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ABSTRACT
This paper introduces the concept of lateral buckling of ten-

sile armour wires in flexible pipes as a failure mode. This phe-
nomenon is governed by large deflections and is therefore highly
non-linear. A model for prediction of the wire equilibrium state
within the pipe wall based on force equilibrium in curved beams
and curvature expressions derived from differential geometry is
presented.
On this basis, a model of the global equilibrium state of the ar-
mour layers in flexible pipes is proposed. Furthermore, it is
demonstrated how this model can be used for lateral buckling
prediction. Obtained results are compared with experiments.

INTRODUCTION
Flexible riser pipes are widely used in the offshore industry

for oil and gas extraction from subsea reservoirs at water depths
so large, that it is not possible or feasible to place a traditional
jacket supported oil rig on top of the reservoir. In this case, flex-
ible risers may connect a floating platform to a subsea reservoir.
In order to obtain a structural design which provides sufficient
structural integrity against external and internal pressures, axial
loads and large deflections, flexible pipes are usually designed
as unbonded steel-polymer composite structures comprised by a
number of layers with different mechanical properties and struc-
tural functions. Due to the extreme loading conditions a flexible
pipe may experience both during installation and in operation,
multiple failure modes have been identified. Most failure modes
can today be reconstructed experimentally under controlled con-

ditions and obtained results can be predicted by engineering anal-
ysis.
However, a number of failure modes are still subject of academic
and industrial research. Among those are lateral buckling of flex-
ible pipe tensile armour layers, which usually are designed as two
layers of helically wound steel wires with opposite lay directions.
The structural function of the layers is mainly to ensure the in-
tegrity of the structure against axial and torsional loads. In order
to prevent large radial wire deflections caused by axial compres-
sion, which leads to an instability failure mode usually denoted
’birdcaging’, see Fig. 1, most risers for deep waters are designed
with a high strength tape wound around the wires.
The lateral buckling failure mode has been observed to occur
during installation of flexible pipes in ultra deep waters. In the
installation scenario, flexible pipes are exposed to axial compres-
sion due to hydrostatic pressure on the end cap of an empty pipe,
and repeated bending cycles due to vessel movements, waves and
current, see Fig. 2. Furthermore, wet annulus conditions (corre-
sponding to a damaged outer sheath) are known to increase the
risk of lateral buckling failure, since external pressure does not
introduce contact stresses in the wires, which would enable fric-
tion to limit wire slippage. The failure mode is governed by very
large lateral deflections of the armour wires, see Fig. 3
In order to investigate the physics of the lateral buckling failure

mode, it was reproduced experimentally by Braga and Kaleff,
[1], in a mechanical test rig. However, it was concluded that fail-
ure occured at lower load levels than experienced in the field, and
presently this seems like a widely accepted fact. Further exper-
imental studies were conducted and presented by Bectarte and

1 Copyright c© 2011 by ASME

Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering 
OMAE2011 

June 19-24, 2011, Rotterdam, The Netherlands 

OMAE2011-49358 



FIGURE 1. Birdcaging failure mode in flexible pipe, generated by
NKT-Flexibles by laboratory testing

FIGURE 2. Touch-down zone of flexible pipe during DIP-testing sim-
ulating the installation scenario

Coutarel, [2]. Since the results obtained by experiments are not
publicly available, a series of experiments are conducted and pre-
sented in this paper.
The physical mechanism that leads to lateral buckling failure is
presently understood as loss of load carrying capacity of the in-
ner layer of tensile armour wires due to buckling. This causes
bending and compression to couple to the pipe torsion, which
leads to a severe pipe twist in the pitch direction of the outer
layer of amour wires. Due to this twist, the stresses and defor-
mations in the inner layer increases dramatically, which leads to
plastic deformation of the layer. Eventually, the pipe structure
will therefore be permanently deformed and will in most cases
not have the sufficient structural integrity to function in opera-
tion.
The mechanics of armour wires have been subject of research
for several decades, and numerous examples of research in how
to calculate stresses and slips are available. Féret and Bournazel,
[3], developed a model for prediction of flexible pipe responses
due to axisymmetric loads. Witz and Tan, [4], suggested a model
of armour layers in bending, however, assuming the wires to re-

