
Modeling and Control of ROV Manipulator

Morten Haugen

Marine Technology

Supervisor: Asgeir Johan Sørensen, IMT

Department of Marine Technology

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

Remotely Operated Vehicles (ROVs) are common in deep water industries. As the
oil industry, and also other relevant industries, moves into deeper water, the use
of sub sea technology has increased. Due to safety and practical reasons it is not
convenient to use manned diving for maintenance and surveys. The solution is to
use ROVs that are unoccupied, highly maneuverable and operated by a person on
board a vessel. The ROV is normally equipped with one or several manipulators
so that it can perform simple tasks such as pulling cables, opening valves and han-
dle different tools. It is important that the manipulators are easy maneuverable,
highly accurate and has a quick response because this will both save money and
also make it possible to perform more difficult tasks. In addition, the use of a good
manipulator can prevent damage on the environment. The objective of this thesis
is to investigate mathematical models and control methods for the manipulator on
the ROV SF 30K, conduct simulations and tests, and also develop an interface for
control of the manipulator and LabVIEW. Full scale tests of the derived control
system will also be conducted to test and tune the controller.

Scope of work

• Review relevant literature on ROV and manipulators.

• Review documentation for the manipulator on the ROV SF 30K.

• Formulate a kinematic and dynamic model of the manipulator.

• Formulate inverse kinematics for manipulator control.

• Investigate control principals for position control.

• Formulate a proper control algorithm for the model.

• Conduct simulation for controller tuning and testing.

• Develop interface for control of manipulator and LabVIEW.

• Carry out full scale experiments to demonstrate the control system for the
Raptor manipulator.

• Document each step in the process.

i

The report shall be written in English and edited as a research report including liter-
ature survey, description of mathematical models, description of control algorithms,
simulation results, model test results, discussion and a conclusion including a pro-
posal for further work. Source code should be provided in a digital folder with code
listing enclosed in appendix. It is supposed that Department of Marine Technology,
NTNU, can use the results freely in its research work, unless otherwise agreed upon,
by referring to the student’s work. The thesis should be submitted within June 10th.

Supervisor: Professor Asgeir Johan Sørensen (NTNU)
Advisors: Mauro Candeloro (NTNU)

Martin Ludvigsen (NTNU)
Fredrik Dukan (NTNU)

ii

Abstract

The main objective of this thesis is to investigate and present the most relevant
techniques and topics within the field of robot modeling and control. The studies
will then be used to develop a working control system for the ’Raptor’ manipulator
stationed on the ROV ’SubFighter 30K’.

Due to insufficient information, a simplified model is made to resemble the actual
manipulator. This model forms the foundation of all subsequent actions, including
the model based control design. The dynamic model is developed by the well known
method of Euler-Lagrange. Since this is an energy based method, both the kinetic
and the potential energy of the system must be calculated. Systematic procedures
are given to clarify the process of these calculations.

In this thesis, a sliding-mode controller is derived and proposed as a suitable con-
troller for the given manipulator. The control objective is to force the manipulator
to track a time dependent, desired path in the joint space. However, since it is incon-
venient for the operator to specify joint space trajectories, several inverse kinematics
algorithms are suggested. Due to the kinematic structure of the manipulator, no
closed-form solutions can be obtained. The focus is thus directed towards numerical
Jacobian based methods.

A full-scale implementation requires a working interface between the developed con-
trol system and the manipulator system. For that reason, the main concepts of
digital communication are presented. Although no communication data is logged
from the Raptor, this presentation will pose an advantage if the work is contin-
ued.

When no control forces are applied to the dynamic model, the manipulator model is
expected to behave like a multi joint, three dimensional pendulum. The simulations
corresponds to this assumptions, thus the model is assumed to be correct and valid.
Simulations of the complete system shows that the sliding-mode controller works as
intended. Two chosen IK algorithms are then implemented and compared through
simulations. The DLS method proves to be superior to the simple inverse Jacobian
method.

Finally, the control system is implemented in LabVIEW and thus prepared for full-
scale testing.

iii

iv

Acknowledgements

It gives me great pleasure in acknowledging the support and help of my supervisor,
Professor Asgeir J. Sørensen. His enthusiastic appearance and great knowledge has
both inspired me and and given me insight to understand the advanced topics of
this thesis. I would also like to thank Professor Roger Skjetne for his patience and
for giving me knowledge of nonlinear control design. When it comes to the topic
of robot modeling, I would like to honor the help of Professor Eilif Pedersen and
Research Scientist Uwe Mettin. Their vast knowledge has guided me through the
large topic of robotics and given me great wisdom.

I would also like to share the credit of my work with Ph.D. candidate Mauro Can-
deloro. This thesis would not have been possible without his help. Thanks also
to Ph.D. candidate Christoffer Fredrik Lid Thorvalden, Ph.D. candidate Fredrik
Dukan, and Post. Doc. Martin Ludvigsen for help and comments on my work, and
my co-students for supporting me through discussions and comments.

Lastly, I would like to thank my loving and caring wife, Monika Sletteberg Haugen,
whose faithful support during this semester is so appreciated.

Morten Sletteberg Haugen
Trondheim, June 10, 2010

v

vi

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Outline . 2
1.3. Contributions . 3
1.4. Software . 3

2. Telerobotics 5
2.1. Historical Perspective . 6
2.2. Control Architectures . 6

2.2.1. Supervisory Control . 6
2.2.2. Shared Control . 7
2.2.3. Direct Control . 8

2.3. The Raptor Manipulator System . 9

3. Robot Modeling 11
3.1. Notation . 11
3.2. Operational Space, Workspace and Joint Space 11
3.3. Differential Kinematics . 13

3.3.1. The Geometric Jacobian Matrix 13
3.3.2. The Analytical Jacobian Matrix 15

3.4. Dynamics . 16
3.4.1. Euler-Lagrange Equations of Motions 16
3.4.2. Kinetic Energy . 17
3.4.3. Potential Energy . 19
3.4.4. Equations of Motion . 19

3.5. Information from Data Sheets . 20
3.6. Modeling Set-up . 21

3.6.1. Simplified Model . 21
3.6.2. Estimation of Mass . 22
3.6.3. Inertia matrix . 22
3.6.4. Dynamic Model of Simplified System 23

4. Inverse Kinematics 27
4.1. Closed-Form Solutions . 28
4.2. Numerical Solutions . 29

vii

5. Control of Robot Manipulator 33
5.1. The Control Problem in General . 33
5.2. Tracking . 34
5.3. Sliding-Mode Control . 35

5.3.1. The Concept of Sliding-Mode Control 35
5.3.2. Problem Statement . 36
5.3.3. Derivation of Sliding-Mode Controller 36
5.3.4. Chattering . 42

6. Communication 45
6.1. Binary Numeral System . 45
6.2. Hexadecimals . 46
6.3. Serial Communication . 47
6.4. Encoding . 47
6.5. Differential Signaling . 48
6.6. RS-485 . 50

7. Simulations and Results 53
7.1. Simulation Structure . 53
7.2. Model Verification . 53
7.3. Trajectory Generation . 54
7.4. Control Design Verification . 59
7.5. Full-Scale Testing . 61

8. Discussion 65
8.1. Velocity Measurements . 65
8.2. Lack of Full-Scale Experiments . 66
8.3. Modeling and Simulation Issues . 66

9. Conclusion and Further Work 69
9.1. Conclusion . 69
9.2. Recommendations for Further Work 70

Bibliography 73

A. Contents of Attached Folder 75

B. Simulink: Joystick simulator 77

viii

Nomenclature

Abbreviations

BFM Bi-Phase Mark
CAD Computer-Aided-Design
CFD Computational Fluid Dynamics
CLF Control Lyapunov Function
D-H Denavit-Hartenberg
DLS Damped Least-Squares
DOF Degrees-of-Freedom
EMI Electromagnetic Interference
FM-1 Frequency Modulation 1
IK Inverse Kinematics
RFFM Raptor Force Feedback Manipulator
RMRC Resolved Motion Rate Control
ROV Remotely Operated Vehicle
RSD Remote Servo Driver
SF SUB-fighter
SVD Singular Value Decomposition
VIs Virtual Instruments
VSS Variable System Structure

ix

Symbols

C(q, q̇) Centrifugal and Coriolis matrix
D(q) Inertia matrix
δ0 Vector of unmodeled dynamics
δτ Vector of additive disturbance terms
F (q̇) Friction vector
G(q) Buoyancy and gravity vector
H Homogeneous transformation matrix
Ib Body fixed inertia tensor
J Jacobian matrix
K Kinetic energy
L Lagrangian
ω Angular velocity
P Potential energy
ψ Alternative signum function
q Joint angles
R Rotational matrix
S Skew symmetric matrix
T Transformation matrix
τ Torque vector
Θe Minimal representation of the orientation
V Lyapunov function
v Linear velocity
|p| The absolute value of a scalar p
‖x‖ The Euclidean norm of a vector x
‖x‖p The p-norm of a vector x

ξ High-pass filter
y System output
yd Desired system output
z Sliding surface

x

Chapter 1

Introduction

The field of robotics has evolved rapidly over the past twenty years. Advances in
computer and sensor technology has made it possible to create more accurate and
faster robots for a great number of applications. While the term robot often has
been widely used, this thesis will treat the operator controlled manipulator. This is a
mechanical arm that can perform humanoid tasks in cases where the use of humans is
considered either unpractical or uneconomical. In the marine industry, the computer
controlled manipulator is often used in connection with an ROV to maintain and
perform tasks at sub sea installations. These devices are extremely complicated and
a great deal of knowledge of robotic theory is therefore required in order to give
an analytical description of the system. This thesis will give a presentation of the
fundamentals of robot modeling, including inverse kinematics and dynamics, and
nonlinear robot control. The final goal is to guide the reader through the making
of a dynamic model, an inverse kinematics algorithm, and a model based control
system for the Raptor manipulator system. Simulations are then carried out to
visualize the result and check the validity of both model, controller, and inverse
kinematics algorithms.

This chapter will first give an introduction to the motivation of this thesis. Next,
an outline and the contributions of this thesis will be presented.

1.1 Motivation

The term Remotely Operated Vehicles (ROV) refers to an underwater vehicle phys-
ically linked trough a tether to an operator on board a ship or installation. The
vehicle is thus powered, and control signals are sent, through this tether. The fact
that ROVs are unoccupied and highly maneuverable makes them ideal to perform
operations that are hazardous or impossible to perform by humans. Throughout
the history, professional divers have been used to perform some of the same tasks.
Unfortunately, this resulted in heavy after effects for the divers. Also, as the oil and
gas industry moves out into deeper water, the use of professional divers becomes im-
possible. Design and control of ROVs are therefore highly relevant for the modern

1

Chapter 1. Introduction

industry.

Most ROVs are equipped with one or two manipulators to expand the capability
of the ROV. These manipulators are typically fitted with a specialized tool or a
gripper. The gripper are able to perform a variety of tasks, and special tools are
made to match the gripper. For instance, if a bolt is to be loosened, the ROV will
be equipped with a torque tool made such that the gripper easily can handle it. The
manipulator can also be used to perform other tasks, such as collecting samples,
picking things up, or perform maintenance.

There exists numerous types of robot manipulators, all depending on application.
Most small industrial manipulators are actuated by electric motors. Manipulators
that are used under water, are normally hydraulically powered. These manipulators
are unrivaled in their speed of response and torque producing capability. On the
other side, the drawbacks of hydraulic powered manipulators are that they tend
to leak hydraulic fluid, requires more maintenance, and are noisy. Electric driven
manipulators are both cheaper, cleaner, and less noisy. When it comes to geometry,
most manipulators have six or fewer DOF. Also, there are not that many different
kinematic compositions. In fact, the evolution of manipulator is partly a result of
the difficulties involved in the problem of inverse kinematics.

From a control perspective, modeling of robot manipulators are important because
it enables the creation and testing of different controllers. These controllers can be
used to make the manipulator perform advanced and accurate tasks, and that with
a user-friendly interface.

1.2 Outline

• Chapter 2: The concept of telerobotics is given as a closer introduction to
the topic of interest. The chapter includes both a historical perspective on the
concept and a summary of the different control architectures involved.

• Chapter 3: The subject of differential kinematics and dynamics is first pre-
sented to form a theoretical foundation. Then, a simplified model of the Raptor
manipulator is introduced. The dynamics of this model is derived using the
method of Euler-Lagrange.

• Chapter 4: The topic of inverse kinematics is thoroughly explained. Differ-
ent solutions, depending on the kinematic structure of the manipulator, are
suggested and introduced.

• Chapter 5: This chapter deals with the problem of controlling the manip-
ulator. An introduction to general control is given, the control objective is
defined, and a model based nonlinear control algorithm is designed.

• Chapter 6: The relevant concepts of digital communication are explained
to facilitate the development of the interface between manipulator and user
computer.

2

1.3. Contributions

• Chapter 7: The derived model, control algorithm, and inverse kinematics
solutions are verified through simulations. The model calculations are first
controlled by simulating the model when no control forces are applied. Two
chosen IK algorithms are then tested and compared. Next, the full system,
including the sliding-mode algorithm, is simulated to verify and tune the con-
troller. Finally, a brief presentation of the full-scale LabVIEW implementation
of the control system is given.

• Chapter 8: A short discussion of different issues that have been encountered
and different choices that have been made during the work are presented.

• Chapter 9: The work done throughout this thesis is concluded and proposals
for further work are stated.

1.3 Contributions

• Chapter 2: A compact and concise overview of the topic of telemanipulators
are presented.

• Chapter 3: A simplified model of the Raptor manipulator is suggested. The
dynamic model of this manipulator is then derived. A step by step procedure
for calculating the involved matrices are given.

