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Abstract 
 

 

This thesis describes an investigation of two-dimensional steady-state sloshing in 
a rectangular tank with small breadth-to-length ratio ܾ ݈⁄ 	equipped with a slat screen in 
the tank middle. The tools used for performing the investigations are experiments, 
numerical simulations using Computational Fluid Dynamics (CFD) and potential-flow 
based theoretical method. 

Experiments are carried out in non-dimensional finite, ݄ ݈⁄ ൌ 0.35 and 0.4, and 
shallow water,	݄ ݈⁄ ൌ 0.12 and 0.125, depths. The tank motion in the longitudinal 
direction follows a periodic sinusoidal motion. The measured physical variable is the 
instantaneous wave elevation at the vertical tank walls. The solidity ratio is varied 
between 0 and 1. The range of the forcing frequencies includes the first three natural 
sloshing frequencies of the tank without screens.   

Very small forcing amplitude-to-tank length ratio ߝ ൌ 0.001 in finite water depth 
is used to achieve closely-linear free-surface conditions. Non-linear sloshing is achieved 
by applying relatively small non-dimensional forcing amplitude ߝ ൌ 0.01 in finite water 
depth. Larger non-linear free-surface effects appear in experiments by applying larger 
forcing amplitudes, for instance with ߝ ൌ 0.03 in the depth ݄ ݈⁄ ൌ 0.35 close to the 
theoretical critical depth ݄ ݈⁄ ൌ 0.3368. Wave breaking (spilling), free-surface 
overturning at the vertical walls and free-surface fragmentations as results of large 
forcing amplitude are categorized as a function of forcing frequency for each solidity 
ratio.  

One goal is to determine which solidity ratio causes minimum wave responses in 
the whole tested forcing frequency range for constant forcing amplitude. Experiments 
reveal that increasing the forcing amplitude decreases the solidity ratio that causes the 
minimum wave response.  

Strong free-surface non-linearities are examined by running experiments for 
݄ ݈⁄ ൌ 0.12 and 0.125 with ߝ ൌ 0.01 and 0.05, respectively. Influence of screen and its 
solidity ratio on previously-reported impact events on the vertical walls in the literature 
is demonstrated (݄ ݈⁄ ൌ 0.125 and ߝ ൌ 0.05). Estimation of high pressures due to some 
of the impact events occurred on the vertical walls are made using pressure impulse 
theory. The impact events on the wall (and on screen) are categorized based on the 
forcing frequency and solidity ratio of the screen. 

Linear and non-linear multimodal methods which are derived from potential flow 
theory are employed. These methods are combined with a pressure drop condition and 
continuity of relative horizontal velocity in the middle of the tank to account for the 
presence of the screen. Depending on the solidity ratio an empirical pressure drop is 
enforced in the governing equations. Conditions where these methods are working are 
determined by making comparison with produced experimental results in this thesis. 
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Validation and details of the theoretical work can be found in the Appendix section of 
this thesis. 

Numerical simulations based on an incompressible laminar model are conducted 
for ߝ ൌ 0.01 and ݄ ݈⁄ ൌ 0.12.  The simulations are performed using an open-source 
CFD software called OpenFOAM. The interface between water and air, i.e. the free 
surface, is captured and located by transporting Volume Of Fluid (VOF) fractions. The 
ability of the software to capture non-linear non-violent free-surface effects is tested. 
Large wave breakings accompanied with over-turnings, liquid fragmentations and 
screen-caused jet flows traveling in the air/gas hitting the underlying free-surface are 
examples of violent free-surface effects.  
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Nomenclatures 
 

 

General rules 
 Only the most used nomenclatures are listed. Those ones which have been 

defined and used locally and not used in several places in the thesis are not 
included here. 

 Sometimes the same symbols are used for different quantities 
 Vectors and tensors are represented by bold-face letters 

Subscripts 
ܽ Amplitude of motion or wave response 
ܾ Baffle 
݀ Drag 
݂ Face of a numerical cell or control volume 
݅ Number of a natural frequency 
 Relative ݎ
  Relative velocity amplitude in the Middle of the tank ݉ݎ
ܵ Surface 
 Total area of a screen. Also time ݐ
2 Sway or ݕ-direction 

 

Superscripts 
∗ Natural frequency of the clean tank. Also First corrected pressure or 

velocity 
∗∗ Natural frequency of a compartment of half the length of the clean tank  
െ1 Inverse of a matrix 

 

Roman letters 
 Area ܣ
ܾ Tank breadth normal to the direction of excitation 
 ௗ Drag coefficientܥ
 Courant number ݋ܥ
 Averaged work done by the drag force in one period of oscillation. Also ܦ

diameter 
݄ Water Depth 
݅ଶ௞ Non-dimensional frequency corresponding to secondary resonance of 2݄݇ݐ 

mode of clean-tank sloshing 
݅ଶ௞ାଵ Non-dimensional frequency corresponding to secondary resonance of 

ሺ2݇ ൅ 1ሻ݄ݐ mode of clean-tank sloshing 
 harmonic of forcing frequency. Also counting cumber ݄ݐ݇ ݇
  Empirical pressure loss coefficient ܭ
 Keulegan-Carpenter number ܥܭ
݈ Tank length in the excitation direction 
݈௕ Length of a baffle. Also height of the screen supports normal to lateral 

vertical walls 
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 Pressure ݌
 ఘ௚௛ Pressure minus hydrostatic pressure partି݌
 Radians ݀ܽݎ
ܴ݁ Reynolds number 
ܵ݅ Vertical line at non-dimensional ith natural frequency 
ܵ Seconds 
ܵ݊ Solidity ratio of screen 
ܶ Period of forced oscillation 

௥ܷ Uniform average horizontal approach velocity in the middle of the tank 

௥ܷ௠ Amplitude of relative horizontal approach velocity in the middle of the tank
ܸ Volts and also volume. 
 Horizontal spatial direction perpendicular to forcing direction ݔ
 Horizontal spatial direction. Also Sway direction ݕ
 Vertical spatial direction ݖ

  

Greek letters 
 Modulus of decay; Volume of fluid fraction ߙ
Δݐ Time step 
 ݈/ଶೌߟ Non-dimensional forcing amplitude ߝ
 ଵ௦௧ Amplitude of the first Fourier harmonic of the measured wave elevationߞ
 ଶ௡ௗ Amplitude of the second Fourier harmonic of the measured wave elevationߞ
 ଷ௥ௗ Amplitude of the third Fourier harmonic of the measured wave elevationߞ
 ௠௔௫ Maximum steady-state wave elevationߞ
 ଶೌ Forcing amplitudeߟ
 Wave length ߣ
 Kinematic viscosity ߥ
 Damping coefficient ߦ
 Fluid density ߩ
 Forcing frequency ߪ
௜ߪ
 Natural frequency of sloshing in a clean tank ݄ݐ݅ ∗

௜ߪ
 Natural frequency of sloshing in a compartmented tank ݄ݐ݅ ∗∗

σ଴ An exemplary natural frequency 
߶ Fluid flux at a numerical cell face 

 

Bold-face letters 
 ௢ Linear acceleration of coordinate systemࢇ
 Gravitational acceleration ࢍ
 ௙ Unit normal vector of a numerical cell face࢔
࢛ Velocity vector 
 Linear velocity of coordinate system ࢕࢜
࣎ Laminar stress tensor 
࣓ Rotational velocity of coordinate system 
 
Abbreviations 
CFD Computational Fluid Dynamics 
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CFL Courant–Friedrichs–Lewy condition 
CV Control Volume 
FFT Fast Fourier Transform 
L “Left” side of the tank 
PISO Pressure-Implicit Splitting of Operators 
QL0 Quasi-linear modal theory version 0 
QL1 Quasi-linear modal theory version 1 
QL2 Quasi-linear modal theory version 2 
R “Right” side of the tank 
std Standard deviation 
TLD Tuned Liquid Damper 
VOF Volume Of Fluid 

 

Mathematical operators 
 Gradient ׏
׏ ∙ Divergence 
|	| Absolute value 
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1  Introduction 
 

 

1.1 Overview of the problem  
Large liquid responses in partially filled tanks of ships (commonly called 

sloshing) can occur if ship motions excite the tank-liquid system at its lowest natural 
frequencies. Sloshing causes impact loads on the tank walls in low fillings and on the 
tank roof in high fillings when the free surface of the waves hits them with high 
velocity. High pressure loads can lead to structural damage of the tank structure. These 
loads should be avoided especially in LNG tanks because of their weak structure. 
Internal structures such as columns, plates perpendicularly joined to the walls (baffles), 
wired or mesh screens and swash (wash) bulkheads (perforated plates) cause damping 
of resonant liquid motions and reduce the risk of high pressure loads (Figure  1-1). The 
main damping source is the large turbulent diffusion in the shear layers of shed vortices 
due to flow separation from either the smooth boundaries of columns, wired screens, 
tubular ventilated structures or sharp edges of baffles, perforated plates and swash 
bulkheads. Viscous dissipation associated with breaking waves and in the boundary 
layer of the flow attached to the structure boundaries are other damping sources.  

 

 
Figure  1-1. Internal structures in a liquid tank. Top: from left to right: columns, screen, and vertical plate, 
bottom right: Baffles (Faltinsen & Timokha, Sloshing, 2009); bottom left: swash bulkhead (IHI, 2000) 

An important parameter for a submerged perforated structure is the solidity ratio 
ܵ݊. Solidity ratio is the ratio between the submerged solid area of a perforated structure 
and its submerged total area including the perforations. If ܵ݊ is sufficiently large, the 
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resonant sloshing frequencies can increase to a frequency domain with less severe 
wave-induced ship velocities and accelerations. 

For a fixed ܵ݊, a perforated plate or screen with sufficiently large cross-flow 
produces more hydrodynamic damping relative to the other structures presented in 
Figure  1-1 due to the increased flow separation at the sharp edges of the perforations. 
An important goal here is to find an optimum solidity ratio providing smallest wave 
responses in a wide enough frequency range that typically covers the first three lowest 
natural frequencies of sloshing in a clean tank. This optimum ܵ݊	is a function of the 
tank motion magnitude and liquid depth. 

1.2 Previous studies 
Suppression of sloshing forces also matters in space craft applications to avoid 

unwanted induced motions of the space craft. Abramson, 1966 refers to numerous 
works in which the effect of viscosity and surface tension, tank shapes, baffles and 
perforated sectored tanks on resonant sloshing frequencies and damping  have been 
investigated. The effect of perforated walls on sloshing has been studied experimentally 
by Garza (1964) and Abramson and Garza (1965) (Faltinsen & Timokha, Sloshing, 
2009) for forced horizontal excitation of a vertical circular tank that is compartmented 
into sectors by means of radial walls corresponding to 45°, 60° and 90° sector tanks. 
The tank is excited to oscillate laterally with small amplitudes. Figure  1-2 presents a 
three-dimensional plot that shows the complex effect of the excitation amplitude ܺ଴	and 

the open area percentage i.e. ቀ௙௟௢௪	௔௥௘௔
௧௢௧௔௟	௔௥௘௔

ቁ ∗ 100% (ൌ ሺ1 െ ܵ݊ሻ ∗ 100%) on damping 

and the first resonant sloshing frequency in a sectored cylindrical tank. The liquid depth 
is constant at ݄ ݀⁄ ൌ 1.0, where d is the tank diameter. The tank is divided into 45° 
perforated sectored tanks to gain more hydrodynamic damping and to shift up the 
lowest resonant frequency of the non-sectored tank close to the resonant frequency of 
the sectored tank without perforated tanks. As shown in Figure  1-2, the up-shifting of 
the resonance frequency needs smaller forcing amplitude at larger solidity ratios. The 
variation of damping against the solidity ratio is similar for the two lower forcing 
amplitudes. For the largest forcing amplitude, the damping ratio curve contains a clear 
peak point at ܵ݊ ≅ 0.78. This difference shows the clear nonlinear effects due to 
amplitude of motion. However, the damping ratio for the three values of ܺ଴ is largest 
when 0.76 ൏ ܵ݊ ൏ 0.84. In addition the exact value of the compartmented resonant 
frequency when ܵ݊ → 1	is also depending on the amount of damping and forcing 
amplitude. In Figure  1-2 the damping ratio ߛ is computed from free-decay tests.  

As a rule-of thumb Dodge (2000) gives that if the solidity ratio exceeds 0.9, the 
liquid tends to slosh between the compartments and the slosh natural frequency tends to 
approach the value of a compartmented tank. This guideline is relevant in space 
applications where the expected motion amplitudes are much smaller than 
representative wave-induced ship motions. In ship applications, classification societies 
have rules regarding the solidity ratio of the swash bulkheads. For instance, 
Germanischer Lloyd (GL, 2003) expresses that the perforation area should be between 5 
and 10 percent of the whole bulkhead area in oil cargo tanks. However, we do not know 
what the basis is for this recommendation by GL. 
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Damping of sloshing is also desirable in partially filled rectangular tanks of tall 
buildings (Tuned Liquid Dampers or TLD) or in anti-rolling tanks of ships. The 
sloshing motion is used to damp out the large responses of their carrying structure. 
These tanks are normally equipped with a screen of (roughly) ܵ݊ ൑ 0.5	to experience 
less violent fluid motions and less non-linear behavior for better control. An important 
design requirement here is to match the lowest resonant frequency of sloshing in the 
tank with the natural frequency of interest of the structure. Therefore large solidity 
ratios are not of interest because they affect the lowest resonant frequency as discussed 
above.  

 

 
Figure  1-2. Effect of forcing amplitude and solidity ratio on resonant frequency and damping of sloshing in a 
vertical ૝૞࢕ sectored circular tank (Abramson, 1966). ࢄ૙: forcing amplitude, ࢊ: tank diameter, 
ࢎ damping ratio. Water depth :ࢽ ,perforations diameter, ࣓: forcing parameter:ࢎࢊ ⁄ࢊ ൌ ૚. ૙.   

 

1.2.1 Modeling of sloshing in a screen-equipped tank 
A theoretical model for the investigated problem must couple the hydrodynamic 

effect of the screen in the middle of the tank with the sloshing. Forced harmonic lateral 
tank motions are considered. In most fluid dynamics applications, a thin perforated 
structure such as a gauze or slat screen or a perforated plate is considered as a local 
discontinuity with an average effect expressed as a pressure loss in the direction of the 
flow. Laws & Livesey 1978 studied the flow through gauze screens of small solidity 
ratios (ܵ݊ ൏ 0.5). They showed that the screen’s pressure loss is quadratically related to 

the approach velocity ௥ܷ at the screen, i.e. Δ݌ ൌ ଵ

ଶ
|ܭߩ ௥ܷ| ௥ܷ. Here	ܭ	is a pressure loss 

coefficient (non-dimensional). Experimental values of ܭ	for a variety of screens or 
structures made of an array of small bluff bodies can be found in the hand books by 
Blevins (2000) and  Idelchik (1996). Molin (2010) confirms in a review paper that the 
quadratic pressure loss assumption is sufficient to explain the hydrodynamics of 
perforated structures in infinite oscillatory fluid and in waves. Important conditions for 
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applicability of this model are that the screen should be thin, number of perforations 
should be numerous and the size of the perforations should be very small. Under the 
mentioned conditions, an important conclusion from Molin (2010) is that the solidity 
ratio matters a lot more than the size and shape of the perforations. In this thesis the 
quadratic model of the pressure loss is used in the theoretical approaches. The pressure 
loss coefficients are taken from empirical calculations, for instance, by Blevins (2000) 
or Baines and Peterson (1951).  

For the current study, a theoretical method should be able to capture the resonant 
behavior of sloshing in a screen-equipped tank as a function of the following physical 
parameters:  

 Non-dimensional sway forcing amplitude: ߝ ൌ ଶೌߟ ݈⁄ 	  
 Non-dimensional forcing frequency:ߪ/ߪଵ

∗ 
 Non-dimensional water depth: ݄ ݈⁄  
 Solidity ratio of the screen: ܵ݊.  

Here ݈ is the tank length in the direction of excitation and ߪଵ
∗ is the lowest natural 

sloshing frequency of the clean tank. ߝ	may be as high as 0.1 in ship applications. Most 
of the existing theories are developed for solidity ratios smaller than 0.5. These theories 
are used for analysis of sloshing in cylindrical and rectangular TLDs with submerged 
nets or slat screens. As long as the solidity ratio is less than 0.5 theories developed by 
Kaneko & Ishikawa (1999) and Kaneko and Mizota (2000), Tait et al., 2005, Love and 
Tait (2010) and J. Love, M. Tait , and H.Toopchi-Nezhadare (2011) are applicable. A 
short review of their work will be informative here.  

Kaneko and Ishikawa (1999) studied the shallow, intermediate and finite water 
depth (0.05 ൑ ݄ ݈⁄ ൑ 0.281) sloshing in a rectangular TLD with a net in the middle 
section. Based on the definition by Faltinsen and Timokha (2009) shallow, intermediate, 
finite and deep water depth are corresponding to ݄ ݈⁄ ൑ 0.1 , 0.1 ൑ ݄ ݈⁄ ൑ 0.2 െ 0.25	, 
0.2 െ 0.25 ൑ ݄ ݈⁄ ൑ 1	and ݄ ݈⁄ ൒ 1. Kaneko and Ishikawa (1999) modified the 
nonlinear shallow water theory proposed by Lepelletier and Raichlen (1988) to account 
for a screen using a one-dimensional finite difference model. The screen is modeled as a 
local pressure drop that causes a wave elevation difference across the net. The boundary 
layer damping is incorporated as a linear damping term in the shallow water equations. 
They measured the sloshing forces in the experiments for four solidity ratios, smaller 
than	0.5, and very small forcing amplitude (ߝ ൌ 0.0025). Their results agree well with 
experiments.  

Kaneko and Mizota (2000) developed a third-order nonlinear modal theory in 
terms of non-dimensional forcing amplitude ߝ for finite water depth in a vertical circular 
cylindrical tank with a submerged net. The three lowest sloshing modes are assumed to 
be sufficient for the simulations. The net effect is described as a quadratic damping term 
in the modal equations implying that the modes are preserved and not affected by the 
presence of the net. The net effect is only adopted for the first mode of sloshing in their 
model but a linear damping model of the boundary layer is included in all modal 
equations. Their experimental results agree very well with the results of their modal 
approach for very small amplitude of excitation	ߝ ൌ 0.0025. They did not study the 
effect of different excitation amplitudes and all the tested solidity ratios are smaller than 
0.5.  
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Tait et al., (2005) investigated a rectangular TLD with single and multiple slat 
screens with ܵ݊ ൑ 0.5	by carrying out experimental and theoretical approaches. They 
examined the effect of small and large forcing amplitudes in three different water depths 
varying between shallow and intermediate depths using linear and nonlinear shallow 
water theories developed by Fediw et al., (1995) and Kaneko and Ishikawa (1999), 
respectively. Their comparison concludes that the linear model is insufficient for large 
excitation amplitudes. They present very good results in time and frequency domain by 
applying the nonlinear model of Kaneko and Ishikawa (1999). The screen solidity ratio 
was equal to 0.42. An important contribution from their study is that the pressure loss 
coefficients for a slat screen calculated in steady-uniform flow is applicable in 
oscillatory flow when the Keulegan-Carpenter number (KC) is larger than 15. KC 
defines the non-dimensional distance a free-stream particle travels in one cycle of an 
oscillatory flow. Here ܥܭ ൌ ௥ܷ௠ܶ/ܦ is defined based on the height of a slat (ܦ) and 
amplitude of relative horizontal approach velocity ( ௥ܷ௠). ܶ	is the period of forced 
oscillation.  

Love and Tait (2010) modified the adaptive modal theory of Faltinsen and 
Timokha (2001) to account for a slat screen with ܵ݊ ൏ 0.5 as a quadratic damping term 
in modal equations similar to the work of Kaneko and Mizota (2000). The novelty 
relative to the work of Kaneko and Mizota (2000) was to consider finite, intermediate 
and shallow water depth. However, the forcing amplitudes are small and the accuracy of 
the results decreases in shallow depths. They conclude that the nonlinearity of the free 
surface can be important.  

Faltinsen and Timokha (2009) calculated damping coefficients of the lowest 
sloshing mode in a two-dimensional tank with a wire mesh screen mounted in the tank 
middle with solidity ratios ܵ݊ ൌ 0.29 and 0.48. The selected water depths are ݄ ݈⁄ ൌ
0.2 and 0.3. A strip theory approach was used for calculation of forces on individual 
wire elements. They defined a drag coefficient for the screen based on empirical 
formulas depending on the KC number and related it to solidity ratio of the screen. 
Boundary layer damping at the tank walls was also included. They calculated the 
damping coefficient of the first mode of sloshing by relating the rate of dissipation of 
total potential and kinetic energy contaiend in the first mode of sloshing to the work 
done by the drag force imposed on the screen in one cycle of forcing. They compared 
their results with experiments. The accuracy of their results are good for ܵ݊ ൌ 0.29 for 
very small and small forcing amplitudes, i.e. 0.001	݉ ൏ ܣ ൏ 0.021	݉. For ܵ݊ ൌ 0.48, 
the result are poor for very small forcing amplitude, ܣ ≅ 0.001	݉ but it improves with 
increasing the forcing amplitude. Their method is simple and applicable for ܵ݊ ൏ 0.5 
(roughly speaking). However, their method breaks down for large solidity ratios, i.e. 
ܵ݊ ൐ 0.75 and it does not account for changing of the natural sloshing modes and 
frequencies when the solidity ratio of the screen is large. 

Faltinsen and Timokha (2009) consider 0.5 ൏ ܵ݊ ൏ 1 by decomposing the tank 
into two theoretical compartments with flow between the compartments. Two velocity 
potential functions representing the flow in each domain are found by matching them at 
the screen position using two transmission conditions: (A). The relative horizontal 
approach velocity ௥ܷ 	stays continuous	; (B). Pressures on both sides of the screen are 

related by an empirical pressure loss coefficient ܭ ൌ Δ݌/ሺଵ
ଶ
|ߩ ௥ܷ| ௥ܷሻ (quadratic relation 
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between Δ݌	 and ௥ܷ). The horizontal velocity is assumed to be uniform over the depth. 
The latter assumption decreases the accuracy of the theory in predicting the natural 
frequencies which is more pronounced when the exponential decay of the velocity over 
the depth matters, i.e. deep water or higher natural frequencies. The proposed model 
uses linear free-surface conditions. The problem is transformed to a modal approach by 
modal representation of the potential functions and water wave elevations. The 
combination of linear free-surface conditions and nonlinear (quadratic in velocity) 
pressure loss model of the screen leads to a quasi-linear modal method (QL0). QL0 
accounts for the changes in the natural frequencies and modes as ܵ݊ → 1 as a function 
of forcing amplitude and water depth. In fact it confirms the trend observed in Figure 
 1-2. Firoozkoohi and Faltinsen (2010) examined the QL0 against experiments in finite 
water depth for very small (ߝ ൌ 0.001) and small forcing amplitudes (ߝ ൌ 0.01). The 
theoretical results were not in a good agreement with the experiments from a 
quantitative point of view. One objective in the experiments by Firoozkoohi and 
Faltinsen (2010) was to find the solidity ratio that causes the lowest wave response in 
the frequency range including the three lowest natural frequencies. This objective is 
well predicted by the theory for ߝ ൌ 0.001 and ߝ ൌ 0.01. 

QL0 is modified to account for exponential decay in the velocity profile by 
Faltinsen, Firoozkoohi and Timokha (J Eng Math, 2011) (QL1). This modification 
improves the accuracy of the predicted linear natural frequencies. Another modification 
is applied in the definition of potential functions where the anti-symmetric sloshing 
modes in the clean tank are assumed unaffected by the screen but responsible for cross 
flow through the screen. The results agree better with experiments compared to 
Firoozkoohi and Faltinsen (2010) from a damping point of view, i.e. the amplitude of 
resonance peaks are closer to experiments. In general, QL1 performs better for lower 
solidity ratios and forcing amplitudes. This must be due to the assumption that the anti-
symmetric modes are unaffected even for large solidity ratios. Due to the linear free-
surface assumption, QL1 gives very large responses at natural frequencies of a 
compartment for solidity ratio of 1.  

Solidity ratio and geometrical properties of the slat screen such as number of 
submerged slat/slots, the position and height of the slats at the free-surface zone and 
their effect on linear anti-symmetric natural sloshing frequencies and modes are 
investigated by Faltinsen and Timokha (2011). They use domain-decomposition and 
employ potential flow theory with linear free-surface boundary conditions and zero 
forcing. The flow does not separate from the slat edges and therefore the velocity 
potential contains singular points at the screen edges that describe the screen’s local 
flow properties. The effect of increasing the solidity ratio is found to be a decrement in 
the natural frequencies of the clean tank.  

Faltinsen, Firoozkoohi and Timokha (Phys Fluids, 2011a) presented a new quasi-
linear modal model (QL2) that includes local pressure and velocity fields depending on 
the screen’s solidity ratio and geometrical properties. These local fields affect the anti-
symmetric modes and asymptotically vanish away from the screen. The even 
(symmetric) modes that are responsible for tangential liquid motions at the screen 
remain unchanged. The final equations are solved for screen-modified odd (anti-
symmetric) modes. For ߝ ൌ 0.001 the results are very good for almost all solidity ratios. 
Still infinite responses are seen at natural frequencies of sloshing in a compartment due 
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to the linear free-surface assumption. For the larger forcing amplitude ߝ ൌ 0.01 the 
theory gives good results at forcing frequencies far from resonance. The theory cannot 
predict the new screen-caused resonant peak points observed in the experiments. The 
results for the largest forcing amplitude are of qualitative nature. Most of the differences 
between theory and experiments are probably due to nonlinear free-surface effects that 
are not accounted for.  

Larger forcing amplitudes amplify the nonlinearity in the free surface leading to 
generation of new resonant peak points in the steady-state wave elevation response 
curves associated with secondary resonance of higher modes of sloshing in the clean 
tank. Secondary resonance is a consequence of the fact that super-harmonics associated 
with the liquid flow is close to a higher sloshing natural frequency. In order to include 
the free-surface nonlinearity Faltinsen, Firoozkoohi and Timokha (Phys Fluids, 2011b)  
used the adaptive nonlinear modal theory and modified it to include the screen effect. 
The nonlinear adaptive multimodal method requires derivation of the polynomial-type 
modal system, i.e., the system of ordinary differential equations which keeps 
nonlinearities up to the third-order in terms of generalized coordinates. These 
generalized coordinates are time-dependent functions that describe the time-dependence 
of sloshing modes. The adaptive modal method is a generalization of Moiseev-type 
theory. Moiseev type theories assume the lowest mode to be dominant while an adaptive 
modal method can account for more than one dominant mode. Both odd and even 
modes are coupled due to the free-surface nonlinearity. However, the screen-caused 
damping terms appear only in modal equations responsible for the odd modes. The 
modified adaptive nonlinear modal theory shows its ability to predict and capture the 
new resonant points associated with secondary resonance quantitatively.  

The articles including experimental validations of the quasi-linear theory and its 
modifications QL0(Firoozkoohi & Faltinsen, 2010), QL1 (Faltinsen, Firoozkoohi, & 
Timokha, J Eng Math, 2011) and QL2 (Faltinsen, Firoozkoohi, & Timokha, Phys 
Fluids, 2011a) and the non-linear adaptive modal method modified for screen problem 
(Faltinsen, Firoozkoohi, & Timokha, Phys Fluids, 2011b) can be found in the Appendix 
section. The author has contributed to these articles by performing experimental study 
and analysis. These analyses cover discussions on various phenomena found in the 
experimental tests. New phenomena discovered in the experiments in connection with 
the present problem are categorized and reported in the above-mentioned papers. 

Sloshing has been extensively simulated and reported by many authors using 
Computational Fluid Dynamics (CFD). A noteworthy work related to the present 
investigation was done by Maravani and Hamed (2010) where a screened-TLD was 
studied using a laminar Navier-Stokes solver coupled with the Volume Of Fluid free-
surface capturing method. The VOF model works based on the original donor-acceptor 
method of Hirt and Nichols (1981). They have used finite difference discretization. A 
partial cell treatment method takes care of the presence of the screen. A cell may be 
filled partially or fully with a solid part of the screen at the screen position. They have 
examined their algorithm for random and sinusoidal excitation against experiments. 
Their results for very small (ߝ ൌ 0.0026) and small (ߝ ൌ 0.013) excitation amplitudes 
show excellent agreement with experiments. They compared steady and transient wave 
elevation and sloshing forces.    
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1.3 Objectives and scope of the thesis 
The main objective is to study the steady-state resonant sloshing due to periodic 

horizontal excitation in a rectangular tank equipped with a screen. The investigation 
starts by performing experiments in order to analyze the effect of the main physical 
parameters ߝ, ݄ ݈⁄ 	 , ܵ݊, ଵߪ/ߪ

∗ on sloshing. The results of the analysis are the basic 
information used as reference to establish theoretical investigations. The effect of 
screens with 0.45 ൏ ܵ݊ ൏ 0.96	on the resonant frequencies and the amplitude of the 
steady –state sloshing waves for fixed forcing amplitude and in a constant water depth 
are considered while the frequency of the tank motion is varying. The motion-frequency 
range covers the first three natural frequencies of sloshing in a clean tank, i.e. ߪଵ

∗ ൏ ߪ ൏
ଷߪ
∗ and the water depth is limited to finite and shallow water depths. For such conditions 

one goal is to find the solidity ratio with minimum wave responses.  

The experiments are carried out in a narrow rectangular tank to avoid developing 
three-dimensional flow in the direction perpendicular to the direction of excitation. The 
effect of the amplitude of the motion (that largely influences the nonlinearity of the 
sloshing waves) is tested for both finite and shallow water depths. In finite water depth 
the tank is excited with very small, small and relatively large forcing amplitudes. The 
effect of large amplitude sloshing is tested in shallow water to study the effect of screen 
on suppressing violent shallow water phenomena like hydraulic jump. The experimental 
investigation is done by analysis of the measured wave elevations at both vertical end 
walls and by taking photographs and videos. Forces on the screen and the pressures on 
the walls were not measured. Roof impact does not occur for all the tested experimental 
cases. The screen as well as the tank structure is assumed to be completely rigid, i.e. 
hydroelasticity is not considered here.  

Analytical investigation (excluding numerically based methods such as CFD or 
BEM) is used to better understand and describe the physics observed in the experiments. 
The theoretical analysis is based on the multimodal method, derived from potential flow 
theory for an incompressible liquid; the method is modified to include the screen effect. 
It is applied in finite water depths ݄ ݈⁄ ൌ 0.4 and 0.35. Considering free-surface 
boundary conditions, a linear assumption is examined by applying the quasi-linear 
modal method of Faltinsen and Timokha (2009) (QL0) and its modifications QL1 and 
QL2. These quasi-linear theories are examined against experimental results. QL2 (the 
most complete modification) can predict resonant frequencies and their corresponding 
steady-state amplitudes for ߝ ൌ 0.001	accurately for low to high solidity ratios. Non-
linearity of the free surface at resonance is non negligible for ߝ ൒ 0.01	and for all tested 
depths. The results of the quasi-linear approach are in qualitative agreement with 
experiments for ߝ ൒ 0.01. Amplification of second and third harmonics of the forcing 
motion at resonance leading to secondary resonance needs nonlinear free-surface 
conditions considered in the governing equations. A non-linear adaptive modal method 
that couples even and odd modes is examined for small forcing amplitude ߝ ൒ 0.01	(but 
large enough for triggering the mentioned nonlinearities). This nonlinear model 
produces results quantitatively comparable to experiments. The forcing frequency range 
covers the first two natural frequencies of the clean tank.  

The effect of relatively large forcing amplitudes with important free-surface 
nonlinearities is further examined by considering ߝ ൌ 0.03 and ߝ ൌ 0.05	in finite and 
shallow water depths. The experiments show sloshing waves with special free-surface 
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nonlinearities that cannot be simulated by the multi-modal theory. Examples are 
breaking waves (overturning free surface), thick wave run-ups on the vertical end walls 
and on the screen (non-perpendicular free surface at vertical boundary) and free-surface 
fragmentation at the screen (discontinuous free surface). For instance, the nonlinear 
adaptive multi-modal method does not produce satisfactory results for ߝ ൌ 0.03	at 
݄ ݈⁄ ൌ 0.35	 due to the phenomena stated above. This depth is close to the critical depth 
݄/݈ ൌ 0.3368, where a change from a hard spring to a soft spring nonlinear theoretical 
response occurs (Faltinsen and Timokha, 2009).  

The detailed description of the theoretical models and their properties can be 
found in the articles attached in the Appendix section. These articles include 
comparisons made between the theoretical and experimental results. Conditions where 
the theoretical models are applicable are mentioned and discussed in detail. 

Small and relatively large amplitude sloshing in shallow water is studied 
experimentally. While the small amplitude excitation generates almost standing waves 
for all the solidity ratios, the larger amplitude causes very violent flows that include all 
the special free surface non-linearities stated in the above paragraph with much more 
amplification. Because of these special phenomena the modal method is not applied for 
shallow water.  

Equality of the steady-state wave amplitudes at the vertical end walls is 
considered by measuring the wave heights at both sides of the tank. Mainly this is used 
to assure that the wave elevations are accurately measured. Experiments show that two 
different steady-state wave amplitudes on the two sides of the tank, the two 
compartments, may occur, in author’s opinion, when the following conditions are met: 

a. The forcing amplitude must be sufficiently large, for instance ߝ ൒ 0.01. 
b. The tank-liquid system should be close to resonance. The resonance may be due 

to primary resonance at natural sloshing frequencies of clean tank or one 
compartment or due to secondary resonance. The difference in responses is, in 
general, smaller in case of secondary resonance.  

c. The largest differences in responses occur when solidity ratio is close to 1 and 
the responses in the two sides of the screen become almost isolated 
(compartmantation). This is due to smaller damping and multiple solutions for 
sloshing in either sides of the screen. A more in-detail explanation regarding 
compartmentaion and unequal responses can be found in section  3.2.4.  

d. Relatively small unequal responses on either sides of the screen may occur due 
to violent flow behavior. Violent flows are mostly seen for relatively large 
forcing amplitudes. Experimental conditions ݄ ݈⁄ ൌ ߝ , 0.35 ൌ 0.03 and 
௛

௟
ൌ ߝ , 0.125 ൌ 0.05 are accompanied with violent flows such as large wave 

breaking with wave overturning and liquid-to-gas jet flows through screen 
openings (slots) hitting the underlying free-surface. 

An open-source CFD package called OpenFoam that employs laminar Navier-
Stokes equations and the volume-of-fluid (VOF) free-surface capturing method is used 
for numerical simulations in shallow water for ݄ ݈⁄ ൌ 0.12 and ߝ ൌ 0.01. Finite Volume 
Method is used for solving the governing equations. Simulations are done in a tank-
fixed coordinate system that avoids solving the problem in a moving domain where the 
discretized domain has to move according to the forcing motion. The measured 
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accelerations from the experiments are directly fed to the CFD code to minimize the 
uncertainties. The CFD results agree well with the experimental results for small forcing 
amplitude but at the expense of time and computational resources that make a parameter 
study almost impossible. However, an advantage is detailed flow information at the 
screen that is useful for calculation of viscous and pressure forces on the screen. The 
large forcing amplitude case ߝ ൌ 0.05 at ݄ ݈⁄ ൌ 0.125	is investigated only 
experimentally. Large spilling wave breakers and very strong liquid jet flows that 
trigger formations of three-dimensional flows and is believed to cause turbulence are 
observed in the experiments. As the CFD simulations are limited to two dimensions and 
laminar fluid flow, the above-mentioned phenomenon cannot be simulated. 

1.4 Outline of the thesis 
Chapter 2 explains the experimental setup and measurements, determining sources 

of uncertainties. The experimental results are analyzed and categorized for different 
depths separately. Chapter 3 is dedicated to finite water depth and chapter 4 to shallow 
water depth. Chapter 6 begins by giving a short introduction to CFD and the Volume of 
Fluid free-surface capturing method. The ability of the used code InterFoam (a part of 
OpenFOAM) in capturing the free-surface nonlinearities is tested first in a clean tank 
and then applied in the screen-equipped tank for the shallow water depth ݄ ݈⁄ ൌ 0.12 by 
validating the numerical results with experimental results. Chapter 6 concludes the 
investigation and gives suggestions for future works. Appendix section is dedicated to 
article on multi-modal method starting with the quasi-linear multimodal and its 
modifications, i.e. QL0, QL1 and QL2. The last article in the Appendix section is 
dedicated to non-linear adaptive modal method and its modification for sloshing in the 
screen-equipped tank.  

1.5 Contributions of the thesis 
The contributions from the thesis can be summarized as the following:  

A. Experiments:  
 Extensive experimental work conducted in this thesis produced new results 

regarding the resonant sloshing due to harmonic excitation in a rectangular tank 
with a screen supported in the middle section of the tank. The novelty was 
considering screens with 0.45 ൏ ܵ݊ ൏ 0.96 that has not been studied in the past 
or studied very rarely in the literature. A wide range of forcing frequency 
ଵߪ
∗ ൏ ߪ ൏ ଷߪ

∗, different forcing amplitudes and water depths have been 
examined. The new experimental results can be used as reference results for 
validation and development of new theoretical methods.  

 Time domain and Fourier analysis of the experimental results reveals the 
influence of higher harmonics of forcing frequency up to the third harmonic in 
finite water depth and fifth harmonic in shallow water depth, for sufficiently 
large forcing amplitudes. The nonlinear effect of the screen, quadratic pressure 
loss, on the sloshing can be observed as new peak points in the experiments. 
These new peak points, first time reported in this thesis, are due to secondary 
resonance that are influenced by the screen in such a way that they occur  even 
for relatively small forcing amplitudes; in fact the screen largely affects the anti-
symmetric (odd) modes relative to its almost negligible effect on symmetric 
modes (even). This fact causes more energy being transferred to the even modes. 



 
Introduction  11 

 
 

 The experimental results were used as reference for validation and modification 
of the quasi-linear multi-modal method (Faltinsen and Timokha 2009) to 
account for nonlinear effects of the slat screens (quasi-linear modal method) 
with low and high solidity ratios. Modifications of the Quasi-Linear modal 
method for linear dominant free-surface effects and nonlinear adaptive modal 
method for nonlinear dominant effects were developed and used in finite water 
depth. The modified quasi-linear theory can provide very good results as long as 
the non-linearity of the free surface does not play an important role. The non-
linear approach is examined against experiments for ߝ ൑ 0.01	and the results are 
in a good agreement with the experiments. Note, investigations regarding 
validation and development of modal method, i.e. quasi- and non-linear modal 
method, are published as independent articles that are attached in the Appendix 
section. The author of this thesis has co-authored those articles through 
experimental analysis. 

 
B. Numerical calculations 
 An open-source CFD package called OpenFOAM was used for performing 

numerical simulations. OpenFOAM uses finite volume discretization. InterFoam 
solver from OpenFOAM package which couples Navier-Stokes equation and 
Volume Of Fluid (VOF) free surface capturing method was examined against 
experiments for ߝ ൌ 0.01 and ݄ ݈⁄ ൌ 0.12, i.e. in shallow water condition. The 
comparisons confirmed that the applied numerical method was able to capture 
the free-surface nonlinearities such as secondary resonance of sloshing modes 
and amplification of wave responses oscillating with sub-harmonics of the 
forcing frequency, in steady-state conditions. The laminar flow model used in 
the numerical calculations is not applicable for larger forcing amplitudes when 
turbulence and impact pressures on the walls and the screen become important. 
Numerical simulations showed that for a screen problem, relatively coarse 
elements distributed in the screen slots and near the screen zone could provide 
acceptable results. The number of numerical cells inside the gap can be as low as 
6.  
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2 Experimental setup and uncertainties 
 

 

2.1 Introduction 
Experiments are carried out to identify sloshing resonant frequencies and 

responses in a rectangular tank with screen as a function of important physical 
parameters including forcing amplitude and frequency, water depth and the screen’s 
solidity ratio. In this chapter, first the experimental setup is explained. Next, the 
accuracy of the experimental measurement is considered. Uncertainties that can affect 
the accuracy of the experimental results and the desired experimental conditions are 
determined and their effect on the measurements is estimated. The latter is important as 
the experimental results will be used later for validation studies.  

2.2 Experimental setup and equipments  
Forced lateral harmonic motion of a rectangular tank is considered. The screen is 

in the middle of the tank as shown in Figure  2-1. The inner tank dimensions are 1	݉	 ൈ
	0.1	݉	 ൈ 	0.98	݉ (݈	 ൈ 	ܾ	 ൈ  The tank roof is open to the ambient air in order to .(ܪ	
achieve atmospheric air pressure on the free surface of the water. The excitation 
direction is along the tank length (݈). The tank is mounted on a sloshing rig located at 
the Marine Technology Centre in Trondheim, Norway. The rig shakes the tank by 
reading from the input positions. Irregular tank excitations can also be fed to the rig. 
Inside the tank, two resistant wave probes consisting of two thin wires measure the 
wave elevations. The wave probes are placed 1	ܿ݉ away from the vertical walls at the 
tank ends and midways between the two vertical lateral walls parallel with the tank 
excitation direction (Figure  2-1) in order to avoid the effect of thin local wave run-ups on 
the walls. The wave elevations are measured within a minimum accuracy of one 
millimeter. Instantaneous tank positions and accelerations are measured and checked 
with the desired input values.  

The tank breadth ܾ	 should be sufficiently small in order to achieve a global two-
dimensional flow and avoid three-dimensional flow. For instance, a prismatic tank with 
a nearly square base and no interior structures may develop important nonlinear three-
dimensional flow such as swirling, diagonal waves and chaos for lateral excitation along 
a tank wall (Faltinsen & Timokha, Sloshing, 2009). On the other hand ܾ	should be wide 
enough so that the thickness of the boundary layer on the walls relative to ܾ becomes 
negligible. As a measure of the viscous boundary layer thickness a period of 1.83 
seconds is considered. It follows by Froude scaling and a ratio between the full scale 
length and the model length (݈௣/݈௠	) equal to 30 that a model scale period of 1.83 
seconds corresponds to a full scale period of 10 seconds. Using linear boundary layer 
theory for harmonically oscillating laminar flow, the geometric 99% boundary layer 
thickness is approximately estimated as 0.0035 m. Assuming this thickness of boundary 
layer on the vertical walls, ܾ ൌ 10	cm is sufficient to have 99.3 per cent of the tank 
breadth out of the boundary layers. There occur meniscus (surface tension) effects at the 
intersection between the tank walls, screen and the free surface leading to three-
dimensional waves with very small wave heights and lengths relative to the gravity 
waves. Bond number which represents the ratio between inertia and surface tension 
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forces measures the importance of surface tension. Bond number is defined as ߩ௟݃ܮଶ/
௦ܶ. ߩ௟, ݃, ܮ and ௦ܶ are density of the liquid, gravitational acceleration, a characteristic 

length (here the tank length in the direction of excitation) and surface tension, 
respectively. Surface tension is negligible if Bond number is smaller than ~10ସ 
(Faltinsen & Timokha, Sloshing, 2009). Assuming ܮ ൌ 1 m and fresh water in the tank, 
i.e. ௦ܶ ൌ 0.074 N/s, Bond number is equal to 1.32 ൈ 10ହ.  Therefore, the meniscus 
effects are believed to be negligible in this study. 

 
Figure  2-1. Left: Slat screen composed of rectangular slats (solid parts) and slots (openings). Dimensions are in 
meters. Right: Experimental setup and the tank with the screen in its middle section mounted on the sloshing 
rig. 

2.3 Geometry of the screen openings 
For the sake of two-dimensional flow in the screen zone, the screen openings are 

horizontal rectangles with constant height along the tank breadth (ܾ) (Figure  2-1). Such a 
screen is called slat screen where slats are the rectangular solid parts. The openings are 
called slots. Screens are identified by their solidity ratio ܵ݊ ൌ  ௦ is theܣ .௧ܣ/௦ܣ
submerged (under the mean free surface) solid area of the screen and ܣ௧	is the total area 
of the screen including the slots. To achieve a desired solidity ratio, ܵ݊, fine or coarse 
slat/slot arrangements may be used. A fine arrangement is composed of small height 
slats/slots. The liquid flow through a screen with finer slat/slot arrangement produces 
less severe local free-surface effects such as free-surface fragmentation and local three-
dimensional behavior at the screen. This matters when experimental results are used to 
validate results of a theoretical model for which the performance is sensitive to local 
free-surface effects at the screen. In addition, screens with finer arrangements cause 
smaller scale vortices shedding from their sharp-edged openings leading to wakes 
regularized in a short distance from the screen. Wakes of large scale vortices generated 
behind a screen with a coarse arrangement take a longer distance downstream the screen 
to diffuse their irregular flow motion. One should note that a fine arrangement in deep 
water can be coarse in shallow water, i.e. less number of slat/slots in shallow water. In 

slot slat 
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the experiments, the finest arrangement is achieved by having smallest possible slot 
heights. Assuming a fixed slot height for all screens, the solidity ratio can be increased 
only by increasing the slat height.  

The slat screens here are made of aluminum plates with rectangular cutouts 
(slots). The smallest possible height of the slots is a technical limitation forced by the 
milling machine provided by Marintek (place where the experiments were conducted). 
The experiments were performed first with a set of screens whose geometrical 
dimensions are shown in the left side of Figure  2-2. At the first stages of the current 
study the focus was on achieving a desired solidity ratio and the geometry of the screen 
was not a priory consideration. Water-jet cutting tool was used for drilling the 
rectangular slots in the plates. After running experiments in finite water depth of 
݄ ݈⁄ ൌ 0.4, the results for the non-dimensional forcing amplitude of ߝ ൌ 0.01	showed 
unequal wave elevations on the opposite vertical end walls. These differences were 
more noticeable for larger wave responses which were not necessarily around resonant 
frequencies. A closer look showed that the slot heights were not exactly equal on the 
opposite sides of the screen. This causes two solidity ratios, with a slight difference, on 
each sides that leads to different responses on the opposite tank sides. To solve this 
problem another set of screens were manufactured by an accurate milling machine. For 
the second set of the screens a constant slot height of 3 mm on both sides of the screen 
could be achieved. Although the slot height was not fixed for the first set of screen it 
was kept fixed for all screens in the second set. The geometrical dimensions of the first 
and second sets of screens are shown in Figure  2-2 (not all the solidity ratios are shown 
for the second set of screens). However, it will be shown later that nonlinearity can 
cause two distinct steady-state responses on the opposite tank sides at resonance even 
though the slot height along the tank length is constant. 

 
Figure  2-2. Geometrical details of the two screen sets. Left: The first set of screens (dimensions are in meters), 
Right: The second set of screens (dimensions are in millimeters) of screens. White parts present the slots. Not 
all the screens are shown for the second set.   

Figure  2-2 shows that the distribution of slats/slots is more uniform over the height 
of the screen for lower solidity ratios. For a same solidity ratio, this uniformity is more 
obvious for the second set of the screens for which the number of openings is more than 
the first set. When the slot heights are fixed the solidity ratios is increased only by 
increasing the solid content of the screen. 

First set of screens Second set of screens 
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2.4 Tank excitation motion 
Harmonic tank excitation is considered in this study. The harmonic motion 

ଶߟ ൌ ଵߪ in the range	ߪ ሻ covers forcing frequenciesݐߪሺ	ଶ௔cosߟ
∗ሺ1 െΔଵሻ ൏ ߪ ൏ ଷߪ

∗ሺ1 ൅
Δଷሻ	where	Δଵ	and Δଷ	are small frequency intervals extending the frequency range. 
Here ߪଵ

∗ and ߪଷ
∗ are the first and the third natural frequency of sloshing in the clean tank. 

Because the focus is on the maximum steady-state wave elevation at the vertical tank 
end walls, the excitation should last for sufficient number of periods until waves with 
steady-state amplitude appear. How many forcing periods are required to reach steady-
state waves depends on energy dissipation due to breaking waves, boundary layer flow 
and flow separation at the screen and is thereby a function of forcing motion, water 
depth, solidity ratio, transient free-surface behavior and screen’s geometrical properties. 
Depending on the strength of the transient effects the tank is excited between 150 to 400 
forcing periods to ensure that steady-state waves will appear. It is preferred to have at 
least 30 periods of steady-state waves. The maximum steady-state elevation is computed 
by taking average among the appeared steady-state waves. These steady-state waves are 
also used for performing FFT (Fast Fourier Transform) analysis to compute amplitude 
of the primary and higher harmonics of the forcing motion. The non-dimensional 
maximum steady-state elevations ߞ௠௔௫/ߟଶೌ and amplitude of the harmonics of the 
forcing are plotted against non-dimensional forcing frequency ߪ ଵߪ

∗⁄ 	 to track the 
presence of the resonance areas. The plot shown in Figure  2-3 presents ߞ௠௔௫/ߟଶೌ 
against ߪ ଵߪ

∗⁄ 	.  

 
Figure  2-3. Non-dimensional maximum steady-state response ࣁ/࢞ࢇ࢓ࣀ૛ࢇ versus non-dimensional forcing 
frequency ࣌ ࣌૚

∗⁄ ࢒/ࢎ  . ൌ ૙. ૝, ࢿ ൌ ૙. ૙૙૚, ࢔ࡿ ൌ ૙. ૝ૠ૛૞. ࣁ૛ࢇ: forcing amplitude in sway. 

In order to produce maximum responses in the experiments an important 
consideration is that the steady-state solution around resonance may belong to different 
solution branches due to nonlinear free-surface effects. Which steady-state solution is 
obtained depends on the transient time history. The possible theoretical solution 
branches at resonant for ݄ ݈⁄ ൐ 0.3368	( (Faltinsen & Timokha, Sloshing, 2009), 
chapter 8) are shown on the right side of Figure  2-4. The presented theoretical response 
assumes one dominant mode. However, more than one dominant mode may be present. 
For instance at the theoretical critical depth ݄/݈ ൌ 0.3368 as well as in shallow water 

௠௔௫ߞ
ଶೌߟ

 

ߪ
ଵߪ
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more than one dominant mode causes a more complex system of solution branches. Due 
to the soft-spring behavior for ݄ ݈⁄ ൐ 0.3368 maximum steady-state response takes 
place at a frequency smaller than the natural frequency of sloshing. The solution branch 
associated with the maximum steady-state response is chosen by stepping down the 
forcing frequency from ߪ ൐ ߪ  2‐4൯  to	Figure	൫see	஺భߪ ൏ -஺భ. In this way, the steadyߪ
state response passes the point ܣଵ and increases up to the maximum value ܣ௠௔௫	and 
then jumps down from ܣଶ to ܣଷ. By stepping up the forcing frequency from ߪ ൏  ஺య toߪ
ߪ ൐  ଷ and increasesܣ ஺భ another solution branch is obtained; the response curve passesߪ
up to the turning point ܶ	at which the solution jumps up to ܣଵ. Further increase of the 
forcing frequency larger than corresponding frequency for ܣଵ causes lower responses. 
This phenomenon is called hysteresis and is observed in the experiments. The curve 
between T and ܣଵ in Figure  2-4 is an unstable solution branch and does not appear in 
the results. In order to obtain the maximum steady-state responses in the experiments, 
the forcing frequency always steps down for ݄ ݈⁄ ൐ 0.3368… . In the experiments, after 
reaching steady-state waves at a forcing frequency ߪ,	the frequency is lowered slightly 
by Δߪ (stepping down the frequency) and the tank is harmonically excited with the new 
frequency ߪ െ Δߪ until steady-state waves are appeared. This process is repeated to 
cover the desired frequency range ߪଵ

∗ሺ1 െ Δଵሻ ൏ ߪ ൏ ଷߪ
∗ሺ1 ൅ Δଷሻ	from the highest 

frequency to the lowest.  Δߪ is taken smaller around resonance frequencies to identify 
the maximum response and its corresponding frequency within sufficient accurately.  

A hard spring behavior is expected for a clean tank when ݄ ݈⁄ ൏ 0.3368. Unlike 
the soft spring behavior, the maximum response belongs to a frequency larger than the 
natural frequency for a hard-spring behavior. Hard-spring behavior is illustrated on the 
left side of Figure  2-4. To follow the branch with the maximum response the forcing 
frequency ߪ is raised by Δߪ after reaching each steady-state regime. It is noted that for 
small water depths, for instance ݄/݈ ൏ 0.24, a “finger” type response may occur where 
many modes become dominant due to the secondary resonance (Faltinsen and Timokha 
2002). As a result many resonant peaks can appear near the first resonant peak with 
comparable amplifications.  

An important note is that the jump in the steady-state solution, i.e. from ܣଶ	to 
݄ (for both	ଷܣ ݈⁄ ൏ 0.3368	and ݄ ݈⁄ ൐ 0.3368	) occurs if damping is sufficiently small. 
For instance in a clean tank where the boundary layer and meniscus effects are the 
damping source in absence of wave breaking, a soft- or hard-spring phenomena happens 
even for forcing amplitudes as small as ߝ ൌ 0.001 . The large damping caused by the 
cross flow through the screens removes the jump of the steady-state response at sloshing 
resonant frequencies (Faltinsen & Timokha, Sloshing, 2009). Moreover, when large 
damping exists in the system, the frequency corresponding to the maximum resonant 
peak is less drifted away from the natural frequency of sloshing. Figure  3-3 shows the 
steady-state responses obtained in a clean tank and a tank equipped with a screen of 
solidity ratio ܵ݊ ൌ 0.4725 for ݄ ݈⁄ ൌ 0.4	and ߝ ൌ 0.001. In the same figure, the 
resonant responses at ߪ ଵߪ

∗⁄ ൌ 1	and ߪ ଵߪ
∗⁄ ൌ ଷߪ

∗ ଵߪ
∗⁄ ൌ 1.8775 for the clean tank depicts 

soft-spring jump for which the peaks occur at frequencies smaller than the natural 
frequencies while the same peaks in the screen-equipped tank does not experience a 
jump and occur at slightly larger frequencies.   
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Figure  2-4. Steady-state solutions branches for depths smaller and larger than the critical depth ࢒/ࢎ ൌ ૙. ૜૜૟ૡ 
according to Moisiev type theory with one dominant mode. Left: Hard-spring behavior for . ૛૝ ൏ ࢎ ⁄࢒ ൏
૙. ૜૜૟ૡ , (Right) Soft-spring behavior for ࢎ ⁄࢒ ൐ ૙. ૜૜૟ૡ.  

A note here is that high solidity ratios will cause isolated sloshing on the two sides 
of the screen and as a results the ratio ݄/ሺ݈ 2⁄ ሻ should be considered as a depth criteria, 
i.e. while the ݄/݈ value suggests a hard-spring sloshing response, ݄/ሺ݈/2ሻ can be larger 
than the critical depth. Therefore in such a condition, both stepping up and down the 
forcing frequency should possibly be considered to account for the maximum responses.         

2.5 Experimental uncertainties  
Experimental results are used as a reference for validating theoretical and 

numerical calculations. Experimental errors due to measurement or the setup always 
exist. These biases should be known and if possible quantified. For instance, the linear 
position sensor measures the instantaneous tank position within accuracy of 0.01 mm, 
i.e. 1% of the lowest forcing amplitude of 0.001 m in this study. This bias is considered 
negligible.  

 
Figure  2-5. Comparison between desired (continuous line) and measured (dots) tank positions. 

The instantaneous tank positions are input values to the system. The tank is forced 
to move based on the desired input positions fed every Δݐ ൌ  the input sampling) ݏ	0.02
rate is 50Hz) into the sloshing rig’s actuator. The input signal follows a linear ramp at 
start to avoid large accelerations. The quality of the measured tank positions is shown in 
Figure  2-5 to compare with the desired positions. According to Figure  2-5, the measured 
and desired tank positions are very similar in terms of amplitude and frequency of the 
motion. It should be noted that the quality of the input position is also perfect for the 
largest tested forcing amplitude. 

ଶߟ
ଶೌߟ

 

࣌ ࣌૙⁄ ൏ 1           ࣌ ࣌૙⁄ ൏ 1           
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Theoretically, the forcing motion is harmonic, i.e. position, velocity and 
acceleration must be purely harmonic. Figure  2-6 shows the measured acceleration 
signal that obviously contains high frequency components. These frequencies are 
generated because the rig only follows the instantaneous positions and not the 
accelerations. In other words, when the rig pushes the tank to move from its current 
position to the next, a large velocity change may be needed during a very short period of 
time to pave the distance. These unwanted high frequency accelerations may excite 
higher modes of sloshing if their energy content is large enough. In the bottom part of 
Figure  2-6 non-dimensional amplitude of the frequency components of the acceleration 
signal is plotted. The vertical red lines mark the non-dimensional frequency of the first 
28 natural frequencies of sloshing in clean tank (when no screen is mounted). The 
largest peak corresponds to the applied forcing frequency	ߪ. There are very small 
amplitude accelerations seen for frequencies larger than the third natural frequency 
(vertical line ܵଷ in Figure  2-6). These accelerations may cause very small amplitude 
waves. However, the experimental results did not show appearance of waves due to 
unwanted high frequency accelerations. 

 
Figure  2-6. Top: Measured tank accelerations in time, Bottom: Amplitude of the frequency contents of the 
acceleration signal. ࣌ᇱ is the frequency content of the acceleration signal calculated by FFT. ࣌ and ࣁ૛ࢇ  are 
forcing frequency and amplitude. 

The wave probes made of two thin wires measure the free surface elevations 
relative to the undisturbed mean water level. The electrical resistance caused by the 
water column between the two wires is related to the free surface level by means of a 

multiplying factor	ߙ஼.	ߙ஼	has the dimension of 
௠௘௧௘௥௦

௏௢௟௧௦
, i.e. ߙ஼ ∗ ܸ	(ܸ is the voltage read 

by the sensor) gives the wave elevation. To calculate ߙ஼	at least 5 still-water levels 
covering the maximum and minimum wave elevations are taken and the corresponding 
voltages are measured. Having the water levels (relative to the tank bottom) and the 
voltages, a line is fitted through the points as shown in the left part of Figure  2-7. As the 

࣌ᇱ/࣌૚
∗  
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figure shows the relation between the measured voltages and corresponding water levels 

is very linear. The steepness of this relation, i.e. ߙ஼, is equal to 1.5949 
௠௘௧௘௥௦

௏௢௟௧௦
 in the left 

part of figure 7. 

  
Figure  2-7.  Calibration of wave probes, Left: wave elevation (m) versus voltage (V*10), Right: measured wave 
elevation (m) for a fixed voltage change ઢࢂ, the horizontal axis represents numbers for different ambient 
temperatures, these numbers are only used for naming.  

The electrical resistance of water is also a function of temperature which means 
 changes with temperature. To illustrate this, the measured wave heights are plotted	஼ߙ
on the right side of Figure  2-7 for a fixed voltage change, i.e. Δܸ ൌ  at nine ݐ݊ܽݐݏ݊݋ܿ
different ambient temperatures. The plot shows that wave probes measure different 
wave elevations in different ambient temperatures. Therefore if the temperature changes 
during the time, a new ߙ஼ has to be determined for new measurements.  

Change in the ambient temperature may matter during test runs if the duration of 
each run is too long. In practice a test run might be conducted for a frequency range of 
ݖܪ	0.4 ൑ ݂ ൑ ݂∆ If the frequency range is divided to frequencies with .ݖܪ	1.45 ൌ
 difference where each frequency should excite the tank for 150 cycles, a single ݖܪ	0.01
run will take 17100 seconds (4 hours and 45 minutes). Now, if the temperature 
continuously changes during this long run, the effect is that the zero level or the level of 
the water at rest reported by the wave will vary. This causes an inaccuracy in the 
measured value of the wave elevations. Keeping the tank at rest but measuring the water 
level for a long time showed that the wave probes measure up to 1 mm change in the 
mean water level. This value should be considered as a bias.  

2.5.1 Experimental bias due to presence of the screen supports 
The screen is fixed in the middle of the tank using two vertical strips (see Figure 

 2-8) attached to the opposite lateral walls. These vertical supports may impose 
unwanted local three-dimensional flow and hydrodynamic damping effects. The screen 
supports may add the following experimental biases:  

a. 10% local contraction of the flow at the middle section that locally increases the 
flow rate through the screen openings. This increased flow rate is more 
pronounced for low solidity ratios (ܵ݊ ൑ 0.5) that may lead to larger screen-
induced damping.  

b. Generation of unwanted damping due to flow separation at the sharp edges of 
the strip supports which may matter for low solidity ratios (ܵ݊ ൑ 0.5).  
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c.  Local three-dimensional effect by obstructing the flow in the tank middle. 

Figure  2-8 shows a top view of the tank, screen and its supports. It is assumed that 
the flow is affected only at the screen openings where the support edges are exposed to 
the flow in the tank middle. In the following the magnitude of damping imposed by the 
supports is estimated by means of experiments and theoretical methods.  

 
Figure  2-8. Top view of the tank, screen and rectangular supports fixed on the side wall. 

2.5.2 Estimation of damping caused by the screen supports 
 

2.5.2.1 Using	free	decay	test	
a) Keulegan’s theory 

In experiments the decay of wave amplitudes in free oscillations were used to 
examine the damping level at the highest natural period of sloshing. Wave breaking was 
avoided during the decay test. The tank without a mounted screen is excited for some 
periods at its lowest natural frequency and then the excitation is stopped. The water 
inside the tank is at rest before starting the excitation. During the excitation wave 
elevations at the vertical wall are growing until the tank motion is stopped. The 
amplitudes of these waves are seen in the left panel of Figure  2-9. They increase from 0 
to a maximum value during the excitation. The decaying amplitudes appear right after 
stopping the tank excitation. Using the decaying amplitudes, the damping coefficient 
ߙ or equivalently modulus of decay	ߦ ൌ  .for the first mode of sloshing is calculated	ߦߨ2
Considering only the dissipation in the boundary layer as the damping source and 
assuming laminar flow, the amplitudes of the waves are expected to decay exponentially 
such that in a semi-log plot the amplitude ratio 

௔

௔బ
 varies linearly against number of 

periods, i.e.	 ௔
௔బ
ൌ ݌ݔ݁ ቀെ ௧ࢻ

்
ቁ (Keulegan, 1959).	ܽ଴	is the initial amplitude and ܽ is the 

decaying amplitude during the decay process. ܶ is the highest natural period of sloshing 
(also the period of decaying waves) in the tank and	ߙ	 is the average value of modulus 
of decay. As an example ܽ ܽ଴⁄ 	is plotted versus ݐ ܶ⁄  and shown on the right side of 
Figure  2-9. Maxima (݄௠௔௫) and minima (݄௠௜௡) of the standing waves on the opposite 

Screen 

Rectangular supports

Vertical side
ll
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sides of the tank are used to calculate the wave amplitude, i.e. ܽ ൌ ଵ

ଶ
ሺ݄௠௔௫ െ ݄௠௜௡ሻ. An 

example of decaying amplitudes is shown on the left side of Figure  2-9 for	݄ ൌ
0.833	݉	and ߟଶೌబ ൌ ଶೌబߟ .݉	0.00465  is the amplitude of excitation in meters during 

the excitation. ߙ	is calculated by taking an average value between 50 values of ߙ 
calculated for 50 periods of decaying amplitudes. 

 
Figure  2-9. Calculation of modulus of decay.	ࢎ ൌ ૙. ૡ૜૜	ࢀ ,࢓ ൌ ૚. ૛૞૚૟	࢙  and ࣁ૛ࢇ૙ ൌ ૙. ૙૙૝૟૞	ࣁ .࢓૛ࢇ૙  is the 

amplitude of excitation in meters during the excitation. Top: the decay of wave amplitude ܉ ൌ
૚

૛
ሺܠ܉ܕܐ െ

 values ࢀ/࢚ the ;ࢀ/࢚ ૙ versus number of decay periodsࢇ/ࢇ , Bottom: Semi-log plot of the amplitude ratio	ሻܖܑܕܐ
are discrete. ࢚ࢀ is the total time and ࢚ is the time during the decay. 

The result presented in Figure  2-9 for free decay test of wave for h ൌ
0.833	m	and ηଶ౗బ ൌ 0.00465	m give α ൌ 0.0260. The results of a decay test in the 
same tank but without bracings and for the same experimental condition have given 
ߙ ൌ 0.0261 (Abrahamsen, 2011) that shows negligible contribution of the bracings to 
the global damping. Keulegans’ theory (1959) which considers viscous dissipation due 
to boundary layer at the tank bottom and four vertical walls gives ߙ ൌ 0.0208 which is 
smaller than the experimental values. Experimental decay tests for ݄/݈ ൌ 0.4 and 
݄/݈ ൌ 0.12 give ߙ ൌ 0.0290	and 0.0427	respectively. The corresponding theoretical 
values ݄/݈ ൌ 0.4 and ݄/݈ ൌ 0.12 are ߙ ൌ 0.0218 and 0.0338 respectively. Both theory 
and experiments give larger modulus of damping for smaller depths. The damping 
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ࢀ/࢚

ࢇ
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coefficients ߦ is related to the modulus of decay by the relation ߦ ൌ  that gives ߨ2/ߙ
ߦ ൌ0.0041, 0.0023 and 0.0068 for ݄ ݈⁄ ൌ 0.833,0.4 and 0.12, respectively.  

Keulegan (1959), relates the discrepancy between calculated ߙ using theory and 
experiments to surface tension. Another reason for the discrepancy might be due to 
extra dissipation in turbulent boundary layers.  The critical Reynolds number for 
transition from laminar to turbulent flow on a flat plate is ܴ݁௖௥௜௧௜௖௔௟ ൌ 5 ൈ 10ହ. This 

value is 20 times larger than the maximum Reynolds number ܴ݁ ൌ ఙ஺మ

ఔ
ൌ 2.4 ൈ 10ସ in 

the above decay tests (ܣ	and ߪ are the amplitude of the oscillating flow just outside the 
boundary layer and frequency of the oscillations). Therefore turbulence does not 
contribute to the amount of damping causing the decay.  

b) Quadratic damping model 

Damping due to the flow separation from the sharp edges of bluff bodies is 
significantly larger than viscous damping of boundary layers. In an oscillatory flow, the 
damping effects of a bluff body may be modeled as a quadratic damping term in the 
equation of wave motion. Here the rectangle supports are assumed as a quadratic 
damping source in a free oscillation wave model (Faltinsen, 1989 ):  

ሷݔ  ൅ ሶݔଵ݌	 ൅ ሶݔ|ଶ݌ ሶݔ| ൅ ݔଷ݌ ൌ 0 (2.1)

where the term proportional to ݌ଶ on the left hand side is responsible for the 
quadratic damping source. The term	݌ଵ describes a linear damping effect caused by, for 
instance, laminar boundary layer on the vertical walls. ݔ is the decaying amplitude of 
the wave elevations. The damping coefficients ݌ଵ and ݌ଶ are assumed to be constant 
with respect to the amplitude of the wave. They are determined by plotting the left hand 

side of relation 
ଶ

೘்
log ቀ௫೙షభ

௫೙శభ
ቁ ൌ ଵ݌ ൅

ଵ଺

ଷ

௫೙

೘்
 ଶ against݌

ଵ଺

ଷ

௫೙

೘்
 is the amplitude of the	௡ݔ	.

motion for period ݊	and there is a half-period ௠ܶ/2 difference between ݔ௡	and ݔ௡ାଵ. A 
plot based on what is explained above is given in Figure  2-10.  A solid line is fitted 
through the points by a least square method which estimates  ݌ଵ ൌ 0.04585 and 
ଶ݌ ൌ 0.01859. If ݌ଵ is redefined as ݌ଵ ൌ ߦ where ߪߦ2 ൌ  are the first	ߦ and ߪ and ߨ2/ߙ
natural frequency and damping coefficient of the first mode of sloshing, then  ߙ ൌ
0.0264	for ݄ ݈⁄ ൌ 0.833 which is almost equal to	ߙ ൌ 0.0261	obtained from the 

Keulegan’s method expressing the decay of the wave amplitude as 
௔

௔଴
ൌ ݌ݔ݁ ቀെ ௧ࢻ

்
ቁ. 

The estimated value for  ݌ଶ	is not reliable as it is equal to the slope of the line fitted 
through a highly scattered data set shown in Figure  2-10. It is noted here that the above 
way of modeling for quadratic damping is difficult to use when the Keulegan Carpenter 
number ܥܭ ൌ ܷ௠ܶ/ܦ is experiencing a significant change during the decay (Faltinsen 
 number relates the distance traveled by a flow particles oscillating with ܥܭ .(1989
velocity amplitude of ܷ௠ about the rectangular supports of characteristic width ܦ. ܶ is 
the period of flow oscillations. Here D is equal to two width of a single support normal 
to the flow direction. In fact one can assume that the flow around the wall and the 
support attached to it is symmetric about the wall. This means that the flow around a 
vertical rectangular strip attached to a wall is similar to the flow around a rectangle with 

a width twice the width of a single support in an infinite flow. ܷ௠ ൌ ఙ஺

௞௛
 is the depth-

average value of the linear component of the velocity which is only dependent on the 
amplitude ܣ of the decaying waves at the wall. Using the first 15 decaying amplitudes it 
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gives  7.8 ൏ ܥܭ ൏ 12.6 which shows 20% decrease in ܥܭ number during the decay. 
On the other hand, the drag coefficient, which is directly related to the viscous 
dissipation, of a sharp edged square section ( a single support in infinite fluid) is ܥܭ 
number dependent for ܥܭ ൎ 10. This can be seen in Figure  2-12. This means that the 
quadratic damping model  (2.1) is not applicable due to relatively large changes in the 
instantaneous value of drag coefficient. 

 
Figure  2-10. Estimation of damping in the clean tank by fitting the data of decaying wave amplitudes to a 
quadratic damping model. The fitted line through the data is used to estimate  linear ܘ૚	and quadratic 

 damping coefficients defined by	૛ܘ
૛

ܕ܂
܏ܗܔ ቀ

ష૚ܖ܆
శ૚ܖ܆

ቁ ൌ ૚ܘ ൅
૚૟

૜

ܖ܆
ܕ܂
ࢎ  .૛ܘ ⁄࢒ ൌ ૙. ૡ૜૜, ࢿ ൌ ૙. ૙૙૝૟૞. 

2.5.2.2 Estimation	of	damping	due	to	the	screen	supports	using	empirical	
drag	coefficients	

The unwanted damping due to the screen supports can be estimated by relating the 
average work done by the drag force applied on them to the rate of dissipation of 
potential and kinetic energy in sloshing waves during one period of oscillation. The 
rectangles experience a depth dependent ambient oscillatory flow. Only the effect of the 
first mode of sloshing is considered in the calculations because it causes the largest flow 
rate in the tank middle relative to the higher modes. Here the calculations are done for 
shallow water condition for which the flow is almost uniform in the middle of the tank.   

As shown in Figure  2-11, two sets of rectangles of height ݈௕ in a tandem 
arrangement with one ݈௕ distance are mounted on each vertical wall parallel to the flow 
direction. Assuming that the flow around the rectangles is symmetric about the wall 
attached to the supports, a double-body configuration is considered (Figure  2-11). This 
gives two squares in tandem in cross flow of an infinite periodic flow. Now two limit 
cases are considered for the analysis; case (1) : In the extreme case from a damping 
point of view, two separate squares without hydrodynamic interaction can be considered 
where both squares experience the same inflow ambient velocity, case (2):  The free 
space of length	݈௕	between the squares is assumed to be a dead zone and a rectangle of 
length 5݈௕ and width 2݈௕ (aspect ratio=2.5) replaces the two squares. Case 1 is relevant 
for very low ܥܭ numbers while case 2 is relevant for large ܥܭ numbers. 
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Figure  2-11. Double body assumption and two limit cases assumed in the investigation. 

