
Gender prediction on Norwegian Twitter
accounts

Håvard Kvamme

Master of Science in Physics and Mathematics

Supervisor: Håvard Rue, MATH
Co-supervisor: Dirk Hesse, Intelligent Communication AS

Department of Mathematical Sciences

Submission date: December 2015

Norwegian University of Science and Technology

Preface

This thesis completes my master’s degree in industrial mathematics at Norwegian
University of Science and Technology (NTNU).

I would like to thank my supervisors prof. H̊avard Rue at NTNU and Dr. Dirk
Hesse at Intelligent Communication AS, for their excellent understanding, guidance
and support during the project. I also want to thank Intelligent Communication AS
for allowing me to work with Dr. Hesse, and granting me access to both data and
computational resources. Last, I want to thank Dr. Erlend Aune for introducing
me to the Caffe deep learning framework.

Trondheim, 21.12.2015

H̊avard Kvamme

ii

ABSTRACT

In this thesis, methods for predicting the gender of Norwegian Twitter
accounts were investigated. Through Twitter’s public APIs, various
account information is available. Tweets (text), personal descriptions,
friends networks, and profile images were the main fields investigated.
First separate classifiers were fitted to features from the different fields,
and later the individual classifiers’ posterior probability estimates were
combined to achieve increased accuracy. The datasets were labeled
though comparison of the accounts’ names and names in the Norwegian
population. Subsets of accounts with very gender specific names were
used for training and testing. The highest balanced accuracy obtained
was around 0.89. This, however, required access to the accounts’ profile
images (85% of the data). Without images, the accuracy dropped to
around 0.85.

iv

SAMMENDRAG

Denne oppgaven omhandler metoder for prediksjon av kjønn p̊a norske
Twitterkontoer. Diverse informasjon er tilgjengelig gjennom Twitters
API. Hovedvekten av analysen ble lagt p̊a tweets (tekst), personlig
beskrivelser, vennenettverk og profilbilder. Disse ble først undersøkt in-
dividuelt, for s̊a å bli kombinert gjennom deres sannsynlighetsestimater
i et forsøk p̊a å minke feilraten. Datasettene ble merket (gutt/jente)
ved å sammenligne brukernes navn med den norske befolkningen. Un-
dergrupper av brukere med navn som sterkt antyder et av kjønnene,
ble brukt til trening og testing. Den høyeste balanserte treffsikkerheten
oppn̊add var p̊a 0.89, men dette krevde tilgang til brukernes profilbilder
(85% av dataene). Uten bilder sank treffsikkerheten til 0.85.

vi

Contents

Preface i

Abstract iii

Sammendrag v

Contents vii

1 Introduction 1
1.1 Notation . 2

2 The data 3
2.0.1 Labeling data . 4
2.0.2 Different datasets . 5

3 Features from meta informaiton 7
3.1 Handmade features from information 7

3.1.1 The classifiers . 8
3.1.2 Performance analysis . 8

3.2 Hashtags . 13
3.2.1 Counting features . 14
3.2.2 Tf-idf features . 16
3.2.3 N-grams . 17

4 Text analysis 21
4.1 Natural language processing . 21

4.1.1 Resent developments . 22
4.2 Handmade features from text . 23
4.3 Words in tweets . 26

4.3.1 N-grams on text . 28
4.3.2 Retweets . 29
4.3.3 Aggregtion of text . 30

4.4 Emojis and emoticons . 31
4.5 User description . 34

viii Contents

5 Friends 37

6 Profile images 41
6.1 Image recognition . 41
6.2 Retrieving images . 44
6.3 Eigenfaces . 44
6.4 Convolutional neural networks . 49

7 Combining classifiers 53
7.1 Methods for combining classifiers . 53

7.1.1 Fixed combination rules . 54
7.1.2 Combination through a classifier 55

7.2 Missing data . 56
7.3 Combining without images . 56
7.4 Combining with images . 61

8 Summary 65
8.1 Further work . 66

Bibliography 67

Appendices 77

A Logistic regression 79
A.1 Regularization . 80
A.2 Reweighting . 81

B Random forests 83
B.1 CART . 83

B.1.1 Building the tree . 84
B.2 Bagging . 85
B.3 Random forests . 86

B.3.1 Why random forests works 87
B.3.2 Tuning . 87
B.3.3 Reweighting . 88

C Neural networks 89
C.1 Perceptrons . 89

C.1.1 Fitting perceptrons . 91
C.1.2 Vanishing gradient . 91

C.2 Convolutional neural networks . 91
C.2.1 Convolution layer . 92
C.2.2 Pooling layer . 94
C.2.3 Fully connected layer . 95
C.2.4 ReLU layer . 95
C.2.5 Architectures . 95
C.2.6 Training . 96

Contents ix

D Features 99
D.1 Tf-idf . 99
D.2 Scaling features . 100

E Aggregation of text 103

F Colors 105

x Contents

Chapter 1

Introduction

Online social media networks have become a popular way for people to connect
to each other. This can be in the form of network building, communication, or
broadcasting content. The increasing popularity of the networks gives rise to ex-
traordinary opportunities for studying the human society at scale. However, due
to concerns for user privacy, many service providers keep much of the user data
private. Twitter represents an exception.

Twitter is an online social networking service that enables users to post and
read 140 character messages. These messages are commonly referred to as tweets 1.
According to Twitter’s own web pages 2, the world wide network currently consists
of 320 million active users monthly, and one billion unique visits monthly to sights
with embedded tweets. In Norway there are currently a bit more than one million
accounts 3, which represent around a fifth of the Norwegian population 4.

Twitter users can follow other users, and can be followed themselves. Unlike
many other social networking sites, these relationships require no reciprocation.
Also, the default option for posted tweets is to make them publicly available, though
they can be restricted to the account’s approved followers. Part of Twitter’s appeal
is, however, to share public opinions. Other social networking services like Facebook
are more directed towards private interactions. Thus, according to Mislove et al.
[2011], over 91% of Twitter users chose to make their communication history publicly
available.

Twitter’s size gives rise to a quite unique opportunity to study a decent fraction
of the population. In fact, researchers have started to use tweets to measure and
predict real-world phenomena, such as movie box office returns [Asur and Huberman,
2010], outcome of elections [O’Connor et al., 2010, Tumasjan et al., 2010], and stock
markets [Bollen et al., 2011, Zhang et al., 2011]. While these studies shows various
promise, they do not discuss to what extent Twitter accounts can be used as a

1Through the thesis, tweets can both refer to the text and the text including meta information.
2Twitter company facts: https://about.twitter.com/company
3http://ipsos-mmi.no/some-tracker
4Norwegian population https://www.ssb.no/befolkning/nokkeltall

https://about.twitter.com/company
http://ipsos-mmi.no/some-tracker
https://www.ssb.no/befolkning/nokkeltall

2 1. Introduction

representative sample of the population. Mislove et al. [2011] addressed this issue
and found that in general, the U.S. Twitter population was a highly non-uniform
sample of the U.S. population. Knowledge of these biases is important if Twitter is
going to be used for population analytics.

Though Twitter enables the collection of publicly available data, there are
some limitations. Twitter’s Firehose 5 enables streaming of all public statuses, but
requires special permissions. Few applications requires this level of access, and the
smaller version 6, sometimes called Gardenhose, is sufficient for the collection of
Norwegian tweets.

In this thesis, Twitter was not used for population analysis. Instead, tools were cre-
ated to enable the analysis of individual Twitter accounts. More precisely, classifiers
were made for predicting the gender of Norwegian users account. The focus was
mainly on four areas: tweets (texts), user descriptions, profile images, and friends
of the accounts. These were first investigated separately, and later combined into
classifiers in attempts to increase the accuracy of predictions.

In many ways, this thesis can be viewed as an investigation of which Twitter
data contains information about gender. As new information sources were gradually
explored, also new, and often better, methods for analyzing the data were investi-
gated. Some of these new methods were then applied on information previously
analyzed, making some choices of analysis seem poorly motivated. Also, some
analysis used in the beginning, was later dropped or removed in preference of better
measures.

The datasets used in this thesis were mainly collected by Intelligent Communi-
cation AS 7. They were, for the most part, gathered through the public stream of
tweets. Therefore, the main part of the analysis is concerned with the information
available thorough single tweets, and only a small part discuss information available
through aggregation of multiple tweets.

1.1 Notation

I have tried to follow most conventions when it comes to notation, and be consistent
throughout the report. Stochastic variables have no particular notation, but is
should usually follow from the context. Note the following:
x is a vector.
xi is an element in x.
xi is a data point.
P (a) is the probability for the incident a.

5Twitter Firehose: https://dev.twitter.com/streaming/firehose
6Twitter public streams: https://dev.twitter.com/streaming/public
7Intelligent Communication AS: http://intelcom.no/

https://dev.twitter.com/streaming/firehose
https://dev.twitter.com/streaming/public
http://intelcom.no/

Chapter 2

The data

A couple of different datasets were used in this project. Mainly, tweets were gathered
through the streaming APIs (Gardenhose), filtered on Norwegian tweets. This gave
access to the tweets with some additional user- and meta information. Each tweet
also included a link to the account’s profile image, but not the actual image. Thus,
images had to be collected separately. The tweets did not contain a list of the users’
friends (accounts the user is following). This had to be collected through Twitter’s
REST APIs 1. There are, however, some limitations on gathering the friend’s IDs.
Only 15 requests can be made per 15 minutes 2. This resulted in some limitations
of the size of this dataset.

When collected, the goal was to obtain datasets of tweets written in Norwegian.
This was done by filtering on the 500 most common words in the Norwegian lan-
guage 3. Most of the tweets are written in Norwegian, but some are written in other
languages, like Swedish, Danish and English.

The following list shows the information used in the thesis:

hashtags: list of hashtags used in the tweet

urls: URLs used in the tweet

user mentions: users mentioned in a tweet

text: the actual tweet

user:

description: a description of the user, made by the user

favourites count: number of tweets the account has favorited

followers count: number of users following this account

friends count: number of users this account is following

1Twitter REST APIs: https://dev.twitter.com/rest/reference/get/friends/ids
2Twitter REST limitatios: https://dev.twitter.com/rest/public/rate-limits
3https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Norwegian_Bokm%C3%A5l_

wordlist

https://dev.twitter.com/rest/reference/get/friends/ids
https://dev.twitter.com/rest/public/rate-limits
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Norwegian_Bokm%C3%A5l_wordlist
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Norwegian_Bokm%C3%A5l_wordlist

4 2. The data

listed count: number of public lists this user is a member of

name: name of user, defined by user

profile image url: URL to to user’s avatar image

statuses count: number of tweets (including retweets) posted by the
user

friends ids: list of users the accout is following, in the form of user IDs

More information can be found on Twitter’s development web pages 4.

2.0.1 Labeling data

Classifiers are supervised methods and therefore require labeled data. Gender is
not public information on Twitter, and manual labeling of tweets would be very
time consuming. We therefore propose an alternative method for assigning labels
to the accounts.

As shown in the list above, the names are part of the meta information available
for the accounts. Thus genders can be predicted based on the names of the accounts,
and labels can be assigned accordingly.

The Norwegian statistics bureau, Statistics Norway (Statistisk sentralbyr̊a),
administers publicly available datasets of names in the Norwegian population of
2014 5. Names with less than 200 occurrences are excluded. According to their
data, there are 2 262 660 men distributed among 801 first names, and 2 205 666
women distributed among 916 first names. Only five names are used for both males
and females. They are shown in Figure 2.1, where the y-axis gives the number of
individuals. These names where excluded from the labeling scheme.

Figure 2.1: Names in the Norwegian population that are both female and male.

4Twitter API objects: https://dev.twitter.com/overview/api
5Statistics Norway:

https://www.ssb.no/en/befolkning/statistikker/navn/aar/2015-01-27

https://dev.twitter.com/overview/api
https://www.ssb.no/en/befolkning/statistikker/navn/aar/2015-01-27

5

Roughly a third of the tweets collected have names that can be found in Statistics
Norway’s datasets. Training and test sets were made from this subset, and the rest
of the tweets were discarded. This does, however, introduce some bias. Also, note
that the name of an account is a very valuable feature, but is not used for obvious
reasons. Therefore, if the bias is small, the test accuracy reported might actually
be too low. As no test set was created from the whole population of tweets, the
effect of the bias was never tested.

Twitter users choose their own name, so a male can choose a female name and vice
versa. To verify our labeling approach, we looked through a subset of the data.
Investigating 100 tweets with real names, there were no cases the name suggested a
different gender than what we would assign to the account. In a 2012 blog post 6,
Twitter reported they were able to predict gender with ”more than 90% accuracy”.
We interpret this as not much more than 90%. Assuming this benchmark is be hard
to beat, our method for labeling seems fine.

There are of course some issues with how to handle gender identities, but again
assuming a minimum error rate of 10%, identity issues will hopefully be negligible.

2.0.2 Different datasets

In our datasets, some users are responsible for multiple tweets. The approximately
118 000 tweets are posted by around 35 000 users. Investigation of features specific
to users, limits the data to a subset of unique users. If not, duplicate data points
would exist, giving unreasonable high weight to some accounts. In addition, a
classifier trained and tested on some of the same data will report unreasonable high
accuracy. Classifiers fitted to features specific for the tweet, on the other hand, can
use the whole dataset.

Working with profile images and friends also requires unique users. Friends
comes from a different dataset, not fully contained in the first data. This needed to
be addressed when classifiers were combined.

The accuracy of a classifier is very dependent on the size of the training set.
A simple classifier fitted to a large dataset often outperform a better classifier with
scarce data. To get the best classifier possible, we work with as large datasets as
possible. This can be restricted by the computational power, or the amount of data
available for the task. No distributed computing was used for the project.

6Twitter blog post:
https://blog.twitter.com/2012/gender-targeting-for-promoted-products-now-available

https://blog.twitter.com/2012/gender-targeting-for-promoted-products-now-available

6 2. The data

Chapter 3

Features from meta
informaiton

As described in Chapter 2, each tweet contains more information than just the text.
Some of this information will be discussed here. First, some handmade features
were analyzed, and further, features were created from hashtags. There is some
analysis of the accounts’ profile colors in Appendix F, but the work was cut short
in preference of other more promising areas.

3.1 Handmade features from information

As a start, simple features were derived from some of the information included in
the tweets. The following covariates were made:

• length of the text

• number of hashtags

• number of URLs

• number of users mentioned in the tweet

• length of the description

• favorites count

• followers count

• friends count

• listed count

• statuses count

8 3. Features from meta informaiton

The five last features (with underscores) are elements directly available from the
tweets (see Chapter 2). As the features contain some user information as well as
information about the tweets, a subset containing unique users was created. This
was done by only including the oldest tweet of each user. The subset contained
35 244 data points, and was split in a training set of 23 614 tweets and test set
of 11 630 tweets. All through the project, a relation of 2:1 was used between the
training and test sets. This consistency is mainly for ease of interpretation for the
reader.

3.1.1 The classifiers

Through the project, two classifiers were used: logistic regression and random
forests. As many areas were covered through the thesis, the number of classifiers
were limited to two, one linear and one non-linear. In general, the quality of the
features is usually more important than the choice of classifier, so if these classifiers
do not give decent results, it is not that likely that other classifiers would be much
better. Both logistic regression and random forests are well known classifiers, and
both are quite simple to tune. In addition, they give estimates of the posterior class
probabilities, which is useful when the classifiers later are combined. When logistic
regression is mentioned through the thesis, it is always penalized by the L1 or L2
norm. For an explanation of logistic regression and random forests see Appendix A
and B respectively.

Initial experiments showed that the classifiers had a tendency to favor one class over
the other. This was partly a result of unbalanced datasets. Usually the training
sets consists of 60% males and 40% females. To alleviate this issue, the data was
reweighted according to the inverse of the class proportions (see Appendix A.2 and
B.3.3).

At the end of the project, different classifiers were combined to create more
accurate classifiers. As the different datasets used have varying proportions of the
genders, the individual prior probabilities did not necessarily coincide with the
proportions in the test set. As classifiers were reweighed to simulate equal class
proportions, this issue became more manageable.

3.1.2 Performance analysis

First, a random forests classifier was fitted to the features. The classifier was tuned
using cross-validation, and we will refrain from going into further details concerning
this rather broad subject.

Classification table

Table 3.1 shows the test results of the classifier. The three rows give results for
females, males, and the total scores.

To be able to discuss the results, some terms need to be introduced. Consider
the female row as an example. Then a true positive is a female classified as female,

3.1 Handmade features from information 9

a false positive is a male classified as female, a false negative is a female classified as
male, and a true negative is a male classified as male. Let tp, fp, fn, and tn denote
the number of true positives, false positives, false negatives, and true negatives
respectively. The precision is the ratio of true positives over classified positives,

precision =
tp

tp + fp
. (3.1)

The recall is the ratio of true positives over actual positives,

recall =
tp

tp + fn
. (3.2)

Table 3.1: R.F. with 200 trees on handmade features.

precision recall f1-score prop.
f 0.6 0.44 0.51 0.41
m 0.67 0.8 0.73 0.59
total 0.64 0.65 0.64 11630

So to interpret the precision and recall in the female row, the classifier manage to
classify 44% of the females correctly, and 60% of the users classified as female were
actually female. It would be easy to get a recall of 1.00 by classifying all users as
female, but the precision would then be quite low. It is therefore common to take
both into consideration when evaluating the performance of a classifier.

The total recall (third row) gives the class proportion weighted average of the
scores. Thus the recall gives the accuracy,

accuracy =
tp + tn

tp + fp + tn + fn
, (3.3)

which is the number of correct classifications over number of data points. This is a
very common measure for the performance of a classifier. The total precision score
is not as interpretable, and should just be considered the class proportion weighted
average precision.

The prop. column in Table 3.1 gives the proportion of females and males in the
test set. The total prop. gives the number of data points in the test set. Using both
proportions and a count in the same columns is deliberately confusing. However, it
will be useful to have both proportions and size of test set through the thesis. They
are in the same columns just to make the tables more compact.

The f1-score (also called f-score and f-measure) tries to incorporate both precision
and recall into one score. It is defined as the harmonic mean of the precision and
recall,

f1 = 2 · precision · recall

precision + recall
, (3.4)

10 3. Features from meta informaiton

and takes values from zero to one. The total f1-score is a quite common alternative
to the accuracy, and they are often quite similar. However, as Powers [2011] ex-
plains, both accuracy and f1 is biased. He therefore suggested alternatives like Phi
coefficient, Matthews correlation coefficient, Informedness and Cohen’s kappa. With
this in mind, we still report accuracy and f1-score as they are quite interpretable
and commonly used.

Now, analyzing Table 3.1, the classifier is only able to achieve f1-score of 0.64
and accuracy of 0.65. Comparing this to a classifier randomly guessing only based
on the proportions (flipping a coin based on prior probabilities), it would have
precisions, recalls and f1-scores approximately equal to the class proportions. This
gives a total precision, accuracy and f1-score approximately equal to the squared
sum of the proportions, 0.592 + 0.412 = 0.52. A classifier assuming equal prior
probabilities will have recalls and accuracy of 0.5, and precision approximately
equal to the class proportions. Thus, though the random forests classifier is not
particularly accurate, it is a lot better than random guessing. This implies that
there is some information in the features.

Feature bar charts with class proportions

In an attempt to investigate the features in a more intuitive matter, bar charts were
created for each individual feature. This is shown in Figure 3.1. The charts display
the proportion of females in each bin,

nr. females

nr. females + nr. males
. (3.5)

Asymptotically, this should approach the conditional probabilities P (female | bin).
If both nr. females and nr. males are zero, the charts show 0.5. Note that the bars
are affected by the gender proportions in the data set. That is why most bars are
around 0.4.

Each blue line shows a histogram of instances, i.e. nr. females + nr. males, in
thousands. It is included to help determine if high and low values are caused by
lack of data rather than differences between the genders. The y-axes are not labeled
here, as considered necessary to fit the large figure on a single page. They are in
general labeled though. The x-axis is limited, excluding some of the observations.
Extreme values are not interesting in this analysis, and they limit the resolution of
the charts.

Figure 3.1 shows very little difference between males and females, suggesting
that a linear combination of the features gives little information about gender. This
implies that the random forests classifier was able to find information through
interactions of the features. Interestingly, the histogram of the text length seems to
oscillate. The period is around 5, so maybe a sentence is commonly around five
words long.

3.1 Handmade features from information 11

Figure 3.1: Bar charts showing proportion of females for the different covariates. The
charts were made from the training set. The blue lines show number of instances for each
bin (in thousands).