FIGURE 3. Lateral buckling in the inner layer of tensile armour
wires, generated by NKT-Flexibles by laboratory testing

main in loxodromic configuration (having constant pitch angle).
Sævik [6] presented a wire model, in which slip is assumed to
occur along a loxodromic curve, for prediction of fatigue life-
time. This research can, however, since transverse slide is ne-
glected, not be used for lateral buckling prediction. Leroy and
Estrier, [5], presented research in which transverse wire move-
ments were modeled. However, only force equilibrium in tension
and bending was considered. Furthermore, a prescribed experi-
ence based solution-form was chosen, which cannot be expected
to hold in compression. Brack et. al. [7] demonstrated that the
non-linear buckling load of an armour wire could be calculated
by a finite-element model. However, in order to study the cou-
pling effects leading to failure of an armour layer, an analytical
model taken transverse equilibrium into account needs to be de-
veloped.
The presented research aims to determine the limit state of the
tensile armour wires after many bending cycles have been ap-
plied. It is noted, that while this approach is reasonable when
modeling wire buckling, it is just one of many approaches to
wire mechanics, and other approaches may provide better results
with respect to other failure modes.

1 METHODS
1.1 Single wire mechanics

The geometry, equilibrium and constitutive relations for a
single tensile armour wire subjected to axial loads and bend-
ing will be considered in this section. The radius of curvature
will, for the sake of simplicity, be assumed constant. A single
armour wire can therefore be considered as constituting a curve
on a torus surface.
Friction will, in order to determine the limit equilibrium state
of a wire subjected to given loads, be neglected. Slip towards
this limit state will occur, since the pipe annulus is considered
flooded, so friction does not restrain the wires to a loxodromic
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FIGURE 4. Wire geometry

configuration.
While the curvature components of a single tensile armour wire
in the analysis are allowed to be large, the axial strain of the wire
is assumed sufficiently small to determine using Cauchy’s defi-
nition of strain. It will furthermore be assumed that the curvature
components can be determined on basis of the geometry of an
inextensible curve due to small axial strains.
A parameterization of the torus by an arc length coordinateu
along the torus centerline and an angular coordinatev is chosen,
see figure 4. The torus surface is then, for pipe curvatureκ = 1

R
and radiusr given by

x(u,v) =





(

1
κ + r ·cosv

)

cos(κu)− 1
κ

( 1
κ + r ·cosv

)

sin(κu)
r ·sinv



 (1)

A curveα can be constructed by relatingu andv. Assuming the
curve parameterized by undeformed arc lengths0, a curvilinear
coordinate triad of unit length given by

t =
dα
ds0

n =
xu×xv

‖xu×xv‖
b = t×n (2)

can be attached to each point on the curve. Now considering the
geometry of the wire in the tangent plane, an alternative defini-
tion of the unit tangent vector is as a linear combination of the
following two unit vectors spanning the tangent plane of the torus

surface

tu =
xu

‖xu‖
tv =

xv

‖xv‖
(3)

in which the surface derivatives are given by

xu =
∂x
∂u

xv =
∂x
∂v

(4)

With the definitions given in equation 3 and 4, a wire tangent
vector can be defined as

t = cosφ tu +sinφ tv (5)

in which φ denotes the wire angle with respect totu. In order
for this definition to be consistent with the definition given in
equation 2, the following vectorial equation must hold

dα
ds0

= xu
du
ds0

+ xv
dv
ds0

(6)

= cosφ tu +sinφ tv

This corresponds to stating

du
ds0

=
cosφ
‖xu‖

dv
ds0

=
sinφ
‖xv‖

(7)

Equation 11 relates the arc length derivatives to the wire angle
and surface geometry. The effect of that the arc lengths in the
loaded wire state does not correspond to the arc length in the ini-
tial helical states0 will now be taken into calculation by modifi-
cation of the tangent length. Considering the initial wire geom-
etry parameterized by undeformed arc lengths0, the axial wire
strainε can be related tosby

ds= (1+ ε)ds0 (8)

The length of the tangent vector for a curve parameterized bys
is given by

t · t = (1+ ε)2 (9)

The following definition of the tangent vector fulfills this require-
ment

t = (1+ ε)cosφ tu +(1+ ε)sinφ tv (10)
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This corresponds to stating

du
ds

= (1+ ε)
cosφ
‖xu‖

dv
ds

= (1+ ε)
sinφ
‖xv‖

(11)

Calculatingxu and xv as defined in equation 4, the following
norms can be determined