The average work done by the drag force in one period of oscillation applied on 
the supports with width of ݈௕	(in X direction) elongated between 0 and ݄ in the vertical 
direction (Z) reads: 

ܦ  ൌ න 1/ܶන
ߩ
2

்

଴
ݐ௥݀ݑ௥ݑ|௥ݑ|ௗ݈௕ܥ

଴

ି௛
(2.2) ݖ݀

௥ݑ ൌ  ሻ is the relative horizontal Z-dependent ambient velocity atݐߪሺ	௥௠cosݑ
ܻ ൌ 0 (tank middle). ߩ is the liquid density and ܶ is the oscillation period. The drag 
coefficients ܥௗ for bluff bodies subject to an infinite oscillatory flow are dependent on 
Keulegan-Carpenter number ܥܭ defined as ܥܭ ൌ  For the current .ܦ/௥௠തതതതതܶݑ

investigation, ൌ ଵߪ/ߨ2
ܦ , ∗ ൌ 2݈௕. ݑ௥௠തതതതത ൌ ఙభ

∗஺

௞௛
		is the depth-averaged horizontal velocity. 

݇ ,is the amplitude of the wave at the vertical wall ܣ ൌ  and ݄ is the still water ݈/ߨ
depth. Calculations are done for steady-state condition in presence of the screen for 
ߪ ൌ ଵߪ

∗. The hydrodynamic interaction between the screen and the supports and the 
effect of the screen on the first mode of clean-tank sloshing is neglected. For ݄ ݈⁄ ൌ
0.12	and ߝ ൌ ݈/ଶೌߟ ൌ 0.01, ܵ݊ ൌ 0.4725 and ߪ ଵߪ

∗⁄ ൌ ܥܭ 	0.9998 ൌ 39.6. The drag 
coefficient of a sharp edge cylinder (square) in a planar oscillatory flow has been 
experimentally measured first by Tanaka, et al. (1982) and by Bearman, et al. (1984b) 
(Figure  2-12). Figure  2-12 shows that for ݏܥܭ larger than 40 the drag coefficient does 
not change (increase) significantly and becomes independent of ܥܭ with more increase 
in ܥܭ (Bearman et al., 1984b). The ܥܭ independent drag coefficient ܥௗ ൌ 1.9 for a 
squared rectangle is a little smaller than its steady value ܥௗ ൌ 2.2	 in non-oscillating 
uniform flow with ܴ݁ ൐ 10ସ (Blevins 2000). Here the corresponding Reynolds number 

for the flow past the screen supports is equal to 2.1 ൈ 10ସ, i.e. ߚ ൌ ோ௘

௄஼
ൌ 530.05. To be 

on the safe side the steady flow value of ܥௗ which is a little larger than the periodic 
value is used in the calculations. For case 1, two separated rectangles, ܥௗ ൌ 2.2 is used. 

For case 2 of the current investigation, a continues rectangle with aspect ratio of 
ହ

ଶ
ൌ

2.5, Blevins (2000) suggests steady-state drag coefficient ܥௗ ൌ 	1.4.    

Case 1 

Case 2 
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Figure  2-12. Cd of a sharp-edged cylinder (square) versus KC number. ‘x’, Tanaka et al, (1983); square, 
Bearman, et al., (1984). 

The method proposed in section 6.5.1 of Faltinsen and Timokha (2009) for 
calculation of hydrodynamic damping caused by small height internal structures 
mounted on the tank walls (baffles) is applied to estimate modulus of damping ߙ for the 
first mode of sloshing.  

The linear potential theory for standing waves gives the horizontal velocity at the 
tank middle ݑ௥ ൌ ሻݖ௥௠ሺݑ cosሺݐߪሻ. ݑ௥௠	is the amplitude of the velocity and a function 

of vertical coordinates (ܼ), that is ݑ௥௠ሺݖሻ ൌ
ఙ஺௖௢௦௛൫௞ሺ௭ା௛ሻ൯

ୱ୧୬୦ሺ௞௛ሻ
. When calculating the 

integral expression in  (2.2) the following sub-integrals are encountered:   

න cosh	ሺ݇ሺݖ ൅ ݄ሻሻଷdz ൌ
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Therefore equation  (2.2) reads:  
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ଷ୩
. 

The rate of dissipation of energy of the waves ܧሶ  is related to the summation of 
kinematic and potential energy in the standing wave ܧ and the time-averaged work done 

by the rectangles ܦ using the relation	ܧሶ ൌ െܦ ൌ െܧ .ߨ/ߙܧߪ ൌ ଵ

ସ
 ଶ݈ܾ is theܣ݃ߩ

summation of potential and kinetic energy of an standing wave oscillating with 
amplitude ܣ and wavelength of 2݈ in a tank with horizontal extents of ݈ and ܾ. The 

damping modulus can now be evaluated from	ߙ ൌ గ஽

ఙா
ൌ గ஽

ఙభ
ర
ఘ௚஺మ௟௕

	. This relation shows 

the linear dependence of ߙ	on the wave amplitude	ܣ	for a fixed forcing frequency. 
Calculations are done for ݇ ൌ ݄	and (first mode) ݈/ߨ ൌ 0.12	݉,	݈ ൌ 1	݉,	ܾ	 ൌ 	0.1	݉ 
and ݈௕ ൌ 0.005	݉. For case 1 with four separated rectangles ܦ(the averaged work done 
by the drag force) should be multiplied by 4 to account for 4 rectangles (2 rectangles on 
each wall). The same calculation is also done for case 2. The damping modulus is 
plotted as a function of non-dimensional wave amplitude in Figure  2-13. For 
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comparison, the modulus of decay for boundary layer is also presented in Figure  2-13. 
The horizontal curve for the boundary layer is plotted using Keulegan’s theory for 
laminar oscillatory flow which is fixed a value for all wave amplitudes. The figure 
shows that the dissipation in the boundary layer on the bounding vertical walls is the 
largest source of damping for ܣ ݈⁄ ൑ 0.0215. For ܣ ݈⁄ ൐ 0.0215 the separated 
rectangles (case 1) exceed the boundary layer damping but the continuous rectangle 
(case 2) does not, demonstrating the smallness of the damping due to the screen 
supports.  

 
Figure  2-13. Calculated modulus of decay ࢻ of the lowest sloshing mode for different damping sources as a 
function of non-dimensional wave amplitude ࢒/࡭ for ࢒/ࢎ ൌ ૙. ૚૛ in presence of a screen with ࢔ࡿ ൌ ૙. ૝ૠ૛૞. 

The damping effect due to the supports matters when it is comparable to the 
screen-caused damping. A same procedure can be followed for estimating the screen-
caused damping assuming that the first mode of sloshing remains unchanged. Baines 
and Peterson (1951) suggest an empirical value for the pressure loss ܭ	and the drag 
coefficient of a screen in a steady uniform flow, 

ܭ ൌ ቀ ଵ

஼೎ሺଵିௌ௡ሻ
െ 1ቁ

ଶ
௖ܥ ,	 ൌ 0.405 expሺെ݊ܵߨሻ ൅ ௗܥ ,0.595 	ൌ  .݊ܵ/ܭ	

 is a discharge coefficient dependent on the shape of the openings. The pressure loss ܿܥ
  is defined as ܭ

 Δ݌ ൌ ܭ
ߩ
2
(2.3) ݑ|ݑ|

where ݑ is the velocity of the ambient flow crossing the screen. For ܵ݊ ൌ 0.4725 the 
pressure loss is equal to ܭ ൌ 3.0986.  

 for a screen can calculated using the definition of pressure loss. The force on a ܦ
screen element ݀ݖ is equal to ݂݀ ൌ Δ݌ ൈ   ,Therefore .ݖܾ݀
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Calculation shows that the screen-induced modulus of damping ߙ is 13.35 and 42 
times larger than those calculated for respectively for separated rectangles in case 1 and 
a rectangle in case 2. Neglecting the effect of boundary layer, ߙ for case 1 and case 2 
contributes up to 7% and 2.3% of the total damping including the effect of a screen with 
solidity ratio of 0.4725. The damping values computed for the screen supports are 
calculated based on the length of the bracings exposed to the flow passing through the 
screen openings. By increasing the solidity ratio, the parts of the supports exposed to the 
cross flow decreases. This means that the damping imposed by the supports becomes 
negligible for large solidity ratios. 

Considering the contraction of the flow in the tank middle one relevant case is the 
flow through an orifice plate. The pressure loss due to a sharp-edge orifice plate in an 
axisymmetric flow in a pipe is given in engineering books (for instance Blevins (2000)). 
However, the flow in a circular cylinder pipe is confined from expansion in the 
direction normal to the fluid flow unlike the flow in a sloshing tank that can deform at 
the free surface zone due to local pressures. In addition, the behavior of vortex shedding 
from an orifice plate in a circular pipe is different than the vertical supports in the 
present rectangular tank. Pressure loss values for 2D cross section of a pipe including 
the orifice plate together with the main dimensions are given in Figure  2-14. The 
values are given for steady-state flow and Reynolds number ܴ݁௡ (pressure loss)	ܭ ൌ
௎೘஽

ఔ
 is ൒ 10ସ. In the present case for ܦ ൌ ߥ ,݉	0.1 ൌ 10ି଺ the amplitude of the relative 

flow velocity should be larger than 0.1	݉/ݏ which is not far from the maximum 
horizontal velocity observed in the experiments for ܵ݊ ൑ 0.5 (for the first mode). For 
ܦ/݀ ൌ 0.9 the pressure loss is ܭ ൌ 0.32 according to the table in Figure  2-14. The 
modulus of decay ߙ for orifice plate is plotted in Figure  2-13.  

According to results in Figure  2-13, the estimated value for ߙ assuming an orifice 
model is the second largest after the separated rectangles. The continuous rectangles, the 
most relevant case, produce the smallest damping.  

 
Figure  2-14. Empirical pressure loss values ࡷ for an orifice plate in a pipe with a circular section. Data is 
taken from Blevins (2000). ࢁ is the uniform ambient velocity. ࡰ and ࢊ are the inner diameter of the pipe and 
contracted diameter inside the orifice.  

The experimental and theoretical estimation of modulus of damping ߙ	of the 
screen supports gives maximum 7% contribution in the total damping considering 
different bluff body models. One should remember that: Estimations are made for a tank 
equipped with a screen of solidity ratio	ܵ݊ ൌ 0.4725	 in shallow water because the 
supports will cause larger damping when the flow is more uniform in the tank middle.  
In addition, the solidity ratio in the calculations is smaller than 0.5 which makes more 
than 50% of the length of the supports being exposed to the cross flow at the screen. 
Calculations are made within linear wave theory and small wave amplitudes. Wave 
amplitudes are kept small in free decay tests to avoid wave breaking which is an 
unknown damping source. However, the effect of the supports becomes less important 
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unknown damping source. However, the effect of the supports becomes less important 
for large solidity ratios due to less inflow through the screen openings, which is more 
relevant for the cases investigated in this thesis. 

One should also note that the thickness of the boundary layer is comparable to the 
height of the screen supports. For laminar boundary layer flow the geometric 0.99% 

boundary layer thickness can be estimated by	ߜ଴.ଽଽ ൌ 4.6ඥ2ߥ ⁄	ߪ , where ߥ and ߪ are the 
kinematic viscosity and frequency of flow oscillation. For ݄ ݈⁄ ൌ 0.833, 0.4 and 0.12	݉ 
the corresponding boundary layer thickness is 2.8, 2.9 and 3.6 mm. This means that 
cross flow into the middle section of the tank is less affected by the presence of screen 
supports which accordingly reduces the unwanted damping caused by the supports. 
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3 Analysis of experimental results in finite water depth  
 

 

Presenting and analysis of the experimental results will be the material of the 
current and next chapter. Experimental results are also used to validate results 
calculated by theoretical and numerical methods. The theoretical models (Appendix) 
which are extensions of the potential flow theory are based on assumptions such as two-
dimensional flow, linearity of the free surface in case of linear models and degree of 
non-linearity of the free-surface for non-linear models. The numerical calculations 
presented in chapter 5 also assume laminar, incompressible two-dimensional flow 
model. The analysis of experimental results can help determining experimental 
conditions where the required assumptions by the theoretical and numerical models are 
satisfied.  

Considering pure experimental analysis the effect of screen on the sloshing modes 
and frequencies due to its presence in the middle of the tank is also studied. 

In this chapter the experimental results are categorized based on water depth and 
forcing amplitude. New findings are reported and classified based on experimental 
conditions. 

The experiments are categorized in Table  3-1 based on the variation of non-
dimensional physical parameters:  

a. Non-dimensional water depth: ݄/݈ 
b. Non-dimensional forcing amplitude: ߝ ൌ  	݈/ଶೌߟ
c. Solidity ratio: ܵ݊ 

Table  3-1. Variation of physical parameters in the experiments. 

h/l	 ε ܵ݊ (First set) ܵ݊ (Second set) 

0.4	ሺfinite	depthሻ	 0.001, 0.01 0.296-0.9592  .4725-0.9512 

0.35	ሺfinite	depthሻ	 0.03 - 0.4729-0.9529 

0.12	ሺshallow	depthሻ	 0.01 0.3612-1.0000 0.4725-0.9625 

0.125	ሺshallow	depthሻ	 0.05 - 0.4752-0.9640 

 

As listed in Table  3-1, the experiments are carried out in non-dimensional finite 
depths: ݄ ݈⁄ ൌ 0.4,  ݄ ݈⁄ ൌ 0.35 and shallow depths: ݄ ݈⁄ ൌ 0.12 and ݄ ݈⁄ ൌ 0.125. Very 
small and small forcing amplitudes including ߝ ൌ 0.001 and ߝ ൌ 0.01 and relatively 
large amplitudes ߝ ൌ 0.03	and ߝ ൌ 0.05 are tested in different depths. Small forcing 
amplitudes are relevant for sloshing in Tuned Liquid Dampers (TLDs) used for example 
as vibration control devices in tall buildings. Larger forcing amplitudes are more 
relevant for marine applications. The analysis starts with experiments in finite water 
depth ݄ ݈⁄ ൌ 0.4	and small forcing amplitudes. Analysis of the results obtained in 
shallow water will be carried out in the next chapter. This is for the sake of better 
readability of the thesis. 
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3.1 Water depth ratio h/l=0.4, forcing amplitude ratio ε = 0.001  
Very small forcing amplitude of ߝ ൌ 0.001 is chosen to avoid strong free surface 

nonlinearities as well as any kind of special free-surface effects such as wave breaking 
and thin wave run-ups on the vertical walls or on the screen. Such small forcing 
amplitude is useful when reference results are needed for validation of linear free-
surface based theoretical methods. For the current forcing amplitude experimental 
measurements for two sets of screens are studied. The geometry of the two screen sets 
are shown in Figure  2-2.  The solidity ratios for ݄ ݈⁄ ൌ 0.4 are:  

First set :         0.296, 0.498  ,  0.696 ,  0.797 ,  0.847 ,  0.896  , 0.9225, 0.944  ,  0.9592.  

Second set:          -   , 0.4725, 0.6825, 0.7863, 0.8388, 0.8913, 0.9138, 0.9363, 0.9513. 

The solidity ratios are almost the same for both sets except for ܵ݊ ൌ 0.296	from 
the first set that does not have a counterpart in the second set. The forcing frequencies 
are in the range of 0.8ߪଵ

∗ ൑ ߪ ൑ ଵߪ2.1
∗. The soft-spring behavior of steady-state wave 

responses for ݄ ݈⁄ ൐ 0.3368	should be considered by stepping down the forcing 
frequency after reaching each steady-state regime to account for the maximum possible 
responses. Figure  3-1 and Figure  3-2 present the non-dimensional maximum steady-
state response ߞ௠௔௫/ߟଶೌ		(top panel in the figures) and its first Fourier harmonic 
ଵߪ/ߪ  (bottom panels in the figures) as a function of	ଶೌߟ/ଵ௦௧ߞ

∗		 for the first and the 
second sets of the screens. The results for the first set of screens shown on the two upper 
panels and for the second set on the lower panels. The measured steady-state responses 
௠௔௫ߞ) ⁄ଶೌߟ ) are only shown for one side of the tank.  

The results in Figure  3-1 and Figure  3-2 are very similar for both sets of screens 
demonstrating the importance of solidity ratio rather than the geometrical details of the 
screens (excluding	ܵ݊ ൌ 0.296 from the first set of screens that does not have a similar 
counterpart in the second set of screens). Considering the presented results in Figure  3-1 
and Figure  3-2 some noteworthy conclusions can be made. Due to very similar results 
for both sets of screens, only the results obtained for the second set of screens are used 
for detailed discussion. 

For solidity ratios 0.45 ൑ ܵ݊ ൑ 0.85, the steady-state responses in Figure  3-2 
show two clear resonance peaks associated with the two lowest anti-symmetric (odd) 
modes in the clean tank. The peaks remain close to ߪ/ߪଵ

∗ ൎ 1	and ߪ/ߪଵ
∗ ൎ 1.878 , i.e., 

they occur in a neighborhood of the first and the third natural sloshing frequencies in the 
clean tank.  Furthermore, the maximum non-dimensional wave elevations in the 
considered frequency range becomes smaller with increasing ܵ݊. The reason is that 
increasing ܵ݊ between ൎ 0.5	and and ൎ 0.85 increases the global damping in the 
mechanical system.   

Results for ܵ݊ ൌ 0.8913 and 0.9138, show that further increase of the solidity 
ratio leads to an increase of the global damping at ߪ ଵߪ

∗⁄ ൎ 1, but the experimental 
steady-state resonance response at the second resonance peak  (associated with the 
second anti-symmetric mode ߪ/ߪଵ

∗ ൎ 1.878) remains almost the same. Furthermore, 
this second resonance peak drifts to the left of ߪ/ߪଵ

∗ ൎ 1.878, i.e., from 1.87 to 1.75. 
Changing the solidity ratio to 0.9363 leads to vanishing of the first resonance 

peak and shifting the second resonance peak to ߪ/ߪଵ
∗ ൌ 1.6. The largest tested solidity 

ratio 0.9513 drifts the latter peak more toward smaller forcing frequencies at ߪ/ߪଵ
∗ ൌ
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1.54 which is larger than ߪଶ
ଵߪ/∗

∗ ൌ 1.5238, i.e. the second natural frequeny of the clean 
tank or the lowest natural frequency of a compartmented tank. This means that the 
cross-flow through the screen still matters and the non-linear soft-spring behavior effect 
is not dominant to push the resonant peak to take place at a forcing frequency smaller 
than ߪଶ

∗ ଵߪ
∗⁄ ൌ 1.5238. When	ܵ݊ → 1, the limit case of watertight wall is reached where 

the wall divides the tank into two equal-length isolated compartments. When ൌ 1 , 
boundary layer is the only source of damping if no wave breaking is present. This 
means very small forcing amplitude can trigger non-linear effects and the lowest 
resonant response of a compartment can occur at ߪ ଵߪ

∗⁄ ൏ ଶߪ
∗ ଵߪ

∗⁄ ൌ 1.5238.  
Comparing the steady-state response curves for all screen, the lowest maximum 

response in the tested frequency range occurs for 	ܵ݊ ൌ ܵ݊௠௜௡ ൌ 0.8913. The peak 
point response for this solidity ratio belongs to a frequency smaller than 	ߪଷ

ଵߪ/∗
∗ ൌ

1.878.  
Figure  3-2 shows that the magnitude of the peak responses at ߪ/ߪଵ

∗ ൌ 1 and 
ଷߪ
∗/σଵ

∗ ൌ 1.878	 are closely comparable for a given solidity ratio in the range 0.45 ൑
ܵ݊ ൑ 0.85. The latter fact is implicitly a consequence of the fact that the screen causes a 
larger damping of flow oscillations associated with the first mode than with that of the 
third mode.  To demonstrate this fact, Figure  3-3 compared the maximum responses 
measured in a clean tank and also in a tank equipped with a screen of ܵ݊ ൌ 0.4725. 
Considering the clean tank, the peak response at ߪଵ

∗	is almost 1.7 times larger than the 
one at	ߪଷ

∗ while the screen with ܵ݊ ൌ 0.4725	damps the peaks at ߪଵ
∗	and ߪଷ	

∗down to 
almost the same value. The reason is that the average flow rate through the screen, 
which directly related to damping, is larger for the first mode relative to that of the third 
mode. For the third mode, the screen is only effective in the free surface zone because 
of faster exponential decay of the horizontal velocity in the tank middle toward the tank 
bottom.  

One may notice the step-wise behavior of the responses for very large solidity 
ratios, for instance ܵ݊ ൌ 0.944 and ܵ݊ ൌ 0.9552 in the upper plots of Figure  3-1 and 
Figure  3-2. The reason is the accuracy of the wave gauges which is 1 mm, i.e. 
ሺ݉݁ܽݐ݊݁݉݁ݎݑݏ	ݎ݋ݎݎ݁ሻ ⁄ଶೌߟ ൌ 1. The latter means differences within 1 mm cannot be 
measured. Therefore if changing the forcing frequency changes the responses less than 
the measurement error, a constant or step-wise response curve appears.      

Figure  3-2 also shows that the maximum steady-state responses and their 
corresponding amplitude of the first Fourier harmonic are almost the same for large 
values of solidity ratios. This means that the non-linearity of the free surface is reduced 
due to presence of screen-caused damping. In a clean tank where wave breaking does 
not occur and the only source of damping is the boundary layer attached to the tank 
walls, free-surface non-linearities matter more. For instance, for ߝ ൌ 0.001 and 
݄ ݈⁄ ൌ 0.4 non-linearities cause larger responses relative to responses in a screen-
equipped tank at primary resonance frequencies, i.e. ߪ/ߪଵ

∗ ൎ 1	and ߪ/ߪଵ
∗ ൎ ଷߪ

∗/σଵ
∗ ൌ

1.878  accompanied with jumps in the steady-state amplitudes. Figure  3-3 shows a clear 
steady-state jump in the responses measured in the clean tank at ߪଷ

∗/σଵ
∗ ൌ 1.878 . The 

jump at ߪ/ߪଵ
∗ ൎ 1	 is not clearly seen due to lack of sufficient number of forcing 

frequencies around the resonant frequency. In contrast, in a screen-equipped tank the 
screen-caused damping decreases the level of free-surface nonlinearity and removes the 
steady-state jumps at both peak responses (see Figure  3-3).  
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Figure  3-1. Non-dimensional maximum steady-state response ࣁ/࢞ࢇ࢓ࣀ૛ࢇ(top panel) and its amplitude of the 
first Fourier harmonic ࣀ૚࢙࢚/ࣁ૛ࢇ (bottom panel) versus ࣌/࣌૚

∗  for all solidity ratios ࢔ࡿ. The results belong to the 
first set of screens. ࢒/ࢎ ൌ ૙. ૝, ࢿ ൌ ૙. ૙૙૚. 
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∗  
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࣌/࣌૚
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Figure  3-2. Non-dimensional maximum steady-state response ࣁ/࢞ࢇ࢓ࣀ૛ࢇ(top panel) and its amplitude of the 
first Fourier harmonic ࣀ૚࢙࢚/ࣁ૛ࢇ (bottom panel) versus ࣌/࣌૚

∗  for all solidity ratios. The results belong to the 
second set of screens. ࢒/ࢎ ൌ ૙. ૝, ࢿ ൌ ૙. ૙૙૚. 

3.2 Water depth ratio h/l=0.4, forcing amplitude ratio ε = 0.01  
Increasing the forcing amplitude to	ߟଶ௔/݈ ൌ 0.01	leads to a set of specific free 

surface phenomena documented by means of photographs in Figure  3-4 to Figure  3-9. 
These phenomena are mainly observed in the frequency range 1.25 ൑ ଵߪ/ߪ

∗ ൑ 1.78 and 
for the screen with the smallest tested solidity ratio ܵ݊ ൌ 0.4725 in the range 0.92 ൑

࢞ࢇ࢓ࣀ
ࢇ૛ࣁ

 

࣌/࣌૚
∗  

૚࢙࢚ࣀ
ࢇ૛ࣁ

 

࣌/࣌૚
∗  
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ଵߪ/ߪ
∗ ൑ 1.04. The solidity ratios of the tested screens are ܵ݊	 ൌ 0.4725, 0.6825, 0.7863, 

0.8388, 0.8913, 0.9138, 0.9363, and 0.9513. 

 
Figure  3-3. Non-dimensional maximum steady-state response ࣁ/࢞ࢇ࢓ࣀ૛ࢇ versus ࣌/࣌૚

∗  in a clean tank and in a 
tank equipped with a screen with ܖ܁ ൌ ૙. ૝ૠ૛૞. ࢒/ࢎ ൌ ૙. ૝, ࢿ ൌ ૙. ૙૙૚. 

 

3.2.1 Special free-surface effects 
Wave breaking (basically of spilling type) happens for all the tested solidity ratios 

with ܵ݊ ൑ 0.9 (except ܵ݊ ൌ 0.4725) in the frequency range of 1.25 ൑ ଵߪ/ߪ
∗ ൑ 1.78. It 

is most severe for lower solidity ratios. Figure  3-4 exhibits the corresponding 
photograph for the screen a with ܵ݊ ൌ ଵߪ/ߪ	ݐܽ		0.4725

∗ ൌ 1.71. The wave breaking 
occurs periodically in the left and right compartments as a consequence of collision 
between cross-flow through the screen and going toward the vertical wall and an 
incoming wave in the corresponding compartment. For the lowest solidity ratio	ܵ݊ ൌ
0.4725, a local wave breaking is also observed for ߪ/ߪଵ

∗ ൌ 0.98	 which is seen in 
Figure  3-5. The latter disappears for other screens with higher solidity ratios. 

For 0.6825 ൑ ܵ݊ ൑ 0.9, three-dimensional wave motions are established in the 
frequency range 1.66 ൑ ଵߪ/ߪ

∗ ൑ 1.73. Figure  3-6 displays the corresponding 
photograph for ܵ݊ ൌ 0.6825 and ߪ/ߪଵ

∗ ൌ 1.72. Two vertical arrows at the end walls 
depict different wave elevations in the vertical plane normal to the direction of motion. 
These three-dimensional waves are accompanied by a local wave breaking. The video 
recordings show that the wavelength of the standing wave oscillating normal to the 
forcing direction (Figure  3-6) is almost equal to 2ܾ (ܾ is the width of the tank normal to 
the direction of motion). This wave almost oscillates two times during each forcing 
period i.e. 2ߪ ଵߪ

∗⁄ ൌ 3.44, which is very close to the frequency of the lowest sloshing 

mode of the tank in the lateral direction with ݄ ݈⁄ ൌ 0.4 0.1⁄ ൌ 4 (
ఙభ೗ೌ೟೐ೝೌ೗

ఙభ
∗ ൌ 3.4295).  

࢞ࢇ࢓ࣀ
ࢇ૛ࣁ
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∗  
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The wavelength of capillary waves dominated by surface tension is smaller than 
few centimeters (ߣ ൏ 0.05 m). This wavelength is 4 times smaller than 20cm (2ܾ) 
which is the wavelength of the oscillating way in the lateral direction. Therefore surface 
tension cannot be a reason for appearance of three-dimensional waves. One reason 
might be the three-dimensional local effects at the screen migrating toward the end 
tank-walls that might excite the lowest lateral sloshing mode. 

 

 
Figure  3-4. Typical wave breaking indicated with arrow; occurring for all the tested solidity ratios ࢔ࡿ ൑ ૙. ૢ in 
the range of ૚. ૛૞ ൑ ࣌/࣌૚

∗ ൑ ૚. ૠૡ for the model tests with /ࢎ	࢒ ൌ ૙. ૝ and ࣁ૛࢒/ࢇ ൌ ૙. ૙૚. The photo is for a 
screen with ࢔ࡿ ൌ ૙. ૝ૠ૛૞ and the forcing frequency ࣌ ࣌૚

∗⁄ ൌ ૚. ૠ૚. 

 

 
Figure  3-5. Local wave breaking indicated by arrow; occurring for ൌ ૙. ૝ૠ૛૞, ࢎ ⁄࢒ ൌ ૙. ૝, and  ࣁ૛࢒/ࢇ ൌ ૙. ૙૚, 
࣌/࣌૚

∗ ൌ ૙. ૢૡ.	  

The photo in Figure  3-7 illustrates steep waves generated in the tank due to the 
amplification of the higher harmonics of the forcing established in the visual 
observations for solidity ratios 0.6825, 0.7863, 0.8388. The latter fact indicates 
nonlinear amplification of higher harmonics through secondary resonance of higher 
modes when the necessary condition ݊ߪ ൌ  ௡∗ is valid and the forcing amplitude isߪ
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sufficiently large. (Faltinsen and Timokha, Sloshing, 2009, chapter 8). For the case 
shown in Figure  3-7, the condition 4ߪ ൌ ସߪ

∗ is valid. It is noted that the secondary 
resonance, which is a non-linear phenomenon, was not observed for ߝ ൌ 0.001 due to 
very small forcing amplitude.  

 
   

 
Figure  3-6. Typical three-dimensional perturbations of the free surface occurring for ૙. ૠ ൑ ࢔ࡿ ൑ ૙. ૢ  and ૚. ૟૟ ൑
࣌/࣌૚

∗ ൑ ૚. ૠ૜; /ࢎ	࢒ ൌ ૙. ૝, ࣁ૛࢒/ࢇ ൌ ૙. ૙૚. The photo is for  ࢔ࡿ ൌ ૙. ૟ૡ૛૞ and ࣌/࣌૚
∗ ൌ ૚. ૠ૛. 

 
 

 
Figure  3-7. Snapshot of a video recording of a steep wave with the double superharmonics elevations at the 
walls. ࢒/ࢎ ൌ ૙. ૝, ࢿ ൌ ૙. ૙૚, ࢔ࡿ ൌ ૙. ૠૡ૟૜, ࣌ ࣌૚

∗⁄ ൌ ૚. ૛ૡૡૡ. 

Liquid jets through the screen openings over the free surface with subsequent 
fallout on the opposite free surface are seen for ߝ ൌ 0.01. They get stronger by 
increasing the solidity ratio between 0.8913 and 0.9513 in a frequency range around 
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ଵߪ/ߪ
∗ ൌ 1.524.  Figure  3-8 shows the liquid jets for ܵ݊ ൌ 0.8913 and ߪ/ߪଵ

∗ ൌ 1.48. 
The jets that travel the longest distance from the screen due to very large horizontal 
flow velocity at the screen openings and finally hit the underlying free-surface are seen 
for the largest solidity ratio and around ߪ/ߪଵ

∗ ൌ ଶߪ
ଵߪ/∗

∗ ൌ 1.524, i.e. the lowest natural 
frequency of one compartment. 

 

 
Figure  3-8. Photo of the liquid jet through the screen for  ࢔ࡿ	 ൌ ૙. ૡૢ૚૜ and ࣌/࣌૚

∗ ൌ ૚. ૝ૡ. ࢒/ࢎ ൌ ૙. ૝, 
ࢿ ൌ ૙. ૙૚. 

Run-up with a detachment of a liquid portion along the screen happened for the 
solidity ratios 0.9 ൑ ܵ݊.  Figure  3-9 shows the corresponding snapshot.  

The above-mentioned phenomena cause strong flow perturbations. Strong 
perturbations affect the steadiness of the response waves leading to waves oscillating 
with a mean steady-state maximum elevation superposed with transient deviations. The 
frequency ranges accompanied with relatively strong transient effects are categorized in 
Table  3-2. The non-dimensional standard deviation ݀ݐݏ ⁄ଶೌߟ of the maximum steady-
state elevations is used to identify the unsteadiness of the responses. One can also 
compare the reported ݀ݐݏ ⁄ଶೌߟ  values with corresponding ߞ௠௔௫ ⁄ଶೌߟ to get better 
understanding about magnitude of the unsteady effects. The steady-state response 
curves that include ߞ௠௔௫ ⁄ଶೌߟ for ݄/݈ ൌ ߝ ,0.4 ൌ 0.01 and all solidity ratios will be 
presented in the next section. However, the frequency ranges reported in Table  3-2 
report frequencies with ݀ݐݏ ⁄ଶೌߟ ൒ 0.1. This limit, i.e. ݀ݐݏ ⁄ଶೌߟ ൌ 0.1 is the accuracy of 
the measurements. The unsteady effects are generally seen in 1.28 ൑ ଵߪ/ߪ

∗ ൑ 1.9.	ܵ݊ ൌ
0.6825	gives the lowest level of unsteady behavior in the total tested frequency range. 
Increasing the solidity ratio to ܵ݊ ൒ 0.7863	amplifies the maximum value of ݀ݐݏ ⁄ଶೌߟ  
and also lowers the upper frequency limit associated with the unsteady effects to 
ଵߪ/ߪ

∗ ൌ 1.7. For the two largest solidity ratios ܵ݊ ൌ 0.9363 and 0.9513	, the non-
dimensional standard deviation is larger than the non-dimensional forcing amplitude, 
i.e.  ݀ݐݏ ⁄ଶೌߟ  is larger than 1. 
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Figure  3-9. The photograph and video recording of the run-up at the screen occurring for ૙. ૢ ൑ ࢒/ࢎ .࢔ࡿ ൌ
૙. ૝, ࢿ ൌ ૙. ૙૚. 

 
Table  3-2. Non-dimensional standard deviation ࢙࢚ࣁ/ࢊ૛ࢇ of the reported steady-state values about the mean 

value categorized for different screens.  ൫࢙࢚ࢊ ⁄ࢇ૛ࣁ ൯
࢞ࢇ࢓

 is the maximum value of the non-dimensional standard 

deviation. The last column on the right presents the non-dimensional frequency ࣌/࣌૚
∗ 	when 

൫࢙࢚ࢊ ⁄ࢇ૛ࣁ ൯
࢞ࢇ࢓

occurs. 

Screen Frequency 
range (σ/σଵ∗)

Special free-surface phenomena ൫std ηଶ౗⁄ ൯
୫ୟ୶

 Frequency ߪ/ߪଵ∗ for
൫݀ݐݏ ⁄ଶೌߟ ൯

௠௔௫
 

0.4725 1.7-1.9 Local wave breaking 0.9 1.73 
0.6825 1.63-1.8 Three-dimensional flow 0.2 1.64 and 1.69 
0.7863 1.63-1.8 Three-dimensional flow 0.45 1.67 
0.8388 1.3-1.7 Liquid-to-gas  jet flows 0.561 1.31 
0.8913 1.28-1.7 Liquid-to-gas  jet flows 0.6 1.46 

0.9138 1.28-1.8 
Run-up on the screen and liquid 

detachment, Liquid-to-gas  jet flows 
0.73 1.46 

0.9363 1.3-1.7 
Run-up on the screen and liquid 

detachment, Liquid-to-gas  jet flows 
2.1 1.42 

0.9513 1.35-1.65 
Run-up on the screen and liquid 

detachment, Liquid-to-gas  jet flows 
3.5 1.36 

 
The above-mentioned phenomena are accompanied by very steep free-surface 

profiles (run-ups), fragmented free-surfaces (liquid detachment and liquid-to-gas jet 
flows) and overturning flows (wave breaking) that cannot be handled by theoretical 
methods such as the linear and nonlinear multi-modal methods. These methods assume 
a one-to-one relationship between free-surface elevation and horizontal coordinates of 
the tank. In addition multimodal method is not able to capture fragmentation of the free-
surface. Computational Fluid Dynamics (CFD) may provide better predictions because 
of their ability in handling free-surface with over-turned profiles. For instance, the 
Volume of Fluid (VOF), a CFD method used for capturing interfaces between two 
fluids, for instance water and air, can capture over-turning free-surface flows, free-
surface fragmentation which is caused by cross-flow through the screen in the free-
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surface zone. As it will be shown in chapter 5 it can successfully simulate flow through 
the screen as long as free-surface fragmentations are not massive. 

3.2.2 Steady-state response curves of free-surface amplitude 
Non-dimensional maximum steady-state responses ߞ௠௔௫/ߟଶೌas a function of 

forcing frequency ߪ/ߪଵ
∗ are presented in Figure  3-10 to Figure  3-13 for all solidity 

ratios. Increasing the forcing amplitude to ߝ ൌ 0.01 causes unequal steady-state 
responses at the end wall on the opposite sides of the screen at some of the resonant 
frequencies. To exhibit this fact Figure  3-10 to Figure  3-13 include responses in both 
compartments. The amplitudes of the first, second and the third Fourier harmonics of 
the response are also plotted to identify their contribution to the total response. 

Comparing the results presented in Figures Figure  3-10 to Figure  3-13 for 
ߝ ൌ 0.01 and the results in Figure  3-1 and Figure  3-2 for ߝ ൌ 0.001 show that 
increasing the forcing amplitude leads to stronger nonlinear effects. The nonlinearities 
cause: 

a. Additional resonance peaks occurring at frequencies apart from natural sloshing 
frequencies in the clean tank (ߪ௞	

∗ ), 
b. A nonlinear soft-spring type behavior around ߪ ଵߪ

∗⁄ ൌ ଷߪ
∗ ଵߪ

∗⁄  for the lowest 
solidity ratio, ܵ݊ ൌ 0.4725, and around ߪ ଵߪ

∗⁄ ൌ ଶߪ
∗ ଵߪ

∗⁄  for the largest solidity 
ratios.  

The upper panel of Figure  3-10 presents the responses for ܵ݊	 ൌ 0.4725. 
Comparing these results with the results obtained for the same solidity ratio and 
ߝ ൌ 0.001, ( see Figure  3-2) shows a much clearer soft-spring response at ߪ ଵߪ

∗⁄ ൌ
ଷߪ
∗ ଵߪ

∗⁄   for ߝ ൌ 0.01. The experimental resonance peak at the first natural frequency ߪଵ
∗ 

remains in these figures of a linear character for both forcing amplitudes. In fact lower 
cross-flow through the screen by the 3rd natural mode associated with stronger 
exponential decay to the bottom leads to a lower screen-caused damping. The latter 
causes strong enough free-surface non-linearity which for the tested liquid depth implies 
a non-linear soft-spring type response. The vanishing of the first resonance peak occurs 
for ܵ݊ ൌ 0.7863 while the lower forcing amplitude, ߝ ൌ 0.001, detected this to vanish 
only for solidity ratios larger than ܵ݊ ൌ 0.9363. As ܵ݊ increases, the natural sloshing 
frequency decreases from ߪଷ

∗	to ߪଶ
∗	and the results show a soft-spring type response 

curves at ߪଶ
∗ for ܵ݊ ൒ 0.8388. For smaller forcing amplitude (Figure  3-2) this kind of 

discrepancies was detected only for the maximum tested solidity ratio, ܵ݊ ൌ 0.9513. 

Figure  3-10 to Figure  3-13 also show that the sum of the first, second and third 
harmonics contributions gives approximately the actual wave elevation for almost all 
the experimental data and, therefore, relates the appearance of the additional peaks to 
amplification of second (2ߪ) and third harmonic (3ߪ) components. The amplification of 
the third harmonic component is smaller than the second harmonic for all solidity ratios. 
For some cases the magnitude of the maximum steady-state wave elevation ߞ௠௔௫ is 
even smaller than the amplitude of the primary harmonic. The reason is amplification of 
higher harmonics combined with a linear harmonic with a special phase difference 
leading to standing waves with maximum absolute values smaller than their minimum 
absolute value in one period of the tank oscillation. An example of such a wave 
response is presented in Figure  3-14 for ܵ݊ ൌ 0.6825 at σ σଵ

∗⁄ ൌ 1.0679. 
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Figure  3-10.  Non-dimensional maximum steady-state response ࣁ/࢞ࢇ࢓ࣀ૛ࢇand the amplitude of the first three 
Fourier harmonics of the response  ࣀ૚࢙࢚/ࣁ૛ࣀ ,ࢇ૛ࣁ/ࢊ࢔૛ࣀ ,ࢇ૜࢘ࣁ/ࢊ૛ࢇ versus ࣌/࣌૚

∗ ܐ  .	 ⁄ܔ ൌ ૙. ૝, ઽ ൌ ૙. ૙૚. The 
letters ‘L’ and ‘R’ distinguish the two sides of the tank. Top panel: ࢔ࡿ ൌ ૙. ૝ૠ૛૞, bottom panel: ࢔ࡿ ൌ
૙. ૟ૡ૛૞. The vertical dashed ࢏૛࢑ and dotted lines ࢏૛࢑ା૚ mark the frequencies where secondary resonance of 
higher modes may occur. The rectangle mark unequal responses on the two sides of the screen occurring close 
to resonance areas. 
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Figure  3-11. Top panel: ࢔ࡿ ൌ ૙. ૠૡ૟૜, bottom panel: ࢔ࡿ ൌ ૙. ૡ૜ૡૡ. Explanation is given in the caption of 
Figure  3-10. ܐ ⁄ܔ ൌ ૙. ૝, ઽ ൌ ૙. ૙૚. 
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Figure  3-12. Top panel: ࢔ࡿ ൌ ૙. ૡૢ૚૜, bottom panel: ࢔ࡿ ൌ ૙. ૢ૚૜ૡ. Explanation is given in the caption of 

Figure  3-10. ܐ ⁄ܔ ൌ ૙. ૝, ઽ ൌ ૙. ૙૚ 
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Figure  3-13. Top panel: ࢔ࡿ ൌ ૙. ૢ૜૟૜, bottom panel: ࢔ࡿ ൌ ૙. ૢ૞૚૜. The explanation is given in the caption of 
Figure  3-10. ܐ ⁄ܔ ൌ ૙. ૝, ઽ ൌ ૙. ૙૚. 
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Figure  3-14. Wave elevations response with absolute minimum values larger than the absolute maximum 
values. Non-dimensional wave elevation ࣀ ⁄ࢇ૛ࣁ versus non-dimensional time ࢚/ࢀ at ૚ cm distance from the wall 
for ࢎ ⁄࢒ ൌ ૙. ૝, ࢿ ൌ ૙. ૙૚, ࢔ࡿ ൌ ૙. ૟ૡ૛૞, ો ો૚

∗⁄ ൌ ૚. ૙૟ૠૢ. ࢀ: forced oscillation period. 

3.2.3 Secondary resonance 
The higher harmonics in the measured resonant wave elevations contribute up to 

35% to the total response. The large amplification of the higher harmonics, i.e. 2ߪ3 ,ߪ	, 
at some certain frequencies is due to the amplification of higher modes of sloshing. This 
phenomenon which is called secondary resonance is mathematically possible if 
ߪ݊ ൌ  Faltinsen) ߪ ௡∗ in a clean tank excited with harmonic lateral motion of frequencyߪ
and Timokha 2009). The latter condition is necessary but not sufficient for secondary 
resonance. Large enough forcing amplitude is also needed to amplify higher harmonics 
that in return excite the higher modes of sloshing.  

The schematic response curves representing the maximum steady-state wave 
elevation ܣ versus forcing frequency σ σଵ

∗⁄   for ݄ ݈⁄ ൐ 0.3368… due to lateral harmonic 
excitation are presented in Figure  3-15. The dashed line presents the results of linear 
sloshing theory that cannot predict secondary resonance of higher modes and gives a 
very large response at ߪ ଵߪ

∗⁄ ൌ 1. The response of the linear system at ߪ ଵߪ
∗⁄ ൌ 1 is 

infinite if no viscous damping is present. The solid bold lines display stable nonlinear 
steady-state regimes. A hysteresis effect at ߪ ଵߪ

∗⁄ ൌ 1	 is possible and denoted by the 
points T, Tଵ, Tଶ, and Tଷ. The points iଶ and iଷ mark the most important secondary 
resonance points occurring as the forcing frequency satisfies the conditions 2ߪ ൌ
ଶߪ
∗	(amplification of the second mode) or 3ߪ ൌ ଷߪ

∗	 (amplification of the third mode), 
respectively. A hysteresis effect at iଶ and iଷ is also possible when damping is small and 
the forcing amplitude is relatively large.  

The present experimental results for the screen-equipped tank show the extension 
of the secondary resonance to frequencies satisfying the conditions	2ߪ ൌ ଶ௞ߪ

∗ 	and 
ߪ3 ൌ ଶ௞ାଵߪ

∗ , ݇ ൌ 1,2,3,…. The occurrence of secondary resonance is indicated with 
vertical dashed and dotted lines, respectively named ݅ଶ௞ and ݅ଶ௞ାଵ in Figure  3-10 to 
Figure  3-13.  ݅ଶ௞ and ݅ଶ௞ାଵ correspond to forcing frequencies where secondary 

resonance may occur due to 2ߪ ൌ ଶ௞ߪ
∗  (in non-dimensional form ݅ଶ௞ 	ൌ

ఙ

ఙభ
∗ ൌ

ఙమೖ
∗ 	

ଶఙభ
∗) and 

ࢀ/࢚

ࣀ
ࢇ૛ࣁ
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ߪ3 ൌ ଶ௞ାଵߪ
∗  (in non-dimensional form ݅ଶ௞ାଵ ൌ

ఙ

ఙభ
∗ ൌ

ఙమೖశభ
∗ 	

ଷఙభ
∗ )  , respectively. The non-

dimensional forcing frequencies marked by ݅ଶ௞ and ݅ଶ௞ାଵ are listed in Table  3-3. 
Nondimensional frequencies corresponding to ݅ଵ଺, ݅ଵ଼, ݅ଶ଴and ݅ଶଶ are not listed since 
they are not in the tested forcing frequency range. 

 
Figure  3-15. Soft-spring behavior and effect of secondary resonance for ࢎ ⁄࢒ ൐ ૙. ૜૜૟ૡ	.  

Table  3-3. Non-dimensional frequencies corresponding to secondary resonance at ૛࣌ ൌ ࣌૛࢑
∗ and ૜࣌ ൌ ࣌૛࢑ା૚

∗ . 

݅ଶ௞ ݅ଶ ݅ସ ݅଺ ଼݅ ݅ଵ଴ ݅ଵଶ ݅ଵସ ݅ଵ଺ ݅ଵ଼ ݅ଶ଴ ݅ଶଶ
ଶ௞ߪ
∗ 	
ଵߪ2

∗ 0.762 1.085 1.328 1.534 1.715 1.879 2.029 - - - - 

݅ଶ௞ାଵ ݅ଷ ݅ହ ݅଻ ݅ଽ ݅ଵଵ ݅ଵଷ ݅ଵହ ݅ଵ଻ ݅ଵଽ ݅ଶଵ ݅ଶଷ 
ଶ௞ାଵߪ
∗ 	
ଵߪ3

∗  0.626 0.808 0.956 1.085 1.199 1.303 1.4 1.491 1.576 1.657 1.734 

 

It should be noted that marking lines ݅ଶ௞ and ݅ଶ௞ାଵ are defined assuming that the 
presence of screen does not change both linear symmetric and anti-symmetric modes of 
sloshing. This assumption is exact for symmetric modes which do not cause a cross-
flow through the screen mounted in the tank middle.  Anti-symmetric modes and 
frequencies are affected by the screen because they cause a large horizontal cross flow 
at the tank middle. The natural odd modes and frequencies can be assumed preserved 
for low solidity ratios (roughly speaking ܵ݊ ൑ 0.5). Faltinsen and Timokha (2011) 
showed that the screen reduces the odd natural frequencies in the clean tank to lower 
values. This means that the corresponding frequencies marked by ݅ଶ௞ାଵ	vertical lines in 
Figure  3-10 to Figure  3-13 are larger than the real values especially for large solidity 
ratios.  

Considering the results in Figure  3-10 to Figure  3-13, the behavior of the 
secondary resonance of the symmetric and anti-symmetric modes can be determined by 
following the curves of amplitudes of the second and third harmonics.  

Starting with the secondary resonance of the symmetric modes, the amplitude of 
the second harmonic component shows peak responses at ݅ସ, ݅଺	 and ଼݅	for ܵ݊ ൌ 0.4725 
(top panel in Figure  3-10). The predicted frequencies by ݅ଶ௞	for the secondary resonance 
agree very well with the experimental results. Increasing the solidity ratio to ܵ݊ ൌ
0.6825 amplifies the amplitude of the peak points and drifts them to emerge at lower 
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frequencies relative to the ones predicted by ݅ଶ௞ indicators (soft-spring effect) (bottom 
panel in Figure  3-10). For ܵ݊ ൌ 0.7863	the peak points at ݅ସ, ݅଺	 and ଼݅	continue 
growing (see top panel in Figure  3-11). A clear steady-state jump can be seen for the 
peak points at ݅ସ	and ݅଺. The peak point at ଼݅	is not very clear due to the lack of 
experimental information. A small drift in the frequency of the resonant peaks is present 
for this solidity ratio. The next solidity ratio ܵ݊ ൌ 0.8388	does not change the 
amplitude of the second harmonics at ݅ସ	and ݅଺ but the amplitude at ଼݅	is now increased 
(see bottom panel in Figure  3-11). The peak point at ଼݅	is more drifted to lower 
frequencies. The steady-state jump at ݅ସ	and ݅଺ is clear for the maximum steady-state 
values but not for the amplitude of the second harmonic. Further increase of the solidity 
ratio removes the jump at ݅଺	and the peak resonance at ଼݅ (see Figures 2-26 and 2-27). 
For the largest solidity ratio, i.e. screen ݄ with ܵ݊ ൌ 0.9513 the information is not 
sufficient about ݅ସ	and ݅଺.  

Continuing with secondary resonance of the anti-symmetric modes, the amplitude 
of the third harmonic component shows peak responses at ݅଻, ݅ଽ	, ݅ଵଷ, ݅ଶଵ	and ݅ଶଷ. The 
responses at these peak points are much lower than those of the second harmonic. The 
peak point at ݅଻ is only clear for ܵ݊ ൌ 0.4725	and hardly recognizable for ܵ݊ ൌ
0.6825. By further increase of the solidity ratio the latter peak response at ݅଻ disappears. 
For screen ܾ a new peak is clearly seen at ݅ଽ	and other new peak points start growing at 
݅ଵଷ, ݅ଶଵ	and ݅ଶଷ. Clearer peaks are seen for ܵ݊ ൌ 0.7863 and 0.8388. For ܵ݊ ൒ 0.8913 
almost no peak is present for the amplitude of the third harmonic.  

In Figure  3-10 to Figure  3-13 ݅ସ	and ݅ଽ	have almost the same frequency implying 
that a double amplification may be expected. This double amplification appears as two 
close narrow peaks for ܵ݊ ൌ 0.7866. ݅ଵଶ	and ݅ଶଽ	mark almost a same forcing frequency 
but they do not cause a double amplification for any of the screens. However, the 
secondary resonance is less strong for frequencies around ߪଷ

∗ and not visible for very 
large solidity ratios.       

In general the secondary resonance due to amplification of the symmetric modes, 
i.e. 2ߪ harmonics is clearer in Figure  3-10 to Figure  3-13. This is mainly because of the 
larger amplification of the second harmonic component relative to the third harmonic. 
Also transfer of energy to higher harmonics through free-surface nonlinearity requires 
large forcing amplitudes. Furthermore, the symmetric modes are not affected by the 
screen. This means that the same-order of forcing of symmetric and anti-symmetric 
modes should give a larger response of the symmetric modes. This is a novelty for the 
screen-equipped tanks relative to the corresponding clean tanks for which amplification 
of higher modes due to the secondary resonance requires, normally, larger forcing 
amplitude.  

3.2.4 Unequal steady-state sloshing responses on the two sides of the screen 
Two different steady-state responses on the opposite sides of the tank have been 

observed for almost all solidity ratios except for ܵ݊ ൌ 0.7863. The latter phenomenon 
occurs at some of the resonant frequencies including frequencies associated with 
secondary resonance. The left snap shot from the experiments in Figure  3-16 shows two 
unequal responses on the opposite sides of the tank. The experimental conditions are 
ߝ ൌ 0.01, ݄ ݈⁄ ൌ 0.4, ܵ݊ ൌ 0.94, ߪ ଶߪ

∗⁄ ൌ 0.9264.  
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Frequencies corresponding to these unequal responses are marked by rectangles in 
Figure  3-10 to Figure  3-13. As mentioned above, for	ܵ݊ ൌ 0.7863 no unequal 
responses has been observed.    
Table  3-4. Non-dimensional frequency ranges associated with unequal steady-state wave responses on the 
opposite sides of the tank.  

Sn 0.4725 0.6825 0.8388 0.8913 0.9138 

(i ൌ
஢

஢భ
∗) 0.93 ൏ i ൏ 0.96 

0.93 ൏ i ൏ 0.97 
0.99 ൏ i ൏ 1.06 
1.24 ൏ i ൏ 1.29 
1.5 ൏ i ൏ 1.56 

1.3 ൏ i ൏ 1.42 
1.46 ൏ i ൏ 1.58 

1.44 ൏ i ൏ 1.55 
 

1.41 ൏ i ൏ 1.47
 

Sn 0.9363 0.9513 

(i ൌ
஢

஢భ
∗) 1.39 ൏ i ൏ 1.46 1.38 ൏ ݅ ൏ 1.46 

 

Repeating the tests for the largest solidity ratio ܵ݊ ൌ 0.9513 at the frequency 
range mentioned in Table  3-4 confirms the repeatability of the unequal responses. 
Moreover, the unequal responses may switch between the compartments from one test 
to another. Different responses are more pronounced around ߪ ଵߪ

∗⁄ ൌ ଶߪ	
ଵߪ/∗

∗ for 
ܵ݊ ൒ 0.8913 when cross-flow through the screen is reduced. This reduced cross flow 
also reduces the damping. For these conditions a soft-spring response behavior around 
ߪ ଵߪ

∗⁄ ൌ ଵߪ
ଵߪ/∗∗

∗ accompanied with a jump is expected. For these conditions the 
compartments on the sides of high solidity ratio screens are at resonance. As shown in 
Figure  3-12 and Figure  3-13 for 0.8388 ൑ Sn ൑ 0.9513 different responses occur for 
σଵ
∗∗/σଵ

∗  when the soft-spring jump of the steady-state responses takes place. The exact 
frequency of the resonance, i.e. the forcing frequency associated with maximum 
response is damping dependent. Figure  3-12 and Figure  3-13 show that the frequency 
associated with the jump decreases with increasing the solidity ratio for ߪ ଵߪ

∗⁄ ൌ ଵߪ
∗∗/

ଵߪ
∗. The latter is because of the decreased damping.  

The occurrence of unequal responses close to ߪ ଵߪ
∗⁄ ൌ ଵߪ

ଵߪ/∗∗
∗ may be explained 

as follows. The main reason for unequal responses in the two compartments is that 
multiple solutions exist for the sloshing amplitudes in the two compartments. These 
solutions are indicated in the right panel of Figure  3-16 by black and red curves. The 
idea is that the damping in the two compartments on the two sides of the screen is 
slightly different. Therefore each side has a different solution. Here one of the solutions 
is shown in red. It is assumed that the solutions are very similar and they are only 
different near the maximum response. Figure  3-16 presents the possible solution 
branches for steady-state sloshing versus non-dimensional forcing frequency close to 
resonance due to harmonic excitation. The plot shows the so-called soft-spring behavior 
for sloshing in finite water depth (Faltinsen & Timokha, Sloshing, 2009). Part of the 
black curve between ܣଶ	and the turning point ܶ	is unstable. The maximum steady-state 
wave responses occur when the forcing frequency decreases continuously from 
frequencies larger than the expected natural frequency (ߪ ⁄଴ߪ ൌ 1) to frequencies 
smaller than that. Considering the black curve, for decreasing frequencies, the solution 
has a maximum at A୫ୟ୶(B୫ୟ୶ on the red curve) and then it drops from ܣଶ(ܤଶ on the red 
curve) to ܣଷ(ܤଷ). In case of smaller damping, the solution near the maximum response 
possibly follows the red curve. The black curve can be considered as the solution for the 
compartment with slightly larger damping. The latter means by decreasing the forcing 
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frequency, the solution represented by the black curve jumps from ܣଶ to ܣଷ while the 
solution in the other compartment still oscillates with a larger amplitude ܤ଴. Sloshing 
scenarios corresponding to amplitudes ܣଷ and ܤ଴ are marked in the left panel of Figure 
 3-16. The reason for different damping content in the two compartments might be 
related to transient effects near the screen.  

According to results presented in Figure  3-10 to Figure  3-13, unequal responses 
close to lowest sloshing natural frequency of a compartment, i.e. ߪ ൌ ଵߪ

∗∗, occurs when 
the solidity ratio is very large, i.e. ܵ݊ ൒ 0.9, and therefore the screen causes lower 
inflow/outflow through its perforations leading to lower damping values. However, for 
larger forcing amplitudes, unequal responses around ߪ ଵߪ

∗⁄ ൌ ଵߪ
ଵߪ/∗∗

∗ can occur for 
smaller solidity ratios. As it will be shown later, for ݄ ݈⁄ ൌ 0.35 and ߝ ൌ 0.03, unequal 
responses around ߪ ଵߪ

∗⁄ ൌ ଵߪ
ଵߪ/∗∗

∗  occur for ܵ݊ ൒ 0.8414.  

The explanation given above for unequal responses due to multiple solutions for 
sloshing on the two sides of the screen might be extended to secondary resonance as 
well especially when the secondary resonance occurs near ݅ଶ௞ frequencies in Figure 
 3-10 to Figure  3-13. Around these frequencies, the higher even modes that do not cause 
cross flow through the screen may be excited. The latter means the screen-caused 
damping is small and the scenario explained in Figure  3-16 may be applicable to those 
cases where the unequal responses are seen near ݅ଶ௞ frequencies. 

Unequal responses can also occur when the forcing amplitude is small and 
sloshing wave responses are large such that real steady-state waves do not appear. Due 
to this fact the experimental measurements show unequal responses on the two sides of 
the tank. For ݄ ݈⁄ ൌ 0.35 and ߝ ൌ 0.03 strong unsteady effects due to wave breaking 
and liquid-to-gas jet flows through the screen slats hitting the underlying free-surface, 
cause small differences in the wave elevations measured on the two sides of the screen. 
These kinds of unequal responses are not marked in Figure  3-10 to Figure  3-13.  

  

 
Figure  3-16. Two different curves of solutions for amplitude of steady-state sloshing in the compartments in 
the two sides of the tank. Left panel shows experimental results and the right panel shows corresponding 
theoretical solutions. Points marked by ࡭ and ࡮ are amplitudes of two different solutions. ࣌૙ is the natural 
frequency of a compartment. The larger response in the left compartment is corresponding to amplitude ࡮૙ 
and the smaller response in the right compartment to amplitude ࡭૜. Experiments were performed for 
ࢿ ൌ ૙. ૙૚, ࢎ ⁄࢒ ൌ ૙. ૝, ࢔ࡿ ൌ ૙. ૢ૝, ࣌ ࣌૛

∗⁄ ൌ ૙. ૢ૛૟૝. 

It is noted that the lowest maximum response in the tested frequency range 
belongs to ܵ݊ ൌ 0.7863 which is smaller than ܵ݊ ൌ 0.8913 that causes the lowest 

ߪ ⁄଴ߪ ൏ ߪ                  1 ⁄଴ߪ ൐ 1 

 ଷܤ

 ଴ܤ ଶܤ
B୫ୟ୶ 

 ଷܣ ଴ܤ
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maximum response for ߝ ൌ
ఎమೌ
௟
ൌ 0.001. This fact is predicted by the quasi-linear 

modal theory presented by Faltinsen and Timokha (2009) expressing that increasing the 
forcing amplitude reduces the solidity ratio associated with lowest maximum responses. 
However, the latter conclusion is based on a linear free-surface theory.  

3.3 Water depth ratio h/l=0.35, forcing amplitude ε=0.03 
݄/݈ ൌ 0.35 is close to the critical depth ሺ݄/݈ሻ௖௥௜௧௜௖௔௟ ൌ 0.3368… where the 

change from soft- to hard-spring (if the depth is lowered from ݄/݈ ൐ ሺ݄/݈ሻ௖௥௜௧௜௖௔௟ to 
݄/݈ ൏ ሺ݄/݈ሻ௖௥௜௧௜௖௔௟) or hard- to soft-spring (if the depth is raised from ݄/݈ ൏
ሺ݄/݈ሻ௖௥௜௧௜௖௔௟ to ݄/݈ ൐ ሺ݄/݈ሻ௖௥௜௧௜௖௔௟) response  behavior for steady-state resonant 
sloshing in a clean tank occurs according to potential flow theory when the forcing 
amplitude is asymptotically small. However, increasing the forcing amplitude decreases 
the critical depth (Faltinsen and Timokha 2009). The latter definition of critical depth is 
a consequence of a non-linear multimodal theory with the lowest natural mode as the 
dominant mode and forcing frequency in the vicinity of the lowest natural frequency. 
Experiments performed by Colagrossi et al. (2003), for ݄ ݈⁄ ൌ 0.35, ߝ ൌ 0.03  show the 
non-linear amplification of sub-harmonics at the tested periods ܶ ଵܶ⁄ ൌ 1.03	and 0.87. 
In the current study and in the presence of the screens no sub-harmonic amplification is 
observed for the above-mentioned forcing periods.  

For ݄ ݈⁄ ൌ 0.35 the solidity ratios are slightly different than for ݄/݈ ൌ 0.4. The 
solidity ratios are 0.4729, 0.6871, 0.7900, 0.8414, 0.8929, 0.9143, 0.9357 and 0.9529. 

3.3.1 Special free-surface effects 
Increasing the forcing amplitude to ߝ ൌ 0.03 makes the previously described free-

surface phenomena for ߝ ൌ 0.01	much more severe. Along with very strong wave 
breaking and run-up, overturning waves and formation of gas pockets at the left and 
right tank walls are observed. A representative snapshot of overturning waves is given 
in the left side of Figure  3-17. The right side of the figure demonstrates the formation of 
gas pockets that only occurs for ܵ݊ ൌ 0.4729 and for 0.949 ൑ ߪ ଵߪ

∗⁄ ൑ 1.0121.  
 

 
Figure  3-17. Left: overturning wave at the vertical wall, ࢔ࡿ ൌ ૙. ૢ૚૝૜, ࣌ ࣌૚

∗⁄ ൌ ૚. ૜૛ૡ. Right: formation of gas 
pocket on the vertical wall, ࢔ࡿ ൌ ૙. ૝ૠ૛ૢ,  ࣌ ࣌૚

∗⁄ ൌ ૙. ૢ૟. Experimental condition: ࢎ ⁄࢒ ൌ ૙. ૜૞, ࢇ૛ࣁ ⁄࢒ ൌ ૙. ૙૜. 

Wave breaking can take place at the vertical wall as an overturning wave shown 
in Figure  3-17 (left). It can also happen in the screen region. This wave breaking hits the 
screen with jet flows spilling from the wave crest (Figure  3-18, Left).  The wave may 
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break in the middle part of a compartment similar to the one shown in Figure  3-4. For 
the lowest solidity ratio, ܵ݊ ൌ 0.4729, wave breaking occurs almost everywhere for all 
tested forcing frequencies. Increasing the solidity ratio moves the wave-breakings to the 
frequency range ߪଶ

∗ ଵߪ
∗⁄ ൑ ߪ ଵߪ

∗⁄ ൑ ଷߪ
∗ ଵߪ

∗⁄  . For instance, very large overturning waves 
are seen for ܵ݊ ൒ 0.8414 when ߪ ଵߪ

∗⁄ ൎ ଶߪ
∗ ଵߪ

∗⁄ . As a matter of fact, for ܵ݊ ൒
0.8414	the compartmentation of the main tank is reached and resonant sloshing takes 
place in both compartments for  ߪ ଵߪ

∗⁄ ൎ ଶߪ
∗ ଵߪ

∗⁄  accompanied with large wave breakings 
and run-ups. 

 

 
Figure  3-18. Left:Wave breaking in the screen zone with an spilling jet hitting the screen ࢔ࡿ ൌ ૙. ૝ૠ૛ૢ, 
࣌ ࣌૚

∗⁄ ൌ ૚. ૠ૚ , Right: Three dimensional flow ࢔ࡿ ൌ ૙. ૝ૠ૛ૢ, ࣌ ࣌૚
∗⁄ ൌ ૚. ૚૚૜૝. ࢎ ⁄࢒ ൌ ૙. ૜૞, ࢇ૛ࣁ ⁄࢒ ൌ ૙. ૙૜. 

Videos demonstrate oscillating flow motions perpendicular to the forcing 
direction. These three-dimensional flows are accompanied with local wave breakings at 
the vertical end walls and in the screen zone. An example of three-dimensional flow is 
illustrated on the right side of Figure  3-18. The intersection line between the free-surface 
and the vertical end wall is clearly not perpendicular to the side walls. The 3D flows 
appear in specific frequency ranges for each solidity ratio. Table  3-5 lists the solidity 
ratios and corresponding frequency ranges associated with three-dimensional flow.  

Table  3-5 shows that smaller solidity ratios cause wider frequency ranges 
associated with three-dimensional flow. For larger solidity ratios, the three-
dimensionality is more focused around the primary resonant frequency of a 
compartment, i.e. ߪଶ

∗ where very large wave breakings and run-ups on the wall and 
screen are present.  

For large solidity ratios, i.e. Sn ൒ 0.8414 (Figure  3-17, left panel), wave run-ups 
on the screen followed by separation of liquid fragments in the air above the free 
surface is present for ߝ ൌ 0.03, ݄ ݈⁄ ൌ 0.35. The same phenomena with much smaller 
intensity was shown in Figure  3-9 for ߝ ൌ 0.01, ݄ ݈⁄ ൌ 0.4. The large fragments of liquid 
eventually fall down and hit the underlying free surface. This creates large air-liquid 
mixture in the screen zone forced to go back and forth through the screen by flow 
oscillations. This complex three-dimensional flow composed of two phase’s air and 
water which is also turbulent is a challenging problem for all the state of the art 
numerical methods. Cases accompanied with liquid or free-surface fragmentations are 
only experimentally discussed in this thesis using visual aids. 

 



 
Experiments in finite water depth  53 

 

 
 

Table  3-5. Observed three-dimensional flow for ࢿ ൌ ૙. ૙૜, ࢎ ⁄࢒ ൌ ૙. ૜૞. 

Sn Three-dimensional flow 

0.4729 1.7079 ൑
஢

஢భ
∗ ൑ 1.9609, 1.3410 ൑

஢

஢భ
∗ ൑ 1.4043 , 1.025 ൑

஢

஢భ
∗ ൑ 0.139 

0.6871 1.6447 ൑
஢

஢భ
∗ ൑ 1.9609, 1.227 ൑

஢

஢భ
∗ ൑ 1.544, 1.088 ൑

஢

஢భ
∗ ൑ 1.139 

0.7900 1.531 ൑
஢

஢భ
∗ ൑ 1.885, 1.353 ൑

஢

஢భ
∗ ൑ 1.43 

0.8414 1.468 ൑
σ
σଵ
∗ ൑ 1.87 

0.8929 1.328 ൑
σ
σଵ
∗ ൑ 1.860 

0.9143 1.278 ൑
σ
σଵ
∗ ൑ 1.834 

0.9357 1.253 ൑
σ
σଵ
∗ ൑ 1.822 

0.9529 1.24 ൑
σ
σଵ
∗ ൑ 1.822 

3.3.2 Steady-state response curves of free-surface amplitude and secondary 
resonance 

The steady-state responses were shown in Figure  3-19 to Figure  3-26 for solidity 
ratios: 0.4729, 0.6871, 0.7900, 0.8414, 0.8929, 0.9143, 0.9357 and 0.9529. The upper 
panels in Figure  3-19 to Figure  3-26 represent the non-dimensional standard deviation 
 ଶೌ of the corresponding maximum steady-state free-surface amplitudes shown inߟ/݀ݐݏ
the lower panels. Large ߟ/݀ݐݏଶೌare due to the specific free-surface phenomena 
described in the previous sub-section. In general the maximum steady-state wave 
elevations are expected to be almost equal to the summation of the amplitudes of the 
harmonics of the response. The results show that this is almost valid for all forcing 
frequencies with negligible corresponding ߟ/݀ݐݏଶೌvalues. One should note that the 
maximum steady-state elevations shown in Figure  3-19 to Figure  3-26 are the average 
between maximum wave elevations for a certain number of forcing periods. This 
average value includes the effect of transient waves as well. The effect of transient 
waves is not seen in the curves plotted for the amplitude of the first three harmonics. 
Therefore one can see that the summation of the amplitudes of the harmonics of the 
forcing frequency is not so close to the average of the maximum wave elevations. 300 
oscillations per each forcing periods has been used to ensure that steady-state waves 
appear for all forcing frequencies. Here after ߟ/݀ݐݏଶೌ values are presented whenever 
these values are comparable to the non-dimensional forcing amplitude, ߝ ൌ ଶೌߟ ݈⁄ .  

For the lower forcing amplitude, ߝ ൌ 0.01, the peak points on the curve of 
amplitudes of the second and third harmonics of the wave elevations were used as a 
guidance for indicating the occurrence of secondary resonance. Generally, when 
secondary resonance occurs, the corresponding higher harmonics depict larger 
responses relative to those of the first harmonic.  

Similar to the results presented for ε ൌ 0.01, h l⁄ ൌ 0.4, vertical dashed (iଶ୩) and 
dotted (iଶ୩ାଵ) marking lines in Figure  3-19 to Figure  3-26 indicate frequencies that the 
secondary resonance of higher sloshing modes may occur due to the fact that, 2σ and 
3σ is equal to an even and odd harmonic, respectively. Considering the secondary 
resonance of even modes, clear peaks can be detected at ݅ଶ and ݅ସ for all solidity ratios. 
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Due to the soft-spring effect the latter peaks occur on the left side of ݅ଶ	and ݅ସ. 
However, the lack of information does not reveal them for ܵ݊ ൌ 0.4729. The amplitude 
of the second harmonics contains a peak between ݅ଵଵ and ݅଺ for solidity ratios up to 
0.9143. The peak is closer to ݅଺ for ܵ݊ ൌ 0.4729 and drifts towards ݅ଵଵ as the solidity 
ratio increases. Most of the resonant peaks seen for frequencies larger than ݅ସ	do not 
match the ݅ଶ௞ lines for all of the screens. This shows that the secondary resonance in 
case of the larger forcing amplitude, ߝ ൌ 0.03	, is of a more complicated nature 
specially for frequencies larger than 	݅ସ. A reason is the complex flow behavior in the 
screen zone that can change the modes and their interaction with other modes.   

Regarding the secondary resonance of odd modes, the amplitude of the third 
harmonic show peaks around ݅଻	and ݅ଵଵ for ܵ݊ ൌ 0.4729. ݅଻	is very close to the first 
natural frequency and amplification of the response near ݅଻	might be related to the 
resonance of the first mode. For ܵ݊ ൌ 0.6871, the amplitude of the third and second 
harmonics are almost the same. The third harmonic shows peak responses around 
݅ହ, ݅଻	and ݅ଽ. For ܵ݊ ൌ 0.7900, the amplitude of the third harmonic at	݅ହ, ݅଻	and ݅ଽ	drops 
to small values. For ܵ݊ ൌ 0.8414, 0.8929, 0.9143 the amplitude of the third harmonic 
becomes very small. However, a small peak is still visible at ݅ଵଵ	for ܵ݊ ൌ 0.8414. 

Different steady-state wave elevations at the opposite tank side are visible for 
ߝ ൌ 0.03. The different responses marked by rectangles in the above figures (very small 
differences due to unsteady effects are ignored) occur at resonant areas. In fact, the 
presence of the screen causes the global sloshing to have multiple solutions. Because the 
geometrical dimensions of the tank and the screen are symmetric with respect to the 
tank middle, the differences should switch from one side of the tank to another by 
repeating the experiments. In other words, initial conditions determine which solution 
branch is followed in each side of the tank. The differences are seen for all solidity 
ratios. For ܵ݊ ൌ 0.8414, 0.8929, 0.9143, 0.9357 and 0.9529 the responses are clearly 
different for frequencies around ߪଶ

ଵߪ/∗
∗	. For these screens, the compartmentation is 

almost reached and due to the soft-spring behavior the maximum response occurs on the 
left side of ߪଶ

ଵߪ/∗
∗	 on the horizontal axis. Here, the compartmentation means that the 

screen causes almost two isolated responses in the two sides of the tank equally divided 
by the screen. To account for this kind of multi-branching one should consider all the 
details of the complex flow at the screen zone. Liquid-to-gas jet flows, wave breaking, 
liquid fragmentation of the water on the screen and wave breaking on the screen are 
present for the current forcing amplitude. Numerical based methods such as CFD might 
be able to predict multiple solutions if they are forced to capture sufficient flow details 
in the screen zone. 