• Chapter 4: Different inverse kinematics solutions are presented in a clear
manner and suggested for the given application.

• Chapter 5: A model based sliding-mode controller that handles parameter
uncertainties and unknown disturbance is derived.

• Chapter 6: The characteristics of the communication system are summarized
and clarified.

• Chapter 7: Simulink models are made, and simulations performed, for the
complete system. The control system is rewritten into LabVIEW code and
thereby prepared for full-scale testing.

1.4 Software

Three different computer programs have mainly been used to solve the assignment
of this thesis. A brief introduction to these programs and their area of utilizations
will be given beneath.

Maple 14

Maple is a technical computing software for doing symbolic, numeric and graphical
computations. The program is developed and sold by Waterloo Maple Inc., also

3

Chapter 1. Introduction

known as Maplesoft [15]. Because of the efficiency and flexibility in symbolic com-
putations, Maple has been used to derive the dynamic model and kinematics of the
robot manipulator.

MATLAB R2011b with Simulink 7.8

MATLAB, or Matrix Laboratory, is a high-level programming language and a nu-
merical computing environment developed by MathWorks [17]. MATLAB allows
algorithm development, data analysis, visualization, and numerical computation
faster than traditional computer languages. In addition, MATLAB also offers a
tight integration with other MathWorks products, such as Simulink. Simulink is a
tool for modeling, simulation, and analyzing multi domain dynamic systems. Its
primary interface is a graphical block diagramming tool and a customizable set of
block libraries. MATLAB and Simulink has been used to simulate the dynamic
model of the manipulator, and to present the results graphically.

LabVIEW 2011

LabVIEW is a system design software developed by National Instruments [10]. The
name LabVIEW is an abbreviation for Laboratory Virtual Instrumentation Engi-
neering Workbench. The programming language in LabVIEW is often referred to as
G and is a so called data flow, or visual, programming language. Execution is thereby
determined by the structure of a graphical block diagram on which the programmer
connects different functions by drawing wires. These wires propagate variables, and
any function can be executed as soon as all its input data are available. LabVIEW
programs, or subroutines, are called virtual instruments (VIs). Each VI consists of
a block diagram, a front panel, and a connector panel. The front panel is a user in-
terface to the block diagram, while the latter is used to represent the VI in the block
diagram of other VIs. Controls and indicators on the front panel allows the user to
extract data from or input data to a running VI. However, the front panel can also
serve as a programmatic interface. A virtual instrument can therefore be run as a
single program or as a subroutine within another block diagram. This means that
subroutines easily can be tested before being embedded into a larger program. In
this thesis, LabVIEW has been used to make a software suitable for controlling the
robot manipulator in real time.

4

Chapter 2

Telerobotics

Telerobotics simply refers to a robot controlled by a human operator (Siciliano and
Khatib [24]). Normally, the operator and controlled robot are separated by some sort
of barrier. This barrier may be imposed by distance, but also by for instance haz-
ardous environments. In other words, telerobotics deals with overcoming these bar-
riers by remote-controlling a robot at the environment, as shown in Figure 2.1.

Figure 2.1: Concept of a telerobotic system, adapted from Ferrell and Sheridan [6]

As Figure 2.1 also shows, a telerobotic system is often split into two different sites.
The human operator, and all components to support the interaction between man
and system, are referred to as the local site. Examples of these components are
joysticks, keyboards, and monitors. The remote site, on the other hand, contains
the remote-controlled robot, sensors and control elements.

This chapter will give further introduction to the field of telerobotics. First, the
historical development of the telerobotic system will be presented. Next, some im-
portant control architectures within the field will be introduced.

5

Chapter 2. Telerobotics

2.1 Historical Perspective

Ever since prehistoric times, humans have developed tools to ease and enable daily
life tasks such as hunting and preparation of food. In modern times, tools are used
for a wide range of applications. Treatment of hazardous goods are certainly one
application that became relevant as the military began to work on nuclear substances
in the 1940s (Mollet [20]). This lead to the development of a new type of tool, namely
the telemanipulator. These manipulators were made to increase the dexterity and
range of the human operator. In this way, one could perform simple tasks without
risking human lives. The first telemanipulators were in fact electrical, controlled by
simple relays(Siciliano and Khatib [24]). Unfortunately, they were slow and hard
to operate. Raymond C. Goertz therefore developed a pair of mechanically linked
master-slave robots. The intention was to connect the remote device as tightly and
as compatibly as possible with the operator. In this way, the operator should feel
and perform the tasks as if he was present at the remote site (Ferrell and Sheridan
[6]). This system allowed the operator to use muscle force and hand movements to
operate the slave robot while having direct view of it. On the negative side, the
system had some clear limitations in both workload and distance between operator
and slave. Goertz soon improved these limitations by discovering the advantage of
electrically coupled manipulators. This discovery is said to be the foundation of
modern telerobotics.

Later, in the 1960s, a minimal distance between the master and the slave was im-
posed. This was done to protect the operator from the great forces of the slave
manipulator. However, this lead to another problem, namely time delays. To deal
with this problem the concept of supervisory control was introduced. The approach
allowed the operator to specify tasks at a high level, which again helped reducing
the problem of delays. The concept of supervisory control also inspired the following
development of theoretical based control.

2.2 Control Architectures

Normal robotic systems performs movements and actions based on an automated
process. Telerobotic systems, however, require commands from and provide sensor
information to the user (Siciliano and Khatib [24]). The control architecture of
the telerobotic system can be categorized according to the style and level of this
connection. The three main control architecture categories are direct control, shared
control and supervisory control. These categories will be explained beneath.

2.2.1 Supervisory Control

The supervisory control was introduced by Ferrell and Sheridan [6] in 1967. As
mentioned, the architecture was introduced to deal with the problem of time delays
in telerobotic systems. Supervisory control therefore implies that user’s commands

6

2.2. Control Architectures

Human Operator

Display Control

Computer

Sensor Actuator

Task

Control loop
closed through
computer

Figure 2.2: General model of supervisory control system

and feedbacks are given at a very high level. This requires a significant amount
of autonomy and intelligence in the system. In Figure 2.2, a general model of
supervisory control, as described by Sheridan [22], is given. In comparison, a fully
automated control scheme would have no user commands sent from the operator,
while a direct control scheme would have no significant computer assistance.

2.2.2 Shared Control

In some situations it can be beneficial to allow the human operator and the embedded
controller to share control over the slave manipulator. In risky operations or long
distance applications this can help to increase the safety of the remote operation.
This type of control is referred to as shared control and is somewhere between
supervisory and direct control when it comes to degree of automation. In a shared
control robotic system, the human operator does most of the work by guiding the
master manipulator as wanted. At the same time, the system monitors the operator’s
performance and provides stability and support through active constraints. If these
constraints are superimposed into the visual or haptic scene of the operator, they
are called virtual fixtures. These fixtures can help humans perform very precise
robot assisted tasks by limiting the movement into restricted regions or influencing
movement along a desired path (Abbott et al. [1]). The well balanced combination
of human control and autonomy is well suited for tasks that requires both accuracy
and the ability to make logical decisions. Such applications includes robot-assisted
surgery and manipulation tasks in hazardous environment.

7

Chapter 2. Telerobotics

2.2.3 Direct Control

As the name suggests, direct or manual control implies no automation within the
system (Siciliano and Khatib [24]). In that way, the slave motion is directly con-
trolled by the operator via the master interface. The fact that all control commands
are sent to the remote site via communication channels makes direct control un-
suitable in some cases (Urbancsek [32]). Depending on the distance between local
and remote site, the signals might come with a fairly significant delay. However,
to avoid complications in creating local autonomy, most telerobotic systems include
some degree of direct control.

Roughly speaking, direct control can be divided into two sub categories: unilateral
and bilateral control. The basic ideas and issues connected to these two concepts
will be explained beneath.

Unilateral Control

Unilateral control means that the telemanipulator is controlled directly by a master
input device. This device is normally a spring centered joystick and the operator
commands are thereby proportional to the joystick displacement. The slave manip-
ulator will only respond to movement of the master controller (TeleRobotics [29]).
Ergo, pushing or pulling the slave manipulator will not affect the master joystick,
hence unilateral control.

The three most common control modes for controlling telemanipulators with joy-
sticks are: position, rate, and acceleration control. The two latter modes can require
substantial effort for the operator to reach and hold a given target position. How-
ever, these modes requires no kinematic coupling or synchronization of the master
and the slave. Position control of a telemanipulator normally means that the op-
erator can specify the position of the end-effector by using a joystick. The biggest
challenge connected to this control mode is the mapping between master and slave
positions. It is important to keep in mind that the master and the slave might not
always be coupled. When the system is turned on, the master and slave robots
may be positioned differently. Also, some systems allows a temporary disconnection
between the two sites. This is known as clutching or indexing (Siciliano and Khatib
[24]). A solution to this problem is to allow for offsets between the master and the
slave.

Bilateral Control

In bilateral control, the human synchronously manipulates and perceives the result-
ing reaction force through direct feedback. If this perception happens through the
master robot, i.e. the operator feels the reacting force, it is referred to as force feed-
back. When using force feedback, both sites of a master-slave system will respond
to movement of either the master or the slave (Hirche et al. [9]). This feature is
incorporated to increase the sense of being present at the remote environment. The

8

2.3. The Raptor Manipulator System

final objective is to gain the operators ability to perform complex tasks. On the
negative side, bilateral control involves a lot of communication and thereby often
delays. This may cause challenging stability issues.

There are two basic force feedback architectures that are used, namely position-
position and position-force. The first represents the simplest case of master-slave
coupling. Here, both robots are equipped with a tracking controller in order to
follow each others positions. Both the master and the slave will be subjected to
forces. Whether or not these forces are equal in magnitude or scaled depends on the
similarities of the two robots. It is also worth noting that the master manipulator
also will be subjected to inertial, friction, and other dynamic forces from the slave.
This issue is not present at the position-force architecture. Here, a force sensor
placed on the slave’s end-effector provides the force feedback. The human is thereby
able to only experience the external forces acting on the slave. Unfortunately, this
architecture has bigger stability issues.

2.3 The Raptor Manipulator System

The Raptor is a teleoperated master-slave manipulator system designed for usage
under water or in other human hostile environments [30]. The system includes an
optional position-position force feedback capability. As said, this means that both
static and dynamic forces acting on the slave manipulator are reflected back to
the operator through the force feedback mini-master as scaled forces. The build
in control system also includes automatic manipulator stove and deploy functions,
automatic self test, and programmable task execution. A complete description of
the system and start up procedures can be found in the Raptor System Manual
[30].

Figure 2.3 gives a description of the standard configuration of the system.

Figure 2.3: Standard configuration of the Raptor manipulator system

9

Chapter 2. Telerobotics

10

Chapter 3

Robot Modeling

The Raptor manipulator is produces by Kraft TeleRobotics [29]. Their website
presents a data sheet containing relevant, but very limited information about the
manipulator. This information is not sufficient to derive an accurate model of the
Raptor manipulator, and thus a simplified model must be made and appropriate
assumptions must be done. This chapter will present some of the given relevant
information. An introduction on how to derive the differential kinematics equation
will then be presented. Next, the simplified model will be introduced and the equa-
tions of motion for this model will be derived. The derivations will result in very
large expressions, thus these are not given in the text. However, a precise procedure
on how the model has been derived is included.

3.1 Notation

Since this thesis involves a lot of mathematical expressions, a brief introduction to
the notation might be useful. First, all vectors and matrices are printed in bold face,
and all vectors and points are equipped with a superscript to denote the reference
frame. A coordinate system is written as oixiyizi, where the subscript i refers to
the frame number. A robot manipulator variable is represented by qi, where i refers
to the joint number. The set of joint variables is given as q = [q1, q2, · · · , qn]T . A
rotational matrix is written as Ri

j. The subscript j denotes the frame that will be
rotated, while the superscript i gives the resulting frame of the rotation. In some
derivation, the arguments of the matrices have been left out for convenience. In
addition, most symbols are explained in the nomenclature.

3.2 Operational Space, Workspace and Joint Space

The end-effector, or the last link of a serial robotic manipulator, is designed to
interact with the environment. The exact nature of the end-effector depends on
the application of the robot, but in most cases it consists of a gripper or a tool. If

11

Chapter 3. Robot Modeling

the manipulator is set to execute a task, the end-effector pose is important (Mathia
[16]). In the three-dimensional case, the pose consists of both a 3×1 position vector
p, often given in Cartesian coordinates, and a 3 × 1 orientation vector Θ, given in
Euler angles. Thus the end-effector pose is given as

x =

[
p
Θ

]
, x ∈ R6 (3.1)

This representation is referred to as the operation space (Khatib [12]) because it is
defined in the space in which the manipulator operations are specified in.

The joints of a robot manipulator are usually physically constrained and thereby
restricted from moving arbitrarily. As an example, a revolute joint might not be
able to rotate a full 360 degrees due to its physical environment. These constraints
leads to a subcategory of the operation space, namely the workspace. This is defined
as the total volume swept out by the end-effector when the manipulator executes all
possible motions. In other words, this region is limited by the upper and lower limits
of the joints, and the manipulator geometry. Further, the workspace is often divided
into reachable workspace and dextrous workspace (Spong et al. [27]). The dextrous
workspace is defined as the set of point the manipulator can reach with an arbitrary
orientation, while the reachable workspace includes all points the manipulator can
reach without considering the orientation. The reachable workspace for the RFFM
is given in Figure 3.1.

