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Abstract 

This thesis contributes to the area of research on electricity price formation by studying how 

fundamental factors influence different quantiles of the distribution of the Nord Pool system price. 

Using quantile regression, a model for the electricity price in the off-peak period 04 (03:00-04:00) 

and the peak period 11 (10:00-11:00) is proposed. Generally, results show positive impact of 

adaptive behavior, demand, fossil fuel prices, CO2 emissions allowance price and electricity 

certificate price, while water reservoir level and wind power have negative impact on the electricity 

price. The effect of price volatility is negative in lower quantiles and positive in upper quantiles. 

Furthermore, results suggest that the influence of fundamentals vary non-linearly across quantiles, 

as well as between trading periods.  
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1 Introduction  

In the course of time, electricity has obtained an important position in most economies. The choices 

of use are many for both industry and private households, ranging from essential applications of 

light, heat and power to consumption purely in order to make living more comfortable. In fact, 

virtually all fields of the society have become reliant on electricity. This has led to a broad literature 

trying to understand the development of the electricity price. However, despite the attention, the 

price formation remains only partially understood. 

Complications related to electricity price are induced by the uniqueness of electricity as a 

commodity. Firstly, the non-storability requires that demand equals supply at all times. Secondly, 

it is reliant on a transmission grid, making electricity bound to a more regional market than other 

commodities. These restrictions make the electricity price highly volatile. Furthermore, the 

electricity market is closely connected to other energy markets. Electricity is produced by 

converting other energy sources. Fossil fuels like coal, natural gas and oil, renewable energy 

sources like hydro and wind, and nuclear, are all sources utilized in electricity generation. Price 

formation is, thus, affected by input fuel prices, or availability regarding renewables, as they are a 

part of the production costs.  

The main goal of this thesis is to contribute to a deeper understanding of how fundamental factors 

influence different quantiles of the distribution of the Nord Pool system price, which is the market-

clearing price in the day-ahead market. The choice of the Nordic area and the accompanying 

exchange, Nord Pool, is motivated by eagerness to learn more about my “home electricity market”. 

The problem is motivated by the fact that modeling the electricity price has proved to be 

challenging, yet crucial and is hence of great current interest. For agents involved in electricity 

exchange activities, including producers, suppliers, consumers, traders and distributors, it is of 

highly importance to understand the spot price formation across the whole distribution in different 

delivery hours. Modeling and forecasting electricity prices with a reasonable accuracy give market 

participants the opportunity to adjust their production or consumption schedule together with their 

bidding strategy in the day-ahead market in order to maximize income or minimize cost. Especially 

for risk management purposes, modeling the tails of price distributions are more useful than 

modeling central expectations (Bunn et al., 2016, p. 2). However, tail distributions are difficult to 
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model due to the sparseness of data. The semi-parametric quantile regression is advantageous in 

this respect for many reasons, which is why I have chosen this methodology. 

First introduced by Koenker and Bassett Jr. (1978), quantile regression offers desirable features in 

modeling the electricity price. It gives the opportunity to capture any position of the price 

distribution by examining several quantiles, allowing for investigation of price formation beyond 

the central location, including the tails. Quantile regression accounts for non-linear relationships 

between the electricity price and fundamental factors as coefficients can vary across quantiles, 

giving insights in exogenous drivers’ impact on price under different market conditions. Hence, 

this framework offers a deeper understanding of the price series compared to only modeling the 

mean. Moreover, the semi-parametric formulation is appropriate in this context due to electricity 

price characteristics of high volatility, spikes and positive skewness. Application of this framework 

to prices can be found for instance in Bunn et al. (2016) and Hammoudeh et al. (2014).  

In order to achieve the thesis’ goal, the main contribution is the proposition of a linear quantile 

regression model for the system price at Nord Pool Spot. Focus is situated on two different periods: 

the off-peak period 04 (03:00-04:00) and the peak period 11 (10:00-11:00). These periods are 

chosen because they represent hours of lowest and highest demand in the data set in use, 

respectively. In the previous literature, a wide range of both fundamental and statistical models for 

the spot price are suggested. This thesis takes a fundamental approach. Fundamental market models 

link supply and demand to market variables in order to derive estimations of electricity prices 

(Burger et al., 2014, p. 301). Demand is a main influence on prices and is therefore included. Since 

the Nordic market is heavily reliant on hydropower, hydro reservoir level is included to capture 

available capacity. In order to examine the influence of renewable energy, wind power is included. 

The CO2 emissions allowance price and electricity certificate price are included with the aim to 

investigate whether the environmentally friendly generation policy in the area has any influence 

on the electricity price. Agent learning due to repeated auctions is considered by including lagged 

prices. Also, a historical volatility term is included in order to soak up additional uncertainty. 

Results generally show changing coefficients of the explanatory variables across quantiles for both 

the hourly system prices explored, suggesting a non-linear influence of fundamentals on the 

electricity price.  
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As a demonstration of the usefulness of the quantile regression framework to electricity price 

modeling, I next perform 1-day-ahead Value-at-Risk (VaR) calculations for both long and short 

trading positions, which is valuable for agents concerned with short-term risk management. VaR 

is a commonly used method for market risk quantification. Following the deregulation of electricity 

markets, competition has led to a strong need for market surveillance. For agents concerned with 

managing and assessing risk, price models which are accurate in forecasting tail risk is thus vital. 

Quantile regression models the conditional quantiles directly. Another utilization of quantile 

regression is, hence, in VaR calculations, as they are nothing more than conditional quantile 

functions. The findings suggest that the quantile regression approach provides accurate forecasts 

and the correct percentage of violations, but seems to suffer from clustering of exceedances. 

This thesis has several contributions. As previously explained, I propose a linear quantile 

regression model for the Nord Pool system price. I very much follow in the spirit of Bunn et al. 

(2016). As far as I know, however, a similar methodology has not yet been applied to the Nordic 

market. Second, time series data spans over nine years including recent observations, from January 

2006 to December 2014, which will give new insights. Third, there is a rich selection of 

fundamental variables, allowing for careful investigation of the price formation. Fourth, studying 

different trading hours instead of daily average prices gives the opportunity to examine intra-day 

variations of the influence of fundamentals on the electricity price. Fifth, by estimating nine 

quantiles for each trading period investigated, ranging from the 1% quantile to the 99% quantile, 

the whole price distribution is covered. Thus, a deeper understanding of the non-linear impact of 

fundamentals on different price levels is offered.  Finally, I perform 1-day-ahead Value-at-Risk 

calculations for both long and short trading positions. 

The rest of this paper proceeds as follows: Section 2 briefly reviews earlier literature concerning 

electricity price modeling. Section 3 presents the background of the Nordic electricity market. In 

Section 4, fundamental factors are introduced. Section 5 describes the data used in the analysis, 

while Section 6 describes the methodology in use. In Section 7, results and discussion of the 

analysis are presented. Section 8 contains the VaR application of the model. The conclusion is 

presented in Section 9. Further presentations of statistics and results can be found in the Appendix.   
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2 Literature Review  

This thesis can be located within several research areas. Four of them are briefly reviewed below.  

There is a lot of literature on fundamental models concerning the electricity market. The 

fundamental approach generates electricity prices from expected demand and production costs, 

with an attempt to give insight into fundamental price drivers and market mechanisms. Nogales et 

al. (2002) define a dynamic regression model and a transfer function model with demand as 

explanatory variable for the Spanish and Californian market, the main conclusion being that the 

models are accurate in predicting the electricity price in both markets. Torro (2007) estimates an 

ARIMAX model for the Nordic market with temperature, precipitation, reservoir levels and the 

difference between the futures price and spot price as explanatory variables. Results show that the 

model is accurate in forecasting the spot electricity price. Karakatsani and Bunn (2008) examine 

the electricity spot price in the British market using three different models: a linear regression 

model, a time-varying parameter regression model of random-walk coefficients and a Markov 

regime-switching regression model. Lagged prices are included as fundamentals, among others. 

Findings suggest that the time-varying parameter regression model derives the most accurate 

forecasts for the electricity price. Huisman et al. (2014) explore the relationship between the  

natural gas price, CO2 emission allowance price, reservoir levels and the electricity price in the 

Nordic market by utilizing a supply and demand model. They demonstrate that regressions on high 

and low reservoir levels have different parameters, giving evidence of a non-linear relationship 

between fuel prices and the electricity price. Bunn et al. (2016) investigate the day-ahead electricity 

price in Great Britain by using quantile regression with prices of gas, coal, carbon emissions, 

demand forecast, reserve margin forecast and conditional volatility as fundamentals. They find a 

positive influence of fuel prices and demand forecast, and a negative influence of reserve margin 

forecast on the electricity price. 

The growing focus on environmentally friendly electricity generation has resulted in a broad 

research stream investigating the impact of renewable energy sources on the electricity price. Hu 

et al. (2010) show, by studying the relationship between the spot price and wind power generation 

in western Denmark, that the spot price decreases when wind power penetration increases. Genoese 

et al. (2010) find that wind power generation is the most important factor explaining the occurrence 

of negative prices in the German market. Gelabert et al. (2011) demonstrate that a marginal increase 
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in electricity generation coming from renewable energy technologies like wind, solar and biomass 

decreases the electricity price in the Spanish market by estimating a multivariate regression model. 

Astaneh et al. (2013), by use of an agent based simulation method, find proof of excessive price 

reduction and high price volatility in wind dominant electricity markets. Huisman et al. (2013) 

demonstrate indirectly that an increase in solar and wind power supply leads to lower electricity 

prices. They do so by studying the hydropower generation at the Nordic market with a supply and 

demand model. Evidence of  substitution from fossil fuels to wind power are found in the study of 

the German market by Paraschiv et al. (2014) by means of a time-varying regression model.  

The Nordic electricity market has been addressed in several studies in addition to those already 

mentioned. Weron et al. (2004) face the problem of modeling the Nord Pool system price with a 

statistical approach, in which seeks to model the electricity price dynamics directly. They develop 

a mean reverting jump diffusion model whose simulated prices turn out to resemble actual prices 

quite well. Vehviläinen and Pyykkönen (2005) present a bottom-up model for the Nordic system 

price. First, separate models for consumption, generation and marginal water value are developed. 

These models are explained by fundamental variables which are described as stochastic factors by 

using statistical models. Then, they combine these separate models in order to simulate market 

equilibrium and hence find the system price. A bottom-up price model is also proposed by Fuglerud 

et al. (2012), who additionally include a separate model of exchange. Haldrup and Nielsen (2006) 

suggest a Markov regime switching model which takes long memory in different regime states in 

the Nord Pool system price into account. They demonstrate that price behavior differs significantly 

between periods with and without transmission congestion. 

Value-at-Risk (VaR) predictions for energy commodities have also been devoted much attention. 

Cabedo and Moya (2003) and Costello et al. (2008) use VaR for oil price risk quantification based 

on the historical simulation approach. Giot and Laurent (2003) investigate the performance of 

different parametric VaR models for both long and short trading positions for several energy 

markets. Aloui (2008) applies GARCH models in the VaR analysis of oil and gas prices. VaR for 

electricity prices are found in Chan and Gray (2006), in which extreme value theory is assessed. 

Bunn et al. (2016) also use a semi-parametric approach to VaR for electricity prices, namely the 

quantile regression framework. They demonstrate that the quantile regression model with 
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exogenous factors performs better than more complicated CAViaR and GARCH formulations 

regarding 1-day-ahead out-of-sample forecasts.  
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3 Background 

3.1 The Nordic Electricity Market: Nord Pool Spot 

The deregulation policy of the Nordic countries in the 1990s led to the establishment of the power 

exchange Nord Pool Spot. Norway was the first country to open the grids for competition in 1991. 

In 1993, Nord Pool was founded, and it expanded to include Sweden in a joint electricity market 

in 1996. Finland and Denmark became members in 1998 and 2000, respectively, resulting in a fully 

integrated Nordic market. In later years, the Baltic States Estonia, Lithuania and Latvia have joined 

Nord Pool Spot. By allowing for exchange of electricity between countries, the governments aimed 

to create more economically efficient markets through free competition. With a total traded volume 

of 501 TWh in 2014, Nord Pool Spot is Europe’s largest electricity wholesale market by volume 

traded (Nord Pool Spot). The Nordic market is connected to several European markets through 

submarine power cables or power grid lines. 

Nord Pool Spot consists of a day-ahead market, Elspot, and an intra-day market, Elbas. Elspot is 

the main auction market where the majority of the electricity volume at Nord Pool is traded. The 

day-ahead market is in focus in this thesis. Here, each day is divided into 24 hourly trading periods. 

Buyers and suppliers submit bids and offers for every hour the following day. The volume of 

electricity a participant is willing to buy or sell at specific price levels is listed in the order. When 

the deadline for submitting orders at 12:00 CET is passed, Elspot calculates the hourly system 

prices for the next day, which are the market clearing prices.1 Prices are then announced at 12:42 

CET or later. At announcement, trades are also settled. Finally, electricity contracts are physically 

delivered from 00:00 CET the following day. System prices are theoretical prices in the sense that 

they are assumed to be identical across all regions in the Nordic market. In reality, bottlenecks in 

the transmission system may occur, resulting in different area prices. Nevertheless, system prices 

are important indicators as they are the Nordic reference prices for financial contracts. On the other 

hand, Elbas is the intra-day market whose main function is to maintain market balance between 

supply and demand. Market balance is particularly important for the power market since electricity 

is a flow commodity, which is produced and consumed continuously and instantaneously, rather 

than a stock commodity (Bunn et al., 2016, p. 6). The cost of supply failure is therefore high. 

Members can trade volumes up until one hour before delivery, and trading is continuous.  As 

                                                           
1 The system price is also commonly referred to as spot price or day-ahead price.  
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renewable energy sources such as wind power steadily increase their share of the total electricity 

production, Elbas becomes more crucial. This is due to the fact that these sources are dependent on 

weather conditions and, hence, very unpredictable. 

 

3.2 Electricity Generation 

Electricity generation technologies differ between the Nordic countries, partly due to various 

natural and weather conditions. Hydropower dominates the Norwegian supply, whereas 

hydropower, nuclear power and conventional thermal power are the main technologies in Sweden 

and Finland. In Denmark conventional thermal power dominates production, but with wind power 

as a growing generation source. 

The production costs of a power plant depend mainly on fuels and technology. Figure 1 illustrates 

the merit order curve at Nord Pool, which describes the relationship between the marginal 

production costs and volume of electricity produced.2 It is, hence, a cost-based description of the 

fundamental aggregated supply curve in the electricity market (Burger et al., 2014, p. 335). Plants 

running on renewable energy sources like wind and water enters to the very left of the curve. These 

have nearly zero marginal costs since the fuel used in production virtually comes for free. Nuclear 

power plants, with their low and stable marginal costs, enter next in line. In order to supply 

electricity to the lowest cost, hydro- and nuclear power plants run frequently and cover the base 

load in the Nordic market. These technologies also offer predictable and regulative production, but 

are somewhat inflexible due to long start-up time. They are, thus, suitable as base load generation. 

