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Abstract

During the past decade, the processing requirements of embedded real-time systems have
become more and more challenging; not only in terms of performance, but also regarding
the energy efficiency. The dynamic nature of many of these systems has been recognized as
an important feature to take advantage of. Scenario-based design is a well-known design
methodology dealing with this. Identifying different use-case scenarios to optimize for is
a strategy that has been used for a long time. Lately, another kind of scenario-based
strategy has emerged; so-called System scenarios. Instead of classifying the behavior
of a system through several use-cases, the actual costs of the system is considered, like
resource usage or quality requirements. By thoroughly characterizing and analyzing the
system behavior at design-time, the different system scenarios can be recognized at run-
time without much overhead. The system can then be tailored to the identified scenario
by employing the optimal settings that have been determined at design-time. It must
however be enough exploitable dynamism present in the application to make up for the
system scenario overhead.

The system scenario research field has well described theoretical design methodologies,
even considering multiple cost dimensions. It can however be a long distance between the
theoretical methodologies and an actual design process, especially when the dynamic cost
is multi-dimensional. There is a considerable increase in the design complexity from
adding just one more cost dimension to the design, motivating the need for a precise
and concrete methodology. This thesis presents methods for detecting and exploiting
dynamism in applications through profiling and code inspection, and the results from ap-
plying these methods on four applications, where three of them are a subset of the SPEC
CPU

TM
2006 integer benchmarks. The focus is on exploring both memory and CPU

dynamism. Identifying the dynamism in an application can become very complex when
considering multi-dimensional dynamism. An extension to the system scenario methodol-
ogy which addresses this problem is therefore suggested. The scenario identification step
of the original methodology is split into several smaller steps and executed separately for
each of the considered dynamisms. This way the designer does not have to keep the entire
design space in mind, but can focus on each kind of dynamism separately. Sub-scenarios
are identified for each kind of dynamism, and then combined to form a scenario set where
the total dynamism is exploited. The methodology is targeted at simple single-core plat-
forms.

Several papers present promising results of the system scenario methodology when only
considering CPU optimizations such as Dynamic Voltage and Frequency Scaling (DVFS).
For applications requiring much memory however, DVFS can become infeasible as it
means longer stand-by time for the memory. Memory typically contributes significantly
to the total energy consumption, which motivates the recent introduction of memory
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system scenarios with dynamically reconfigurable memories. In this work, the dynamism
in applications that are both memory and computationally intensive are exploited by
combining DVFS and memory reconfigurations. Much CPU and memory dynamism is
identified in the considered benchmark applications, and up to 31% of the total energy
is saved by applying the modified system scenario methodology. Up to 47% is saved for
some of the low-workload situations. Characteristics of an Intel Pentium processor and
CACTI memory models are used to estimate the energy savings.



Sammendrag

I løpet av de siste ti̊arene har kravene som stilles til innvevde systemer blitt stadig mer ut-
fordrende, b̊ade hva ang̊ar ytelse og energieffektivitet. Mange av disse systemene har imi-
dlertid dynamiske egenskaper som kan utnyttes. Den scenario-baserte design metodikken
er et velkjent hjelpemiddel for å h̊andtere dette. Den tradisjonelle varianten g̊ar ut p̊a
å klassifisere oppførselen til et system gjennom s̊akalte bruker-scenarioer, for å deretter
kunne optimalisere systemet avhengig av behov. Senere har en annen variant, med s̊akalte
system scenarioer, begynt å f̊a oppmerksomhet. I stedet for å dele inn i scenarioer basert
p̊a ulik oppførsel, ser man p̊a variasjoner i den faktiske kostnaden til systemet. I løpet av
design-fasen karakteriserer og analyserer man systemet grundig, slik at de ulike scenari-
oene som skulle oppst̊a i det ferdige systemet (alts̊a i bruks-fasen) kan kjennes igjen uten
mye ekstraarbeid. I design-fasen finner man ogs̊a de optimale konfigurasjonene for hvert
scenario. Det ferdige systemet kan dermed i bruks-fasen enkelt tilpasses scenarioene som
kjennes igjen ved å ta i bruk disse forh̊andsbestemte konfigurasjonene. Denne fordelingen
av kontroll mellom design-fasen og bruks-fasen er sentral for system scenario-metodikken.

Forskningen p̊a system scenarioer har resultert i veldefinerte teoretiske designmetodikker
som skal fungere godt selv for å utnytte dynamikk i flere dimensjoner. Avstanden mellom
en teoretisk metodikk og den faktiske design prosessen kan imidlertid være stor, da spesielt
hvis flere former for dynamikk skal utnyttes samtidig. Kompleksiteten i designprosessen
øker betydelig bare man tar én ekstra dynamisk kostnad med i betraktningen. En presis
og konkret metodikk kan i s̊a fall forenkle designprosessen. I denne rapporten presenteres
metoder for å karakterisere og analysere to ulike former for dynamikk, nærmere bestemt i
CPU- og minnebruk, samt en optimaliseringsteknikk for å utnytte dynamikken best mulig
med en gitt platform. Dette testes og demonstreres p̊a et utvalg applikasjoner, hvorav tre
er hentet fra SPEC CPU

TM
2006. Det blir fort mye å tenke p̊a dersom man skal identifis-

ere og karakterisere flere former for dynamikk samtidig. For å redusere dette problemet
foresl̊as det derfor her en utvidelse av system scenario metodikken. Forslaget g̊ar ut p̊a å
splitte opp identifikasjonsprosessen i flere mindre steg for hver av dynamikk-dimensjonene
som betraktes. Slik trenger ikke designeren å tenke p̊a alle dimensjonene samtidig, men
kan fokusere p̊a hver dynamikk for seg. Under-scenarioer som utnytter hver form for
dynamikk enkeltvis identifiseres, og blir deretter kombinert til et sett med scenarioer
som utnytter den totale dynamikken. Metodikken er tiltenkt enkle énkjernes-platformer.
Karakteristikken til en Intel Pentium prosessor samt minnemodeller fra CACTI brukes
for å estimere energibesparelsene metodikken gir for nevnte applikasjoner.

I flere publikasjoner er det blitt vist lovende resultater for system scenario-metodikken,
men det er ofte kun CPU-optimaliseringer som benyttes, f.eks. DVFS (dynamisk spenning-
og frekvensskalering). Dersom en applikasjon krever mye minne vil ikke alltid DVFS alene
gi gode resultater, siden det innebærer lengre standby-tid for minnet. Siden energifor-
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bruket i minnet kan utgjøre en stor del av det totale energiforbruket har dynamisk kon-
figurerbart minne nylig blitt introdusert i system scenario-sammenheng. I dette arbeidet
kombineres DVFS med ulike konfigurasjoner av dynamisk minne for å kunne utnytte dy-
namikken i applikasjoner som er b̊ade CPU- og minneintensive. Det identifiseres mye
dynamikk i utvalget applikasjoner, b̊ade i CPU- og minnebruk, hvorav mye kan utnyttes.
Opptil 31% av den totale energien spares i implementasjoner som designes vha. den mod-
ifiserte system scenario-metodikken. Opptil 47% spares i de mindre krevende situasjonene
som oppst̊ar i applikasjonene.



Preface
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selected for system scenario design. The RTS identification techniques used in the project
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able to test on a platform. Other applications also required a more general approach.
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Chapter 1

Introduction

Energy efficiency is becoming increasingly important in a wide range of computer systems.
For data centres and servers, the significant cost of power for computation and cooling
is a big motivation to reduce energy [2]. At the other extreme, the fast developments
within mobile battery-powered devices require more and more performance with a very
limited battery-capacity [3]. The vast opportunities with future Internet of Things (IoT)
developments make energy efficiency even more relevant. Power management is therefore
a critical consideration when designing many of today’s computer systems. As a result,
there are several features available in modern hardware that can be used to reduce power.
Efficient and smart software control is however required to take full advantage of this
potential, and power management has thus been recognized as an important research
field.[4]

Maintaining the reliability of an embedded system while saving energy is a big chal-
lenge, especially with the ever increasing complexity of both the applications and the plat-
forms on which they run. Many embedded system applications have dynamic performance
requirements. When a system cannot adapt its configurations to different workloads at
run-time it means that it must be designed to always accommodate for the worst-case
scenario. This leads to expensive systems that use a lot more energy than necessary much
of the time. On the other hand, if the system is able to adapt its configurations at run-
time to the current workload, there is a big potential to reduce the energy consumption.
Signal processing systems often have dynamic processing requirements that should be
exploited, e.g. multimedia decoders like JPEG and H.264. Especially when decoders are
placed in handheld devices and the energy budget is limited, smart power management
is important. These applications are typically dynamic due to for-loop structures with
input-dependent ending conditions, resulting in a number of iterations that is unknown
at design-time. Much energy can however be saved if one is able to take advantage of
this dynamism; the worst case workload can easily be as much as ten times the best case
workload in a modern streaming application.[5]

Creating optimal power management mechanisms that take advantage of such dynamic
behavior is not a trivial task. Often, sufficient information is not available at design-
time, and completely postponing the decision until run-time gives too much run-time
overhead. The System Scenario design [6] is introduced as a methodology to take better
advantage of the dynamic nature of embedded system applications, while keeping the
necessary overhead at an acceptable level. An important feature of this methodology
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2 CHAPTER 1. INTRODUCTION

is that the workload analysis and system optimization is performed both at design-time
and run-time. At design-time, the system’s execution is divided into possible system
scenarios, representing typical workload behaviors, based on cost analysis and profiling.
Optimal system configurations are then found for each scenario. At run-time, when a
particular scenario is recognized, the corresponding system configurations are applied.
The system can thus be optimized at run-time with an acceptable overhead. A more
detailed explanation of the methodology is given in Chapter 2.

The run-time configurability of the system is characterized by a set of system knobs.
Dynamic Voltage and Frequency Scaling (DVFS), introduced in 1990 [7], is the most
common platform configuration used within the system scenario methodology [8]. By
decreasing the clock frequency of a processor and thus enabling a corresponding down-
scale in the supply voltage, the power consumption can be reduced when performance
requirements are low. The later developments with smaller feature sizes, lower operating
voltages, more leakage current, and better sleep modes have however made DVFS by
itself less useful, and the effects more difficult to model [9]. Furthermore, as pointed
out by Snowdon et al. [10], the huge range of different applications makes the power
and performance prediction difficult to generalize. Changing frequency leads to changes
in power and performance that depend on the exact instruction mix of the application.
For a simple application, the exact behavior on a given platform can be characterized
at design-time [11]. If the application is more complex and/or depends on dynamic
input data, this might be difficult or even impossible. This is where the system scenario
methodology comes in.

There are many other possible system knobs, e.g. memory-related configurations as
suggested by Filippopoulos et al. in [12]. In [13] they present an application-independent
memory-aware system scenario methodology to exploit dynamic memory requirements.
Memory energy is reduced significantly by adapting run-time reconfigurable memory
banks according to the predicted scenarios. The future developments within reconfigurable
platforms can provide an even better foundation for system scenarios. Heterogeneous cores
and customization through for example accelerators and dynamically configurable logic
have been recognized as promising ways of improving energy efficiency. Multiple cores and
customization are predicted to be the main drivers for microprocessor performance in the
future [4]. A reconfigurable cache architecture is suggested in [14], concluding that dy-
namically changing write-strategy and replacement-strategy are feasible techniques. It is
reasonable to believe that the system scenario design methodology will be used to exploit
multi-dimensional dynamism, i.e. using multiple system knobs concurrently. The result
can easily be a sub-optimal system knob setting unless a thorough and well-structured
scenario exploration has been carried out. E.g., when DVFS and dynamic memory are
used as system knobs, the feasibility of a DVFS setting depends on the current memory
setting, and vice versa. The complexity of such designs makes it necessary with a precise
and concrete methodology.

Finding suitable applications to evaluate such a methodology can be a challenge by
itself. The SPEC benchmark suites contains a variety of the most important types of pro-
gram behavior, and has become an industry standard for measuring processor and com-
piler performance. SPEC CPU

TM
2006 [15] is SPEC’s newest benchmark suite, composed

of a wide range of different benchmark tests and inputs that are all based on actual, rele-
vant applications [16]. The benchmarks are characterized by large input datasets and long
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execution times (compared to CPU2000). Given that there is some exploitable dynamism
present in these applications, they should provide a suitable measure for evaluating the
system scenario methodology.

1.1 Contribution

The intention of this work is to analyze the dynamism in a set of applications, develop
system scenario implementations where the dynamism is exploited, and based on the gath-
ered experiences suggest modifications or extensions to the system scenario methodology.

System scenarios represents a quite new field of research, so much of the previous
work investigates system scenarios with a very theoretical approach. Additionally, most
previous work is focused on scenario prediction based on control variables. Data vari-
able based prediction is however necessary in many dynamic systems. In this work, the
dynamic CPU and memory requirements are found for a set of applications through pro-
filing and code inspection. Both data and control variables that cause dynamism are
recognized. The considered applications are three of the SPEC2006 integer benchmarks,
in addition to a prime number detection application. The procedure for detecting CPU
and memory dynamism is somewhat generalized and suggested as an extension to the
original system scenario identification step. A slightly modified version of the traditional
system scenario methodology is further used to develop system scenario implementations.
The modifications come as a consequence of the dynamism to be exploited and the nature
of the applications.

The traditional system scenario methodology is well described for one-dimensional
dynamism [6]. The complexity of identifying the scenarios and optimizing the platform
does however increase drastically when adding more dimensions to the cost function. E.g.,
the memory energy consumption modelled in [13] depends on the execution time, so that
introducing DVFS into the memory scenario design will also affect the memory energy.
This report presents a methodology that is closely related to the traditional methodology
[6], but with some modifications in order to better deal with multi-dimensional dynamism.
The methodology is developed and presented using DVFS and dynamically reconfigurable
memory, but other system knobs can also be used.

The whole process is described, from identifying the benchmarks that are the most
promising candidates for system scenario development, to the actual results of such sce-
nario implementations. The objective with the implementations is to achieve significant
reductions in energy consumption through dynamic run-time reconfiguration of the plat-
form, while preserving the performance requirements (deadlines). It is demonstrated how
both data variables and control variables can be used to detect/predict scenarios, and
how these variables can be found through profiling and code inspection. A considerable
amount of the work is related to the design-time scenario exploration and exploitation
steps, in which the optimal system settings are found.

The following list summarizes the contributions of this work:

• Evaluation of the suitability of Intel Pentium M for system scenario-based DVFS.
Maximum CPU energy reduction through DVFS is estimated to 34%.

• Methods for finding CPU and memory dynamism using various profilers.
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• Adaptations of the traditional system scenario design methodology in order to iden-
tify and exploit multi-dimensional dynamic behavior, targeting CPU and memory
dynamism specifically.

• Algorithms for exploring and exploiting the possible platform configurations.

• Analysis of the CPU dynamism in a prime number checking application. The de-
veloped system scenario implementation reduces the CPU energy consumption with
20.2% compared to a static implementation.

• Delayed scenario prediction through loop unrolling to reduce the rate of scenario
mispredictions. Demonstrated on the prime number checker.

• Analysis of the CPU and memory dynamism in three SPEC CPU 2006 applications.
Suggested system scenario implementations obtain energy reductions up to 31.2%.

1.2 Report structure

The rest of the report is structured as follows: First, the results of a literature survey on
system scenarios, DVFS and dynamic memory configurations are presented in Chapter 2.
Chapter 3 describes the memory and CPU models of the assumed platform and briefly
outlines the profilers that are used. Chapter 4 presents the general methodology that is
used for identifying, exploring and exploiting dynamic behavior, with special focus on the
deviations from the original methodology. Chapter 5 describes each of the applications
that are studied and the system scenario design decisions and assumptions that are made.
The resulting system scenario implementations with corresponding energy reductions are
also presented in this chapter. Chapter 6 discusses the presented methods and results,
and suggests future work. Finally, Chapter 7 concludes the report.



Chapter 2

Theory and previous work

2.1 System scenario design methodology

The design process for energy efficient dynamic systems can get quite complex, so following
a general design methodology can be useful. In this section, the system scenario design
methodology is presented thoroughly.

Gheorghita et al. defines system scenarios as follows[6]:

System scenarios group system behaviors that are similar from the multidimensional
cost perspective, such as resource requirements, delay and energy consumption, in such a
way that the system can be configured to exploit this cost similarity.

A dynamic embedded system typically has varying execution costs depending on the
input and the state of the system. If the functions describing these variations are not
known at design-time the system must be implemented based on worst case costs. By
utilizing a scenario driven design process however, the dynamic properties of the embed-
ded system can be identified and accounted for already in the the design-phase, which
makes it possible to exploit the dynamism at run-time. This two-phased partitioning is a
characteristic feature of the system scenario methodology.

The methodology and terminology presented in this section is based on work by Ghe-
orghita et al.[5, 6].

2.1.1 Design-time

At design-time, the systems behavior is analyzed and classified from a possibly multi-
dimensional cost perspective, that usually involves energy consumption and workload.
The system’s behavior is divided into Run Time Situations (RTSs) that can be recognized
through run-time observable variables (RTS parameters). The system execution is thus
a sequence of RTSs. A dynamic system typically has many different RTSs, and each of
these can be identified and treated as units with associated costs. The number of RTSs
can however be enormous even for simple systems, which is why RTSs with similar costs
should be grouped together in a System scenario.

At run-time, the next scenario to be executed is predicted from the RTS parameters;
a set of system parameters that can be both data and/or control-related. By recognizing
a scenario before its execution, the system can be configured for optimal execution of this
particular scenario. The optimization happens by adjusting so-called system knobs, which

5
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are hardware or software settings that can be changed at run-time. Some examples are:

• Supply voltage

• Clock frequency

• Mapping to processing elements

• Memory organization

• Code transformations

• Executing different versions of the code (e.g. compiled with different optimization
settings)

From a system specification to a final system, the design-time phase can be divided
into the steps shown in Figure 2.1. Following is a description of each of these steps.

Figure 2.1: Overview of the system scenario methodology at design-time. Simplification
of figure from [5, p.19].

Scenario identification

The identification step can be divided into RTS parameter discovery and RTS clustering.
The RTSs are discovered through profiling and code inspection, and the relevant RTS
parameters are selected. Extensive profiling may be necessary to discover how the dynamic
nature of a complex application is best exploited. By evaluating the application’s RTSs
thoroughly at design-time, one can avoid spending unnecessary run-time resources on
detecting dynamism. Scenarios are constructed by clustering the RTSs that have similar
costs. The overhead costs and frequency of occurrence should be considered, to the extent
that is possible at such an early stage.

Detecting every possible RTS at design-time might be impossible (or at least infeasible)
for complex systems, which motivates the need for a backup scenario. This scenario will
typically have high performance so that it can accommodate for any given situation. By
implementing a backup scenario the system can give hard guarantees even for unforeseen
behavior.

Prediction/detection

To be able to configure the system before a scenario occurs, a scenario predictor that can
run along-side the application at run-time must be developed. The predictor will monitor
the selected RTS parameters and from these determine the optimal future system scenario.
The quality of this predictor must be traded off against the run-time prediction overhead.
Should the prediction fail, the mentioned backup scenario can be used.
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For systems where all possible RTSs have been identified and the prediction function
is applied after all RTS parameters are known, the prediction accuracy will be 100%. This
is called scenario detection. Often the scenarios will be detected too late when using this
approach.

Developing a predictor/detector might influence the already determined scenario set,
e.g. some of the scenarios may be too difficult to recognize. The scenario set should
therefore be re-evaluated and maybe redefined. The energy consumption of the predic-
tor/detector depends on the exact implementation. A few alternatives are somewhat
discussed in Section 3.3.

Exploitation

After a predictor has been developed, the optimal application and platform settings that
should be applied for each scenario must be found. A scenario should not be optimized
completely independent of the rest of the scenario set, but with the scenario switching in
mind. Otherwise, the system configurations for each scenario may become too different
to even allow run-time switching. Several scenarios are typically combined in this step
and the RTSs might even have to be completely remapped to the scenarios now that the
actual configuration options are known.

Switching

Based on the obtained scenario prediction and exploitation, smart and effective mecha-
nisms for switching between the scenario configurations must be developed. Switching to
a better suited scenario may not always be a good idea. The gain of the scenario switch
must be weighted to the associated costs of switching. The amount of time in which this
new scenario will be optimal has much influence on the decision, as well as the necessary
overhead it takes to do the switching. This can vary a lot depending on the actual con-
figurations that must be made. E.g., frequency scaling, voltage scaling or changing the
state of a memory bank (active, sleep, shut down) will all require different amounts of
time and energy. It may again be necessary to reconsider the scenario set now that the
switching overhead can be taken into account. Maybe some scenarios must be merged
because of the associated switching costs.

