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Summary

Summary

Due to a rising interest in oil exploration in Arctic areas several new platform designs
have been introduced to combat the problems with level ice loads. This has led to
research into ice strengthening and how this affects the open water behaviour. One of
the new designs, called the Total Buoy, has a slanted hull in the waterline intended
to deflect level ice down and around the structure, but this hull design introduces a
geometrical non-linearity. This non-linearity causes problems in the design of these types
of structures, because most hydrodynamic program cannot handle the rapid change of
geometry in the waterline. This has inspired several attempts to write a simple numerical
model to handle the calculation, and avoid costly model tests in the pre-design.

A large part of this thesis presents the theory and methods used in the development
of this new numerical model. This is meant to document the thought process in a
way which can allow others to continue the development. The numerical model was
developed to calculate motion results from regular waves in the three symmetric motions;
Surge, Heave and Pitch. In addition to this a very simple ice calculation was included
as a starting point for further development.

As part of this work on a new numerical model a parallel study of an alternative com-
mercial program was done. This is to test the usability of an (expensive) commercial
program in relation to this non-linear problem. The DNV program Wasim was selected
for this purpose, and the modelling has also been documented and the input files are
included in the electronic appendix.

After documenting the basis of the numerical model and Wasim model it was necessary
to do a comprehensive comparison study of the models. To help with the comparison
Force Technology allowed the use of model tests results which were performed on the
Total Buoy concept in 2006. The comparisons showed that while the numerical model
was showing some large responses around the heave natural period in both heave and
pitch the results were in general close to the model tests. The Wasim model did not
show the same correlation in surge and pitch, but the heave results were shown to be
close, but the use of the Wasim program is believed to be unwise on this type of problem.

Finally, an assessment of the Total Buoy’s open water and level ice behaviour was done.
This assessment showed that the Total buoy would most likely have problems with large
pitch motions. This was shown to be true in both the Norwegian Sea and the Eastern
Barents Sea, the Norwegian Sea was found to be a unlikely deployment area due to the
lack of level ice. The pitch motion was so large that it would make year round human
habitation impossible, and it was advised that the buoy should not be used for this
purpose, and only in the eastern Barents Sea. Finally, it was found that the ice theory
which was applied for the ice calculation could not give a true assessment of the level ice
capabilities of the buoy, and the lack of other alternative solutions made the assessment
impossible.

vi Jon Marius Aasheim, 2012



Summary

Sammendrag

På grunn av en økende interesse for oljeleting i Arktis, så har man kommet med nye
designer på offshore plattformer som er beregnet for å håndtere is laster. Dette har
ført til forskning på nye måter å bryte isen på, og hvordan disse nye designene påvirker
oppførselen til strukturene i åpent vann. Ett av disse nye designene er Total bøyen som
er en konisk overflatebøye som skal være mer effektiv i håndteringen av is. Problemet
med dette designet er at den koniske formen introduserer en ikke-linearitet på grunn
av stor forandring i vannlinjen. Dette gjør at de fleste beregningsprogram ikke klarer
å håndtere problemet. Denne masteroppgaven har som mål å starte utviklingen av
en enkel beregningsmodell for å håndtere hydrodynamikk for ikke-lineær geometri og
islaster.

En stor del av denne oppgaven brukes til å presentere den teoretiske basisen som brukes
i beregningsmodellen, og oppbygningen av selve programmet. Dette er ment til å gi
andre innsikt i tankeprosessen slik at de kan bruke programmet, og eventuelt utbedre
det som mangler. Beregningsmodellen er i første omgang laget for å håndtere regulære
bølger, og beregne bevegelsene for Jag, Hiv og Stamp. I tillegg til dette har det også
blitt laget en enkel ismodul som et startpunkt for videre utvikling.

Parallelt med arbeidet på den numeriske modellen, så har det også blitt gjort et forsøk
på å modellere problemet i et kommersielt hydrodynamisk program. Programmet som
ble brukt er DNVs Wasim, som er en del av Sesam pakken. Dette var for å undersøke
om et alternativt kommersielt program kunne løse oppgaven, og eventuelt brukes for å
hjelpe til med utviklingen av beregningsmodellen. Modelleringen har derfor også blitt
dokumentert i oppgaven samt inkludert i form av input filer i appendiks.

Ved hjelp av modellforsøk på Total bøyen gjennomført av Force Technology i 2006,
så ble det mulig å sammenligne modellene. Sammenligningen viste at selv om den
numeriske modellen hadde noen store responsamplituder, i både hiv og stamp, nær
egensvingeperioden i hiv, så var resultatene ellers veldig nære modellforsøkene. Wasim
modellen hadde ikke samme korrelasjon med modellforsøkene i jag og stamp, men heller
en lineærrelasjon. Hivbevegelsen derimot viste større likhet med modellforsøkene. Dette
var fremdeles ikke nok til at Wasim kan anbefales til fremtidig arbeid med dette prob-
lemet.

Helt til slutt ble det gjort en utredning av Total bøyens oppførsel i bølger og i is.
Denne utredningen viste at Total bøyen mest sannsynlig vil ha problemer med stampe-
bevegelser. Dette på tross av at bøyen sannsynligvis er ment til å bli brukt i det østre
Barentshavet som har mye mildere sjøtilstander enn i Norskehavet. Stampebevegelsene
viste seg å være såpass store in noen tilfeller at det ikke kan anses som forsvarlig for
mennesker å oppholde seg der året rundt. Det anbefaltes derfor at bøye, dersom den
skal brukes, benyttes som en ubemannet installasjon mesteparten av tiden. I forsøket
på å vurdere iskapabiliteten til bøyen, så ble det oppdaget at det fantes svært lite i form
av dokumentasjon på metoden som ble brukt til isberegningen og ellers få alternative
løsninger til sammenligning. Det ble derfor umulig å gjøre en skikkelig utredning av
iskapabiliteten til Total bøyen.

Jon Marius Aasheim, 2012 vii
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Chapter 1

Introduction

In the last few decades there has been a rising interest for oil exploration in the Arctic
regions. This area gives rise to new challenges in the design of offshore structures, in
particular the challenge of Ice loading, great water depths and harsh climate in general.
As part of this interest in the Arctic region a few new designs of ice strengthened
offshore structures have been proposed. This thesis will focus on spar buoy platforms
with a waterline designed to deflect ice. An example of this can be seen in figure
1.1. This design has been examined by previous students in both their project thesis
and master thesis, and in the process a MATLAB program was developed which uses
hydrodynamic theory to calculate motions and forces. The most important work was
done by Nils Gunnar Viko in his master thesis(Viko, 2006) and Einar B Glomnes in his
project(Glomnes, 2006) and master thesis(Glomnes, 2007)

Figure 1.1: Total buoy (Glomnes, 2006)

A preliminary study of the numerical model was made before the start of this thesis,
and the results of this study was such that it was deemed necessary to attempt to write
another numerical model with a different theoretical basis. The main comparisons of
the previous numerical model have been included in appendix A. In addition to this an
appendix highlighting the problematic areas of the previous numerical mode has also
been added (appendix B). It should be noted that these comparisons were made before
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the model tests from Force Technology was made available, and the model test results
which are used are only the ones which were available through Glomnes (2006) and
Glomnes (2007). These have been added to show the background for this thesis. They
can also give valuable insight into the workings of the previous numerical model, and
an understanding of problems which needed to be solved in this numerical model.

The main objective in this thesis is to start the development of another MATLAB
program which will use a simple theory as basis. The aim of the program is to keep it
as simple as possible, and also keeping the programming understandable. This means
that the theory applied will be explained in detail in this thesis, and the program code
will have comments explaining the different steps in the code. Specifics of the theory
will be kept to a minimum in the code itself to keep the code readable. If it is possible
code from the previous attempts by Glomnes and Viko will be reused, however due to
the general lack of comments and some poor code structuring, there will still be much
work to be done. These functions will also be verified, but a description or explanation
of all the theory will not be featured in this thesis. All codes used will be credited in the
header comments of each function. If the programming progresses quickly effort will be
made to rewrite or change the old code, but the focus in this thesis is first and foremost
to get working non-linear motion analyses.

To test the results from the new program some comparisons will be made between
the new program, and model tests of the total buoy, which have been made available
through Force Technology. The numerical model will also be compared to a commercial
program. The commercial program is Wasim, which is part of the HydroD in DNVs
SESAM package.

Finally an assessment of the Open Water Behaviour and the Ice Behaviour of the Total
Buoy will be performed. This is to give an actual assessment on the buoy design.

As it is not expected that the new numerical model will be perfect, some effort will be
made to point out areas which will need further development. This is the point of the
extensive comparisons which will feature a large part of this thesis
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Chapter 2

Theory

This chapter contains a description of the theory which is applied in the new program.
Specific programming related theory and a short description of the different functions
will be the subject of chapter 3.

2.1 Wave Theory

One of the key points in this program is pressure force integration to the true surface,
and this requires the wave kinematics to be changed as regular airy waves are only
accurate to the SWL, which means that it is only valid for infinitesimal waves. (see
section 4.1 for the specifics of the airy theory or see (Faltinsen, 1990)) To avoid using
higher order theory it is possible to apply simplified methods.

2.1.1 Extrapolated Airy

The first and simplest method is the extrapolated airy. In this method the normal airy
kinematics are used from the sea bottom to the wave through. The parts of the structure
which are in a wave through will simply be excluded from the force integration. As for
the wave crest one simply uses the pressure value at SWL as a constant value in the
entire wave crest. The method is shown in figure 2.1.

A problem with this method is that an error of second order is introduced in the wave
through. This is due to the dynamic pressure at that point, which is zero. The static
pressure at that point however is non zero and the result is a non zero total pressure in
a point which should be zero. This is further shown in figure 2.2.
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Figure 2.1: Illustration of extrapolated Airy (Amdahl, 2010)

Figure 2.2: Hydrodynamic pressures in wave crests and wave trough (Faltinsen, 1990)
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2.1.2 Wheeler Stretching

Another method which can be used is Wheeler Stretching. The point is to extend the
validity of the wave kinematics above the SWL, and to do it in a better way than just
keeping the pressure in the wave crest constant. The method is similar to regular Airy
theory except that the entire wave column is included by stretching the airy theory to
include the instantaneous wave height. An illustration of this method can be seen figure
2.3.

z′ = (z − ζ) d

d+ ζ
(2.1)

Where ζ = ζasin(ωt− kx)

With this modification one can simply exchange the z in the normal Airy kinematics
equations to gain the stretched kinematics. The dynamic pressure equation is of par-
ticular interest in this program, as it is the basis for the pressure calculation which is
the key to the motion calculation.

pDyn,Airy = ρgζae
kzsin(ωt− kx) (2.2)

which becomes

pDyn,Wheeler = ρgζae
k(z−ζ) d

d+ζ sin(ωt− kx) (2.3)

Figure 2.3: Illustration of Wheeler Stretching (Amdahl, 2010)
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2.1.3 Differences Between Methods

There are some differences in the wave kinematics of the methods, however the difference
is mainly for drag dominated structures i.e. affected by velocity. For mass dominated
structures, i.e. affected by acceleration, the difference is not that large. In the case of
a platform type spar buoy, it is generally considered to be a mass dominated structure
because of the size, so it should not matter whether wheeler or extrapolated airy is
chosen for this analysis.

2.2 Motion Theory

As previously mentioned the motion calculations are going to be as simple as possible.
The previous programs did try to solve an equation of motion system with three degrees
of freedom. (see equation 2.4)

(M + A)~a+B~v + C~s = ~F (2.4)

The problem with trying to solve this system of equations is that it requires a compre-
hensive time integration scheme which may have some problems with accuracy and slow
solution. This problem increases when including coupling effects and thereby increasing
the size of the matrix.

One of the key points of the new program is to increase the solution speed, and also to
increase the accuracy compared to the old program. This must be done by introducing
some simplifications to the problem. The main idea is to calculate the acceleration for
each time step, and calculate the damping and restoring terms as forces on the right
side of the equation system. The calculations must be done for each time step, and we
can use the previous time step values for the velocity and displacement (see equation
2.5]. This would, of course, require the time step to be relatively small to keep the error
which is introduced by this method small.

~at+1 =
~FFK −B~vt − C~st

M + A
(2.5)

2.2.1 Froude-Krylov force

An important part of this calculation is the Froude-Krylov force. (See equation 2.6)
This force is calculated from the undisturbed pressure field on the structure. It includes
both the dynamic pressure, which is related to the waves passing the structure as if it
was not there, and the static pressure, which is the water pressure. This pressure is
then integrated over the submerged area of the structure and also multiplied with the
normal vector according to which force direction is desired. A more detailed account of
the Froude-Krylov force can be found in (Faltinsen, 1990)
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~FFK = −
∫∫

Sw
p ~n ds, (2.6)

2.2.2 Added Mass

The added mass used in this program is limited slightly as it is quite complicated to
calculate, or find correct added mass for a structure as it often requires either compre-
hensive CFD calculation or model tests. The added mass is therefore not dependent
on the wave frequency as it should be. The added mass can still be calculated but will
be independent on frequency, one way of doing this is by using tables of similar shapes
which can be found in different rules or recommended practices e.g DNV RP-H103.
Added Mass coefficients can also be found using a forced oscillation test (Steen and
Aarsnes, 2010). Added mass will then usually be found to be a multiple of the mass,
and this is the form which is used in this program.