Fossil fuel-based generation technologies enter at the right end of the curve. Thermal power plants 

have highest marginal costs because of the price of fuel. Moreover, policy commitments to 

environmental protection such as electricity certificates and CO2 emission allowances add to the 

cost. However, conventional thermal plants exhibit high flexibility due to short start-up time. When 

demand increases, fossil-fueled plants in Sweden, Finland and Denmark, as well as import of 

electricity from other European countries in which fossil fuel-based production are the main 

technology in electricity generation, cover peak demand. The remarkable difference in marginal 

costs for the various generation units gives a steeply increasing and convex supply curve. 

                                                           
2 Figure 1 and 2 are reproduced from www.nordpoolspot.com. 
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Consequently, use of peak load generation has large impact on the market price (Sensfuss et al., 

2008, p. 3088).  

 

 

Figure 1: The figure illustrates the merit order curve in the Nordic market. The horizontal axis 

shows the supply in TWh, while the vertical axis shows the marginal production costs. Marginal 

costs vary with production technology.  

 

3.3 Theory of Price Formation at Elspot 

The day-ahead market is in economic theory close to a market of free competition. In order to win 

as many auctions as possible, the supplier of electricity sets his offers close to his short-term 

marginal production costs. Offers lower than short-term marginal costs will not be profitable as 

income does not cover short-run variable costs of production. On the other hand, offering above 

short-run marginal costs increases the probability of not winning the auction as the equilibrium 

price might settle between the supplier’s offers and short-run marginal costs. Since the supplier 

gains from every market price above short-term marginal cost, he therefore prefers to place a bid 
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equal or very close to short-run marginal costs. Hence, each supplier’s short-run supply curve 

equals its short-run marginal cost curve above the average variable cost curve (Begg, 2011, p. 173). 

At Elspot, buyers and suppliers submit bids and offers for electricity to buy or supply hour by hour 

the following day. When the deadline for submitting orders for delivery is passed, all the individual 

demand and supply curves are aggregated into a market demand and supply curve for each trading 

period of the next day. The hourly system prices are determined by the intersection of the hourly 

supply and demand curves, as shown in Figure 2. The hourly equilibrium price is the price that all 

members have to pay or receive. It represents both the short-run marginal cost of producing 1 MWh 

of electricity from the most expensive power plant needed to meet demand and the price that 

consumers are willing to pay for the last MWh demanded, that is, the lowest possible price that 

leads to market balance. 

 

Figure 2: The figure shows the price formation at Nord Pool Spot. The system price for each hour 

is determined by the equilibrium in the electricity market, where the aggregated supply curve, i.e. 

the merit order curve, and the aggregated demand curve intersect. 
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4 Fundamental Factors   

This section presents the fundamental factors included as explanatory variables in this study. A 

discussion of each explanatory variable’s relevance for the electricity price is also given. The price 

formation and shape of the supply curve, studied in the previous section, imply that the impact of 

fundamentals are likely to be non-linear. 

 

4.1 Adaptive Behavior: Yesterday’s Price and Last Week’s Price 

Price from the same period the previous day, Pt-1, and price from the same period the previous 

week, Pt-7, incorporate historic price signals and influence agents’ expectations of price when 

taking part in electricity auctions (Paraschiv et al., 2014, p. 204). Thus, they are likely important 

in explaining today’s price. Yesterday’s price and price last week contain different information 

about price movements. The former represents the price level in which the electricity price is within 

during a period, whereas the latter represents the variations in price across weekdays.  

Bunn et al. (2016) argue that adaptive behavior consists of reinforcing previously successful offers. 

Hence, I expect that yesterday’s price and price last week have a positive influence on today’s price 

across quantiles. Further, I think the influence is weaker in the peak period compared to the off-

peak period because offers are likely more complex in high activity periods. 

  

4.2 Demand  

Demand for electricity is very inelastic in the short run and vary with consumption patterns of final 

consumers like industry and households. Demand fluctuations occur on a daily basis; it increases 

in the early morning hours when business activities peak, it is still high in the evening hours as 

household consumption increases before it decreases when night approaches. Furthermore, demand 

depends on time of the year, as it is highly driven by temperature. Cold winter months increases 

the need for heating, while air conditioning is rare during summer. Also, whether it is weekday or 

weekend, and whether it is work day or holiday, affects demand due to differences in business 

activities (Burger et al., 2014, p. 304). Intersection between the demand and supply curve 

determines the hourly market-clearing price, hence demand is a primary effect on the price 

formation. 
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In reality, market members at Elspot have demand prognosis for the future in which they consider 

when submitting bids and offers. However, I do not have access to data for demand forecasts 

covering the complete sampling period. Therefore, I choose to use actual consumption data as the 

best approximation to demand prognosis. Karakatsani and Bunn (2008) state that demand forecasts 

are generally very accurate. On the basis of this, I believe actual consumption is an acceptable 

approximation to demand forecasts. 

Daily demand is measured relative to the median value in order to capture effects related to demand 

differing from the normal. Additionally, it might soak up further information about the influence 

of demand not already expressed by the time dummy variables included.3 The median is chosen as 

measure of central location instead of the mean because the distribution of demand is skewed in 

both period 04 and period 11, as shown in Figure B.1 and Table B.5 in Appendix B. In cases like 

this, the median is more informative than the mean (Hao and Naiman, 2007, p. 3). 

I expect the system price to depend positively on demand because a positive shift in the inelastic 

demand curve requires more expensive generation plants to be switched on in order to meet 

demand, increasing the market-clearing price. The effect is likely stronger in period 11 when 

demand is initially high and base load plants are utilized to a higher degree. Moreover, I expect 

that prices will be more sensitive to demand at higher quantiles, since a positive shift in demand 

when prices are already high will increase prices non-linearly due to the steeply increasing and 

convex merit order curve. Contrary, prices are not sensitive to demand if shifts in demand remain 

within the flat, left region of the curve.   

 

4.3 Water Reservoir Levels 

Hydropower contributes to about 50% of the total power generation at Nord Pool (Huisman et al., 

2014, p. 2). Electricity production is driven by water as fuel, which is stored in reservoirs until 

production is needed to meet demand. Higher levels imply increased production capacity. 

Consequently, reservoir levels can give information about the available hydropower supply. 

Reservoir levels depend on water inflow from precipitation and snowmelt. Thus, the available 

production capacity is normally highest in the summer months and lowest in the winter months. 

                                                           
3 A presentation of time dummy variables is given in Section 4.9. 
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Production is relatively easy to regulate. Producers therefore plan electricity generation based on 

future prospects. Low reservoir levels and high electricity prices give them incentives to delay 

production, as the opportunity cost of producing now might be large if prices are even higher in 

the future. Situations in which water has high marginal value are for instance in cold winters and 

when prices of alternative fuels used in electricity generation, such as coal and gas, are high. On 

the other hand, high reservoir levels and the belief of lower prices in the future give producers 

incentives to produce now. 

Daily water reservoir levels are measured relative to the median value in order to capture effects 

related to reservoir levels differing from the normal. Additionally, it might soak up further 

information about the influence of reservoir levels not already expressed by the time dummy 

variables included. Like demand, the median is chosen as measure of central location instead of 

the mean because the distribution of water reservoir levels are non-normal, as presented in Figure 

B.1 and Table B.5 in Appendix B. Hence, the median is more informative. 

I expect the system price to depend negatively on reservoir levels across quantiles. Higher reservoir 

levels increase the production capacity of low marginal cost technologies, making the flat, left part 

of the merit order curve longer. Thus, increased reservoir levels and hence production capacity 

might substitute the use of more expensive generation plants in order to cover demand. 

Hydropower is the most important source for electricity generation in the Nordic market with half 

of the total production, and therefore I expect the negative effect to be large in magnitude. 

 

4.4 Wind Power 

Wind power contributed to 6% of the total power generation in the Nordic countries in 2013 and 

the production is increasing with approximately 4 TWh per year (Nordic Energy Regulators, 2014, 

p. 11). With low marginal costs, wind power is very cheap to produce once the plants are installed. 

However, wind power generation is unpredictable due to wind’s nature. Recent studies prove that 

wind power does influence electricity prices, indicating it as an increasingly important power 

generating source. Looking back at the merit order curve, increasing wind power production 

extends the flat part of the curve on the left end. It thus requires a larger shift in demand in order 

to raise the electricity price.  
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I do not have access to data for wind power prognosis covering the complete sample period. Using 

the same reasoning as with demand, I choose to use actual wind power production as the best 

approximation to production prognosis.  

Although wind power still has a small share of the total electricity generation at Nord Pool, I expect 

wind power to have a small negative effect on the system price due to its low marginal costs 

compared to other generation technologies. Moreover, I believe that the price in period 04 will be 

more sensitive to wind power since demand is low during night hours and additional supply from 

wind power will drive prices down. 

 

4.5 Fossil Fuel Prices: Gas, Oil and Coal Prices 

Due to favorable natural conditions, fossil fuels are not the dominating energy sources at the Nordic 

market. However, the region is dependent on import from among others Germany, Russia, 

Netherlands and Poland during peak load, countries in which fossil fuels are important in electricity 

generation. Usually, peak load occurs when temperatures drop below 0 C° during the winter 

(Nordic Energy Regulators, 2014, p. 13) or during technical problems in generation plants. For 

instance, about 40% of the electricity generation in Germany comes from coal-fueled plants, while 

in Russia about 50% of the electricity comes from gas-fueled plants (International Energy Agency). 

The Nordic market is strongly dependent on hydropower. Consequently, in dry years resulting in 

low reservoir levels, the market is vastly dependent on import. For this reason, I believe fossil fuel 

prices will be relevant in explaining Nord Pool’s system price. 

Fossil fuel prices are a part of the production cost of electricity. Conventional thermal power plants 

are in charge of the largest share of electricity generation in Europe (Burger et al., 2014, p. 307). 

Coal-fired plants are mainly used to cover base load, whereas gas-and oil-fired plants are switched 

on during periods of high demand due to their short ramp-up time. However, these plants have high 

marginal costs as fossil fuels are expensive compared to for instance water and wind. Therefore, I 

expect the system price to depend positively on fuel prices. Furthermore, I expect that the peak 

period 11 will be more sensitive to fuel prices than the off-peak period 04, as demand is low during 

night hours and there is available low marginal cost generation capacity. I also expect the sensitivity 

to increase with higher quantiles for both periods, as high prices reflect moving to peak load due 
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to fully utilized base load plants, which increases the need to import. Hence, a conventional thermal 

plant is likely to set the electricity price by being the marginal technology. 

 

4.6 CO2 Emissions Allowance Price 

An EU Allowance (EUA) unit gives the owner the right to emit 1 ton of CO2. The system helps 

member states to reduce emissions according to the Kyoto Protocol. Since the EU Emissions 

Trading System (EU ETS), which is a cap-and-trade scheme, was launched in 2005, producers of 

electricity with fossils as fuel must buy EUAs to cover their total emissions. That is, the EU ETS 

prices CO2 and imposes extra costs for polluting producers in order to give incentives to reduce 

emissions. The EUA price is included as a fundamental factor because it is closely connected to 

fossil fuel prices. 

Coal-fired plants emit most CO2, followed by gas- and oil-fired plants. Rickels et al. (2007) find, 

by studying the EUA price in 2005 to 2006, that gas and oil prices have a positive effect on the 

EUA price, while coal has a negative effect. They explain these results with the switching effect. 

High gas and oil prices make producers switch to coal as fuel in the power generation, leading to 

higher pollution as coal has highest CO2 content, higher demand for EUAs and hence higher prices. 

On the other hand, high coal prices lead to switching to gas and oil, reduced emissions and reduced 

price on EUAs.  

Due to the generally positive relationship between fossil fuel prices and the emissions allowance 

price, I expect that the system price depends positively on the CO2 emissions price and that the 

effect increases with higher quantiles, owing to the fact that high prices imply increased electricity 

generation by fossil-fueled plants. 

4.6.1 Dummy variable for the CO2 emissions allowance price 

Phase 1 of the EU ETS (2005 to 2007) was a pilot phase in which experienced severe price 

fluctuations. On 25 April 2006, as the first member states of the EU, the Netherlands, Czech 

Republic, France and Spain reported data of their 2005 CO2 emissions of their installations, 

revealing an over-allocation of EUAs (Alberola et al., 2008, p. 790). These news led to a large 

price drop within few days. Prices stabilized around June 2006, but again dropped on October 2006 

when the EU announced news for Phase 2 of the EU ETS, and stayed close to zero for the rest of 
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Phase 1. A closer examination can be found in Alberola and Chevallier (2009) and Rickels et al. 

(2007). 

I include a dummy variable which equals 1 in the period of structural break in the EUA price from 

27 April 2006 to 1 February 2008.4  I believe the EU ETS is different from other markets due to 

the period of worthless EUAs and that the structural break must be controlled for. A dummy 

variable will remove the effect of the huge price drop of EUAs on the electricity price. 

 

4.7 Electricity Certificate Price 

Several studies have investigated the theoretical link between the electricity certificate market and 

the electricity market (e.g. Morthorst (2000) and Jensen and Skytte (2002)). Thus, there are reasons 

to believe that the price on el-certificates might have an effect on the system price. 

The common arrangement of el-certificates for Norway and Sweden was initiated in January 2012 

with the objective of integrating the growth of renewable energy technologies into a liberalized 

electricity market (Morthorst, 2000, p. 1086). The arrangement aims at reaching 26.4 TWh from 

generation using renewable energy sources in year 2020. To achieve this goal, producers who 

invest in any renewable power technology receive el-certificates in which they can resell. On the 

other hand, suppliers of electricity are obliged to buy el-certificates on behalf of the consumers, 

who pay the additional cost through increased electricity prices. Thus, end-users contribute in 

financing the growth of renewable energy sources by committing themselves to buy some of the 

electricity generated from renewable energy plants. The price on el-certificates is determined by 

supply and demand. In theoretical terms, this price equals the difference between the cost of 

renewable-based electricity generation and the cost of conventional thermal electricity generation 

(Jensen and Skytte, 2002, p. 427). 

Producers of electricity generated from renewable energy technologies have a two-fold income. 

They receive income from the sale of electricity to the spot market as well as from the sale of 

                                                           
3 The EUA price started to decline on 26 April 2006. However, in the data material used in the analysis, this price is 

lagged with one day in order to ensure exogenous market information for the electricity price formation. This will be 

further explained in Section 5.1. Therefore, the dummy variable equals 1 in the period 27 April 2006 to 1 February 

2008. A closer examination of the theoretical framework concerning the structural break is given in Section 5.4. 
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electricity certificates to the market of certificates. In this respect, the el-certificates contribute in 

making renewable energy production desirable by giving producers an additional payment. It will 

be worthwhile to operate if the marginal income exceeds the short-run marginal cost of production. 

I expect a negative relationship between the el-certificate price and the electricity price because an 

increase in the el-certificate price means that a lower electricity price is required in order to ensure 

that the total income cover marginal costs of renewable production.  