Calibration

Some scenario systems also include a Calibration step. At design-time, a calibration rou-
tine is then developed, which can evaluate the current set of scenarios by observing how
the system performs at run-time. In case some unforeseen behavior must be incorpo-
rated into the scenario set, the calibration routine can add, remove or change the system
scenarios.

2.1.2 Run-time

At Run-time, the classification found at design-time is used to take advantage of the
dynamism of the system. The identified set of RTS parameters are monitored so that
the system scenario of the predicted RTS can be selected. The run-time phase can be
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organized quite similarly to the design-time phase, as shown in Figure 2.2. Following is a
description of each of these steps.

Figure 2.2: Overview of the system scenario methodology at run-time. Simplification of
figure from [5, p.19].

Prediction

Based on actual RTS parameter values, a scenario is selected from the pre-determined
scenario set. The parameter evaluation can be continuous, periodic or event-triggered.

Switching

If the predicted scenario is different from the current, and if the cost of switching to this
scenario is lower than the benefit of this scenario, the switch should be performed.

Exploitation

At run-time, this step simply involves running the system with the optimal system scenario
settings, so that the current state of the application is exploited.

Information Gathering and Calibration

In complex and very dynamic systems, a calibration routine can be used to further op-
timize the scenarios. The calibration should happen sporadically, based on run-time
statistics found by information gathering mechanisms.

2.1.3 Cost

Within each scenario the system configurations are fixed, meaning that all RTSs in a
given scenario will have the same expected cost. The resource usage of this scenario must
be sufficient for the worst-case RTS of the scenario, which means that this worst-case
RTS determines the expected cost of all the situations within its scenario. Usually, one
or more of the following costs are considered:

• Processing cycles

• Energy consumption

• Memory accesses

• Heat production
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• Expected quality of result

• Timing/deadlines and cost of missing deadlines

If the cost is a sum of several variables, it can be represented as a weighted sum or as
an N-dimensional Pareto set. The latter is more difficult to implement, but might be ad-
vantageous with a multidimensional cost in order to avoid inconsistencies and suboptimal
scenario sets [5, p.19].

2.1.4 Memory-aware system scenarios

Filippopoulos et al.[12, 13] proposes memory-awareness as an extension to the established
system scenario methodology, by including memory costs in the design exploration. Using
this extended methodology on an epileptic seizure predictor and a Viterbi encoder they
are able to reduce the memory energy consumption with 40 to 70%[12]. The memory
access pattern and data reuse size are some of the characteristics that are used to identify
RTSs. In [13] the methodology is demonstrated on a set of multimedia benchmarks,
resulting in a reduction of 35 to 55% in memory energy consumption. An extended
memory model with state-of-the-art memories is presented and used for the scenario
exploration. Different system knobs are suggested to be used in a memory-aware system
scenario design methodology; e.g., mapping data to different memory banks, turning
on and off memory banks, employing memory sleep modes, and tuning the operating
frequency exactly to the access frequency needed.

2.1.5 Task Concurrency Management (TCM)

TCM is a methodology closely related to the system scenario methodology. TCM is
developed by IMEC and its partners [17], addressing the problem of mapping dynamic
and concurrent tasks on multiple processors for energy-constrained real-time embedded
systems. To adapt the scheduling to the dynamism in the tasks, the scheduling is split
into two phases; design-time and run-time scheduling. As already described, this two-
phased strategy is also characteristic for the system scenario methodology. Following is a
summary of the main TCM concepts, adapted from [17].

TCM Work flow

Four separate stages make up the TCM work flow; gray-box system model construc-
tion (system-level modelling), concurrency improving transformations (system model op-
timization), design-time scheduling and run-time scheduling. At the high-level specifi-
cation, the application is represented as a set of Thread Frames (TFs). Each TF is
partitioned into a set of Thread Nodes (TNs). These are the basic low-level scheduling
units. The methodology then seeks to schedule the TNs onto a set of homogeneous or
heterogeneous processors, both cost-optimal and constraint-driven.

Gray-box modelling

A Multi-Task Graph (MTG) model is created at design-time (first step). This is a two-
level hierarchical task graph, specifying the application at a gray-box abstraction level.
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The intention of the gray-box model is to hide irrelevant parts of the code, i.e. parts
that are deterministic and independent of input or situation, making it easier to focus on
the non-deterministic, dynamic parts. This technique can be very useful when identifying
dynamic behavior in system scenario design if the application code is complex.

Neither the classic black-box or the white-box models are suited to represent an ap-
plication during TCM. The abstraction level needs to be something in between; hence
the gray-box model is used. The gray-box model has two abstraction levels, as shown
in Figure 2.3. At the high-level, the model represents the application by dividing it into
a set of TFs. These are typically functions (or several functions), and must not con-
tain any non-deterministic external interactions. At the lower level, the gray-box model
partitions the TFs into TNs, which are characterized by constant execution times and
energy consumptions, and are therefore considered as black-boxes. The TFs however are
considered as white-boxes, as all of their internal structures are visible in the model. The
dynamic behavior inside these TFs can be captured in system scenarios. The hierarchical
combination of white- and black-boxes makes up the gray-box model [17].

Figure 2.3: Example of how the thread frames and thread nodes can be organized in a
gray-box model. Simplification of figure from [17, p.50].

According to [17], TFs and TNs are typically identified as follows: All dynamic task
creation, explicit synchronization and external trigger events are identified. These are the
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boundaries of the TFs, and so the TFs are found between these events, typically wrapped
by functions. The TFs should be maximally sized pieces of functionality. To identify
TNs, some insights of how the application works is necessary. A TN is a maximal set
of connected operations where the worst-case behavior and actual behavior are similar
enough, giving a somewhat deterministic execution latency. Deciding the TN granularity
is however a complex task, and the reader is referred to [17] for a more detailed description.

Two-phase scheduling

Pareto curves of the TFs and their Pareto-optimal schedules of TNs are generated at
design-time, and the run-time scheduler simply dispatches specific schedules instead of
generating schedules on the fly. This is the essence of two-phase scheduling. The run-
time scheduling will happen at the granularity of TFs. When a new TF is initiated
because of external events, the scheduler selects active scenarios from the input data,
and schedules them so that deadlines are reached and energy consumption is within a
constraint[17, p. 48]. By separating the design-time and run-time scheduling the system
becomes more flexible at run-time, and can to some extent accommodate for unforeseen
timing demands. By selecting the optimal combination of Pareto points the energy cost
of a specific timing constraint usually spanning multiple TFs can be minimized. The
computation complexity and overhead at run-time are also minimized.

2.2 Scaling frequency and voltage

The next section describes dynamic frequency and voltage scaling and thus gives a theo-
retical foundation and motivation for some of the system configurations performed. Before
going into the theory of Dynamic Voltage and Frequency Scaling (DVFS), some important
power and energy equations are presented in the current section. These equations will
also be used in Section 3.1.1 to create a CPU power model.

2.2.1 Power and energy

The power dissipated in a two-terminal element at any time is given by the product
of the voltage v(t) across its terminals and the current i(t) running through it: p(t) =
v(t) · i(t) [18, p. 16, p.27, p.595]. Correspondingly, the average power consumption P of
an electronic system is given by Equation 2.1, where I is the average current and V is the
supply voltage.

P = I · V (2.1)

Power is by definition the rate at which energy is consumed [18, p. 17], so by multiplying
the average power P with some time interval T , the total energy is found:

E = P · T (2.2)

Total power P dissipated per time by an integrated circuit can be expressed as the sum
of static power Pstatic and dynamic power Pdynamic [19], as shown in Equation 2.3.

P = Pdynamic + Pstatic (2.3)
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Static power is consumed whenever the circuit is powered, regardless of circuit activity,
while the dynamic power results from charging and discharging of capacitors [18, p.603].
In logic gates, the static power dissipation Pstatic is proportional to V 2, according to the
simplification given in [18, p. 604]. Static power is also proportional to the leakage current
Ileak:

Pstatic = V · Ileak (2.4)

Ileak is the current that leaks through transistors that are switched off. It exists whenever
the chip is powered, but is independent of frequency [20]. The leakage is mainly set by
the sub-threshold current of the transistor, which depends on threshold voltage, channel
physical dimensions, VDD and many other factors [21]. Leakage current is rather complex
to model, and is not investigated further here.

Dynamic power on the other hand is more straightforward, and can be expressed as
shown in Equation 2.5[19, 18].

Pdynamic = V · Idynamic = A · C · V 2 · f (2.5)

A is the activity factor, C is transistor gate capacitance, V is the supply voltage and
f is the operating frequency. As the voltage is squared, reducing this factor leads to a
significant dynamic power reduction. Dynamic power scales linearly with frequency.

By combining Equation 2.4 and Equation 2.5 and multiplying with a time interval T ,
we can calculate the energy consumption of a chip as shown in Equation 2.6 and Equation
2.7.

E = P · T = (Pdynamic + Pstatic) · T = (AC · V 2 · f + V · Istatic) · T (2.6)

E = P · T = V · I · T = V · (Idynamic + Istatic) · T (2.7)

DVFS has the potential to reduce both static and dynamic power dissipation as both sizes
depend on voltage and/or frequency.

2.2.2 Without static power

By assuming that the static power is very small relative to the dynamic power (which can
be true for high frequency operation [19]), the energy equations can be simplified:

E = P · T = Pdynamic · T = AC · V 2f · T (2.8)

The frequency can be written as f = cycles/T , where cycles is the number of clock cycles
used during time T . This gives:

E = AC · V 2 · cycles (2.9)

Note that this equation is independent of time and frequency.
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2.2.3 With static power

The potential energy savings from DVFS are not necessarily that straightforward. Recent
developments in processor and memory technologies have made the ratio of dynamic
power to static power smaller, so that optimizing voltage and frequency to reduce the
dynamical power consumption makes less overall impact. Processor clock frequencies are
more saturated, sleep modes are improving, and the dynamic power range is decreasing[9].
All of these developments limit the potential power reductions from DVFS. Experimental
results also show that the gains from DVFS are smaller than predicted by simplistic power
models like that in Equation 2.9 [19, 9].

By including the power consumption due to leakage current (Equation 2.4), the energy
calculations get a lot more complicated, and the time T spent on a task has to be taken
into account.

2.3 Dynamic Voltage and Frequency Scaling

DVFS is a well-known technique for reducing energy consumption while meeting the per-
formance requirements of dynamic applications. By changing the frequency and voltage of
the CPU dynamically, the performance can be adjusted to the current workload. Dynamic
Frequency Scaling (DFS) and Dynamic Voltage Scaling (DVS) are variants of this.

To determine a suitable scaling factor, it is important to know how much power the
system uses while performing a given task at different operating points, as well as the
time the system is allowed to spend doing it. Information like task arrival time, deadline,
and workload, are usually not known in advance with general-purpose computing systems,
but with embedded systems they might be, which makes a good foundation for system
scenario-based design. Traditional DVFS systems tend to work either fully dynamically,
only based on run-time information [22, 23] or statically based on design-time analysis
[24]. System scenario-based DVFS is a combination of these approaches. Equation 2.9 in
the previous section shows that the energy from dynamic power scales quadratically to
the operating voltage, so a lot of energy can be saved by adjusting this factor. Equation
2.9 also shows that dynamic energy is unaffected by reducing the frequency, but if the
increased execution time can give less waiting time for the next task, there will be less
energy spent while waiting.

The frequency reduction can happen when CPU cycles would otherwise be wasted,
e.g., when the CPU is waiting on peripherals. The resulting power reduction must be
sufficient to both make up for the time it takes to switch and for the extra time it takes
to run the task at a lower frequency. Without being able to reduce voltage, lowering the
frequency is not likely to lead to a reduction in energy. It can be seen from Equation
2.9 that when assuming no static power, the energy consumption is not dependent on
time or frequency, so with constant voltage the energy is actually constant for a given
task, no matter how fast it is performed. The only difference between performing a task
fast and slow is thus the energy consumed while waiting for the next task (idle time).
The energy contribution from static power is independent of frequency [20], but increases
linearly with the execution time (Equation 2.7). However, when voltage is also reduced,
a significant energy impact can be obtained due to the V 2 factor in the dynamic power
equation. Exactly how much a voltage reduction impacts the total power consumption of
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a platform varies from system to system. There are many publications on this, but most
are using quite platform-specific models [10, 11, 19].

Snowdon et al. describes in [10] a model that can predict the execution time and
power consumption at any voltage-frequency operating point, given the workload execu-
tion at another voltage-frequency operating point, on a low-power embedded platform.
The model is based on using the platform’s performance counters, which monitor and
count certain events at run-time, e.g., bus transactions and CPU stall cycles. It is con-
cluded that the limited number of performance counters cannot capture the whole system
behavior. Proper model calibration is therefore essential for accurate results.

Castagnetti et al. [19] show that energy can be saved using DVFS, but that the gains
are much smaller than the simplistic models predict, as there is a portion of the power
consumption of the chip that does not scale with the frequency. Reducing the processor
frequency leads to reduced energy dissipation in the core, but the increased execution time
can also result in increased energy consumption from other components. Miyoshi et al.
[25] analyzes the run-time effects of frequency scaling on performance, power and energy.
Their results show that when voltage is kept constant, on a PowerPC-based embedded
system it is more energy efficient to run at a low frequency, while on a Pentium-based
high performance PC system, it is more energy efficient to run at the highest performance
state (Race to Idle). This is explained by introducing a metric called Critical power slope.
This metric determines whether it is beneficial to run fast and wait in idle-mode, or to
run slow and thus minimize idle-mode time. Voltage scaling is also discussed to some
extent.

2.4 Memory organizations

Memory organization has been recognized as an important design topic when it comes to
reducing energy consumption. In general, memory contributes considerably to the total
system energy consumption; from 35% to 65% for different architectures according to
[13]. This section briefly describes some of the techniques that are used to increase the
performance and reduce the power consumption of memories today.

The fast advances within processor performance during the last few decades has lead
to a big gap between processor and memory bandwidth [26]. The introduction of memory
hierarchies has become the major resolution to this problem. A memory hierarchy pro-
vides a smart compromise between fast and big memories by organizing memories with
different speed and sizes into different levels. Fast memories are expensive, so they are
kept small and located close to the CPU. Further away from the CPU, the memories be-
come slower and larger. Smart strategies are used to keep the data that is most likely to
be accessed close to the CPU. Usually, the data contained in each level is a subset of the
next lower level. The cache is at the highest level of the memory hierarchy, i.e. it is the
memory closest to the processor, except the processor’s internal registers. There can be
several cache levels, with increasing access times and sizes as we move down the hierarchy,
but all the cache levels are usually integrated on the processor chip. Hardware controlled
cache hierarchies are typically incorporated in today’s high-end embedded processors [17].
The next level down in the hierarchy is the main memory.

Scratchpad memories can be used as an alternative to cache hierarchies. A scratchpad
memory is similar to a level one cache as it is the memory closest to the CPU apart
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from the internal registers. As opposed to caches however, there is usually no copy of the
scratchpad data in the main memory, so that the memory access latencies are determined
by where the data is stored. A system using scratchpads will therefore have non-uniform,
but predictable memory access latencies. A cache hierarchy system on the other hand will
typically have homogeneous access latency, but with an uncertainty associated to how far
down in the hierarchy the data must be searched for. The required logic for a scratchpad
memory is significantly less than for a cache of the same size [17]. So far, the scratchpad
memories have not made it to mainstream processors, but they can be found in embedded
systems and special-purpose processors such as GPUs. [26].

A tendency is to design more domain specific and heterogeneous memory architectures,
e.g. by making use of scratchpads. With such architectures, the memory access time
usually depends on the location of the relevant memory relative to the processor, which
is why they are classified as Non-Uniform Memory Access (NUMA) architectures. It is
predicted that these designs will become important in the future [27]. Deciding where to
map data becomes a more difficult task that has to be handled by the designer or compiler,
but much energy can be saved if one is able to exploit the heterogeneity [17, p. 197]. As
demonstrated in [12], this can be achieved through the system scenario methodology.

Many modern memory systems support different power modes and power gating, so
that memory banks can be either shut off completely, or put in sleep modes on an indi-
vidual basis. There are SRAM memories that can be put into retention states to save
power while not erasing data. Alternatively they can be shut off completely to save more
power, but without keeping the data. It is predicted that leakage currents will become a
dominant source of energy consumption [4, 17]. By introducing memories that support
several energy states, e.g., standby, sleep and power down, at least the memory leakage
power can be reduced drastically. A memory architecture is described in [17, p.197-200]
where the memory is partitioned into memory sub-arrays, with energy states that are
managed by a hardware controller. It takes ten cycles to wake up a memory sub-array
from a sleep state, in which the energy consumption is 162 times less than in standby
state. An overview of the current state of reconfigurable memory can be found in [28].
It has been shown that accessing data in smaller memories requires less energy than big
memories, which is a good argument for partitioning memory into several memory banks.
Additionally, this enables a parallelization of memory accesses, and more fine-grained
control of memory sleep states.

The memory use characteristics of an application can have big variations, e.g., in
the number of loads and stores, and the size and use of currently allocated memory.
Being able to exploit the dynamic memory requirements of an application can therefore
lead to big energy reductions which can have a considerable effect on the total energy
consumption. The way data is assigned to available memory banks is an important aspect,
affecting both the energy per access, the possibility of data conflicts, and the number of
banks that must be active. Techniques for estimating the required memory size to store
concurrently alive elements in an application are presented in [29]. Filippopoulos et al.[13]
use detailed memory models to construct a reconfigurable memory platform. Applications
are analyzed at design-time to identify different execution paths that cause variations
in memory usage. An algorithm for exploring different memory organizations is also
presented. This algorithm uses Equation 2.10 to calculate the overall energy consumption
of all memory banks in a configuration:
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E =
memories∑

all

(Nrd · ERead

+Nwr · EWrite

+ (T − TLightSLeep − TDeepSLeep − TShutDown) · PleakActive

+ TLightSleep · PleakLightSleep

+ TDeepSleep · PleakDeepSleep

+ TShutDown · PleakShutDown

+NSWLight · ELightSleepToActive

+NSWDeep · EDeepSleepToActive

+NSWShutDown · EShutDownToActive)

(2.10)

Nrd and Nwr are the numbers of reads and writes, where the corresponding energy is
given by ERead and EWrite. T is the total time, and TLightSLeep, TDeepSLeep and TShutDown

are the time intervals spent in each of the sleep and shut down modes. Correspondingly,
PleakActive

, PleakLightSleep
, PleakDeepSleep

and PleakShutDown
are the power consumptions of the

modes. NSWLight, NSWDeep, NSWShutDown are the number of switches to active state,
where the energy of each switch are given by ELightSleepToActive, EDeepSleepToActive and
EShutDownToActive. Note that the memory energy consumption in Equation 2.10 depends
on the execution time, so that introducing DVFS into the scenario design will affect the
memory energy.

2.5 SPEC CPU 2006

SPEC CPU
TM

2006 [15] is a benchmark suite developed from real-life applications and
workloads. It is intended as a measure for comparing computational intensive perfor-
mance across a wide range of hardware. A variety of different benchmarks are included
for measuring the performance of a system’s processor, memory subsystem and compiler.
Composing a representative workload was important to the designers of the SPEC bench-
mark [15]; the workload has to be both diverse enough to capture relevant run cases, and
at the same time relatively compact as even high-level architectural simulations are time
consuming. The size, both in terms of bytes of code and number of instructions varies
a lot (some of the benchmarks are in the range of a few trillion instructions[30]). The
benchmark suite can be divided into integer benchmarks (SPECint R©2006) and floating
point benchmarks (SPECfp R©2006), consisting of 12 and 19 benchmark tests respectively.
In [31], all the benchmarks are characterized and analyzed in terms of instruction com-
position and performance, viewing the workload from each benchmark as a whole.

2.6 Other related work

As mentioned, Borkar et al. [4] predicts a trend towards heterogeneous microprocessors.
Transistor size can still be decreased, but the transistor threshold voltage and thereby also
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the transistor power can not. To still be able to improve power and performance charac-
teristics, a solution is to include processing elements with different power and performance
characteristics on a chip. Then the most optimal processing element can be chosen to
execute a task or application, while the unused processing elements are powered off. The
cost of moving data will have a critical effect on the achievable performance of such a
system. Data must be moved efficiently up and down the memory hierarchy, as well as
between processing elements that are used. When the supply voltage is downscaled, and
thereby also the frequency, the energy spent on moving data becomes more dominant.
This effect can be reduced by keeping data as local as possible to the processor, e.g. by
increasing the register and cache sizes. This is contrary to the general idea of keeping
registers small and fast, but it makes sense with a downscaled CPU frequency[4]. Borkar
et al. also recommends DVFS for smaller cores used for throughput, but not large cores
as it would ”dramatically reduce single-thread performance”.