‖xu‖=1+ rκ cosv ‖xv‖=r (12)

Since the governing equations for the wire tangent geometry
have now been derived, curvature components of the wire must
be calculated. Applying the well-known Darboux frame, the
triad vectors and their first order derivatives in arc length can
be related by the curvature components

d
ds0





t
n
b



 =





0 κn −κg

−κn 0 τ
κg −τ 0









t
n
b



 (13)

The chosen sign convention can be shown to correspond to, that
a positive rotation about a given axis corresponds to a positive
change of curvature for a positive change of arc length, and is
furthermore consistent with respect to the sign conventions cho-
sen in [5] and [6]. Furthermore, this choice of sign convention
secures that moments and changes of curvature have the same
sign, which is desirable when formulating constitutive relations,
see equation 25. Applying this definition to a coordinate frame
defined as specified in equation 2, the following wire curvature
components can be derived

κn = −
κ cosv

1+ rκ cosv
cos2 φ −

1
r

sin2 φ (14)

κg =

(

κ sinv
1+ rκ cosv

cosφ +
dφ
ds

)

(15)

τ =

(

κ cosv
1+ rκ cosv

−
1
r

)

cosφ sinφ (16)

The obtained curvature components can be compared with com-
ponents derived by Leroy and Estrier, [5], chosing a loxodromic
curve on a torus surface as reference curve, see Fig. 5. The
curvature components can be observed to be of the same mag-
nitude and differences in signs can be observed to correspond
to different sign conventions. Since the wire geometry has now
been considered, a set of equilibrium equations must be derived.
The equilibrium equations of a curved beam are given by Reiss-
ner, [8], on vectorial form

dP
ds

+ p = 0
dM
ds

+ t×P + m = 0 (17)

0 0.5 1 1.5 2 2.5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

 wire arclength, s(m)

 C
ha

ng
e 

of
 c

ur
va

tu
re

, ∆
κ 

(1
/m

)

 Curvature of loxodrome (constant pitch)

 

 
κ

g
 Leroy and Estrier

κ
g
 derived

κ
n
 Leroy and Estrier

κ
n
 derived

τ Leroy and Estrier
τ derived

-

FIGURE 5. Curvature components of loxodromic curve

The internal and external force and moment-vectors in equations
17 are given by

P = Ptt +Pnn+Pbb

M = Mt t +Mnn+Mbb

p = ptt + pnn+ pbb

m = mt t +mnn+mbb

(18)

Applying equation 13, the equilibrium equations can be
rewritten on component form

dPt

ds
−κnPn+ κgPb + pt = 0 (19)

dPn

ds
+ κnPt − τPb+ pn = 0 (20)

dPb

ds
−κgPt + τPn+ pb = 0 (21)

dMt

ds
−κnMn + κgMb +mt = 0 (22)

dMn

ds
+ κnMt − τMb−Pb+mn = 0 (23)

dMb

ds
−κgMt + τMn +Pn+mb = 0 (24)

Since the surface is considered frictionless, the external forcespb

andpt in the tangent plane and the distributed momentsmb and
mn can be considered zero.
Assuming the wire dimensions small both with respect to major
and minor torus radii, it is fair to neglect curved beam terms in
the cross sectional constants and assume the wire constitutive
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equations linear. These are given by

Pt = EAε (25)

Mt = GJ∆τ
Mb = EIb∆κn

Mn = EIn∆κg

Now considering the equations governing the tangent wire ge-
ometry in equation 11, rearranging the obtained definition of the
geodesic curvature and considering equilibrium in the tangent
plane, the following consistent sixth order system is obtained

du
ds

= (1+ ε)
cosφ

1+ rκ cosv
(26)

dv
ds

= (1+ ε)
sinφ

r
(27)

dφ
ds

= −
κ sinv

1− rκ cosv
cosφ + κg (28)

dPt

ds
= κnPn−κgPb (29)

dPb

ds
= κgPt − τPn (30)

dMn

ds
= −κnMt + τMb +Pb (31)

in which remaining unknown functions are given in terms of
known quantities after a solution is found. The system can be
solved with respect to boundary conditions corresponding to the
mechanical behavior of flexible pipe end fittings, in which the
wires are fixed in displacement and rotation

u(0) = 0 v(0) = vA
ini φ(0) = φhel (32)

u(S) = L

(

1+
∆L
L

)

v(S) = vB
ini −

∆ψ
L

L (33)