12 3. Features from meta informaiton

Probability estimates

Next, the classifier’s ability to estimate the posterior class probabilities was inves-
tigated. Even though the classifier in Table 3.1 had quite low overall scores, it
could potentially give decent predictions for a small subset of the data. Figure 3.2
shows the estimates for the test set. The x-axis gives the probability estimates for
females in the test set, while the bars give the proportions of females within the
bars. As before, the blue line shows the histogram in thousands. The red line is a
reference line with slope 1 and intercept 0. The probability estimates for males are
just 1− P̂ (female | x), or 1 minus the posterior probability estimates for females.
Thus, there is no reason to include a corresponding figure for male estimates.

Figure 3.2: Estimates of posterior probabilities from R.F. classifier on the handmade
features. The same classifier as in Table 3.1. The red line is a reference line and the bars
give the proportions of females in the test set.

Investigating the figure, the probability estimates are really quite decent. The
blue line gives a clear indication that most of the tweets have probability around
0.4, but still, there is definitely some information here. So while it is not a good
classifier by it self, it might be able to boost the performance of other classifiers.

Even though Figure 3.1 indicated that a linear decision boundary should not
be a very good fit, the experiment was repeated with a logistic regression. The
classifier was tuned with both the L1 and L2 penalty. The data was standardized
with zero mean and unit variance, as this is important when penalizing the size of
the coefficients (see Appendix D.2). The results of the best performing classifier
are shown in Table 3.2. Compared to the random forests classifier, the recall is a
lot more balanced. However, the performance is possibly no better than random
guessing.

Figure 3.3 shows the estimated posterior probabilities. It does not look like
there is much information here at all. Thus, confirming our initial suspicion.

3.2 Hashtags 13

Table 3.2: Logistic regression on handmade features.

precision recall f1-score prop.
f 0.46 0.59 0.51 0.41
m 0.64 0.51 0.57 0.59
total 0.56 0.54 0.54 11630

Figure 3.3: Probability estimates from logistic regression classifier on handmade features.
Same classifier as in Table 3.2.

This concludes the investigation of the handmade features from the tweet in-
formation. Mostly, this was an introduction to the analytic tools used through the
thesis. The struggle is to find good features for distinguishing between genders.
Therefore, for the most part, a lot of different features will be investigated, but
often not as thoroughly as one might find satisfactory.

3.2 Hashtags

Hashtags are a way to categorize tweets by keywords. For instance, #2pl is the
hashtag for Premier League, created by the Norwegian TV channel TV2. The use
of hashtags simplifies the process of finding tweets based on topics of interest. As
hastags give the theme of the tweet, it might be a good features for separating
between genders. It is important to note that tweets can be written without the
use of hashtags. Actually, only around 5% of our collected tweets contain hashtags.

Every tweet collected comes with a list of hashtags used in the text (can be
empty). As we are now working with tweets and not user information, a dataset
containing multiple tweets per account can be used. While one might want to argue
that this induce some bias, it was found necessary to get a sufficiently large dataset.
The experiments in this section were tested on smaller datasets, but the results
were excluded as they did not give much information. The training and test set

14 3. Features from meta informaiton

used in this section had approximately 79 000 and 39 000 tweets respectively.

As a start, hashtags used at least 40 times in the training set were investigated.
Figure 3.4 shows these hastags, where the bars show the female proportions, as
described in (3.5). Clearly, some of the hashtags are quite informative. Interestingly,
hastags concerning sports seem to be predominantly used by males. It is also evident
that hashtags seem to be a better predictor for males than females, as there are
quite few hashtags with high female proportions, but many hashtags with high male
proportions. However, recall that the proportions are influenced by the proportions
in the dataset. The test proportions can be found in Table 3.3a, and should be
approximately equal to the training proportions used in the figure.

Figure 3.4: Bar chart over most used hashtags. The bars show proportion of female users,
and the blue line shows number of post that contains the hashtag. If the same hastag is
used multiple times in a post, they are all counted.

3.2.1 Counting features

Counting features were created from the hashtags in Figure 3.4. This gave a matrix
with one row per data point (tweet) and on column per hashtag. The elements in
the matrix were the number of times the hashtag was used in the tweet (0/1). A
random forests classifier was fitted to the features, and the classification results are
displayed in Table 3.3a. Clearly, the classifier predicts almost exclusively men. This

3.2 Hashtags 15

can be explained through some investigation of the proportions. It was found that
approximately 5% of the tweets in the data set used one or more of the hashtags.
Thus the classifier had to choose one class for 95% of the tweets. Apparently it chose
male. Approximately 72% of the tweets with the relevant hashtags were posted
by males. Thus the majority here will also be predicted as male. And finally, as
Figure 3.4 shows, it is easier to find good features for predicting males than females.

Obviously, hastags are not good feature for predictions on all the tweets. The
classifier could, however, give decent predictions on a subset containing the hashtags.
Therefore, in Table 3.3b, the experiment was repeated, but with training and test
set comprised only by tweets with the relevant hashtags from Figure 3.4. The
performance improved a lot, but the results for females are still not good.

Figure 3.4 did indicate a couple of very good features for separating genders,
but it probably only works on a small subset. Therefore, only the features in
Figure 3.4 with the highest and lowest proportion of females were used, and only
tweets containing these hashtags were include in the training and test set. To get
some balance, features with a lower proportion of females than 0.08 and features
with a higher proportion than 0.7 where chosen. This gave the results in Table 3.3c.
Clearly the scores are very good, but the test set is only around one percent of the
original test set.

(a) All features. All data points in training
and test set used.

precision recall f1-score prop.
f 0.72 0.01 0.03 0.37
m 0.63 1 0.77 0.63
total 0.66 0.63 0.5 38965

(b) All features. Only tweets containing rel-
evant hashtags were used for training and
testing.

precision recall f1-score prop.
f 0.72 0.36 0.48 0.28
m 0.79 0.94 0.86 0.72
total 0.77 0.78 0.75 1950

(c) Only the best separating hashtags. Only
tweet containing the hashtags were used for
training and testing.

precision recall f1-score prop.
f 0.95 0.9 0.93 0.28
m 0.96 0.98 0.97 0.72
total 0.96 0.96 0.96 485

Table 3.3: R.F. with 200 trees with hashtag counts as features. The hashtags are displayed
in Figure 3.4.

The choice of excluding hashtags used less than 40 times was never justified. For
best performance this limit should be treated as a tuning parameter. However, this
was never truly tested as other approaches seemed more promising.

16 3. Features from meta informaiton

3.2.2 Tf-idf features

When only hastags used at least 40 times are considered as features, the subset of
tweets containing the relevant hashtags becomes quite small. If all hashtags are
included, the feature space becomes quite large. There are around 10 000 unique
hastags in the training set. However, the features will be very sparse, and can
therefore be constructed without allocating a lot of memory. If handled correctly,
logistic regression can utilize this sparse structure for very fast computations.
Random forests, on the other hand, can not.

Counting features are very intuitive, but not necessarily the most informative
way to represent hashtags. In Appendix D.1, tf-idf is described as an alternative to
counting. Tf-idf is short for ”term frequency - inverse document frequency” and
tries to weight the frequencies (scaled counts) by how common they are among the
tweets. This is in many ways a more reasonable way to represent the hashtags, and
is therefore replacing the counting features from now on.

Tf-idf features were created from the hastags, and a logistic regression was fitted
to the features. Table 3.4 shows the results. Only tweets containing hashtags where
included in the test set. Compared to the previous results, a much larger part of the
test set was used for prediction. The total scores are not as good as in Table 3.3b,
but the recall is a lot more balanced.

Table 3.4: Logistic regression on hashtags using tf-idf.

precision recall f1-score prop.
f 0.51 0.71 0.59 0.35
m 0.8 0.63 0.71 0.65
total 0.7 0.66 0.67 7166

As with the handmade features, the estimated posterior probabilities of the test set
are interesting in the context of combining classifiers. They are therefore displayed
in Figure 3.5a. Only estimates of tweets with hashtags were included. The estimates
are not as accurate as for the meta information, but still decent.

When a user wants to share someone else’s tweet, he or she can retweet it. This
means that that he or she posts the same text, but with a handle to the original
tweeter. This is quite common and therefore needs to be taken into consider-
ation when making predictions. Figure 3.5b shows the estimated probabilities
of only the retweets in the test set. The estimates are not quite as good as for
Figure 3.5a, but they are surprisingly good. The histogram shows that there is
actually less weight in the center, suggesting that it might be easier to classify
retweets. One possible reason for this could be that users are more likely to retweet
someone of the same gender. Another hypothesis is that users are more likely to
retweet posts that include gender specific hashtags of the same gender as them selves.

The same tf-idf features were used with a random forests classifier, and the results

3.2 Hashtags 17

(a) All (b) Only retweets

Figure 3.5: Probability estimates from a logistic regression fitted to tf-idf features from
hashtags. The figures only shows predictions on tweets containing hashtags. Same classifier
as in Table 3.4.

are displayed in Table 3.5 and Figure 3.6. The two classifiers are actually very
similar in test scores, but it looks like the probability estimates of the logistic
regression are better than those of the random forests.

Table 3.5: R.F. on hashtags using tf-idf.

precision recall f1-score prop.
f 0.51 0.67 0.58 0.35
m 0.79 0.65 0.71 0.65
total 0.69 0.66 0.67 7166

For the counting features, the best separating features were used to investigate
predictions on a small subset. This was later dropped in preference of plots of
probability estimates. However, predictions on small subsets were done for parts of
the thesis, but as they were very hard to compare, the results were removed.

3.2.3 N-grams

Investigating the names of the hashtags in Figure 3.4, it is clear that some of the
hashtags contain the same words. One example is ”sykkel” and ”2sykkel”. This
far, these similarities has not been taken advantage of. N-grams is a method where
n consecutive characters are used as a feature, as oppose to the whole word. It is
common to use n-grams in some range, e.g. 3 to 5 grams. While this gives more
flexibility to the features, it also introduces new parameters that need tuning. Just
as with hashtags, the grams can be represented through the tf-idf scheme. Note
that n-grams can also refer to n consecutive words, but in this thesis the term is
used for characters.

Table 3.6 shows the results of a logistic regression fitted to 3 to 5 grams tf-idf
features. The hashtags where converted to lower case before tf-idf was applied. All

18 3. Features from meta informaiton

(a) All. (b) Only retweets.

Figure 3.6: Probability estimates from a random forests classifier fitted to tf-idf features
from hashtags. The figures only shows predictions on tweets containing hashtags. Same
classifier as in Table 3.5.

parameters were tuned through cross-validation, including the n-gram range. It
seems like these n-grams result in a slightly higher accuracy and f1-score than using
the hashtags in Section 3.2.2. Comparing the corresponding probability estimates
in Figure 3.7 with the previous classifiers, the estimates seem to be slightly better
as well. The blue histogram is wider, suggesting that this classifier was able to
make predictions for more of the data. Thus is seems that the n-grams are able to
capture some information that the other methods missed.

Table 3.6: Logistic regression on hashtags using tf-idf with 3 to 5 grams.

precision recall f1-score prop.
f 0.54 0.61 0.58 0.35
m 0.78 0.73 0.75 0.65
total 0.7 0.69 0.69 7166

3.2 Hashtags 19

(a) All. (b) Only retweets.

Figure 3.7: Probability estimates from logistic regression on 3-5 grams tf-idf features from
hashtags. Tweets not containing hashtags were excluded from the test set. Same classifier
as in Table 3.6.

20 3. Features from meta informaiton

Chapter 4

Text analysis

In this chapter methods for extracting information from texts will be investigated.
The texts in question are the actual tweets and the user descriptions. As with
hashtags in Section 3.2, the theme of a post might be a good way to distinguish
between genders. So if this can be extracted from the text, it might provide
informative covariates. Also, there might be a difference between the way men and
women express themselves. This can be in terms of wording, use of emojis and
emoticons, or maybe something less obvious.

As hashtags were analyzed in the previous chapter, they were removed from the
tweets in this analysis. This was partly because hashtags are often constructed in
a way that makes them different from words, but also because results are easier
to interpret when separated. It is not certain, whether or not combination of the
separate classifiers gives better results than a classifier fitted to features from both
hashtags and the text.

In the same way, emojis and emoticons are analysed separate from the text, and
analyzed in Section 4.4.

4.1 Natural language processing

Natural language processing, or NLP, is the field of computer science, artificial
intelligence, and computer linguistics concerned with the interaction between com-
puters and human natural languages. By natural language we mean a regular
human language like Norwegian and English, and not languages like programming
languages. Some examples of typical NLP tasks are machine translation, optical
character recognition, sentiment analysis, speech recognition, and parsing. In this
thesis, however, only the field of text classification will be investigated.

There are a couple of different approaches to text classification. One method
is to create handmade rules, where an expert finds some rules that are used for the
classification task at hand. In our case that could be a set of rules based on words
and symbols in the text. For example, if a post contains a heart next to a boys

22 4. Text analysis

name, we classify it as female; and if there is some mention of football, we classify it
as male. The accuracy of the classifier is of course very dependent on the quality of
the rules. It might be quite time-consuming to create a decent classifier, if possible
at all. Also, the way a language is used might change over time, requiring new sets
of rules to be made at a later time.

A second approach is to create hand made features one think might be descriptive
for the task at hand, and train a classifier on these features. This can for example be
number of capital letter in the text, or number of exclamation points used. Again,
if the features are good, than the classifier will perform well, and compared to hand
made rules, this approach often requires less work. Also, even though people change
the way they write, the features might still be descriptive. Thus, a new classifier
can be trained on the new data. On the other hand, it might be hard to create
good features, and they might be outdated with time.

The last approach is to create features based on some algorithm, and pass these
features to a classifier. Note that there are algorithms that do both simultaneously.
Bag-of-words is maybe the most straight forward method. Each text is then repre-
sented through a bag of its words. This method disregards both grammar and word
order, but is, on the other hand, very simple to utilize. The possibly simplest form
of bag-of-words is to create features with word counts for each word. This could be
a decent approach for giving tags to documents [Yetisgen-Yildiz and Pratt, 2005].
More clever feature representations, like term frequencies and the tf-idf features
discussed in Appendix D.1, are also quite common.

These sort of methods does not require human interaction. Bag-of-words are
also very simple methods, enabling them to be trained on massive amounts of
data. Sometimes, simpler models can outperform more complex models due to their
ability to be fitted to larger datasets [Mikolov et al., 2013a].

4.1.1 Resent developments

Recent developments in text classification involve application of deep structured
learning, or deep learning algorithms. These are methods with multiple non-linear
layers that can potentially learn high level representations of data. Convolutional
neural networks, is one such algorithm. Though originally used on images (see
Appendix C.2), it has been successfully applied to text classification tasks like text
categorization [Johnson and Zhang, 2014], sentiment analysis and question classifi-
cation [Kim, 2014], and even sentiment analysis on tweets [dos Santos and Gatti,
2014, Severyn and Moschitti, 2015]. These papers are all based on representations
of words. However, Zhang et al. [2015] recently managed to match state of the art
text classifiers using characters as input to convolutional networks. This was done
through transforming characters to vectors, s.t. a sentence would look like an image.
This is a strong indication that language can be thought of as a signal no different
from any other kind.

Another interesting development is Google’s creation of word2vec word embed-

4.2 Handmade features from text 23

dings [Mikolov et al., 2013a,b]. These are algorithms that create mappings from
words to real valued vectors. Though word embedding is not a new field, the
high accuracy in word similarity tasks, and the lowered computational cost, make
word2vec quite powerful.

Word2vec is quite commonly mistaken for a deep learning algorithm, but it is
actually a quite shallow neural network architecture. The goal of Mikolov et al.
[2013a] was actually to show that high quality word vectors could be created
using very simple model architectures. By trading model complexity for lowered
computational complexity, the word2vec models could be fitted to datasets of several
orders of magnitude higher than previous methods.

Though word2vec has showed promising results in several NLP tasks, it is, for
the moment, not that commonly used in text classification. Nevertheless, Severyn
and Moschitti [2015] and Xue et al. [2014] shows high accuracy in sentiment analysis
from application of word2vec on tweets and Sina Weibo (Chinese twitter).

In this thesis some handmade features were investigated, but the main focus was
on methods similar to bag-or-words. More complex methods were not investigated,
partly because they are harder to fit to the problems, but also because, in many
text classification tasks, bag-of-words methods are still state of the art [Zhang et al.,
2015].

4.2 Handmade features from text

The first approach was inspired by the email spam dataset by Lichman [2013].
Some features we thought might be informative, were hand crafted. As this is an
investigation of what sort of features might contain gender information, retweets
were initially excluded from the data sets. Retweets can be informative, and they
are included at a later point, but it is simpler to start with just regular tweets. As
there is no information in the texts specific to the users, a dataset with multiple
tweets from the same accounts was used. The training and test sets contains 57 638
and 28 388 tweets respectively. Hashtags, users mentioned in the text, URLs, and
locations were removed from the text. The following 18 features were extracted
from the tweets:

• number of emojis

• number of emoticions

• number of words

• length of longest sequence of capital letters

• length of longest repetition of a letter

• length of longest repetition of a sign

• number of capital letters

24 4. Text analysis

• number of capital sequences

• number of double periods

• number of triple periods

• number of exclamation points

• number of extended letter sequences (three or more)

• number of extended sign sequences (2 or more)

• number of periods

• number of proper periods (at the end of a word followed by a space or end of
line)

• number of question marks

• number of quotations

• number of stop words relative to number of words

Stop words are loosely defined as the most common words in the language [Ra-
jaraman and Ullman, 2009]. Typically they include words like the, it, at, and is in
english. There is no single universal list of Norwegian stop words, but one suggested
list has been used 1. Emojis and emoticons are explained in Section 4.4.

In Figure 4.1, the female proportions of the different features are displayed.
The blue lines are histograms of instances in thousands. Clearly, it does not look
like there is much information here. Nevertheless, a classifier might be able to
extract information through combinations of the features. Therefore, a random
forests classifier and a logistic regression were fitted to the features. The results
are displayed in Table 4.1. Both perform more or less the same, though neither
does a particularly good job distinguishing between the genders. Also, the logistic
regression seems to have more balanced results.

(a) R.F. 500 trees.

precision recall f1-score prop.
f 0.47 0.48 0.48 0.34
m 0.72 0.72 0.72 0.66
total 0.64 0.63 0.64 28388

(b) Log. reg.

precision recall f1-score prop.
f 0.47 0.56 0.51 0.34
m 0.74 0.66 0.7 0.66
total 0.65 0.63 0.63 28388

Table 4.1: Classification results on hand made features from text.

As before, the classifiers’ estimated posterior probabilities were plotted. They can
be found in Figure 4.2. Clearly, neither is particularly good, though the random
forests classifier seems to be able to classify men to some extent. The histogram is

1Stopwords: https://github.com/Alir3z4/stop-words/blob/master/norwegian.txt

https://github.com/Alir3z4/stop-words/blob/master/norwegian.txt

4.2 Handmade features from text 25

Figure 4.1: Female proportions in handmade features from the text. The blue lines show
the number of instances in each bin (histograms) in thousands. The labels on the y-axes
are removed due to space considerations.

26 4. Text analysis

quite high (2 000) for a group containing 20% women. Regardless, these features
were not used any further in this project.

(a) R.F. 500 trees (b) Log. reg.

Figure 4.2: Estimated probabilities from classifiers on handmade text features. Same
classifiers as in Table 4.1.

4.3 Words in tweets

In this section, the actual words are used as features. If some words are predomi-
nantly used by one gender, words can be quite informative. Also, a good classifier
might be able to look at interactions between words. This can, however, be quite
difficult. Though random forests might be able to find some interactions, the feature
space will be quite large, possibly requiring massive amounts of training data.

As a start, some of the features were visualized through female proportions.
Stop words was removed, as according to Rajaraman and Ullman [2009] they are
often very little informative. Also, everything except words were removed, i.e.
emojis, emoticons, URLs, locations, users, and hashtags. Figure 4.3 shows the 40
words with the highest proportions of female and male users (20 each). Words
appearing less than 100 times in the training set were excluded. The blue line shows
a histogram of number of times the words appeared in the entire training set.
The figure indicates that words could indeed give informative features, maybe
particularly for males. As with the hashtags in Section 3.2, sports seems to be a
good indication of a male user. Female users, on the other hand, do not appear to
have any such characteristic trait.

The training set contains around 58 000 tweets, consisting of approximately 63 000
distinct words. Features were created using the tf-idf scheme and a logistic regression
was fitted to them. After some tuning, it was found that features consisting of 1 to
3 consecutive words gave the best results. This resulted in over 600 000 features.
Interestingly, using the L2 penalty gave better results than the L1, meaning feature

4.3 Words in tweets 27

Figure 4.3: Proportion of females using words. Only words appearing at least 100 times in
the training set are shown.

selection did not give good results. The coefficients were investigated and none of
them vanished in the best performing classifier (can happen for very sparse features
and L2 norm [Park and Hastie, 2007]).