For ߝ ൌ 0.03, ݄ ݈⁄ ൌ 0.35 the lowest maximum response in the tested frequency 
range belongs to ܵ݊ ൌ 0.7900. However, the highest maximum response for ܵ݊ ൌ
0.6871	is only 5% larger than that of ܵ݊ ൌ 0.7900.  The latter screen with ܵ݊ ൌ
0.7900 caused the minimum response for ߝ ൌ 0.01, ݄ ݈⁄ ൌ 0.4. For ߝ ൌ 0.001, ݄ ݈⁄ ൌ
0.4 the minimum response occurred for a larger solidity ratio, that is ܵ݊ ൌ 0.8913. 
Therefore one expects a solidity ratio lower than 0.79 associated with the lowest 
minimum response for ߝ ൌ 0.03, ݄ ݈⁄ ൌ 0.35. Unfortunately there is no screen with 
0.6871 ൏ ܵ݊ ൏ 0.7900 among the tested solidity ratios to support the above-mentioned 
expectation. 
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Figure  3-19. Top panel: non-dimensional standard deviation ࢙࢚ࣁ/ࢊ૛ࢇof the maximum steady-state response 
versus ࣌/࣌૚ ࢇ૛ࣁ/࢞ࢇ࢓ࣀ

∗ . Bottom panel: Non-dimensional maximum steady-state response ࣁ/࢞ࢇ࢓ࣀ૛ࢇand the 
amplitude of the first three Fourier harmonics of the response ࣀ૚࢙࢚/ࣁ૛ࣀ ,ࢇ૛ࣁ/ࢊ࢔૛ࣀ ,ࢇ૜࢘ࣁ/ࢊ૛ࢇ versus ࣌/࣌૚

∗ 	.  
ܐ ⁄ܔ ൌ ૙. ૜૞, ઽ ൌ ૙. ૙૜, ࢔ࡿ ൌ ૙. ૝ૠ૛ૢ. The letters ‘L’, for Left, and ‘R’, for Right, are used to distinguish the 
results measured on the two sides of the tank. The vertical dashed ܑ૛ܓ and dotted ܑ૛ܓା૚ lines mark the 
frequencies where secondary resonance of higher modes may occur. The rectangles mark regions with 
different results on the left and right tank sides. 

Figure  3-20. ࢔ࡿ ൌ ૙. ૟ૡૠ૚, explanation is given in the caption of Figure  3-19.	ܐ ⁄ܔ ൌ ૙. ૜૞, ઽ ൌ ૙. ૙૜. 
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Figure  3-21. ࢔ࡿ ൌ ૙. ૠૢ૙૙, explanation is given in the caption of Figure  3-19. ܐ ⁄ܔ ൌ ૙. ૜૞, ઽ ൌ ૙. ૙૜. 

 

Figure  3-22. ࢔ࡿ ൌ ૙. ૡ૝૚૝, explanation is given in the caption of Figure  3-19. ܐ ⁄ܔ ൌ ૙. ૜૞, ઽ ൌ ૙. ૙૜. 
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Figure  3-23. ࢔ࡿ ൌ ૙. ૡૢ૛ૢ, explanation is given in the caption of Figure  3-19. ܐ ⁄ܔ ൌ ૙. ૜૞, ઽ ൌ ૙. ૙૜. 

 

Figure  3-24. ࢔ࡿ ൌ ૙. ૢ૚૝૜, explanation is given in the caption of Figure  3-19. ܐ ⁄ܔ ൌ ૙. ૜૞, ઽ ൌ ૙. ૙૜. 
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Figure  3-25. ࢔ࡿ ൌ ૙. ૢ૜૞ૠ, explanation is given in the caption of Figure  3-19. ܐ ⁄ܔ ൌ ૙. ૜૞, ઽ ൌ ૙. ૙૜.  

Figure  3-26. ࢔ࡿ ൌ ૙. ૢ૞૛ૢ, explanation is given in the caption of Figure  3-19. ܐ ⁄ܔ ൌ ૙. ૜૞, ઽ ൌ ૙. ૙૜. 
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3.4 Closure 
Steady-state sloshing wave responses in a screen-equipped tank in finite depths 

were experimentally investigated. When the water depth-to-tank length ratio  ݄/݈ ൌ 0.4, 
the smallest non-dimensional forcing amplitude ߝ ൌ 0.001 causes sloshing wave 
responses with a linear character for almost all tested screens and forcing frequencies. 
As a result, a linear free-surface based mathematical model that incorporates the effect 
of the screen must be able to provide results comparable with experiments (Faltinsen et 
al., 2011c). Running the tests for two sets of screens with different geometrical details 
but with almost the same solidity ratios reveals that the results are much more 
dependent on the solidity ratio rather than the geometrical details of the screens. 
Experimental results in the same depth but with a ten times larger forcing amplitude, 
ߝ ൌ 0.01, show that the nonlinear free-surface effects become important at primary 
resonant frequencies. In addition to that, is the strong amplification of the higher 
harmonics of the forcing frequency due to the secondary resonance of sloshing modes. 
Steady-state jump of the wave responses at the primary resonant clean-tank sloshing 
frequency (lowest solidity ratio) and at the primary resonant sloshing in a compartment 
(very large solidity ratios) are examples of non-linear free-surface effects occurring for 
ߝ ൌ 0.01. Moreover, larger forcing amplitude causes special free-surface effects such as 
wave breaking, run-up on the screen and the wall and liquid-to-gas jet flows caused by 
the flow motion through the screen openings in the middle of the tank which are 
impacting the underlying free-surface on the other side of the screen. These effects are 
seen for very large solidity ratios (ܵ݊ ൐ 0.9). Large solidity ratio screens highly change 
the clean-tank sloshing such that no resonant response appears at the lowest natural 
clean-tank sloshing frequency ߪଵ

∗ for solidity ratios larger than 0.9. In fact a high 
solidity ratio screen transforms the sloshing in the clean tank into isolated sloshing in 
two compartments on the two sides of the screen. As a result the resonant frequencies 
and modes change drastically (compartmentation). Which solidity ratio isolates the 
sloshing in the two compartments is a function of forcing amplitude for a given depth, 
i.e. for larger forcing amplitudes the compartmentation occurs for a smaller solidity 
ratio. Performing the experiments in a depth close to the nominal critical depth ݄/݈ ൌ
0.35 and for ߝ ൌ 0.03 amplified the non-linear effects accompanied with violent free-
surface effects such as formation of very thick run-ups on the vertical walls for ܵ݊ ൒
0.9. In addition the compartmentation occurs for a smaller solidity ratio due to the 
larger forcing amplitude. 
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4 Analysis of experimental results in shallow water depth  
 

 

Sloshing in shallow-intermediate water depth is accompanied with stronger 
nonlinear free-surface effects for a same level of forcing motion relative to finite water 
depth. Very small amplitude sloshing with ܵ݊ ൏ 0.5 in shallow water is of interest for 
TLD applications. Testing larger solidity ratios can provide more information about the 
transition of sloshing in shallow water to sloshing in intermediate depths due to increase 
in the solidity ratio. On the other hand, larger amplitude sloshing in shallow depths can 
impose severe slamming pressures on the vertical tank walls. Large solidity ratios 
strongly affect the large amplitude sloshing as discussed in the following text. The 
analysis starts with small forcing amplitude ߝ ൌ 0.001. 

4.1 Water depth ratio h/l=0.12, forcing amplitude ratio ε=0.01 
For ݄ ݈⁄ ൌ 0.12 the solidity ratios are 0.4725, 0.6875, 0.7875, 0.8375, 0.8875, 

0.9125 and 0.9375.  

To begin, video recordings are examined for special free-surface effects such as 
wave breaking, three-dimensional waves and free-surface fragmentations. In addition, 
the time series of the measured wave responses are studied for special amplification of 
nonlinear effects such as sub-harmonic amplifications of the forcing motion.  
Frequencies associated with special free-surface effects and nonlinear amplifications are 
documented. This information is useful for assessing and developing theoretical and 
numerical methods when assumptions related to free-surface conditions should be 
taken.   

4.1.1 Special free-surface effects 
For ܵ݊ ൌ 0.4725, the available recorded videos show small wave breaking 

appearing for 2.4330 ൑ ߪ ଵߪ
∗⁄ ൑ 2.5273. The wave breaking becomes larger as the 

frequency increases in the above-mentioned range. In addition, three-dimensional waves 
are seen at ߪ ଵߪ

∗⁄ ൌ 2.527. A clear oscillating motion relevant for excitation of the 
lowest sloshing mode in the lateral direction, i.e. perpendicular to direction of forcing, 
cannot be recognized for this frequency. Videos are not available for	ߪ ଵߪ

∗⁄ ൐ 2.5273 
and the author cannot accurately predict how far in the frequency range the wave 
breaking and three-dimensional flows are present. However, the non-dimensional 
standard-deviation of the maximum steady-state wave elevations is clearly larger for 
2.45 ൑ ߪ ଵߪ

∗⁄ ൑ 2.71 among other frequencies which might be due to the presence of 
transient effects such as wave breaking and irregular three-dimensional motions. This 
frequency range contains the third natural frequency ߪ ଵߪ

∗⁄ ൌ 2.5999 where resonant 
sloshing is also expected. Figure  4-1 demonstrates a typical wave breaking seen at 
frequency	ߪ ଵߪ

∗⁄ ൌ 2.5273. Wave run-ups are not present for this screen neither on the 
wall nor on the screen.  

The time series of the measured data show strong amplification of many super 
harmonics for ܵ݊ ൌ 0.4725 in the resonant area around the first natural frequency. This 
is a property of shallow water sloshing at resonance due to secondary reason. One 
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reason is associated with fact that the ݄݊ݐ natural frequency ߪ௡∗ is almost equal to ݊ߪଵ
∗ 

when ݄/݈ → 0. In addition is the amplification of “extra” harmonics which are sub and 
super-harmonics of the forcing frequency. These “extra” harmonics are seen for 
2.4708 ൑ ߪ ଵߪ

∗⁄ ൑ 2.5273 and 2.6028 ൑ ߪ ଵߪ
∗⁄ ൑ 2.7348. For the last two tested 

forcing frequencies in the above-mentioned range, i.e. ߪ ଵߪ
∗⁄ ൌ 2.716 and 2.7348, the 

frequencies of the extra sub- and super harmonics of the forcing frequency are equal to 
݇ where ߪ݇ ൌ1/3, 2/3, 4/3, 5/3. Figure  4-2 shows the time history of wave elevations 
and its frequency content for 10 periods of forcing frequency ߪ ଵߪ

∗⁄ ൌ 2.7348. The 
figure shows that due to strong amplification of sub-harmonics, the two adjacent 
maximum elevations are three forcing periods apart in the time history.    

 
Figure  4-1. Typical wave breaking at  

࣌

࣌૚
∗ ൌ ૛. ૞૛ૠ૜. 

ࢎ

࢒
ൌ ૙. ૚૛, ࢿ ൌ ૙. ૙૚, ࢔ࡿ ൌ ૙. ૝ૠ૛૞.  

For forcing frequencies in the range 2.6405 ൑ ߪ ଵߪ
∗⁄ ൏ 2.6971 “extra” harmonics 

cause waves with a steady beating period. This effect is also called modulation. Figure 
 4-3 shows the time history of wave elevations and the frequency content for 
frequency	ߪ ଵߪ

∗⁄ ൌ 2.6971. The modulation can be seen in the wave elevations shown 
in the top panel of Figure  4-3. The Fast Fourier Transform analysis of the time history 
presented in the lower panel of Figure  4-3 shows amplification of a new set of “extra” 
harmonics that contains more frequency components than the case shown in Figure  4-2. 
A group of the frequencies in the new set of “extra” harmonics are numbered in the 
bottom panel of Figure  4-3. These new excited frequencies, numbered from 1 to 8 
consist of four couples. Each of these couples can cause a steady beating effect in the 
time history of the wave elevations. Combination of the beating responses and the 
response due to the forcing frequency gives the complex time history shown in the 
upper panel of Figure  4-3. How energy transfers from the forcing motion to these extra 
harmonics is of a nonlinear nature. How nonlinearity works has been tried to be 
understood by Ezersky et al. (2009) who experimentally observed steady-state 
modulated waves in a very long wave flume equipped with a piston wavemaker at one 
end and closed with a vertical wall at the other end of the flume that reflects the waves 
and causes standing waves after a sufficient period of time. In their case ݄/݈ is equal to 
0.0103 which is an extreme shallow depth. For this depth excitation of one mode can 
lead to excitation of many modes. They have observed a same kind of modulation due 
to amplification of extra harmonics. They qualitatively relate the occurrence of extra 
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harmonics to the energy leakage to lower frequencies by a three-wave resonance 
interpretation. As they say “in a 3-oscillator system with quadratic nonlinearity, lower 
frequencies may effectively get energy from the high frequency 
oscillator”

 
Figure  4-2. Amplification of sub-harmonics of the forcing frequency. top panel: Non-dimensional wave 
elevation at the vertical wall, Bottom panel: Non-dimensional amplitude of the frequency components in 
frequency domain. The vertical lines, ܁૚, ,૛܁ …	 in the lower panel identify the linear natural sloshing 
frequencies in the clean tank. ࣌′ is the frequency content of the measured signal calculated by FFT.  ܐ ⁄ܔ ൌ
૙. ૚૛, ઽ ൌ ૙. ૙૚, ܖ܁ ൌ ૙. ૝ૠ૛૞,	ો ો૚

∗⁄ ൌ ૛. ૠ૜૝ૡ. 

Table  4-1. Extra harmonics’ multipliers for ૛. ૟૝૙૞ ൑ ࣌ ࣌૚
∗⁄ ൑ ૛. ૟ૢૠ૚. Frequencies corresponding to ࡷ૚ to 

 is the ratio between the frequency of the corresponding extra harmonic and ࢏࢑ .ૡ are numbered in Figure  4-3ࡷ
the forcing frequency.  

σ σଵ∗⁄  kଵ kଶ kଷ kସ kହ k଺ k଻ k଼ 
2.6405 0.31 0.39 - 0.69 1.31 1.39 1.61 1.69 
2.6594 0.31 0.38 0.62 0.69 1.31 1.38 1.62 1.69 
2.6781 0.32 0.37 0.63 0.68 1.32 1.37 1.63 1.68 
2.6971 0.32 0.36 0.64 0.68 1.32 1.36 1.64 1.68 

 

The new set of “extra” harmonics contains frequencies with special multiples of 
the forcing frequency that cannot be identified by fractions constructed by dividing two 
integer numbers. For instance for frequency	σ σଵ

∗⁄ ൌ 2.7348, the case with no wave 
modulation, the multipliers were ݇ ൌ ݅/݉ where ݅ ൌ 1,2,4,5 and ݉ ൌ 3 resulting in  
݇ ൌ 	0.3333, 0.6667, 1.3333, 1.6667. However, for the new harmonics no clear integer 
݅ and ݉ can be found. To clarify this, the extra harmonics marked by numbers 1,2,…,8 
in the bottom panel of Figure  4-3 and the ratio between their corresponding frequency 
and frequency of the main harmonic, i.e. ݇, is calculated. The multipliers marked in 
Figure  4-3 are also recalculated for other forcing frequencies associated with presence 
of new set of extra harmonics and presented in Table  4-1. The ݇	values are almost fixed 
for all the listed forcing frequencies in the table. The extra sub harmonics 
݇ଵߪ,… ݇ସߪ	and their corresponding ݇ହߪ,…  super harmonics, respectively, are one		ߪ଼݇
forcing frequency apart, i.e. ݇ସ െ ݇ଵ ൌ 1, ݇ହ െ ݇ଶ ൌ 1. This fact is well-known in fluid 
mechanics that a sum or a difference frequency of two excited frequencies may also be 

ࣀ
ࢇ૛ࣁ

 

ࢇࣀ
ࢇ૛ࣁ

 

࣌′ ࣌૚
∗⁄

ઢ࢚/ࢀ ൌ ૜ 
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excited. In other words the sub-harmonics are the reason for presence of the super- 
harmonics and vice versa. 

 
Figure  4-3. Modulated waves. Explanation is given in the caption of Figure  4-2. 	ࢎ ⁄࢒ ൌ ૙. ૚૛, ࢿ ൌ ૙. ૙૚, 
࢔ࡿ ൌ ૙. ૝ૠ૛૞, ࣌ ࣌૚

∗⁄ ൌ ૛. ૟ૢૠ૚. 

For frequencies 2.4708 ൑ ߪ ଵߪ
∗⁄ ൑ 2.5273 another set of extra harmonics are 

present with ݇ ൌ0.7619, 1.2381 and 1.7619. The video recordings show wave breakings 
for the above frequency range.   

Increasing the solidity ratio to ܵ݊ ൌ 0.6875, reduces the intensity of the wave 
breaking. The wave breakings occur for frequencies around ߪଷ

∗	, i.e. for 2.4708 ൑
ߪ ଵߪ

∗⁄ ൑ 	2.5651, and also in a new frequency range 2.3576 ൑ ߪ ଵߪ
∗⁄ ൑ 2.4142. This 

new frequency range is accompanied with the secondary resonance of the 8th mode of 
sloshing that is a reason for occurrence of steep wave profiles. Three-dimensional 
waves are not visible in the available videos for the current screen.  

“Extra” harmonics of the forcing frequency and modulated waves are present in a 
wider frequency range for ܵ݊ ൌ 0.6875, that is 2.5273 ൑ ߪ ଵߪ

∗⁄ ൑ 2.7348. Figure  4-4 
presents the wave responses at frequency ߪ ଵߪ

∗⁄ ൌ 2.716 for ܵ݊ ൌ 0.4725 and ܵ݊ ൌ
0.6875. The figure shows occurrence of modulation only for ܵ݊ ൌ 0.6875. Due to this 
modulation, larger maximum wave elevations occur for ܵ݊ ൌ 0.6875 as shown in 
Figure  4-4. This fact shows the effect of solidity ratio on the resonant frequencies and 
modes that can cause new nonlinear interaction between the forcing frequency, its 
harmonics and the new sloshing modes. It is noted that only the odd modes and 
frequencies (ߪଶ௡ିଵ

∗ , ݊ ൌ 1,2,3, …) are modified by the screen. The bottom part of Figure 
 4-4 compares the frequency content of the measured signals for  ܵ݊ ൌ 0.6875 and 
ܵ݊ ൌ 0.4725. The presence of extra harmonics for ܵ݊ ൌ 0.6875 describes the beating 
behavior of the measured signals. The mechanism of modulation is qualitatively 
described for ܵ݊ ൌ 0.4725. For ܵ݊ ൌ 0.6875 the modulated waves appear for more 
frequencies than those for ܵ݊ ൌ 0.4725. 
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Figure  4-4. Extra harmonic amplification for  ࢎ ⁄࢒ ൌ ૙. ૚૛, ࢿ ൌ ૙. ૙૚, 	ો ો૚

∗⁄ ൌ ૛. ૠ૚૟, red line: Sn=0.6875, 
black line: Sn=0.4725. Top panel: Non-dimensional wave elevation ࣁ/ࣀ૛ࢇ versus time divided by forcing period 
 of frequency components of the wave elevation. ࣌′ is the ࢇ૛ࣁ/ࢇࣀ Bottom panel: Non-dimensional amplitude .ࢀ
frequency content of the measured signal calculated by FFT. 

Looking into the time history of the wave elevations an interesting phenomenon 
happens for ܵ݊ ൌ 0.6875 and ߪ ଵߪ

∗⁄ ൌ 1.9992 shown in Figure  4-5. Many forcing 
periods are needed to reach a steady-state wave regime. Taking the Fast Fourier 
Transform of the time series in two time windows for  30 ൑ ݐ ܶ⁄ ൑ 70, i.e. before 
reaching steady-state responses (Figure  4-5, left window on the top panel) and then for 
110 ൑ ܶ/ݐ	 ൑ 140, i.e. after reaching steady-state responses (Figure  4-5, right window 
on the top panel), reveals that only the amplitude of the second harmonic is increased by 
increasing the number of forcing periods while the amplitude of the main harmonic 
stays almost unchanged. In fact this amplification is connected to the secondary 
resonance of mode number 6. Due to this amplification the response becomes two times 
larger during almost 150 forcing periods as seen in the top panel of Figure  4-5. This 
particular case can be a good example to check the ability of a CFD code in capturing 
the free-surface nonlinearity which is interconnected with the amount of damping  
caused by the screen.  

By increasing the solidity ratio to ܵ݊ ൌ 0.7875, small wave breakings occur in a 
narrow frequency range 2.3387 ൑ ߪ ଵߪ

∗⁄ ൑ 2.3765. As shown in Figure  4-6, the free 
surface becomes steep with a very small spilling breaker marked by a circle. The 
available videos also show developing three-dimensional flow in the tank for ߪ ଵߪ

∗⁄ ൌ
2.5273. Considering Figure  4-5, a similar kind of response taking large number of 
oscillations to get steady-state is also present for ܵ݊ ൌ 0.7875 at a slightly smaller 
forcing frequency ߪ ଵߪ

∗⁄ ൌ 1.9804. In addition to the mentioned special free-surface 
effects, the “extra” harmonic amplification of the forcing frequency is present for 
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ܵ݊ ൌ 0.7875 and 2.5651 ൑ ߪ ଵߪ
∗⁄ ൑ 2.7348 with very small amplitudes relative to 

those ones measured for lower solidity ratios.   

 
Figure  4-5. ࢎ ⁄࢒ ൌ ૙. ૚૛, ࢿ ൌ ૙. ૙૚,࢔ࡿ ൌ ૙. ૟ૡૠ૞, ࣌ ࣌૚

∗⁄ ൌ ૚. ૢૢૢ૛. Top panel: Non-dimensional wave elevation 
at the vertical wall versus time divided by forcing period ࢀ. Bottom panel: Non-dimensional amplitude of the 
frequency components in frequency domain for ૜૙ ൑ ܜ ⁄܂ ൑ ૠ૙ (Black) and ૚૚૙ ൑ ܂/ܜ ൑ ૚૝૙ (Blue). ࣌′ is the 
frequency content of the measured signal calculated by FFT. 

 

 
Figure  4-6. Weak wave breaking for ࢎ ⁄࢒ ൌ ૙. ૚૛, ࢿ ൌ ૙. ૙૚,࢔ࡿ ൌ ૙. ૠૡૠ૞, ࣌ ࣌૚

∗⁄ ൌ ૛. ૜૜ૡૠ. 

 

For ܵ݊ ൌ 0.8375 wave breaking is shifted to lower forcing frequencies. The wave 
breaking is also accompanied by thick wave run-ups on the screen. The wave breakings 
are seen for  1.9615 ൑ ߪ ଵߪ

∗⁄ ൑ 2.0181. Examples of wave breaking and run-ups in the 
above-mentioned frequency range are shown in Figure  4-7. Very small wave breakings 
are seen for ߪ ଵߪ

∗⁄ ൌ 2.3576 and 2.3765, as well. Three-dimensional waves are also 
present for ߪ ଵߪ

∗⁄ ൌ 2.5839 and 2.6028 (ܵ݊ ൌ 0.8375).  
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Figure  4-7. Left: wave breaking, Right: run-up along the screen. 

ܐ

ܔ
ൌ ૙. ૚૛, ઽ ൌ ૙. ૙૚,࢔ࡿ ൌ ૙. ૡ૜ૠ૞, ો ો૚

∗⁄ ൌ
૚. ૢૢૢ૛.  

Searching in the time history of the response elevations for special free surface 
effects, strong secondary resonance of the 4th mode of sloshing together with the 
amplification of many super-harmonics are seen for 1.9615 ൑ ߪ ଵߪ

∗⁄ ൑ 2.0181. This 
frequency range is the same as the one mentioned above where wave breaking and run-
ups are also detected. Sub-harmonic amplification is not noticed for this solidity ratio. 
However, the “extra” super harmonics are still visible but with a small amplitude 
for	2.5839 ൑ ߪ ଵߪ

∗⁄ ൑ 2.6405.  

Videos taken for ܵ݊ ൌ 0.8875	clearly show that for forcing frequencies around 
ଶߪ
∗ the response waves on the two side of the screen are almost isolated and in fact the 

main tank is divided into two equal compartments. The latter division of the main tank 
is called comparmentation in this thesis. Although the two wave responses behave 
almost independent, the liquid-to-gas jet flows that are generated by the cross flow 
through the screen and fall on the underlying free surface on the other side of the screen 
are clearly affecting the flow at the screen zone by generating liquid-gas mixture in the 
screen zone and imposing extra hydrodynamic damping. In addition, the jet flows 
hitting the underlying free surface can affect the symmetric modes and increase the 
nonlinear behavior. For ܵ݊ ൌ 0.8875	the largest waves occur around ߪଶ

∗	( or ߪଵ
∗∗	, the 

lowest natural mode of a compartment with a half length of the main tank) 
demonstrating that flow motion through the screen is reduced for this solidity ratio. 
These large responses occurring for 1.9238 ൑ ߪ ଵߪ

∗⁄ ൑ 2.0558 are accompanied with 
wave breaking and run-ups on the vertical wall. Very small wave breaking is also 
present at ߪ ଵߪ

∗⁄ ൌ 2.3387 which is due to the large responses arising from the 
secondary resonance of 8th mode of sloshing in the clean tank. Considering the time 
history of the response wave elevations, small-amplified extra harmonics are seen for 
frequencies 1.9992 ൑ ߪ ଵߪ

∗⁄ ൑ 2.0558 that are also accompanied with wave breaking. 
Small extra harmonic amplification is detected only for	ߪ ଵߪ

∗⁄ ൌ 1.9615.   

ܵ݊ ൌ 	0.9125 and ܵ݊ ൌ 0.9375 cause larger flow responses around ߪଵ
∗∗ ൌ ଶߪ

∗ 
leading to larger wave breaking, run-ups and liquid-to-gas jet flows in the screen zone. 
The frequency ranges associated with the above mentioned special free-surface effects 
are 1.9049 ൑ ߪ ଵߪ

∗⁄ ൑ 2.0558 and 1.8672 ൑ ߪ ଵߪ
∗⁄ ൑ 2.0558 for ܵ݊ ൌ 	0.9125 and 

ܵ݊ ൌ 0.9375, respectively. In addition, irregular three-dimensional behavior is seen 
around the largest wave responses that might be due to the propagating disturbances 
caused by the wave breaking and liquid-to-gas jet impacts on the underlying free-
surface at the screen zone. Away from ߪଶ

∗, a tiny wave breaking is seen for ߪ ଵߪ
∗⁄ ൌ

Run-up Wave breaking 
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2.3387 for ܵ݊ ൌ 	0.9125. This is the same kind of wave breaking which was observed 
at the same frequency for ܵ݊ ൌ 0.8875 due to secondary resonance of the 8th mode.  

At ߪ ଵߪ
∗⁄ ൌ 1.867 two different steady-state solutions in the two compartments are 

clear in the video recordings. Free-surface fragmentation is seen in form of free falling 
portions of water detached from the large run-ups on the screen. This phenomenon 
occurs for large solidity ratios and sufficiently large forcing amplitudes according to 
previous results measured for ݄/݈ ൌ 0.4 and ε ൌ 0.01 and ݄/݈ ൌ 0.35 and ε ൌ 0.03 
(see Figure  3-9). Amplification of extra harmonics of forcing frequency is not detected 
for ܵ݊ ൌ 0.9125 and ܵ݊ ൌ 0.9375; increasing the solidity ratio to very large values, 
ܵ݊ → 1, weakens and finally removes the amplification of the extra harmonic 
components. 

Table  4-2 summarizes forcing frequencies associated with special free-surface 
effects and amplification of “extra” harmonics for all tested solidity ratios. This 
information is based on the available videos and measurements. 

Table  4-2. Special free-surface effects and their corresponding forcing frequency observed for ࢒/ࢎ ൌ
૙. ૚૛ and ࢿ ൌ ૙. ૙૚. Frequency ranges are denoted by a dash (-) between the minimum and maximum values 
of the range.  

 
Solidity 

ratio 
(Sn) 

0.4725 0.6875 0.7875 0.8375 0.8875 0.9125 0.9375 

Wave 
breaking 
ሺ
஢

஢భ
∗) 

2.433-
2.527 

2.471-2.565 
2.358-2.414 

2.339-2.377
1.962-2.018

2.358 
1.928-2.056

2.339 
1.905-2.056 

2.339 
1.867-2.056

Run-upሺ
஢

஢భ
∗) NA NA NA 1.962-2.018 1.928-2.056 1.905-2.056 1.867-2.056

Extra-
harmonics 

ሺ
஢

஢భ
∗) 

2.603-
2.735 

2.527-2.735 2.565-2.735
1.962-2.018
2.584-2.641

1.999-2.056
1.962 

NA NA 

Three-
dimensional 

flow ሺ
஢

஢భ
∗) 

2.5273 NA 2.5273 2.584-2.603 NA NA NA 

 

4.1.2 Steady-state response curves of free-surface amplitude and secondary 
resonance 

The steady-state maximum wave elevations for 0.75 ൑ ߪ ଵߪ
∗⁄ ൑ 2.7 are shown in 

Figure  4-8 to Figure  4-14. The figures also include the amplitudes of the 1st, 2nd and 3rd 
harmonics of the response computed by FFT (Fast Fourier Transform). The vertical 
dashed and dotted lines are used to mark ݅ଶ௞	and ݅ଶ௞ାଵ frequencies associated with the 
secondary resonance of even and odd modes, respectively (See page 37 for the 
definition of ݅ଶ௞	and ݅ଶ௞ାଵ). Whenever the amplification of extra harmonics causes 
steady (regular) beating periods ߞ௠௔௫/ߟଶೌ is calculated by finding the maximum wave 
elevations for each beating periods and taking the average between them. For irregular 
beating waves, it is difficult to determine fixed beating periods and therefore ߞ௠௔௫/
-ଶೌis taken as the average of sufficient number of maximum elevations. The nonߟ
dimensional standard deviation of the maximum steady-state values ߟ/݀ݐݏଶೌdue to 
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transient effects triggered by special free-surface effects are very small and are not 
presented in Figure  4-8 to Figure  4-14.  

Figure  4-8. Non-dimensional maximum steady-state response ࣁ/࢞ࢇ࢓ࣀ૛ࢇand the amplitude of the first three 
Fourier harmonics of the response ࣀ૚࢙࢚/ࣁ૛ࣀ ,ࢇ૛ࣁ/ࢊ࢔૛ࣀ ,ࢇ૜࢘ࣁ/ࢊ૛ࢇ versus ࣌/࣌૚

∗ ܐ  .	 ⁄ܔ ൌ ૙. ૚૛, ઽ ൌ ૙. ૙૚, 
࢔ࡿ ൌ ૙. ૝ૠ૛ૢ. The letters ‘L’, for Left, and ‘R’, for Right, are used to distinguish between the measured 
results on the two sides of the tank. The vertical dashed ܑ૛ܓ and dotted ܑ૛ܓା૚ lines mark the frequencies where 
secondary resonance of higher modes is expected. The rectangles mark regions with different results on left 
and right tank sides. The two circles (only ࢔ࡿ ൌ ૙. ૝ૠ૛૞) mark the “double” peak resonant at ࣌ ࣌૚

∗⁄ ൌ ૚. 

Figure  4-9. ܐ ⁄ܔ ൌ ૙. ૚૛, ઽ ൌ ૙. ૙૚, ࢔ࡿ ൌ ૙. ૟ૡૠ૞. Explanation is given in the caption of Figure  4-8. 
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Figure  4-10. ܐ ⁄ܔ ൌ ૙. ૚૛, ઽ ൌ ૙. ૙૚,  ࢔ࡿ ൌ ૙. ૠૡૠ૞. Explanation is given in the caption of Figure  4-8. 

 

Figure  4-11. ܐ ⁄ܔ ൌ ૙. ૚૛, ઽ ൌ ૙. ૙૚, ࢔ࡿ ൌ ૙. ૡ૜ૠ૞. Explanation is given in the caption of Figure  4-8. 
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Figure  4-12. ܐ ⁄ܔ ൌ ૙. ૚૛, ઽ ൌ ૙. ૙૚, ࢔ࡿ ൌ ૙. ૡૡૠ૞. Explanation is given in the caption of Figure  4-8. 

 

Figure  4-13. ܐ ⁄ܔ ൌ ૙. ૚૛, ઽ ൌ ૙. ૙૚, ࢔ࡿ ൌ ૙. ૢ૚૛૞. Explanation is given in the caption of Figure  4-8. 
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Figure  4-14. ܐ ⁄ܔ ൌ ૙. ૚૛, ઽ ൌ ૙. ૙૚, screen (f) with ࢔ࡿ ൌ ૙. ૢ૜ૠ૞. Explanation is given in the caption of Figure 
 4-8. 

 

The measured results for with ܵ݊ ൌ 0.4725 in Figure  4-8 show strong 
amplification of higher harmonics of the forcing for 	ߪ/ߪଵ

∗ ൎ 1. For the sake of clear 
graphs, only the amplitudes of the first three harmonics of the forcing are presented in 
Figure  4-8 to Figure  4-14. According to the results, increasing the solidity ratio reduces 
the strength of the higher harmonics in general and specially for ߪ	around	ߪଵ

∗.  

Figure  4-8 also shows two wide band resonant areas for ߪ/ߪଵ
∗ ൎ 1 and ߪ/ߪଵ

∗ ൌ
ଷߪ/ߪ

∗ ൎ 2.5999. These resonant areas are getting weaker by increasing the solidity ratio 
such that for ܵ݊ ൌ 0.8375, 0.8875, 0.9125 and 0.9375 no resonant response is present 
around the first and the third natural frequency of sloshing in the clan tank. Instead a 
new peak emerges around ߪ/ߪଵ

∗ ൌ ଶߪ
ଵߪ/∗∗

∗ ൌ 1.8817 demonstrating that the 
compartmentation of the main tank is reached for ܵ݊ ൌ 0.8375. This fact can be realized 
by following the changes experienced by the steady-state amplitude of the first 
harmonic due to the increase in the solidity ratio.  

Figure  4-8 shows a double peak behavior for ߞ௠௔௫/ߟଶೌ, marked by circles, around  
ଵߪ/ߪ

∗ ൌ 1. In fact the secondary resonance of the second mode of sloshing at ݅ଶ together 
with the primary resonance at ߪ/ߪଵ

∗ ≅ 1 cause two response peaks closely apart in the 
frequency domain. The double peak behavior is clearer for the amplitude of the primary 
harmonic. Considering the amplitude of the second harmonics, a resonant peak is 
present at the right side of ݅ଶ, at ߪ/ߪଵ

∗ ൌ 0.9619. This resonant peak has got larger 
amplitude than that of the primary harmonic. The reason is that the first mode 
experiences larger damping than the second mode which does not cause a flow through 
the screen.  This fact together with secondary resonance of the second mode leads to a 
larger response peak for the amplitude of the second harmonic at ߪ/ߪଵ

∗ ൌ 0.9619. 
Increasing the solidity ratio reduces both resonant responses at ݅ଶ and ߪ/ߪଵ

∗ ൎ 1.  

Considering the secondary resonance, the ݅ଶ௞ marker lines in Figure  4-8 to Figure 
 4-14 give good predictions on the occurrence of resonance due to secondary resonance 
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at even natural frequencies, i.e. ݅ଶ to ଼݅. The figures also show that the predicted 
frequencies for secondary resonance marked by ݅ଶ௞	 lines are more accurate for smaller 
frequencies. The response curves do not reveal resonant behavior at ݅ଶ௞ାଵ frequencies 
for any of the screens. This is related to the forcing amplitude which is not large enough 
to excite higher order nonlinearities. Very small peaks at ݅ଷ	and ݅ହ is present for 
ܵ݊ ൌ 0.4725 and ܵ݊ ൌ 0.6875. Other peaks seen for the amplitude of the third 
harmonic do not fall on the ݅ଶ௞ାଵ frequencies. A reason might be due to the fact that the 
odd modes are altered by the presence of the screen (Faltinsen and Timokha, 2011) and 
therefore the ݅ଶ௞ାଵ frequencies must be different.  

Different steady-state responses in the compartments for some of the forcing 
frequencies are present and marked by rectangles in Figure  4-11 to Figure  4-14. Those 
differences that are in the same order as the measurement error are not marked in the 
figures. The differences are larger for larger solidity ratios and for forcing frequencies 
around ߪ/ߪଵ

∗ ൌ ଵߪ
ଵߪ/∗∗

∗ ൌ 1.9992. In general, large responses, low level of damping 
imposed by the screen and large transient effects at the screen zone can cause different 
solution branches at resonance in each compartment. 

As mentioned earlier in the chapter, to account for the maximum response for 
௛

௟
൏ 0.3368… the frequency range should be swept by stepping up the forcing 

frequency. Due to the hard-spring behavior, by stepping up the forcing frequency the 
maximum steady-state response reaches a maximum point at a frequency larger than the 
corresponding natural frequency and then jumps down to a lower value. Such a response 
is shown on the left side of Figure  2-4 where the solution branch containing ܣଵ-ܣଶ-ܣଷ, 
respectively, causes the maximum possible response. However, the jump is only seen if 
the global damping is very small. For small depths 0.12 ൏ ݄/݈ ൏ 0.24 Faltinsen and 
Timokha (2001) show that many modes can be excited and cause multiple peak 
behavior close to the main resonance. Following Faltinsen and Timokha (2001), the 
double peak behavior in Figure  4-8 at ݅ଶ and ߪ/ߪଵ

∗  is due to the multiple mode 
amplification.   

Considering the main resonant peaks at ߪ௜
∗, ݅ ൌ 1,3 , no steady-state jumps occur 

for ܵ݊ ൌ 0.4725, 0.6875, 0.7875 due to the large screen-induced damping. For 
ܵ݊ ൌ 0.8375, 0.8875, 0.9125	ܽ݊݀	0.9375, responses show a wide band resonant area 
around ݅ଵଵ and ݅ଵଷ growing in magnitude as the solidity ratio increases. This is mainly 
due to resonance at the lowest resonant frequency of a compartment, ߪଵ

∗∗ and secondary 
resonance at ݅଺ which visually create a double-pick response curve. By increasing the 
solidity ratio between	ܵ݊ ൌ 0.8375 and ܵ݊ ൌ 0.9375 the peak at ݅଺ stays almost fixed 
in the frequency domain while the peak closer to ߪଶ	

∗  drifts towards ߪଶ	
∗ . Near ߪଶ	

∗  a clear 
hard-spring type of jump can be seen for ܵ݊ ൌ 0.8875, 0.9125	 and 0.9375, i.e. the 
steady-state response jumps down to lower values by increasing the forcing frequency. 
One should also consider that the resonance area around ߪଶ	

∗  (Figure  4-11 to Figure 
 4-14) contains different responses in the two compartments due to multi-branch steady-
state responses.  

It’s worth noting that increasing the solidity ratio from 0.4725 to 0.9375 changes 
the effective depth for sloshing from ݄/݈ ൌ 0.12 in the main tank to ݄/݈ ൌ 0.24 in one 
compartment depending. Assuming the validity of multimodal theory with one 
dominant mode, the hard-spring effect should be still valid for ݄/݈ ൌ 0.24 which means 
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the response curves at the main resonance of a compartment, ߪଵ
∗∗ should, follow a hard 

spring effect as one can clearly see in Figure  4-13 for ܵ݊ ൌ 0.9125.   

The steady-state jumps are also expected around peaks associated with the 
secondary resonance especially at ݅ଶ௞ frequencies. For instance a jump can be seen at 
݅ଶ	for ܵ݊ ൌ 0.4725. By increasing the solidity ratio steady-state jumps can be seen for 
almost all resonant peaks at ݅ଶ௞. The interesting phenomenon is that these jumps are not 
of hard-spring kind, i.e. they jump up from lower values to higher values due to increase 
in the forcing frequency. This kind of jump occurs for soft-spring behavior which was 
shown on the right side of Figure  2-4 where the accepted solution branch follows the 
curve through ܣଷ-ܶ-ܣଵ, respectively. In fact hard- or soft-spring behavior has only been 
studied for sloshing in clean tanks. Experiments by Chester and Bones (1968) show 
only hard-spring behavior for primary and secondary resonance in shallow water. In 
fact, the screen can change the modes and internal energy exchange between them 
(Timokha, personal communication). The latter phenomena needs dedicated theoretical 
study to find out how the depth criteria should be defined for switching between soft- 
and hard-spring behavior in case of secondary resonance.  

The maximum response among all solidity ratios and in the total frequency range 
is the lowest for ܵ݊ ൌ 0.7875. The same screen with ܵ݊ ൌ 0.7863 in ݄ ݈⁄ ൌ 0.4 
(solidity ratio is depth dependent) caused the lowest maximum response for ߝ ൌ 0.01. 
In addition, the maximum response for the above mentioned screen	for both depth ratios 
݄/݈ ൌ 0.4 and ݄/݈ ൌ 0.12 occurs at frequencies near the third natural frequency of 
sloshing in clean tank. The latter similarities show the importance of the forcing 
amplitude prior to water depth. 

 

4.2 Water depth ratio h/l=0.125, forcing amplitude ratio ε=0.05 
The sloshing phenomena studied in the previous sections are mostly resonant 

standing waves. These waves do not cause strong impact pressures on the vertical walls 
and the screen because the free-surface profile never progress toward the walls with a 
steep profile. Sufficiently large forcing amplitudes can cause very steep sloshing waves 
in shallow water travelling back and forth in the tank. In the following experiments 
shallow-liquid sloshing in a screen-equipped tank due to relatively large forcing 
amplitudes is considered. For these experiments ݄/݈ ൌ ߝ ,0.125 ൌ 0.05 and 5 screens 
with solidity ratios 0.4752, 0.6760, 0.7960, 0.8440, 0.8920 are chosen.  For this depth 
the first three non-dimensional natural frequencies in the clean tank are ߪ/ߪଵ

∗ ൌ
1, 1.8735, 2.5764.  

Figure  4-15 presents different wave systems observed for ݄ ݈⁄ ൌ 0.125	in 
experiments performed by Lugni et al., (reported in (Faltinsen & Timokha, Sloshing, 
2009)) in a clean tank of same dimensions used in the current study. Depending on the 
forcing frequency, the wave systems are standing waves (wave system A), progressive 
non-breaking waves that are traveling back and forth in the tank (wave system B), 
progressive waves traveling back and forth in the tank and, eventually breaking near the 
vertical walls (wave system C) and Hydraulic jumps traveling back and forth in the tank 
(wave system D) presented by (●), (■) and (♦) and (▲) in Figure  4-15, respectively. The 
theory of Verhagen & van Wijngaarden (1965) predicts the hydraulic jump for 
combinations of  ߟଶೌ ݈⁄  and ܶ ଵܶ⁄  located above the curve in Figure  4-15. ܶ and ଵܶ are 
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the forcing and the highest natural periods. According to experimental results for 
݄/݈ ൌ ߝ ,0.125 ൌ 0.05 in Figure  4-15 the wave system is hydraulic jump for 0.85 ൏
ߪ ଵߪ

∗⁄ ൏ 1.25. Hydraulic jump can cause a large slamming force if it hits a vertical walls 
with vertical free-surface at a large horizontal velocity. Experimental results by Lugni et 
al., (reported in (Faltinsen & Timokha, Sloshing, 2009)) report large slamming loads 
when ߟଶೌ ݈⁄ ൌ 0.05 and ݄/݈ ൌ 0.125 when a hydraulic jump is present. How screens 
with different solidity ratios affect the hydraulic jump in particular and the free surface 
in general is discussed in the following text using video recordings and measured wave 
elevation.  

 

 
Figure  4-15. Occurrence of different wave systems as a function of forcing period ࢀ/ࢀ૚ and ࣁ૛࢒/ࢇ for ࢎ ⁄࢒ ൌ
૙. ૚૛૞. (▲) identify the occurrence of hydraulic jump wave system. Solid line: Theory by Verhagen & van 
Wijngaarden (1965) predicting the occurrence of hydraulic jump in the convex part of the curve. Wave system 
corresponding to(●), (■) and (♦) are defined in the text. The plot is taken from Faltinsen and Timokha 2001.  

 

4.2.1 Analysis of the results using experimental measurements and visual 
observations 

The analysis starts with ܵ݊ ൌ 0.4752. The recorded videos are available for 
0.9258 ൑ ଵߪ/ߪ

∗ ൑ 1.2035	and 1.4812 ൑ ଵߪ/ߪ
∗ ൑ 2.685 including the first three lowest 

natural frequencies: ߪଵ
ଵߪ/∗

∗ ൌ 1, ଶߪ
ଵߪ/∗

∗ ൌ 1.8735, ଷߪ
ଵߪ/∗

∗ ൌ 	2.5764. 
Videos taken for frequencies around ߪ/ߪଵ

∗ ൌ 1 show that the wave profile is 
strongly affected by the screen such that no hydraulic jump is present for 0.85 ൏
ߪ ଵߪ

∗⁄ ൏ 1.25. The screen reduces the height of the waves and turns them to small-
height steep progressive waves moving toward the tank walls. These waves are 
observed for frequencies 0.9258 ൑ ଵߪ/ߪ

∗ ൑ 1.2035 that according to the presented 
results for the clean tank in Figure  4-15 are steep progressive waves and hydraulic 
jumps. An example of the free surface profile is illustrated in Figure  4-16 by means of 
snapshots taken every 1/20 of the forcing period for ߪ/ߪଵ

∗ ൌ 1.1294. It is noted that the 
evolution of the free surface shown in Figure  4-16 is a representative example for 
0.9258 ൑ ଵߪ/ߪ

∗ ൑ 1.2035. The first snap shot at ݐ ൌ 0 shows a column of water piled 
up on the left side of the screen propagating toward the right side. Once the free surface 
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of the flow touches the screen, a small part of it runs up on the screen slats or is 
reflected back and the other part, major part, goes through the screen slots (T/20 in 
Figure  4-16). On the right side of the screen, a propagating wave is formed which is 
traveling toward the tank wall (2T/20, same figure). The free surface at the front of the 
propagating wave becomes sharp and then overturns. The overturning free surface traps 
a gas-pocket on the wall (The gas pocket is highlighted with a circle in Figure  4-17). A 
similar gas pocket was observed for ݄ ݈⁄ ൌ 0.35, ߝ ൌ 0.03, ܵ݊ ൌ 0.4729 (right side of 
Figure  3-17) where the forcing amplitude is relatively large and the solidity ratio is the 
smallest. One should also note that the mentioned gas pocket becomes more visible as 
the forcing frequency increases in the frequency range 0.9258 ൑ ఙ

ఙభ
∗ ൑ 1.2035. The 

wave breaking on the wall together with formation of gas pockets generates a strong 
vertical up-going jet on the wall together with free surface fragments splashing on the 
lateral walls and the underlying free surface. Although these transient effects decrease 
the steadiness of the sloshing waves especially at the wall, the global profile of the free 
surface seems to be repeatable during half a forcing period (see t=0 and t=T/2 snapshots 
in Figure  4-16).  The standard deviation of the maximum wave elevations measured at 
the vertical walls is used later on to provide a (local) scale for the steadiness of the 
sloshing waves.  

 

 
Figure  4-16. Profile of the free-surface at every 1/20 of the forcing period for ࢎ ⁄࢒ ൌ ૙. ૚૛૞, ࢿ ൌ ૙. ૙૞, ࢔ࡿ ൌ
૙. ૝ૠ૛૞, ࣌ ࣌૚

∗⁄ ൌ ૚. ૚૛ૢ૝. 

 

The steepness of the free surface of a progressive wave and its approach velocity before 
touching the vertical wall is important from a hydrodynamic loading point of view. An 
example is the situation shown in Figure  4-17 where the free surface of the liquid 

 t= T/20 

t=4T/20 

t=7T/20 

t=T/2 

t=6T/20 

  t = 0 
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impacts the wall. Due to the impact an upward high velocity jet on the wall 
accompanied with liquid fragments takes place. This kind of liquid impact is expected 
to impose large slamming pressures. Unfortunately pressure has not been measured 
which makes it impossible to provide precise values for pressures occurring on the 
walls. Having this lack of information, it is tried to use the available videos to provide 
rough estimates on occurrence of high pressures on the vertical walls as a function of 
forcing frequencies. 

 

 
 

 
 
For ܵ݊ ൌ 0.4752 videos show formation of steep wave profiles progressing 

toward the vertical walls for frequencies around ߪ/ߪଵ
∗ ൌ 1. To perform a visual 

investigation, the frequency interval 0.9258 ൑ ଵߪ/ߪ
∗ ൑ 1.2035 is divided into 4 sub 

intervals and the shape of the free surface before and after hitting the wall is illustrated 
in Figure  4-18 for ߪ/ߪଵ

∗ ൌ 0.9258, 1.0183, 1.1109, 1.2035. Each row belongs to one of 
the forcing frequencies mentioned above and from the top to the bottom the frequency 
increases. Each row contains snap shots taken every 1/60 seconds showing the advance 
in time from left to right. The first and the last two snap shots from the left in each row 
show the free surface before and after touching the vertical wall on the right tank side. 
For the frequencies shown in Figure  4-18 a high velocity jet is formed on the vertical 
wall after the free surface touches the wall. Such a jet is shown on the last snap shot of 
each row in Figure  4-18. Large pressure gradient on the wall must be present to form a 
liquid jet. The pressure gradient is caused by a phenomenon called wave focusing 
occurring due to the converging crest and trough of a progressing wave at a solid 
boundary (here the vertical wall). Wave focusing and the subsequent highly accelerated 
jet create a phenomena called flip-through that causes large impact pressures at the wall. 
This phenomenon is explained in detail by means of theory and experiments in a review 
paper by Peregrine (2003). More in-detail analysis of the flip-through phenomena based 
on experimental observations and measurements has been conducted by Lugni et al., 
(2006).  

Figure  4-17. Formation of gas pockets on the vertical wall (marked by a circle). ࢎ ⁄࢒ ൌ ૙. ૚૛૞, ࢿ ൌ ૙. ૙૞, ࢔ࡿ ൌ
૙. ૝ૠ૞૛,

࣌

࣌૚
∗ ൌ ૚. ૚૛ૢ૝.  
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Figure  4-18. Evolution of the free surface at the vertical wall. From top to the bottom, each row belongs to one 
frequency. Each row has four snap shots. Snapshots are taken for one compartment. The right side of the 
snapshots corresponds to the tank vertical wall and the left side to the screen. The non-dimensional forcing 
frequencies are displayed on the first snap shot in each row. From left to right the time difference between two 
snap shots is T/60. The bold arrows marks the liquid height pumped up by the jet. The hollow arrow marks 
the liquid pushed down by a downward jet. ࢎ ⁄࢒ ൌ ૙. ૚૛૞, ࢿ ൌ ૙. ૙૞, ࢔ࡿ ൌ ૙. ૝ૠ૞૛. 

 
Considering the first row in Figure  4-18 for ߪ/ߪଵ

∗ ൌ 0.9258, the free surface is 
steep in the first and the second snap shot before hitting the vertical wall. Right after the 
hit, a thin jet forms quickly on the wall due to the convergence of the crest and trough of 
the wave. The height of the water pumped up by the jet is marked by an arrow in Figure 
 4-18 at 1/60 and 2/60 seconds after the hit. This height qualitatively shows how strong 
the jet is and indirectly the magnitude of the gradient of the pressure on the wall. 

࣌
࣌૚
∗ ൌ ૙. ૢ૛૞ૡ 

࣌
࣌૚
∗ ൌ ૚. ૙૚ૡ૜ 

࣌
࣌૚
∗ ൌ ૚. ૚૚૙ૢ 

࣌
࣌૚
∗ ൌ ૚. ૛૙૜૞ 
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Increasing the forcing frequency to	ߪ/ߪଵ
∗ ൌ 1.0183	(second row in the same figure) 

makes the free surface steeper before impacting the wall and creating a stronger jet with 
a thicker horizontal cross-section. For the third row, ߪ/ߪଵ

∗ ൌ 1.1109, the crest of the 
free surface turns over and hits the trough while advancing toward the wall. A relatively 
small gas pocket between the water and the wall forms during the focusing of the wave 
and subsequently a thick three-dimensional jet is generated on the wall that is 
accompanied with liquid fragments thrown vertically and horizontally inside the tank. 
The last row, ߪ/ߪଵ

∗ ൌ 1.2035, shows a thin wave breaker hitting the vertical wall before 
the wave focusing occurs. Once the horizontal jet of the wave breaker hits the wall a 
downward jet (marked by a hollow arrow) appears that collides with the running-up of 
the wave trough on the wall and reduces the strength of the wave focusing effect and 
therefore the acceleration of the up-going jet. Due to the occurrence of the wave 
breaking with a large breaker, a large gas pocket is trapped between the water and the 
wall. This gas pocket is the same as the one shown in Figure  4-17. The top side of the 
gas pocket is supported by a thin layer of water that cannot yield high pressures to  
maintain the gas pocket (see the last row in Figure  4-18). As a result, the thin layer of 
water breaks down into many liquid fragments splashing all over the tank walls and the 
underlying free surface. The latter fragmentation makes the flow locally three-
dimensional at the end walls. 

Occurrence of flip-through and formation of the wave breaking on the vertical 
walls accompanied with a gas pocket can cause large impact forces on the walls 
(Peregrine 2003). The flip-through occurs in a very short period of time. If a gas pocket 
is trapped between the liquid and the wall it may start oscillating due to the impact and 
compressibility of the air which is probably the case for ߪ/ߪଵ

∗ ൌ 1.1109 shown on the 
third row of snap shots in Figure  4-18. The frequency of the gas pocket oscillations is 
much higher than the forcing frequency, for instance 600Hz. Therefore, video 
recordings and pressure measurements should be taken with a very high sampling rate 
to capture the flow figure and pressure fluctuation. For the flip-through problem, at least 
1000 video frames per a second are needed to capture the evolution of the free surface 
during wave focusing and jet formation (Lugni, personal communication, 2012). 
Pressure measurements should be taken with an average rate of 10 kHz sampling rate. 
The videos were taken with a rate of 300 frames per a second which is hardly enough to 
perform a complete study on the evolution of the flow and the free surface during a flip-
through. Based on the available videos flip-through and wave breaking accompanied 
with impact events are roughly seen for	0.9258 ൑ ଵߪ/ߪ

∗ ൑ 1.2035.  
 

4.2.2 Application of pressure impulse theory 
The lack of direct pressure measurement on the vertical walls makes it difficult to 

evaluate pressures due to impact events. Here the pressure impulse theory developed by 
Peregrine and his coworkers (1992-1995) for liquid impact problems on solid walls is 
used to provide a rough estimate of impact pressures on the vertical walls. Cooker and 
Peregrine (1995) studied the problem of a steep wave profile impacting a vertical wall. 
The schematic of the problem is shown in Figure  4-19. Instead of working with the 
impact pressure ݌, its integration during the impact period, i.e. pressure impulse ܲ, is 
used,  
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 ܲ ൌ න ݐ݀݌
௧ೌ

௧್

. (2.5)

ݐ௔ are the time instants before and after the impact. In this way Δݐ ௕ andݐ ൌ ௕ݐ െ
 ௔ , which in practice is very difficult to determine, does not appear in the finalݐ
formulation or pressure impulse ܲ. The schematic of a typical impact event and its ideal 
translation in mathematical representation are shown in Figure  4-19. The velocity of the 
impacting surface ܷ଴ is assumed to be vertically uniform. ܪ stands for the total height 
of the wave profile just before the impact, ܪߤ is the fraction of ܪ impacting the wall 
surface, ܾ is a chosen length of the liquid with constant depth ܪ	where an atmospheric 
free-surface condition applies and ߩ	is the density of the liquid. One should note that 
this theory does not account for impacts accompanied with a trapped air pocket between 
the wave crest and the wall. Wood, Peregrine, & Bruce (2000) have modified the 
pressure impulse theory to account for air-trapped impact problems. They have reported 
satisfactory agreemens with small-scale experiments that have performed on a caisson 
breakwater with an impermeable berm. Computations that are made here are for non air-
trapped cases. 

The solution of the boundary value problem presented in Figure  4-19 is (Cooker 
and Peregrine 1995): 

 ܲሺݔ, ሻݕ ൌ ෍ܽ௡ܪߩ

ஶ

௡ୀଵ

sinሺߣ௡ݕ ⁄ܪ ሻ
sinhሾߣ௡ሺܾ െ ሻݔ ⁄ܪ ሿ

coshሺߣ௡ݕ ⁄ܪ ሻ
		. (2.6)

 (2.6) is applied on a surface bounded in െܪ ൑ ݕ ൑ 0 and 0൑ ݔ ൑ ܾ. The 

summation constants are determined as ݊ߣ ൌ ሺ݊ െ 1 2⁄ ሻߨ and ܽ௡ ൌ 2ܷ଴
ୡ୭ୱሺ݊ߣߤሻെ1

ఒ೙
మ 	. The 

summation needs to be truncated over a finite number of terms. Here up to 200 terms, 
i.e. ݊ ൌ 1 to ݊ ൌ 200 are sufficient. Small ܪߤ values need more terms included in the 
summation to construct a smooth curve for the pressure impulse. 

Applying pressure impulse theory needs good estimates of ߤ and ܾ. Lugni, et al., 
(2006) showed a good agreement between the results computed by the pressure impulse 
theory and their experimental measurements. However, they also note the difficulty of 
estimating ܾ	and ߤ. As they comment, the computed results using  (2.6) are less sensitive 
to value of ܷ଴. To find an estimate for pressure and pressure impulse, similar 
calculation are done here for  σ σଵ

∗⁄ ൌ 1.0183 for which the free surface evolution 
before and after the impulse is shown in the second row of snap shots in Figure  4-18. 
For this case	ܷ଴ ൌ 1.7467௠

௦
ߤ , ൌ 0.0864	and ܾ ൌ 0.0415	݉	 are estimated from the 

video recordings. The quality of the video shots gives 0.002 m of accuracy for 
geometrical lengths. ܷ଴ is calculated by dividing the travelled distance Δݔ ൌ 0.0524	݉ 

of the free-surface front toward the wall by δݐ ൌ 9 ൈ ଵ

ଷ଴଴
ݏ	 ൌ  video frames 300 .ݏ	0.03

are taken per a second meaning 
ଵ

ଷ଴଴
଴ܷ .ݐߜ accuracy of the computed ݏ ൌ  is ݏ/݉	1.7467

the average value taken between the minimum and maximum estimated values.  

The sensitivity of pressure impulse ܲ to the geometrical parameters ߤ and ܾ is 
shown in Figure  4-20. The middle plot contains estimated values of ߤ௘ ൌ 0.0864 and 
ܾ ൌ  are tested, one smaller ߤ For the sensitivity study, two other values for .ܪ0.2346
and one larger than the estimated value, i.e. ߤ௘/2 and 2ߤ௘. Moreover, ܾ is varying 
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between 0 and ܪ to consider the influence of ܾ on the pressure impulse. The plots in 
Figure  4-20 show that both larger values of ߤ and ܾ increase the maximum pressure 
impulse. However, the maximum pressure impulse ܲ becomes less sensitive to ܾ as 
ܾ →  .ܪ

 
Figure  4-19. Boundary conditions for pressure impulse ࡼ for idealized impact of a wave front on a vertical 
wall (Cooker and Peregrine 1995)   

 
In an impact pressure analysis, the maximum pressures are of more interest. One 

can calculate the maximum impact pressure assuming that the impact pressure increases 
linearly to a maximum pressure and then decreases linearly to zero during the impact 
period. This assumption gives ݌௠௔௫ ൌ 2ܲ/Δݐ. Assuming Δݐ ൌ  suggested by ,ݏ	0.001
Peregrine for laboratory scale experiments, and taking the maximum pressure impulses 
presented in Figure  4-20, the maximum pressures are calculated and listed in Table  4-5. 
The non-dimensional pressure range is	1.37 ൏ ܮ݃ߩ/௠௔௫݌ ൏ 6.1. The minimum and 
maximum pressures are calculated for minimum and maximum vales of ߤ and ܾ. The 
non-dimensional values are comparable to the values measured by Abramson et al., 
(1974) (Faltinsen & Timokha, Sloshing, 2009) in a clean prismatic tank where ݄ ݈⁄ ൌ
0.4 and ߝ ൌ 0.1. The maximum pressure in the current study is almost two times the 
maximum pressure measured by Abramson et al., (1974) (Faltinsen & Timokha, 
Sloshing, 2009). It is therefore necessary to conduct an experimental investigation to 
measure the pressures on the vertical walls. The estimations made above were obtained 
for ܵ݊ ൌ 0.4725. Larger solidity ratios strongly affect the sloshing resonance at the 
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lowest natural mode and remove the impact events on the vertical wall. This will be 
shown later in the text. However, due to large magnitude of the forcing amplitude, 
larger solidity ratios should be tested for presence of high pressures on the vertical walls 
that may occur for other forcing frequency ranges. 

 
 

 
Figure  4-20. Sensitivity of the pressure impulse on estimated values of ࣆ and ࢈	(see Figure  4-19 for definition 
of ࣆ and ࢈). 
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Table  4-3. Maximum pressures (kPa) calculated for maximum pressure impulse value ࡼ in Figure  4-20 using 
ሻࢇࡼሺ࢑࢞ࢇ࢓࢖ ൌ ૛ࡼ/ઢ࢚. ઢ࢚ ൌ ૙. ૙૙૚	࢙. ࢋࣆ ൌ ૙. ૙ૡ૟૝ is the estimated value. 

b/H 0.05 0.1 0.15 0.2 0.2346 1 

p୫ୟ୶ ,	μ ൌ μୣ/2 13.5 
 

14.5 14.8 14.8 14.9 15.0 

p୫ୟ୶ ,	μୣ ൌ 0.086 21.9 27.0 28.5 29.1 29.3 30 
p୫ୟ୶ ,	μ ൌ 2μୣ 28.6 43.7 50.5 53.9 55.4 59.9 

 
Considering other violent free surface effects, wave breaking occurs for many 

forcing frequencies at variable horizontal distances relative to the tank wall and with 
variable intensity depending on the forcing frequency. For instance it can take place at 
the wall as shown in the last row of snapshots in Figure  4-18. Increasing the forcing 
frequency in the frequency range 1.4812 ൑ ଵߪ/ߪ

∗ ൑ 2.6847, i.e. away from the lowest 
natural frequency of sloshing in the clean tank, reduces the progressive behavior of 
generated waves and moves the wave breaking from the tank wall toward the tank 
middle. Figure  4-21 shows an example of wave breaking for	1.4812 ൑ ଵߪ/ߪ

∗ ൑ 1.5738 
taking place  far away from the vertical wall. This wave breaking does not splashes 
liquid fragments either on the wall or on the screen. 

 

 
Figure  4-21. Typical wave breaking seen for ૚. ૝ૡ૚૛ ൑ ો ો⁄ ૚

∗ ൑ ૚. ૞ૠ૜ૡ, ࢎ ⁄࢒ ൌ ૙. ૚૛૞, ࢿ ൌ ૙. ૙૞, ࢔ࡿ ൌ
૙. ૝ૠ૞૛. 

As stated above the wave breaking occurs near the tank middle if the forcing 
frequency increases from values around ߪଵ

∗ to larger values around ߪଶ
∗ and ߪଷ

∗, i.e. 
forcing frequencies belong to 1.4812 ൑ ଵߪ/ߪ

∗ ൑ 2.6847. The solidity ratio is equal to 
0.4752. In the mentioned frequency range, wave breaking may cause local impact forces 
not on the wall but on the screen caused by the liquid fragments hitting the screen. Such 
a wave breaking for instance occurs for 1.9441 ൑ ଵߪ/ߪ

∗ ൑ 2.444. How the wave 
breaking causes impact on the screen is shown in Figure  4-22 for ߪ/ߪଵ

∗ ൌ 2.2403 using 
7 snap shots taken with almost 1/15 seconds time difference. The time increases from 
left to right and from top to the bottom as marked with ascending numbers. On snap 
shot (1) in Figure  4-22 and in the left compartment, two opposite-travelling free surface 
flows are marked by two opposing arrows. A progressive column of water with a flat 
horizontal free surface which is started forming near the vertical wall collides with the 
flow coming from the other side of the screen leading to wave breaking (snap shot (2)). 
This wave breaking reduces the kinetic energy of the progressive water column which is 
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moving toward the tank middle. As the breaking occurs, a very thick jet with large 
liquid fragments forms (snap shots (2),(3),(4)) at the wave breaker and  hits the screen. 
Right after this, the progressive, lowered-height and reduced-energy water column goes 
through the screen with a high velocity (marked with an arrow on snap shot (5) ) and 
causes two post impact effects: a) generation of liquid-to-gas jet flows hitting the 
underlying free surface on the opposite side of the screen ( snap shots (6) and (7) ) and 
b) thick liquid run-ups on the screen ending up with liquid fragments splashing around 
in the corresponding tank compartment (snap shot (7), liquid fragments are marked by 
an arrow). The reduced-energy water column that turns to a thick progressive layer of 
water may cause impact pressures on the screen if it hits the screen with a vertical flat 
free surface and large enough approach velocity. The pressure impulse theory might be 
applied here if the screen assumed to be a solid wall. The latter would give 
overestimated values for the maximum pressures.   

For ܵ݊ ൌ 0.4752	and for larger forcing frequencies, 2.4625 ൑ ଵߪ/ߪ
∗ ൑ 2.6847, 

the waves are more of a standing type resembling the free surface profile of the third 
mode of sloshing in a clean tank. Even though the wave breaking occurs close to the 
screen, the flow at the breaker does not hit the screen. In addition the post impact effects 
such as large liquid-to-gas jet flows and run-up on the screen and liquid fragmentation 
are not present.  

As long as the waves are mainly of propagating type, 1.4812 ൑ ଵߪ/ߪ
∗ ൑ 2.444, 

the run-up on the screens is still strongly seen even though the free surface front is not 
close to vertical. 

Another phenomenon which is visible in the video recording for ܵ݊ ൌ 0.4752 is 
the occurrence of three-dimensional flow for 1.4812 ൑ ଵߪ/ߪ

∗ ൑ 1.7404 and 2.3329 ൑
ଵߪ/ߪ

∗ ൑ 2.684. When the flow is strongly three-dimensional (the second frequency 
range in the previous sentence) it almost swirls in the tank and causes local wave 
breakings and run-ups on the vertical tank walls and corners (corner between the 
vertical end walls and lateral walls). The latter effect that are related to the resonance at 
ଷߪ
∗ produces strong violent flows (2.3329 ൑ ଵߪ/ߪ

∗ ൑ 2.684). Figure  4-23 shows the 
three-dimensional behavior of the free surface by marking the free surface on the 
opposite lateral walls using two pointing arrows. The fragmentation of the free surface 
and liquid splashes due to the swirling of the liquid in the tank is also visible in the tank 
corner on the right side of Figure  4-23. This kind of motion is similar to swirling 
occurring in nearly square-based tanks due to harmonic horizontal excitation (Faltinsen 
and Timokha 2009) that increase the hydrodynamic pressure  forces on the lateral 
(parallel to excitation direction) tank wall. 

Following the discussions made above based on the visual observations local high 
pressure loads might be present on the wall and also on the screen depending on the 
forcing frequency and solidity ratio. These frequencies with rough estimates are 
reported in Table  4-5.   

The time history of the wave elevations is now considered. Large amplification of 
super harmonic wave components of the forcing frequency especially around ߪଵ

∗	is 
present in the time history of the wave elevations measured at 1 cm distance from the 
vertical walls for ܵ݊ ൌ 0.4752. The bottom panel of Figure  4-24 shows amplification of 
up to 8 super harmonics. 
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Figure  4-22. Formation of wave breaking at  ܐ ⁄ܔ ൌ ૙. ૚૛૞, ઽ ൌ ૙. ૙૞, ܖ܁ ൌ ૙. ૝ૠ૞૛, ࣌/࣌૚

∗ ൌ ૛. ૛૝૙૜. The 
evolution of the free surface before and after the wave breaking. The increase in time is marked by ascending 
number on the snap shots. 
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Figure  4-23. Three-dimensional flow. ܐ ⁄ܔ ൌ ૙. ૚૛૞, ઽ ൌ ૙. ૙૞, ܖ܁ ൌ ૙. ૝ૠ૞૛, ࣌/࣌૚

∗ ൌ ૛. ૞ૠ૜૟. 

 
Figure  4-24. Strong amplification of higher harmonics for ܐ ⁄ܔ ൌ ૙. ૚૛૞, ઽ ൌ ૙. ૙૞,	ܖ܁ ൌ ૙. ૝ૠ૞૛, ો/ો૚

∗ ൌ
૙. ૢ૝૝૜. Top panel: Non-dimensional wave elevation at the vertical wall, bottom panel: Non-dimensional 
amplitude of the frequency components in frequency domain. 

In addition to amplification of main super harmonics of the forcing frequency, 
“extra” harmonics are also amplified for the current depth ݄ ݈⁄ ൌ 0.125 and forcing 
amplitude ߝ ൌ 0.05 and frequencies 2.5921 ൑ ଵߪ/ߪ

∗ ൑ 2.6847. The word “extra” 
means that the harmonics are not the main integer multiple bound harmonics of the 
forcing frequency. Figure  4-25 shows the time history and the frequency content of 
measured wave elevations for ܵ݊ ൌ 0.4752, ଵߪ/ߪ

∗ ൌ 2.6847. The top panel of the 
figure shows a beating behavior of the measured responses. The bottom panel of the 
same figure demonstrates amplification of the “extra” harmonics marked with integer 
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numbers. One may remind that for ߝ ൌ 0.01, ݄ ݈⁄ ൌ 0.12 and ܵ݊ ൌ 0.4725 a same 
frequency range was associated with “extra” harmonic amplifications and wave 
modulation. This fact shows the prior importance of water depth for appearance of the 
“extra” harmonics prior to the forcing amplitude. However for the current case with a 
larger forcing amplitude ߝ ൌ 0.05, the wave elevations are affected by transient effects 
such as large wave breaking. Wave breaking can smear the beating effect with irregular 

behavior. For the current case, ߝ ൌ 0.05, ௛
௟
ൌ 0.125, ܵ݊ ൌ 0.4752, increasing the 

forcing frequency for frequencies 2.5921 ൑ ଵߪ/ߪ
∗ ൑ 2.6847 makes the beating periods 

a little more regular which is probably related to weaker wave breaking.  

To calculate the value of the multipliers, the extra harmonics are marked by 
numbers 1 to 5 in the bottom panel of Figure  4-25 and the ratio ݇௜ of their 
corresponding frequency relative to frequency of the main harmonic (forcing frequency) 
is calculated.  These ݇௜ values are calculated for the range of frequencies associated 
with extra harmonics and  are listed in Table  4-4. The calculations show almost equal 
values for ݇௜ for all forcing frequencies. The dash (-) in the table means no clear peak is 
found for the corresponding ݇௜. For the current screen and for frequencies 2.5921 ൑
ଵߪ/ߪ

∗ ൑ 2.6847 the multipliers ݇ଵ െ ݇ହ	are equal to 0.36, 0.64, 1.28, 1.36, 1.64. These 
values are slightly different than ݇௜ values reported in Table  4-1 for ܵ݊ ൌ 0.4725, 
	݄ ݈⁄ ൌ 0.12 and ߝ ൌ 0.01.   
Table  4-4. Multipliers ࢏࢑ related to “extra” harmonics marked in Figure  4-25 for ࢒/ࢎ ൌ ૙. ૚૛૞, ࢿ ൌ ૙. ૙૞, 
࢔ࡿ ൌ ૙. ૝ૠ૞૛. ࢏࢑ are the ratio between the frequency of the “extra” harmonics and the forcing frequency.   

