this load,
and by not having the same free surface elevation as the experiment, the linear
waves will introduce errors here. Secondly, FNV predicts a third harmonic load
which is eight times larger than Rainey’s expressions. The difference between
them might be a source for the bad agreement for the third harmonic. There has
been suggestions to include a surface distortion force in Rainey’s slender body
expressions to take into account the difference between the two. However Chaplin
et al. (1997) finds better agreement in steep waves, when this is not included,
so it has not been included in the calculations in FAST. Lastly the viscous drag
load give loads at odd frequencies, so for the third harmonic there should be an
additional component.

9.4 Fenton generated incident waves

It is believed that the Fenton generated waves will more accurately represent
the free surface elevation in the experiments than the linear waves. The Fenton
generated waves will however contain higher harmonics in the description of the
fluid domain, since the solution is given as a sum of Fourier components. In the
paper they have stated that in the field there should ideally be only one frequency.
The difference between the experiments and Fenton waves will be discussed in
section 9.6.

For the Fenton generated incident waves, the main purpose is to compare the two
load models with experimental data. Therefore first a comparison between forces
calculated with Morison’s equation are presented in figs. 9.5 to 9.7. Figures 9.8
to 9.10 presents the comparison for Rainey’s case. In both cases calculations with
and without viscous drag force have been included.

Lastly three figures showing direct comparisons between Rainey and Morison are
presented in figs. 9.11 to 9.13. Again calculations with and without drag are
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included.

By comparing the figures it appears that the two models predict quite simi-
lar results for the first harmonic load, and also for the second harmonic load.
Rainey’s expressions predict slightly higher values for the second harmonic load,
but they are both overpredicting the experimental results. The overprediction
increase with increasing kr values. Rainey’s predictions fit the third harmonic
experimental data better than the predictions made by Morison’s equation.

Since the waves are nonlinear, Morison’s equation will also contain higher har-
monic components than the second harmonic that comes from integrating to a
moving free surface. This makes it possible to investigate how much of the higher
harmonic loads that stems from the nonlinearities in the waves, and how much
of the higher harmonics that originates in the load formulation. This will be
explored in section 9.6

In figs. 9.11 to 9.13 the results of the two load models are compared. The first
harmonic is very similar for the two, but with higher kA values Rainey predicts
slightly larger loads. The first harmonic load is underpredicted by both models
for all values of kA and kr. Rainey’s model predicts higher second harmonic load
for all values, and the difference between the two increases with increasing kr
value. Compared to the experiments, both models overpredict this load. Also
for the third harmonic load Rainey predicts higher loads. When compared to
the experiments Rainey’s expressions shows better comparison than Morison’s
equation for this harmonic.

The difference between the two load models seems to be significant for the second
and third harmonic. This is an indication that the extra nonlinear terms in
Rainey’s expression compared to Morison’s equation has some importance for
the total load, also in nonlinear incident waves.

The results from these analyses will be further discussed in section 9.6
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Figure 9.5: First harmonic component of wave force, for various kr values. Fenton
generated incident waves, and forces by Morison’s equation, with and without
drag.
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Figure 9.6: Second harmonic component of wave force, for various kr values.
Fenton generated incident waves, and forces by Morison’s equation, with and
without drag.
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Figure 9.7: Third harmonic component of wave force, for various kr values.
Fenton generated incident waves, and forces by Morison’s equation, with and
without drag.
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Figure 9.8: First harmonic component of wave force, for various kr values. Fenton
generated incident waves, and forces by Rainey’s expressions, with and without
drag.
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Figure 9.9: Second harmonic component of wave force, for various kr values.
Fenton generated incident waves, and forces by Rainey’s expressions, with and
without drag.
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Figure 9.10: Third harmonic component of wave force, for various kr val-
ues.Fenton generated incident waves, and forces by Rainey’s expressions, with
and without drag.
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Figure 9.11: Comparison of first harmonic component of wave force, for various
kr values. Fenton generated incident waves, and forces by Morison and Rainey,
with and without drag.
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Figure 9.12: Comparison of second harmonic component of wave force, for various
kr values. Fenton generated incident waves, and forces by Morison and Rainey,
with and without drag.
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Figure 9.13: Comparison of third harmonic component of wave force, for various
kr values. Fenton generated incident waves, and forces by Morison and Rainey,
with and without drag
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9.5 Trendline over kr

Since the theory utilised is a slender body theory, it is interesting to investigate
how the ratio between calculated values and experimental values changes over
the range of kr values used. From the figures it appears that the nondimensional
first and second harmonic loads are almost constant over the kA range. As a
rough simplification, say that the average over all kA values is representative for
the load for a given kr. This makes it possible to calculate the average of the
numerical calculations and the experimental values, and try to find some kind of
trend regarding the error between the two.

The average of the nondimensional loads for each kr value is calculated, both
for the experimental, and numerical values. Then the ratio Avg.Numerical

Avg.experimental is
calculated and plotted for each kr value.

The third harmonic load from the experiments seems more dependent on the kA
value, but for the higher range of kA values it seems to converge against some
kind of asymptotic value. Also there is a clear difference between the loading
with and without viscous drag. The potential load is almost constant over the
range of kA values, while the viscous component has a clear dependence on kA.
The same procedure of calculating mean values over the kA can also be used for
this load, but care should be taken with the results.

Figures 9.14 to 9.16 shows the trendlines for the ratio between the average loads,
plotted against the different kr values.

The first harmonic load seems to have a close to constant ratio, which is close to
one. No practical differences seems to exist between calculations made Morison
and Rainey, or with and without drag for the Fenton case. There are also no
difference between Fenton generated waves and linear+wheeler.

The third datapoint for the cylinder with diameter D = 3 [cm] should be read
with care, as it appears to be an uncertainty in the experimental values. This
uncertainty can be illustrated by looking at for instance fig 9.8, where for kr =
0.245 there seems to be lower forces in the experiment than for both the case
kr = 0.166 and the case kr = 0.315. It is strange with this behaviour, especially
when the cylinder with D = 4 [cm] does not seem to have such a behaviour.

The second harmonic load shows some exciting features. First there is a clear
difference between which load formulation that has been utilised, with Rainey
predicting higher loads for all cases. For the largest cylinder the ratio between
calculated and experimental values seems to have a close to linear dependence on
kr, or alternatively slightly exponential. This is true for both Fenton generated
waves and also linear waves. The smallest cylinder does not show this behaviour,
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9.5. Trendline over kr

with the third datapoint significantly different from such descriptions. The third
datapoint is the same point that has shown some uncertainty in the first harmonic.
It appears that also for the second harmonic the experimental values for this
datapoint shows low values compared to the case before and after.

Fenton waves are overpredicting the load for all kr for both load models, but with
reasonably good agreement for the two lowest kr values. The linear waves with
Rainey seems to give quite good comparison with the experiments, and loads
with Morison seem to underpredict the load for all kr. For the Fenton waves no
discernible difference seems to be present between including the viscous drag term
or not. This is expected, as the viscous drag should only produce odd harmonic
components.

It is interesting to note that for the second harmonic, the difference between the
calculated ratio for Rainey and Morison appears to be more or less equal for the
two wave models, i.e. Fenton and linear waves. This indicates that the difference
between the two load models for the second harmonic is not largely dependent
on the incident wave model.

The picture of the third harmonic is a bit more chaotic. Remember from the
results that when viscous drag was included for the Fenton waves, very large
third harmonic component was present for the lowest kA values, but as the
kA value increased better fit between experiment and numerical results where
present. This means that when comparing the mean value over kA there might
be unrealistic large difference between the experiments and the numerical. This
can clearly be seen on the results of the load without drag (this load is almost
constant over kA values for each case), where the there is on average only a slight
underprediction by the numerical model.

For the case of linear waves, it was observed that there was practically no third
harmonic load for the highest kA values, yet on average the load seems to be
≈ 0.5 of the experiments. This is not real, and is once more the result of very
large loads at the lower kA range. Therefore no discussion is made on the trend
of the third harmonic.
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Figure 9.14: Trendline over kr for the first harmonic load, waves by linear and
Fenton, loads by Morison and Rainey.
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Figure 9.15: Trendline over kr for the second harmonic load, waves by linear and
Fenton, loads by Morison and Rainey.
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Figure 9.16: Trendline over kr for the second harmonic load, waves by linear and
Fenton, loads by Morison and Rainey.

9.6 Discussion of the Results

The first harmonic load, is slightly underpredicted consistently for all values of kA
and kr. This is true for both Fenton generated incident waves and linear waves.
The numerical calculations seem to be minimum 90 − 95% of the experimental
values. The results are similar to the calculation by Morison’s equation, and
also to calculations with linear waves. Thus there is no improvement in the first
harmonic load by using more advanced wave theories or another load formulation.
There seems to be no practical difference when including the viscous drag in the
Fenton calculations.

The second harmonic load is overpredicted with Fenton generated incident waves.
It is clear from fig 9.9 that the amount of overprediction increases with increasing
kr numbers. It is expected that the error should increase with increasing kr
numbers, since this means that the slenderness of the structure compared to
the wave is diminished, and the theory used assumes slender structures. Quite
good comparison is obtained for the lowest kr value, also the second lowest case
shows quite good agreement. Tromans et al. (2006) reports that the second
harmonic load is overpredicted. The overprediction of the second harmonic load
is in Tromans et al. (2006, page 44) partly contributed to the neglection of far-
field diffraction effects when using slender body assumptions. It is observable
that the inclusion of viscous loads have little to no effect, which is expected since
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it should only produce odd harmonic loads. In general the error is acceptable for
the lowest kr values, but the overprediction may be a bit too conservative for the
highest kr-values.

As commented under section 5.6 there seems to be a big error for the cases where
the wave length is smaller than ≈ 10 times the diameter of the structure, but that
the error seems to be smaller if the structure is allowed to move. Calculations
have also been done with a stiff cylinder (not reported here), but it does not show
significantly different results than the calculations performed here. This might
be due to the fact that the cylinder has a natural frequency of 25 [Hz], which is
15 times larger than the waves with the highest frequency in the experiments.
This means that very little motion of the cylinder should occur due to a very stiff
cylinder.

There is also a possibility that the Fenton generated waves do not give similar
conditions as waves in the experiment. In Grue and Huseby (2002) they describe
the experimental waves to be close to pure Stokes waves, with a single frequency
in the velocity field. This was chosen to ensure that the nonlinear loads are
caused solely by the presence of the structure. The Fenton generated incident
waves used in FAST had 30 harmonic components, which means the incident
wave kinematics will have higher harmonic components by itself. This will lead
to larger loads for the higher harmonics, than the experiment. By investigating
the coefficients for the Fenton waves, it can be found that the first harmonic
coefficient are clearly dominating the solution for the field, being a factor 1000
larger than the next component. The big question is whether the kinematics in
the experiment truly only contains one frequency, and how well the experiment
is represented with the Fenton generated waves.

The linear incident waves shows results with very good agreement with the ex-
periments for the second harmonic. Rainey’s expression seems to have better
agreement with the experiment than Morison’s equation with this wave model.

The linear waves contains only one frequency, and it was seen that Rainey’s
equation produced loads that were quite similar to experiments. With Fenton
waves there is an overprediction. It can thus be concluded that the new load
model performs fairly good for the second harmonic load, but has a tendency to
overpredict the load. How much the load is overpredicted is difficult to quantify,
because it is difficult to compare the waves used in FAST with the exact waves
from the experiment.

For the third harmonic loads with Fenton waves, the calculations without viscous
drag seems to slightly underpredict. The error is largest for small kA-values, and
for the largest kA-values quite good comparison exists. The inclusion of the
viscous drag seems to give results more similar to the experiment, or to a slight
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overprediction of the load. In general the third harmonic load is reasonably good
predicted by Rainey’s load model and the Fenton generated waves for the high
kA range.

The results obtained by Morison’s equation and Fenton waves shows underpredic-
tion of the third harmonic load for all but the lowest kr, even with Fenton waves
and viscous drag included. The fact that this load model produces significant
third harmonic loads is a sign that significant higher harmonics are present in
the fluid domain.

For the case of linear waves, there is however large differences, both with Mori-
son’s and Rainey’s expressions(analytical and numerical calculations), between
the experiments and the numerical results. For the case where loads are calcu-
lated by Morison, it was expected, as it has been shown that there should not be a
third harmonic component present. It is however more surprising for the Rainey
case. From the expression of the force, it is clear that the surface intersection
force is dependent on the free surface elevation, and it’s slope. The experiment
is said to be carried out with a close to pure Stokes wave, which have sharper
crests than a linear wave. It is possible that the different wave profile is part of
the cause of the bad results for the third harmonic load calculated by Rainey,
with linear waves. As mention in section 9.3 another possibility is that viscous
drag is not included and lastly that the third harmonic load is not good enough
represented by Rainey’s expressions.