φ(S) = φhel

in whichSdenotes the total wire arc length,φhel the initial helical
wire lay angle andvA

ini andvB
ini the specifiedv-coordinate of the

wire, respectively, fors= 0 ands= S. Furthermore,∆L
L denotes

the pipe strain and∆ψ
L the pipe twist, which correspond to the

applied generalized loads.
A system of equations for prediction of the wire equilibrium state
has now been derived allowing for large transverse slips.
Modeling an armour wire with the conventional assumption, that
the wire angle remains constant such that the wire constitutes a

loxodromic curve on a torus surface, the derived system can be
simplified. Settingdφ

ds = 0 corresponding to constant pitch angle,
the expression for the geodesic curvature reduces to

κg =
κ sinv

1+ rκ cosv
cosφ (34)

With dφ
ds = 0 all curvature components are only functions ofvand

φ . Relating changes of curvature with sectional wire moments by
applying the constitutive equations, the binormal sectional wire
force is now determined by the normal moment equilibrium. The
governing equations can then be reduced to

du
ds

= (1+ ε)
cosφ

1+ rκ cosv
(35)

dv
ds

= (1+ ε)
sinφ

r
(36)

dφ
ds

= 0 (37)

dPt

ds
= κnPn−κgPb (38)

The corresponding boundary conditions are

u(0) = 0 v(0) = vA
ini (39)

u(S) = L

(

1+
∆L
L

)

v(S) = vB
ini −

∆ψ
L

(40)

The solutions to the presented boundary value problems are in
the following determined using a Matlab build-in solver by the
Lobatto-IIIa method.
It is noted, that since the wire is considered embedded in a torus
surface, the rotation around the wire tangent is governed only
by the underlying surface. In a physical pipe structure, the wire
may under some circumstances to some extend be allowed to ro-
tate in a slightly different manner causing a phenomenon which
is usually denoted ’fishscaling’. This leads to a model which
has a larger stiffness than the wire being modeled. The effect is,
however, due to contact effects from adjacent layers and in ac-
cordance with observations made during conducted experiments
deemed negligible in the present context.

1.2 Flexible pipe model
A model for prediction of the flexible pipe torsional response

to compression and bending can now, if transverse wire contact
is neglected, be constructed on basis of multiple single wire anal-
yses. The global torsional boundary conditions of the analyzed
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FIGURE 6. Wire coordinate triads

FIGURE 7. Flexible pipe model

pipe will be taken as fixed-free corresponding to the conducted
lateral buckling laboratory experiments, see Fig. 7.
While the inner layer of tensile armour will be considered free
to seek equilibrium transversely, the outer layer will be assumed
locked in loxodromic configuration. The underlying assumption,
that no transverse slip occurs in the outer layer of armour wires,
is supported by observations made during execution of experi-
ments, by which no transverse slip or change of lay angles could
be observed in the outer layer of armour wires, even when severe
failure was detected in the inner layer of tensile armour.

In order for the free end of the flexible pipe to be in equi-
librium, a pipe twist∆ψ

L must be applied such that the following
global equation of equilibrium is satisfied

nwires

∑
i=1

(Mi
u−Pi

v · r
i)+

nsheets

∑
i=1

Mi
u,sheets= (41)

nwires

∑
i=1

(

Mi
t cosφ i +Mi

bsinφ i − (Pi
t sinφ i −Pi

bcosφ i) · r i)

+
nsheets

∑
i=1

GiJi ∆ψ
L

= 0

in which forcesP and momentsM are calculated with respect to
theu andv-directions given on Fig. 6. Once the geometrical con-
figuration satisfying equation 41 has been established, the axial
loads carried by the pipe structure can be calculated as

Pa =
nwires

∑
i=1

Pi
u+

nsheets

∑
i=1

Pi
u,sheets (42)

=
nwires

∑
i=1

Pi
t cosφ i +Pi

bsinφ i +
nsheets

∑
i=1

EiAi ∆L
L

Torsional equilibrium can be establish by solving equation 41
for given generalized load inputs, pipe bending radiusR and ax-
ial pipe strain∆L

