
Android-basert biomedisinsk søk

Eric Nordvik

Master i informatikk

Hovedveileder: Herindrasana Ramampiaro, IDI

Institutt for datateknikk og informasjonsvitenskap

Innlevert: September 2012

Norges teknisk-naturvitenskapelige universitet

Android based biomedical search client

Eric Nordvik

September 1, 2012

Abstract

The work in this report reflects on the choices to make when deciding on which approach is
best suited to port a web-based biomedical search engine to mobile devices with small screens.
It summarizes some of the valid options which exists with current technology and tries to
give an overview of what considerations one need to take in this scenario. The focus is on
how the BioTracer search engine could be implemented for Android devices and varies from
implementing a native application via cross platform frameworks to scaling the web version to
adapt to smaller screens.

Contents

1 Background 3

2 Current situation and possibilities 5

2.1 State-of-the-art . 5

2.1.1 Current search engines and their implementations. 5

2.1.2 Other applications and how they achieve the best possible user interaction
and results. 6

2.2 Technology descriptions . 6

2.2.1 HTML 5, Javascript and Cascading Style Sheets 6

2.2.2 Responsive web design . 7

2.3 Different approaches on technology . 9

2.3.1 Android and iOS . 9

2.3.2 HTML5 advantages . 10

2.3.3 Cross platform application frameworks 10

2.3.4 Native application or not . 11

2.3.5 Types of input . 12

3 Design 14

3.1 Assumptions . 14

3.2 Requirements . 14

3.2.1 Lightweight implementation . 15

1

3.2.2 Application components . 16

3.2.2.1 The search interface . 16

3.2.2.2 Providing the search results . 17

3.2.2.3 Showing the details . 18

3.2.2.4 Related queries vs search results 18

3.2.3 Search history . 18

4 Implementation details 19

4.1 Classes: . 19

4.2 Benefits of using existing code . 20

5 Conclusion 21

2

Chapter 1

Background

This thesis is based on the current implementation of BioTracer and how to implement it as a
separate application optimized for mobile devices with smaller screens than tablets and desktop
computers.

BioTracer is a biomedical search engine developed by Heri Ramampiaro and Chen Li[17]. It
is an effective search engine to support bio engineers with relevant articles based on their
information need in their field of work. In its current state it is a web-based search engine
which has a single input field for the users to type their query. Search results are presented
below the input field with a title and an abstract of hopefully relevant articles. It also has an
estimation of the relevance factor and the publication year.

To the right of the search results, another search result is displayed. These are suggestions to
the user on related queries based on the user input. The user can click on any of these to bring
up search results based on the related query. It is also possible to insert the selected related
query into the input field next to the current query by clicking one of three icons in the related
query list.

Working on desktop computers or laptops and even tablet computers, the current implemen-
tation of BioTracer works very well with the screens having lots of space to show the desired
functions, results, and white-space needed to make the user comfortable using the tool. How-
ever, using the same tool on a mobile device with the same layout and same functionality does
not invite to the same smooth interaction.

As we have seen in recent years, with the introduction of touch based small screen devices
starting with the iPhone in 2007 and Android devices hitting the audience in 2009, the smart
phone market has exploded, increasing the density of small touch based screens in a way that
almost “everyone” has a micro computer in their pockets at any time.

Based on the above information, the need to implement a separate version of BioTracer targeted
for small screen devices has emerged. A small screen implementation need to be efficient enough

3

for the users to use it in their natural environment and aid them without the need of using the
desktop browser implementation. There are a range of factors coming into play when designing
and implementing for small screen devices. This thesis will compare web based solutions with
their small screen counterparts and point out what makes them separate and how the same
functionality can be presented in different ways based on their screen size differences.

There are many considerations to make when implementing applications for mobile devices.
The screen real-estate is very expensive as the physical size of the device has limited room
for nice-to-have features. Font size, color use, shortcut links need to be well thought through
when designing such applications. Also, we need to make sure that the main functionality is
preserved in all versions of the product. If main user features included in the web based version
are left out in the mobile and small screen versions, users have no need for these new versions
and are likely to return to the web based version to serve their needs.

Then, what are the core features of BioTracer and how should these be implemented in a small
screen version? How can we make users choose the mobile version when the situation calls for
it, rather than taking their time to find a computer and using the web based version?