The difference between the the two load formulation for the third harmonic can
also be used to judge how much the nonlinearities in the incident waves affects
the higher harmonic loads. The loads from Morison stands as a reference for
the nonlinearities in the incident wave field, since all third harmonic loads should
originate from nonlinearities in the waves. The difference between the two models
is thus what the nonlinearities from the load formulation produce. As can be
seen from figure 9.13 there is very little difference for the lowest kr values. The
difference between them increase with increasing kr number. For kr = 0.378 there
is a clear difference between them, but is less than half of the nondimensional
load produced by Morison. This indicates that the nonlinearities in the incident
waves are dominating over the nonlinearities in the load formulation for slender
structures.

To summarise, it is clear that quite good comparison between experiments and
numerical calculations has been obtained. Potential sources for discrepancies
between the results have been discussed, but no conclusion has been made due
to it not being possible to compare the exact wave elevation in the experiments
and the numerical calculations.

It is noteworthy that the comparison has only been made with respect to the
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amplitude of the load components, and not the phase of the load with respect to
the incident waves. Tromans et al. (2006) report of errors in the phase from the
load models, when compared to experiments. This off course might be valid for
the present calculations, but has not been investigated.

It has been found that for loads on a general slender body structure, it appear to
be a possible improvement for the load calculations if the force is calculated with
Rainey’s expressions instead of Morison’s equation. This conclusion is reached
based on the results showing a better comparison with experiments. If linear
waves with wheeler stretching are used, the first two harmonics are farily good
predicted by Rainey. It has also been shown that using nonlinear waves further
improves the comparison in the higher harmonic loads, and a clear advantage
is present by using a wave model that incorporates nonlinear effects. It is also
noted that for a slender structure the nonlinearities in the incident waves are
more significant than the nonlinearities in the load formulation.
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10 | Fully Coupled Simula-
tions

So far the performance of the new load model has been compared with the old
model and experiments with a cylinder in waves, without the effects of the tur-
bine. The next logical step is to use the new model in a realistic load condition,
and see how it compares to the old model. For this purpose, both linear incident
waves and fully nonlinear waves generated by the MEL-procedure from section
6.2 will be used.

The goal of the simulations with linear incident waves is to investigate if there
is any practical difference between the two load models in linear waves. For the
fully nonlinear waves the goals are to see if any ringing occurs in the structure,
and if there is any difference between the two wave models when more accurate
wave kinematics are used.

Marino et al. (2013) has investigated the difference between the linear solution
and a fully nonlinear solution, and found significant differences. In their simula-
tions they even found ringing response in some of the steep non breaking waves
as well as in breaking waves.

In section 4.3 the phenomenon of ringing was contributed to both steep breaking
waves that slam into the structure and thereby excite a wide range of natural
frequencies in the structure, and also to moderately steep waves, that do not
slam into the structure, but create higher order loads. It is of the latter case that
these simulations will try to predict.

Since the difference between the two load models are in the higher order terms,
and these terms are significantly smaller than the first order term, it is important
to simulate the worst possible sea states, where the wave elevations are big enough
for these terms to have any significance.
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From a time series alone it can be quite difficult to say something quantitatively
about the difference between the load models. Instead by studying the power
spectral density (PSD) of e.g. the bending moment at the mudline or the force,
it is possible to investigate how the power of the time series is spread out over
frequencies, and hopefully be able to discover differences between the two load
models. By power it is meant the square of the time signal, so that the unit for
the PSD of the moment is Nm2/s if the frequency is given in Hz. For the force
the PSD would have unit N/s.

The power spectral densities reported in this chapter have been estimated using
Matlab’s built-in function pwelch. For a reference on this function the reader is
referred to Matlab’s user guide.

The downside of investigating the results using a PSD of the time series, is that it
is not possible to connect the frequency content with when it occurred. To have
a representation of the frequency content over time it is possible to use either a
Wavelet transform, or an Emperical-Mode-Decomposition(EMD) with a Hilbert-
Huang transformation(HHT) to obtain the Hilbert-Huang-spectrum(HHS).

The EMD breaks the signal down to well behaved Intrinsic Mode functions(IMF),
which it is possible to take the Hilbert transform of. The IMFs needs to be
close to orthogonal for the procedure to be accurate, therefore care should be
taken when reading the results, as it is not certain that the calculated IMFs are
always close to orthogonal. Due to this the HHS will only be used on small time
windows to give indications of frequency content. For details about this process
of calculating the frequency content in time, the reader is referred to e.g. Huang
et al. (1998) or Rilling et al. (2003). The routines used here to calculate the HHS
has been developed as part of the latter reference. A choice has been made to
only calculate this for some special cases, because many answers can be found
also from the regular PSD.

Since the interest is to study the worst sea states, from table 2.4 SS 5-7 will be
simulated. When comparing that table with the wave statistics in table 2.2, it
was found that the TP values, in the statistics closer to the area of interest, was
slightly lower than the ones reported in table 2.4. Therefore the following load
cases will be used:

Sea State Hs TP [s] Wind90[m] [kn] Wind90[m] [m/s]
5 3.25 8 30.5 15.7
6 5 9 46.7 24.0
7 7.5 10 64.1 33.0

Table 10.1: Load cases simulated
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To convert the wave speed to 90[m] height, the relation in eq. 2.5 has been used.

The incident wind field is calculated using the tool TurbSim provided by NREL,
to create wind input files for FAST. It can produce turbulent wind by using
several different spectra and techniques. For further details the reader is referred
to Kelley and Jonkman (2007).

The simulation time that has been chosen is one hour, i.e. 3600 [s]. According
to Veritas (2010) a sea state might have a duration of 20 min up to 3-6 [hours],
hence it can be concluded that one hour is a realistic length of a sea state.

The last sea state has a mean wind speed that is larger than the rated cut-out
wind speed of the turbine, equal to 25 [m/s] (from table 2.1). The second sea
state has a mean wind of 24 [m/s], which means that in periods of the simulations
the wind speed will be above the rated cut-out speed of the turbine.

It is my understanding that when the wind and the rotor speed are above thresh-
old values, the control system should alter the pitch of the blades in order to
reduce the load on the rotor. This is performed in order to try and keep a con-
stant rotation speed. It is believed that the control system will be able to handle
such strong winds as used here, but it might be interesting to see how the turbine
behaves if it is manually placed in a parked condition. This is a possible solution
if the control system is not able to handle the strong winds, or if bad weather is
expected.

Since such a simulation is not very time consuming, simulations with a parked
rotor have been run for all sea states, even though for the first condition it is not
realistic (except if the turbine is subject to some kind of error).

Regarding the global behaviour of the wind turbine, it is believed that the de-
flection of the tower top can give valuable information of the behaviour of the
system as a whole. This is because the tower top deflection is affected by the
aerodynamic loads, the hydrodynamic loads, and the motion will in turn affect
the control system and the aerodynamic loads on the rotor. The motion of the
tower top is thus in reality fully coupled aero-hydro-servo-elastic motion.

Therefore, in order to investigate the behaviour of the system, the shear force
at the mudline (which is equal to the total horizontal force on the structure),
the bending moment at the mudline and the tower top deflection will be used to
investigate the behaviour in the different analyses.

Finally, in order to investigate eventual resonant phenomena, it is noted that the
first natural frequency of the tower bending is close to 0.28 [Hz], and the second
natural frequency is approximately 2.4 [Hz], as found in section 2.4.
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10.1 Linear Incident Waves

The existing feature in FAST of linear incident waves are used with the optional
wheeler-stretching of the kinematics. From experience gained in my project thesis
it is expected that the bending moment will be dominated by the aerodynamic
loads. In general it is not expected that the linear waves are able to properly
represent the waves that might cause ringing, so the occurrence of ringing in these
simulations is doubtful.

By studying the results of the time series, very small differences were indeed
present, so no time-series are presented here. In the section regarding resonant
oscillations (section 10.1.1), some resonant phenomena will be investigated and
time series presented. These time series show the characteristics of the difference
between the two load models.

Figures 10.1 to 10.3 present the power spectral density for the simulations, both
with a running turbine and also with a parked turbine.

The first thing to notice from the PSD-plots is that in the PSD of the shear force
at the mudline, the range where the waves are present have the highest levels.
This means that the wave force is actually dominating over the aerodynamic
forces when one studies the shear force at the mudline. The PSD in this frequency
range shows little differences between the running and the parked simulation, and
also between Morison and Rainey’s load formulation. FAST is employing a cut-
off frequency in the incident wave spectra to avoid nonphysical high frequency
waves, which is clearly seen on the PSD as a sharp decline for all cases.

For the next range of frequencies above the cut-off frequency, it is clear that there
exist differences between Morison’s and Rainey’s load formulation. This can be
seen most clearly for the parked simulation, but it is also clear that for the running
turbine simulations there are differences between the two load formulations in the
PSD of the shear force. Since this is above the cut-of frequency, this is due to
higher order effects. For the parked simulation the difference is observable up to
≈ 0.75 [Hz]. For the running simulations this is observable up to ≈ 0.5 [Hz].

When investigating the PSD of the bending moment it is clear that there exists
much power outside the range of linear wave forcing, and that the difference
between the two load formulation is small to nonexistent for a running turbine.
This is mildly surprising, since in chapter 9 it was found differences between the
two load models regarding the second harmonic force in linear waves. One would
expect that the different wave force on the tower would have some impact on
the bending moment, which it clearly does not. This is an indication that the
bending moment at the mudline is governed by the force on the rotor, which due
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Figure 10.1: Power spectral densities of: Force at mudline, bending moment at
mudline, and displacement of tower top in SS 5. Both simulations with a running
and a parked Rotor. Forces by Morison and Rainey.
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Figure 10.2: Power spectral densities of: Force at mudline, bending moment at
mudline, and displacement of tower top in SS 6. Both simulations with a running
and a parked Rotor. Forces by Morison and Rainey.
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Figure 10.3: Power spectral densities of: Force at mudline, bending moment at
mudline, and displacement of tower top in SS 7. Both simulations with a running
and a parked Rotor. Forces by Morison and Rainey.
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to the long arm creates much larger moments than the waves. This can also be
seen in the displacement of the tower top that it is practically equal for the two
models.

This means that for the wind turbine system in linear incident waves, there is no
practical difference in which wave load model one uses, because the aero-elastic
effect is clearly dominating the tower top motion.

The large peak at the resonant frequency for the case with a parked rotor might
be related to low damping levels. The structural damping in the tower is set to 1
% of the critical damping for both modeshapes of the tower. According to mea-
sured damping rations for different structures found in Langen and Sigbjørnsson
(2011), this might be said to be a reasonable value for such a steel structure.
However, in a real monopile there are additional damping terms that might have
significant importance. In a real installation the assumption of a clamped bound-
ary condition at the seabed is not reasonable, there will be some kind of motion
here. Motion of the structure in the seabed will generate additional damping
forces.

To investigate the effect of damping, another set of simulations have been per-
formed with increased damping levels. Since there is no easy way to implement
the additional damping terms, the structural damping has been increased to 5 %.
The point is not to make a totally realistic simulation, but to do another simula-
tion with more damping, so the effect of damping can be compared. Figures 10.4
to 10.6 shows the results in terms of the PSD.

The simulations show that the peak at the natural frequency in the PSD of the
tower-top displacement is significantly reduced for all sea states. Also at the high
frequency range, around the second natural frequency of the structure, there is
shown even greater reduction in the power.

The large reduction in PSD at the resonant frequency when additional damping
was introduced can be an indication that the system is lacking damping in the
parked condition. The topic of resonant motions and the effect of damping will
be further discussed in the next section.
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Figure 10.4: Comparison of the PSD for simulations with and without increased
structural damping in SS 5. Forces by Morison and Rainey, linear incident waves
with Wheeler stretching.
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Figure 10.5: Comparison of the PSD for simulations with and without increased
structural damping in SS 6. Forces by Morison and Rainey, linear incident waves
with Wheeler stretching.
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Figure 10.6: Comparison of the PSD for simulations with and without increased
structural damping in SS 7. Forces by Morison and Rainey, linear incident waves
with Wheeler stretching.
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10.1.1 Resonant Behaviour

In the parked simulations there is a big peak at the first natural frequency of
the tower in both the PSD for the bending moment, and also the PSD for the
tower top displacement. It is possible that the structure in such a condition is
undergoing steady state resonant oscillations also known as springing.