The classification results are displayed in Table 4.2a, and it looks like this is the
best classifier so far. The classifier’s estimated probabilities are shown in Figure 4.4a.
Though the estimates for females are in general too high, they might still be useful
for combining classifiers.

(a) Log. reg. 1 to 3 words.

precision recall f1-score prop.
f 0.53 0.58 0.55 0.34
m 0.77 0.73 0.75 0.66
total 0.69 0.68 0.68 28388

(b) R.F. 500 trees. 1 word.

precision recall f1-score prop.
f 0.55 0.4 0.46 0.34
m 0.72 0.83 0.77 0.66
total 0.66 0.68 0.66 28388

Table 4.2: Tf-idf features on consecutive words in tweet. Retweets were removed from the
datasets.

When the feature space is almost as large as the training set, a non-linear classifier
is often too noisy. Methods have been proposed for applying random forests models
to high dimensional data, e.g. Do et al. [2010] and Xu et al. [2012], but this will not
be considered here. As the covariates are very sparse, logistic regression will have a
huge computational advantage over random forests. Regardless, a random forests

28 4. Text analysis

classifier was fitted to tf-idf features containing one word each. As Table 4.2b shows,
this classifier has similar accuracy and f1-score as the logistic regression. However,
it is not as balanced. The probability estimates in Figure 4.4b, shows that the
random forests classifier is in general too confident in its predictions, though, they
do not seem much worse than the estimates by the logistic regression.

(a) Log. reg. 1 to 3 words. (b) R.F. 1 word.

Figure 4.4: Estimated probabilities from classifiers fitted to tf-idf feature on words in tweets.
Retweets were removed. Same classifiers as in Table 4.2.

4.3.1 N-grams on text

In Section 3.2, n-grams seemed to give better features than using the whole hastags.
There, the intuition was that hastags often are made up of several words, and
n-grams were able to utilize this. When comparing the Norwegian language to
the English language, Norwegian words are very often comprised of several words.
For instance, all nouns should be written without splitting the words. Thus e.g.
”gass station” will be ”bensinstasjon” (gass = bensin, station = stasjon). With
this in mind, n-grams can extract the individual words, which could result in more
descriptive features. On the down side, the features used in Table 4.2a were made
of up to three consecutive words, and this structure is lost using n-grams.

For the words features above, the logistic regression performed very similarly
to the random forests classifier. As the random forests was very time-consuming,
only logistic regression was used for similar text analysis in this thesis.

Table 4.3 shows the results of a logistic regression fitted to 2 to 5 grams tf-idf
features. This resulted in roughly 360 000 features, a lot less than for the words.
The classification performance is more or less the same as for words, but the recall
is more balanced. The estimated posterior probabilities in Figure 4.5 also seem to
be more or less equally good. However, the blue histogram is a bit wider, giving
more confident probability estimates. So, as n-grams produce a smaller feature
space with possibly better probability estimates, it is considered the better choice
of features. However, the two classifiers could probably be used interchangeably.

4.3 Words in tweets 29

Table 4.3: Log. reg. on tf-idf 2 to 5 grams from words in tweets. Retweets were removed
from the dataset.

precision recall f1-score prop.
f 0.52 0.62 0.57 0.34
m 0.78 0.7 0.74 0.66
total 0.69 0.67 0.68 28388

Figure 4.5: Estimated probabilities from logistic regression on 2 to 5 grams tf-idf features
from words in tweets. Retweets were removed from the dataset. Same classifier as in
Table 4.3.

Another option is to combine the n-grams with the words features, into one large
matrix of covariates. This was briefly explored, and did not seem to affect the
results. Tables and figures are excluded from the report.

4.3.2 Retweets

This far, retweets has been removed from the datasets. While this is fine to simplify
the analysis, it is preferable to be able to make predictions on retweets as well. If
not, retweets will be considered as missing data, which makes the combination of
classifiers more difficult.

In the investigation of hashtags in Section 3.2, it was found that retweets did
not require any special handling, and could be treated as regular tweets. Inspired
by this, a classifier was made that did not differentiate between retweets and regular
tweets. Thus, the full dataset with almost 80 000 tweets in the training set was
used. A logistic regression with 2 to 5 grams tf-idf features was fitted to the tweets,
and the results are displayed in Table 4.4. We see that the test set includes around
10 000 more tweets now, and the performance is not worse than without retweets in
Table 4.3.

30 4. Text analysis

Table 4.4: 2 to 5 grams tf-idf log. reg. on text. Retweets are included.

precision recall f1-score prop.
f 0.57 0.63 0.6 0.37
m 0.77 0.73 0.75 0.63
total 0.7 0.69 0.7 38965

Figure 4.6: Probability estimates of log. reg. on 2 to 5 grams tf-idf features. Retweets were
included in the datasets.

Figure 4.6 shows the classifier’s probability estimates, and they actually seem
better than without retweets in Figure 4.5. A similar tendency was found with the
hashtags. Therefore, to further investigate the impact of retweets on the classifier,
the two plots in Figure 4.7 were created. They both show posterior probability
estimates from the logistic regression, but the test set was split in retweets and
regular tweets. Both have quite similar quality of their estimates, but the histogram
(blue line) is much wider for the retweets. This indicates that the classifier is more
certain in its predictions on retweets than regular tweets. When discussing hashtags,
two hypotheses were suggested to explain this. The first was that users are quite
likely to retweet someone of the same gender. This does, however, not explain
why the retweets are easier to predict. The other hypothesis was that very gender
specific tweets are more likely to be retweeted by someone of the same gender. This
is quite difficult to test, as there is no definition of what is considered gender specific.

4.3.3 Aggregtion of text

This far, all the text analysis has been done using one tweet from each account.
The information available is therefore quite limited. In Appendix E, it was shown
that by collecting all tweets posted by a user, the accuracy could be increased. This
was, however, not thoroughly analyzed.

4.4 Emojis and emoticons 31

(a) Only retweets. (b) No retweets.

Figure 4.7: Estimated probabilities from Figure 4.6. The two figures show exclusively
retweets and not retweets.

4.4 Emojis and emoticons

Emojis and emoticons are ideograms used as part of a text, often to express
emotions. Emojis are Unicode characters that represent images. A subset of the
emojis available on twitter are displayed in Figure 4.8. Emoticons, on the other
hand, are created from regular ASCII characters. Some examples are :) :p ;-) :3.
These are, however, often replaced by an image similar to the emojis when displayed.

Figure 4.8: Example of emojis available on Twitter.

In the training set of approximately 80 000 tweets, almost 12 000 contains emojis or
emoticons. Accordingly, classifiers based on emojis and emoticons will only be able
to make predictions on this subset of the tweets. Clearly, the overall performance is
not that interesting, and results will therefore only be reported on test sets where
all tweets contain emojis or emoticons.

As the removal of retweets has not been necessary this far, it is assumed to not
make an impact here either. Hence, the full data set is used.

32 4. Text analysis

Figure 4.9 shows the female proportions of emojis used at least 50 times in the
training set. If a tweet contains multiple instances of the same emoji, they are
all counted. The labels on the x-axis only displays the emojis supported by our
version of python’s matplotlib library (v1.4.3) [Hunter, 2007]. We found this more
interesting than showing the Unicodes. From the figure it looks like it might be
possible to classify some users as female based on the emojis alone. There are,
however, seemingly no emojis that are almost exclusively used by males.

Figure 4.9: Female proportions of emojis.

Figure 4.10 shows the female proportions of emoticons used at least 20 times
in the training set. Clearly a larger variety of emojis are more commonly used.
Interestingly, conversely to emojis, emoticons seems to give better features for males
than females. It does, nevertheless, look like the emoticons are not particularly
informative.

Tf-idf features from emojis and emoticons were created and a logistic regression was
fitted to them. Tuning resulted in features consisting of 1 to 2 emojis/emoticons.
The training set contained both tweets with and without emojis/emoticons, but
only tweets with emojis/emoticons were included in the test set. The classification
results are displayed in Table 4.5. The performance is in general not very good, and
the classifier clearly prefers to predict females over males. This is probably because
more women use emojis. There are approximately 40% females in the training set,
but the classifier reweights to get equal prior probabilities. So to the classifier, it
then probably seems like almost all emojis comes from females. In addition, it is a
lot easier to predict females from emojis.

The same experiment was repeated, but with the classifier trained only on tweets
with emojis or emoticons. As the results in Table 4.6a show, both accuracy and
f1-score increase. In addition, the recall is a lot more balanced between genders.
Interestingly, features consisting of 1 to 3 emojis/emoticons gave the best score.

Considering that less than 6 000 out of the 39 000 tweets in the test set contains

4.4 Emojis and emoticons 33

Figure 4.10: Female proportions of emoticons.

Table 4.5: Log. reg. fitted to tf-idf emojis/emoticons. Trained on full set, tested on subset
containing emojis/emoticons. 1 to 2 emojis/emoticons were used.

precision recall f1-score prop.
f 0.59 0.89 0.71 0.55
m 0.65 0.24 0.35 0.45
total 0.62 0.6 0.55 5661

emojis or emoticons, and only an accuracy of 0.65 was obtained, the results are not
particularly good. Hence, a random forests classifier was fitted to the data, but
only 1 emoji/emoticon was used per tf-idf feature. Table 4.6b shows that there is
no increase in performance.

(a) Log. reg. 1 to 3 emojis/emoticons per
feature.

precision recall f1-score prop.
f 0.71 0.63 0.66 0.55
m 0.6 0.68 0.64 0.45
total 0.66 0.65 0.65 5661

(b) R.F. 500 trees. Only 1 emoji/emoticon
per feature.

precision recall f1-score prop.
f 0.69 0.64 0.66 0.55
m 0.59 0.64 0.62 0.45
total 0.64 0.64 0.64 5661

Table 4.6: Classifiers fitted to tf-idf features from emojis/emoticons. Both training and
test set only contains tweets with emojis/emoticons.

The posterior probability estimates were created, and are displayed in Figure 4.11.
The logistic regression seems to give quite accurate estimates, but the random
forests classifier does not.

In conclusion, emojis and emoticons are not considered very good features for
separating genders, partly because decent predictions can only be made on a small
subset of the tweets. There might, however, be some benefit from combining these

34 4. Text analysis

classifiers with others. When combining classifiers, it is beneficial that the classifiers
can make predictions on all the tweets. If not, methods for handling missing data
needs to be considered. These methods can, however, be simple, like assigning the
prior probabilities to tweets not containing emojis or emoticion.

(a) Log. reg. (b) R. F.

Figure 4.11: Posterior probability estimates from classifiers in Table 4.6, on emojis and
emoticons. Tweets not containing emojis or emoticons were excluded from the training
and test set.

4.5 User description

Each tweet obtained through Twitter’s APIs contains some user information. One
of the fields is the user description where the owner of the account can write a short
text about him- or herself. This is of course completely voluntary, and around 70%
of users in the datasets have written a description. Hopefully, when someone writes
about them selves, they will include some clues to their gender. This can for instance
be that a user describes herself as ”tobarnsmor” (mother of two), or some more sub-
tle hints, like a profession or interest that is more common among one of the genders.

During this investigation of user descriptions, a subset of the tweets with unique
users was used (same as in Section 3.1). This was divided into roughly 24 000
training samples and 12 000 test samples. The task at hand is very similar to
working with the actual text in a tweet. Hence, it was assumed that decisions in
this section could partly be based on relevant results from Section 4.3.

Tf-idf features of 2 to 5 grams were created from the descriptions. The text was
made lower case and stop words were removed. Emojis, emoticons, hashtags, etc.
were not removed. Previously, these have been analyzed separately, but that was
partly to get more interpretable results.

A logistic regression was fitted to the features. The results for a test set only
including users with descriptions are shown in Table 4.7a. Clearly, there is quite a
lot of information in the descriptions. The test scores are approximately equal to

4.5 User description 35

the test scores for n-grams on the tweets, though, here only on a subset.

(a) All features.

precision recall f1-score prop.
f 0.62 0.64 0.63 0.4
m 0.75 0.73 0.74 0.6
total 0.7 0.7 0.7 8791

(b) Only alphanumeric features, without
URLs, hashtags, etc.

precision recall f1-score prop.
f 0.61 0.64 0.62 0.4
m 0.75 0.71 0.73 0.6
total 0.69 0.69 0.69 8791

Table 4.7: Logistic regression of tf-idf 2 to 5 grams features from user descriptions. The
test set only includes users with descriptions.

A different set of features were created in a similar matter, where URLs, hashtags,
emojis, emoticons, users, locations, stopwords and anything else not alphanumeric
was removed. The results of a logistic regression are displayed in Table 4.7b. Clearly,
this classifier’s performance is almost identical to the previous, and by removing all
this data only 280 000 features were created, instead of the original 480 000.

The probability estimates of both models are displayed in Figure 4.12. They
are both quite good, and it is hard to determine which one is better. Both feature
spaces are very sparse, and the time of computations seemed to be more or less
identical. When two classifiers have equal performance, it is quite common to choose
the most parsimonious model.

(a) All features. (b) Not URLs, hashtags, etc.

Figure 4.12: Estimated posterior probabilities from description classifiers in Table 4.7.
Tf-idf 2 to 5 grams. The test set contains all users, with and wihtout descriptions.

As there clearly is a lot of gender information in the description, a plot of female
proportions of words is probably not particularly necessary. Regardless, a plot of
the largest coefficients (absolute value) in the logistic regression in Table 4.7a was
created. The largest model was chosen here to see if some of the covariates were
not included in the smaller model. From the explanation of logistic regression in
Appendix A, it is clear that the coefficients are proportional to the log odds. That

36 4. Text analysis

means that a high coefficient indicates the feature is strongly associated with one
class, while a very negative coefficient is associated with the other class. Note,
however, that the size of coefficients is not necessarily a good measure of feature
importance. A large coefficient can be associated with few data points, though
penalizing the size of the coefficients to some extent restricts this.

Figure 4.13: Largest and smallest coefficients from logistic regression on tf-idf 3 to 5 grams
from description. Same classifier as in Table 4.7a.

The 30 largest and smallest coefficients are shown in Figure 4.13, where positive
values are associated with males and negative with females. As was mentioned in
the beginning of this section, we hoped that users would describe them selves using
words related to gender. On the female side, we see words (and part of words) that
means mother and girl, and on the male side we see the Norwegian words for man
and father. In addition, there are some sports words like fc and fk (football club)
on the male side.

Interestingly, there are some hearts (emojis) among the negative coefficients.
Thus, the larger model includes some additional, very descriptive features. These
features are probably associated with very few user descriptions, and are therefore
not that important.

A random forests classifier was also fitted to the features, but the performance was,
as expected, worse than the logistic regressions. Figures and tables are not included.

Chapter 5

Friends

In the introduction it was mentioned that an account on Twitter can follow other
users. Following means that the owner gets updates from the users he or she is
interested in. Twitter calls the accounts one follows friends. The friends data is
not part of the dataset used this far, but was obtained through Twitter’s REST
APIs 1. That gave the friends in the form of a lists of user IDs. There are some
restrictions on the frequency of the requests (15 requests per 15 minuets), and the
data is not collected for a very long period. Hence, the data is not as large as the
previous dataset. It only consists of 9 000 accounts, divided into a training and test
set of 6 000 and 3 000 accounts respectively.

Features were created from the friend IDs using tf-idf, and a logistic regression
was fitted to them. Table 5.1 shows the classification results. Clearly, the friends
features are very informative. The results are not quite balanced, but both precision
and recall are very high compared to previous results.

Table 5.1: Logistic regression on tf-idf features from friends.

precision recall f1-score prop.
f 0.83 0.79 0.81 0.41
m 0.86 0.89 0.88 0.59
total 0.85 0.85 0.85 3152

The posterior probability estimates were plotted in Figure 5.1a. Though, these
are not the most accurate estimates so far, they are still quite good. Also, note
how many of the estimated probabilities are either very high or very low. This
is necessary if the classifier should both be able to give high accuracy and good
probability estimates.

The tf-idf approach resulted in a very high-dimensional features space. The 6 000
training samples had approximately 1.3 million unique friends collectively. As

1Twitter REST APIs: https://dev.twitter.com/rest/reference/get/friends/ids

https://dev.twitter.com/rest/reference/get/friends/ids

38 5. Friends

(a) Tf-idf. (b) Binary.

Figure 5.1: Estimated probabilities from logistic regression on features from friends data.

previously argued, a nonlinear classifier might be too complex in this case, and a
linear, like the logistic regression, is probably the better alternative. Regardless, a
random forests classifier was fitted to the same features. The results in Table 5.2
reinforce our claim.

The feature space is very sparse. As before, this gives the logistic regression a
huge computational advantage. While it completed almost instantly, the random
forests classifier took almost an hour to train.

Table 5.2: Random forests classifier on tf-idf features from friends.

precision recall f1-score prop.
f 0.85 0.66 0.74 0.41
m 0.8 0.92 0.85 0.59
total 0.82 0.81 0.81 3152

Next, binary features were used instead of tf-idf. The results can be found in
Table 5.3 and Figure 5.1b. The table is quite similar to Table 5.1, but the plots
displaying the estimated probabilities are somewhat different. The binary features
have more observations in the highest and lowest probability estimates. Also, the
quality of the probability estimates are not very different. This suggests that the
binary features might be the best approach. However, later when the probability
estimates were combined with the other classifiers, the tf-idf features seemed to
result in slightly higher performance.

Figure 5.2 shows some of the friends in the dataset. The blue line is a histogram,
giving number of users in the training set that is following the account. Only the
largest and smallest proportion of females are displayed, and features with less
than 200 instances were excluded. The names corresponding to the user IDs were

39

Table 5.3: Logistic regression on binary features from friends.

precision recall f1-score prop.
f 0.81 0.79 0.8 0.41
m 0.86 0.87 0.86 0.59
total 0.84 0.84 0.84 3152

retrieved through the python package python-twitter 2. The figure gives a good
indication of why the classifiers perform so well.

Figure 5.2: Female proportions in friend features. Only the friends with the highest and
lowest proportions of females are displayed. Features with less than 200 instances in the
training set were excluded from the figure.

Figure 5.3 shows the largest coefficients (absolute value) from the logistic
regression on the binary features. Positive values indicate male, while negative
values indicate female. Comparing the two figures, there are not a lot of the same
friends displayed. The figures are not really expected to be that similar. An account
that is proportionally followed by more female users, but has more followers in
absolute numbers, can result in a higher reduction in the residual error. Thus
resulting in a more negative coefficient. However, both figures show some of the
same trend discussed earlier, where males are interested in sports.

2python-twitter: https://github.com/bear/python-twitter

https://github.com/bear/python-twitter

40 5. Friends

Figure 5.3: Largest coefficients (absolute value) from the logistic regression on friends with
binary features. Table 5.3. Positive coefficients indicate male users, while negative indicate
female.

Chapter 6

Profile images

In this chapter, the profile images of the twitter accounts are investigated. A random
subset of the images is displayed in Figure 6.1. The letter above each image gives
the gender of of the account. As some users have pictures that are not of themselves,
but of other people or non-human objects, the expectations of the classifiers are
limited. Just based on the pictures below, accuracy of 90% seems to be a rough
estimate of the upper limit. For a large dataset, a classifier might be able to make
decent predictions on some non-human objects (e.g. a football might indicate a
male account). As the collected data was somewhat scarce, this was not expected
by the classifiers in this project.

Two approaches to image classification were investigated. The first was to ex-
tract faces from the images, so pixel values would become decent covariates, while
the second was to use a convolutional neural network as a feature extractor.

6.1 Image recognition

Computer vision is a field that includes methods for acquiring, processing and
analyzing images. In some sense, the objective is to enable machines to duplicate
the human vision. Computer vision is not only used for classification. It is also
concerned with tasks like image restoration, scene reconstruction (compute 3D
model of a scene), image compression, and motion analysis.

An image is commonly made of pixels. Each pixel usually consists of three
numbers, one each for red, green, and blue. Thus, an image of n by m pixels is
represented by a n by m by 3 array. For high-resolution images, the array can grow
quite large.

For an unprocessed image, the amount of information provided by one pixel
alone is minimal. Consider an image where all the pixels were presented one at
a time. A human would probably have a hard time extracting much information
from this representation. This is because humans do not get information from the
individual pixels, but rather from combinations of neighboring pixels. The same

42 6. Profile images

Figure 6.1: A subset of the profile images in the training set. The character above an
image gives the gender of the account.

6.1 Image recognition 43

way, a classifier will have a hard time making predictions with pixels as features.
Even a non-linear classifier like random forests, will not be able to combine pixels
into meaningful areas. This is because random forests finds combinations between
specific features, and not general rules for combinations of neighboring features.
Hence, raw pixels are, in general, not considered good features for a classifier. Dif-
ferent approaches have be suggested to overcome this problem. The most straight
forward might be to preprocess similar images. Take for instance the popular
MNIST dataset 1 of handwritten digits. The digits have been size-normalized and
centered in a fixed-size image. This preprocessing is done so well that the pixels
start to give meaning by them selves. Lecun et al. [1998] showed that something as
simple as k-nearest neighbors with euclidean distances was able to get 95% accuracy,
and a linear classifier (1-layer neural net) 91.6%.