4

Chapter 2

Current situation and possibilities

2.1 State-of-the-art

2.1.1 Current search engines and their implementations.

Google[11] is of course the main reference search engine in todays modern web. Its growth
and high adoption by most users throughout the world makes it the company that sets the
standard in the search world. It’s web search page is known for its simplicity as well as its fast
and relevant result pages.

The format of the Google search page is as simple as a single search field and the Google logo.
Typing in the search field immediately brings up suggestions as a list directly below the search
field floating above the content. When a search is being submitted either by clicking the search
button or by choosing one of the suggestions, the user is forwarded to a result page with the
ten most relevant results. The results are displayed as a list with title, date and description for
each result. In addition there is a menu on the left-hand side of the screen where the user can
choose to narrow her search based on the type of results she is looking for, e.g. images, maps
or videos.

This is now also the case for the mobile version. Due to the emergence of modern smart phones
with fairly large screens, the mobile search page can be displayed in nearly the same format as
the web version. Searching for phrases gives you related content as well as direct text results.
Its speed is limited to the capacity of the device’s hardware, and also the current connection of
the device, be it mobile network or wifi.

5

2.1.2 Other applications and how they achieve the best possible user

interaction and results.

PubMed[12] is an alternative closer to BioTracer than Google. However, its interface mimics
that of Google, with a simple search field displaying search results as a list of links below the
search field. The results display the full title of the biomedical articles related to the search
phrase, listing the authors and publication year directly below each title. To the left of the result
list a number of filter options are given, ranging from publication dates to types of articles. On
the right-hand side you can see a section with pictures corresponding to your search in addition
to related articles with the current search query present in the title or in the full text versions
of the articles.

In its mobile version, which is a pure mobile website, the only thing PubMed have left from
the web is the search field and the list of search results. One even have to click a “next”-button
to view more results after the list of the 10 first results. There is made no room for images or
related articles, and only a small subset of the filters are available. Of course, users are still
able to find the articles they are looking for, but in my opinion this stripped down version of
the PubMed search engine could have been done better for mobile devices. Even though the
options that are not available on the mobile version is not the core features, it could have been
part of the solution in a number of ways. Either as hidden menu options or elements minimized
where the user can select to show them when needed.

2.2 Technology descriptions

2.2.1 HTML 5, Javascript and Cascading Style Sheets

HTML 5 is the latest standard of the Hypertext Markup Language (HTML) provided by
the World Wide Web Consortium, W3C[22]. The standard defines which elements are to be
supported when writing and parsing documents for display on the world wide web.

Javascript (JS)[25] is a scripting language developed by Netscape with support for objects and
functions. Currently there are numerous libraries built using JS, e.g. Mootools and JQuery.
These libraries makes it easy to use both visual effects and more complex tasks like asynchronous
calls with out refreshing the entire web site.

Cascading Style Sheets (CSS)[23] is a language to describe the look and formatting of a web site.
It has a number of options the developer can take advantage of, like positioning, background
color, text attributes and so forth. By using e.g. gradients, transparency and rounded corners
one can get the look of almost any graphical design without the need of actual graphic images

6

like JPEG or PNG cut into the correct sizes. It also ensures a more dynamic layout fitting the
screen of any device the site is meant for.

Later years has seen the development of very dynamic and interactive web sites by the use of
HTML, Javascript and CSS in interaction with each other. It paves the way for rich content
and endless interaction possibilities making it a “product” worthy of competing with desktop
or mobile applications.

2.2.2 Responsive web design

Responsive Web Design (RWD) is an approach to developing web site using a virtual grid
system and CSS to make the content of a site float and resize according to the current screen
the user is browsing through. The need for panning and resizing is minimized even on smaller
screens because the content is “pushed” down and left when the screen is narrower than the
actual page size. Also, elements like graphics, illustrations, videos and other components that
are not needed to fulfill the needs for the users can be left out of smaller screens, only displaying
the most important parts of the web site.

Lets take the website of NTNUs Technology Transfer office, tto.ntnu.no, as an example. They
have recently had a major revamp of their website which adheres to the RWD principles. Figure
2.1 shows the full web page, figure 2.2 show the web page on a mobile phone (in this case a
Samsung Galaxy Nexus using the Google Chrome browser), and figure 2.3 shows the web page
on the same mobile phone only now in landscape mode.