In figure 10.7 a comparison is made between the simulations with a parked tur-
bine with normal damping, and with additional damping, for forces calculated
by Morison’s equation and also Rainey. It is clear that increasing the structural
damping significantly reduces the amplitude of the oscillations, but that the os-
cillations still occur at the same frequency. No difference in the amplitude seems
to be present between the load models. By looking at the period between each
oscillation, it appear to be close to the natural frequency of the structure. The
figure shows small differences in the shear force at the mudline between the highly
damped and the normal damped system, but there are clear differences in the
amplitude of the oscillations.

It is noteworthy that the maximum deflection of the tower top is quite small, with
oscillations in the time window investigated of ≈ 0.1 [m]. This is not believed
to be dangerous from a maximum stress point of view, but springing is usually
considered to be more important for fatigue, where the large number of load
cycles affect the life span of the structure.

However to really judge whether the structure is undergoing steady state oscil-
lations, the frequency content in time needs to be investigated. The EMD with
Hilbert-Huang transform has been used to create a Hilbert-Huang-Spectrum to
investigate this. In figs. 10.8 and 10.9 the last 600 seconds of the tower top
displacement in the simulation with a parked turbine in SS 5 are reported for
calculations with both load models.

The figures of the HHS have been created by normalising by the maximum value,
and plotting them with a logarithmic scale, where colors indicate the levels. It
should be read so that the more intense red, the higher importance a frequency
has at that time instance. What appear to be lines in the HHS, are actually each
IMF where each line shows the frequency content of each IMF in time. In all the
plots of the HHS, a white line is placed at 0.28 [Hz], indicating the approximate
position of the first natural frequency of the tower, as calculated in section 2.4.
Because the EMD-procedure may not produce exactly orthogonal IMFs, it is
believed that the frequencies may be a bit inaccurate. Therefore oscillations in a
small range around the white line are here considered as resonant oscillations.

From figs. 10.8 and 10.9 it can be seen that only small differences are present in the
HHSs between the two load models. It is also clear that the tower top oscillates
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Figure 10.7: Comparison of a parked turbine and parked turbine with additional
damping in SS 5.
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Figure 10.8: Hilbert-Huang-spectrum for the tower top deflection, last 600[s] of
the simulation in SS 5 with a parked turbine, and forces by Morison’s equation.

Figure 10.9: Hilbert-Huang-spectrum for the tower top deflection, last 600[s] of
the simulation in SS 5 with a parked turbine, and forces by Rainey’s expressions.
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quite strongly with a frequency in the area around the resonant frequency. These
oscillations are dominating for almost the whole time window investigated. This
indicates that the resonant oscillations are present at nearly all time instances,
and could be considered as springing according to the definition given in section
4.2. Even though the amplitudes are changing, the frequency remains more or less
constant throughout. It appears then that the reference turbine is experiencing
quite heavy springing when the rotor is set in the parked condition.

By comparing the PSD of the force on the running turbine and a parked turbine,
it is clear that in this frequency range, the force is not very different from the
two cases. It has also been shown that by increasing the structural damping, the
peak at the resonance frequency is reduced, but it has not disappeared. This is
an indication that the system is lacking damping in the parked condition, because
the wave loads manage to constantly excite the structure, and keep it oscillating
at the resonant frequency. It is believed that the springing is caused by nonlinear
wave loads, because the natural frequency is well outside the range where the
first harmonic should have any significant power.

To figure out if it is indeed caused by nonlinear wave effects, a possible solution
could be to use no stretching of the incident wave kinematics, to obtain a con-
sistent linear theory. However, the viscous drag load from Morison’s equation
will produce nonlinear forces, due to it’s square dependence on the water particle
velocity. Since Morison’s equation is implemented in the relative form in FAST,
it will produce important damping from the viscous drag. It is therefore not
wise to run simulations with CD = 0. Thus there is a paradox; if simulations
are run with CD 6= 0 nonlinear loads will originate from the viscous drag, and
if simulations are run with CD = 0 even less damping is present in the system.
It has therefore been concluded not to try and figure out if the springing also
occurs for a situation with only linear wave forcing.

What appears to be the cause of springing is the lack of aero-elastic damping,
because the only aspect that is different is the missing loads produced by a
running rotor. When the turbine is running it provides enough damping to
inhibit these oscillations, but once the turbine is parked, the natural frequency of
the tower is excited by the wave forcing. This means that parking the turbine in
bad weather might actually be dangerous because it can lead to springing, which
might cause fatigue problems. This is naturally depending on the actual structure
and the stiffness of the tower. However, the NREL reference turbine is believed
to be representative for bottom fixed turbines, so in general it is important to
investigate the behaviour of the structure with a parked rotor.

The feature of springing has been found in the smallest investigated sea state,
with both load models. It is not necessary to investigate the other sea states (SS
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6 and SS 7), as it is only natural that springing is also present in these, due to
even worse wave loading.

It will not be investigated, but there is a strong possibility for springing to also
occur with a parked wind turbine in smaller sea states. This is believed because
of the clear tendency to springing seen in SS 5. SS 4 has a HS < 2.5 and range
of TP similar to that of SS 5. This is very close to the values for SS 5 used in the
simulations, that causes severe springing.

By further investigations, it has been found transient resonant oscillations of the
tower top in SS 6, presented in figure 10.10, with a HHS in figure 10.11. The HHS
spectrum is only calculated for the case with loading by Rainey’s expressions, but
as the time series reveal, no difference is present between the two load models.

It can be observed that the transient resonant oscillations do not occur when the
structure interacts with a steep wave, and at the time instance of the resonant
oscillations at ≈ 2700 [s], the waves are actually relatively small. The resonant
oscillations do not seem to have the same appearance as the classical ringing
presented in figure 4.1. This behaviour is very strange and it leads to the possi-
bility that it was actually strong winds, possibly coupled with the way the control
system works, that created the resonant behaviour.

There is a possibility that in strong winds a large aerodynamic force could cause
a large mean deflection of the tower top. If the control system then suddenly
alters the pitch of the blades to reduce the rotor speed, the aerodynamic force
will be reduced quite rapidly. This can cause the tower to experience resonant
oscillations.

If this is the case, then these resonant oscillations in the tower may not be caused
by the classical mechanisms of ringing presented in section 4.3. It is possible to
investigate this by re-running the simulations with firstly a smaller mean wind
speed, and secondly the original wind speed, but no incident waves.

For the case with a lower wind speed, the wind input from SS 5 has been used. In
figure 10.12 the time evolution around the previous transient resonant oscillations
is presented for the extra cases with either no waves, or a reduced wind speed.

For the tower top deflection and the bending moment, only small changes are
present when no incident waves are present. However for the horizontal shear
force, large differences are present when no incident waves are present. The
tower top is still experiencing resonant oscillations, even with no incident waves,
indicating that the strong winds and possible also the control system that causes
this behaviour.

For the case with lower wind speed, large differences for the tower top deflection
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Figure 10.10: Time evolution of the wave elevation, shear force, bending moment
and tower top displacement around the event at 2700 [s] in SS 6.
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Figure 10.11: Hilbert-Huang-spectrum of tower top deflection around a burst like
event at ca 2700[s], forces computed with Rainey’s expressions.

and the bending moment are present, but the horizontal shear force are quite
similar. It is also clear that the resonant oscillations in the tower top has been
replaced by another behaviour.

The fact that the shear force is more or less equal in the simulations with the
lower wind speed, but much smaller if the no waves are present, further confirms
that the waves are dominating this load.

By investigation of the HHS of the event for the case of lower mean wind speed
in figure 10.13, it is shown that the transient resonant behaviour of the tower top
around 2700 [s] is indeed gone, and has been replaced by another lower frequency
behaviour.

The simulations with a running turbine in SS 7 are a bit different from the
others, because the mean wind speed is much larger than the maximum rated
wind speed of the turbine. This should make the control system constantly try
to keep the rotor under control. Considering the findings in SS 6, it is an even
larger possibility for the wind causing resonant oscillations in this simulation.

It appears that the maximum in the PSD of the tower top deflection is at the
first natural frequency of the tower, and in the time series it is observable with

106



10.1. Linear Incident Waves

-3

-2

-1

0

1

2

3

2660 2680 2700 2720 2740

W
av
e
El
ev
at
io
n
[m

]

Time

-1500
-1000
-500

0
500
1000
1500
2000

2660 2680 2700 2720 2740

Sh
ea
r
Fo

rc
e
at

M
ud

lin
e
[k
N
]

Time

-20000
0

20000
40000
60000
80000
100000
120000

2660 2680 2700 2720 2740B
en

di
ng

M
om

en
t
at

M
ud

lin
e
[k
N
m
]

Time

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

2660 2680 2700 2720 2740

To
w
er

to
p
di
sp
la
ce
m
en
t
[m

]

Time
SS6, running turbine, wind and waves as specified, Calculations with Morison equation
SS6, running turbine, wind and waves as specified,Calculations with Rainey equation

SS6, running turbine,Low wind speed, normal waves ,Calculations with Morison equation
SS6, running turbine, Low wind speed, normal waves, Calculations with Rainey equation

SS6, running turbine, normal wind, no waves,Calculations with Morison equation
SS6, running turbine, normal wind, no waves, Calculations with Rainey equation

Figure 10.12: Time evolution of the wave elevation, shear force, bending moment
and tower top displacement around the event at 2700 [s] in SS 6, with and without
a lower wind speed and with or without incident waves.
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Figure 10.13: Hilbert-Huang-spectrum of tower top deflection around an event
at ca 2700 [s], low wind speed,forces computed with Rainey’s expressions.

oscillations that are close to the natural frequency on several occasions. One of
the instances at ≈ 3500 [s] are presented in figure 10.14.

The time evolution shows small differences, with respect to which load model
that is used, in the mudline shear force. For the other quantities no differences
are present.

Contrary to the observed resonant phenomena in SS 6, the resonant oscillations
start to appear at the same time as a large wave appears.

The instance has also been investigated with a HHS spectrum, presented in figure
10.15, for the case of forces calculated with Rainey’s expressions. Due to the small
difference in the time evolution, no differences are expected in the HHS between
the load models, and it will only be shown for calculations with Rainey.

The HHS shows that there is a clear transient period where strong oscillations
occur, with a frequency close to the natural frequency of the tower.

To investigate what causes the oscillations, the same procedure as for SS 6 has
been used, and is presented in figure 10.16.

First of all, the simulations without waves show a clear reduction in the amplitude
of the oscillations, but the frequency has not been changed. This is different from
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Figure 10.14: Time evolution of the wave elevation, shear force, bending moment
and tower top displacement around the event at 3500 [s] in SS 7.
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Figure 10.15: Hilbert-Huang-spectrum for the tower top deflection, for a transient
resonant oscillation event around 3500 [s] in SS 7 with a running turbine, and
forces by Rainey.

SS 6, where only a very small difference occurred. This indicates that for this
case, the wave loading is actually important, but the structure will experience
resonant oscillations by account of the wind. From the time series it is difficult to
see if resonant oscillations also occur for the case where the lower wind has been
used. In order to investigate this, the HHS has also been create for this case and
is presented in figure 10.17.

It can be observed that much of the resonant oscillations has been removed, and
again pointing to the cause of the oscillations being strong winds.

To summarise this section: It has been shown clear springing response in the tower
for the special case when the rotor has been parked. By increasing the damping,
significant reduction in the amplitude of the oscillations has been found, but the
resonant behaviour still remains. It is believed that the cause for the resonant
oscillations is the lack of aero-elastic damping from the turbine.

It has then been shown that transient resonant oscillations can occur in this
structure, and is believed to be by strong winds. Both in SS 6 and SS 7 transient
resonant oscillations has been observed, and in both cases it has been found that
they are mainly caused by strong incident winds, and disappeared if lower incident
winds was used. For the case of SS 7 the incident waves were found to affect the
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Figure 10.16: Time evolution of the wave elevation, shear force, bending moment
and tower top displacement around the event at 3500 [s] in SS 7,with and without
a lower wind speed and with or without incident waves.
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Figure 10.17: Hilbert-Huang-spectrum for the tower top deflection, for a transient
resonant oscillation event around 3500 [s] in SS 7 with a running turbine, reduced
wind speed, and forces by Rainey.

amplitude of the oscillations, but that the resonant motion still occurred when
no waves were present. The phenomenon observed will not be called ringing,
because it is not caused by the waves.