Figure 3.1: Workspace of the Raptor manipulator

The joint space, also referred to as the configuration space, is the the space in
which all configurations are defined in. Due to the assumption of joints with only
a single DOF, a robot manipulator with n number of joints has n DOF (Campa
et al. [4]). The configuration of the robot is thereby described by a set of n joint
coordinates:

12

3.3. Differential Kinematics

q =
[
q1 q2 · · · qn

]T
, q ∈ Rn (3.2)

If a robot is set to perform a task specified in the three-dimensional space with
a given position and orientation, the task can be specified by m DOF. To ensure
the accomplishment of the desired task, the DOF of the manipulator must satisfy
n ≥ m. In addition, if n > m, the manipulator is redundant, i.e. has more degrees
of freedom then those required to perform the given task.

3.3 Differential Kinematics

In the project thesis [8], a relationship between joint positions and the end-effector
pose was derived. These derivations can be used to develop a tool that connects
the joint velocities to the linear and angular velocities of the end-effector. This
tool is called geometric Jacobian and is a matrix that depends on the manipulator
configuration. The Jacobian is considered to be one of the most important quantities
within robot analysis and control.

If the end-effector pose is given by a minimal description, the Jacobian can be
calculated by differentiation of the forward kinematics function with respect to the
joint variables. This will result in a different Jacobian matrix called analytical
Jacobian.

3.3.1 The Geometric Jacobian Matrix

The geometric Jacobian, or simply Jacobian, is included in the differential kinematics
equations as follows

Ẋ =

[
v0n

ω0
n

]
=

[
Jv

Jω

]
q̇ = J0

n(q)q̇ (3.3)

Since there are both three angular and three linear velocities, the Jacobian matrix
J0
n will be a 6× n matrix, where n is the number of links.

The Jω matrix can be derived using some simple considerations. First, if joint i
rotates, link i will experience an angular velocity. Following the Denavit-Hartenberg
convention, this angular velocity can be expressed in the frame i− 1 by

ωi−1i = q̇k (3.4)

where k =
[
0 0 1

]T
is the unit vector in zi−1-direction.

13

Chapter 3. Robot Modeling

The total angular velocity of the end-effector ω0
n can now be written as

ω0
n =

n∑
i=1

ρiq̇ik
0 (3.5)

The presence of ρi is simply a way to exclude all prismatic joints as these will not
influence the angular velocity. This means that ρi = 0 if joint i is prismatic, and
ρi = 1 is joint i is revolute. The unit coordinate vector k needs to be expressed
relative to the base frame, thus k0 = R0

i−1k. This means that the Jω matrix is
given as

Jω =
[
ρ1k ρ2R

0
1k · · · ρnR

0
n−1k

]
(3.6)

The upper part of the Jacobian matrix Jv is now found by differentiating the linear
velocity of the end-effector frame ȯ0n

ȯ0n =
n∑
i=1

∂o0n
∂qi

q̇i (3.7)

The i-th column of Jv, denoted as Jvi, is then given by

Jvi =
∂o0n
∂qi

(3.8)

Unfortunately, this expression is not all simple to use. The expression only gives the
linear velocity of the end-effector with all joints but the i-th fixed and the i-th joint
actuated at unit velocity. It is therefore necessary to evaluate all joints separately
to produce the upper part of the Jacobian Jv.

However, according to Spong et al. [27], these derivations will result in the expression
given in (3.9) if the type of joint is taken into consideration.

J i =

[
Jv,i

Jω,i

]
=

[
zi−1 × (on − oi−1)

zi−1

]
if joint i is revolute[

zi−1
0

]
if joint i is prismatic

(3.9)

Since all joints on the Raptor manipulator is revolute, the geometric Jacobian matrix
is of the form

14

3.3. Differential Kinematics

J0
6(q) =

[
J1 J2 J3 J4 J5 J6

]
(3.10)

=

[
z0 × (o6 − o0) z1 × (o6 − o1) · · · z5 × (o6 − o5)

z0 z1 · · · z5

]
.

3.3.2 The Analytical Jacobian Matrix

Normally, the end-effector pose is described by a position vector and the three unit
vectors of the attached frame (ne,se,ae)(Siciliano and Sciavicco [25]). This repre-
sentation is quite difficult and may be inconvenient to use in practical situations.
Therefore, the end-effector pose is at times specified in terms of a minimal number
of parameters. The position of the end-effector reference frame pe is still described
by a minimal number of coordinates. However, now the orientation relative to the
base frame is specified in terms of three Euler angles Θe = [φ θ ψ]T (Siciliano and
Sciavicco [25]). Consequently, it is possible to describe the end-effector pose by the
following vector

Xe =

[
pe
Θe

]
(3.11)

If the end-effector pose is specified in these manners, the Jacobian can be obtained
by differentiation of the forward kinematics equations with respect to the joint vari-
ables:

ṗe =
∂pe
∂q
q̇ Θ̇e =

∂Θe

∂q
q̇ (3.12)

⇓

Ẋe =

[
ṗe

Θ̇e

]
=

[∂pe
∂q

∂Θe

∂q

]
q̇ = JA(q)q̇ (3.13)

The resulting matrix is called an analytical Jacobian and is in general different from
the geometric Jacobian. For a given set of orientation angles, it is possible to find
a relationship between the angular velocity ωe and the rotational velocity Θ̇. This
relationship can be derived in several ways, for instance (Fossen [7]):

ωe =

φ̇0
0

+RT
φ

0

θ̇
0

+RT
φR

T
θ

0
0

ψ̇

 = T−1Θ Θ̇ (3.14)

where, in this case,

15

Chapter 3. Robot Modeling

T−1Θ =

1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

 (3.15)

⇓

TΘ =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (3.16)

Once this transformation matrix is given, the analytical Jacobian can be calculated
by the geometric Jacobian as

JA(q) =

[
I 0
0 TΘ

]
J(q) (3.17)

The analytical Jacobian is often used in situations where it is necessary to use
differential quantities of variables defined in the operational space.

3.4 Dynamics

So far, the kinetic equations has been used to describe the motion of the robot
manipulator. These equations does not take into account the forces that causes the
motion. The dynamic equations, on the other hand, describes a connection between
force and motion, and is thereby decisive when analyzing a dynamical system. There
are several ways of deriving the dynamic equations of a mechanical system, but this
thesis will use the well known Euler-Lagrange method.

3.4.1 Euler-Lagrange Equations of Motions

The Euler-Lagrange equations of motions describes the dynamic behavior of a me-
chanical system subjected to holonomic, or geometric, constraints. Holonomic con-
straints represents a restriction in the configuration space of the mechanical system
(Mettin [19]), i.e. the links are not free to move in an arbitrary direction, but are
constrained by the joints. The equations can be derived using the principle of virtual
displacements and the principle of virtual work. These derivations are thoroughly
covered in Spong et al. [27] and will therefore not be treated in this paper.

The Euler-Lagrange equations of motions takes the following form

d

dt

∂L
∂q̇i
− ∂L
∂qi

= τi i = 1, ..., n (3.18)

16

3.4. Dynamics

where

L = K − P (3.19)

is known as the Lagrangian, while K is the kinetic energy and P is the potential
energy of the system. qi, i = 1, ..., n denotes the set of generalized coordinates. In
this case these are given by the joint angles. Generalized coordinates are simply the
minimum set of variables needed to successfully define any point in a rigid body
(Spong et al. [27]).

The formulation is often referred to as the Lagrangian formulation and provides a
fairly simple and systematic procedure for deriving the dynamics of a robot ma-
nipulator. The algorithm is, due to the presence of kinetic and potential energy,
an energy based method. Another key aspect of this method is the independence
of reference frames. As long as the Lagrangian of the system has been derived,
the equations of motion can be found without regards of the body fixed coordinate
frames.

Therefore, when using this method, the real problem comes down to determining
the kinetic and potential energy of the system. A concise explanation on how these
quantities are found will thus be presented in section 3.4.2 and 3.4.3

3.4.2 Kinetic Energy

The kinetic energy of a robot manipulator with rigid links can be found as the sum
of the kinetic energy of each link

K =
n∑
i=1

Ki (3.20)

Further, it is well known that the translational contribution can be given as

Ktrans,i =
1

2

∫
Vi

vTi viρ dVi =
1

2
miv

T
i vi (3.21)

The rotational contribution can be found by considering a simple, scalar case. As-
sume that there exist a rigid pendulum that moves in a pure rotation about a fixed
axis. In this way, every point on the body moves in a circle and the linear velocity
at a distance r from the origin can be found as

v = rω (3.22)

17

Chapter 3. Robot Modeling

A combination of (3.22) and the expression for translational kinetic energy gives

Krot,i =
1

2
miv

2 =
1

2
mir

2ω2 =
1

2
Iiω

2 (3.23)

where Ii = mir
2 is the moment of inertia of the body. In the non-scalar case, this

expression becomes

Krot,i =
1

2
ωTI iω (3.24)

The I i matrix denotes the inertia tensor of link i, given with respect to the fixed
global reference frame. The inertia tensor is normally calculated in the body fixed
frame, but since all linear and angular velocities are given with respect to the fixed
inertial frame, the inertia tensor must also be given in this reference frame. It can
be shown that the body fixed inertia tensor I i,b can be represented in the global
coordinate frame by the relation given in (3.25).

I i = R0
i I i,bR

0
i

T
(3.25)

The kinetic energy of each rigid link can now be stated as

Ki =
1

2
miv

T
i vi +

1

2
ωTi RiI i,bR

T
i ω (3.26)

Combining (3.26) with former derived expressions gives the kinetic energy of an
n-link robot manipulator

K =
1

2
q̇TD(q)q̇ (3.27)

where

D(q) =
n∑
i=1

[miJvi(q)TJvi(q) + Jωi
(q)TRi(q)I i,bRi(q)TJωi

(q)] (3.28)

is an n × n symmetric positive definite matrix and is referred to as the inertia
matrix.

18

3.4. Dynamics

3.4.3 Potential Energy

Since this is a system of rigid bodies, the only contribution to the potential energy
is the gravity. This means that the potential energy can be stated as

P =
n∑
i=1

gT rcimi (3.29)

where g is the gravitational vector given with respect to the inertial frame, mi is
the mass of link i, and rci is the vector from the origin to the center of mass of link
i.

3.4.4 Equations of Motion

In the attempt of deriving the equations of motion, the kinetic energy is rewritten
as

K =
1

2
q̇TD(q)q̇ =

1

2

n∑
i,j=1

dij(q)q̇iq̇j (3.30)

The Lagrangian is then given as

L = K − P (3.31)

=
1

2

n∑
i,j=1

dij(q)q̇iq̇j − P

The terms in (3.18) are now calculated as

d

dt

∂L
∂q̇k

=
∑
j

dkj q̈j +
∑
i,j

∂dkj
∂qi

q̇iq̇j (3.32)

∂L
∂qk

=
1

2

∑
i,j

∂dij
∂qk

q̇iq̇j −
∂P
∂qk

(3.33)

Thus, the equations of motion can be written

n∑
j=1

dkj q̈j +
n∑

i,j=1

[
∂dkj
∂qi
− 1

2

∂dij
∂qk

]
q̇iq̇j −

∂P
∂qk

= τk (3.34)

19

Chapter 3. Robot Modeling

By rearranging terms, the equation can be written as

n∑
j=1

dkj q̈j +
n∑

i,j=1

1

2

[
∂dkj
∂qi

+
∂dki
∂qj
− ∂dij
∂qk

]
q̇iq̇j −

∂P
∂qk

= τk (3.35)

where the terms

cijk =
1

2

[
∂dkj
∂qi

+
∂dki
∂qj
− ∂dij
∂qk

]
(3.36)

are referred to as Christoffel symbols of first kind. On matrix form, equation (3.35)
takes the following form

D(q)q̈ +C(q, q̇)q̇ +G(q) = τ (3.37)

where q ∈ Rn is the generalized coordinates, or joint positions; D(q) ∈ Rn×n is
the symmetric, bounded and positive definite inertia matrix; vector C(q, q̇)q̇ ∈ Rn

contains centrifugal and Coriolis terms; G(q) ∈ Rn is the vector of buoyancy and
gravity forces; and τ ∈ Rn is the torque vector applied at the joints.

In addition to the mentioned properties, both D(q) and C(q, q̇) in (3.37) satis-
fies

xT
[
Ḋ − 2C

]
x = 0, ∀x ∈ Rn (3.38)

3.5 Information from Data Sheets

The manipulator has a total of six hydraulically powered revolute joints, excluding
the gripper, hence six DOF. The total mass of the manipulator, including the base
frame, is 75 kg, and the maximum lift capacity is 227 kg. Some applicable dimensions
of the manipulators are given in Figure 3.2 and 3.3. Other relevant information, such
as maximum range of motion of the joints can be seen in the digital PDF file given
in Appendix A.

20

3.6. Modeling Set-up

Figure 3.2: Outline drawings of the Raptor Force Feedback Manipulator, side view

Figure 3.3: Outline drawing of the Raptor Force Feedback Manipulator, top view

3.6 Modeling Set-up

The information available in the data sheets is not sufficient to derive an accurate
dynamic model of the Raptor manipulator. No dynamic parameters for the links
are given, and there is not enough information to estimate these properly. Also, the
mass and mass distribution of each link is not given. Ideally these quantities should
be calculated by alternative identification methods like, for instance, CAD modeling,
but this requires more detailed information about the geometry and materials of the
manipulator. Due to these limitations, this thesis will propose a simplified model
and make some rough estimations of the mass. Necessary assumptions are made
and explained during the modeling set-up.