As one can see, when the web site is visited in a desktop browser there is a search field in the
top right corner, the menu is spread across the top of the page and there is a nice illustration
taking up the majority of the site. Below this we can see three images or sections which brings
the users to the next part of the site according to choice.

Stepping forward to the mobile site displayed on a phone in portrait orientation we see that the
search field has disappeared, the menu items are floated below each other where it fits and the
nice illustration is gone. The main part left is the three sections left for user selection. Looking
at the landscape version we can see that the information visible is practically the same as the
portrait version of the mobile site, only with more space horizontally for both the menu and the
sections. Obviously the main focus of this web site are the three different sections in addition
to the main menu, since the mobile version do not show the search field or the illustration.

7

Figure 2.1: TTO web site

Figure 2.2: TTO mobile site

8

Figure 2.3: TTO mobile site landscape

2.3 Different approaches on technology

2.3.1 Android and iOS

Apple[3] introduced the iPhone in 2007[24]. It came with the iOS operating system specifically
fitted for the small device the iPhone is. It obviously took its inspiration from the well known
and successful Mac OS X[4], and with Apple’s close integration between hardware and software
as has always been the case, it was an immediate success. The iPhone was embraced by
end users and developers. A year after the launch of the iPhone, the App Store was opened
providing developers the means necessary to make their applications widely available to their
end users, either as a paid or a free application. At it’s launch day, the App Store contained 500
applications, a number that has increased at an explosive rate counting over 500.000 today[2].

According to Statista, the iPhone has been sold in over 240 million units up until Q3 2012[19]
making it the most important product for Apple. Apple actually made a market share of
26.6 percent of the U.S. smartphone market in 2011. Obviously such a success has made
other companies want to follow in Apple’s footsteps. Recent years has seen different players
in the field trying to make their own success, Google being the strongest and most successful
competitor with it’s open source operating system, Android[9].

Unlike iOS, Android is not tied to one specific hardware vendor. While Apple has control
of both the hardware and the software running on the device, Google makes its OS available
to hardware vendors to implement on their devices. A compatibility test suite[16] is made
available for producers to test that their devices are compatible with the Android OS. This, in
turn has made the fragmentation of Android vast and there are now over 1600 different devices
running Android.

Of course, the fragmentation of Android means that the application developers face challenges
providing consistent application user experiences across devices. This has also been some of
the argumentation against Android, whereas the iOS has a very limited range of devices.

9

The user interface battle is also a factor. The iOS development kit gives a lot of standard
graphical components which the developers are encouraged to use to give the users a com-
mon reference to equal actions across applications. Android has also had ready-made common
graphics, however these have only been available and not something Google has expected de-
velopers to be using. The last year has seen a change of direction from the Android team
at Google. With the release of the 4.0 version of Android, commonly known as Ice Cream
Sandwich (ICS), along followed design guidelines with a stencils package Google hopes many
developers will use. It is easy to believe that this is a choice Google made because they see the
advantages consistency across applications gives as to what the users expects.

2.3.2 HTML5 advantages

But what about HTML 5 and it’s wide adoption across the web? Most companies today have
their own website and more and more of these sites are bringing the power of HTML 5, modern
Javascript and Cascading Style Sheets (CSS). We’ve even gotten to the point where responsive
web design is gaining popularity.

From a historical perspective, the trend has been that companies developed a website to promote
their products and/or services. The focus was mainly on providing information to desktop
computer users. Later on, mobile phones with WAP[26] functionality became popular, meaning
users could browse the web on stripped-down versions of company or private sites. This meant
at least two versions of the web site needed to be maintained by the site owners.

After some years, mainly around the time the iPhone was introduced, suddenly “everyone” had
a browsing device with them at all times making the demand of being able to browse the web
at some “mid-level” between the desktop version of the web site and the mobile version. This
made way for a third version of the web site. You do not want to exclude the users still using
the WAP version of your site by changing the mobile site to a touch site.

This is where responsive web design comes in handy. By structuring your web site according to
the principals of responsive web design, your desktop web site degrades and fits automatically
into the limited space of the browsers of e.g. an iPhone or a Samsung Galaxy SII. Modern
smart phones comes with powerful browsers as Safari, Firefox and Chrome which supports
technologies like Javascript and CSS, making the user experience similar to those of desktop
computer browsers.