It appears that there might exist a coupling between the strong winds, the control
system and the wave loads that might govern resonant oscillations in the tower.
It has been shown that the wave loads can have an influence on these resonant
oscillations. It is therefore a reason to believe that if a steep wave interact with
the structure at the same time that the strong winds and the control system
creates a resonant motion, large resonant oscillations can occur.

It is important to note that this is not a definite proof of the existence of such a
coupling between strong winds, the control system and an eventual wave loading.
It is a mere indication of such a relation, and without deeper knowledge about the
control system, the question of possible resonant oscillations can not be answered.
It is outside the scope of this thesis to investigate these eventual couplings between
the control system, strong winds and wave loads.
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10.2 Fully Nonlinear Waves

Due to the findings in linear waves, it has been decided to slightly change the
point of study. Focus will be put mostly on resonant oscillations in a turbine in
the parked condition in SS 6 and SS 7. For a running turbine, only SS 6 and SS
7 will be studied, with input parameters as specified in table 10.1.

The fully nonlinear wave model also produces a linear time series, which can
be used to compare linear and fully nonlinear waves. In conversation with one
of the creators of the waves model, it has been stated that the incident wave
kinematics for the linear solution, is obtained with a vertical stretching. This
stretching technique employs the values for the quantities at z = 0 for all values
above z = 0. Forces calculated by this method will then naturally be slightly
larger than the forces obtained with wheeler stretching in the last section. Care
should be taken when comparing linear results from this section, with the linear
results from the last section, as they have been calculated with slightly different
wave models.

10.2.1 Quantitative Differences Between Wave Models and
Load Models

The first point of interest is to study the PSD of the simulations, as these describe
the simulation as a whole. For each sea state, the PSD has been calculated
for the same quantities as for linear waves. The cases studied are the fully
nonlinear incident waves with forces by Morison, fully nonlinear incident wave
with forces by Rainey and lastly linear incident waves with forces by Morison.
By investigating these it should be possible to answer the question regarding the
effect of nonlinearities in the incident waves. For both sea states the mean wind
speed used is the same as stated in table 10.1.

For the force it can be seen differences between the three simulations for both
sea states. The differences appear to be bigger between a fully nonlinear and a
linear load, than between the load formulations. An interesting feature is that
in some areas the PSD from the Morison formulation is actually larger than for
Rainey’s forces.

The bending moment shows, as expected from the linear simulations, less dif-
ferences and thus less dependence on the wave loading. Some differences are
actually observable also for the bending moment. This is a clear difference from
the case of linear waves, where no differences where observable for the bending
moment.
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Figure 10.18: Comparison of the power spectral density for the shear force, bend-
ing moment and tower top deflection, for the SS 6.
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Figure 10.19: Comparison of the power spectral density for the shear force, bend-
ing moment and tower top deflection, for the SS 7.
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The PSD of the tower top deflection shows some, but very small differences.

On a total basis small differences between the linear and nonlinear incident waves
are seen. There is however expected to be seen significant differences in the
loading if one investigates the steepest waves. Figures 10.20 and 10.21 show
examples from the simulations where a steep wave interacts with the structure.

Investigating the shear force, important differences appear for the three different
cases. There are also differences at the bending moment and the tower top
deflection. The biggest differences occur when comparing fully nonlinear and the
linear incident waves. Here the differences appear when there is a large difference
in the free surface wave elevation for the two wave models. There appears to be
only small differences between the load formulation for the case of fully nonlinear
waves.

No definite rule can be given on the differences between the two load models. For
some time instances Rainey’s expressions produce the largest loads and larger
motions in the tower top, and at another time Morison produces the largest
loads. The difference is however smaller than the difference between the incident
wave model. This is in line with the results obtained in chapter 9 where it also
was found that the nonlinearities in the incident waves where more important
than the nonlinearities from the load formulation.

The wave at 920 [s] in SS 7 is ≈ 6 [m], and should be an excellent candidate
for producing ringing; it is steep, tall and seems very different from the linear
solution. However no ringing occurs, and there are no signs of the secondary load
cycle. This is an indication that the wave load model, and the force load model,
are not able to produce all aspects of this feature.

116



10.2. Fully Nonlinear Waves

-4
-3
-2
-1
0
1
2
3
4

330 340 350 360 370

W
av
e
El
ev
at
io
n
[m

]

Time

-1500
-1000
-500

0
500
1000
1500
2000
2500
3000

330 340 350 360 370

Sh
ea
r
Fo

rc
e
at

M
ud

lin
e
[k
N
]

Time

-10000
0

10000
20000
30000
40000
50000
60000
70000
80000
90000

330 340 350 360 370B
en

di
ng

M
om

en
t
at

M
ud

lin
e
[k
N
m
]

Time

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45

330 340 350 360 370

To
w
er

to
p
di
sp
la
ce
m
en
t
[m

]

Time
SS6, Fully nonlinear incident wave , Calculations with Morison equation
SS6, Fully nonlinear incident wave ,Calculations with Rainey equation

SS6, Linear incident wave ,Calculations with Morison equation

Figure 10.20: Comparison of relevant quantities around large wave event in SS 6.
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Figure 10.21: Comparison of relevant quantities around large wave event in SS 7.
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10.2.2 Resonant Phenomena

The behaviour with slight bursts of resonant behaviour in strong wind was also
encountered for the simulations with fully nonlinear waves. As for linear waves
the resonant oscillations disappeared when the incident wind speed was reduced.
This topic will not be covered here, due to the belief that it is related to some
kind of coupling between strong winds and the control system.

Simulations were also performed with the reduced wind speed for the two cases,
but no clear signs of ringing was shown. This does not mean that it cannot
happen in a running wind turbine, but that it has not been encountered in these
simulations. However, due to the strong aero-elastic damping, it is believed to
be a rare event.

In the linear analyses, clear springing was observed when the turbine was set in
the parked condition. The same is also observed here with fully nonlinear waves.

Figure 10.22 shows simulations in SS 6 with a parked turbine. Several surprising
results are present here, especially that the amplitude of the oscillations in the
tower is larger when forces are calculated by Morison, than with Rainey. For
linear waves in SS 5, the amplitude of the oscillations of the two load models
were similar, which is clearly different from the results obtained here with fully
nonlinear waves.

One possible solution is that Rainey’s expressions, which contains additional
terms (the axial divergence term, and the free surface intersection force), which
are dependent on the relative velocity between the structure and the incident
water particles. The force component in these forces that is dependent on the
structural velocity will then be additional hydrodynamic damping terms, which
Morison’s equation does not have.

With the nonlinear Fenton waves in section 9 it was shown that the difference
between the two load models are in the higher harmonic terms. The second
harmonic load was generally overpredicted by both Rainey and Morison, with
Rainey generally predicting higher loads. The third harmonic term provided
very good agreement with Rainey’s expressions while Morison’s equation slightly
underpredicted the differences. For the linear waves almost no third harmonic
load was present for either of the load models. It is possible that the differences
seen here between results from both the load models, and also the wave models
are due to the differences in these terms.

However, as can bee seen by the comparisons of the two load models, for instance
in figure 9.15, the difference between them for the second harmonic load is ap-
proximately the same for both linear incident waves and nonlinear waves. This
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Figure 10.22: Comparison between Wave elevation, shear force, bending moment
and tower top deflection for springing in SS 6 with a parked turbine.

120



10.2. Fully Nonlinear Waves

means that the different behaviour of the load models in linear and nonlinear
waves, should not be caused by the second harmonic load. This means that the
difference observed in the amplitude for the resonant oscillations are due to the
difference in the third harmonic load. Since Rainey predicted the third harmonic
forces with better experimental comparison, it is believed that results obtained
by the new load formulation is the closest to the real solution.

Another noteworthy observation is that for parts of the time series, there are ac-
tually observed larger oscillations of the tower top when the forces are calculated
by linear waves than with fully nonlinear waves.

The time series also show some instances where the amplitude of oscillation in-
creases with a burst like behaviour, from one oscillation to the next. This be-
haviour is seen, in for instance SS 7, presented in figure 10.23. It can be seen that
the amplitude of the oscillations is near doubling in relation to the steep incident
wave.

This behaviour occurs for several time instances, and is the closest thing to a
ringing response seen in the simulations. It seems to be the same response also
from the linear wave with Morison loading. The response is not very similar to
the classical ringing case, but it definitely have a burst like appearance.

Regarding the frequency content, a HHS has been made for the three time in-
stances in question and presented in figs. 10.24 to 10.26.

All three figures show a clear transition where the resonant oscillations becomes
more intense at a specific point in time. The simulations with a fully nonlinear
incident wave, and forces by Rainey shows perhaps the most clear transition,
where one IMF dominates before the burst, when suddenly another IMF starts
to oscillate with the resonant frequency. For the other two it is the same IMF that
already oscillates with the resonant frequency, but then the intensity is suddenly
increased. The IMF of the three cases are presented in figs. 10.27 to 10.29.

From the IMFs it is clear that the case where the forces are calculated by Rainey’s
expression, there is a sudden transition to the oscillations in the second mode
function. At the same time instance there is an reduction in amplitude of the
third mode function. For the two cases with Morison’s equation there is merely
a amplitude increase of the second modefunction. The case with nonlinear waves
shows a much faster increase in the amplitude of the modefunction, than the
case with linear waves. However, the IMFs are notoriously difficult to interpret,
and in order for them to be valid, they need to be close to orthogonal. The
orthogonality index for the calculations with Rainey has been calculated to 0.067
and for the calculations with fully nonlinear waves and Morison’s equation 0.023.
According to Huang et al. (1998), if the decomposition is orthogonal then the
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Figure 10.23: Comparison between Wave elevation, shear force, bending moment
and tower top deflection for springing in SS 7 with a parked turbine.
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Figure 10.24: Hilbert-Huang-spectrum for the tower top deflection, for a transient
resonant oscillation event around 800 [s] in SS 7 with fully nonlinear incident
waves, a parked turbine, and forces by Morison.

orthogonality index should be zero. There is thus some signs that the resonant
oscillations predicted by the different load models have slightly different origin,
but the data are not conclusive.

By investigating the load history there does not seem to be a marked secondary
load cycle after the main load. This is the second instance with a steep fully
nonlinear waves without seeing the secondary load cycle. It appears then that
the secondary load cycle may not be caused solely by higher order forces. This
is an indication that the next step in the problem should be to include the wave-
structure interactions, to try and predict hydraulic jumps travelling around the
structure. Another possibility is the inclusion of some kind of impact force.
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Figure 10.25: Hilbert-Huang-spectrum for the tower top deflection, for a transient
resonant oscillation event around 3500 [s] in SS 7 with linear incident waves, a
parked turbine, and forces by Moriso.n
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Figure 10.26: Hilbert-Huang-spectrum for the tower top deflection, for a transient
resonant oscillation event around 3500 [s] in SS 7 with fully nonlinear incident
waves, a parked turbine, and forces by Rainey.

Figure 10.27: IMFs used to produce the HHS for the calculations with Morison’s
equation and fully nonlinear waves.
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Figure 10.28: IMFs used to produce the HHS for the calculations with Morison’s
equation and linear waves.

Figure 10.29: IMFs used to produce the HHS for the calculations with Rainey’s
expression and fully nonlinear waves.
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10.3 Summary of Findings

In this chapter it has been found that for a bottom fixed wind turbine with a
working rotor, the hydrodynamic loads are not as important as the aerodynamic
loads for the motion of the tower top. The bending moment at the mudline is
also governed by the aerodynamic loads, due to the long arm the aerodynamic
loads have to the seabed.

For the shear force/horizontal force at the mudline, the wave loads are actually
dominating. This has been seen by the fact that when calculations are performed
with reduced wind speed, this has a very little effect on the horizontal force.

For the case of linear incident waves, the effect of a different load model has
virtually no effect on the motions of the tower top, and only a slight affect on
the shear force.

The difference between the load models are larger for the fully nonlinear waves,
where the different load formulations actually have a small difference on the
tower top deflection. Still the largest differences are seen in the horizontal force.
The differences observed are still quite small compared to the maximum of the
different quantities.

The difference between using a fully nonlinear and a linear incident wave model
are actually larger than the differences between the load models, indicating that
it is more important to satisfy the incident waves properly.