L by Newton-Raphton iterations.
The presented model does not take radial deformations due to
axisymmetric loadings into calculation. It will, in order to study
the effect of a radially elastic pipe wall be assumed, that the ra-
dial expansion in the model equals the radial expansion obtained
by axisymmetric analysis be means described in [3]. While this
assumption can be justified for loadings which do not cause the
inner layer of tensile armour to fail by lateral buckling, it does
not provide sufficient precision after failure has occurred. The
main reason for this is, that the applied methods are based on
axisymmetric loading of perfect helices, and the wire geometry
may change dramatically as the wires buckle. From axisymmet-
ric analysis it is known that

Pa = ka
∆L
L

= −kr
∆r
r

(43)

in whichka andkr denotes the axial and radial stiffness of a flex-
ible pipe modeled with linear global properties. Defining the
radial strain and rearranging equation 43 yields

rd =

(

1+
∆r
r

)

r =

(

1−
ka

kr

∆L
L

)

r (44)

The radius in the torus model can therefore be considered a func-
tion of the applied axial loading, while initial curvature compo-
nents are calculated on basis of the radius in the unloaded state.
Since the system of governing equations for the wires in the in-
ner layer is non-linear, an imperfection must be added to the ge-
ometry, in order to trigger stability phenomena if present. The
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TABLE 1 . 6” FLEXIBLE PIPE DESIGN

- Inner layer Outer layer

OD(m) 0.2012 0.209

Lpitch(m) 1.263 1.318

Wire size(mm) 3×10 3×10

Number of wires 52 54

imperfection can be added directly to the geodesic curvatureas

κg,pert = κg +
m

∑
i=1

γisin

(

iπs
L

)

(45)

with m= 20 andγamp= −0.001.

2 RESULTS
A 6” flexible pipe with tensile armour properties given in

table 1 will be modeled. Effects from other pipe layers are ne-
glected. It is noted, that polymer sheaths, insulation and high-
strength tape layers of flexible pipes may in some cases con-
tribute significantly to the torsional- and compressive pipe stiff-
ness. However, for the present pipe design, this is not the case.
The wires are made of steel with elastic modulus 2.1 ·105MPa,
yield stress 765MPa and are considered isotropic. In order to
study the structural behavior in compression, the (load-strain)-
curve of the loaded end of the pipe will be presented for various
model parameters, see Fig. 8. Two different bending radii will be
studied for radially stiff pipe structures. Furthermore, a radially
elastic pipe structure will be analyzed by applying equation 44.
All responses exhibit significant softening behavior, which is in-
terpreted as limit point buckling. Considering the obtained equi-
librium state of the wires, the added imperfection can be ob-
served to cause wire gaps to localize in one end of the analyzed
pipe, see Fig. 9. Both the pipe curvature and the effect of ra-
dial expansion can be observed to have very limited influence on
the buckling load in the analyzed flexible pipe. However, the ap-
proach by which radial expansion is taken into calculation, can
for obvious reasons not be considered exact and can therefore
only be considered as an estimate.

Considering the twist angle of the free end of the flexible
pipe, this can be observed also exhibit limit point behavior, see
Fig. 10. The physical interpretation of this result is, that when
the pipe is subjected to loads equal to or larger than the limit
point buckling load, it will cause a severe twist. Calculating the
stresses in all wires in the equilibrium state, the maximum stress
in the armour layers can be determined, see Fig. 11.
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FIGURE 8. (Load-strain)-curve for different bending radii,R

FIGURE 9. Localized wire buckling

3 MODEL-EXPERIMENT COMPARISON
In order to reconstruct the lateral buckling failure mode in

the laboratory, experiments were carried out on three 5 meter
long 6” pipe samples with armour layer design given in Tab. 1 in
mechanical test rigs, see Fig. 12. The test setup was quite sim-
ilar to the one applied by Braga and Kaleff, [1]. The pipe sam-
ples were mounted with geometrical boundary conditions corre-
sponding to the ones shown in Fig. 7. Compression was applied
by mounting a smaller flexible pipe inside the test pipe. Sub-
jecting this to tension caused a compressive reaction in the test
sample. Cyclic bending from neutral position to a specific max-
imum pipe curvature was applied by rotating the pinned frames
on which the pipe endfittings were mounted. In one case, a large
number of bending cycles were applied without sign of failure
in the test sample. After the initial test cycle had been con-
cluded, the test pipe was tensioned in cyclic bending in order

7 Copyright c© 2011 by ASME



−0.5 0 0.5 1 1.5 2

50

60

70

80

90

100

110

A
xi

al
 c

om
pr

es
si

ve
 lo

ad
 (

kN
)

Twist of free pipe end (deg)

 

 

R=11 m
R=16 m
R=11 m, radially elastic
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FIGURE 11. Maximum wire stress

to straighten the wires within the pipe wall, and the test pipe was
finally subjected to compressive loads larger than during the ini-
tial test cycle. This caused failure by lateral buckling in the test
pipe.