2.3.3 Cross platform application frameworks

In the recent years following the launch of iOS and Android, many cross platform application
frameworks has gained popularity in the market. Companies like PhoneGap[15], Appcelerator[1],

10

Senscha[18] and Appspresso[5], among others, are all making developer frameworks meant to
make it easy for web or application developers to port their website or application to different
platforms using the current code the developers have. Like Appcelerator states: “Create iOS,
Android, and mobile web apps from a single code base”.

Most of these frameworks actually supports a whole range of native APIs making it more
integrated with the platform it is running on. To a lot of companies and single developers this
sounds like the right way to go these days. The obvious thing to believe is that if you make
your site or product available to all major platforms like the web, mobile web, Android and
iOS, your success is guaranteed.

It is a truth with some modifications. For the most part it is only the native APIs the framework
is able to reach through an extended version of the built in browser for each platform. This
could, however, be a fair amount of APIs. One can get access to camera, device info, sensors
and much more. Nevertheless, the application lives within a WebView or a browser and does
not get the full benefit of all the optimized view structures like e.g. lists, fragments, and
viewpagers. Take lists on Android as an example. The lists are optimized by reusing the view
objects that are no longer in the viewport when new view objects are requested. That way you
do not need a thousand view objects for a list of thousand items, it is sufficient with the ones
currently visible in addition to a couple above or below the viewport.

If one were to start off today with some new product or service, it might sound like a good
idea to start of with a cross platform framework. You get to write your code once and run it
“everywhere”. The choice to be made is mostly strategic rather than technological. Developers
tend to adopt to new technologies once they are familiar with some framework or programming
language, so the extra effort needed to learn a new framework should normally not be the
largest investment in the development process.

One drawback of using some of these frameworks is that it might load unnecessary plugins not
needed for the current application. This might add significant size to the application footprint,
and given the nature of sparse resources on mobile devices it could be of importance for the
user. It is vital that developers working on the implementation has the proper knowledge on
how to decide what plugins are needed.

2.3.4 Native application or not

When you are to choose between native or cross platform implementations there are some
strategic decisions to be made. For instance, do one really need the product or service to be
a native application with native look and feel of fellow native applications? If the application
is not going to use OS graphics like buttons, sliders and checkboxes, that is one reason not to
develop a native application. If the look and feel is something totally different, it might be wiser

11

to develop the application in HTML and its collaborators JS and CSS and then port it to all
needed platforms using the framework of your choice. It might be wiser to let your developers
learn one popular framework really well, and then stick with that to develop the application or
the range of applications planned by the company.

However, the approach and requirements can be totally different varying from project to project.
Some applications might live perfectly well within a browser and does not require other possi-
bilities than the frameworks can provide. Other applications might need more optimized parts
of the OS and the limitations of using a browser is probably not enough.

2.3.5 Types of input

The most commonly used way to provide input for a small screen touch based application is
by using either a one-handed or two-handed grip around the device and touching the screen
with the thumb(s) at the appropriate position. By using an Android device there are plenty
of configuration options, including different keyboard layouts, as opposed to the closed state of
the iOS devices.

Of course, Android devices also comes in versions with a hardware keyboard. Some users prefer
these devices to software on-screen keyboards because they can feel that they are pressing the
right key. Touch-based keyboards may be harder to touch correctly as there are little (haptic)
or no feedback at all when pressing a key.

Based on the field of bio medical research one might consider choosing an optimal keyboard
layout giving easy access to frequently used special characters. The keyboard should also be
localized to English language, as most articles on the field are written in English. Obviously,
hardware keyboards do not have the same possibility for customization.

There are numerous developers implementing all kinds of keyboard applications for Android
devices. Some of these have specialized layouts, others include prediction algorithms and ways
to learn the behavior of its users. Currently SwiftKey[21] is one of the most used third-party
keyboards for Android devices. What is also interesting about SwiftKey, is that they offer
a specialized keyboard for use in healthcare. The keyboard application is backed by several
components including spelling correction, a prediction engine and dynamic learning. This
means the keyboard will become more and more useful the more it is used.

A study made by Park and Han[14] tried to select a natural size of touch buttons for mobile
devices when a one-handed thumb interaction was used. Figure 2.4 shows their findings in how
the user perceived their touch point represented by the black dots and what the actual contact
area was as the grey ellipses. The actual button is shown as the rectangles.