σ/σଵ∗  kଵ kଶ kଷ kସ kହ 
2.5921 0.3600 0.6400 - - 1.6400 
2.6291 0.3600 0.6400 - 1.3600 1.6400 
2.6477 0.3600 0.6400 1.300 1.3600 1.6400 
2.6662 0.3600 0.6400 1.2800 1.3600 1.6400 
2.6847 0.36 0.6401 1.2802 1.3599 1.6401 
 

Increasing the solidity ratio to ܵ݊ ൌ 0.676 leads to much weaker progressive 
waves around ߪ/ߪଵ

∗ ൌ 1. The result is formation of very small wave run-ups and 
breakings on and at the vicinity of the vertical walls for 0.9258 ൑ ଵߪ/ߪ

∗ ൑ 1.2035. The 
only special event is occurrence of a weak wave focusing accompanied with a small gas 
pocket and a very thin run-up on the vertical wall at ߪ/ߪଵ

∗ ൌ 0.9443.  This gas pocket 
did not appear for ܵ݊ ൌ 0.4752 at ߪ/ߪଵ

∗ ൌ 0.9443 and is a new event for ܵ݊ ൌ 0.676. 
Another new event for ܵ݊ ൌ 0.676 is the presence of three-dimensional flow for a new 
frequency range 1.1294 ൑ ଵߪ/ߪ

∗ ൑ 1.2035. For 2.1478 ൑ ଵߪ/ߪ
∗ ൑ 2.6847 strong 

three-dimensional flow accompanied with large wave breakings exist. The three-
dimensional flow causes a rotary (swirling) motion in the tank compartments that can 
increase the hydrodynamic pressure on the vertical lateral walls. Visual observations 
show that when the flow velocity is large the three-dimensional rotary motion can 
causes impacts on the lateral walls with an irregular behavior. In addition to three-
dimensional flow, run-ups on the screen with variable intensity are seen for wide range 
of frequencies belong to 0.926 ൑ ଵߪ/ߪ

∗ ൑ 2.551. This frequency range almost covers 
the total tested forcing frequency range. Strong run-ups on the screen leading to 
generation of large liquid fragments splashing on the underlying free surface, lateral 
walls and on the screen are seen for  1.185 ൑ ଵߪ/ߪ

∗ ൑ 1.2035 and 1.4812 ൑ ଵߪ/ߪ
∗ ൑
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2.481. These effects are usually seen in the current study whenever a high velocity 
liquid with a steep free surface hits the screen. The video recordings show that high-
velocity steep profiles hitting the screen are the most energetic for 1.481 ൑ ଵߪ/ߪ

∗ ൑
1.4997 and 1.7404 ൑ ଵߪ/ߪ

∗ ൑ 2.444. Tracking the energetic free-surface flows in the 
video recordings, two major effects may cause impact pressures on the screen: 1) 

 
Figure  4-25. Sub- and special super-harmonic amplification marked by numbers. Top: Time history of wave 
elevations, bottom: Frequency content of the measured elevations. ܐ ⁄ܔ ൌ ૙. ૚૛૞, ઽ ൌ ૙. ૙૞,	ܖ܁ ൌ ૙. ૝ૠ૞૛, 	࣌/
࣌૚
∗ ൌ ૛. ૟ૡ૝ૠ. ࣌′ is the frequency content of the measured signal calculated by FFT. 

Splashing of the liquid fragments on the screen due to wave breaking and 2)  
being hit by a high velocity liquid flow with a perpendicular free surface which can be 
more severe than the first effect. For ܵ݊ ൌ 0.676 the above-mentioned effects are 
stronger than those occurring for ܵ݊ ൌ 0.4752 for almost the same frequency range. 
Figure  4-26 shows large liquid fragments and horizontally long-travelling liquid-to-gas 
jet flows that are the post effects of a high velocity flow with a very steep profile hitting 
the screen. It should be noted that the case shown in Figure  4-22 and Figure  4-26 are not 
presenting the phenomena for a same forcing frequency but they are presenting the most 
severe behavior observed for ܵ݊ ൌ 0.4725 and ܵ݊ ൌ 0.4725. Similar violent flows at 
the screen region might also be present for 1.2035 ൏ ଵߪ/ߪ

∗ ൏ 1.481 but no video 
recording is available for those frequencies.  

Considering the wave run-ups on the vertical walls, very thin and small scale 
jets/run-ups are seen around for 0.9258 ൑ ଵߪ/ߪ

∗ ൑ 0.9628 due to very localized 
focusing of an overturning wave. Small wave breaking very close to the vertical walls is 
also present. The scenario shown in Figure  4-18 is almost seen here but with very 
smaller intensity and in a much narrower frequency range (0.9258 ൑ ଵߪ/ߪ

∗ ൑ 0.9628). 
However, the small progressive waves cause thicker run-ups for 1.0183 ൑ ଵߪ/ߪ

∗ ൑
1.2035. In addition, secondary resonance of higher modes increases the responses 
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causing thin run-ups on the vertical wall as well. For instance, the secondary resonance 
of the 6th mode of sloshing (clean tank) causes wave run-ups on the wall for 1.833 ൑
ଵߪ/ߪ

∗ ൑ 1.87. Very thick run-ups can also appear. An example is given in the left side 
of Figure  4-22, snap shot 1, where the free-surface of the run-up is flat and horizontal. 

For ܵ݊ ൌ 0.676 wave breakings with different intensities are seen for all forcing 
frequencies except a narrow forcing frequency around ߪଵ

∗, that is 1.0368 ൑ ଵߪ/ߪ
∗ ൑

1.1109. The latter shows the strong effect of the screen on the flow field near the lowest 
natural frequency of the clean tank.  

 
Figure  4-26. Liquid detachment on the screen and large liquid-to-gas jet flows. ܐ ⁄ܔ ൌ ૙. ૚૛૞, ઽ ൌ ૙. ૙૞,             
ܖ܁ ൌ ૙. ૟ૠ૟૙, ࣌/࣌૚

∗=1.7404. 

Time series of the response elevations measured for ܵ݊ ൌ 0.676 contain larger 
amplification of “extra” harmonics for 2.5921 ൑ ߪ ଵߪ

∗⁄ ൑ 2.6847 with smaller 
amplifications compared to the results measured for ܵ݊ ൌ 0.4752. The multipliers of 
the above-mentioned harmonics corresponding to numbered peaks in Figure  4-25 are 
the same as the ones found for ܵ݊ ൌ 0.4752. In addition, for ܵ݊ ൌ 0.676 a new 
frequency range 2.2218 ൑ ߪ ଵߪ

∗⁄ ൑ 2.3884 associated with amplification of “extra” 
harmonics appears. An example is shown in Figure  4-27 for ߪ ଵߪ

∗⁄ ൌ 2.3144. The 
bottom part of the figure shows two sub harmonics and three super harmonics marked 
with numbers 1-5. Corresponding to these numbers are new values of for ݇ଵ െ ݇ହ, 
which are 0.2692, 0.7308, 1.2692, 1.4615, 1.7308 respectively.  

Appearance of different set of multipliers for two different frequency ranges is a 
new behavior observed for ܵ݊ ൌ 0.676 at  h l⁄ ൌ 0.125 and with forcing amplitude 
ߝ ൌ 0.05 and it might be related to the large forcing amplitude and strong influence of 
the special free surface effects such as the ones shown in Figure  4-26. 

Increasing the solidity ratio to 0.7960 causes more reduction in the magnitude of 
wave responses around the lowest natural frequency of the clean tank. Except for very 
small wave breakings happening for 1.1479 ൑ ଵߪ/ߪ

∗ ൑ 1.2035, non of the special free 
surface effects mentioned before are present for 0.9258 ൑ ଵߪ/ߪ

∗ ൑ 1.2035. The video 
recordings are not available for 1.2220 ൑ ଵߪ/ߪ

∗ ൑ 1.4627 but the available videos for 
1.4812 ൑ ఙ

ఙభ
∗ ൑ 2.6847 which includes ߪଶ

∗ and ߪଷ
∗, show the presence of wave breaking, 

three-dimensional flow, very large run-ups on the screen ending up with liquid 
fragmentation and large scale fragments of liquid caused by free surface impact on the 

Liquid-to-gas jet flows 

Liquid detachment 
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screen  which are splashing on the screen and on the underlying free surface. These 
effects which were also observed for ܵ݊ ൌ 0.676 are seen with more amplification for 
the current screen implying that intensity of the impacts has been increased. These 
impacts are roughly observed for 1.4812 ൑ ଵߪ/ߪ

∗ ൑ 1.5368	and 1.6478 ൑ ଵߪ/ߪ
∗ ൑

2.3144. The second frequency range covers ߪଶ
∗ implying that the lowest natural 

frequency of the compartments is excited. For the current screen with ܵ݊ ൌ 0.7960, an 
example with very severe post impact effects is shown in Figure  4-28 for ߪ/ߪଵ

∗ ൌ
2.0181. As shown in Figure  4-28, a high-velocity liquid with an almost vertical flat free 
surface (marked by an arrow and a short black vertical line on the left panel in the 
figure) is hitting the screen. On the right side of Figure  4-28, the post effects resulting 
from the impact is also shown. The distance traveled by the liquid at the tip of a liquid-
to-gas jet flow on the right side of Figure  4-28 and the large fragments of liquid 
generated and splashed opposite to the direction of the impacting liquid on the screen 
qualitatively depict the strength of the impact evevnts on the screen. Again one can 
qualitatively make a comparison between intensity of the impact events on the three 
lowest solidity ratios by comparing the post impact effects shown in Figure  4-22, Figure 
 4-26 and Figure  4-28, respectively. 

 
Figure  4-27. Sub- and special super-harmonic amplification marked by numbers. Top: Time history of wave 
elevations, bottom: Frequency content of the measured elevations. ܐ ⁄ܔ ൌ ૙. ૚૛૞, ઽ ൌ ૙. ૙૞,ܖ܁ ൌ ૙. ૟ૠ૟,

ો

ો૚
∗ ൌ

૛. ૜૚૝૝. ࣌′ is the frequency content of the measured signal calculated by FFT. 

Thin run-ups on the walls are present for almost all forcing frequencies larger than 
1.481	except 1.7774 ൑ ߪ ଵߪ

∗⁄ ൑ 1.833. 

The “extra” harmonics of the forcing frequency are weakly amplified for 
2.0181 ൑ ߪ ଵߪ

∗⁄ ൑ 2.2959 and ߪ ଵߪ
∗⁄ ൌ 2.444 with multipliers ݇	 ൌ 	1/2,3/2  which 

were not seen for ܵ݊ ൌ 0.4752 and ܵ݊ ൌ 0.676 for the mentioned frequency. The 
“extra” harmonics are also present for 2.6106 ൑ ߪ ଵߪ

∗⁄ ൑ 2.685 with multipliers 
݇ ൌ 0.3462, 0.6538, 1.3462, 1.6538. These values are slightly different than the ones 
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calculated for lower solidity ratios. These frequency ranges are also accompanied with 
large wave breaking, liquid fragmentation and three-dimensional flows. These effects 
can influence the nonlinear mechanism of energy exchange between the sloshing modes 
that are now strongly modified by the presence of the screen. For instance the liquid-to-
gas jet flows hitting the underlying free surface two times in each period of oscillations 
enters a non-linear damping source into the system that will affect sloshing modes and 
their energy content. 

 
Figure  4-28. Slamming force on the screen by a high-velocity flow. Left: Before impact. Arrow shows the 
direction of the hitting liquid, Right: After impact. ܐ ⁄ܔ ൌ ૙. ૚૛૞, ઽ ൌ ૙. ૙૞,ܖ܁ ൌ ૙. ૠૢ૟૙,

ો

ો૚
∗=2.0181.    

Video recordings for the next tested screen, ܵ݊ ൌ 0.844, show quasi-steady 
responses around ߪଵ

∗. For frequencies in the range 1.4812 ൑ ߪ ଵߪ
∗⁄ ൑ 2.685, i.e. far 

from ߪଵ
∗ but including ߪଶ

∗ and ߪଷ
∗, the flow is strongly three-dimensional and violent. 

One reason for presence of the three-dimensional flow is the strong spray of liquid 
fragments in the screen zone and another reason is high velocity liquid-to-gas jet flows 
originated from the flow crossing the screen crossing. Liquid impact events on the 
screen that are roughly seen for 1.4812 ൑ ߪ ଵߪ

∗⁄ ൑ 1.537 and 1.629 ൑ ߪ ଵߪ
∗⁄ ൑ 2.314 

seem to be stronger for ܵ݊ ൌ 0.8440. They occur in a slightly wider range for the 
current screen relative to the previously tested screens. Following the previous way of 
discussions, frequencies associated with liquid impacts on the screen are estimated 
based on the shape of the free surface before hitting the screen and strength of the post 
impact effects. Compartmentation of the clean tank and resonance at ߪଵ

∗∗, the lowest 
natural frequency of a compartment, causes larger wave responses and increase the 
intensity of the liquid impact events on the screen. A new phenomena for the current 
screen is formation of steep wave profiles at the vertical walls due to the resonance 
around ߪଵ

∗∗. The steep wave profiles can hit the wall due to the progressive nature (as 
seen in the videos) of the waves. The scenario of the impact events applied on the walls 
is similar to those presented in Figure  4-18 but with smaller intensity and less 
repeatability. The impact scenario includes wave breaking together with trapping a gas 
pocket on the vertical walls and formation of a vertical highly accelerated jet on the wall 
due to wave focusing An example of such event is shown in Figure  4-29 for ߪ/ߪଵ

∗ ൌ
2.1478. Snap shots in Figure  4-29 taken before and after the impact respectively show 
the formation of the gas pocket (left snap shot) and the height of the liquid at the tip of 
the jet after the impact (right snap shot). This kind of impact on the wall can be roughly 
seen for frequencies 1.5553 ൑ ߪ ଵߪ

∗⁄ ൑ 1.7404 and 1.9256 ൑ ߪ ଵߪ
∗⁄ ൑ 2.4255. As 

expected the impacts seem to be larger around ߪଵ
∗∗. Moreover, it should be noted that 

three-dimensional flow is always present near the vertical walls when the wave 

Liquid-to-gas jet 
flows Liquid 

detachment 
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responses are strong. The latter makes the impacts to be more irregular and localized. 
For instance they can occur at vertical corners between the end walls and lateral walls. 
The three-dimensional flow together with strong liquid fragmentation everywhere in the 
tank is present for frequencies between ߪଵ

∗∗ ൌ ଶߪ
∗ and  ߪଷ

∗. 

 
Figure  4-29. Liquid impact on the vertical wall, ઽ ൌ ૙. ૙૞, ܖ܁ ൌ ૙. ૡ૝૝, ࣌/࣌૚

∗=2.1478. Left: Formation of gas 
pocket marked by an arrow and a half circle. Right: Formation of the jet on the wall and the height of the 
liquid at the tip of the jet marked by a horizontal arrow. 

The observed impact events on the screen and on the vertical walls that happen for 
forcing frequencies around ߪଶ

∗ ൌ ଵߪ
∗∗ brings up this conclusion that in case of large 

forcing amplitudes and small water depths (based on clean-tank length), even shifting 
up the lowest natural frequency of the clean tank using a large solidity ratio screen to 
that of a compartment may not potentially reduce the risk of large impact forces neither 
on the screen nor on the vertical walls. However, this conclusion needs more 
experimental support. Dynamic pressures due to the impact on the walls and the screen 
should be measured and analyzed to approve the occurrence of high pressures.  

Looking into the time history of the wave elevations measured for ܵ݊ ൌ 0.844 
wave components oscillating with “extra” harmonics of the forcing frequency are 
present for 2.0181 ൑ ߪ ଵߪ

∗⁄ ൑ 2.129 and ߪ ଵߪ
∗⁄ ൌ 2.444 with multipliers ݇	 ൌ 	1/2,3/2 

and also for 2.6106 ൑ ߪ ଵߪ
∗⁄ ൑ 2.685 with multipliers 

݇ ൌ 0.3537, 0.6463, 1.3537, 1.6463. The latter frequency range and the pattern of 
multiples are similar to those observed for for ܵ݊ ൌ 0.796. 

Increasing the solidity ratio to ܵ݊ ൌ 0.892 turns the sloshing in the clean tank into 
a clearly compartmented sloshing such that the responses around ߪଵ

∗ are of a quasi-
steady nature and no wave-like amplification appears. The available videos for 
1.4812 ൑ ߪ ଵߪ

∗⁄ ൑ 2.685 show very large responses around ߪଶ
∗. These responses create 

impact events on the screen and also on the vertical walls.  The impacts are 
accompanied with large three-dimensional flows which make them take place locally 
and at random places on the vertical walls and wall corners during each forcing period. 
The impact events on the screen and on the vertical walls can be seen for 1.4812 ൑
ߪ ଵߪ

∗⁄ ൑ 2.2774 and 1.9071 ൑ ߪ ଵߪ
∗⁄ ൑ 2.2403, respectively. It should be noted that the 

impact on the screen is probably much larger than on the walls because of the volume, 
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velocity and the vertical shape of the free surface hitting the screen. An example of an 
impact event on the screen is shown in Figure  4-28; this kind of impact with a large 
intensity never occurs on the vertical walls for any of the screens and forcing 
frequencies for the current depth and forcing amplitude. 
Table  4-5. Special free-surface effects categorized by solidity ratio and non-dimensional forcing frequencies 
࣌ ࣌૚

∗⁄ ࢎ . ⁄࢒ ൌ ૙. ૚૛૞, ࢿ ൌ ૙. ૙૞. 

Solidity 

ratio 

 

 

Special effect 

0.4752 0.676 0.7960 0.8440 0.892 

Local impact on 
the wall 

0.926-1.204 -  1.926-2.426 1.907-2.240 

Local impact on 
the screen 

1.944-2.444 

 

 

1.481-1.5 

1.74-2.444 

1.481-1.537 

1.648-2.314 

1.481-1.537 

1.629-2.314 
1.481-2.277 

Wave breaking 

ሺ
஢

஢భ
∗) 

0.9258-2.685 2.148-2.685 1.148-1.204 1.4812-2.685 1.481-2.685 

Run-upሺ
஢

஢భ
∗) 

on screen 

0.926-1.204 

1.481-2.481 

 

0.926-2.551 1.481-2.685 1.481-2.5 1.481-2.685 

Run-upሺ
஢

஢భ
∗) 

on wall 

0.926-1.2035 

2.351-2.685 

1.018-1.204 

1.833-1.87 

2.148-2.685 

1.481-1.778 

1.833-2.685 
1.481-2.685 1.481-2.685 

Extra harmonics 

ሺ
஢

஢భ
∗) 

2.592-2.685 
2.222-2.388 

2.592-2.685 

2.018-2.296 

2.444 

2.611-2.685 

2.018-2.129 

2.444 

2.611-2.685 

1.481-2.685 

Wave modulation 2.592-2.685 
2.222-2.388 

2.592-2.685 
2.611-2.685 2.611-2.685 1.481-2.685 

Three-
dimensional flow 

ሺ
஢

஢భ
∗) 

1.481-1.7404 

2.333-2.685 

1.129-1.204 

1.481-1.889 

2.148-2.685 

1.4812-2.685 1.4812-2.685 1.481-2.685 

 

For the current screen with ܵ݊ ൌ 0.892, the time history of the wave elevations 
shows amplification of “extra” harmonics only for a narrow frequency range, i.e. 
2.6291 ൑ ߪ ଵߪ

∗⁄ ൑ 2.685. These harmonics oscillate with very small amplitudes relative 
to the amplitude of the main harmonic. The corresponding multipliers are ൌ 0.36,	 
0.64, 1.36, 1.64.  

To summarize the discussions and observations made based on the video 
recordings and the time history of the wave elevations measured at the vertical walls, 
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important phenomena and their corresponding forcing frequency ranges for each 
solidity ratio are listed in Table  4-5. 

4.2.3 Steady-state response curves of free-surface amplitude 
The steady-state response curves include the non-dimensional maximum steady-

state wave elevations ߞ௠௔௫/ߟଶೌ and non-dimensional amplitude of their first, second 
and third Fourier harmonics, i.e. ߞଵ௦௧/ߟଶೌ, ߞଶ௡ௗ/ߟଶೌ and ߞଷ௥ௗ/ߟଶೌ, respectively. The 
applied forcing frequencies cover the three lowest natural frequencies of sloshing in a 
clean tank. The curves are plotted for solidity ratios 0.4752, 0.676, 0.7960, 0.8440, 
0.892 and shown in Figure  4-30 to Figure  4-34. The measurements were performed for 
both tank sides. Due to strong transient effects, clear steady-state waves do not appear 
for many of the forcing frequencies. This is demonstrated by presenting the 
corresponding ߟଶೌ scaled standard-deviations ߟ/݀ݐݏଶೌ of ߞ௠௔௫ about its mean value as a 
function of ߪ ଵߪ

∗⁄  in the top panels of  Figure  4-30 to Figure  4-34. The vertical dashed 
and dotted lines are corresponding to ݅ଶ௞ ൌ ଶ௞ߪ

∗ ଵߪ2
∗⁄ , ݇ ൌ 1, 2, 3, … and ݅ଶ௞ାଵ ൌ

ଶ௞ାଵߪ
∗ ଵߪ3

∗⁄ , ݇ ൌ 1, 2, 3, … non-dimensional frequencies where secondary resonance of 
higher modes (2nd and higher) is expected.  

Starting with ܵ݊ ൌ 0.4752, Figure  4-30 shows two major resonant peaks for 
ଵߪ
∗	and ߪଷ

∗ at ߪ ଵߪ
∗⁄ ൌ 1 and ߪ ଵߪ

∗⁄ ൌ 2.5764. The peak expected at ߪଵ
∗	occurs on the 

right side of ߪ ଵߪ
∗⁄ ൌ 1 on the horizontal axis showing a hard-spring response behavior 

which is typically expected for sloshing in shallow depth. However the peak at ߪଷ
∗ takes 

place at a frequency smaller than ߪ ଵߪ
∗⁄ ൌ 2.5764 that does not support hard-spring 

response behavior. These peak responses become smaller due to the increased damping 
and geometrical changes of the screen as the solidity ratio increases. This can be 
understood by following the sequence of the graphs presented in Figure  4-30 to Figure 
 4-34. One can focus on the amplitude of the primary Fourier harmonic, ߞଵ௦௧, to track the 
presence of the resonant peaks at ߪ ଵߪ

∗⁄ ൌ 1 and ߪ ଵߪ
∗⁄ ൌ 2.5764. Considering this 

argument, the curve representative for ߞଵ௦௧/ߟଶೌ	values plotted for ܵ݊ ൌ 0.676 in Figure 
 4-31 shows almost no resonant amplification at ߪ/ߪଵ

∗ ൌ 1. On the other hand, 
comparing the results for ܵ݊ ൌ 0.4752 and ܵ݊ ൌ 0.676 presented in Figure  4-30 and 
Figure  4-31 show that the peak response at ߪ/ߪଵ

∗ ൌ ଷߪ
∗ ଵߪ

∗⁄ ൌ 2.5764 is reduced by 
increasing the solidity ratio and moves further toward lower forcing frequencies. 
Moreover, the range of frequencies with larger responses is wider around ߪଷ

∗ for 
ܵ݊ ൌ 0.676. For ܵ݊ ൌ 0.796 the peak at ߪଷ

∗ ଵߪ
∗⁄   disappears and a wide band resonance 

frequency range containing ߪଶ
∗ appears in the middle part of the tested forcing frequency 

range implying that the compartmentation of the clean tank is reached. The latter 
resonance region and the corresponding peak move further toward ߪଵ

ଵߪ/∗∗
∗	 when the 

solidity ratio increases. Results for the largest solidity ratios, ܵ݊ ൌ 0.844 and ܵ݊ ൌ
0.8875 in Figure  4-34 show a strong resonance peak at ߪଵ

ଵߪ/∗∗
∗ which demonstrates 

isolated responses in the compartments on the two sides of the screen.  

Different responses on the two tank sides for a single forcing frequency are 
present and marked with rectangles in Figure  4-30 to Figure  4-34. The widest frequency 
range with different responses among all screens happens for Sn=0.4752. This 
frequency range 1.55 ൏ ߪ ଵߪ

∗⁄ ൏ 2.1 includes strong amplification of the higher 
harmonics which is related to the secondary resonance of higher modes. One possible 
reason for having two different steady-state responses at resonance areas, as discussed 
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earlier in the chapter 3, is the difference in the amount of damping on each compartment 
due to transient effects during the time when forcing frequency changes to a larger (or 
smaller if frequency should be stepped down) value. Two compartments with different 
amount of damping will have maximum responses at frequencies with very small 
difference. The latter means that for a single forcing frequency two responses are 
possible for the two compartments. 

Considering the upper panel in Figure  4-30 which presents the non-dimensional 
standard deviation of the measured responses for ܵ݊ ൌ 0.4752, the largest unsteady 
effects appear for forcing frequencies around ߪଷ

ଵߪ/∗
∗. For these frequencies, the non-

dimensional standard deviation ߟ/݀ݐݏଶೌis as large as ‘1’ which is equal to 40% of the 
unperturbed water depth. It should be noted here that frequencies in the range 2.5921 ൑
ߪ ଵߪ

∗⁄ ൑ 2.6847, are associated with amplification of “extra” harmonics and irregular 
wave modulations. Whenever irregular modulations occur the standard deviations from 
the average value become larger. This must be remembered that the values used to plot 
 ଶೌ are computed by taking the average between the maximum wave-elevationsߟ/௠௔௫ߞ
for certain number of forcing periods (for instance 30 forcing periods). Examples of 
extra harmonics were shown in Figure  4-25 and Figure  4-27 where large deviations can 
be recognized around the mean value of the maximum elevations. The results show that 
increasing the solidity ratio reduces ߞ௠௔௫/ߟଶೌ around ߪଵ

∗ but expands the frequency 
range of large standard deviations of the maximum wave elevations. For instance, 
measured responses for ܵ݊ ൌ 0.892 show relatively large ߞ௠௔௫/ߟଶೌ values for 
frequencies in 1.35 ൏ ߪ ଵߪ

∗⁄ ൏2.685.  

4.2.3.1 Secondary	resonance	
The resonant peak areas on the steady-state response curves are due to primary 

and also secondary resonance of the sloshing modes. In the following the resonant areas 
that are relevant for secondary resonance of sloshing modes are notified and discussed 
for each screen separately.   

Sn=0.4752. Considering ܵ݊ ൌ 0.4752, the results for ߦ௠௔௫/ߟଶೌin Figure  4-30,  
shows a double peak behavior (marked by arrows) accompanied with steady-state jumps 
near ߪ ଵߪ

∗⁄ ൌ 1 . The peak on the left, marked by a hollow arrow, is due to secondary 
resonance of mode number 2 while the one on the right, marked by a bold arrow, is due 
to the primary resonance of mode number 1(first mode). The steady-state jumps at the 
two peaks are not of a hard-spring response behavior. One expects that for a hard-spring 
behavior occurring near the lowest natural frequency, the maximum possible resonant 
response occurs at a frequency larger than the natural frequency and by increasing the 
frequency the response jumps down to small value. Such a jump is shown on the left 
panel of Figure  2-4. One can also recognize jumps on the curves of amplitude of the 
first ߦଵ௦௧/ߟଶೌ and the second ߦଶ௡ௗ/ߟଶೌ harmonic responses that are marked by hollow 
and bold arrows. These jumps are marked in accordance with the jumps seen on the 
  .ଶೌ curveߟ/௠௔௫ߦ

As the forcing frequency increases another resonant peak is seen in Figure  4-30 at 
݅ସ. The response curves of the measured waves in the two tank sides, i.e. “left” and 
“right”, show a complex behavior between ݅ଵଵ	and ݅ଵହ, especially around ߪଶ

ଵߪ/∗
∗ 		ൌ
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1.8735. On the “left” tank side a peak is clearly seen for ቀ
క೘ೌೣ

ఎమೌ
	ቁ
௅
 and ቀ

కభೞ೟
ఎమೌ

ቁ
௅
 at 

ଵߪ/ߪ
∗ ൌ 1.907 just on the right side of ߪଶ

ଵߪ/∗
∗ 		ൌ 1.8735 on the horizontal axis. 

However, at the same forcing frequency, amplitude of the second harmonic component, 

ቀ
కమ೙೏
ఎమೌ

ቁ
௅
, shows a hard-spring jump which is away from values marked by ݅ଶ௞ and ݅ଶ௞ାଵ 

giving predictions about the occurrence of the secondary resonance. For the “right” tank 
side, the maximum response ሺߦ௠௔௫ ⁄ଶೌߟ ሻோ and its primary Fourier component 
ሺߦଵ௦௧ ⁄ଶೌߟ ሻ௅ shows a soft-spring response while the second harmonic component 
ሺߦଶ௡ௗ ⁄ଶೌߟ ሻோ follows a hard-spring response. The present complexity of responses 
shows the strong interaction of the sloshing modes in the compartments on the two sides 
of the screen at resonance. For larger frequencies, the curves of maximum responses 
 ଶೌ componentsߟ/ଶ௡ௗߦ ଶೌ and the second harmonicߟ/ଵ௦௧ߦ ଶೌ, primary harmonicߟ/௠௔௫ߦ
reveal soft-spring jumps at ଼݅ and ݅ଵଽ. In general, when secondary resonance occurs, the 
reason is the amplification of higher harmonics of the response, i.e. ߦଶ௡ௗ/ߟଶೌ and 
 ଶೌ. This means that theߟ/ଵ௦௧ߦ ଶೌ or higher and not the main harmonic componentߟ/ଷ௥ௗߦ
jumps seen at ଼݅ and ݅ଵଽ are not due to the secondary resonance. The reason can be 
realized from the video recording where formation of strong three-dimensional flow for 
ଶߪ
∗ ଵߪ

∗⁄ ൒ 2.3	causes thick and strong run-ups on the wall. In other words, formation of 
these run-ups are the reason for the sudden increase of the responses at ଼݅ and ݅ଵଽ. 

Figure  4-30. Top panel: non-dimensional standard deviation ࢙࢚ࣁ/ࢊ૛ࢇof the maximum steady-state response 
versus ࣌/࣌૚ ࢇ૛ࣁ/࢞ࢇ࢓ࣀ

∗ . Bottom panel: Non-dimensional maximum steady-state response ࣁ/࢞ࢇ࢓ࣀ૛ࢇand the 
amplitude of the first three Fourier harmonics of the response ࣀ૚࢙࢚/ࣁ૛ࣀ ,ࢇ૛ࣁ/ࢊ࢔૛ࣀ ,ࢇ૜࢘ࣁ/ࢊ૛ࢇ versus ࣌/࣌૚

∗ 	.  
ܐ ⁄ܔ ൌ ૙. ૜૞, ઽ ൌ ૙. ૙૜, ࢔ࡿ ൌ ૙. ૝ૠ૞૛. The letters ‘L’, for Left, and ‘R’, for Right, are used to distinguish the 
results measured on two sides of the tank. The vertical dashed ܑ૛ܓ and dotted ܑ૛ܓା૚ lines mark the frequencies 
where secondary resonance due to amplification of higher modes may occur. The rectangles mark regions with 
different results on left and right tank sides.   
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Sn=0.676. Considering the results shown in Figure  4-31 for ܵ݊ ൌ 0.6760, the 
double peak behavior on the curve of ߞ௠௔௫/ߟଶೌaround ߪଵ

∗ is clearer comparing to the 
one seen for ܵ݊ ൌ 0.4752. However the responses are smaller for the peak responses. 
Here, no jump is visible at the peaks. Also the reason for emerging the second peak on 
the right side of the double peak is the secondary resonance of mode number 5 at ݅ହ. 
This peak follows the peak appearing on the curve for ߦଷ௥ௗ/ߟଶೌclose to ݅ହ.  

For 0.926 ൑ ߪ ଵߪ
∗⁄ ൑ 1.907 the amplitude of the second harmonic component 

 ଶೌ. The latterߟ/ଵ௦௧ߦ ଶೌis comparable to the amplitude of the first harmonicߟ/ଶ௡ௗߦ
frequency range contains ݅ସ which surprisingly does not cause a resonant peak. A clear 
hard-spring jump exists close to ߪଶ

∗ between ߪ ଵߪ
∗⁄ ൌ 1.832 and ߪ ଵߪ

∗⁄ ൌ 1.907 which 
must be due to the secondary resonance of an even mode because the primary harmonic 
amplitude does not contain a jump or a peak at the above-mentioned frequency while 
the second harmonic component follows a jump. However, none of the dashed and 
dotted marking lines indicate a jump at ߪଶ

∗. In addition, the time history of the wave 
elevations does not show amplification of higher even harmonics such as fourth 
harmonic. These facts show that the even modes and their corresponding frequencies 
may also be affected by the presence of the screen when the forcing amplitude is 
(relatively) large and the effects of transient flows in the screen zone strongly affect the 
sloshing modes. The ߦ௠௔௫/ߟଶೌcurve shows a jump between ݅ଵ଼ and ݅ଵଵ in the “right” 
compartment which is due to formation of thick run-ups and three-dimensional flow. 
Due to the same reason, another jump is seen on the right side of the last marking line 
݅ଶଷ.  

Sn=0.796. Proceeding to a larger solidity ratio, ܵ݊ ൌ 0.796, Figure  4-32 shows 
that the responses around ߪ ଵߪ

∗⁄ ൌ 1 are weaker compared to results measured for lower 
solidity ratios. The double peak behavior is still present near ߪ ଵߪ

∗⁄ ൌ 1	. The left peak 
on the double peak moves more towards ݅ଶ and the right peak moves toward lower 
frequencies as well. The third harmonic component ߦଷ௥ௗ/ߟଶೌ shows a small resonant 
peak close to ݅ହ	which is located on the right side of the right peak (of the double peak) 
on the horizontal axis.  

Strong amplification of the second harmonic component is present for 1.388 ൑
ఙ

ఙభ
∗ ൑ 1.808. However, the lack of sufficient data points makes it difficult to make an 

investigation in this frequency range.  

The amplitude of the third harmonic ߦଷ௥ௗ/ߟଶೌhas a maximum at the left side of ݅଻ 
which might be related to the secondary resonance of mode number 7. The curve of 
maximum response ߦ௠௔௫/ߟଶೌand the second harmonic ߦଶ௡ௗ/ߟଶೌcomponent show a 
drop at ݅ଵଵ. Looking at the time history of the wave elevations does not help to find a 
reason for this drop. Moving further to higher frequencies, the response curves for 
 ଶೌ reveal a soft-spring jump at ଼݅ which is similar to the jump seenߟ/ଵ௦௧ߦ ଶೌ andߟ/௠௔௫ߦ
for Sn=0.4752 and Sn=0.676 at the same forcing frequency. The reason for this soft-
spring jump as discussed before for Sn=0.4752 and Sn=0.676, is formation of three-
dimensional flow with thick run-ups on the wall. A similar but stronger jump occurs 
around ݅ଶଵ and ݅ଵଵ which is also related to local three-dimensional effects. 
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Figure  4-31. ࢔ࡿ ൌ ૙. ૟ૠ૟૙. Explanation is given in caption of Figure  4-30. 

 

Figure  4-32. ࢔ࡿ ൌ ૙. ૠૢ૟૙. Explanation is given in caption of Figure  4-30. 
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Sn=0.844. The response curves plotted in Figure  4-33 for ܵ݊ ൌ 0.844, shows 
reduced responses near ߪଵ

∗ . However, a double peak behavior is still visible. The peak 
at ݅ଶ is clearly due to the secondary resonance of mode number 2. The time history of 
the wave elevations show that the peak on the right side of the double peak is due to the 
nonlinear amplifications of many higher harmonics of the forcing frequency. However it 
cannot be related to the secondary resonance of higher modes in the clean tank marked 
by ݅ଶ௞ and ݅ଶ௞ାଵ. For larger forcing frequencies, the amplitude of the third harmonic 
component ߦଷ௥ௗ/ߟଶೌ is largest at ߪ ଵߪ

∗⁄ ൌ 1.389 which is just on the left side of ݅଻ on 
the horizontal axis. Further right on the frequency axis the secondary resonance of mode 
number 4 causes a resonant peak close to ݅ସ on both ߦ௠௔௫/ߟଶೌ and ߦଶ௡ௗ/ߟଶೌ.  

Figure  4-33. ࢔ࡿ ൌ ૙. ૡ૝૝. Explanation is given in caption of Figure  4-30. 

Sn=0.892. Figure  4-34 contains response curves measured for ܵ݊ ൌ 0.892. 
Secondary resonance of mode number 2 causes a relatively small peak on the curve of 
maximum steady-state responses ߦ௠௔௫/ߟଶೌand the second harmonic component 
ߪ ଶೌ at ݅ଶ. Unfortunately the information is not enough aroundߟ/ଶ௡ௗߦ ଵߪ

∗⁄ ൌ 1 to assess 
the presence of the double peak behavior observed for the previous screens with lower 
solidity ratios. Considering the curve of total wave amplitude response, ߦ௠௔௫/ߟଶೌ, 5 
soft-spring jumps are marked by numbered arrows in Figure  4-34. The jumps numbered 
1-4 are mostly due to the nonlinear amplification of higher harmonics. For instance the 
jump number 1 is at a frequency where the third harmonic component shows a local 
peak. The same can be said for jumps number 2-4 but in connection with the amplitude 
of the second harmonic component ߦଶ௡ௗ/ߟଶೌ. The jump number 5 is probably due to the 
resonance at ߪଵ

∗∗ which shows a soft-spring behavior. The other jumps seen on the curve 
for ߦ௠௔௫/ߟଶೌon the right side of marking line ݅ଵଵ are mostly related to the local three-
dimensional effects. Three-dimensional effects are accompanied with irregular 
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responses. The latter means that the repetition of the experiments may cause the 
mentioned jumps to occur at slightly different frequencies.    

Figure  4-34.  ࢔ࡿ ൌ ૙. ૡૢ૛. Explanation is given in caption of Figure  4-30. 

 

4.3 Closure  
In shallow/intermediate depth, ݄/݈ ൌ 0.12, the forcing amplitude ߝ ൌ 0.01 is 

sufficient to trigger small-water-depth non-linear phenomena such as large nonlinear 
amplification of higher harmonics of the oscillation frequency. Secondary resonance is 
more pronounced in shallow water than in finite depth and causes clear extra resonance 
peaks in the total range of tested forcing frequencies especially when the solidity ratio is 
between 0.7 and 0.9. A new phenomenon is the appearance of “extra” harmonic 
components of the forcing frequency in the measured sloshing responses. Extra 
harmonics oscillate with ݇ߪ, where ݇ is not an integer number. These harmonics are 
seen for frequencies around the third natural frequency of the clean tank and amplified 
through non-linear energy transfer to frequencies smaller than the forcing frequency. 
These extra harmonics can cause standing modulated waves with steady beating periods 
when they oscillate with frequencies close to the resonant sloshing frequencies. 
Increasing the solidity ratio of the screen changes both the frequency range associated 
with extra harmonics and the magnitude of maximum elevations of the steady-state 
wave system. Increasing the forcing amplitude to ߝ ൌ 0.05 and conducting the 
experiments in a slightly larger water depth ݄/݈ ൌ 0.125 lead to formation of very 
violent flows. Liquid impact on the vertical walls and on the screen, strong three-
dimensional flows, very intense liquid fragmentation and highly accelerated liquid-to-
gas jet flows in the screen zone are examples of the special, non-linear free-surface 
effects for this experimental condition. The impact events on the vertical walls are 
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visually and theoretically investigated. The theoretical investigation is based on 
Peregrine and coworkers’ pressure impulse theory that needs spatial and temporal 
details of the impact event. Estimation of the pressure impulse on the vertical walls for 
ܵ݊ ൌ 0.4725 and ߪ ଵߪ

∗⁄ ൎ 1 predicts values comparable to the previous values taken by 
other investigators, for instance by Abramson et al., (1974) (Faltinsen & Timokha, 
Sloshing, 2009) for shallow water sloshing in a clean tank. This suggests a new set of 
experiments with direct pressure measurements on the walls that needs to be conducted 
in the future.  

Investigating the video recordings the following observations and conclusions are 
made. The screen can reduce the risk of liquid impact on the vertical end wall only for 
the frequencies around the lowest natural frequency of the clean tank and for solidity 
ratios larger than 0.7. The impact on the walls appears for larger solidity ratios when a 
clearly isolated sloshing in the two compartments is present and the forcing frequency is 
near the lowest resonant frequency of a compartment. The impact events are also seen 
on the screen for the smallest and largest solidity ratios for forcing frequency ranges 
covering the second and the third natural frequencies of clean-tank sloshing. The impact 
on the screen increases for large solidity ratios. Considering the above observations one 
should be aware that installing a screen in the tank middle when the forcing amplitude is 
large and the water depth is small does not necessarily reduces the probability of 
occurrence of sever liquid impact events on the wall or on the screen for all 
combinations of solidity ratio and desired ranges of forcing frequencies in shallow 
liquid conditions. 
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5 Application of Computational Fluid Dynamics  

5.1 Introduction 
Computational Fluid Dynamics (CFD) based on the finite volume method is used 

in this chapter to test its ability in prediction of non-linear and non-violent free-surface 
effects in presence of a screen in the middle of the tank. The simulations are performed 
with laminar flow assumptions. Instantaneous evolution of the air/water interface, i.e. 
free surface, is captured by the Volume Of Fluid (VOF) method. The nature of the VOF 
method allows capturing local jet flows from liquid to air due to presence of free-
surface piercing structures (here screen).  

CFD simulations are used to provide information regarding flow details in the 
domain such as distribution of velocity and pressure around the screen and near the free 
surface. Hydrodynamic forces imposed on the screen (not measured in the experiments) 
due to liquid sloshing are estimated as well.  

OpenFOAM which is an open source package is used for the numerical 
simulations. Before investigating the main problem, i.e. sloshing in presence of a 
screen, the code is verified and validated. In the verification stage (section  5.2), the 
governing equations used for formulating the problem are described and the 
methodology of the solution is explained. The validation stage (section  5.3) considers 
first sloshing in a clean tank with weakly nonlinear free-surface effects. Next a stronger 
non-linear case is tested. The results are validated against experimental results obtained 
in a rectangular tank. Effect of a bottom-mounted baffle in the tank middle on sloshing 
is tested for validation before running simulations in a screen-equipped tank.  

The numerical simulations and the results in the screen-equipped tank are given in 
section   5.3.3.2. The results include simulations for two solidity ratios ܵ݊ ൌ 0.4725 and 
ܵ݊ ൌ 0.7875 in shallow water depth, ݄/݈ ൌ 0.12 and small non-dimensional horizontal 
forcing amplitude  ߝ ൌ ଶೌߟ ݈⁄ ൌ 0.01.    

5.2 Method of solution of two-phase flow in OpenFOAM 
OpenFOAM is an open source finite-volume based package that includes solvers 

for variety of different problems in fluid mechanics. The solver used here is called 
interFOAM which makes use of the Volume Of Fluid (VOF) method to capture the 
interface of two incompressible and immiscible fluids. It can work on static and moving 
grids1.  

5.2.1 Selection of coordinate system 
The numerical computations may be performed in Earth-fixed (inertial) or tank-

fixed (non-inertial) coordinate systems. Working with an Earth-fixed coordinate system 
requires a moving grid that should experience the excitation motion responsible for 

                                                 
1The network or the grid made of Control Volumes (CVs) distributed over a 

numerical domain 
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sloshing in the tank. This needs updating the grid coordinates at each time step and 
resolving the boundary conditions at new positions. In the second option, the 
calculations are carried out in a fixed numerical domain and the effect of tank motion is 
forced by applying a body force in the momentum equation. This option is used in the 
current study because of its simplicity and smaller computational time. Comparison 
between simulations using both options shows longer computational times for the 
moving-grid method increasing with the number of Control Volumes (CV) inside the 
grid. 

The Navier-Stokes momentum equation for an incompressible fluid in a 
conservative form in a tank-fixed coordinate system is (Faltinsen & Timokha, Sloshing, 
2009): 

 
߲࢛
ݐ߲

൅ .ߘ ሺ࢛࢛ሻ ൌ െ
݌ߘ
ߩ
൅ ࢍ ൅ ଶ࢛׏ߥ െ ௢ࢇ െ ሺ࣓ ൈ ࢜௢ሻ െ ࣓ ൈ ࢘

െ 2ሺ࣓ ൈ ࢛ሻ െ ࣓ ൈ ሺ࣓ ൈ ࢘ሻ.
(5.1)

Here ࢛ is the velocity vector relative to the tank-fixed coordinate system. ࢇ௢ and 
࢜௢ are the tank’s acceleration and velocity relative to an Earth-fixed coordinate system. 
࣓ is the rotational velocity of the coordinate system about a point connected with vector 
࢘ to its origin. The variables in  (5.1) represented in bold-face are vectors. The sixth and 
seventh terms on the right hand side of the equation are Coriolis and centripetal 

accelerations. The time derivative 
డ࢛

డ௧
 means time differentiation of ࢛ at a fixed point in 

the tank-fixed coordinate system. This time differentiation does not apply on the unit 
vectors of the tank-fixed coordinate system.  All variables including gravitational 
acceleration are expressed with respect to the directions of the tank-fixed coordinate 
system. In the current study rotational motions are not considered leaving	ࢇ௢ as the only 
non-inertial acceleration term. 

5.2.2 Governing equations of a two-phase flow 
Air and water are two phases with large difference in density ߩ and viscosity ߤ 

sharing an interface (so-called free surface) in the sloshing tank. Numerically, two main 
different approaches are used to resolve the free surface. One approach is to follow or 
track the free surface as a sharp boundary. In this approach, the CVs at the interface are 
deformed to satisfy: a) the so-called kinematic free-surface boundary condition, i.e. 
continuity of the normal velocity, and b) dynamic free-surface boundary condition, i.e. 
continuity of the normal and tangential stresses on the interface. Another method is to 
capture the interface or the free surface using a fixed grid that doesn’t provide a 
completely sharp estimate of the free surface. This method is used in this study. 
Generally, both phases, gas/air or liquid/water, are included in the numerical domain 
and the interface between them is estimated using an indication function ߙ. The 
indication function is normally a step function defined as,  

ߙ  ൌ ൜
1, ݀݅ݑݍ݈݅ ሻݎ݁ݐܽݓሺ݁ݏ݄ܽ݌
0, ݏܽ݃ ሻݎሺܽ݅݁ݏ݄ܽ݌  (5.2)

 is also called volume of phase fraction or Volume of Fluid (VOF) function. The ߙ
location of the interface is where in the numerical domain ߙ changes from 0 to 1 or vice 
versa. The quality of the captured interface is depending on the local grid size and 
orientation of the CV’s surfaces at the interface. The VOF method is powerful as it can 
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handle discontinuous free surface profiles. The latter phenomena always occur in a 
sloshing tank equipped with a surface piercing screen.  

A simulation starts by first marking the liquid and gas phases in the numerical 
domain as defined in  (5.2). When the tank is excited the volume of fraction is 
transported by applying the transportation law (Ferziger and Peric 2002) for an 
incompressible fluid: 

 
ߙ߲
ݐ߲

൅ ࢛ ∙ ߙߘ ൌ 0. (5.3)

In general on a fixed grid the interface is not aligned with the CVs surfaces. This 
means CVs that are lying on the free surface should carry both values of ߙ ൌ 1	and 0 
which is numerically impossible. Instead a value of 0 ൑ ߙ ൑ 1 is calculated for these 
CVs. In fact CVs with 0 ൑ ߙ ൑ 1 construct the free surface. The minimum possible 
thickness of the interface is “one” CV normal to the interface. To achieve a thin 
interface, the convective term of equation  (5.3), ߘ. ሺ࢛ߙሻ, should be discretized carefully. 
In the original VOF method (Hirt & Nichols 1981) the convective term ߘ. ሺݑߙሬԦሻ is 
discretized using donor-acceptor method which combines upwind and downwind flow 
information and the local slope of the free surface to achieve a thin/compressed 
interface. An important note is that the solution of  (5.3) should be bounded between 
zero and one. Muzaferija and Peric (1998) suggest a simple scheme which takes care of 
boundedness of ߙ and results in a thin and locally smooth free surface. According to 
them their scheme provides an interface usually with one to three CVs thickness across 
the interface. They have applied their method to simulate three-dimensional sloshing in 
a chamfered tank (Peric, Zorn, el Mokhtar, Schellin, & Kim, 2009). Their applied 
method is a modified derivation of the fundamental work of Ubbink (1997). In his 
method a local CFL number is defined based on the average flow flux passing through 
the CV faces in the free-surface zone in order to control the amount of phases 
leaving/entering a CV. The latter removes the generation of non-physical values 
ߙ ൐ ߙ	ݎ݋	1 ൏ 0 in the interface CVs. This CFL number is called alphaCo and defined 

as alphaCo = 
ଵ

ଶ

∑ หథ೔
೙หల

೔సభ

௏಴ೇ೙
Δݐ for each single control volume. The maximum alphaCo is 

used to determine the next time step of the solution. 

In OpenFOAM, the boundedness of ߙ and compression of the interface is 
achieved by means of introducing an artificial convective term to the left side of  (5.3) 
(Rousche, 2002), 

 
ߙ߲
ݐ߲

൅ ߘ ∙ ሺ࢛ߙሻ ൅ ߘ ∙ ൫࢛࢘ߙሺ1 െ ሻ൯ߙ ൌ 0 (5.4)

.׏ ሺ࢛࢘ߙሺ1 െ ሺ1ߙ ሻሻ containsߙ െ  .ሻ making it effective only inside the interfaceߙ
Therefore it does not significantly influence the solution outside the interface. ࢛࢘ is a 
velocity field used for compression of the numerical free surface.  

In a finite volume discretization, volume integrals are converted to surface 
integrals by applying Gauss theorem. For instance equation  (5.4) is written in a finite 
volume format as, 

 න
ߙ߲
ݐ߲

ݒ݀	
ࢂ࡯ࢂ

൅	න ࢛ߙ ∙ ࡭ࢊ
ௌ಴ೇ

൅ න ሺ1ߙ െ ሻ࢛࢘ߙ ∙ ࡭ࢊ
ௌ಴ೇ

ൌ 0. (5.5)
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where calculation of convective integrals needs evaluation of ࢛, ࢛࢘ and ߙ at CV 
faces. ஼ܸ௏ and ܵ஼௏ are the volume and surrounding area of a CV. How ࢛࢘ is computed 
can be understood from the semi-discretized version of Equation  (5.5) : 

 න
ߙ߲
ݐ߲

ݒ݀	
௏೎

൅	෍࢛௙೔ ∙ ௙೔ࡿ

௡

௜ୀଵ

௙೔ߙ ൅ ෍࢛࢘௙೔ ∙ ௙೔ࡿ

௡

௜ୀଵ

௙೔൫1ߙ െ ௙೔൯ߙ ൌ 0. (5.6)

where 

௥೑೔ࢁ 
∙ ௙೔ࡿ ൌ ௙೔࢔ ∙ ௙೔ࡿ ݉݅݊ ቆ݉ܽݔ ቆቤ

߶௜
หࡿ௙೔ห

ቤቇ , ܿఈ ቤ
߶௜
หࡿ௙೔ห

ቤቇ. (5.7)

௙೔ࡿ ௜௙ and࢔ ൌ หࡿ௙೔ห࢔௙೔ are the unit normal vectors of the interface on a CV face 
and CV face area vector. The subscript ݂ means that the corresponding variable is 
calculated on a CV face. ߶௜ ൌ ࢛௙೔ ∙ ܥ ௙೔ is the flow flux at face ݅ ofࡿ ௜ܸ. 

Equation  (5.6) is solved explicitly using the velocity field resulting from the 
solution of the momentum equation. 

Velocity and pressure fields are found by solving the conservation of mass and 
momentum. The momentum equation should account for the sharp gradients of density 
 at the vicinity of the free-surface due to phase change. In order to ߤ	and viscosity ߩ
consider this fact in the numerical computations, the divergence of the laminar stress 
tensor ࣎ in equation  (5.1)  is reformulated as (Rousche, 2002): 

 

׏ ∙ ࣎ ൌ ׏ ∙ ቀߤ൫ܝ׏ ൅ ሺܝ׏ሻ୘൯ቁ 

     ൌ ׏ ∙ ሺμܝ׏ሻ ൅	׏ ∙ ሺߤሺܝ׏ሻ்ሻ 

                    ൌ ׏ ∙ ሺμܝ׏ሻ ൅ ሺܝ׏ሻ ∙ ߤ׏ ൅ ׏ሺ׏ߤ ∙  ሻܝ

 ൌ ׏ ∙ ሺμܝ׏ሻ ൅ ሺݑ׏ሬԦሻ ∙ ߤ׏  

(5.8)

The superscript ܶ means transpose. For the sake of simplicity of applying 
boundary conditions for the pressure, another modification is made to the pressure term 
by decoupling the pressure into hydrostatic and dynamic parts. The pressure is 
therefore,  

݌  ൌ ఘ௚௛ି݌ ൅ ࢍߩ ∙ ࢞. (5.9)

࢞ is the position vector and ି݌ఘ௚௛ is the dynamic pressure or pressure minus its  
hydrostatic part. 

Applying the gradient operator ׏ on both sides of the above equation gives: 

݌ߘ  ൌ ఘ௚௛൯ି݌൫ߘ ൅ ࢍߩ ൅ ࢍ ∙ (5.10) ߩߘ࢞

Combining  (5.1),  (5.8),  (5.10), the final form of the momentum equation reads:  

 

߲ሺ࢛ߩሻ

ݐ߲
൅ ߘ ∙ ሺ࢛࢛ሻ ൌ െߘ൫ି݌ఘ௚௛൯ ൅ ߘ ∙ ሺ࢛ߘߤሻ ൅ ሺ࢛ߘሻ ∙  ߤߘ

െࢍ ∙ ߩߘ࢞ െ  .௢ࢇ
(5.11)

࢞ is the position vector of CV’s center measured from the coordinates origin. 
Equation  (5.11) is solved for both phases on either sides of the interface and for those 
cells constructing the interface. For solving the momentum equation the local density ߩ 
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and dynamic viscosity ߤ are calculated based on the local value of ߙ in liquid, gas and 
interface regions, 

ߩ  ൌ ߙ௟௜௤௨௜ௗߩ ൅ ሺ1 െ ௚௔௦ (5.12)ߩሻߙ

ߤ  ൌ ߙ௟௜௤௨௜ௗߤ ൅ ሺ1 െ ௚௔௦ (5.13)ߤሻߙ

Equations  (5.12) and  (5.13) give an average value for ߩ and ߤ in the interface 
region. This artificial layer appearing in the numerical solutions carries momentum and 
energy which is not present in reality. To reduce this artificial momentum sufficiently 
small CVs should be used in the interface zone. In addition the numerical discretization 
of equation  (5.4) should result in a sharp and thin interface.  

In the next section the method of solution of the coupled momentum and 
continuity and volume of fraction is described. 

5.2.3 The solution algorithm 
The general algorithm of the solution procedure of a VOF solver for a transient 

problem can be summarized as follows(OpenCFD, OpenFOAM Source Code): 

1) Initialization of all variables. 
At start, all the variables such as ࢛, ߩ ,ߙ ,݌ and ߤ are initialized at cell 

centers. OpenFOAM solves the equations over a collocated grid, i.e. all 
variables are stored at CV centers. The advantage is handling complex 
geometries and less complex equation indexing. 

2) Before time integration, the time step is set and the CFL number ݋ܥ is 
calculated using the average fluxes passing the faces of each control volume. 
The CFL number is called Courant number for a one-dimensional case. By 
definition the CFL number ݋ܥ ൌ ݐ∆௜ݑ ⁄௜ݔ∆  states number of control volumes 
a fluid particle passes through in one time step in direction ݅. ݑ௜, ∆ݔ௜ and  ∆ݐ 
are the fluid velocity, cell edge length in direction ݅ and solution time step, 
respectively. For an explicit solution algorithm the stability conditions 
imply	0 ൑ ݋ܥ ൑ 1. In this study, the time step is set automatically according 
to a maximum desired CFL number selected before run time. Another input 
parameter is the maximum CFL number in the cells located in interface 
region where 0 ൏ ߙ ൏ 1 which is denoted in OpenFOAM by alphaCo. At 
the beginning of each time step of the solution new alphaCo	and 
Co	maximum values are calculated and the ratio between them and the input 
values is found. The minimum ratio between these two values and a factor of 
1.2  is chosen as a multiplication factor which amplifies or reduces the 
current time step. The maximum multiplication factor for time step is chosen 
as default to be 1.2 in OpenFOAM to avoid unstable oscillations 
(OpenFOAM documentation).   

3) The initial phase fraction and location of the free surface is set. Equation 
 (5.6) is solved using the initial fluxes and velocities and free surface is 
transported to a new location. Having ߙ for all cells, ߩ and ߤ are calculated 
using  (5.12) and  (5.13). Obviously, zero initial velocities do not affect the 
value of volume of fractions. 
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4) The new distribution of ߩ,  is used to perform a momentum ߤ and ߙ
prediction and continue with the PISO2 algorithm (Issa 1983). The solution 
of momentum equations in the predictor stage gives a velocity field ݑ∗. The 
semi-descritized version of the momentum equation solved in the predictor 
stage is 

௜ݑܣ 
∗ ൅ ௜ݑ′ܪ

∗ ൌ െ
ఘ௚௛௡ି݌ߜ

௜ݔߜ
൅ ௜. (5.14)ݏ

 are diagonal and off-diagonal elements of left hand side matrix of ′ܪ and ܣ
discretized coefficients. ି݌ఘ௚௛௡ stands for the modified pressure obtained for the 
previous time step or taken from the initial pressure values.  ܣ is not velocity dependent 
and is a result of temporal discretization but ܪ′ changes every time that the velocity 
field is corrected; it actually comes from the contribution of neighbor cells in implicit 
discretization of convective, ߘ ∙ ሺ࢛࢛ሻ, and diffusive, ߘ ∙ ሺ࢛ߘߤሻ, terms for current 
prediction or correction and also explicit discretization of the term ሺ࢛ߘሻ ∙  ௜ or theݏ .ߤߘ
source term includes the effect of the terms െࢍ ∙ ߩߘ࢞ െ  ௢ from the previous time stepࢇ
or iteration. Obviously the predicted velocities ݑ௜

∗ do not satisfy the continuity equation. 

5) The predicted values for velocity should be corrected. In the first corrector 
step, a new velocity and pressure field ݑ∗∗ and ݌∗∗ are found by enforcing 
the continuity. The new equation is,  

௜ݑܣ 
∗∗ ൌ െ

ఋ௣షഐ೒೓∗∗

ఋ௫೔
൅ ௜ݏ െ ∗௜ݑ′ܪ                     (5.15)

 
or  

௜ݑ																			 
∗∗ ൌ െିܣଵ

ఋ௣షഐ೒೓∗∗

ఋ௫೔
൅ ∗ݑ′ܪଵିܣ ൅ ௜.               (5.16)ݏଵିܣ

௜ݑ
∗∗ is assumed mass conservative, therefore applying divergence on 

the above equation leads to a Poisson equation for the corrected pressure 
 ,∗∗ఘ௚௛ି݌

                
ఋ

ఋ௫೔
ቀିܣଵ

ఋ௣షഐ೒೓∗∗

ఋ௫೔
ቁ ൌ

ఋ

ఋ௫೔
ሺିܣଵݑ′ܪ∗ ൅ ௜ሻ (5.17)ݏଵିܣ

Now if the gradient of the pressure is computed in the cell centers and 
then interpolated to cell faces, applying the continuity divergence operator 
on these gradients will lead to decoupling of velocity and pressures on 
alternate cell centers. The remedy is to apply the so-called Rhie-Chow 
interpolation. This method implies that the gradients are calculated directly 
on the cell faces using cell center pressures. This method removes the 
oscillating pressure filed but introduces an inconsistency in calculation of 
pressure gradient in momentum and Poisson pressure equation. This scheme 
does not conserve energy and may cause instability problems. The error 
introduced to the system by this scheme is of the same order as the basic 
descritization error (Ferziger and Peric 2001). In brief the Rhie-Chow 
interpolation used in OpenFoam follows these steps for the pressure 
corrector step(OpenCFD, OpenFOAM Source Code): 

                                                 
2 Pressure-Implicit Splitting of Operators 
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1. First a pressure independent velocity ݑ଴ ൌ
ு

஺
 is calculated at cell 

centers. ܪ is equal to the right-hand side of  (5.14) minus the product 
of the off-diagonal terms and predicted velocity, i.e. ܪ ൌ ௜ݏ െ   .∗௜ݑᇱܪ

଴ is interpolated to cell faces to compute a flux ߶௨బݑ .2 ൌ ࢛૙ ∙  is ࢌࡿ .ࢌࡿ
the area vector of a cell face.  

3. An updated flux ߶଴ is computed by subtracting the surface normal 
gradient of the density to ߶௨బ: ߶଴ ൌ ߶௨బ ൅	ሺെ|ࢍ ∙ ݄௙|	׏௡௙ߩሻܣ

ିଵ ∙  ࢌࡿ
4. Equation  (5.17) is solved for corrected pressure ି݌ఘ௚௛∗∗. The Rhie-

Chow interpolation is applied on the descretization of the Laplacian 
of the modified pressure i.e. ି݌ఘ௚௛∗∗.  

5. The computed pressures at the cell centers are then interpolated to the 
faces of each control volume to correct the flux ߶଴. The updated flux 
is computed from ߶ଵ ൌ ߶଴ െ ൫	ିܣଵ	׏	ି݌ఘ௚௛൯௙ ∙  Here the effect .ࢌࡿ

of pressure is subtracted from the face fluxes. 
6. The last step is to update the velocities at cell centers by applying the 

following correction: ݑ∗∗ ൌ ଴ݑ ൅ ௖௢௥௥௘௖௧௜௢௡ݑ ௖௢௥௥௘௖௧௜௢௡. Whereݑ ൌ
ሺ߶ଵܣሺ݊݋ܿ݁ݎ െ ߶௨బሻሻ is the difference between the reconstructed 
velocities in the cell centers due to the fluxes ߶ଵand ߶௨బat cell faces 

This completes one corrector step. The error analysis by Issa (1986) 
shows that at least two pressure-velocity corrections are necessary to obtain 
a solution with an error smaller than the basic descritization error. Therefore 
the corrector step ( step 5) ) is repeated at least one more time.  

6) If simulation time is not reached the next step of solution is started from step 
2). 

 

5.2.4 Selection of linear solvers  
OpenFOAM uses iterative solvers for solving linear implicit and explicit 

equations with symmetric and asymmetric matrices. These solvers use smoothers or/and 
pre-conditioners to achieve faster convergence. Preconditioners reduce the number of 
iterations by increasing the propagation speed of information in the numerical grid. For 
a linear equation system ݔܣ ൌ ܾ, in which ܣ is the resultant matrix of discretization 
coefficients, ݔ the unknown and ܾ the known vector on the right-hand side, a 
preconditioner finds an ܯ matrix such that its multiplication with the equation system 
results in a matrix system which is computationally cheaper. For a left preconditioner 
the modified equation is ିܯଵݔܣ ൌ  ଵܾ. Within every preconditioner a smoother mayିܯ
be used for performing the iterations. In case of using a multigrid solver/pre-conditioner 
smoothers are essential for iterations (Behrens, 2009).  

Solution of the linear implicit equation for velocity in the predictor stage is 
performed by an iterative solver known by OpenFOAM as smoothSolver which uses a 
Gauss-Seidel smoother for iterations. The Gauss-Seidel smoother is applicable for 
system of equations having matrices with non-zero diagonal elements. However, the 
convergence is only guaranteed if the matrix is diagonally dominant or symmetric and 
positive definite.  

Before solving the pressure Poisson equation (equation  (5.17)) in corrector step, 
an improvement is applied on the pressure field by a Preconditioned Conjugate Gradient 
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solver (PCG) which is applied on LDU3 matrices. The preconditioner is GAMG which 
is the short form for Geometric Agglomerated Algebraic Multigrid or Generalized 
Geometric-Algebraic Multi-grid as mentioned in the OpenFOAM manual. GAMG is a 
multigrid solver that finds quick solutions first for a coarsened grid and uses those 
solutions for solving the finer grids. The coarse grid solution smoothes out the high 
frequency errors. Coarsening the grid can be done geometrically (geometric multigrid) 
on the grid or algebraically by decomposing the matrix to sub-matrices. The smoother 
used with the GAMG solver/preconditioner is DIC Gauss-Seidel applicable for 
symmetric matrices. This smoother first applies a simplified Diagonal-based 
Interpolated Cholesky (DIC) smoother which may introduce some large-local errors. 
This issue is removed by applying a Gauss-Seidel smoother.  

After pre-correction of the pressure equation matrices, the first pressure correction 
equation is solved by a GAMG solver using a DIC smoother. 

The final pressure correction equations is solved by a PCG solver using a GAMG 
geometric-multigrid solver using a DIC Gauss-Seidel smoother. Table  5-1summarizes 
the solvers, preconditioners and smoothers used in one time step of solution.  

 
Table  5-1 Selection of solvers, preconditioners and smoothers for each step of solution in the PISO algorithm 

Solution stage Solver Preconditioner Smoother 
Predictor smoothSolver - Gauss-Seidel 

Corrector (pre-
correction) 

PCG GAMG DICGauss-Seidel 

Corrector(first) GAMG - DIC 
Corrector(final) PCG GAMG DICGauss-Seidel 

 
Once the velocity and pressure fields are updated, equation  (5.6) is solved using 

the known velocities. The solver is called MULES which stands for Multidimensional 
Universal Limiter with Explicit Solution (OpenCFD, OpenFOAM Documentation). As 
OpenFOAM documentation says “ it solves a convective-only transport equation using 
an explicit universal multi-dimensional limiter”. Limiters are used to control the 
solution by taking into account the local sharp gradients ߙ in the interface region. 

 

5.3 Simulation of sloshing 
The code is validated against experimental results for sloshing in a clean and a 

screen-equipped tank. Small amplitude transient sloshing in a clean tank is first tested.  
Next, the non-linearity of the free surface is raised by increasing the forcing amplitude. 
Before validating the code for sloshing in the tank equipped with a screen, sloshing in a 
tank with a bottom-mounted baffle is considered. In a baffled tank, the vortex shedding 
due to flow separation at the sharp edge of the baffle generates larger hydrodynamic 
damping relative to the viscous damping in the boundary layer attached to the tank 
walls. The density of the distributed CVs near the sharp edges of the baffle must be 
sufficient to capture the details of the velocity and pressure fields.  

                                                 
3 A symmetric matrix factorized into its elements on the diagonal (D), above the diagonal (U) 

(upper triangle) and below the diagonal (L) (lower triangle). 
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5.3.1 Clean tank 

5.3.1.1 Weak	free‐surface	nonlinearities	
The experimental results used for validation were obtained in a rectangular tank 

with inner dimensions Length x Breadth x Height = 1	݉ x 0.1	݉ x 0.98	݉ filled with 
water up to 0.833	݉ depth (݄/݈ ൌ 0.833). The tank is excited along its longest length 
following a harmonic oscillation ߟଶ ൌ ଶೌሺ1ߟ െ cos	ሺݐߪሻሻ where ߟଶೌ ൌ 0.00465	݉ and 
ߪ ൌ 6.075 rad/s (ߪ ଵߪ

∗⁄ ൌ 1.1).  

 

 
Figure  5-1. Computational domain for validation in a clean tank. The red and blue areas represent water and 
air phases, respectively. The total height of the domain is 0.93 m. The free-surface zone contains uniform grid 
distribution in both horizontal and vertical directions. For the stretching zone the grid is non-uniform in the 
vertical direction with a growth factor of 1.0164 toward the bottom.  

 

Numerical simulations are conducted in a two-dimensional rectangular domain 
with the same dimensions as the inner dimensions of the tank used in the experiments 
except for the height that is lower in the numerical domain to reduce the computational 
time. 100 CVs are distributed evenly in the direction of motion. The latter means 200, 
100 and 67 elements per wavelength for the first, second and the third lowest natural 
modes, respectively. In the vertical direction, the CVs are distributed in two zones. In 
the free-surface zone (see Figure  5-1) 60 CVs are uniformly distributed. This zone 
covers maximum and minimum wave elevations. The height of each CV is 3 mm. The 
convergence study showed that the smaller height elements do not significantly increase 
the accuracy of the results. In the lower part of the domain, between the free-surface 
zone and the tank bottom, the height of the CVs is increased smoothly toward the tank 
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bottom (stretching zone in Figure  5-1) such that the ratio between the height of the last 
and the first CV is 5. The latter means a growth factor4 of 1.0164. Information regarding 
the numerical domain, its dimensions, phase fractions and domain boundaries are 
presented in Figure  5-1. 

The boundary layer is not resolved in the numerical simulations. The main reason 
is that effect of lateral walls cannot be included in a two-dimensional simulation. The 
contribution of lateral walls in the damping caused by the boundary layer on all 
surrounding walls is as large as 70%. Therefore resolving the boundary layer only on 
the end side walls and the tank bottom will not result in the total boundary layer 
damping. 

 

5.3.1.2 Selection	of	boundary	conditions	
Boundary conditions for velocity ࢛, pressure ݌∗ and volume of phase fraction ߙ 

are introduced in Table  5-2. The names or expression mentioned in the table are known 
expressions for boundary conditions in OpenFOAM (see (OpenCFD, OpenFOAM 
Documentation) ). 

For velocity ࢛, non-zero tangential values are allowed on the left, right and 
bottom walls. The latter means that the gradient of the tangential velocities are not zero 
along the walls. This condition known to OpenFOAM as “Slip”, also applies the zero 
normal relative velocity on the walls. On the roof “pressurInletOutletVelocity” BC 
expresses that air phase is free to enter or exit the domain. The latter means the roof is 
open to atmospheric pressure (see Figure  5-2). This boundary condition applies zero 
normal gradients on all velocity components if the normal velocity is outgoing. If 
calculations require an inflow from the outside of the numerical domain, a fixed value, 
here zero, condition is applied to the tangential velocity component and the normal 
velocity will be calculated. In reality the tangential inflow velocity is not zero. However 
due to the very small ratio between the density of air and water the vertical flow 
enforcement of the light phase does not have a significant influence on the flow of the 
heavy phase.    

For the modified pressure ݌∗ ൌ ݌ െ ߩ Ԧ݃.  Ԧ, “Buoyant Pressure” BC means thatݔ
normal gradient of ݌∗ on the walls should be calculated by taking into account the value 
of the density gradients at the boundaries. This can be seen from the modified 
momentum equation (Equation  (5.11) ). For instance for a rigid wall with zero velocity 
boundary condition, Equation  (5.11) gives ݌׏∗ ൌ െ݃. ߩ׏ݔ ൅⋯ that needs evaluation of 
 on the vertical walls. The pressure boundary condition on the roof called “total ߩ׏
pressure”, applies a fixed-value on ݌∗ calculated from specified total pressure ݌଴ ൌ 0 
and local velocity ࢛. For this condition the relation between local and total pressure is 

଴݌ ൌ ݌ ൅ ଵ

ଶ
∗݌ ଶ where|࢛|ߩ ൌ ݌ െ ߩ Ԧ݃.  .Ԧݔ

On rigid boundaries, ߙ is forced to have zero normal gradients to neglect the 
effect of surface tension. On the roof, “inletOutlet” condition expresses zero normal 
gradients for out flow and zero fixed-value for inflow.  

 

                                                 
4 Ratio between the edge of two adjacent CVs 
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Table  5-2. Boundary conditions for the dependent variables on the domain boundaries. Condition names are 
known to OpenFOAM. Explanations are given in the text. 