2.2.3 Damping

Damping has much of the same problems as the added mass with respect to calcula-
tion. The simplest way to actually find how large the structure damping is, is to do
a free oscillation test (Steen and Aarsnes, 2010). Normally one finds the damping as
a percentage of the critical damping of the structure. When this has been found one
can find the actual damping coefficient by equation 2.7 (Ivar Langen, 1979) where the
damping percentage is given by ζd.

B = 2ζd
√

(M + A)C (2.7)

2.2.4 Restoring Force

The restoring force is needed to get the structure to right itself after the initial dis-
placement. There are different ways of calculating this according to what type motion
it is, translation or rotation, and also whether the motion is connected to the buoyancy
of the structure or mooring lines. Generally Surge, Sway and Yaw are only affected
by mooring lines with respect to restoring force. Heave, Roll and Pitch on the other
hand are mostly affected by the buoyancy of the structure, but they are also affected
by mooring lines if the mooring line characteristics are defined in that manner.

Surge Restoring Force

As mentioned previously surge is only affected by the mooring lines with respect to
restoring force. A good way of modelling mooring lines is to consider the lines as
inelastic cables, this means that the simple catenary equations can be used. The entire
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derivation of eq 2.9 in (Faltinsen, 1990). Figure 2.4 shows the geometric relations from
which equation 2.8 can be found.

Figure 2.4: Mooring Lines on the Total Buoy

X = l − ls + x (2.8)

X = l − h

√
1 + 2TH

wh
+ TH

w
cosh−1(1 + hw

TH
) (2.9)

where h = TH
w

[cosh( xw
TH

) − 1] and TH = Tcosφw

With these equations it is possible to find the restoring coefficient for surge. An analyt-
ical expression can be found by differentiating equation 2.9. The resulting expression is
equation 2.10.

C11 = dTH
dX

= w

 −2√
1 + (TH)M

wh

+ cosh−1(1 + hw

(TH)M
)
−1

(2.10)

Where (TH)M is the average horizontal force from the anchor line on the vessel.

Heave Restoring Force

This restoring force is based on the Archimedes principle. The buoyancy of the structure
will change with the oscillation due to change in the draft. This force can therefore be
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found from equation 2.11. In the program the δV is comprised of both the both the
change in draft and the influence of the waves on the hull.

FR
3 = ρg(V + δV ) (2.11)

Pitch Restoring Moment

This is also based on the buoyancy of the structure, but it is the force couple between
the buoyancy forces and the mass which is gives rise to this moment as is shown i figure
2.5. The expression for the restoring moment will then be as shown in equation 2.12

MR
5 = GZ

2 G+ GZ

2 B (2.12)

Figure 2.5: Restoring Moment

2.2.5 Numerical Integration

After calculating the different coefficients and finding the acceleration we need to find
the velocity and displacement of the structure. There are different numerical integration
theories which can be used for this purpose, but it is a stepwise integration method which
is necessary in this case.

The Newmark-β numerical integration method has be selected for this purpose. The
Newmark-β method is a good choice because the method is very easily customised, and
if the right parameters are chosen it can be unconditionally stable. The full derivation
of the Newmark-β method can be seen in (Newmark, 1959).

vk+1 = vk + (1 − γ)hak + γhak + 1 (2.13)
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sk+1 = uk + hvk + (1
2 − β)h2ak + βh2ak+1 (2.14)

The numerical model uses the constant average acceleration variation on equation 2.13
and 2.14, with β = 1

4 and γ = 1
2 .

β is the parameter deciding the acceleration slope between each time step. γ is govern-
ing whether the method has artificial damping, i.e. if the method will damp out free
oscillation. A γ value larger than 0.5 gives artificial damping, a value of exactly 0.5
gives no damping, and a value less than 0.5 results in negative damping.

2.3 Ice Theory

Level ice loads on structures is a relatively new area of study, at least compared to other
disciplines within structural and hydrodynamics. Much of the field focuses on empirical
formulas created from model tests and full scale measurements.

2.3.1 Ice Parameters

Ice is a very complex load to consider because it has several different components which
can influence the total load. The different types of ice also make the calculations more
difficult because of the large difference in properties. In fact an ice sheet will probably
have several different types of ice features which may hit the structure, some of the
different types of ice features which need to considered are shown in table 2.1

These are still not all the parameters which influence the ice actions on structures
however. The rest can be seen in figure 2.6 and this is the reason why ice actions are
so difficult to calculate.

2.3.2 Ice Forces

From the ice parameters it is possible to find the most important forces from the ice
action.
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Type Subdivision
Level Ice Sea ice which is unaffected by deformation.

Deformed Ice A general term for ice which has been squeezed together and in places
forced upward or downwards.

Rafted Ice Type of deformed ice formed by one piece of ice overriding another.
Ridge A line or wall of broken ice forced up by pressure. May be fresh or

weathered. The submerged part of the ridge is termed an ice keel. Parts
of the keel may be consolidated. A ridge is formed by pressure or shear.
Some types of ridges are:
>New ridge: Ridge with sharp peaks and slopes of sides usually about
40o
>Weathered ridge: Ridge with peaks slightly rounded and slope of sides
usually 30 − 40o. Individual fragments are not discernible.
>Very Weathered ridge: Ridge with peaks very rounded, slope of sides
usually 20 − 30o
>Aged Ridge: Ridge which has undergone considerable weathering
>Consolidated ridge: A ridge in which the upper parts of the ridge has
frozen together

Rubble Ice piles haphazardly one piece over another in the form of ridges or walls

Hummock A hillock of broken ice which has been forced upwards by pressure. May
be fresh or weathered.

Table 2.1: Typical ice features (S. Loset, 2006)

Figure 2.6: The major parameters affecting the ice action (S. Loset, 2006)
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• Breaking Force

• Friction Force

• Submergence Force (Buoyancy Force)

Breaking Force

The first force is the force required to break ice when it hits the structure. As can be
seen in figure 2.6 there are several different ways to break the ice. The difference in
terms of the force required is quite large, but it is breaking ice by bending which is
considered to be the mode which requires the least amount of force (S. Loset, 2006).

Friction Force

The friction force comes from ice which slides along the structure and is influenced by
the surface roughness of the ice and the abrasiveness. These things can vary over a
wide range of values within a single ice floe. The frictional forces are simply calculated
from the Coulomb friction equation. This force is related to the other two forces as it is
dependent on the normal force. The surface roughness and abrasiveness influences the
force by changing the friction coefficient µ

Ff ≤ µFn (2.15)

Submergence Force or Lifting Force

This force is really only relevant to structures which are slanted in the waterline i.e
either pushes the ice upwards or downwards. These types of solutions are often used
in dealing with ice, as it helps to break the ice in bending rather than crushing as
previously mentioned. Instead the ice will subject the structure to the reaction force
from either being pushed down into the water, or lifted up and often piled on the hull
depending on which way the slanted hull pushes the ice.

2.3.3 Methods for Calculation

This leads us to the methods of calculation. In the case of the Total Buoy it is necessary
to use a method which considers downwards slanting waterline geometry. However an
upwards slanting method will be included as well.

Croasdale’s method (S. Loset, 2006)

This is an empirical method developed by Croasdale and it is a two dimensional loading
model on a plane slope. This method is for upwards slanted structures. An important
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part of this method is that it includes the force required to push the ice blocks up the
slope. The horizontal component of the force is:

FH = C1DRf

(
ρwatergh

5

E

)0.25

+ C2Dhrhρiceg (2.16)

C1 and C2 are coefficients depending on the slope inclination and the ice dynamic friction
on the structure surface. Other important parts of the equations are h, which is the
level ice thickness, and hr which is the rubble height. The coefficients can be found
from the following relations.

C1 = 0.68ζ1

ζ2
(2.17)

C2 = ζ1(
ζ1

ζ2
+ cot(α)) (2.18)

where

ζ1 = sin(α) + µcos(α)

ζ2 = cos(α) + µsin(α)

The ice rubble height is given from a formula which was developed by looking at rubble
height at the confederation bridge in Canada. (S. Loset, 2006) This is really not relevant
in the case of the total buoy as the ice floes will be pushed down and past the body.

hr = 7.6h0.64 (2.19)

This method was later modified by Croasedale and others, making it a 3D model instead
of a 2D model. The new solution includes many additional factors that are important
for the ice action. The new horizontal force includes the following force contributions.

• Ice Breaking Force

• Ice Sheet Pushing Force

• Ice Friction Force

• Ice Rubble Lifting Force i.e the force required to push the rubble up.

• Ice Block Turning Force

FH = FB + FP + FR + FL + FT (2.20)

FB = C1DRf

(
ρwatergh

5

E

)0.25 [
1 + (π

2l

4D )
]

(2.21)
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where l is the characteristic length of an ice sheet given by:

l =
(

Eh3

12ρwaterg(1 − ν2)

)0.25

(2.22)

The next force is the due to rubble from ice which has been pushed back onto the ice
sheet from the structure and then pushes back on the ice sheet (see figure 2.7).

Figure 2.7: Ice sheet rubble build up (S. Loset, 2006)

FP = Dh2
rµig(1 − η)

(
1 − tan(θ)

tan(α)

)2 ( 1
2tan(θ)

)
(2.23)

After breaking the ice blocks will continue to slide upwards until they fall back onto the
ice sheet as shown in figure 2.7. This sliding causes friction forces and is given by:

FR = DP

[
1

cos(α) − µisin(α)

]
(2.24)

where
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P = 0.5(µice + µs)ρiceg(1 − ν)h2
r

[
µicesin(α)

(
1

tan(θ) − 1
tan(α)

)(
1 − tan(θ)

tan(α)

)

+ cos(α)
(

1
tan(α)

)(
1 − tan(θ)

tan(α)

)]
+ hhrρiceg(1 + µscot(α))

(2.25)

The next force is the additional force required to lift and shear through the ice rubble
which has failed and piled on top of the ice sheet. This force is only until the ice sheet
has been pushed up enough that it breaks in bending.

FL = 0.5Dh2
rρiceg(1 − η)ζ[(cot(θ) − cot(α))(1 − tan(θ)cot(α))

+tan(φ)(1 − tan(θ)cot(α))2] + ζcDhr(1 − tan(θ)cot(α))
(2.26)

Finally when the ice blocks (the broken pieces of the ice sheet) have been pushed to
the top of the structure and begin to turn backwards a turning force will affect the
structure.

FT = 1.5h2ρicegD

[
cos(θ)

sin(θ) − µscos(θ)

]
(2.27)

2.3.4 Timco Correction

The Croasdale method was modified by G. W Timco (1997) to be applied on structures
like the Total Buoy which has downwards slanted hull. One needs to consider effects
which are related to buoyancy of the ice how this affects the friction forces and rotation
of the ice blocks. The main changes are that the inclination angle, α which is negative
here and the rubble height becomes rubble depth. The equation is similar to the original
2D Croasdale equation but instead some elements of the 3D Croasdale is introduced (the
first expression is from equation 2.19).

FB = C3DRf

(
ρwatergh

5

E

)0.25 [
1 + (π

2l

4D )
]

+ C4Dh(ρwater − ρice)g (2.28)

C3 = 0.68ζ3

ζ4
(2.29)

C4 = ζ3(
ζ3

ζ4
− cot(α)) (2.30)

where

ζ1 = µcos(α) − sin(α)

ζ2 = µsin(α) + cos(α)
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Chapter 3

Program Theory

The theory which was the topic of chapter 2 must be transformed into a programming
language to be usable. This chapter’s topic will be the different approximations and
methods which are applied in the program, and should help in understanding the choices
which have been made. Some effort will be made to point out intentional errors (where
applicable) and simplifications which are necessary to get the program to function.

3.1 Program Description

This numerical mode is an attempt to solve the problem of a non-linear geometry within
a reasonable time. The previous numerical model had problems with unstable solutions,
noise and slow calculation. The theory applied in that version is sound but the solution
of a large coupled matrix proved to be problematic. The old numerical model also had
different solution options for the motion, such as frequency domain and linear time
domain solutions (A diagram showing the functions of the old program can be seen in
figure 3.1). This new attempt only has non-linear motion solution and it also has a
basic ice calculation solution (the new diagram can be seen in figure 3.2)
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Figure 3.1: Functionality of the previous program

Figure 3.2: Functionality of the new program
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3.2 Program Structure

Figure 3.3: Flow diagram with main subroutines

main

This is the Main call function of the program, its main purpose is to coordinate the
different subroutines of the program, and pass variables between them. It is essentially
the back bone of the program.

DataInput

The DataInput subroutine is basically the general input file. This is where all the infor-
mation about the buoy geometry, environment parameters and mooring characteristics.
The main idea of having the input file as an m-file rather than a normal text file is to
be able to have comments. This will help new user to understand how to input other
values.