The activity patterns of servers seem promising for system scenario design. According
to Barroso et al. [32] servers usual operate at 10-50% of maximum utilization. Being
completely idle or operating near the level of maximum utilization is very rare. The
energy efficiency at the most common operating point (20-30% utilization) is actually less
than half the energy efficiency at peak performance, which indicates a mismatch that must
be addressed. The CPU fraction of total server power is however no longer dominant, so
it is important that a power down-scale can happen also at the other components, e.g.,
network switches, disk drives and DRAMs. Disk drives are unfortunately infeasible to
spin-down due to the latency and energy penalties of spinning them up again [32].

DVFS is a well-documented power saving technique, but run-time dynamic application
is limited, and the development with complex platforms, transistor scaling and improved
idle/sleep modes reduces its relevancy. In [9] it is even predicted that manufacturers will
abandon DVFS in favour of ultra low-power sleep modes. However, by applying the DVFS
technique within a system scenario environment, the shortcomings can be alleviated.

Many applications have resource requirements that are more or less platform-dependent
due to different instruction sets, functional units and more. To avoid getting tied to
one specific platform, Hamers et al. [33] suggests two different ways of characterizing
an application: Using domain knowledge or automated characterization. Using domain
knowledge means to use ones understanding of an application to identify what causes its
dynamism. E.g. for a H.264 video stream decoder, the size of a frame causes differences
in the workload independently of the platform, and is therefore used as a relative measure
on performance requirement. Automated characterization requires only limited domain
knowledge. A functional execution profile of each frame is collected using an instrumented
platform that records the control-flow behavior at run-time. This characterization is data-
dependent, and not platform-dependent [33].
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Chapter 3

Platform and profilers

Selecting a suitable platform is crucial in the system scenario design methodology. The
platform should be highly configurable, even at run-time, while being able to meet the
demands of the application. In this work, a platform with only one computational unit is
considered. Having several independent computational units allows for much more flex-
ibility; tasks might be scheduled to different cores depending on required performance,
and cores can be turned on and off depending on current (and future) application require-
ments.

3.1 Intel Pentium M

An Intel Pentium M processor is used as reference processor in this work. Pentium M
is a family of 32-bit x86 single-core microprocessors that are well suited for DVFS [34].
The current and future generations of Intel Pentium M Processors support the SpeedStep
Technology. This technology allows the application software to control the operating
frequency and voltage of the processor in order to adapt the CPU performance to changing
workload and requirements.

Table 3.1 shows the available frequency and voltage combinations of Intel Pentium M.
These are from now on referred to as operating points. The processor core unavailability
time is 10µs for a change of operating point [34].

Table 3.1: Intel SpeedStep operating points as provided by [34]. TDP is explained in
Subsection 3.1.1

Frequency [GHz] Voltage [V] TDP [W]
1.6 1.484 24.5
1.4 1.420
1.2 1.276
1.0 1.164
0.8 1.036
0.6 0.956 6

19
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3.1.1 Power estimations

The only power characteristics found for Intel Pentium M is the Thermal Design Power
(TDP). TDP is defined as the peak thermal power, and is typically used when designing
CPU cooling systems. The TDP is not necessarily the same as the maximum power; it
is possible for the processor to consume more than the TDP for a time interval short
enough to make it ”thermally insignificant”[35]. In [36], the TDP of a set of processors
is compared to the geometric mean power consumed with a suite of server workloads. In
average, the TDP is 30% higher than the mean power consumption. The relative CPU
power reductions presented in this work are calculated based on the assumption that the
average power consumption will be proportional to the TDP at each operating point.
Unfortunately, Intel only gives the TDP of 1.6GHz and 0.6GHz operation. According to
[34], the dissipated power will be approximately proportional to the square of the voltage
between these operating points. This statement could not be verified for the given TDP
values, probably because it is based on a simplified power equation that does not account
for static power (Equation 2.5). The remaining TDP values are therefore calculated more
accurately in the rest of this subsection. The following assumptions are made:

• TDP = AC · f · V 2 + Pstatic (Equation 2.3 and 2.5)

• AC = k1 is constant

• Pstatic is proportional to V 2 (very simplified; see Section 2.2.1), i.e. Pstatic = k2 · V 2

where k2 is a constant

This gives:

TDP = AC · f · V 2 + Pstatic (3.1)

= k1 · f · V 2 + k2 · V 2 (3.2)

The operating voltages increases almost linearly with increased frequencies, so the re-
lationship between voltage and frequency is simplified through linear regression to the
expression shown in Equation 3.3 and Figure 3.1. All calculations are made with fre-
quency in GHz for better readability.

f = 1.779 · V − 1.075 [GHz] (3.3)

By inserting Equation 3.3 into 3.2 the following expression is found:

TDP = k1 · (1.779 · V − 1.075) · V 2 + k2 · V 2 (3.4)

= k1 · 1.779 · V 3 + (k2 − k1 · 1.075) · V 2 (3.5)

= k3 · V 3 + k4 · V 2 (3.6)

Then, by using these two conditions from Table 3.1;

TDP = 24.5 when V = 1.484

TDP = 6 when V = 0.956



3.1. INTEL PENTIUM M 21

Figure 3.1: Linear regression of Intel Pentium M operating points.

k3 and k4 are found:

k3 = 8.636 (3.7)

k4 = −1.691 (3.8)

This gives:

TDP = 8.636 · V 3 − 1.691 · V 2 (3.9)

Alternatively, if assuming that the static power consumption can be neglected, the power
consumption at each operating point can be calculated using Equation 2.5 (Pdynamic =
AC · f · V 2). The AC product found from the TDP calculations is used (k1 = 4.85), as
well as the voltage-frequency pairs given in Table 3.1. Figure 3.2 compares this Pdynamic

to the estimated TDP of Intel Pentium M.

Table 3.2: Intel SpeedStep operating points with the estimated TDP.
Frequency [GHz] Voltage [V] TDP [W]

1.6 1.484 24.5
1.4 1.420 21.3
1.2 1.276 15.2
1.0 1.164 11.3
0.8 1.036 7.8
0.6 0.956 6.0

Given perfect conditions (e.g. no waiting for memory or synchronization) the CPU’s
energy consumption when running an application can be reduced significantly by using
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Figure 3.2: Estimated TDP of the Intel Pentium M operating points compared to calcu-
lated Pdynamic

.

the low-power operating points. As shown in Equation 3.13, if the lowest performance
operating point is used instead of the highest, the CPU energy consumption is reduced
with 34.7%. If the increased execution time means reduced idle time (e.g., waiting for
synchronization or peripherals), the energy reductions will be even bigger.

E = P · T = P · cycles

frequency
(3.10)

EhighPerformance = 24.5 · cycles
1.6 · 109

= cycles · 15.3125 · 10−9 (3.11)

ElowPerformance = 6 · cycles
0.6 · 109

= cycles · 10 · 10−9 (3.12)

(1− ElowPerformance

EhighPerformance

) · 100% = 34.7% (3.13)

It is here assumed that the number of CPU cycles (cycles) is constant, regardless of the
operating point.

The operating points of the Intel Pentium M can also be presented as in Figure 3.3, by
comparing the CPU energy per clock cycle of each operating point. Here it can be seen
that, when trading off time against energy, all TDP operating points except 0.6GHz (to the
right) are Pareto-optimal. The energy reduction found in Equation 3.13 is therefore even
higher (36.4%) if using 0.8GHz operation as the lowPerformance mode. Reduced CPU idle
time can still make it beneficial to operate at 0.6GHz. All the Pdynamic operating points
are Pareto-optimal, which is as expected considering Equation 2.5. Many assumptions
have been made in order to estimate the missing TDPs, so the actual TDPs might not
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correspond entirely with the estimated. It is for example possible that the estimate of
the 0.6GHz operating point is not Pareto-optimal because the estimate of the 0.8GHz
operating point is more energy efficient than it should be. However, accurate CPU energy
estimation is not part of the scope of this thesis, so further investigation of this is left
for future work. The TDP operating points will be used to estimate the system scenario
results.

Figure 3.3: CPU cycle energy as a function of cycle time, for all the TDP and Pdynamic

operating points. The line is drawn between the Pareto-optimal operating points.

3.2 Memory Platform

The memory platform used in this work is a theoretically constructed platform with
several configuration possibilities. As in [13], the memory platform can be configured
at design-time to include a variety of memory banks of different sizes, depending on the
application requirements. At run-time, these memory banks can be shut down or put
into various sleep modes in order to save power. In other words, there is reconfigurability
both at design-time and run-time to be explored. In this work only two memory bank
states are considered; active state and shut-down state. This is done because it suits
the considered applications, and because it simplifies the computations somewhat. The
memory characteristics used for estimating the memory power consumption are partly
taken from CACTI 5.3 models obtained using the CACTI web interface [37, 38], and the
memory bank characteristics in [13].

Originally, the considered sizes were 32MB, 16MB, 8MB, 4MB, 2MB, 1MB and 512KB,
modelled with the default CACTI cache model. However, to be able to test the sce-
nario methodology on benchmarks with bigger memory requirements, some RAM mem-
ory banks are added. The memory requirements of the considered applications vary from
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10MB up to 390MB. This much memory implemented as cache is not considered realistic,
which motivates the need for (at least) two different kinds of memory banks. The default
CACTI cache model is used for memory sizes up to 32MB, and a CACTI RAM model for
bigger memory sizes. The read energy and stand-by power for each memory bank are ob-
tained from these models. The exact input parameters to CACTI are listed in Appendix
A.6. The CACTI web interface does not provide shut-down power, so the relationship
between standby power and shut-down power in [13] is used to obtain shut-down power
for the CACTI memories. The final memory bank characteristics are shown in Table 3.2.

Table 3.3: Memory characteristics of relevant memory banks.
Memory size Pactive [W] PshutDown [W] Eread [nJ] Memory type

512MB 17.231 7.183 7.715 RAM
256MB 8.606 3.587 4.631 RAM
128MB 4.380 1.826 2.864 RAM
64MB 2.184 0.910 1.732 RAM
32MB 14.259 5.944 2.330 Cache
16MB 7.889 3.289 2.498 Cache
8MB 3.905 1.628 2.188 Cache
4MB 1.905 0.794 0.815 Cache
2MB 0.940 0.392 0.652 Cache
1MB 0.485 0.202 0.366 Cache

512kB 0.272 0.113 0.236 Cache

The CACTI web interface does not give energy per memory write. It is assumed that
this energy is equal to the energy per read, which should be a fair assumption according
to the memory characteristics given in [13]. All of the memory banks have different
access times, ranging from 0.973ns to 29.996ns. Proper pipelining of the memory accesses
might minimize the effects of this. This is however a challenge that is not addressed in
this work and should be investigated in future work. As mentioned in Section 2.4 there
is a tendency to design more domain specific and heterogeneous memory architectures
where the memory access time depends on the location of the relevant memory relative
to the processor (NUMA). These concepts might be helpful in a memory system scenario
context.

The number of extra wires and combinational logic from partitioning the memory
into several banks will use extra resources such as energy and area. As in [13], it is
however assumed that the increased interconnect overhead from this can be neglected
when considering architectures with five banks or less.

3.3 Scenario Manager

The scenario manager comprises the run-time scenario control system, i.e. the scenario
prediction and switching mechanisms. This section briefly describes the suggested soft-
ware and hardware implementations for the system scenario designs that will be presented
in Chapter 5. The software alternative is chosen due to the time limitations of this work,
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but as we shall see the hardware alternative might be preferable in terms of energy effi-
ciency and reliability.

3.3.1 Software implementation

When implemented in software, the scenario lookup table is stored in general purpose
memory. How much space it requires depends on the number of entries in the table, i.e.,
the number of scenarios, and how the scenarios are recognized. As an example, consider
a lookup table consisting of five scenarios, where each scenario is mapped to two RTS
parameter values. This can be implemented as a two-dimensional array, as shown in
Table 3.4. Provided that each integer is represented by 4 bytes, a 3x5 integer array in C
will require only 3 · 5 · 4B = 60B of memory.

Table 3.4: Example of scenario lookup table with two RTS parameters.
RTS parameter a RTS parameter b Scenario

1 1 1
1 2 2
2 1 3
2 2 4
- - Backup

The scenario control mechanism is implemented in functions, typically invoked at spe-
cific locations in the source code, triggered by external events, or by a periodic interrupt.
In this work, the system scenario framework developed by Yassin et al. [39] is used. The
scenario prediction is implemented in the AMU function, and the scenario switching in
the PAM function. When the RTS parameters that are used to predict a scenario change
are updated with a new value, the AMU function checks these against a lookup table
to see if the current scenario will continue to be optimal or not. If not, and if the costs
of switching to a better suited scenario is outweighed by the gains, the PAM function is
triggered and executes the switch.

3.3.2 Hardware implementation

A disadvantage with the AMU and PAM functions in a single-core system is that the
application is stalled when these are executed [39]. The scenario management can instead
be performed by dedicated logic, rather than through a set of instructions that steals
CPU time. With the software implementations used in the current work, the CPU will
spend more time doing the same amount of overhead when in a low performance scenario
than it will in a high performance scenario. A hardware implementation of the prediction
and switching mechanisms can give more deterministic and reliable execution. It can
also allow for more or less constantly monitoring the RTS parameters, which is useful in
applications where the RTS can change at any time. Furthermore, the energy overhead
can be minimized by using dedicated logic. This is somewhat elaborated in [11]. A state
machine, as seen in Figure 3.4, and a lookup table with the RTS to scenario mapping, as
in Figure 3.5, are therefore suggested for implementation in future work.
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Figure 3.4: Scenario control state machine.

Figure 3.5: Scenario control and the lookup table.
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It should be noted that adding logic to the system will increase the total energy
consumption somewhat. This additional cost should be compared against the cost of the
software alternative, and weighted against the improved prediction performance that the
hardware alternative can give.

3.4 Profilers

The profiling results in Chapter 5 are obtained using Zoom, gprof, Cachegrind and Massif.
This section gives an overview of these profilers and how they were used.

3.4.1 Zoom

Zoom is a system-wide profiler that samples call stacks, scheduler traces, and several
kinds of CPU events, such as CPU cycles, instructions, branches and cache misses. The
profiling overhead is very low and no source code modifications are needed [40]. Zoom
can profile the entire system with all executing processes and threads, or only the threads
within a single process. The thread of interest can then easily be extracted from the rest
of the profile. Additionally, Zoom offers a code browser that can show where in the code
the samples were taken, at source-code and assembly level. The profiler can be controlled
programmatically through the ZoomScript API, so that the profiler can be started and
stopped at specific locations in the source code [41].

In this work, Zoom is used to find the number of CPU cycles necessary to execute
whole applications, and smaller parts of applications. It is also used for tracing function
calls and browsing assembly samples.

Accuracy

The SPEC CPU 2006 benchmark HMMER with input retro.hmm and swiss41 (see Section
5.2) was run 30 times and the total number of CPU cycles was recorded with Zoom. The
maximum deviation from the mean was 3%.

3.4.2 Valgrind Massif

Massif [42] is a tool which is part of the Valgrind instrumentation framework. Massif
profiles the heap memory that an application uses, both the actually utilized space and the
extra bytes that are used for purposes like alignment and book-keeping. The information
can be visualized as a graph by using the ms print utility, which can show allocated
memory as a function of time, instructions or bytes. Massif also records which parts of
the application that are responsible for the allocation. When profiling with Massif, the
execution time becomes about 20 times slower than normal.

Massif is used to find the memory size requirements of the applications, and for locating
where in the source code the allocations take place.
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3.4.3 Valgrind Cachegrind

Cachegrind is a cache and branch-prediction profiler that simulates how an application
interacts with the cache hierarchy and branch predictor [43]. It also gathers loads and
stores statistics at source code and assembly-level. When profiling with Cachegrind, the
execution time becomes between 20 and 100 times slower than normal.

In this work, Cachegrind is only used to find the number of loads and stores. In-
tel’s VTune was used initially for this purpose, but when the free trial period expired,
Cachegrind was used instead. The obtained number of loads and stores were the same.



Chapter 4

Applied methodology

This chapter presents a modification of the traditional system scenario methodology de-
scribed in Chapter 2. The methodology is the generalized result of trying to identify
and exploit the dynamism in CPU and memory-intensive applications, without ending
up with sub-optimal results. The applications and the system scenario design results are
presented in Chapter 5.

The platform described in Chapter 3 is assumed for the system scenario development.
The suggested memory platform provides a set of memory banks that can be included in
the implementation if feasible. At design-time, the memory requirements of the applica-
tion can thus be used to tailor the memory platform to the application. For the selected
memory configuration, the number of active memory banks and shut-down memory banks
is managed at run-time, i.e this is the memory system knob. The suggested CPU has a
set of operating points with different power and performance characteristics, where the
active operating point is managed at run-time. The CPU system knob is therefore the
operating point of the CPU. To control these two system knobs at run-time without too
much overhead, the optimal combined settings must first be found at design-time.

Figure 4.1 shows design-time workflow that is developed and followed during this work.
To alleviate the complexity from taking several costs into account, the methodology sug-
gested here is to first consider each cost separately. I.e. the identification and prediction
steps of the system scenario methodology are carried out with each system knob individu-
ally, and the identified RTSs are grouped into sub-scenarios specific to each system-knob.
The methodology is developed and explained with DVFS and dynamic memory reconfig-
urations in mind, but it can also be used for other system knobs as the main concepts are
generic.

Note that limiting the number of sub-scenarios is important. For example, if only three
memory sub-scenarios and three DVFS sub-scenarios are identified, we will already have
up to nine possible combinations of these. The next step is the scenario exploration, where
all the scenario configurations are explored to find the best suited platform configuration
for each sub-scenario. This step is not a part of the original methodology. As explained
in [6], separate optimizations of each scenario can lead to separate systems that give too
much switching overhead in the final system. With the assumed platform however, all
system knob settings can be combined without much overhead. This might not be possible
with other platforms, indicating a weakness with the applied methodology. The scenario
exploitation, which originally follows after the prediction step, is in this work performed

29
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Figure 4.1: Applied workflow.
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before the prediction. The reason is that many of the scenarios will typically be merged
during the exploitations, so to create prediction mechanisms before this can lead to much
unnecessary work.

The usefulness of the suggested modifications might be limited to applications and
platforms that are similar to the ones that are considered. The original methodology
is more general, and could be better suited if other system knobs are considered. It
can for example be a waste of time to first consider each system knob separately (as in
”DVFS oriented” and ”Memory oriented” in Figure 4.1) if the setting of one system knob
immediately excludes several settings of another system knob.

4.1 System requirements and characteristics

Before starting the system scenario development, one must be familiar with the application
and the platform in order to know what kind of dynamism to look for and how it can
be exploited. It is important to determine the performance requirements of the system;
e.g., whether the quality and accuracy of the result are most important, or if it can be
traded off against energy efficiency. Preferences like fast computation, high throughput
and responsiveness should also be considered. A prioritized list can be useful if there are
no strict requirements.

The energy consumption of the platform to be used should be properly characterized
for the whole range of relevant configurations (briefly demonstrated in Chapter 3). The
power consumption and performance must be known for the relevant execution and sleep
modes when various operating voltages and frequencies are used, and possibly with dif-
ferent modules turned on and off. The costs of switching between the different settings
should also be known, at least for the worst case. Sub-optimal configurations, and con-
figuration combinations that are too complicated for run-time switching can be omitted.
For example, it is usually optimal to run at the highest frequency available at each oper-
ating voltage level in terms of energy efficiency. Different memory configurations should
be characterized when the application can benefit from this (i.e. has dynamic memory
requirements that affect the total energy considerably). The expected delay of waking
up a memory bank should then be known, as well as the energy for loads, stores and the
power consumed in each relevant mode for all memory bank sizes.

Regarding the application, it can be difficult, or even impossible to find the whole set of
inputs and situations that might occur in real-life use of the final system. A representative
set for the profiling should at least contain the most frequent behavior, and preferably
some corner cases. As opposed to RTS identification from static analysis, the profiling-
based scenario identification is not complete unless all possible RTSs are tested. If an
unfamiliar RTS happens at run-time however, a back-up scenario can be used, as was
explained in Section 2.1.1.

4.2 Scenario identification

As described in Section 2.1, the first step in scenario development is to identify the
scenarios in the application. The scenario identification step can be divided into several
smaller steps depending on the type of dynamism that is searched for. Gheorghita et
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al. [6] divide the identification step into RTS parameter discovery and RTS clustering.
The current work suggests to additionally separate the scenario identification by the
type of dynamism that is searched for. The RTS clustering is also performed somewhat
differently. This section describes the suggested approach, which consists of one procedure
for DVFS dynamism and one for memory dynamism. Some modifications, e.g. other
profiling techniques, will be needed to use the procedures with other kinds of dynamism.
The utilized profilers are described in Section 3.4. The procedures can be performed in
parallel and are platform independent.