Variable 
Boundary conditions on left, right and 

bottom walls 
Boundary conditions on the 

roof 
࢛ Slip pressurInletOutletVelocity 
 Buoyant Pressure Total Pressure ∗݌
 Zero normal gradient inletOutlet ߙ

5.3.1.3 Selection	of	numerical	discretization	schemes	
Finite Volume methods make use of Gauss theorem for transforming the volume 
integrals into surface integrals. As a result the variables should be quantified on CV 
faces (see Equation  (5.5) ). This is done by interpolation of the nodal variable values in 
CV centers to their surrounding faces. The interpolation methods are selected for each 
term of the governing equations depending on their physical importance. Several 
temporal and spatial discretizations schemes are provided by OpenFOAM. For the 
temporal discretization, i.e. time integration, the implicit Euler schemes is used 
throughout this study. This scheme is first order accurate in time and needs very small 
time steps to provide satisfactory results. The author’s experience is that the higher 
order methods such as second order backward integration and Crank-Nicholson cause 
instability problems. Considering the spatial terms in appearing in the momentum, 
Poisson and phase fraction equations, Table  5-3 lists the selected interpolation schemes 
for the corresponding terms enforced in the simulations.  
 
Table  5-3. Selected discretization schemes for various terms of the applied governing equations.  

Equation Term Scheme Explanation 

Momentum 
డሺఘ࢛ሻ

డ௧
 , 
డఈ

డ௧
 Euler First order implicit 

Momentum ߘ ∙ ሺ࢛࢛ሻ Upwind (clean tank) Upwind interpolation 
Momentum ࢛ߘ Linear Linear interpolation 

Momentum ߘ ∙ ሺ࢛࢛ሻ Blended, ܾ ൌ 0.5 (screen) 
Combined upwind and 

linear interpolation 
Momentum ߘሺ݌∗ሻ, ߩߘ,   Corrected ,ࣆߘ

Phase 
fraction 

ߘ ∙ ሺ࢛ߙሻ Van Leer Van Leer limiter 

Phase 
fraction 

ߘ ∙ ൫ߙ࢘ࢁሺ1 െ  ሻ൯ Van Leer Van Leer limiterߙ

Poisson Laplacian Corrected  
 
The author has extensively investigated the combination of many of the available 
schemes in OpenFOAM. The selection of schemes listed in Table  5-2  is taken because 
of stability reasons and physical behavior. 

5.3.1.4 Comparison	between	experimental	and	numerical	results	
The numerical results computed in the domain shown in Figure  5-1 are presented 

in Figure  5-2 together with the experimental results measured at 0.005 m distance from 
the vertical end walls (black line). The absolute value of the maximum and minimum 
responses in experiments is slightly different demonstrating the weak influence of 
nonlinearity of the free surface. 
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Figure  5-2. Comparison between numerical and experimental results and effect of CFL number (time step 
size) on the numerical results. The results present wave elevations at 5 mm distance from the vertical walls. 
The input parameters are h/l=0.833, ࢿ ൌ ૙. ૙૙૝૟૞, ࣌ ࣌૚

∗⁄ ൌ ૚. ૚. 

Combination of the response due to the forcing at ߪ ଵߪ
∗⁄ ൌ 1.1	and transient 

effects oscillating with the lowest natural frequency an small damping leads to a beating 
behavior of the response waves. Figure  5-2 shows that the numerical simulations with 
CFL=0.25 and 0.1 provide a very good estimate of the beating periods. This shows that 
InterFOAM solver can capture a very good estimate of the lowest natural frequency of 
sloshing for sufficiently small time steps. Another fact is that the amplitude of the 
waves decreases in the experiments due to hydrodynamic damping in the boundary 
layers at the bottom and vertical surrounding walls. The results for the first three CFL 
numbers show decay in the maximum wave elevations. The decay becomes weaker for 
the smaller CFL values and the smallest CFL produces non-decaying wave elevations 
that are larger than the wave elevations measured in experiments. As a matter of fact the 
only source of damping in the computations is numerical diffusion which is reduced by 
decreasing the time step (or decreasing the CFL number) leading to increase of the 
maximum wave elevations for both beating periods. The results with CFL=0.25 shows 
the best prediction of the experimental results in terms of both wave elevations and 
beating periods among the other numerical curves. This is because the amount of 
damping due to numerical diffusion is almost the same as viscous diffusion due to 
boundary layer flow in the experiments. This will be more explained later by conducting 
a free decay test of sloshing waves. Even though the results for CFL=0.1 are 
accompanied with almost no damping, they are less similar to experimental results than 
the results for CFL=0.25.        

To compare the damping level in numerical simulations with experiments, the 
results of free decay of sloshing waves are used. The results are shown in Figure  5-3. 
The wave elevations obtained for CFL=0.5 and 0.4 are accompanied with large 
numerical damping and decaying quickly during the time while the values presented for 
CFL=0.1 shows almost no decay. The results for CFL= 0.25 is the most similar to the 
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experiments. For this case, the numerical diffusion that causes artificial damping 
introduces almost the same amount of global damping as the boundary layer attached to 
the tank walls generates in the experiments (the effect of viscous bulk damping is 
believed to be negligible (Faltinsen & Timokha, Sloshing, 2009). The close similarity 
between the numerical results obtained for CFL=0.25 and results of experiments for 
forced-transient oscillation (Figure  5-1) and free decay oscillations (Figure  5-3) 
demonstrate the effect of global damping on the transient sloshing. However to achieve 
negligible numerical diffusion the CFL should be as small as 0.1 which is considered a 
very small value.  

 
Figure  5-3. Free decay of sloshing waves at 5 mm distance from the vertical end wall. Comparison between the 
results of numerical calculations and experiments. ࢒/ࢎ ൌ ૙. ૡ૜૜, ࢿ ൌ ૙. ૙૙૝૟૞.  Forcing frequency during 
excitation ࣌ ࣌૚

∗⁄ ൌ ૚. ૚. The forcing motion stops at t=7.4 seconds. 

Numerical experiments show that the descretization of the convective term 
.׏ ሺ࢛࢛ሻ of the momentum equation strongly affects the amount of numerical diffusion. 
The results shown in Figure  5-2 and Figure  5-3 are obtained by applying upwind 
scheme for discretization of the convective term. Although this scheme is numerically 
very diffusive, the results show that sufficiently small time steps can remarkably reduce 
the diffusive damping. Other higher order schemes such as linear central interpolation 
or second order upwind interpolations (both second order accurate on uniform grids) 
show less diffusive behavior. Numerical experiments show that these higher-order 
schemes can generate negative diffusive damping, i.e. during a decay test maximum 
elevations begin to increase instead of decreasing. Applying an upwind discretization 
does not show negative diffusion even for CFL=0.05. In fact there is a trade-off 
between precision, computational time and physical behavior of the numerical schemes. 
Here upwind scheme with small time steps is preferred. One also should note that the 
upwind scheme is very simple to implement unlike the other higher order schemes. This 
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property reduces the computational time. Moreover, an upwind scheme is non-
conditionally stable (Ferziger & Peric, 2002).   

5.3.1.5 Strong	free‐surface		nonlinearities		
To test out the performance of the code for simulation of sloshing with strong free 

surface nonlinearity, the forcing amplitude is raised to ߝ ൌ 0.01. The depth ratio is now 
݄/݈ ൌ 0.4. The wave elevations are measured at 1	ܿ݉ distance from the vertical walls. 
Strong nonlinearity causes amplification of more than one dominant mode leading to 
appearance of waves with maximum absolute elevations clearly larger than absolute 
minimums. Experiments show that excitation at ߪ ଵߪ

∗⁄ ൌ 1 in a clean tank generates 

very large waves with wave-amplitude to forcing-amplitude ratio of 
఍ೌ
ఎమೌ

൐ 60 

accompanied with roof impact and large wave overturning ending up with breaking. To 
avoid these effects the forcing frequency is taken sufficiently far from the resonance, i.e. 
ߪ ൌ ߪ) ݏ/݀ܽݎ	4.6068 ଵߪ

∗⁄ ൌ 0.9).  

 
Figure  5-4. Wave elevations at 0.01 m distance from the vertical walls. The input parameters are ࢒/ࢎ ൌ ૙. ૝, 
ࢿ ൌ ૙. ૙૚, ࣌ ࣌૚

∗⁄ ൌ ૙. ૢ. 

In the numerical domain, the grid is uniformly distributed in the vertical direction 
in the free-surface zone and it stretches up outside the free surface zone toward the tank 
bottom. In the horizontal direction, the grid is uniform everywhere. The tested CFL 
number is equal to 0.25. The numerical and experimental results are presented in Figure 
 5-4. Since the artificial numerical damping is smaller than the viscous damping in the 
boundary layer at the tank bottom and vertical surrounding walls, the transient effects 
are not dying out as fast as in the experiments. This is clear for the second beating 
period where experimental results show smaller responses. The beating period is 
underestimated by the numerical simulations and the numerical wave elevations are 
more similar to experiments in the beginning of the first beating period. These 
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differences can be related to unequal amount of damping in numerical and experimental 
results.   

5.3.2 Baffled tank 
Transient small amplitude sloshing in a baffled tank is considered. No 

experimental result is available for comparison. The numerical results will be compared 
with numerical computations by Liu and Lin (2008). They have applied spaced-
averaged Navier-Stokes (momentum) equations that accounts for turbulence by means 
of Large Eddie Simulation (LES). They have also used the Volume Of Fluid (VOF) 
method for capturing the free surface. The baffle is in the tank middle and its tip is 
sufficiently far away from the free surface to avoid piercing it during sloshing. The 
main dimensions are ݈ ൌ 1	݉, ݄ ൌ 0.5	݉, baffle height ݄௕ ൌ 0.375	݉ (݄௕ ݄⁄ ൌ 0.75). 
The tank motion follows a harmonic excitation of ߟଶ ൌ ଶೌߟ ሻ whereݐߪሺ	ଶೌsinߟ	 ൌ
0.002	݉ and ߪ ൌ ߪ) ݏ/݀ܽݎ	5.29 ଵߪ

∗⁄ ൌ 0.995). Figure  5-5 shows a good agreement 
between the computed wave elevations by Liu and Lin (2008) and OpenFOAM in the 
current study. The minor difference in the beginning of the simulations is due to 
different starting accelerations in the two numerical simulations. 

 
Figure  5-5. Wave elevation at the vertical wall in a tank with a vertically mounted baffle on the bottom. Solid 
line: OpenFOAM, dashed-dotted line: Liu and Lin 2008. ࢎ/࢈ࢎ ൌ ૙. ૠ૞, ࢿ ൌ ૙. ૙૙૛, ࢒/ࢎ ൌ ૙. ૞, ࢒ ൌ ૙. ૞ m. 

 

Liquid sloshing causes the flow to separate from the sharp edges of the baffle and 
to generate vortices. The simulations show that at each half a period of oscillation, one 
vortex is shed and convected away from the tip of the baffle. 4 vortices shedding during 
two periods of oscillations are made visible in Figure  5-6. These vortices are convected 
with the flow to the free surface zone and interact with the free surface. However, no 
deformation is visible in the simulations at the free surface due to influence of the 
vortices. In Figure  5-6, the velocity vector is plotted on top of the vorticity field. The 
velocity vectors are of the same size and do not represent the magnitude of the velocity.  

The vortex shedding increases the global damping and reduces the time needed to 
reach steady-state waves. Liu and Lin (2008) have used turbulence modeling that cause 
faster diffusion of vortices and they have not refined their grid around the baffle. In the 
current study, small sized CVs are used near the baffle and close to the tip. This is seen 
from the larger density of the velocity vectors near the baffle in Figure  5-6.  

Analogous to a screen, one can define a solidity ratio ܵ݊ ൌ 0.75 for a submerged 
baffle with ݄௕/݄ ൌ 0.75. The experimental results in chapter 2 for ݄/݈ ൌ ߝ ,0.4 ൌ
0.001 showed that the non-dimensional steady-state responses are highly reduced for 
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ܵ݊ ൐ 0.7. The main reason is the flow obstruction by the screen in the tank middle 
which drastically changes the flow field inside the tank. This scenario is present in 
Figure  5-6 where due to flow obstruction by the baffle, the sloshing is almost isolated in 
the two sides of the baffle.  In case of a clean tank, the maximum relative horizontal 
velocity occurs in the tank middle where the vertical velocity is almost zero. The latter 
situation is almost present for both compartments on the two sides of the baffle. 

 

 
Figure  5-6. Velocity vectors plotted on top of vorticity field which is quantified by color scale at ࢚ ൌ ૞. ૟ 
seconds. The dimension of computed vorticity field is ૚/ሺ࢙࢙ࢊ࢔࢕ࢉࢋሻ. In order to produce a streamline-like 
picture, the length of the velocity vectors is kept the same everywhere and is not representing the velocity 
magnitude. X direction is normal to the plane.  

5.3.3 Sloshing in a screen-equipped tank 
InterFOAM solver was shown capable of modeling small amplitude sloshing in 

presence of an internal damping device, i.e. baffle in the previous section. The final test 
case, the main case in this chapter, is sloshing due to larger forcing amplitude ߝ ൌ 0.01 
and in presence of a slat screen which generates relatively larger damping than a vertical 
bottom-mounted baffle, for a fixed underwater solidity ratio. The simulation uses a two-
dimensional representation of the model. Therefore, three-dimensional effects including 
the effect of the screen supports, wave breaking and turbulence cannot be included in 
the simulations. As discussed in chapter 2 the supports may matter if the solidity ratio is 
smaller than ܵ݊ ൏≅ 0.5.  

A slat screen is in fact a combination of small-height horizontal baffles evenly 
distributed over the depth. The flow separation from the sharp edges of the slats causes 
vortex shedding. The vertical distance between the edges of two consecutive slats is 
3mm. For the smallest solidity ratio ܵ݊ ൌ 0.4725	, the ratio between the height of the 

slot ݄௦௢ and height of the slat ݄௦௔ is 
௛ೞ೚
௛ೞೌ

ൌ ଷ

ଶ.଻
. According to Faltinsen and Timokha 

(2009), this ratio should be at least larger than two in order to neglect the interaction 
between the downstream flows behind two consecutive slats. Two solidity ratios will be 
studied here. For them, the ratio ݄௦௢ ݄௦௔⁄  is smaller than two, meaning that the separated 

Free surface (white line)
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vortices from the slats are so close that their interaction matters. The important note is 
that the total effect of the flow separation from all slat edges that applies a pressure drop 
in the tank middle should be correctly captured by numerical computations. There are 
local free-surface effects in the screen-zone such as wave breaking, liquid-to-gas jet 
flows and run-ups on the screen that affect the results especially for large solidity ratios 
when the forcing frequency is around the second natural sloshing frequency ߪଶ

∗ of the 
clean tank (see chapter 3, for instance Figure  3-8 and Figure  3-9). The experimental 
cases accompanied with the above-mentioned effects are not used for validations here. 
That is why only the experimental results for ܵ݊ ൌ 0.4725 and ܵ݊ ൌ 0.7875 are 
selected for validating the CFD result since they do not show strong influence of special 
free-surface effects. These strong free-surface effects while can be handled by the VOF 
method are computationally very expensive to simulate.   

The screen imposes abrupt changes on the flow field in the middle of the tank. 
The size of the CV edges at the vicinity of the screen should be sufficiently small to 
capture the large gradients of flow velocities and pressure. For a fixed forcing frequency 
and amplitude, the dynamics and kinematics of the flow at the screen change with 
increasing the solidity ratio between 0 and 1. 

5.3.3.1 Convergence	studies	
In a CFD study, a set of significantly different domain discretizations should be 

tested to achieve convergence for every single combination of forcing frequency ߪ and 
amplitude ߟଶೌ and solidity ratio ܵ݊. Therefore one expects a huge number of 
preliminary simulations (convergence studies). To reduce the number of preliminary 
simulations, one can take only a case associated with the largest horizontal velocity at 
the screen slots, i.e. lowest mode resonance and postulate that a converged solution for 
this case would cause a converged solution for the rest of the frequencies for a single 
solidity ratio. According to the experimental measurements for ݄/݈ ൌ 0.12	and ߝ ൌ
0.01 and ܵ݊ ൌ 0.4725, the largest steady-state response occurs for ߪ ଵߪ

∗⁄ ൌ 0.9619. 
The latter combination of parameters is chosen for performing a convergence study 
which will provide information about distribution of CVs in the numerical domain used 
for further simulations. However using a single grid for all computational cases is not 
very efficient because unnecessary large grids may be applied for less severe cases.  

The screen divides the tank into two identical compartments. In each one a 
structured grid with non-uniform distribution in the horizontal direction is used. The 
grid distribution is uniform in the vertical direction.  To account for large flow changes 
specially near the screen and also near the end walls the grid has to be refined at those 
areas. The length of the horizontal edges of the CVs are therefore increased from the 
screen toward the middle part of the compartment and then decreased toward the 
vertical end walls. The stretching pattern is controlled by two fixed stretching 
parameters ݎଵ	and	ݎଶ, length of each compartment and total number of CVs. The 
stretching parameter ݎ ൐ 1, is the ratio between the length of horizontal edges of two 
neighbor CVs i.e. ݎ ൌ ݁௜ାଵ/݁௜. ݎଵ stretches up the edges from the wall and ݎଶ from the 
screen’s vertical edge toward the tank middle. The smallest edge length belongs to CVs 
attached to the screen and those ones inside the slots. The largest horizontal edge is in 
the middle part of the tank where the two stretching areas share their largest edge. The 
distribution of the horizontal edges on one side of the screen and along the tank bottom 
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is shown in Figure  5-7. In Figure  5-7 the horizontal and vertical axis present the position 
of the midpoints of the horizontal edges ݉௜ from the end wall and the length of the 
edges ܽ௜, respectively.  

 
Figure  5-7. Variation of the CVs’ horizontal edge length ࢏ࢇ between the wall and the screen as a 

function of the midpoint coordinates of the horizontal CV edges ࢏࢓ on the tank bottom. Zero horizontal 
coordinate corresponds to the  vertical wall. ࢂ࡯ࡺ and ࢜ࡺ are total number of CVs in the whole domain and 
number of vertical CVs in a slot, respectively. 

The boundary conditions applied on the surrounding walls and the roof are given 
in Table  5-2. No-slip conditions is enforced for the velocity on the screen.  
Table  5-4. Properties of the grid distributions used in the convergence study. N: number of longitudinal CVs in 
one compartment. ࢜ࡺ: number of vertical CVs inside the slot. ࢘૚ ൌ  .Stretching factor near the wall :࢏ࢇ/ା૚࢏ࢇ
࢘૛ ൌ  .૚: Size of the smallest CV edge adjacent to the wall࢔࢏࢓ࢇ.stretching factor near the screen :࢏ࢇ/ା૚࢏ࢇ
 .size of the longest longitudinal CV edge :࢞ࢇ࢓࢏ࢇ .૛: size of the smallest CV edge adjacent to the screen࢔࢏࢓ࢇ

 .size of the vertical edge of a CV inside the slot:࢜ࢇ
࢞ࢇ࢓࢏ࢇ
࢜ࢇ

: Maximum aspect ratio. ࢒ࢇ࢚࢕࢚ࡺ: total number of CVs in 

the numerical domain.  

ܰ ௩ܰ ݎଵ ܽ௠௜௡ଵሺ݉݉ሻ ݎଶ ܽ௠௜௡ଶሺ݉݉ሻ ܽ௜೘ೌೣ
ሺ݉݉ሻ

ܽ௜೘ೌೣ

ܽ௩
 ௧ܰ௢௧௔௟ 

116 2 1.01 3.7955 1.0268 1.4822 6.6925 3.8 41096 

154 4 1.01 2.6730 1.0268 0.7630 5.6942 7.6 109333
180 6 1.01 2.1710 1.0268 0.5001 5.2634 10.5 176140
198 8 1.01 1.8990 1.0269 0.3771 5.0352 13.4 265118

 

Number of vertical CVs in the slots determines the size of the vertical edge of the 
elements because the grid is uniform in the vertical direction. In addition the CVs 
attached to the screen are forced to have a square shape, i.e. four equal lengths, in order 
to achieve the same accuracy for vertical and horizontal gradients of flow pressure and 
velocities. More information about the properties of the applied grid in the convergence 
study is given in Table  5-4. The height of the total fluid domain including both water 
and air is 0.23 cm to avoid excessive number of CVs. This height is also sufficiently 
high to avoid wave responses reaching the tank roof in the numerical domain. 

Steady-state waves in numerical calculations and experiments are compared in 
Figure  5-8. The numerical results in the top panel of Figure  5-8 are not showing a 
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significant difference for 2, 4, 6 and 8 vertical CVs inside the slots although the largest 
grid size is 6 times greater than the smallest. This means either the fineness of elements 
is not very crucial for the current case or much smaller CVs should be used to capture 
very fine details. Considering the maximum steady-state wave elevation ߞ௠௔௫, the over 

estimation by the numerical results is 
ቚ఍೘ೌೣሺ೙ೠ೘ሻି఍೘ೌೣሺ೐ೣ೛ሻቚ

఍೘ೌೣሺ೐ೣ೛ሻ
≅ 10% . Because both 

absolute minimum and maximum elevations in the numerical results are larger than the 
experimental results it cannot be out ruled that much smaller CVs are needed. However, 
the latter increases the computational time up to many hours making the numerical 
simulations impractical.  

 
Figure  5-8. Comparison between the results of a grid convergence study and experiments. Top panel: Non-
dimensional wave elevation at 1 cm from the vertical wall, Bottom panel: Non-dimensional amplitude of the 
frequency components in frequency domain. ࢒/ࢎ ൌ ૙. ૚૛, ࢿ ൌ ૙. ૙૚, ࢔ࡿ ൌ ૙. ૝ૠ૛૞, ࣌ ࣌૚

∗⁄ ൌ ૙. ૢ૟૚ૢ. The 
vertical lines, ܁૚, ,૛܁ …	 in the bottom panel identify the linear natural sloshing frequencies in the clean tank. ࣌′ 
is the frequency content of the measured signal calculated by FFT. 

The bottom panel of Figure  5-8 presents the amplitude of the steady-state wave 
components. Except for the forcing component ߪ) ߪ ଵߪ

∗⁄ ൌ 0.9619), the amplitude of 
the other frequency components 2ߪ3 ,ߪ, … are over estimated by the numerical results. 
However, the amplitude of all components was predicted with the same trend as in the 
experiments. The amplitude of the 2ߪ-component is the largest among all harmonics of 
the forcing in both the numerical and experimental results due to secondary resonance 
of mode number 2 of sloshing in the clean tank. This fact demonstrates the capability of 
InterFOAM in capturing strong free-surface non-linearities.  

Asymptotically speaking, the even modes do not cause cross flow through the 
screen and they are damped only by dissipation in the boundary layer attached to the 
wall. In the simulations, the boundary layer is not resolved which leads to overestimated 
values for 2ߪ and its harmonics 4ߪ,  Attempts to resolve the boundary layer on the .ߪ6
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bottom and vertical walls did not show significant changes in the results. In fact 70% of 
the boundary layer damping are generated on the vertical lateral walls that are not 
accounted for in the present two-dimensional simulation.    

One should remember that in the simulations the flow is assumed to be two-
dimensional and laminar everywhere. In addition the extra hydrodynamic damping 
effects of the screen supports are neglected. Estimations in chapter 2 showed that 2.3% 
to 7% extra damping might be introduced at the first resonance frequency by the 
presence of the screen supports when ܵ݊ ൌ 0.4725. 

All simulations were run in parallel by dividing the numerical domain into sub-
domains with equal number of CVs. In general the computational time is very lengthy 
for the current study even with parallel computation. The main burden here is to reach 
steady-state regimes which may take many forcing periods to be established. This is 
depending on the forcing frequency and amplitude and also amount of damping (solidity 
ratio).  

 

5.3.3.2 Numerical	results	and	analysis	for	Sn=0.4725	and	0.7875	
8 screens with 0.4725 ൑ ܵ݊ ൏ 0.9375 were experimentally tested. Due to long 

computational time only two screens with ܵ݊ ൌ 0.4725 and ܵ݊ ൌ 0.7875 are selected 
for validation study. For the selected screens, the special free-surface effects such as 
wave breaking and strong wave run-ups on the walls are small and negligible. 

a. ࢔ࡿ ൌ ૙. ૝ૠ૛૞ 

Starting with ܵ݊ ൌ 0.4725, a rough estimate is produced by applying the coarsest 
grid that has only 2 vertical CVs in a screen slot. Small number of CVs in the slot 
means coarser grids adjacent to the screen as well. The results of the computations are 
compared with experiments in Figure  5-9. The numerical results are not satisfactory at 
primary resonant areas, i.e. the first and the third natural frequencies of clean tank 
sloshing. The differences are largest for the second resonant area around 

ఙ

ఙభ
∗ ൎ 2.5999, 

i.e. at the third natural frequency of sloshing in clean tank. Away from resonance, a 
fairly good agreement exists between numerical and experimental results. Figure  5-9 
shows that the coarse grid can capture secondary resonance of even modes 2, 4 and 6 at 
݅ଶ, ݅ସ and ݅଺. The peak at ଼݅ in experiments is not captured by the coarse grid. Applying 
a finer grid which has 6 vertical cells inside the gap reduces the maximum error for 
wave responses at 

ఙ

ఙభ
∗ ൎ 1 from 50% to about 20% and significantly improve the results 

around 
ఙ

ఙభ
∗ ൎ

ఙయ
∗

ఙభ
∗. At 

ఙ

ఙభ
∗ ൌ 2.5839 numerical simulations fail to capture the experimental 

results. The time series of wave elevations for this case is shown (Figure  5-14) and 
discussed in the next sub-section. Refining the grid to have more than 6 CVs in the slots 
may reduce the error but at the expense of time. It should be reminded that the 
unwanted added damping due to screen supports could not be included in the current 
two-dimensional simulations.  
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Figure  5-9. Comparison between numerical and experimental results. Curves present non-dimensional 
maximum steady-state wave elevations	ࣁ/࢞ࢇ࢓ࣀ૛ࢇ as a function of non-dimensional forcing frequency ࣌/࣌૚

∗ . 
࢔ࡿ ൌ ૙. ૝ૠ૛૞, ࢿ ൌ ૙. ૙૚, ࢎ ⁄࢒ ൌ ૙. ૚૛. The vertical dashed lines ࢐ ,࢐࢏ ൌ ૛, ૝, ૟, ૚૙ mark frequencies  where the 
secondary resonance of higher even modes is possible. The circled marker shows where the numerical 
simulations fail.  

 
Figure  5-10. Pressure force on the screen non-dimensionalized by total liquid weight as a function of non-
dimensional forcing frequency ࣌ ࣌૚

∗⁄ . Coarse and fine grids use 2 and 6 cells inside the gap. ࢔ࡿ ൌ ૙. ૝ૠ૛૞, 
ࢿ ൌ ૙. ૙૚, ࢎ ⁄࢒ ൌ ૙. ૚૛.  
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Even though hydrodynamic forces on the screen were not measured in the 
experiments, result of CFD computations for pressure force is presented here to provide 
more details. Figure  5-10 compares the horizontal pressure force on the wetted screen 
surface for a coarse grid with 2 cells in the slot and for a finer grid with 6 cells in slot. 
Shear forces are believed to be small and neglected in the computations. Two resonant 
areas are present around ߪଵ

∗ and ߪଷ
∗ equivalent to non-dimensional values of ߪ ଵߪ

∗⁄ ൌ 1 
and ߪ ଵߪ

∗⁄ ൌ 2.5999. The focus is put on the lowest resonant frequency at ߪଵ
∗. 

Comparing the results around ߪ ଵߪ
∗⁄ ൎ 1  for maximum steady-state wave elevations 

(see Figure  5-9) and maximum steady-state pressure force on the screen (see Figure 
 5-10), the difference in ߞ௠௔௫/ߟଶೌ between coarse and fine grid around is almost 20% 
while the difference in horizontal force is almost negligible between the results obtained 
for fine and coarse grid. This result brings up two concluding arguments. First, the 
captured forces on the screen are weakly sensitive to the number of vertical cells inside 
the slot. However, this might be violated if one uses a much finer grid at the screen 
region. Second, the captured flow details in the screen region which is convected toward 
the tank walls every half a cycle of oscillations affect the measured wave elevations at 
the tank walls. 

 
Figure  5-11. Normalized maximum steady-state pressure force on screen and maximum steady-state wave 
elevation at vertical walls. ࢔ࡿ ൌ ૙. ૝ૠ૛૞, ࢿ ൌ ૙. ૙૚, ࢎ ⁄࢒ ൌ ૙. ૚૛.  

The normalized wave elevations in Figure  5-11 show two peak resonances due to 
secondary resonance of the second mode of sloshing in clean tank highlighted by the ݅ଶ-
area and main resonance at the lowest natural mode of the clean tank which is 
highlighted by the ߪଵ

∗-area. While the wave elevations show a peak at ݅ଶ-area, the 
pressure force experiences a drop. The reason is the excitation of the second mode of 
sloshing through secondary resonance. Asymptotically speaking, the second mode does 
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not cause cross flow through the screen and therefore it does not contribute to the 
pressure force. However the wave elevation at vertical walls increases due to this 
excitation. Due to secondary resonance the energy is transferred more into the second 
mode and the first mode becomes weaker. This can explain the drop on the force curves 
at the ݅ଶ-area. The pressure force curve has its maximum at the ߪଵ

∗-area. At this area the 
first mode is the most energetic and applies stronger cross-flow through the screen 
which results in a larger pressure force. 

5.3.3.2.1 Special	free	surface	effects;	sub‐harmonic	amplification	
Analysis of experimental results for ܵ݊ ൌ ߝ ,0.4725 ൌ 0.01, ݄ ݈⁄ ൌ 0.12 in 

chapter 4 revealed presence of strong non-linearities such as nonlinear amplification of 
extra harmonics (sub and super harmonics) around ߪଷ

∗ ଵߪ
∗⁄ ൌ 2.5999.  

 
Figure  5-12. Comparison between numerical and experimental results. Amplification of sub-harmonics of the 
forcing frequency. Top panel: Non-dimensional wave elevation at the vertical wall, Bottom panel: Non-
dimensional amplitude of the frequency components in frequency domain. The vertical lines, ܁૚, ,૛܁ …	 in the 
lower panel identify the linear natural sloshing frequencies in the clean tank. ܐ ⁄ܔ ൌ ૙. ૚૛, ઽ ൌ ૙. ૙૚, ܖ܁ ൌ
૙. ૝ૠ૛૞,	ો ો૚

∗⁄ ൌ ૛. ૠ૜૝ૡ. ࣌′ is the frequency content of the measured signal calculated by FFT. 

Depending on the forcing frequency, excitation of extra harmonics either results 
in waves with maximum steady-state elevations more than one forcing period apart in 
the recorded time series (Figure  5-12) or appearance of modulated waves with long 
beating periods(Figure  5-13). The CFD model can capture the extra harmonics for few 
number of tested forcing frequencies that, for instance, shown in Figure  5-12 for 
ߪ ଵߪ

∗⁄ ൌ 2.6971 and in Figure  5-13 for ߪ ଵߪ
∗⁄ ൌ 2.7348. The agreement between the 

experimental and numerical results is good for both cases. Ratios between the frequency 
of the strongest amplified extra harmonics and the forcing frequency in Figure  5-12 are 
݇ ൌ1/3, 2/3, 4/3 and 5/3. Figure  5-13 shows formation of beating behavior due to 
presence of more extra harmonics oscillating with ݇ߪ where ݇ ൌ	0.32, 0.36, 0.64, 0.68, 
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1.32, 1.36, 1.64 and 1.68. The numerical results shown in Figure  5-13 are in a better 
agreement with experiments for the last periods of simulation as the transient effects are 
dying out. 

 
Figure  5-13. Comparison between numerical (red) and experimental (black) results. The graph presents the 
non-dimensional wave elevations ࣁ/ࣀ૛ࢇ versus time non-dimensionalized by the forcing period T. ࢎ ⁄࢒ ൌ ૙. ૚૛, 
ઽ ൌ ૙. ૙૚, ܖ܁ ൌ ૙. ૝ૠ૛૞,   ,	ો ો૚

∗⁄ ൌ ૛. ૟ૢૠ૚.  

 
Figure  5-14. Amplification of sub-harmonics of the forcing frequency. top panel: Non-dimensional wave 
elevation at the vertical wall, Bottom panel: Non-dimensional amplitude of the frequency components in 
frequency domain. The vertical lines, ܁૚, ,૛܁ …	 in the lower panel identify the linear natural sloshing 
frequencies in the clean tank. ܐ ⁄ܔ ൌ ૙. ૚૛, ઽ ൌ ૙. ૙૚, ܖ܁ ൌ ૙. ૝ૠ૛૞,	ો ો૚

∗⁄ ൌ ૛. ૞ૡ૜ૢ. ࣌′ is the frequency 
content of the measured signal calculated by FFT. 
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The numerical results are not satisfactory for 2.4519 ൏ ߪ ଵߪ
∗⁄ ൏ 2.6217. For 

instance, numerical simulations predict extra harmonic amplifications for ߪ ଵߪ
∗⁄ ൌ

ߪ) 2.6028 ଷߪ
∗⁄ ൌ1.0011) which is not supported by experiments. This is shown in 

Figure  5-14. The numerical studies show that sufficiently small time step size or CFL 
number is crucial to capture the nonlinear excitation of extra harmonics. The numerical 
results in Figure  5-12 and Figure  5-13 were produced by enforcing maximum CFL 
numbers smaller or equal to 0.35. 

5.3.3.2.2 Turbulence		
Numerical simulations based on laminar flow indicate that turbulence may matter 

when screens with coarse slat-slot arrangements are used. The numerical results show 
sloshing wave elevations with clear unsteady behavior which is not present in the 
experiments. 

 
Figure  5-15. Unsteady behavior of numerical results for screen with coarse slat-slot arrangement. Non-
dimensional wave elevation at the vertical wall ࣁ/ࣀ૛ࢇversus number of forcing periods ࢚/ࢀ. Red: CFD, Black: 
Experiments. ࢎ ⁄࢒ ൌ ૙. ૚૛, ࢿ ൌ ૙. ૙૚, ࢔ࡿ ൌ ૙. ૞ૡ૚ૠ,	࣌ ࣌૚

∗⁄ ൌ ૙. ૢ૝૜. 

 Figure  5-15 compares time history of the wave elevations computed at one 
centimeter distance from a vertical end wall with wave elevations measured in 
experiments. The geometry of this screen is shown in the left panel of Figure  2-2; the 
second screen from the left with solidity ratio of 0.5817. Non-dimensional water depth 
and forcing amplitude are ݄ ݈⁄ ൌ 0.12, ߝ ൌ 0.01. The forcing frequency is near the 
lowest natural clean-tank sloshing frequency, i.e. ߪ ଵߪ

∗⁄ ൌ 0.943, which means that the 
cross-flow through the screen is large. The transient effects in the numerical 
computations are not dying out as shown in Figure  5-15 while steady-state wave 
elevations appear after almost 25 periods of forcing motion in the experiments. The 
latter might be related to the size and diffusion of vorticity associated with eddies shed 
from the screen edges as well as cancellation of the oppositely circulating eddies shed 
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from the edges of the screen slats. One should note that the zero velocity initial 
conditions applied in the numerical simulations which is different than experiments. 
This difference can affect the time needed for the transients to die out. However, this is 
not the reason for the transients seen in the numerical results presented in Figure  5-15.  

A snap shot of the vorticity distribution in the tank corresponding to numerical 
results presented in Figure  5-15 is shown in Figure  5-16. As one can see in Figure  5-16, 
the flow is crossing the screen from the right side of the screen to its left side at the 
moment. Due to this cross flow, group of eddies are shed from the screen and appear on 
the left side as shown in Figure  5-16. The distribution of vorticity due to these eddies is 
very non-uniform. This non-uniform vortex shedding from the slat edges together with 
laminar flow assumption in the numerical simulations do not let the eddies to die out as 
they do when turbulence causes faster diffusion of the vorticity. 

 

 
Figure  5-16. Vorticity distribution in the numerical domain with a screen of coarse slat-slot arrangement. 
ࢎ ⁄࢒ ൌ ૙. ૚૛, ࢿ ൌ ૙. ૙૚, ࢔ࡿ ൌ ૙. ૞ૡ૚ૠ,	࣌ ࣌૚

∗⁄ ൌ ૙. ૢ૝૜. 

 

 
Figure  5-17. Numerical results. Effect of fine slat-slot arrangement on steadiness of the wave elevations. Non-
dimensional wave elevation at the vertical wall ࣁ/ࣀ૛ࢇversus number of forcing periods ࢚/ࢀ. Solidity ratio is 
ࢎ .0.575 ⁄࢒ ൌ ૙. ૚૛, ࢿ ൌ ૙. ૙૚,	࣌ ࣌૚

∗⁄ ൌ ૙. ૢ૝૜. 

In order to examine the effect of slat-slot arrangement on the steadiness of the 
wave elevation responses, a numerical simulation is conducted for a screen for which 
the screen’s geometry is forced to have almost the same solidity ratio, i.e. ܵ݊ ൌ 0.575, 
but with a finer slat-slot arrangement. The non-dimensional wave elevations ߟ/ߞଶೌas a 

0 5 10 15 20 25 30

-2

-1

0

1

2

3

 

 

ߞ
ߟ ଶ

ೌ
⁄

 

ݐ ܶ⁄



 
Application of Computational Fluid Dynamics  129 

 

 
 

function of number of forcing periods ݐ/ܶ are shown in Figure  5-17 for the new screen. 
The numerical results show that steady-state waves appear after almost 20 periods of 
forcing motion from the start. The vorticity distribution for the fine slat-slot 
arrangement is shown in Figure  5-18. The structure of shed eddies is much more 
uniform for the fine slat-slot arrangement relative to the coarse slat-slot arrangement 
(see Figure  5-16). It is noted that the plots of vorticity distribution shown in Figure  5-16 
and Figure  5-18 were produced at almost the same time instant. Due to more uniform 
distribution of vorticity, the generated eddies from the edges of neighbor slats 
effectively cancel out each other leading to more uniform flow with weaker transients. 
The latter means even though laminar model is used, fine arrangements of slat and slots 
can reduce the strength of turbulence-dependent transients caused by vortex shedding. 

 

 
Figure  5-18. Vorticity distribution in the numerical domain with a screen of fine slat-slot arrangement. The 
pattern of colors is the same as in Figure  5-16. The maximum and minimum color thresholds are set at (100 
࢙ି૚) and (-100 ࢙ି૚). ࢎ ⁄࢒ ൌ ૙. ૚૛, ࢿ ൌ ૙. ૙૚, ࢔ࡿ ൌ ૙. ૞ૠ૞,	࣌ ࣌૚

∗⁄ ൌ ૙. ૢ૝૜. 

 
b. ࢔ࡿ ൌ ૙. ૠૡૠ૞ 

Figure  5-19 presents non-dimensional maximum steady-state wave elevations 
ߪ ଶೌ versus non-dimensional forcing frequencyߟ/௠௔௫ߞ ଵߪ

∗⁄  for ܵ݊ ൌ 0.7875. All 
resonant peaks in the selected frequency range in Figure  5-19 are due to nonlinear effect 
associated with secondary resonance. Both coarse and fine grids are able to capture the 
first peak at ݅ଶ with a good accuracy. The finer grid provides a good estimation for 
 ଶೌ with 10% error relative to experimental values. The resonance at ݅ସ is wellߟ/௠௔௫ߞ
predicted by the fine grid. Experiments show a small drop close at ߪ ଵߪ

∗⁄ ൌ 1.7 which is 
predicted by the fine grid as well. However, the simulations estimate this jump at a 
smaller frequency. The resonance peak at ଼݅ is also captured by the fine grid. For this 
peak, the predicted resonant frequency is slightly smaller than that of the experiments. 
Experiments show a jump at ଼݅	as the frequency increases. This jump is captured by the 
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fine grid as well but with a clear over estimation. The quality of the numerical results on 
the right side of ଼݅ becomes more inaccurate. In general, the numerical simulations 
provide better results for smaller forcing frequencies.  

Figure  5-20 presents non-dimensional pressure force on the screen for both coarse 
and fine grids. The two grids result in very similar values. This was seen for ܵ݊ ൌ
0.4725  previously. Unlike the results shown for ܵ݊ ൌ 0.4725, no clear resonant areas 
are present for pressure force in Figure  5-20 and it increases almost linearly with 
increasing forcing frequency. Considering the wave responses in Figure  5-19 a similar 
increase in the wave responses is seen for increasing forcing frequency. This is clearer 
for ߪ ଵߪ

∗⁄ ൐ 1.5 in Figure  5-19. According to experimental and numerical wave 
responses in Figure  5-19 primary clean-tank sloshing resonance areas are highly 
damped and almost not present. This means strong cross flows through the screen which 
directly apply a pressure loss on either sides of the screen leading to pressure forces are 
not present.  

 
Figure  5-19. Comparison between numerical and experimental results. Curves contain non-dimensional 
maximum steady-state wave elevations	ࣁ/࢞ࢇ࢓ࣀ૛ࢇ as a function of non-dimensional forcing frequency ࣌/࣌૚

∗ . 
࢔ࡿ ൌ ૙. ૠૡૠ૞, ࢿ ൌ ૙. ૙૚, ࢎ ⁄࢒ ൌ ૙. ૚૛. 

Two response points on the pressure force curve are marked in Figure  5-20. Point 
number 1 and 2 correspond to the peak point at ݅ଶ and the point next to it on the right 
side as marked in Figure  5-19. As one can see in Figure  5-19 and Figure  5-20, the 
maximum wave response at the vertical walls, around ݅ଶ, occurs for point 1 while the 
same frequency in Figure  5-20 gives almost the minimum value for the pressure force. 
On the other hand, when the frequency increases and the maximum wave elevation 
drops down to point 2, the pressure force experience a positive jump to point 2 as shown 
in Figure  5-20. This is again due to secondary resonance of mode number 2 that causes 
a peak point for the wave elevation at the wall and conversely a minimum for pressure 
force on the screen. This fact is similar to the one discussed previously for ܵ݊ ൌ
0.4275. (See Figure  5-11 and related discussion). 
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Figure  5-20. Pressure force on the screen non-dimensionalized by total liquid weight as a function of non-
dimensional forcing frequency ࣌ ࣌૚

∗⁄ . Coarse and fine grids use 2 and 6 cells inside the gap. ࢔ࡿ ൌ ૙. ૝ૠ૛૞, 
ࢿ ൌ ૙. ૙૚, ࢎ ⁄࢒ ൌ ૙. ૚૛. 

5.3.3.3 Computational	time	
The computational time is the total time required for a single simulation. Each 

simulation is performed for one forcing frequency while the solidity ratio, forcing 
amplitude and water depth are kept fixed. Because steady-state sloshing has to be 
reached, the tank should be excited for sufficient number of forcing periods for a single 
forcing frequency. This is a function of the hydrodynamic damping existing in the 
system. Considering ܵ݊ ൌ 0.4725, between 30 to 70 forcing cycles are enough to reach 
steady-state waves in the numerical simulations. The lowest limit of 30 cycles belongs 
to simulations ran for ܵ݊ ൌ 0.4725 when forcing frequency is varying around ߪ ଵߪ

∗⁄ ൎ
1. The latter is related to the large flow rate through the screen accompanied with strong 
vortex shedding. The 30 cycles limit also belongs to forcing frequency zones away from 
the primary resonances where responses are small. For ܵ݊ ൌ 0.7875, longer simulation 
times are required to reach steady-state waves. The main reason is mainly the reduced 
cross-flow through the screen. In average, 50 cycles of forcing period has been used to 
produce steady-state responses. 

A key information for a numerical simulation is the number of time steps needed 
to numerically simulate one forcing period. In addition how much time is spent to 
simulate one time step of solution is also important. Presence of the screen in the tank 
middle and smallness of the CVs at the screen zone needs very small time steps in order 
to achieve  a stable solution. For ܵ݊ ൌ 0.4725 the largest responses occur at the first 
and the third natural sloshing frequencies of the clean tank. Simulations  were carried 
out either on a desktop computer equipped with “2.53GHz Intel(R) Xeon(R) CPU 
E5630” processor (called CPU1 hereafter) or on a Linux cluster equipped with “2.4 
GHz AMD Opteron 2431 (Istanbul)” (called CPU2 hereafter). The average time step 
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Δݐ௔௩௘௥௔௚௘, CPU time needed for simulation of each time step ݐ௖௣௨ of the solution, 
average number of time steps used to simulate one cycle of forcing ௖ܰ௬௖௟௘ and time 
needed for simulation of 30 cycles of the forcing ݐଷ଴௖௬௖௟௘௦ are calculated and reported 
below.  

Considering ܵ݊ ൌ 0.4725, the CPU1 machine with 8 parallel computations were 
used for frequencies around ߪଵ

∗. The maximum CFL number was fixed to 0.5 and the 
grid had 6 cells inside the gap. For frequencies around ߪଷ

∗ mostly the CPU2 machine 
with 12 parallel domains were used. The maximum CFL number was fixed to 0.35 and 
the grid has 6 cells inside the gap. The average simulation time parameters are listed in 
Table  5-5.   

Table  5-5. Simulation time parameters for ࢔ࡿ ൌ ૙. ૝ૠ૛૞. ઢ࢚࢛࢖ࢉ࢚ , ࢋࢍࢇ࢘ࢋ࢜ࢇ are respectively the average 
time step in one simulation and CPU time needed for simulation of each time step in seconds.  ࢋ࢒ࢉ࢟ࢉࡺ is the 
average number of time steps used to simulate one cycle of forcing. ࢚૜૙࢙ࢋ࢒ࢉ࢟ࢉ is time needed for simulation of 30 
cycles of the forcing. 

Forcing frequency Δݐ௔௩௘௥௔௚௘(s) ݐ௖௣௨(s) ௖ܰ௬௖௟௘ ݐଷ଴௖௬௖௟௘௦(h) CPU, number of 
sub-domains 

ߪ
ଵߪ
∗		
ൎ 1 3.7609e-04 0.4170 5017 17.4 Intel, 8 

ߪ
ଵߪ
∗		
ൎ 2.5999 1.5745e-04 0.2929 4619 11.3 AMD, 12 

 

This information shows that the simulations need very long computational times 
even though parallel computations are used. For instance simulations for 10 forcing 
frequencies around ߪଵ

∗ using CPU1 distributing the simulation over 8 domains in 
parallel needs almost 7 days to be completed. This issue forced the author to include 
only two solidity ratios in the simulations.  

For ܵ݊ ൌ 0.7875, with maximum CFL number of 0.5 and 6 cells inside the gap. 
The simulation parameters for this solidity ratio is listed in Table  5-6. 

 
Table  5-6. Simulation time parameters for ࢔ࡿ ൌ ૙. ૠૡૠ૞. The definition of these parameters is given in caption 
of Table  5-5. 

Forcing frequency Δݐ௔௩௘௥௔௚௘(S) ݐ௖௣௨(S) ௖ܰ௬௖௟௘  ଷ଴௖௬௖௟௘௦(h) CPU, number ofݐ
sub-domains 

0.924 ൏
ߪ
ଵߪ
∗ ൏ 1.4711 5.21e-04 0.226 3330 6.23 Intel, 8 

1.6975൏
ఙ

ఙభ
∗ ൏2.2633 2.73e-04 0.245 3570 7.33 AMD, 12 

 

5.4 Closure 
The VOF method was shown capable of capturing non-linear, non-violent free-

surface effects in steady-state sloshing in presence of a screen in the middle of a 
rectangular tank. These non-linear effects include secondary resonance of higher modes 
and non-linear amplification of extra sub- and super-harmonics of the forcing motion. 
The latter effect can be captured by sufficiently accurate time integration which was 
achieved by setting a small enough CFL number.  
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In general, coarse grids have been used in this study. The minimum ratio between 
the smallest edge of a CV at a screen slot and the slot height is 1/6 in most of the 
simulations. For the small forcing amplitude of ߝ ൌ 0.01, the numerical results for 
ܵ݊ ൌ 0.4725 gives acceptable results around the main resonant areas at  ߪ ଵߪ

∗⁄ ൎ 1 and 
ߪ ଵߪ

∗⁄ ൎ ଷߪ
∗ ଵߪ

∗⁄ . In general, better agreement between numerical and experimental 
results over the total range of tested forcing frequencies is obtained for ܵ݊ ൌ 0.7875 
which might be related to smaller cross-flow through the screen. 

Simulations ran for a coarse grid and a finer grid show almost negligible 
difference in the calculated pressure forces on the screen while the calculated wave 
elevations at the vertical walls show 10% difference.  

In this numerical study, the two-dimensional cross-section of the screen was 
modeled with all geometrical details. The refined grids at the screen enforce very small 
time steps to obey the maximum desired local CFL number. Due to very small time 
steps, the simulations are very time consuming. For example this fact limited the author 
to run simulations only for ܵ݊ ൌ 0.4725 and ܵ݊ ൌ 0.7875. 
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6 Concluding remarks and suggestions for future work 
 

6.1 Concluding remarks 
Model tests were carried out in a rectangular tank with a screen in the middle with 

lateral excitation for various forcing frequencies including the first three lowest natural 
frequencies of clean-tank sloshing. Two-dimensional steady-state sloshing is 
considered. The main measured physical parameter is the elevation of the sloshing 
waves at the vertical end walls. The tested depths are in the category of finite, 
intermediate and shallow water. Very small, small and relatively large forcing 
amplitudes were considered in the experiments to study linear and non-linear sloshing. 
Solidity ratios of the screen vary between 0.45 and 0.95. This variation made it possible 
to study the effect of solidity ratio on the natural frequencies of the tank-liquid-system. 
The results for the smallest forcing amplitude to tank-length ratio	ߝ ൌ 0.001 showed 
that by increasing the solidity ratio toward 1, the lowest natural frequency of clean-tank 
sloshing disappears and the third natural frequency starts moving gradually toward the 
lowest natural frequency of a compartment with a length equal to half the length of the 
main tank. As a result the resonant frequencies and modes change drastically. This is 
called compartmentation. Compartmentation was shown by experiments to be a 
function of non-dimensional forcing amplitude ߝ. Larger forcing amplitudes cause 
compartmentation at a smaller solidity ratio.  

Running model tests for two sets of screens with different geometrical details, i.e. 
different slat-slot arrangements, but with almost the same solidity ratios reveals that the 
results are much more dependent on the solidity ratio rather than the geometrical details 
of the screens. These test runs were performed in finite water depth ݄ ݈⁄ ൌ 0.4 and for 
forcing amplitude ߝ ൌ ଶೌߟ ݈⁄ ൌ 0.001. 

The experimental results which represent the main part of this thesis are new and 
had not been reported in the literature before or during the time of current study. The 
produced results can be used as references for validation purposes.  

The theoretical study based on multimodal method and comparison with the 
experiments showed applicability of linear free-surface assumption for simulation of 
very small forcing amplitudes in finite water depth, i.e. ߝ ൌ 0.001 and ݄ ݈⁄ ൌ 0.4. For 
these conditions, experimental measurements shows wave responses of linear character. 
The theoretical model assumes an inviscid incompressible liquid with irrotational flow 
(potential flow) except at the screen zone. Applying this model, an important finding is 
that modeling the screen as a local pressure loss which is qudratically related to the 

approach velocity ܷ in the tank middle, Δ݌ ൌ ଵ

ଶ
 leads to satisfactory results for ,|ܷ|ܷߩ

very small forcing amplitudes and solidity ratios not too close to 1. For ܵ݊ → 1 the 
theoretical results at the lowest resonant frequency of a compartment with a half tank 
length are much larger than reality due to the linear free-surface assumption and the fact 
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that the screen causes negligible damping. The linear model provides qualitative results 
for ߝ ൒ 0.01 in finite water depth.  

In general forcing amplitudes ߝ ൒ 0.01 lead to non-linear free surface effects. 
Relevant to this, new phenomena in connection with sloshing in screen-equipped tank 
were discovered and discussed. The experimental results showed that for sufficiently 
large forcing amplitudes, i.e. ߝ ൒ 0.01 (as observed in the present study) the presence of 
the screen leads to strong excitation of higher harmonics of the liquid flow at certain 
forcing frequencies that can be related to nonlinear amplification of higher modes of 
sloshing. This phenomenon which is called secondary resonance needs relatively larger 
amplitudes to occur in a clean tank. The result of screen-caused secondary resonance is 
formation of narrow banded resonant areas at frequencies away from the first three 
natural frequencies of the clean-tank sloshing. A possible reason is that the symmetric 
modes do not lead to a cross-flow through the screen and, therefore, are almost 
undamped, in contrast to the antisymmetric ones. This implies that the same-order 
forcing of symmetric and antisymmetric modes should give a larger response of the 
symmetric modes.  

An adaptive non-linear modal method for finite liquid depth modified for presence 
of the screen and secondary resonance can predict the resonant steady-state wave 
elevations with an acceptable accuracy in terms of the resonant frequencies and wave 
amplitudes. The forcing frequency range where the model produces acceptable results 
does not cover frequencies near the 3rd natural frequency of clean-tank sloshing. The 
main difficulty around this natural frequency is related to the complexity of the modal 
system and amount of contribution of several modes in the modal system in addition to 
free-surface nonlinreaties at the screen zone. However this nonlinear model can explain 
non-linear sloshing for ߝ ൑ 0.01 for 0.75 ൏ ߪ ଵߪ

∗⁄ ൏ 1.35. This non-linear modal model 
includes the effect of geometrical details of the screen under the mean free surface to 
account for changes of anti-symmetric natural modes due to presence of the screen.  
This inclusion improves the predicted resonant frequencies. The non-linear model also 
assumes that the symmetric modes are not affected by the screen.   

The theoretical models, both linear and non-linear, are applicable in finite water 
depth. The linear model provides qualitative results for ߝ ൌ 0.03 and ݄ ݈⁄ ൌ 0.35. For 
ߝ ൌ 0.03, the non-linearity due to the free-surface is very strong and constructing a non-
linear model was not possible due to the complexity of the modal system. Large forcing 
amplitudes cause special non-linear free-surface effects such as very thin run-ups on the 
vertical walls and on the screen, wave breaking, jet flow through the screen from water 
to air impacting the underlying free-surface and fragmentation of the free surface. These 
effects cannot be included in the modal method and were neglected. Therefore when 
these special free-surface effects were large, the modal method failed to capture the 
experimental results. 

Local special free-surface effects at the screen position can cause multiple steady-
state responses in a screen-equipped tank on the two sides of the screen. As a general 
rule, two distinct sloshing amplitudes can happen if sloshing in both compartments is 
close to the primary resonant frequencies of the compartments and screen-caused 
damping is relatively small due to reduced cross-flow through the screen. This means 
that the solidity ratio should be large. For these conditions transient effects can change 
the damping content in each compartments and the solution in one of the compartments 
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experiences a jump in the response amplitude while the response in the other 
compartment does not experience a jump. This phenomenon for screen-equipped tanks 
has been observed first in this study and has not been found reported in the literature. 
Any theoretical or numerical model needs to model the details of the flow at the screen 
zone to capture multiple sloshing solutions in the compartments.  

Small and relatively large forcing amplitudes were tested in shallow-water 
conditions (݄ ݈⁄ ൌ 0.12 and ݄ ݈⁄ ൌ 0.125). Secondary resonance is more pronounced in 
shallow water than in finite depth and causes clear extra resonance peaks in the total 
range of tested forcing frequencies especially when the solidity ratio is between 0.7 and 
0.9. A new phenomenon is amplifications of “extra” harmonics of the forcing frequency 
 These harmonics are called extra .ߪ݇ in the wave responses that are oscillating with ߪ
because ݇ values are not integer values unlike the natural higher harmonics where 
݇ ൌ 1, 2,	.... This phenomenon was observed around the third natural clean-tank 
sloshing frequency. The forcing frequency ranges associated with amplifications of 
“extra” harmonics are functions of solidity ratio as well. These forcing frequency ranges 
were collected and documented for each solidity ratio in chapter 4. 

In shallow water, ݄ ݈⁄ ൌ 0.125 and in case of relatively large forcing amplitude, 
ߝ ൌ 0.05, free-surface impact events on the vertical end walls and on the screen were 
observed. For the smallest solidity ratio, ܵ݊ ൌ 0.4752, flip-through like impact events 
occur on the vertical end walls when the forcing frequency is near the lowest natural 
frequency of clean-tank sloshing. Increasing the solidity ratio to larger than 0.7 removes 
the impact events on the vertical walls but causes impact events on the screen. The 
forcing frequency range associated with the impacts on the screen is clearly larger than 
the lowest natural frequency. When compartmentation of sloshing occurs, new impact 
events are observed on the vertical walls for frequencies around the lowest natural 
frequency of a compartment. These impact events are documented in chapter 4 using 
visual investigations.  

Estimations of the magnitude of impact pressures due to impact events on the tank 
walls at the lowest natural frequency of clean-tank sloshing were made using pressure 
impulse theory (Cooker & Peregrine, 1995). The estimation predicts impact pressures to 
be comparable to previous measurements in clean tanks by Abramson et al., (1974) for 
similar shallow liquid depths, excitation amplitudes and frequencies. 

Non-violent sloshing in shallow water, i.e. ݄ ݈⁄ ൌ 0.12 and ߝ ൌ 0.01, was selected 
to perform numerical simulations using CFD (Computational Fluid Dynamics). The 
VOF (Volume of Fluid) free-surface capturing method was applied. The numerical code 
used for simulations was OpenFOAM which is an open source software. The VOF 
model was shown to be able to capture nonlinear effects such as secondary resonance  
with acceptable agreement with experiments for solidity ratios 0.4725 and 0.7875 in 
݄ ݈⁄ ൌ 0.12 and for small non-dimensional forcing amplitude ߝ ൌ 0.01. Even though 
the results were satisfactory, there were some major issues with the CFD simulations 
that have been applied in this study: 

 Long-time computational time was needed for performing every single 
simulation which makes it expensive for parametric studies. For instance, a 
single simulation for fixed forcing amplitude and frequency can take up to 17 
hours for 30 cycles of the forcing motion on a desktop computer equipped with 
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“2.53GHz Intel(R) Xeon(R) CPU E5630” processor even if parallel 
computations are used.  

 In addition, extensive preliminary simulations were needed to find out which 
numerical discretization schemes should be chosen to achieve both stability and 
accuracy; also how fine the numerical grid should be near the screen to achieve 
acceptable accuracy in the numerical results required many preliminary 
simulations.  

One important conclusion was that a laminar model did not provide steady-state 
wave responses oscillating with the forcing frequency if a screen with coarse slat-slot 
arrangements were used. The reason is believed to be associated with diffusion of 
vortices and cancellation of lateral vortices/eddies shedding from the screen slats. The 
latter effect is stronger in turbulent than in laminar flow. The real rotational flow away 
from the boundary layer is believed to be turbulent in our studied cases.    

6.2 Future work 
This study was limited to two-dimensional steady-state sloshing in a rectangular 

tank without force and pressure measurements on the vertical walls and on the screen. 
Following plans can be made for more future work by performing new experimental 
and theoretical works: 

1. An experimental set-up for measuring local pressures on the screen and vertical 
walls to provide sufficient information regarding probability of occurrence of 
slamming pressures during the observed impact events for the large amplitude-
to-length ratio ε ൌ 0.05	 in shallow water. 

2. Two-dimensional experiments in the same tank with forcing signal constructed 
from a scaled down sea-state or spectrum can be performed. 

3. Conducting steady-state sloshing tests in three-dimensional screen-equipped 
tanks. Real tank shapes such as cubic chamfered tanks and cylindrical tanks with 
perforated walls dividing the tank into sectors out to be investigated. The three-
dimensional studies can be extended to tests with irregular forcing signals 
representing realistic ship motions in different sea states. 

Considering numerical simulations using CFD, one may try to apply an abrupt 
pressure loss boundary condition instead of modeling the screen with all geometrical 
details in order to reduce the computational time. This was not applied in this thesis, 
because a difficulty with a highly advanced written code such as OpenFOAM (used in 
this thesis) was the unknown time which might be needed to understand the code deeply 
to define a new boundary condition. 
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 Experimental and Numerical Investigation of the Effect of Swash Bulkhead on Sloshing 
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ABSTRACT  

The effect of swash bulkheads on sloshing in a two-dimensional 

rectangular tank is studied. Damping due to the bulkheads and change 

in the lowest natural sloshing frequencies are accounted for using the 

quasi-linear modal theory by Faltinsen and Timokha (2009) and 

compared to new experimental results. An objective is to find which 

solidity ratio1 (��) gives the smallest sloshing waves at the two lowest 

natural sloshing frequencies. This solidity ratio is a function of non-

dimensional lateral excitation amplitude and liquid depth-to-tank 

breadth ratio. In fact the quasi-linear modal theory (Faltinsen and 

Timokha, 2009) is justified and the conditions of applicability of the 

theory are determined. 

KEY WORDS:  Sloshing; swash bulkhead; linear modal theory; 

experiments.  

INTRODUCTION

Sloshing matters in the design of ship tanks transporting liquids and 

fuels like LNG, LPG and oil. Sloshing means in our context “Violent or 

resonant motion of a liquid free surface inside a storage tank of a ship 

due to an excitation load with a frequency close to the lowest natural 

frequencies of the tank-liquid system”. There is a mutual interaction 

between ship motions and sloshing. Liquid impact on the tank walls 

and the roof can happen as results of different sloshing scenarios. 

Sloshing-induced slamming and resulting structural stresses is of 

particular concern for prismatic LNG tanks. As a consequence, there 

are limitations on the filling depth of the tanks. 

Internal structures such as baffles, columns and swash bulkheads2 cause 

dissipation of the kinetic and potential energy by means of flow 

separation. The consequence is damping of the sloshing. A swash 

bulkhead has the additional important effect of changing the natural 

sloshing frequencies to a frequency domain where less severe ship 

motions occur.  

Baffles have in general a small damping effect on sloshing relative to 

swash bulkheads (Faltinsen and Timokha, 2009). Swash bulkheads can 

be optimized to minimize sloshing. The result depends for instance on 

                                                          
1 The ratio between the solid area and the total projected area of the 

swash bulkhead  
2

Perforated bulkheads inside ship tanks used for damping the resonant 

liquid motion 

the tank motion, the liquid depth and the solidity ratio (��).  

An early study about swash bulkhead in the marine field was by Akita 

(1967). He showed from a non-impact hydrodynamic pressure point of 

view how different shapes of perforations and different solid area 

percentages can reduce the pressure forces on the tank walls. In 

spacecraft applications, the effect of perforated walls on sloshing has 

been studied experimentally by Garza (1964) and Abramson and Garza 

(1965) for forced horizontal excitation of a vertical circular tank that is 

compartmented into sectors by means of radial walls ���, ��� and ���
sector tanks. Their lateral excitation amplitudes were low relative to 

ship sloshing applications. Both the excitation amplitude and 

perforation of the sector walls affect the damping and the highest 

natural period. The natural period is here defined to correspond to when 

the liquid response has a maximum as a function of the forcing period. 

The fact that the excitation amplitude matters is a nonlinear effect 

associated with the flow through the perforated walls. As a rule-of 

thumb Dodge (2000) gives that if the total area of the perforations 

exceeds 10% of the area, the liquid tends to slosh between the 

compartments and the slosh natural frequency tends to approach the 

value of an un-compartmented tank.  

Classification societies have rules regarding swash bulkheads. GL3

expresses that the perforation area should not exceed 10 percent of the 

whole bulkhead area.  

The theory of swash bulkheads and their effects on sloshing is not well 

developed so far. This study introduces a quasi-linear method with 

empirical quadratic nonlinear damping associated with the cross-flow 

through the swash bulkhead that can provide useful information on the 

effectiveness of swash bulkheads. The investigation begins by 

describing the theoretical method. The results of this numerical method 

will be compared with new experimental results.  

NUMERICAL INVESTIGATION 

The numerical analysis is developed for a 2D rectangular tank without 

chamfers and infinite tank roof height. The tank is laterally excited. The 

method is described in detail by Faltinsen and Timokha (2009).Here a 

summary of the theoretical model is given.  

Summary of the Mathematical Procedure 

The liquid domain is split into two equal domains 	
� and 	
� by a 

                                                          
3
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vertical perforated thin plate (screen) (see Fig. 1) with a solidity ratio 

�� 
 � � ���� where �� is the opening area and � is the total 

projected area of the plate including the opening area. Fig. 1 defines the 

coordinate system, the water depth � and the length � of each 

subdomain. Potential flow theory with linear free-surface conditions is 

assumed in 	
�and 	
�.There is an inflow-outflow rate between the 

domains 	
�and 	
�that affects the behavior of the free surface and is a 

function of the forcing frequency and amplitude as well as the solidity 

ratio. The two transmission conditions at the perforated plate are: 

• The pressure difference on the two sides of the screen is 

related by a pressure loss coefficient  

• The horizontal absolute velocities on the two sides of the 

screen are equal 

The relative horizontal velocity at the screen is averaged over the liquid 

depth and expressed as 

��
��� 
 �
� � ���� ��!�


��                    (1)  

where ���� �� is the horizontal velocity relative to the tank. The 

pressure loss condition at the screen is averaged over the liquid depth 

and expressed as 

�
� � "#$%

#& '()
 � #$*

#& '()
+!�

�� 
 �

, -��
'��
'                 (2)  

Here the pressures on the left hand side of equation (2) have been 

expressed by Bernoulli’s equation in the two liquid domains at the 

perforated plate. 

Fig. 1, A two-dimensional rectangular tank with a screen in the middle. 

Parts (b) and (c) illustrate the lowest natural modes in the limit cases 

�� 
 �.and �� 
 �, respectively. 

  

The velocity potential and the free-surface elevation in the two liquid 

domains must account for the cross-flow at the perforated plate. The 

absolute velocity potentials in the two domains are expressed as 

/0 
 12�,��� 3 45
0�1 ����
��� 6 �� �����

3 7 89
0���

:

9)�
;<=.�>?1

� � ;<=@.�>?�� 3 �� �A �
;<=@.�>?� �A � .

. . . . . . ...............�B�.
 Here 2,��� is the sway motion of the tank and 

45
0�1 ���� 
��� 
 6 C� D�&�

,E "�1 6 ��, � �� 3 ��,+                (4) 

     
The free-surface elevation can be described based on the in-flow or out-

flow: 

F0�1 �� 
 0 �
E �
��� 3 G HI

0:I)� ;<=.�JI(
E �                 (5)               

Here, the first term on the right side of the free-surface elevation is a 

consequence of the piston-like motion at the perforated plate. The 

generalized coordinates 89
0��� in the velocity potential and the 

generalized coordinates HI
0 of the free-surface elevation can be related 

by the linear kinematic free-surface condition. The next step is to use 

the linear dynamic free-surface condition. This leads to the following 

relationship for ������ and differential equations for HI� and HI�: 

�K����� 
 � �
, ����K 
��� L�

M �, � �,N 3 �
, ���2K,��� 3 ���O��
���      (6)

, 

HKI0 3 PEI, HI
0 
 0-I���                    (7) 

where 

-I��� 
 ,
J QRS@ TJI�

E U "� ����V��
I 2K, 3 CK D�&�

I +                                         (8) 

and 

PEI, 
 WJI
E QRS@ TJI�

E U                  (9) 

is the square of  the natural frequency of a sub-domain. The presented 

differential equations and pressure loss condition are used to derive 

steady-state solutions of ������, �
��� and the generalized coordinates 

HI
0 under harmonic excitation. 

    

Numerical Calculations 

Influence of Physical Parameters. The physical parameters 

influencing the flow in the present problem are the ratio ��X between 

the liquid depth and the tank length, the non-dimensional forcing 

amplitude Y 
 Z[\
] , the non-dimensional forcing frequency 

^
^_�`abc�

 and  

the solidity ratio. Here P��de)f�denotes the lowest natural sloshing 

frequency without the perforated plate.  We will separately examine 

Y 
 �g��� and Y 
 �g��. Our cases correspond to ��X 
 �g�. The 

frequency range is chosen so that two resonant sloshing conditions are 

included.

Results for h 
 ig iij. The calculations were performed for the 

solidity ratios 0.328, 0.52, 0.712, 0.808, 0.854, 0.904, 0.928, 0.948 and 

0.962. The pressure loss coefficients corresponding to the chosen 

solidity ratios are listed in Table 1. These coefficients represent 

experimental results by Blevins (2000) for two-dimensional cross-flow 

through a line of small rectangular objects with sharp edges. The 

ambient flow is spatially uniform and steady. These pressure loss 

values are not Reynolds number dependent because the separation of 

the flow always occurs when it passes the sharp edges. The fact that the 

ambient flow is neither uniform nor steady in our case represents an 

error source in adopting the pressure loss coefficients from Blevins. 

Fig. 2 presents the steady-state maximum wave elevation at a distance 

of 1 cm from the vertical end walls. The tank length is 1m. The 1 cm 

distance is used to avoid the very thin wave-run up region when 

comparisons are made with the experiments (Wave run- up 

phenomenon cannot be modeled by the present theory). For low 

solidity ratios and the studied frequency range, two resonant 

frequencies exist corresponding to the first and approximately the third 

natural frequency of sloshing of the tank without the perforated plate. 

The largest responses at the first and the second resonant frequencies 

occur for the lowest solidity ratio.  Increasing the solidity ratio will 

within a certain solidity-ratio range raise the damping due to the cross-

flow at the perforated plate and cause smaller response amplitudes. 

However, there is a limit of the solidity ratio for this tendency and for 

��-values larger than that limit the response amplitude starts growing 

again. We can define a value ��kle  that corresponds to a solidity ratio 

that causes the lowest response at both the first and second resonances. 

The information about maximum responses and the resonant 

frequencies in Fig. 2 is collected in Table 1. According to this table, the 

smallest response at the two resonance frequencies occurs for �� 

�g���. For �� 
 �g���, the peak point of the response at the first 

resonant frequency has disappeared and the second resonant frequency 

has drifted to a frequency at the second resonant frequencies for the 

tank without the perforated plate. The latter resonance frequency for a 

tank without the perforated plate cannot be excited by lateral excitation 
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according to linear theory. According to Fig. 2 and Table 1, increasing 

the solidity ratio to larger than ��kle, results in larger frequency shift 

of the second resonant frequency and larger response amplitude. This 

means lower flow rate through the bulkhead and consequently smaller 

damping. In fact when the solidity ratio is larger than ��kle and very 

close to one, the liquid tends to oscillate with the natural frequency of a 

compartmented tank.  

The gray background data in Table 1 are related to a frequency range 

which is more close to the first natural frequency of a compartment, i.e. 

the second natural frequency of the original clean tank. 

Fig. 2, Theoretical results for steady-state response amplitude at the 

distance of 1cm from a vertical end wall for different solidity ratios, 

��X 
 �g�  and Y 
 �g���. 

Table 1. Pressure loss coefficients, the corresponding solidity ratios 

based on Blevins’s experimental results and the theoretical results for 

the first and the second resonant frequencies for Y 
 �g��� and 

��X 
 �g�.  

�� - � P
P��de)
�

��
FkEm�

2,E
� P

P��de)
�
�,

FkEm,
2,E

0.328 1 0.99 45.86 1.72 58.26 

0.52 4.53 0.99 21.54 1.72 27.89 

0.712 20.83 0.99 10.09 1.73 13.93 

0.808 50.74 0.99 6.51 1.73 9.83 

0.854 96 0.99 4.79 1.73 7.99 

0.904 273.97 0.99 2.95 1.68 6.56 

0.927 506.48 1.58 8 - - 

0.948 937.44 1.54 13.11 - - 

0.962 1443.45 1.53 19.67 - - 

Results for h 
 ig ij. Varying the forcing amplitude affects the 

amount of solidity ratio that gives the minimum response. Fig. 3 

presents the results for Y 
 �g��. For this forcing amplitude, the 

minimum wave amplitude responses at the two lowest natural 

frequencies take place for ��kle 
 �gn�o. According to Table 2, the 

peak value of the response at the lowest natural frequency has not 

disappeared but it is very small. The second maximum response is the 

smallest response when the forcing frequency varies between the 

second and the third natural frequency of a non-perforated tank. For 

��kle 
 �gn�o, the second resonant frequency which has the smallest 

response in this frequency range, occurs ��. ^
^_�`abc�


 �gn� (Table 2). 