3.6.1 Simplified Model

The simplified model, given in Figure 3.4, is made to resemble the actual manipulator
is the best possible way with the limited information available. Each link is drawn
as a rectangle and all joints are represented by a cylinder. This is consistent with the
symbolic representation explained in the project thesis [8]. The attached reference
frames are chosen according to the D-H convention, and all reference frames follows
the right-hand rule. Also, a rotation is considered to be positive if it follows the
right-hand rule. The length of each link is denoted as Li for i = 1, · · · , 6 and given

21

Chapter 3. Robot Modeling

in Table 3.1

z
0

L
1

x
0

y
1

x
1

L 2

y 1 x 2

L
3 y

3

x
3

L
4

y
5

z
4

x
4

L
5

z
5

y
6

z
6

L
6

Figure 3.4: Symbolic representation of simplified manipulator model

L1 153 mm
L2 663 mm
L3 401 mm
L4 121 mm
L5 179 mm
L6 179 mm

Table 3.1: Link length of simplified manipulator model

3.6.2 Estimation of Mass

The mass of each link is estimated by assuming that there exist a connection between
volume a mass. The volume of each link is therefore roughly calculated on the basis
of the real manipulator. Knowing that the total mass of the manipulator is 75 kg,
the mass of link i is calculated as

Massi =
Volumei

Total Volume
· 75kg (3.39)

The calculated masses are given in Table 3.2.

3.6.3 Inertia matrix

Due to the mentioned lack of geometry information, the links are modeled as homo-
geneous, rectangular beams with a quadratic cross section. The symmetric property

22

3.6. Modeling Set-up

m1 7.32 kg
m2 31.90 kg
m3 19.30 kg
m4 13.30 kg
m5 1.2 kg
m6 1.95 kg

Table 3.2: Estimated mass of each link

of these links, shown in Figure 3.5, implies that the inertia tensor becomes diagonal
and simple to calculate. The inertia tensor of the beam in Figure 3.5 is shown in
(3.40) and gives the structure of all inertia tensors for this manipulator. It has also
been assumed that all cross sections are equal, ie. width = height = 127mm. This
is, of course, not correct since the weight of links with same length are assumed to
be different, but since the assumptions already are rough and inaccurate, this is not
taken account for.

Figure 3.5: Uniform Rectangular Solid

I =

 1
12
mi(b

2 + c2) 0 0
0 1

12
mi(a

2 + c2) 0
0 0 1

12
mi(a

2 + b2)

 (3.40)

3.6.4 Dynamic Model of Simplified System

The dynamic model of the simplified manipulator is derived in the same way as
described in section 3.4. The D-H parameters for the simplified model are given in
Table 3.3 and forms the base of these derivations.

The great number of DOF makes the calculations very extensive, and the resulting
matrices are thus very large. Therefore, these calculations are performed by the
help of the computational program Maple 14. Due to the great size of the resulting
D(q) and C(q, q̇), the terms and derivations are not included in this section, but
are given in Appendix A. Also, a complete procedure on how the calculations are
performed is given beneath.

23

Chapter 3. Robot Modeling

Procedure for calculating D(q) and C(q, q̇):

1. Form the homogeneous transformation matrices Ai by using the D-H conven-
tion.

2. Form the transformation matrices T 0
i = A1 · · ·Ai.

3. Establish the origin of each reference frame oi. These are given by the top
three elements in the fourth column of T 0

i .

4. Establish the z-vectors. These are given by the top three elements in the third
column of T 0

i .

5. Form the upper column vector of the Jacobian. With all revolute joints, these
are given as jvi = zi−1 × (on − oi−1).

6. Form the upper Jacobian matrix for each link. For example, Jvn =
[
jv1 · · · jvn

]
.

7. Form the lower Jacobian matrix for each link. With all revolute joints, these
are simply given as Jωn =

[
z0 · · · zn

]
.

8. Establish the rotation matrices R0
i . These comes from the 3× 3 matrix in the

top left corner of T 0
i .

9. Establish the inertia tensors I i for each link.

10. Calculate the stiffness matrix for each link: Di = miJ
T
viJvi + JTωiRiI iR

T
i Jωi.

11. Calculate the complete stiffness matrix D

12. Calculate Christoffel symbols: cijk = 1
2

(
∂D(k,j)
∂qi

+ ∂D(k,i)
∂qj

− ∂D(i,j)
∂qk

)
.

13. Determine the elements in the Coriolis/centrifugal matrix: C(k, j) =
n∑
i=1

cijkq̇i

Link ai αi di θi
1 a1 = 153mm 90 0 θ1
2 a2 = 663mm 0 0 θ2
3 a3 = 401mm 0 0 θ3
4 a4 = 121mm 90 0 θ4
5 0 -90 0 θ5
6 0 0 d6 = 480mm θ6

Table 3.3: The D-H Parameters of the Simplified Model

24

3.6. Modeling Set-up

Calculations of G(q)

The potential energy of the system is found by summing the potential energy contri-
butions of all links. By defining the base frame as the neutral point, it comes clear
that link 1 will give no contribution to the potential energy. The potential energy
of the remaining links is calculated beneath.

P2 =m2 · g ·
L2

2
· sin(q2) (3.41)

P3 =m3 · g ·
(
L2 · sin(q2) +

L3

2
· sin(q2 + q3)

)
(3.42)

P4 =m4 · g ·
(
L2 · sin(q2) + L3 · sin(q2 + q3) +

L4

2
· sin(q2 + q3 + q4)

)
(3.43)

P5 =m5 · g ·
(
L2 · sin(q2) + L3 · sin(q2 + q3)

+

[
L4 +

(
L5

2
· sin(−q5)

)]
· sin(q2 + q3 + q4)

) (3.44)

P6 =m6 · g ·
(
L2 · sin(q2) + L3 · sin(q2 + q3)

+

[
L4 +

((
L5 +

L6

2

)
· sin(−q5)

)]
· sin(q2 + q3 + q4)

) (3.45)

The ith row of the gravity and buoyancy vector G(q) is now found by differentiating
the total potential energy, given in (3.46), with respect to qi. This can be seen in
(3.47).

P =
6∑
i=1

Pi (3.46)

G(q) =
[
∂P
∂q1

∂P
∂q2

∂P
∂q3

∂P
∂q4

∂P
∂q5

∂P
∂q6

]T
(3.47)

The calculations of the elements in this vector can be seen in Appendix A.

25

Chapter 3. Robot Modeling

26

Chapter 4

Inverse Kinematics

When controlling a robot manipulator it is often necessary to find the joint variables
as a function of the position and orientation of the end-effector. In other words, the
joint values needs to be decided in order to position the end-effector at a desired
target pose. This is known as the problem of inverse kinematics (IK) and stands in
contrast to the forward kinematics problem.

Generally, the IK problem can be stated in matrix form as (Spong et al. [27])

T 0
n(q1, ..., qn) = A1(q1) · · ·An(qn) = H (4.1)

Where the matrixH is a homogeneous transformation and represents the desired po-
sition and orientation of the end-effector. On component form, this results in twelve
nonlinear equations in n unknown variables. The complexity of these equations
makes them hard to solve directly. In addition, there is an uncertainty regarding
the existence and uniqueness of the solution. The existence of a solution depends
not only on mathematical considerations, but also the physical limitations of the
manipulator. Revolute joints are, for instance, often restricted from rotating a full
360 degrees. Accordingly, after solutions to the mathematical equations are iden-
tified, the solution must be checked to see if it fits with the physical constraints
of the manipulator. Also, if a solution exist, it may not be unique, as implied by
Figure 4.1.

Figure 4.1: Two alternative solutions to the IK problem

27

Chapter 4. Inverse Kinematics

Depending on the joint axis geometry of the manipulator system, closed-form or
different numerical solutions to the IK problem can be determined. Generally, closed-
form solutions are preferable for two reasons. First, they allows one to generate
rules for choosing one solution over another. In this way, multiple solutions to the
problem will not cause any trouble. Second, a closed-form expression is a lot quicker
to compute than a heavy iterative search. Therefore, the robot is allowed to move
at greater velocities.

This chapter will first give a further presentation to closed-form solutions of the IK
problem. Next, an introduction to numerical methods for solving the IK problem
will be given. Since there exist an incredible number of numerical methods, this
thesis will only focus on methods based on the differential kinematics.

4.1 Closed-Form Solutions

In the attempt of finding a closed-form solution to the problem of IK, it is often useful
to consider the particular kinematic structure of the manipulator. By exploiting
this structure the problem can be decoupled into two simpler problems, namely
inverse position kinematics and inverse orientation kinematics. The simplification
is unfortunately only valid for manipulators having six joints, with the last three
joints intersecting at a point. However, this is a common kinematic arrangement
and is for that reason of great interest. In fact, the problem of IK has had a great
influence on how the manipulator design has evolved and thus most manipulators
are kinematically simple. Also, since there are few general methods for finding a
closed-form solution, this part will give a brief introduction on how to solve the
mentioned arrangement. In literature, this is known as a geometric approach.

The fact that the axes z3, z4, and z5 intersects at a point means that there is a spheri-
cal wrist at the intersection point. According to the Denavit-Hartenberg convention,
the origins o4 and o5 will then always be at the wrist center oc. Consequently, any
motion of the three last links about these axes will not influence the position of oc.
In addition, if z5 and z6 are the same axis, and the distance from oc to the desired
end-effector position o is given by d6, the coordinates of the wrist center can be
written as

o0c = o− d6R

0
0
1

 (4.2)

Using that o0c =
[
xc yc zc

]T
and o =

[
ox oy oz

]T
gives

xcyc
zc

 =

ox − d6r13oy − d6r23
oz − d6r33

 (4.3)

28

4.2. Numerical Solutions

Now the orientation transformation R0
3 can be found by determining the values of

the first three joint variables. Further, this can be used to derive the orientation of
the end-effector relative to o3x3y3z3 as follows

R3
6 = (R0

3)
TR (4.4)

Exactly how these computations are performed will not be further explained as these
can be seen in Spong et al. [27].

There also exist a second group of methods capable of providing closed-form solu-
tions. This type is called algebraic methods and involves algebraic manipulations
of the kinematic equations. It is clear that this method is mostly used on simple
kinematic structures with few degrees of freedom.

4.2 Numerical Solutions

For manipulators with high degrees of freedom, or for redundant manipulators, a
closed-form solution to the IK problem is very difficult. In some cases it might even
be impossible to obtain a closed-form solution, thus different numerical techniques
must be used (Meredith and Maddock [18]). These techniques are convenient due
to their scalability. They are not robot dependent and can thereby be applied to
any kinematic structure (Siciliano and Sciavicco [25]).

There exist a variety of numerical methods for solving the problem inverse kinemat-
ics. However, due to the large extent of the topic, this thesis will only focus on meth-
ods based on the inversion of the velocity mapping described in section 3.3:

Ẋ = J(q)q̇ (4.5)

Jacobian Inverse

If the Jacobian matrix is square, i.e. m = n, the joint velocities can be found by
simply inverting the Jacobian:

q̇ = J−1(q)Ẋ (4.6)

The corresponding joint positions q(t) are then obtained by integration of q̇(t) for
a given q(0). If joint accelerations are required, these can be obtained by differenti-
ation of joint velocities. In addition, a low pass filter should be included to remove
noise. The proposed solution is presented graphically in Figure 4.2. Of course, this
is only valid if J(q) is invertible. The method is often referred to as Resolved Motion
Rate Control (RMRC) (Whitney [35]).

29

Chapter 4. Inverse Kinematics

Figure 4.2: A proposed solution on how to derive the joint positions, velocities, and
accelerations by the RMRC method.

Jacobian Pseudoinverse

If the number of internal DOF is greater than the dimension of task space (n > m),
the manipulator is said to be redundant. The Jacobian of a redundant manipulator
will always be non-square, thus no inverse exist. However, equation (4.5) can still
be solved by using an alternative or generalized Jacobian inverse. This generalized
Jacobian is often denoted J+.

JJ+J = J (4.7)

J+JJ+ = J+ (4.8)

(J+J)∗ = J+J (4.9)

(JJ+)∗ = JJ+ (4.10)

If J+ satisfies all four above mentioned relationships, it is called a Moore-Penrose
pseudoinverse or simply pseudoinverse (Buss and Kim [3]). This matrix can be used
instead of J−1, as shown in (4.11), to obtain the best possible solution to (4.5) in
the sense of least-squares.

q̇ = J+(q)Ẋ (4.11)

For redundant manipulators, there will always exist a null space due to difference
in space dimensions (n 6= m). This null space is the set of task space velocities that
gives no joint space velocities at the current manipulator configuration. A common
way to include this null space in the solution was introduced by Liégeois [14] and is
given by

q̇ = J+(q)Ẋ + (I − J+J)b (4.12)

30

4.2. Numerical Solutions

where b ∈ <n is an arbitrary vector.

The pseudoinverse is normally calculated as shown in (4.13) and has some properties
that are similar to inverse matrices. In fact, if J is square and invertible, then
J+ = J−1.

J+ = JT (JJT)−1 (4.13)

Jacobian Transpose

A third alternative within RMRC is a solution based on the transpose of the Ja-
cobian. The principle is simple: use the transpose JT instead of the inverse J−1

to obtain the solution of (4.5). It is clear that JT 6= J−1, however the use of the
transpose can be justified in terms of virtual forces (Buss and Kim [3]). The method
is considered to be stable and fast due to its low computational cost, but has poor
quality (Siciliano [23]). Another advantage of the solution is that it may avoid nu-
merical issues caused by kinematic singularities. On the negative side, the solution
tends to oscillate when target position is unreachable.