While preprocessing might work very well for digits, it is harder to apply to
more complex images. Especially if the preprocessing should not have any human
involvement. Therefore, as an alternative, different algorithms for extracting mean-
ingful features from the pixels have been suggested. This framework is often divided
into two parts: detectors and descriptors.

Detectors are algorithms for detecting interest points in images. Typically, the
algorithms looks for:

edges: e.g. Canny [Canny, 1986] and Sobel operator [Sobel and Feldman,
1968].

corners: e.g. FAST [Rosten and Drummond, 2006] and Harris [Harris and
Stephens, 1988].

blobs: e.g. LoG [Marr and Hildreth, 1980] and DoG [Bundy and Wallen,
1984].

ridges: e.g. [Haralick, 1983] and M-reps [Pizer et al., 2001].

Descriptors, on the other hand, are used to describe the patches around the interest
points. These can again be used as features to a classifier. HOG by Dalal and
Triggs [2005] and GLOH by Mikolajczyk and Schmid [2005] are two examples of
some well-known descriptors.

Some algorithms include both the detection and description. SIFT by Lowe
[1999], SURF by Bay et al. [2008] and BRISK by Leutenegger et al. [2011] is in this
category. It is somewhat common that these and the other descriptors are patented.

The method of detector/descriptor pairs has been quite commonly used the last
20 to 30 years. However, recent deep learning algorithms, particularly convolu-
tional neural networks, has been able to outperform these methods in several areas.
Maybe most notably in the 2014 ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC [Russakovsky et al., 2015]), where the top two submissions were
convolutional nets [Szegedy et al., 2014, Simonyan and Zisserman, 2014]. However,
some of the older algorithms might have a computational advantage over the deep

1MNIST: http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

44 6. Profile images

architectures, possibly making them more suitable to some tasks like real time
applications.

6.2 Retrieving images

As previously mentioned, profile images were not found for all users, limiting the
size of the dataset. One possible explanation for missing images might be that some
users have changed their profile image after the tweets were gathered.

The images were retrieved through URLs in the user information of the collected
tweets. By altering these URLs, it is possible to get larger and smaller images 2. If
an image is retrieved in its original form, it can come in a variety of sizes, some of
them very large. For simplicity, the largest fixed sized images were retrieved, giving
a dataset of [73 x 73 x 3] sized images. This is a quite low resolution, and comes
at the cost of some information loss. While the low resolution might inhibit the
classifier, investigating the images in Figure 6.1, the resolution seems to be fine in
most cases.

The images were split into a training and test set of approximately 12 000 and
6 000 images respectively.

6.3 Eigenfaces

It was mentioned that working with raw pixel values is rarely a good approach for
image classification. It requires that the images are very well preprocessed, such
that the pixels can be compared. Also, the number of covariates will be quite high,
and a lot of the pixels will have the same importance. Therefore, better approaches
often involves extracting features from the pixels through some transform. Principal
component analysis (PCA) is a quite common, straight forward method used for
extracting informative features. It involves finding a set of vectors in the feature
space, where a lot of the variation can be explained. Then, the features can be
projected orthogonally onto theses vectors, reducing the dimensionality of the
feature space. Hopefully, the information loss through the projection is minimal.
PCA is therefore known as a information compression method.

More rigorously, PCA finds an orthogonal basis of p vectors, in which the
pixels covariance matrix is diagonal. This can be done through an eigenvalue
decomposition of the covariance matrix, where the (normalized) eigenvectors are the
principal components (new feature directions), and the eigenvalues give the amount
of the variance explained in each direction. The new features are the projection
coefficients (the projection is a linear combination of the eigenvectors), when the
original features are projected onto a subset of the eigenvectors. As the eigenvalues
gives the variance explained, the total variance explained can be controlled through
the selection of eigenvectors.

2Twitter profile images:
https://dev.twitter.com/overview/general/user-profile-images-and-banners

https://dev.twitter.com/overview/general/user-profile-images-and-banners

6.3 Eigenfaces 45

This methods is unsupervised and does not necessarily give good results, but it
can potentially improve both accuracy of the classifier and time of computations.
The number of principal components used is also a parameter that needs to be tuned.
This could be done by not restricting the number of principal components, but
let the classifier do the feature selection. However, it is a lot less computationally
expensive to only create a limited amount of principal components. For more
information on PCA, see e.g. Hastie et al. [2009].

For PCA to give better features than just pixel values, it is required that a large
part of the information can be compressed into a few principal components. With
unstructured images, this is often not the case. So, just to get a base line, a logistic
regression was fitted to the 20 first principal components of the images (in gray
scale). As PCA is sensitive to scaling, the pixel values were standardized.

The results can be found in Table 6.1, and they are clearly not particularly good.
The estimated probabilities in Figure 6.2 are also quite uninformative. This makes
sense as there is very little collective structure in the images. Some are of faces
others are of bodies, multiple people, or something completely different.

Table 6.1: Logistic regression on PCA features from images.

precision recall f1-score prop.
f 0.41 0.56 0.47 0.34
m 0.72 0.58 0.64 0.66
total 0.61 0.57 0.59 6239

Figure 6.2: Estimated posterior probabilities from logistic regression on PCA features from
images. Same classifier as in Table 6.1.

If faces could be extracted from the images, rotated so the eyes were horizontal,
and the extracted face images were size-normalized, then the pixels would be easier

46 6. Profile images

to compare. However, face detection is probably not much easier than classifying
gender. Also, the images are labeled according to gender, but there are no face
labels, so these would have to be hand labeled. In conclusion, there is little point
in spending time on this.

There are, however, some face detectors available through different computer
vision libraries. openCV [Bradski, 2000] is one such library, providing easy implemen-
tation of face detection. The library does object detection using Haar feature-based
cascade classifiers, as proposed by Viola and Jones [2001]. Haar features are just like
the convolution filters described in Appendix C.2.1, and through the introduction of
the integral image, these can be calculated extremely efficiently. An adaboost based
learning algorithm [Freund and Schapire, 1997] is used to select a small number
of critical visual features, and thus create a computationally efficient classifier.
Finally, increasingly more complex classifier are applied in a cascade, which allows
for background regions of images to be quickly discarded.

The algorithm focus primarily on computational efficiency, but Viola and Jones
[2001] also report very promising accuracies. openCV provides a trained version of
the classifier, but it still have some tuning parameters that need to be set. These
primarily concern scaling iterations of the images, and tuning of the accepted false
positive rate.

The cascade classifier was tuned and applied to the images in the datasets. If
several faces were detected in one image, only the first was used. As the classifier
was not able to find faces in all the images, subsets with detected faces were created
for the training and test set. The extracted faces were scaled so they were all the
same number of pixels [50 x 50]. Features were extracted using PCA and a logistic
regression was fitted to the 100 first principal components.

The results in Table 6.2 shows a large increase in performance compared to the
images in Table 6.1. However, the classifier was not even able to make predictions on
half the test set, making the overall performance less impressive. Nevertheless, the
performance on the subset is quite good, and can possibly be valuable if combined
with results from other classifiers.

Figure 6.3 shows the estimated posterior probabilities. Though, in general, the
estimates for females are too high, they might be useful.

Table 6.2: Logistic regression on PCA features from extracted faces.

precision recall f1-score prop.
f 0.63 0.78 0.7 0.33
m 0.88 0.77 0.82 0.67
total 0.8 0.77 0.78 2686

The eigenvectors obtained by application of PCA to images of faces are often
referred to as eigenfaces. The 25 first eigenfaces from the experiment above are
displayed in Figure 6.4. Clearly, the vectors resembles faces, or facial structures.
The different eigenfaces represent sunglasses, tilting of the head, eyebrows, etc. The

6.3 Eigenfaces 47

Figure 6.3: Estimates of the posterior probabilities for a logistic regression on PCA features
from extracted faces. The same classifier as in Table 6.2.

projection of an image (of a face) onto the space of these eigenvectors, is then the
best linear reconstruction (linear combination of the eigenfaces) of the image, under
squared error loss. The coefficients of the linear combination, are the features used
in the classifier. So if for instance men has thicker eyebrows, that might result in
a higher coefficient for that eigenface. Thus, egenfaces can possibly provide much
more informative and interpretable features than the pixels. However, though the
egenfaces have a lot of potential, the method is not considered very good for image
classification. This is partly due to the required preprocessing (extraction of faces).

Figure 6.5 and 6.6 show some of the males that were misclassified as female. The
first figure shows the extracted faces while the other shows the full pictures. From
the images in Figure 6.5 is it clear that some of the faces are tilted. While tilting of
the head could be informative, it makes it harder to compare pixel values across
images. If the images could be rotated, that might increase the performance of
the classifier. One way to do this, is through eye detection. If the eyes are found,
then the image can be rotated such that the line formed by the eyes is horizontal.
openCV includes a cascade eye detector, but it was not able to find eyes in the
dataset. This was probably caused by the low resolution of the images, as it seemed
to work fine on some test images with higher resolutions. It might be possible to
get higher resolution images from some of the users, but this was not pursued in
preference of the convolutional neural networks in the next section.

Also, a as there are not that many features, a random forests classifier was fitted
to the same features as the logistic regression in Table 6.2. Both the classification
scores and the quality of the probability estimates were not as good as for the
logistic regression. Tables and figures are not included.

48 6. Profile images

Figure 6.4: First 25 eigenfaces used by logistic regression in Table 6.2.

Figure 6.5: Subset of males classified as females by logistic regression in Table 6.2. These
are the faces that were later passed through the PCA. The faces were extracted from images
in Figure 6.6.

6.4 Convolutional neural networks 49

Figure 6.6: Subset of males classified as females by logistic regression in Table 6.2. These
are the full images, with extracted faces in Figure 6.5.

6.4 Convolutional neural networks

Convolutional neural networks (CNNs or ConvNets) are neural networks comprised
of several different layers. The layers are typically convolutions, pooling, or fully
connected. By combining the layers in a deep architecture, a ConvNet can potentially
learn quite high level features. Though ConvNets are considered supervised methods,
they were applied in an unsupervised matter in this thesis. A trained net was
obtained, and used as a fixed features extractor. This application of ConvNets is
considered a branch of transfer learning. More on transfer learning can be found in
Appendix C.2.6.

The ConvNet used in this thesis was a version of GoogLeNet [Szegedy et al.,
2014], trained by Sergio Guadarrama 3. As discussed in Appendix C.2.5, there are
other candidates that are possibly better suited for transfer learning tasks, but
Guadarrama’s trained GoogLeNet was one of the best we found with an unrestricted
license.

For an explanation of convolutional neural networks see Appendix C.2.

Deep learning algorithms have become increasingly popular over the last cou-
ple of years. This has resulted in numerous tools for implementations of the different
algorithms. Three of the most well known are Theano by Bergstra et al. [2010],
Bastien et al. [2012], Torch7 by Collobert et al. [2011], and Caffe by Jia et al. [2014].

3GoogLeNet Caffe: https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

50 6. Profile images

In this thesis, Caffe’s python interface was used.
Caffe is a deep learning framework developed by Jia et al. [2014] as UC Berkeley.

It provides a matlab and python interface for ease of implementation. One of Caffe’s
strengths is that it hosts a Model Zoo4. There users can make their trained models
publicly available. As deep learning architectures can be quite computationally ex-
pensive to train, the Model Zoo can be very useful for initialization of networks and
transfer learning tasks. The model Zoo includes other versions of the GoogLeNet
ConvNet, but all with restricted licenses.

When a trained ConvNet is used as a fixed features extractor, it is important
to consider which layer to extract from. If the new data (what we want to classify)
is similar to the data the net was trained on, higher level features might be the best
choice. On the other hand, if the two datasets have little in common, lower levels
features will probably work better. GoogLeNet has 121 different layers. The net
was trained on 1000 classes 5 mostly ”everyday objects” like animals, clothing and
personal objects. It is therefore assumed that higher level features would be the
most informative. Features were extracted from inception_5b/output, as it is the
highest layer with more nodes than classes. It provides 55 176 features, but they
are quite sparse. Ideally, other layers should also have been tried.

The extracted features were used to train a logistic regression classifier. As the
logistic regression is able to take computational advantage of a sparse structure,
the features were only scaled, and not centered. The training and test set were
comprised of the same images as in Section 6.2.

The classification results can be found in Table 6.3. Both accuracy and f1-score
are very good, though not quite as good as for the friends data. The estimated
probabilities in Figure 6.7 are also not too bad. They do not fit the line very well,
but they are probably good enough to boost the results of the friends classifier.

Table 6.3: Logistic regression on output from inception 5b/output in GoogLeNet.

precision recall f1-score prop.
f 0.71 0.73 0.72 0.34
m 0.86 0.85 0.85 0.66
total 0.81 0.81 0.81 6239

While accuracy of 0.81 is quite good, it was mentioned that a human should be
able to get around 0.90. So to see how well the classifier compared to the human
eye, some of the misclassified images were displayed in Figure 6.8 and 6.9. The
first figure shows males classified as females, and a couple of images are actually of
females. The majority of the images in this figure were quite understandably hard
for the classifier to get right, but there are some male, bearded faces that should
be quite easy. The second figure shows females classified as males, and also here it
is, for the most part, understandable that the classifier had a hard time. Though
there are some images that are clearly female.

4Caffe Model Zoo: http://caffe.berkeleyvision.org/model_zoo.html
5ILSVRC2014 classes: http://image-net.org/challenges/LSVRC/2014/browse-synsets

http://caffe.berkeleyvision.org/model_zoo.html
http://image-net.org/challenges/LSVRC/2014/browse-synsets

6.4 Convolutional neural networks 51

Figure 6.7: Estimated probabilities from logistic classifier on inception 5b/output layer in
GoogLeNet.

Figure 6.8: Subset of males misclassified as females from Table 6.3.

52 6. Profile images

Figure 6.9: Subset of females misclassified as males from Table 6.3.

We therefore conclude that the classifier does a good job, but it should be
possible to get a bit higher accuracy. This could possibly be achieved by training
the ConvNet on the profile images, or another dataset of gender labeled images.

Caffe can utilize a GPU if available, which can result in a very large speedup
compared to a CPU. In this thesis, only the CPU implementations were used. The
forward pass through the network was very slow, potentially restricting the areas
this method can be applied.

Chapter 7

Combining classifiers

In this chapter, some of the previous classifiers, now referred to as base classifiers,
will be combined in an attempt to boost their performance. The end results are
highly dependent on the correlation between the classifiers. In some ways, we would
want the classifiers to be highly correlated in the way that uncertain users in one
classifier would be very certain in another. E.g, a male that does not write anything
gender specific, have very gender specific friends. This is, however, probably not
that likely. It is probably more likely that a very masculine profile will have both
masculine friends and tweet more commonly about masculine subjects. Still, some
of the users might provide some useful information through the combinations.

It was previously mentioned that there are some limitations on the size of our
datasets. Particularly, the friends data is quite small. Some images are also missing,
making the intersection between friends and images even smaller. When combining
classifiers, some methods require a second training set. So while there might be
enough data to test the performance of a single classifier, the combined classifier
can suffer due to the limited size. It is possible to retrieve more friends data, and it
is probably possible to get more images as well. Therefore, when combining the
classifiers under these limitations, we are, in some way, moving away from real
world application of the problem. However, from an academic point of view, the
combination with limited data is very interesting. Also it gives an estimate of what
can be expected with more data.

7.1 Methods for combining classifiers

When data from different sources is available, it might be better to combine
separate classifiers, as opposed to training one large classifier on all features. This is
particularly beneficial when the features are very different (e.g. images and words).
Specialized classifiers can be fit to the different features and later combined in a
smart way.

There are many ways of combining classifiers suggested in the literature. Kuncheva

54 7. Combining classifiers

et al. [2001] gives an overview over some of the methods. Xu et al. [1992] divide the
problem of combining classifiers into three categories: combining unordered class
labels from the classifiers, combining ranked class labels in order of likelihood, and
combining real valued outputs from the classifiers (e.g. posterior probabilities).

Possibly, the most intuitive combining rule is through a majority vote. This is
a methods that has been shown to give good results, e.g. in the bagging classifier
[Breiman, 1996a] and the random forests classifier [Breiman, 2001]. However,
according to Hastie et al. [2009], averaging of posterior probability estimates often
produce classifiers with lower variance.

In this project the focus was on combinations through the posterior probability
estimates. This was done in the form of some fixed combination rules, and through
a separate classifiers.

7.1.1 Fixed combination rules

Each user in our datasets can be represented through a set of feature vectors
x1, . . . ,xR. Here, xk represents a set of features used by a classifier, e.g. x1 is an
image and x2 a list of friends. The objective is to combine the classifiers to estimate
the posterior probabilities P (j | x1, . . . ,xR), where j denotes the class.

Assume the different classifiers give class probabilities as output. These estimates
can then be considered an approximation of the true posterior probabilities,

fkj (xk) = P (j | xk) + εkj (xk). (7.1)

Here fkj (xk) is the estimate of the posterior probability for class j by classifier k on

xk, P (j | xk) is the true posterior probability, and εkj (xk) is the error made by the
classifier.

Let us consider two extreme scenarios: that the features x1, . . . ,xR are all
equal, and that the features are class conditionally independent. For the first case,
the different classifiers are fitted to the same data. Thus, the combined posterior
probabilities reduce to,

P (j | x1, . . . ,xR) = P (j | xk), ∀k ∈ {1, . . . , R}. (7.2)

If we assume that the estimated probabilities in (7.1) are unbiased, i.e. εkj (xk)
has expected value of zero, then the error can be reduced through averaging the
estimates. This gives the average combination rule,

fj(x
1, . . . ,xR) =

1

R

R∑
k=1

fkj (xk). (7.3)

In the second case the features are class conditionally independent, i.e.

7.1 Methods for combining classifiers 55

P (x1, . . . ,xR | j) = P (x1 | j) · . . . · P (xR | j). This gives,

P (j | x1, . . . ,xR) =
P (x1, . . . ,xR | j)P (j)∑
j′ P (x1, . . . ,xR | j′)P (j′)

=

1
P (j)R−1

∏R
k P (j | xk)∑

j′
1

P (j′)R−1

∏R
k P (j′ | xk)

. (7.4)

Here P (j) is the prior probability for class j, and can be estimated as the proportion
of males and females in the training set. Let π̂j denote this estimate. The estimated
posterior probabilities can then be calculated through the product combination rule
(or multiplication rule),

fj(x
1, . . . ,xR) =

1
π̂R−1
j

∏R
k f

k
j (xk)∑

j′
1

π̂R−1

j′

∏R
k f

k
j′(x

k)
. (7.5)

The two methods presented show how independent and very highly correlated
classifiers can be combined. In many cases, however, the features are somewhere in
between, and it is not certain which methods is best. As the methods are simple to
apply to the problem, it is common to just test both.

Tax et al. [2000] show that for two classes, under some reasonable conditions
and equal class probabilities, the product combination rule is just a rescaled version
of the average combination rule. Thus, in many cases their performance can be
quite similar.

Other similar rules for combining probabilities include the minimum rule, maximum
rule, and median rule, see Kittler et al. [1998]. Of these, only the maximum rule
was applied in this thesis. Simply stated, the max rule follows the decision of the
classifier that is the most certain (highest probability estimate for a data point). If
the estimates are good, then this method makes a lot of sense. It is analogous to
trusting someone claiming to be an expert.

Kittler et al. [1998] also show that combining classifiers through summation
of the posterior probabilities is less sensitive to estimation errors than the other
schemes. Thus giving a more robust combination rule.

7.1.2 Combination through a classifier

The rule-based methods above are very dependent on good probability estimates,
and are therefore vulnerable to errors in the base classifiers. According to Duin
[2002], rule-based combination methods are almost always suboptimal. Data-driven
approaches, on the other hand, use data to compensate for errors in the base
classifiers. Typically, a new classifier is given the outputs from the base classifiers,
and is then trained, assigning weights to the different inputs.

56 7. Combining classifiers

Another benefit is that the inputs to the combination classifier do not need to
be of the same scale. A base classifier that does not provide posterior probabilities
can still be used as input. For rule-based methods, a probability mapping has to be
created instead.

When a classifier is trained on the output of other classifiers, some considera-
tions about the training set need to be addressed. Duin [2002] discuss two different
scenarios. The first is to train the base classifiers on a training set, and then
train the combination classifier on a different set. This is the preferred method, as
possible overfitting in the base classifier will, to some extent, be corrected for in the
combination classifier. On the down side, this requires two training sets. If there is
limited data, the sets might be too small for any real benefit of the combination.