Start

This subroutine helps to extract and assign values from the graphical user interface
(GUI) function. This mostly helps to keep the code structured.
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Menu

This subroutine connects the GUI to the program itself. It contains different functions
which are activated e.g. when buttons are pressed, inputs are confirmed etc. The menu
has been created such that only the input panels which are visible will run if the start
button is pressed. (see figure 3.4 and 3.5) The GUI takes input from the user through
the input text boxes. After the input has been confirmed i.e the user has pressed enter
or tab, then the number next to the text box will change. The user can also choose
amongst several plots.

Figure 3.4: Motion analysis option

Figure 3.5: Ice calculation option
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PreCalc

This subroutine controls calculations which must be done in order to be able to do the
analysis. Once again it is only necessary for structuring of the code.

Geometry

This function creates the buoy geometry from the input values. It actually does several
things which is related to the buoy geometry, it generates a figure (see figure 3.6) and a
panel model with all coordinates in the Cartesian-coordinate system. It also calculates
the area of each panel and translates all coordinates from the corners of each panel to
the midpoint. This function is essential for the analysis later.

Figure 3.6: Panel model created by Geometry

Inertia

This function calculates the mass and added mass of the structure based on the geometry
and added mass values defined in the input. Added mass is calculated as a factor times
the mass of the structure as it would be to complex to actually calculate the added
mass.

Analysis

This function is connected to the GUI as the analysis choice will determine if Motion-
Analysis or IceCalc or both will run.
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MotionAnalysis

This is the motion analysis function, it is based on the theory which was presented in
section 2.2. The calculation procedure is performed as shown in figure 3.7

Figure 3.7: Diagram of motion analysis

The restoring calculation was written by Glomnes (2006) and Viko (2006) and it utilizes
conic sections to do an approximation of the restoring moment for pitch, the heave
restoring is not used in this program as that is calculated by using the static pressure
calculation. The other factor which is calculated is the restoring coefficient due to the
mooring lines. This part of the program was initially intended to be updated each time
step, but it was slowing the program down significantly, so finally the calculations were
done before the time calculations.

The pressure calculation uses the panel area and the panel midpoint coordinates to
calculate the force on each panel over the structure. A built-in MATLAB function can
be used to find the normal vectors of each panel, which makes it possible to calculate
the separate motion directions with ease. The pressure calculations are done for both
dynamic pressure and static pressure. (not interesting for surge) The pressure is calcu-
lated to the true surface and should therefore be able to handle the rapid changes in
the geometry near the water line.

After these quantities have been calculated it is possible to calculate the total force by
summing all the forces. The restoring forces and the damping forces normally needs to
be calculated simultaneously as the acceleration but in order to simplify the program
the velocity and displacement are from the previous step instead. This is, of course,
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not correct, but the error should be small and will be dependent on the size of the time
step.

By using the simplification above it is very simple to calculate the acceleration for the
next step, and by using the Newmark-β integration method it is also very simple to find
the velocity and displacements.

After the displacements have been found the coordinates which are used in the calcula-
tions are displaced accordingly. This results in a change in the pressure forces and the
displacements are also used to find the new restoring coefficients.

IceCalc

This function is actually very simple and it follows the description which can be seen in
the section 2.3. As these methods are based on coefficients the calculations are just based
on calculating the coefficients and finding the force of the level ice on the structure. The
complication is that as this method is for fixed structures and not floating structures
it is necessary to iterate with the restoring forces of pitch and surge. The iteration is
done by moving the structure step by step until the restoring force is equal to the ice
force (within an error rate which is set to a low value). At that point the heeling and
drift-off is saved. This is done for all the ice thicknesses which have been input in the
GUI.

Plotter

This is the result plotting function. The function has a simple layout and different plots
will be generated depending on the selections made in the GUI. Each plot has also been
written in a way which improves the figures which are created, by adding lines and
expanding the borders of the figure itself.
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Chapter 4

Modelling of Spar in Wasim

The focus of this chapter will be on the most important theory and assumptions which
are applied in the modelling of the structure in Wasim. The aim is to attempt to model
the buoy as closely as possible to the numerical model. This should give results which
are comparable. Another point is to highlight the differences in the modelling which
could highlight inaccuracies in the numerical model.

4.1 Sea model

From the model tests by Force Technology presented by (Glomnes, 2006), and also the
limitations of the numerical models capabilities regular waves are used in the calculations
also in Wasim. The details of the design locations is not known, so a few parameters have
just been picked out from the numerical model and also from the thesis of (Glomnes,
2006).

4.1.1 Location Parameters

Some of the most important physical parameters in this case are the water depth,
proximity to land, and other possible disturbances. The last two cases have simply
been ignored in the modelling, so the structure is assumed to be in an area which has
a flat bottom and open seas.

Water Depth 300 m
Kinematic viscosity 1.025 Kg/m3

Density of Water 1.462e-005 m2s

Table 4.1: Main Location Parameters
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4.1.2 Waves

In the Wasim analysis there are two possible choices regarding non-linear wave theory
which can be applied to the structure. These are:

• Airy waves

• 5th order stokes waves

Airy wave theory

Airy wave theory is a linearised wave theory which describes the motion and velocity of
the wave particles with potential flow or velocity potential. The theory is derived from
the Navier-Stokes equation using the assumptions of an irrotational, incompressible and
inviscid fluid. Even with the limitations these assumptions impose on the airy waves,
the result is still fairly accurate. However the airy theory does not have the required
physical description in this case. The main reason for this can be seen in the derivation
of the airy wave theory which can be seen in full in chapter 2 of (Faltinsen, 1990) but
the most critical component in this derivation comes from the simplifications of the
kinematic (equation 4.1) and dynamic free surface (equation 4.2) conditions which are
applied on the free surface.

∂ζ

∂t
+ ∂φ

∂x

∂ζ

∂x
+ ∂φ

∂y

∂ζ

∂y
− ∂φ

∂z
on z = ζ(x, y, t) (4.1)

gζ + ∂φ

∂t
+ 1

2(
(
∂φ

∂x

)2

+ (∂φ
∂y

)2 + (∂φ
∂z

)2) on z = ζ(x, y, t) (4.2)

These boundary conditions are non-linear but in linear theory they are linearised by
doing a Taylor expansion. This enables the transfer of the boundary conditions from
the free-surface position z = ζ(x, y, t) to the mean free-surface z = 0. In the linear
theory all higher order terms in the Taylor expansion are neglected and the result is
(Kinematic and dynamic respectively):

∂ζ

∂t
= ∂φ

∂z
on z = 0 (4.3)

gζ + ∂φ

∂t
= 0 on z = 0 (4.4)

The problems with this simplification is shown in figure 4.1 which shows the pressure
variation under a wave crest. The pressure variation is correctly defined up to the mean
free surface but is assumed constant in the remaining distance to the actual free surface.
The free surface of a single airy wave is a sinusoidal which can be represented on the
form as equation 4.5. A sinusoidal does not represent the real shape of a wave so a
higher order theory is needed.

ζ(x, t) = ζasin(ωt− kx) (4.5)
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Figure 4.1: Pressure variation under wave crest(Faltinsen, 1990)

4.1.3 Stokes 5th order waves

The Stokes 5th order waves are derived in the same way as Airy waves, which actually
corresponds to a 1st order stokes wave. The difference lies in the order of the Taylor
expansion which is included in the derivation of the free surface boundary conditions.
The advantage of this is that the wave kinematics are defined to the instantaneous free
surface i.e. the wave particle speed and acceleration. This results in a different wave
profile compared to the airy wave theory (see figure 4.2). The details of the derivations
can be seen in (Fenton, 1990)

Figure 4.2: Linear wave versus 5th order stokes wave profile(Ditlevsen, 2002)

This wave was chosen for the simulations of the buoy motions in Wasim. This impacts
the responses of the model by increasing the amplitudes. This is due to the shape of
the buoy and the waves interacting.
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4.1.4 Validity of Wave Theory

Figure 4.3: Validity Range of Wave Theories(Fenton, 1990)

It is important to note the limitations of the theory. According to (Fenton, 1990), for
shallow water "contributions of the higher order terms will tend to dominate, and results
obtained will not be accurate". Thus it is important to check the validity of this theory
in the selected range. There are a few ways to check the validity range of the different
theories(e.g figure 4.3). One of the simplest however is the Ursell number.

U = H/d

(d/λ)2 = ”Nonlinearity”
”Shallownes” (4.6)

A boundary between Stokes theory(Including Airy) and the alternative shallow water
theory was shown by (Hedges, 1995)

U = Hλ2

d3 = 40 (4.7)

And the Stokes Theory is valid for U<40. By using the highest order of Stokes Theory
available the validity range will be as large as possible (Due to the fact that the higher
orders will be more "correct" than Airy Theory)

Wave Height Wave Period H/d λ/d Ursell Number
3 6 0.01 0.187 0.0003
6 6 0.02 0.187 0.001
6 12 0.02 0.749 0.0168

10.5 10.7 0.035 0.595 0.0124
9 13.4 0.03 0.9344 0.026
3 15 0.01 1.17 0.0087

19.5 14.6 0.065 1.11 0.0.08
9 20 0.03 2.08 0.1297

Table 4.2: Ursell Numbers and Wave Parameters of Chosen Sea States

As shown in table 4.2 and figure 4.3 the chosen periods and wave heights are well within
the validity range of the Stokes Wave theory.
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4.2 Structure Modelling

Wasim uses a non-linear Rankine Panel Method to solve the motions of the structure.
This method requires meshing of the structure as well as the sea surface. The modelling
of the structure could be done in 2 different ways either as close to reality as possible or
as close to the numerical model as possible. The first alternative is very time consuming
and the results might not be possible to compare with the numerical model. This results
in the following model characteristics:

• Limited to 3 degrees of freedom; Surge, Heave and Pitch

• Critical damping percentages from model tests are utilized

• No mooring specified

4.2.1 Main Dimensions

In the model tests done by Force Technology(Technology, 2006) they test the total buoy
with damping skirts to see how the buoy motion is affected. In the preliminary study
(see appendix A) only a few model test results were available through the thesis written
by Glomnes (2006). In those tests the buoy configuration which was used is shown in
figure 4.4. The Buoy has been fitted with a damping skirt to reduce the motions of
the buoy. This damping skirt was included in the modelling in the preliminary study,
however after the model tests were made available it was possible to ignore this and
only include the effects.

Figure 4.4: Main dimensions of model with damping skirt
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4.2.2 Damping

As mentioned the damping is modelled by a percentage of critical damping. The values
have been found from decay model tests performed by Force Technology. The values in
table 4.3 are taken from (Glomnes, 2006)

Damping Ratio [%]
Surge 4.3
Heave 6.8
Pitch 3.6

Table 4.3: Critical Damping Ratios from Decay tests

The damping coefficients can be found from equation 4.8

C = 2ζd
√

(M + A)K (4.8)

Where ζd is the damping ratio. By using this approach we will only obtain the diagonal
terms of the damping matrix, which means that there is no coupling between the dif-
ferent motions of the buoy. This is a necessary assumption as the damping term in the
equation of motion is often very difficult to model, due to multiple higher order effects.
e.g. viscosity and vortex-shedding

4.2.3 Rankine Panel Method

As previously mentioned Wasim uses the Rankine Panel Method which is a Boundary
Element Method (BEM). This particular BEM uses Rankine sources to calculate the
green functions. The method requires a meshing of the sea surface as well as the
structure and this makes it possible to integrate Froude-Krylov force and hydrostatics
over the exact wetted surface. The Added mass of the structure is also most likely
found using the same methods, although the exact method is not known as it has not
been possible to find the exact documentation. The methods are described in Faltinsen
(1990) and it should be possible to use them to find a usable added mass estimate.
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Chapter 5

Review of Model Tests

Force Technology has been so kind as to allow access to some model tests which were
performed on the Total Buoy in 2006. In a preliminary study of the previous work
done by Glomnes and Viko some of the model test results were available through their
theses, and these were used to test the previous numerical model and a Wasim model
which was created as an alternate comparison due to the lack of more model tests(these
comparisons can be seen in appendix A).

This chapter will be a review of the model tests, but results will not be presented here.
The model test setup can be seen in figure 5.1.

Figure 5.1: Model Test Setup

Jon Marius Aasheim, 2012 31



Review of Model Tests

5.1 Model Test Parameters

5.1.1 Model

The model was made in 1:40 scale and the model itself was made of 45 kg/m3 foam.
The damping skirt was made from a 2 mm steel plate. The hull does not have any deck
structures, risers or other hull appendages. The dimensions of the model can be seen in
figure 5.2

Figure 5.2: Total buoy in 1:40 scale

5.1.2 Mooring System

The model is moored to keep it from drifting but the mooring is designed to give very
little contribution to pitch and heave restoring forces. As can be seen in figure 5.3, there
are four mooring lines, and they are connected at the height of the center of gravity and
at the rotation center in pitch. Unfortunately the mooring system is not possible to
replicate as it is connected to the edges of the model basin and there is no information
about the surge restoring force in the information supplied by Force Technology. This
means that the surge results will probably not by comparable.
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Figure 5.3: Model test mooring setup

5.1.3 Model Test Runs

The model test had several different sessions with different configurations of the Total
Buoy, these sessions also had a varying amount of runs. An overview of the different
sessions can be seen in table 5.1

Of course for the new numerical model it will not be necessary to compare with the
irregular wave sessions so these can be ignored. As we have one session (Original skirt,
High VCG) in particular with more runs than any other this is a good choice for the
comparisons.