Damped Least-Squares

The pseudoinverse method is great for many applications, but it also suffers in terms
of stability near singularities. This occurs when the end-effector moves in a direction
not achievable by changes in joint angles. As a result, the joint velocities can become
arbitrarily large near these singular configurations. To prevent this from happening,
Wampler [34] and Nakamura and Hanafusa [21] came up with an approach called the
damped least-squares (DLS) method. This method is based on finding the solution
that minimizes the sum

∥∥∥Ẋ − Jq̇∥∥∥2 + λ2 ‖q̇‖2 (4.14)

where λ ≥ 0 and is known as the damping factor. In most of the literature, the
solution to this minimization problem takes the following form.

q̇ = (JTJ + λ2I)−1JTẊ (4.15)

This corresponds to a modified Jacobian matrix that is nonsingular throughout the
whole workspace. The problem is now to choose an appropriate damping factor λ.
Small values will give accurate solutions, but reduced robustness near singular points.
Large λ values will result in low tracking accuracy even when accurate solutions are
possible. Note that in (4.15), λmust be non-zero when the manipulator is redundant.

31

Chapter 4. Inverse Kinematics

However, using singular value decomposition, it can be shown that the solution to
the minimization problem also can be expressed as

q̇ = JT (JJT + λ2I)−1Ẋ (4.16)

This solution is also valid for λ = 0, provided J has full rank. In fact, it can be seen
that when no damping is applied (λ = 0), the case corresponds to the pseudoinverse
solution

λ = 0 (4.17)

⇓
q̇ = JT (JJT)−1Ẋ = J+(q)Ẋ

32

Chapter 5

Control of Robot Manipulator

The control problem for robot manipulators is the problem of determining the time
history of joint torques required to give the end-effector a desired motion. There
exist several control techniques and methodologies that can be applied to robot
manipulators, but this thesis focuses on the sliding-mode control technique. This
chapter will first give an introduction to the general control problem and try to
clarify the differences between joint space control and operational space control.
Next, the term tracking is explained, since this is chosen as the control objective
for the given manipulator. Finally, the basic idea and background of sliding-mode
control is presented, a proper sliding-mode controller is derived and proven stable,
and the term scattering is explained.

5.1 The Control Problem in General

In general, most robotic manipulators are fully autonomous, computer controlled,
and used in factories to perform repetitive tasks such as painting, welding, or trans-
portation of objects. The reference generation for these manipulators is fairly easy
because the given path or trajectory will be repeated several times and can be de-
signed in advance. The motion of the manipulator can also be programmed, or
taught, by physically moving the arm through the desired path and thereby logging
the time evolution of the joint angles. Other manipulators, such as the RFFM, might
be controlled by an operator. This means that the trajectories of the system must
be generated continuously. There are several ways of specifying these trajectories
and controlling the manipulator accordingly, all depending on whether the dynamics
are formulated in the operational space or, as in this thesis, in the joint space.

If the controller is based on the joint space dynamics, i.e. a joint space controller, the
desired trajectory must be given in terms of joint angles. This is often inconvenient
with regard to the operator, since these trajectories are not task oriented (Mettin
[19]). Thus, an operator will often prefer to specify the position of the end-effector
in the operational space, by for instance using a joystick. However, since the control
action is carried out in the joint space, an inverse kinematics algorithm is needed

33

Chapter 5. Control of Robot Manipulator

to transform the motion requirements xd into a corresponding motion qd given in
the joint space (Siciliano and Sciavicco [25]). A summary of suitable IK algorithms
are given in Chapter 4. The general scheme of joint space control can be seen in
Figure 5.1.

Inverse Kinematicsxd Controller Manipulator
u

Measurements

qd e q

−
q

Figure 5.1: General scheme of joint space control

Operational space controllers are more complex due to the fact that the inverse
kinematics are embedded into the feedback loop. This type of controllers have a
conceptual advantage in the way that they can act directly on operational space
variables. The general scheme of operational control is given in Figure 5.2.

Controller Manipulator
u

Measurements

xd e x
−

x

Figure 5.2: General scheme of joint space control

5.2 Tracking

According to Skjetne [26] and Fossen [7], the problem of tracking involves steering
the systems output y(t) ∈ Rn to a time dependent, desired output yd(t) ∈ Rn.
The desired output can be seen as a point in Rn moving as function of time, thus
a trajectory equal to the one we want our system to follow is traced out by this
point. The velocity and acceleration along this path is found by taking the time
derivative of yd(t). This means that tracking both will give a desired path and
make sure that the dynamics, i.e. the velocity and acceleration, along this path is
satisfied. Tracking is therefore more restrictive than other control objective, such as
path following, where the dynamics along the path is not important.

34

5.3. Sliding-Mode Control

5.3 Sliding-Mode Control

A robust nonlinear design technique for controlling complex nonlinear systems is the
sliding-mode control. This technique has been studied since the early sixties by the
name variable system structure (VSS). The name variable structure system stems
from the fact that the state-feedback control law is not a continuous function of
time. Instead, the controller can switch between continuous structures, depending
on the current position in the state space. The control structure of sliding-mode
control is designed such that the trajectories will move towards a sliding surface or
manifold. It is important that the trajectory converges to this surface in finite time.
As it reaches this manifold, the dynamics is ruled by a new control structure and
the trajectory will slide along this sliding surface. This means that the closed-loop
response becomes insensitive to disturbances and other uncertainties. The method is
therefore known for its robustness when it comes to modeling uncertainties, system
parameters variation, external disturbances. One negative aspect of sliding-mode
is that digital implementation of the controller can lead to a phenomenon called
chattering, and also possible instability with large gains. Chattering occurs due
to the limitations in sampling interval of switching devices. There are ways to
reduce, or possibly remove, this phenomenon. Some of these will be presented in
this paper.

5.3.1 The Concept of Sliding-Mode Control

By the definitions of Khalil [11], the basic idea of sliding-mode control is to design
a controller that constraints the motion of a system to a manifold z. If the given
system is SISO and written in the same form as (5.5) and (5.6), the manifold will
typically be

z = ax1 + x2, a > 0 (5.1)

On this manifold, i.e. z = 0, the dynamics of the system is ruled by ẋ1 = −ax1,
since z = 0 ⇒ x2 = −ax1 and ẋ1 = x2. This means that x(t) converges to zero at
time goes to infinity, and the motion on the manifold is therefore stable. This phase
is sometimes denoted as the sliding phase.

The next task is therefore to control the system such that it reaches this mani-
fold in finite time, also known as the reaching phase. Note that asymptotic stability
is not sufficient because this means that the system never will reach the manifold,
only converge towards it. The reaching phase is performed by making a sliding mode
controller that ensures that ż goes to zero in finite time and stays there. These slid-
ing mode controllers often include a signum function that can cause a phenomena
called scattering. An introduction to this phenomena and a proposed solution will
be presented in section 5.3.4.

35

Chapter 5. Control of Robot Manipulator

5.3.2 Problem Statement

The mathematical model of the robot manipulator has been derived previously and
is given in (3.37). However, in order to make the model as true as possible, friction
forces F (q̇) and disturbances δ0 are added. The friction force includes viscous
friction proportional to the joint velocity. Even though no information about the
possible friction force is given, it is assumed to be known. The disturbances acting
on the system are unknown, but assumed to be bounded by a known scalar. The
final dynamics then becomes

D(q)q̈ +C(q, q̇)q̇ + F (q̇) +G(q) = τ + δ0 (5.2)

Also, uncertainties and unmodeled dynamics in the actuators are assumed to be
captured by a multiplicative term K ∈ Rn×n and an additive term δτ . In (5.3) τ0

gives the actual torque input.

τ = Kτ0 + δτ (5.3)

For convenience, the states are rewritten as

x =
[
x1 x2

]T
=
[
q q̇

]T
(5.4)

A combination of (5.2),(5.3), and the new notation in (5.4) gives the following dy-
namic expressions

ẋ1 = x2 (5.5)

Dẋ2 = −Cx2 − F −G+Kτ0 + δ (5.6)

where the arguments of D(x1), C(x1,x2), F (x2), and G(x1) have been left out
for practical reasons, and δ is given as

δ = δ0 + δτ (5.7)

5.3.3 Derivation of Sliding-Mode Controller

As described in section 5.3.1 , a sliding manifold, or sliding surface, z must be
defined to ensure that the motion on this manifold converges to zero when time goes
to infinity. In this case, a proper sliding surface is given by

36

5.3. Sliding-Mode Control

z = x2 −α(x1, t) (5.8)

Now, z = 0 gives

x2 = α(x1, t) (5.9)

⇓
ẋ1 = α(x1, t) (5.10)

Since this is a tracking problem, the tracking error e1 must be defined as

e1 = x1 − qd (5.11)

The time derivative of the error ė1 then becomes

ė1 = α− q̇d (5.12)

If α1 is chosen as

α1 = −A(x1 − qd) + q̇d = −Ae1 + q̇d (5.13)

the error dynamics takes the following form

ė1 = −Ae1 (5.14)

The error dynamics is thus asymptotically stable if and only if for all eigenvalues λ
of A, Re(λ) > 0. Choosing the A matrix as a diagonal matrix with only positive
constants will certainly give the system asymptotic stability.

The time derivative of α̇ will come in handy later on and is therefore calculated
as

α̇1 = −Aė1 + q̈d = A2e1 + q̈d (5.15)

As convergence in the sliding phase is proven, it is time to develop a proper sliding
mode controller. First, the time derivative of the sliding surface can be written
as

37

Chapter 5. Control of Robot Manipulator

ż = ẋ2 − α̇ (5.16)

Multiplying all terms with D and inserting the expression for Dẋ2 given in (5.6)
leads to

Dż = −Cx2 − F −G+Kτ0 + δ −Dα̇ (5.17)

For simplicity, some terms are gathered and denoted as

φ = −F −G−Dα̇ (5.18)

which gives the following equation

Dż = φ+Kτ0 + δ −Cx2 (5.19)

In order to make a sliding-mode controller and prove that the system converges
to the sliding surface in finite time, a Control Lyapunov Function (CLF) will be
used. We suggests the CLF given in (5.20) for this purpose. This CLF satisfies the
required properties of Lyapunov functions given in (5.21) and (5.22). This is due to
the stated fact that the M matrix is positive definite.

V = zTDz (5.20)

V (0) = 0 (5.21)

V (x) ≤ 0 ∀ x ∈ [Rn − {0}] (5.22)

The derivative of V along the trajectories of the system is calculated as

V̇ = 2zTDż + zTḊz (5.23)

= 2zT [φ+Kτ0 + δ −Cx2] + zTḊz

= 2zT [φ+Kτ0 + δ −C(z +α1)] + zTḊz

= 2zT [φ+Kτ0 + δ −Cα1]− 2zTCz + zTḊz

= 2zT [φ+Kτ0 + δ −Cα1] + zT
[
Ḋ − 2C

]
z

Note that the final term in the last line corresponds to the property given in (3.38),
thus the final expression for V̇ is

38

5.3. Sliding-Mode Control

V̇ = 2zT [φ+Kτ0 + δ −Cα1] (5.24)

In order to prove that z goes to zero at a finite time, some assumptions on the
uncertainties must be done. First, it is assumed that the K matrix, representing
the multiplicative term in the actuator disturbances, is a simple diagonal matrix
with all positive constants. Also, the diagonal terms are assumed to be bounded
by a positive, real number k0 that is smaller than each term and a maximum value
kmax, thus

K = diag(k1, k2, · · · , kn) (5.25)

0 < k0 < ki < kmax i = 1, 2, · · · , n (5.26)

The disturbance vector δ is assumed to be bounded by

‖δ‖ ≤ ρ (5.27)

The vector ψ has the following form

ψ =

ψ1(z1)
ψ2(z2)

...
ψn(zn)

 (5.28)

where ψi, i = 1, 2, · · · , n, is an alternative to the mentioned signum function and
calculates by

ψi = (1 + ε1) tanh

(
zi
ε2

)
(5.29)

Here zi correspond to the i-th row of the z vector.

Further, there exists two constant matrices L and H given by

L = diag(l1, l2, · · · , ln) (5.30)

H = diag(h1, h2, · · · , hn) (5.31)

where the diagonal terms are larger or equal to a positive, real number l0 and h0,
respectively.

39

Chapter 5. Control of Robot Manipulator

The sliding-mode controller is then chosen to be

τ0 = −Lz − σHψ(z) (5.32)

This means that the derivative of V becomes

V̇ = 2zT [−KLz − σKHψ + φ+ δ −Cα1] (5.33)

Since all terms in K and L are assumed to be larger than k0 and l0, respectively, it
is easy to see that the first term in (5.33) becomes

−2zTKLz ≤ −2l0k0 ‖z‖2 (5.34)

The second term in (5.33) satisfy

−2σzTKHψ ≤ −2σk0h0 ‖z‖ ‖ψ‖ (5.35)

≤ −2σk0h0
1√
n
‖z‖ (5.36)

∀ ‖z‖ ≥
√
nε

when ε = ε1 tanh−1(1
1+ε2

).

The first equivalence, (5.35), is a result of (5.37), where the KH matrix must be
positive definite and diagonal (Skjetne [26]). This is certainly the case here, since
bothK andH are diagonal and only contains positive numbers. Also, the expression
only holds if the signs of z and ψ are equal, but since ψ denotes the signs of z, this
is not an issue for us.

zTKHψ ≥ koh0 ‖z‖ ‖ψ‖ (5.37)

Equation (5.36) can be shown by the use of Lemma 4.5 in Skjetne [26]:

1√
n
‖z‖ ≤ zTψ(z) ≤ ‖s‖ ‖ψ(z)‖ (5.38)

This is only true when ‖z‖ ≥
√
nε.