The second scenario is to train the combination classifier on the same set as the
base classifiers. While this does not require a larger dataset, it can easily result in an
overly confident classifier. Overfitting in the base classifiers will not be corrected for,
but can rather be reinforced. Duin [2002] recommend training weak base classifiers
to alleviate this problem.

For more rigorous investigation on the topic of training a classifier on the out-
put from other classifiers, see e.g. Wolpert [1992].

7.2 Missing data

As mentioned in the introduction of this chapter, there are some problems with
missing data. Some pictures are missing (missing around 15%), and the friends data
might not be large enough. This is handled in a couple of ways. As only images are
considered missing, they can be handled through the construction of two classifiers,
one with images and one without.

Another problem is that some base classifiers require larger training sets than
others. Text classifiers, for instance, need more training data than the friends
classifier. That was handled by adding additional tweets to the training sets used
by the text classifiers. The tweets were added in a way that no user would end up
in both training and test sets. However, the proportion of female users might not
be the same as the proportion of female posts, changing the prior probabilities of
the classifiers. As previously explained, the classifiers reweigh the data, alleviating
this problem. Nevertheless, data-driven approaches have additional opportunity
to correct for this bias, possibly making them more suited than the rule-based
approaches.

7.3 Combining without images

First, the images were excluded altogether. Most of the classifiers discussed were
included in the combination classifiers. This include logistic regressions on,

• tf-idf features from friend IDs

7.3 Combining without images 57

• 2 to 5 grams tf-idf features from tweets (text)

• 2 to 5 grams tf-idf features from text in descriptions

• 1 to 3 grams tf-idf features from emojis and emoticons from texts

• 3 to 5 grams tf-idf features from hashtags

Here, the random forests classifier on the handmade information features in Sec-
tion 3.1 was not included. Originally, it was, but that resulted in worse results than
leaving it out. Also, both binaray and tf-idf friends features were tested, but tf-idf
seemed to give slightly better results.

As previously mentioned, the intersection between the datasets is quite limited.
All the classifiers, except for the friends classifier, require quite large training sets. As
stated in Section 7.2, the training sets for these classifiers were augmented with ad-
ditional tweets, thus getting the same individual performance as previously reported.

A couple of different approaches to the combination of classifiers has been dis-
cussed. Here, six of them were tested and compared. The output probabilities from
the base classifiers were combined in a rule based matted using averaging, multi-
plication and the maximum. A logistic regression and a random forests classifier
were fitted to the probability estimates and trained on the same set as the base
classifiers. And finally, the training set was split into two, and a logistic regression
was fitted to the second training set, while the base classifiers were fitted to the
first. All the results are displayed in Table 7.1. The reason why the test set of
the last logistic classifier is slightly larger than the rest, is a results of a different
partitioning scheme. This should, however, not affect the results in any way.

From the tables it looks like all methods perform more or less equally. The
thresholds and parameters for all the different methods were obtained through
tuning. None of the methods have higher accuracy or f1-score than the friends
classifiers, but the results are a bit more balanced.

The multiplication rule requires estimates of the prior probabilities. As all
classifiers are reweighed to be balanced, these were set to 0.5. By instead setting
the estimates to the class proportions, the same scores were obtained, but with
quite horrible posterior probability estimates (table and figure not included).

As there was limited data, the relative sizes of the two training sets used in
Table 7.1f needed to be tuned. It was found that approximately 6 000 of the users
should be used to train the base classifiers, and the remaining 300 to train the
combination classifier. This suggests that as long as the base classifiers give good
estimates, the combination classifier does not need much training.

To further investigate the results, the estimated probabilities for the classifiers
were plotted in Figure 7.1. It shows that the quality for the probability estimates
differ a lot more than the classification scores. Averaging clearly results in a lack
of confidence in the estimates, while random forests might do the opposite. The
multiplication rule, max rule, and the logistic regressions all have quite decent prob-
ability estimates. Interestingly, the histograms (blue lines) of the logistic regressions

58 7. Combining classifiers

(a) Log. reg with same training set as base
classifiers.

precision recall f1-score prop.
f 0.81 0.83 0.82 0.41
m 0.88 0.87 0.87 0.59
total 0.85 0.85 0.85 3152

(b) R.F. with 500 trees. Same training set
as base classifiers.

precision recall f1-score prop.
f 0.84 0.79 0.81 0.41
m 0.86 0.89 0.88 0.59
total 0.85 0.85 0.85 3152

(c) Multiplication rule.

precision recall f1-score prop.
f 0.82 0.79 0.8 0.41
m 0.86 0.88 0.87 0.59
total 0.84 0.84 0.84 3152

(d) Averaging rule.

precision recall f1-score prop.
f 0.82 0.78 0.8 0.41
m 0.86 0.88 0.87 0.59
total 0.84 0.84 0.84 3152

(e) Maximum rule.

precision recall f1-score prop.
f 0.81 0.8 0.8 0.41
m 0.86 0.87 0.87 0.59
total 0.84 0.84 0.84 3152

(f) Log. reg. with different training set.

precision recall f1-score prop.
f 0.79 0.83 0.81 0.41
m 0.88 0.85 0.86 0.59
total 0.84 0.84 0.84 3184

Table 7.1: Results from combining classifiers. The estimated probabilities from log. reg. on
friends, tweets, descriptions, emojis/emoticons, and hashtags were used as features.

are somewhat different. Training on the same training set as the base classifiers
gives more weight to the highest and lowest probabilities. As this classifier is quite
prone to overfitting, this is no surprise. However, the probability estimates do not
indicate that the classifier is overfitted.

If the probability estimates in Figure 7.1a are compared to those of a logistic
regression of just the friends data, see Figure 5.1, the bump in the histogram around
the center is flattened. This suggests that there is some benefit of combining the
friends data with the other data. However, no conclusions can be made.

Figure 7.2 shows the coefficients of the top left logistic regression in Table 7.1, i.e.
the logistic regression trained on same dataset as the base classifiers. In Appendix A,
it is explained how the logistic regression models log odds in a linear matter,

log
P (y = 2 | x)

P (y = 1 | x)
= β0 + xTβ. (7.6)

In the combination scheme, x is the posterior probability estimates from the base
classifiers. In Section 4.5 it was argued that the coefficients are not a good measure
of the features importance. However, as there are now only five features and they
are all on the same scale, the coefficients have some relation to importance. Their
interpretation is harder to understand though. This is particularly because the
features are all positive probabilities. If the features had been centered around zero,
they would have a much more intuitive relationship to the log odds.

Clearly, the logistic regression puts a lot of weight on the friends, which makes
sense. Also the description and text probabilities have decent sized coefficients.

7.3 Combining without images 59

(a) Logistic regression, same training set. (b) Random forests, same training set.

(c) Combining through multiplication. (d) Combining through averaging.

(e) Combining through max. (f) Logistic regression, new training set.

Figure 7.1: Estimated probabilities of the combination classifiers in Table 7.1.

60 7. Combining classifiers

Interestingly, both emojis/emoticons and hashtags gave negative coefficients. That
means they are both not contributing, but rather just add noise to the model. This
is probably because they only have decent predictions for a small subset of the
tweets. Take hashtags as an example. Approximately 95% of the tweets do not
contain hashtags, so one probability is assigned to 95% of the users in the datasets.

Figure 7.2: Coefficients from logistic regression combination classifier without extra train-
ingset.

All the experiments above were repeated without emojis/emoticons and hashtags,
and there was no apparent difference in the accuracy or the probability estimates
(figures not included).

Transformed features

The posterior probability estimates were transformed to log odds, and a logistic
regression was fitted to them. This was done through the transformation,

(log odds) = log
p

1− p
, (7.7)

where p denotes the estimated posterior probability. The motivation behind this is
that the logistic regression is linear in its log odds. So, by using the base classifiers’
log odds as features, the combined classifier is working in the same scale. If the
coefficients could be restricted to sum to 1 (non-negative) and the intercept was
removed, then the results would just be a weighted average of the log odds. Note,
that this is not the same as a weighted average of the probabilities, as there is a
non-linear relationship between the two.

Both the classification performance and the probability estimates of this new
logistic regression were indistinguishable from the logistic regression with proba-
bilities as features. Therefore neither tables nor probability plots were included.
However, this new method was a lot less sensitive to tuning parameters. As a result,
a large variety of coefficients could be used to get the same performance. They did,
however, bear resemblance to the coefficients in Figure 7.2.

7.4 Combining with images 61

One possibility why the results were so similar to those of the probability
features, could be that (7.7) is quite linear in the range 0.20 < p < 0.80. However,
for large/small p’s the function grows quite large/small, giving more weight to
these points. Thus, compared to probabilities as features, a classifier with log odds
features puts more confidence in base classifiers claiming to be experts.

7.4 Combining with images

The exact same experiments as in Table 7.1 where repeated, but with an addi-
tional feature from the image classifier in Section C.2 (logistic regression fitted to
GoogLeNet features). The results are also displayed the same way, with classification
scores in Table 7.2 and estimated posterior probabilities in Figure 7.3. Note that
a slightly smaller test set was used compared to Section 7.3. This is because the
intersection between the friends data and image data had to be used. However,
none of the training sets were affected by this (except Table 7.2f).

Based on the discussion in Section 7.3, the logistic regression should now be
fitted to log odds instead of probability estimates. However, that was found after
the experiments in this section were conducted, and because of time constraints
the results were note rerun with the transformed features. However, this is not
expected to have much impact on the performance.

(a) Log. reg with same training set as base
classifiers.

precision recall f1-score prop.
f 0.84 0.85 0.85 0.38
m 0.91 0.9 0.9 0.62
total 0.88 0.88 0.88 2737

(b) R.F. with 500 trees. Same training set
as base classifiers.

precision recall f1-score prop.
f 0.86 0.8 0.83 0.38
m 0.88 0.92 0.9 0.62
total 0.87 0.87 0.87 2737

(c) Multiplication rule.

precision recall f1-score prop.
f 0.87 0.84 0.86 0.38
m 0.91 0.92 0.91 0.62
total 0.89 0.89 0.89 2737

(d) Averaging rule.

precision recall f1-score prop.
f 0.88 0.83 0.86 0.38
m 0.9 0.93 0.91 0.62
total 0.89 0.89 0.89 2737

(e) Maximum rule.

precision recall f1-score prop.
f 0.84 0.84 0.84 0.38
m 0.9 0.9 0.9 0.62
total 0.88 0.88 0.88 2737

(f) Log. reg. with different training set.

precision recall f1-score prop.
f 0.85 0.88 0.87 0.38
m 0.93 0.91 0.92 0.62
total 0.9 0.9 0.9 2776

Table 7.2: Results from combining classifiers. The estimated probabilities from log. reg.
on images, friends, tweets, descriptions, emojis/emoticons, and hashtags were used as
features.

62 7. Combining classifiers

(a) Logistic regression, same training set. (b) Random forests, same training set.

(c) Combining through multiplication. (d) Combining through averaging.

(e) Combining through max. (f) Logistic regression, new training set.

Figure 7.3: Estimated probabilities of the combination classifiers in Table 7.2.

7.4 Combining with images 63

Immediately, it is clear that the images has a positive effect on the classification
scores. Also here, there is not much difference in accuracy between the different
classifiers, though slightly more than previously. The posterior probability estimates
are possibly not quite as good as without the image features. The logistic regressions,
the multiplication rule, and the max rule still give the best probability estimates.

As before, the size of the logistic regression’s second training set was tuned.
This time, however, the performance was not as sensitive to the tuning ratio.
Everything from equal sized training sets, to the same training sets as for the
previous classifier seemed to work fine. Though small differences, we ended up with
a base classifier training set of 5 300, and a combination classifier training set of 1 000.

Finally the coefficients of the logistic regression without an additional training
set was plotted in Figure 7.4. Also here the emojis/emoticons and hashtags have
negative coefficients. Surprisingly, images have approximately the same coefficient as
the text. Considering that the image classifier was by far the second best individual
classifier, this was somewhat a surprise.

Figure 7.4: Coefficients from logistic regression combination classifier trained on same
data as base classifiers. Same as in Table 7.2a.

64 7. Combining classifiers

Chapter 8

Summary

In this thesis, different method for predicting gender of Norwegian Twitter accounts
were investigated. The data was mainly collected by Intelligent Communications
AS 1. The main areas investigated were the tweets (text), user descriptions, profile
images, and friends of the accounts. These were first analyzed separately, and later
combined in an attempt to obtain better classifiers.

For the tweets and descriptions, tf-idf transforms of n-grams (characters) were
passed as features to logistic regressions. Both resulted in accuracy around 0.70,
though the description classifier was only tested on the subset of accounts that
provided descriptions (70%).

Features from the images were obtained through a pre-trained convolutoinal
neural net (GoogLeNet), and passed to a logistic regression. This resulted in
accuracy of around 0.80 for the subset of accounts providing profile images (85%).

The friends information was also transformed through the tf-idf scheme, and a
logistic regression was fitted to it. This resulted in accuracy around 0.85. This was
the best individual classifier created.

The best classifiers’ posterior probability estimates were combined, yielding a total
balanced accuracy around 0.89. Without the image data, the accuracy dropped to
0.85. The combination schemes used were the averaging rule, the multiplication
rule, the maximum rule, combination through a logistic regression, and combination
through a random forests classifier. They all performed quite equally, though the
averaging rule resulted in quite inaccurate probability estimates.

All classifiers were fitted with reweighted data such that the prior class proba-
bilities became equal. The individual classifier were trained on data with different
gender proportions (prior probabilities), and the reweighting corrected for this
before the classifiers were combined. However, as discussed in Appendix A.2, this
also affected the estimated class probabilities. As a result, throughout the thesis,
the logistic regressions generally overestimate the probability for females.

1Intelligent Communication AS: http://intelcom.no/

http://intelcom.no/

66 8. Summary

The data was labeled though comparing names of the accounts to names in the
Norwegian population. Thus, only a subset with regular names was labeled and
used for training and testing. This possible bias was not addressed. Also, the
method results in the loss of a very informative feature.

8.1 Further work

In Appendix E, multiple tweets of each user were collected, giving larger texts. As
a result, the accuracy of the text classifier was increased to 0.75. This new classifier
should replace the text classifier in the combination schemes.

Other information could also be aggregated. Meta information collected over
many tweets might be informative. Also, as only 5% of the tweets contain hashtags,
they are not particularly good features. By aggregating all hashtags used by an
account, the subset of users with hashtag data might become sufficiently large to
make a positive contribution to the classifiers.

The images seem to have a lot of potential. By investigating features extracted
from different layers, better classifiers might be obtained. Alternatively, a ConvNet
could be trained, or fine tuned. If there are problems with limited training data,
images from other sources could possibly be used. The simples is just profile images
of Twitter accounts that are not Norwegian.

The network data from the friends lists gave the best features investigated in
this project. Tweets often contain references to other users. This data could be
collected as an alternative form of network data.

In this thesis, the data obtained was roughly from the same time period (withing a
year), so when the tweets were posted, was not considered. For larger datasets, the
time is possibly an important feature, though it might just be better to not include
old data at all.

Finally, larger datasets could possibly be used as more tweets are collected. This,
however, might require some distributed computing.

Bibliography

Sitaram Asur and Bernardo A. Huberman. Predicting the future with social media.
CoRR, abs/1003.5699, 2010. URL http://arxiv.org/abs/1003.5699. (Cited
on page 1.)

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In
Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 2654–
2662. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/

5484-do-deep-nets-really-need-to-be-deep.pdf. (Cited on page 91.)

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Good-
fellow, Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new
features and speed improvements. Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop, 2012. (Cited on page 49.)

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (surf). Computer Vision and Image Understanding, 110(3):
346–359, Jun 2008. ISSN 1077-3142. doi: 10.1016/j.cviu.2007.09.014. URL
http://dx.doi.org/10.1016/j.cviu.2007.09.014. (Cited on page 43.)

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. Greedy
layer-wise training of deep networks. Advances in neural information processing
systems, 19:153, 2007. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=6287632. (Cited on page 91.)

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. Theano: a CPU and GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference (SciPy), June 2010. Oral
Presentation. (Cited on page 49.)

Johan Bollen, Huina Mao, and Xiaojun Zeng. Twitter mood predicts the stock
market. Journal of Computational Science, 2(1):1–8, Mar 2011. ISSN 1877-
7503. doi: 10.1016/j.jocs.2010.12.007. URL http://dx.doi.org/10.1016/j.

jocs.2010.12.007. (Cited on page 1.)

Y-Lan Boureau, Francis Bach, Yann LeCun, and Jean Ponce. Learning mid-level
features for recognition. 2010 IEEE Computer Society Conference on Computer

http://arxiv.org/abs/1003.5699
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6287632
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6287632
http://dx.doi.org/10.1016/j.jocs.2010.12.007
http://dx.doi.org/10.1016/j.jocs.2010.12.007

68 Bibliography

Vision and Pattern Recognition, Jun 2010. doi: 10.1109/cvpr.2010.5539963. URL
http://dx.doi.org/10.1109/CVPR.2010.5539963. (Cited on page 94.)

G. Bradski. Dr. Dobb’s Journal of Software Tools, 2000. (Cited on page 46.)

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, Aug 1996a.
ISSN 1573-0565. doi: 10.1007/bf00058655. URL http://dx.doi.org/10.1007/

bf00058655. (Cited on pages 54, 83, 85, and 86.)

Leo Breiman. Out-of-bag estimation. Technical report, Citeseer, 1996b. (Cited on
page 87.)

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. ISSN 0885-
6125. doi: 10.1023/a:1010933404324. URL http://dx.doi.org/10.1023/a:

1010933404324. (Cited on pages 54, 83, 86, and 87.)

Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classification
and Regression Trees. Wadsworth International Group, 1984. (Cited on page 85.)

Alan Bundy and Lincoln Wallen. Difference of Gaussians. Catalogue of Artificial
Intelligence Tools, page 30–30, 1984. doi: 10.1007/978-3-642-96868-6 57. URL
http://dx.doi.org/10.1007/978-3-642-96868-6_57. (Cited on page 43.)

John Canny. A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell., PAMI-8(6):679–698, Nov 1986. ISSN 0162-8828. doi: 10.1109/
tpami.1986.4767851. URL http://dx.doi.org/10.1109/TPAMI.1986.4767851.
(Cited on page 43.)

Chao Chen, Andy Liaw, and Leo Breiman. Using random forest to learn imbalanced
data. Technical report, 2004. URL http://statistics.berkeley.edu/sites/

default/files/tech-reports/666.pdf. (Cited on page 88.)

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-
like environment for machine learning, 2011. URL http://infoscience.

epfl.ch/record/192376/files/Collobert_NIPSWORKSHOP_2011.pdf. (Cited
on page 49.)

Adele Cutler and Guohua Zhao. Pert-perfect random tree ensembles. Computing
Science and Statistics, 33:490–497, 2001. (Cited on page 83.)

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), 2005. doi: 10.1109/cvpr.2005.177. URL http://dx.doi.org/10.

1109/CVPR.2005.177. (Cited on page 43.)

Thanh-Nghi Do, Philippe Lenca, Stéphane Lallich, and Nguyen-Khang Pham.
Classifying very-high-dimensional data with random forests of oblique decision
trees. Studies in Computational Intelligence, page 39–55, 2010. ISSN 1860-
9503. doi: 10.1007/978-3-642-00580-0 3. URL http://dx.doi.org/10.1007/

978-3-642-00580-0_3. (Cited on page 27.)

http://dx.doi.org/10.1109/CVPR.2010.5539963
http://dx.doi.org/10.1007/bf00058655
http://dx.doi.org/10.1007/bf00058655
http://dx.doi.org/10.1023/a:1010933404324
http://dx.doi.org/10.1023/a:1010933404324
http://dx.doi.org/10.1007/978-3-642-96868-6_57
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
http://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
http://infoscience.epfl.ch/record/192376/files/Collobert_NIPSWORKSHOP_2011.pdf
http://infoscience.epfl.ch/record/192376/files/Collobert_NIPSWORKSHOP_2011.pdf
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1007/978-3-642-00580-0_3
http://dx.doi.org/10.1007/978-3-642-00580-0_3

Bibliography 69

Cıcero Nogueira dos Santos and Maıra Gatti. Deep convolutional neural net-
works for sentiment analysis of short texts. In Proceedings of the 25th Inter-
national Conference on Computational Linguistics (COLING), Dublin, Ireland,
2014. URL http://www.anthology.aclweb.org/C/C14/C14-1008.pdf. (Cited
on page 22.)

R.P.W. Duin. The combining classifier: to train or not to train? Object recognition
supported by user interaction for service robots, 2002. doi: 10.1109/icpr.2002.
1048415. URL http://dx.doi.org/10.1109/ICPR.2002.1048415. (Cited on
pages 55 and 56.)

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139, Aug 1997. ISSN 0022-0000. doi: 10.1006/jcss.1997.1504.
URL http://dx.doi.org/10.1006/jcss.1997.1504. (Cited on page 46.)