It has been attempted to make the procedures somewhat application-independent, but
the diversity of dynamic applications makes it very difficult to create a procedure that is
general and still useful.

4.2.1 DVFS dynamism

RTS identification and prediction

The procedure listed below is the result of characterizing the CPU dynamism in an ap-
plication through gray-box modelling (see Section 2.1.5). By partitioning the execution
of the application and separating the dynamic and static parts, the idea is that it will be
easier to more precisely determine the sources of dynamism.

• Profile the application with a representative subset of the possible inputs, using a
profiler such as GNU’s gprof [44] or RotateRight Zoom [40]. In the case of DVFS,
all situations requiring different number of clock cycles are separate RTSs. Try to
find patterns between CPU cycles (or execution time), input data and the different
RTSs. If there are many possible RTSs, an expression relating the RTS parameter
to the resource usage is preferable. This can be found by doing a regression analysis
with the RTS parameter and the measured resource usage (CPU cycles).

• Study the source code and the different sets of inputs and situations to determine
the variables that lead to dynamism. There must be some way of predicting the
dynamism in order to take proper advantage of it. For straightforward applications
(like the prime number checker described in Section 5.1), it can be sufficient to
perform these two steps, but often it is the case that no satisfying correlation is
found from this.

• Partition the application. By dividing the application’s execution into several
smaller parts, these can be analyzed separately and it can be easier to discover the
sources of dynamism. A natural way of dividing an application is by its function
calls, starting on top of the function call hierarchy:

– From the initial profiling, identify the functions that demand the most of the
resources. Only the functions that are responsible for considerable amounts of
the resource usage needs further investigation. This usually rules out much of
the code.

– Functions requiring the same amount of resources regardless of input or situ-
ation can also be left out from further analysis as these can be represented as
black boxes.
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• Profile the remaining functions separately (e.g. in Zoom). A function called from
different places in the code should be profiled separately once for each call, as it
might behave differently depending on the state of the application. Profiling here
is the same as in the first step. As before, if any of the functions have a CPU cycle
count independent of RTS, they can be left out from further analysis as black-boxes.
Check for correlation between input and the number of times a function is called,
and the resource use of the function. Often it is the case that resource use depends
on parameters found during execution. Study the code to identify this.

• Further divide the function calls if the results were not satisfying. For sub-function
partitioning, look for control structures like for and while loops. Again, check for
correlation between input and the number of times a loop is executed, and the re-
source use of the loop. Often the operations performed within loops can be modelled
as black-boxes. Some profilers, like gprof and Zoom offer source code line annotation
of CPU cycles, which can be useful here. From this, an expression for the required
CPU cycles given some input parameters can be found.

– As an example, consider a loop where the ending condition depends on a pa-
rameter of the current input. Find the number of CPU cycles that this loop
is responsible for (from the mentioned CPU cycle line annotation) for different
inputs. Also find the total number of iterations for the different inputs, e.g.
by modifying the source code to print this. Then, by dividing the cycle count
on the number of iterations for each input, the average cycle count for one
iteration can be found. If this is consistent, the loop body can be considered
as a black box with an associated cost. The cycle count of the loop can then
be found by multiplying this cost with the predicted number of iterations to
find the predicted number of CPU cycles.

• Repeat the partitioning if necessary.

Sub-scenario generation

The coherence between RTS and CPU cycles found in the previous steps are now used to
find a set of possible CPU operating points for the identified RTSs (see Figure 4.2, 1). The
feasibility of each operating point can depend on which memory configuration is chosen, so
even if some of the operating points are not Pareto-optimal, they should still be included.
Of course, if it is clear that some operating point cannot be used or if it is infeasible
regardless of other system knob settings, it should not be considered further. E.g. in
many applications there are deadlines to be kept, which could mean that some operation
points cannot be used to execute the most demanding RTSs. To find out this, calculate
the maximal number of clock cycles within a deadline at each operating frequency, and
compare these to the CPU cycle count of each RTS. For some applications the deadlines
might not be fixed, e.g. because they depend on other tasks. The calculations can then
possibly be done at run-time instead, but this might increase the overhead significantly.
The number of RTSs can make it feasible to group the RTSs somewhat before assigning
them to operating points. RTSs with similar resource requirements (CPU cycles) can be
grouped together and represented by the most demanding RTS (i.e. worst-case RTS) of
that group.
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Figure 4.2: DVFS sub-scenario generation.

When each RTS has been mapped to all the operating points in which it can be
executed, we get the DVFS sub-scenarios (Figure 4.2, 2). If the RTS set is big, the RTSs
in each sub-scenario should be represented only by the worst-case RTS of that sub-scenario
(if possible). If an expression has been found for the resource requirements given an RTS
parameter, the RTS parameter value that characterizes the most demanding RTS of each
operating point can be calculated and used to represent that sub-scenario. When the
RTS set is limited, we can treat each RTS individually. The resulting table will be used
at design-time during the scenario exploration and exploitation.

4.2.2 Memory dynamism

A platform like the one described in Section 3.2 is assumed, i.e. where the memory banks
that are not in use can be put to sleep or shut off. At design-time we first want to find
out which memory banks the platform should consist of; each combination of this is from
now on called a memory configuration.

RTS identification and prediction

We are looking for two main types of dynamism:

1. Allocation space dynamism: The amount of allocated memory depends on the RTS.

2. Allocation time dynamism: The timing of the memory allocation depends on the
RTS.

A combination of the above is also possible. The following procedure is suggested:
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• Profile the application with many different inputs using a memory profiler such as
Valgrind’s Massif. Massif provides a graphical representation of the amount of mem-
ory allocations and deallocations performed, and the functions that are responsible
for this. If no variations in memory use is shown, there is no memory dynamism
to be exploited and the rest of this procedure can be skipped. Otherwise, start
identifying the RTSs from the Massif graph. If the amount of allocated memory
throughout an application run is fairly constant, the whole execution with a given
input can be characterized as one memory RTS. In other cases, if there are big vari-
ations in memory allocated, the execution should be split in several smaller memory
RTSs. Try to recognize the two kinds of memory dynamism.

• Massif gives the source code locations where the big allocations and deallocations
happen. Locate these and find the RTS parameters.

• Find a suitable location/time for the prediction method to take place (the prediction
method will be created later). Where are the RTS variables assigned their values?
If this does not provide sufficient time to wake up memory before the allocation
should happen, or to put memory to sleep after a deallocation, try to rearrange the
source code so that the RTS variable assignment happens earlier.

• Find the number of loads and stores for all RTSs. This can be done with a profiler
that uses hardware counters, such as Intel VTune. Valgrind’s Cachegrind simulator
can also be used. Another solution is to extract this information from the source
or assembly code. The number of loads and stores will be used to calculate energy
consumption for different memory configurations.

• The execution time/number of CPU cycles for all RTSs must also be recorded, as
the standby-power of the memory banks depends on this.

Sub-scenario generation

When the RTSs have been identified, the platform must be adapted to the dynamism
we want to exploit. This is similar to the DVFS sub-scenario generation described in
Subsection 4.2.1. The exact methodology for memory sub-scenarios is however somewhat
different, as can be seen in Figure 4.3. The memory platform suggested in Section 3.2 has a
number of different memory sizes that can be included or left out from the implementation.
The most energy efficient memory configurations (a, b, c in Figure 4.3) can be found
through an exhaustive search, e.g. considering all configurations with up to five banks,
like in [13]. The only requirement is that the total memory capacity of the memory
banks in a configuration is sufficient for the most memory-intensive RTS. The ordering of
memory banks has no effect, so the total number of possible combination is given by the
binomial formula,

(
m
n

)
, where m is the number of memory banks for a configuration and

n is the total number of available memory banks. In this work only a few configurations
are constructed manually. By studying the memory requirements of the RTSs, only the
most promising memory platform configurations are explored instead of considering all
possible configurations. The following list gives a few guidelines for designing memory
bank configurations:

• Optimize for the common case.
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• The total amount of available memory in a configuration should be close to the
worst-case memory requirements, as a shut-off memory bank will still consume some
power.

• Try to include memory banks that enable little excess active memory for each RTS.

• Keep in mind that it can sometimes be beneficial to use more than one memory
bank of each size.

For each memory configuration, create different active bank combinations (Figure 4.3,
1) that suits the memory RTSs. An active bank combination is a system knob setting
of the memory configuration, i.e. a sub-scenario, to which a number of RTSs can be
mapped. Within each memory configuration, each RTS is mapped to the best suited
active bank combination (Figure 4.3, 2). In this work, this is assumed to be the active
bank combination that gives as little excess memory as possible. The RTSs that are
mapped to the same active bank combination are now part of the same memory sub-
scenario (Figure 4.3, 3). If there are many RTSs, focus on the most memory-intensive
RTSs, or group the RTSs based on memory characteristics before mapping them to the
active bank combinations. There are different ways of organizing the mapping. One way
is to generate a table for each memory sub-scenario that shows how the different memory
configurations will be used at run-time. An example of this is shown in Table 4.1. Only
two memory bank states (on and off) are shown for simplicity.

Table 4.1: Memory sub-scenario corresponding to RTS2 in Figure 4.3. This table repre-
sents the memory sub-scenario for RTSs that require 24MB of active memory. The table
shows how many banks of each size that should be on and off in order to get 24MB of
active memory, with each of the potential memory configurations. Some of the available
banks are not used in the configurations; these are marked gray. Each row in the table
gives the possible active bank combination.

Memory
bank size

32MB 16MB 8MB 4MB 2MB 1MB

Memory
bank state

On Off On Off On Off On Off On Off On Off

Config a 1 0 0 0 0 0 0 0 0 0 0 0
Config b 0 0 2 0 0 0 0 0 0 0 0 0
Config c 0 0 1 0 1 3
...

4.2.3 Scenario identification summary

Table 4.2 summarizes the characteristics that should be found during scenario identifica-
tion. The next section describes how the optimal combination of all the system settings
are found from these characteristics.
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Figure 4.3: Memory sub-scenario generation.
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Table 4.2: RTS characteristics, either from profiling all RTSs, identifying an expression or
generalization that can be used to estimate the RTS characteristic, or from a combination.

RTS characteristic How to find it
RTS parameter value Code inspection

Maximum allocated memory Valgrind Massif
Number of loads and stores Intel VTune, Valgrind Cachegrind
Execution time/CPU cycles Gprof, Zoom

4.3 Exploration and exploitation

Now that the CPU and memory dynamism of the application has been characterized
separately, it is time to explore the different sub-scenario combinations. To find the
most feasible platform configurations for an RTS or a group of RTSs (sub-scenario) it is
important to consider the total cost with all the dynamism to be exploited. As an example,
consider an RTS that takes little CPU time. If this RTS is executed in a high-performance
operating point, the energy saved by shutting off unused memory banks during this RTS
will be very little. It might however be preferable to run the RTS at a lower frequency
to reduce CPU power, and then the impact of shutting off unused memory can become
considerable.

Algorithm 1 and 2 are developed to solve this two-dimensional optimization problem.
First, Algorithm 1 is used to explore the different system settings for each RTS separately.
Second, Algorithm 2 performs the exploitation by finding the the optimal system settings
considering a representative set of RTSs. Since optimizing for only one kind of dynamism
at a time can lead to sub-optimal results, the algorithms estimates and compares the
energy consumption of all the possible DVFS and memory configuration combinations.
The algorithms are illustrated in Figure 4.4, where step 1 and 2 corresponds to Algorithm
1, step 3 corresponds to Algorithm 2, and step 4 shows how the results are used to create
the scenario lookup table.

Algorithm 1 The best CPU operating point for all the RTSs with all relevant memory
configurations is found. For each memory configuration, the RTSs are then organized
according to their optimal operating points in the three dimensional scenarios array. The
algorithm corresponds to step 1 and 2 in Figure 4.4.

1: for all relevant memory configurations config do
2: for all situations RTS do
3: EbestOp =∞
4: for all operation points op do
5: Emem ← mem energy(RTS, op, config)
6: ECPU ← cpu energy(RTS, op, config)
7: EcurrentOp ← Emem + ECPU

8: if EcurrentOp < EbestOp then
9: EbestOp ← EcurrentOp

10: bestOp← op

11: scenarios(config, bestOp).append(RTS)
12: EbestOp(config, RTS)← EbestOp
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Algorithm 2 This algorithm finds the best memory configuration for a set of RTSs,
corresponding to step 3 in Figure 4.4.
1: EbestConfig =∞
2: for all relevant memory configurations config do
3: EcurrentConfig ← 0
4: for all situations RTS in RTS set do
5: EcurrentConfig ← EcurrentConfig + EbestOp(config, RTS)

6: if EcurrentConfig < EbestConfig then
7: EbestConfig ← EcurrentConfig

8: bestConfig ← config

For each relevant memory configuration, Algorithm 1 finds the total cost (i.e. energy)
of executing each RTS with each of the CPU operating points that can be applied accord-
ing to the DVFS sub-scenarios found in Section 4.2.1. Each RTS is then mapped to the
operation point with the lowest cost (Figure 4.4, 1). Now we have a set of optimal DVFS
sub-scenarios for each memory configuration. The total cost of executing each RTS must
be saved (Figure 4.4, 2). Algorithm 2 adds together the total cost of executing the RTSs
in the RTS set, with the optimal operation point for each RTS, for each memory config-
uration. The resulting total costs are compared to find the optimal memory configuration
(Figure 4.4, 3). After Algorithm 2, the final step is to combine the DVFS and memory
sub-scenarios of the optimal configuration to get the scenario lookup table (Figure 4.4,
4).

Each considered RTS should be input to Algorithm 1. Alternatively only the worst-
case RTSs of each sub-scenario can be used. The RTSs are here optimized in isolation,
which can result in separate optimizations that are too different to be combined in the
same system, as already mentioned in the beginning of this chapter. Algorithm 2 is meant
to optimize for a typical set of RTSs, RTS set. The ordering of the RTSs in this set does
not matter in the considered case, but the probability of an RTS should be reflected by
its occurrence in the set, meaning that the set can include several copies of the same RTS.
If the total number of RTSs is small, then all RTSs should be included in the RTS set.
If this is not feasible, then the previously found sub-scenarios should be represented by
their worst-case RTS in the set. This also applies for the RTSs input to Algorithm 1.

As long as the input sequence of RTSs is representative for real-life system behavior,
the algorithm will make sure that the most common RTSs are prioritized in the platform
exploitation. If all possible RTSs were included in the RTS set, we now have a complete
mapping of all RTSs to their optimal operating points. Each of these operating points and
active memory bank combinations make up a scenario for the given RTSs. If groups of
RTSs were represented by the worst-case RTSs from the sub-scenario generation, then the
rest of the RTSs must be mapped to the same scenario as their worst-case representative.
Remaining RTSs can be mapped to the back-up scenario.

Both CPU and memory energy depend on time. If the available time to execute a task
is subject to change at run-time, the inner for-loop in Algorithm 1, which finds the energy
of executing at the best operating point (EbestOp) for each RTS in each configuration,
should instead calculate a weighted average of all the relevant operating points. The
memory configuration bestConfig found in Algorithm 2 will then be the configuration
with the best average for all the RTSs. The original inner for-loop in Algorithm 1 can
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Figure 4.4: Scenario exploration (step 1 and 2), and scenario exploitation (step 3), cor-
responding to Algorithm 1 and 2 respectively. Step 4 shows how the sub-scenarios are
finally combined to form the scenario lookup table.
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then be used at run-time (when the available execution time is known) to determine which
operating point is optimal. Actual implementations of this is left for future work.

Energy calculations

In this work, the CPU energy is calculated using CPU power characteristics of the Intel
Pentium M (see Section 3.1.1, Table 3.2) and Equation 2.2 (E = P · T ). The memory
energy is found using Equation 2.10 along with the CACTI memory characteristics given
in Section 3.2. It will be preferable to use energy numbers from actual measurements if
this is available.

Calculating the energy consumption of the different memory banks is a complex task.
There is a varying number of active banks, with various sizes and energy numbers, and
the number of loads and stores depend on the active RTS. Additionally, at this stage of
the system development, it is not known exactly which data will be mapped to which
memory bank. The rest of this subsection describes how these problems are overcome.

All the memories in a platform configuration contribute to the energy consumption,
active or not. To simplify the computations somewhat, the memory banks can either be
active or shut off. In active mode, the energy consumption of a bank bank1 is then given
by this expression:

Eactivebank1
= Nrdbank1

· EReadbank1
+Nwrbank1

· EWritebank1

+ (T − TShutDown) · PleakActivebank1

(4.1)

In shut down mode, the energy is given by:

EshutDownbank1
= TShutDown · PleakShutDownbank1

(4.2)

These calculations are made for each memory bank and added together to find Emem in
line 5 of Algorithm 1.

It is assumed that the memory allocation is evenly distributed among the available
memory banks. Furthermore, it is assumed that the number of reads and writes are evenly
distributed between all the allocated memory locations. This way, the number of reads
and writes to bank1, Nrdbank1

and Nwrbank1
, can be estimated as follows:

Nrdbank1
= Nrd ·

bank1Size

totalSize
(4.3)

Nwrbank1
= Nwr ·

bank1Size

totalSize
(4.4)

The total size of the memory configuration is given by totalSize, and bank1Size is the size
of bank1.

The assumptions made here will normally not be true. However, with smart com-
pilers, the data that is accessed often can be placed in the smaller memories, where the
read energy is significantly lower. By utilizing the smaller memories more, less energy
could actually be consumed than the model predicts. The assumptions are therefore not
considered unrealistic.
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4.4 Prediction

In this step, the RTS prediction mechanisms previously found are now combined and
implemented. The RTS parameter values that identify the RTS must be mapped to their
scenarios and kept in a lookup table for the run-time prediction. If there are several RTS
parameters, the mapping may be implemented as a decision tree, a multidimensional
array, or even a combination. In cases where the values of the RTS parameters can
only be combined in a few different ways, a decision tree will be better suited than a
multidimensional array since such an array can become very sparse. On the other hand,
if the RTS parameters can have many different values which can be combined in many
different ways, a multidimensional array is probably a better choice than a decision tree,
since the decision tree will become very complex.

In cases where the scenario prediction requires much processing of the RTS parame-
ters, it can be considered to pre-process the input data stream before feeding it into the
application, if possible. Then the scenario information can be sent along with the stream.

As mentioned, if the available time to execute a task is unknown at design-time, the
inner for-loop in Algorithm 1 can be used at run-time to determine the optimal operating
point.

4.5 Switching

Switching can get more complex when there are several cost dimensions to exploit. The
location and timing of the different reconfiguration procedures can have a considerable
impact on the switch delay. This step is very platform dependent, and is not given much
focus in this work due to the very theoretical platform that is used.

When the switching mechanisms have been developed, the cost of the switching step
can be determined more accurately. The switching costs are determined by the platform
and the desired scenario configurations, and usually depend somewhat on which of the
scenarios that are switched between. These costs must be taken into account when de-
ciding whether to do a switch or not. The cost of switching scenario should therefore
be included in the RTS lookup table. Unless there are big differences in the switching
cost, it is okay to assume either the worst-case or average switching cost. To determine
whether or not it is feasible to do a scenario switch, the switching cost is compared to
the expected energy reduction with the new scenario. If a scenario switch is expected for
each RTS, the switching cost can just be added to the total RTS cost. Then the scenario
to RTS mapping might have to be updated after this step, in which case the Exploration
and Exploitation steps should be repeated.

4.6 Theoretical evaluation of the methodology

The main motivation behind the described methodology is to avoid ending up with sub-
optimal combinations of the available system settings. The feasibility of a specific memory
configuration for an RTS is heavily influenced by the CPU operating point, and vice versa.
Considering all possibilities at the same time can however get very complex, which moti-
vates the changed organization of the first few steps of the methodology. RTS clustering
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is not performed based on similarity of cost (as in [6]) but happens as a consequence of
optimality with the same operation point. The scenarios are not generated before the
platform and application has been explored sufficiently, considering all the dynamism to
be exploited. The optimal system knob configuration is thus found.

A problem can arise with the Exploration and Exploitation step if there are settings
of one system knob that cannot be combined with the settings of another system knob.
For example, if the optimal DVFS operating point of an RTS cannot be combined with a
memory configuration that would otherwise be optimal for the RTS. It is then possible to
select the second most optimal DVFS operating point or memory configuration instead,
but then there is a chance that the resulting combination is sub-optimal.

