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Summary

Due to increasing the number of depleted formations, reservoirs with low
pressure margins and high cost of field exploration and development, there
has been increasing interest in under-balanced drilling (UBD) and managed
pressure drilling (MPD). These types of drillings concepts have contributed
to improved oil recovery and reduced drilling problems.

UBD and MPD hayve several advantages compared to conventional drilling
such as increasing the ultimate recovery from the reservoir, reducing the
non-productive time (NPT), increasing the rate of penetration (ROP), and
extending control over bottom-hole pressure (BHP) for operational scenarios
such as connections and trips and when the rig pumps are off, improvement
in safety and well control resulting from more detailed design and planning
required for accomplishment, decreasing invasive formation damage, and re-
ducing drilling problems.

Since the pressure of the well is kept intentionally lower than the pressure
of the reservoir in UBD operations, the UBD operations potentially have
some risks and perils. Therefore, it is important to study the control system
and monitoring methodology of UBD operations to improve the safety and
efficiency of this method. Underbalanced drilling is not possible for some
cases due to existence of high (H2S) in the well or instability in wellbore.

MPD is an alternative overbalanced drilling method which can work on a
narrow pressure window and reduce drilling problems. Offshore MPD opera-
tion in hostile environment, such as the North Sea, is a challenging problem
in drilling, due to heave motion of floating platforms and ships. Without
proper control, it leads to potential loss of mud, rig blowout and formation
kicks. Therefore, it is vital to study the control of offshore MPD operations
with heave motion.

Reservoir properties (i.e. production index, reservoir pore pressure) spec-
ify influx of formation fluids during UBD operations. Therefore, reservoir
characterization has a significant effect in the success of UBD. In this work,
we develop and compare methods that rely on distributed and low order
lumped models to estimate the states and geological properties of the reser-
voir during UBD operation. In this study we also design a controller to
attenuate heave disturbance in offshore MPD system.

A nonlinear moving horizon estimation (MHE) based on a nonlinear two-
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Summary

phase fluid flow model is designed to estimate the total mass of gas and liquid
in the annulus, and geological properties of the reservoir during UBD oper-
ation. This observer is evaluated and compared with an Unscented Kalman
filter for the case of a pipe connection scenario where the main pump is
shut off and the rotation of the drill string and the circulation of fluids are
stopped. These adaptive observers are compared to each other in terms of
speed of convergence, sensitivity of noise measurement and accuracy. The
results show that both algorithms are capable of identifying the produc-
tion constants of gas and liquid from the reservoir into the well, while the
nonlinear MHE achieves better performance than the Unscented Kalman
filter.

In addition, a nonlinear Lyapunov-based adaptive observer and an Un-
scented Kalman filter based on a low order lumped (LOL) model and an Un-
scented Kalman filter based on the distributed drift-flux model are designed
to estimate the states and the production constants of gas and liquid from
the reservoir into the well by using real-time measurements of the choke and
the bottom-hole pressures during UBD operation. These adaptive observers
are tested by two scenarios which are simulated with the OLGA simula-
tor: a pipe connection scenario and a scenario with a changing production
index. The OLGA dynamic multiphase flow simulator is a high fidelity sim-
ulation tool. The performance of the adaptive observers to detect and track
the changes in production parameters is studied. Robustness of the adap-
tive observers is investigated despite uncertainties in the reservoir and well
parameters of the models. The results show that all adaptive observers are
capable of identifying the production constants of gas and liquid from the
reservoir into the well, with some differences in performance. It is also found
that the LOL model is sufficient for the purpose of reservoir characterization
during UBD operations.

To estimate unmeasured states, production parameters and slip parame-
ters using real time measurements of the bottom-hole pressure and liquid and
gas rate at the outlet an Unscented Kalman filter based on simplified drift-
flux model is designed. The drift-flux model uses a specific slip law which
allows for transition between single and two phase flows. The performance
is tested against the Extended Kalman Filter by using OLGA simulations
for two drilling scenarios: a pipe connection scenario and a scenario with
a changing production index. The number of cells in the discretization of
the drift-flux model was found to not have a significant effect on accuracy
of estimation. Robustness of the Unscented and Extended Kalman Filters
for pipe connection scenario is studied in case of uncertainties and errors in
the reservoir and well parameters of the model. The results show that these
methods are very sensitive to errors in the reservoir pore pressure value.