40

5.3. Sliding-Mode Control

To prove this, one have to use the equivalence between norm given in (5.39) and
(5.40)

‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2 (5.39)

‖x‖∞ ≤ ‖x‖2 ≤
√
n ‖x‖∞ (5.40)

Based on the requirement that the expression only holds when ‖z‖ ≥
√
nε, we

have

‖z‖2 ≥
√
nε (5.41)

⇓
‖z‖∞ ≥ ε (5.42)

Then, if zi represents the largest value in z, (5.40) gives

‖z‖∞ = |zi| (5.43)

⇓
zTψ(z) = z1ψ(z1) + z2ψ(z2) + · · ·+ znψ(zn) (5.44)

≥ ‖z‖∞ ≥
1√
n
‖z‖2 (5.45)

In sum, these derivations shows that

V̇ ≤− 2l0k0 ‖z‖2 −
2σ√
n
k0h0 ‖z‖ (5.46)

+ 2 ‖z‖ ‖φ−Cα‖+ 2 ‖z‖ ‖δ‖

≤ −2 ‖z‖
{
k0h0√
n
σ − ‖φ−Cα‖ − ρ

}
(5.47)

Now it is desirable to design σ such that z goes to zero in finite time and stays there.
This is done by choosing σ as

σ =

√
n

k0h0
{P + ‖φ−Cα‖+ ρ} (5.48)

where P is a positive constant.

41

Chapter 5. Control of Robot Manipulator

The resulting, and final, V̇ is then

V̇ ≤ −2P ‖z‖ ∀ ‖z‖ ≥ ε (5.49)

Hence, by Barbalat’s lemma (Khalil [11]), z converges to zero in finite time and
stays there.

5.3.4 Chattering

In practical applications of sliding-mode control, one may experience an undesired
phenomenon called chattering. This is caused by limitations and delays in the control
devices when the control algorithm is implemented digitally. Figure 5.3 shows an
example on how these delays can cause chattering. In an ideal world, the trajectory
of the system should start sliding on the sliding surface as soon as the trajectory
reaches the manifold. Unfortunately, this is not the case in the real world. Due to
the finite sampling rate of digital controllers and the fact that the control is constant
within a sampling interval, the sign of z changes before the controller switches, Khalil
[11]. During this delay, the trajectory of the system crosses the sliding surface into
the z < 0 area. As the trajectory moves back towards the sliding surface, the same
procedure occurs over and over again.

Figure 5.3: An illustration of the scattering phenomena

Another possible reason for this phenomenon can, according to Utkin and Lee [33],
be that fast dynamics of the system was neglected in the ideal model when designing
the controller.

Chattering is damaging because it results in low control accuracy, high wear and
tear of mechanical parts, and high heat losses in electrical power circuits.

There exist methods that will reduce or possibly remove the chattering phenomenon.
For instance, Khalil [11] presents a method of dividing the control into continuous
and switching components. The general idea is to reduce the amplitude of the
switching component and thereby reducing the switching. Another way of elimi-
nating the chattering problem is to use an alternative signum function, such as a
saturation function, given in (5.51), where ε denotes the slope. This will give a
smoother transition between the signs of z and thereby remove the problem. In this
paper, the hyperbolic tangent function given in (5.52) is used for this purpose. Here

42

5.3. Sliding-Mode Control

1/ε2 denotes the slope of the curve through the origin, while ε1 ensures that the
function exceeds the signum function when ‖z‖ ≥ ε1 tanh−1(1

1+ε2
) = ε. Both ε1

and ε2 are small positive numbers chosen by design.

In Figure 5.4, the conventional signum function is shown as a red line, the high-slope
saturation function as a green line, and the hyperbolic tangent function, as a blue
line. One can easily see that the hyperbolic function exceeds the signum function
and that this function makes the transitions smoother.

ψ = sgn(z) (5.50)

ψ = SAT
(z
ε

)
(5.51)

ψ = (1 + ε1) tanh

(
z

ε2

)
(5.52)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−1.5

−1

−0.5

0

0.5

1

1.5

z

(1+eps1)tanh(z/eps2)
sgn(z)
SAT(z/eps)

Figure 5.4: Plot of alternatives to avoid chattering.

43

Chapter 5. Control of Robot Manipulator

44

Chapter 6

Communication

Data communication is the transfer of data or information between a source and a
receiver. There exist a wide number of different data transfer methods, all depending
on the transmission media, mode, protocols, and so on. As described in Chapter 2,
all telerobotic systems depends on some sort of communication between the remote
site and the local site. Therefore, data communication is considered to be a very
important aspect of telerobotics.

According to the Raptor System Manual [30], the local site and the remote site
communicates through a half-duplex RS-485 serial link. These terms will all be
explained during this chapter. Also, since the system uses digital communication, a
brief introduction to the binary numeral system will be given.

6.1 Binary Numeral System

In computer technology, data is represented by a collection of on and off statements,
or switches (Kjos et al. [13]). This representation is convenient because it is easier
to design electronic systems when dealing with only two states. Numerically, the
states of these switches are represented by the digits 0 and 1, respectively, and since
there are two different states they are said to be binary. Further, a single memory
location in a typical computer is comprised of eight of these switches, or bits, and is
referred to as a byte of data. Since each bit contains two states, a byte has 28 = 256
possible states. Each of these states corresponds to an integer between 0 and 255
inclusive.

Numbers that are used in everyday life are written in what is known as decimal
notation. Each successive digit in a decimal format corresponds to the next higher
power of ten. For instance, the number 386 can be written as

386 = (3 · 100) + (8 · 10) + (6 · 1) (6.1)

= (3 · 102) + (8 · 101) + (6 · 100)

45

Chapter 6. Communication

Similarly, each successive digit in a binary format corresponds to the next higher
power of two, as shown in (6.2).

11001 = (1 · 24) + (1 · 23) + (0 · 22) + (0 · 21) + (1 · 20) (6.2)

= 16 + 8 + 0 + 0 + 1 = 25

Likewise, the byte which consists of all ones, i.e. the largest numbers that can be
represented in one byte, represents the number 255.

11111111 = 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 (6.3)

= 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

6.2 Hexadecimals

Since it is long and cumbersome to write eight digits in a byte, computer scientists
prefer a more economical representation. Breaking a byte into two, gives two four
bits sets. These sets are referred to as nibbles. A nibble, or four bits, can take 16
distinct configurations. Each of these 16 configurations can be represented by a single
digit character as given in Table 6.1. Since there are 16 different configurations, this
representation is called hexadecimal.

0000 - 0 1000 - 8
0001 - 1 1001 - 9
0010 - 2 1010 - A
0011 - 3 1011 - B
0100 - 4 1100 - C
0101 - 5 1101 - D
0110 - 6 1110 - E
0111 - 7 1111 - F

Table 6.1: Hexadecimal representation of nibbles

With hexadecimal, a byte can be represented with two digits instead of eight, like
shown in (6.4).

0 1 0 0︸ ︷︷ ︸
4

1 1 0 1︸ ︷︷ ︸
D

(6.4)

In the same way as shown for the decimals and binary numbers, the value of a
hexadecimal number can be represented by multiples of the power of 16. There-
fore,

46

6.3. Serial Communication

4D = (4 · 161) + (13 · 160) = 77 (6.5)

Finally, it is worth noting that for programming purposes the code 0x is propound
to hexadecimal numbers. This is just a way to distinguish between hexadecimals
and base 10 decimals.

6.3 Serial Communication

The concept of serial communication is fairly simple. Data consisting of multiple bits
are divided into single bits and then transmitted sequentially over a communication
channel (Zheng and Gallager [36]). The individual bits are then reassembled at
the receiving end to form the original data. As seen in Figure 6.1, this stands in
contrast to the concept of parallel communication, where a group of bits are sent
simultaneously through several channels. Although, serial transmission is slower
than parallel transmission, it is simpler to use and can be used for long distance
communication because it reduces noise.

Figure 6.1: Comparison of parallel (left) and serial communication (right)

Serialized data are generally not sent through the communication channels at a
uniform rate. Usually a group of regularly spaced data bits are followed by a pause
indicating the end of the data packet. Small packets of variable length are sent in
these manners until the message is fully transmitted. However, if the data packets
are to be combined into the original message, one need to known exactly when each
packet begins and how much time elapses between each bit. If this information
is known, the receiver is said to be synchronized with the transmitter. A basic
technique to ensure this synchronization is described in section 6.4.

The Raptor manipulator system uses a well known serial communication architecture
called RS-485. This and the technology behind it will be explained in section 6.5
and section 6.6.

6.4 Encoding

Encoding is the process of organizing a sequence of letters, numbers, and punctu-
ations into a specialized format for efficient transmission or storage. Decoding is

47

Chapter 6. Communication

the opposite process, namely to convert the specialized format back into the original
sequence. A simple and nearby example of encoding is the human way of translating
oral language into a written sequence of letters.

According to TeleRobotics [29], the RFFM uses Bi-Phase Mark (BPM), or Frequency
Modulation 1 (FM-1), encoding. This encoding combines data with clock signals to
form a single self-synchronizing data stream. Also, instead of encoding the signal di-
rectly, the BPM encoding uses a technique called differential coding. This technique
utilizes the presence or absence of transitions to indicate logical values. In order to
include clock information, the symbol rate of this encoding is twice the data rate.
In other words, there are two transmission bits for every data bit. The encoding is
said to be inefficient, but yet well suited for long distance applications.

As Figure 6.2 shows, every data bit interval begins with a clock edge. When the data
bit to be encoded is a one, a transition happens during the bit interval. Likewise, the
absence of a transition during the bit interval indicates an encoded zero value.

Figure 6.2: Example of Bi-Phase Mark encoding

6.5 Differential Signaling

Electronic data communication between devices will often fall into two different
categories, namely single-ended or differential. Single-ended signaling is the simplest
and most common method for transmitting signals through conductors. Here, the
signal is represented by a varying voltage carried through on wire. A differential
signal, on the other hand, is one that represents a value as the difference between two
physical quantities (Brooks [2]). Practically, this means that the signal is carried on
two conductors, and the signal value is the difference between the individual voltage
on each conductor. The two conductors are labeled V+ and V− respectively. When
V+ > V−, the resulting signal is defined as positive, while when V+ < V−, the
resulting signal is defined to be negative. In Figure 6.3, two sinusoidal signals are
oscillating about an average voltage of 2V. Offsetting the signal pair in this way
provides the maximum range of signal swing when the individual members of the

48

6.5. Differential Signaling

0 1 2 3 4 5 6 7 8 9

0

2V

time

 S
ign

al
Va

lue

 S
ign

al
W

av
ef

or
m

s
V+

V−

Figure 6.3: Basic idea of differential signal

pair are limited to a 0 − 4V excursion. The resulting differential signal is given by
the red graph.

When moving from a single-ended to a differential signaling scheme, one replaces a
single wire with a pair of wires, and thereby doubles the complexity of the associated
interface circuitry. However, there are several benefits of differential signaling that
outweighs the increased complexity. First, all voltages are measured with respect
to another voltage, for instance with respect to the ground voltage. If there is a
difference between the reference voltage in the transmitter and in the receiver, this
will change a signal carried on one conductor. The further apart the signal source
and the signal receiver are, the greater the likelihood of different reference signal. A
differential signal will not be affected by this phenomena since the difference between
the two signals will still be the same.

A second major advantage of differential signaling is that it is highly immune to out-
side electromagnetic interference (EMI) and crosstalk from nearby signal conductors.
An interference will affect both conductors equally, like shown in Figure 6.4, if they
are routed close enough. This means that the resulting differential signal not will
be affected. Also, differential signals tend to produce less EMI than single-ended
signals. This is because the two conductors create opposing electromagnetic fields
that often cancel each other out.

In the electronics industry there is an increasing tendency to lower the supply voltage
in order to save power and reduce unwanted emitted EMI. Normally, low supply
voltage causes problems because it reduces noise immunity. However, due to the
increased tolerance to EMI and noise, differential signaling is also suitable for low
supply voltages.

In summary, when communicating at high data rates, or over long distances, or

49

Chapter 6. Communication

using low supply voltage, differential signaling is preferred in most cases.

0 1 2 3 4 5 6 7 8 9
time

Re
su

ltin
g

Si
gn

al
 N

ois
e

 O
rig

ina
l S

ign
al

Figure 6.4: Effect of noise on differential signal

6.6 RS-485

In telecommunication, RS-485 is a standard for binary serial communications be-
tween devices. This standard, and several others, have been developed to insure
compatibility between devices provided by different manufacturers. The standard
is published by the Telecommunications Industry Association (TIA) [31] and is an
updated version of the well known and common RS-232 standard. The latter is
used in several devices on NTNU’s two ROVs, Minerva and SF 30K. RS-232 is a
single-ended standard that only allows the connection of two devices through a serial
link. RS-485, on the other side, uses differential signaling, which means that this
standard allows communication over longer distances than achievable with RS-232.
Also, as mentioned, the nature of differential signaling makes the RS-485 standard
less exposed to noise. It is also worth noting that the RS-485 interface supports 32
driver/receiver pairs in a so called multi-drop mode.

These standards states, among others, what types of connectors must be used and
which pins in those connectors must be used for each function. In Table 6.2 other
characteristics of the RS-485 communication standard are given.

50

6.6. RS-485

Differential Yes
Max number of drivers 32
Max number of receivers 32
Network topology Multipoint
Max distance 1200m
Max speed at 12m 35Mbs
Max speed at 1200m 100kbs
Receiver input resistance ≥ 12kΩ
Driver load impedance 54Ω
Receiver input sensitivity ±200mV
Receiver input range −7 . . . 12V
Max driver output voltage −7 . . . 12V
Min driver output voltage ±1.5V

Table 6.2: Characteristics of RS-485

51

Chapter 6. Communication

52

Chapter 7

Simulations and Results

The dynamic model, sliding-mode controller, and inverse kinematics algorithms de-
rived previously will now be verified through simulations. First, the manipulator is
simulated when no control forces are applied. The manipulator are then expected
to collapse under gravity and behave like a multi joint pendulum. Second, two
different IK algorithms are put to the test by using a joystick simulator. The full
system, including sliding-mode controller, is then simulated to verify the controller
and tune the control parameters. Finally, the basics of the real-time implementation
in LabVIEW is presented.