The key difference between results obtained from the model
and experiments is, that while modeled wires fail immediately
when critical loads are applied, cyclic bending must be applied
in the experiments to overcome frictional effects before failure
occurs. The measured twist of the free end of the test sample is
presented in Fig. 13. It is during laboratory testing observed, that
the pipe curvature has large influence on the number of bending
cycles which must be applied in order to trigger failure by lateral

FIGURE 12. Lateral buckling test rig
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FIGURE 13. Twist responses measured during laboratory testing

buckling.
In Fig. 14 buckling mode shapes determined experimentally and
by modeling are compared. Buckling mode A. corresponds to
large wire gaps, while buckling mode B. corresponds to a geo-
metrical state with large deviations from the initial helical angle
but with small gaps. It is noted, that while gaps in mode A. lo-
calize similar in test and model results, mode B. is detected as
localized buckling during experiments, but as a periodic solution
throughout the pipe length in the model. However, this mode has
in the current case occurred in the model after the yield strength
has been exceeded in the wires. This may explain the difference
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FIGURE 14. Detected buckling modes
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between results. In Fig. 15 the calculated axial load carriedby
the pipe structure is compared to tests results for a fixed bending
radius of 11m. Two test results can be observed to be, that lateral
buckling was not triggered in the test pipe, in which infinite life-
time may not be guaranteed in one case. Furthermore, two tests
can be observed to have failed by lateral buckling. These are rep-
resented by the two red dotted lines in the figure. If the model
length is set equal to the physical length of the test sample, the
model can be observed to generate a conservative estimate for
the limit load. However, it is a well-known fact that end-fitting
effects on the wires combined with friction causes the wires in
zones close to end-fittings to be restrained in their positions dur-
ing bending. The effect of non-slip zones can be estimated by
setting the model length shorter than the physical length of the
pipe sample, since both slip-free zones in each end of the pipe
sample will deform rigidly. Assuming that only respectively one
and two pitches are free to slide, the buckling load can be cal-
culated. While decreasing the model length to two pitches can
be observed to have moderate influence on the buckling load, the
model of one pitch length exhibits a dramatically larger buckling
load than the original model. A model length this short cannot be
justified on physical grounds on basis of the research presented in
this paper, but is included in the comparison in order to demon-
strate that the difference between the two models with modified
length is significant. The physical reason for this is, that if less
than two pitches are free to slip transversely, the obtained buck-
ling mode is influenced severely, so a different mode shape is
determined.

4 CONCLUSIONS
In order to develop a method, which can predict lateral buck-

ling of the tensile armour wires in flexible pipes, theoretical and
experimental studies have been conducted.
A mathematical single wire model based on equilibrium of
curved beams and curvature expressions derived on basis of dif-
ferential geometry has been presented. Since the wire is as-
sumed to rest on a frictionless surface, the equilibrium state of
the wire is reached immediately when loads are applied, while
cyclic loadings must be applied to a physical pipe structure in
order to overcome frictional effects so the equilibrium state is
reached.
On basis of the single wire model, a mathematical model of an
entire flexible pipe can be obtained by multiple single wire anal-
yses, if transverse contact between the wires is neglected. This
model can be used to determine the torsional equilibrium state
for a flexible pipe subjected to given compressive and bending
loads.
This model exhibits behavior quite similar to the observations
made during experiments and can be applied in order to obtain
a conservative estimate of the limit buckling load, which can be
carried by the pipe structure. However, since friction is not in-

cluded in the model, only the limit load for which lateral buckling
will never occur can be determined.
The friction may along with end-fitting effects cause, that the
wires in each end of the analyzed pipe will never experience slip,
since they are locked in their positions. The impact of this effect
on the results can be estimated by setting the length of the math-
ematical model lower than the physical length of the test pipe.
Results show that this effect may impose severe impact on the
buckling load.
Future research will therefore include a method for determina-
tion of the length of the slip-free zones in each end of the test
sample. Furthermore, additional experiments will be conducted
in order to validate the obtained model.
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