For Y 
 �g���, and when ��kle 
 �g��� , the maximum response 

takes place at 
^

^_�`abc�

1.68 . It means that for a larger forcing 

frequency, the smallest response happens at a lower solidity ratio and 

with a smaller frequency shift relative to the approximate third natural 

frequency of sloshing of the tank without the perforated plate. 

Comparing the peak points of the response in Fig. 2 and Fig. 3 show 

that, when �� p
 ���kle�q)
g
� the damping is larger for Y 
 �g��
which means larger forcing amplitude causes larger flow rate through 

the swash bulkhead  

When �� r ��kle, the behavior is similar as for Y 
 �g���, i.e. the 

flow rate through the bulkhead reduces and the maximum response 

amplitude is growing as the solidity ratio increases.  

 Fig. 3, Theoretical results for steady-state response amplitude at the 

distance of 1cm from a vertical end wall for different solidity ratios, 

��X 
 �g�  and Y 
 �g��. 

Table 2. Pressure loss coefficients, the corresponding solidity ratios 

based on Blevins’s experimental results and the theoretical results for 

the first and the second resonant frequencies for Y 
 �g�� and ��X 

�g�. 

�� - � P
P��de)
�

��
FkEm�

2,E
� P

P��de)
�
�,

FkEm,
2,E

0.328 1 0.99 14.54 1.726 19.27 

0.52 4.53 0.99 6.89 1.730 10.25 

0.712 20.83 0.99 3.34 1.710 6.7 

0.808 50.74 1.581 8.01 - - 

0.854 96 1.539 13.40 - - 

0.904 273.97 1.525 36.84 - - 

0.927 506.48 1.525 67.85 - - 

0.948 937.44 1.523 125.46 - - 

0.962 1443.45 1.523 193.10 - - 

  

The presented theory makes it possible to show how the second 

maximum response shifts in the frequency domain as the solidity ratio 

increases. Fig. 4 shows the variation of the second resonant frequency 

as a function of the forcing amplitude and the solidity ratio. The figure 

shows that the second resonant frequency experiences a large change 

around a specific solidity ratio. This change behaves more gradually for 

the larger forcing amplitude.  

Uniform flow assumption through the bulkhead and its effect on the 

numerical results. At the relative depth (
�
] 
 �g�� , the exact value of 

the first, the second and the third non-dimensional natural frequencies 
^

^_�`abc�
.are 1, 1.5237 and 1.8774. We had expected to see the maximum 
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responses at these frequencies. 

��.
Fig. 4, The variation of the non-dimensional second 

versus the solidity ratio at liquid depth-to-tank length

for different non-dimensional forcing amplitudes s
However, Fig 2 and 3 show that the resonant frequencies are not 

completely matched with all these frequencies. The reason is that the

assumed piston-like (uniform) flow between the compartments 

properly account for the fact that the flow velocity decreases 

exponentially as we go down towards the tank bottom

larger for higher modes and larger depth-to-tank length ratios

instance, Table 2 and Table 3 confirm that this error is larger for the 

third natural frequency. Numerical experiments show that the

flow assumption leads to only 0.1% error for the lowest

frequency if  
�
] p �g�. The error increases with liquid depth (up to 1% 

for fairly deep water). It is also larger, up to 5-7%, for higher modes

(Faltinsen and Timokha, 2009). The error due to 

assumption through the bulkhead is more of concern

ratios. 

Applicability of the Theoretical Results 

We have demonstrated that conditions causing small sloshing are tank 

amplitude dependent. We have limited our studies to harmonic 

excitation with steady-state conditions in two

conditions. The tank is rectangular, but Faltinsen and Timokha (2009) 

have shown that a chamfered tank bottom has a minor influence on 

natural modes and frequencies. In reality, we must consider a family of 

design sea state conditions with corresponding time

realizations of the tank motions. Further, the liquid depth

ratio must be varied. The described generalizations are possible by 

means of the presented theory. However, an important question is to 

what extent free-surface nonlinearities matter.

addressed by comparing with model tests.  

One may in principle use validated CFD methods to find an optimum 

solidity ratio. However, a CFD solver is very time

limits its applicability for systematic investigations

quasi-linear method has therefore an advantage for systematic studies 

of optimum conditions.   

  

EXPERIMENTAL INVESTIGATION 

Experimental Setup 

Forced lateral harmonic tank motion 2 
 2,E;<=
swash bulkhead is in the middle of the tank as shown

interior tank length in the excitation direction is 

installed in a 2D sloshing rig located at the Marine Technology Centre

Y 
 �g��

Y 
 �g���

P�
P ��

de
)


�

second resonant frequency 

tank length ratio ��X 
 �g�
s 
 t,u�v. 

the resonant frequencies are not 

The reason is that the

compartments does not 

the flow velocity decreases 

bottom. This error is 

tank length ratios. For 

3 confirm that this error is larger for the 

umerical experiments show that the uniform 

assumption leads to only 0.1% error for the lowest natural 

liquid depth (up to 1% 

7%, for higher modes

due to the uniform flow 

of concern for low solidity 

We have demonstrated that conditions causing small sloshing are tank 

amplitude dependent. We have limited our studies to harmonic lateral 

in two-dimensional flow 

The tank is rectangular, but Faltinsen and Timokha (2009) 

a minor influence on 

In reality, we must consider a family of 

design sea state conditions with corresponding time-domain 

Further, the liquid depth-to-tank length 

ratio must be varied. The described generalizations are possible by 

However, an important question is to 

The latter will be 

CFD methods to find an optimum 

is very time-consuming which 

limits its applicability for systematic investigations. The described 

linear method has therefore an advantage for systematic studies 

;<=.�wQ� is studied. The 

of the tank as shown in Fig. 5. The 

length in the excitation direction is 1m. The tank is 

Marine Technology Centre

in Trondheim, Norway. Inside the tank two resistant wave 

accuracy of one mm have been installed 1

walls (Fig. 5) in order to avoid the effect of local 

walls. 

Selection of the Swash Bulkhead 

Dimensions. In order to achieve a

swash bulkheads, the opening area is horizontal with constant height 

covering the tank breadth which is defined as the tank length 

perpendicular to the excitation direction

can be the consequence of many different opening arrangements.

shows the arrangement of the openings and their dimensions for 

different solidity ratios. In the figure, the solidity ratio increases 

left to right. As an example, the dimensions of the openings are given 

for �� 
 �gBox. The distribution of the openings is more uniform for 

low solidity ratios. Due to the technical limitations in the drilling of 

openings with very small dimensions

reduced for large solidity ratios

the non uniform inflow-outflow between the compartments. 

Fig. 5, Experimental set-up and equipments

The tank breadth should be small in order to achieve two

flow conditions. For instance, a prismatic tank with a nearly square 

base and no interior structures may develop important nonlinear three

dimensional flow such as swirling, diagonal waves and chaos for lateral 

excitation along a tank wall (Faltinsen and Timokha, 2009). However, 

we must avoid that the tank is so narrow that viscous effects associated 

with the boundary layers at the tank walls matter. As 

viscous boundary layer thickness we consider a period of 

It follows by Froude scaling and a 

and the model length (
]y
]z

) equal to 

seconds corresponds to a full scale period of 10 seconds. 

boundary layer theory for laminar harmonically oscillating flow gives a 

geometrical measure of the boundary layer thickness 

0.0035m. Therefore, a width of 10 cm is 

of the tank breadth out of the boundary layer. A

dimensions of 1.0m x 0.98m x 0.1m (length x height x breadth)

chosen. The damping due to viscous energy dissipation along the tank 

walls is very small and negligible in our context (Fa

Timokha, 2009). There occur meniscus effects at the intersection 

���

Wave probe(W2)

SW bulkhead
Wave probe

(W1) 

in Trondheim, Norway. Inside the tank two resistant wave probes with 

been installed 1cm away from the vertical 

in order to avoid the effect of local wave run-ups on the 

ulkhead Perforations and the Tank 

achieve a two-dimensional flow through the 

the opening area is horizontal with constant height 

covering the tank breadth which is defined as the tank length 

perpendicular to the excitation direction (Fig. 5). A given solidity ratio 

e of many different opening arrangements. Fig. 6 

shows the arrangement of the openings and their dimensions for 

In the figure, the solidity ratio increases from 

an example, the dimensions of the openings are given 

The distribution of the openings is more uniform for 

low solidity ratios. Due to the technical limitations in the drilling of 

dimensions, the number of openings was 

reduced for large solidity ratios and as a consequence this will increase 

outflow between the compartments. 

up and equipments

The tank breadth should be small in order to achieve two-dimensional 

flow conditions. For instance, a prismatic tank with a nearly square 

base and no interior structures may develop important nonlinear three-

flow such as swirling, diagonal waves and chaos for lateral 

excitation along a tank wall (Faltinsen and Timokha, 2009). However, 

we must avoid that the tank is so narrow that viscous effects associated 

with the boundary layers at the tank walls matter. As a measure of the 

viscous boundary layer thickness we consider a period of 1.83 seconds. 

by Froude scaling and a ratio between the full scale length 

equal to 30 that a model period of 1.83 

full scale period of 10 seconds. Using linear 

er theory for laminar harmonically oscillating flow gives a 

boundary layer thickness of approximately 

width of 10 cm is sufficient to have 99.3 per cent 

of the tank breadth out of the boundary layer. A tank with the 

1.0m x 0.98m x 0.1m (length x height x breadth) were 

chosen. The damping due to viscous energy dissipation along the tank 

walls is very small and negligible in our context (Faltinsen and 

Timokha, 2009). There occur meniscus effects at the intersection 

Wave probe(W2)

SW bulkhead

tank position sensor

Ball screw

tank 
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between the tank walls and the free surface leading to three-

dimensional waves with very small wave height and wave length 

relative to the gravity waves. The error due to meniscus effects is 

therefore believed negligible. 

Fig. 6, Swash bulkheads and distribution of the openings for different 

value of solidity ratios. From left to right the solidity ratios are: 0.328, 

0.52, 0.712, 0.808, 0.854, 0.904, 0.927, 0.948 and 0.962.The 

dimensions are in meters. The solid area is in black. 

Performing the Experiments 

Generally the steady-state response elevation of sloshing waves is 

recorded for different forcing frequencies in specific frequency 

intervals. All of these intervals together should cover a frequency range 

of �g�.{� | } | �gn.{� ( ~ �gx p ^
^_�`abc�

p og�). An important 

consideration is that the steady-state solution may belong to different 

solution branches due to nonlinear free-surface effects. Which steady-

state solution is obtained depend on the transient time history. We will 

illustrate the fact that different steady-state solution exist by using a 

nonlinear multimodal theory with damping for a finite depth larger than 

the critical depth ��X 
 �gBB�x (Faltinsen and Timokha, 2009). There 

are no interior structures. The typical soft-spring behavior in the 

vicinity of the lowest natural sloshing frequency is shown in Fig.7.  

The maximum response occurs at a frequency lower than the natural 

frequency P�according to linear theory. If the forcing frequency P is 

decreased continuously from a frequency higher than P�, the response 

amplitude will reach a maximum and then jump from �, to a smaller 

value �M(Fig. 7). In the opposite direction, by increasing the forcing 

frequency a jump at the turning point � to a higher value �� takes place 

and then it decreases smoothly with increasing forcing frequency. In 

Fig. 7 is also shown a solution branch which can never occur due to the 

fact that the corresponding steady-state solutions are unstable. This 

unstable solution branch starts from T to A2 and is between the higher 

and lower solution branches in this frequency range. However, for a 

sufficiently high damping the jump phenomenon, i.e. the hysteresis 

effect, does not occur. What we are saying is if the cross-flow past the 

perforated plate causes sufficiently large damping, we will not see 

jumps. However, we must conduct the experiments properly in order to 

be able to detect jumps and not just start the forcing of the tank with a 

given forcing frequency. What we are interested in is the largest 

possible steady state amplitude. Based on the previous explanation, the 

maximum possible steady state amplitude occurs if the forcing 

frequency decreases continuously. Fig. 7 illustrates that two stable 

steady-state solutions may exist in a certain frequency range. We will 

illustrate experimentally the latter fact for the highest excitation 

amplitude by showing two different steady-state solutions in the two 

compartments for a range of solidity ratios. 

As an example, for 
�
� 
 �g�, s 
 �g���  the tank is excited by a long 

sinusoidal input signal. The signal starts from a frequency larger than 

the third natural frequency of the tank without swash bulkhead and lasts 

for about 300 cycles at this frequency. In this way the response 

elevation reaches steady-state conditions after about 100-150 cycles 

and then the maximum wave-elevation in the steady state region is 

found. Then the frequency decreases to a lower value and again this 

frequency lasts for about 300 cycles to reach steady state responses. 

The step of frequency changes is smaller around the peak points of the 

response in order to have the precise value of the resonance 

frequencies. In this way a long input signal is required to cover the 

whole frequency range.  

For s 
 �g��, when the forcing frequency is around a resonant 

frequency, a real steady-state condition cannot be met because of the 

steep waves and wave breaking, strong transients and progressive 

waves and unsteady effects of the swash bulkhead on the flow. 

Therefore, a mean value amongst all the maximum responses is used. 

Fig. 7, Different solution branches for steady-state amplitude around 

the lowest natural frequency. P
 is the lowest natural frequency. � is 

detuning parameter: � 
 �P
, � P,���Y[
�P,� . The depth is larger than 

the critical depth (Faltinsen and Timokha, 2009).  

Experimental Results and Analysis 

A. h 
 ig iij. Fig. 8 presents the maximum wave elevation for the 

first series of experiments for �� values of 0.328, 0.712, 0.904, 0.927, 

0.948, 0.962, Y 
 �g��� and 
�
] 
 �g�.  Since the forcing amplitude is 

very small and the accuracy of the wave probes is 1 mm, it is difficult 

to detect the smallest response in particular when the difference 

between the peaks is very small. For most of the solidity ratios, the 

curves are nearly flat around the two resonant frequencies and single 

frequencies corresponding to the maximum responses is not possible to 

report. Therefore a frequency range is notified in Table 3 around each 

resonant frequency. When there are no peaks, no frequency range is 

reported. The resonant frequencies are categorized for the first and the 

second resonant frequencies in Table 3. The gray background data 

corresponding to �� 
 �g��x  and �� 
 �g��o indicate that the 

frequency of maximum response is in a frequency range that is in the 

neighborhood of the lowest natural frequency of a compartment. In the 

above-mentioned theory this shift of the lowest frequency of maximum 

response to the lowest natural frequency of a compartment occurs at a 

lower solidity ratio, i.e. �� 
 �g���g.However, the theoretical results 

depend on the selection of the --values.  

��kle=0.927 gives the lowest response which is in a frequency range 

smaller than the range of the second maximum frequency response for 

lower solidity ratios (Table 3). No peak point can be detected around 
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the first maximum frequency for �� 
 �g�on. Theoretical calculations 

predict �� 
 �g��� as the optimum value which is not far from the 

experimental results. In brief, comparing the results of theory and 

experiments for Y 
 �g��� is summarized in Table 4. 

Fig. 8, Non-dimensional maximum wave elevation at a distance of 1 

cm from the vertical walls in experiments for ��X 
 �g� , .Y 
 2,E/l

�g���. 

Table 3. Experimental results for �=0.001 and ��X 
 �g�. F1 and F2 

ranges describes the frequency ranges around the first and the second 

resonant frequencies. 
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Fig. 9 shows that by finding an appropriate pressure loss coefficient -
it is possible to fit the results of the experiments with the theoretical 

results for the lowest resonance frequency. However, with this pressure 

loss coefficient the peak point on the second resonant frequency (third 

natural frequency of sloshing for a tank without interior structures) does 

not agree with the experiments neither for the frequency nor for the 

response amplitude. The fitting is also done for �� r �g��� where only 

one clear peak point exists. Table 5 presents the numerical results 

including the frequency range of the peak points for both theory and 

experiments where the fitted pressure loss coefficients have been used. 

Calculations for finding a pressure loss coefficient show that the 

theoretical results are not very sensitive to the pressure loss coefficient 

for large solidity ratios around ��kle. It means that large changes of 

pressure loss can make a very small change in the amplitude response 

and its corresponding resonant frequency (when �� is around ��kle). 

Table 4. The optimum solidity ratio and the non-dimensional frequency 

range of maximum response for Y 
 �g���
Items Theory Experiments 

��kle 0.904 0.927 

Resonant frequency 

(range) (P�P��de)
�) 
1.68 1.695-1.841 

Fig. 9, Non-dimensional maximum wave elevation at 1 cm distance 

from the tank end wall.  Theoretical results with empirical and fitted 

pressure loss coefficients, together with experimental results for 

��X 
 �g�g Y 
 2,E/l
 �g���.. and �� value of 0.328. 

Table 5. Empirical and fitted pressure loss coefficients for the first 

resonant frequency. For Sn>0.904, only one resonant response exists.   

�� -(Blevins) -(fitted) 

Frequency 

(Range) 

Theory 

Frequency 

(Range) 

Experiments 

0.328 1 1.73 
���� 
��

�
�����

0.52 4.53 3.2 
���� 
��
�
��
��

0.712 20.83 11.9 
���� 
����
��

�

0.808 50.74 26.8 
���� 
�����
�����

0.854 96 54 
���� 
�����
�����

0.904 273.97 87 ����� ��
�����
��

0.927 506.48 400 ������ ��������
��

0.948 937.44 520 ����
� ���������	�

0.962 1443.45 630 ����� ���������
	�

B. h 
 ig ij. It is expected from the above-mentioned theory that by 

increasing the forcing amplitude, the largest damping might in general 

be achieved for a lower solidity ratio (Fig. 3). Experiments prove this 

fact in general. Also, the experiments confirm the theoretical results 

predicting that the damping is larger for larger forcing amplitude at low 

solidity ratios (when �� p
 �������q)
g
�). This is obvious by 

comparing the results in Fig. 10 or Fig. 11 with the results in Fig 8. 

The quasi-linear theory predicts equal responses in both compartments 

of the tank no matter what the forcing amplitude is. The experiments 

confirm this fact for Y 
 �g���. However, the experiments for Y 
 �g��
shows that the response wave elevations in the two compartments can 

be different around resonance frequencies. This difference can be very 

large for certain solidity ratios. Fig. 10 and Fig. 11 exhibit the results 

for the left and right compartments, respectively. The three thick solid 

lines illustrate the positions of the first, the second and the third natural 
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frequencies of the clean tank. 

The experimental results for Y 
 �g�� contain interesting information 

about the behavior of the tank-liquid system in both compartments. 

Starting the investigation from the lowest solidity ratio, the steady-state 

amplitude-jump has happened for the third resonant frequency of 

sloshing unlike the results for Y 
 �g��� that never show an amplitude 

jump. When Y 
 �g�� and the forcing frequency is in the vicinity of the 

second natural frequency, the damping is not sufficiently large for the 

system to behave like a linear system. Nonlinearities will then, 

according to nonlinear multimodal theory, transfer energy between 

different sloshing modes and limit the response at the resonant mode 

according to linear theory. Another peculiar phenomenon is a small 

jump on the right side of the former jump on the same curve (�� 

�gBox). This is connected with the presence of the swash bulkhead 

(repeating the experiments without bulkheads do not show this small 

jump).  

For �� 
 �g�o the amplitude jump does not occur and the peak point 

moved a little towards a higher frequency range and also, the peculiar 

small jump is still there but with smaller amplitude. The result for 

�� 
 �g�o in the left compartment shows a small growing bump 

around the first natural frequency of a compartment without perforated 

wall. 

�� 
 �gn�o introduces a new jump in the frequency range close to the 

third natural frequency but this time the response jumps to a higher 

value. At the non-dimensional forcing frequency 1.277, a new peak 

point is introduced to the system which is not connected to any natural 

frequencies of the system. This peak exists in the same frequency range 

for �� 
 �gx�x��g�on but it disappears for �� 
 �g��x and larger 

solidity ratios. 

Unequal steady-state amplitude in the compartments can be identified 

clearly at �� 
 �gx�x and �� 
 �g��x. Since at these solidity ratios 

different interesting information is present, it would be better to present 

the results for these solidity ratios in separate figures.  

In Fig. 12 which is for �� 
 �gx�x, along with decreasing of the 

frequency, five zones with high responses can be detected. From right 

to left, the first one is related to the third mode of sloshing, the second 

one stands for the second mode, the third one is another new peak 

point, the fourth one is the same peculiar peak point as for �� 

�gn�o��g�on and finally the fifth one which is new again and it is at 

the right side of the first natural mode of the original tank. These new 

and unexpected peak points might be due to the combination of 

different modes and harmonics due to the presence of the bulkhead. 

The difference between the responses in the two compartments 

(�� 
 �gx�x) is getting very large when �g��n� p ^
^_�`abD�

p �g��n�. 

Around the non-dimensional frequency of 1.497 the response on the 

right side is approximately two times the response in the other side. In 

fact the large response on the right side holds in a wider range than the 

left side. The important matter for �� 
 �gx�x is that it provides the 

smallest response in both compartments (Fig. 10 and 11).   

Therefore experimental results predict a larger solidity ratio as the 

����� (theory predicts ����� 
 �gn�o). The difference in the 

maximum response for the optimum conditions in theory and 

experiments is not large. Comparisons between the results for Y 
 �g��
for experiments and the theory are summarized below in Table 6. 

The other very interesting results appear for �� 
 �g��x when the 

highest response in the left compartment is about four times the 

response in the right one (Fig. 13). It can be seen that for forcing 

frequencies around the second natural frequency, when one of the 

responses starts getting larger, the other one goes in the opposite way 

and gets smaller. One may say that larger inflow through the bulkhead 

from one side to the other side causes a large damping to the 

compartment with the lower response. Even more, the maximum 

elevation in the left compartment for �� 
 �g��x is larger than the 

maximum elevation for �� 
 �g��o. This does not follow the 

predictions of the quasi-linear theory that the largest response occurs 

for the largest solidity ratio. An interesting fact is that repeating the 

experiments does not give the same results in the same compartment. It 

illustrates that different steady-state solutions exist due to free-surface 

nonlinearities for a given forcing frequency as illustrated for a clean 

rectangular tank in Fig. 7.  

Table 6. The optimum solidity ratio and the non-dimensional frequency 

range of maximum response for Y 
 �g��
Theory Experiments(Left) Experiments(Right)

��kle 0.712 0.808 0.808 

Resonant 

frequency 

(range) 

(P�P��de)
�) 
1.71 ���������	
 ������������

Fig. 10, Maximum elevation in the left compartment for Y 
 �g�� and 

��X 
 �g�. 

Fig. 11, Maximum elevation in the right compartment for Y 
 �g�� and 

��X 
 �g�.. 

The higher jump at the third resonant frequency for �� 
 �gBox and for 

largest solidity ratios i.e. �� 
 �g��x and �� 
 ���o is due to the soft-

spring effect but the other jumps observed here can be due to the 

presence of the bulkheads. There were no jumps or any unexpected 

nonlinear phenomena in the case of Y 
 �g��� in the experimental 
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results. This emphasizes the important role of large forcing amplitude 

in amplifying the nonlinear effects. 

Fig. 12, Response amplitudes in the left and right compartments for 

Y 
 �g��, �� 
 �gx�x and ��X 
 �g�. 

Fig. 13, Response amplitudes in the left and right compartments for 

Y 
 �g��, �� 
 �g��x and ��X 
 �g�. 

CONCLUSIONS 

The presented quasi-linear theory provides guidance on the optimum 

solidity ratio.��kle.and resonant frequency (ies) range. Table 7 shows 

the relatively good performance of the theory in determining ��kle for 

very low forcing amplitude and for a higher forcing. The predicted 

resonant frequency by theory is not bad relative to the experimental 

results for the lowest forcing amplitude but it is a little far from the 

experimental results for the larger forcing.  

For low solidity ratios the theoretical results are sensitive to the 

pressure loss coefficient. This sensitivity is low when the solidity ratio 

is in the vicinity of ��kle. Blevins (2000) notified that the accuracy of 

the presented pressure loss coefficients are 0o�� and the error is 

higher when the solidity ratio is larger than 0.9 or smaller than 0.15.  

As a consequence, the theory can give fair predictions about the range 

of minimum response in terms of solidity ratio and the frequency range 

of maximum responses even for relatively large forcing amplitude. 

Nonlinear effects can cause large differences between the steady-state 

oscillations in the two compartments when the forcing amplitude is not 

very small and the solidity ratio is not small, let say larger than 0.712 

for Y 
 �g��. The interesting examples are �� 
 �gx�x and �� 

�g��x, where the difference between the responses in the two 

compartments can be very large (Y 
 �g��). 

Table 7. Optimum solidity ratios for theory and experiments. 

Frequency ranges are non-dimensional (P�P��de)
�) 
 Theory Experiments(Left) Experiments(Right) 

��kle
�Y 
 �g���� 0.904 0.927 0.927 

Resonant 

frequency 

(range) 

�Y 
 �g����
1.68 1.695-1.841 1.695-1.841�

��kle
�Y 
 �g��� 0.712 0.808 0.808 

Resonant 

frequency 

 (range) 

�Y 
 �g���
1.71 1.571-1.620 1.497-1.633�

Assuming uniform flow through the bulkheads in the theory causes an 

error in the predicted resonant frequency for higher modes and large 

depths (��X r �g�). Including the effect of exponential decreasing of 

the flow velocity in the theory can make this error smaller.

In this study, the shape of perforations is chosen to be rectangular to have 

a two-dimensional flow condition. Other shapes of perforations may 

change the results. In addition, we are able to have uniform distribution of 

openings for low solidity ratios but not for the large solidity ratios due to 

technical limitations in cutting very narrow openings in the plates. This 

can cause different local effects on the inflow-outflow for these large 

solidity ratios.  
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Abstract Potential-flow theory is employed with linear free-surface conditions, multimodal method, and a screen-

averaged pressure-drop condition to derive an analytical modal model describing the two-dimensional resonant

liquid motions in a rectangular tank with a vertical slat-type screen in the tank middle. The tank is horizontally

excited in a frequency range covering the two lowest natural sloshing frequencies. The model consists of a system

of linear ordinary differential [modal] equations responsible for liquid sloshing in compartments, as well as a non-

linear ordinary differential equation describing the liquid flow between the compartments. New experimental model

tests on steady-state wave elevations near the tank wall are reported for the solidity ratios 0.328 ≤ Sn ≤ 0.963

where Sn is the ratio between the solid area and the full area of the screen. The experiments generally support

the applicability of the model. The discrepancy can be explained by the free-surface nonlinearity. The screen acts

as a damping mechanism for low and intermediate solidity ratios, but it causes an increase in the lowest resonant

sloshing frequency at higher solidity ratios as if the screen had been replaced by an unperforated wall.

Keywords Multimodal method · Perforated screen · Sloshing

1 Introduction

Screens and perforated plates can provide important damping of sloshing in a tank. They may also affect the natural

sloshing frequencies. An important parameter is the solidity ratio, Sn, which is the ratio of the area of the shadow

projected by the screen on a plane parallel to the screen to the total area contained within the frame of the screen.

The solidity ratio is between zero and one, where Sn = 0 means no screen and Sn = 1 means that the screen

becomes an unperforated wall.

Perforated plates have been studied in the past century in the context of liquid sloshing in cylindrical fuel tanks

of spacecraft (see the NASA report [1, Sect. 4.4]). Other hydrodynamic-screen applications are associated with

anti-rolling tanks of ships, tuned liquid dampers (TLD) of tall buildings, swash bulkheads of ships, and perforated

plates of oil–gas separators on a floating platform (see for instance [2–5]). A design requirement for anti-rolling

tanks and TLDs is that the lowest natural sloshing frequency should not be significantly affected by the screen and
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Centre for Ships and Ocean Structures and Department of Marine Technology, Norwegian University of Science and Technology,

7491 Trondheim, Norway
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94 O. M. Faltinsen et al.

approximately equal to the roll natural frequency and the lowest important structural natural frequency, respectively.

The damping should be large. The consequence is that either the wave-induced roll motions of a ship or wind- and

earthquake-excited vibrations of tall buildings are clearly reduced. A rough guideline is that the solidity ratio ought

to be about 0.5. The objectives for a swash bulkhead in cargo liquid tanks of ships and perforated plates in oil–gas

separators on floating platforms are to provide sloshing damping as well as to change the lowest natural sloshing

frequency to a higher frequency range where the wave-induced ship and platform velocities and accelerations are

less severe. The consequence is a high solidity ratio.

Our focus is on analytical modeling of liquid sloshing in a rectangular tank with a slat screen (interested readers

may find a review on appropriate CFD methods in the recent paper by Maravani and Hamed [5]) to be applicable

for Sn ≥ 0.3. The excitation is horizontal and harmonic, and the flow is nearly two-dimensional.

Existing analytical modeling techniques typically assume that the screen has a minor effect on the natural sloshing

frequencies. Under this assumption, we may use the flow in a clean tank as an ambient flow and estimate the energy

dissipation due to the screen. This estimate can be done by empirical drag-force formulations that account for flow

parameters such as the Reynolds number and the geometrical screen shape [6, Chap. 6], or employing the empirical

pressure-drop condition [3,4,7,8]. Thereafter, the found damping rates can be incorporated into either modal [6,9]

or equivalent (pendulum, spring-mass etc.) mechanical systems [3,4] by using an equivalent linearization technique

in steady-state conditions. Such a procedure based on empirical drag formulation is exemplified in [6, Sect. 6.8]

for a screen placed in the middle of a rectangular tank with two-dimensional ambient flow. The ambient flow was

described by the linear potential-flow theory of an incompressible liquid. The relatively small effect of viscous

boundary-layer damping was incorporated. There was good agreement with the experimental values of damping

ratio, steady-state wave amplitude and longitudinal force for a rectangular tank with a wire mesh screen by Warn-

itschai and Pinkaew [2]. The experimental conditions for forced tank oscillations was a water depth-to-tank length

ratio of 0.3, and longitudinal forcing amplitude divided by tank length equal to 0.005. The solidity ratio was 0.48.

A different procedure has to be followed for higher solidity ratios when the screen significantly affects the res-

onance sloshing frequencies which tends to the natural frequencies in the compartmental tanks, i.e., the tanks that

result from replacing the screen with an unperforated wall. A large change in the pressure and free-surface profiles

occurs then across the screen. Which lower solidity ratio causes this change in two-dimensional flow depends during

harmonic excitation on the liquid depth-to-the tank width ratio and the ratio between the lateral forcing amplitude

and the tank width. When the change in the lowest resonance sloshing frequency occurs, the sloshing is less severe

relative to a clearly lower or higher solidity ratio.

The main goal of this paper is to show that employing multimodal methods makes it possible to derive an analyt-

ical [modal] model for sloshing in a rectangular tank with a screen which can be applied for any solidity ratio. The

corresponding modal system is derived from the original boundary-value problem with linear free-surface condi-

tions by employing the pressure-drop condition as a transmission condition at the screen in a domain decomposition

scheme. The pressure-drop condition describes the effect of the jet flow through the screen at higher solidity ratio,

and the flow separation (wake) at lower solidity ratios. The modal system explicitly handles discontinuity of the

free surface (pressure). New experiments with slat-type screens are reported which support the applicability of the

derived modal system when the free-surface nonlinearity does not have a dominant effect.

We start the analysis with the linear sloshing boundary problem formulated for each compartment (Sect. 2.1)

and, in addition, introduce two transmission conditions (Sect. 2.2) at the screen. The first transmission condition

(Neumann-type) implies continuity of normal velocity, but the second (Dirichlet-type) condition governs the screen-

averaged pressure drop. In Sect. 2.2, we discuss applicability of the second condition for the slat screen used in our

experiments.

There is a variety of external wave problems with screens and porous barriers that have been studied by using an

analytical technique with the corresponding transmission conditions. In the list of these studies, we should mention

the papers by E. Tuck [10,11] whose concept of the transmission conditions is, for instance, realized in [12]. Reviews

on wave interaction with porous media are given in [13], or in the more recent book [14] where the transmission

conditions are based on Darcy’s law. Another approach to the pressure-drop condition developed for wind-tunnel

engineering is outlined in the review [15] as well as in the handbook [16, pp. 314–316]. It assumes a uniform steady
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flow. Based on this approach, a version of the pressure-drop conditions for external wave problems is adopted in

[17,18]. The latter papers deal with porous-type screens characterized by small sharp-edged openings providing the

flow separation through the holes so that the rotational wakes and jets remain in a neighborhood of the screen. For

these screens, a local-averaging procedure is possible (as described by Molin [17]) leading to a pressure-drop con-

dition to be mathematically satisfied at each point of the screen. Our approach averages the pressure-drop condition

over the mean submerged screen area by accounting for the exponential decay of the velocity field.

As will be shown in Sect. 2.3, employing the screen-averaged pressure-drop condition leads to non-unique solu-

tions of the linear sloshing problem under consideration. To avoid non-uniqueness, we assume that the velocity

profile at the slat screen keeps the same shape for 0 ≤ Sn ≤ 1. In other words, our hypothesis is that the velocity

profile (exponentially decaying from the free surface to the bottom) remains close to that occurring for steady-state

sloshing in the smooth tank (Sn = 0). This assumption is not in conflict with the asymptotic limit Sn → 1. The

formula for the pressure loss coefficient K of the screen is taken from [19,20]. Even though the formula is for a

steady flow, its applicability for unsteady wave flows was experimentally confirmed in [3].

In Sect. 3, we derive the modal system described above. Because linear free-surface conditions are assumed,

the system includes two subsystems of linear ordinary differential equations which governs liquid sloshing in the

compartments. This sloshing is excited by both horizontal motions of the tank and cross-flow at the screen. The

free-surface elevation described by these subsystems has a jump in the tank middle at the assumed screen position.

The presence of the jump is consistent with the fact that there is a pressure drop across the screen. The subsystems

are coupled by a nonlinear ordinary differential equation with respect to a generalized coordinate responsible for

the liquid flow through the screen.

In Sect. 4, we report new experimental model tests, and compare the experimental measurements on steady-state

wave elevations at the tank wall with those following from our modal theory. Agreement is satisfactory and the

experiments generally support the theory for smaller forcing amplitude (the forcing amplitude-to-the-tank-width

ratio η2a/ l is about 0.001). Theoretical predictions for the larger forcing amplitude (η2a/ l = 0.01) are consistent

in some cases with the primary Fourier harmonics of the measured output signal. The higher harmonics in the mea-

sured resonant wave elevations contribute up to 35% and, we believe (see discussion in [21,22]), they are associated

with amplification of the higher modes due to the free-surface nonlinearity. The linear potential-flow theory used

here is only relevant in resonant conditions if the damping is sufficiently large. Otherwise nonlinear free-surface

effects are dominant [6]. We do not know appropriate analytical studies on nonlinear liquid sloshing in tanks with

perforated screens. The proposed analytical modal scheme generally allows for the corresponding generalization.

2 Statement of the problem

We consider a two-dimensional rigid rectangular tank with a width l = 2a and a mean liquid depth h (see Fig. 1).

A perforated plate (screen) is mounted vertically in the tank middle. The tank is forced horizontally with small

amplitudes relative to the tank width. The liquid is incompressible with irrotational flow except in limited jet or wake

regions caused by cross-flow at the screen. The free-surface nonlinearity is neglected. Assuming purely piston-like

transverse flow velocity at the screen, a steady-state analysis was performed in [6]. The forthcoming study is more

Fig. 1 Geometric

definitions for the sloshing

analysis with a screen Sc0 in

the middle of the tank

dividing the tank into two

compartments
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Fig. 2 Typical instantaneous wave profiles for two-dimensional sloshing in a rectangular tank due to horizontal excitation. Screen Sc0

with 0 < Sn < 1 in the middle is installed (part a). Parts b and c illustrate primary antisymmetric wave profiles for the limit cases

Sn = 0 and Sn = 1, respectively

general. It accounts more properly for the fact that the transverse velocity at the screen decays with depth which

matters in particular for larger liquid depths and at higher sloshing frequencies. This latter fact results in a correct

prediction of the second natural sloshing frequency, in the present study with h/ l = 0.4 and a frequency range that

covers the two lowest natural sloshing frequencies. In addition, the presented modal method may handle transient

waves.

2.1 Boundary-value problem in compartments

The corresponding linear liquid theory deals with the following boundary-value problems in the unperturbed liquid

domains Q±
0 (see Fig. 1).

The theory introduces the absolute velocity potentials Φ±(y, z, t) in Q±
0 , which should satisfy the Laplace

equation and the Neumann boundary conditions on the wetted tank surface

∇2Φ± = 0 in Q±
0 ;

∂Φ±

∂z
= 0 (z = −h);

∂Φ±

∂y
= ±η̇2 (y = ±a), (1)

where η2(t) describes the horizontal motions of the rigid tank.

Furthermore, the theory defines the free-surface elevations z = ζ±(y, t) and states the kinematic,

∂Φ±

∂z
=

∂ζ±

∂t
(z = 0), (2)

and dynamic,

∂Φ±

∂t
+ gζ± = 0 (z = 0), (3)

boundary conditions on the unperturbed free surfaces 6±
0 . These conditions couple Φ±(y, z, t) and ζ±(y, t) sepa-

rately for the two compartments. Here, g is the gravity acceleration.

Further, the liquid conservation condition should be fulfilled

0∫

−a

ζ−dy +
a∫

0

ζ+dy = 0. (4)

The problem (1)–(3) requires initial conditions expressing the initial perturbation (function ζ0(y)) and its initial

velocity (function ζ1(y)) of the free surface to be given, i.e.,

ζ(y, 0) = ζ0(y),
∂ζ

∂t
(y, t) = ζ1(y). (5)

Even though the free surface is discontinuous at Sc0 (see Fig. 2a), the initial conditions should, due the required time

to generate a pressure drop at the screen, involve smooth functions ζ0(y) and ζ1(y) on the whole interval (−a, a).

That is why the ±-sign in conditions (5) is omitted.
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2.2 Transmission conditions on Sc0

As long as Sn = 0 (smooth rectangular tank), the velocity potential and its normal derivative are continuous in the

middle provided by an appropriate combination of Neumann and Dirichlet-type boundary conditions (see mathe-

matical details in [23, Chap. 2]). Another limit case, Sn = 1, suggests a rigid non-perforated wall in the middle

which requires the zero normal derivative; there is no Dirichlet condition stated in this case. For both limit cases (see

Fig. 2b, c), there exist analytical [modal] models reducing the linear sloshing problem (1)–(4) to the corresponding

linear [modal] systems of linear ordinary differential equations [6, Chap. 5].

As long as the solidity ratio is between 0 and 1, the first transmission condition does not change, i.e.,

ur (z, t) + η̇2(t) =
∂Φ−

∂y
=

∂Φ+

∂y
(y = 0), (6)

providing equal flux across Sc0. Here ur (z, t) is the relative normal velocity on Sc0.

The second condition should reflect the fact that the hydrodynamic pressure undergoes a jump. This condition is

normally formulated for uniform flows which should, generally, be perpendicular to the flat screen. In accordance

with definitions in [16] the pressure drop at the screen is

P− − P+ =
1

2
ρKU |U |. (7)

Here, U = U (t) is the horizontal liquid velocity at the screen, P± = P±(t) is the pressure at different sides of the

screen so that the right direction is assumed to be positive, K ≥ 0 is the so-called pressure-loss coefficient depending

on the screen geometry, the solidity ratio Sn, the Reynolds number and, generally, the Keulegan–Carpenter number

KC which may be defined as KC = UM T/D where UM is the amplitude of U, T is the forced oscillation period

and D is a characteristic length of the screen such as the slat height. When the uniform in-flow velocity is not

perpendicular to the flat screen, the pressure-loss coefficient becomes also a function of the in-flow angle.

When discussing the condition (7), we should remark that all the forces due to viscous effects are commonly

expressed as quadratic functions of a reference velocity. An example for that is the Morison’s equation commonly

used for offshore structures. Formulations such as these rely on experimental values for drag coefficients. The

formulations must give a good fit to experimental data. Then comes what parameters affect the drag coefficient.

As we have mentioned, that is, for instance, the Reynolds number, the Keulegan–Carpenter number, the structural

form (see [21, Chap. 7] where this is extensively discussed). Here we talk about a pressure-loss coefficient which

has a similarity with the drag formulation in Morison’s equation when viscous-flow separation matters. It is once

more an empirical formulation that has been extensively investigated for ambient steady and space-independent

flow [16]. Using linear formulations will not fit experimental data.

Our focus is on the slat screens depicted in Fig. 3. They are characterized by openings with sharp edges where

flow separation occurs. The latter fact implies that the Reynolds-number dependence of the pressure-loss coefficient

is negligible. The values of K for the slat screens with Sn > 0.3 and KC > 2 (with characteristic dimension equal to

the slat height) are, according to [3] (the authors refer to [19,20] where the following expressions were established

for steady flow), approximated by the formulas

K =
(

1

Cc (1 − Sn)
− 1

)2

, Cc = 0.405 exp(−πSn) + 0.595. (8)

The pressure-loss coefficient monotonically increases with the solidity ratio from zero (at Sn = 0) to infinity (at

Sn = 1).

Even though formulas (8) are originally proposed for steady uniform flows, it was illustrated in [3] by experi-

ments for certain values of the solidity ratios that (8) is applicable in a screen-averaged sense (with mean values of

the velocity and pressure over Sc0) for sloshing problems with vertical screens, namely, it holds

1

h

0∫

−h

[
∂Φ+

∂t
−

∂Φ+

∂t

]

dz =
1

2
KU |U |, where U =

1

h

0∫

−h

ur dz. (9)
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Fig. 3 A schematic

distribution of the openings

for different value of

solidity ratios in our

experimental slat screen.

The dimensions are in

meters. The screen

thickness is 5 mm; it is

neglected in our analysis.

Because there is a limited

number of slats, the solidity

ratio varies with the mean

liquid depth depending on

how many openings become

submerged. For the liquid

depth 0.4 m, the solidity

ratio is (from left to right)

0.328, 0.52, 0.713, 0.808,

0.855, 0.905, 0.928, 0.948

and 0.963

1.0000

0.1000

0.0160

0.01420.0020

0.0142

0.0350

This condition will be adopted in our forthcoming analysis.

The pressure-drop condition plays the role of damping at small and intermediate solidity ratios. When Sn tends

to 1, the flow experiences the screen as a barrier that is difficult to flow through. The consequences are small

damping due to cross-flow and that the flow as a first approximation behaves as if the screen is an unperforated

wall. The result is that the lowest resonant frequency changes to that in the separated compartments. The change of

the resonant frequencies depends on the forcing amplitude, i.e., it cannot be explained by linear theory. Both theory

and experiments confirm this fact.

2.3 Non-uniqueness and additional assumptions

According to the multimodal method, the velocity potentials Φ± should be presented by a Fourier-type series in

the natural sloshing modes (see [6, Chap. 5]). For the whole tank without screen, there are antisymmetric (relative

to the Oz-axis) and symmetric natural modes. The antisymmetric (odd) modes take the form

ϕi (y, z) = sin

(
1

2
π(2i − 1)y/a

)
cosh

(
1
2
π(2i − 1)(z + h)/a

)

cosh
(

1
2
π(2i − 1)h/a

) , i = 1, 2, . . . . (10)

Only these modes are directly excited within the framework of the linear sloshing approximation as Sn = 0.

The symmetric (even) natural modes are

φi (y, z) = cos(π iy/a)
︸ ︷︷ ︸

fi (y)

cosh(π i(z + h)/a)

cosh(π ih/a)
, i = 1, 2, . . . . (11)

These modes are not excited (within the framework of linear sloshing theory) for Sn = 0, but, whereas Sn = 1,

projections of these modes,

φ±
i = φi |Q±

0
, f ±

i = fi |6±
0
,

constitute the full set of the natural sloshing modes for sloshing in the compartment tanks followed by replacing the

screen with a rigid non-perforated wall in the middle. This means that the natural sloshing modes φ±
2n−1 are directly

excited by lateral tank motions for the limit case Sn = 1 (see the wave profile associated with φ±
1 in Fig. 2c).
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The natural modes ϕi and φi correspond to the natural sloshing frequencies σ2i−1 and σ2i , respectively, where

σ 2
k = gκk, κk =

πk

2a
tanh

(
πkh

2a

)

, k ≥ 1. (12)

The antisymmetric modes ϕi determine the relative horizontal velocity in the tank middle, but give zero contri-

bution to the hydrodynamic pressure at Sc0. Contrary, the symmetric modes φi do not affect the relative horizontal

velocity at y = 0, but determine the linear hydrodynamic pressure (Dirichlet trace of the velocity potential) in the

tank middle. Because the transmission conditions (6) and (9) imply continuous horizontal velocity, but discontinuous

pressure, the absolute velocity potentials Φ± take the form

Φ±(y, z, t) = η̇2 y +
∞
∑

i=1

V̇i (t)ϕi (y, z) +
∞
∑

i=0

R±
i (t)φ±

i (y, z) in Q±
0 , (13)

where Vi and R±
i are originally unknown time-dependent functions (generalized coordinates). Here, η̇2 y expresses

the liquid motions as a solid body. Modal solution (13) automatically satisfies (1) and (6).

The relative horizontal velocity ur at y = 0 is

ur (z, t) =
π

2a

∞
∑

i=1

V̇i (t)
(2i − 1) cosh

(
1
2
π(2i − 1)(z + h)/a

)

cosh
(

1
2
π(2i − 1)h/a

) . (14)

Because the {cosh(λi y), λ0 < λ1 < · · · }–type exponential functions constitute a complete set of functions

on the interval [0, a] for any positive a (see [24, Chap. 1]), any function ur (z, t) can uniquely be presented in

the series (14) on the interval [−h, 0]. Let us fix {Vi (t), i ≥ 1} and find ζ±(y, t) and R±
m (t) by solving (2)–(4).

Appropriate solution is possible by using, for instance, a Fourier technique from [6, Sect. 5.4.2.4] developed for the

problem on liquid sloshing due to deformations of the side wall governed by the normal velocity ur (z, t). Due to this

solution, ζ±(y, t) and R±
m (t) become linearly dependent functions of the generalized coordinates {Vi (t), i ≥ 1}.

Furthermore, substituting R±
m (t) in the modal representation (10) and the integral-type transmission condition (9),

we arrive at a single scalar relation coupling the infinite set of functions {Vi }. This single relation for the infinite set

of input generalized coordinates can not provide a unique solution.

To get a unique solution from this single relation, Vi (t) must be functions dependent on a single generalized

coordinate β−1(t). Appropriate β−1(t) may be obtained from the assumption that the velocity profile at Sc0 (but not

the amplitude!) weakly depends on K (or Sn), namely, remains close to that occurring for the steady-state solution

in the limit case K = 0. Adopting this velocity profile poses no conflict with another limit case K → ∞ (Sn=1).

Passage to Sn = 1 implies that the amplitude parameter β−1(t) tends to zero.

Faltinsen and Timokha [6, Sect. 5.4] give the steady-state solution for Sn = 0 (smooth rectangular tank) occurring

due to harmonic forcing. The corresponding relative velocity potential ϕ = Φ − η̇2 y is then as follows

ϕ(y, z, t; σ) =
(

−ση2a sin(σ t)
8Nr

π2

)

︸ ︷︷ ︸

f(t)

∞
∑

i=1

a(−1)i sin
(

1
2
π(2i − 1)y/a

)

Nr (2i − 1)2(1 − σ̄ 2
2i−1)

cosh
(

1
2
π(2i − 1)(z + h)/a

)

cosh
(

1
2
π(2i − 1)h/a

)

︸ ︷︷ ︸

ϕ−1(y,z;σ)

. (15)

Here, η2(t) = η2a cos(σ t), where σ is the forcing frequency, and η2a is the forced sway amplitude of the tank;

σ̄i = σi/σ , and

Nr =

√
√
√
√

∞
∑

i=1

1

(2i − 1)4(1 − σ̄ 2
2i−1)

2

is the norm providing the finiteness of ϕ−1 for any forcing frequency σ . The function ϕ−1 in (15) depends on the

forcing frequency σ and determines the relative horizontal velocity at y = 0 expressed in terms of f(t) and ϕ−1

ur (z, t; σ) = f(t)
∂ϕ−1

∂y

∣
∣
∣
∣
y=0

= f(t)

∞
∑

i=1

π(−1)i

2Nr (2i − 1)(1 − σ̄ 2
2i−1)

cosh
(

1
2
π(2i − 1)(z + h)/a

)

cosh
(

1
2
π(2i − 1)h/a

)

︸ ︷︷ ︸

Ur (z;σ)

. (16)
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Equation (16) defines Ur (z) which represents the horizontal velocity profile along the interval [−h, 0] for the

considered steady-state sloshing with Sn = 0, namely, without screen. The time-dependent function f(t) is then

an amplitude parameter defined by (15). As we discussed above, we impose the horizontal velocity profile Ur to

keep the same shape for 0 < Sn < 1, i.e., when there is a screen. The screen effect is therefore associated with a

modification of the time-dependent function f(t). We replace the harmonic function f(t) by an unknown generalized

coordinate β̇−1(t) governing the magnitude of the profile Ur (z) when Sn is not zero. Comparing (14) and (16) leads

to the conclusion

V̇i = β̇−1(t)
a(−1)i

Nr (2i − 1)2(1 − σ̄ 2
2i )

. (17)

The assumption (17) makes the problem (1)–(4), (6), (9) uniquely solvable with the corresponding initial condi-

tions (5). The velocity potential (13) then takes the form

Φ±(y, z, t) = η̇2 y + β̇−1(t)ϕ−1(y, z) +
∞
∑

i=0

R±
i (t)φ±

i (y, z) in Q±
0 . (18)

3 Analytical modal model

According to the multimodal methods, the free surfaces 6±(t) (see Fig. 2) are described (in the tank-fixed co-

ordinate system Oyz) by the Fourier-type representation

z = ζ±(y, t) = β−1(t) f−1(y) +
∞
∑

i=1

β±
i (t) fi (y), (19)

where f−1(y) = ∂ϕ−1/∂z at z = 0 and β−1(t) is the same as in (18).

The component β−1(t) f−1(y) is continuous on (−a, a) for any instant t . It is responsible for the wave eleva-

tions due to liquid flow between the compartments, the time-dependent mean liquid level in the compartments, and

provides the volume-conservation condition with

0∫

−a

f−1(y)dy = −
a∫

0

f−1(y)dy 6= 0.

Projections of fi (y), i ≥ 1 on (−a, 0) and (0, a) are exactly the natural surface modes on 6−
0 and 6+

0 , respectively.

These satisfy volume conservation in the compartments, namely,
∫ 0
−a

fi dy =
∫ a

0 fi dy = 0, i ≥ 1.

Substituting (19) and (18) in relations (2) and (3) and using orthogonality of { fn(y), n ≥ 0} on the intervals

[−a, 0] and [0, a] gives

Ṙ±
0 = ±

[

−
1

2
η̈2 + v∗

0 β̈−1 + gv0β−1

]

, R±
n =

β̇±
n

κ2n

(20)

and the following system of linear modal equations

β̈±
n + σ 2

2nβ±
n = ±2κ2n

(

an η̈2 + v∗
n β̈−1 + gvnβ−1

)

, n ≥ 1, (21)

where

an =
0∫

−a

y fndy = −
(−1)n − 1

π2n2
a, (22)

v∗
n =

0∫

−a

ϕ−1 fndy =
2a

π Nr

∞
∑

i=1

(−1)i+1

((2i − 1)2 − 4m2)(2i − 1)(1 − σ̄ 2
2i−1)

,

vn =
0∫

−a

∂ϕ−1

∂z

∣
∣
∣
∣
z=0

fndy =
1

Nr

∞
∑

i=1

(−1)i+1 tanh( 1
2
π(2i − 1)h/a)

((2i − 1)2 − 4m2)(1 − σ̄ 2
2i−1)

.
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The modal system (21) governs the generalized coordinates determining the component
∑∞

i=1 β±
i (t) fi (y) in

representation (19). This component satisfies the volume-conservation conditions on 6−
0 and 6+

0 , and, therefore,

does not describe the time-dependent change of the mean liquid levels in the compartments. It looks similar to the

case when the compartments are separated by a rigid non-perforated wall. However, in our case, β±
n also depend on

the inflow/outflow through Sc0 associated with the generalized coordinate β−1(t). Formulas (20) give R±
n (t), n ≥ 0

in Eq. (18) as functions of β±
n (t) and β−1(t).

Furthermore, the right-hand sides in (21) are proportional to

an η̈2 + v∗
n β̈−1 + gvnβ−1 =

∫

6−
0

(

yη̈2 + ϕ−1β̈−1 + g
∂ϕ−1

∂z
β−1

)

fndS. (23)

When β̇−1(t) coincides with f(t), i.e., when there is no screen for a horizontal harmonic forcing, expression (23)

vanishes. As a consequence, the right-hand sides in modal equations (20) becomes zero. This means that we can

expect amplification of β±
n , n ≥ 1 only for non-small solidity ratios.

Using formulas (20) in representation (18) and substituting them in the transmission condition (9) gives the

following ordinary nonlinear differential equation with respect to β−1(t)

2hv∗
0 β̈−1 −




K

2h

0∫

−h

Ur (z)dz

∣
∣
∣
∣
∣
∣

0∫

−h

Ur (z)dz

∣
∣
∣
∣
∣
∣



 β̇−1|β̇−1| + 2ghv0β−1 − ahη̈2 + a2
∞
∑

n=1

β̈+
n − β̈−

n

(πn)2
= 0. (24)

An equivalent form of (24) can be written as follows

[

a(σ )β̈−1 + b(σ )β̇−1(t)|β̇−1(t)| + c(σ )β−1 + d(σ )η̈2

]

+ ga

∞
∑

n=1

tanh(πnh/a)

πn

(

β−
n − β+

n

)

= 0, (25)

where β±
n (t) are solutions of (21) and

a(σ ) =
0∫

−a

ϕ−1|z=0F(y)dy = 2hv∗
0 + 4a

∞
∑

n=1

tanh(πnh)

πn
v∗

n , (26)

b(σ ) = −
K

2h

0∫

−h

Ur (z)dz

∣
∣
∣
∣
∣
∣

0∫

−h

Ur (z)dz

∣
∣
∣
∣
∣
∣

, (27)

c(σ ) =
0∫

−a

∂ϕ−1

∂z

∣
∣
∣
∣
z=0

F(y)dy = g

[

2hv0 + 4a

∞
∑

n=1

tanh(πnh)

πn
vn

]

, (28)

d(σ ) =
0∫

−a

yF(y)dy = −ah + 8a

∞
∑

i=1

tanh(π(2i − 1)h)

π3(2i − 1)3
(29)

with

F(y) = 2h + 4a

∞
∑

n=1

tanh(πnh)

πn
cos(πny).

The system of differential equations (21), (25) couples the generalized coordinates β−1(t), β
±
n (t), n ≥ 1. It can

be solved by any numerical method subject to the initial conditions β−1(0) = β
(0)
−1 , βn(0) = β

(0)
n , n ≥ 1, and

β̇−1(0) = β
(1)
−1, β̇n(0) = β

(1)
n , n ≥ 1. In our calculations, we used the fourth-order Runge–Kutta method. These

initial conditions govern the initial free-surface shape and initial free-surface velocity defined by (5) and (19).
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4 Steady-state sloshing due to harmonic horizontal excitation

4.1 Preliminaries

We consider steady-state sloshing due to harmonic sway excitation η2(t) = η2a cos(σ t), where η2a is the forcing

amplitude, and the forcing frequency σ is in a range including the two lowest natural sloshing frequencies, σ1 and

σ2. The steady-state sloshing corresponds to the 2π/σ -periodic solution of the system (21), (25).

As before, there are two limit cases associated with sloshing in a smooth tank (there is no screen, K = 0) and

sloshing in two smooth compartments without cross-flow (the screen is an unperforated wall, K = ∞, Sn = 1).

Straightforward (but tedious) algebra shows that, if K = 0 (Sn = 0), the steady-state (periodic) solution of (21),

(25) is β̇−1 = f(t) and β±
n (t) = 0, n ≥ 1. This solution implies the resonant behavior at σ1, but not at σ2, because

the symmetric modes are not excited within the framework of linear sloshing theory.

Passage to K = ∞ (Sn = 1) in (25) leads to β̇−1(t) = 0 which gives together with the fact that both compart-

ments, by definition, contain the same liquid volumes, that β−1(t) = 0. Substituting β−1(t) = 0 in modal equations

(21) gives the well-known linear modal equations for sloshing in smooth rectangular tanks (compartments) with

the width a and the filling liquid depth h; see [6, Chap. 5]. For this case, the limit σ → σ2 leads to the linear

resonance response by modes φ±
1 = φ1|Q±

0
with wave profiles shown in Fig. 2c, but there is no resonance at

σ = σ1.

4.2 Model tests

A rectangular tank was installed in a rig located at the Marine Technology Center in Trondheim, Norway. The Plexi-

glas-made tank dimensions are 1.0 m×0.98 m×0.1 m (width×height×breadth). The tank was forced horizontally

with a sinusoidal signal. To provide a nearly two-dimensional sloshing, a slat screen (Fig. 3) was used. Meniscus

effects at the intersection between the free surface and the tank walls are secondary and cause three-dimensional

capillary waves that are riding on the gravity waves.

The tank was equipped with two resistant wave probes installed 1 cm away from the end walls in order to

avoid possible local run-up effects which cannot be described by this theory. The wave elevation is recorded with

a sampling rate of 100 Hz and measured relative to the unperturbed free surface. The error in the measured wave

elevation is less than 1 mm.

Our focus is on model tests with h/ l = 0.4 and nondimensional forcing amplitudes close to η2a/ l = 0.001 and

0.01. The frequency range covers the two lowest natural sloshing frequencies. The wide range of tested solidity

ratios of the submerged screen part, as it is accepted in our two-dimensional sloshing analysis with h/ l = 0.4, is

listed in the caption of Fig. 3. Note that the actual experimental setup included narrow (about 5 mm) vertical rigid

constraints mounting the screen to the tank walls. The effects of these constraints on perturbing a local three-dimen-

sional flow at the mounting lines, as well as on the solidity ratio of the considered screens as three-dimensional

structures, are neglected. The fact that the slot height is not perfectly constant across the screen is an error source

for high-solidity ratios.

To account for the free-surface nonlinearity hysteresis effect (see [6, Chap. 8]), the forcing frequency for a pre-

scribed forcing amplitude changes ‘stepwise’ after reaching an experimental steady-state regime. The signal with

a fixed forcing frequency lasts for about 300 cycles; 200 cycles were sufficient to reach the steady-state condition.

After 300 cycles, the forcing frequency changes to a lower value. The reason for decreasing the forcing frequency

is to detect the maximum wave elevation. The latter fact follows from the character of the nonlinear steady-state

response at a depth larger than the critical depth for sloshing in a smooth two-dimensional rectangular tank (see

[6, Chap. 8]). The initial runs were performed with frequency steps of about 0.05 Hz which enabled localization of

the peaks in the steady-state wave-amplitude response. Afterwards, the frequency steps were in the range of 0.01Hz

to 0.001Hz, in the frequency domains where the initial tests have detected the resonance peaks in order to more

accurately quantify the response peaks. The forcing amplitude might slightly change for technical reasons when

switching to another forcing frequency.

123123



Analytical modeling of liquid sloshing 103

4.3 Comparison with experiments

Numerical steady-state solutions are found by using direct numerical simulations by the modal system (21), (25).

Our simulations adopt the experimental stepwise change of the forcing frequency and corresponding amplitude

with the consequence that simulations with each new forcing parameters employed the initial conditions from the

previous steady-state solution. Because (21) and (25) imply a dissipative mechanical system, the long-time simu-

lations always led to a periodic (steady-state) numerical solution. Usually, about 300 cycles are required to get this

solution within a two-digits accuracy. This is generally consistent with experiments. The final simulations include

up to 1500 cycles providing a four-five digits accuracy for the periodic solution.

When h/ l = 0.4, the lowest theoretical resonances for Sn = 0 and Sn = 1 are at σ/σ1 = 1 and σ/σ1 = σ2/σ1 ≈
1.52 with σ1 = 5.12 ( rad/s), respectively.

Comparison of theoretical and experimental maximum steady-state wave elevation as a function of forcing fre-

quency is presented in Figs. 4, 5, 6, 7, and 8. The figures show the theoretical values (solid lines), the actual measured

maximum wave elevations (empty boxes) at the wave probe (in left compartment), and the amplitude of the primary

harmonics of the experimental output signal (associated with exp(iσ t), i2 = −1) marked by the filled boxes. The

figures give also information on the experimental forcing amplitude as a function of the forcing frequency.

The experiments showed in some cases that different steady-state solutions occur in the compartments in a

neighborhood of σ/σ1 = σ2/σ1 = 1.52. The presence of two stable steady-state solutions is a well-known fact for

sloshing in a two-dimensional rigid rectangular tank (here, the compartments) with a finite liquid depth [21,22].

The reason is the free-surface nonlinearity which is not included in the present theory. The corresponding experi-

mental records with different steady-state results in the two compartments are therefore not included in the present

comparison.

4.3.1 Lower values of the solidity ratio

Figure 4 shows experimental and numerical values of the maximum wave elevations for Sn = 0.328 and 0.52

(K = 1.025 and 4.371, respectively). Both theory and experiments give in the considered frequency range only a

resonant peak at σ/σ1 = 1, i.e., there is no resonant amplification at σ2/σ1 = 1.52. This means that the generalized

coordinate β−1(t) describing the cross-flow at the screen dominates, while β±
n , n ≥ 1 are of lower importance.

Because β±
n , n ≥ 1 determine the jump of the free surface at the screen, this jump does not provide a dominant

contribution to the sloshing. The pressure loss coefficient K plays the role of damping at the corresponding quadratic

damping term in (25).

Figure 4 (panels a and b) shows that the numerical results by the analytical modal model generally agree with

the experiments for the smaller nondimensional forcing amplitude η2a/ l ≈ 0.001. We see larger theoretical values

relative to experiments in case (a) for Sn = 0.328. This fact can, in part, be related to non-accurate prediction

of K by empirical formulas (8). As we reported ahead of (8), the values of the empirical formula do not depend

on the Reynolds number and assume KC > 2. An alternative is the table with empirical K in [16, pp. 314–316].

The latter values do not depend on KC and the Reynolds number. We could have tried to fit the K -value to agree

with the experimental results and, in that way, for instance, detect a KC-dependence. However, a procedure like

that is questionable because it does not account for the fact that a reason for discrepancies can be due to nonlinear

free-surface effects. In the presented calculations from Fig. 4a, K = 1.025 leads to ζa/η2a = 50 for σ/σ1 = 1,

but K = 1.32 (this value of K follows from the empirical loss coefficients in [16, p. 314]) gives ζa/η2a = 43.5.

Because β−1 dominates, one can, in a qualitative analysis, neglect the β±
n -quantities from (25) which, as explained

previously, are responsible for the free-surface jump at the screen. This means that (25) becomes similar to a sin-

gle-dimensional mass–spring system with quadratic damping where the damping coefficient is proportional to K

and, therefore, the screen should act as a damper. As shown in [25, Chap. 3] for a lightly damped one-degree of

mass–spring system, the resonant nondimensional response ζa/η2a should then be proportional to 1/
√

Kη2a/ l.

The nondimensional resonant response is consistent with this general prediction.
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Fig. 4 Nondimensional theoretical (solid line) and experimental (filled and empty boxes) maximum wave elevations (denoted as ζa) at

the wave probe 1 cm away from the wall versus nondimensional forcing frequency σ/σ1. The empty boxes represent the actual measured

maximum wave elevations, but the solid (filled) boxes denote amplitude of the primary Fourier harmonics of the measured signal.

Because the experimental horizontal forcing amplitude η2a slightly varies with changing the forcing frequency, their dimensional values

are also presented; this variation is taken into account in the numerical analysis. Panels a and b present the case of smaller forcing

amplitudes (η2a/ l ≈ 0.001), but c and d demonstrate the case of larger forcing amplitudes (η2a/ l ≈ 0.01). The left panels a and c,

corresponds to Sn = 0.328(K = 1.025). The right panels, b and d, show results for Sn = 0.52 (K = 4.371)

A major reason why the experimental and theoretical peak values and corresponding frequencies do not agree

perfectly are believed to be due to free-surface nonlinearities. The latter is well known from the potential-flow

sloshing in a smooth (clean) tank, when a linear sloshing theory based on potential flow wrongly predicts an infinite

resonance response. Nonlinear resonant free-surface effects cause transfer of energy to other, higher modes than the

primary excited, dominant mode and, thereby, limit the response of the primary excited mode at the lowest resonant

frequency. Another consequence of nonlinear sloshing in a clean tank with h/ l > 0.3368 . . . is a drift of the peak

response to a lower frequency than the lowest natural frequency σ1. The latter effect is evident in the experimental

results. If the dissipation (damping) due to cross-flow through the screen had been sufficiently high, i.e., larger than

theoretically predicted in this case, the nonlinear free-surface effect would be negligible.
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Fig. 5 Nondimensional theoretical (solid line) and experimental maximum wave elevations (denoted as ζa) at the wave probe ver-

sus nondimensional forcing frequency σ/σ1. The empty boxes represent the measured maximum wave elevations, but the solid boxes

denote amplitudes of the primary harmonics, exp(iσ t). The experimental variation of the forcing amplitudes is taken into account in

the numerical analysis. Sn = 0.713 (K = 19.89). Panel a corresponds to the lower excitation amplitudes, η2a/ l ≈ 0.001, and panel

b implies η2a/ l ≈ 0.01

Fig. 6 The experimentally

observed fallout of the

liquid going through the

screen into the air domain of

the opposite compartment

and subsequently impacting

on the underlying free

surface

Furthermore, increasing the forcing amplitude may lead to a nonlinear amplification of higher modes which give

a non-negligible contribution to the maximum steady-state wave elevation. This contribution is associated with

higher harmonics. The cases (c) and (d) in Fig. 4 are for the larger nondimensional forcing amplitude η2a/ l ≈ 0.01.

In these cases, the analytical modal model gives lower nondimensional values of the maximum steady-state eleva-

tion at the wave probes relative to the experimental measurements. To explain why this happens, we had to perform

a Fourier analysis and extract the primary Fourier harmonics contribution from the measured output signal. It is

marked by the filled boxes. Cases (a) and (b) show that the primary harmonics (associated with primary excited

mode) clearly dominates for smaller forcing amplitude. This is not so for the larger forcing amplitude in cases

(c) and (d), where higher harmonics (associated with higher modes) give sufficient contribution. Amplification of
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Fig. 7 The same as in Fig. 5, but for Sn = 0.928 (K = 462.8). In case b, the maximum peak at σ/σ1 = σ2/σ1 = 1.52 is computed to

be ζa/η2a = 50
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Fig. 8 The same as in Fig. 5, but for Sn = 0.963 (K = 1,846). In case a, the maximum peak at σ/σ1 = σ2/σ1 = 1.52 is computed to

be ζa/η2a = 23, but case b gives this theoretical maximum equal to 102

these harmonics with increasing forcing amplitude was extensively discussed in [27]. It was shown that this is a

nonlinear free-surface effect. To describe this amplification, one should use the nonlinear multimodal theory which

links the higher harmonics with nonlinear energy transfer from the lowest, primary excited mode to higher modes.

Our theoretical model with linear free-surface conditions and damping due to the cross-flow through the screen

demonstrates a good agreement with the primary harmonics contribution associated with the primary excited mode.

4.3.2 Intermediate values of the solidity ratio

Increasing the solidity ratios to Sn = 0.713(K = 19.89) leads to the theoretical and experimental nondimen-

sional maximum steady-state wave elevations shown in Fig. 5. The generalized coordinate β−1(t) dominates with

respect to β±
n (t) in case (a), and, therefore, the system behaves as a one-degree lightly damped mass-spring system

with quadratic damping. The consequence is that the resonant nondimensional response ζa/η2a is proportional to
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1/
√

Kη2a/ l which is consistent with the theoretical results in Fig. 4 for lower solidity ratios. The experimental

results in case (a) show small influence of higher harmonics and there is good agreement with quasi-linear theory.

The larger excitation amplitude in Fig. 5b leads to β−1 ∼ β±
n with many dominant generalized coordinates. A

consequence of coupling between modes is a double-peak response at the lowest natural sloshing frequency σ1. The

experimental primary harmonic response is, in general, in good agreement with the theoretical prediction. However,

the experiments demonstrate the presence of non-negligible higher harmonics, for instance at σ/σ1 = 1.28 and 1.4.

A plausible reason is nonlinear free-surface effects. We do not know to what extent the water flow through the air

illustrated in Fig. 6 matters. A water-jet flow that originates from the screen opening impacts on the underlying free

surface and, thereby, can excite higher-harmonics wave (see discussion in [26]).

4.3.3 Larger values of the solidity ratio

Passage to higher solidity ratios is studied in Figs. 7 and 8. Figure 7a corresponds to Sn = 0.928 and η2a/ l = 0.001.

When σ/σ1 is in the vicinity of 1, β−1 ∼ β±
n in the theoretical model. The consequence is that both cross-flow

quadratic damping due to the screen and coupling between many generalized coordinates of the liquid motions

matter. The result is a relatively small nondimensional wave amplitude response with the presence of a double peak.

The agreement with the experiments is reasonable. The theoretical response is largest at σ/σ1 = 1.65, i.e., at a

higher frequency than the second natural sloshing frequency σ2 = 1.52σ1. The experimental results do not show a

clear effect of higher harmonics and agree that there is a peak response at σ/σ1 = 1.65. However, the magnitudes

of theoretical and experimental wave elevations differ at the second natural frequency with the experimental results

being clearly higher. A reason can be errors in the theoretical damping model in the considered frequency range.

Furthermore, there is a clear minimum in the experimental results at σ/σ1 = 1.35 which is not supported by the

theoretical model.

A very large theoretical amplification occurs at σ/σ1 = 1.52 for the cases presented in Figs. 7b and 8a, b. The

reason is associated with the fact that β±
n ≫ β−1 in the theoretical model which can be explained as follows.

Because there is a larger coefficient K in the front of the quadratic damping term in (25), the generalized coordinate

β−1 is highly damped to become of non-dominant (higher order) with respect to β±
n , n ≥ 1. The latter general-

ized coordinates are solutions of the linear equations (21) without damping terms and, therefore, the β±
i -related

oscillations can only be reduced due to energy transfer to β−1. The pressure-drop condition no longer plays the

role of a damping mechanism, as it happened for lower and intermediate solidity ratios. An indication of the fact

that the cross-flow at the screen does not act as a quadratic one-dimensional damping mechanism at σ = σ2 is that

we predict an increased nondimensional response ζa/η2a with increasing forcing amplitude η2a/ l. The generalized

coordinates β±
n governed by the linear non-damped linear oscillator equations (21) should determine both the pri-

mary response as well as the corresponding resonance peak which is now expected at σ = σ2. The latter fact means

that the screen can in a first approximation be considered as an unperforated wall which isolates wave motions

in the compartments whose interplay is now associated with a higher-order flow component β−1. It was shown in

[6, Sect. 6.8] that increasing the excitation amplitude causes a decrease in the threshold value of the solidity ratio for

which the screen changes its role from a damper to an isolator of the compartment tank. This explains why we see a

clear resonance peak at σ/σ1 = σ2/σ1 = 1.52 and not at σ/σ1 = 1 in Fig. 7b. Case (a) in Fig. 7 with η2a/ l = 0.001

corresponds to a Sn-value where the dominant resonant response changes from being at σ/σ1 = 1 to σ/σ1 = 1.52.