Transient resonant oscillations have been found in SS 6 and SS 7. However
by comparing with simulations without waves the oscillations are still present,
and only disappear if the wind speed is reduced. The oscillations then seems
to be caused by strong winds and the way the control system tries to keep the
rotor speed under control. In SS 7 it was found that the incident waves had
an important effect on the amplitude of the resonant oscillations, leading to
the belief that there might be a coupling between the strong winds, the control
system, wave loads and resonant oscillations.

In a parked condition, severe springing is observed in the tower. This phenomenon
occurs for all combinations of wave models and load models. Investigation has
led to the belief that the system is lacking damping when the rotor is parked, and
that the aero-elastic damping is inhibiting this motion in a running turbine. The
resonant oscillations are more or less present throughout the whole simulations,
but it will sometimes have a burst-like increase in amplitude. This is close to
a ringing effect, and it is believed that if the structure had not already been in
resonant oscillations, this could be an instance of ringing.
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When the tower undergoes springing, important differences have been found for
the amplitude of the tower top deflection, between the load formulations and
also between the incident waves for this condition. An effort has been made, in
section 10.2.2, to try and argue that the difference in amplitude is caused by third
harmonic forces. This indicates that when the rotor is parked, it is important to
both have an accurate wave model and also an accurate load model.

The burst-like increase in the amplitude has been found for all combinations of
wave and load models.

For a running turbine, no clear ringing incidents have been observed, even for
the case with fully nonlinear waves.

For steep waves, the secondary load cycle mentioned as a possible cause for ringing
has not been observed, which leads to the belief that a more sophisticated model
may be needed.
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11 | Conclusion

In this thesis a general review of bottom fixed wind turbines has been performed,
with the focus on nonlinear wave loads and the structural effects of ringing and
springing. By comparing to previous research on the cause of ringing , it was
found that a bottom fixed wind turbine with a monopile foundation might ex-
perience ringing. By investigating the natural frequency of the tower, it was
concluded that springing might also be a problem for the structure.

In order to investigate nonlinear effects, an improved load model derived by
Rainey has been implemented into FAST. Comparison between the loads cal-
culated by the existing feature of Morison’s equation, and loads calculated by
Rainey’s expressions has been performed. Further, comparison has been made
with experiments on a cylinder in regular waves and for fully coupled calculations.

From the comparison with experiments and nonlinear Fenton waves, it was ob-
served that Rainey’s expressions provided better agreement with the experimental
values than Morison’s equation for the third harmonic force. When using linear
incident waves and Wheeler stretching, the third harmonic loads are seriously
underpredicted.

A clear overprediction was present in the second harmonic load with both Morison
and Rainey when Fenton generated incident waves was used. The error increases
with increasing kr values, as expected since the theory is a slender body theory.
The error appears to be growing with a close to linear or weakly exponential
dependence on kr. With linear incident waves there was a fairly good agreement
between experiments and Rainey’s expressions, while Morison’s equation seems
to slightly underpredict.

The first harmonic load is slightly underpredicted by both load models, regardless
of the incident wave model.

The comparison has shown that for a general load calculation, it might be ben-
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eficial to use Rainey’s slender body expressions over Morison’s equation, since
it will in general have better agreement with experimental values. However, the
difference between the two load formulation for the third harmonic load was
smaller than the third harmonic load produced by Morison’s equation and Fen-
ton generated waves. This has lead to the conclusion that the nonlinearities in
the incident waves are more important than the nonlinearities that originate in
the load formulation.

The reference turbine has been subjected to fully coupled aero-hydro-servo-elastic
simulations, in both linear irregular sea, and fully nonlinear sea. The shear force
at the mudline, the bending moment at the mudline and the tower top deflection
have been studied. It was found that the shear force is dominated by the wave
loads, but that the two others are dominated by aerodynamic loads. Investiga-
tions into the subject has revealed that the aero-elastic effects are dominating
the structural motions. This has been contributed to the long distance between
the mudline and the tower top, giving the aerodynamic forces a long arm.

For linear waves, there are generally small differences between the load models,
for the three quantities studied.

For the fully nonlinear incident waves, larger differences between the load models
were found, but not as large as the differences between simulations with a fully
nonlinear and a linear incident wave. Hence, for a running turbine it can also
be concluded that the nonlinearities in the incident waves are dominating over
nonlinearities from the load formulation.

Some transient resonant oscillations were found in simulations with strong winds.
By investigation it was found that they are not caused by the waves, as they still
occurred when no incident waves were present. It was however found that the
waves might affect the amplitude of the oscillations. The resonant oscillations
disappeared when a lower incident wind speed was used. It is thus believed that
these oscillations are caused by the winds being much stronger than the rated
maximum wind speed. This might introduce some kind of coupling between the
control system, the wind loads and the wave loads.

The fact that there is little difference between the two load models is only valid
for the case of a running turbine. If the rotor is parked, so that there is little
aerodynamic forces acting on the structure, larger differences between the two
load models are found, both by studying the time series and the power spectral
density.

In the simulations with a parked turbine, severe springing occurred. This has
been found in SS 5 for the case of linear waves, but it is believed to be present
also for smaller and larger sea states. The steady state resonant oscillations are
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contributed to the lack of aero-elastic damping which is present when the turbine
is running. This allows what is believed to be the higher order wave loads to
excite the tower at it’s first natural frequency.

SS 6 and SS 7 have been investigated with fully nonlinear incident waves for the
parked rotor. The simulations show significant springing, and it occurs for all
load and wave models. However the amplitude of the tower top deflection shows
considerable differences between both the different load models and also between
a linear incident wave and a fully nonlinear waves. This means that for the case
of a parked wind turbine it is important to model both forces and incident waves
accurately.

The springing appears to have a burst-like increase in amplitude when interacting
with steep waves. This behaviour is the closest observed to the classical time
evolution of ringing. It occurs for all different models, but appears to be largest
for the fully nonlinear wave model.

The fact that springing occurs is a sign that parking the rotor when bad weather
is encountered, might actually be dangerous from a fatigue point of view. The
rotor should ideally be able to rotate and thereby alter the characteristics of the
oscillations.

No ringing or springing occurred in the simulations with a running turbine.

Regarding ringing, the secondary load cycle which is believed to be important,
was not observed, even for steep fully nonlinear waves. This indicates that a
wave load model that includes the heavy wave-structure interaction might be
necessary.

Considering the questions stated in the outline of the thesis:

• Yes, there exist important differences between a linear incident wave model
and a fully nonlinear wave model. The differences are small for a running
turbine, but could have an affect on the whole life cycle of the turbine.
Much larger differences are present in a turbine with a parked rotor, and
here the chosen wave model has an impact on the maximum tower top
deflection.

• Differences are present for the two different load models. Considering the
linear incident waves, the effect is small, even for the horizontal force which
is governed by the wave loads. Larger differences are present for the non-
linear incident waves. The largest differences are found when the turbine
is parked, where the chosen load model affects the amplitude of resonant
oscillations.
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• For a running turbine in normal conditions, the nonlinear effects have small
significance for the operation of the turbine. This is because the motion of
the tower top and the bending moment at the seabed are governed by the
aerodynamic loads. It is however important to note that if bad weather is
encountered it might actually be more dangerous to park the rotor than to
let the rotor have some freedom to absorb forces. In a parked condition,
the nonlinear effects have been shown to be important.

• The structure can experience springing, and a behaviour close to ringing
when put in a parked condition. No transient behaviour caused solely by
wave loads is observed in simulations with a running turbine. This does
not prove that ringing cannot occur, since it is not certain that all aspects
of the phenomenon are included in the calculations.
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The two different load models have been compared with experimental results
solely with respect to the amplitude of the load components. Also the phase
of the load in relation to the incident wave should be studied, as it might be
important for the onset of resonant oscillations.

More work should be put in studying the effect of the differences between the load
models when a fully nonlinear incident wave is used. The work should focus on
the long term effects of using different formulations. Some differences in terms of
the power spectral density and the time evolution was found here, but this study
cannot be said to be complete.

The reference turbine experiences heavy springing when set in the parked condi-
tion. Only a few cases have been studied here, so more time should be spend on
investigating this effect. The finding, that with fully nonlinear waves Rainey pre-
dicted smaller amplitude of the springing than Morison while with linear incident
waves no difference was present for the amplitude, needs further investigation.
Further work on the topic should preferably be compared with experiments trying
to reproduce the springing observed in the simulations.

Increasing the structural damping showed a clear reduction in the amplitude of
the resonant oscillations. Further work on the subject should, if possible, include
a more realistic boundary condition at the seabed, in order to be certain that the
damping in the system is correct. The total damping of the structure when the
rotor is parked is believed to be very important for the effect that the nonlinear
loads have on the structure.

The possible coupling between strong winds, wave loading and the effect of the
control system seems to be able to create transient resonant oscillations. This
feature might have a significant role on the life span of an offshore wind turbine
and needs further investigation. It is believed that the resonant motion is caused
by the control system trying to reduce the loads on the turbine to decrease
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the rotor speed. This would introduce an important possibility for coupling
between the control system and wave loads. Further work on the topic of resonant
oscillations caused by waves should include a detailed study of how the control
system operates and the possible coupling with wave loads.
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A.1 Morison’s Equation and Wheeler Stretching

Morison’s equation is a semi-empirical load formula divided into two parts. The
first part is related to the forces from potential flow, and the second part is
an empirical relation which shall take into account the viscous drag forces. The
potential flow part of the equation can be derived by assuming a slender structure
in linear incident waves, and the details can be found in for instance Faltinsen
(1990).

The potential load term is given in equation A.1

dF = ρπ
D2

4 CMdzax (A.1)

Where Cm is the mass coefficient given as Cm = (1 +CA), CA is the added mass
coefficient and ax is the acceleration of water particles at the cylinder centre.
When the drag part of the equation is included, it reads:

dF = ρπ
D2

4 (1 + CA)dzax + ρ

2CDDdz|u|u (A.2)

Where CD is the drag coefficient, and u is the velocity of the water particles at
the cylinder centre.

The two coefficients CA and CD needs to be decided empirically, and are affected
by for instance the Keuligan-Carpenter number and Reynolds number. The drag
coefficient is usually highly dependent on the Reynolds number, and according to
Veritas (2010) may vary from as low as 0.3 to 1.2. The added mass of a structure is
generally frequency dependent, so the added mass coefficient is highly dependent
on the Keuligan-Carpenter number. According to Veritas (2010) it may be as
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Chapter A.

low as 0.2 for a rough cylinder to 1.0 for the case of low KC number. The case
of CA = 1.0 is the theoretical result, obtained by long wave approximations.

It is possible to expand the equation to take into account the relative motion
between the turbine and the water particles. When this is taken into account, it
can be written as (Faltinsen, 1990):

dF = ρπ
D2

4 (1 + CA)dzax − ρCAπ
D2

4 dzU̇x + ρ

2CDDdz|u− Ux|(u− Ux) (A.3)

Where u is the horizontal velocity of the water particles, U̇x is the local structure
acceleration in and Ux is the local structure velocity.

It can be shown by writing the drag term as a Fourier series, that the drag term
will include odd harmonics ( ω, 3ω, 5ω,...) and is thereby a source of nonlinear
forcing. This could also be seen on the square dependency of the water particle
velocity. When current is present it would also give even terms (Gudmestad and
Connor, 1983).

By studying the source code of FAST, it appears that this version of Morison’s
equation has been implemented.

The second term is a coupling between the elasticity of the structure and the
hydrodynamic loads. The deformation of the structure caused by the aerody-
namic forces will generate forces on the structure from the water by account of
this term.

Stretching of the linear wave kinematics seems to be more or less standard pro-
cedure, if one is to use what the solvers in Jonkman and Musial (2010) use as
standard. For neither of the techniques there seems to be a sound physical rea-
soning, but they are used as “engineering-approximations”. It appears that a
popular stretching technique is Wheeler stretching. Here the wave kinematics
are stretched, so that the velocity valid at z = 0 according to linear theory is
applied at the free surface. This is in reality a shift in the coordinates so that
the stretched vertical coordinate z’ is written as:

z′ = z − ζ
1 + ζ

h

(A.4)

(Stansberg and Gudmestad, 1996).

The method is applied by integrating the sectional force to the instantaneous free
surface, but with a substituted coordinate in the “decay-function” for the wave
kinematics. Since the integration over the wetted surface is to the time varying
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A.1. Morison’s Equation and Wheeler Stretching

free surface elevation, this should give a force proportional to ζ2, where one order
is from the wave kinematics, and the second is from the integration to a moving
free surface. More importantly a force proportional to ζ2 should also give higher
harmonic force.