 

4.8 Price Volatility 

The system price fluctuates over time, reflecting volatility in the price series. Instability is likely 

caused by the steeply increasing and convex supply curve, making shifts in demand cause large 

variations in price. Variations in demand are induced by unpredictable weather conditions, among 

others. Thus, demand volatility partly causes price volatility (Bunn et al., 2016, p. 7). Volatility is 

measured by the standard deviation and is related to the total risk in prices, which might influence 

agents’ risk aversion. In an attempt to soak up price uncertainty which is not already encapsulated 

in the fundamental factors, I include a historical volatility term. 

I expect that the electricity price in period 04 depends negatively on volatility since the off-peak 

period has low demand and relatively low price. On the other hand, I expect the electricity price in 

period 11 to depend positively on volatility since the peak period has high demand and relatively 

high prices. The influence in absolute value is expected to increase with extreme quantiles, that is 

with low quantiles in period 04 and with high quantiles in period 11. 

 

4.9 Time Dummy Variables 

Figure A.2 and A.3 in Appendix A shows the historical price variations across weekdays and 

months, revealing seasonal patterns in electricity prices. This is due to fluctuations in both demand 

and supply.  Prices follow the same path across months for period 04 and period 11.  

When it comes to demand, variations across months reflect the high need for heating during the 

winter, making prices generally higher in these months compared to summer months. The weekend 

effect with lower consumption on Saturdays and Sundays is also noticeable in Figure A.2, 

especially for period 11. This is because most workplaces are closed and, hence, do not consume 
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electricity. For period 04, Sundays and Mondays have lower prices than other days, while 

Saturdays have not. A reasonable explanation might be that people stay up longer on Saturdays, 

increasing consumption in the night hours compared to Sundays and Mondays, which mark the 

start of a new working week.  

Seasonality in supply is caused by the availability of fuels used in electricity generation. The Nordic 

market, which is heavily reliant on hydropower, experiences fluctuations in the availability of 

hydropower production, as hydro reservoir levels depends on precipitation and snowmelt. Since 

price is determined by the marginal technology used in production in order to meet demand, 

variations in supply naturally affects the electricity price. 

By including time dummy variables, the model controls for seasonality in the electricity price 

(Wooldridge, 2009, p. 368). 

4.9.1 Weekend dummy variable 

I include a weekend dummy to control for variations in electricity price within the week. The 

dummy equals 1 if the day is Saturday or Sunday. The remaining days work as the base period. 

4.9.2 Month dummy variables 

I include dummies for February to December, which is 11 dummies in total. January works as the 

base period. Including month dummies makes the model able soak up some of the effect the 

different months have on the electricity price by being in that particular month. 
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5 Data  

 

5.1 Data Material 

I use data from 2 January 2006 to 31 December 2014, which is a large time series data set suited 

for empirical analysis. My focus will be on period 04, representing the off-peak hour 03:00-04:00, 

and period 11, representing the peak hour 10:00-11:00. These periods are chosen because they have 

the lowest and highest average demand in the data set, respectively, as shown in Figure C.1 in 

Appendix C. By deriving separate models for period 04 and period 11, the estimation results will 

give insight in how the fundamental factors influence the system price in different trading periods 

during a day.  

Data are either in an hourly, daily or weekly frequency. Hourly data are applied to the estimation 

of the model of the corresponding trading hour, while daily and weekly data are applied to the 

estimation of both models. For missing observations, I have used linear interpolation to make the 

data set complete.5 Table 1 gives an overview of data granularity and source in which data are 

accessed. It is chosen to use a natural logarithmic transformation on the dependent variable and all 

independent variables because log-transformation has variance-stabilizing properties. Also, all 

coefficients can be interpreted as elasticities.  

In the following, I will present the dependent variable and the fundamental factors used in the 

analysis. Development of the data series of explanatory variables is shown in Figure 3 to Figure 5. 

Descriptive statistics are given in Table B.1 in Appendix B. 

Elspot system price: I use hourly system prices for period 04 and period 11 from the day-ahead 

market Elspot as the dependent variable. Prices are quoted in €/MWh. 

Yesterday’s price: I use hourly system prices for period 04 and period 11 from the day-ahead 

market lagged by one day. 

Last week’s price: I use hourly system prices for period 04 and period 11 from the day-ahead 

market lagged by seven days. 

                                                           
5 This mostly concerns fuel prices and the EUA price, in which prices on Saturdays and Sundays are not quoted due to 

closed exchanges.  
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Table 1: Overview of data granularity and data source of fundamental variables. 

Variable Daily Hourly Weekly Data source 

Elspot system price  X  Nord Pool 

Demand  X  Montel 

Water reservoir level   X 
Norwegian Water Resources 

and Energy Directorate 

Wind power  X  Energinet.dk 

Gas price X   Macrobond 

Oil price X   Macrobond 

Coal price X   Macrobond 

EUA price X   Datastream and Macrobond 

El-certificate price X   Macrobond 

 

Demand: I use hourly aggregate consumption in Norway, Sweden, Denmark and Finland for 

period 04 and period 11, quoted in MWh. Observations are measured relative to the median value 

in order to capture further information about the influence of demand not already expressed by the 

time dummy variables. 

Water reservoir level: I use weekly reservoir levels in Norway quoted in GWh. Weekly 

observations are announced every Wednesday. For the sake of obtaining daily observations, for 

every two Wednesdays, six observations in between (Thursday to Tuesday) are obtained with use 

of linear interpolation. A similar approach to transforming weekly data into daily data can be found 

in Huisman et al. (2014). Observations are measured relative to the median value in order to capture 

further information about the influence of water reservoir level not already expressed by the time 

dummy variables. 

Wind power: I use hourly wind power production in Denmark for period 04 and period 11. 

Production is quoted in MWh.  

Gas price: I use the daily UK Natural Gas Index quoted in GBP/therm. I have converted prices 

into €/BTU. 

Oil price: I use the daily ICE Brent Crude oil spot price quoted in $/barrel. I have converted prices 

into €/barrel. 
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Coal price: I use the daily NYMEX coal forward price. Prices are quoted as $/metric ton. I have 

converted prices into €/metric ton. 

CO2 emissions allowance price: I use the daily ICE EU Allowance forward price quoted in 

€/metric ton.  

Electricity certificate price: I use the daily Swedish electricity certificate volume-weighted 

average price quoted in SEK/certificate. I have converted prices into €/certificate. 

Volatility: I use the standard deviation of the system price, calculated in a 7 days moving window 

for the same trading period 04 and 11, respectively. Volatility is quoted in €/MWh. Price volatility 

is defined in a similar way by Karakatsani and Bunn (2008) and Paraschiv et al. (2014). 

  

Figure 3: The figure shows the demand series for period 04 and period 11, measured relative to 

the median. Data spans from 2 January 2006 to 31 December 2014. 

 

  
 

 

Figure 4: The figure shows the wind power series for period 04 and 11. Data spans from 2 January 

2006 to 31 December 2014. 
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Figure 5: The figure shows the water reservoir level series measured relative to the median, gas 

price series, oil price series, coal price series, EUA price series and el-certificate price series. 

Data spans from 2 January 2006 to 31 December 2014. 

In order to ensure that information which is relevant for the electricity price formation regarding 

the fundamentals is known to the market before the power exchange closes for the trading period 

of interest, fuel prices, CO2 emissions allowance price, el-certificate price and reservoir level data 

are lagged by one day. Actual consumption and wind power are used as approximations for demand 

forecast and wind power forecast made the previous day, respectively, and is therefore not lagged. 

This secures exogenous explanatory variables. 
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5.2 Descriptive Statistics of Electricity Prices 

Figure 6 shows the non-linear characteristics of peaks, seasonality, mean reversion and volatility 

of the Nord Pool electricity price in period 04 and period 11. In this section, I will present 

descriptive statistics and tests supporting the visual evidence of electricity price features.  

 

 

 

 

Figure 6: The figure shows the price level series of period 04 and 11, and gives visual evidence of 

electricity price features. Data spans from 2 January 2006 to 31 December 2014. 

Descriptive statistics of electricity prices are presented in Table 2. The statistics reveals high 

standard deviation, which confirm volatility in prices. Positive skewness and excess kurtosis, 

especially for the peak period, show that extreme prices often occur. Figure A.1 in Appendix A 

compares the distribution of prices to a normal distribution, showing these results graphically. 

Rejection of normality is verified by the Jarque-Bera test presented in Table A.2 in Appendix A. 

Table 2: The table shows the mean, median, minimum observation, maximum observation, 

standard deviation, skewness and kurtosis of the electricity price level series for period 04 and 11. 

Variable Mean Median Min Max Std dev Skewness Kurtosis 

P04 33.834 32.505 0.490 81.630 13.695 0.463 3.478 

P11 42.693 40.295 5.140 208.160 14.702 1.563 12.604 
  

Table A.1 in Appendix A lists the descriptive statistics for the ln-series. For period 04, log-

transformation decreases the standard deviations considerably. However, the skewness becomes 

negative and the kurtosis increases. For period 11, both standard deviation and kurtosis decreases, 

while the skewness becomes slightly negative. 
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5.2.1 Autocorrelation 

The autocorrelation function and partial autocorrelation function together with the Ljung-Box test 

for the 1.difference of price series are presented in Table A.5 to A.6 in Appendix A. They show 

clear signs of correlation of the electricity price with its own past values, supporting the existence 

of adaptive behavior among agents. For period 04, the effect of lag 1 is noticeable. For period 11, 

effects of lag 7 and 14 are noticeable. However, lag 7 and 14 are relatively highly correlated, as 

shown in Table A.7 to A.8 in Appendix A, revealing that they explain the same effect in prices. On 

the contrary, lag 1 and 7 are correlated to a much smaller degree, which indicate that they contain 

different information about the electricity price. Therefore, in order to account for autoregressive 

effects in the model, lag 1 and 7 are included as explanatory variables. 

Note that the autocorrelation is high for all lags in the price level series, presented in Table A.3 to 

A.4 in Appendix A, due to the fact that hourly prices usually lie within a certain interval over a 

short time period, causing persistence in prices. Thus, it would be natural to base decisions of lags 

on the 1.difference series instead. 

5.2.2 Stationarity 

The Augmented Dickey-Fuller test for stationarity, listed in Table A.9 in Appendix A, rejects the 

presence of unit roots in the electricity price for both period 04 and period 11. The augmented 

version of the test is applied to ensure that the error term is white noise, as the test is valid only in 

this case. Moreover, in order to intercept the dependence on previous prices, 7 lags of prices are 

included because, according to the discussion in Section 4.1.1, lag 1 and 7 have big influence on 

today’s price. Rejection confirms that the price series are weakly stationary, meaning that the series 

in both periods are mean reverting. Shocks in prices will, hence, gradually die away.  

5.2.3 Empirical quantiles 

Table 3: The table shows the empirical 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95% and 99% 

quantiles of the price level series for period 04 and 11. 

Variable 1% 5% 10% 25% 50% 75% 90% 95% 99% 

P04 3.98 12.75 17.9 25.03 32.505 41.74 51.3 60.71 72.52 

P11 12.45 23.64 26.92 33.18 40.295 50.8 61.17 67.89 86.37 
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The empirical quantiles at the 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95% and 99% level for the 

price series presented in Table 3 confirm large price variations across quantiles. This evidence 

supports quantile regression as a suitable method for modeling the electricity price. Empirical 

quantiles for the ln-series are listed in Table A.10 in Appendix A. 

5.2.4 Correlation 

Table B.2 in Appendix B shows the correlation between the electricity price in period 04 and 11 

and their respective fundamental factors. Signs of the pairwise correlations give an indication of 

the co-movement of the electricity price with fundamentals. Generally, correlations support the 

expected effects of the fundamentals discussed in Section 4. Demand, gas price, coal price, EUA 

price and el-certificate price have positive correlation with the electricity price. Wind, reservoir 

level and oil price have negative correlation with the electricity price. Negative and low correlation 

with oil might imply that oil is of little importance of the price formation in most quantiles. 

Volatility has a negative relationship with price in period 04 and a positive relationship with price 

in period 11. 

 

5.3 Multicollinearity 

Multicollinearity is the problem of highly correlated explanatory variables in a model. It could 

create bias in the result estimates, leading to high standard deviations and insignificant explanatory 

variables. There is no size of the correlation coefficient that can be cited to conclude that 

multicollinearity is a problem (Wooldridge, 2009, p. 97). However, as can be seen in Table B.3 to 

B.4 in Appendix B, all pairwise correlations are below 0.6. Thus, multicollinearity is most likely 

not a problem in the data set. For correlation between lagged prices, see the discussion in Section 

5.2.1. 

There are, nonetheless, some pairwise correlations worth mentioning. Fuel prices have pairwise 

correlation between 0.442 and 0.551. Fossil fuels are substitutes in the electricity generation, as 

stated in Section 4.6, causing these positive relationships. Moreover, the correlation between the 

coal price and the EUA price is 0.575, reflecting the high CO2 density in coal compared to gas and 

oil. 
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5.4 More About the CO2 Emissions Allowance Price 

As mentioned previously, a structural break in the EUA prices is taken consideration of by 

including a dummy variable. This method is used by e.g. Alberola et al. (2008) and Hervé-

Mignucci et al. (2011). In the following, I will explain the choice of break dates and the tests done 

to verify the presence of a break in the data series.6 For further details, see Appendix D. 

5.4.1 Chow test for structural change across time 

The purpose of the Chow test is to detect whether there is a structural break in the EUA price series. 

The dummy variables approach is applied to calculate the test (see e.g. Brooks (2008)). First, a test 

for a break at 26 April 2006 is performed. Secondly, a test for another break at 1 February 2008 to 

indicate the end of the structural change is performed. Two different OLS regressions of the ln-

series of the EUA price on fuel prices are run. These regressions give grounds to performing the 

tests. Fossil fuel prices are used as explanatory variables because the EUA price is connected to 

these by the fact that the demand for EUAs increases with the combustion of fuels. Rejection of 

the joint restriction under the null hypothesis in both tests lead to the conclusion of the presence of 

a structural break in the period 26 April 2006 to 31 January 2008.  

The Chow test is only valid under homoscedasticity. However, White’s test for heteroscedasticity 

shows that the OLS regressions have heteroscedastic residuals. Fortunately, log-transformation of 

the variables make heteroscedasticity less severe (Brooks, 2008, p. 138). I use OLS regressions as 

a benchmark for the Chow test, but I acknowledge the inconvenience of the residual properties.  

5.4.2 Choice of date in which the structural break occurs 

The Chow test requires that the date of the structural change is known. Following Brooks (2008), 

choice of these dates are made according to known important historical events. On 25 April 2006, 

the first 2005 CO2 emissions data was disclosed. Prices started to decline the following day. Hence, 

I use 26 April 2006 as the beginning of the structural break. 1 January 2008 marks the start of Phase 

2 of the EU ETS. I was, however, not able to access Phase 2 prices for January 2008. Therefore, 

prices for January 2008 are still close to zero as an extension of the prices in 2007. I am aware of 

this weakness in my data set. Nevertheless, I choose to still use this data as it is the best I have 

access to. As a consequence, 1 February 2008 is chosen to mark the end of the structural break. 