Configuration of Total Buoy Wave type Number of runs
Original skirt, High VCG Irregular waves 5
Original skirt, High VCG Regular waves 19
No skirt, High VCG Irregular waves 3
Original skirt, Medium VCG Irregular waves 4
Original skirt, Medium VCG Regular waves 4
Original skirt, Low VCG Irregular waves 4
Original skirt, Low VCG Regular waves 4
Second skirt, Medium VCG Irregular waves 4
Second skirt, Medium VCG Regular waves 5

Table 5.1: Overview of model test sessions
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Original skirt, High VCG in regular waves

The largest session in the model test has 19 runs with the parameters shown in table
5.2. This means that there is many to choose from, but it should not be necessary to
use them all in the comparisons. A good way to test check the program is to compare
several different wave periods and wave heights. Ideally one should have more runs to
make the comparisons statistically significant, but a good impression of the solutions can
be seen if one makes a wide selection of wave heights and periods within the available
model tests. For this reason the runs selected for the comparison will cover the entire
period range in the model tests, and additional runs might be chosen to point out a
problematic area in the numerical model results.

Run Wave height[m] Wave period [s]
2001 3 6
2002 5 9.9
2003 9 9.9
2004 10.5 10.7
2005 13.5 12.10
2006 16.5 13.4
2007 21 16.3
2008 7.5 9
2009 4.5 7
2010 9 13.4
2011 12 11.4
2012 15 12.8
2013 18 14
2014 9 20
2015 19.5 14.6
2016 4.5 7
2017 5 9.9
2018 5.15 16.3
2019 9 20

Table 5.2: Overview of Wave Heights and Wave Periods
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Chapter 6

Comparisons

It is necessary to check the results of the new numerical model against other alternative
solutions to verify the results. Fortunately, this time the model tests on the Total
Buoy are available. In addition to comparing the numerical model with the model test
results, effort will be made to compare with Wasim which is a commercial program.
Wasim could be used in place of the numerical model, but the accuracy of Wasim on
this type of problem is really not known. Therefore it is a good idea to check this at
the same time as it could turn out to be a waste of time if the results are bad.

This chapter will contain many figures to give a significant amount of comparison basis.
This is important to check the validity of the numerical model and Wasim model.

6.1 Model Test Run 2001

The first run chosen was 2001, it is a mild "sea state" with regular waves of wave height
3 meters and wave period 6 seconds. In the following section the results from the model
tests, the numerical model and Wasim are shown. The symmetric motions are compared
separately.

Surge

In the following figures, we can see the result motion of surge in the model tests (figure
6.1), the new numerical model (figure 6.2) and the wasim model (figure 6.3). One im-
portant point with the surge motion is that the model tests have another mooring setup.
(which is not possible to replicate in a good way, see section 5.1 for an explanation)
Due to this problem it will be necessary to analyse the results carefully. One important
difference might be the amount of static drift-off which is seen i.e. how far the buoy
drifts before the mooring lines restricts motion. Another important factor might be low
frequency oscillations due to the surge restoring stiffness, but these oscillations must be
proved to have similar oscillation periods to be comparable between the models.
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Figure 6.1: Model test surge results with H=3m and T=6s

Figure 6.2: Matlab surge results with H=3m and T=6s
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Figure 6.3: Wasim surge results with H=3m and T=6s
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The model test is oscillating around -1.9 m ± 1.3 m in surge, and in addition there is
a high frequency oscillation which is oscillating ± 0.7 m. By counting the number of
peaks and dividing by the time we see that the low frequency oscillation has a period of
66.6 seconds, and the high frequency oscillation has a period of approximately 6 seconds

While the numerical model does start out with a slow oscillation like the model tests it
is damped out after a while. It ends up oscillating around -0.3, with ± 0.65 m, and as
in the model tests this is a high frequency oscillation. When looking at the oscillation
period in the same way as the model tests, we see that the period of this high frequency
oscillation is approximately 6 seconds.

Finally we have the Wasim simulation, which has a very simple mooring setup based on
the mooring system used in the numerical model. It simply has an additional restoring
matrix with the surge restoring coefficient which can be calculated from the equations
shown in section 2.2. We see that there is an oscillation of ± 0.4 m around 0.2 m.
The oscillation period is approximately 6 seconds. The static drift-off here is positive;
though this might only be due to a difference in the coordinate system between the
Wasim model and the other models.

There is good agreement between the model test and the numerical model in this case,
while the Wasim model also is seen to be in the same range it does deviate more. When
looking at the high frequency oscillation period of the models we see that they are
all approximately 6 seconds, but the model test is the only with steady low frequency
oscillations as well. This low frequency oscillation and the static drift-off difference is
the most likely due to the difference in the mooring as mentioned previously.

Heave

In the following figures (figures 6.4, 6.5 and 6.6) we can see the results of heave simu-
lations. Surge results were a little difficult to compare, but the heave results should be
more comparable. As this "sea-state" is relatively mild there should be little response
from the buoy. Also it is worth noting that the mooring should not be affecting heave
in any of the models.
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Figure 6.4: Model test heave results with H=3m and T=6s

Figure 6.5: Matlab heave results with H=3m and T=6s
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Figure 6.6: Wasim heave results with H=3m and T=6s

40 Jon Marius Aasheim, 2012



Comparisons

The model test result shows a relatively small motion of the buoy. It oscillates around
0.023 m with a mean oscillation of about ± 0.1 m. What is interesting here is that
the oscillation is around a positive value. This suggests that the buoy is actually lifted
out of the water by the frequent waves. The oscillation period is found to be around 6
seconds which correlates well with the wave period.

We can see some of the same effects in heave results from the numerical model, however
the oscillation is around 0.75 m with a mean oscillation of ± 0.08 m. As we can see the
oscillation is relatively similar, but the mean offset is very different. The reason for this
large difference could lie in the pressure calculation in the numerical model; the wheeler
stretching which is applied could cause a slight skewing of the waves in a way which
causes more of the wave oscillation to be above the mean water line. The oscillation
period is around 6 seconds here as well.

This time the Wasim model is very different from the other models. It oscillates around
zero, and the oscillation is ± 0.5 which is much larger than the other two. The oscillation
period is also different than the other models, with 10.5 seconds. This period difference
coupled with the large difference in response amplitude suggests problems in the Wasim
calculations at this "sea state.

Pitch

Lastly, we have the pitch motion (see figure 6.7, 6.8 and 6.9). Pitch is affected by the
mooring indirectly as surge is coupled with the pitch motion, this could cause differences
in the results, and should be taken in to consideration when examining the figures.

Figure 6.7: Model test pitch results with H=3m and T=6s
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Figure 6.8: Matlab pitch results with H=3m and T=6s

Figure 6.9: Wasim pitch results with H=3m and T=6s
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The oscillations in pitch are more erratic than what has been seen in surge and heave,
and this makes it more difficult to find the mean oscillation amplitude. The static
heeling we observe in the model test results could be influenced by the stiff mooring
system in the model tests. In the model tests we see that the buoy will oscillate around a
negative angel of -0.81 degrees with an approximate mean oscillation of ± 0.4 degrees. It
is also difficult to find the oscillation period in this run because of the erratic behaviour.
The result depends on whether or not all the peaks are counted; if all the peaks are
counted the result is 6 seconds. If only the largest peaks are counted we get a period of
15 seconds.

In the numerical model we see that the oscillations of the numerical model are also more
varied than what has been seen in surge and heave, but not in the same way as in the
model tests. The amount of local peaks which is observed in the model tests cannot be
found in the numerical model, but the amplitude does vary more. The numerical model
does not have a static heeling as we could see in the model tests, but the oscillation is
varying in the same range as the model tests of ± 0.4 degrees. The oscillation period is
approximately 6 seconds.

We see that the Wasim model gives motions which deviate most from the test results.
It oscillates around zero with almost 3.9 degrees in both directions. It is difficult to say
why the Wasim model deviates more in this run. There is a possibility that a modelling
error is the cause, although no error has so far been discovered. It could also be that
Wasim is not able to represent this problem accurately.

6.2 Model Test Run 2004

The second run is a medium "sea state" with a wave height of 10.5 m and a wave period
of 10.6 seconds. The motion results are shown in the order of surge, heave and pitch.

Surge

The first motion is surge. Results from the model test, numerical model and wasim
are shown in figure 6.10, 6.11 and 6.12 respectively. It is difficult to directly compare
with the model tests because of the mooring setup (as mentioned before, see section
5.1) the static drift-off and slow oscillations will probably be most affected, because of
this the comparison will only be made between the high frequency oscillations because
these have proved to be comparable in run 2001.
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Figure 6.10: Model test surge results with H=10.5m and T=10.7s

Figure 6.11: Matlab surge results with H=10.5m and T=10.7s
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Figure 6.12: Wasim surge results with H=10.5m and T=10.7s
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We see that the surge motion in the model test has a static drift-off which is different
from zero. We can also see evidence of a low frequency oscillation as we saw in run
2001, but the oscillation is less pronounced. The high frequency oscillation on the other
hand is around -8.4 m ± 3 m, although there are larger oscillations when coupled with
the low frequency oscillation these are not of interest in the comparisons as mentioned
before. The response can be shown to oscillate at a period near 10.7

The numerical model also has a new static value, we see that the numerical model drifts
quite a bit more than in the model test, and it oscillates around 67 m ± 5 m. The
difference between the two models can be explained by the mooring setup, especially
the large static drift-off is most likely due to the long mooring lines. The oscillations
do show signs of having two frequencies, but when counting peaks to find the response
period it is seen that when counting all peaks we get a period near 10.7

The Wasim model has no static drift-off, but the mean oscillation is close to the numer-
ical model, it is oscillating at roughly ± 4.3. The reason for the lack of static drift-off
might be due to the nature of mooring modelling in Wasim. (which is very simplified,
and linear) Also in this model we see that the response has a period around 10.7

Heave

The heave results from Run 2004 are shown in figures 6.13, 6.14 and 6.15. The heave
results in this run are important, because it was seen in the earlier versions of the
program that the area around 10 seconds is close to the natural period. (see appendix
section A.1.3 for more details)

Figure 6.13: Model test heave results with H=10.5m and T=10.7s
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Figure 6.14: Matlab heave results with H=10.5m and T=10.7s

Figure 6.15: Wasim heave results with H=10.5m and T=10.7s
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In heave the model test shows an oscillation around 0.84 m, and here the oscillation is
about ± 4.5 m. This shows the same positive offset as was seen in run 2001. We do
not see any evidence of high responses around this period, even though the response
period can be found be around 10.7, which is near the natural period in heave. (see
appendixsection A.1 for the decay tests)

The numerical model also shows the same positive offset, but it the oscillation is around
2.8 m ± 9 m. The motions are roughly double compared to the model tests; the
explanation for this might be due to a natural period which might be close to the period
of this run. It is difficult to say why this effect is shown here, and not in the model
tests. The added mass modelling could be the cause of this because the numerical model
uses a simple constant added mass model. A change in the added mass will possibly
move this peak to a higher or lower period. The numerical model will not be able to
account for the total effect of the damping skirt on the buoy due to the proportional
damping model. The damping will also be indirectly influenced by added mass through
the proportional damping model.

The Wasim model does not show the same positive offset as the two other models.
However the oscillation is more in line with the model tests than the numerical model.
Here the buoy is oscillating ± 5 m. The response period is also the same. The Wasim
model does have a more comprehensive way of calculating the added mass, so this might
be the cause of the difference. The added mass in Wasim is most likely found using a
BEM as was briefly mentioned in subsection 4.2.3.

Pitch

Finally, we have the pitch results. (see figures 6.16, 6.17 and 6.18). Due to the steepness
of the waves, being 0.06, the pitch motion in this run is expected to be large.

Figure 6.16: Model test pitch results with H=10.5m and T=10.7s
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Figure 6.17: Matlab pitch results with H=10.5m and T=10.7s

Figure 6.18: Wasim pitch results with H=10.5m and T=10.7s
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As expected, the pitch motion is very large here with a maximum value of 10.1 degrees.
The model test has a static heeling and this time it oscillates around -5.2 degrees ±
around 4 degrees (standard deviation is 3.1 degrees). The pitch motion is a bit noisy so
it is difficult to determine the oscillation exactly, but the oscillation period does match
the wave period of 10.7 seconds.

When looking at the numerical model we see that there is lack of static heeling, but
the amplitude does have the same max value as we can see in the model tests. This
makes the comparison more difficult as the static heeling is now so large that to ignore
it will be difficult. Therefore it should be better to compare the actual heeling. The
heeling in the numerical model is seen to be approximately 8 in the positive direction,
and nearly 9 in the negative. Also here we see that the oscillation period does match
the wave period.