However, there are robust in case of error in the liquid density value of the
model.

Finally, a constrained model predictive control (MPC) scheme is applied
to MPD operations for controlling of the annular pressure in a well when
drilling from a floating offshore vessel. This controller is evaluated and com-
pared with a standard proportional-integral-derivative (PID) control scheme
to deal with heave disturbances. The heave disturbances are simulated by a
stochastic model describing sea waves in the North Sea. The robustness of
the controller to compensate for heave disturbances despite significant un-
certainties in the friction factor and bulk modulus is investigated by Monte
Carlo simulations. The results show that the constrained MPC has a good
performance to regulate the set point and attenuate the effect of the heave
disturbance. Heave motion can be predicted for short time based on forward-
looking sensors such as ocean wave radar. It is found that the performance
of MPC can be further improved by prediction of the heave motion about
10s ahead.
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CHAPTER

Introduction

The total consumption of oil and natural gas in the world has been increased
rapidly over the last two decades. For instance, the average world oil demand
raised from 70 million barrels per day (B/D) in 1995 to 92.5 million (B/D) in
2015' . Also, the world natural gas demand increased from 2.15 trillion cubic
meters (tem) in 1995 to almost 3.35 tem in 2013, The growing demand for
oil and natural gas in China, India and other developing countries is the
most significant factor for the rapid increase in oil and gas consumption in
the world in the last two decades. Fast population growth, rapid economic
development, further urbanization and industrialization in these countries
are the main factors in rising fossil fuel demands. In the next decade, an
increase in oil and natural gas demand is expected in the world®.

Many giant oil fields in Saudi Arabia, Indonesia, the United States, Nor-
way, Venezuela, and Russia are showing indubitable signs of aging by reduc-
ing quality and quantity of oil production. For instance, the oil production
in Norway decreased form 3.22 million (B/D) in 2001 to 1.46 million (B/D)
in 20133, In the last forty years, supergiant oil fields have rarely been dis-
covered. In addition, new oil discoveries in the world have been less than oil
consumption during the year for more than 20 years [70]. Despite of recent
developments in unconventional oil such as shale oil, tight oil or oil sands,
conventional oil is still an important source of oil demand. Therefore, it is
considered important to invest on developing advanced technology which
can help to overcome the challenges in oil filed such as high pressure, high
temperature reservoirs, deep water reservoirs, depleted reservoirs and reser-
voir with narrow pressure windows. Under balanced drilling (UBD), dual
gradient drilling and managed pressure drilling (MPD) are some advanced

Thttp://www.IEA.org
2http://www.BP.com
Shttp:/ /www.opec.org/




1. Introduction

drilling technology for dealing with challenging reservoir and challenging
drilling problems such as differential sticking, lost circulation and etc.

1.1 Drilling Technology

The first modern oil well was drilled under the supervision of Russian engi-
neer V.N. Semyonov on north-east of Baku in 1840’s. More than a decade
later, the first oil well in the United States was drilled by Colonel Edwin
Drake. This well was only 21m deep. The oil and gas drilling technology has
been has been improved so much since then which enabled us to dig wells
as deep as 12km?.

Advanced drilling technologies that are used nowadays utilizes a drilling
fluid (mud) which is pumped down through the drill string and flows through
the drill bit at the bottom of the well (Figure 1.1).

The mud flows up the well annulus carrying cuttings out of the well.
The mud is separated at the surface from the return well flow, conditioned,
and stored in storage tanks (pits) before it is pumped down into the well
for further drilling. To avoid fracturing, collapse of the well, or influx of
formation fluids surrounding the well, it is crucial to control the pressure in
the open part of the annulus within a certain operating window.