7.1 Simulation Structure

The model, including controller, is implemented in MATLAB/Simulink and uses
several ’Level-2 MATLAB S-Functions’ to incorporate the dynamics. These func-
tions makes it possible to use basic MATLAB language to create custom blocks with
multiple input and output ports. For every time step of the simulation, the ‘Level-2
MATLAB S-Functions’ calculates the proper output for the given input, thus the
simulation might be a bit slow. The desired measurements are sent from Simulink
to the MATLAB interface through a ’To Workspace’ block. This makes it possible
to present the results graphically.

7.2 Model Verification

A simulation of the manipulator model when no control forces are applied will give an
idea on whether the model is correct or not. A manipulator model with no dissipative
forces will give a chaotic response. Therefore, the friction force introduced in section
5.3.2 is included. The initial conditions for the simulation are

53

Chapter 7. Simulations and Results

qinit =
[
0, 0, 0, 0,−π

2
, 0
]T

(7.1)

q̇init =
[
0, 0, 0, 0, 0, 0

]T
(7.2)

According to the D-H convention, this implies that the robot manipulator starts in
the horizontal position shown in Figure 7.1. This visualization is made using the
’Robotics Toolbox’ of Corke [5].

Figure 7.1: Initial configuration of robot manipulator

The response of this simulation is given in Figure 7.3 and 7.4. As expected, the
manipulator will act like a multi joint pendulum. While the gravity compels the
manipulator to accelerate from the initial position, the friction force dissipates the
energy, leading the manipulator to settle at equilibrium position. Due to the geom-
etry of the manipulator, this means that the five outer links will settle down in a
vertical position. Since the first joint only allows rotations about the z-axis, the first
link will settle at a horizontal position as shown in Figure 7.2. Since the given re-
sponse matches the expected behavior, it is assumed that this model is correct.

7.3 Trajectory Generation

Normally the Raptor manipulator system is controlled by an advanced master con-
troller with force feedback capabilities. This thesis, on the other hand, has chosen
to use a joystick and rate control mode in combination with IK algorithms to state
the operator commands. As described in Chapter 2, this means that the joystick
displacement is proportional to the end-effector velocities. This setup calls for real-
time simulations, which Simulink is not well suited for. Therefore, some alternative
solutions to generate joint space trajectories are proposed.

54

7.3. Trajectory Generation

Figure 7.2: Manipulator configuration at equilibrium

0 2 4 6 8 10 12 14 16 18 20
−140

−120

−100

−80

−60

−40

−20

0

20

Time

Jo
in

t A
ng

le
 (

de
gr

ee
s)

Time evolution of joint angles when manipulator is collapsing under gravity

1
2
3
4
5
6

Figure 7.3: Time evolution of joint angles when manipulator is collapsing under
gravity

55

Chapter 7. Simulations and Results

0 2 4 6 8 10 12 14 16 18 20
−150

−100

−50

0

50

100

Time

Jo
in

t V
el

oc
ity

 (
de

g/
s)

Time evolution of joint velocities when manipulator is collapsing under gravity

0 2 4 6 8 10 12 14 16 18 20
−200

−100

0

100

200

300

400

Time

Jo
in

t A
cc

el
er

at
io

ns
 (

de
g/

s2)

Time evolution of joint accelerations when manipulator is collapsing under gravity

1
2
3
4
5
6

1
2
3
4
5
6

Figure 7.4: Time evolution of joint velocities (top) and accelerations (bottom) when
manipulator is collapsing under gravity

In the project thesis [8], the reference signals were generated directly in joint space
by a simple reference model adopted from Fossen [7]. The model consisted of a
first-order low pass filter cascaded with a mass-damper-spring system. This time,
a reference model is used to make a velocity trajectory in the operational space,
thus mimicking the behavior of a joystick. The operational space reference is then
transformed into joint space by an IK algorithm. The structure of the joystick
simulator can be seen in Appendix B, while the simulated joystick signals can be
seen in Figure 7.6.

Two different IK algorithms will now be verified through simulations. By integrating
the joystick velocity outputs for a given initial position, the desired end-effector po-
sition is obtained. The joint space trajectories derived from the chosen IK algorithm
are then transformed back to operational space by a forward kinematics algorithm.
A comparison of the two operational space trajectories will give an idea on the qual-
ity and validity of the IK algorithms. This test setup is shown in Figure 7.5.

First, the DLS solution shown in (4.16) is implemented and tested with λ = 0.01 and
λ = 0.1. The resulting comparison plots are given in Figure 7.7 and 7.8. Seeing that
λ = 0.01 gives a perfect match, it is clear that low values of λ gives more accurate
solutions. This is consistent with the theory described in Chapter 4.

Second, the simple method of inverting the Jacobian is tested. The resulting response
is given in Figure 7.9. The plot shows that the operational space trajectories are
quite inaccurate compared to the results from the DLS method.

56

7.3. Trajectory Generation

Figure 7.5: A conceptual sketch of the IK algorithm test.

0 5 10 15 20 25 30 35 40
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time

Jo
ys

tic
k

ou
tp

ut

Time evolution of simulated joystick outputs

x
y
z

Figure 7.6: Simulated joystick signals.

57

Chapter 7. Simulations and Results

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

E
nd

−
E

ffe
ct

or
 p

os
iti

on
 (

m
)

Time evolution of the task space trajectories

x
y
z
joystickx
joysticky
joystickz

Figure 7.7: End-effector position versus integrated joystick signals, DLS method
with λ = 0.01.

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

E
nd

−
E

ffe
ct

or
 p

os
iti

on
 (

m
)

Time evolution of the task space trajectories

x
y
z
joystickx
joysticky
joystickz

Figure 7.8: End-effector position versus integrated joystick signals, DLS method
with λ = 0.1.

58

7.4. Control Design Verification

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

2

Time

E
nd

−
E

ffe
ct

or
 p

os
iti

on
 (

m
)

Time evolution of the task space trajectories

x
y
z
joystickx
joysticky
joystickz

Figure 7.9: End-effector position versus integrated joystick signals, inverse Jacobian
method.

7.4 Control Design Verification

Now that the model has been assumed correct and the trajectory generation has
been explained, the sliding-mode controller will be the subject of investigation. The
control system derived in Chapter 5 is therefore implemented in Simulink. A top-
level view of the complete Simulink system can be seen in Figure 7.10.

The system will be simulated with the joint trajectories generated from the DLS
method with λ = 0.01. This will move the manipulator from the initial configuration
given in (7.1) to the final configuration given in (7.3). The final configuration of the
simulation is also shown graphically in Figure 7.11. Controller gains and other
parameters relevant for the simulation are given below.

qfinal =
[
0.8805, 0.6590,−1.0639, 0.4013,−0.6905, 0.0028

]T
(7.3)

The derivations in Chapter 5 shows that the dynamics on the sliding-surface is
governed by

ė1 = −Ae1 (7.4)

Hence, if the A matrix is positive definite, the dynamics will be asymptotically
stable. Therefore, A is chosen as

A = diag(10, 10, 10, 10, 10, 10) (7.5)

59

Chapter 7. Simulations and Results

Figure 7.10: Complete Simulink diagram, main view

Figure 7.11: The final robot configuration

60

7.5. Full-Scale Testing

The unknown disturbance δ is simply modeled as a sine wave with amplitude of 0.1
[rad] acting on all joints. This disturbance is assumed to be bounded by

‖δ‖ ≤ ρ (7.6)

Therefore, ρ = 1 will be true to the assumptions.

The friction force is said to be proportional with the joint velocity. There are no
given information of the magnitude of this friction force, but normally the friction
in joints are quite low. In this simulation, the friction force is modeled as

F (q̇) = diag(50, 50, 50, 50, 50, 50)q̇ (7.7)

Other relevant control parameters are given beneath

H = diag(2, 2, 2, 2, 2, 2) (7.8)

L = diag(2, 2, 2, 2, 2, 2) (7.9)

h0 = l0 = 1.5 (7.10)

k0 = 0.5 (7.11)

P = 10 (7.12)

ε1 = ε2 = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]T (7.13)

K = diag(0.8, 0.8, 0.8, 0.8, 0.8, 0.8) (7.14)

Figure 7.12 shows that the manipulator is able to follow the desired joint angles in
a good manner. There are also very small discrepancies between the desired joint
velocities and the real joint velocities, as shown in Figure 7.13. The sliding-mode
controller is therefore assumed to be correct and nicely tuned.

7.5 Full-Scale Testing

The final goal of this thesis is to conduct full-scale testing of the control system
on the Raptor manipulator. To do so, the control system must be transfered to a
programming language that is better suited for real-time control and hardware inter-
facing than Simulink. Also, an interface between this software and the manipulator
software must be made. The chosen programming language is called LabVIEW. All
generated code can be found in Appendix A.

61

Chapter 7. Simulations and Results

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

Time

Jo
in

t A
ng

le
 (

ra
di

an
s)

Time evolution of the generated joint angles

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

Time

Jo
in

t A
ng

le
 (

ra
di

an
s)

Time evolution of the real joint angles

1
2
3
4
5
6

1
2
3
4
5
6

Figure 7.12: Time evolution of generated joint angles (top) and real joint angles
(bottom)

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

Time

Jo
in

t V
el

oc
iti

es
 (

ra
d/

s)

Time evolution of the generated joint velocities

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

Time

Jo
in

t V
el

oc
iti

es
 (

ra
d/

s)

Time evolution of the real joint velocities

1
2
3
4
5
6

1
2
3
4
5
6

Figure 7.13: Time evolution of generated joint velocities (top) and real joint veloci-
ties (bottom)

62

7.5. Full-Scale Testing

Control Implementation

The control system is implemented in LabVIEW by the use of ’MathScript Node’
structures. These structures allows one to use MATLAB scripts within the Lab-
VIEW environment and thereby simplifies the transformation from MATLAB. The
structural setup of the controller is the same in both programs. The top level
VI for the controller is called ’Sliding Mode Controller.vi’ and can be seen in Ap-
pendix A.

Trajectory Generation

The LabVIEW program uses the DLS algorithm presented in Section 7.3 to con-
vert operational space trajectories into corresponding joint space trajectories. This
time there is no need to simulate the joystick output. Instead, the simple Logitech
gamepad shown in Figure 7.14 serves as a master joystick. The three translational
velocities of the end-effector are commanded by movement of the the red and green
marked joysticks. The three rotational velocities are commanded by moving the
same joysticks while pressing the blue marked button. Since the joystick is very
sensitive to small movements, a dead zone algorithm is implemented. The algo-
rithm, shown in Figure 7.15, suppresses all readings between −10 and 10 by setting
these to zero. Outside the dead zone region, a smooth transition will be provided
by the functions given in (7.15). The discussed actions are performed by the VIs
’Joystick.vi’ and ’InvKin.vi’. These can be found in Appendix A.

y = x− 10

[
1− tanh

(
x− 10

2

)]
, x > 10 (7.15)

y = x+ 10

[
1 + tanh

(
x+ 10

2

)]
, x < 10

Figure 7.14: Logitech Gamepad

63

Chapter 7. Simulations and Results

−25 −20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20

25

Actual joystick output

R
es

tr
ai

ne
d

jo
ys

tic
k

ou
tp

ut

Figure 7.15: Two alternative dead zone solutions.

64

Chapter 8

Discussion

The topic of robot modeling and control is an area of science that has been devoted
much time and research. There are a lot of challenges associated with controlling
a robot, but there are also a lot of proposed solutions available. This diversity
of options makes it hard to make the right decisions and choose the best alterna-
tives. During the making of this thesis, different choices have been made. Even
though these choices are results of extensive studies and consultations, they do not
necessarily represent the best solutions. This chapter will present a discussion of
some of the different choices been made throughout the thesis and the associated
consequences.

Also, the lack of experience with both software and robot methodology caused some
issues, some of which are solved. These issues will be presented during the following
sections.

Finally, an explanation on why no full-scale experiments are performed will be
given.

8.1 Velocity Measurements

The tracking controller was made under the assumption that the complete state
measurements, i.e. both position and velocity measurements of each joint, were
available. As the work progressed, it came clear that this was not the case. The
Raptor manipulator, as many other manipulators, only provide the user with joint
position measurements. This is mostly due to high cost of sensors and that velocity
measurements often are contaminated by noise. Although it is possible to make
controllers that do not depend on joint velocities, it was decided to use some sort
of observer to estimate the velocities. The best practice is to filter the position
measurements by a proper high-pass filter with reasonable cutting frequency, e.g.
ξ = s

((s/10)+1)2
. This will result in a pseudo-velocity signal that serves as a surrogate

for velocity measurements. Another alternative is to simply use the difference quo-
tient to calculate the velocity. To reduce the presence of noise, the former velocity

65

Chapter 8. Discussion

calculations may be taken into the equation as

v(t) = κ
p(t)− p(t− T)

T
+ (1− κ)v(t− T) (8.1)

where κ < 1 is a weighting constant and p(t) is the position measurements at time
t. None of these solutions are implemented as other issues kept us from completing
the full-scale control system.

8.2 Lack of Full-Scale Experiments

A full-scale test of the derived control system was not only the final goal of this
thesis, but also a great motivational factor. Unfortunately, a full-scale test could
not be conducted in the limited time available. The ROV SF 30K had not been
used for a long time and most of the equipment, including the Raptor manipulator,
needed maintenance. The manipulator was therefore sent abroad to be repaired and
controlled. After returning, the manipulator was reinstalled and tested with the
existing control system. However, this was very late in the semester and there was
no time to log communication data and to create an interface to the manipulator.
Hopefully the work done in this thesis can still serve as a basis for future work on
the manipulator system.