The Wasim model is looking similar to the numerical model, there is no static heeling,
and the amplitude is in the same range, although the oscillation is much more uniform
once it has reached a steady state. The oscillation is approximately ± 8 degrees and
the period matches the wave period.

6.3 Model Test Run 2015

This run is the severe sea state, it is meant to be at the most critical sea state. The
wave height is 19.5 m, and the wave period is 14.6 seconds. This run is also meant
to test the stability of the numerical model, because of a stability problem seen in the
previous numerical model. (see appendix B for more details)

Surge

The surge motion of the models is shown in figures 6.19, 6.20 and 6.21. Due to the
extreme wave height the surge motion in this case might be large.

Figure 6.19: Model test surge results with H=19.5m and T=14.6s
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Figure 6.20: Matlab surge results with H=19.5m and T=14.6s

Figure 6.21: Wasim surge results with H=19.5m and T=14.6s
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The model tests show a larger static drift-off in this run, the point at which it oscillates
is -12 m and it oscillates ± 7 m. (When the oscillations have reached a steady state.)
In this run there is little evidence of the slow oscillations which has been seen in the
previous runs.

The numerical model has a larger static drift-off, and it oscillates near 30 m. Here we
see that there is both a low frequency oscillation with an oscillation of ± 5 m with
an oscillation period of approximately 100 seconds. We also have a high frequency
oscillation which oscillates ± 7 m with a period matching the wave period of 14.6
seconds.

The Wasim model is once again oscillating around zero, it does show a slightly higher
oscillation in this run than what was seen in the previous runs with oscillation of ± 12.
The oscillation period is also matching the wave period.

Heave

The heave results for 2015 are shown in figures 6.22, 6.23 and 6.24. The heave motions
are expected to be large due to the height of the waves.

Figure 6.22: Model test heave results with H=19.5m and T=14.6s
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Figure 6.23: Matlab heave results with H=19.5m and T=14.6s

Figure 6.24: Wasim heave results with H=19.5m and T=14.6s
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As in the other runs, we can see that model test heave results have a positive offset. In
this run the static point is 1.1 m, the oscillation is ± 10 m. We see that the buoy reaches
a response amplitude of 11 meters, which is very remarkable as the buoy without the
damping skirt only has a draft of 10.5 meters. This indicates that the buoy might be
subjected to slamming loads in this type of extreme sea state.

The numerical model is showing a different oscillation. The peaks are rounded and does
not reach the same amplitude as the through, the peaks could be rounded due to the
rapid decrease of volume from the hull being dry in a wave through. The difference could
also simply be that the reference coordinate systems are different, so that the positive
amplitude in the numerical model matches the negative amplitude in the model tests.
We see that the negative amplitude does match the model test, but the numerical model
does not have a offset. The positive amplitude is around 8 meters and the negative
amplitude is 10 meters.

Also the Wasim model has a positive offset in this run, although it is less pronounced
than in the model test. The middle point is 0.25 m and the oscillation is ± 10 m. The
Wasim results are closer to the model tests in heave than the numerical model, although,
there is less difference in this run than what has been seen in previous runs. The Wasim
model does, however, outperform the numerical model in the heave motions.

We see here that the oscillation is large as was expected, but the motion only has a
ratio close to one with the wave amplitude. This is true in all models. This behaviour
could be caused by a limiting response due to the extreme wave height of 19.5 m

Pitch

The pitch results from Run 2015 are shown in 6.25, 6.26 and 6.27. In this run the pitch
motion could be expected to be large. The waves have the same steepness as in run
2004 (steepness 0.6), this resulted in large perturbations. The most notable feature of
the pitch motion was the large off-centre oscillations. Although the waves are longer
here, we may still see similarities.

Figure 6.25: Model test pitch results with H=19.5m and T=14.6s
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Figure 6.26: Matlab pitch results with H=19.5m and T=14.6s

Figure 6.27: Wasim pitch results with H=19.5m and T=14.6s
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The model test results does show an off-center pitch oscillation as was seen in run 2004,
the oscillation is centred around 4.1 degrees, but he oscillation is really rather small,
only ± 1 degree. The reason for this may be that the waves are hitting the structure in
a way which hinders oscillation, there is even a possibility that there is green water on
the deck, which could keep the structure at a listing angle.

The numerical model is also showing some signs of being affected by the waves hitting
the structure in a way which hinders the oscillation. Due to the lack of the static
heeling in the numerical model we will have to compare the amplitudes, as was done in
run 2004. The positive amplitude varies between 4 and 6 degrees. While the off-center
pitch oscillation is not seen here the amplitudes do match very well.

The Wasim model has a very large oscillation compared to the model test, but it is
difficult to compare the two due to the off-center pitch motion in the model tests.
Looking at the amplitude, we see that the Wasim model has an oscillation which exceeds
8 degrees.

6.4 Model Test Run 2019

We have another medium "sea state" but with long waves, this run has a wave height
of 9 m and a period of 20 seconds.

Surge

The surge motion results for this run are shown in figure 6.28, 6.29 and 6.30. Due to
the long waves the surge motion can be expected to be smaller in this case than what
was seen with the much steeper waves in run 2004 and 2015 where the steepness was
0.06. In this run the steepness is 0.014.

Figure 6.28: Model test surge results with H=9m and T=20s
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Figure 6.29: Matlab surge results with H=9m and T=20s

Figure 6.30: Wasim surge results with H=9m and T=20s
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The surge motion of the model tests are almost oscillating around zero, (-0.24 meters)
the oscillation is ± 4.5 m. We see almost no static drift-off in this run, this is due to
the the long waves allowing the structure to restore before the next wave hits.

The numerical model has a small static drift-off, it oscillates around 4 meters ± 4.5
meters. The result is relatively close to the model tests. The low frequency oscillation
does damp out, and leaves only the high frequency oscillation.

The Wasim surge motion is once again oscillating around zero, but with ± 10 meters.
The result deviates by a factor of two compared to the other models, and no static
drift-off is evident.

Heave

The heave results are shown in figures 6.31, 6.32 and 6.33. In this run the heave motion
should follow the wave motions exactly due to the long waves.

Figure 6.31: Model test heave results with H=9m and T=20s
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Figure 6.32: Matlab heave results with H=9m and T=20s

Figure 6.33: Wasim heave results with H=9m and T=20s
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In the model tests, we can see almost no positive offset in this run, only around 0.1
meters. The oscillation is close to ± 4.5 meters (the standard deviation is 3.1 meters.).
As we see the motion is exactly the same as the wave amplitude.

The numerical model has no positive offset, and the oscillation is roughly ± 4.7 meters.
The results are close to the model test.

The Wasim model is also in the same area as the other two models with an oscillation
of about ± 4.5 meters.

In this run the heave motion of both models are close to the model tests. This increasing
accuracy could be connected to the increasing wave length. As the waves become less
frequent the unstable oscillations which often characterises the more erratic sea states
disappear, and the structure will be more likely to follow the wave motion. This type of
motion is often seen in swells, and the waves will often be more like airy (or first order)
waves as they become longer.

Pitch

Finally we have the pitch results of the final examined run. They are shown in figure
6.34, 6.35 and 6.36. Judging by the results in surge and heave we could expect the pitch
motion to be approaching a more linear behaviour in this run. While this run still has
waves which could induce the non-linear behaviour caused by the geometry this requires
the waves to hit significant amounts of the slanted hull, which could be stopped by the
heave motion following the wave crest.

Figure 6.34: Model test pitch results with H=9m and T=20s
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Figure 6.35: Matlab pitch results with H=9m and T=20s

Figure 6.36: Wasim pitch results with H=9m and T=20s
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The pitch results of the model tests show an oscillation around 0.12 degrees with a mean
oscillation ± 5 degrees. The motion is actually very large for this run, but unlike run
2004 and 2015 there is very little off-center oscillation in this run. The oscillation is also
much more undisturbed than what was seen in run 2004 and 2015. This means that the
waves are not interfering as much with the motion; this is most likely the reason why
we are not seeing the same amount of off-center oscillation here.

The numerical model is also showing a more undisturbed oscillation than what was seen
in run 2015. the oscillation varies between two amplitudes ± 4 degrees and ± 6 degrees.
These amplitudes are also seen in the model tests, and the mean oscillation and max
oscillation is very similar. We can also see that there might be two frequencies in this
run.

The pitch motion in the Wasim model deviates from the model tests with a factor of
more than two with a mean oscillation of ± 1.8 degrees. This deviation is in line with
pitch motion in the earlier runs as will be shown in the conclusion of this chapter.

While the pitch motion can still be considered to be large, we can see that the static
heeling in the model tests is almost non-existent in this run. The actual pitch motion in
the model tests is still large, but we see a motion which is going towards being linear.

6.5 Model Test Run 2017

This run was added to show that the pitch results from the numerical model does not
match the model test perfectly. The runs were originally chosen to include all critical
periods, but after an error was corrected in the numerical model the pitch results in run
2001, 2004, 2015 and 2019 seemed to fit the pitch results perfectly. To avoid giving a
false impression of the results some effort was made to find results which did not match.
Wasim results have not been included in this run.

This run has a wave height of 5 meters and a wave period of 9.9 seconds and considered
to be a mild sea state.

Surge

The surge results from this run are not expected to show any significant variations
compared to the other runs. The results are shown in figure 6.37 and 6.38, due to the
difference in the mooring system only the high frequency oscillations will be compared
as they have proven to be comparable in the previous runs.
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Figure 6.37: Model test surge results with H=5m and T=9.9s

Figure 6.38: Matlab surge results with H=5m and T=9.9s
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The model tests have two oscillations as we have seen in previous runs and we also see a
small static drift-off of 4.5 meters. The low frequency oscillations are relatively modest
in this run with a amplitude of roughly 0.5 meters, and the high frequency oscillations
are also small with an oscillation of approximately 1.5 meters.

The numerical model also has two oscillations and a static drift-off, but again this value
is much larger with a value of roughly 38 meters. The low frequency oscillations are
also larger in this run with a oscillation of 2 meters. The high frequency oscillations are
in the same order as the slow drift with approximately 2 meters amplitude.

The periods of the low frequency oscillations are different in the models with the model
tests having a period of 80 seconds and the numerical model with a period of 50 seconds,
but as with the previous runs the high frequency oscillations in both models are matching
the wave period. This is the reason why the low frequency oscillation amplitudes are
not compared in this chapter.

Heave

The heave results in the numerical model and model tests have already been shown to
be different around this period range. (see run 2004) The results in figure 6.39 and 6.40
should there show a similar difference in this run.

Figure 6.39: Model test heave results with H=5m and T=9.9s
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Figure 6.40: Matlab heave results with H=5m and T=9.9s

As we have seen in previous runs this run also has a small positive offset of 0.2 meters
in the model tests. The motion in this run is relatively modest with an amplitude of
2.4 meters.

The numerical model on the other hand has a positive offset of approximately 1 meter.
The motion is very large compared to the model tests with almost 3 times the response.
This shows that the response seen in run 2004 is not even the peak of the response.
This error will be discussed more in the summary/conclusion of this chapter.

Pitch

The entire point of this run was to show that the response of the pitch motion in the
numerical does not have a perfect correlation with the model test response. In figure
6.41 6.42 the problematic area of the numerical model’s pitch motion will be shown.

As we have seen in previous runs the pitch motion has a static heeling value. The
oscillation is centred around -2.7 degrees and the oscillation has an amplitude of -5
degrees.

The numerical model does not have a static heeling value, but in this run the oscillation
amplitude is nearly twice the value of the model tests with an amplitude of 9 degrees.
This shows that the pitch motion also deviates from the model tests in the area of 7-11
seconds, and this suggest that there is some part of the program which cannot properly
account for some dampening effects in this area. This will be further examined in the
conclusion of this chapter.
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Figure 6.41: Model test pitch results with H=5m and T=9.9s

Figure 6.42: Matlab pitch results with H=5m and T=9.9s
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6.6 Conclusion from the Comparative Study

To help with this final discussion RAOs have been created from the results of the
different runs (figure 6.43, 6.44 and 6.45). The RAOs have been created by dividing the
amplitude of the oscillations with the wave amplitude, and they show the response of
the Total Buoy in different wave periods.

Figure 6.43: Surge results from all models compared in the form of RAOs

In figure 6.43 we see that the numerical model correlates well with the model test i.e.
the results are following the same tendency as the model tests. Surge is, as mentioned
before, difficult to compare. The biggest difference between the results is the static
drift-off, which is larger in most of the numerical model results. In the comparisons
of the different runs it was also seen that there were two different oscillations, one low
frequency oscillation and one high frequency oscillation, but due to the difference in
mooring modelling the low frequency oscillations were found not to be comparable.
This difference is made evident by examining the periodic content of the low frequency
oscillation in the models, and the large difference in static drift-off. The high frequency
oscillations on the other hand did prove to be comparable when it was discovered that the
response periods matched the wave periods exactly. It is the high frequency oscillations
which are compared in figure 6.43.