12

Figure 2.4: Thumb touch points

Figure 2.5: SwiftKey heat map

This point is important because of the way users perceive their touch inputs when using on-
screen keyboards. In figure 2.5 I have included my own “heat map” from the SwiftKey appli-
cation. This map is generated by SwiftKey based on my key presses along with what words I
have typed and which I have or have not corrected afterwards. As you can see I am far off the
actual keys when I am trying to hit the keys near the edges of the keyboard, like ’A’ and ’Æ’,
but when I am using keys in the middle of the keyboard the key strokes are more accurate.

13

Chapter 3

Design

3.1 Assumptions

The web version of the BioTracer search engine is implemented using JSP and Servlets on top
of a Java application. The application provides a search interface and sophisticated techniques
to filter queries made by the user. A major effort has been put into the application to index bio
medical articles and building on top of this is the main focus of this report. Since BioTracer
requires a network connection to query the data sources it uses, the application requires one
too. There is no need to integrate the whole backend service codebase from BioTracer to the
Android application. Mainly, the Android application should implement the API provided by
the BioTracer source code.

Therefore, the Android application should only need access to the search interface and make
use of the same classes for performing searches as the web application does. This reduces the
Android application to an interface to the BioTracer search engine. The focus will be on the
user interface and which technology is best suited to create a small screen version of BioTracer.

Some of the design principles in the following sections are collected from Nilsson [13]. In his
report he runs through different user interface design patterns and suggests where to use and
where not to use them when designing mobile applications. Not all of the patterns fit our needs,
but some of them are quite useful.

3.2 Requirements

The main purpose of the application is to make biomedical articles easily accessible on demand
for the users. Hence, the application consists of three main features; search, a result set and a
reader for the results.

14

When we focus on the search part of the application this is mostly done by having an input field
that takes a keyboard as input source and provides a button or an action when the user presses
the enter key on the keyboard. This action performs the request to get the search results and,
in our case, sends a request to the BioTracer server to fetch the results related to the text in
the input field.

Next we need to have a way of displaying the search results to the user. The most common
way to do this is having a list of results shown below the search input field containing the titles
of the resulting documents, accompanied by some sort of timestamp and a short summary of
the contents of the articles. We can also have the result list show the authors of the articles to
help the user find the correct link to press.

Finally we need to decide how the selected article should be displayed for the user. The articles
often comes in the form of pdf documents which is supported natively by most Android devices.
When the user clicks on an article we can open a dialog showing the supported applications
installed on the device for reading pdf documents. Natively this dialog comes with a check
box which enables the user to select a default application for this operation, making the next
selection of an article one click less for the user.

In addition to these three main features, the web version of the BioTracer search engine displays
a list of related search results. This is done to help the user find what she is looking for. Taking
the limited screen real estate into account it can be troublesome to have the same feature
available in the Android application. As this is a nice-to-have feature, we can choose to hide it
as a default, but giving the user the ability to select whether it should be displayed or not.

3.2.1 Lightweight implementation

By choosing a native Android application we are left to implement a very lightweight package
which only holds the necessary components needed to display the contents we need. Android
uses a concept of providing resources which is optimized for each device density and screen size.
No resources like images, stylesheets or source code needs to be downloaded through the web
once the application is installed. The only data traffic involved in this type of application are
the requests performed by the user and the response of results from the cloud.

The application can be streamlined to use very sparse resources when it comes to graphical
components. Like HTML and CSS can provide gradients and images made at runtime, Android
can use xml to define layouts, graphics and gradients. It also supports svg to create graphic at
compile time.

We are also in total control of which plugins and libraries our application includes. From my
point of view the approach of having to include what is necessary is easier to control than the
framework approach having to exclude libraries one do not need.

15

3.2.2 Application components

3.2.2.1 The search interface

First and foremost the application needs to display a search field for the user input. Typically
this is displayed on top of the screen or in the centre. When using an Android device without a
hardware keyboard, the keyboard is displayed instantly when the search field is clicked, making
the input field ready for user interaction. Of course, it is also possible to search via the hardware
keyboard if the device is equipped with one.

There are two main alternatives for providing a search field. One is using a simple EditText
view component which inherits from the TextView and the other is to use the more modern
SearchView. The SearchView was introduced in Android API level 11 which is version 3.0 of
the Android OS.