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees.
Machine Learning, 63(1):3–42, Mar 2006. ISSN 1573-0565. doi: 10.1007/
s10994-006-6226-1. URL http://dx.doi.org/10.1007/s10994-006-6226-1.
(Cited on page 83.)

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In International conference on artificial intelligence
and statistics, pages 249–256, 2010. URL http://machinelearning.wustl.edu/

mlpapers/paper_files/AISTATS2010_GlorotB10.pdf. (Cited on page 96.)

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In International Conference on Artificial Intelligence and Statistics,
pages 315–323, 2011. URL http://machinelearning.wustl.edu/mlpapers/

paper_files/AISTATS2011_GlorotBB11.pdf. (Cited on page 95.)

Robert M Haralick. Ridges and valleys on digital images. Computer Vi-
sion, Graphics, and Image Processing, 22(1):28–38, Apr 1983. ISSN 0734-
189X. doi: 10.1016/0734-189x(83)90094-4. URL http://dx.doi.org/10.1016/

0734-189X(83)90094-4. (Cited on page 43.)

Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey
vision conference, volume 15, page 50. Citeseer, 1988. (Cited on page 43.)

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning, volume 2. Springer, 2009. URL http://statweb.stanford.edu/~tibs/

ElemStatLearn/. (Cited on pages 45, 54, 80, 81, 86, 87, 90, and 91.)

Tin Kam Ho. The random subspace method for constructing decision forests. IEEE
Trans. Pattern Anal. Machine Intell., 20(8):832–844, 1998. ISSN 0162-8828. doi:
10.1109/34.709601. URL http://dx.doi.org/10.1109/34.709601. (Cited on
page 83.)

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma,
Technische Universität München, 1991. (Cited on page 91.)

http://www.anthology.aclweb.org/C/C14/C14-1008.pdf
http://dx.doi.org/10.1109/ICPR.2002.1048415
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1007/s10994-006-6226-1
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf
http://dx.doi.org/10.1016/0734-189X(83)90094-4
http://dx.doi.org/10.1016/0734-189X(83)90094-4
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://dx.doi.org/10.1109/34.709601

70 Bibliography

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, Nov 1997. ISSN 1530-888X. doi: 10.1162/neco.
1997.9.8.1735. URL http://dx.doi.org/10.1162/neco.1997.9.8.1735. (Cited
on page 91.)

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science &
Engineering, 9(3):90–95, 2007. doi: 10.5281/zenodo.15423. (Cited on page 32.)

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe. Proceedings of
the ACM International Conference on Multimedia - MM ’14, 2014. doi: 10.
1145/2647868.2654889. URL http://dx.doi.org/10.1145/2647868.2654889.
(Cited on pages 49 and 50.)

Rie Johnson and Tong Zhang. Effective use of word order for text categorization
with convolutional neural networks. CoRR, abs/1412.1058, 2014. URL http:

//arxiv.org/abs/1412.1058. (Cited on page 22.)

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–. URL http://www.scipy.org/. [Online; accessed 2015-
11-05]. (Cited on page 100.)

G. V. Kass. An exploratory technique for investigating large quantities of categorical
data. Applied Statistics, 29(2):119, 1980. ISSN 0035-9254. doi: 10.2307/2986296.
URL http://dx.doi.org/10.2307/2986296. (Cited on page 85.)

Yoon Kim. Convolutional neural networks for sentence classification. CoRR,
abs/1408.5882, 2014. URL http://arxiv.org/abs/1408.5882. (Cited on
page 22.)

Gary King and Langche Zeng. Logistic regression in rare events data. Political
Analysis, 9(2):137–163, 2001. URL http://pan.oxfordjournals.org/content/

9/2/137.abstract. (Cited on page 81.)

J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On combining classifiers. IEEE
Trans. Pattern Anal. Machine Intell., 20(3):226–239, Mar 1998. ISSN 0162-8828.
doi: 10.1109/34.667881. URL http://dx.doi.org/10.1109/34.667881. (Cited
on page 55.)

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In F. Pereira,
C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 1097–1105. Cur-
ran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf. (Cited on pages 93, 94, 95, and 96.)

Ludmila I. Kuncheva, James C. Bezdek, and Robert P.W. Duin. Decision templates
for multiple classifier fusion: an experimental comparison. Pattern Recognition, 34

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1145/2647868.2654889
http://arxiv.org/abs/1412.1058
http://arxiv.org/abs/1412.1058
http://www.scipy.org/
http://dx.doi.org/10.2307/2986296
http://arxiv.org/abs/1408.5882
http://pan.oxfordjournals.org/content/9/2/137.abstract
http://pan.oxfordjournals.org/content/9/2/137.abstract
http://dx.doi.org/10.1109/34.667881
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Bibliography 71

(2):299–314, Feb 2001. ISSN 0031-3203. doi: 10.1016/s0031-3203(99)00223-x. URL
http://dx.doi.org/10.1016/S0031-3203(99)00223-X. (Cited on page 53.)

H̊avard Kvamme. An investigation into statistical classification using trees. Tech-
nical report, NTNU, 2015. URL https://github.com/havakv/Project/blob/

master/project.pdf. (Cited on pages 86 and 87.)

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proc. IEEE, 86(11):2278–2324, 1998. ISSN 0018-9219.
doi: 10.1109/5.726791. URL http://dx.doi.org/10.1109/5.726791. (Cited
on pages 43 and 95.)

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied
to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.
URL http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf. (Cited on
pages 89 and 96.)

Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. Brisk: Binary robust
invariant scalable keypoints. 2011 International Conference on Computer Vision,
Nov 2011. doi: 10.1109/iccv.2011.6126542. URL http://dx.doi.org/10.1109/

ICCV.2011.6126542. (Cited on page 43.)

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.

uci.edu/ml. (Cited on page 23.)

D.G. Lowe. Object recognition from local scale-invariant features. Proceedings of
the Seventh IEEE International Conference on Computer Vision, 1999. doi: 10.
1109/iccv.1999.790410. URL http://dx.doi.org/10.1109/ICCV.1999.790410.
(Cited on page 43.)

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image rep-
resentations by inverting them. CoRR, abs/1412.0035, 2014. URL http:

//arxiv.org/abs/1412.0035. (Cited on page 94.)

D. Marr and E. Hildreth. Theory of edge detection. Proceedings of the Royal
Society B: Biological Sciences, 207(1167):187–217, Feb 1980. ISSN 1471-2954. doi:
10.1098/rspb.1980.0020. URL http://dx.doi.org/10.1098/rspb.1980.0020.
(Cited on page 43.)

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.
IEEE Trans. Pattern Anal. Machine Intell., 27(10):1615–1630, Oct 2005. ISSN
0162-8828. doi: 10.1109/tpami.2005.188. URL http://dx.doi.org/10.1109/

TPAMI.2005.188. (Cited on page 43.)

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013a. URL
http://arxiv.org/abs/1301.3781. (Cited on pages 22 and 23.)

http://dx.doi.org/10.1016/S0031-3203(99)00223-X
https://github.com/havakv/Project/blob/master/project.pdf
https://github.com/havakv/Project/blob/master/project.pdf
http://dx.doi.org/10.1109/5.726791
http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf
http://dx.doi.org/10.1109/ICCV.2011.6126542
http://dx.doi.org/10.1109/ICCV.2011.6126542
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1109/ICCV.1999.790410
http://arxiv.org/abs/1412.0035
http://arxiv.org/abs/1412.0035
http://dx.doi.org/10.1098/rspb.1980.0020
http://dx.doi.org/10.1109/TPAMI.2005.188
http://dx.doi.org/10.1109/TPAMI.2005.188
http://arxiv.org/abs/1301.3781

72 Bibliography

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages 3111–3119.
Curran Associates, Inc., 2013b. URL http://papers.nips.cc/paper/5021-di.
(Cited on page 23.)

Alan Mislove, Sune Lehmann, Yong-Yeol Ahn, Jukka-Pekka On-
nela, and J Niels Rosenquist. Understanding the demograph-
ics of twitter users. ICWSM, 11:5th, 2011. URL http://

dougleschan.com/the-recruitment-guru/wp-content/uploads/2014/

01/Understanding-the-Demographics-of-Twitter-Users-Jukka-Pekka-...

.pdf. (Cited on pages 1 and 2.)

Brendan O’Connor, Ramnath Balasubramanyan, Bryan R Routledge, and Noah A
Smith. From tweets to polls: Linking text sentiment to public opinion time series.
ICWSM, 11(122-129):1–2, 2010. URL http://www.aaai.org/ocs/index.php/

ICWSM/ICWSM10/paper/viewFile/1536/1842/. (Cited on page 1.)

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transfer-
ring mid-level image representations using convolutional neural networks. 2014
IEEE Conference on Computer Vision and Pattern Recognition, Jun 2014. doi:
10.1109/cvpr.2014.222. URL http://dx.doi.org/10.1109/CVPR.2014.222.
(Cited on page 97.)

M. Y. Park and T. Hastie. Penalized logistic regression for detecting gene interactions.
Biostatistics, 9(1):30–50, Apr 2007. ISSN 1468-4357. doi: 10.1093/biostatistics/
kxm010. URL http://dx.doi.org/10.1093/biostatistics/kxm010. (Cited
on pages 27, 80, and 81.)

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
(Cited on pages 99 and 100.)

Stephen M. Pizer, Sarang Joshi, P. Thomas Fletcher, Martin Styner, Gregg Tracton,
and James Z. Chen. Segmentation of single-figure objects by deformable m-
reps. Lecture Notes in Computer Science, page 862–871, 2001. ISSN 0302-
9743. doi: 10.1007/3-540-45468-3 103. URL http://dx.doi.org/10.1007/

3-540-45468-3_103. (Cited on page 43.)

David Martin Powers. Evaluation: from precision, recall and f-measure to roc, in-
formedness, markedness and correlation. 2011. URL http://dspace2.flinders.

edu.au/xmlui/handle/2328/27165. (Cited on page 10.)

J Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, 1993. (Cited on page 85.)

http://papers.nips.cc/paper/5021-di
http://dougleschan.com/the-recruitment-guru/wp-content/uploads/2014/01/Understanding-the-Demographics-of-Twitter-Users-Jukka-Pekka-....pdf
http://dougleschan.com/the-recruitment-guru/wp-content/uploads/2014/01/Understanding-the-Demographics-of-Twitter-Users-Jukka-Pekka-....pdf
http://dougleschan.com/the-recruitment-guru/wp-content/uploads/2014/01/Understanding-the-Demographics-of-Twitter-Users-Jukka-Pekka-....pdf
http://dougleschan.com/the-recruitment-guru/wp-content/uploads/2014/01/Understanding-the-Demographics-of-Twitter-Users-Jukka-Pekka-....pdf
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/viewFile/1536/1842/
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/viewFile/1536/1842/
http://dx.doi.org/10.1109/CVPR.2014.222
http://dx.doi.org/10.1093/biostatistics/kxm010
http://dx.doi.org/10.1007/3-540-45468-3_103
http://dx.doi.org/10.1007/3-540-45468-3_103
http://dspace2.flinders.edu.au/xmlui/handle/2328/27165
http://dspace2.flinders.edu.au/xmlui/handle/2328/27165

Bibliography 73

J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986. ISSN
0885-6125. doi: 10.1023/a:1022643204877. URL http://dx.doi.org/10.1023/A:

1022643204877. (Cited on page 85.)

Anand Rajaraman and Jeffrey David Ullman. Data mining. Mining of Massive
Datasets, page 1–17, 2009. doi: 10.1017/cbo9781139058452.002. URL http:

//i.stanford.edu/~ullman/mmds/ch1.pdf. (Cited on pages 24 and 26.)

J.J. Rodriguez, L.I. Kuncheva, and C.J. Alonso. Rotation forest: A new classifier
ensemble method. IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1619–1630,
Oct 2006. ISSN 2160-9292. doi: 10.1109/tpami.2006.211. URL http://dx.doi.

org/10.1109/tpami.2006.211. (Cited on page 83.)

Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. Lecture Notes in Computer Science, page 430–443, 2006. ISSN 1611-
3349. doi: 10.1007/11744023 34. URL http://dx.doi.org/10.1007/11744023_

34. (Cited on page 43.)

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), pages 1–42, April 2015. doi:
10.1007/s11263-015-0816-y. (Cited on pages 43 and 96.)

Gerard Salton and Michael J McGill. Introduction to modern information retrieval.
1983. (Cited on page 99.)

Mark R Segal. Machine learning benchmarks and random forest regression. Center
for Bioinformatics & Molecular Biostatistics, 2004. (Cited on page 85.)

Aliaksei Severyn and Alessandro Moschitti. Twitter sentiment analysis with deep
convolutional neural networks. Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval - SIGIR
’15, 2015. doi: 10.1145/2766462.2767830. URL http://dx.doi.org/10.1145/

2766462.2767830. (Cited on pages 22 and 23.)

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014. URL http://www.robots.ox.

ac.uk/~vgg/research/very_deep/. (Cited on pages 43 and 96.)

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
CoRR, abs/1312.6034, 2013. URL http://arxiv.org/abs/1312.6034. (Cited
on page 94.)

Irwin Sobel and Gary Feldman. A 3x3 isotropic gradient operator for image
processing. Presented at a talk at the Stanford Artificial Project, 1968. (Cited on
page 43.)

http://dx.doi.org/10.1023/A:1022643204877
http://dx.doi.org/10.1023/A:1022643204877
http://i.stanford.edu/~ullman/mmds/ch1.pdf
http://i.stanford.edu/~ullman/mmds/ch1.pdf
http://dx.doi.org/10.1109/tpami.2006.211
http://dx.doi.org/10.1109/tpami.2006.211
http://dx.doi.org/10.1007/11744023_34
http://dx.doi.org/10.1007/11744023_34
http://dx.doi.org/10.1145/2766462.2767830
http://dx.doi.org/10.1145/2766462.2767830
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://arxiv.org/abs/1312.6034

74 Bibliography

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Ried-
miller. Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806,
2014. URL http://arxiv.org/abs/1412.6806. (Cited on page 94.)

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res., 15(1):1929–1958, January 2014. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=2627435.2670313. (Cited on page 96.)

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. CoRR, abs/1409.4842, 2014. URL http://arxiv.org/

abs/1409.4842. (Cited on pages 43, 49, and 96.)

David M.J. Tax, Martijn van Breukelen, Robert P.W. Duin, and Josef Kittler.
Combining multiple classifiers by averaging or by multiplying? Pattern Recogni-
tion, 33(9):1475–1485, Sep 2000. ISSN 0031-3203. doi: 10.1016/s0031-3203(99)
00138-7. URL http://dx.doi.org/10.1016/S0031-3203(99)00138-7. (Cited
on page 55.)

Andranik Tumasjan, Timm Oliver Sprenger, Philipp G Sandner, and Isabell M
Welpe. Predicting elections with twitter: What 140 characters reveal about po-
litical sentiment. ICWSM, 10:178–185, 2010. URL http://www.aaai.org/ocs/

index.php/ICWSM/ICWSM10/paper/viewFile/1441/1852Predicting. (Cited
on page 1.)

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, 2001. doi: 10.1109/cvpr.2001.990517.
URL http://dx.doi.org/10.1109/CVPR.2001.990517. (Cited on page 46.)

David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, Jan
1992. ISSN 0893-6080. doi: 10.1016/s0893-6080(05)80023-1. URL http://dx.

doi.org/10.1016/S0893-6080(05)80023-1. (Cited on page 56.)

Baoxun Xu, Joshua Zhexue Huang, Graham Williams, Qiang Wang, and Yunming
Ye. Classifying very high-dimensional data with random forests built from
small subspaces. International Journal of Data Warehousing and Mining, 8
(2):44–63, 2012. ISSN 1548-3932. doi: 10.4018/jdwm.2012040103. URL http:

//dx.doi.org/10.4018/jdwm.2012040103. (Cited on page 27.)

L. Xu, A. Krzyzak, and C.Y. Suen. Methods of combining multiple classifiers
and their applications to handwriting recognition. IEEE Trans. Syst., Man,
Cybern., 22(3):418–435, 1992. ISSN 0018-9472. doi: 10.1109/21.155943. URL
http://dx.doi.org/10.1109/21.155943. (Cited on page 54.)

Bai Xue, Chen Fu, and Zhan Shaobin. A study on sentiment computing and
classification of sina weibo with word2vec. 2014 IEEE International Congress
on Big Data, Jun 2014. doi: 10.1109/bigdata.congress.2014.59. URL http:

//dx.doi.org/10.1109/BigData.Congress.2014.59. (Cited on page 23.)

http://arxiv.org/abs/1412.6806
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://dx.doi.org/10.1016/S0031-3203(99)00138-7
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/viewFile/1441/1852Predicting
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/viewFile/1441/1852Predicting
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.4018/jdwm.2012040103
http://dx.doi.org/10.4018/jdwm.2012040103
http://dx.doi.org/10.1109/21.155943
http://dx.doi.org/10.1109/BigData.Congress.2014.59
http://dx.doi.org/10.1109/BigData.Congress.2014.59

Bibliography 75

Meliha Yetisgen-Yildiz and Wanda Pratt. The effect of feature representation on
medline document classification. In AMIA annual symposium proceedings, volume
2005, page 849. American Medical Informatics Association, 2005. URL http:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC1560754/. (Cited on page 22.)

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. Lecture Notes in Computer Science, page 818–833, 2014. ISSN 1611-
3349. doi: 10.1007/978-3-319-10590-1 53. URL http://dx.doi.org/10.1007/

978-3-319-10590-1_53. (Cited on pages 94 and 95.)

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks
for text classification. CoRR, abs/1509.01626, 2015. URL http://arxiv.org/

abs/1509.01626. (Cited on pages 22, 23, and 100.)

Xue Zhang, Hauke Fuehres, and Peter A. Gloor. Predicting stock market indicators
through twitter “i hope it is not as bad as i fear”. Procedia - Social and Behavioral
Sciences, 26:55–62, 2011. ISSN 1877-0428. doi: 10.1016/j.sbspro.2011.10.562.
URL http://dx.doi.org/10.1016/j.sbspro.2011.10.562. (Cited on page 1.)

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1560754/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1560754/
http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626
http://dx.doi.org/10.1016/j.sbspro.2011.10.562

76 Bibliography

Appendices

Appendix A

Logistic regression

The goal of logistic regression is to model the posterior class probabilities and create
a classifier based on them. As the probabilities should sum to one, it is obvious
that they can not be linear in x. Instead the log odds are assumed to be linear in
x. If y ∈ {1, 2} denotes the two classes, the log odds take the following form,

log
P (y = 2 | x)

P (y = 1 | x)
= β0 + xTβ. (A.1)

The function,

logit(pki) = log
pki

1− pki
, (A.2)

where pki = P (y = k | xi), is called the logit function or logit link. By inverting the
logit function it becomes clear that the posterior probabilities sum to one,

p2i =
eβ0+xT

i β

1 + eβ0+xT
i β
, (A.3)

p1i =
1

1 + eβ0+xT
i β
. (A.4)

There are other possible choices than the logit function, e.g. the probit function
based on Gaussian assumptions. They are however not used in this thesis. The
logit link is not necessarily used because it is a good assumption. Often it is used
as no better assumptions are made.

To find good values for (β0,β), it is common to find the maximum likelihood
estimator, or MLE. Let ni be the number of training samples in group i. A group
in this sense is data points with the same covariates xi = xj . Let Zi the number of
points in group i that has class 2. This means Zi is binomially distributed,

P (Zi = zi) =

(
ni
zi

)
pzi2i(1− p2i)

ni−zi . (A.5)

80 A. Logistic regression

Let the N data points constitute M groups. Then the likelihood and log-likelihood
are,

L(β0,β) =

M∏
i=1

P (Zi = zi). (A.6)

l(β0,β) ∝
M∑
i=1

zi log p2i + (ni − zi) log(1− p2i). (A.7)

There is no analytical solution that maximizes the likelihood, so one has to use a
numerical optimization algorithm to find the MLE.

After (β0,β) is found, one can create a classifier by classify to 2 if (A.1) is positive
and to 1 if not. However, this assumes the logit link gives accurate probabilities.
Often the choice of logit link is based on lack of a better choice so there is little
suggesting the probabilities are particularly accurate. It might therefore be better
to classify based on a threshold found by e.g. cross-validation.

A.1 Regularization

Typical problems with the standard logistic regression are multicollinearity and
overfitting. This can be handled through subset selection methods. Ideally, all
possible combinations of features should be investigated, but this is often too com-
putationally expensive. Therefore, greedy methods, like forward-stepwise selection,
backward-stepwise selection and forward-stagewise selection [Hastie et al., 2009],
are used instead. However, these methods often exhibit high variance, as features
are either included or excluded. Shrinkage methods is another approach to regular-
ization that are more continuous, and thus suffers less from the high variability.