The Wasim model does not perform as well as the numerical model. Figure 6.43 shows
a near linear correlation in the Wasim results furthermore there is no evidence of the
static drift-off or the low frequency oscillations in the Wasim results. The high frequency
oscillations do compare well with the other model, but the results with longer waves
show that the Wasim model has a larger deviation. The problems in Wasim suggest that
the mooring calculations in the model cannot represent the mooring system correctly.
There are options which allow a user to fully design a mooring spread in the ocean space,
but this requires knowledge of another program in the Sesam package called DeepC.
This program can also be used to model risers and other appendages on the structure.
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Figure 6.44: Heave results from all models compared in the form of RAOs

In figure 6.44 we see that the numerical model has large discrepancies in the in the
period range of 9-11 seconds. It is important to note that the model test curve does
have a small peak around 10 seconds. This does suggest that the numerical model
has the correct correlation with respect to the model tests, but the amplitude is very
different. In the pre-study to this thesis shown in appendix A the natural period in
heave was found to be around 9 seconds. This natural period indicates that there
should be increased response in the periodic area which is seen in figure 6.44. The
large difference in the amplitude could be possibly be caused by problems with the
proportional damping model e.g. not accounting for the entire effect of the damping
skirt. The results at the moment does suggest that the numerical model is correct in
heave for long waves, but until the possible damping problem is solved one should be
aware that the natural periods could cause large responses. Another problem with the
results which is not shown in figure 6.44, is that both the numerical model, and the
model tests have a positive offset when subjected to steep waves. The numerical model
has larger positive offset than the numerical model, this difference may be another effect
of the damping problem. This problem will be further discussed in Recommendations
for Further Work.

The Wasim model is showing much better agreement in heave than the numerical model.
The largest difference in the model is the result from the first run which is showing a
larger response than the other models. Another difference is the lack of positive offset in
the Wasim model. The heave results could be caused by a more accurate representation
of the damping force. One possible problem with the numerical model has been identified
to be connected to the damping. It is especially the restoring coefficient which has been
thought to cause problems in the proportional damping formula.
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Figure 6.45: Pitch results from all models compared in the form of RAOs

The pitch motion in the numerical is showing the same discrepancies as the heave
motion, but the peak is centred more in the period range of 7-9 seconds. The pitch
motion is coupled with heave and could be influenced by the large heave motions.
Another possibility is that there are damping problems also in pitch, but the most
likely reason is that the heave motion is affecting the pitch motion as well. The model
tests were also showing tendency to have static heeling i.e. that the oscillations were
centred around a value different from zero. This static heeling was not seen in the
numerical model, and this could indicate some missing effects or loads. It could also
be an indirect effect of the mooring as the model test mooring is much stiffer than the
mooring in the numerical model.

The pitch motion in the Wasim has the same linear characteristics as the surge motion.
The results from run 2004 are in the same range as the model test, but when looking
at the other runs this could be a coincidence.

Based on the observations made in this chapter we can conclude that while the new
numerical model does have some good results, there is a discrepancy in the heave and
pitch solutions which suggests that further work is needed. The numerical does outper-
form the Wasim model in this comparison, and the model should either be revised to
include more effects or the program should not be used for this type of problem.
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Chapter 7

Behaviour of the Total Buoy in
Open Water and Level Ice

In this chapter an assessment of the Total Buoy’s open water behaviour is to be per-
formed. The best way to show this is to create RAOs (Response Amplitude Operator)
from the different motions. The way this can be done is to make a selection of model test
runs with different periods and find the unit displacement. (Reaction divided by wave
amplitude) The results from these runs will serve as a single data point in the RAO.
Surge will not be of particular interest in this chapter as the mooring setup applied in
the model tests is not based on reality and therefore cannot be used to assess the real
motion.

The effect of ice on the Total buoy is more difficult to examine as the methods of
calculating ice/structure interaction is limited, and model tests are not available. Due
to the lack of time and possibilities this thesis is rather limited with respect to the
examination of ice/structure interaction.

7.1 North Sea and Barents Sea Waves

To be able to do a proper assessment of the open water behaviour of the Total buoy
it is important to have a basic understanding of typical sea states in the potential
deployment areas. This buoy has been specifically designed to handle ice that excludes
the many areas which might be problematic in terms of extreme sea states. One such
area is the Norwegian Sea which has one of the most hostile non-ice environments on the
planet. In figure 7.1 we can see a map of the Norwegian Sea with ISO-Curves showing
the Significant wave heights and maximum peak periods with annual probability of
exceedance of 10−2. Areas which are relevant to the Total buoy are around Svalbard
and in the eastern Barents Sea. A selection of measurements have been made and from
this as scatter diagram has been made for the eastern Barents Sea as shown in table
7.1. (The area in the top right corner in figure 7.1)
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Figure 7.1: Significant wave height Hs and related maximum peak period TP with an-
nual probability of exceedance of 10−2 for sea-states of 3 h duration. ISO-
curves for wave heights are indicated with solid lines while wave period lines
are dotted (NORSOK, 2012)

Occurence Peak Period [s]
Significant
Wave
Height [m]

0-2.9 3-5.9 6-8.9 9-11.9 12-14.9 15-17.9 18-20.9 21-23.9 TOTAL

0.0-2.9 0.01 0.05 0.06
3.0-5.9 0.02 0.97 0.45 0.03 1.5
6.0-8.9 <0.01 8.0 6.8 1.9 0.08 <0.01 16.7
9.0-11.9 15.2 48.5 13.5 8.4 0.94 0.12 0.09 81.7
TOTAL 0.0 15.3 51.5 21.3 10.7 1.1 0.13 0.09 100.0

Table 7.1: Typical Hs/Tp scatter diagram for the eastern Barents sea (based on World
Waves data) (Fugro, 2005)
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As we can see from figure 7.1 and table 7.1 we have very different sea states depending
on whether the structure is located near Svalbard or in the Barents Sea. As Svalbard
is not open for oil and gas exploration at the present time we shall instead focus on the
Barents Sea. The Barents Sea is thought to contain large deposits of oil and gas, and
due to the harsh winter climate with temperatures below -30 degrees centigrade it is
also difficult to extract the resources continually.

From the scatter diagram we can see which wave peak periods and significant wave
heights registered are most prevalent. The significant wave heights are shown to be
in the range 0-11.9 m, although most of the waves are in the range 9-11.9. The peak
periods are shown to be in the range of 3-23.9 s, but here nearly 99% of the waves are
in the range 3-14.9 s. When looking into the RAOs we should now be able to see how
the total buoy will behave in this area.

7.2 Heave Motion

Figure 7.2: Heave RAOs calculated with different wave heights

To assess the open water behaviour the RAOs from runs with low and high waves have
been created in figure 7.2. This has been done to show the difference in the structure
response with increasing wave height which will demonstrate the non-linearity of this
problem. The runs at the ends are the same for both RAOs i.e. only the runs with
period near 10 s and 15 s are of different wave heights. It is important to note that
there is a possibility that more data points in the RAO could give a different curve, but
as there are no available model tests this is not possible.

As we can see from figure 7.2 the heave motion of the total buoy in the model tests is
showing significant responses in the range of 11 seconds to 20 seconds. In this range the
response from the buoy is actually more than the incoming wave amplitudes. We can
see that part of this high response area overlaps with about 12% of the peak periods as
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seen in table 7.1. There is also significant difference in the response around 15 seconds
between the two RAOs. It suggests that the response of the structure will reach a
maximum possible response when the wave heights increase. This does not suggest a
non-linearity in the heave motion, because the RAO does not change with increasing
waves, but rather reaches a limit response.

7.3 Pitch Motion

Figure 7.3: Pitch RAOs calculated with different wave heights

Similarly with heave two pitch RAOs have been created for the model tests. It is
important to note that there is a possibility that more data points in the RAO could
give a different curve, but as there are no available model tests this is not possible

The amount of response seen in the pitch RAO could be a problem, although most of the
waves are seen to be of moderate height, some of the larger waves could be problematic
due to the high response. Fortunately, as with the heave RAO the most frequent waves
does not coincide with the worst responses, and this means that the structure will in
most cases have moderate response in pitch. For larger waves we can also see a change
in the RAO which causes the high response area to be moved into the high energy area
of the sea state. This change in the RAO suggests a non-linear behaviour in the pitch
motion connected to the geometry of the structure and the height of the waves.

7.4 Discussion of Open Water Behaviour

As we have seen from the previous sections in this chapter, the RAOs for the Total
buoy are showing high responses in the period range of 11-19 seconds. This would be
very problematic in North Sea, where the sea states are severe with significant wave
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heights ranging from 13-17 meters and with peak periods from 15-19 seconds. (This
information can be seen in figure 7.1)

It is, however, very unlikely that the Total Buoy will be subjected to North Sea climate,
but far more likely that the buoy will be placed further North in the eastern Barents
Sea. This will help immensely on the sea states compared to the North Sea. The wave
heights are significantly lower, being in the range of 9-11.9 meters, and the peak periods
are seen to be around 9 seconds, which would keep the waves in a one-to-one response
or less area on the RAOs.

It should be noted that even if the responses are only one-to-one (meaning that the
responses of the structure are matching the incoming waves) the buoy will be ill suited
for year round human habitation due to the pitching motion, which could be over 10
degrees in the worst waves. This will be uncomfortable and difficult to work in, so the
success of the buoy will depend on the application. If it is intended to be unmanned it
should work well in that area, depending of course, on the buoy capability in ice.

Another important factor which may need to be considered is the apparent non-linearity
in the pitch motion connected to the increasing wave heights and how this affects the
motions of the structure. The mentioned non-linearity will be due to several effects of
the geometry in coalition with the tall waves and large motions.

• Waves will hit more of the structure thus increasing wave forces

• Increasing wave heights will change the center of attack increasing the moment
arm

• Increasing pitch angles will also increase the restoring moment

This might increase the pitch motion to a dangerous degree even when the buoy is
unmanned. The problem could be reduced by designing a mooring system which will
counteract the pitch motion as well as the surge motion, and efforts should be made to
investigate the effects of mooring on these motions.

7.5 Ice Conditions

When we are looking at the ice conditions in the areas of the Norwegian Sea and the
Barents Sea, we see a vastly different environment in the Barents Sea compared to the
Norwegian Sea. The Norwegian Sea is considered to be free of sea ice all year. The
Barents Sea, However, will have sea ice most of the year except July-September, and in
some years ice all year.

First year ice can reach a thickness of 1.5-2 meters (Sakshaug, 2009), and as seen in
figure 7.4 this gives a variable loading for the Total Buoy in the eastern Barents Sea in
the long term.
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Figure 7.4: Map showing ice occurrence around the northern hemisphere (Fugro, 2005)

7.6 Ice Results

The only results available are from the numerical model, which is based on parametric
formulas which are described in more detail in section 2.3. The results are static, and
therefore will only give a limited amount of information about the actual loading on the
structure. The theory applied also has limitations with respect to ice thickness with a
max ice thickness of 1.5 meters, as was shown in section 7.5 to be the lower limit of
the actual ice thickness of first year ice in the eastern Barents Sea. The Ice calculations
performed by the numerical model returns 4 graphs: the offset in X-direction, the
heeling, the force in X-direction, and the heeling moment. (see figures 7.5, 7.6, 7.7, 7.8)
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Figure 7.5: Static offset of the Total Buoy in level ice thickness of 0.1-1.5 m

Figure 7.6: Static heeling of the Total Buoy in level ice thickness of 0.1-1.5 m
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Figure 7.7: Static force on the Total Buoy in level ice thickness of 0.1-1.5 m

Figure 7.8: Static moment on the Total Buoy in level ice thickness of 0.1-1.5 m
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7.7 Discussion of the Capabilities in Ice

The results from the numerical model are, unfortunately, not reliable. This is due to
lack of verification through model tests, and the empirical nature of the equations. Even
if the results shown in section 7.6 could be proven; they would still not give much aid
in the design process. The lack of a dynamic time domain solution is really the largest
problem, and it would help the design process more to have a time domain solution.

The Total Buoy does have the capability to deflect ice with the slanted hulls. This
helps in breaking the ice sheet in bending instead of crushing which requires less force.
S. Loset (2006)

The question which should be examined in relation to the ice capabilities is whether
the increase in the ice capabilities is worth the detrimental effect on the motions which
have been discussed in section 7.4 or would it be better to design a concept which could
vary the waterline depending on whether the loading is from ice or from waves. It is a
common assumption that these to loading conditions are mutually exclusive i.e. that
one would not expect large ice loads when the structure is experiencing large wave loads
and the other way around. This would make it possible to have a buoy with a straight
hull configuration in open water condition and by ballasting the structure to a different
water level be able to have a slanted section in level ice condition.
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Chapter 8

Changes in the New Numerical
Model

This chapter will present the improvements in this numerical model over the previous
numerical model. This model has focused only on the non-linear motions of the total
buoy, and the previous numerical model included several other functions which are not
included here. Some of the problems with the previous numerical model are presented
in appendix B. The solutions of these problems have been the focus of this development
stage, so whether or not the problems have been solved is of interest.