The non-Pareto optimal CPU operating points are included in the exploration, but not
the non-Pareto optimal active memory bank combinations (i.e. variations in the number
of active banks for a given configuration). The rest of this paragraph explains why. In
the targeted systems, one can not know what will be the optimal operating point for
the CPU without including memory costs, e.g. because executing at a lower frequency
may increase the memory energy enough to outweigh the saved CPU energy, and vice
versa. With the memory configurations however, it is assumed that having as little active
memory as possible gives the optimal active bank combination. It is however unknown
which configuration will be best suited before including the effects of DVFS. A longer or
shorter execution time can determine whether the total system for example benefits from
having a special memory available that is optimized for a specific RTS or not.
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Chapter 5

Applications

The system scenario methodology is applied to four different C applications, of which the
first is a prime number checker developed while studying the system scenario methodology,
and the other three are taken from the SPEC CPU

TM
2006 integer benchmark suite. All

of the considered applications are single-thread implementations.
The three SPEC CPU

TM
2006 benchmarks are initially selected because of their as-

sumed dynamic execution times, as will be explained in further detail for each benchmark.
All three benchmarks process inputs of different sizes, which by itself can indicate an
input-dependent dynamism. Execution time dynamism is confirmed from a few runs with
different inputs. SPEC provides three different sets of inputs along with each benchmark;
reference, training and test inputs. Reference inputs are used for the reportable results,
train inputs provides an input to profile-based compiler optimizations, and the test in-
puts gives a short run to verify the functionality. All of these are used in the scenario
development, as well as some additional inputs in some cases. The benchmarks are run
according to the procedure described in Section A.3.

The resulting system scenario designs are presented, along with estimations on energy
reduction. All the results are obtained from calculations with the profiling results. The
system scenario results are compared to a static implementation, in which the highest
CPU operating point is used, and enough memory for any RTSs to be processed is always
active.

Assumptions and design decisions

When designing and evaluating system scenarios there are several assumptions and deci-
sions that must be made about the use and requirements for the application. As will be
demonstrated, this can have much influence on the final result. The considered applica-
tions are all based on processing input data, so it must be known when the processing
of each input is expected to start and finish. For example, each input can be processed
immediately after the previous input is finished, or periodically. In the latter case, it must
also be known what is expected of the CPU and memory when a task is finished. The
CPU and memory can for example remain idle or enter a power save mode, depending on
the required responsiveness.

The circumstances under which the benchmark applications should be used are mostly
unknown, so the system scenarios are developed for two different cases; with and without
deadlines. Assumptions for the prime number checker are somewhat different, as will be

45
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explained. The introduced deadlines are long enough for the most demanding input to be
processed in the highest performance operating point. When no deadline is assumed, the
input processing is continuous. When the deadline is assumed, the tasks have to finish
before the deadline. It is also assumed an expected period between each input, in which
the CPU and memory have to remain idle while waiting for the next input. When the
processing of an input finishes before deadline, the CPU could instead be put in a sleep
mode while waiting for the next input. This may however not be feasible in case a more
responsive CPU is required. As a compromise between this and leaving the CPU in a
high performance state, the CPU’s operating frequency will be reduced to 0.6GHz while
waiting. Changing the operating point when the processing is finished is not a product of
the system scenario methodology, so this is also done in the static implementations that
are used for comparison.

5.1 Prime number checker

This application is developed and intended as a starting point for studying the system
scenario design methodology. As indicated by its name, the application finds out if the
input number is a prime number or not. The application has a limited complexity and is
therefore suitable for demonstrating the system scenario concepts. The memory require-
ments of the application is minimal, so only CPU cycle dynamism is considered. The
methodology suggested in Chapter 4 can therefore be simplified somewhat. It is however
demonstrated how code transformations can be used to increase the predictability of the
scenarios.

The isPrimeNumber() function, shown in Listing 5.1, makes up the whole function-
ality of the application. This function checks whether the number is a prime or not by
dividing it on all numbers between itself and two.

Listing 5.1: Function isPrimeNumber()

bool isPrimeNumber ( u i n t 3 2 t number ){
int i ;
for ( i = 2 ; i < number ; i ++){

i f ( number%i == 0){
//Number i s not prime
break ;

}
}
i f ( i == number ){

//Number i s prime
return true ;

}
return fa l se ;

}
This is a very unsophisticated method, but the worst-case number of iterations of its

for-loop structure is easy to find, so that estimates on necessary frequency for a given
input number can be made without much overhead. The application must be run with a
frequency that lets it finish within the deadline even for a prime number, so the size of
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the input number gives an upper limit on the number of iterations necessary to reach a
conclusion.

The possible inputs are any random number between 1 and 637,538,053, and the
maximum available time for each input is 12 seconds. In the first case to be considered,
a new number is input immediately after the processing of a number has finished. The
next case is with a fixed interval between each input.

5.1.1 DVFS dynamism

RTS identification

The CPU cycle count of the application is profiled using an set of pseudorandom, evenly
spaced numbers from 1 to 637,538,053 as input. Much execution time dynamism is iden-
tified from this, and from code inspection it can be seen that there are two sources of
dynamism. The size of the number is proportional to the worst-case number of iterations
of the while loop. This is a dynamism that can be taken advantage of without much
run-time overhead, as the size of the input number can be used as the RTS parameter. It
is however often sufficient with a much smaller number of iterations than the worst-case
estimation; e.g., every second number is dividable by two, and every third number by
three. This means that 50% + 0.5 · 33.33% = 66.66% of all decisions will finish within two
iterations. The actual needed number of iterations before the function returns makes up
a dynamism which is harder to exploit.

The function isPrimeNumber() is responsible for almost all the CPU cycles, as the
processing happens here. This function can be partitioned by looking at each while
iteration. Through profiling it is observed that the number of clock cycles per iteration
is the same regardless of the input size. The loop body can thus be considered a black
box, or thread node. The modulo operation is responsible for most of the CPU cycles.
No further decomposition of the code is necessary.

In Figure 5.1 the clear relationship between the size of the number and worst-case
required CPU cycles can be seen. Obviously, all the 637,538,053 RTSs cannot be profiled.
The linearity of the worst-case CPU cycle count is therefore used to create an expression
that returns the worst-case CPU cycles given any number between 1 and 637,538,053.
The expression is found using linear regression with the profiling results, shown in Figure
5.1.

RTS prediction

The input number is used as the RTS parameter, and the worst-case number of clock cycles
for different input numbers will be estimated using the relationship shown in Figure 5.1.
The CPU frequency requirements will be calculated from this, giving an initial RTS to
scenario mapping.

DVFS sub-scenarios

If assuming a deadline of 12 seconds for each input number, the biggest prime number
(637,538,053) will finish within the deadline if executing at 1.6GHz. For the smaller
prime numbers, lower frequencies may be enough. Each input number gives a different
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Figure 5.1: K CPU cycles when running the prime number checker with six random
primes, and the linear regression of these measurements (Kcycles = 19369.929190503 +
0.026529737759965 · number).

RTS, so all the RTSs cannot be mapped directly to a sub-scenario. Each sub-scenario
should instead contain a group of consecutive numbers (represented by the maximum
number) that can be executed with that sub-scenario without breaking the deadline. The
expression found during the RTS identification (Figure 5.1, Equation 5.1) is used to find
the maximum number for each operating point.

cycles = 19369929.190503 + 26.529737759965 · inputNumber (5.1)

An expression that gives the minimum CPU operating frequency for a number is found
as follows:

minFrequency =
cycles

maxTime
(5.2)

=
19369929.190503 + 26.529737759965 · inputNumber

12s
(5.3)

= (1614161 + 2.2108 · inputNumber) Hz (5.4)

By reordering this expression we get the maximum input prime number as a function of
the frequency:

inputNumber = (frequency − 1614161)/2.2108 (5.5)

From Equation 5.5, the RTS table (Table 5.1) is generated, giving the worst-case input
that can be processed at each available operating point. Sub-scenario 1 is used as the
backup sub-scenario.
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Table 5.1: Mapping of worst-case RTS parameter to DVFS sub-scenarios.
Worst-case RTS parameter Minimum operating frequency Sub-scenario

722989795 1.6GHz 1
632524805 1.4GHz 2
542059814 1.2GHz 3
451594824 1.0GHz 4
361129834 0.8GHz 5
270664844 0.6GHz 6

5.1.2 Memory dynamism

Very little memory is used by this application, and the memory dynamism is minimal, so
no memory scenarios will be developed for this application.

5.1.3 Exploration and Exploitation

No other costs than CPU power are considered in the scenario generation, since the
memory energy consumption should be minimal. Therefore, due to the Pareto-optimality
of all the CPUs operating points except 0.6GHz (see Section 3.1), it can be assumed that
the sub-scenario with the lowest possible operating frequency from 0.8GHz and up will be
optimal for the system. Similar to Table 5.1, Table 5.2 gives the maximum number (RTS
parameter) that can be processed in each scenario. Sub-scenario 6 is however removed
because as was not Pareto-optimal.

Table 5.2: Mapping of worst-case RTS parameter to scenarios.
Worst-case RTS parameter Operating Point Scenario

722989795 1.6GHz 1
632524805 1.4GHz 2
542059814 1.2GHz 3
451594824 1.0GHz 4
361129834 0.8GHz 5

The mapping in Table 5.2 ignores the fact that some cycles will be lost to prediction
overhead and switching delays. This is however very platform dependent, so only a short
description of how this can be incorporated is given in the next section.

5.1.4 Prediction and Switching

Two possible strategies are considered for the prediction. Equation 5.4 can be used at
run-time to calculate the minimum frequency fmin required for a given input number,
assuming it is a prime number. Then the scenario corresponding to this fmin can be
found from a lookup table. This is an effective implementation in terms of memory, but
not time. Run-time overhead can be saved by doing these calculations at design-time
instead, and mapping only the worst-case RTS to each scenario. Time is more critical
than memory in this application, so the latter solution is chosen.
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The optimal scenario for each number range is therefore taken from Table 5.2 and
stored in a lookup table. The predictor uses this table at run-time to look up the ideal
scenario for each input number. The scenario predictor function (AMU, see Section 3.3.1)
is placed at the beginning of isPrimeNumber(), so that before any input processing begins,
it is checked which scenario is optimal. The scenario switching function (PAM, see Section
3.3.1) checks whether the current scenario is different from the optimal scenario, and then
switches to the optimal scenario if this is the case. The function is called right after the
scenario predictor has found the optimal scenario.

It is however observed that the scenario switches happen very frequently with this
implementation. Many of the input numbers are dividable by some of the first primes
(e.g., 2, 3, 5, 7, 11), which means that very few iterations of the for-loop shown in Listing
5.1 will be executed. In these cases the scenario should not be changed, as the gain of
doing so is probably outweighed by the overhead caused. With random input numbers it
cannot be assumed that the next number will belong in the same scenario as the current.
To prevent the short scenario periods, the first iterations of the for-loop are unrolled and
executed before the scenario functions are called.

The number of iterations of the for-loop that should be executed before a scenario
switch is considered depends on the switching delay, and is therefore very platform de-
pendent. However, the exact value of this limit is not very important, as long as it is
more than 3 (the majority of all numbers are dividable by 2 and/or 3 anyway). Figure 5.2
illustrates this by grouping all numbers between 1 and 10000 according to their smallest
factors. E.g., the first bin contains all numbers that are dividable with a number between
2 and 10. The next bin contains the numbers that are not dividable with numbers between
2 and 10, but with numbers between 11 and 100.

Figure 5.2: The number of numbers that have their smallest factor either between 2-10,
10-100, 100-1000 or 1000-10000. Note that both axis are shown logarithmically.

By delaying the scenario prediction, the probability of predicting the right scenario
is increased drastically. As shown in Section A.2 in the Appendix, by checking if the
input number is dividable by two or three before predicting scenario, the probability for
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scenario misprediction is reduced from 95.1% to 28%:

0.951− 0.50− 0.50 · 0.33 = 0.28 (5.6)

Delayed scenario prediction can be considered for applications that are similar to the
prime number checker, i.e. when a loop or function is responsible for most of the execution
time, and it can potentially exit very early due to some condition which is unknown before
starting the loop or function. More generally, the scenario prediction in input processing
applications can improve from this if the processing of some inputs are aborted during
the initial processing. Characteristics of such applications are difficult to generalize. The
potential can however be recognized through profiling and code inspection. Anyway, if
the scenario misprediction rate is high for a system scenario implementation, the benefit
of delaying the prediction should be investigated.

5.1.5 Results

The application is profiled again, both with and without system scenarios, with a new
sequence of 100 random numbers between 0 and 637,538,053. The number of scenario
switches and CPU cycles within each scenario is recorded and the CPU energy is calculated
from this. The scenario implementation is estimated to use 538.6J, and the original
implementation 674.6J, meaning that 20.16% CPU energy is saved with the scenario
version. This is assuming continuous input processing.

Profiling shows that the CPU cycles of the original code compared to the partly
unrolled isPrimeNumber() with the scenario functions is only increased by 0.43%. Adding
the 10us CPU unavailability time per CPU operating point switch (18 switches for the
random sequence of 100 numbers) does not make any notable difference.

5.1.6 Changed assumptions

The assumptions for the scenario development is now slightly changed; it is now assumed
that the time between each new input number is expected to 12 seconds. Whereas the
processing of each number before started immediately after the previous number was
finished, there is now some expected waiting time between each input. This changes the
scenario set and prediction/switching somewhat. First of all, a scenario for the waiting
time is needed. The operating point with the lowest power consumption is selected for
this. In order to not perform unnecessarily many switches, this scenario will also be used
for the first few iterations of each input number. Otherwise, the scenario implementation
is as before. The implementation is profiled as before, with a sequence of 100 random
numbers. The results are first compared to a static (race to idle) implementation, using the
same operating point (1.6GHz) the whole time. The calculated CPU energy consumption
is 7451J for the scenario implementation, and 29400J for the static implementation. This
shows an energy reduction of 75%. In conclusion, dynamic applications like the prime
number checker represent a promising domain for system scenario development when
subjects to such execution conditions.

As argued in the beginning of this chapter, the static implementation should however
be able to operate with minimum performance while waiting for the next input to arrive. If
this is assumed, the static implementation’s CPU energy consumption is reduced to 7709J,
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and the scenario implementation uses only 3.3% less than the static implementation. The
scenario implementation with continuous input processing used only 538.6J, so when 12
seconds between each input is assumed it is clear that most of the energy is spent waiting.
This can explain why only 3.3% energy is saved with this assumption.

5.2 456.hmmer

The HMMER package is a set of tools, mostly used in computational biology to align
and search for protein and gene sequences in databases [16]. HMMER uses profile-Hidden
Markov Models (HMMs) to represent the alignment. A profile-HMM is a statistical model
of a gene sequence, consisting of a series of nodes where each node correspond to a position
(or column) in the alignment from which it was made. The number of nodes is also referred
to as the length of the profile-HMM, or the model length. With a profile-HMM, one can
effectively search through huge databases of gene sequences to find a matching sequence,
or members of the protein sequence family. More information about this can be found in
the HMMER User’s Guide [45].

The HMMER benchmark runs two methods (hmmercalibrate and hmmersearch) from
the HMMER package. When only a profile-HMM is given as input to the application,
hmmercalibrate is executed. This method calibrates the input profile by generating
a large number of random sequences which are then compared to the original profile.
When the calibrated profile-HMM is later used to search a database, the search will
be more sensitive due to the calibration. To run the other method, hmmersearch, the
benchmark application needs two inputs; a profile-HMM and a gene sequence database.
The application then searches the database to find related sequences, and returns a ranked
list of best-matches. hmmersearch is the method that will be used to evaluate the system
scenario methodology. Four profile-HMMs and a database are provided as input to the
benchmark. The provided profile-HMMs make up the entire considered input set. Judging
by the size of these inputs (from 10 to 300 nodes) and the fact that these will be compared
to sequences in a database, it is reasonable to believe that there will be some input-
dependent dynamism in this application. The application uses the Viterbi algorithm to
do the search, which has previously been used in a system scenario design [13]. Other
possible use cases of HMM and the Viterbi algorithm are numerous [46] (some examples
are given in Section A.5), which further motivates using this benchmark to demonstrate
and evaluate the system scenario methodology.

5.2.1 DVFS dynamism

This section describes some of the CPU cycle dynamism in hmmersearch and how it is
found.

RTS identification

A few runs of the benchmark with the different profile-HMMs and the same database
confirms the expected dynamism due to different model lengths (i.e. number of nodes).
The model length is denoted as hmm->M in the HMM struct. This parameter is known
from the start, so it is a suitable RTS parameter. Each of the provided HMM-profiles
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gives an RTS; bombesin.hmm (RTS 1), leng100.hmm (RTS 2), retro.hmm (RTS 3) and
nph3.hmm (RTS 4), with respective model lengths of 10, 100, 100 and 300 nodes. The
provided database, swiss41 consists of 122564 sequences.

Using the procedure described in Section 4.2.1, the application is decomposed as shown
in Figure 5.3, 5.4 and 5.5. The function P7Viterbi() is responsible for around 98-99%
of the CPU cycles. The rest of the application can therefore be modelled as black-boxes.
Figure 5.5 illustrates where the dynamism comes from in P7Viterbi().

Figure 5.3: hmmersearch top-level model.

Figure 5.4: Gray-box model of the main function.

The following potential RTS parameters are identified:

• DB size: Number of sequences in the database. Can be found in advance by iter-
ating through the database.

• L: Length of a sequence in the database. The length of the sequences in swiss41

varies a lot.

• M: Length of the profile-HMM. Found in the description field of the input HMM file.
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Figure 5.5: Gray-box model of the P7Viterbi() function.
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P7Viterbi() is called once for every sequence in the gene database, i.e. DB size

number of times (Figure 5.4). This size is kept constant at 122564 (the size of the
swiss41 database). 90-99% (depending on the model size) of the cycles spent on executing
P7Viterbi() are due to the for-loops shown in Figure 5.5. The execution time of each
P7Viterbi() run depends on the input profile-HMM and the length of the currently
considered database sequence.

In order to test whether the size of the input database affects the execution time, the
database is split into smaller databases that are used instead of the original. As expected
from the gray-box model in Figure 5.4, it is observed that the size of the input database
(i.e. the number of sequences in the database) does affect the execution time. For the
tested database sizes, the execution time decreases linearly with reduced databases. Since
only one database is available however, this dynamism will not be further explored in this
work. A constant database is assumed.

RTS prediction

The model length will be used as the RTS parameter. As mentioned, the four profile-
HMMs used in the benchmark suite have three different model lengths; 10, 100 and 300.
If it can be assumed that most profile-HMMs are of these sizes, the similar RTSs can
simply be recognized from this.

If the possible input is not limited to these number of nodes, an expression can be
found (as with the prime number checker) that gives the number of CPU cycles from the
RTS parameter(s). The expression in Equation 5.7 is found by profiling the application
several times with different inputs in Zoom. The number of required CPU cycles for each
black box of the P7Viterbi() function (see Figure 5.5) are found by looking at the cycle
count line annotations at assembly code level. These cycle counts are fairly constant
independent of input. Equation 5.7 is then found as described in Section 4.2.1.

CPU cycles P7Viterbi() = (M + 1) · 1737 +M · 2416667 +M · 193333 + 608148000 (5.7)

This expression gives the total number of CPU cycles spent in P7Viterbi() for a whole
application run when the swiss41 database is used. The dependency on model size M is
clear and in correspondence with Figure 5.5. The cycles outside any of the M-dependent
loops in P7Viterbi() are contained in the constant at the end of the expression. If
different databases are to be used, the size of the database and the length of its sequences
can also be incorporated to the model. The accuracy of the model can be seen in Figure
5.6.

If we assume that there can be other model lengths than 10, 100 and 300 (and that
Equation 5.7 also holds for these), this expression can be used to implement system
scenarios for any model length. This is similar to what is already demonstrated with the
prime number checker in Section 5.1. The longest profile-HMMs that should be executed
at each CPU operating point to not break any deadlines can then be pre-calculated at
design-time, so that when a new input is received, the suitable CPU frequency is found
by looking up the model length in the RTS table. This is however left for future work,
as only the four RTSs from the four provided inputs will be considered in the scenario
exploration.
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Figure 5.6: P7Viterbi() CPU cycles.

DVFS sub-scenarios

The RTSs can be grouped by the model length, as there is a clear relationship between
the model length and the required number of CPU cycles. Judging by the CPU cycle
counts of the two inputs with 100 nodes (shown in Table 5.3) there is not much variation
in cycle count for the same model lengths. Initially, no deadlines are assumed for this
application. This means that all operating points can be used for each RTS, i.e. all RTSs
are part of the same sub-scenario where all operating points are allowed. If however a
deadline is assumed, e.g. of 550 seconds, which is just enough for the worst-case RTS to
finish at 1.6GHz operation, we get the sub-scenario table shown in Table 5.4.

Table 5.3: CPU cycles when executing hmmersearch with database swiss41 and the given
inputs.