One of the main features of the 3.0 version of Android was the introduction of the ActionBar
which sits on top of the applications and provides a single point of navigation and action for
an application. The ActionBar is the main point of navigation in newer Android applications.
When one look at applications made by Google, it is used everywhere possible. What is also
the case is that the ActionBar is, as its name implies, the place for actions related to the
application. That is, actions that are not part of the main application window, like selecting
list items, play buttons and so on. Actions like search, options, settings, help and their likes fit
nicely into the ActionBar. The more importance the action has, the more visible it should be
to the user.

If we look at the YouTube application[10] as an example, its main functionality is to let users
discover videos. Other than the logo and the current category title, the ActionBar in the
YouTube application features a magnifying glass which is at least the Android standard icon
for searching. Pressing the search icon brings up a search input field and the user is ready to
explore the vast universe of videos. As Nilsson[13] points out, there is no need to start out
making brand icons of your own if they are available in the OS, unless you are making your
own branding. In this case we are showing the user where to go when he wishes to search and
it makes sense to use the standard icon to make the user experience easier.

If we take the discovery based thought on to BioTracer we are on the right track. Users of
BioTracer aims to seek information. A natural part of the ActionBar will be to have the search
field fully expanded at startup. The default behavior of the SearchView is to display the current
search phrase after the user has performed a search. This makes it easy for the user to modify
the search as well as clear the search by using the default clear button visible in this state.

What more is that the SearchView comes with an auto-complete feature. For example, it can
be configured to trigger the auto completion after x number of characters has been typed. This

16

means having the application search for articles based on the current content of the SearchView.
The completion suggestions pops up below the SearchView in its own interface component, just
like the experience is in the web based version of Google.

Looking at the OS distribution across devices as of August 2012[7], we can see that the ma-
jority of Android devices, approximately 60%, are running version 2.3.x. This means that the
ActionBar, and subsequently the SearchView, is only natively available for about 19% of the
available devices. As this project focuses on phones and not tablets which are the only devices
running version 3.x, we are down to 16.7% of the devices.

To aid with considerations like these, Google has made available a support library which offers
a back port support of newer version API components to older versions of Android[8] back to
version 1.6. The ActionBar comes as a part of this library and we can easily include this part
of the API even if we are targeting the application to 2.x devices.

3.2.2.2 Providing the search results

Second, the application needs to display the search results to the user. This will be in the form
of a ListView as the layout used to hold the elements in the list. Each element will consist of
several TextViews with larger font size for the title of each element. The task of the ListView
is to display the elements and add more elements to the list when scrolling. As for the actual
data in the list, a ListAdapter need to be set to the ListView. The adapter contains all data
elements and is used by the ListView to determine which element is the next to be displayed
in the list.

An interesting point was made by Sweeney and Crestani[20]. They compared search results
and the size of the summary for each result item on different screen sizes and measured the
success rate for users trying to gain information. What they found was that the size of the
summary should not in general be selected according to the screen size. One should think that
larger screens with much more space for text should try to use that advantage and show more of
the summaries. They saw, however, through their experiments that shorter summaries worked
better across all screen sizes. This is obviously an advantage for the project at hand, making
BioTracer available for small screen devices.

When a search is performed, an asynchronous call is made to fetch the results from the server. In
Android this is accomplished by using a CursorLoader. The ListAdapter uses a Cursor to hold
its data, and a CursorLoader loads data either through requests to an internal ContentProvider
on the current device or through a network request. When the data is loaded, the CursorLoader
uses the callback method onLoadFinished to insert the new data into the current dataset. This
way we will get a seamless user experience while scrolling through the search result, not needing
to press some link to get more results.

17

3.2.2.3 Showing the details

The third part of the application is how we are to display information about the selected article
when the user makes a selection. There are several alternatives to this feature. For instance,
a click in the list on an article could make the application open a details page providing more
information on the article. From there, the user can read more complete information like more
authors, the complete abstract and so on. In addition, such a details page can include some
sort of list of articles related to the current article.

Another alternative is to make the Android device search for the most suited application to
read the selected article directly after the user has clicked in the list. Most Android devices
comes with a built in reader for PDF documents, either Document Viewer or e.g. Adobe
Reader. When the user selects an article, the first time this is done a dialog will appear listing
the applications supporting the format of the document being requested. The dialog will be
opened each time the user selects an article unless the user chooses to use one of the applications
as the default viewer for subsequent selections.