There are three different drilling methods that are commonly used in the
industry namely, conventional drilling (also known as over-balanced drilling),
managed pressure drilling (MPD) and under-balanced drilling (UBD). Each
method control the pressure in the open part of the annulus differently. In
conventional drilling, this is done by using a mud of appropriate density and
adjusting mud pump flow rates. In MPD and UBD, the annulus is sealed,
and the mud exits through a controlled choke, allowing for faster and more
precise control of the annular pressure. In conventional drilling and MPD,
the pressure in the well is kept greater than the pressure of the reservoir to
prevent influx from entering the well, while in UBD operations the pressure
of the well is kept below the pressure of the reservoir, allowing formation
fluid flow into the well during the drilling operation.

1.2 Under-balanced Drilling

The first well in Norway drilled with under-balanced techniques was a well
at the Gullfaks field in 2008. The International Association of Drilling Con-
tractors (IADC) has defined under-balanced drilling as " A drilling activity
employing appropriate equipment and controls where the pressure exerted
in the wellbore is intentionally less than the pore pressure in any part of

4http:/ /news.exxonmobil.com/



1.2. Under-balanced Drilling

Figure 1.1: Schematic of a drilling system

the exposed formations with the intention of bringing formation fluids to
the surface" [102]|. So, the hydrostatic pressure of the well (pye;) must be
kept greater than pressure of collapse (peo) and less than both pressure of
formation reservoir (pres) and formation fracture pressure (pyrac)

Peott(t; ) < pueit(t, @) < Pres(t, &) < Prrac(t, @) (1.1)
at all times ¢ and positions . UBD can be classified based on drilling fluid
as follows:

B Gas and air drilling

B Drilling mud (flow drilling)
B Mist drilling

B Foam drilling
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B Gasified liquid drilling (Gaseated mud)

1.2.1 Gas and air drilling

The gas and air drilling technology is usually used for drilling operations
in low pressure reservoirs and performance drilling operations in compe-
tent rock formations [59]. Compressed air, membrane generated Nitrogen,
cryogenic Nitrogen, natural gas (hydrocarbon gas), and exhaust gas from
combustion engines or turbines may be used in gas and air drilling tech-
nology. Compressed air is the cheapest and also widely used in mine-shafts
drilling and water well drilling. But, air could be flammable, explosive and
corrosive. Therefore, air could not be used in hydrocarbon bearing forma-
tion. Nitrogen is usually used in UBD operation, notably in offshore drilling.
The characteristics of gas and air drilling can be summarized as follows:

e High penetration rate

e Low cost

e Good cement job

e Requiring minimal water influx

e Small surface facility

Currently, air and gas drilling technology is utilized by nearly 30% of land-
based oil and natural gas recovery drilling and completion operations|59].

1.2.2 Drilling mud (flow drilling)

Flow drillings are usually suitable for the formation with high hydrostatic
pressure. Density of the liquid mud is low enough to satisfy the desired under-
balanced conditions. The liquid mud can be used both for water based or oil
based type, and is very similar to the mud used in conventional drilling. The
liquid mud must be an incompressible and homogenous liquid with constant
density. In addition, it does not have any lost circulation materials (LCM)
or bridging materials.

1.2.3 Mist drilling

In the mist drilling, the small quantities of liquid is injected into the gas
stream. This method is very similar to the air drilling but the liquid mist
assists in cleaning small cuttings around the drill bit. Typical mist mud
comprises less than 2.5% liquid content. The characteristics of mist drilling
can be summarized as follows [59]:

e High penetration rate

e Slugging can occur if the ratio of gas and liquid is incorrect
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e Reduce formation of mud rings
e The mist provides some lubrication to the drill bit

e Since the gas in the mist attenuates the mud pulses of Measurement
While Drilling (MWD) system, conventional MWD could not be used,
instead an electro-magnetic MWD systems are often used.