Shrinkage is typically done through penalizing the size of the coefficients in the
log-likelihood. For an L2 penalty, the loss function becomes,

Loss(β0,β) = −
M∑
i=1

(zi log p2i + (ni − zi) log(1− p2i)) +
λ

2
‖β‖22. (A.8)

Her the penalty typically does not include the intercept. λ is a hyper parameter
that needs to be tuned. This can for instance be done through cross-validation.
Park and Hastie [2007] explains how the use of this quadratic penalty helps against
problems like collinearity. This gives easier opportunities to code factors using
dummy variables, and include higher order interactions.

While logistic regression in general (not considering computational cost) can be
fitted without scaling the features, this is no longer the case when penalizing the
coefficients. That is because the coefficients are dependent on the magnitude of the
features.

While the L2 norm does regularize, there is no variable selection (unless extremely

A.2 Reweighting 81

sparse features, see Park and Hastie [2007]). One solution is to use the penalty
in combination with a subset selection scheme. Another is to use an L1 penalty
instead of the L2,

Loss(β0,β) = −
M∑
i=1

(zi log p2i + (ni − zi) log(1− p2i)) + λ|β|. (A.9)

This actually cause a combination of shrinkage and subset selection. For an expla-
nation of how the L1 penalty sets coefficients to zero, see e.g. Hastie et al. [2009].
Tuning the parameter λ does in no way ensure the optimal subset of parameters,
but the penalty has been known to produce good fits and is quite commonly used.

A final option is to combine the two penalties,

Loss(β0,β) = −
M∑
i=1

(zi log p2i + (ni − zi) log(1− p2i)) + λ

(
(1− α)

1

2
‖β‖22 + α|β|

)
.

(A.10)

This introduce another hyper parameter α that controls the weighting between the
two penalties.

Applying an L1 penalty to a loss function is often referred to as lasso penalty,
L2 as ridge penalty, and a combination of the to as elastic net. Some will argue
that these names are only correct for linear regression, but it has been used in other
contexts as well.

A.2 Reweighting

In this thesis the number of samples from each class (male, female) is for the
most part not equal. When working with imbalanced data some issues needs to be
considered. The simplest approach is to just respect that the prior class probabilities
are not equal, and fit the logistic regression as before. However, according to King
and Zeng [2001], logistic regression can sharply underestimate the probability of
rare events. Another approach, is to reweight the classes. This should be done
intelligently through tuning parameters and a well constructed metric measuring
what we want to accomplish. Alternatively, a quick and dirty way is to just weight
the samples based on their class proportions. Typically each training point is then
weighted inversely of the class proportions, e.g. N/Nclass, s.t. both classes have
the same contribution to the loss function in (A.7). Note also that the weighting is
equivalent to oversampling according to the inverse class proportions, but it is less
computationally expensive.

To get a better understanding of the impact of weighting, the log-odds can be
investigated.

log
P (y = 2 | x)

P (y = 1 | x)
= β0 + xTβ, (A.11)

82 A. Logistic regression

The log odds shows the relationship between the coefficients and the posterior class
probabilities. This can be rewritten as,

log
P (y = 2 | x)

P (y = 1 | x)
= log

P (x | y = 2)P (y = 2)

P (x | y = 1)P (y = 1)
(A.12)

= log
P (x | y = 2)

P (x | y = 1)
+ log

P (y = 2)

P (y = 1)
. (A.13)

If the dataset is balanced, the prior probabilities will be perceived as equal, giving,

β0 + xTβ = log
P (x | y = 2)

P (x | y = 1)
. (A.14)

The original prior probabilities can be introduced again through,

β0 + xTβ + log
P (y = 2)

P (y = 1)
= log

P (x | y = 2)

P (x | y = 1)
+ log

P (y = 2)

P (y = 1)
, (A.15)

and thus only altering the intercept β′0 = β0 + log P (y=2)
P (y=1) . This is equivalent to

changing the threshold of the logistic regression. Thus balancing the classes can
help probability estimates of the smaller classes, while still keeping the original
prior probabilities through changing the threshold of the decision. However, it is
important to remember that the outputted class probabilities are from the balanced
model. Thus adding bias to the estimates. This can also be corrected for through
replacing β0 by β′0 in (A.3) and (A.4).

In this thesis, there are generally more males than females in the datasets. As
the logistic regressions are reweighted, the estimated posterior probabilities are
biased. The estimates for females are in general to high. Because of the relationship
between the probabilities and the log odds, the difference should be increasingly
smaller as the probabilities approach 0 and 1. Investigating the reported estimated
probabilities through this thesis, it is clear that they coincide very well with the
theory. The bars in the plots, giving the proportions of females (e.g. Figure 4.6),
are in general too low compared to the estimated probabilities.

Appendix B

Random forests

The term random forests is often used for a collection of classification and regression
models, averaging an ensemble of decision trees grown in a randomized way. Some of
the most well known methods include bagging by Breiman [1996a], random subspace
method by Ho [1998], perfect random tree ensembles by Cutler and Zhao [2001],
extremely randomized trees by Geurts et al. [2006], rotation forests by Rodriguez
et al. [2006] and random forests by Breiman [2001]. In this thesis random forests
refers to the method by Breiman [2001] and not the general term.

The random forests classifier consists of three parts: decision trees, bootstrap
averaging, and randomly choosing subsets of the features. These parts will be
introduces through the CART decision trees, bagging, and the full random forests
model.

B.1 CART

CART stands for classification and regression trees, and is one of the simplest ways
to create a decision tree. A classification tree makes local decisions based on a
subset of the predictors. This means that the data is split in subsets, that are
again split in new subsets (independently of each other) and so on. At the end, the
subsets are given a class label based on some vote-measure between the data points,
usually the majority. The voting proportions can also be used to estimate the class
probabilities, if they are of interest. An example of such a tree can be found in
Figure B.1.

It is easy to visualize the splits in a tree. This makes trees highly interpretable.
Prediction is done by following the splits down to the decision node, giving the
class prediction. An example of such a tree can be found in Figure B.1b.

Unlike linear classifiers like logistic regression, the decision boundaries for trees can
take many different forms. Everything from a linear boundary with two end nodes,
to a highly complex boundary with the same amount of end nodes as data points, is
possible. In this regard, it is important to consider both overfitting and underfitting.

84 B. Random forests

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

0 1 2 3 4 5 6

−
1

0
1

2
3

4
5

6

X1

X
2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

3

3
3

3
3

3

3

3

3

3

3

3

3

3

3

33
3

33

(a) Decisions displayed as boxes.

|
X2< 2.702

X1>=1.973

X2>=1.603

X1>=2.59

1 2

2

2 3

(b) Decisions displayed as a tree.

Figure B.1: CART run on simulated data in two dimensions.

However, as will be shown later, these issues are not that important when averaged
in the random forests classifier, and will therefore not be discussed here.

B.1.1 Building the tree

The CART algorithm split at only one variable at a time, i.e. no combinations of
features are used in the splits. This means that the domain is split into rectangles,
aligned with the axes. Also, each split in CART divide the domain in two parts,
often referred to as binary splitting. Thus, the splits are done in the simplest way
possible.

In Figure B.1 a toy example was simulated to illustrate how the CART algorithm
works. To make it easy to visualize, only two features were used. The left figure
shows the domains resulting by the splits, while the right a tree view of the splits.
Only the tree view generalizes well to higher feature spaces.

The intuition behind CART is quite simple, so next, the splitting decisions is
investigated. As it is too computationally expensive to create an optimal tree
based on the training data, greedy algorithms for splitting in a sequential matter
are used instead. A greedy algorithm makes local optimal choices without much
consideration for the global optimum.

A split needs to be based on a criterion and one of the more common (and the
one used in this thesis) is the gini index. For K classes it is defined as,

Qm(T) =

K∑
k=1

p̂mk(1− p̂mk), (B.1)

where p̂mk =
1

Nm

∑
xi∈Rm

I{yi = k}. (B.2)

B.2 Bagging 85

Here T is the tree, m is a node, Nm is the number of data points in node m, yi
is the class of training point i and Rm is the region defined by the node. p̂mk is
therefore the proportion of class k in node m. The Gini index increase with the
diversity in the node, and gives therefore a measure of node impurity. For nodes
with only one class it is zero, and for homogeneous nodes (equal amounts of all
classes) it gets its maximum value. The greedy step done in CART finds the split
that gives the lowest total node impurity, and weight the two nodes by their size.

Now, consider the case where a split is performed on node P . By splitting on
the variable xj , let RL(j, s) = {x|xj ≤ s} denote the region of the ”left” split, and
RR(j, s) = {x|xj > s} denote the ”right”. The solution to which variable xj and
split point s that gives the lowest node impurity can then be found by,

{x∗j , s∗} = arg min
xj ,s

{
NL
NP

QL(T) +
NR
NP

QR(T)

}
. (B.3)

Here xj and s lies in p̂mk in (B.2). NL, NR and NP are the number of observations
in the left, right and parent node respectively.

CART trees are usually regularized by pruning a large tree. However, in the
random forests algorithm, Segal [2004] found that restricting the size of trees only
results in small gains. As pruning is not a common part of random forests it will
not be discussed, but the interested reader can find information in Breiman et al.
[1984].

There are proposed several other algorithms for building classification trees. Some
of the more common methods include ID3 by Quinlan [1986], C4.5 by Quinlan
[1993] and its successor See5/C5.0, CHAID by Kass [1980].

B.2 Bagging

Consider a scenario where a learning set {xi, yi}Ni=1, is given, and a classifier C(x)
is created from the set. If a sequence of such sets are given, all drawn from the same
distribution, a better prediction could be obtained by aggregating the classifiers
Cb(x). A typical way to do this is through the majority vote,

Cagg(x) = majority {Cb(x)}Bb=1 . (B.4)

Breiman [1996a] found that this process could be imitated on a single learning set
by drawing bootstrap samples from the data. He called this method bagging, or
bootstrap aggregating.

Bagging is done by sampling N points (with replacement) from the data set

{xi, yi}Ni=1, and train a classifier Cb(x) on the samples. Repeat this B times and
get the aggregated classifier in (B.4).

The use of bootstrap samples makes the computations for each individual clas-
sifier independent. This means that the training is easy to parallelize for faster
computation. However, if the underlying method is interpretable, this will be lost

86 B. Random forests

in Bagging.

It is important to note that even though the votes give proportions of classi-
fiers predicting class k, these proportions should not be used as estimates for
the class probabilities. Kvamme [2015] shows this through a simple theoretical
experiment. However, often the underlying method used for each single classifier
has a probability estimate. An alternative method to (B.4) is to average these
probabilities instead,

pagg,k(x) = ave {pb,k(x)}Bb=1 , k = 1, . . . ,K, (B.5)

Cagg(x) = arg max
k

pagg,k(x). (B.6)

This method is more descriptive than (B.4), and has also, according to Hastie et al.
[2009], been shown to often produce classifiers with lower variance, especially for
small B’s. In the context of this thesis, the quality of the posterior probability
estimates are very important. Through the thesis, the estimated probabilities from
random forests has been shown to often be quite good.

The success of bagging is usually explained through lowering the variance of the
classifiers through averaging. Therefore high variance, low biased methods are the
best choice of classifiers. Decision trees falls under this category, and bagging is
usually associated with tree classifiers.

A more rigorous argument for the success of bagging was made by Breiman
[1996a].

B.3 Random forests

Random forests by Breiman [2001] is an extension of the bagging algorithm. By
introducing more randomization, it is supposed to further reduce the variance
through decorrelating the trees. The method is very similar to bagging. They only
differ in how the individual trees are grown. Bootstrap samples are drawn in the
same fashion as for bagging. Then, for the creation of each split in a tree, the
following steps are done.

1. Select m predictors at random from the total amount of p predictors (dim(x) =
p).

2. Do one split, based on these m variables (pick best variable and split-point).

Each tree is grown large and not pruned. Usually the stopping criterion is some
minimum terminal node size.

Intuitively, the correlation between the trees should decrease by reducing m,
but increase the variance of the individual trees. Therefore m should be considered
a tuning parameter. The inventors recommend using m = b√pc as a default value
for classification.

B.3 Random forests 87

B.3.1 Why random forests works

In section B.2 an argument was made for why aggregating bootstrap samples can
improve the predictions of a classifier. This argument is still valid for the random
forests algorithm, but in this section the effect of decorrelating the trees will be
investigated.

The simplest, most common argument for the success of random forests is made
through the bias-variance tradeoff in the random forests regression. Let Ti(x) denote
a trained tree. The random forests prediction for x is the average prediction over
all the B trees,

f̂(x) =
1

B

B∑
i=1

Ti(x). (B.7)

As the trees are created from the same distribution, they are identically distributed.
Let σ2 denote the variance of a tree, and ρ the correlation between trees. It can
then be shown (e.g. Kvamme [2015]) that the variance of the prediction is,

Var[f̂(x)] = ρσ2 + σ2 1− ρ
B

. (B.8)

Large trees are considered relatively unbiased, but with high variance. As the bias
is a linear operator, the bias of the ensemble f̂(x) is the same as for an individual
tree Ti(x). From (B.8) it is clear that the second term vanish as B grows, thus
bagging and random forests manage to reduce the variance of a method without
increasing the bias. To further reduce the variance, the first term in (B.8) must
be reduced, which can be accomplished by reducing the correlation ρ between the
trees.

It is important to note that the error of a classifier can not be decomposed
into bias and variance in the same way as for regression. However, classifiers has
both systematic error, and error as a result of variability between training sets.
So the argument made for regression is somewhat transferable. An more rigorous
explanation of how correlation affects the error of a random forests classifier is made
by Breiman [2001].

B.3.2 Tuning

One of random forests strengths is that it is relatively easy to tune. Breiman [2001]
showed that the algorithm does not overfit as the number of bootstrap samples
B increase. So B can either just be set high, or a stopping criterion through a
validation set or out-of-bag error [Breiman, 1996b]. Previously it was mentioned
that the tree depth could be tuned, but Hastie et al. [2009] argue that fully grown
trees usually works just fine and result in one less tuning parameter. The number
of splitting variables m, however, is important to consider. As mentioned earlier,
m = b√pc, is a good default value and the optimal m is often close to this value.
So tuning random forests can often be do by considering one variable, m, that has

88 B. Random forests

a good default value. Random forests can therefore be a good choice for a out-of-
the-box classifier. This is part of the reason why it was chosen as the non-linear
classifier in this thesis.

B.3.3 Reweighting

In Appendix A.2 the logistic regression on imbalanced data was discussed. Random
forests classifiers are also affected by imbalance, and this can be handled in similar
matters as for the logistic regression. Typically, more weight can be put on the
minority class, thus penalizing this class more heavily. This is very similar to
reweighting of the logistic regression, and tha same weight, N/Nclass can be used
here. For more on this subject, see e.g. Chen et al. [2004].

Appendix C

Neural networks

Neural networks, or artificial neural networks, are a family of machine learning
models loosely inspired by biological neural networks. They can be both supervised
and unsupervised, but in this thesis only supervised nets were considered. Also,
only classification will be considered, though they can be fitted to regression tasks
as well.

Neural networks were quite popular algorithms during 1980’s, but later lost
some of their domain as other powerful machine learning algorithms were developed.
Deeper neural nets had the potential to create higher level interpretations of the data,
but was usually very hard to train. In 1989 LeCun et al. [1989] were able to train
the first deep net, but it was very computationally expensive, making it somewhat
impractical to use. Around 2010 deep neural nets, now often referred to as deep
learning, again surfaced, resulting in the development of many new methods. Today
deep learning algorithm are considered very powerful and outperforms other machine
learning algorithms in several areas. They are nevertheless still computationally
expensive, but are enabled through modern distributed computing.

C.1 Perceptrons

The simplest neural nets are probably the single-layer and mulit-layer perceptrons.
They are feedforward nets, meaning that the connections between nodes do not
form a direct cycle. There seems to be some dispute in the literature whether the
single-layer refers to one hidden layer or just an output layer, but here it is referred
to as one hidden layer.

The single-layer perceptron is a non-linear, two-stage statistical model used for
regression and classification. It consists of an input layer, a hidden layer and an
output layer. The structure is typically represented by a network diagram, like in
Figure C.1.

Let x denote a vector representing the input nodes, z the hidden nodes and f
the output nodes. Then x is the raw data, and f is the output probabilities for the

90 C. Neural networks

Figure C.1: Example of single-layer perceptron network diagram.

different classes. The M hidden units are calculated from the input,

zm = σ(α0m + αTmx), m = 1, . . . ,M. (C.1)

Here σ(v) is usually the sigmoid function σ(v) = 1/(1 + exp(−v), and α0m, αm are
parameters, or weights, determined through training. The K outputs can then be
calculated through,

tk = β0k + βTk z, (C.2)

fk = gk(t), k = 1, . . . ,K, (C.3)

where β0k,βk are weights and gk(t) is some function. Early work in classification
used gk(t) = t, but this was later abandoned in favor of the softmax function,

gk(t) =
exp(tk)∑K
i=1 exp(ti)

. (C.4)

The softmax can be interpreted as estimated posterior probabilities for the K classes.

In Figure C.1 the nodes get input from all the nodes in the previous layer. The
structure is said to be fully connected. This can result in a high number of pa-
rameters, which might be computationally expensive to train. In addition, a fully
connected net can be more prone to overfitting [Hastie et al., 2009], so regularization
techniques need to be applied.

C.2 Convolutional neural networks 91

C.1.1 Fitting perceptrons

In classification tasks, the fit of the net is typically measured through the deviance
loss function,

L(θ) = −
N∑
i=1

K∑
k=1

yik log fk(xi), (C.5)

where yik is the 0/1 coding for the correct class. In this case we have N training
points, and K classes. θ represents all our parameters, and fk(xi) is the posterior
probability estimates for the input xi. If the sigmoid and softmax functions are
used, then the network is a linear logistic regression in the hidden units.

The net is trained through gradient decent, called backpropagation in this setting.
Because of the compositional from of the model, the gradient can be derived using
the chain rule for differentiation. Thus the backpropagation can be computed by
alternating between forward sweeps through the network, and propagating the error
back through the network. The calculations will not be discussed here. More on
backpropagation can be found in e.g. Hastie et al. [2009].

C.1.2 Vanishing gradient

A single-layer perceptron can in theory model any structure if the number of hidden
units is large enough. However, often adding more layers is an easier approach
to learning higher level features [Ba and Caruana, 2014]. So it is attractive to
be able to add multiple hidden layers in the model. However, gradients in the
backpropagation algorithm are often quite small. Use of the chain rule can result
in many small gradients being multiplied together, which causes the gradient to
vanish in the lower layers. This was formally identified by Hochreiter [1991]. For
more information on the subject see e.g. Hochreiter and Schmidhuber [1997].

Several methods have been suggested to alleviate the problem of vanishing
gradients. Typically, the net can be initialized through layer-wise unsupervised
pre-training [Bengio et al., 2007]. Deep convolutional neural networks, on the other
hand, use rectified linear units.

C.2 Convolutional neural networks

Convolutional neural networks (CNNs or ConvNets) are in many ways quite similar
to the neural nets described above. The main difference is that ConvNets where
created in an attempt to model the way the brain perceives images. Perceptrons
are, on the other hand, more general. The focus on images allowed for encoding
certain properties into the ConvNets, and vastly reduce the number of parameters
in the model.

The nets consists of multiple different layers, each transforming the data through
differentiable functions, creating higher level features. There are three main types
of layers: convolution layers, pooling layers and fully connected layers.

92 C. Neural networks

Parts of this section were based on lecture notes from the CS231n Standford
class 1. Statements from this class are not further referenced.

C.2.1 Convolution layer

The convolution layer is where the algorithm gets its name from, and is the core
building block of a ConvNet. Consider a black and white image of size [32x32]. The
arguments that are made are easily generalizes to color images [32x32x3], but we
use black and white for simplicity. The convolution layer consists of many filters,
typically of size [3x3] or [5x5]. These filters are matrices of the respective sizes,
consisting of the parameters in this layer. Consider one such [3x3] filter. The filter is
applied to the image by holding it over a region of the image, e.g. top left [3x3], and
doing a inner product between that part of the image and the filter (both flattened).
Let xi,j i, j ∈ {1, . . . , 32} denote the pixels in the picture and wi,j i, j ∈ {1, 2, 3}
the elements in the filter. The convolutions zk,l can now be calculated by,

zk,l =

3∑
i=1

3∑
j=1

xi+k−1,j+l−1wi,j . (C.6)

Figure C.2 illustrates this graphically. The red numbers in the yellow filter are the
filter’s parameters, and the yellow area is where the filter is applied. In this case,
the convolution gives out 4, as seen by the lower right element of the pink convolved
feature matrix. In the figure, the filter has been applied to the whole image, and all
the convolved features are calculated.