                                                           
6 Tests are performed on the non-lagged EUA price series. 
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5.5 Omitted Variables 

In this section, I will comment on variables in which I considered to include in the model, but yet 

have been omitted for different reasons. 

5.5.1 Nuclear power 

Nuclear power is an important electricity generation technology to cover base load in Sweden and 

Finland. Nuclear plants generally run with constant output and have low marginal costs, but 

operation and maintenance costs are high. Furthermore, fuel prices, for instance the price of 

uranium, are stable and make up only a small share of the production costs. 

Due to low and stable marginal costs, fluctuations in the electricity price are most likely not linked 

to the variable costs of nuclear power plants. On the other hand, planned and forced outages of 

plants reduce the available generation possibilities and will in that respect have a considerable 

influence on the system price. The available production capacity of nuclear power plants in Sweden 

and Finland could, hence, add to the list of variables in the model. However, data proved to be 

difficult to access. Therefore, nuclear power is omitted from the model. 

5.5.2 Temperature 

Demand is to a high degree driven by temperature, but the connection between temperature and 

electricity price is not as obvious. The intention was to study if there are other properties with 

temperature, except its impact on demand, that influence the electricity price. I used a weighted 

average daily temperature in Oslo, Haugesund, Trondheim, Tromsø and Bergen, each city 

representing one Elspot area NO1 to NO5 in Norway, respectively.7 Data was accessed through 

eKlima.net.8 Weights were calculated by considering the total consumption in each area relatively 

to total consumption in the whole country, using data for total consumption in 2013 and 2014. 

The correlation between demand and temperature turns out to be -0.936 for period 04 and -0.868 

for period 11. A high negative correlation means that high temperatures decrease demand and vice 

versa. Due to very high co-movement for both period 04 and period 11, it is reasonable to expect 

that most of the impact of temperature on the electricity price already is taken consideration of by 

                                                           
7 The day-ahead market is divided into several bidding areas. 

8 eKlima.net is the Norwegian Meteorological Office’s database. 
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including demand as a fundamental factor. Including temperature would therefore cause severe 

problems related to multicollinearity, as discussed in Section 5.3. 

5.5.3 Hours of daylight 

Hours of daylight incorporates the same fluctuations every year. In this respect, the variable could 

have been included to control for seasonality instead of the month dummies.9 Moreover, daylight 

is able to soak up seasonality more smoothly because it avoids sharp breaks in every turn of the 

months. Hours of daylight were calculated by means of the formulas proposed in Kamstra et al. 

(2003), using the latitude of Oslo as basis. 

The coefficient is, however, insignificant in most quantiles. This might be due to the high 

correlation between demand and hours of daylight (-0.762 for period 04 and -0.751 for period 11), 

again causing problems related to multicollinearity. Demand is affected by daylight because more 

hours of daylight requires less need for electrical lighting, among others.  Month dummy variables 

are, thus, preferred. 

5.5.4 Precipitation 

Precipitation contributes to hydro inflow in water reservoirs. Nevertheless, when temperature is 

below the freezing point, precipitation does not fill up reservoirs within a short time, but will 

increase the snow-pack instead. This precipitation will add to the water reservoir levels when it 

eventually melts. Thus, it give indications about future inflow. 

The aim was to study the influence of precipitation on the electricity price beyond its connection 

to hydropower production. I used a weighted average daily precipitation value for Oslo, 

Haugesund, Trondheim, Tromsø and Bergen in the same way as with temperature data. Data was 

accessed  through eKlima.net and quoted in millimeters/day. The observations turned out to be 

unreliable since there were many missing values and few days without any precipitation. 

Additionally, the correlation with hydro reservoir levels was surprisingly low (0.1898), increasing 

my suspicion regarding unreliable data. Therefore, I decided to exclude precipitation as a 

fundamental factor. 

  

                                                           
9 I would like to thank Peter Molnar at the Department of Industrial Economics and Technology Management, NTNU, 

for helpful comments. 
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6 Models 

 

6.1 Quantile Regression 

Quantile regression estimates a set of coefficients corresponding to different quantiles of a 

dependent variable’s conditional distribution. It was first introduced by Koenker and Bassett Jr. 

(1978) and later described by Hao and Naiman (2007), among others. The method models each 

quantile separately with a linear regression line, allowing for study of any predetermined position 

of the distribution. Hence, it is able to give a more complete understanding of the sensitivity of 

electricity price towards fundamental factors. 

Let (0,1)q  be the 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95% or 99% quantile. The linear quantile 

regression can be formulated as 

, , , ,(ln )q q q q
i t i t i i t i i tQ P   X X β     ( 1 ) 

 

where qQ is the conditional q-quantile function of 
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i t
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Hence, the quantile loss function expresses the loss related to a residual as 

, ,ln
1 q q

i t i ti iP
q

 


X β
 . (5) 

Since the indicator function in Equation (4) equals 1 when the residual is negative and equals 0 

when the residual is positive, the problem seeks to find coefficients that minimize the weighted 

sum of absolute residuals, where negative residuals have the weight |q-1| and positive residuals 

have the weight q. That is, we minimize the weighted absolute distances from all observed values 

to its fitted values (Hao and Naiman, 2007, p. 34). 

The solution to the minimization problem, ˆ, )ˆ( q q
i i β , satisfies the sample estimate of the conditional 

quantile: 

, , , ,
ˆ ˆˆ(ln ) ˆq q q q

i t i t i i t i i tQ P   X X β . (6) 

When q is small the majority of the observations lie above the regression line, while when q is 

large the majority of the observations lie below the regression line. The estimation of coefficients 

corresponding to each quantile is hence based on the weighted data of the whole sample (Hao and 

Naiman, 2007, p. 37). Simple formulas for finding ˆ, )ˆ( q q
i i β do not exist. However, Stata, the 

software package in which I use, is able to solve the optimization problem presented in Equation 

(3) to (4) with an algorithm. 

Quantile-based measure of location instead of the mean, as in the method of Ordinary Least Squares 

(OLS), gives the opportunity to examine not only the center of the distribution, but all parts 

including the lower and upper tails, as the regression lines pass through chosen quantiles of the 

data plot. Quantile regression can, thus, model any position of the price distribution.  This opens 

up for investigation of the influence of fundamental factors on the dependent variable and how the 

sensitivity towards these factors changes across price levels. With a semi-parametric formulation, 

quantile regression is also less restrictive than OLS. The coefficients can change across quantiles, 

permitting non-linear sensitivity towards explanatory variables. It does neither have any 
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distributional assumptions like normality in the response variable nor in the residuals. This is 

convenient in the study of electricity prices, which has a skewed distribution and excess kurtosis. 

6.1.1 Goodness of Fit: Koenker and Machado R-squared 

A goodness of fit measure for quantile regression models proposed by Koenker and Machado 

(1999) concerns to compare the sum of weighted distances in the unrestricted model of interest 

with the sum of weighted distances in a restricted model containing only a constant term. The 

measure is formulated as 

( )
( ) 1

( )

U

R

V q
R q

V q
   

 ( 7) 

 

where ( ) 0UV q   is the sum of weighted distances for the unrestricted q-quantile regression model 

and ( ) 0RV q   is the sum of weighted distances for the restricted q-quantile regression model, 

respectively. Furthermore, ( ) ( )R UV q V q because the unrestricted model with explanatory 

variables is always better fitted than the restricted model. ( )R q is greater the better fit the model of 

interest is, i.e. the lower the last term in ( 7). Hence,  ( ) 0,1R q  where ( ) 1R q   denotes a perfectly 

fitted model with minimized sum of weighted distances. 

From now on, the Koenker and Machado goodness of fit measure presented above is referred to as 

R-squared. 

6.1.2 Standard error calculation: The Bootstrap approach 

Bootstrapping, introduced by Efron (1979), is a non-parametric method for inference. It involves 

repetitive computations to estimate the shape of the sampling distribution. Bootstrapping does not 

make any assumptions about the distribution of neither the response variable nor the error term 

(Hao and Naiman, 2007, p. 47). This approach is therefore preferable over the asymptotic approach, 

which is dependent on strong parametric assumptions like independent and identically distributed 

error terms. 

6.1.3 Estimation  

Estimation is performed with use of the software package Stata. Quantiles in focus are the 1%, 5%, 

10%, 25%, 50%, 75%, 90%, 95% and 99% quantile. Period 04 and period 11 are examined, which 

give 18 models in total. The corresponding standard errors are calculated according to the bootstrap 
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procedure with 50 replications, which is considered as a sufficient number of computations (Hao 

and Naiman, 2007, p. 48). Koenker and Machado (1999) R-squared is also obtained for each model. 
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7 Results 

In this section, I will present and discuss the quantile regression results. Quantile regression 

coefficients and the associated R-squared are listed in Table 4 for period 04 and Table 5 for period 

11. Bold coefficients are significant at either 1%, 5% or 10% level. For a thorough presentation of 

results and significance level, see Appendix E. The R-squared is in the range of 0.602 to 0.732 for 

period 04 and 0.664 to 0.746 for period 11, respectively. Regarding a relatively parsimonious 

model formulation, the goodness of fit is quite good. 

Table 4: The table presents quantile regression coefficients and R-squared for period 04. Bold 

coefficients are significant at either 1%, 5% or 10% level. 

 1% 5% 10% 25% 50% 75% 90% 95% 99% 

Yesterd.price 1.004 1.004 1.005 0.922 0.848 0.703 0.611 0.511 0.362 

Last w. price 0.247 0.142 0.079 0.068 0.085 0.130 0.108 0.108 0.089 

Demand 0.488 0.243 0.204 0.217 0.178 0.236 0.291 0.264 0.345 

Reservoir 0.101 0.081 0.041 -0.036 -0.051 -0.113 -0.175 -0.256 -0.401 

Wind -0.015 -0.016 -0.015 -0.015 -0.014 -0.013 -0.011 -0.010 -0.009 

Gas -0.116 -0.037 -0.027 -0.002 0.003 0.010 0.007 0.000 -0.024 

Oil 0.355 0.032 0.039 0.015 0.010 -0.006 -0.027 -0.071 -0.183 

Coal -0.220 -0.055 -0.025 -0.001 0.011 0.066 0.127 0.215 0.395 

EUA 0.005 -0.003 -0.001 0.002 0.002 0.005 0.009 0.007 0.000 

Elcertificate -0.038 -0.005 -0.007 0.007 0.005 0.012 0.015 0.018 0.025 

Volatility -0.171 -0.091 -0.063 -0.024 0.005 0.025 0.043 0.053 0.062 

R2 0.657 0.711 0.720 0.731 0.732 0.716 0.682 0.642 0.602 
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Table 5: The table presents quantile regression coefficients and R-squared for period 11. Bold 

coefficients are significant at either 1%, 5% or 10% level. 

 1% 5% 10% 25% 50% 75% 90% 95% 99% 

Yesterd.price 0.768 0.756 0.702 0.685 0.589 0.512 0.462 0.435 0.435 

Last w. price 0.290 0.270 0.292 0.272 0.334 0.338 0.308 0.261 0.313 

Demand 0.491 0.302 0.290 0.284 0.314 0.418 0.479 0.488 0.691 

Reservoir -0.027 -0.032 -0.061 -0.050 -0.050 -0.081 -0.108 -0.103 -0.081 

Wind -0.008 -0.014 -0.014 -0.013 -0.015 -0.018 -0.018 -0.017 -0.024 

Gas 0.060 0.007 -0.004 0.003 -0.003 0.007 -0.005 -0.042 -0.141 

Oil -0.085 -0.016 -0.001 0.008 0.019 0.021 0.035 0.076 0.180 

Coal -0.130 -0.002 0.011 0.017 0.030 0.032 0.078 0.115 0.032 

EUA 0.000 0.003 0.003 0.003 0.003 0.007 0.010 0.015 0.024 

Elcertificate 0.023 0.025 0.016 0.013 -0.004 0.009 0.017 0.022 0.045 

Volatility -0.132 -0.092 -0.064 -0.036 -0.008 0.018 0.057 0.083 0.134 

R2 0.746 0.740 0.740 0.740 0.737 0.717 0.687 0.669 0.664 

 

For period 04, the R-squared related to extreme quantiles, i.e. the 1%, 95% and 99% quantiles, are 

the lowest. For period 11, the lowest R-squared is the one associated with the 99% quantile. 

Generally, extreme quantile coefficients are estimated with the majority of the observations lying 

above the regression line (for low quantiles) or below the regression line (for high quantiles). If a 

change in one observation do not change the sign of the residual, the change will not alter the fitted 

regression line (Hao and Naiman, 2007, p. 41). However, the probability of a sign switch increases 

the fewer observations there are either above or below the line. Thus, extreme quantiles are more 

sensitive to outliers and hence is less robust than middle quantiles. Moreover, extreme price peaks 

are often caused by severe random shocks. Such events might be plant outages, transmission 

failures or extreme weather conditions. Shocks to the electricity price are beyond what fundamental 

factors are able to explain, which justify the generally lower R-squared in extreme quantiles. 

Extremely high prices might also indicate that producers are practicing some market power by 

offering prices higher than short-run marginal costs or by holding back available generation 

capacity in order to increase revenues. However, there is no empirical evidence of systematic 

exploitation of market power at Nord Pool (Fridolfsson and Tangerås, 2009). 
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7.1 Adaptive Behavior: Yesterday’s Price and Price Last Week 

7.1.1 Yesterday’s price 

Yesterday’s price represents the price range in which the electricity price is within during a period. 

Figure 7 shows the development of yesterday’s price’s coefficient across quantiles. The elasticity 

of lagged price is positive and significant at 1% level for all quantiles in both periods, in accordance 

with expectations. The coefficient is below 1, except for the 1%, 5% and 10% quantile in the off-

peak period which have a coefficient slightly above 1. Thus, the electricity price generally seems 

to be mean reverting. The system price tends to turn back to yesterday’s level for the same hour, 

which is in line with the discussion in Karakatsani and Bunn (2008) and Bunn et al. (2016). Results 

are consistent with the autocorrelation and partial autocorrelation functions presented in Table A.3 

to A.6 in Appendix A, showing positive correlation for price levels and negative correlation for 

returns.  

 

Figure 7: The graphs show the development of the yesterday’s price coefficient for the 1%, 5%, 

10%, 25%, 50%, 75%, 90%, 95% and 99% quantile in period 04 and period 11. 

Two factors indicate that agent learning is more important in times with low prices, which means 

that high price is caused mainly by other factors than adaptive behavior. Firstly, the influence of 

yesterday’s price is generally higher for the off-peak period than the peak period, indicating that 

agent learning is stronger in periods with lower load levels. Secondly, decreasing elasticities with 
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higher quantiles imply that a price change yesterday has larger influence on today’s price if the 

price is initially low. Overall, however, the learning effect based on yesterday’s price is large. 