RTS Input Model length K CPU cycles
1 bombesin.hmm 10 33287000
2 leng100.hmm 100 277735000
3 retro.hmm 100 296593000
4 nph3.hmm 300 814576000

Table 5.4: DVFS sub-scenarios when a deadline of 550 seconds is assumed
Worst-case RTS parameter Min. operating frequency Sub-scenario

100 0.6GHz 1
300 1.6GHz 2
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5.2.2 Memory dynamism

RTS identification

Figure 5.7: Memory allocation in hmmersearch. Allocated memory size is very input-
dependent. The right side of the graph has been truncated in order to see the details to
the left better.

Running the application with Massif reveals that ResizePlan7Matrix() is responsi-
ble for almost all memory allocation. The memory profiling results are given in Figure
5.7, showing enormous variations in allocated memory for hmmersearch. The full mem-
ory allocation occurs early in the application, making it feasible to exploit the memory
space dynamism. Again, it is the length of the input profile-HMM that determines how
much memory is allocated (verified with code inspection), so this should still be the RTS
parameter. There is no reuse of memory from one input to another. Even though the
database size will be kept constant in this system scenario design, it is investigated how
it affects the amount of allocated memory. This is tested by searching for bombesin.hmm
in the full database, half the database, and a quarter of the database. Figure 5.8 shows
that the allocated memory is actually independent of the size of the input database. This
is because the application never allocates memory for the whole database, but reads it
sequentially from the database file.

Table 5.5 gives a summary of the relevant memory use characteristics of hmmersearch,
obtained from Massif and Cachegrind according to the procedure described in Subsection
4.2.2.

RTS prediction

The memory RTSs can be recognized exactly the same way as the DVFS RTSs, since the
same RTS parameter is used. At the beginning of each run, the necessary memory size



58 CHAPTER 5. APPLICATIONS

Figure 5.8: Memory allocation in HMMER with different database size. Size of allocated
memory does not depend on input database.

Table 5.5: Memory use characteristics of hmmersearch for each input.
RTS Model length Max. allocated mem. Loads Stores

1 10 1.4MB 17922053766 5973689604
2 100 8.6MB 135438406314 46137092046
3 100 8.7MB 135300405900 46171892568
4 300 25.0MB 396805190412 136468446996
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can be found from a lookup table and the excess memory can be powered down.

Memory sub-scenarios

Considering the required memory shown in Table 5.5 and the available sizes presented in
Section 3.2, the following memory bank configurations are suggested:

a) 32MB

b) 32MB + 2MB

c) 32MB + 8MB + 2MB

d) 16MB + 8MB + 1MB

e) 16MB + 8MB + 2MB

f) 16MB + 8MB + 2MB + 1MB

With each configuration, the minimal amount of memory is enabled for each RTS. These
active bank combinations are the memory sub-scenarios of each memory configuration.
Up to three different memory sub-scenarios, each providing 2MB (RTS 1), 9MB (RTS 2
and 3) and 25MB (RTS 4), are used for each memory configuration.

5.2.3 Exploration and Exploitation

It is assumed that the probability distribution of the input model length is reflected in
the available input set. The scenarios are thus optimized based on a sequence consisting
of the four profile-HMMs of length 10, 100, 100 and 300, i.e. E(10) + E(100) + E(100)
+ E(300) is minimized. Initially, no deadline is assumed. Then a deadline of 550 seconds
per input is assumed, which is just enough for RTS4 to finish at maximum performance.
By using Algorithm 1 and 2, the optimal combination of the DVFS and memory sub-
scenarios are found for all RTSs. The different alternatives and the optimal combinations
are shown in Figure 5.9 without deadline, and in Figure 5.10 with deadline.

From Figure 5.9 and 5.10 the optimal memory platform configurations when all RTSs
are considered can be seen. Without deadline, the optimal configuration is d) 16MB +
8MB + 1MB, with the CPU operating at either 1.0GHz or 1.2GHz. The differences in
energy consumption are however quite subtle. When assuming a deadline of 550 seconds
per input, configuration e) is slightly more energy efficient. The optimal operating point
of RTS 1, 2 and 3 are now 0.6GHz, while RTS 4 has to be executed at 1.6GHz in order
to finish.

The following list describes the obtained scenario set when no deadline is assumed:

• Scenario 1 (RTS 1): 16MB shut off, 8MB active, 1MB shut off, CPU executing at
1.0GHz

• Scenario 2 (RTS 2 and 3): 16MB shut off, 8MB active, 1MB active, CPU executing
at 1.0GHz
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Figure 5.9: Different energy consumption of each RTS depending on CPU operating
point, denoted by frequency on the y-axis, and the memory configurations along the x-
axis. The blue circle marks the optimal combination of CPU operating point and memory
configuration for each RTS individually, and the red circle marks the best CPU operating
point for each RTS given the best memory configuration for all the RTSs combined.
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Figure 5.10: Different energy consumption of each RTS depending on CPU operating
point, denoted by frequency on the y-axis, and the memory configurations along the x-
axis. The blue circle marks the optimal combination of CPU operating point and memory
configuration for each RTS individually, and the red circle marks the best CPU operating
point for each RTS given the best memory configuration for all the RTSs combined.
Operating points that will break the deadline are colored gray.
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• Scenario 3 (RTS 4): 16MB active, 8MB active, 1MB active, CPU executing at
1.2GHz

• Backup scenario: 16MB active, 8MB active, 1MB active, CPU executing at 1.6GHz

When the deadline is assumed, the following scenarios set is obtained:

• Scenario 1 (RTS 1): 16MB and 8MB shut off, 2MB active, CPU executing at 0.6GHz

• Scenario 2 (RTS 2 and 3): 16MB shut off, 8MB and 2MB active, CPU executing at
0.6GHz

• Scenario 3 (RTS 4): 16MB, 8MB and 2MB active, CPU executing at 1.6GHz

• Backup scenario: 16MB, 8MB and 2MB active, CPU executing at 1.6GHz

5.2.4 Prediction and Switching

Combining the RTS prediction mechanisms found earlier is straightforward, since the
same RTS parameter is used and the memory sub-scenarios correspond one to one with
the DVFS sub-scenarios. The scenarios will therefore be predicted from the number of
nodes in the input.

A mechanism that configures the system according to the scenario mapped to the
input model length must be implemented, as the scenario manager described in Section
3.3. The CPU unavailability time of 10µs per change of operating point can be neglected
when compared to the average execution time. So can the additional CPU cycles of the
scenario management. Memory banks are activated once during execution, so the wake-up
energy for each memory can also be neglected. The following list formulates the scenario
prediction:

• For input with 10 nodes or less, use scenario 1.

• For input with 100 nodes or less, use scenario 2.

• For input with 300 nodes or less, use scenario 3.

• Otherwise, use the backup scenario.

5.2.5 Results

Figure 5.11 and 5.12 compares the total energy consumption of the different memory
configurations for the whole sequence of RTSs, without and with deadline respectively.
The leftmost points are of the static implementation using the highest CPU frequency and
a 32MB memory bank regardless of RTS. Without deadline, the total energy reduction
with the optimal scenario implementation compared to the static implementation for the
whole RTS set is only 13.4%. This is mainly because RTS 4, which is the most time
demanding RTS, is relatively energy efficient in the static implementation (see Figure
5.9). With deadline, the total energy reduction is 31.2%. This is under the assumption
that a new input arrives at each deadline. When the processing of an input is finished
before the deadline, the operating point with the lowest power consumption (0.6GHz) is
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used until the next input arrives, both for the scenario implementation and the static
implementation.

Figure 5.13 and 5.14 show how much the energy of each RTS is reduced without and
with deadline. The energy contribution of CPU and memory is separated so that it can
be seen where the reductions take place. Both with and without deadline it can be seen
that the energy reduction in RTS 4 is minimal. It can also be seen that without deadline,
the energy distribution is quite similar with and without scenarios. The energy reduction
is however substantial when the deadline is assumed. Much of the CPU energy reduction
is because the low performance operating points used for RTS 1, 2 and 3 reduces the
number of CPU cycles between each input. The memory power reduction from utilizing
memory-aware scenarios becomes more evident for these RTSs because of the idle times
between these inputs.

Figure 5.11: Total energy of all the RTSs for each of the different memory configurations.
Each RTS is executed in its optimal operating point.

5.2.6 Other observations

The application has still more potential for system scenario design, which should be
further explored. Single-thread execution is the default, but both hmmercalibrate and
hmmersearch can be multi-threaded by adding some #defines. P7Viterbi() function
calls can then be carried out in parallel, and most of the execution becomes parallelized.
With hmmercalibrate the input sequence is compared to randomly generated sequences
in parallel, and with hmmersearch the input sequence is compared to database sequences
in parallel. The speed increases almost linearly with the number of processors used, given
ideal conditions [47]. This makes the application very suited for system scenario design
with multiple processing elements.
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Figure 5.12: Total energy of all the RTSs for each of the different memory configurations,
with deadline. Each RTS is executed in its optimal operating point.

Figure 5.13: Comparison of the total energy consumption of the static, no scenario imple-
mentation versus the optimal system scenario implementation for each RTS. No deadline.
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Figure 5.14: Comparison of the total energy consumption of the static, no scenario im-
plementation versus the optimal system scenario implementation for each RTS. With
deadline.

The parallel nature of the application can also be exploited by allowing simultaneous
memory accesses through memory bank partitioning. The access pattern is however very
sequential, causing very few cache misses anyway, so a simple pre-fetching strategy should
also be very efficient.

5.3 429.mcf

This benchmark is derived from MCF, a program that solves single-depot vehicle schedul-
ing problems in public mass transportation. These are solved as Minimum Cost Flow
(MCF) problems, using an implementation of the network simplex algorithm accelerated
with column generation [16].

The input to the application is a text file with a list of timetabled trips with fixed times
and locations for departures and arrivals. The rest of the text file consist of the links be-
tween the timetabled trips, so-called dead-head trips, as well as pull-in and pull-out trips
for entering and leaving the depot. Costs are given for all trips except the timetabled.
Each timetabled trip must be served by exactly one vehicle, and the vehicle fleet is ho-
mogeneous. The timetabled trips are to be scheduled so that the cost is minimized, and
so that the number of necessary vehicles is as small as possible.

According to the benchmark description given in [16], the worst case execution time
is ”pseudo-polynomial in the number timetabled and dead-head trips and in the amount of
the maximal cost coefficient”. The expected execution time of the application is a low-
order polynomial. Judging from this, there should be some input-dependent dynamism,
but an accurate execution time predictor can possibly be difficult to obtain.
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5.3.1 DVFS dynamism

RTS identification

Running the application with the provided input set gives very varying execution times,
so there is clearly much CPU cycle dynamism in this application. Roughly, more nodes
(time-tabled trips) requires more cycles to process. A brief look at the code reveals many
for and while loops. In addition to the provided input set, an MCF input generator
[48] (see Appendix A.4) is used to create inputs of various sizes. The maximal cost
coefficient could however not be controlled with this generator, and its effect on the
execution time is therefore suggested for future work. The dynamism due to different
node number is confirmed by running the application with the additional input set. By
profiling the application in Zoom, it is noted that the functions primal net simplex()

and price out impl() are responsible for 31.8% and 33.0% of the total CPU cycle count
when the reference input is used. The cycle count of these functions vary a lot with
different input sizes. The cycle count of the other functions vary little, and are therefore
modelled as black-boxes. The top-level structure of the application is shown in Figure
5.15.

Figure 5.15: Gray-box model showing the two functions that are responsible for most of
the CPU cycles.

The loop seen in Figure 5.15 is a while loop which is always executed five times, due
to a define directive. The functions primal net simplex() and price out impl() are
thus repeated six and five times respectively. To further investigate the dynamism (as
described in in Subsection 4.2.1), each of these function calls are profiled separately. The
amount of CPU cycles required by each call seems to depend on the number of input
nodes and on which iteration is being executed, as seen in Figure 5.16 and 5.17.
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Figure 5.16: The number of CPU cycles spent on executing primal net simplex() is
very dependent on how many times it has already been executed.

Figure 5.17: The number of CPU cycles spent on executing price out impl() is also
very dependent on how many times it has already been executed.
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RTS prediction

In this work, the exact number of iterations in the internal loops in primal net simplex()

and price out impl() could not be found in advance as it depends on results found during
the loops. This makes it difficult to predict the workload, especially for primal net simplex().
The state of the while loop could potentially be used for the prediction, but no satisfying
relationship could be found from inspecting the code. Other parameters can be identi-
fied as well, which might give accurate cycle count predictions. An example is shown in
Figure 5.18, where the value of a parameter active arcs is shown. There might be a
useful relationship between the active arcs parameter and the cycle count in each while
iteration, but the investigation of this is left for future work.

Figure 5.18: The number of active arcs. This parameter is available from the beginning
of every while iteration, and can potentially be used as a predictor for the cycle count in
each while iteration.

From the inconsistency seen in Figure 5.16 and 5.17 it is considered infeasible to
accurately calculate the number of necessary cycles within each function call. It is also
observed that data sets generated with one or two extra nodes can give much variation in
the cycle count of these functions. Therefore, a probabilistic approach is chosen instead
of analyzing code and studying line annotated profiling. As shown in Figure 5.19, the
relationship between input nodes and total CPU cycle count is quite consistent, so the
entire processing of an input can be viewed as one RTS. From quadratic regression of the
profiling results, an expression relating the CPU cycles to the input nodes is found, also
shown in Figure 5.19. The number of input nodes is therefore used as the DVFS RTS
parameter.
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Figure 5.19: Measured CPU cycles and the result of quadratic regression.

DVFS sub-scenarios

If a continuous set of RTSs from 5000 to 12000 nodes is assumed, the regression results
shown in Figure 5.19 can be used to calculate the necessary cycles for any number of input
nodes. Then, the worst-case RTS that can be processed at each operating point can be
calculated, as was done with the prime number checker (Section 5.1).

For this sub-scenario development however, only the actual measurements shown in
Figure 5.19 are used for the DVFS sub-scenario generation. When no deadline is con-
sidered, each RTS can be executed in each of the operating points, giving one DVFS
sub-scenario. When a deadline of 90 seconds is assumed (just enough for the 12,000
nodes input to finish at maximum performance), the DVFS sub-scenarios in Table 5.6 are
obtained.

Table 5.6: Sub-scenario table for MCF RTSs.
Worst-case RTS parameter Minimum operating frequency Sub-scenario

8000 0.6GHz 1
9000 0.8GHz 2

10,000 1.2GHz 3
11,000 1.6GHz 4
Backup 1.6GHz 4

For the rest of the scenario development, RTSs with 6000, 8000, 10000 and 12000
nodes are considered in order to simplify the demonstration of the methodology.
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5.3.2 Memory dynamism

RTS identification

Through profiling with Massif, as described in Subsection 4.2.2, it is observed that the
main memory allocation happens in resize prob(), when the arc array is resized in
price out impl(). Figure 5.20 shows the allocated memory as a function of current
instruction number. The size of the allocated memory is practically constant, but the
time of the allocation depends on input, as can be seen in Figure 5.20.

Figure 5.20: Memory allocation in MCF. Note that the allocation mainly happens in two
chunks.

This dynamism in allocation time can be exploited. The two main allocations are
performed from the same line in the source code; the first allocation happens in the first
while iteration, and the second in the second while iteration. The size of the input affects
the amount of processing that is done in other parts of the application, which is what
causes the timing dynamism. Four input sizes will be tested; 6000, 8000, 10000 and 12000
nodes. Splitting the processing of each input in two RTSs results in a total of eight RTSs.

RTS prediction

As shown in Table 5.7, the number of loads and stores depends on the number of input
nodes, while the maximum allocated memory is fairly independent of this. Since the
necessary memory from the beginning of each execution is the same, regardless of input,
there is no need for predicting this. The timing of the second allocation should however be
predicted as accurately as possible in order to save memory energy. As already mentioned,
the second allocation happens when the arc array is resized in price out impl(), during
the second while loop iteration. When a certain point is reached in code, e.g. at the
end of primal net simplex() in the second while loop, the full memory capacity can be
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enabled, just in time before the allocation. The while loop iteration variable is therefore
used as the memory RTS parameter.

Table 5.7: Memory use characteristics of MCF.
RTS Input nodes Allocation Max. allocated mem. Loads Stores

1 6000 1 192MB 3507204617 740253860
2 6000 2 375MB 996936727 87538826
3 8000 1 193MB 4031558889 919078223
4 8000 2 376MB 2702998817 295775550
5 10000 1 194MB 4506000995 1005874469
6 10000 2 377MB 7941498283 1060150832
7 12000 1 195MB 3941369747 990589828
8 12000 2 378MB 15114875277 3474715047

Memory sub-scenarios

To exploit the dynamism in allocated memory size, the RTSs are grouped into two different
memory sub-scenarios; 196MB and 380MB. Assuming the memory platform described
in Section 3.2, the following set of memory bank configurations are suggested for the
application:

a) 512MB

b) 512MB + 256MB

c) 256MB + 128MB

d) 3 · 128MB

e) 256MB + 128MB + 64MB + 4MB

With each configuration, the minimal amount of memory will be enabled for each RTS.

5.3.3 Exploration and Exploitation

Now the identified dynamism and sub-scenarios are combined and optimized using Algo-
rithm 1 and 2. The RTS sequence for which the optimization is performed consists of
three inputs with 6000, 8000, 10000 and 12000 nodes. Only these four inputs are used
in order to simplify the demonstration of the methodology. The memory RTSs are more
fine-grained than the DVFS RTSs, so to combine the DVFS and memory sub-scenarios,
each input must be split into two RTSs (like the memory RTSs are). RTS 1 and 2 are the
first and second parts of the 6000 node input, similarly RTS 3 and 4 are from the 8000
node input and so on. The estimated energy consumption for the different configurations
when no deadline is assumed can be seen in Figure 5.21. There is a surprising similarity
between the RTSs in the two identified memory sub-scenarios (RTS 1, 3, 5, 7 and RTS 2,
4, 6, 8). The optimal operating point and configuration do not depend on the input size,
but only on whether the first or the second memory sub-scenario is active. The reason
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why 1.6GHz is always optimal for the even numbered RTSs is that in these RTSs, the to-
tal memory has been enabled. Running at a high frequency reduces the memory standby
energy considerably. The optimal memory configuration when all RTSs are considered is
configuration c) 256MB + 128MB.

Figure 5.21 gives the following two scenarios:

• Scenario 1: 265MB bank is active, 128MB bank is shut off, CPU operating at 1.2GHz

• Scenario 2: 265MB bank is active, 128MB bank is active, CPU operating at 1.6GHz

• Backup scenario = Scenario 2

RTS 1, 3, 5 and 7 are grouped to scenario 1 and RTS 2, 4, 6 and 8 to scenario 2. Even
though the RTSs within each scenario then will have different CPU cycle counts, they
have the same optimal operating point and active bank combination, unless a deadline is
introduced.

A deadline (and a corresponding input period) of 90 seconds is now assumed for
processing each input, giving just enough time for the 12,000 node input to finish within
the deadline. Figure 5.22 shows the result. Configuration c) is still optimal all RTSs
considered, but almost all the optimal operation points have changed. The minimum
frequency is now preferred, as it reduces the waiting time between the inputs. For RTS 5-
6, the lowest frequency possible without breaking deadlines is 1.2GHz and correspondingly
1.6GHz for RTS 7-8. This means no change of operating point within each DVFS sub-
scenario.

Figure 5.22 gives the following scenarios:

• Scenario 1: 265MB bank is active, 128MB bank is shut off, CPU operating at 0.6GHz

• Scenario 2: 265MB bank is active, 128MB bank is active, CPU operating at 0.6GHz

• Scenario 3: 265MB bank is active, 128MB bank is shut off, CPU operating at 1.2GHz

• Scenario 4: 265MB bank is active, 128MB bank is active, CPU operating at 1.2GHz

• Scenario 5: 265MB bank is active, 128MB bank is shut off, CPU operating at 1.6GHz

• Scenario 6: 265MB bank is active, 128MB bank is active, CPU operating at 1.6GHz

• Backup scenario = Scenario 6

5.3.4 Prediction and Switching

When no deadline is assumed, only the memory RTS parameter is used to predict the
next scenario, i.e. the loop variable in the main while loop. At the beginning of each
application execution, the first scenario is entered. When primal net simplex() in the
second while iteration is finished, i.e. just before the second main allocation is about to
happen, it is switched to scenario 2. The CPU and memory behavior seen in Figure 5.19
and 5.20 make it reasonable to believe that the identified scenarios should be applicable
for any number of input nodes. The prediction and switching should be performed as
follows:
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Figure 5.21: The different energy consumptions of each RTS depending on CPU operating
point, denoted by frequency on x-axis. The blue circle marks the optimal combination
of CPU operating point and memory configuration for each RTS individually, and the
red circle marks the best CPU operating point for each RTS given the best memory
configuration for all the RTSs combined.
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Figure 5.22: With deadline of 90 seconds. Blue circle marks the optimal combination of
CPU operating point and memory configuration for each RTS individually, and red circle
marks the best CPU operating point for each RTS given the best memory configuration
for all the RTSs combined.
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• From the beginning of each input processing, if the number of input nodes is between
5000 and 12000, use scenario 1.