8.3 Modeling and Simulation Issues

During the making of this thesis, the manipulator model presented in the project
thesis [8] was proven incorrect. Erroneous assumptions in connection with the D-H
convention and the derivations of the Jacobian led to an incorrect response. These
issues are now fixed and the model should therefore be correct.

The Raptor manipulator system is both powerful and costly. It is important to verify
that the software works as intended before implementing it on the real system. This
verification can be done by a real-time HIL-simulator, implemented in LabVIEW by
a ’Control & Simulation Loop’. However, this requires the use of a fixed-step ODE
solver. Simulations, on the other hand, have shown that the system is best suited for
variable-step solvers. If fixed-step solvers are used, the time step of the simulation
must be very small. This, combined with the fact that each iteration takes a fair
amount of time, makes real-time simulations unlikely. Figure 8.1 shows the length of
the time steps during a variable step size simulation of the manipulator. It is clear
that the system requires very small time steps in the beginning of the simulation.
Whether this is caused by the initial conditions of the simulation or something else
is not known. This issue might indicate that the derived model is stiff, even though
it is not expected to be.

66

8.3. Modeling and Simulation Issues

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time

S
te

p
si

ze
(s

)

Time evolution variable step size values

Figure 8.1: Length of time steps during simulation of manipulator model.

67

Chapter 8. Discussion

68

Chapter 9

Conclusion and Further Work

9.1 Conclusion

The main purpose of this thesis have been to investigate and select suitable ap-
proaches for dynamic modeling, simulation, and control of the Raptor manipulator.
The final goal was to develop a working control system for the full-scale manip-
ulator, thus providing an alternative to the existing, commercial control system.
This included the development of an interface between the created and the existing
software.

It has been shown that the field of robot modeling and control is wide and compre-
hensive. In combination with little experience, this makes it hard to choose the most
suitable solutions and procedures. Nevertheless, different approaches have been cho-
sen, used, and accounted for. Most of the topics of interest have been thoroughly
explained either in this thesis or in the project thesis [8].

The well known topic of inverse kinematics have been devoted much time and at-
tention. Due to the large extent of the subject, the focus was limited to algorithms
based on velocity kinematics. Several alternative solutions was introduced, two of
which were tested and verified. The DLS method proved superior to the Jacobian
inverse method and gave most accurate results when λ was small.

The available information about the Raptor manipulator was very limited. There-
fore, a simplified model based on the kinematic structure of the manipulator was
made. The mass and inertia tensor for each link was calculated by rough geomet-
ric estimations. These derivations were inaccurate, but with the limited information
available this was the only way to go. The identification technique of CAD modeling
was mentioned as an alternative approach, but this would require more extensive
geometry information.

An entire chapter was also devoted to introduce the properties of the electronic com-
munication system. A basic understanding of the topic can be an advantage when
designing the interface system. Unfortunately, there was no time to log communi-
cation data and therefore impossible to create the mentioned interface.

69

Chapter 9. Conclusion and Further Work

The nonlinear control method of choice was the sliding-mode control principle. Sim-
ulations and studies showed that it was a robust method that can handle unknown
parameters and uncertainties in the model. The final controller relied on quite a
few assumptions, some more reasonable than others. The assumptions of a known
friction force was probably the most inaccurate one. However, with the limited
information available it was assumed to be adequate.

Simulations of the dynamic model and control system gave satisfactory results.
When no control forces were applied, the manipulator model was expected to behave
like a multi joint pendulum. This assumption proved to be correct, thus the model
was also assumed to be correct. A simulation of the complete system, included
controller and IK algorithms, also gave some good results. The control algorithm
worked well and the robot was able to follow the generated joint trajectories.

Even though the assignment proved to be too ambitious, it is possible that this
thesis can serve as the starting point for future work.

9.2 Recommendations for Further Work

Further work on this subject should include more accurate parameter estimations.
However, this requires more comprehensive information about the geometry and
materials of the manipulator. Some information could be obtained by physically
measure the geometry of the manipulator. If the geometric properties are available,
the parameters could be estimated by the use of CAD analysis. The resulting model
will then be closer to the real manipulator.

Also, more extensive and correct models of the actuator dynamics should be im-
plemented. The actuator dynamics have only been assumed to take the form of an
uncertain multiplicative term and an additive term. There are several ways of de-
riving these models, but these are not taken into considerations in this thesis.

The friction forces are assumed to be known, but in reality, there are no indications
of the magnitude of these friction forces. It is therefore recommended to investigate
alternative methods for friction estimation. Also, it would be interesting to find a
model that incorporates drag forces acting on each link, since the ROV is working
under water. These might be found in model tests, but this is expensive. Another
alternative is to use CFD programs.

As of today, the full-scale control system is programmed in LabVIEW. However, a
fair amount of work still remains before the system can be used on the Raptor ma-
nipulator. First, the communication data must be logged and processed to develop
the interface between the user computer and the manipulator system. The digital
data format is given in the Engineering Support Document [28], but it does not
specify other than the number of bytes per sensor. Second, the control system must
be tested on a HIL-simulator to avoid damage on equipment or humans.

70

Bibliography

[1] Jake J. Abbott, Panadda Marayong, and Allison M. Okamura. Haptic virtual
fixtures for robot-assisted manipulation. In 12th International Symposium of
Robotics Research (ISRR, pages 49–64, 2005.

[2] Douglas Brooks. Differential signals, rules to live by. Printed Circuit Design,
2001.

[3] Samuel R. Buss and Jin-Su Kim. Selectively damped least squares for inverse
kinematics. Journal of Graphics Tools, 10(3):37–49, 2005.

[4] Ricardo Campa, César Ramı́res, Karla Camarillo, Vı́ctor Santibáñez, and Israel
Soto. Advances in Robot Manipulators, pages 417 – 442. Ernest Hall, 2010.

[5] Peter I. Corke. Robotics, Vision & Control: Fundamental Algorithms in Matlab.
Springer, 2011. ISBN 978-3-642-20143-1.

[6] Willian R. Ferrell and Thomas B. Sheridan. Supervisory control of remote
manipulation. IEEE Spectrum, pages 81–88, 1967.

[7] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley & Sons, Inc, 2011.

[8] Morten Sletteberg Haugen. Project thesis: Modeling and control of rov manip-
ulator, 2011.

[9] Sandra Hirche, Manuel Ferre, Jordi Barrio, Claudio Melchiorri, and Martin
Buss. Bilateral control architectures for telerobotics. In Advances in Teler-
obotics, volume 31, pages 163–176. Springer Berlin / Heidelberg, 2007.

[10] National Instruments. Labview. http://www.ni.com/labview/, 2012. Visited
10.05.2011.

[11] Hassan K. Khalil. Nonlinear Systems, Third Edition. Prentice Hall, 2002.

[12] Oussama Khatib. A unified approach for motion and force control of robot
manipulators: The operational space formulation. IEEE Journal of Robotics
and Automation, RA-3(1):43–53, 1987.

[13] B̊ard Kjos, Arne B. Mikalsen, Camilla Tepfers, Claude Davidsen, Einar Hest-
mann, Geir Maribu, Guttorm Sindre, Nils-Christian Haugen, Per Borgesen,
and Per Arne Godejord. Innføring i Informasjonsteknologi. Tapir Akademiske
Forlag, 2003.

71

http://www.ni.com/labview/

BIBLIOGRAPHY

[14] Alain Liégeois. Automatic supervisory control of the configuration and be-
havior of multibody mechanisms. IEEE Transactions on Systems, Man, and
Cybernetics, 7:868–871, 1977.

[15] A Cybernet Group Company Maplesoft. Maple 15. http://www.maplesoft.

com/products/maple/, 2012. Visited 10.05.2011.

[16] Karl Mathia. Robotics for Electronics Manufactering. Cambridge University
Press, 2010.

[17] MathWorks. Matlab. http://www.mathworks.se/products/matlab/, 2012.
Visited 10.05.2011.

[18] Michael Meredith and Steve Maddock. Using a half-jacobian for real-time in-
verse kinematics. Technical report, Department of Computer Science, Univer-
sity of Sheffield.

[19] Uwe Mettin. Principles for Planning and Analyzing Motions of Underactuated
Mechanical Systems and Redundant Manipulators. PhD thesis, Ume̊a Univer-
sity, 2009.

[20] Nicolas Mollet. Remote and Telerobotics. InTech, 2010.

[21] Yoshihiko Nakamura and Hideo Hanafusa. Inverse kinematic solutions with sin-
gularity robustness for robot manipulator control. Journal of Dynamic Systems,
Measurement and Control, 108:163–171, 1986.

[22] Thomas B. Sheridan. Supervisory Control of Remote Manipulators, Vehicles
and Dynamic Processes: Experiments in Command and Display Aiding. PhD
thesis, Massachusetts Institute of Technology, 1983.

[23] Bruno Siciliano. Kinematic control of redundant robot manipulators: A tuto-
rial. Journal of Intelligent and Robotic Systems, 3:201–212, 1990.

[24] Bruno Siciliano and Oussama Khatib. Handbook of Robotics. Springer, 2008.

[25] Bruno Siciliano and Lorenzo Sciavicco. Robotics: Modelling, Planning and
Control. Springer-Verlag, 2000.

[26] Roger Skjetne. The Maneuvering Problem. Department of Engineering Cyber-
netics, NTNU, 2005.

[27] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot Dynamics and
Control. John Wiley & Sons, Inc, Hoboken, 2004.

[28] Kraft TeleRobotics. Engineering support document. Technical report.

[29] Kraft TeleRobotics. Robotic science and technology. http:

//krafttelerobotics.com/, 2011. Visited 10.06.2012.

[30] Kraft TeleRobotics. Raptor system manual, 2011.

[31] TIA. The telecommunications industry association. http://www.tiaonline.

org/, 2012. Visited 12.05.2011.

72

http://www.maplesoft.com/products/maple/
http://www.maplesoft.com/products/maple/
http://www.mathworks.se/products/matlab/
http://krafttelerobotics.com/
http://krafttelerobotics.com/
http://www.tiaonline.org/
http://www.tiaonline.org/

BIBLIOGRAPHY

[32] Tamás Urbancsek. Modern Control Architecture for Designing Multiagent Teler-
obot Systems. PhD thesis, Budapest University of Technology and Economics,
2009.

[33] Vadin Utkin and Hoon Lee. Chattering problem in sliding mode control systems.
Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems,
2006.

[34] Charles W. Wampler. Manipulator inverse kinematic solutions based on vec-
tor formulations and damped least-squares methods. IEEE Transactions on
Systems, Man, and Cybernetics, 15:93–101, 1986.

[35] D. E. Whitney. Resolved motion rate control of manipulators and human pros-
theses. IEEE Transactions on Man-Machine Systems, 10:47–53, 1969.

[36] Lizhong Zheng and Robert Gallager. Principles of digital communication. Tech-
nical report, Massachusetts Institute of Technology, 2006.

73

BIBLIOGRAPHY

74

Appendix A

Contents of Attached Folder

PDF Files:

• The Raptor Manipulator Data Sheet: A digital copy of the data sheet

Maple Files:

• Dynamic Model Calculations.mw: Automated framework for derivation of the
dynamic model

• Calculations of potential energy.mw: Derivation of the potential energy

• Calculation of Jacobian matrix.mw: Calculates the Jacobian matrix

MATLAB and Simulink Files

• Run M.m: File that simulates the system and plots all results

• Simulation M.mdl: Full Simulink model

• init par M.m: Initial file for the Simulink model

• plotall.m: Plotting file

• SLcreateC M.m: Matlab code for the centrifugal/Coriolis vector C(q,q̇)q̇

• SLcreateD M.m: Matlab code for the inertia matrix M(q)

• SLcreateDinv M.m: Matlab code for the inverse of the inertia matrix M(q)

• SLcreateF M.m: Matlab code for the friction vector F(q̇)

• SLcreatePHI M.m: Matlab code for the gravity/buoyancy vector G(q)

• SLcreateY M.m: Matlab code for the alternative signum function ψ

75

Chapter A. Contents of Attached Folder

76

Appendix B

Simulink: Joystick simulator

Figure B.1: Simulink diagram of joystick simulator

77

	Title Page
	Introduction
	Motivation
	Outline
	Contributions
	Software

	Telerobotics
	Historical Perspective
	Control Architectures
	Supervisory Control
	Shared Control
	Direct Control

	The Raptor Manipulator System

	Robot Modeling
	Notation
	Operational Space, Workspace and Joint Space
	Differential Kinematics
	The Geometric Jacobian Matrix
	The Analytical Jacobian Matrix

	Dynamics
	Euler-Lagrange Equations of Motions
	Kinetic Energy
	Potential Energy
	Equations of Motion

	Information from Data Sheets
	Modeling Set-up
	Simplified Model
	Estimation of Mass
	Inertia matrix
	Dynamic Model of Simplified System

	Inverse Kinematics
	Closed-Form Solutions
	Numerical Solutions

	Control of Robot Manipulator
	The Control Problem in General
	Tracking
	Sliding-Mode Control
	The Concept of Sliding-Mode Control
	Problem Statement
	Derivation of Sliding-Mode Controller
	Chattering

	Communication
	Binary Numeral System
	Hexadecimals
	Serial Communication
	Encoding
	Differential Signaling
	RS-485

	Simulations and Results
	Simulation Structure
	Model Verification
	Trajectory Generation
	Control Design Verification
	Full-Scale Testing

	Discussion
	Velocity Measurements
	Lack of Full-Scale Experiments
	Modeling and Simulation Issues

	Conclusion and Further Work
	Conclusion
	Recommendations for Further Work

	Bibliography
	Contents of Attached Folder
	Simulink: Joystick simulator