 

7.1.2 Last week’s price 

The elasticity of last week’s price is positive and significant at 1% or 5% level across all quantiles 

except for the 5% and 10% quantile in period 04. This means that the electricity price tends to 

revert to last week’s level for the same hour. Again, this gives evidence of mean reversion and is 

in line with expectations together with results in Karakatsani and Bunn (2008). 

As shown in Figure 8, the coefficient is higher in period 11 than in period 04 for all quantiles, 

indicating that the weekly learning effect is stronger in the peak period. For period 04, the elasticity 

is highest for the lower quantiles and the trend is generally decreasing. Learning effect is strong 

when the price is relatively low, while other factors dominate the price formation at higher price 

levels. On the other hand, the influence is rather constant across quantiles for period 11, meaning 

that the learning from last week is in the same magnitude regardless of the initial price level. 

 

Figure 8: The graphs show the development of the last week’s price coefficient for the 1%, 5%, 

10%, 25%, 50%, 75%, 90%, 95% and 99% quantile in period 04 and period 11. 
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7.2 Demand 

Demand is measured relative to its median value in order to soak up effects on price when demand 

differs from the normal. Coefficients must hence be interpreted as sensitivities towards demand 

beyond central values. The development of coefficients is shown in Figure 9. 

The sensitivity to demand is strongly positive and generally significant at 1% level, which is 

according to expectations. Sensitivity is increasing from the 50% quantile, meaning that demand 

has a stronger influence when prices are already high. These results point out the relationship 

between supply and demand discussed earlier. A positive shift in the inelastic demand curve when 

the electricity price already is high increases the price non-linearly due to the steeply increasing 

and convex merit order curve. This is due to the placing of production technologies on the merit 

order curve, where production plants with lowest marginal costs enter to the very left of the curve 

and the production plants with highest marginal costs entering last. An increase in demand will 

have a stronger impact on price the further to the right on the merit order curve the demand curve 

initially is intersecting, as all plants with low marginal costs are already fully utilized and more 

expensive plants must be turned on. Sensitivity is especially noticeable for the highest quantiles in 

period 11, reflecting high demand and price levels in the peak period. Similar results are found by 

Bunn et al. (2016). 

 

Figure 9: The graphs show the development of the demand coefficient for the 1%, 5%, 10%, 25%, 

50%, 75%, 90%, 95% and 99% quantile in period 04 and period 11. 
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Elasticities are, however, generally constant from the 5% quantile to the 25% quantile. 

Furthermore, for all quantiles, the coefficient is higher in period 11, indicating that demand, not 

surprisingly, has bigger influence on price in the peak period. One possible explanation is that when 

demand is initially low, plants with low marginal costs have available production capacity and will 

be able to cover an increase in demand. Hence, prices will not be very much affected by a demand 

shift. This is illustrated by the left part of the merit order curve, which is relatively horizontal. 

 

7.3 Water Reservoir Levels 

Reservoir levels are measured relative to its median value in order to soak up effects on price when 

reservoir levels differ from the normal. Coefficients must hence be interpreted as sensitivities 

towards hydro capacity beyond central values. 

The coefficient of water reservoir level is generally negative and significant at the 1% level, as 

expected. This is in line with results found by Huisman et al. (2013) and Huisman et al. (2014). An 

increase in the reservoir level seems to decrease the electricity price. Looking back at the merit 

order curve, higher reservoir level is equivalent to an increase in low marginal costs supply. It 

would thus not be necessary to turn on expensive generation plants if a positive shift in demand 

occurs. Exceptions are the 1%, 5% and 10% quantiles of period 04, which exhibits positive 

sensitivity and insignificant coefficients, together with the insignificant coefficients in the 1%, 5% 

and 99% quantile of period 11. This might indicate that hydro capacity is not important in 

explaining the price formation in these quantiles.  

As shown in Figure 10, sensitivity is relatively constant for period 11, whereas period 04 shows a 

growing negative sensitivity with higher quantiles. Moreover, the coefficient is much larger in 

absolute values for period 04 than period 11 in the upper quantiles. One possible explanation is 

that hydro capacity is already fully utilized in the peak period independently of the price interval, 

making other factors more important in explaining the price formation. For period 04, the growing 

negative coefficient might point out that hydro producers increase production when prices are 

relatively high to make use of, for the time being, high value of hydropower, as more inflow is 

likely leading hydropower to being the marginal technology, causing decreasing prices (Burger et 

al., 2014, p. 338). Hence, prices react negatively to increased reservoir levels. Due to large 
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coefficients, hydro capacity seems to be a very important fundamental factor in explaining prices, 

especially in the off-peak period. 

 

Figure 10: The graphs show the development of the reservoir level coefficient for the 1%, 5%, 

10%, 25%, 50%, 75%, 90%, 95% and 99% quantile in period 04 and period 11. 

 

7.4 Wind Power 

The influence of wind power is generally negative and significant at the 1% level across all 

quantiles, in accordance with expectations. As with reservoir levels, higher wind power production 

increases the low marginal costs supply since wind power enters to the left of the merit order curve. 

Similar results are obtained by e.g. Gelabert et al. (2011), Huisman et al. (2013) and Paraschiv et 

al. (2014). However, Figure 11 shows that elasticities are small, reflecting the fact that wind still 

contributes to only a small share of the total electricity generation at Nord Pool.  

The negative effect is slightly decreasing for period 04, whereas it is increasing for period 11. In 

contrast to hydropower, wind cannot be stored and hence wind power plants are must-run facilities. 

As a consequence, electricity generation fluctuates with the availability of wind. When demand is 

low, inflow of wind power to the grid decreases prices since it substitutes generation from base 

load plants which already are relatively cheap to run. In order to avoid costs related to shutting 

down and starting up, suppliers of electricity from base load plants accept low prices due to wind 

power penetration (Paraschiv et al., 2014, p. 4). Hence, wind power contributes to further 
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decreasing the electricity price when it is already low, as reflected especially in the lower quantiles 

of period 04, but generally across all quantiles of the off-peak period. Sensitivity in the highest 

quantiles of period 11 implies that wind power has a stabilizing effect on positive price peaks. 

When all base load plants are fully utilized and expensive fossil-fuel plants run to meet demand, 

low marginal costs wind power replaces some of the high marginal costs peak plant generation. As 

a result, wind power has a relatively large negative effect in the highest quantiles in period 11, 

compared to the effect in other quantiles.  

 

Figure 11: The graphs show the development of the wind power coefficient for the 1%, 5%, 10%, 

25%, 50%, 75%, 90%, 95% and 99% quantile in period 04 and period 11. 

 

7.5 Fossil Fuel Prices: Gas, Oil and Coal Prices 

Overall, results show that prices of coal and oil influence the electricity price positively in the upper 

quantiles. The effect of coal dominates compared to gas and oil, but oil is important for the price 

formation in the extreme quantiles in period 11. It seems, however, that gas is not contributing to 

explaining the price formation in neither of the periods of interest. Effects of fossil fuels are smaller 

than those found by Bunn et al. (2016) and  Paraschiv et al. (2014), reflecting the fact that the 

Nordic market is less dependent on fossil fuels in electricity generation than for instance the British 

and the German market. Moreover, they obtain positive and significant effect of gas. 
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7.5.1 Gas 

Figure 12 shows the development of the gas coefficient. The elasticity of gas is generally small and 

insignificant. Additionally, sensitivity is mainly negative. These results are not in accordance with 

expectations. Since gas-fueled plants have high flexibility and are used as an additional generation 

source in periods of high demand, one would expect positive coefficients in the highest quantiles, 

especially in the peak period. 

 

Figure 12: The graphs show the development of the gas coefficient for the 1%, 5%, 10%, 25%, 

50%, 75%, 90%, 95% and 99% quantile in period 04 and period 11. 

One possible explanation for insignificant coefficients is that gas overall is of little importance for 

the price formation at Nord Pool. The large share of electricity coming from hydropower makes 

this market less dependent on fossil-fueled plants. As gas-fired plants mostly are used to cover 

peaks in demand, its share of the total electricity generation in for instance Germany, a close 

exchange partner of the Nordic market, is rather small (Paraschiv et al., 2014, p. 4). On the other 

hand, gas is the main fuel used in the Russian market, which is another important exchange partner. 

In the view of this, negative coefficients remain difficult to explain in spite of the generation mix 

at Nord Pool. Another reason might be the high correlation between fossil fuel prices as discussed 

in Section 5.3. Nevertheless, regressions without either coal or oil as a fundamental factor still 

exhibit the same coefficient pattern of gas, meaning that multicollinearity does not give the full 

explanation for this behavior. 
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7.5.2 Oil 

The coefficient of oil develops differently in the off-peak and peak period, as shown in Figure 13. 

For period 04, there is no pattern regarding significance across quantiles. Sensitivity is positive in 

the lower quantiles and negative in the upper quantiles, which is not in line with expectations. 

Except for the 1% quantile, coefficients are small. These results indicate that oil is likely not a 

prominent factor for the price formation in the off-peak period. 

For period 11, coefficients are generally negative, decreasing and insignificant in the lower 

quantiles. From the 25% quantile, sensitivity is slightly positive, but still insignificant. From the 

50% quantile, the effect is positive, increasing and significant with higher quantiles. This is in 

accordance with expectations. Insignificant effects in the lower quantiles implies that oil does not 

take part in the price formation when prices are relatively low. This makes sense as oil-fueled plants 

are mainly used in addition to other generation technologies when needed to meet demand. Extreme 

price peaks are usually caused by unexpected events such as plant outages or unusual weather 

conditions, which in turn lead to a supply shortage. Hence, other factors rather than regular market 

mechanisms are likely to determine prices in the highest quantiles. Positive and significant effects 

in the upper quantiles might indicate that oil-fueled plants are used as reserve capacity due to their 

high flexibility when unexpected events arise. 

 

Figure 13: The graphs show the development of the oil coefficient for the 1%, 5%, 10%, 25%, 50%, 

75%, 90%, 95% and 99% quantile in period 04 and period 11. 
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7.5.3 Coal 

Figure 14 shows the development of the coal coefficient. The elasticity of coal is insignificant in 

the lower quantiles together with the 99% quantile of period 11, but significant generally at the 1% 

level in the remaining quantiles. The sign changes from negative to positive in the 50% quantile 

for period 04 and the 25% quantile for period 11.  Based on these results, coal seems not to 

influence the price formation in the lower quantiles. On the other hand, sensitivity in the remaining 

quantiles is as expected. 

The positive elasticity increases non-linearly for the off-peak period. A plausible explanation is 

that coal is the most relevant fuel in many European countries, for instance Germany and Poland, 

which are exchange partners of the Nordic countries. The upper quantiles are hence affected by the 

coal price due to imports. This effect strengthens with higher quantiles because the market is more 

dependent on import as demand increases. The same trend is observed for the 75%, 90% and 95% 

quantiles for period 11, although effects are smaller. For the 99% quantile, however, sensitivity 

decreases and is insignificant. This is probably due to the fact that extreme prices in the peak period 

are caused by severe unanticipated shocks, as discussed earlier. Hence, oil makes an important task 

as reserve capacity whereas coal does not. All in all, coal seems to have a bigger impact on the 

electricity price in period 04 than in period 11.  

 

Figure 14: The graphs show the development of the coal coefficient for the 1%, 5%, 10%, 25%, 

50%, 75%, 90%, 95% and 99% quantile in period 04 and period 11. 
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7.6 CO2 Emissions Allowance Price 

The influence of the EUA price is generally positive and significant at the 1% level in the upper 

quantiles and insignificant otherwise. The effect is small regardless of quantile, shown in Figure 

15, reflecting the fact that fossil fuels are less important to the Nordic market compared to other 

European markets. Positive influence of the EUA price is also found in Bunn et al. (2016) and 

Paraschiv et al. (2014).  

Positive yet small coefficients are as expected due to the link between the EUA price and fossil 

fuel prices. However, the coefficient increases across quantiles for period 11, but decreases in the 

upper quantiles of period 04. Moreover, effect is insignificant in the 99% quantile of period 04. As 

coal-fired plants emit most CO2 it seems natural to expect that the coefficient of EUA follows the 

same path as the coefficient of coal. Following the results in section 7.5.2 and 7.5.3, the coefficient 

of EUA would have increased with the upper quantiles in period 04, whereas the effect had been 

smaller for period 11, but still increasing. However, this is not the case. Most likely, the coefficient 

in the upper quantiles of period 04 is unreliable since it decreases in significance and becomes 

insignificant in the highest quantile. 

 

 

Figure 15: The graphs show the development of the EUA coefficient for the 1%, 5%, 10%, 25%, 

50%, 75%, 90%, 95% and 99% quantile in period 04 and period 11. 
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7.7 Electricity Certificate Price 

The effect of el-certificate price is generally small and insignificant for period 04 except for the 

75% and 90% quantile. For period 11, the coefficient is positive, yet small in magnitude and 

generally significant at 5% level in the upper quantiles. This is shown in Figure 16. Thus, in 

contrary to expectations, an increase in the certificate price is not compensated by a decrease in the 

system price. 

 

Figure 16: The graphs show the development of the electricity certificate coefficient for the 1%, 

5%, 10%, 25%, 50%, 75%, 90%, 95% and 99% quantile in period 04 and period 11. 

In the upper quantiles of the peak period together with the 75% and 90% quantile in the off-peak 

period, an increase in the el-certificate price increases the system price. Electricity suppliers are 

obligated to buy el-certificates. Additionally, they pay the spot price for electricity in which they 

resell to end-users. Both the cost of el-certificates and the cost of buying electricity are in turn 

charged consumers. Hence, in the above-mentioned quantiles, it seems like the certificate system 

is financed by end-users through two different channels. When the electricity price is initially high, 

end-users pay for the system through increased electricity price in addition to the el-certificate price 

itself, which work as an add-on to the electricity bill. This implies that owners of non-

environmental friendly plants to some extent enjoy the benefits of the certificate system via 

increased system price at the cost of end-users. 
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For the lower quantiles of period 11 and the remaining quantiles of period 04, however, el-

certificates do not have any impact on the electricity price due to the insignificance of coefficients.  

Thus, when prices are relatively low, end-users finance the certificate system only by paying for 

the el-certificates.  

 

7.8 Price Volatility 

The coefficient of volatility is significant at 1% level across all quantiles, except for the 50% 

quantile in period 04 which is significant at the 5% level. Sensitivity is negative in the lower 

quantiles and positive in the upper quantiles. The shift to positive sign occurs in the 50% quantile 

for period 04 and in the 75% quantile for period 11. The negative effect decreases before the sign 

shifts, thereafter the positive effect increases with higher quantiles. Thus, volatility has larger 

influence on price in the tails than in the center of the distribution.  Results are partly according to 

expectations, which stated negative impact of volatility in period 04 and positive impact in period 

11, as well as increasing sensitivity with extreme quantiles.  