This can be shown by the following. Assume a stiff vertical cylinder in finite
water with water depth h. The wave profile of a linear regular incident wave is
given as:

ζ = ζasin(ωt− kx) (A.5)

The inertia force on a section is then given by Morison’s equation:

dF = ρ
πD2

4 (1 + CA)axdz = ρπr2(1 + CA)axdz (A.6)

The acceleration from a regular first order incident wave is given as:

ax = ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx) (A.7)

Placing the origin in the centre of the cylinder with the vertical axis pointing
upwards, the force on a section is given as:

dF = ρπr2(1 + CA)ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt)dz (A.8)

If wheeler stretching is employed, this can be integrated up to the free surface
wave elevation, but the vertical coordinate must be “shifted”, introducing this
shift, the force on a section is:

dF = ρπr2(1 + CA)ω2ζA

cosh(k( z−ζ
1+ ζ

h

+ h))

sinh(kh) cos(ωt)dz

= ρπr2(1 + CA)ω2ζA

cosh(k z+h
1+ ζ

h

)

sinh(kh) cos(ωt)dz

(A.9)

Then the force on a pile is given as

F = ρπr2(1 + CA)ω2ζA
cos(ωt)

sinh(kh)

∫ ζ

−h
cosh(k z + h

1 + ζ
h

)dz

= ρπr2(1 + CA)ω2ζA
cos(ωt)

sinh(kh)
1
k

(1 + ζ

h
)[sinh(k z + h

1 + ζ
h

)]ζ−h

(A.10)
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F = ρπr2(1 + CA)ω2ζA
cos(ωt)

sinh(kh)
1
k

(1 + ζ

h
)[sinh(kh)− sinh(0)]

= ρπr2(1 + CA)ω2ζAcos(ωt) 1
k

(1 + ζ

h
)

(A.11)

Introducing the wave profile:

F = ρπr2(1 + CA)ω2 ζA
k

cos(ωt) + ρπr2(1 + CA)ω2 ζ
2
A

kh
cos(ωt)sin(ωt) (A.12)

F = ρπr2(1 + CA)ω2 ζA
k

cos(ωt) + ρπr2(1 + CA)ω2 ζ
2
A

2kh sin(2ωt) (A.13)

It is apparent that this method will give rise to sum frequency forces for the case
of finite water depths.

The method was presented by Wheeler (1970) and seems to be used regularly
when calculating wave forces from irregular sea. It is based on observation that
fluid velocity at the still water level is reduced in the real world compared to
predictions from linear theory (Veritas, 2010).

In the original paper the author states that when the coordinate shift is intro-
duced, the solution to the incident waves no longer satisfy Laplace’s equation.

Stansberg et al. (2008) have compared various methods for predicting kinemat-
ics with results obtained by laser-doppler-velocimetry. Among them wheeler
stretching. They have found that in steep waves the wheeler method signifi-
cantly underpredicts the velocities in steep waves on all depth levels when used
with wave elevation calculated as a sum of linear waves . The error is in the
range 0.5k0A0 − 0.75k0A0 where k0A0 is the local wave steepness.

According to the same paper, if wheeler stretching is based on a measured time
series, or a second order wave kinematics model, then accuracy is improved at
the free surface. The same range of errors are still present below z = 0.
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In this appendix much of the calculations in section 5.7 are performed.

B.1 Simplification

First the simplification of equation 5.16 is performed.

Equation 5.16 is:

dFx = (ρπD
2

4 +mx)ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx)+

(ρπD
2

4 +mx) ∗ ωζA
cosh(k(z + h))

sinh(kh) sin(ωt− kx) ∗ −kωζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx)+

(ρπD
2

4 +mx) ∗ ωζA
sinh(k(z + h))

sinh(kh) cos(ωt− kx) ∗ kωζA
sinh(k(z + h))

sinh(kh) sin(ωt− kx)+

mx ∗ kωζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx) ∗ ωζA
cosh(k(z + h))

sinh(kh) sin(ωt− kx)

(B.1)

By simply pulling together the correct terms into powers we obtain
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dFx = (ρπD
2

4 +mx)ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx)+

−(ρπD
2

4 +mx) ∗ ω2ζ2
A

cosh2(k(z + h))
sinh2(kh)

sin(ωt− kx)k cos(ωt− kx)+

(ρπD
2

4 +mx) ∗ ω2ζ2
A

sinh2(k(z + h))
sinh2(kh)

sin(ωt− kx)k cos(ωt− kx)+

mx ∗ kω2ζ2
A

cosh2(k(z + h))
sinh2(kh)

cos(ωt− kx) sin(ωt− kx)

(B.2)

The second and third line might be pulled together, so the following is given:

dFx =

(ρπD
2

4 +mx)ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx)

+ (ρπD
2

4 +mx) ∗ kω2ζ2
A

1
sinh2(kh)

sin(ωt− kx) cos(ωt− kx)(− cosh2(k(z + h)) + sinh2(k(z + h)))

+mx ∗ kω2ζ2
A

cosh2(k(z + h))
sinh2(kh)

cos(ωt− kx) sin(ωt− kx)

(B.3)

A relation between cosh and sinh is used:

cosh2(x)− sinh2(x) = 1 (B.4)

By introducing this for the last parenthesis in line two:

dFx = (ρπD
2

4 +mx)ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx)+

(ρπD
2

4 +mx) ∗ kω2ζ2
A

1
sinh2(kh)

sin(ωt− kx) cos(ωt− kx)(−1)+

mx ∗ kω2ζ2
A

cosh2(k(z + h))
sinh2(kh)

cos(ωt− kx) sin(ωt− kx)

(B.5)
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By writing line two into expressions

dFx = (ρπD
2

4 +mx)ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx)+

−ρπD
2

4 ∗ kω2ζ2
A

1
sinh2(kh)

sin(ωt− kx) cos(ωt− kx)+

−mx ∗ kω2ζ2
A

1
sinh2(kh)

sin(ωt− kx) cos(ωt− kx)+

mx ∗ kω2ζ2
A

cosh2(k(z + h))
sinh2(kh)

cos(ωt− kx) sin(ωt− kx)

(B.6)

Line three and four can be simplified:

dFx = (ρπD
2

4 +mx)ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx)+

−ρπD
2

4 ∗ kω2ζ2
A

1
sinh2(kh)

sin(ωt− kx) cos(ωt− kx)+

mx ∗ kω2ζ2
A

1
sinh2(kh)

cos(ωt− kx) sin(ωt− kx)(cosh2(k(z + h))− 1)

(B.7)

By utilising that
cosh2(x)− 1 = sinh2(x) (B.8)

The following is found:

dFx = (ρπD
2

4 +mx)ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx)+

−ρπD
2

4 ∗ kω2ζ2
A

1
sinh2(kh)

sin(ωt− kx) cos(ωt− kx)+

mx ∗ kω2ζ2
A

sinh2(k(z + h))
sinh2(kh)

cos(ωt− kx) sin(ωt− kx)

(B.9)

Which is the same as:
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dFx = (ρπD
2

4 +mx)ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt− kx)+

(mx sinh2(k(z + h))− ρπD
2

4 ) ∗ kω2ζ2
A

1
sinh2(kh)

sin(ωt− kx) cos(ωt− kx)

(B.10)

For a circular cylinder mx = CAρ
πD2

4 where CA is the added mass coefficient.
By also setting x = 0, and introducing sin(2x) = 2 cos(x) sin(x) The result can
then be further simplified to:

dFx = (1 + CA)ρπD
2

4 ω2ζA
cosh(k(z + h))

sinh(kh) cos(ωt)+

(CA sinh2(k(z + h))− 1)ρπD
2

4 kω2ζ2
A

1
sinh2(kh)

1
2 sin(2ωt)

(B.11)

B.2 Integration

The next part is the integration over the structure, which is the integral in equa-
tion 5.19

F = ρπr2kω2ζ2
A

1
sinh2(kh)

1
2 sin(2ωt)

∫ ζ

−h
(CA sinh2(k( z − ζ

1 + ζ
h

+ h))− 1)dz (B.12)

By using standard expressions for the integral of sinh2(x) from Rottmann (2008)
the integral turns out to be:

∫ ζ

−h
(CA sinh2(k( z − ζ

1 + ζ
h

+h))−1)dz = [CA( 1
4k (1+ ζ

h
) sinh(2k( z − ζ

1 + ζ
h

+h))−z2)−z]ζ−h
(B.13)

VIII



B.2. Integration

∫ ζ

−h
(CA sinh2(k( z − ζ

1 + ζ
h

+ h))− 1)dz = CA
1
4k (1 + ζ

h
) sinh(2kh)− CA

ζ

2 − CA
h

2 − ζ − h

= CA
1
4k (1 + ζ

h
) sinh(2kh)− ζ(CA2 + 1)− h(CA2 + 1)

(B.14)

This gives the force on the cylinder:

F = ρπr2kω2ζ2
A

1
sinh2(kh)

1
2 sin(2ωt)(CA

1
4k (1+ ζ

h
) sinh(2kh)−ζ(CA2 +1)−h(CA2 +1))

(B.15)

The wave profile is given as ζA sin(ωt), by introducing this into the equation we
obtain:

F = ρπr2kω2ζ2
A

1
sinh2(kh)

1
2 sin(2ωt)(CA

1
4k (1 + ζA sin(ωt)

h
) sinh(2kh)

−ζA sin(ωt)(CA2 + 1)− h(CA2 + 1))
(B.16)

Now the part of collecting terms, comes to play. An identity that will be used is
2 sin(2x) sin(x) = cos(x)− cos(3x).

F = ρπr2kω2ζ2
A

1
sinh2(kh)

1
2CA

1
4k sinh(2kh) sin(2ωt)

+ρπr2kω2ζ2
A

1
sinh2(kh)

1
2CA

1
4k sinh(2kh)ζA sin(ωt)

h
sin(2ωt)

−ρπr2kω2ζ2
A

1
sinh2(kh)

1
2ζA sin(ωt)(CA2 + 1) sin(2ωt)

−ρπr2kω2ζ2
A

1
sinh2(kh)

1
2h(CA2 + 1)) sin(2ωt)

(B.17)
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By using the identity above:

F = 1
8CAρπr

2kω2ζ2
A

1
sinh2(kh)

1
k

sinh(2kh) sin(2ωt)

+ 1
16ρπr

2kω2ζ3
A

1
sinh2(kh)

CA
1
kh

sinh(2kh)(cos(ωt)− cos(3ωt))

−1
4ρπr

2kω2ζ3
A

1
sinh2(kh)

(CA2 + 1)(cos(ωt)− cos(3ωt)

−1
2ρπr

2kω2ζ2
A

1
sinh2(kh)

h(CA2 + 1)) sin(2ωt)

(B.18)

Restructuring gives us:

F = ρπr2kω2ζ3
A

1
sinh2(kh)

( 1
16CA

1
kh

sinh(2kh)− 1
4(CA2 + 1)) cos(ωt)

+ρπr2kω2ζ2
A

1
sinh2(kh)

(1
8CA

1
k

sinh(2kh)− 1
2h(CA2 + 1)) sin(2ωt)

+ρπr2kω2ζ3
A

1
sinh2(kh)

(1
4(CA2 + 1)− 1

16CA
1
kh

sinh(2kh)) cos(3ωt)

(B.19)

B.3 Free Surface Intersection Force

For the free surface intersection force there are two cases, first the case on the left
side of figure 5.1 will be expanded, and then the expressions on the right side.

Inserting the correct values into equation 5.22

FSI = 1
2
∂ζ

∂x
[(

−1
0
0

 ·
u− Uxv − Uy
w − Uz

)

mx 0 0
0 my 0
0 0 0

 u− Uxv − Uy
w − Uz

−
(

−1
0
0

 · (
0

0
1

×
mx 0 0

0 my 0
0 0 0

 u− Uxv − Uy
w − Uz

))(

0
0
1

×
u− Uxv − Uy
w − Uz

)

(B.20)

Since the cylinder is assumed stiff for this specific case, and all waves are long
crested, which propagates in the x direction, this reduces to:
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FSIx = 1
2
∂ζ

∂x
[(

−1
0
0

 ·
u0
w

)

mx 0 0
0 my 0
0 0 0

 u0
w

−
(

−1
0
0

 · (
0

0
1

×
mx 0 0

0 my 0
0 0 0

 u0
w

))(

0
0
1

×
u0
w

)

(B.21)

Working out the matrix operations, the result is:

FSI = 1
2
∂ζ

∂x
[(−u

mxu
0
0

)− (

−1
0
0

 · (
 0
−mxu

0

))(

 0
−u
0

)] (B.22)

FSI = −1
2
∂ζ

∂x
mxu

2 (B.23)

For the case on the right side, by inserting the changes to α and t-vector into
equation B.21, the following is obtained:

FSIx = 1
2 −

∂ζ

∂x
[(

1
0
0

 ·
u0
w

)

mx 0 0
0 my 0
0 0 0

 u0
w

−
(

1
0
0

 · (
0

0
1

×
mx 0 0

0 my 0
0 0 0

 u0
w

))(

0
0
1

×
u0
w

)

(B.24)

Which again reduces to

FSI = −1
2
∂ζ

∂x
mxu

2 (B.25)

The last part of the force, will be zero for all vertical cylinders with isotropic
added mass.
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C |

This appendix describes the changes made to the source code of FAST as a part
of this thesis.