• Problems with sea states

• Problems with accuracy

• Problems with slow time integration

• Presentation of forces

Problems with Sea States

This problem was thought to be due to a simplification made by Glomnes or Viko in
the early development of the numerical model. It was seen that the model would fail
when waves exceeded a certain point on the buoy. This caused the numerical model to
fail when being subjected to moderate waves. The problem was thought to be caused
by the assumption that only the slanted part of the total buoy would be subjected to
waves, this assumption effectively imposed a wave height limitation which would cause
the calculations to fail when it was exceeded.

This problem has been addressed in this new attempt by allowing the possibility of
having pressures on the entire surface of the buoy. It is important, however, that the
buoy is designed as a closed body. The effects of an opening in the model are unknown,
but it will most likely cause problems with the pressure calculations. There have not
been any similar problems in the solutions.
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Problems with Accuracy

This problem was seen when comparing the Wasim model to the numerical model,
and as we saw in chapter 6 the results of the Wasim model cannot be considered to be
reliable, this leaves just one comparison with the model tests. The biggest problem with
the numerical model was that it did not work for moderate to high waves as mentioned
before, and also showed problems for low waves when nearing the natural periods.

This has been attempted to be solved in the new numerical model, although the results
are not entirely correct as was seen in chapter 6. The new model does produce results
in all sea states tested, so on that point it is performing well. What should be done to
solve this model’s problems will be addressed in chapter 8.

Problems with Slow Time Integration

This problem was seen in the old model when the run required small time steps, and a
short simulation of 200 seconds could take several hours to complete. This problem was
largely caused by the time integration scheme which was used. The time integration
scheme was a built-in Runge-Kutta solver in MATLAB, and it was thought that a
self-produced code could perform better on this specific problem.

In the new numerical model a very simple integration method in the Newmark-β family
was chosen for this, and it has shown a very fast solution speed. This does improve
the usability of the program, and should be very helpful when trying to determine
the differences between input variations. The model is capable of calculating usable
results within a few minutes depending on the length of the simulation. The length
of the calculations rarely need to exceed 800 seconds to avoid the transient area of the
calculations, this length of simulation will take 1-5 minutes depending on the processing
power of the computer.

Presentation of Forces

The presentation of force results in the previous model is not very helpful (see figure
8.1). The problem is that all force contributions were presented in one single figure, and
the total force on the structure is not shown at all.

In the new numerical model it was decided that only the total force was to be presented
(see figure 8.2). This results in a figure which can be easily read, and could be more
useful in the pre design than each of the components and their oscillations.
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Figure 8.1: Example of force results in the old numerical model

Figure 8.2: Example of force results in the new numerical model
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Conclusion

The main objective of this master thesis has been to start the development of a numerical
model, which is meant to give aid in the preliminary design of buoy platforms. Compared
to the previous numerical model there is some improvement, particularly with respect to
stability and speed. Although the new numerical model obviously has some problems,
the numerical model is promising because it predicts motions in good agreement with
model tests in many cases. In section 6.6 the results from the comparisons were shown
as RAOs (smaller versions can be seen in figure 8.3, where the the model test are shown
in blue, the numerical model is red, and the wasim model is green)

The surge motion is showing the best agreement with the model tests for the numer-
ical model. One should be aware that the surge figure only shows the high frequency
oscillation and not the static drift-off or low frequency oscillations. This is due to a
difference in the mooring system due to lack of information pertaining to the model
test mooring. This results in a different stiffness, and it was found when comparing the
results that the high frequency oscillations were due to similar response periods, but
the low frequency oscillations and static drift-off were found not to be comparable.

The heave motion in the model tests is showing a peak in the period range of 8-11
seconds. There is also a very small peak in the same area in the model test RAO which
could mean that the peak itself is correct, but the amplitude is too large. This problem
is thought to be related to the damping in the numerical model. Except for this peak the
results in general are close to the model tests. The possible solutions to this problem,
amongst others, will be presented in the Recommendations for Further Work chapter.

The pitch motion results are in general very good, but once again the numerical model
has a peak in the period range of 8-11 seconds. This peak is probably due to the coupling
effects between heave and pitch, and the results in pitch should improve if the heave
solution is improved.

When looking at the results from the Wasim solutions in figure 8.3 we see that while the
heave results have good agreement the results from surge and pitch are not correlating
with the model tests at all. Due to this difference the Wasim model does not achieve
results which can be used in design of these types of structure.

The comparisons also highlighted the motions of the Total Buoy in the model tests, and
it was thought necessary to perform an analysis of the open water and level ice behaviour.
The Total Buoy was seen to have poor open water behaviour for the Norwegian Sea,
but much better suited for the Barents Sea, which is the most likely location for the
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(a) Surge (b) Heave

(c) Pitch

Figure 8.3: Miniature versions of comparison RAOs from chapter 6

Buoy. This is due to the sea states in the Barents sea having smaller wave periods
and wave heights. When looking at the RAOs we can see that the response will be
around one-to-one with the incoming waves. In the case of pitch motion this means one
degree of heeling per meter incoming wave, and this will be very uncomfortable for any
humans inhabiting the buoy. For this reason the Total Buoy would perform poorly as a
regular manned platform concept, but will be good for partially manned or unmanned
operations. Unfortunately, due to the lack of time the ice capabilities are only explored
with the static solution from the numerical model, which does not give much useful
information apart from the static drift-off and heeling which the buoy will be subjected
to. These results are further not possible to verify due to lack of alternative solutions
at this time e.g. model tests.

The Total Buoy as a concept does depend heavily on the results from ice model tests,
because the structure takes a penalty to the open water behaviour because of the slanted
hulls. Thus the gain from having the slanted hulls in ice must be greater than the
disadvantage of the open water behaviour. However, if the pitch motion could be
improved by introducing mooring lines the concept could be much more viable.
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As we have seen, there are some problems with the new numerical model, and this is
where possible solutions will be proposed. The reason these solutions have not been
performed during the course of this thesis is due to the time consuming nature.

The largest problem with the non-linear motions in the numerical model is the large
amplitude which was seen in heave and pitch. This could have several different solutions,
which will be presented here.

Restoring Coefficient Calculation

This part of the program was reused, but it is a very complicated subroutine, and it
might be beneficial to simplify this. In the numerical model this had to be taken out
of the iteration process because the restoring calculation proved to be unstable and
slow. This calculation is now being used to calculate a static restoring coefficient, and
unfortunately this restoring coefficient also had to be used in heave to calculate the
damping, and could be influencing the results in such a way that the peaks in heave
and pitch in the period range of 8-11 seconds is caused by a bad restoring coefficient.
This is considered the most likely source of the high amplitudes in heave and pitch.

Damping and Added Mass Frequency Dependence

This difference in the results needed more explanation, and though some suggestions
were made in chapter 6 it was thought that a more thorough investigation could help
with the further work on this model. There were two areas in particular which needed
more investigation; the damping and added mass.

The pitch results are thought to be influenced by the coupling with heave. The theory
is that the pitch results will improve if the heave solution is improved. The focus
will therefore be centred on heave. The damping and added mass are both frequency
dependent which has been shown by (Faltinsen, 1990, p. 49-55). This leads to damping
and added mass coefficients that could change with wave frequency (or period as is most
commonly used in this thesis). An example of a frequency dependent added mass and
damping can be seen in figure 8.4. The Total Buoy might not have the same relation,
but it is good approximation for the illustrative purpose here. We see from figure 8.4a
that the damping peaks are in the mid-range frequencies, which could correspond to
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(a) Damping (b) Added Mass

Figure 8.4: Two-dimensional added mass and damping in heave for a rectangular cylin-
der oscillating on the free surface, for different B/D ratios. B is the beam of
the cylinder and D is the draft. Infinite water depth is used. As shown in
(Faltinsen, 2005, p. 237)

the same problematic period range which was seen in the heave RAO. It is difficult
to calculate any values corresponding to the Total Buoy from these curves, due to the
varying width of the structure over the draft and the damping skirt also adding further
confusion.

The added mass is also varying with respect to frequency, but due to the nature of the
curve related to the frequency (if one assumes similar correlation for the Total Buoy)
one can see that the added mass will stay more or less the same value except for small
periods. This could affect the values seen in run 2001 (Wave Period 6 seconds), but is
unlikely to affect the peak seen in the range 8-11 seconds.

The inclusion of the frequency dependence in damping and added mass could be achieved
by finding similar curves as in figure 8.4 or confirming that these curves are also rea-
sonable with respect to the Total buoy and could be applied more or less directly to the
same problem. If one is able to find the frequency dependence; they should be included
as input and the damping and added mass functions should be expanded to include
them. This is to keep the calculation as general as possible so that the program can be
applied to other problems.

Another possibility for including the frequency dependence is with the aid of convolution
integrals in the solution of the motions. This is explained in detail in (Faltinsen, 2005,
p. 257-). One should be aware, however, that as the motion calculation applied in this
model is very simplified the method might not be directly applicable. An important
difference is the way the coupling between heave and pitch is achieved. The coupling
is achieved through the pressure calculation and updating the coordinates accordingly.
The method shown in (Faltinsen, 2005, p. 257-) uses coupling coefficients. Another
problem which will need to be addressed is how to apply the convolution integral in the
Matlab code, but this is only a matter of further studying the method in question. The
choice of how the frequency dependence is included should be based on which is the
simplest and fastest with respect to the programming.
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Ice Model

Another problem which will need more work is the ice calculations, because the static
solution provides very little helpful information for the design of these structures. The
numerical model will need to be able to do a dynamic ice analysis on the buoy with
focus on the time domain solution of the buoy motion in varying level ice thickness. This
should be the main focus of the continued development of this numerical model. The
development of a time domain ice calculation necessitates model test results to compare
with. If model test results on the total buoy are not available one should instead try to
develop the ice calculations from other similar fixed or floating structures with either
force results or motion results.

Include Options to Calculate Coefficients Directly

Finally, one should consider expanding the program to be able to calculate added mass,
damping and restoring coefficients with only geometric input. The program is very
dependent on good input to be able to calculate good results, and while the program
itself has been written in a way which allows the user to calculate any cylinder based
structure there are input values which are required that are not easily obtained.

These include damping percentages and added mass correction coefficients, which are
difficult to find for arbitrary shapes. These values can now only be approximated by
table values and empirical formulas. Otherwise one can do a forced oscillation model
test to gain some value, use a potential theory based computer program, or, in the
future use Computational Fluid Dynamics (CFD).

Include Linear Numerical Calculation Written By Glomnes and Viko

When doing the comparisons in the pre-study (see appendix A) parts of the linear
calculations in the numerical model were seen producing good and fast results. It could
be a good idea to include these into the present numerical mode, and expand the GUI
(see MathWorks (2012) for help with GUI) to include these calculation options. This
has not been done due to focus on getting the non-linear calculations to work.

Include Free Oscillation Tests

Another option which could be included is free oscillation tests. This option can be run
by manipulating the present code, but the option has not been included in the GUI due
to lack of time to ensure a good quality.
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Appendix A

Comparison of Previous Numerical
Model

The focus of this chapter will to check the functionality of the numerical model compared
to the model tests and the corresponding Wasim runs. In the cases where the numerical
model fails then only Wasim will be compared to the model tests. If the Wasim results
are close to the model tests then comparisons shall be made between Wasim and the
numerical model for a sea state in which the numerical model does not fail. As the
Wasim model includes integration to the true surface, the comparison should be able to
point out the significance of integration of pressure to the true surface. Unfortunately
many of the graphs in (Glomnes, 2006) have been destroyed (as shown in figure A.1, so
there will only be a limited number of figures from that thesis, due to the time it takes
to decipher.
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Figure A.1: Example of contaminated plots

A.1 Decay Tests

Because of the complex nature of the problem a good way to begin the comparison is
to do decay tests. The decay test is a still water test where the structure is given a
displacement in one or more degrees of freedom. The resulting motion makes it possible
to calculate damping ratios and eigenvalues. (In this case the damping ratios are of
little interest because the critical damping ratios have been selected to be the same in
all cases based on the original model test results (see chapter 4))

A.1.1 Pitch Decay Test Results

The results from decay tests are shown in the following graphs. These have been cal-
culated with the numerical model which was appended to (Glomnes, 2007) with no
mooring lines specified and with the Wasim model as defined in Chapter 4

Heave

From figure A.2 and figure A.3 we can see a significant difference in these results. The
amplitude from the numerical model is more than twice as large as the Wasim and the
natural period is also different here. (see table A.1)

II Jon Marius Aasheim, 2012



Comparison of Previous Numerical Model

Figure A.2: Pitch decay test results in heave from numerical model

Figure A.3: Pitch decay test results in heave from Wasim
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Pitch

As we can see by comparing the graphs in figure A.4 and figure A.5 there is smaller
difference between the pitch results. The amplitude from the numerical model is in
general a bit lower than the Wasim results but in this case the difference is very small.
The natural period in the numerical model is higher than the value from Wasim. (see
table A.1

Figure A.4: Pitch decay test results in pitch from numerical model

Figure A.5: Pitch decay test results in pitch from Wasim
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A.1.2 Heave Decay Test Results

In figure A.6 and A.7 there is a difference in the results. In this case the amplitude
of the numerical model is about 50% higher than the Wasim results but the natural
periods is very similar (only about 2.5% difference)

Figure A.6: Heave decay test results in heave from numerical model

Figure A.7: Heave decay test results in heave from Wasim

A.1.3 Natural Periods Comparison

Table A.1 shows the different natural periods from model tests, the numerical model and
Wasim. The model test results have been found in (Glomnes, 2006) but are originally
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from a Force Technology report. (Which is unavailable at this time) The other values
have been found by analysing the decay test results. The natural periods can be found
by reading the difference between two peaks in the decay tests presented in the figures
in this section. (Steen and Aarsnes, 2010)

Pitch[s] Heave[s]
Model Test Results 16.3 8.8
Numerical Model 16 9.1
Wasim 15 8.9

Table A.1: Natural Periods Comparison

The largest difference can be seen in the pitch results. The numerical model has a closer
fit to the model test results than the Wasim results. The heave results are very close to
the model tests in both cases. There might be several explanations for this:

• The added mass or mass calculated in Wasim might be higher than the numerical
model.