3.2.2.4 Related queries vs search results

There need to be place for related queries in the user interface of the application. Given the
limited amount of space on small screens, the information should be possible to minimize in
case the user finds it to be less relevant at any point in time during the session.

One way this can be done is to show a tab on the right-hand side of the screen which is expanded
when the user touches it or drags it into view. The right-hand side is selected because both
the web based versions of BioTracer and PubMed uses this part of the user interface to display
related queries and articles. Building on user interface consistency even across platforms is
often a sensible choice both for the user and the developers.

3.2.3 Search history

Another advantage with writing a native Android application is the ability to include a means
for saving previous queries directly within the application. This is done by creating a
SearchRecentSuggestionsProvider and saving each query to the provider each time the user
issues a query[6].

To make this work a searchable activity needs to be implemented. In addition a ContentProvider
must be added which will take care of querying the local database of recent searches and pre-
senting it to the searchable activity. Then, each time a query is performed, the query text is
saved using the saveRecentQuery method of the SearchRecentSuggestions class.

18

Chapter 4

Implementation details

4.1 Classes:

BioTracer extends ListActivity

This is the main class of the application. It is the starting point where the ActionBar is
displayed with a logo and the SearchView expanded for direct user interaction. It might also
be wise to have some sort of “welcome” screen explaining the purpose of the application or a
quick tour of the application.

The onCreate method of this class sets up the major parts of the application. This includes
finding the list from the layout, initializing the adapter to hold result items and focusing on
the search input field.

ListAdapter extends ArrayAdapter<ListItem>

The ListAdapter is to contain all search results. It is filled with ListItems after the search has
returned and by scrolling the list more items will be loaded automatically as long as there are
more results to show. The getView method of the adapter will always try to reuse previously
used Views. The Android BaseAdapter class has a built-in functionality that gives the getView
method the current View to use for the item. Items that has gone out of the viewport while
scrolling is made available for the new items that come into view.

ListItem

When the list of search results is filled, these are the items put in the adapter. It will contain
a title, author names and a summary in separate TextViews. The summary will be maximum
two lines long to keep the information limited but still helpful. In addition, each ListItem will
contain an icon linked directly with the article. If the user clicks the icon, the article is opened,
and if any other part of the ListItem is clicked, the detail page is opened.

19

ArticleDetailsFragment extends Fragment

The detail page will show an extended view of the article from the list item. It features an
ActionBar with the title of the article on top and the complete abstract of the article below
author names and publication information.

SuggestionsProvider extends SearchRecentSuggestionsProvider

The provider is responsible for saving recent searches, and is also the class that will respond to
the search activity with suggestions when the user enters search text.

These classes should make up the main part of the application. There are in addition graphic
files like images, logos and so on. Also, each layout is defined in its own XML-file composing
the user interface of the application.

4.2 Benefits of using existing code

As BioTracer has been implemented in Java and Java Server Pages(JSP), the implementation of
BioTracer for Android should come as a slight challenge. But knowing Java is still an advantage.
Writing Android applications forces the developer to know the framework as well as syntax and
the object-oriented aspect of Java in general. The life of an Android application is handled by
the Dalvik Virtual Machine which is present on all Android devices. It controls the lifecycle
states of each component and also handles memory usage for each application. Still, it is vital
to be aware of the limitations of mobile phones regarding the hardware.

Even though Dalvik handles garbage collection of unused Java objects, it is important not to
challenge the system. There are several ways to help the Dalvik VM let your application run
smoothly. One of the most important lessons I have learned is that the Views that make up
the user interface, and especially images, take up a lot of memory. Therefore, one should not
have too many Views at the same time in the same screen. One can also benefit from reusing
Views that have been on screen, but are currently out of the viewport. This way, the objects
need not be constructed once again, and at the same time, unused objects do not remain in
the memory.

Another issue is to always leave heavy tasks like computing or using I/O-resources such as files
or network off of the main application thread. The thread running the application takes care
of all user interface tasks, like drawing all elements on screen and handling actions from the
user. If you are to call a network resource, this should always be performed in another thread.