C.1 Implementing the Changes in FAST

In FAST the waves are generated as a time series in the initialisation of the
program. The Wave elevation is calculated at the platform reference point/
centre line (x = 0). The kinematics of the incident waves are also calculated at
this point for the various depths. The fact that the waves are calculated before
the time stepping procedure, means that it is not possible to take into account
an eventual movement of the element where it should actually be subjected to
kinematics from a slightly different position.

C.1.1 Additions to Linear Wave Generation

In the current load model, the acceleration is used without the convective terms,
so not all the necessary wave kinematics for Rainey’s expressions are calculated.
There is thus a need to extend the calculations for the linear waves.

As it is, FAST is only calculating the local accelerations ∂u
∂t and ∂w

∂t . For the
inertia load and axial divergence load the convective accelerations of the incident
wave, and also the velocity gradient matrix are needed. This sections describes
the mathematics behind the implementation.

The velocity gradient matrix is defined as
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∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 (C.1)

And the convective accelerations which are needed can be defined as:

ax = ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
(C.2)

ay = ∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
(C.3)

az = ∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
(C.4)

Since FAST is only implementing a plane wave, the time series of the free surface
elevation is first calculated in a local coordinate system (x′, z′). Afterwards it is
transformed into a three-dimensional coordinate system (x, y, z), allowing for a
general propagation direction of the incident waves. All the parts of the velocity
gradient matrix is to be calculated in the local (x′, z′) coordinate system which is
rotated β degrees to the global. In order to represent the waves in the calculations,
a transformation to the global (x, y, z) system is needed.

Since the transformation is merely a rotation of the x- and y-axis, the z-axis will
not be transformed. A purely rotation of the coordinate system (x, y, z) around
the origin into the system (x′, y′, z′), with a rotation angle given by β, leads to
the following relations:

x′ = xcos(β) + ysin(β) (C.5)

x = x′cos(β)− y′sin(β) (C.6)

y′ = ycos(β)− xsin(β) (C.7)

y = x′sin(β) + y′cos(β) (C.8)

z′ = z (C.9)
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The partial derivatives of x′ with respect to x and y will be needed.

∂x′

∂x
= cos(β) (C.10)

∂x′

∂y
= sin(β) (C.11)

Since the velocities (u, v, w) are parallel with the directions (x, y, z), and the ve-
locities (u′, v′, w′) are parallel with the directions (x′, y′, z′), the transformations
of the velocities from one coordinate system to the other is similar to the above
expressions.

In the local coordinate system the velocities (u′, v′, w′) are in fact only two di-
mensional, with no component v′ in the y′ direction, leading to the following
expressions for the velocity transformations:

u = u′cos(β) (C.12)

v = u′sin(β) (C.13)

w = w′ (C.14)

With the given relationships it can be shown that the the partial derivatives can
be written as:

∂u

∂x
= ∂u′

∂x
cos(β) = ∂u′

∂x′
∂x′

∂x
cos(β) = ∂u′

∂x′
cos2(β) (C.15)

And similarly for the other components:

∂u

∂y
= ∂u′

∂x′
cos(β)sin(β) (C.16)

∂u

∂z
= ∂u′

∂z
cos(β) (C.17)

∂v

∂x
= ∂u′

∂x′
cos(β)sin(β) (C.18)
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∂v

∂y
= ∂u′

∂x′
sin2(β) (C.19)

∂v

∂z
= ∂u′

∂z′
sin(β) (C.20)

∂w

∂x
= ∂w′

∂x′
cos(β) (C.21)

∂w

∂y
= ∂w′

∂x′
sin(β) (C.22)

∂w

∂z
= ∂w′

∂z′
(C.23)

The velocity components (u′, z′) are determined from standard expressions from
linear theory.

They way FAST generates time series are with an Inverse Fourier transform of
Fourier coefficients. The theory takes advantage of the way the velocity potential
for an incident linear wave at finite depth can be defined using complex numbers:

φ = Re{ igζA
ω

cosh(k(z′ + h))
cosh(kh) e−ikx

′
eiωt} (C.24)

The free surface is given as:

ζ ′ = Re{ζAe−ikx
′
eiωt} (C.25)

The velocities can be found by differentiation with respect to x and z. Taking
the real part is implied in all the following expressions.

u′ = ∂φ

∂x
= ωζA

cosh(k(z′ + h))
sinh(kh) e−ikx

′
eiωt (C.26)

w′ = ∂φ

∂z
= iωζA

sinh(k(z′ + h))
sinh(kh) e−ikx

′
eiωt (C.27)

The linear dispersion relationship for finite water has been utilised in order to
simplify the expressions.
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ω2 = kgtanh(kh) (C.28)

The Fourier coefficients for the velocities are the above expressions, except for
the time dependence part.

From these expressions it is straight forward to obtain the relevant convective
accelerations:

∂u′

∂x′
= −iku′ (C.29)

∂u′

∂z′
= kωζA

sinh(k(z′ + h))
sinh(kh) e−ikx

′
eiωt (C.30)

∂w′

∂x′
= −ikw′ (C.31)

∂w′

∂z′
= kωζA

cosh(k(z′ + h))
sinh(kh) e−ikx

′
eiωt (C.32)

Again the Fourier coefficients are simply the expressions except for the eiωt part.

For the oblique slam load also the surface slope, and velocity at the free surface
are needed. The expressions for the velocity are in principle only valid up to the
mean free surface, but various stretching techniques can be applied in FAST. In
this implementation vertical stretching and Wheeler stretching has been enabled.
Both of these models use the velocity at z = 0 at the instantaneous free surface.

The wave slope for a linear wave is simply

∂ζ ′

∂x′
= −ikζAe−ikx

′
eiωt (C.33)

Since FAST is not considering the wave kinematics at the actual position of the
tower, i.e. that the tower displacement is small, all the quantities should be
evaluated at the platform centre, x = 0. This means that the exponential term
including x is 1. The total expressions implemented as the Fourier coefficients in
FAST is then:

∂u

∂x
= −ikωζA

cosh(k(z′ + h))
sinh(kh) cos2(β) (C.34)
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∂u

∂y
= −ikωζA

cosh(k(z′ + h))
sinh(kh) cos(β)sin(β) (C.35)

∂u

∂z
= kωζA

sinh(k(z′ + h))
sinh(kh) cos(β) (C.36)

∂v

∂x
= −ikωζA

cosh(k(z′ + h))
sinh(kh) cos(β)sin(β) (C.37)

∂v

∂y
= −ikωζA

cosh(k(z′ + h))
sinh(kh) sin2(β) (C.38)

∂v

∂z
= kωζA

sinh(k(z′ + h))
sinh(kh) sin(β) (C.39)

∂w

∂x
= kωζA

sinh(k(z′ + h))
sinh(kh) cos(β) (C.40)

∂w

∂y
= kωζA

sinh(k(z′ + h))
sinh(kh) sin(β) (C.41)

∂w

∂z
= ikωζA

cosh(k(z′ + h))
sinh(kh) (C.42)

∂ζ

∂x
= −ikζAe−ikx

′
eiωtcos(β) (C.43)

∂ζ

∂y
= −ikζAe−ikx

′
eiωtsin(β) (C.44)

With the given expressions, the calculation of the components in the velocity ma-
trix is implemented in the wave initialisation part of FAST. The implementation
has been made so it is merely an extension of the current calculations.

FAST has the possibility to use one of the four possibilities for kinematic stretch-
ing: no stretching, i.e consistent linear theory, Vertical stretching, extrapolation
stretching and wheeler stretching. The new wave features has been implemented
for all methods, except for the extrapolation stretching. The reason for dropping
support for this technique is that it will not be used in the studies, and it is a bit
more complex than the others.
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All the above expressions are for a single regular wave, in order to generate irregu-
lar seas FAST is simply performing a summation over the the various frequencies.
The wave amplitude then needs to be decided based on a wave spectrum, and a
random phase angle. FAST has the possibility of utilising a Pierson-Moskowitz
spectrum, a JONSWAP-spectrum or a user defined spectrum. To incorporate
a random phase, FAST uses a white-Gaussian-noise process. The irregular sea
states are then generated as described in (Emmerhoff, 1994, section 6.3).

C.1.2 Fenton Generated Waves

As part of the validation of the solver in chapter 8 and verification of the load
model in chapter 9, nonlinear regular waves was needed. Section 6.1 shows a
procedure in which nonlinear regular waves may be generated by a Fourier ap-
proximation to the problem of steady waves.

An external Fenton program is first run to generate the wave input file. An
example of the file can be found in appendix D. The actual implementation into
FAST is found in the source code of FAST, given in the digital appendix.

This file is then read by FAST, and a time series of the following quantities are
generated for all element nodes below the instantaneous free surface elevation at
the actual position of the calculation node. If the free surface elevation is such
that the node of an element is above the free surface, but the element is partly
submerged, then the kinematics at the free surface is used for this node. This
has been implemented this way to avoid the inherent errors in the way FAST
calculates the wave kinematics for linear waves and applies it to calculate forces.
These errors will be explored in section C.1.5.

As for the linear case, all quantities are first calculated in a local coordinate
system (x′, z′) and then transformed back to the global (x, y, z) system.

The input file from the Fenton program gives the user several non-dimensional
characteristics and Fourier coefficients for the free surface elevation and Fourier
coefficients for the solution in the fluid domain i.e the wave kinematics. The num-
ber of Fourier coefficients is determined by the user as an input to the program
and might be denoted by N . The mathematical expressions is given as:

ζ ′ = 1
k

N∑
j=1

‘Ejcos(jk(x′ − ct)) (C.45)

Ej is the j’th component of the Fourier transform of the free surface elevation,
x′ is the position along the local x-axis, k the wave number which is given in the

XVIII



C.1. Implementing the Changes in FAST

output file, t the time and c′ is the local wave speed. the sign Σ‘ means that
in the summation the contributions from j = 0 and j = N(if they should be
included) are multiplied with 0.5.

The velocity in local x′ direction

u′ = c′ − ū′ +
√
g

k

N∑
j=1

jBj
cosh(jk(h+ z′))

cosh(jkh) cos(jk(x′ − ct))) (C.46)

where u′ is the velocity component in the local x′ direction, c′ the local wave
direction, ū′ the local mean fluid speed in the frame of the wave, g the gravi-
tational constant set to 9.81, k wave number, Bj the Fourier coefficient for the
fluid solution for component j, h is the water depth.

The velocity in z′ direction might be found by:

w′ =
√
g

k

N∑
j=1

jBj
sinh(jk(h+ z′))

cosh(jkh) sin(jk(x′ − ct))) (C.47)

The rest of the needed quantities are easily found by differentiation of the given
expressions, but are omitted here.

To transform the local variables into the global coordinate system, the same
relations as in section C.1.1 has been used.

All in all the implementation is quite similar to the linear case, except that all
the data must be read from an input file which has been made in advance. The
name of the input file is given in one of the input files to FAST, where there is
already a place for the input file of wave data calculated in the style of another
simulation tool called GH Bladed.

In the FAST input files, there is a field to specify which wave theory that should be
utilised. A slight modification to the input/output routine has made it possible
to extend the possibilities of this field, so that Fenton generated waves are a
possible entry. A similar modification was also necessary so that the file name
was actually read when this was chosen.

C.1.3 Fully Nonlinear Waves

FAST has the possibility to input externally calculated waves, a feature that will
be used for the fully nonlinear MEL generated waves. For the case of Morison’s
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equation, there is not necessary to make any changes to FAST in order to include
these forces. However, Rainey’s expressions requires the spacial derivatives, and
also the slope of the free surface. The way this has been implemented is that
the needed quantities are generated externally, and then a slight modification has
been made to the way FAST reads the needed files. The change has been made
so that only when wave forces are to be calculated by Rainey’s expressions, the
extra files are read.