The experimental results in a frequency range around the second natural frequency do not agree well with the

theoretical results in Figs. 7b and 8a, b. The experiments show a frequency of the peak response that is lower than

σ2 for η2a/ l = 0.01 (Figs. 7b, 8b) and larger than σ2 for η2a/ l = 0.001 (Fig. 8a). Furthermore, the maximum

experimental values are clearly lower than the theoretical values. The presence of higher-harmonics contribution

in the experiments indicates nonlinear free-surface effects causing transfer of energy from lowest primary excited

mode to higher modes. The experimental behavior for η2a/ l = 0.01l is consistent with a theoretical nonlinear

behavior of resonant sloshing for depths that are larger than the critical depth in a rectangular tank with small

damping. For instance, jumps between stable steady-state solution branches occur according to the multimodal

method with nonlinear free-surface nonlinearity effects described in [6, Chap. 8]. The response has similarities
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with the response of a Duffing-type nonlinear oscillator. Because there is a small flow exchange between the tank

compartments, the relevant theoretical tanks are the compartment tanks. We are not able to theoretically explain

why the maximum experimental response occurs for a frequency larger than the second natural frequency in Fig. 8a

with η2a/ l = 0.001 and Sn = 0.963.

5 Concluding remarks

A modal model based on linear free-surface conditions has been derived to describe sloshing in a two-dimensional

rectangular tank with a slat-type screen in the middle. An empirical pressure-drop condition as well as continuity

of the transverse velocity were used as transmission conditions between the two compartments. The derived modal

model consists of two modal systems to describe sloshing in the two compartments, and an ordinary differential

equation governing the generalized coordinate β−1(t) responsible for liquid flow between compartments. The first

modal systems are similar to that in [6, Chap. 5], but with other right-hand sides. These right-hand sides include terms

depending on β−1(t). The last differential equation with respect to β−1(t) contains the nonlinear, β̇−1|β̇−1|–term

coming from the pressure-drop condition.

The theoretical pressure-drop condition across the screen plays the role of a damper for low and intermediate

solidity ratios. For low solidity ratio, this role is similar to that in a single-degree mass–spring system with quadratic

damping. A consequence of the latter fact is that the resonant nondimensional response ζa/η2a is proportional to

1/
√

Kη2a/ l where K is the pressure-drop coefficient. The same similarity to a spring–mass system is applicable

for intermediate solidity ratios and smaller forcing amplitudes (η2a/ l = 0.001 in our studies). However, increasing

the forcing amplitude makes inapplicable the single-degree mechanical analogy. There are then many generalized

coordinates and corresponding natural modes which should give comparable dominant contributions, and the actual

response results from a complex interplay between them. The pressure-drop condition does not act as a damping

mechanism for higher solidity ratios, but causes the lowest resonance sloshing frequency to increase to the lowest

sloshing frequency in the tank compartments isolated by the screen as an unperforated wall. Which lower solidity

ratio causes the change in the resonance frequency under harmonic sway excitation in a two-dimensional tank

depends on the liquid depth-to-the-tank-width ratio and the ratio between the sway amplitude and the tank width.

Even though we use linear free-surface conditions and a screen-averaged pressure-drop condition, comparison

of the numerical results by the derived analytical modal model and new experimental model tests on steady-state

wave elevations show satisfactory agreement in many cases. The most serious discrepancy can be explained by the

free-surface nonlinearity. Mathematically, the nonlinearity at the second natural frequency σ2 (for larger solidity

ratios) can be handled by replacing the left-hand sides of (21) with the corresponding adaptive modal system taken

from paper [27]. However, we anticipate a non-trivial analysis accounting for a very special liquid flow associated

with a liquid jet that originates at the screen, goes through the air and subsequently impacts on the underlying free

surface (see Fig. 6).

Because of the specific slat-type screen, we adopted a mean (screen-averaged) pressure-drop condition. Gen-

erally speaking, the sloshing problem needs a modification of this condition that accounts for the local approach

velocity and pressure drop at each opening in the screen.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits

any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
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Steady-state liquid sloshing in a rectangular tank with a slat-type screen
in the middle: Quasilinear modal analysis and experiments

O. M. Faltinsen,a! R. Firoozkoohi, and A. N. Timokha
Centre for Ships and Ocean Structures and Department of Marine Technology, Norwegian University of
Science and Technology, NO-7091 Trondheim, Norway

sReceived 24 September 2010; accepted 11 February 2011; published online 5 April 2011d

Two-dimensional resonant liquid sloshing in a rectangular tank equipped with a central slat-type

screen is studied theoretically and experimentally with focus on nonsmall solidity ratios of the

screen s0.5&Sn&0.95d, nonlarge number of slots sN&50d, and steady-state conditions. The tank is
horizontally and harmonically excited with frequencies in a range covering the two lowest

primary-excited natural sloshing resonance frequencies in the corresponding clean tank. The liquid

depth is finite. Theoretical analysis is based on the multimodal method with linear free-surface

conditions and a quadratic pressure drop condition at the screen expressing an “integral” effect of

the screen-induced cross-flow separation sor jet flowd. New experimental data on the maximum
wave elevations at the wall are compared with the theoretical predictions. Very good agreement is

shown for the smallest forcing amplitudes sthe forcing amplitude-to-tank width ratio is '0.001d.
Increasing the nondimensional forcing amplitude to '0.01 leads to discrepancies due to secondary

resonance causing the energy context from the two primary-excited antisymmetric modes to other,

first of all, symmetric modes. A further increase of the nondimensional forcing amplitude to 0.03

leads to more complex secondary resonance effects. Specific surface wave phenomena, e.g., wave

breaking, are experimentally observed and documented by photographs and videos.

© 2011 American Institute of Physics. fdoi:10.1063/1.3562310g

I. INTRODUCTION

Rectangular tanks with screens are used for antirolling

tanks of ships and tuned liquid dampers sTLDsd of tall build-
ings. Properly tuned sloshing is an efficient tool for suppress-

ing oscillations of the carrying structure. For these applica-

tions, a design requirement is that the lowest resonant

sloshing frequency should almost not be affected by screens,

i.e., it must remain almost the same as for the clean tank and

relatively close to the most important structural natural fre-

quency and the roll natural frequency. A rough guideline is

then that the screen solidity ratio Sn, i.e., the ratio of the area

of the shadow projected by the screen on a plane parallel to

the screen to the total area contained within the frame of the

screen is relatively small, Sn&0.5. The free-surface nonlin-
earity may be important.

1
This especially matters for anti-

rolling and ship tanks when the nondimensional tank motion

magnitudes sscaled by the cross-dimensional tank length ld
are clearly larger than for TLDs.

The cargo ship liquid tanks with swash bulkheads is an-

other application dealing with sloshing in rectangular tanks.

A swash bulkhead is a bulkhead with holes and has from a

hydrodynamic point of view similarities with a screen. The

objectives are to provide sloshing damping as well as to

change the lowest resonance frequency to a higher frequency

range where the wave-induced ship velocity and acceleration

are less severe. The consequence is that, in contrast to TLDs,

slotted swash bulkheads are characterized by a higher solid-

ity ratio, e.g., Sn<0.9. The optimum solidity ratio is not the

highest value Sn=1 which means that the screen becomes a

solid wall dividing the liquid domain into independent com-

partments. Similar devices as swash bulkheads are, for in-

stance, used in fuel tanks of rockets and oil-gas separators on

floating platforms.

Bearing in mind the swash bulkheads in rectangular ship

tanks, we focus in the present paper on the steady-state two-

dimensional liquid sloshing in a rectangular tank with a cen-

tral slat-type screen and the specific geometric and physical

parameters which are, in contrast to earlier TLDs studies,

characterized by

• 0.5&Sn&0.95;

• a limited number of openings sslots, gapsd in the
screen sN&50d;

• finite liquid depths;

• a wider forcing frequency range covering not only the

lowest natural sloshing frequency for the correspond-

ing clean tank, s1
p, but also the next primary excited

natural sloshing frequency s3
p.

The latter frequency range is needed because, in contrast

to a TLD with lower solidity ratios, frequencies correspond-

ing to the resonant sloshing responses with 0.5&Sn&0.95

are expected to be away from those for the corresponding

clean tank. The lateral excitations are considered. A particu-

lar goal is to understand the physics of liquid sloshing dy-

namics versus the input parameters, the solidity ratio Sn, the

forcing frequency s, and the forcing amplitude h2a with em-

phasis on the resonance frequencies as a function of Sn. Un-

derstanding the role of the free-surface nonlinearity is an-ad
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other particular goal. Three different nondimensional

amplitudes, h2a / l=0.001, 0.02, and 0.03 were tested in the

experiments.

To the best of the authors’ knowledge, the literature on

the liquid sloshing dynamics in tanks with screens of solidity

ratio higher than 0.5 is rare. Typical examples in the papers

by Kaneko and Ishikawa,
2
Tait et al.,

3
Love and Tait,

1
and

Warnitchai and Pinkaew
4
are associated with TLDs and Sn

&0.5. They extensively employ the fact that the natural
sloshing frequencies and modes remain almost the same as

for the corresponding clean tank swithout screend. The focus
is mainly on the resonance response with the forcing fre-

quencies close to the first natural frequency of the corre-

sponding clean tank, s1
p. For analyzing this resonance,

Kaneko and Ishikawa,
2
Tait et al.,

3
and Love and Tait

1
use

different linear and nonlinear modal methods in which the

corresponding modal equations are derived sLove and Tait1

takes the nonlinear modal system by Faltinsen and

Timokha
5d based on the natural sloshing modes of the corre-

sponding clean tank. These modal solutions make it possible

to estimate the pressure field at the screen and, using the

pressure drop condition, derive quadratic damping term in

the corresponding modal equations. The pressure drop con-

dition appears as a generalization of the viscous drag term in

Morison’s equation. This condition requires empirical infor-

mation on the so-called pressure drop coefficient which, for

instance, is well-known for an orifice meter device and the

modeling of the screen effect in air ventilation systems. Re-

views on usage of this condition can be found in Refs. 6 and

7. Additional examples of using this condition for liquid

sloshing dynamics and external surface wave problems can

be found in the papers by Molin
8
and Faltinsen et al.

9

When Sn→1, the screen becomes a rigid wall. The

modal solution employing the natural sloshing modes of the

corresponding clean tank used in the aforementioned TLD

analysis is then not more applicable. The resonant peaks are

then expected not at s2i−1
p sodd natural sloshing frequencies

of the clean tankd. This fact was first documented in the
famous NASA Report

10
for a circular sectored tank. An at-

tempt to describe the general trend in changing the resonant

sloshing frequencies with increasing Sn in a rectangular tank

with two-dimensional flows is given in Sec. 6.8 of Ref. 11.

The screen was installed in the middle of the rectangular

tank. Linear sloshing theory was employed. The idea was to

consider the modal solutions in the two screen-separated

compartments and, thereafter, match these solutions at the

screen by using continuity of the mean flux velocity and the

averaged pressure drop condition which should play the role

of transmission boundary conditions. An extension of this

approach was done by Faltinsen et al.
9
Realizing this idea

showed success in describing sid the resonance response am-
plitude for s close to s1

p sthe first natural frequency for the
corresponding clean tankd, and siid the general qualitative
fact of disappearance of the resonance peaks at s1

p and s3
p

and appearance of the resonance peak at s2
p swhich is the

lowest natural sloshing frequency for the compartmentsd as
Sn→1. Due to quadratic nature of the pressure drop condi-

tion, the results on the resonance peaks depend on the forc-

ing amplitude. Furthermore, working on Ref. 9, we found out

that this approach is not precise in identification of the reso-

nance peak positions as the forcing amplitude becomes

smaller and Sn tends to 1. Even though the experimental

forcing amplitude was sufficiently small sthe forcing

amplitude-to-tank width is about 0.001d, this theoretical ap-
proach gave wrong resonance peak position in a frequency

range about s3
p. Explanation comes from the fully linear

analysis by Faltinsen and Timokha
12
who study the linear

natural sloshing frequencies and modes neglecting flow sepa-

ration sjet flowd at the slotted screen in the spirit of earlier
papers on either surface-piercing barriers

13
or baffles.

14
Fal-

tinsen and Timokha
12
showed in their linear analysis that,

when Sn&0.5, the screen-corrected natural sloshing frequen-
cies remain almost the same as for the corresponding clean

tank sconsistent with earlier TLD analysisd, but, when Sn
increases in the range 0.5&Sn,1, the first natural sloshing
frequency s1 sand the corresponding moded in the screen-
equipped tanks continuously vanishes, s1→0, but the third

one, s3→s2
p, as Sn→1. Because Faltinsen and Timokha

12

do not use the nonlinear pressure drop condition, this result

on the natural sloshing frequencies and modes is independent

of the forcing amplitude, i.e., it is the limit case on the reso-

nance frequencies when the forcing amplitude tends to zero.

The change of the theoretical natural frequencies by this lin-

ear theory is quantitatively consistent with experiments con-

ducted with their smallest forcing amplitude h2a / l<0.001.
The transformations of the natural sloshing modes and

frequencies within the linear approximation by Faltinsen and

Timokha
12
are an important factor which should be ac-

counted for in description of the forced resonant liquid slosh-

ing and accurate identification of the resonance sloshing fre-

quencies for 0.5&Sn,1. As we will show in the present

paper, accounting for both these transformations and the

pressure drop at the screen makes the multimodal technique

much more complicated. The transformations are, however,

not important for TLDs, thus, when 0,Sn&0.5, the inter-
ested reader can use, e.g., the modal theories Kaneko &

Ishikawa,
2
Tait et al.,

3
and Love and Tait,

1
instead of follow-

ing the present analysis.

The experimental setup, measured wave elevations at the

walls, and video observations are reported in Secs. III and

IV. The latter section includes also comparison with quasi-

linear multimodal theory constructed in Sec. II. The quasi-

linear multimodal theory is constructed based on the natural

sloshing modes by Faltinsen and Timokha
12
and the well-

known linear multimodal method whose description is given,

e.g., in Chap. 5 of Ref. 11. A novelty is that we also account

for the pressure drop condition by selecting the approach-

velocity component from the singular sat the sharp slot
edgesd natural sloshing modes by Faltinsen and Timokha.12

The quasilinear theory accounts therefore for the change of

the natural sloshing modes sfrequenciesd versus the screen
geometry as well as an “integral” effect of the local flow

separation sor jet flowd by means of the pressure drop con-
dition. However, this theory neglects the free-surface nonlin-

earity. Adopting the pressure drop condition implicitly as-

sumes that the liquid motions in the whole tank are generally

well described by the potential incompressible inviscid hy-

drodynamic model and that flow separation sor jet flowd at
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the screen is only localized in a relatively small neighbor-

hood of the screen.

Even though we postulate the linearized free-surface

conditions, the nonlinear pressure drop condition introduces

the s· u · u d-type quadratic quantities in terms of the general-
ized velocities in the corresponding modal equations. For

TLD-related applications with resonant excitation at the low-

est natural frequency, one can, e.g., follow Tait et al.
3
to get

simpler expressions depending only on the dominant modes.

These quantities can then be interpreted as quadratic damp-

ing terms causing finite resonant response at s1
p ssee a review

on the quadratic damping for linear oscillators in Ref. 15d.
An alternative approach is to use a Morison-equation formu-

lation instead of the pressure drop condition at the screen

with 0,Sn&0.5 ssee Sec. 6.7 of Ref. 11d. The latter ap-
proach provided very satisfactory agreement with experi-

ments by Warnitchai and Pinkaew.
4
In the present paper, the

hydrodynamic coefficients of the modal equations, including

the natural frequencies si, change with Sn, the number and

position of the slots. The quadratic terms should then include

all the generalized coordinates and, along with damping,

cause an energy redistribution between different screen-

modified natural sloshing modes.

Agreement between the quasilinear theory and experi-

ments is almost ideal for the smallest forcing amplitude-to-

tank width ratio equal to 0.001 sthe liquid depth-to-the tank
width ratio is 0.4d. The results are reported in Sec. IV A.
Discrepancies for the lowest and largest tested Sn, Sn

=0.4725 and 0.95125, are explained by the free-surface non-

linearity causing a soft-spring type response behavior similar

as for theoretical steady-state sloshing in clean rectangular

tanks with a finite depth ssee, e.g., Chap. 8 in Ref. 11d. In-
creasing the nondimensional forcing amplitude to 0.01

sSec. IV Bd leads to a series of new experimentally observed
free-surface phenomena. The paper presents the correspond-

ing photographs and videos. Implicitly, these free-surface

phenomena, e.g., wave breaking, runup with jets at the walls,

indicate importance of the free-surface nonlinearities. The

observed free-surface phenomena are mainly documented in

the frequency range covering s2
p and s3

p. The latter is ex-

plained by the fact that resonance at s<s1
p leads to a larger

cross-flow at the screen, and, therefore, causes a larger

damping due to flow separation sor jet flowd. The experimen-
tal response curves are characterized by extra resonance

peaks in this frequency range. The modal analysis shows that

these peaks are a consequence of the secondary resonance

due to the second-order free-surface nonlinearity. According

to Faltinsen and Timokha,
5
this kind of the secondary reso-

nance amplifies symmetric natural sloshing modes which are

not directly excited by the horizontal tank forcing. Theoreti-

cal description of the secondary resonance may require the

so-called adaptive nonlinear multimodal modeling elaborated

by Faltinsen and Timokha
5
for the clean rectangular tank.

However, the quasilinear theory describes the general trend

in changing the main resonance peak position.

In Sec. IV C, we present experimental data for the larg-

est tested forcing amplitude, h2a / l=0.03, which were con-

ducted with the liquid depth-to-the tank width, h / l=0.35.

The experimental observations show very steep waves with

strong wave breaking, runup as well as overturning and for-

mation of gas pockets. Implicitly, this indicates amplifica-

tions of the higher natural modes via the free-surface nonlin-

earity mechanism. The quasilinear theory shows qualitatively

how the resonance frequencies change with Sn, but cannot

be used to quantify the steady-state wave amplitude re-

sponse. Further, the experiments detect the multiple reso-

nance peaks for 0.5&Sn&0.9 as well as the multibranching
of the corresponding experimental response curves. In con-

trast to the case with h2a / l=0.01, this cannot be easily ex-

plained by the secondary resonance phenomena due to the

second-order nonlinearity. A dedicated study is required.

II. QUASILINEAR MULTIMODAL THEORY

A. Preliminaries

1. Basic notations and limit cases

Two-dimensional liquid sloshing is considered in a rect-

angular tank of width l=2a with a slat-type screen installed

at the tank middle as shown in Fig. 1. The figure introduces

geometric notations and the body-fixed coordinate system.

The rectangular tank is forced horizontally with displace-

ments h2std. The screen appears as a thin solid plate with a
series of perforated horizontal slots. The screen thickness is

neglected. In the linear free-surface analysis, we consider

only the mean wetted screen part Sc0 and assume that it has

N submerged slots. When the set So0 denotes all the wetted

rigid slats, and Op0 is the total set of submerged slots

sSc0=Op0øSo0d, this numerical sequence defines them as

follows:

So0 = hs0,zd:− h # z # z18, z19 # z # z28, . . . , zN9 # z # 0j ,

s1d
Op0 = hs0,zd:− h # z18 , z , z19, . . . , zN8 , z , zN9 # 0j ,

where h is the liquid depth. Based on definition s1d, we can
introduce the solidity ratio of the mean wetted screen part as

follows:

Sn =
h − o j=1

N sz j9 − z j8d

h
. s2d

As we see, the solidity ratio is a function of h.

An inviscid and incompressible liquid with irrotational

flow is assumed everywhere in the mean liquid domain Q0

=Q0
−
øQ0

+ except in a small neighborhood of the screen Sc0.

The linear sloshing theory is adopted, namely, the wave

slope is assumed asymptotically small ssee Chap. 5 in Ref.
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FIG. 1. The rectangular tank with a slat-type screen in the middle. Basic

geometric notations.
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11d. The effect of viscous boundary layers at the tank walls
and bottom is assumed negligible ssee Chap. 6 in Ref. 11d

Physically, there exist two limit cases associated with

Sn=0 sno screend and Sn=1 ssolid central walld. Typical
wave profiles are depicted in Fig. 2. Panels sbd and scd are
related to the lowest natural sloshing modes for the two limit

cases. When Sn=0, the natural sloshing modes swithin an
arbitrary nonzero constant Cid are expressed as

wi = wi
p = Ci cosSpi

l
sy + adDcoshspisz + hd/ld ,

s3d

ki = ki
p =

pi

l
tanhSpih

l
D, si

p = Îgki
p, i = 1,2, . . . ,

where si
p are the corresponding natural sloshing frequencies

ssee Sec. 4.3.1.1 in Ref. 11d. Expression s3d introduces sym-
metric seven, i=2kd and antisymmetric sodd, i=2k−1d
modes. Inserting a slat-type screen at the tank middle does

not change the symmetric natural modes, but the antisym-

metric modes become discontinuous at the slats sSo0d and,
therefore, cannot be described by expression s3d.

Passage to Sn=1 leads to the central rigid wall dividing

the whole tank into two equal symmetrically situated com-

partments. The corresponding natural sloshing modes in Q0
6

are then defined by the formulas

wi
6 = wi

pp6 = Ci cosSpi

a
sy 7 adDcoshspisz + hd/ad ,

s4d

ki = ki
pp =

pi

a
tanhSpih

a
D, si

pp = Îgki
pp, i = 1,2, . . . .

Because l=2a, si
pp=s2i

p , the case Sn=1 leads to vanishing of

the natural sloshing frequencies responsible for the antisym-

metric modes of the case Sn=0.

Faltinsen and Timokha
12
describe evolution of the anti-

symmetric natural sloshing modes from Eq. s3d to Eq. s4d as
Sn changes from 0 to 1 with finite nondimensional depth h / l.

These modes remain very close to Eq. s3d for 0,Sn&0.5.
The principal changes in the natural modes are detected in

the range 0.5&Sn,1.

2. Resonant steady-state response for a clean
rectangular tank

Damping of liquid sloshing in a clean tank without wave

breaking is small and mainly caused by the viscous boundary

layer. Finite resonant harmonically excited liquid sloshing is

mainly due to nonlinear transfer of energy between primary

excited and higher modes. A review on the resonance steady-

state wave amplitude response can be found in Chap. 8 of

Ref. 11. According to asymptotic theory of nonlinear reso-

nant steady-state sloshing, the primary resonance is only

possible at the odd santisymmetricd modes, i.e., when

s→s2k−1
p . The corresponding response curves are schemati-

cally illustrated in Fig. 3. Depending on the nondimensional

liquid depth, h / l, one can arrive at the soft-spring type re-

sponse curves in the panel sad, or at the hard-spring type
response curves in the panel sbd. This change for the first
resonance s<s1

p happens for asymptotically small h2a / l at

the critical depth h / l=0.3368. . .. Nonlinear effects can also

cause secondary resonances meaning that multiples of the

forcing frequency is equal to a natural sloshing frequency.

B. Linear sloshing problem and the corresponding
linear modal equations

1. Boundary value problem

Henceforth in our theoretical analysis, we assume that

the liquid is inviscid and incompressible with irrotational

flow except in a small vicinity of the screen where flow

separation sor a jet flowd occurs. Let equation z=zsy , td de-
scribe the free-surface elevations and Fsy ,z , td be the abso-
lute velocity potential defined in the tank-fixed coordinate

system Oyz. The linear sloshing theory involves the Laplace

equation and the boundary conditions coupling F and z:

¹2F = 0 in Q0 = Q0
+

ø Q0
−, s5ad

]F

]y
= ḣ2std on S0w

6 , s5bd

]F

]z
= 0 on S0b

6 , s5cd

(c)

a

h
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FIG. 2. Schematic instant wave profiles for two-dimensional liquid sloshing

in a rectangular tank with horizontal excitation. Screen Sc0 with 0,Sn
,1 in the middle is installed fpart sadg. Parts sbd and scd illustrate the first
antisymmetric wave profiles for the limit cases Sn=0 and Sn=1,

respectively.
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FIG. 3. Schematic response curves for a clean rectangular tank giving the

steady-state resonance wave amplitude response A vs s /s2k−1
p based on

two-dimensional potential flow of an incompressible liquid. The dashed line

shows results following from the linear sloshing theory. The solid lines

represent response curves following from the nonlinear asymptotic theory,

where the bold solid line notes stable steady-state solutions. A hysteresis

effect is possible denoted by the points T, T1, T2, and T3. The point i marks

possibility of the secondary resonance whose concept for sloshing problem

is elaborated and studied in detail by Faltinsen and Timokha sRef. 5d. The
secondary resonance implies amplification of higher modes when a super-

harmonics becomes close to a higher natural sloshing mode. Depending on

the nondimensional liquid depth h / l, we can have sad soft-spring type be-
havior s0.3368. . .&h / l for k=1d, or sbd hard-spring type behavior sh / l

&0.3368. . . for k=1d.
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]F

]z
=

]z

]t
on S0 = S0

+
ø S0

−, s5dd

]F

]t
+ gz = 0 on S0 = S0

+
ø S0

−, s5ed

E
S0

zdy = 0. s5fd

Geometric notations are explained in Fig. 1. The horizontal

displacement of the tank is h2std and g is the gravity accel-

eration. Equations s5dd and s5ed are the linearized kinematic

and dynamic boundary conditions formulated on the mean

free surface S0=S0
−
øS0

+.

The linear boundary problem Eq. s5d should be com-
pleted by appropriate boundary conditions on the screen Sc0.

When we neglect flow separation sor a jet flowd at the screen
and, thereby, postulate the potential flow of an incompress-

ible liquid everywhere in Q0 including the openings Op0, one

should add the following linear boundary condition:

]F

]y
= ḣ2 on So0 s6d

implying that the solid screen slats move horizontally to-

gether with the rectangular tank.

The problem Eqs. s5d and s6d require initial conditions
which can be defined as

zsy,0d = z0syd,
]z

]t
sy,0d = z1syd ,

where z0 and z1 are the initial free-surface shape and veloc-
ity, respectively.

2. Linear modal solution when neglecting viscous
screen effect

The linear sloshing problem Eqs. s5d and s6d have the
following modal solution ssee details in Chap. 5 of Ref. 11d:

zsy,td =o
i=1

`

bistdf isyd , s7d

Fsy,z,td = ḣ2stdy +o
i=1

`

Ristdwisy,zd , s8d

where wisy ,zdff isyd=wisy ,0dg are the natural sloshing modes
appearing as the nontrivial eigensolution of the following

spectral boundary problem:

¹2wi = 0 in Q0;
]wi

]n
= 0 on S0 = S0w

6
ø S0b

6
ø So0;

s9d
]wi

]z
= kiwi on S0.

The spectral parameter ki.0 determines the natural sloshing
frequencies

si = Îgki, i = 1,2, . . . . s10d

According to general theorems on the spectral boundary

problem Eq. s9d ssee, e.g., Refs. 16–18d, the natural sloshing
modes are orthogonal on S0, i.e.,

E
S0

f if jdy = 0, i Þ j ; f isyd = wisy,0d . s11d

An accurate approximate eigensolution of the spectral

problem Eq. s9d was constructed by Faltinsen and

Timokha.
12
Analyzing this solution shows that the natural

frequencies and modes are far from s2i−1
p for 0.5&Sn,1.

This means that, in contrast to earlier TLD analysis, we can-

not adopt the eigensolution s3d for these solidity ratios.
The modal solution Eqs. s7d and s8d automatically satisfy

all the relations of Eqs. s5d and s6d except the kinematic and
dynamic boundary conditions Eqs. s5dd and s5ed. Due to the
orthogonality condition Eq. s11d, the kinematic condition Eq.
s5d couples Ristd and bistd as follows:

Ristd =
ḃistd

ki

, i = 1,2, . . . . s12d

After adopting Eq. s12d in the modal solution Eq. s8d and
substituting this modal solution in the dynamic boundary

condition Eq. s5dd, the orthogonality condition Eq. s11d leads
to the linear ordinary differential equations with respect to

bistd , i=1,2 , . . ., the so-called linear modal equations. For

the considered tank shape, these modal equations take the

form

mkfb̈2k−1std + s2k−1
2 b2k−1stdg + lkḧ2std = 0, k = 1,2, . . . ;

s13ad

b̈2kstd + s2k
2 b2kstd = 0, k = 1,2, . . . , s13bd

where

mk =
1

k2k−1

E
−a

0

f2k−1
2 dy, lk = E

−a

0

yf2k−1dy, k $ 1.

s14d

We see that the h2-forcing term is present only in Eq. s13ad
responsible for antisymmetric modes, i.e., only antisymmet-

ric modes are primary, directly excited. Symmetric modes

depend in the linear approximation only on initial conditions.

The hydrodynamic coefficients s2i−1, mk, and lk differ from

similar coefficients in linear modal equations for sloshing in

a clear rectangular tank sChap. 5 in Ref. 11d. Our hydrody-
namic coefficients are now functions of Sn, the number of

the submerged screen slots and their position.

C. Modification of the modal solution due
to the pressure drop condition

The linear modal Eq. s13d must be modified to account
for viscous cross-flow at the screen. The corresponding

modification can be done by using a pressure drop condition

at the screen. We will show, that this will lead to additional

quadratic terms in the modal Eq. s13ad associated with the
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antisymmetric modes. Because the symmetric modes do not

cause cross-flow through the screen, the modal Eq. s13bd for
symmetric modes will remain homogeneous within the

framework of the linear sloshing theory.

1. Pressure drop condition

The pressure drop condition at the screen can be formu-

lated as ssee, e.g., Ref. 6d

P− − P+ =
1

2rKuuuu on Sc0, s15d

where K is an empirical pressure drop coefficient, r is the
liquid density, u is the so-called approach velocity to the

screen, and sP−−P+d is the pressure drop. The pressure drop

formulation Eq. s15d is based on that both sides of the screen
are wetted. It does not apply in the free-surface zone where,

due to different elevations at the screen sides, liquid goes

through the openings to the dry screen side with further fall

out. The falling liquid will then impact on the underlying

free surface and thereby cause an extra dissipation.

The pressure drop coefficient K depends on the solidity

ratio Sn. It may also depend on the Reynolds and Keulegan–

Carpenter numbers. For slat-type screens, the pressure drop

coefficient weakly depends on the Reynolds number ssee de-
tails in Ref. 6, p. 314d. Following Tait et al.

3
who referred to

formulas by Baines and Peterson
19
and Weisbach,

20
we will

adopt the following approximation of the empirical pressure

drop coefficient

K = S 1

Ccs1 − Snd
− 1D2,

s16d
Cc = 0.405 exps− pSnd + 0.595 for Sn$ 0.3.

According to experimental studies by Tait et al.
3
for slat-type

screens with Sn=0.42, different excitation frequencies close

to the first natural sloshing frequency, and for intermediate

and shallow liquid depths, formula s16d gives satisfactory
approximation of K for the Keulegan–Carpenter number

KC=umT /D.15 where um is the amplitude of u, T is the

oscillation period, and D is a characteristic length shere, the
slot heightd. The pressure drop condition was originally for-
mulated in the literature for uniform, coordinate-independent

u=ustd and P=Pstd.

2. The horizontal approach velocity

The linear modal solution Eq. s8d based on the screen-
modified natural sloshing modes following from the linear

analysis by Faltinsen and Timokha
12
is assumed a first-order

approximation of the relative horizontal velocity at the

screen, i.e.,

Usy,z,td = usy,z,td + ũsy,z,td

=o
i=1

`
ḃ2i−1std

k2i−1

]w2i−1

]y
sy,zd, y Þ 0, s17d

where w2i−1 are the corresponding antisymmetric natural

sloshing modes. Because dealing with the linear natural

screen-modified sloshing modes by Faltinsen and Timokha
12

leads to a singular velocity field at the slot edges, the restric-

tion yÞ0 is important; formally, U is infinite at these edges.

In expression s17d, ũ is the singular horizontal velocity

component and u is the regular horizontal velocity compo-

nent. The latter should be continuous at y=0 so that us0,z , td
is associated with the approach velocity in formula s15d. Be-
cause the natural sloshing modes are defined within an arbi-

trary nonzero multiplier C2i−1, following Faltinsen and

Timokha
12
leads to the expression

w2i−1sy,zd = C2i−1sfisy,zd + f̃isy,zdd, i $ 1, s18d

where the functions f̃i and fi are associated with ũsy ,z , td
and usy ,z , td, respectively. Furthermore, Ref. 12 shows that
the functions fisy ,zd and f̃isy ,zd can be presented in a stan-
dard expansion adopted in many problems of the linear wave

theory
13
and, therefore, take the form

fisy,zd = 7 coshsk0
sidsz + hd/adcossk0

sidsy 7 ad/ad , s19ad

f̃isy,zd = 7 o
j=1

`

A j
sid cossk j

sidsz + hd/ad
coshsk j

sidsy 7 ad/ad

coshsk j
sidd

in Q0
6, s19bd

where hk
0

sid
, i$1j and hk

j

sid
, i$1, j$1j are the roots of the

equations

k0
sid tanhsk0

sidh/ad = k2i−1a and k j
sid tansk j

sidh/ad = − k2i−1a ,

s20d
i $ 1, j $ 1.

Here, k2i−1 are the eigenvalues of the spectral problem Eq.

s9d in which the screen effect is included so that they are not
equal to k2i−1

p in Eq. s3d.
The terms associated with f̃i are evanescent terms expo-

nentially decaying away from the screen; they capture the

local singular character of the linear natural sloshing modes

at the slot edges. The “wave components” of the natural

sloshing modes, fi determines the surface wave profile and,

thereby, the corresponding wave number k
0

sid
. It is very im-

portant that the wave numbers k
0

sid
are mathematically not

equal to the wave number of the corresponding clean tank,

ps2i−1d / l. Faltinsen and Timokha
12
studied the screen effect

on k2i−1, k
0

sid
, and k

j

sid
as well as on the natural sloshing modes

Eqs. s18d and s19d. It follows from their analysis that the

values k
0

sid
are less than ps2i−1d / l and k

0

sid
monotonically

decreases from ps2i−1d / l to 2psi−1d / l as Sn increases from

0 to 1. The values k
0

sid
remain close to ps2i−1d / l only for

Sn&0.5, i.e., for a TLD-case. Furthermore, the values k
j

sid
for

lower natural sloshing modes rapidly tend to pj /h as j→`
providing almost zero flux through the screen associated

with the function f̃i.

The approach velocity u should represent the velocity

flux through the screen without representing the local flow

details shere, singularities at the edgesd at the screen. This
means that the approach velocity should be well approxi-

mated in terms of the “wave component” functions fi ex-

pressed by Eq. s19ad. It follows from Eq. s17d that the ap-
proach velocity can then be determined by
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usz,td =o
i=1

Nm ḃ2i−1

k2i−1

Uiszd, − h , z , 0, s21d

where Nm is the required number of antisymmetric modes

sNm→`d and

Uiszd = U ]fi

]y
U

y=0

= −
C2i−1

a
coshsk0

sidsz + hd/adsinsk0
sidd .

s22d

3. The pressure drop condition and the modified
modal equations

Using the linear modal solution Eq. s8d in expression for
the dynamic pressure

p = − r
]F

]t
s23d

formally leads to a linear pressure drop at the slats, namely,

p−−p+Þ0 on So0 due to the discontinuous antisymmetric

natural sloshing modes w2i−1. However, the difference P−
−P+ in the pressure drop condition Eq. s15d has another
physical nature. This pressure drop appears due to flow sepa-

ration sor a jet flowd which is not captured by the linear
modal solution.

We should first insert the approach velocity Eq. s21d into
the pressure drop condition and find the corresponding pres-

sure correction p2. When expressing p2, we use an analytical

continuation of the irrotational flow to the whole liquid do-

main. Formally, this suggests the modified velocity potential

Fsy,z,td = ḣ2y +o
i=1

`
ḃistd

ki

wisy,zd 7
1

r
E

t0

t

p2sy,z,t1ddt1

in Q0
6. s24d

Now, we should substitute Eqs. s7d and s24d into the
problem Eq. s5d and satisfy the Laplace equation, the body-
boundary condition, and the pressure drop condition p2−
−p2+= s1 /2drKuuuu. Furthermore, we should also account for
Eqs. s7d and s24d into kinematic Eq. s5dd and dynamic Eq.
s5ed boundary conditions. The latter conditions ssee Appen-
dix Ad give

]p2

]n
= 0 on S0

6, s25ad

ḧ2y +o
i=1

`
b̈istd + gkibstd

ki

f isyd 7
1

r
p2sy,0,td = 0

on S0
6. s25bd

It may look unphysically that, as the derivations in Ap-

pendix A show, the pressure-correction term p2 satisfies the

Neumann boundary condition Eq. s25ad on the mean free
surface. However, one should remember the specific defini-

tion of p2 in the modified velocity potential Eq. s24d imply-
ing that the integral over p2 is also a correction of the veloc-

ity potential. The latter gives Eq. sA3d following from the

kinematic condition Eq. s5dd, and because Eq. sA3d is true

for any instant t, one mathematically gets the zero-Neumann

condition Eq. s25ad for the pressure-correction term.
Using Eq. s25ad together with relations in Eq. sA1d and

the pressure drop condition leads to the boundary value prob-

lem

¹2p2 = 0 in Q0
6;

]p2

]n
= 0 on S0b

6
ø S0w

6
ø S0

6; s26d

p2 = 6
1

4
rKuuuu on Sc0.

This problem has the following solution

p2 = 6 r
K

4h
SV0 + 2o

k=1

`

Vk cosSpk

h
zD coshspksy 7 ad/hd

coshspka/hd
D ,
s27d

where

Vk = E
−h

0

uuuucosSpk

h
zDdz, k $ 0. s28d

One must note that when introducing the approach ve-

locity via Eq. s21d we neglect the evanescent terms exponen-
tially decaying away from screen which are responsible for a

singular character of the linear natural sloshing modes at the

slot edges. We see that similar exponentially decaying terms

appear in solution Eq. s27d associated with Vk ,k$1. These
terms do not contribute to the screen averaged pressure, but

are only responsible for a local nearly screen change of the

pressure field by p2. This local change has no physical mean-

ing, especially for larger k because the local field at the

screen is in reality viscous. Excluding these exponentially

decaying terms means an averaged sover the mean screen
heightd pressure drop which will furthermore be adopted.
The modified velocity potential Eq. s24d should then be ap-
proximated by

Fsy,z,td = ḣ2y +o
i=1

`
ḃistd

ki

wisy,zd

7
K

4h
E

t0

t SE
−h

0

usz,t1duusz,t1dudzDdt1 in Q0
6,

s29d

where u is given by Eq. s21d.
Let us consider the dynamic Eq. s25bd and use the or-

thogonality Eq. s11d. This gives the modified modal equa-
tions with respect to b2i−1

mksb̈2k−1std + s2k−1
2 b2k−1stdd + lkḧ2std

−
Kak

4h
E
−h

0 So
i=1

Nm ḃ2i−1

k2i−1

UiszdDUo
i=1

Nm ḃ2i−1

k2i−1

UiszdUdz = 0,

k = 1,2, . . . ,Nm, s30d
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where Nm is the required number of antisymmetric modes

falso see Eq. s21dg, and

ak = E
−a

0

f2k−1syddy . s31d

Other hydrodynamic coefficients are expressed by Eqs. s10d
and s14d. The symmetric modes are governed by Eq. s13bd,
i.e., they are not excited by the horizontal forcing h2std
within the framework of the linear free-surface theory.

Based on studies by Faltinsen and Timokha
12
for a uni-

formly slotted screen with 0.5&Sn,0.95 and relatively
small number of the openings N&50, the natural sloshing
frequencies and modes and, therefore, the hydrodynamic co-

efficients ki, si, mi, li, and ai become strongly dependent on

the geometric dimensions of the mean liquid domain, h and l,

and, in addition, on the two independent screen parameters

Sn and N. The hydrodynamic coefficients can also change

with the position of the slot nearest to the mean free surface,

i.e., due to the fact that the slot goes in and out of the mean

free surface. When 0,Sn&0.5, the natural sloshing modes
and frequencies are close to those for the clean tank and the

latter additional dependencies can be neglected.

Henceforth, we consider steady-state liquid sloshing oc-

curring due to the harmonic sway excitation h2std
=h2a cossstd, where h2a is the forcing amplitude, and s is

the forcing frequency. The emphasis will be on the

h2a-scaled wave elevations which, according to the modal

presentation Eq. s7d, is described by the formula

zpsy,td =o
i=1

`

bi
pstdf isyd, bi

pstd = bistd/h2a. s32d

When l stank widthd is the characteristic size and 1 /s is the
characteristic time, the modal Eqs. s30d can be rewritten to
the nondimensional form with respect to bi

pstd:

m̄ksb̈2k−1
p std + s̄2k−1

2 b2k−1
p stdd − l̄k cos t

− fKh̄2ag
āk

4h̄
E
−h̄

0 So
i=1

Nm ḃ2i−1
p

k̄2i−1

Ūisz̄dD
3Uo

i=1

Nm ḃ2i−1
p

k̄2i−1

Ūisz̄dUdz̄ = 0, k = 1,2, . . . ,Nm, s33d

where we have introduced the nondimensional parameters

s̄i = si/s, h̄2a = h2a/l, Ū = lU ,

k̄i = kil, h̄ = h/l, z̄ = z/l ,

m̄i = mi/l
2, l̄i = li/l

2, āi = ai/l .

When s /s1
p and h / l are constant values, 0.5&Sn, and

N&50, the steady-state solution of Eq. s33d strongly depends
on the nondimensional parameter fKh̄2ag sin the front of the
integral termd, the independent parameters Sn, N, and, gen-

erally, the position of the slot closest to the mean free sur-

face. This is because, as we remarked above, all these input

parameters can change the hydrodynamic coefficients in the

modal equations. A simplification comes for smaller solidity

ratios, 0,Sn&0.5 and 10&N when sRef. 12d the natural
sloshing modes and frequencies sand the corresponding hy-
drodynamic coefficientsd are close to those for the clean tank
and, therefore, the steady-state solution of Eq. s33d is only
function of s /s1

p, h / l, and the nondimensional parameter

fKh̄2ag. Another simplification is possible for a porous-media

screen implying the limit case N→`. During preparation of
Ref. 12, the authors established that, whereas 100&N and

0.5,Sn,0.95, the natural sloshing frequencies and modes
become only functions of Sn for K because one can define

Sn=SnsKd by inverting the monotonic function Eq. s16dg.
Thus, the porous media limit implies that the steady-state

solution of Eq. s33d depends on the independent nondimen-
sional input parameters s /s1

p, h / l, Kh̄2a, and K.

The periodic steady-state solution has been found from

the system Eq. s30d by numerical time-integration following
a fifth-order Runge–Kutta method with arbitrary initial con-

ditions associated with initial free-surface shape and velocity.

This becomes possible because the modal equations imply a

dissipative mechanical system, i.e., transient waves die out

with increasing time.

III. EXPERIMENTS

A Plexiglas-made rectangular tank was installed in a rig

located at the Marine Technology Center in Trondheim, Nor-

way. The tank’s internal dimensions are 1.0 m30.98 m
30.1 m swidth3height3breadthd. The setup photograph is
shown in Fig. 4. The tank has been equipped with two resis-

tant wave probes. The measurement accuracy of the wave

elevations is about 1 mm. The measurement probes have

been installed at 1 cm away from the two opposite vertical

walls. Two considerations determined our choice of the tank

breadth. One is that we wanted to achieve two-dimensional

flow conditions and, hence, the breadth-to-width ratio has to

be small. The other criterion is that the tank breadth must be

clearly larger than the boundary layers at the tank walls and

the thin side-screen bracings “B” of 0.005 m ssee Fig. 5d.

wave probe
slat

slot

wave probe

tank

tank position

sensor

FIG. 4. sColor onlined Experimental set-up and equipments.
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Meniscus effects occur at the intersection between the

tank walls and the free surface leading to three-dimensional

waves with very small wave height and wavelength relative

to the gravity waves. The error due to meniscus effects is

believed negligible.

The plate with perforated slots is mounted in the tank

middle ssee Fig. 4d. The plate thickness is 5 mm which is

neglected in our theoretical model. The geometric structure

of the perforated plate is illustrated in Fig. 5. Due to techni-

cal limitations in the drilling of the slots, the minimum pos-

sible slot height 3 mm was used for all the screens sad–shd. It
has been controlled that the slot height is very close to con-

stant through the screen. If that was not the case, it could

cause a bias in the sloshing in the two compartments. The

latter fact was observed by originally using wrongly manu-

factured screens. For larger solidity ratios, there is only a

limited number of slots below the free surface.

Forced lateral harmonic tank motion h2=h2a cos sstd is
studied. The steady-state wave elevation at the walls is re-

corded for different forcing frequencies in specified fre-

quency intervals. Because the shallow-liquid sloshing is not

adequately described by the linear sloshing theory except for

very small excitation amplitudes, our focus in the present

paper is on finite liquid depths. The frequency range is

f<0.6 Hz,<1.7 Hzg which includes the required resonance
frequencies s1

p
/2p, s2

p
/2p, and s3

p
/2p fsee Eq. s3dg of the

corresponding clean tank for the tested liquid depths 0.4 and

0.35 m. An important consideration was to avoid tank roof

impact which would lead to an extra energy dissipation ssee
Chap. 11 in Ref. 11d. The latter fact implied that h2a / l was

limited to slightly higher than 0.01 in tests with the 0.4 m

liquid depth.

In the experiments, the model tests started with the larg-

est test frequency. The forcing frequency was subsequently

decreased and kept fixed for a certain time interval. The rea-

son for decreasing the forcing frequency is to detect the

maximum wave elevation. The latter fact follows from the

possible soft-spring type nonlinear steady-state response for

a smooth two-dimensional rectangular tank with the tested

finite liquid depths ssee Fig. 3d. Each experimental series
with a fixed forcing frequency lasted, normally, for about

300 cycles. Some isolated tests were made with 400–500

cycles to confirm that the experimentally found steady-state

conditions remain stable on a long-time scale. The wave el-

evation usually reached the experimental steady-state condi-

tion after about 80–200 cycles and then the maximum wave-

elevation in the steady-state region is found. Then the forcing

frequency switched to a lower value and, again, to reach the

next steady-state responses. The step of frequency changes is

smaller around the peak points of the response in order to

have the precise value of the resonance frequencies. The

wave elevation is recorded with a sampling rate of 100 Hz

and measured relative to the unperturbed free surface.

IV. COMPARISON WITH EXPERIMENTS

For screens sad–shd in Fig. 5 and h / l=0.4, the corre-

sponding solidity ratios are computed to be Sn=0.4725,

0.6825, 0.786 25, 0.838 75, 0.891 25, 0.913 75, 0.936 25,

and 0.951 25 with N=70, 42, 29, 22, 15, 12, 9, and 7, re-

(m)h

(b)

(a)

h (m)

Sn

Sn

Sn

Sn

(d)

(c)

B

0.005

0.1

zs

0.98

0.005

0.003

0.0015

(f)

(h)

(g)

(e)

0.50.30.20.1

0.798
0.796
0.794

0.902
0.904

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.792
0.79

0.788
0.786
0.784
0.782
0.78

10.90.80.70.60.50.40.30.20.1

0.692

0.69

0.688

0.686

0.684

0.682

0.68

0.678

0.676

10.90.80.70.60.50.40.30.20.1

0.48

0.478

0.476

0.474

0.472

0.47

0.468

0.944
0.946
0.948
0.95

0.952
0.954
0.956
0.958
0.96

0.962

0.1 0.2

0.904
0.906
0.908
0.91

0.912
0.914
0.916
0.918
0.92

0.922
0.924
0.926

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9
0.898
0.896
0.894
0.892
0.89

0.888
0.886
0.884
0.882

10.90.80.70.60.50.40.30.20.1

0.85
0.848
0.846
0.844
0.842
0.84

0.838
0.836
0.834
0.832

10.90.80.70.6
0.925

0.93

0.935

0.94

0.945

0.95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.4

FIG. 5. Geometric parameters of the perforated plate sscreend. All the numerical values are in meters. The plate thickness is 5 mm. The distance between the
two nearest slots, zs, takes the values zs=0.0027 m sscreen ad, 0.0065 m sscreen bd, 0.0112 m sscreen cd, 0.0158 m sscreen dd, 0.025 m sscreen ed, 0.032 m
sscreen fd, 0.0437 m sscreen gd, and 0.0623 m sscreen hd. Due to technical limitations in the drilling of the slots, the minimum possible slot height 3 mm was
used for all the screens. This causes eight different solidity ratios which, generally, change with the liquid depth as shown in panels sad–shd. Effect of the rigid
side-screen bracings B of 0.005 m width is neglected in our analysis.
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spectively. Formula s16d gives the corresponding pressure
drop coefficients, K=3.09862, 15.2292, 41.4063, 79.8816,

191.550, 315.503, 597.750, and 1045.40. The forcing ampli-

tudes were h2a / l<0.001 and 0.01.
The larger forcing amplitude h2a / l=0.03 was used for

the model tests with h / l=0.35. For this liquid depth, the

solidity ratios are Sn=0.472857, 0.687 143, 0.790,

0.841 429, 0.892 857, 0.914 286, 0.935 714, and 0.952 857

with N=62, 37, 25, 19, 13, 10, 8, and 6, respectively. The

pressure drop coefficients are then evaluated by formula s16d
to be K=3.10666, 15.8448, 43.1960, 82.9828, 197.846,

319.727, 587.348, and 1120.55, respectively.

The tested forcing frequency range covers the lower

natural sloshing frequencies s1
p, s2

p and s3
p. For h / l=0.4, the

ratios between these frequencies are s2
p
/s1

p=1.524 and

s3
p
/s1

p=1.878 with s1
p=5.119 srad /sd. For h / l=0.35, s2

p
/s1

p

=1.561, and s3
p
/s1

p=1.933 with s1
p=4.966 srad /sd.

For all the experimental input parameters, the Runge–

Kutta integrations by Eq. s30d showed a fast convergence in
terms of the modal system dimension Nm. Four modal equa-

tions of Eq. s30d, Nm=4, provided stabilization of four-five

significant figures of the numerical steady-state wave eleva-

tions. This means that, according to the quasilinear modal

theory, the global liquid motions are well described by the

four lower antisymmetric sloshing modes for the considered

frequency range.

A. Experiments with the lowest forcing amplitude
h2a / lÉ0.001 and h / l=0.4

Comparison of the measured maximum steady-state

wave elevations at the walls s1 cm awayd and our theoretical
prediction by the modal system Eq. s30d is shown in Fig. 6.
The solid circles sPd denote the experimental values, but the
solid lines represent the corresponding theoretical values. In

the figure, these values are scaled by the forcing amplitude

h2a. Generally, the experimental forcing amplitudes were dif-

ferent sup to a 10%-changed for different forcing frequencies.
This is illustrated by the narrow horizontal graphs beneath

the panels sad–shd in Fig. 6. The calculations by our quasi-
linear theoretical model Eq. s30d accounted for the actual
experimental values of h2a.

Results by the quasilinear theory is in very good agree-

ment with experiments in the panels sbd–sgd of Fig. 6. A
flat-type experimental response for certain frequency ranges

in the panels sed–sfd may be due to the measurement error of
about 1 mm. In these frequency ranges, variations of the

theoretical response curves are comparable with this error.

In the panels sad–sfd, we see the two resonant peaks as-
sociated with the natural frequencies s1 and s3 sand the cor-
responding modes w1 and w3d which remain relatively close
to s1

p and s3
p. The theoretical peak at s3 is always higher than

the similar peak at s1. This is explained by the fact that the
natural sloshing mode w3 fsee its dominant component Eq.
s19adg provides a faster decay from the mean free surface to
the bottom and, thereby, leads to a lower cross-flow. The

lower cross-flow through the screen for s<s3
p implies a

lower damping due to flow separation sor jet flowd and a
larger wave amplitude response is, therefore, expected.

Figure 6sad shows discrepancies for the smallest tested
solidity ratio Sn=0.4725. First, we see a drift of the experi-

mental peaks to the left of their theoretical expectations. Sec-

ond, as we have explained above by the decreased cross-flow

through the screen, the theoretical wave elevations at s
<s3 should be higher of those at s<s1 but the experimen-
tal values do not confirm that. Because the experimental and

theoretical maximum wave elevations at the resonant peaks

are, at least, 25-times larger than the forcing amplitude, the

discrepancies can be explained by the free-surface nonlinear-

ity leading to a soft-spring type response outlined in Sec.

II A 2. Furthermore, effect of the free-surface nonlinearity is

more important at s<s3 because, as we stated, the screen-
caused damping is of less importance for the second

primary-excited resonance.

The free-surface nonlinearity mechanism explains also

the difference between the quasilinear theoretical prediction

and experimental measurements in the panel shd with Sn
=0.95125 sK=1045.45d. For this solidity ratio, the screen
almost sbut not completelyd prevents the cross-flow between
compartments Q0

+ and Q0
− so that the free-surface motions are

similar to those in Fig. 2scd, i.e., they occur almost indepen-
dently in Q0

+ and Q0
− alike in the two corresponding clean

tanks with the liquid depth-to-width ratio h /a=0.8. The non-

linear soft-spring behavior of the response curves is then

expected ssee Sec. II A 2d. However, sloshing in the panel
shd cannot be modeled as fully independent resonant wave

motions in two compartments Q0
+ and Q0

− with a rigid wall

between them. Assuming independent sloshing in the com-

partments with zero cross-flow at the screen implies that s3
<s2

p and, therefore, we should expect the linear response

peak at s /s2
p<1.524 and the nonlinear resonance peak

should, due to the soft-spring behavior, be to the left of this

value. The panel shd does not confirm such positions of these
peaks. This means that cross-flow is still not completely zero

and we arrive at the situation where both the cross-flow and

the free-surface nonlinearity matter.

The theoretical-and-experimental results in Fig. 2 help

judging on the general trends of the steady-state resonance

response curves with increasing Sn in the range 0.5&Sn
&0.95:

• For the smaller solidity ratios Sn=0.4725, 0.6825,

0.786 25, and 0.83875, the steady-state resonance re-

sponse in panels sad–sdd shows two clear resonance
peaks associated with the two lowest antisymmetric

modes. The peaks remain close to s /s1
p<1 and

s /s1
p<1.878, i.e., they occur in a neighborhood of the

natural sloshing frequencies Eq. s3d. Furthermore, the
maximum nondimensional wave elevations in the con-

sidered frequency range becomes smaller with increas-

ing Sn. This means that increasing Sn between '0.5

and '0.85 increases the global damping in the me-

chanical system.

• Figures 6sed and 6sfd with Sn=0.891 25 and 0.913 75
shows that further increase of the solidity ratio leads to

an increase of the global damping at s /s1
p<1, but the

theoretical and experimental steady-state resonance re-

sponse at the second resonance peak sassociated with
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the second antisymmetric moded remains almost the
same. Furthermore, we see a drift of this second reso-

nance peak to the left of s /s1
p<1.878, i.e., from 1.87

to 1.75.

• Changing the solidity ratio to 0.936 25 in the panel sgd

leads to vanishing of the first resonance peak, but the

second resonance peak occurs at s /s1
p=1.6. The larg-

est tested solidity ratio 0.951 25 in the panel shd theo-
retically shows a clear linear resonance at s /s1

p

=1.59. The maximum theoretical h2a-scaled wave el-
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frequency s is scaled by the lowest natural sloshing frequency for the clean tank s3d. The nondimensional forcing amplitude h2a / l is about 0.001. Change of
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p for experimental series is shown. The change is accounted for in the computations by the modal Eqs. s30d. sad Sn=0.4725, N=70, K
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evation is computed to be about 40; it is not shown in

the panel. Instead, experiments give much lower val-

ues with a local peak at s /s1
p=1.54 which has earlier

been explained by a complex effect due to nonlinear

soft-spring type behavior and non-negligible cross-

flow through the screen.

B. Increasing the forcing amplitude to h2a / l=0.01
with h / l=0.4

Increasing the forcing amplitude to h2a / l=0.01 leads to

a set of specific free-surface phenomena documented by

means of photographs and videos in Figs. 7–12 These phe-

nomena are mainly observed in the frequency range 1.25

,s /s1
p,1.78 and, for the screen sad with the smallest tested

solidity ratio 0.4725, in the range 0.92&s /s1
p&1.04. The

free-surface phenomena can be classified in the following

way:

• Wave breaking sbasically of spilling typed happens for
all the tested solidity ratios Sn&0.9 in the range of
1.25,s /s1

p,1.78. It is most severe for lower Sn.
Figure 7 exhibits the corresponding photograph and

video for the screen sad with s /s1
p=1.71 and s /s1

p

=1.75, respectively. The wave breaking occurs peri-

odically in the left and right compartments as a conse-

quence of collision between cross-flow going from the

screen and an incoming wave in the corresponding

compartment. For the screen sad with the lowest tested
solidity ratio, a local wave breaking is also observed

for s /s1
p<0.98 as it is seen in Fig. 8. The latter dis-

appears for other screens with higher solidity ratios.

• For 0.7&Sn&0.9, we established three-dimensional

wave motions in the frequency range 1.66&s /s1
p

&1.73. Figure 9 displays the corresponding video for
the screen sbd with Sn=0.6825 and s /s1

p=1.72. These

three-dimensional waves are accompanied by a local

wave breaking. We were not able to identify what kind

of cross-wave resonance causes the observed three-

FIG. 7. sColor onlined Typical wave breaking occurring for all

the tested solidity ratios Sn&0.9 in the range of 1.25,s /s1
p,1.78

for the model tests with h / l=0.4 and h2a / l<0.01. The photograph and
video recording are for the screen sad with Sn=0.481 25 and the

forcing frequencies s /s1
p=1.71 and 1.75, respectively senhanced onlined.

fURL: http://dx.doi.org/10.1063/1.3562310.1g

FIG. 8. sColor onlined Local wave breaking occurring for the screen sad with
s /s1

p<0.98, h / l=0.4, and h2a / l=0.01.

FIG. 9. sColor onlined A typical three-dimensional perturbations of the free
surface occurring for 0.7&Sn&0.9 and 1.66&s /s1

p&1.73; h / l=0.4,

h2a / l<0.01. The video is for the screen sbd with Sn=0.6825 and s /s1
p

=1.72 senhanced onlined.fURL: http://dx.doi.org/10.1063/1.3562310.2g

FIG. 10. sColor onlined Video recording of a steep wave with the

double superharmonics elevations at the walls senhanced onlined.fURL:
http://dx.doi.org/10.1063/1.3562310.3g
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dimensional waves. A dedicated study in the manner

of Faltinsen et al. is needed.
21

• The video in Fig. 10 illustrates the second Fourier har-

monics for the nearly wall wave elevations established

in our visual observations for the screens sbd–sdd. In
addition, these cases are characterized by steep wave

patterns. The latter fact indicates an amplification of

higher sloshing modes. Mechanism of this amplifica-

tion in sloshing problems consists of the secondary

resonance yielding the energy content from a primary-

excited mode to higher modes via the free-surface

nonlinearity ssee Chap. 8 in Ref. 11d.
• Liquid jets through the screen openings over the free

surface with subsequent fallout on the opposite free

surface happened for the screens sed–shd in a frequency
range about s /s1

p=1.524. Figure 11 shows the jet for

the screen scd and s /s1
p=1.48.

• Runup with a detachment of a liquid portion along the

screen happened for the solidity ratios 0.9&Sn. Figure
12 shows the corresponding photograph and video.

Even though the aforementioned surface phenomena in-

dicate importance of the free-surface nonlinearity, we used

the quasilinear modal theory to describe the steady-state

wave elevations at the walls. The results are compared with

experimental values in Figs. 13 and 14.

Figures 6sad–6sdd and 13 demonstrate that increasing the
forcing amplitude leads to the experimental response curves

which cannot be fully quantified by the quasilinear theory.

The reasons are sid additional resonance peaks about the ver-
tical dashed lines; siid a nonlinear soft-spring type behavior
in a frequency range covering the natural sloshing frequency

s3.
When considering Fig. 13sad with the lowest tested Sn

=0.4725 and comparing it with Fig. 6sad, a much clearer
soft-spring behavior of the experimental amplitude response

occurs at s<s3
p. The experimental resonance peak at the

first natural frequency, s<s1
p, remains in these figures of a

linear character. Recalling that the aforementioned lower

cross-flow through the screen by the natural mode w3 sasso-
ciated with exponential decay to the bottomd leads to a lower
screen-caused damping clarifies a stronger effect of the free-

surface nonlinearity which should yield for the tested liquid

depth the soft-spring type response curve. Our quasilinear

theory cannot capture this response as well as it cannot de-

scribe amplification of higher harmonics. However, it re-

mains applicable for prediction of the first Fourier harmonics

contribution in a local neighborhood of s<s1
p in Figs. 13

and 14. The vanishing of the first resonance peak with in-

creasing Sn is reasonably well predicted. This occurs for

Sn=0.786 25 fscreen scdg while the lower forcing amplitude
detected this vanishing only for Sn=0.936 25 fscreen sgdg.

Figures 13 and 14 show that the quasilinear theory is,

generally, not applicable in the frequency range 1.1&s /s1
p

&1.9 for quantification of the steady-state amplitude re-
sponse. It describes only a general trend of the maximum

resonance peak position versus Sn. In the middle of this fre-

quency range, 1.3&s /s1
p&1.78, experimental observations

establish the aforementioned specific free-surface phenom-

ena which are of a clear nonlinear nature. Being invalid in

modeling the free-surface nonlinearity, the quasilinear theory

shows in Fig. 14 a linear-type amplitude response about s3
snote that this natural sloshing frequency decreases from s3

p

to s2
p as Sn tends to 1d while the experimental measurements

show a soft-spring type response curves at the same fre-

quency. For smaller forcing amplitude in Fig. 6, this kind of

discrepancies was detected only for the maximum tested so-

lidity ratio Sn=0.951 25.

Remembering the video in Fig. 10 detecting the double

Fourier harmonics, we present in Figs. 13 and 14 the

h2a-scaled contributions of the first snd and second s,d Fou-
rier harmonics components of the 2p /s-periodic measured
steady-state signal. The sum of the first and second harmon-

ics contributions in the figures gives approximately the ac-

tual wave elevation for almost all the experimental data and,

therefore, relates appearance of the additional peaks to am-

plification of second harmonic response. Since the

s· u · u d-nonlinearity can only yield odd harmonic terms, the
existence of the second Fourier harmonics cannot be ex-

plained within the framework of the quasilinear theory. To

explain amplification of the second Fourier harmonics, we

FIG. 11. sColor onlined Photo of the liquid jet through the screen for Sn
=0.891 25 and s /s1

p=1.48.

FIG. 12. sColor onlined The photograph and video recording of the

runup at the screen occurring for 0.9&Sn senhanced onlined.fURL:
http://dx.doi.org/10.1063/1.3562310.4g
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should implement the adaptive multimodal analysis elabo-

rated by Faltinsen and Timokha.
5
According to this analysis,

the second Fourier harmonics in the steady-state sloshing

solution can only be resonantly excited due to the second-

order free-surface nonlinearity when the forcing frequency is

close to the one-half of the corresponding natural frequency

of a symmetric mode, i.e., 2s<s2k ,k$1. The latter condi-
tion leads to

s

s1
p

<
s2k

p

2s1
p
= i2k. s34d

Figure 13 shows that the values s /s1
p= i2k, k=1, 2, 3, 4, and

5 well predict the frequencies of the resonance peaks associ-

ated with the second Fourier harmonics amplification.

C. Experiments with h2a / l=0.03 and h / l=0.35

Increasing the forcing amplitude makes the previously

described above free-surface phenomena much more severe.

Along with very strong wave breaking and runup, we ob-

served overturning waves and formation of gas pockets. A

representative video is given in Fig. 15. Formation of gas

pockets is demonstrated by the video in Fig. 16.

Even though strongly nonlinear free-surface phenomena

are observed for the larger forcing amplitude h2a / l=0.03 in

our experimental model tests done with h / l=0.35, we at-

tempted to compare our quasi-linear prediction and the cor-

responding experimental measurements of the steady-state

maximum wave elevations at the walls. Results are reported

in Figs. 17–19.

The measured signal was not exactly steady-state for

several of the tested forcing frequencies. For the early-

reported experimental results, standard deviations of the

maximum wave elevation in the experimental steady-state

condition were comparable with 1 mm, i.e., with the mea-

surement error, but the experimental data for h2a / l=0.03

with h / l=0.35 demonstrated standard deviations comparable

with the forcing amplitude. The h2a-scaled standard devia-

tions of the measured signal are presented in Figs. 17–19 to

identify the frequency ranges where they may matter. As it

follows from the previous analysis for lower forcing ampli-

tudes, the largest standard deviations are detected for s be-
tween s2

p and s3
p where the free-surface nonlinearity is espe-

cially important. Just about these values of the forcing

frequency, we observed most severe wave breaking. Further-

more, the change of the forcing amplitude for different forc-

ing frequencies has been negligible for this experimental se-

ries, less than 1%, thus, we neglected it in our quasilinear

modeling assuming h2a / l=0.03.
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FIG. 13. The same as for the panels sad–sdd in Fig. 6, but for the larger forcing amplitude h2a / l<0.01. Contribution of the first Fourier harmonics to the
measured wave elevations sscaled by h2ad is denoted by n, but , denotes contribution of the second Fourier harmonics. The values s /s1

p= i2k ,k$1 fsee
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is expected.
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We start our analysis with results in Fig. 17 which rep-

resents the case of the lower tested solidity ratios associated

with the screens sad and sbd. The figure shows that the qua-
silinear theory does not satisfactorily quantify the free-

surface elevations with increasing h2a, but shows a correct

trend in how resonance frequencies change. Furthermore, the

case h2a / l=0.03 brings, from experimental point of view,

several new physical phenomena. First of all, we note a
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FIG. 14. The same as for the panels sed–shd in Fig. 6, but for the larger forcing amplitude h2a / l<0.01. Contribution of the first Fourier harmonics to the
measured wave elevations sscaled by h2ad is denoted by n, but , denotes contribution of the second Fourier harmonics. The values s /s1

p= i2k ,k$1 fsee Eq.
s34d and the corresponding vertical dashed linesg indicate the frequencies where the secondary resonance due to the second-order free-surface nonlinearity is
expected.

FIG. 15. sColor onlined Representative video of the free-surface phenomena
in experimental series with h2a / l=0.03 and h / l=0.35. The video illustrates

free-surface phenomena occurring for s /s1=1.328 and Sn=0.914 286 sen-
hanced onlined.fURL: http://dx.doi.org/10.1063/1.3562310.5g

FIG. 16. sColor onlined Formation of a gas pocket at the vertical walls
occurring for h2a / l=0.03 and h / l=0.35. The photograph and video is given

for s /s1=0.96 and Sn=0.472 857 senhanced onlined.fURL:
http://dx.doi.org/10.1063/1.3562310.6g
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multibranching of the experimental response curves which

appears as different experimentally detected steady-state

wave elevations at the opposite measurement probes shence-
forth, “left” and “right” probesd. We mark this by shadow
zones in Fig. 17. A hysteresis with the corresponding soft-

spring type multibranching ssee Fig. 3d is possible in the two
limit cases, Sn=1 and 0. This hysteresis can, therefore, be

expected in the left of s /s1
p=1, 1.524, and 1.878. According

to Faltinsen and Timokha,
12
a central slat-type screen with

the tested solidity ratios in Fig. 17 can slightly shift this

hysteresis to the left of aforementioned frequencies, but it

cannot move it in the right direction along the horizontal

axis. The multibranching phenomenon in the shadow zone

occurs in other frequency ranges and, therefore, it cannot be

related to the nonlinear sloshing phenomena known for clean

rectangular tanks.

Furthermore, similar to the cases with h2a / l=0.01 and

h / l=0.4, we see many additional experimental resonance

peaks. Earlier, these peaks were well clarified by the second-

ary resonance with amplification of the second Fourier har-

monics. However, Fig. 17 shows that it is not the case for the

larger forcing amplitude. A reason is that the position of the

additional peaks is not clearly at s /s1
p< i2k and the actual

wave elevations cannot, generally, be approximated by the

sum of the first and second harmonics contributions. Because

increasing forcing amplitude may lead to the secondary reso-

nance by the third-order nonlinearity, we estimated the fre-

quencies where this kind of the secondary resonance occurs.

The corresponding condition 3s<s2k+1 gives

s

s1
p

<
s2k+1

3s1
p
= i2k+1, k = 1,2, . . . . s35d

The values of i2k+1 are marked by the vertical dotted lines in

Fig. 17. Summarizing the dotted and dashed lines gives a

‘net’ of possible secondary resonances sdue to the second-
and third-order free-surface nonlinearitiesd in the studied fre-
quency range. A dedicated study is required to quantify the

reason for the experimentally detected multibranching and

additional resonance peaks.

Figure 18 demonstrates the theoretical and experimental

results for the screens scd–sfd with larger solidity ratios. The
quasilinear theory shows a clear linear resonance at s /s1

p

=1.6, but the experiments indicate a more complicated re-

sponse. The multiple-peak response structure continuously

disappears from the panels scd–sfd with increasing the solid-
ity ratio so that the experimental case sfd shows a clear soft-
spring type behavior at the primary resonance s /s1

p=1.6

with an extra jump at s /s1
p< i4. Similar response curves

were detected by the adaptive modal sloshing theory for a

σ/σ
1

∗

N
o
n
d
im

en
si

o
n
al

el
ev

at
io

n
at

th
e

w
al

l
("

le
ft

")
N

o
n
d
im

en
si

o
n
al

el
ev

at
io

n
at

th
e

w
al

l
("

ri
g
h
t"

)
D

ev
.

(a) (b)

N
o
n
d
im

en
si

o
n
al

el
ev

at
io

n
at

th
e

w
al

l
("

ri
g
h
t"

)

1

∗

N
o
n
d
im

en
si

o
n
al

el
ev

at
io

n
at

th
e

w
al

l
("

le
ft

")
D

ev
.

σ/σ

10

21.81.61.41.210.8

8

6

4

2

0

2.221.81.61.41.210.80.6

10

8

6

4

2

0

2.221.81.61.41.21

0

1.4

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.6

0.80.6

1.2

0

1

2

3

4

5

6

7

8

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

1

2

3

4

5

6

7

8

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

2.2

FIG. 17. The nondimensional experimental sPd and theoretical ssolid lined maximum steady-state wave elevations at the “left” and “right” measurement

probes s1 cm away from the walld vs the forcing frequency; h / l=0.35 and h2a / l=0.03. The wave elevations are scaled by the forcing amplitude h2a, but the

forcing frequency s is scaled by the lowest natural sloshing frequency s1
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measured maximum wave elevations in the experimental steady-state conditions. Contribution of the first Fourier harmonics to the measured wave elevations

sscaled by h2ad is denoted by n, but , denotes the h2a-scaled contribution of the second Fourier harmonics. The dashed lines indicate the frequencies where

the secondary resonance due to the second-order free-surface nonlinearity is expected by Eq. s34d. The dotted lines show the frequencies where the secondary
resonance due to the third-order free-surface nonlinearity is expected by Eq. s35d. The shadow zones swith arrowsd indicate two different experimental
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clean rectangular tank ssee Sec. IId. The trend continues in
Fig. 19. This figure shows that the liquid sloshing dynamics

becomes closer to that in the two compartments, Q0
+ and Q0

−,

with a solid wall between them. One should remark that,

starting with the case sfd, the Runge–Kutta integration by the
quasilinear modal theory becomes unstable in a neighbor-

hood of the theoretical linear resonance s /s1
p<1.6.