20

Chapter 5

Conclusion

Although the web version of BioTracer can be used on small screen devices, its complex user
interface does not invite to extensive use on a mobile phone. It would highly recommend the
implementation of an optimized version of BioTracer for mobile devices. As the last years have
shown, mobile devices in the forms of smart phones has come to stay. Touch based devices
makes the web and other applications accessible at any time, anywhere. Some applications,
like BioTracer, do require an internet connection to work, but in general, most devices are
connected at all times.

The question is whether to implement this as a native Android application, use cross platform
frameworks or make an effort to make the current web version adhere to the principles of
responsive web design.

First of all, as I have outlined in this report, a native Android application can be implemented
with a fairly small footprint. It will still take advantage of the possibilities in the Android OS
making use of concepts like lists with automatic loading of more results, opening articles in
the most suited application and so on. The application will be responsive and adhere to the
design guidelines presented by Google which will make users familiar with Android instantly
familiar with the BioTracer application. I think Android users would like a BioTracer Android
application. As an Android user myself, I am enjoying using applications that follow the
standard design guidelines by Google and use the newest APIs.

If we look to the concept of cross platform frameworks, this too will provide access to native
APIs in each platform supported. Most concepts mentioned in this report will be available to
the application by using one of the common frameworks. We need to be aware of the dangers
of putting to much plugins into the application making it far larger than it really should be.
However, the benefits of getting the application ported to the to major platforms, iOS and
Android, might be a more important goal than to make the application size small.

I was previously an iPhone user and still use products like the iPad and Macs. There are a
number of applications I have previously used on the iOS platform that I currently use on

21

Android. The developers tend to choose differently and I can not answer to the strategic
decisions that has been made. In my opinion, the applications that have been ported to
native Android applications are a much better user experience than applications written as
web applications and probably ported using some cross-platform framework.

22

Bibliography

[1] Appcelerator. http://www.appcelerator.com/platform, 2012.

[2] Apple. Apps in the app store: http://www.apple.com/iphone/from-the-app-store/, August
2012.

[3] Apple. http://www.apple.com/, 2012.

[4] Apple. http://www.apple.com/osx/, 2012.

[5] Appspresso. http://appspresso.com/, 2012.

[6] Google. Adding recent query suggestions: http://developer.android.com/guide/topics/search/adding-
recent-query-suggestions.html.

[7] Google. Android platform versions: http://developer.android.com/about/dashboards/index.html,
2012.

[8] Google. Android support library: http://developer.android.com/tools/extras/support-
library.html, 2012.

[9] Google. http://developer.android.com/index.html, 2012.

[10] Google. https://play.google.com/store/apps/details?id=com.google.android.youtube,
2012.

[11] Google. https://www.google.com/, 2012.

[12] NCBI. http://www.ncbi.nlm.nih.gov/pubmed/, 2012.

[13] Erik G. Nilsson. Design patterns for user interface for mobile applications. Advances in
Engineering Software, 40:1318–1328, 2009.

[14] Yong S. Park and Sung H. Han. One-handed thumb interaction of mobile devices from the
input accuracy perspective. International Journal of Industrial Ergonomics, 40:746–756,
2010.

[15] PhoneGap. http://phonegap.com/, 2012.

23

[16] Android Open Source Project. http://source.android.com/compatibility/cts-intro.html,
2012.

[17] Heri Ramampiaro and Chen Li. Supporting biomedical information retrieval: The biotracer
approach. Transactions on Large-Scale Data- and Knowledge-Centered Systems 4, 6990:73–
94, 2011.

[18] Sencha. Sencha touch: http://www.sencha.com/products/touch/, 2012.

[19] Statista. Iphone sales from q3 2007 to q3 2012:
http://www.statista.com/statistics/12743/worldwide-apple-iphone-sales-since-3rd-
quarter-2007/, July 2012.

[20] Simon Sweeney and Fabio Crestani. Effective search results summary size and device
screen size: Is there a relationship? Information Processing and Management, 42, 2006.

[21] SwiftKey. Swiftkey healthcare: http://www.swiftkey.net/healthcare, 2012.

[22] W3C. http://www.w3.org/html/wg/, 2012.

[23] W3C. http://www.w3.org/style/css/, 2012.

[24] Wikipedia. Apple iphone: http://en.wikipedia.org/wiki/index.html?curid=8841749.

[25] Wikipedia. http://en.wikipedia.org/wiki/javascript, 2012.

[26] Wikipedia. http://en.wikipedia.org/wiki/wireless-application-protocol, 2012.

24