Figure C.2: Example of convolution with one filter. The image is [5x5] and the filter is
[3x3].

The intuition behind the convolution layer is the following: If an image patch is
highly correlated with the filter, the convolved feature will be high valued. Thus
the filter reacts to regions of the image that it is similar to.

1CS231n: http://cs231n.stanford.edu

http://cs231n.stanford.edu

C.2 Convolutional neural networks 93

The application of the same filter to the whole image is referred to as parameter
sharing. This parameter sharing, and the local connectivity between an image patch
and a convolved feature, vastly reduce the number of parameters compared to a fully
connected neural net. In our example with a [32x32] image and a [3x3] filter we only
have 3 · 3 = 9 parameters. A fully connected neural net without parameter sharing
would result in 32 · 32 = 1024 parameters per convolved feature. So if we assume
the same dimensionality of the convolved features as the input, this would result in
324 = 1 048 576 parameters. Biases have been excluded for simplification. It should,
however, be mentioned that every set of parameters includes a bias parameter.

If x and w in (C.6) are flattened locally (part of image interacting with the filter)
to x′ and w′, where x′, w′ ∈ R9, (C.6) can be written as,

zk,l =

9∑
i=1

x′iw
′
i. (C.7)

Let now w̄ be the reverse of w′, and we get,

zk,l =

9∑
i=1

x′iw̄9−i+1. (C.8)

This is a convolution, and as this is equivalent to (C.6), it explains where the layer
got its name from.

One layer consists of many filters, creating a matrix of convolved features per
filter. Figure C.3 shows an example of one such architecture, and illustrates how
the convolution layers works. In the figure there are two convolution layers. The

Figure C.3: Example of ConvNet architecture. The sub-sampling layers are pooling layers.
The top layer is a multilayer perceptron with one hidden layer.

first used on the actual picture is somewhat intuitive, but the second is harder to
interpret. Note that the filters applied to (C1) are three dimensional. The depth of
the filter is the same as the depth of the convolved features, i.e. the depth of the
filter is the same as number of filters in the previous convolution layer.

Figure C.4 shows the weights from the first layer in the ConvNet by Krizhevsky
et al. [2012]. It illustrates how the first layer looks for edges in the image. The next

94 C. Neural networks

Figure C.4: Weights from first convolution layer in Imagenet by Krizhevsky et al. [2012].
Each weight is [11x11x3] learned from input images of size [224x224x3].

layers, both convolutions and others, are much harder to visualize as the filters are
applied to the output from other filters. Some attempts has been made, e.g. Zeiler
and Fergus [2014], Mahendran and Vedaldi [2014] and Simonyan et al. [2013], but
this will not be covered in this thesis.

C.2.2 Pooling layer

The pooling layer, or sub-sampling layer, is used for two reasons: reducing the
dimensionality of the convolved features, and conferring a small degree of translation
invariance into the model. The standard approach is through spatial pooling
[Boureau et al., 2010]. In spatial pooling, a pooling function is applied to a patch of
the convolved features. Usually the function is the max value, but average and the
L2 norm can also be used. If applied to non-overlapping patches, the dimensionality
is reduced. As small changes in the placement of the patch will result in roughly the
same output, the pooling provides some translation invariance. The sub-sampling
layers in Figure C.3 shows how the patches work graphically.

Typically a patch is of size [2x2] with strides of 2 (jumps two indexes so the
patches are disjunct and collectively exhaustive), or size [3x3] with strides of 2
(overlapping). Larger patches result in more translation invariance, but come at
the cost of higher information loss. Therefore, larger patches are usually only used
in the first layers.

The pooling layers do not have any parameters, so they do not need to be trained.
However, the hyper parameters for the size and stride of the patches need to be
considered.

Springenberg et al. [2014] suggest to remove the pooling layers and just use the
convolution layers. To get dimensionality reduction they suggest using larger strides
in some layers.

C.2 Convolutional neural networks 95

C.2.3 Fully connected layer

One or more fully connected layers are often used as the last layers in the net. They
perform the actual classification. It is also possible to use other classifiers, but a
fully connected neural network is very similar to the rest of the framework, and
is therefore quite common. Multi-layer perceptrons can be used, but as discussed
in Appendix C.1, they can not be particularly deep. This should, however, not be
necessary as the previous layers should have created high level features.

C.2.4 ReLU layer

Rectified linear units, or ReLUs, are often not considered layers, but rather part of
other layers. However, they play a very important role in the ConvNets, and will
be discussed as layers here. ReLU is the non-linear activation function,

f(x) = max(0, x), (C.9)

and a linear combination of such functions can be used to approximate arbitrary
functions. This is often the only non-linear function in the convolution and sub-
sampling layers. The real strength, however, is that the use of ReLU (compared
to e.g. the sigmoid function) alleviates the problem of vanishing gradients. This
is further discussed by Glorot et al. [2011]. It is therefore possible to train deeper
structures without any unsupervised pre-training. Krizhevsky et al. [2012] shows
how some ConvNets with ReLU requires only a small fraction of the training
iterations needed with other activation functions.

C.2.5 Architectures

The success of ConvNets are partly owed to their depth. By stacking layers, the
nets are able to learn quite complex features. As seen in Figure C.4, the first layer
has some form of edge detection. The next layers combine the results from the
edge detection into higher level features, which are again combined into even higher
level features. Zeiler and Fergus [2014] show how different neurons in a layer are
activated with different parts of an image. High level nodes then react to quite
complex parts of the pictures. So while the first layer only detects edges, a higher
level layer might be able to detect something as complex as faces.

As previously discussed, the pooling layer reduces the dimensionality of the features,
and as seen from Figure C.2, so does the convolution layer. This limits the depth
of the network. It is therefore quite common to pad the input with zeros on the
borders to control the spatial size of the output volumes. This also helps preserve
the information close to the borders, so it does not vanish in the first layers.

When building a ConvNet it is important to consider the ordering of the lay-
ers. Originally, combinations that alternated between convolutions and pooling
were quite common. Now, nets usually have multiple convolutions per pooling layer.
Lecun et al. [1998] had the first successful implementations of convolutional nets

96 C. Neural networks

with LeNet as the best known. This architecture alternated between convolutions
and pooling.

AlexNet by Krizhevsky et al. [2012] popularized ConvNets in computer vision
through significantly outperforming the other participants in the ImageNet ILSVRC
challenge in 2012 [Russakovsky et al., 2015]. They used a much deeper net than
LeCun, and stacked multiple convolutions per pooling.

Two of the best known nets today are the winner and runner-up in the ILSVRC
2014 challenge, GoogLeNet by Szegedy et al. [2014] and VGGNet by Simonyan
and Zisserman [2014] respectively. The main contribution of GoogLeNet was
to dramatically reduce the number of parameters through an inception module.
VGGNet showed that the depth of the network is a critical component. The best
performing VGGNet was extremely homogeneous with only [3x3] convolutions and
[2x2] pooling. It was later fond that VGG outperforms GoogLeNet in multiple
transfer learning tasks.

Both GoogLeNet and VGGNet have pre-trained models available for the public
to use, but we were only able to find a version of GoogLeNet that could be used
commercially.

C.2.6 Training

Training a deep neural net often require large amounts of data, and can be very
computationally expensive. Thus, super computers or GPUs are often necessary
for training them. As a consequence of this, some different approaches to training
have been suggested. Typically, one can either train the whole model from scratch,
use another trained model as initialization, or just use a trained model as a fixed
feature extractor.

Training the full net

Training a full ConvNet can often be very computationally complex compared to
other machine learning methods. Procedures usually follow backpropagation as in
LeCun et al. [1989]. However, the initialization of a deep net is very important.
Training initialized with randomized weights might not work, due to instabilities in
the gradient. Simonyan and Zisserman [2014] (VGGNet), for instance, circumvented
this by first training a net shallow enough to be trained with random initialization.
When training deeper architectures, they used this net as initialization for the
bottom and top layers. Later, they found that it was possible to initialize the
weights without pre-training, using the random initialization procedure of Glorot
and Bengio [2010].

As ConvNets have a very large set of parameters they are quite prone to overfitting.
Different regularization approaches have been suggested, but non of them will be
discussed here. VGGNet used a combination of weight decay and dropout for
regularization. More on these methods can be found in e.g. Srivastava et al. [2014].

C.2 Convolutional neural networks 97

Transfer learning

If the dataset at hand is not large enough to train a ConvNet from scratch, or the
computations are too extensive for the machines available, another approach can be
used. As shown in Figure C.4, the first layer reacts to edges in the pictures. These
filters are quite general, so filters trained by one classifier can most likely be used
in other classification tasks. Higher level features might also be reasonable to use if
the objects in the two classifiers are similar. For instance, high level features from
a ConvNet trained on cats can probably be useful for classifying dogs.

With this in mind, we can use a trained ConvNet as a fixed feature extrac-
tor for the images. The images are run through the net, and the output from
one of the layers are used as input to some other classifier (e.g. logistic regres-
sion). Which layer we get the features from should be based on how similar the
classification tasks are. This method is particularly useful if the dataset is very small.

Another common approach is to fine-tune the trained net with the new data.
This can be done by changing the top layers of a trained net to fit the problem at
hand. Then the whole net is trained on the new data (with initialization from the
original data). One might want to consider keeping some of the earlier layers fixed.
That can help against overfitting as fewer parameters can vary freely.

Fine-tuning might be a good approach if the dataset at hand is reasonable sized,
or the computational power is limited. For more on transfer learning see e.g. Oquab
et al. [2014].

98 C. Neural networks

Appendix D

Features

D.1 Tf-idf

Tf-idf [Salton and McGill, 1983] stands for term frequency - inverse document
fequency, and is a common method for extracting features from text. It can be
explained through a couple of simple steps.

Word counts, is possibly on of the simplest ways of extracting features from text.
It is done by creating a matrix with one row for each document and one column
for each word. The elements are the word counts. One problem with counting
features is that longer documents will have a higher average count than shorter
documents. To adjust for this, the counts can be divided by the number of words
in the document, thus obtaining term frequencies.

Words that occur in a lot of the documents might not be as informative as words
that only occur in a subset. The inverse document frequency, downscale weights
based on how many of the documents contain the word. Let t denote the term
(word) and D = {d1, . . . , dn} the set of documents. Typically, idf is then defined as,

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}|
. (D.1)

Here |D| is the number of documents in the dataset, and |{d ∈ D : t ∈ d}| is the
number of documents where the term t occurs. The tf-idf features can then be
calculated through,

tf-idf(t, d) = tf(t, d)idf(t,D). (D.2)

One common alteration of this is,

tf-idf(t, d) = tf(t, d)(1 + idf(t,D)). (D.3)

The result of this is that terms that occur in all documents are not ignored, but have
an idf of 1. This makes sense as some words might be used by everyone, but some
might use it a lot more than others. The python library Scikit-learn [Pedregosa
et al., 2011], used in this project, has this alteration as default.

100 D. Features

Other versions of tf and idf are also used. For instance a sublinear tf scaling
1 + log(tf). However, they were not used in this thesis.

Although tf-idf was explained through words in text, it can of course be use-
ful in other settings. Typically the terms can be multiple words, or a sequence of
letters. This is often called n-grams. Tf-idf can possibly be useful in any setting
where the information is countable.

In an comparison of multiple text classifiers on multiple data sets, Zhang et al.
[2015] found that tf-idf feature outperformed counting features in a majority of the
test cases. In their experiments, they also found that tf-idf on words or consecutive
words outperformed modern convolutional neural nets for data sets with less than
560 000 training points.

D.2 Scaling features

Neither logistic regression (not penalized) nor random forests are sensitive to scaling,
though it might affect the convergence rate of the optimization. However, the
coefficients in a logistic regression are dependent on the magnitude of the features.
Thus, if it is penalized with the L1 or L2 norm of the coefficients, scaling will
affect the results. It is therefore quite common to standardize the features, meaning
subtracting the sample mean and dividing by the sample standard deviation,

xscale =
x− x̄
s

, (D.4)

x̄ =
1

N

N∑
i=1

xi, (D.5)

s2 =
1

N − 1

N∑
i=1

(xi − x̄)2. (D.6)

Frequency features like counting and tf-idf are sometimes very sparse. By
working with sparse matrices like scipy’s compressed sparse row matrix (csr by
Jones et al. [2001–]), classifiers that that can take advantage of the sparse structure
will get a significant speedup. Logistic regression and support vector machines are
two examples of such classifiers, while random forests is not. As centering would
not preserve this property, one might not want to standardize the features.

Scikit-learn by Pedregosa et al. [2011] recommend to scale sparse features by
the max absolute value of the feature,

xscale =
x

max{x}
. (D.7)

This ensures that the scaled features will have a max absolute value of 1. Compared
to scaling with the standard deviation, this method is in some ways more sensitive
to outliers. For a high value in a feature, all other elements in this feature will
become very small. On the other hand, when scaling with the standard deviation,

D.2 Scaling features 101

the data is not bounded.

Another approach to preprocessing, is to normalize the features. While stan-
dardizing is typically performed on the columns of our feature matrix, normalization
is typically performed on the rows. Normalization works by dividing the row by
e.g. the L1 or L2 norm of the row. This is a reasonable approach if the goal for
instance is to quantify the similarity between two samples.

When working with tf-idf features, the term frequency is a normalization of the
word counts.

102 D. Features

Appendix E

Aggregation of text

Tweets can only contain a maximum of 140 characters. The amount of information
available through a tweet is therefore quite limited. Alternatively, multiple tweets
from the same users can be collected into larger texts. This is not immediately
available, and has to be collected by iterating though our database of tweets.

A dataset was therefore collected, containing all tweets from the users in the
friends dataset. This was split into a training and test set, with same proportions
as the friends data in Chapter 5. Figure E.1 shows a histogram of number of
tweets per account in the training set. Both axes are logarithmic (numbers are
correct, but contracted logarithmically). Out of the 6 000 users in the training set,
approximately 1 000 users only have one tweet. It is also clear that some of the
accounts have over 1 000 tweets.

Figure E.1: Histogram showing number of tweets. Note that both axis are logarithmic.

2 to 5 grams tf-idf features were extracted from the data, which resulted in almost 1.5
million features. A logistic regression was fitted to the features, and the classification
results are displayed Table E.1. Comparing to the best text classifier on individual

104 E. Aggregation of text

tweets in Table 4.4, the aggregation of tweets is a lot better. Interestingly, also now,
the best logistic regression is regularized by the L2 norm, resulting in no subset
selection.

The probability estimates were plotted in Figure E.2. Though they are not
particularly good, they are probably decent enough. Compared to the single tweet
classifier in Figure 4.6, they seem somewhat more noisy, though the trend of
overestimating probabilities for females is not apparent.

Table E.1: Classification results from logistic regression on 2 to 5 grams tf-idf features from
from text aggregated over tweets.

precision recall f1-score prop.
f 0.71 0.67 0.69 0.41
m 0.78 0.81 0.79 0.59
total 0.75 0.75 0.75 3152

Figure E.2: Probability estimates for logistic regression on 2 to 5 grams tf-idf features from
text aggregated over tweets.

This analysis was done somewhat in parallel with the combination of classifiers, and
though it probably should have been included, there was not enough time. The
analysis presented here is also not that thorough, as is why this was included as an
appendix. However, the aggregation of information shows high promise, and would
be very interesting to investigate further.

Appendix F

Colors

This appendix is concerned with the color choices available for Twitter accounts.
The analysis is not very through, as it was dropped in preference of other, more
promising areas. The analysis that was done is included, however, possibly as
a warning that colors does not seem the be the best choice of features. Hence,
this should not really be considered as part of the thesis, just some additional
information for the interested reader.

Every twitter user has the opportunity to configure his or her own profile. This
includes some color choices for, among other, text and background. From the col-
lected data, we have access to the five color choices: profile_background_color,
profile_link_color, profile_sidebar_border_color,
profile_sidebar_fill_color, and profile_text_color. They all come in the
hexadecimal RRGGBB format.

First they were transformed to integers and used as features to a random forests
classifiers. The training and test set were the same as in Section 3.1. When mapping
a three dimensional color code to a one dimensional feature, colors that are close
can be very far from each other, Especially for small changes in RR. Therefore,
the random forests classification performance was expected to not be very good.
Table F.1 confirms this belief.

Figure F.1 shows bar charts for the proportions of females in the features. The
blue lines are histogram of users in thousands. For each chart there is one color
that is chosen by more than half of the population. This is probably the default
color. Other than that, the figure does not give much information. A couple of the
bars are around 0.8, but there are fairly few observations in these. One could try to
make classifiers based on only these, but as it is very strange to map colors to a
line, this was not pursued further.

The users with default colors were removed from the datasets, and a random
forests was fitted to the data. The classification results are displayed in Table F.2.
The results are still not particularly good, but there is somewhat more balance
between the classes.

106 F. Colors

Table F.1: R.F. with 200 trees on colors transformed to integers.

precision recall f1-score prop.
f 0.63 0.3 0.4 0.42
m 0.63 0.87 0.73 0.58
total 0.63 0.63 0.6 11630

Figure F.1: Bar charts of female proportions in features from training data in Table F.1.
The blue lines are histograms of users in thousands.

Next, tree features: RR, GG, and BB, were created from each color. This should
make distances between colors a lot more intuitive. Each hexadecimal number is
still transformed to an integer. A random forests was fitted to the new features, and
from Table F.3, it seems like this new mapping has a positive effect on the classifier.
Also here, the female proportions for the individual features were calculated and
are displayed in Figure F.2. Each row corresponds to the features:
profile_background_color, profile_link_color,
profile_sidebar_border_color, profile_sidebar_fill_color, and
profile_text_color. The columns corresponds to RR, GG, and BB. The labels
were removed due to space considerations.

Here there are no clear patterns, but there are some high and low proportions that
was studied further. A new classifier was based on these most extreme proportions,
and only users with these colors were included in the training and test set. There
are some tuning parameters that needed to be considered: the with of the bars, the
minimum number of users within a bar, and the lower and upper extreme values
for the proportions. These were tune, though not particularly thoroughly. The

107

Table F.2: R.F. with 200 trees on colors transformed to integers. Users with default colors
were removed from the dataset.

precision recall f1-score prop.
f 0.63 0.54 0.58 0.46
m 0.65 0.72 0.68 0.54
total 0.64 0.64 0.64 5733

Table F.3: R.F. with 200 trees on colors split into R G B integer features. User with only
default colors were removed.

precision recall f1-score prop.
f 0.65 0.56 0.6 0.46
m 0.66 0.74 0.7 0.54
total 0.66 0.66 0.65 5733

result of the classifier can be found in Table F.4. From the table it is clear that
high accuracy is only obtainable for a very small subset. Also, colors seems to be
more descriptive for women than men.

Table F.4: R.F. with 200 trees on colors split into R G B features. Only best separating
colors were used.

precision recall f1-score prop.
f 0.83 0.92 0.87 0.75
m 0.64 0.44 0.52 0.25
total 0.79 0.8 0.79 397

In Figure F.3 the colors of the users included in this training set are displayed. The
area of the colors are representative for the number of users. Red and pink seems
to be indications of female users, and blue and green might be an indication of a
male user.

108 F. Colors

Figure F.2: Female proportions of R G B colors. Each row corresponds to the respective
features in Figure F.1, with the same ordering. The columns are RR, GG, and BB. Default
colors are removed. The blue lines are users in each bar (in thousands).

109

(a) Male (b) Female

Figure F.3: Colors from users in the training set used in Table F.4. The size of the areas
corresponds to the number of users.

	Preface
	Abstract
	Sammendrag
	Contents
	Introduction
	Notation

	The data
	Labeling data
	Different datasets

	Features from meta informaiton
	Handmade features from information
	The classifiers
	Performance analysis

	Hashtags
	Counting features
	Tf-idf features
	N-grams

	Text analysis
	Natural language processing
	Resent developments

	Handmade features from text
	Words in tweets
	N-grams on text
	Retweets
	Aggregtion of text

	Emojis and emoticons
	User description

	Friends
	Profile images
	Image recognition
	Retrieving images
	Eigenfaces
	Convolutional neural networks

	Combining classifiers
	Methods for combining classifiers
	Fixed combination rules
	Combination through a classifier

	Missing data
	Combining without images
	Combining with images

	Summary
	Further work

	Bibliography
	Appendices
	Logistic regression
	Regularization
	Reweighting

	Random forests
	CART
	Building the tree

	Bagging
	Random forests
	Why random forests works
	Tuning
	Reweighting

	Neural networks
	Perceptrons
	Fitting perceptrons
	Vanishing gradient

	Convolutional neural networks
	Convolution layer
	Pooling layer
	Fully connected layer
	ReLU layer
	Architectures
	Training

	Features
	Tf-idf
	Scaling features

	Aggregation of text
	Colors