 

Figure 17: The graphs show the development of the volatility coefficient for the 1%, 5%, 10%, 

25%, 50%, 75%, 90%, 95% and 99% quantile in period 04 and period 11. 
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Volatility seems to reinforce already extreme prices by driving low prices even lower and high 

prices even higher. This is in accordance with results found by Bunn et al. (2016). As previously 

explained, other factors than market fundamentals might play an essential role for the price 

formation in the tails of the distribution. This means that an increase in volatility enlarges the 

sensitivity towards severe events causing negative and positive price peaks, beyond the effect in 

which can be explained by fundamentals. As shown in Figure 17, the impact of volatility is 

especially noticeable in the 99% quantile of period 11, which represents the most extreme positive 

peaks, and in the 1% quantile of period 04, which represents the most extreme negative peaks.  

 

7.9 Dummy Variables 

Results for the CO2 emissions allowance price dummy, the weekend dummy and the month 

dummies are presented in Appendix E. They are of importance for the model for reasons discussed 

in Section 4.6.1 and 4.9, respectively. The significance and sign of the coefficients vary across 

quantiles, but they overall seem to improve the results of the fundamental factors. 

Coefficients of the dummy variables should, however , not be interpreted as isolated effects since 

they are of no interest in themselves. Rather, they should be regarded as a tool for improving the 

model by controlling for influence on price in which the explanatory variables are not able to 

explain. 
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8 Application of the Models: Value-at-Risk Calculations 

We have seen that the Nord Pool system price is highly volatile with occasional price spikes. For 

agents involved in exchange activities, market risk management and assessment is therefore a key 

issue. Market risk involves uncertainty regarding future income and cost due to changes in 

electricity prices. Value-at-Risk (hereafter called VaR) is a market risk quantification method 

commonly used by agents to determine optimal trading limits. Well estimated tail probabilities are 

crucial in VaR applications, which has resulted in a broad literature in search for accurate quantile 

forecasting methods.  

In this section, a semi-parametric approach to 1-day-ahead VaR models is proposed by use of the 

quantile regression model presented in Equation ( 1), in order to examine the framework’s out-of-

sample performance. VaR can be interpreted as the maximal loss a financial position can generate 

during a given time period for a pre-determined probability (Tsay, 2005, p. 288). From a statistical 

point of view, VaR models are defined as conditional quantile functions. Quantile regression 

models can, hence, be directly translated into VaR models, which is yet another advantage of this 

methodology.  

The confidence level is chosen to be 95%, meaning that the 5% significance level VaR is of interest. 

By modeling the 5% quantile in the left tail and the 95% quantile in the right tail of the price 

distribution, the 5% 1-day-ahead VaR for both long positions (the 5% quantile) and short positions 

(the 95% quantile) in the Nordic electricity market are computed. For long positions, risk is 

associated with price drops, whereas short positions are concerned with price increases. The 1-day 

time interval is chosen because market risk events usually happens within short time intervals. 

Thus, with 95% confidence, the loss of the financial position over one day will be less than or equal 

to VaR. More precisely,  
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(8) 

 

where qx  is the real number associated with the corresponding quantile of the distribution of ln of 

price and tF  is the information set available at time t. Note that the VaR defined in (8) is not given 

in absolute numbers, meaning 1
long
tVaR  is a negative number and 1

short
tVaR  is a positive number. In 
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total, four different VaR models are computed: 5% VaR for both long and short positions for the 

ln of price in period 04 and 5% VaR for both long and short positions for the ln of price in period 

11. 

The performance of quantile regression VaR is compared to the corresponding performance of the 

RiskMetrics method, which is a widely used parametric approach by market practitioners. Both 

models can be regarded as simple models compared to more complicated approaches to estimating 

VaR such as CAViaR, and will on the grounds of this be suitable for comparison. Note that the 

quantile regression approach is based on the ln of price series, whereas RiskMetrics is based on the 

log return series.  

 

8.1 Estimation 

8.1.1 Quantile regression out-of-sample VaR forecasts  

VaR with quantile regression is given by 
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(9) 

 

where q=5%, 95% and i=4,11. 

Coefficient estimates are computed using a rolling window approach, with fixed window size of 

2000 observations. The first 5% quantile and 95% quantile model are estimated using the first 2000 

observations in the data set. Then, the 5% and 95% quantile for observation 2001 are forecasted. 

Thereafter, the models are re-estimated with use of observation 2 to 2001 in order to forecast the 

5% and 95% quantile for observation 2002. This procedure is repeated 1286 times in total, giving 

1286 observations to verify the VaR performance. 

8.1.2 RiskMetrics out-of-sample VaR forecasts 

A brief description of the theoretical framework and estimation procedure will be given. For 

details, see JP Morgan’s RiskMetrics Technical Document by Longerstaey and Spencer (1996). 
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RiskMetrics assumes that the daily log return of price, rt, follows a normal distribution. Let

1ln( / )t t tr P P . Then,  

t tr e     (10) 

   

,t t t te v v ~ (0,1)N     (11) 

   

2 2 2

1 1(1 )t t tr      .       (12) 

 

2

t is the conditional variance of tr . Further,  is referred to as the decay factor, which is typically 

set to 0.94. 

The 1-day conditional volatility forecast is then given by  

2 2

1
0.94 0.06t tt t

r 


  .   (13) 

Here, the first observation is set equal to the observed standard deviation of the residuals, as 

suggested by Engle (2001).10 

 

Having calculated (13), the 1-day-ahead 5% VaR for long positions is computed according to  

1
1 1(0.05)t tVaR 
   .  (14) 

Equivalently, the 1-day-ahead 5% VaR for short positions is given by  

1
1 1(0.95)t tVaR 
   .  (15) 

 

1( ) qq Q   is the inverse of the standard normal cumulative distribution function for q=5% and 

95%, respectively. This procedure is repeated 1286 times, giving 1286 observations to verify the 

VaR performance. 

 

                                                           
10 It follows from (10) that the standard deviation of the observed residuals equals the standard deviation of the log 

return series. 
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8.2 Model Validation: Backtesting 

The out-of-sample forecast performance of the models are validated with two different tests, often 

called “backtests”, since it is important to assess the accuracy of VaR models. Backtesting a VaR 

model means to check whether the VaR predictions are close to the corresponding realized daily 

prices or returns. A sufficiently long test period of 1286 days (over 3 years) ensures that the tests 

are powerful. 

Both tests considered are based on an indicator function 1tI   with the following properties: 

1

1

0 .
t

if violation occurs
I

if no violation occurs



 


   (16) 

Violation occurs for long positions if the realized price/return is lower than the VaR estimate, 

whereas violation for short positions occurs if the realized price/return is higher than the VaR 

estimate. An accurate VaR model should have a percentage of exceedances equal to the pre-

specified significance level, which in this case is 5%. That is, of the out-of-sample observations, 

95% of the true prices and returns of the forecast interval should be lower in absolute value than 

the predicted VaR of interest. 

8.2.1 The Kupiec (1995) test 

The first test considered is the unconditional coverage test proposed by Kupiec (1995).  Under the 

null hypothesis, the indicator function has a constant probability of violation equal to the chosen 

significance level. The likelihood ratio statistic is under the null hypothesis given by 

01
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~ 2

1 . 
                

(17) 

0n  is the number of non-violations, 1n  is the number of violations, exp is the expected proportion 

of exceedances and obs is the observed proportion of exceedances.11 

8.2.2 The Christoffersen (1998) test 

The second test considered is the conditional coverage test proposed by Christoffersen (1998), 

which is a joint test for correct coverage and whether the exceedances tend to cluster. The test is 

                                                           
11 0 1n n n  , where n is the out-of-sample size.  
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concerned with one particular clustering pattern in which an exceedance is immediately followed 

by another. Under the null hypothesis of a correct probability of violations and no clustering of 

violations, the test statistic is given by 

01

01 00 1011

exp exp

01 01 11 11

(1 )
2ln( ) 2ln

(1 ) (1 )

nn

cc n n nn
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~ 2

2 .      (18)         

   

ijn is the number of observations with value i followed by an observation with value j, where 

, 0,1i j   and the value is given by the indicator function. Further, 01 01 00 01/ ( )n n n    and 

11 11 10 11/ ( )n n n   . 

Ideally, for both the Kupiec and Christoffersen test, one should not be able to reject the null 

hypothesis. 

 

8.3 Results 
 

Table 6 presents the observed percentage of violations, the test statistic for the Kupiec test and the 

test statistic for the Christoffersen test for the different VaR models. Bold test statistics mean the 

test is rejected at the 5% significance level. 

Three of four quantile regression models pass the Kupiec test, meaning they have the correct 

percentage of violations. The VaR for short positions are especially accurate, only slightly 

underestimating the number of exceedances. The test statistic is rejected for the period 04 long 

positions VaR. Looking at the observed percentage of violations, this model is the furthest away 

from the pre-specified 5% significance level. In comparison, two of four RiskMetrics models 

provide the correct percentage of violations whereas the remaining models are flawed.  Moreover, 

on average, the percentage of exceedances is 4.59% for the quantile regression approach and 5.58% 

for the RiskMetrics approach, meaning the former is closer to the target percentage of violations. 

Thus, the quantile regression framework performs better than RiskMetrics in terms of providing 

the correct unconditional coverage. One possible explanation might be that exogenous risk factors 

included in the former model is of importance for accurate tail predictions. 
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Table 6: The table presents the observed percentage of violations, the test statistic for the Kupiec 

test and the test statistic for the Christoffersen test for different VaR models. The 5% critical value 

for the Kupiec test is 3.841. The 5% critical value for the Christoffersen test is 5.991. Bold values 

mean that the test is rejected at the 5% significance level.  

Period Model 
5% VaR 

position 

Observed 

percentage of 

violations 

Kupiec Christoffersen 

04 Qreg Long 3.421 % 7.551 10.683 

04 Qreg Short 4.432 % 0.906 61.622 

04 RiskMetrics Long 6.532 % 5.819 7.125 

04 RiskMetrics Short 4.588 % 0.472 0.789 

11 Qreg Long 5.988 % 2.490 8.045 

11 Qreg Short 4.510 % 0.671 49.010 

11 RiskMetrics Long 4.432 % 0.906 3.105 

11 RiskMetrics Short 6.765 % 7.633 14.607 

 

Turning to the Christoffersen test, none of the quantile regression models give satisfying results. 

They thus seem to suffer from clustering of exceedances. Looking at the size of the test statistics, 

this problem is more severe for the short positions. In comparison, the two RiskMetrics models 

which provide a satisfying unconditional coverage also pass the conditional coverage test, meaning 

that exceedances occur randomly. The poor conditional coverage of the quantile regression might 

be a consequence of the model-free historical volatility term included, which probably is unable to 

soak up volatility clustering, leading to one violation followed by another. Results would arguably 

improve if a more complicated volatility formulation, for instance a GARCH(1,1) term, were 

implemented instead. Bunn et al. (2016), suggest that clustering might be caused by the fact that  

predicted quantiles are not directly dependent on the last residual term. Contrary, RiskMetrics is 

actually an IGARCH(1,1) model, in which the volatility term contributes to a large part of the 

model’s process. This might explain why the latter approach performs better than the quantile 

regression approach when concerned with conditional coverage. 
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Figure 18: The figure shows the 5% VaR model using quantile regression methodology for long 

and short positions together with the true ln of price series for period 04. The out-of-sample period 

spans from 25 June 2011 to 31 December 2014. 

 

 

Figure 19: The figure shows the 5% VaR model using quantile regression methodology for long 

and short positions together with the true ln of price series for period 11. The out-of-sample period 

spans from 25 June 2011 to 31 December 2014. 
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Figure 20: The figure shows the 5% VaR model using RiskMetrics for long and short positions 

together with the true log return series for period 04. The out-of-sample period spans from 25 June 

2011 to 31 December 2014.   

 

 

Figure 21: The figure shows the 5% VaR model using RiskMetrics for long and short positions 

together with the true log return series for period 11. The out-of-sample period spans from 25 June 

2011 to 31 December 2014. 
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Figure 18 to Figure 21 depict the VaR forecasts together with true values. Tail predictions using 

the quantile regression approach are flexible compared to RiskMetrics, revealing that the simple 

formulation of RiskMetrics is too crude. In RiskMetrics, VaR is proportional to the inverse of the 

standard normal cumulative distribution function, leading to the same variation in risk regardless 

of the sign of returns. This is shown by the symmetric long and short VaR lines for the same period 

around the mean. On the other hand, with quantile regression changes in risk are associated with 

fluctuations in all of the exogenous variables included in the model. Although RiskMetrics 

performs better than the quantile regression approach in terms of conditional coverage, the latter 

framework adapts more quickly to changing market circumstances, highlighting the usefulness of 

this methodology in modeling electricity prices and forecasting tail risk in practice. 
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9 Conclusions 

With this thesis, I have proposed a model for the Nord Pool system price using linear quantile 

regression. By estimating nine quantiles for each period of interest covering the whole price 

distribution, a complete examination of explanatory variables’ impact on the electricity price for 

different levels is made possible. This study hence contributes to a deeper understanding of how 

fundamental factors influence different quantiles of the distribution of the Nord Pool system price, 

which is the thesis’ main goal. 

Briefly summarized, results show strong positive influence of agent learning, especially in the 

lower quantiles, suggesting mean reversion in the price behavior. High and positive elasticity of 

demand generally increases with quantiles and is stronger in the peak period. Sensitivity towards 

reservoir level is negative with larger magnitude in the off-peak period, in which the impact 

increases with quantiles. Wind power, although small in magnitude, shows a negative influence 

across quantiles. Effects of fossil fuel prices vary considerably between quantiles and periods. Coal 

has positive influence in the upper quantiles of period 04 whereas oil show positive impact in the 

upper quantiles of period 11, reflecting the fact that they are used differently in production 

depending on the demand situation. Contrary, the effect of gas seems to be absent in the Nordic 

market. Overall, effects of fossil fuels are smaller compared to studies of other markets, 

emphasizing the uniqueness of the Nord Pool area due to its high share of hydropower in electricity 

generation. The CO2 emissions allowance price generally has positive yet small elasticities in the 

upper quantiles, which, in connection with results of fossil fuel prices, is plausible. Findings show 

small positive effect of the el-certificate price in the upper quantiles of period 11. Volatility has 

negative impact in lower quantiles and positive impact in upper quantiles, implying that price 

uncertainty reinforce already extreme prices. Generally, the findings reveal that most fundamentals 

influence the Nordic system price in quite intuitive ways when taking into consideration the 

characteristics of the Nordic market. Furthermore, results are in line with previous studies of Nord 

Pool. This leads to the conclusion that the proposed framework gives valuable insight in the price 

formation process, and is in this respect a satisfying model.   

Overall, findings imply that autoregressive effects and demand are the most important determinants 

of the Nord Pool system price movements. Further, results suggest that the influence of 

fundamental factors vary non-linearly across quantiles, both in size and significance. These 
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findings are valuable to agents concerned with price fluctuations. With knowledge of the main 

price drivers in different price intervals, they are able to manage and assess risk more accurately. 