• When primal net simplex() finishes in the second while iteration, if the number
of input nodes is between 5000 and 12000, use scenario 2.

• Otherwise, use the backup scenario.

When the deadline is assumed, the number of input nodes must be used as an RTS
parameter in addition to the while loop variable. The same operating point is used for
both RTSs in each DVFS sub-scenario, i.e. constant operating point for each input. This
should be set as soon as the number of input nodes is known. From the beginning of each
input processing;

• If the number of input nodes is up to 8,000, use scenario 1.

• If the number of input nodes is up to 10,000, use scenario 3.

• If the number of input nodes is up to 12,000, use scenario 5.

As without deadline, when primal net simplex() in the second while iteration is fin-
ished, the second switch should happen;

• If the number of input nodes is up to 8,000, use scenario 2.

• If the number of input nodes is up to 10,000, use scenario 4.

• If the number of input nodes is up to 12,000, use scenario 6.

The memory behavior seen in Figure 5.19 and 5.20 still gives reason to believe that
the memory sub-scenarios are valid for any number of input nodes between 5,000 and
12,000. The identified scenarios can be extended to any number of input nodes by using
the regression shown in Figure 5.19. The lowest possible frequency for an RTS should
be optimal, so the worst-case RTS parameter (number of input nodes) for each operating
point can be calculated at design-time and put in a lookup table. At run-time, the current
number of input nodes can be compared to the entries in the lookup table to find the
operating point with the lowest possible frequency.

A mechanism like the scenario manager described in Section 3.3 can be implemented.
When the deadline is assumed we need two different prediction mechanisms however,
distributed to the two different locations in the source code where each scenario should
be entered. These mechanisms will call the switching mechanism to configure the system
according to the predicted scenario. The CPU unavailability time of 10µs per change of
operating point can be neglected when compared to the average execution time of each
scenario. So can the additional CPU cycles of the scenario management. A memory bank
is awakened only once during the processing of each input, so the wake up energy for the
memory can also be neglected.
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5.3.5 Results

Figure 5.23 and 5.24 show the total energy consumption for the different memory configu-
rations without and with deadline respectively. The leftmost point in both plots is a static
implementation using the highest CPU frequency and a 512MB memory bank regardless
of RTS. Without deadline, the total energy reduction when comparing the most optimal
implementation to the static implementation is 16.9%. With deadline, the energy reduc-
tion is 29.1%. Figure 5.25 and 5.26 compares the static implementation to the scenario
implementation for each RTS separately, without and with deadline respectively. From
these figures it can be seen that the CPU energy dominates without deadline, and the
memory energy dominates with deadline. This is because the memory standby energy
becomes substantial with the increased idle time between inputs. Considering the dead-
line version, it is clear that the smaller input sizes benefit the most from the scenario
implementation. Especially RTS 1 and 3, where the energy is reduced with 43% and
45% respectively. An increased occurrence of these RTSs would thus make the scenario
implementation even more beneficial.

Figure 5.23: Total energy of all the RTSs for each of the different memory configurations.
Each RTS is executed in its optimal operating point. No deadline.

5.3.6 Other observations

It is also noted that the average Cycles Per Instruction (CPI) for this application is very
high, due to the many cache misses [31]. This is a result of intensive network computation
and manipulation with severe pointer chasing. Faster and more energy-efficient memory
accesses therefore have big potential to reduce energy, as it would mean less waiting time
for the CPU. By partitioning the memory into several memory banks, the energy per
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Figure 5.24: Total energy of all the RTSs for each of the different memory configurations.
Each RTS is executed in its optimal operating point. Deadline of 90 seconds is assumed.

Figure 5.25: Comparison of the total energy consumption of the static, no scenario imple-
mentation versus the optimal system scenario implementation for each RTS. No deadline.
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Figure 5.26: Comparison of the total energy consumption of the static, no scenario im-
plementation versus the optimal system scenario implementation for each RTS. Deadline
of 90 seconds is assumed.

access can be reduced, and more accesses can happen in parallel. The CPUs operating
point could also be adapted to match memory access speed using DVFS.
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5.4 464.h264ref

This benchmark is a reference implementation of the encoder used in H.264/AVC, a state-
of-the-art video compression standard. The standard is widely used, especially within
high-resolution applications such as Blu-ray and HD video broadcasting [16]. Two video
streams are encoded in the benchmark; ”foreman qcif.yuv” and ”sss.yuv”. Foreman is a
much used video stream in video compression research, here with 120 frames and 176x144
pixel resolution. The other sequence, sss, is a sequence of 171 frames, 512x320 pixels,
taken from a video game.

The only actual input to the H.264 encoder benchmark is a config-file that specifies
the path to the video stream and the system parameters to use. Two system parameter
profiles are used in the benchmark; baseline and main. The baseline profile provides good
compression and fast encoding, and is typically used in applications that require real-time
encoding (e.g. video conference). The main profile gives a better compression and is used
when no loss of data can occur. There is also a wide range of other settings that can
be made, such as frame rate, width and height, and more advanced settings that e.g.
specifies how the motion estimation should be performed.

Five different types of frames are supported by the H.264/AVC standard: I, P, B,
SP and SI frames. I frames are intracoded, i.e. only blocks within the same frame are
compared during the encoding. P and B frames are intercoded. P frames are coded by
comparing with previous I and P frames (forward prediction), and B frames are compared
both to previous and future frames (bidirectional prediction). SP and SI frames are
specially encoded frames, e.g., used in transitions from one bit rate to another, frame
skipping, fast forward, and more [49]. These frame types are not used in the benchmark
suite. The baseline encoding profile only uses I and P frames, which is why it is the
preferred profile for real-time encoding like in video conferences. The main encoding
profile uses both I, P and B frames, and can involve complex frame reordering because of
this. Below is an example that shows how the different frame types (I, P, B) are ordered
with baseline and main encoding, taken from the benchmark output. The numbers behind
each frame are the original frame numbers from the sequence.

• Baseline: I (0), P (1), P (2), P (3), P (4), P (5), P (6)

• Main: I (0), P (2), B (1), P (4), B (3), I (6), B (5)

The resource requirements of encoding a frame depend on the frame type. This frame-
level dynamism can be exploited with system scenarios, similarly to what is done with the
MPEG-2 encoder in [17]. Yassin et al. [39] uses dynamism caused by varying frame sizes to
implement DFS system scenarios with the H.264 encoder control structure. The encoding
profile should also affect the execution time, according to the benchmark description [16].
These kinds of dynamism will be investigated in this work, except frame-level dynamism
which is left for future work.

5.4.1 DVFS dynamism

RTS identification

There are many parameters to modify in this benchmark, both regarding the input stream
properties and the applied encoding technique. This subsection investigates the CPU
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cycle count dynamism due to frame size, content, length of the sequence and the type of
encoding profile that is used. The input set is limited to the video streams included in
the benchmark. Frame size and sequence length is adjusted through the config-file.

Through profiling with Zoom, it is observed that different sequences with equal di-
mensions and frame count that are encoded with the same profile have very similar CPU
cycle count, i.e. the content of the stream does not cause dynamism in the tested case.
By keeping all parameters constant except the input sequence length, it is observed that
an increased sequence length gives a proportionally increased number of CPU cycles. The
CPU cycle count is also quite proportional to the product of the height and width of
the encoded frames. Furthermore, main profile encoding uses about twice as many CPU
cycles as baseline encoding, when the other parameters are kept constant. Figure 5.28
shows the dynamic CPU cycle count as a function of pixels per input frame for baseline
and main profile encoding.

Figure 5.27: H264 top-level model.

The application is decomposed according to the procedure in Subsection 4.2.1 as shown
in Figure 5.27. In Zoom it can be seen that the function encode one frame() is called
from the main routine once for each frame, both with baseline and main profile encod-
ing. The function encode enhancement layer() is also called from the main routine
once for every frame, but only executes considerable code for B-frames (bi-directionally
predicted frame), i.e. when main encoding is used. Most of its cycles are actually also
from calling encode one frame(). All together, 99% of the CPU cycles are thus spent
in encode one frame() (and the functions called by this function) both for main and
baseline encoding. The rest of the function call hierarchy is complex and deep, so no
further investigation of this is presented.
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The benchmark is profiled while encoding scaled versions of ”sss.yuv” to study the
relationship between encoding profiles and frame sizes. The frame sizes are shown in Table
5.8, and the profiling results using sequences of 15 frames are shown in Figure 5.28. For
the rest of the system scenario development, the considered input set comprises streams
of the first four of these frame sizes, with 15 frames of each stream. This can be a realistic
situation for encoders that are capable of some frame buffering. Both baseline and main
encoding of each stream is considered, producing a total of eight RTSs.

Figure 5.28: CPU cycles as a function of the number of pixels per frame for a 15 frame
sequence.

Table 5.8: ”sss.yuv” is scaled to the following frame sizes.
Frame size Pixels

176x144 25344
240x160 38400
320x176 56320
320x240 76800
320x320 102400
480x272 130560
512x320 163840

RTS prediction

In streaming applications, the encoding deadline usually depends on the frame rate. The
RTSs should then be predicted from frame size, profile and frame rate, so that the frames
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are encoded at the same rate that new frames are arriving. The same goes for non-
streaming applications, except that the total number of frames can be used instead of the
frame rate.

The RTSs considered here can be predicted from frame size and encoding profile.
Both are known at the beginning of each encoding as these properties are specified in the
config-file. Only the first four frame sizes are used as input for the remaining parts of this
section.

DVFS sub-scenarios

If no deadlines must be met, all RTSs can be executed in all operating points. When
the deadline is set to 70 seconds, which gives just enough time for the worst-case RTS
to finish using the highest performance operating point, the sub-scenario table shown in
Table 5.9 is obtained.

Table 5.9: DVFS sub-scenarios.
Input Encoding profile RTS Min. operating freq. Sub-scenario

sss 176x144 baseline 1 0.6GHz 1
sss 240x160 baseline 2 0.6GHz 1
sss 320x176 baseline 3 0.6GHz 1
sss 320x240 baseline 4 0.8GHz 2
sss 176x144 main 5 0.6GHz 1
sss 240x160 main 6 1.0GHz 3
sss 320x176 main 7 1.2GHz 4
sss 320x240 main 8 1.6GHz 5

Anything else 1.6GHz Backup

5.4.2 Memory dynamism

RTS identification

The two different encoding profiles have quite different memory footprint. Encoding the
same sequence with the baseline profile requires about 50% more memory than encoding
with the main profile. As noted earlier, main profile encoding requires significantly more
cycles than baseline profile encoding. Figure 5.29 and 5.30 show the profiling results
from encoding different inputs using the baseline and main profile settings. From these
figures it is concluded that the dynamism in memory allocation timing will be difficult
to exploit, since much of the allocations happen relatively early. The dynamism in mem-
ory allocation size can however be exploited with memory-aware system scenarios. The
memory power consumption can potentially be reduced a lot for the low resolution input
sequences, especially when the main profile is used. The eight RTSs listed in Table 5.10
are investigated.

RTS prediction

The same two RTS parameters that were used with the CPU RTSs are used for the
memory RTSs as well, i.e. the frame size and the encoding profile. Both of these are
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Figure 5.29: Memory allocation in H.264 with baseline profile encoding.

Figure 5.30: Memory allocation in H.264 with main profile encoding.
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Table 5.10: The maximum memory allocated by the H.264 encoder when processing 15
frames of sss with various frame sizes.

Frame size Baseline Main
176x144 25.5MB (RTS 1) 17.0MB (RTS 5)
240x160 32.5MB (RTS 2) 22.2MB (RTS 6)
320x176 42.3MB (RTS 3) 29.2MB (RTS 7)
320x240 53.3MB (RTS 4) 37.2MB (RTS 8)

known at the start of the execution as they are specified explicitly in the config-file.

Memory sub-scenarios

From the identified memory dynamism shown in Table 5.10 and the available memory
bank sizes presented in Section 3.2, the following seven memory bank configurations are
suggested:

a) 32MB · 2 (static)

b) 32MB · 2 (dynamic)

c) 32MB + 16MB · 2

d) 32MB + 16MB + 8MB

e) 32MB + 16MB + 8MB + 4MB

f) 32MB + 16MB + 8MB + 4MB + 2MB

g) 32MB + 8MB · 2 + 4MB + 2MB

With each configuration, the minimal amount of memory will be enabled for each RTS.
This gives the memory sub-scenarios.

5.4.3 Exploration and Exploitation

The different combinations of DVFS and memory sub-scenarios are explored and exploited
using Algorithm 1 and 2. The result when no deadline is assumed is shown in Figure 5.31,
where it can be seen that the only optimal operation point is at 1.6GHz, regardless of
input. This is because of the big memory requirements relative to the execution time,
as will be shown in the next subsection. By running at the highest frequency available,
the execution time is shortened and less standby energy is consumed by the memories.
Only one DVFS sub-scenario is therefore used; 1.6GHz operation. The memory sub-
scenarios are however used to switch memory banks on and off depending on the input.
The resulting scenarios are shown in Table 5.11.

Giving a deadline does by itself not change the results, as the fastest execution is
already optimal. Quite different results are however obtained when assuming that new
inputs are received on each deadline and the CPU is left idle while waiting for the next
input. Figure 5.32 shows the result when the deadline is set to 70 seconds, which is
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Figure 5.31: RTS platform exploration for the RTSs given in Table 5.10. No deadline.
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Table 5.11: The H.264 scenarios when no deadline is assumed. The different active bank
combinations for the RTSs (i.e. memory sub-scenarios) defines the scenarios. The optimal
CPU operating point is 1.6GHz for all the RTSs.

Input, encoding profile RTS Active memory banks Scenario
sss 176x144, baseline 1 32MB 1
sss 240x160, baseline 2 32MB + 2MB 2
sss 320x176, baseline 3 32MB + 8MB + 4MB 3
sss 320x240, baseline 4 32MB + 2 · 8MB + 4MB + 2MB 4

sss 176x144, main 5 2 · 8MB + 2MB 5
sss 240x160, main 6 32MB 1
sss 320x176, main 7 32MB 1
sss 320x240, main 8 32MB + 4MB + 2MB 6

Anything else - 32MB + 2 · 8MB + 4MB + 2MB Backup

just enough for the worst-case RTS (RTS 8) to finish within the deadline. The same
memory configuration is still optimal, so the same active bank combinations are used.
The optimal CPU operating points have changed however. The result is now one scenario
for each RTS, as shown in Table 5.12. Some of the scenarios can be merged without much
penalty. For example scenario 6 can be merged into scenario 7, as they have the same
active bank combination and Figure 5.32 shows similar energy consumption in operating
point 1.0GHZ and 1.2GHz for RTS 6.

Table 5.12: H.264 scenarios when a deadline is assumed. The different active bank com-
bination and optimal CPU operating point (denoted by frequency) for each RTS results
in a scenario for each RTS.

Input, encoding RTS CPU op Active memory banks Scenario
sss 176x144, baseline 1 0.6GHz 32MB 1
sss 240x160, baseline 2 0.6GHz 32MB + 2MB 2
sss 320x176, baseline 3 0.6GHz 32MB + 8MB + 4MB 3
sss 320x240, baseline 4 0.8GHz 32MB + 2 · 8MB + 4MB + 2MB 4

sss 176x144, main 5 0.6GHz 2 · 8MB + 2MB 5
sss 240x160, main 6 1.0GHz 32MB 6
sss 320x176, main 7 1.2GHz 32MB 7
sss 320x240, main 8 1.6GHz 32MB + 4MB + 2MB 8

Anything else - 1.6GHz 32MB + 2 · 8MB + 4MB + 2MB Backup

5.4.4 Prediction and Switching

The same two RTS parameters have been identified for the CPU and memory dynamism;
the frame size and the encoding profile. Upon receiving a new input sequence to encode,
these parameters can be extracted from the config-file. Then the optimal scenario and
its configurations are found from a lookup table (like Table 5.11 or 5.12). A mechanism
like the scenario manager described in Section 3.3 should be implemented to configure
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Figure 5.32: RTS platform exploration for the RTSs given in Table 5.10 when the deadline
for encoding each input is set to 70 seconds and the CPU is left idle between each input.
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the system according to the scenario. The scenario switch should happen before any of
the input processing is started.

Also for this application, the CPU and memory overhead for scenario prediction and
switching can be neglected.

5.4.5 Results

Figure 5.33 and 5.34 shows the estimated total energy consumption of the different mem-
ory configurations without and with deadline respectively. The leftmost point on each plot
is a static implementation using the highest CPU frequency and two 32MB memory bank
regardless of RTS. Without deadline, the total energy reduction when comparing the most
optimal implementation to the static implementation is only 12.4%. With the 70 second
deadline however, 28.4% of the total energy is saved. Figure 5.35 and 5.36 compares the
energy consumption of the static implementation to the best scenario implementation
without and with deadline respectively, with the contribution from CPU and memory
separated for each RTS. When no deadline is assumed, the energy consumption is quite
similar. The CPU energy is in fact exactly the same, since in both cases the 1.6GHz
operating point is used. The whole energy reduction is due to the memory sub-scenarios,
by making sure that no more memory than necessary is enabled for each RTS. When the
deadline is set, the memory energy is drastically increased for the RTSs that finish before
the deadline, as is observed with the other benchmarks. There reduced energy of the sce-
nario implementation is both due to the memory and DVFS sub-scenarios. The energy
reduction for RTS 5 in particular is substantial (41%), mostly due to reduced memory
energy. The required memory in this RTS is only 17MB (see Table 5.10), making it the
RTS with the smallest memory requirement. It is therefore very beneficial for this RTS
to use memory configuration g), so that 2 · 8MB + 2MB = 18MB can be active while
the rest of the banks are shut down. As with the other benchmarks, the RTSs with small
workloads have the biggest relative energy reductions when employing scenarios.
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Figure 5.33: Total energy of all the RTSs for each of the different memory configurations,
without deadline. Each RTS is executed in its optimal operating point.

Figure 5.34: Total energy of all the RTSs for each of the different memory configurations,
with deadline. Each RTS is executed in its optimal operating point.
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Figure 5.35: Comparison of the total energy consumption of the static, no scenario im-
plementation versus the optimal system scenario implementation for each RTS. Without
deadline.

Figure 5.36: Comparison of the total energy consumption of the static, no scenario im-
plementation versus the optimal system scenario implementation for each RTS. With
deadline.



Chapter 6

Discussion and Future Work

6.1 Applications

There are huge variations between the considered applications, both when it comes to av-
erage and worst-case resource requirements. The differences in required CPU cycles and
memory size results in very different energy distributions between memory and processing
for the assumed platform. This is a challenge when trying to develop a unified method-
ology. If either the CPU or memory energy consumption makes up a very small part of
the total energy consumption, the potential gain from using the presented methodology
diminishes. The results of the methodology should still be optimal, but much work can
be saved by only focusing on the biggest energy consumer, which can have a much bigger
potential for reducing the energy. The methodology is best suited for systems where the
energy consumption is more evenly distributed. As mentioned in Section 2.4, the memory
energy contribution typically varies from 35% to 65% of the total system energy consump-
tion for different architectures. Such energy distributions matches the results presented
in this work (except for the prime number checker).

Around 10 to 30% of CPU and memory energy is saved by using the methodology
on the selected benchmark applications. The inputs with little workload saves the most
energy with system scenarios. Unfortunately, it is the more demanding inputs, in which
the energy is typically not as much reduced, that have the most influence on the total
energy reductions. In this work, the occurrences of the most and the least demanding
inputs are equal. Dynamic applications where the most demanding inputs are rare enough
to not dominate the expected total energy consumption will in general have a bigger
potential for energy reductions through system scenario development. An example of this
is the activity pattern of servers, as mentioned in Section 2.6.

The benchmark applications have long execution times (usually several minutes for
the reference inputs on a regular workstation). The long execution times have been a
challenge when designing the system scenarios, which generally required much profiling
of the applications. Especially the memory profiling performed with the simulation-based
profiler Cachegrind is time-consuming, as it slows down the execution time between 20
and 100 times. This has limited the profiling somewhat, resulting in fewer RTSs. Iden-
tifying and characterizing RTSs in terms of both memory and CPU utilization is a time
demanding task which should clearly be automated to a much greater extent. There is
a number of static profiling techniques available in literature, but dynamic techniques

91
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are limited. A survey is presented in [17, Ch. 9], and a proposed source code profiling
technique is also summarized.