1.2.4 Foam drilling

Stable foam has been used by the oil drilling industry since the early 1950s
[32, 100]. Stable foam is usually generated by mixing liquid, gas, and surfac-
tant foaming agent at surface. Stable foam usually comprises about 55 to 97
% gas at surface condition. In a standard deep drilling operation, the mix-
ture is injected into the drill string. The surface mixture flows as an aerated
fluid down the drill string to the bottom hole. The foam is formed at the
jet nozzles of the drill bit and then flows up the annulus to the surface. The
foam must be broken into its liquid and gas components at separator. Foam
drilling is a cost effective method for large holes [59]. The characteristics of
stable foam drilling can be summarized as follows:

e High carrying capacity
e Low density

e The stable foam can resist during pipe connection or limited circulation
stoppages without affecting the removal of cuttings due to the bubble
structures and high fluid yield point

e Reduced pump rates due to improved cuttings transport
e Large surface facility needed

e Since the gas in the stable foam debilitate the mud pulses of MWD sys-
tem, conventional MWD could not be used, instead an electro-magnetic
MWD systems are often used.

e Foam has ability to clean under the bit and the annulus.

1.2.5 Gasified liquid drilling (Gaseated mud)

In this technique, the gas is injected into the incompressible liquid mud to
reduce the density. Therefore, gasified liquid drillings are usually suitable
for the formation with low hydrostatic pressure. The mixing can be done
either on the surface at the base of stand pipe or at the bottom of the well.
The gas and liquid mud do not dissolve each other. The liquid mud can use
both water based or oil based type. The multiphase flow of gasified liquid
drilling complicates the hydraulics program. The characteristics of gasified
liquid drilling can be summarized as follows:
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e Lower bottom hole pressures can be achieved
e Less gas volumetric flow rate is required

e Increased amount of surface equipments due to the need to store and
cleaning of the base fluid

e Conventional MWD cannot be used when the gas is injected at the top
of the drill string

e Slugging can occur if the ratio of gas and liquid is incorrect

1.3 UBD advantages and drawbacks

The automatic UBD has several advantages compared to conventional drilling
such as increasing the rate of penetration (ROP), increasing the ultimate
recovery from the reservoir, reducing the non-productive time (NPT), re-
ducing the risk of differential sticking, reducing the risk of lost circulation,
improving the safety and control of the well by using a detailed design for
implementation, increasing the bit life due to requiring less weight on the
bit, decreasing/eliminating invasive formation damage, increasing economic
benefits due to flush production during drilling, not exposing shales to mud
filtrate, drilling faster compared to other methods, extending control over
Bottom-Hole Pressure (BHP) to operational scenarios such as connections
and trips and when the rig pumps are off, no need to clean up the well af-
ter drilling, reducing cutting size and plugging of the rocks in the reservoir,
being able to find the most productive zones of the reservoir while drilling,
reducing equivalent circulating density (ECD) in extended reach wells, lim-
iting or avoiding near well-bore reservoir damage, and reducing drilling-fluid
costs through the use of cheaper, lighter fluid systems [5, 9, 10, 91, 97].

While there are several advantages for UBD systems, there are a few
drawbacks compared to conventional drilling including: well-bore instabil-
ity during UBD, increasing string weight due to reduced buoyancy, discon-
tinuous UBD conditions, compatibility with conventional MWD systems,
possible abundant borehole erosion, possible increased torque and drag, in-
creasing equipment requirement, gravity drainage in horizontal wells, and
the increase cost of personnel due to acquaint with new professions, skills,
and procedures |5, 9, 10, 91, 97].

1.4 UBD Equipments and Technology Components

The main surface equipments typically involved in normal UBD operations
are as follows [20, 102]

e Nitrogen unit
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Rotating control devices (RCD)

Chemical injection equipment

Surface separation equipment
e Choke and manifold system

e Geologic sampler

e FEmergency shut-down system
e Non-return valve (NRV)

These components are briefly introduced in the following sections.