Moreover, impact of factors vary considerably between the off-peak and the peak period, 

demonstrating intra-day variations in price behavior. This insight benefits market participants 

affected by activity only in particular trading periods. With advantage, agents can hence adapt and 

implement the proposed framework as it suits them in order to adjust and improve short-term 

operations and risk management strategies. 

Next, for the sake of demonstrating the range of use of the proposed model, I performed 1-day-

ahead VaR calculations for both long and short trading positions in an out-of-sample setting. 

Findings imply that the quantile regression framework provides the correct percentage of 

exceedances, as three of four models pass the unconditional coverage test. Additionally, forecasts 

seem to adapt quickly to price changes. However, none of the models pass the conditional coverage 

tests, implying that the framework suffers from clustering of exceedances. In sum, considering the 

quite accurate percentage of violations and the easy-to-implement formulation due to the fact that 

VaR is defined as conditional quantile functions, quantile regression models are a beneficial 

approach to forecasting VaR. 

Unfortunately, I did not have access to data for demand forecasts and wind power forecasts. 

Although prognosis today is well-known to be accurate, making use of actual data as 

approximations arguably accepted, the use of actual data is still a drawback with the thesis worth 

mentioning. In order to plan consumption and production and, hence, determining bids and offers, 

agents must take into account demand and wind power prognosis. It goes without saying that actual 

numbers for the following day remains unknown before the power exchange closes for the 

concerned delivery day. Therefore, future research is recommended to collect forecast data for 

demand and wind power. 

Several extensions of the analysis can be considered. Future research can examine all 24 intra-day 

trading periods with use of the quantile regression framework presented, in order to increase the 

understanding of the market dynamics in each period. Moreover, data for reservoir level and wind 

power can be collected from all countries in the Nordic market rather from only the main 

production country, with a view to fully encapsulate each factor’s influence on the system price. 

Also, more explanatory variables can be included to increase the model’s goodness of fit. The 
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available production capacity of nuclear power plants has already been stated as a relevant factor. 

If solar power generation technology expands in the Nordic area in the future, it would be natural 

to include solar power as an explanatory variable as well.  
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A Descriptive Statistics 
 

1. Descriptive statistics for the level-series and ln-series of the electricity price 
 

Table A.1: The table presents the mean, median, minimum observation, maximum observation, 

standard deviation, skewness and kurtosis for the level-series and ln-series of electricity prices in 

period 04 and period 11. 

Variable Mean Median Min Max Std dev Skewness Kurtosis 

P04 33.834 32.505 0.490 81.630 13.695 0.463 3.478 

lnP04 3.418 3.481 -0.713 4.402 0.511 -1.755 8.869 

P11 42.693 40.295 5.140 208.160 14.702 1.563 12.604 

lnP11 3.697 3.696 1.637 5.338 0.346 -0.557 5.318 
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2. Distribution of the electricity price: Illustrations 
 

  
 

Figure A.1: The figure shows the distribution of the period 04 (left illustration) and period 11 (right 

illustration) price level series compared to a normal distribution illustrated by the blue line. The 

horizontal axis measures the price level while the vertical axis measures the density. A normal 

distribution has no skewness and a kurtosis coefficient of 3. The electricity prices have positive 

skewness, shown by a long right tail, and excess kurtosis, shown by the peak around the mean. 

 

3. The Jarque-Bera test for normality 

Table A.2: The Jarque-Bera test for normality in the price level series. H0: Skewness and excess 

kurtosis are jointly zero. Under H0, the JB statistic follows a chi-squared distribution. Critical 

value for 1% significance level and 2 degrees of freedom is 9.210. The asterisks *** mean rejection 

of H0 at 1% significance level. 

Period 04 11 

Test statistic 1508.158*** 141491.823*** 
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4. Autocorrelation, partial autocorrelation and Ljung-Box test of linear dependence 

Table A.3: The table presents the autocorrelation (AC) coefficient, partial autocorrelation (PAC) 

coefficient and Q-statistics of the period 04 price level series. The Ljung-Box test of linear 

dependence has H0: the autocorrelation coefficients are jointly 0. Under H0, the Q statistic follows 

a chi-squared distribution. Critical value at 1% significance level with 20 degrees of freedom is 

37.566. 

 

 

 

 

 

 

 

20       0.7482   0.0548    46572  0.0000                                      

19       0.7512   0.0420    44720  0.0000                                      

18       0.7567   0.0264    42854  0.0000                                      

17       0.7645   0.0131    40961  0.0000                                      

16       0.7739  -0.0555    39029  0.0000                                      

15       0.7878  -0.0305    37050  0.0000                                      

14       0.7998   0.0431    35000  0.0000                                      

13       0.8059   0.0729    32888  0.0000                                      

12       0.8120   0.0279    30744  0.0000                                      

11       0.8223  -0.0128    28568  0.0000                                      

10       0.8353   0.0138    26337  0.0000                                      

9        0.8467   0.0087    24036  0.0000                                      

8        0.8600  -0.1053    21672  0.0000                                      

7        0.8790   0.0452    19235  0.0000                                      

6        0.8880   0.0252    16689  0.0000                                      

5        0.8994   0.0547    14092  0.0000                                      

4        0.9106   0.0845    11428  0.0000                                      

3        0.9226   0.1532   8697.9  0.0000                                      

2        0.9361   0.2365   5896.5  0.0000                                      

1        0.9572   0.9573   3013.6  0.0000                                      

                                                                               

 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial Autocor]

                                          -1       0       1 -1       0       1
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Table A.4: The table presents the autocorrelation (AC) coefficient, partial autocorrelation (PAC) 

coefficient and Q-statistics of the period 11 price level series. The Ljung-Box test of linear 

dependence has H0: the autocorrelation coefficients are jointly 0. Under H0, the Q statistic follows 

a chi-squared distribution. Critical value at 1% significance level with 20 degrees of freedom is 

37.566. 

 

 

 

 

 

 

 

 

 

 

 

. 

20       0.6686   0.0696    36181  0.0000                                      

19       0.6506  -0.0083    34702  0.0000                                      

18       0.6644   0.0182    33302  0.0000                                      

17       0.6681   0.0268    31843  0.0000                                      

16       0.6674   0.0094    30368  0.0000                                      

15       0.6995  -0.1234    28896  0.0000                                      

14       0.7446   0.1438    27279  0.0000                                      

13       0.7134   0.0857    25449  0.0000                                      

12       0.6965   0.0399    23769  0.0000                                      

11       0.7076  -0.0150    22168  0.0000                                      

10       0.7186  -0.0065    20517  0.0000                                      

9        0.7264  -0.0496    18813  0.0000                                      

8        0.7699  -0.1819    17074  0.0000                                      

7        0.8224   0.2378    15120  0.0000                                      

6        0.7906   0.2423    12891  0.0000                                      

5        0.7713   0.0794    10832  0.0000                                      

4        0.7909   0.1296   8873.2  0.0000                                      

3        0.8012   0.2821   6813.8  0.0000                                      

2        0.8097   0.1599   4701.1  0.0000                                      

1        0.8795   0.8797   2543.9  0.0000                                      

                                                                               

 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial Autocor]

                                          -1       0       1 -1       0       1
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Table A.5: The table presents the autocorrelation (AC) coefficient, partial autocorrelation (PAC) 

coefficient and Q-statistics of the period 04 1.difference of price level series. The Ljung-Box test of 

linear dependence has H0: the autocorrelation coefficients are jointly 0. Under H0, the Q statistic 

follows a chi-squared distribution. Critical value at 1% significance level with 20 degrees of 

freedom is 37.566. 

 

 

 

 

 

 

 

 

 

 

. 

20       0.0249  -0.0231   349.93  0.0000                                      

19      -0.0283  -0.0596   347.89  0.0000                                      

18      -0.0278  -0.0473   345.25  0.0000                                      

17      -0.0178  -0.0322   342.69  0.0000                                      

16      -0.0522  -0.0192   341.64  0.0000                                      

15       0.0210   0.0496   332.63  0.0000                                      

14       0.0696   0.0251   331.18  0.0000                                      

13       0.0005  -0.0486   315.18  0.0000                                      

12      -0.0493  -0.0791   315.17  0.0000                                      

11      -0.0326  -0.0349   307.16  0.0000                                      

10       0.0200   0.0056   303.65  0.0000                                      

9       -0.0222  -0.0209   302.33  0.0000                                      

8       -0.0674  -0.0160    300.7  0.0000                                      

7        0.1168   0.0986   285.73  0.0000                                      

6       -0.0287  -0.0515   240.73  0.0000                                      

5        0.0036  -0.0321   238.01  0.0000                                      

4       -0.0102  -0.0622   237.97  0.0000                                      

3       -0.0169  -0.0931   237.63  0.0000                                      

2       -0.0897  -0.1641   236.69  0.0000                                      

1       -0.2528  -0.2528   210.19  0.0000                                      

                                                                               

 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial Autocor]

                                          -1       0       1 -1       0       1
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Table A.6: The table presents the autocorrelation (AC) coefficient, partial autocorrelation (PAC) 

coefficient and Q-statistics of the period 11 1.difference of price level series. The Ljung-Box test of 

linear dependence has H0: the autocorrelation coefficients are jointly 0. Under H0, the Q statistic 

follows a chi-squared distribution. Critical value at 1% significance level with 20 degrees of 

freedom is 37.566. 

 

  

20      -0.0915  -0.1527   1492.8  0.0000                                      

19      -0.1347  -0.0742   1465.1  0.0000                                      

18       0.0433   0.0073     1405  0.0000                                      

17       0.0206  -0.0211   1398.8  0.0000                                      

16      -0.1350  -0.0323   1397.4  0.0000                                      

15      -0.0539  -0.0159   1337.2  0.0000                                      

14       0.3167   0.1176   1327.6  0.0000                                      

13      -0.0591  -0.1493   996.34  0.0000                                      

12      -0.1163  -0.0929   984.79  0.0000                                      

11       0.0002  -0.0483   940.14  0.0000                                      

10       0.0137   0.0063   940.14  0.0000                                      

9       -0.1491  -0.0034   939.52  0.0000                                      

8       -0.0376   0.0426   866.15  0.0000                                      

7        0.3511   0.1763   861.49  0.0000                                      

6       -0.0522  -0.2443    455.3  0.0000                                      

5       -0.1613  -0.2534    446.3  0.0000                                      

4        0.0381  -0.0955   360.58  0.0000                                      

3        0.0062  -0.1495    355.8  0.0000                                      

2       -0.2533  -0.3113   355.67  0.0000                                      

1       -0.2096  -0.2096   144.47  0.0000                                      

                                                                               

 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial Autocor]

                                          -1       0       1 -1       0       1

. corrgram DiffP11, lags(20)

. 
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5. Correlation between electricity price lags 
 

Table A.7: The table presents the pairwise correlation of lags for period 04 price level series and 

1.difference of price level series. Li indicates the lag, i=1, 7, 14. 

 L1P04 L7P04 L14P04   L1DifP04 L7DifP04 L14DifP04 

L1P04 1.000    L1DifP04 1.000   

L7P04 0.888 1.000   L7DifP04 -0.029 1.000  

L14P04 0.806 0.879 1.000  L14DifP04 0.001 0.117 1.000 

 

 

Table A.8: The table presents the pairwise correlation of lags for period 11 price level series and 

1.difference of price level series. Li indicates the lag, i=1, 7, 14. 

 L1P11 L7P11 L14P11   L1DifP11 L7DifP11 L14DifP11 

L1P11 1.000    L1DifP11 1.000   

L7P11 0.791 1.000   L7DifP11 -0.052 1.000  

L14P11 0.714 0.823 1.000  L14DifP11 -0.059 0.352 1.000 
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6. The Augmented Dickey-Fuller test for stationarity 

Table A.9: The table presents the Augmented Dickey-Fuller test for stationarity in the electricity 

price level series. H0: There is a unit root.  Under H0, the Dickey-Fuller statistic follows a 

MacKinnon distribution. Critical value for 1% significance level is -3.430. The asterisks *** mean 

rejection at 1% significance level. 

Period 04 11 

Test statistic -4,937*** -5,034*** 

 

 

7. Empirical quantiles 

Table A.10: The table presents the empirical 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95% and 99% 

quantiles of the level-series and ln-series of the electricity price. 

Variable 1% 5% 10% 25% 50% 75% 90% 95% 99% 

P04 3.98 12.75 17.9 25.03 32.505 41.74 51.3 60.71 72.52 

P11 12.45 23.64 26.92 33.18 40.295 50.8 61.17 67.89 86.37 

lnP04 1.381 2.546 2.885 3.220 3.481 3.732 3.938 4.106 4.284 

lnP11 2.522 3.163 3.293 3.502 3.696 3.928 4.114 4.218 4.459 

 

 

8. Seasonal patterns in the electricity price 

 

 

 

 

Figure A.2: The figure shows variations in the average electricity price across weekdays in period 

04 and 11, respectively. Data spans from 2 January 2006 to 31 December 2014. 
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Figure A.3: The figure shows variations in the average electricity price across months in period 

04 and 11, respectively. Data spans from 2 January 2006 to 31 December 2014. 
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B Descriptive Statistics of Fundamental Factors 
 

Table B.1: The table presents the mean, median, minimum observation, maximum observation, 

standard deviation, skewness and kurtosis of the fundamental factors. 

Variable Mean Median Min Max Std dev Skewness Kurtosis 

Demand04 37537.310 36800.500 11812.000 56831.000 7086.575 0.371 2.187 

Demand11 47637.430 46649.000 14555.000 68604.000 8351.183 0.241 2.368 

Reservoir 50996.160 53016.000 14831.000 77014.000 15828.740 -0.326 2.059 

Wind04 921.598 663.600 1.300 4270.800 828.856 1.180 3.803 

Wind11 1017.466 745.100 0.800 4385.500 900.073 0.994 3.257 

Gas 62.325 66.380 24.762 123.112 18.278 -0.286 2.595 

Oil 66.628 66.186 26.614 96.850 15.993 -0.224 1.870 

Coal 44.480 43.656 28.643 90.921 10.363 1.304 5.699 

CO2 10.760 10.265 0.010 29.800 7.067 0.524 2.719 

El-certificate 24.051 23.011 0.106 43.013 5.155 0.608 4.179 

Volatility04 2.511 1.729 0.121 18.524 2.440 2.599 11.480 

Volatility11 4.267 3.149 0.422 61.947 4.530 6.326 63.787 

 

 

9. Correlation between the electricity price and fundamental factors 

Table B.2: The table presents the correlation between the electricity price level in period 04 and 

period 11 with their respective fundamental factors. 