The system scenario implementations introduce very little overhead in the applications
relative to the application workload. Especially for the benchmark applications, where
the identified RTS are all quite CPU and memory intensive (requiring somewhere between
8,943,000,000 and 814,576,000,000 CPU cycles, and between 1.4 and 377MB of memory).
Even with the prime number application, which has significantly lower average CPU cycle
count per RTS and very limited memory requirements, the overhead was estimated to
only 0.43% additional CPU cycles. For the benchmark applications, the relative overhead
should be even less due to the infrequent scenario changes.

The presented system scenario designs cannot be regarded as precise trade-off analyses
for the applications, as the design decisions are founded on a theoretical platform with
several simplifying assumptions. The results can however be used to reduce the search
space and guide the system scenario design process for these applications. The HMMER
benchmark is suited for the gray-box modelling, where the application is partitioned in
order to identify and locate the dynamism. The observed execution traces are mostly
independent of input, and the ending conditions of the for-loops do not require additional
run-time processing to be found. The MCF benchmark on the other hand is only com-
plicated by such a partitioning. The total cycle count is easier to predict than the cycle
count from separate function calls. Also for the H.264 benchmark the total cycle count
is used to predict scenarios, but a more precise cycle count prediction can be performed
with an expression identified from the total loop structure, as is presented by Yassin et al.
[39]. Whether the scenarios of an application should be predicted statistically or from a
structural expression can be decided using application knowledge and by trial and error,
as is demonstrated with the considered applications.

6.2 Memory related

All calculations are based on numbers from profiling. Ideally, actual measurements should
have been made, at least to verify the models that are used. The complexity of the de-
signed platform made it necessary to do several simplifying assumptions in the calcula-
tions. There will for example be other energy consumers than just the CPU and memory,
like buses, muxes, I/O and more, that could have some impact on the results. The extra
logic and wires necessary for the described memory partitioning has not been included in
the calculations. This should be investigated and incorporated into the memory energy
numbers from CACTI in order to get more realistic energy numbers. In many cases,
replacing one bank with two smaller banks can give reduced read, write and standby
energy with the memory models that are used in this work. For example, here are the
characteristics (from Table 3.2) of one 8MB bank compared to two 4MB banks:

• 8MB cache:

Pactive = 3.905W

PshutDown = 1.628W

Eread = 2.188nJ
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• 2 · 4MB cache:

2 · Pactive = 2 · 1.905W = 3.810W

2 · PshutDown = 2 · 0.794W = 1.588W

2 · Eread = 2 · 0.815nJ = 1.630nJ

When no penalty is added for increasing the number of banks, the resulting optimal
configuration might be a configuration with unrealistically many banks. For two of the
applications (MCF and HMMER) studied in this work, the optimal memory configura-
tions are however not the configurations with the most banks. The main reason for this
would be that the memory banks draw power even when shut off. Furthermore, memory
configurations with more than five memory banks were not explored in this work in order
to limit the additional interconnects required.

The memory architectures used in this work are very simplified. Actual memory
architectures would normally not be organized like the suggested configurations. For
example, there is no memory hierarchy present in any of these configurations. Smarter
mapping of data to memories in the context of system scenarios should be investigated
in future work. In this work it has been assumed that the execution time is independent
of memory configuration. For some of the considered memory banks this is far from the
reality, as the variations in the time needed for a memory read can be quite big; from
around 1 to 30ns according to the CACTI models, with the CPU cycle time being only 1ns
at 1GHz. It is unknown how much this will affect the results, and how much techniques
like pipelining and parallel data accesses can alleviate the differences. Frequently used
data should anyway be mapped to the smaller banks of the memory configuration, as
described in Section 2.4. Much further work can be done here.

In this work, the memory dynamism is only exploited in terms of timing and size
of memory allocations. In [12] however, the memory access pattern and data reuse size
is also exploited, which makes it possible to use special data assignment strategies and
design memory banks specifically according to these requirements. Much energy can then
be saved by organizing the data assignments according to the expected data use and by
allowing memory banks to sleep when not used. If the memory accesses of the applications
considered in this work are profiled in more detail, the memory sub-scenario development
can be expanded to fully exploit the memory dynamism. The observed pattern in allocated
memory and reads and writes indicates that there could be exploitable patterns also in
the use of the allocated memory. If for example some memory locations are only used by
a specific function, an RTS could be constructed from this. If these memory locations can
be gathered in one memory bank, this bank can be kept in a low-power mode whenever the
function is not executing. The memory use in HMMER and H.264 is assumed to be very
sequential judging by their low cache miss rates [31] and the nature of the applications,
making these applications suited for such exploitation. Alternatively, Section A.1 proposes
an implementation that can also be considered for these applications. MCF on the other
hand is probably not very suited, since it has a very high cache miss rate due to severe
pointer chasing [31].

Dynamically adjusting the frequency and voltage of memories (i.e. memory DVFS ) has
been suggested for server architectures by H. David et al. [50]. They observe that many
of the SPEC CPU 2006 workloads require significantly less than the peak bandwidth. By
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reducing the frequency and voltage for these workloads dynamically, the memory power
is reduced by 10.4% in average with minimal performance impact. Due to limited control
of supply voltage and frequency in the CACTI models, memory DVFS has not been
investigated in this work. In CACTI, the memory bank Vdd is controlled by the size and
the type of transistor technology that is selected. The potential for memory DVFS as a
system knob should be explored in future work with memory-aware system scenarios.

6.3 CPU related

Intel SpeedStep is well suited for fast scenario switching. Its operating point can be con-
trolled by software and a maximum of 10µs are required to do a switch [34]. Of the con-
sidered applications, the prime number checker is the application with the most frequent
scenario switching. Even with this application, the scenario prediction and switching
overhead is negligible. According to the calculations in Chapter 3, most of the operating
points are Pareto-optimal, which is an advantage for DVFS applications. The reason
why one of the operating points is not Pareto-optimal could be the quite simplifying as-
sumptions that were made prior to the power calculations. If only the dynamic power
of the processor is considered, all the operating points are Pareto-optimal. In [35] it is
studied how Intel and AMD specify processor power and how the specifications can be
used to compare processor power. TDP is described as a ”worst-case value”, and that a
typical workload will dissipate less power than the rated TDP. It is specifically stated to
not use TDP as a measure for processor power for this reason. AMD provides a differ-
ent characteristic for their processors, called ACP (Average CPU Power), to give a more
realistic impression of their processors’ power consumption. The ACP of a processor is
the geometric mean of the power it dissipates when running a set of benchmarks. ACP
should therefore be a better suited measure for processor power than TDP. No ACP with
frequency and voltage scaling has been found during this work, but this can be further
investigated in future work.

Using TDP as CPU power is clearly an overestimation, but it seems to balance the
high power consumption of the memories. The focus in this work is not to obtain very
accurate power results. It is the dynamism in the applications and the methodology
for exploiting it that is central, so as long as the numbers are not completely out of
scale, the demonstrations should give good insight in the presented methodology. The
intention of the methodology is to better explore how the possible power reductions in
different parts of a system affect each other, and it is therefore the relative size of the
numbers that is important for demonstrating the methodology. When using the developed
methodology and algorithm in a real-life system scenario design process, the theoretical
energy calculations should as much as possible be verified or replaced with measured
values. There may be power variations even due to the application itself. By doing
physical measurements of the actual platform, many sources of error are eliminated.

6.4 Methodology

The methodology is developed while trying to design system scenarios for the presented
applications. The methodology should still be useful for a wide range of other applications,
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due to the big differences between the considered applications.
The methodology should be applicable also for other kinds of dynamism, except the

procedures that are CPU/memory specific. It can also be extended in order to deal
with more than two-dimensional dynamism. For the steps in which each dynamism is
considered individually, the computational complexity will only increase linearly with
the added number of dimensions. In the exploration and exploitation step however, the
complexity will increase exponentially with the added dimensions, since each added system
knob adds an extra level to the nested for-loops in Algorithm 1 and 2. This is not
critical unless the added system knobs have many possible settings. The methodology’s
complexity is linear in terms of adding more RTSs.

Exactly how a system will be used heavily influences the design of system scenarios,
so some assumptions had to be made; e.g., concerning the time budget, when and how
new inputs are received and possible corner case behavior. For simplicity no deadline is
assumed initially, so that the focus is only on saving as much energy as possible. It is also
assumed that the tasks are processed continuously, i.e. no waiting energy consumption
between inputs. The results of this showed that energy reductions from slowing down the
CPU can be outweighed somewhat or completely by the increased standby time of the
memory. For HMMER the optimal balance between CPU and memory power was found
to be at 1.2GHZ and 1.0GHz operation, where memory is responsible for 41-48% of the
total energy given the optimal memory configuration. Later, to make the results more
interesting and realistic, a deadline is introduced so that the most demanding task can
just be finished in the highest performance scenario. When continuous input processing
is still assumed (i.e. no waiting between inputs), the only effect is that some of the
low-frequency operating points cannot always be used. When also assuming an expected
period between each input, in which the CPU and memory have to remain idle while
waiting for the next input, the lowest possible operating frequency is always optimal.
This is because it reduces the total number of CPU cycles for each expected period.

When using DVFS in system scenario design, the results are often compared with race
to idle (or race to halt) implementations. With race to idle, the CPU executes a task
at maximum performance and enters a low-energy mode when finished, while waiting
for the next task. By executing at full speed, the time spent in the low-energy mode is
maximized. To motivate system scenario design, some papers however use a race to idle
implementation where the CPU busy-waits between the tasks, which results in a high en-
ergy consumption to compare the system scenario design against. For applications where
a responsive CPU is required this may be necessary, but it can also be unrealistic since
many of today’s CPUs provide very energy efficient low-energy modes. For the applica-
tions presented in this work, the CPU could have been put in a sleep mode when the
processing of an input finishes before deadline. This may however not be feasible, as
discussed, and no numbers could be found for Intel Pentium M low-power modes. As a
compromise between this and leaving the CPU in a high performance state, the CPU’s op-
erating frequency is therefore reduced to 0.6GHz in the idle time. Changing the operating
point when the processing is finished is not a product of the system scenario methodology,
so this is also done in the static implementations that are used for comparison.
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Chapter 7

Conclusion

In this thesis, system scenario development with multi-dimensional dynamism is explored
and evaluated. More specifically, the DVFS optimizations of traditional system scenario
methodology are combined with the recently developed memory-aware system scenario
extension. Several papers present promising results of the system scenario methodology
using CPU optimizations such as DVFS. For applications that require much memory
however, the energy reductions from system scenario-based DVFS will be minimal if the
total energy is anyway dominated by memory energy. Memory-aware system scenarios
have been introduced with dynamically reconfigurable memories as a response to this
problem. By utilizing both DVFS and dynamic memories, the dynamism in applications
that are both memory and computationally intensive can be exploited. In this thesis, such
a DVFS and memory-aware system scenario development is tested on four very different
applications.

The first is a CPU intensive prime number checker with little memory requirements
but very dynamic and hard to predict execution time. By delaying the scenario pre-
diction however, the predictability of the execution time was increased and the scenario
implementation is estimated to use 20.2% less CPU energy than the original. In these
calculations, no power consumption is included from the potential waiting or idle time.

The next three applications are selected benchmarks from the SPEC CPU 2006 bench-
mark suite. These are characterized by being very intensive and dynamic in terms of both
CPU and memory usage. The challenge is to exploit both of these dynamisms to save as
much energy as possible without compromising performance. Through system scenario
design, a number of RTSs and scenarios are identified and exploited, and up to 31% en-
ergy is saved. Datasheet numbers of an Intel Pentium M processor and CACTI memory
models are used to estimate the energy savings. Memory dynamism is exploited both in
terms of allocation timing and size. The system scenarios are designed both with and
without deadlines. The complexity of the design process made it clear that a specialized
methodology for identifying and exploiting dynamism in memory and CPU usage would
be useful.

Such a methodology, which is slightly different from the traditional methodology,
is therefore developed and tested on the four applications throughout this work. The
presented methodology describes quite accurately how to detect CPU cycle and memory
dynamism in applications through profiling and code inspection, and how to obtain the
optimal combination of the different platform settings. Multi-dimensional dynamism is
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a big challenge in system scenario design. The proposed methodology identifies and
analyzes each dimension of the dynamism separately, and then combines it all in order
to fully exploit the dynamism. This way, the complexity of dealing with a number of
different variables is reduced during identification, and during exploitation one is able to
rule out the sub-optimal solutions. The RTSs are not grouped into scenarios based on
similar costs, but on optimal execution with the same operating point and configurations.
The methodology is targeted at simple single-core platforms.

The feasibility of system scenario design for a given application does not only depend
on the degree of dynamism among the identified RTSs, but on the expected occurrence of
each RTS. This is because the most demanding RTSs typically will not benefit as much
from the system scenarios as the less demanding RTSs. The algorithms presented in this
work takes both the occurrence and requirements of the RTSs into account when opti-
mizing the system scenarios. Demanding and/or frequent RTSs thus have more influence
on the final set of system scenarios.

There is a considerable complexity involved in exploring and exploiting how the possi-
ble power reductions in different parts of a system affect each other. It is believed that the
suggested methodology can be of help in this process. It is not meant as a replacement
of the original methodology, but as an additional guidance in relevant situations.
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Appendix A

Miscellaneous

A.1 Dynamism in memory accesses

If the use of allocated memory is dynamic, and it can be predicted that a set of allocated
memory locations will not be used in a long time, these memory locations can be put to
sleep for a while. This kind of dynamism is harder to find than the dynamism in amounts
of allocated memory. However, a common example is where a big chunk of memory
is traversed sequentially by the application. Then it can be beneficial to partition this
memory into banks and let the parts that are currently not accessed sleep. To identify
these opportunities, look for very low cache miss rates and big memory footprint when
profiling. Relatively long execution time is also necessary to make it feasible to exploit.
Also, code inspection and good knowledge of how the application works should be useful.

The memory banks must be awakened with just enough time to get ready before being
accessed. From the currently accessed memory location, an address offset can be used
to determine which bank must be activated (Figure A.1). This offset will depend on
the memory’s wake-up time and the execution speed. The execution speed depends on
the RTS and the CPU frequency. Therefore, for every change of RTS, the offset must
be updated to match the new RTS. If the scenario implementation includes frequency
scaling, the offset must also be updated after a frequency change.

Efficient caching mechanisms already exploit such memory access patterns, and in a
much more flexible way. Memory architectures that use scratchpads (see Section 2.4)
instead of caches are more likely to benefit from the suggested partitioning.
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Figure A.1: Main memory partitioned into memory banks. A memory address offset
added to the currently accessed address is used to wake up memory banks before they are
used.

A.2 Prime number probabilities

Let π(x) denote the number of primes up to a number x where x > 0. Then,

lim
x→∞

π(x) ln(x)

x
= 1 (A.1)

where ln() is the natural logarithm. This is known as the Prime Number Theorem, which
was independently proved by Jacques Hadamard and Charles Jean de la Vallee-Poussin
in 1896[51]. By rewriting Equation A.1, the function π(x) for the number of primes less
than a number x is obtained:

π(x) ∼ x

ln(x)
(A.2)

The probability of choosing a prime out of all numbers in the range 0 to x is therefore:

P (prime) ∼ 1

ln(x)
(A.3)

The probability of not choosing a prime in the range 0 to 637,538,053 (the maximum
number input to the prime number checker in Section 5.1) is then:

P (notPrime) ∼ 1− 1

ln(637538053)
= 0.951 (A.4)

In the system scenario implementation with the original prime checker code, this is the
probability for mispredicting a scenario. The code changes performed during the scenario
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development does however reduce this drastically. Just by checking if the input num-
ber is dividable by two or three before predicting scenario, the probability for scenario
misprediction is reduced to 0.28:

0.951− 0.50− 0.50 · 0.33 = 0.28 (A.5)

A.3 Controlling the benchmarks

This section describes what is done to be able to control and modify the benchmarks.

• Turn off the checksum (check md5=0) in the SPEC build config-file.

• Issue --fake run commands as described in [52].

• Extract run commands from the generated logs.

• Make with options:
-I. -std=c99 -DSPEC CPU -DNDEBUG -O2 -fno-strict-aliasing -DSPEC CPU LP64

-fno-omit-frame-pointer -g

-fno-strict-aliasing in order to get complete callstacks. Thread time pro-
filing is not affected and performance of most code is not considerably impacted
[41].

• Run the generated executable according to the extracted run commands.

A.3.1 How to run HMMER

The following command executes hmmersearch according to the benchmark suite:
./hmmer executable nph3.hmm swiss41

hmmercalibrate is executed with the following command:
./hmmer executable --fixed 0 --mean 500 --num 500000 --sd 350 --seed 0

retro.hmm

Only hmmersearch is investigated in this work, but there should be a similar dynamism
present in hmmercalibrate since it uses P7Viterbi() in a similar way. The options
explained below are not necessary, but can be used to replace the default values. More
options and information can be found in the HMMER User’s Guide [45].

--fixed fixes the length of the random sequences used in the calibration to n. The
default is to generate sequences with variable lengths from a Gaussian distribution.

--set sets the random number seed to a positive integer to get equal results of two
hmmcalibrate runs with same input HMM.

--num sets the number of synthetic sequences. Higher value gives better accuracy.
The default is 5000, which is experimentally selected trade-off between computation time
and accuracy.

A.3.2 How to run MCF

The following command executes the application according to the benchmark suite:
./mcf executable inp.in
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A.3.3 How to run H.264

The following command executes the application according to the benchmark suite:
./h264 executable -d foreman test encoder baseline.cfg

A.4 MCF data set generator

The MCF data set generator [48] made by Paul Berube is used to generate additional
MCF inputs. The number of timetabled and dead-head trips can be specified to the
generator. Giving the same specifications to the generator results in the same MCF input
being produced. The generator is intended for the SPEC CPU2000 version of the MCF
benchmark, but according to [16] there are minimal changes to the MCF benchmark.

A.5 Viterbi algorithm

The Viterbi algorithm [53] is a dynamic programming algorithm for finding the most
likely sequence of hidden states (called the Viterbi path) which results in a sequence of
observed events. It was proposed by Andrew Viterbi in 1967 as an algorithm for decoding
convolutional codes over noisy digital communication links. The algorithm is commonly
used for encoding and decoding convolutional codes [12], with appliances like CDMA,
GSM, dial-up modems, satellite, deep-space communications and 802.11 wireless LANs.
A more recent application is within speech recognition, where the observed sequence of
events is the acoustic signal, and a string of text is considered as the hidden cause of the
acoustic signal.

The Viterbi algorithm is also widely used to decode convolutional codes applied to
overcome data corruption in digital communication channels. Swaminathan et al. [54]
implements a dynamically reconfigurable Viterbi decoder. Changing channel noise con-
ditions are exploited by run-time dynamic reconfiguration of hardware, leading to a per-
formance improvement of 20% (in terms of processed bandwidth). The amount of com-
putation performed and the amount of storage used at both fine- and coarse-timescale
level. Reconfiguration based on each received symbol is infeasible with current FPGA
technology.

Filippopoulos et al. [12] uses a Viterbi encoder to demonstrate the usefulness of
memory-aware scenario development. By adapting the number of active memory banks
according to the SNR of a signal (which determines the necessary state sequence length),
Filippopoulos et al. shows a energy reduction of more than 70% in situations with low
noise.

A.6 CACTI

For the memory banks up to 32MB, CACTIs normal cache interface is used. For the
bigger memory banks the CACTI Pure RAM interface is used. Table A.6 and A.6 shows
the required input parameters for these models, and the selected values.

In the CACTI 5.1 Technical Report [55] the different transistor types are explained.
The technology modelling in CACTI 5 is based on the ITRS (International Technology
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Table A.1: CACTI cache parameters.
Cache Size (bytes) Up to 33554432
Line Size (bytes) 64

Associativity 1
Nr. of Banks 1

Technology Node (nm) 40

Table A.2: CACTI RAM parameters.
RAM Size (bytes) Between 536870912 and 33554432

Nr. of Banks 1
Read/Write Ports 1

Read Ports 1
Write Ports 0

Single Ended Read Ports 0
Nr. of Bits Read Out 512

Technology Node (nm) 40
Temperature (300-400 K, steps of 10) 300

All Transistor Types ITRS-LOP
Interconnect projection type Aggressive

Type of wire outside mat Global

Roadmap for Semiconductors) roadmap. ITRS define different transistor types such as
HP (High Power), LSTP (Low Standby Power) and LOP (Low Operating Power) that
can be used in CACTI. The default is HP, which are state-of-the-art fast transistors that
tend to be quite leaky. In this work, the LOP type have been used instead for the memory
banks bigger than 32MB in order to reduce standby power. LOP use considerably lower
supply voltage than HP.
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