1.4.1 Nitrogen unit

The nitrogen unit provides a supply of high-pressure and high-purity nitro-
gen gas for using in typical UBD operations. A nitrogen converter and a
nitrogen generator are two common types of nitrogen unit. A nitrogen gen-
erator is a device that compresses and cools the air and then filters nitrogen
out of the air for use in oil or gas wells, and a nitrogen converter is a device
that converts high pressure liquid nitrogen to high-pressure gas at ambient
temperature. For example,Figure 1.2 shows a high pressure compressor of
nitrogen generation unit.
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Figure 1.2: High pressure compressor unit of nitrogen generator (courtesy of Weath-
erford International [59] )
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1.4.2 Surface separation system

The well fluids contains oil, gas, heavy liquid such as water and drilling
mud, and the formation rock cuttings. Therefore, it must be separated by
pressurized four (or three) phase separators. The four-phase separator is a
pressure vessel that separates the well fluids into different phases based on
density. The heaviest phase is the formation rock cuttings (solids) that falls
down to the bottom of the separator. The lightest phase is gas that exits
from the top of the separator and the oil is stored and evacuated below
the gas. The heavy liquid is stored and evacuated above the formation rock
cuttings. Figure 1.3 shows structure of a four-phase separation system.
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Figure 1.3: Structure of a four- phase separator [4]

1.4.3 Rotating control devices (RCD)

Rotating control devices (RCD) are used to seal around the drill string while
allowing rotation of the drill string during UBD operations. It is installed
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on top of the well. There are two types of RCD [101].

e Passive system: It uses the sealing rubber element and energy from
the well pressure. It is usually called a Rotating control head.

e Active system: It uses external hydraulic pressure to energize the
sealing rubber element. It is usually called a Rotating Annular Preven-
ters.

1.4.4 Choke and manifold system

A choke valve is a component that restricts or blocks flow line or orifice.
The main function of a choke valve is to adjust the rate of flow and to
control the pressure in the well during UBD operations. It is normally used
to control the bottom hole pressure in UBD. The choke manifold consists
two chokes that can be installed in parallel on a pipe assembly for increasing
the reliability of UBD operation. Figure 1.4 shows the structure of a choke
valve.

Handwheel

Figure 1.4: Structure of a choke valve [17]
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1.4.5 Non-return valve (NRV)

The drill pipe Non-Return Valve (NRV) is used to avoid back-flow of drilling
fluids from the annulus to the drill pipe. There are two types of NRVs based
on their functions [17].

e Bit floats: It is placed at the bottom of the drill pipe above the bit.
The functions of the bit floats are safety barrier and shielding the
motor, the bit, and MWD against the back flow and plugging by cut-
tings [17]. There are different types of bit floats (NRV) such as Basic
Piston-Type Float, Hydrostatic Control Valve, Inside BOP (Pump-
Down Check Valve), and Retrievable NRV or Check Valve [101].

e String floats: It is placed in the drill string and normally 300 meters
away from the surface. It is used to avoid blowing back gas in the drill
string to the drill floor during pipe connection [17].

1.5 Managed Pressure Drilling

The IADC has defined Managed Pressure Drilling as "An adaptive drilling
process used to precisely control the annular pressure profile throughout
the wellbore. The objectives are to ascertain the downhole pressure environ-
ment limits and to manage the annular hydraulic pressure profile accord-
ingly. MPD is intended to avoid continuous influx of formation fluids to the
surface"[101]. In MPD operation, the dynamic pressure of the well must be
kept higher than the reservoir pore pressure to prevent gas or formation
fluids from entering the well and less than a formation fracture pressure at
all times ¢ and positions x.

pres(m) < pwell(x-/ t) < pfrac(x) (12)
The automatic MPD system has several advantages compared to conven-

tional drilling as follows [91]:

e Reducing the drilling costs as a result of reducing the nonproductive
time.

Increasing the rate of penetration.

Improving well-bore stability.

e Minimizing the risk of lost circulation.