 P04 P11 

Demand04 0.381 - 

Demand11 - 0.350 

Reservoir -0.295 -0.238 

Wind04 -0.105 - 

Wind11 - -0.155 

Gas 0.190 0.180 

Oil -0.075 -0.038 

Coal 0.255 0.341 

CO2 0.401 0.465 

El-certificate 0.200 0.249 

Volatility04 -0.182 - 

Volatility11 - 0.339 
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10. Correlation between fundamental factors 

Table B.3: The table presents the pairwise correlation of fundamental factors in the model for 

period 04. 

 Demand04 Reservoir Wind04 Gas Oil Coal CO2 

Demand04 1.000       

Reservoir -0.296 1.000      

Wind04 0.199 0.033 1.000     

Gas 0.173 0.195 0.166 1.000    

Oil -0.132 0.076 0.170 0.532 1.000   

Coal -0.052 0.030 -0.028 0.551 0.442 1.000  

CO2 -0.003 -0.181 -0.189 0.164 -0.131 0.575 1.000 

El-certificate 0.072 -0.017 -0.076 -0.056 -0.156 0.342 0.378 

Volatility04 -0.311 0.044 -0.021 0.019 0.093 0.204 0.137 

        

 El-certificate Volatility04      

El-certificate 1.000       

Volatility04 0.007 1.000      

 

 

Table B.4: The table presents the pairwise correlation for fundamental factors in the model for 

period 11. 

 Demand11 Reservoir Wind11 Gas Oil Coal CO2 

Demand11 1.000       

Reservoir -0.202 1.000      

Wind11 0.150 0.023 1.000     

Gas 0.174 0.195 0.131 1.000    

Oil -0.134 0.076 0.160 0.532 1.000   

Coal -0.049 0.030 -0.031 0.551 0.442 1.000  

CO2 -0.016 -0.181 -0.175 0.164 -0.131 0.575 1.000 

El-certificate 0.069 -0.017 -0.071 -0.056 -0.156 0.342 0.378 

Volatility11 0.263 -0.078 -0.020 0.042 0.061 0.129 0.145 

        

 El-certificate Volatility11      

El-certificate 1.000       

Volatility11 0.089 1.000      
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11. Distribution of demand and water reservoir level 

   

 

Figure B.1: The figure shows the distribution of demand in period 04, demand in period 11 and 

water reservoir level, respectively, compared to the normal distribution illustrated by the blue line. 

The horizontal axis measures demand in MWh and water reservoir level in GWh, respectively, 

while the vertical axis measures the density. The normal distribution has no skewness and a 

kurtosis coefficient of 3. 

 

12. The Jarque-Bera test for normality: Demand and water reservoir level 

Table B.5: The table presents the Jarque-Bera test for normality performed on the demand and 

water reservoir level series. H0: Skewness and excess kurtosis are jointly zero. Under H0, the JB 

statistic follows a chi-squared distribution. Critical value for 1% significance level and 2 degrees 

of freedom is 9.210. The asterisks *** mean rejection of H0 at 1% significance level. 

 

Variable Demand 04 in MWh Demand 11 in MWh 
Water reservoir level 

in GWh 

Skewness 0.370 0.241 -0.326 

Kurtosis 2.187 2.369 2.059 

Test statistic 1675.852*** 873.359*** 1818.120*** 
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C Peak- and Off-Peak Period 
 

 
 

 

Figure C.1: The figure shows average hourly demand. Period 11 (10:00-11:00) and period 04 

(03:00-04:00) are the peak-and off-peak periods, meaning they have the highest and lowest 

average hourly demand in the dataset, respectively. 
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D CO2 Emissions Allowance Price Dummy Variable 
 

13. OLS regression 

The Chow test splits the data series into two sub-periods and then tests for parameter stability. OLS 

regressions are the point of departure for the Chow test. 

The following OLS regressions are run:  

0 1 2 3 4 5

6 7

ln 2 ln ln ln ln

ln ln

t t t t t

t t t

CO gas oil coal Di Di gas

Di oil Di coal u

     

 

     

  
                                  (D.1) 

where i=1,2 and t=(1 January 2006, 30 December 2014) for model 1 and t=(26 April 2006, 30 

December 2014) for model 2, respectively.1 

 

14. Test 1: A structural break on 26 April 2006 

The data spans from 1 January 2006 to 30 December 2014. The sub-periods are T1= 1 January 

2006 to 25 April 2006 and T2=26 April 2006 to 30 December 2014, respectively. The dummy 

variable D1 equals 1 for t in T1 and 0 otherwise. 

Table D.1: The table shows OLS regression results with time span from 1 January 2006 to 30 

December 2014. The asterisks *** mean the coefficient is significant at 1% level. 

Variable Coefficient 

Gas -0.735*** 

Oil -0.779*** 

Coal 4.255*** 

D1 5.527 

Gas*D1 0.475 

Oil*D1 1.648 

Coal*D1 -3.363 

Constant -7.973*** 

R2 0.278 

 

 

                                                           
1 The CO2 emissions allowance price is also referred to as the EUA price. 
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15. Test 2: A structural break on 1 February 2008 

The data spans from 26 April 2006 to 30 December 2014. The sub-periods are T1= 26 April 2006 

to 31 January 2008 and T2= 1 February 2008 to 30 December 2014, respectively. The dummy 

variable D2 equals 1 for t in T1 and 0 otherwise. 

Table D.2: The table shows OLS regression results with time span from 26 April 2006 to 30 

December 2014. The asterisks *** mean the coefficient is significant at 1% level. 

Variable Coefficient 

Gas -1.087*** 

Oil -0.684*** 

Coal 2.496*** 

D2 19.702*** 

Gas*D2 2.707*** 

Oil*D2 -16.491*** 

Coal*D2 9.380*** 

Constant 0.097 

R2 0.679 

 

 

 

16. The Chow test for structural break 

Table D.3: The Chow test for structural break. H0: There is no structural break in the data series, 

i.e. α4= α5= α6= α7=0. Under H0, the Chow statistic follows an F-distribution. Critical value for 

1% significance level is 3.32 for both tests. The asterisks *** mean rejection of H0 at 1% 

significance level. 

Test Test 1 Test 2 

Numerator degrees of freedom 4 4 

Denominator degrees of freedom 3278 3163 

Test statistic 27.01*** 1045.52*** 
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17. White’s test for heteroscedasticity 

Table D.4: White’s test for heteroscedasticity. H0: The error terms are homoscedastic. Under H0, 

the test statistic follows a chi-squared distribution. Critical value for 1% significance level and 19 

degrees of freedom is 36.191 for both tests. The asterisks *** mean rejection of H0 at 1% 

significance level. 

Model Model 1 Model 2 

Test statistic 704.65*** 2249.22*** 
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E Quantile Regression Results 
 

18. Period 04 
 

Table E.1: The table presents quantile regression results for the 1%, 5%, 10%, 25% and 50% 

quantile in period 04. The asterisks *, ** and *** mean the coefficient is significant at either 10%, 

5% or 1% level, respectively. 

 1% 5% 10% 25% 50% 

Yesterday's price 1.004*** 1.004*** 1.005*** 0.922*** 0.848*** 

Last week's price 0.247** 0.142 0.079 0.068** 0.085*** 

Demand 0.488** 0.243** 0.204*** 0.217*** 0.178*** 

Reservoir 0.101 0.081 0.041 -0.036*** -0.051*** 

Wind -0.015** -0.016*** -0.015*** -0.015*** -0.014*** 

Gas -0.116 -0.037 -0.027** -0.002 0.003 

Oil 0.355*** 0.032 0.039** 0.015* 0.010 

Coal -0.220 -0.055 -0.025 -0.001 0.011 

EUA 0.005 -0.003 -0.001 0.002 0.002 

El-certificate -0.038 -0.005 -0.007 0.007 0.005 

Volatility -0.171*** -0.091*** -0.063*** -0.024*** 0.005** 

DBreak 0.082 -0.014 -0.011 -0.001 0.000 

DWeekend -0.049 -0.027* -0.014** -0.015*** -0.006** 

DFeb -0.100** 0.004 -0.004 -0.019*** -0.021*** 

DMar -0.070 0.032 0.018* -0.017** -0.029*** 

DApr -0.001 0.042 0.030 -0.006 -0.019** 

DMay -0.834** -0.014 -0.011 0.014 0.010 

DJune -0.138 0.016 0.026 0.057*** 0.046*** 

DJuly -0.426 -0.208 0.014 0.067*** 0.064*** 

DAug 0.007 0.093 0.072** 0.097*** 0.088*** 

DSept 0.103 0.048 0.050** 0.071*** 0.067*** 

DOct -0.045 0.031 0.024 0.055*** 0.053*** 

DNov -0.033 0.023 0.027* 0.040*** 0.033*** 

DDec -0.136** -0.021 -0.001 0.013* 0.014*** 

Constant -1.175 -0.320 -0.234** -0.008 0.180*** 

R2 0.657 0.711 0.720 0.731 0.732 
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Table E.2: The table presents quantile regression results for the 75%, 90%, 95% and 99% quantile 

in period 04. The asterisks *, ** and *** mean the coefficient is significant at either 10%, 5% or 

1% level, respectively. 

 75% 90% 95% 99% 

Yesterday's price 0.703*** 0.611*** 0.511*** 0.362*** 

Last week's price 0.130*** 0.108*** 0.108*** 0.089*** 

Demand 0.236*** 0.291*** 0.264*** 0.345** 

Reservoir -0.113*** -0.175*** -0.256*** -0.401*** 

Wind -0.013*** -0.011*** -0.010*** -0.009 

Gas 0.010 0.007 0.000 -0.024 

Oil -0.006 -0.027 -0.071** -0.183*** 

Coal 0.066*** 0.127*** 0.215*** 0.395*** 

EUA 0.005*** 0.009*** 0.007* 0.000 

El-certificate 0.012*** 0.015** 0.018 0.025 

Volatility 0.025*** 0.043*** 0.053*** 0.062*** 

DBreak 0.024*** 0.069*** 0.095*** 0.108*** 

DWeekend -0.007** -0.003 -0.001 0.012 

DFeb -0.033*** -0.033*** -0.034** -0.043 

DMar -0.056*** -0.065*** -0.084*** -0.130*** 

DApr -0.040*** -0.060*** -0.093*** -0.155*** 

DMay 0.012 0.009 -0.044 -0.045 

DJune 0.083*** 0.105*** 0.103* 0.208 

DJuly 0.096*** 0.123*** 0.107 0.234** 

DAug 0.126*** 0.145*** 0.164*** 0.233*** 

DSept 0.109*** 0.151*** 0.159*** 0.210*** 

DOct 0.087*** 0.126*** 0.139*** 0.149*** 

DNov 0.057*** 0.074*** 0.089*** 0.110*** 

DDec 0.023*** 0.041*** 0.050*** 0.035* 

Constant 0.342*** 0.601*** 0.853*** 1.373*** 

R2 0.716 0.682 0.642 0.602 
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19. Period 11 
 

Table E.3: The table presents quantile regression results for the 1%, 5%, 10%, 25% and 50% 

quantile in period 11. The asterisks *, ** and *** mean the coefficient is significant at either 10%, 

5% or 1% level, respectively. 

 1% 5% 10% 25% 50% 

Yesterday's price 0.768*** 0.756*** 0.702*** 0.685*** 0.589*** 

Last week's price 0.290*** 0.270*** 0.292*** 0.272*** 0.334*** 

Demand 0.491*** 0.302*** 0.290*** 0.284*** 0.314*** 

Reservoir -0.027 -0.032 -0.061** -0.050*** -0.050*** 

Wind -0.008 -0.014*** -0.014*** -0.013*** -0.015*** 

Gas 0.060 0.007 -0.004 0.003 -0.003 

Oil -0.085* -0.016 -0.001 0.008 0.019*** 

Coal -0.130 -0.002 0.011 0.017 0.030*** 

EUA 0.000 0.003 0.003 0.003** 0.003*** 

El-certificate 0.023 0.025 0.016 0.013 -0.004 

Volatility -0.132*** -0.092*** -0.064*** -0.036*** -0.008*** 

DBreak -0.037 -0.005 0.001 0.004 0.005 

DWeekend -0.066 -0.024** -0.019** -0.017*** -0.008 

DFeb 0.003 -0.003 -0.022 -0.020** -0.021*** 

DMar 0.051 0.017 -0.007 -0.016* -0.019** 

DApr 0.162* 0.066* 0.023 0.014 0.016 

DMay 0.124 0.031 0.037 0.049*** 0.064*** 

DJune 0.309*** 0.162*** 0.133*** 0.102*** 0.097*** 

DJuly 0.228** 0.118*** 0.115*** 0.108*** 0.110*** 

DAug 0.285*** 0.189*** 0.162*** 0.139*** 0.131*** 

DSept 0.221 0.129*** 0.119*** 0.101*** 0.102*** 

DOct 0.132 0.096*** 0.100*** 0.080*** 0.079*** 

DNov 0.124* 0.089*** 0.075*** 0.057*** 0.051*** 

DDec 0.040 0.045** 0.035*** 0.025** 0.011 

Constant 0.153 -0.154 -0.065 0.018 0.151*** 

R2 0.746 0.740 0.740 0.740 0.737 
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Table E.4: The table presents quantile regression results for the 75%, 90%, 95% and 99% quantile 

in period 11. The asterisks *, ** and *** mean the coefficient is significant at either 10%, 5% or 

1% level, respectively. 

 75% 90% 95% 99% 

Yesterday's price 0.512*** 0.462*** 0.435*** 0.435*** 

Last week's price 0.338*** 0.308*** 0.261*** 0.313*** 

Demand 0.418*** 0.479*** 0.488*** 0.691*** 

Reservoir -0.081*** -0.108*** -0.103*** -0.081 

Wind -0.018*** -0.018*** -0.017*** -0.024*** 

Gas 0.007 -0.005 -0.042* -0.141** 

Oil 0.021* 0.035** 0.076*** 0.180*** 

Coal 0.032** 0.078*** 0.115*** 0.032 

EUA 0.007*** 0.010*** 0.015*** 0.024*** 

El-certificate 0.009** 0.017** 0.022 0.045** 

Volatility 0.018*** 0.057*** 0.083*** 0.134*** 

DBreak 0.018** 0.045*** 0.068*** 0.073** 

DWeekend 0.000 0.001 0.006 0.060** 

DFeb -0.040*** -0.059** -0.099*** -0.145 

DMar -0.045*** -0.083*** -0.120*** -0.245*** 

DApr -0.005 -0.048 -0.095** -0.168 

DMay 0.072*** 0.048 -0.008 -0.098 

DJune 0.108*** 0.088** 0.013 -0.036 

DJuly 0.138*** 0.151*** 0.104** 0.011 

DAug 0.159*** 0.154*** 0.087** -0.016 

DSept 0.124*** 0.120*** 0.074* -0.002 

DOct 0.084*** 0.081*** 0.027 -0.050 

DNov 0.047*** 0.031 -0.026 -0.134* 

DDec 0.012 -0.014 -0.064** -0.158** 

Constant 0.347*** 0.454*** 0.605*** 0.757*** 

R2 0.717 0.687 0.669 0.664 
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