V. CONCLUSIONS

Studies of resonant sloshing in a rectangular tank with

screens are typically restricted to the screen solidity ratios

Sn&0.5, the forcing frequencies close to the lowest natural
frequency s1

p of the corresponding clean tank, and relatively

small forcing amplitudes. For these input parameters, one

can assume that the global liquid motions are close to those

in the corresponding clean tank, and that the screen-induced

flow separation sor a jet flowd plays the same role as a qua-
dratic damping for linear oscillators ssee a review on qua-
dratic damping for linear oscillators in Ref. 15d. Higher so-
lidity ratios, 0.5&Sn&0.95, a limited number of the screen
openings, N&50, a wider range of the forcing frequencies,
and increasing forcing amplitudes that are relevant for ship

tanks with swash sperforatedd bulkheads are studied in the
present paper experimentally and theoretically.

New experimental model tests were performed for finite

liquid depths, three forcing amplitudes h2a / l=0.001, 0.01,

and 0.03, and eight different slat-type screens installed at the

middle of a rectangular tank. The primary emphasis has been

placed on the two-dimensional steady-state sloshing and the

corresponding experimental wave elevation at the opposite

tank walls s1 cm away from the walld. The forcing frequency
interval covered the three lowest natural frequencies of the

clean rectangular tank, s1
p, s2

p, and s3
p. In our measurements

of the steady-state maximum elevations, a larger number of

tests with small changes of the forcing frequency s was per-
formed in local ranges where the experiments detected a lo-

cal sresonanced peak.
In our theoretical analysis, we assumed the global flow

to be described by an inviscid incompressible liquid model

with irrotational flow. The screen-induced flow separation sor
jet flowd effect on the global flow was modeled by a pressure
drop condition. The formula for the empirical pressure drop

coefficient was taken from the literature. This condition

should be true not only for a porous media, but also, e.g., for

orifice meter device with a single hole. The letter fact is

important for higher solidity ratios of the experimental

screens leading to a limit number of slots below the free

surface. It is a matter of comparison with model test of, for

instance, wave elevation that the empirical pressure drop

condition makes sense. Our results for small excitation am-

plitude documented this fact. The multimodal method with

linearized free-surface conditions was employed, i.e., we in-

cluded into our theoretical model the screen-induced effect

on the global flow, but neglected the free-surface nonlinear-

ity.

Comparing the experimental and theoretical results for

the three tested forcing amplitudes made it possible to esti-

mate the effect of the free-surface nonlinearity. It is almost

negligible for the lowest forcing amplitude h2a / l=0.001 with

0.5&Sn&0.95. Noticeable discrepancies between theory

and experiments due to the free-surface nonlinearity are only

established for the limit tested values, Sn=0.4725 and

0.951 25. An important conclusion for this forcing amplitude

is that the larger amplitude response is found not at the pri-

mary resonance of the corresponding clean tank, s1
p, but

rather at the natural frequency responsible for the second

antisymmetric mode. According to Ref. 12, the natural slosh-

ing frequency s3 for the screen-equipped rectangular tank
monotonically decreases from s3

p to s2
p as Sn increases from

0.5 to 1. The reason is that the resonant excitations with s
away from s1

p cause a lower cross-flow through the screen. It

is therefore understandable, that we should expect most se-

vere nonlinear sloshing effects around s3 when h2a / l in-

creases. Experimental measurements and visual observations

confirm this fact. Wave breaking, runups, transition to three-

dimensional motions, and other specific free-surface phe-

nomena were found just in a frequency range around s3.
Photographs and videos are presented to illustrate them.

Analyzing the results for h2a / l=0.01 made it possible to

understand that the free-surface nonlinearity causes sufficient

energy content to symmetric modes due to the secondary

resonance. This is a novelty for the screen-equipped tanks

relative to the corresponding clean tanks for which amplifi-

cation of higher modes due to the secondary resonance re-

quires, normally, larger forcing amplitude. A possible reason

is that the symmetric modes do not lead to a cross-flow

through the screen and, therefore, are almost undamped, in

contrast to the antisymmetric ones. This implies that the

same-order forcing of symmetric and antisymmetric modes

should give a larger response of the symmetric modes. In

order to describe the associated nonlinear sloshing, we

should, in the future, employ the adaptive nonlinear multi-

modal method.
5,22

Multibranch experimental response curves are detected

for h2a / l=0.03 in certain frequency ranges in a neighbor-

hood of s2
p and s3

p where we cannot expect the soft-spring

type behavior associated with nonlinear sloshing in a clean

rectangular tank. Our quasilinear theory is not able to explain

it. An explanation may come from analyzing possible sec-

ondary resonances due to the second- and third-order free-

surface nonlinearities. Indeed, a few possibilities for the sec-

ondary resonance are detected at s1
p and, as a consequence,

the quasilinear theory qualitatively well describes the main

harmonics contribution of the actual wave elevations when

s<s1
p. However, there exist numerous possibilities for the

secondary resonance in a frequency range covering s2
p and

s3
p where the experiments detect the most severe free-surface

phenomena and the multibranching occurs.

APPENDIX A: RELATIONS IN EQS. „25… AND „26…

Remembering that the natural sloshing modes wi satisfy

the Laplace equation and the zero-Neumann condition on the

wetted tank surface, inserting Eq. s24d into the time-

independent relations Eqs. s5ad–s5cd gives
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¹2p2 = 0 in Q0
6,

]p2

]n
= 0 on S0b

6
ø S0w

6 sA1d

for integrand p2 in the modified velocity potential Eq. s24d.
Inserting the modal solutions Eqs. s7d and s24d into the

kinematic boundary condition Eq. s5dd and remembering that

]wi

]z
sy,0d = kiwisy,0d = kif isyd sA2d

due to the corresponding boundary condition on S0
6 in the

spectral problem Eq. s9d leads to the relation

1

r
E

t0

t ]p2

]z
sy,0,t1ddt1 = 0 sA3d

to be fulfilled for any instant t. The latter means that the

integrand s ]p2

]z
dsy ,0 , td should be zero, and we arrive at the

zero-Neumann boundary condition Eq. s25ad which is further
used in the boundary value problem Eq. s26d.

Finally, inserting the modal solution Eqs. s7d and s24d
into the dynamic boundary condition Eq. s5ed with relation
Eq. sA2d gives the boundary condition Eq. s25bd.
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Effect of central slotted screen with a high solidity ratio on the secondary
resonance phenomenon for liquid sloshing in a rectangular tank

O. M. Faltinsen,a) R. Firoozkoohi, and A. N. Timokha
Centre for Ships and Ocean Structures and Department of Marine Technology, Norwegian University
of Science and Technology, NO-7091, Trondheim, Norway

(Received 20 March 2011; accepted 3 June 2011; published online 28 June 2011)

Mounting a screen with a high solidity ratio (0.5 . Sn< 1) at the center of a rectangular tank

qualitatively changes the secondary resonance phenomenon for liquid sloshing. In contrast to the

clean tank, the steady-state sloshing due to lateral excitation is then characterized by multi-peak

response curves in a neighborhood of the primary resonance frequency. The present paper revises

the adaptive nonlinear multimodal method to study the secondary resonance phenomenon for the

screen-affected resonant sloshing with a finite liquid depth and, thereby, clarify earlier

experimental results of the authors.VC 2011 American Institute of Physics. [doi:10.1063/1.3602508]

I. INTRODUCTION

Faltinsen et al.1 studied experimentally and theoretically

the steady-state resonant liquid sloshing in a rectangular tank

with a slat-type screen installed at the tank middle. Their

application in mind was sloshing in ship tanks with swash

bulkheads. It has been extensively discussed in the introduc-

tion of Ref. 1, that, in contrast to the so-called Tuned Liquid

Dampers (TLDs), the swash bulkheads are characterized by

a relatively large solidity ratio Sn (the solidity ratio is the ra-

tio of the area of the shadow projected by the screen on a

plane parallel to the screen to the total area contained within

the frame of the screen). A consequence of the higher solid-

ity ratio of a central slotted (slat-type) screen in a rectangular

tank is that the antisymmetric natural sloshing modes and

frequencies change relative to those for a clean (without

screen) rectangular tank. These changes were quantified by

Faltinsen and Timokha2 versus Sn, the number of the screen

openings (slots) N, and the position of these openings.

In experiments by Faltinsen et al.,1 the tank was forced

horizontally with the forcing frequency r in a frequency

range covering the three lowest natural sloshing frequencies

of the screen-equipped tank (henceforth, r�i are the natural

sloshing frequencies in the clean static tank, but ri are the

natural sloshing frequencies in the screen-equipped tank and,

according to Ref. 2, r1 < r�1 < r2 ¼ r�2 < r3 < r�3 < r4
¼ r�4 < � � � ). It was ensured that no roof impact occurred.

The focus was on the liquid depth-to-tank width ratio

h=l¼ 0.4 and the two forcing amplitudes g2a=l¼ 0.001 and

0.01 (l is the tank width). Eight different screens with solid-

ity ratios from 0.47 to 0.95 were tested. Experimental meas-

urements of the steady-state wave elevation at the tank walls

and the corresponding video observations were documented.

The theoretical analysis was based on the linear multimodal

method assuming an incompressible liquid with irrotational

flow everywhere except in a local neighborhood of the

screen. An “integral” viscous effect of the nearly screen flow

separation on the globally inviscid liquid was governed by a

pressure drop condition.3 The latter condition yielded the

(�j�j)-nonlinear damping terms in the linear modal equations

and, thereby, transformed the linear modal theory to a quasi-

linear form. When the experimental forcing amplitude was

sufficiently small, g2a=l¼ 0.001, this quasi-linear theory

agreed well with the experimental response curves of the

maximum steady-state wave elevations. When g2a=l¼ 0.01,

the latter modal theory gave only a general trend in how the

experimental response changed versus Sn. Failure of the

quasi-linear theory could, in part, be related to specific free-

surface phenomena appearing as

(i) breaking waves,

(ii) nearly wall (screen) run-up, and

(iii) cross-flow through screen’s openings from water to

air with jet flow impacting on the underlying free

surface.

These phenomena were illustrated by photos and videos

and extensively discussed. The majority of them were estab-

lished for r > r�2, i.e., away from the (screen-modified) low-

est natural sloshing frequency r1 < r�1. When r was close to

the lowest natural sloshing frequency, the aforementioned

free-surface phenomena were not strong.

Another important difference between the quasi-linear

predictions and experiments in Ref. 1 appears as extra peaks

on the experimental response curves at which the measured

steady-state wave elevations were characterized by amplifi-

cation of the double harmonics, 2r. This amplification can-

not be captured by the derived quasi-linear modal theory

since the only (�j�j)-nonlinear quantities of this theory yield

the odd harmonics. Amplification of the double harmonics is

a necessary but not sufficient condition of the secondary res-

onance phenomenon in the nonlinear free-surface sloshing

problem. Faltinsen and Timokha,4 Hermann and Timokha,5

Ockendon et al.,6 Wu,7 and Wu and Chen8 (see, also

extended review in Chap. 8 of Ref. 9) gave theoretical and

experimental analysis of the phenomenon for the two-dimen-

sional steady-state resonant liquid sloshing in a clean rectan-

gular tank with finite, intermediate, and shallow liquid

depths. Normally, the secondary resonance is studied for the

a)Author to whom correspondence should be addressed. Electronic mail:

odd.Faltinsen@marin.ntnu.no.
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case when the tank is forced laterally and harmonically with

the forcing frequency r close to the lowest natural sloshing

frequency r�1. For the finite liquid depth (the depth-to-tank

width ratio 0:2. h=l) and an asymptotically small forcing

amplitude, the secondary resonances are mathematically

expected at 2r ¼ r�2, 3r ¼ r�3;…; nr ¼ r�n; n � 4. These

conditions imply amplification of the second, third, and

higher harmonics as well as the corresponding natural

modes. The harmonics are yielded by the free-surface nonli-

nearities of the corresponding polynomial orders. For

0.3368…< h=l (0.3368… is the so-called critical depth

where the soft-to-hard spring behavior of the response curves

changes with r ¼ r�1), the secondary resonance peaks on the

steady-state response curves are situated away from the pri-

mary resonance r ¼ r�1 as shown in Fig. 1. This fact and the

liquid damping cause that the peaks associated with higher-

order free-surface nonlinearities (fourth, fifth, etc.) are

extremely narrow and practically not realized. In contrast,

the second- and third-order nonlinearities matter4 and lead to

visible peaks on the experimental response curves, espe-

cially, with increasing the forcing amplitude. The situation

changes with decreasing liquid depth when the natural slosh-

ing spectrum becomes nearly commensurate. The passage to

shallow liquid depth causes finger-type response curves

which are discussed and quantified by Faltinsen and Timo-

kha10 by employing a Boussinesq-type fourth-order multi-

modal method.

Based on the experimental results by Faltinsen et al.,1

the aforementioned free-surface phenomena (i)–(iii) and the

multi-peak response curves indicate that the nonlinearity is

important for sloshing in the screen-equipped tanks, espe-

cially, with increasing the forcing amplitude. A way to

describe the nonlinear liquid sloshing can be Computational

Fluid Dynamics (CFD).11 The second author attempted to

model experimental cases from Ref. 1 by interFOAM, which

is an OpenFOAM code that solves the two-dimensional Nav-

ier-Stokes equations for incompressible laminar two-phase

flow using the volume of fluid (VOF) method for

free-surface capturing and the finite volume method (FVM)

for the governing equations. In these calculations, the mesh

number was about 150,000. Using the Intel(R) Core(TM) 2

Quad CPU (2.5 GHz) computer with parallel computations

for four sub-domains of the main domain, a computational

time of about 105 s was required to simulate 100 s of real-

time sloshing and to reach nearly steady-state conditions.

This means that, even though the CFD methods are generally

applicable, using them for a parameter study of the nonlinear

steady-state sloshing from experiments by Faltinsen et al.1 is

questionable. In the present paper, we show that an alterna-

tive could be analytically oriented (e.g., asymptotic multimo-

dal) methods based on potential flow theory and employing a

pressure drop condition to capture the viscous effect associ-

ated with flow separation at the screen. The nonlinear adapt-

ive multimodal method is not able to describe the phenomena

(i)–(iii). However, because the higher-order nonlinearities

(higher than three) do not contribute to the secondary reso-

nance phenomenon for the finite liquid depth, the method is

applicable to describe the multi-peak response curves.

The nonlinear adaptive multimodal method requires deri-

vation of the polynomial-type modal system, i.e., the system

of ordinary differential equations which keeps only up to the

third-order polynomial nonlinearities in the generalized coor-

dinates responsible for amplification of the natural sloshing

modes. The adaptive modal method is a generalization of the

third-order Moiseev-type theory.12–14 The method implicitly

assumes an incompressible liquid with irrotational flow, but

damping due to the boundary layer at the wetted tank surface,

roof impact, etc., can generally be accounted for. Considering

screens with a relatively small solidity ratio, Love and Tait15

and Love et al.16 adopted the polynomial-type modal system

by Faltinsen and Timokha4 with quadratic damping terms

due to viscous flow separation at the screen. Because the lat-

ter approach assumes implicitly that the natural sloshing fre-

quencies and modes of the screen-equipped tank remain the

same as those for the corresponding clean tank, it is applica-

ble only for relatively small solidity ratios. For slotted

screens, Ref. 2 estimates this fact for 0 < Sn. 0:5. Because
the natural sloshing modes are modified by the screens for

0:5. Sn < 1, the polynomial-type modal system by Faltinsen

and Timokha4 should be completely revised. Such a revision

is reported in the present paper (see Sec. II). The newly

derived modal system couples the generalized coordinates bi
responsible for the screen-modified natural modes by Faltin-

sen and Timokha.2 The multimodal method assumes an

incompressible liquid with irrotational flow except locally at

the screen. In addition, the method requires the normal repre-

sentation of the free surface and, therefore, it cannot directly

account for the free-surface phenomena (i–iii) described in

experiments by Faltinsen et al.1,14

To include an “integral” viscous effect due to flow sepa-

ration at the screen, we employ the (�j � j)-damping terms

derived in Ref. 1 from the screen-averaged pressure drop

condition. These damping terms involve an integral expres-

sion of the cross-flow at the mean submerged screen part and

neglect the damping caused by the free-surface phenomenon

(iii). Our formulation of the pressure drop condition implic-

itly assumes that the cross-flow dominates relative to the

FIG. 1. The schematic response curves for a clean rectangular tank repre-

senting the maximum steady-state wave elevation A versus r=r�1 for

0.3368…< h=l due to lateral harmonic excitation. The dashed line shows

results of the linear sloshing theory. The solid bold lines display stable non-

linear steady-state regimes. A hysteresis effect at r=r�1 ¼ 1 is possible and

denoted by the points T, T1, T2, and T3. The points i2 and i3 mark the most

important secondary resonance points occurring as the forcing frequency

satisfies the conditions 2r ¼ r�2 (amplification of the second mode) or

3r ¼ r�3 (amplification of the third mode), respectively. A hysteresis effect

at i2 and i3 is also possible but, due to sufficiently large damping, it was

detected in experiments4 only for a relatively large forcing amplitude.
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tangential flow component at the screen. In addition, we

neglect the fact that the tangential flow component implies a

tangential drag on the screen.

Based on the results in Sec. II B, we derive in Sec. II C

the required modal system keeping up to the third-order

polynomial nonlinearities in terms of the generalized coordi-

nates. Both antisymmetric and symmetric modes become

coupled due to the free-surface nonlinearity. However, the

screen-caused (�j � j)-damping terms appear only in modal

equations responsible for the antisymmetric modes. The rea-

son is that the antisymmetric modes determine the cross-

flow, but the symmetric modes contribute to the tangential

flow along the screen. In Sec. III B, the adaptive modal

method by Faltinsen and Timokha4 is generalized for the

case of the screen-equipped rectangular tanks. This includes

a generalization of the Moiseev asymptotic modal relation-

ships and accounting for a larger number of the secondary

resonances in a neighborhood of the lowest natural fre-

quency. The steady-state solutions are found by combining a

long-time simulations with the adaptive asymptotic modal

systems and the path-following procedure along the response

curves. Because the modal equations for the symmetric

modes have no damping terms, we have to incorporate linear

damping terms due to a viscous dissipative effect of the

boundary layer flow at the mean wetted tank surface. A

rough estimate of the corresponding damping rates are taken

from Chap. 6 in Ref. 9. However, except for the lowest tested

solidity ratio, the corresponding damping rates pass to zero

in the final calculations from Sec. III.

The theoretical results in Sec. III agree well with the experi-

mental measurements by Faltinsen et al.1 for h=l¼ 0.4 and the

forcing amplitude g2a=l¼ 0.01. The theory is supported by the

experimental fact that the secondary resonance peaks for

0:5. Sn < 1 are not only expected at i2 and i3 in Fig. 1, but

also at

i2k ¼
r

r�1
¼ r�2k

2r�1
ð2r ¼ r�2kÞ k ¼ 2; 3;… (1)

(due to amplification of the double harmonics) and

3r ¼ r2kþ1;
r

r�1
¼ r2kþ1

3r�1
¼ i2kþ1; k ¼ 1; 2;… (2)

(due to amplification of the third harmonics).

The multimodal method has to involve twenty natural

modes to describe the secondary resonance modes associated

with the experiments by Faltinsen et al.1 for h=l¼ 0.4 and

forcing amplitude g2a=l¼ 0.01. Moreover, many of these

modes, e.g., the 13th and 15th modes, should be considered

as giving the lowest-order contribution (along with the first

natural mode) to handle the secondary resonance sloshing

with increasing the forcing frequency to r=r�1 � 1:3 and

higher. The experimental observations confirmed the locally

steep wave profiles. The wavelength of the 20th natural

mode for the experimental 1 m tank is 10 cm, namely, the

theoretically involved modes have a wavelength larger than

the rough upper bound 5 cm for when surface tension matters

for linear propagating capillary-gravity waves. This means

that we did not make an error neglecting the surface tension

in our theoretical analysis.

A possible reason for quantitative differences between

our nonlinear theory and experiments in certain frequency

ranges for higher solidity ratios is the use of the simplified

“integral”-type pressure drop condition which neglects spe-

cific nearly screen flows. In particular, higher solidity ratios

lead to a jump in the free-surface elevation at the screen which

causes a cross-flow from water to air. The latter cross-flow is

associated with jet flows impacting on the underlying free sur-

face. The water-water impact is likely to represent dissipation

of the total energy. At the present time, we do not have a clear

strategy how to estimate contribution of this and other specific

nearly screen flows on the global liquid sloshing dynamics.

II. THEORY

An incompressible liquid with irrotational two-dimen-

sional flow is assumed everywhere in the liquid domain Q(t)

except in a small neighborhood of a screen as shown in Fig.

2. The surface tension is neglected. The two-dimensional

tank has vertical walls at the free surface R(t). The tank is

forced horizontally with displacements g2(t).

A. General modal equations

We follow the general scheme of the multimodal meth-

ods described, e.g., in Chap. 7 of Ref. 9 or in Ref. 17 imply-

ing the modal solution

z ¼ fðy; tÞ ¼
X

1

i¼1

biðtÞfiðyÞ; (3a)

Uðy; z; tÞ ¼ y _g2 þ
X

1

i¼1

RnðtÞunðy; zÞ (3b)

for the free-surface elevation and the absolute velocity poten-

tial, respectively. Here, bi and Rn are the generalized coordi-

nates and unðfnðyÞ ¼ unðy; 0ÞÞ are the natural sloshing modes

which are the eigenfunctions of the boundary spectral problem,

r2un ¼ 0 in Q0;
@un

@n
¼ 0 on S0;

@un

@z
¼ jnun on R0;

ð

R0

undy ¼ 0; (4)

FIG. 2. A general two-dimensional tank with vertical walls near the free

surface and, possibly, a perforated vertical screen. In our modal theory, the

liquid cross-flow at the screen part DSc with subsequent fallout of the

screen-generated liquid jet impact on the free surface is neglected; this can-

not be described by the modal solution (3a).
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where Q0 is the mean liquid domain, S0 is the mean wetted

tank surface including the solid screen parts, and R0 is the

mean free surface. The natural sloshing frequencies are com-

puted by the formulas rn ¼
ffiffiffiffiffiffiffi

gjn
p

; n ¼ 1; 2;… (g is the

gravity acceleration).

The multimodal method employs the modal solution (3)

with the normal presentation of the free surface (3a) and,

thereby, implicitly assumes that there are no overturning

waves. Since any breaking waves involve vorticity genera-

tion, they also cannot be described. Moreover, as it is shown

in Fig. 2, the modal solution (3a) cannot model the liquid

flow through the screen part DSc where one side of the

screen is wetted, but another dry contacting the ullage gas.

Experimental observations by Faltinsen et al.1 reported a

flow through DSc with forthcoming water fallout on the free

surface. The multimodal method neglects this flow.

Chapter 7 in Ref. 9 shows that using the modal solution

(3) together with the Bateman-Luke variational principle

leads to the following general [modal] infinite-dimensional

system of ordinary differential equations,

X

1

k¼1

@An

@bk
_bk ¼

X

1

k¼1

AnkRk; n ¼ 1; 2;…; (5a)

X

1

n¼1

@An

@bl
_Rn þ

1

2

X

1

n;k¼1

@Ank

@bl
RnRk þ gKð0Þ

ll þ k2l€g2 ¼ 0;

l ¼ 1; 2;… (5b)

which couple the generalized coordinates bk and Rn intro-

duced by the modal solution (3). Here,

An ¼
ð

QðtÞ
undQ; Ank ¼

ð

QðtÞ
run � rukdQ;

k2n ¼
ð

R0

yfndS; K
ð0Þ
nn ¼

ð

R0

f 2n dS (6)

so that An and Ank are nonlinear functions of bi.

Generally speaking, the fully nonlinear modal system

(5) can be adopted for direct simulations. Going this way

means the so-called Perko’s18,19 method. La Rocca et al.20

used this method to describe nonlinear liquid sloshing in a

clean rectangular tank. Simulations by the Perko method are

less numerically efficient than the use of the adaptive modal

method. However, the main problem of the Perko-type meth-

ods is that the system (5) becomes numerically stiff for

strongly resonant sloshing. The latter fact has been discussed

by Faltinsen and Timokha.4,10

B. The polynomial-type modal equations

In accordance with the adaptive multimodal method by

Faltinsen and Timokha,4 we assume that the nonlinear inter-

modal interaction is primarily determined by the second- and

third-order polynomial terms in the generalized coordinates.

This means that one can reduce (5) by keeping the third-

order polynomial quantities. Using the Taylor series at z¼ 0

uðy; f; tÞ ¼ fn þ jnfnð Þfþ 1

2

X

1

l¼1

an;l fl

 !

f2 þ � � �

in the expression

@An

@bk
¼
ða

ÿa

uðy; f; tÞfk dy

as well as in the expression on p. 173 of Ref. 4, i.e.,

Ank ¼ jnK
ð0Þ
nk þ

ða

ÿa

ðrun � rukÞjz¼0 f dy

þ 1

2

ða

ÿa

@ðrun � rukÞ
@z

�

�

�

�

z¼0

f2 dyþ � � �

gives the formulas

@An

@bj
¼K

ð0Þ
nj þjn

X

1

i¼1

K
ð1Þ
nji biþ

1

2

X

1

i;k¼1

X

1

m¼1

an;mK
ð2Þ
mjik

 !

bibkþ��� ;

(7)

Ank ¼ jnK
ð0Þ
nk þ

X

1

i¼1

P
ð1Þ
nk;ibi þ

1

2

X

1

p;q¼1

P
ð2Þ
nk;pqbpbq þ � � � : (8)

Here, we used the following relations:

fnðyÞ ¼ unðy; 0Þ; jnfn ¼
@un

@z

�

�

�

�

0

;
X

1

l¼1

an;lfl ¼
@2un

@z2

�

�

�

�

0

; (9a)

@fn
@y

¼ @un

@y

�

�

�

�

0

; jn
@fn
@y

¼ @2un

@y@z

�

�

�

�

0

;
X

1

l¼1

an;l
@fl
@y

¼ @3un

@y@z2

�

�

�

�

0

;

(9b)

where the coefficients an,l are introduced which imply a Fou-

rier expansion of @2un=@z
2
�

�

z¼0
in terms of the orthogonal ba-

sis {fn};

ða

ÿa

fnfk dy ¼ K
ð0Þ
nk ;

ða

ÿa

fnfkfi dy ¼ K
ð1Þ
nki ;

ða

ÿa

fnfkfifj dy ¼ K
ð2Þ
nkij …; (10)

ða

ÿa

@fn
@y

@fk
@y

fi dy ¼ K
ðÿ1Þ
nk;i ;

ða

ÿa

@fn
@y

@fk
@y

fifj dy ¼ K
ðÿ2Þ
nk;ij ; …;

(11)

where, due to the orthogonality of the natural modes,

K
ð0Þ
nk ¼ 0, n= k,

P
ð1Þ
nk;i ¼ K

ðÿ1Þ
nk;i þ jnjkK

ð1Þ
nki ; (12a)

P
ð2Þ
nk;pq ¼ ðjn þ jkÞKðÿ2Þ

nk;pq

þ
X

1

m¼1

an;mjkK
ð2Þ
mkpq þ ak;mjnK

ð2Þ
mnpq

h i

: (12b)

The comma is used between indexes which disallow their

position exchange. As long as there is no comma between

the indexes, these indexes can commutate.

Substituting

Rk ¼
_bk
jk

þ
X

1

p;q¼1

V2;k
p;q

_bpbq þ
X

1

p;q;m¼1

V3;k
p;q;m

_bpbqbm þ � � � (13)
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in the kinematic equation (5a), one can compute the

coefficients,

V
2;n
k;i ¼ 1

jnK
ð0Þ
nn

ÿ
P

ð1Þ
nk;i

jk
þ jnK

ð1Þ
nki

" #

; (14a)

V
3;n
k;p;q¼

1

jnK
ð0Þ
nn

ÿ
P

ð2Þ
nk;pq

2jk
þ
X

1

m¼1

1
2
an;mK

ð2Þ
mkpqÿP

ð1Þ
nm;pV

2;m
k;q

� �

" #

…:

(14b)

Finally, using Eqs. (7), (8), and (13) in the dynamic modal

equation (5b), one can find the following asymptotic modal

equation accounting for the third-order components in terms

of the generalized coordinates bi,

X

1

n¼1

€bn dnl þ
X

1

i¼1

d
1;l
n;i bi þ

X

1

i;j¼1

d
2;l
n;i;jbibj

" #

þ

þ
X

1

n;k¼1

_bn
_bk t

0;l
n;k þ

X

1

i¼1

t
1;l
n;k;ibi

" #

þ r2lbl þ Pl€g2 ¼ 0;

l ¼ 1; 2;…; (15)

where

r2l ¼ gjl; Pl ¼ jlk2l

K
ð0Þ
ll

; (16a)

d
1;l
n;i ¼ jl V

2;l
n;i þ

K
ð1Þ
nli

K
ð0Þ
ll

 !

; t
0;l
n;k ¼ jlV

2;l
n;k þ

jlP
ð1Þ
nk;l

2jnjkK
ð0Þ
ll

;

(16b)

d
2;l
n;i;j ¼ jl V

3;l
n;j;i þ

1

K
ð0Þ
ll

X

1

m¼1

jmK
ð1Þ
mliV

2;m
n;j þ 1

2

an;mK
ð2Þ
mlij

jn

" # !

;

(16c)

t
1;l
n;k;i ¼ jl V

3;l
n;k;i þ V

3;l
n;i;k þ

P
ð2Þ
nk;li

2jnjkK
ð0Þ
ll

 

þ 1

2Kð0Þ
ll

X

1

m¼1

� 2jmK
ð1Þ
mliV

2;m
n;k þ

P
ð1Þ
mk;lV

2;m
n;i

jk
þ
P

ð1Þ
nm;lV

2;m
k;i

jn

" #!

:

(16d)

C. Modal equations for the case of a central slotted
screen

The two-dimensional liquid sloshing is considered in a

rectangular tank with width l¼ 2a and a slotted screen in-

stalled at the tank middle as shown in Fig. 3. The figure intro-

duces the geometric notations and the body-fixed coordinate

system. The screen appears as a thin solid plate with a series of

perforated horizontal slots. The screen thickness is neglected.

When the liquid is at rest, the wetted screen part Sc0 has N sub-

merged slots. The solidity ratio of the submerged screen part is

denoted by Sn which is a function of h and N.

Under assumptions of the previous section, we use the

modal equations (15) in which the hydrodynamic coefficients

are computed based on the natural sloshing modes by Faltinsen

and Timokha.2 For 0:5. Sn < 1, these hydrodynamic coeffi-

cients are functions of Sn and N as well as slot positions. The

modal equations do not account for a local viscous flow

through the screen. Following Faltinsen et al.,1 this can be done

by employing an “integral” (averaged) version of the pressure

drop condition3 defined on the mean wetted screen as follows:

Pÿ ÿ Pþ ¼ 1

2
qKujuj on Sc0; (17)

where K is an empirical pressure drop coefficient, q is the

liquid density, u is the so-called lateral approach velocity to

the screen, and (P– – Pþ) is the pressure drop. A review on

using this condition in sloshing problems can be found in

Refs. 1, 9, and 21. This empirical condition comes from the

steady-flow case3 and, generally, can be employed for slosh-

ing problems with many screens installed at different places.

The space-averaged version of the pressure drop formulation

(17) assumes that both sides of the screen are wetted, i.e. the

jump DScj j ¼ f2 ÿ f1 in Fig. 3 and the liquid flow through

DSc are neglected. The pressure drop coefficient K depends

on the solidity ratio Sn. It may also depend on the Reynolds

and Keulegan-Carpenter (KC) numbers. For slat-type

screens, the pressure drop coefficient weakly depends on the

Reynolds number. There is negligible dependence on KC

number for relevant KC numbers. Following Tait et al.21 and

Faltinsen et al.,1 we will adopt the following approximation

of the empirical pressure drop coefficient:

K ¼ 1

Cc ð1ÿ SnÞ ÿ 1

� �2

; Cc ¼ 0405 expðÿpSnÞ þ 0:595

for Sn � 03: (18)

The formula (18) is applicable for different Sn-values.

According to experimental values of K by Blevins,3 its rela-

tive accuracy is less than 20% for Sn � 0.9, but may be

larger for Sn � 0.9.

FIG. 3. A schematic picture of a rectangular tank with a slat-type screen in

the middle. Basic geometric notations. Two measurement probes of wave

elevation are located at small distances Pl and Pr from the walls. The mean

wetted screen is Sc0. For higher solidity ratios, the free surface R(t) has a

clear jump at the screen formed by the “wet-dry” area DSc (here, the interval

(f1,f2)).
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Faltinsen et al.1 showed that the “integral” pressure drop

condition leads to the following quantities:

KDmð _b2iÿ1Þ ¼ ÿK
a0mj2mÿ1

4hK
ð0Þ
ð2mÿ1Þð2mÿ1Þ

ð0

ÿh

X

1

i¼1

_b2iÿ1

j2iÿ1

UiðzÞ
 !

�
X

1

i¼1

_b2iÿ1

j2iÿ1

UiðzÞ
�

�

�

�

�

�

�

�

�

�

dz (19)

to be incorporated into the modal equations for the antisym-

metric modes (generalized coordinates b2m–1) responsible for

cross-flow through the screen. Here

a0m ¼ 2

ð0

ÿa

f2mÿ1dy;

UiðzÞ ¼ ÿ 1

a
coshðkðiÞ0 ðzþ hÞ=aÞ sinðkðiÞ0 Þ;

with the constant k
ðiÞ
0 being the roots of the equations,

k
ðiÞ
0 tanhðkðiÞ0 h=aÞ ¼ j2iÿ1a:

Using the modal equations (15) and the pressure-drop

“integral” terms (19) leads to the following modal equations:

X

1

n¼1

€bn

�

dnð2mÿ1Þ þ
X

1

i¼1

D12mÿ1ðn; iÞbi

þ
X

1

j¼1

X

j

i¼1

D22mÿ1ðn; i; jÞbibj
�

þ
X

1

n¼1

X

n

k¼1

_bn
_bk T02mÿ1ðn; kÞ þ

X

1

i¼1

T12mÿ1ðn; k; iÞbi

" #

þ KDmð _b2iÿ1Þ þ r22mÿ1b2mÿ1 þ P2mÿ1€g2 ¼ 0; (20a)

X

1

n¼1

€bn dnð2mÞ þ
X

1

i¼1

D12mðn; iÞbi þ
X

1

j¼1

X

j

i¼1

D22mðn; i; jÞbibj

" #

þ
X

1

n¼1

X

n

k¼1

_bn
_bk T02mðn; kÞ þ

X

1

i¼1

T12mðn; k; iÞbi

" #

þ r22mb2m ¼ 0; m ¼ 1; 2;…; (20b)

where

D1lðn; iÞ ¼ d
1;l
n;i ; D2lðn; i; jÞ ¼

d
2;l
n;i;i; i ¼ j;

d
2;l
n;i;j þ d

2;l
n;j;i; i 6¼ j;

(

T0lðn; kÞ ¼
t0;ln;n ; n ¼ k;

t
0;l
n;k þ t

0;l
k;n ; n 6¼ k;

(

T1lðn; k; iÞ ¼
t
1;l
n;n;i; n ¼ k;

t
1;l
n;k;i þ t

1;l
k;n;i; n 6¼ k:

(

As we remarked above, the hydrodynamic coefficients in the

modal equations (20) are computed by using the natural

sloshing modes from Ref. 2.

When 0 < Sn. 0:5, the natural sloshing modes are

close to those for the clean tank, i.e., these are approximately

governed by the trigonometric algebra implying

ukðy; zÞ � cos
pk

a
ðyÿ aÞ

� �

coshðpkðzþ hÞ=lÞ
coshðpkh=lÞ ; (21)

in expressions of Sec. II B. As a consequence, many of the

hydrodynamic coefficients at the polynomial-type terms of

(20) are zero. In particular, the quadratic nonlinearity in b1
(the generalized coordinate responsible for the first mode) is

only present in the first equation of (20b) governing the first

symmetric mode (b2). Analogously, the cubic terms in b1
exist only in the first and second equations of (20a). This

means that the secondary resonance due to the second har-

monics can only excite the second mode, but the third har-

monics can only lead to the secondary resonance for the

third mode.

When 0:5. Sn < 1, the trigonometric algebra represen-

tation for the natural sloshing modes (21) breaks down so

that the screen-effected antisymmetric modes become, gen-

erally, non-continuous in the center of R0 (see examples in

Ref. 2). This fact leads to additional nonzero hydrodynamic

coefficients causing a complex nonlinear energy redistribu-

tion between lower and higher modes. So, the nonzero quad-

ratic quantities in b1 appear now in all the equations for even

modes (20b), i.e., all the symmetric modes can be amplified

due to the second harmonics (the second-order nonlinearity)

but the nonzero cubic terms in b1 are present in all the

equations (20a). As a consequence, the higher solidity ratios

yield the secondary resonance due to the second and third

harmonics not only at i2 and i3 but also at ik, k � 2 defined

by Eqs. (1) and (2).

Incorporating the KDmð _b2iÿ1Þ-terms in modal equations

(20a) adds a quadratic damping into a conservative mechani-

cal system with infinite degrees of freedom. Because we op-

erate with potential flow theory, the modal equations (20) do

not contain other damping terms, e.g., due to laminar viscous

boundary layer, tangential viscous drag at the screen, and

wave breaking. Moreover, because the symmetric modes do

not cause cross-flow through the central screen, the modal

equations (20b) do not have any damping terms at all. As it

will be explained in detail in Sec. III C, the latter fact can

make it difficult to find the steady-state solution due to a con-

tinuous beating by these symmetric modes. Artificial small

damping is therefore needed to reach the steady-state condi-

tion. For this purpose, it is standard procedure to incorporate

the linear damping terms,

2airi _bi (22)

in the ith equation of (20) to account for other damping

mechanisms and prevent the aforementioned beating in the

computations. The actual values of ai are unknown and,

according to our theoretical model, should pass to zero in

final calculations after the steady-state condition is achieved.

A rough estimate of the initial ai-values adopted for our

steady-state calculations can be associated with the damping

rates ni for linear sloshing due to the laminar viscous bound-

ary layer at the mean wetted tank surface for the clean tank

evaluated in Secs. 6.3.1 and 6.11.1 of Ref. 9. The corre-

sponding numerical procedure on the steady-state solution

with decreasing ai is explained in Sec. III C.
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III. RESONANT STEADY-STATE SLOSHING DUE
TO LATERAL EXCITATION WITH THE FORCING
FREQUENCYAT THE LOWEST NATURAL
SLOSHING FREQUENCY

A. Nondimensional formulation

We assume that g2(t)¼ g2a cos(rt) with a relatively

small nondimensional forcing amplitude g2a=l and r being

close to the lowest natural sloshing frequency r�1 of the cor-

responding clean tank. The liquid depth is finite. Henceforth,

we will introduce asymptotic relationship between the

l-scaled generalized coordinates. This needs rewriting the

modal equations (20) in a nondimensional form. Introducing

the characteristic length l¼ 2a and the characteristic time

t�¼1=r�1, the normalization transforms the modal equations

to the form,

X

1

n¼1

€�bn

�

dnð2mÿ1Þ þ
X

1

i¼1

�D12mÿ1ðn; iÞ�bi

þ
X

1

j¼1

X

j

i¼1

�D22mÿ1ðn; i; jÞ�bi �bj
�

þ
X

1

n¼1

X

n

k¼1

_�bn
_�bk

� �T02mÿ1ðn; kÞ þ
X

1

i¼1

�T12mÿ1ðn; k; iÞ�bi

" #

þ 2a2mÿ1�r2mÿ1
_�b2mÿ1 þ K �Dmð _�b2iÿ1Þ

þ �r22mÿ1
�b2mÿ1 ÿ �g2a�r cosð�rtÞ ¼ 0; (23a)
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X

1

n¼1

X

n
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_�bn
_�bk �T02mðn; kÞ þ

X

1

i¼1

�T12mðn; k; iÞ�bi

" #

þ 2a2m�r2m
_�b2m þ �r22m

�b2m ¼ 0; m ¼ 1; 2;…: (23b)

Here, we have incorporated the linear damping terms (22)

and introduced the following nondimensional variables:

�bi ¼ bi=l; �g2a ¼ g2a=l; �r ¼ r=r�1; �ri ¼ ri=r
�
1;

�D1i ¼ l D1i; �D2i ¼ l2 D2i; �T0i ¼ l T0i; �T1i ¼ l2 T1i;

�Dmð _�biÞ ¼ l Dmðl _�biÞ

B. Generalization of the adaptive asymptotic modal
method

Working with the clean rectangular tank, Faltinsen and Tim-

okha4 proposed an adaptive asymptotic modal method for

the resonant steady-state liquid sloshing. They assumed that

the forcing amplitude is small, �g2a ¼ Oð�Þ; � � 1 and that r

is in a neighborhood of r�1. The method starts with the Moi-

seev12–14 third-order asymptotic relationships,

�b1 ¼ Oð�1=3Þ; �b2 ¼ Oð�2=3Þ; �b3 ¼ Oð�Þ; �bk.Oð�Þ;k � 4;

(24)

considering them as a priori estimate of the generalized

coordinates �bi.

Based on the asymptotic relationships (24), one can derive

the corresponding asymptotic modal equations by neglecting

the oð�Þ-terms in the polynomial-type modal equations (23).

This was done by Faltinsen et al.14 Further, Faltinsen et al.14

and Faltinsen and Timokha4 showed that the asymptotic rela-

tions (24) are not satisfied when r=r�1 in close to i2 and i3 (see

Fig. 1) on the asymptotic scale Oð�2=3Þ. The use of the asymp-

totic modal equations by Faltinsen et al.14 leads then to unreal-

istic amplification of the generalized coordinates �b2 and �b3.

When this happened, Faltinsen and Timokha4 proposed a pos-

teriori asymptotic relationships considering �b2 and=or �b3 to

have the dominant order Oð�1=3Þ. Neglecting the oð�Þ-terms in

(23) makes it possible to derive the corresponding asymptotic

modal equations based on these new asymptotic relationships.

References 4 and 22 demonstrate that the same forcing ampli-

tude and frequency can require different asymptotic modal sys-

tems (asymptotic ordering) for steady-state solutions belonging

to different response curves.

According to the Moiseev asymptotics (24) for the clean

tank, there is only one dominant mode ð�b1Þ and only one

mode �b2
ÿ �

possesses the second asymptotic order. However,

as we have already commented, the non-zero second-order

polynomial terms in �b1 appear for 0:5. Sn < 1 in all the

modal equations (23b) but the nonzero cubic terms in �b1 are

now presented in (23a). This means that the Moiseev-type

asymptotics (24) should in the studied case change to

�b1 ¼ Oð�1=3Þ; �b2k ¼ Oð�2=3Þ; �b2kþ1 ¼ Oð�Þ; k � 2 (25)

and, in contrast to the clean tank with a finite liquid depth

considering only two possible secondary resonances for �r

close to the points i2 and i3, we should now expect the multi-

ple secondary resonances as �r is close to values from the sets

(1) and (2). Thus, we see that screens with 0:5. Sn < 1

change the Moiseev asymptotics (24) to (25) and, besides, the

secondary resonances should now be expected at ik, k � 2.

These facts modify the adaptive modal method.

We start now with (25) as a priori asymptotics. When

considering a frequency range �ra < �r < �rb, we should fur-

ther find out whether there are any ik belonging (being close)

to this range and change the ordering of the generalized

coordinates �bk in Eq. (25) to �bk ¼ Oð�1=3Þ for the corre-

sponding indexes k. This will be a posteriori asymptotics. To

obtain the corresponding asymptotic modal system, we

should exclude the oð�Þ-terms in modal equations (23). By

using direct simulations with these a posteriori asymptotic

modal equations, one must also validate whether we have

included all the dominant generalized coordinates on the

studied interval �ra < �r < �rb. If not, more dominant modes

should be added.

We must note that we have an extra term K �Dm in

Eqs. (23a) where, because �Dm is of the quadratic character

with respect to �b1, �Dm ¼ Oð�2=3Þ. The asymptotic modal

equations include the asymptotic quantities up to the order

Oð�Þ and, therefore, our asymptotic scheme requires

�1=3.K. When the K �Dm-terms are of either comparable or

lower order with respect to the dominant �1=3, these terms

give a leading contribution to the nonlinear resonant slosh-

ing. This condition implies
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Oð�ÿ1=3Þ ¼ �g
ÿ1=3
2a .K: (26)

C. Numerical steady-state solution

Normally, the numerical steady-state solution of the nonlinear

adaptive asymptotic modal system is found by a long-time

simulation with appropriate damping terms (see Refs. 1, 4,

and 22). For the clean tank,4 the linear damping coefficients

(22) are used to get a numerical steady-state solution by

means of these simulations. Nevertheless, the first approxima-

tion is found with ai � ni but next approximations follow

from the long-time simulations with lower values of ai and

initial conditions following from the previous steady-state so-

lution computed with a larger ai. Faltinsen and Timokha4

report that such a numerical procedure with a stepwise

decrease of the damping ratios practically converges with

ai. ni=100 so that the corresponding numerical steady-state

solution obtained with ai � ni=100 can be considered as the

steady-state solution of the corresponding asymptotic modal

system without damping terms. Moreover, the experimentally

established secondary-resonance jumps between the steady-

state solutions for the clean tank (as in Fig. 1) were detected

for ai. n=100. This means that, due to possible nonlinear

character of damping, the adopted linear damping rates for

nonlinear steady-state motions can be lower than ni, but thes-

erates should be higher for the resonance-type transients.

In the studied case, the subsystem for antisymmetric

modes has, by definition, the unavoidable quadratic damping

terms. However, the subsystem (20b) describing the symmet-

ric modes has not any proper damping terms. This

“disproportion” between symmetric and antisymmetric

modes can affect the time-step simulations leading to a long-

time non-decaying beating by the symmetric modes. As a

consequence, whereas we can in the majority of cases postu-

late a2m–1¼ 0 in Eq. (23a), the damping ratios a2m in Eq.

(23b) should not be zero in simulations to describe the

steady-state sloshing.

In the next section, we will typically take a2m–1¼ 0,

a2m¼ n2m to get the first approximation of the steady-state

solution. The next approximations will be obtained by long-

time simulations with initial conditions following from the

previous steady-state solution and lower values of a2m.

Except for the case of lower Sn with K that, generally, does

not satisfy (26), this recursive procedure in a2m for getting

the numerical steady-state solution will practically converge

with a2m . n2m=10. Similar to numerical results by Faltinsen

and Timokha4 for the clean tank, the secondary-resonance

jumps become detected after the procedure converges with a

lower tested a2m. The subsequent decrease of a2m does not

influence the result (difference is less that 0.1%), but may in

some cases cause numerical instability on the long-time scale

due to the stiffness of the ordinary differential equations.

The Adams-Bashforth-Moulton predictor-corrector algo-

rithm of orders 1 through 12 is involved in our computations.

The algorithm handles mildly stiff differential equations.

The numerical recursive procedure in a2m is combined

with a path-following procedure along the response branches

by a stepwise change of �r in positive and negative directions.

This path-following procedure makes it possible to go along

the steady-state response curves and, thereby, detect jumps

between branches. However, it does not guarantee that no

more branches exist.

D. Theoretical and experimental secondary-resonance
response curves

Using the adaptive multimodal method we will study the

secondary resonance phenomenon in a screen-equipped rec-

tangular tank by considering the experimental case from Ref.

1 for �g2a ¼ g2a=l ¼ 0:01, �h ¼ h=l ¼ 0:4, and seven different

screens. The screens’ structure and experimental setup are in

some detail described in Ref. 1. Even though Faltinsen et al.1

tested the frequency range 0:7 < r=r�1 < 2:2, our primary

focus will be on the interval 0:7 < r=r�1 < 1:36. The upper

bond of the interval is chosen to be away from

1:52 ¼ r2=r
�
1 < r3=r

�
1. The reason is that the experimental

steady-state sloshing with r�2=r
�
1. �r (the forcing frequency

exceeds the second natural sloshing frequency) is character-

ized by the free-surface phenomena mentioned in Introduction

as (i-iii). The multimodal method is not able to describe them.

Within the framework of the experimental input parame-

ters, the calculation by the adaptive modal method estab-

lished stabilization of the numerical steady-state solution

(error is less than 0.01%) by twenty generalized coordinates

(describing amplification of ten symmetric and ten antisym-

metric modes). Further, to cover the frequency range

0:7 < r=r�1 < 1:36, we needed four different adaptive modal

systems (asymptotic orderings) whose domains of applicabil-

ity are overlapped and shown in Figs. 4, 6, 8, 9, and 11.

FIG. 4. The theoretical and experimental g2a-scaled maximum wave eleva-

tion at the walls; h=l¼ 0.4 and g2a=l¼ 0.01. The signs (�) and (D) denote

the experimental measurements done at opposite walls (1 cm away from the

walls, respectively). The submerged screen part has at rest 70 opening

(slots), Sn¼ 0.4725 with K¼ 3.09862 (according to (18)). The solid lines

denote results by the adaptive modal method involving four different asymp-

totic modal systems M1, M2, M3, and M4, whose frequency ranges are

shown on the top. The modal systems involve a2m = n2m in Eq. (23b) and

a2m–1 = 0 in Eq. (23a). The dotted line in the middle shows the results with

am = nm in Eq. (23). The dashed line (quasi-linear modal theory) is taken

from Faltinsen et al.1 The values ik are defined by Eqs. (1) and (2). They

imply possibility of secondary resonance due to amplification of the second

and third harmonics. The response curves are not connected between the

branches b1 and b2 (a combined i9-and-i4 resonance) and in the zoomed

zone caused by the secondary resonance at i7.
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A simple non-optimized FORTRAN code was written without

any parallelization in computation. The computational time

to reach a steady-state solution depended on the input physi-

cal parameters and the small nonzero damping rates a2m
which were employed to avoid beating in the symmetric

modes. Normally, the damping rates a2m–1¼ 0, a2m¼ n2m=10
caused the computational time to be from 0.5 to 50 s to

achieve a numerical steady-state solution within five signifi-

cant figures (Intel(R) Core(TM) 2 Quad CPU (2.66 GHz)

computer).

Our analysis starts with the experimentally lowest solid-

ity ratio Sn¼ 0.4725 leading to K¼ 3.09862 according to

formula (18). Comparing this value of K and

0.01ÿ1=3¼ 4.6416, one can conclude that condition (26) is

satisfied only in an asymptotic sense. The adaptive modal

method “feels” this fact. For the forcing frequencies close to

r=r�1 ¼ 1 simulations by the corresponding asymptotic

modal systems were not able to get a clear steady-state solu-

tion with a2m–1¼ 0 and a2m< n2m. Physically, this means

that other (in addition to the screen-induced one) damping

mechanisms, including the viscous boundary layer at the

wetted tank surface, matter for the present physical and geo-

metric input parameters. The numerical results on the maxi-

mum steady-state wave elevation (1 cm at the wall) noted in

Fig. 4 by solid lines were therefore obtained with a2m–1¼ 0

and a2m¼ n2m. These results are in a good agreement with

experiments. For comparison, we present also the quasi-lin-

ear prediction from Ref. 1 by the dashed line.

For the case in Fig. 4, the adaptive modal method

requires the four asymptotic modal systems M1, M2, M3,

and M4 (see the ranges of their applicability on the figure

top) to capture different a posteriori asymptotic relationships

appearing on the whole interval 0:7 < r=r�1 < 1:36. These
systems involve the following dominant modes: M1¼ {1, 3,

5, 2}, M 2= {1, 5, 7, 9}, M3¼ {1, 9, 11, 4}, and M4¼ {1, 5,

7, 9, 11, 13, 15, 4, 6}. A requirement for being dominant is

clarified by the secondary resonance as i3¼ 0.625,

i2¼ 0.762, i5¼ 0.808, i7¼ 0.956, i9¼ 1.084, i4¼ 1.085,

i11¼ 1.198, i13¼ 1.303, i6¼ 1.328, i15¼ 1.400, i17¼ 1.491.

The dominant character of the corresponding modes was

also checked by direct numerical simulations.

Appearance of the secondary resonances is clearly seen

on the response curves at i2, i3, i7, i4, i9, and i6. Our primary

attention is on the secondary resonance at i7 where a hystere-

sis occurs with two non-connected branches (it is seen in the

zoomed view) and to the combined i9-and-i4 resonance (the

latter two resonances due to the second and third harmonics

are situated very close to each other). The combined i9-and-

i4 resonance leads to the two non-connected branches, b1

(lower) and b2 (upper). The branch b2 causes a narrow peak

which is not experimentally supported for this solidity ratio

while it is for higher solidity ratios, e.g., in Figs. 6 and 8,

where appearance of the peak agrees with experimental

measurements. Even though the experiments were performed

by decreasing the forcing frequency after a steady-state

sloshing with previous forcing frequency was reached, tran-

sients, most likely, caused the experimental values belonging

to the lower branch to end at C1. There are no serious free-

surface phenomena like (i–iii) (see, Introduction) in experi-

mental observation at the frequency range close to C1, thus,

the discrepancy cannot be related to the fact that the multi-

modal method does not capture specific free-surface

motions. This cannot also be explained by accounting for

the linear boundary layer damping for the antisymmetric

modes. Indeed, including the non-zero linear damping terms

(a2m–1¼ n2m–1) in modal equations (23a) improves agree-

ment with experiments for the forcing frequencies close to

the primary resonance r=r�1 ¼ 1, but these damping terms

do not effect appearance of the theoretical peak.

Another interesting point is in the frequency range C2

(the i7-zone with amplification of the third harmonics) where

we have a quantitative discrepancy with experiments. The

discrepancy can partly be explained by the local breaking

waves which are found in experimental observations. Fig. 5

demonstrates a plunging wave breaker appearing near to the

vertical walls for r=r�1 ¼ 0:9574 belonging to C2.

Figs. 6–11 deal with the pressure drop coefficients K

and �g2a for which condition (26) is satisfied. This means that

the screen-induced damping should play the leading role for

the antisymmetric modes. The linear damping terms play

then a secondary role and are only needed in computations to

reach the steady-state conditions. Later, they can pass to

zero. Theoretical modeling of the experimental cases in Figs.

6–11 is therefore performed with a2m–1¼ 0 and a decrease of

a2m from n2m to a2m< n2m=10 to get a numerical steady-state

solution which is not affected by linear damping terms (as

described in Sec. III C). Typically, the steady-state solution

obtained with a2m–1¼ 0 and a2m¼ n2m=10 does not change

(the difference is less than 0.1%) with subsequent decrease

of a2m. Furthermore, the same asymptotic modal systems

M1, M2, M3, and M4 are used in these figures. These sys-

tems employ the modified Moiseev asymptotic ordering (25)

revised due to the secondary resonance by the dominant

ordering O �1=3
ÿ �

for the following modes: M1¼ {1, 3, 5, 2,

4}, M2¼ {1, 5, 7, 9, 2, 4}, M3¼ {1, 5, 7, 9, 11, 13, 4}, and

M4¼ {1, 5, 7, 9, 11, 13, 15, 4, 6}. The frequency ranges for

these models are shown in the figures.

The theoretical results for Sn¼ 0.6925(K¼ 41.4063) are

compared with experimental data in Fig. 6. For this screen,

FIG. 5. (Color online) Video of the surface wave phenomena for the case

in Fig. 4 with Sn¼ 0.4725, g2a=l¼ 0.01 and r=r�1 ¼ 0:9574. (enhanced

online) [URL: http://dx.doi.org/10.1063/1.3602508.1]
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the secondary resonances are expected at i3¼ 0.624, i2¼ 0.762,

i5¼ 0.807, i7¼ 0.955, i9¼ 1.084, i4¼ 1.085, i11¼ 1.198,

i13¼ 1.303, i6¼ 1.328, i15¼ 1.400, and i17¼ 1.491, i.e., they

are almost the same as for the previous screen. Because we

are able to test very small a2m, our nonlinear modal theory

shows four discontinuities (not two as in Fig. 4) in the

response curves associated with the secondary resonances at

i2, i7, i9-and-i4, and i6. Agreement with experiments looks

satisfactory. Experiments support the theoretical peaks at i7,

i9-and-i4, and i6. There are no appropriate experimental

measurements at i2. To demonstrate the damping effect on

the symmetric modes due to the laminar boundary layer at

the tank surface (the steady-state solution with a2m–1¼ 0,

a2m¼ n2m), we present the corresponding maximum theoreti-

cal wave elevations by the dotted line. This small damping

does not modify the results from a qualitative point of view,

but makes it possible to get fully connected response curves.

Thus the mechanical system is very sensitive to the damping

in a neighborhood of the secondary resonance points. Just

around these points (see C1, C2, and C3) we see a quantita-

tive discrepancy between our theory and experiments. As for

a small frequency range C1 (see also, zone C1 in Fig. 4), the

two experimental points in C1 do not belong to the theoreti-

cal branch b1 because this branch ends to the left of C1.

Here, the linear damping due to the boundary layer at the

wetted tank surface (dotted line, a2m–1¼ 0, a2m¼ n2m) moves

the branch end to the right. Thus, an improvement can be

expected if we will be able to get a more accurate estimate

of the global damping. The dotted lines show also a damp-

ing-related sensitivity in the zone C2. There is a discrepancy

in the frequency range C3 where the measurements at the

left and right measure probes differ from each other. In this

FIG. 7. (Color online) Video of the free-surface phenomena for the case in

Fig. 6 with Sn¼ 0.6825, g2a=l¼ 0.01 and r=r�1 ¼ 1:043329. (enhanced

online). [URL:http://dx.doi.org/10.1063/1.3602508.2]

FIG. 8. The same as in Fig. 6 but for Sn¼ 0.78625, K¼ 41.4063, N¼ 29

(upper panel) and Sn¼ 0.83875, K¼ 79.88.16, N¼ 22 (lower panel). The

frequency range C5 corresponds to the small-amplitude liquid sloshing

where our nonlinear free-surface theory gives results close to the quasi-lin-

ear prediction, whereas both theoretical results on the maximum wave eleva-

tion at the walls are slightly lower than the experimental values.

FIG. 6. The theoretical and experimental g2a-scaled maximum wave eleva-

tion at the walls; h=l¼ 0.4, g2a=l¼ 0.01. The signs (�) and (D) mark the ex-

perimental values. The submerged screen part has at rest 42 cross-openings

(slots), Sn¼ 0.6825, and K¼ 15.2292 (due to (18)). The solid lines denote

results by the adaptive multimodal method involving four asymptotic modal

systems M1, M2, M3, and M4, whose frequency ranges are shown on the

top. These adaptive modal systems employ the modified Moiseev asymptotic

ordering (25) corrected due to the secondary resonance by the dominant

ordering for the following modes: M1¼ {1, 3, 5, 2, 4}, M2¼ {1, 5, 7, 9, 2,

4}, M3¼ {1, 5, 7, 9, 11, 13, 4}, and M4¼ {1, 5, 7, 9, 11, 13, 15, 4, 6}. The

asymptotic modal systems adopt a2m–1 = 0 in Eq. (23a) but a2m = n2m=10 in

Eq. (23b) providing stabilization of the response curves as a2m ! 0. The dot-

ted line shows the theoretical results with a2m = n2m in Eq. (23b). The dashed

line (quasi-linear modal prediction) is taken from Faltinsen et al.1 The val-

ues ik are defined by Eqs. (1) and (2). They imply possibility of secondary

resonance due to amplification of the second and third harmonics. The

response curves are not connected between the branches b1 and b2 (a com-

bined i9-and-i4 resonance), b3 and b4 (caused by the secondary resonance at

i7) as well as at i6 and i2.
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frequency range, the experiments show steep waves and a

local breaking (see, video in Fig. 7). These phenomena may

matter. A local wave breaking at the walls was also detected

in the frequency range C4.

The theoretical results for Sn¼ 0.78625 and

Sn¼ 0.83875 are compared with experimental measurements

in the upper and lower panels of Fig. 8, respectively. For the

screen with Sn¼ 0.78625, the most important secondary

resonances are expected at i3¼ 0.623, i2¼ 0.762, i5¼ 0.805,

i7¼ 0.952, i9¼ 1.080, i4¼ 1.085, i11¼ 1.194, i13¼ 1.299,

i6¼ 1.328, i15¼ 1.400, and i17¼ 1.491. The screen with

Sn¼ 0.83875 causes these secondary resonances at

i3¼ 0.621, i2¼ 0.762, i5¼ 0.803, i7¼ 0.950, i9¼ 1.078,

i4¼ 1.085, i11¼ 1.192, i13¼ 1.296, i6¼ 1.328, i15¼ 1.400,

and i17¼ 1.491. For these two screens, we have, generally, a

good agreement with experiments. A discrepancy appears in

the frequency range C5, where the free-surface nonlinearity

gives a minor contribution to the wave elevations except,

very locally, at the point j* so that the results by the adaptive

modal method is the same as for the quasi-linear theory

neglecting the free-surface nonlinearity. A narrow resonance

at j* is due to the fourth harmonics leading to the secondary

resonance amplification of the tenth mode (theoretically, at

r=r�1 ¼ 0:8574252). This amplification disappears when we

include the linear damping terms with a2m–1¼ 0, a2m¼ n2m
(dotted line). At the present time, we have no good explana-

tion of the discrepancy at C5, but, because the results are

almost the same as for the linear free-surface sloshing formu-

lation in Ref. 1, this discrepancy cannot be explained by the

free-surface nonlinearity. One interesting fact is a “knee” in

the response curves at i7 which is present for both linear and

nonlinear free-surface theories. The “knee”-behavior is asso-

ciated with the third harmonics yielded by the (ujuj)-nonli-
nearity in the pressure drop condition ( �Dm-quantities in Eq.

(23)) and, as we see, it is not influenced by the free-surface

nonlinearity. The literature on the pressure drop condition

does not give an answer on how precise this condition cap-

tures higher harmonics in the hydrodynamic pressure yielded

by the viscous flow separation for the sinusoidal approach

velocity. Normally, the literature discusses only the first har-

monics and deals with the associated equivalent lineariza-

tion. Furthermore, the terms K �Dm come from Ref. 1

assuming an average over the mean wetted screen. This

assumption may not be correct for higher solidity ratios caus-

ing a cross-flow through DSc (see Fig. 3).

Considering the experimental screens with higher solid-

ity ratios leads to the results in Fig. 9. In the upper panel

with Sn¼ 0.89125, i3¼ 0.617, i2¼ 0.762, i5¼ 0.798,

i7¼ 0.945, i9¼ 1.073, i4¼ 1.085, i11¼ 1.187, i13¼ 1.291,

i6¼ 1.328, i15¼ 1.399, and i17¼ 1.491, and the lower panel

with Sn¼ 0.91375 implies i3¼ 0.613, i2¼ 0.762, i5¼ 0.792,

i7¼ 0.938, i9¼ 1.063, i4¼ 1.085, i11¼ 1.176, i13¼ 1.278,

i6¼ 1.328, i15¼ 1.398, and i17¼ 1.490. One can see that,

because of the free-surface nonlinearity effect, the secondary

resonance peak at i6 moves to the left of its lowest-order pre-

diction i6¼ 1.328 into the zone of the secondary resonance

at i13. This leads to a more complicated branch b6 (see also

Fig. 11 to understand the tendency with increasing Sn)

affected by a complex nonlinear interaction of the 6th and

13th modes. Including additional nonzero linear damping

terms (here, a2m–1¼ 0, a2m¼ n2m) gives a better agreement

FIG. 10. (Color online) Video for the case in Fig. 9 (upper panel) with

Sn¼ 0.89125, r=r�1 ¼ 0:1288. (enhanced online). [URL: http://dx.doi.org/

10.1063/1.3602508.3]

FIG. 9. The same as in Fig. 6 but for Sn¼ 0.89125, K¼ 191.550, N¼ 15

(upper panel) and Sn¼ 0.91375, K¼ 315.503, N¼ 12 (lower panel). The fre-

quency range C5 corresponds to the small-amplitude sloshing where the

nonlinear free-surface theory gives results on the steady-state wave eleva-

tions close to the quasi-linear prediction and both theoretical results are

slightly lower than the experimental measurements. The frequency range C6

denotes a frequency range where a discrepancy occurs due to a larger double

harmonics contribution to the measured signal (crests) relative to the theoret-

ical prediction of this secondary harmonics (dashed-and-dotted line).
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with experiments for the branch b6, but not for the branch

b5. Fig. 10 shows the video for the steady-state sloshing

associated with the top experimental point on the branch b5

in the upper panel of Fig. 9. The video demonstrates steep

waves with local breaking and a pronounced jump in the

free-surface profile at the screen. It is also clearly seen a flow

from water to air through the screen area DSc. All these local

free-surface phenomena may, generally, cause an extra dissi-

pation which is not captured by the damping terms (22) with

constant values of am.

The flow through DSc was also observed for the model

tests conducted for the frequency range C6 (unfortunately,

we do not have appropriate video). In this frequency range,

the experimental signal (crests) contains a clearly larger sec-

ond Fourier harmonics contribution relative to that by our

nonlinear sloshing theory (dashed-and-dotted line). Our

theory fully accounts for the quadratic free-surface nonli-

nearity which, from a mathematical point of view, is respon-

sible for the second Fourier harmonics. Thus, we should look

for other physical mechanisms generating this harmonics.

For example, a dedicated analysis of the free-surface jump at

the screen and related flow through DSc can, possibly, lead

to the desirable second harmonics. We neglect the latter

flow. In our pressure drop condition (19), the integration is

not over the actual wetted screen (not from –h to f1(t) in Fig.

3) but over the mean wetted screen, i.e. from –h to 0, which

implies the lowest-order quantity in terms of small f1 and f2.

If we speculatively integrate from –h to f1 in Eq. (19) and

expand the obtained integral in a Taylor series by assuming

f1ðtÞ ¼ O �1=3
ÿ �

, one gets
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Because b1 ¼ O �1=3
ÿ �

and b1 contains the nonzero first Fou-

rier harmonics, the underlined quantity in Eq. (27) yields the

second harmonics to appear in the modal equations for the

antisymmetric modes. A dedicated theoretical analysis of

whether the screen-induced free-surface jump causes a sec-

ond Fourier harmonics effect is therefore needed.

The same underprediction of the second harmonics in

the frequency range C6 is seen for the larger solidity ratio

0.93625 in Fig. 11. Again, it cannot be related to the free-

surface nonlinearity. Here, i3¼ 0.604, i2¼ 0.762, i5¼ 0.779,

i7¼ 0.921, i9¼ 1.063, i4¼ 1.085, i11¼ 1.158, i13¼ 1.262,

i6¼ 1.328, i15¼ 1.383, and i17¼ 1.487. The most interesting

in the figure is the appearance of a non-connected branching

at the i6-and-i13 secondary resonance. Here, we see the non-

connected branches b5, b6, b7, and b8, which, however,

become connected and sufficiently modified when we

include the linear damping terms for the symmetric modes

(a2m–1¼ 0, a2m¼ n2m).

IV. CONCLUSIONS

A theoretical approach was developed to describe sec-

ondary resonance in a rectangular tank with a central slotted

screen of high solidity ratio. The secondary resonance is well

known for two-dimensional steady-state resonant liquid

sloshing in a clean tank when the forcing frequency r is close

to the lowest natural sloshing frequency (see Chap. 8 in Ref.

9). For the finite liquid depth, the secondary resonance leads

to amplification of the second and third natural sloshing

modes caused by quadratic and cubic free-surface nonlinear-

ities, and the corresponding second and third harmonics (2r

and 3r), respectively. Because of the trigonometric algebra

for the natural sloshing modes, non-commensurate spectrum

and damping, one can find only two forcing frequencies

where the secondary resonance phenomenon occurs. These

frequencies are situated away from the primary resonance fre-

quency and, therefore, can matter only by increasing the forc-

ing amplitude. Inserting a central slotted screen with a high

solidity ratio, 0:5. Sn < 1, modifies the natural sloshing

modes and, as a consequence, the secondary resonance phe-

nomenon qualitatively changes. Because of the screen, the

secondary resonance amplification can, depending on the

input geometric and physical parameters, happen at a certain

number of frequencies close to the primary resonance and,

thereby, the resonance response curves would have a multi-

peak shape. Higher natural sloshing modes (not only second

and third) can now be excited. The present paper gives a

qualitative and quantitative prediction of these facts.

Our theoretical approach is based on the nonlinear

adaptive multimodal method which was first proposed by

Faltinsen and Timokha4 as a generalization of the Moiseev-

type asymptotic approach for clean tanks. The adaptive

modal method is an efficient numerical-and-analytical

approach for parametric studies of the steady-state resonant

sloshing and gives a rather accurate prediction and explana-

tion of the multi-branching and multi-peaks of the response

curves. The method requires derivation of a polynomial-type

nonlinear modal system which is a base for asymptotic

modal systems accounting for dominant contribution of

higher modes to the resonant liquid sloshing for certain fre-

quency domains. Such a polynomial-type modal system was

FIG. 11. The same as in Fig. 6 but for Sn¼ 0.93625, K¼ 597.759, and

N¼ 9.
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derived for two-dimensional and three-dimensional sloshing

in rectangular tanks. The present paper revises the adaptive

modal method for screen-equipped two-dimensional tanks.

The revisions require changes in the Moiseev-type asymp-

totic ordering and a new prediction of the forcing frequencies

at which the secondary resonance occurs. According to these

revisions, a relatively large number of dominant modes

should be included into the asymptotic analysis of steady-

state resonance sloshing. The method assumes an incompres-

sible liquid with irrotational flow except in a local neighbor-

hood of the screen. Following Faltinsen et al.,1 the viscous

screen effect for the antisymmetric modes (which determines

the cross-flow) is expressed by an “integral”-type pressure

drop condition which leads to the corresponding integral

quantities in the modal equations responsible for antisymmet-

ric modes. This situation can, of course, change when using

the proposed multimodal method and the pressure drop con-

dition for a non-central location of the screen, or for several

screens installed in the tank. Following Ref. 2 and the pre-

sented adaptive multimodal technique, one should then derive

a revised nonlinear adaptive modal system where, depending

on the number of screens and their position, the (�j � j)-integral
quantities can appear in all the modal equations.

For the central screen case, the symmetric modes are

theoretically not damped. This requires artificial linear

damping terms in the modal equations responsible for the

symmetric modes which help to reach steady-state solutions

in our calculations. For the model tests case, decreasing the

artificial damping rates a2m leads to convergence of the nu-

merical procedure with a2m . n2m=10 (n2m are the damping

rates for linear sloshing due to the laminar viscous boundary

layer at the mean wetted tank surface for the clean tank) so

that, as for the clean tank case by Faltinsen and Timokha,4

the secondary resonance jumps on the response curves are

clearly detected with the damping rates lower then ni. This

means that laminar viscous layer plays a minor role in damp-

ing the symmetric modes in the studied case.

Even though the theoretical approach gives very good

qualitative and, generally, good quantitative prediction of the

experimental steady-state elevations, there is a discrepancy

between theory and experiments in certain frequency ranges.

This can partly be explained by the free-surface phenomena

discussed in Ref. 1. Another possible reason for quantitative

discrepancies is that the “integral”-type pressure drop condi-

tion cannot capture effects of specific flows at the screen

with increasing solidity ratio when a free-surface jump

between left and right screen sides occurs. Unfortunately, we

were not able to measure this screen-caused jump DSc due to

due to local phenomena at the screen region accompanied

with the free-surface segmentation and jet flow through the

holes. Our adaptive multimodal theory detects the maximum

jump DSc at the primary resonance zone as well as at the sec-

ondary resonances by antisymmetric modes, i.e., when

r=r�1 � i2kþ1, k � 1. This is because of the central position

of the screen which implies continuous symmetric modes. A

dedicated study of these nearly screen flows is required. Fur-

thermore, we need to express the damping due to tangential

drag at the screen.
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