The fully nonlinear solver does not calculate the spacial derivatives directly, but
it calculates the velocity at a position just before the turbine, and just after. In
this way a grid of points where the velocity is known has been calculated. The
spacial derivatives can then be calculated by a central difference formula. These
calculations must be performed before running FAST. The routine for performing
the calculations can be found in appendix E

C.1.4 Force Calculations

The new force calculations has been implemented in FAST in the same style as
the existing Morison calculations. Therefore the following section stands as both
a description of how FAST is currently calculating, and also how the new features
has been implemented.

FAST is dividing the tower into a user selected number of elements, and allocates
a node to the centre of each element. All elements has equal length in the version
of FAST that I have worked on.

Hydrodynamically the structure is considered as only a line, so all kinematics are
calculated at the centre line and for each calculation node. Also how much of an
element that is submerged is calculated based on the wave elevation at the centre
line.

All forces on a element fully submerged is applied at the calculation node in the
centre of the element as a force in x, y or z -direction. The force is calculated
based on the kinematics at the calculation node. There is also an additional
moment around each of the three axes. For a fully submerged element this will
however be zero since the load is assumed constant over the element, which gives
symmetric contribution above and below the calculation node.

For the force on a partly submerged element, the basic assumption is again that
the force per length over an element is constant, and equal to the force calculated
at the calculation node. However to represent that such an element would be
subject to a moment due to the centre of pressure being below the centre of the
element, the centre of pressure is set to be the point halfway between the the

XX



C.1. Implementing the Changes in FAST

free surface and the submerged end of the element. The force is then applied
at the calculation node, but since the centre of pressure is at a distance from
the middle of the element, there will also be a non-zero moment applied to this
node. The arm in the moment is just the length from the centre of pressure to
the calculation node.

Figure C.1 shows how the structure is discretised.

Element

Calculation node

Centerline

Figure C.1: Discretisation of structure into elements and nodes

This way of implementing the force is of course an approximation since a finite
number of elements are used. At the deepest elements the variation of the force
over the element will not be as great as in the free surface zone where the kinemat-
ics of the incident waves have large spatial variations. In this zone it is necessary
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with smaller elements than at the seabed. FAST does not have a possibility to
cluster elements, so it is necessary to use sufficiently small elements on the whole
structure.

The force on a submerged element is implemented as expression 5.2, except for
the last three terms, which for the case studied here will be zero. In the im-
plementation of the force itself, no assumptions have been made regarding the
structure, but in the implementation of the l and t vectors, the structure has
been assumed totally stiff.

Since this is a steel structure it will be quite stiff, so it might be assumed that
the structure is undeflected, causing l - and t -vectors to remain the same for
all deflections. This is an simplification, but it is in line with how the wave
kinematics are calculated, where the kinematics at the un-deflected centre line is
used to calculate forces for all time steps.

It is important to stress that even if the structure is assumed stiff, the actual
element velocity is used to calculate the relative velocity between the structure
and the water particles.

The term that gives a forces from the structural acceleration(term 3 in equation
5.2) is already implemented in FAST, at a different point in the calculations.
Therefore it is not necessary to implement this in the calculations.

For the oblique slam force there is no established way of implementing it, since
the existing load calculations does not include any point force. The value of
the force is calculated using the kinematics of the water at the free surface, the
velocity of the structure at the free surface, and the instantaneous slope of the
free surface, all quantities at the platform centre line.

The force is applied at the calculation node of the element at the free surface.
In order for the moment applied to the node to be correct, the arm is the actual
arm between the free surface and the calculation node. There is however a small
trick to the implementation in FAST. Presently it is assuming that the forces
calculated is the cross sectional force and should be equal over the whole element,
thus it will multiply the force calculated with the element length. This force is
not a distributed force, so in order to obtain the correct force on an element, the
calculated force needs to be divided by the element length in the routine.

In the routine the total cross sectional load on the structure is made by summation
of the force components, and then at a later time this total force will be multiplied
with the element length. Since the oblique slam load has been divided by the
element length, and the total force is just a summation of the components it
follows that the oblique slam will end up with the correct value.
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C.1.5 Error in Wave Implementation in FAST

There is an error in how FAST implements the calculation of linear wave kine-
matics and how it uses it to calculate forces. This error is briefly mentioned in
the source code of FAST, but without explanation. This aspect will be shortly
presented here.

When calculating the wave kinematics FAST uses the calculation node to decide
if an element is submerged or not. If an calculation node is above the free surface
elevation, then kinematics are not calculated for this element. It might be that
an element is partly submerged, but the calculation node is above the wave
elevation, so this element will be wrongly set as completely dry when calculating
the kinematics.

Later in the process the forces are calculated using the previously calculated
kinematics. FAST interpolates into the data of the needed quantity to obtain the
kinematics used to calculate the force. They way FAST decides if an element is
submerged is no longer to look if the node is submerged, but if some part of the
element is below the free surface elevation. The force is then calculated based on
the kinematics of the element’s node. Since it is to interpolate into the data, but
the position where the value is wanted is above the range where values exists,
it is set to the nearest value. For the case discussed here it will mean that for
the element in question, the force is calculated using kinematics from the next
element. When then the calculation node of the partly submerged element comes
below the free surface elevation at a later time, there will be a jump in the force,
since suddenly the kinematics have been calculated at another position.

A workaround for this error mentioned in the source code of FAST is to use a lot
of elements. This will lead to smaller errors, since the distance between nodes
where kinematics are calculated is small. If for instance 200 elements are used on
the reference turbine, then each element is ≈ 5.4[cm] long. When talking about
frequencies, these jumps in the force will be found as higher order disturbances,
and depending on the size can make it more difficult to perform an decomposition
of the force into it’s harmonics.

This error is not present when Fenton generated waves are used, because care
has been taken to also anticipate this case. In this case the kinematics for an
element where the node is not submerged, but some part of it is, kinematics are
calculated at the free surface. This is done to create a seamless transition to
when the node becomes submerged, and kinematics are calculated at the node.

The error is not thought to give significant errors for a full size turbine. However
when using the waves to validate against experiments, it can have an effect when
performing a Fourier transform of the result to obtain harmonics. Due to the
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small jumps, a Fourier transform will give some spurious non physical higher
order force components.
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# Test wave : the program does not r e q i r e data to be annotated − i t

could be o f t h i s form :
# Height /Depth : 0 . 071 , Dimens ion les s Period : 2 .64 Current c r i t e r i o n

: Euler , Magnitude : 0 .00
# ( This has a he ight 43% of the maximum value o f H/d=0.163 f o r t h i s

wavelength )

# So lu t i on by Four i e r approximation : 1 terms in s e r i e s

# In t e g r a l q u an t i t i e s − notat ion from Fenton (1988)
# (1) Quantity , (2 ) symbol , s o l u t i o n non−d imens i ona l i s ed by (3) g &

wavenumber , and (4) g & mean depth

# Water depth (d) 5 .4597 1 .0000
# Wave length ( lambda ) 6 .2832 1 .1508
# Wave he ight (H) 0 .3852 0 .0705
# Wave per iod ( tau ) 6 .1671 2 .6394
# Wave speed ( c ) 1 .0188 0 .4360
# Euler ian cur rent (u1_) 0 .0000 0 .0000
# Stokes cur rent (u2_) 0 .0068 0 .0029
# Mean f l u i d speed in frame o f wave (U_) 1.0188 0 .4360
# Volume f l ux due to waves ( q ) 0 .0373 0 .0029
# Bernou l l i constant ( r ) 0 .5009 0 .0917
# Volume f l ux (Q) 5 .5251 0 .4331
# Bernou l l i constant (R) 5 .9606 1 .0917
# Momentum f l ux (S) 20 .3180 0 .6816
# Impulse ( I ) 0 .0373 0 .0029
# Kinet i c energy (T) 0 .0190 0 .0006
# Poten t i a l energy (V) 0 .0185 0 .0006
# Mean square o f bed v e l o c i t y (ub2_) −0.0362 −0.0066
# Radiat ion s t r e s s ( Sxx ) −0.1770 −0.0059
# Wave power (F) −0.0809 −0.0012

# Dimens ion les s c o e f f i c i e n t s in Four i e r s e r i e s
# Pot en t i a l /Streamfn Sur face e l e v a t i o n s
# j , B[ j ] , & E[ j ] , j =1. .N

1 1.9262880 e−01 3.8516143 e−01
EOF
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E |

E.1 Matlab Script for Calculating Spatial Deriva-
tives

clear a l l
close a l l
clc

%Read in important c h a r a c h t e r i s t i c s
DX = text read ( ’FNL_DX. txt ’ , ’%f ’ ) ;
tmp = text read ( ’FNL_FAST. txt ’ , ’%f ’ ) ;
nnodes = tmp(1) ;
ypos = tmp ( 2 :end) ;
dy=zeros ( nnodes , 1 ) ;
for i =1:nnodes−1

dy ( i ) = ypos ( i +1)−ypos ( i ) ;
end

%Read in f r e e s u r f a c e
[ vx_f vy_f vz_f ] = text read ( ’ vx_vy_f . txt ’ , ’%f ␣%f ␣%f ’ ) ;
[ vx_f_l vy_f_l vz_f_l ] = text read ( ’ vx_vy_f_left . txt ’ , ’%f ␣%f ␣%f ’ ) ;
[ vx_f_r vy_f_r vz_f_r ] = text read ( ’ vx_vy_f_right . txt ’ , ’%f ␣%f ␣%f ’ ) ;

%Read in submerged
[ v_x v_y v_z tmp tmp tmp tmp]= text read ( ’ FNL_kinematics . txt ’ , ’ ␣%f ␣%f

␣%f ␣%f ␣%f ␣%f ␣%f ’ ) ;
[ v_x_l v_y_l v_z_l tmp tmp tmp tmp]= text read ( ’ vx_vy_left . txt ’ , ’%f ␣

%f ␣%f ␣%f ␣%f ␣%f ␣%f ’ ) ;
[ v_x_r v_y_r v_z_r tmp tmp tmp tmp]= text read ( ’ vx_vy_right . txt ’ , ’%f

␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ’ ) ;
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clear tmp ;
n = length (v_x) ;

dudx = zeros (n , 1 ) ;
dudy = zeros (n , 1 ) ;
dudz = zeros (n , 1 ) ;

dvdx = zeros (n , 1 ) ;
dvdy = zeros (n , 1 ) ;
dvdz = zeros (n , 1 ) ;

dwdx = zeros (n , 1 ) ;
dwdy = zeros (n , 1 ) ;
dwdz = zeros (n , 1 ) ;

dudx = (v_x_r−v_x_l ) . / ( 2∗DX) ;
dwdx = (v_z_r−v_x_l ) . / ( 2∗DX) ;
t e l l e r = 0 ;
for i = 1 : n
t e l l e r = t e l l e r +1;

i f v_x( i ) ~= 0 .0 && v_z( i ) ~=0.0
i f t e l l e r == 1

dudz ( i ) = (v_x( i +1)− v_x( i ) ) /dy ( t e l l e r ) ;
dwdz( i ) = (v_z( i +1)−v_z( i ) ) /dy ( t e l l e r ) ;

e l s e i f t e l l e r == nnodes
dudz ( i ) = (v_x( i )− v_x( i −1) ) /dy ( t e l l e r −1) ;
dwdz( i ) = (v_z( i )−v_z( i −1) ) /dy ( t e l l e r −1) ;

else
dudz ( i ) = (v_x( i +1)− v_x( i −1) ) /(dy ( t e l l e r )+dy ( t e l l e r −1) ) ;
dwdz( i ) = (v_z( i +1)−v_z( i −1) ) /(dy ( t e l l e r )+dy ( t e l l e r −1) ) ;

end
end

i f t e l l e r == nnodes
t e l l e r = 0 ;

end
end

dlmwrite ( ’FNL_extra . txt ’ , [ dudx dudy dudz dvdx dvdy dvdz dwdx dwdy
dwdz ] , ’ d e l im i t e r ’ , ’ \ t ’ , ’ p r e c i s i o n ’ , ’%8.6E ’ ) ;

dlmwrite ( ’FNL_f . txt ’ , [ vx_f vy_f vz_f ] , ’ d e l im i t e r ’ , ’ \ t ’ , ’ p r e c i s i o n ’ , ’
%8.6E ’ ) ;

calcgrad.m
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