• The stiffness calculated in the numerical model might be lower than calculated in
wasim

A.2 Linear Regular Waves

To determine the functionality of the numerical model it is necessary to test the linear
part of the numerical model compared to the model tests. Wasim also ran with linear
theory to check if the linear solution is worth the modelling time. In table A.2 we can
see the chosen model test runs and the corresponding wave parameters.

Run Wave Height Wave Period
2010 9.0 m 13.4 s
2019 9.0 m 20.0 s

Table A.2: Model test runs(Glomnes, 2006)

A.2.1 Comparison of Run 2010

Model Test Results

In the figure A.8 and A.9 we can see the results from the model test runs(From Force
Technology) as presented by (Glomnes, 2006).
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Figure A.8: Heave response from model test run 2010(Glomnes, 2006)

Figure A.9: Pitch response from model test run 2010(Glomnes, 2006)
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Numerical Model results

When comparing the results in figure A.10 and A.11 to the model test we can see that
the heave response is very close to the model test response. This indicates that the heave
motion of the buoy is close to linear. In the case of pitch motion we can see that the
relative difference between maximum and minimum is the same, however there is a large
difference in the positive and negative amplitude in the model test. In the numerical
model the amplitude is the same. It is also important to note that the amplitude is
varying in the model test but not in the linear model, this points to a non-linearity in
the pitch motion of the buoy.

Figure A.10: Heave response from Numerical Model run 2010
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Figure A.11: Pitch response from Numerical Model run 2010

Wasim Results

Heave is again very similar to the model test, but Pitch is not close to the other results,
it is about six times larger than the numerical model. The explanation of this might
be seen in the linear decay test given in figure A.13. The natural period in pitch is just
below 14 seconds for this run which is very close to the wave period, this is a possible
explanation for the extreme response as seen in figure A.12, but it also shows that
Wasim might not be a good choice for linear calculations. Another important aspect of
this is that the linear model does not integrate pressure to the true surface, and this is
a possible effect of just integrating to the mean surface.

Figure A.12: Heave response from Wasim run 2010
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Figure A.13: Linear pitch decay test

A.3 Non-linear regular waves

In the case of non-linear motion the numerical model fails during both runs. First the
comparison will only be between Wasim and the model test run(see figure A.8) and if
the model test and Wasim run is similar then Wasim can be used for comparison with
the numerical model.

Wasim Results from run 2010

The heave results seen in figure A.14 are much the same as in the linear runs. The
pitch results are much closer to the model test, however the amplitude is still larger and
the amplitude skewness cannot be seen in the Wasim run. The difference in amplitude
might be due to the natural period difference which was seen in the decay tests in section
A.1 although the natural period is further from the wave period in this it is still within
2.5s. This might be the cause of the difference in the amplitudes.
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Figure A.14: Non-linear response from Wasim run 2010

A.3.1 Comparison of run 2019

As the pitch motion above has a difference in amplitude a test of the other model test
run must be done to ensure that there is a close enough fit outside of the resonance
area.
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Model test results

Figure A.15: Heave response model test run 2007

Figure A.16: Pitch response model test run 2007
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Wasim Results from run 2019

As can be seen from the graphs (in figures A.15, A.16 and A.17) there is lot less difference
in this case. The heave motion is once again very similar and the pitch motion is much
closer than what was seen in the linear runs, but in this case Wasim actually gives
a lower estimate than the model test. It is difficult to explain this difference but in
this case the model test is closer to its natural period so once again this might be a
possibility. The difference is not that significant so in preliminary design this difference
can be neglected

Figure A.17: Non-linear response from Wasim run 2019

A.3.2 Comparison between numerical model and wasim re-
sults

As the numerical model fails for the model test waves a different approach must be
utilized. As Wasim is close to the model test solution it should be possible to check a
milder sea state.(in which the numerical model does not collapse)
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H=3 T=15

The intention with this sea state was to check the results for a reasonable low wave
height in combination with a long period. The numerical model is partly based on a
long wave approximation and should therefore have a good result with the chosen wave.

Figure A.18: Wasim Run H=3 T=15

Figure A.19: Numerical Model Run H=3 T=15 Heave

When comparing the results from figures A.18, A.19 and A.20. We can see that there
is in general more noise in the numerical model solutions. The heave amplitude has a
difference of up to 100% and for the pitch motion we there is about 67% difference in
the amplitude.
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Figure A.20: Numerical Model Run H=3 T=15 Pitch

H=6 T=12

This sea state was chosen to see a generally tougher sea state which is closer to the
natural periods of pitch and heave. The results of the runs can be seen in figures A.21,
A.22 and A.23

Figure A.21: Wasim Run H=6 T=12

Jon Marius Aasheim, 2012 XV



Comparison of Previous Numerical Model

Figure A.22: Numerical Model Run H=6 T=12 Heave

Figure A.23: Numerical Model Run H=6 T=12 Pitch
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This result is rather poor for the numerical model solution as even the heave motion,
which in general has been close, is very far from the Wasim solution. The difference
is about 100% for the pitch motion, for the heave motion we see that there are points
where the solutions are very close and some other points where the fit is not quite as
good.

A.4 Short Result Conclusion/Summary

The main intention was to check the general solutions of the programs and compare
them with model tests. The reason for checking all motion calculations and not just the
non-linear part was to remove these from further examination and focus on a specific
part of the numerical model in the future. (Wasim was also compared to give insight
into the differences in the models)

The non-linear module of the numerical model could not be compared to the model test
due to failure while running the numerical model. To check the results of the numerical
model it was necessary to use Wasim as an alternative, but this required a confirmation
of the results. Comparisons were made between the model tests and Wasim and it can
be seen from the graphs given in section A.3 that there is reasonable correlation between
the results, and Wasim can therefore be applied as a reference with respect to reliable
comparison data.

Finally a couple of comparisons were made between Wasim and the Numerical Model.
For a low wave height we can see that the heave and pitch motion is underestimating
the response by 50-100%. When doubling the wave height and lowering the period the
difference in percentage is very much the same as the previous run except that in this
case the numerical model is overestimating the responses. As the numerical model is
thought to be giving reasonable answers for low wave heights, this is an indication of
the difference between instantaneous pressure integration and the mean surface pressure
integration. When the model is tested with a more severe sea state it shows tendencies
to give large overestimations of motions. This is most visible in the pitch results, where
motions could be as large as 20 degrees.

Jon Marius Aasheim, 2012 XVII





Appendix B

Problems With the Previous
Numerical Model

After comparing the different program results in appendix A. The purpose of this chapter
is to highlight the problematic areas and also propose possible solutions. The problems
are mostly in the non-linear time integration part of the model. According to (Glomnes,
2006), (Glomnes, 2007) and (Viko, 2006) this has been problematic since the first version
of the program. Unfortunately this is still the case. Another difficulty which has been
encountered is the presentation of the force results, which at its best can called noisy.
An example of this can be seen in figure B.1

Figure B.1: Example of Force Results
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B.1 Identified Problems

B.1.1 Problems With Sea States

The largest problem with the non-linear calculations is the fact that it fails when the
wave height is above a certain limit. The output from MATLAB in these runs are
complex numbers and near singular values, an example of this can be seen in figure
B.2. In this run the structure has been "fixed" by increasing the hydrostatic coefficients,
in essence the structure will then be close to motionless, thus eliminating the relative
motion between the structure and waves. The point of this exercise is to test the limits
of the structure due to steep waves and tall waves. In reality the actual "max" wave
height could be lower than this when the structure is allowed to move. This is very
likely to happen near the natural periods of the buoy, which makes the wave period an
important factor as well.

Figure B.2: Results from "fixed" structure in 6 meter waves

This phenomenon occurs when the wave height is high enough, the limit seems to
coincide with the height of the slanted part of the hull. This problem is due to a
assumption made by (Glomnes, 2006), in which he assumed that the only part of the
buoy affected by waves are the slanted parts. This is effectively limiting the maximum
wave height which can be applied.
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Possible Solution

Review of the initial assumptions made in the non-linear calculation, and try to change
the assumptions to include more of the structure in the wave calculations. This could
include integration of pressure to the real surface, and other higher order calculations,
not just simplifications based on geometry.

B.1.2 Problems With Accuracy

As previously stated in appendix A there are problems with the accuracy of the nu-
merical model with as much as 50-100% difference between the Wasim results and the
numerical model. (where the numerical model gives the higher estimates) This problem
is particularly difficult to reason out, because it requires a lot of trial and error with the
code, and given the generally slow computing time of the numerical model in general
makes it a very time consuming task.

The fact that the motions are both underestimated and overestimated depending on the
size of the waves might be indicative of an error in either inertia, damping, restoring
or excitation forces. As the damping in the numerical model is given as a percentage
of critical damping, which of course is dependent on the stiffness and mass as shown in
equation 4.8. This means that an error in either the stiffness or mass terms will also
affect the damping.

Another problem might be in the way the new time integration function works. Ode45
needs to solve the problem as a system of linear equations, and there are some incon-
sistencies in the way the force is calculated. The restoring force does not seem to be
included in the actual time integration and the inertia force is calculated by enforcing
equilibrium after the integration has been completed. The accelerations are then found
from the calculated inertia force.

Possible Solution

Assuming that this is not simply due to the problem stated in B.1.1 then this problem
might be solved by examining all of the coefficient calculations with a focus on the
added mass formulae which are used in Inertia.m. It is specifically the calculations of
A(1,5),A(5,1) and A(5,5) which should be investigated further.

It is also important to check the way ode45 solves the problem, this has not been a
particular focus of this thesis so it might be correct. However it might be a good
idea to solve this problem with a numerical integration scheme which has been written
specifically for this problem, thus giving more control of the calculation steps.
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Solver Problem Type Order of Accuracy When to Use
ode45 Nonstiff Medium Most of the time. This should be the

first solver you try.
ode23 Nonstiff Low For problems with crude error toler-

ances or for solving moderately stiff
problems.

ode113 Nonstiff Low to high For problems with stringent error tol-
erances or for solving computationally
intensive problems.

ode15s Stiff Low to medium If ode45 is slow because the problem is
stiff.

ode23s Stiff Low If using crude error tolerances to solve
stiff systems and the mass matrix is
constant.

ode23t Moderately Stiff Low For moderately stiff problems if you
need a solution without numerical
damping.

ode23tb Stiff Low If using crude error tolerances to solve
stiff systems.

Table B.1: Alternative Runge-Kutta solvers in Matlab

B.1.3 Problems With Slow Time Integration

Finally the time integration scheme chosen is not a very good choice. It does seem to be
stable over a larger area compared to the Newmark-β method written by (Viko, 2006),
even though this method is supposed to be unconditionally stable. The problem is that
ode45 is exceptionally slow, the solver took around 4 hours to complete a 50 second run
with a time step of 0.01.

Possible Solution

A possible solution is to change the solver from Ode45 to an alternative which is more
applicable to this stiffness dominated problem. The other possible solvers are shown in
table B.1

The stiff solvers ode15s and ode23s increases the speed of the solution significantly. The
same test yields a run time of a few seconds. It also gives the same answer as ode45 so
there is no penalty to the accuracy.

Another option is to return to the previous Newmark-β solver, or write a new one.
Theoretically the Newmark-β should be able to handle this problem and yield completely
stable results so if the problem described in B.1.1 is solved then this method might work.
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B.1.4 Presentation of Forces

As mentioned in the introduction to this chapter the force presentation could be better,
first of all is the noise level, second is the fact that every single component is presented in
the same graph. The noise level is probably due to poor solutions or accuracy problems
as mentioned in the previous sections, so this problem will most likely be solved if the
program in general is improved. The second is problematic because it is difficult to
process that much information in a single plot. It might be better to present the total
force and have the components as optional plots if the user should desire to see them.
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Electronic Appendices

Zip File containing

• Last version of the new numerical model

• Last version of the old numerical model

• PDF of Thesis

• Javascript file from WASIM which can be used to recreate model in HydroD
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