Extending control over bottom-hole pressure (BHP) to operational sce-
narios such as connections and trips and when the rig pumps are off.

e Improvement in safety and well control resulting from more detailed
design and planning required for accomplishment.
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1.6 Background study on UBD operations

There are two primary safety barriers in conventional drilling: the mud col-
umn (the positive difference between the hydrostatic pressure of the well
and the reservoir pressure) and the Blow-Out Preventer (BOP), whereas
the primary safety barrier in UBD operations is the BOP. Since there is no
mud column barrier in UBD, it is crucial to pay more attention to control
and monitoring of UBD operations.

Since the hydrostatic pressure of the well in UBD operation is intention-
ally lower than the reservoir formation pressure, influx fluids (oil, free gas
and water) from the reservoir are mixed with rock cuttings and mud fluid
in the annulus. Therefore, modeling of the UBD operation should be con-
sidered as multiphase flow which can be modeled by a distributed model or
a low-order lumped model. Due to the complexity of the multi-phase flow,
dynamics of a UBD well coupled with a reservoir, the modeling, estimation
and model based control of UBD operations is still considered as an emerg-
ing and challenging topic within drilling automation. This section introduces
background on estimation and control of UBD operations.

1.6.1 Estimation in UBD system

The measurement while drilling (MWD) system in the bottom-hole assembly
(BHA) is used to measure and transmit to the surface important information
of the well such as

e Bottom-hole pressure
e Hole inclination and azimuth

e Load on the bit

These measurements are normally available in real-time. Logging while
drilling (LWD) is used to measure and store information about properties of
formation such as conductivity, porosity, bed thickness, gamma ray, acoustic
velocity, etc. [88] Since this data is collected when the tool is pulled out from
the well, these measurements usually have some delay. Real time knowledge
of geological properties of the reservoir is very useful in many active con-
trollers, fault detection systems and safety applications in the well during
petroleum exploration and production drilling. Therefore, these parameters
and states must be estimated online using proper measurements with MWD.
Since the selection of a proper model plays the most important role in the
success of model based estimators, estimation of states and parameters on
UBD operation can be categorized based on the model as follows:

e Estimation based on distributed models
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e Estimation based on low-order models

Estimation based on distributed models

Lorentzen et al.[55, 56] designed an ensemble Kalman filter to tune the nine
uncertain parameters of a two-phase flow model based on drift flux model
of the UBD operation. This method was applied to synthetic cases and full-
scale experimental data. The robustness of the ensemble Kalman filter was
investigated by using simulator data with different sets of model parameters.
A least squares method was used to tune the uncertain parameters of the
two-phase flow model instead of the ensemble Kalman filter in [54]. However,
it was shown that the least squares approach is not suitable to online tuning
due to more complexity in computation [56].

Vefring et al. [110, 111] compared and evaluated the performance of the
ensemble Kalman filter and an off-line nonlinear least squares technique uti-
lizing the Levenberg-Marquardt optimization algorithm to estimate reservoir
pore pressure and reservoir permeability during UBD while performing an
excitation of the bottom-hole pressure. The results show that excitation of
the bottom-hole pressure might improve the estimation of the reservoir pore
pressure and reservoir permeability.

Aarsnes et al. [2] introduced a simplified drift-flux model and estima-
tion of the distributed multiphase dynamics during UBD operation. This
model used a specific empirical slip law without flow-regime predictions .
The estimation algorithm separates varying parameters slowly and poten-
tially changing parameters more quickly such as the PI (this sentence is very
hard to read think more about it). In this model, fast changing parameters
were estimated online simultaneously with the states of the model, while
other parameters were calibrated infrequently and offline.

Di Meglio et al. designed an adaptive observer based on a back stepping
approach for a linear first-order hyperbolic system of Partial Differential
Equations (PDEs) by using only boundary measurements with application
to UBD [15]. It was shown that this method has exponential convergence for
the distributed state and the parameter estimation. This adaptive observer
was used to estimate distributed states and unknown boundary parameters
of the well during UBD operations.

Gao Li et al. presented an algorithm for characterizing reservoir pore
pressure and reservoir permeability during UBD of horizontal wells [51, 52].
Since the total flow rate from the reservoir has a negative linear correlation
with the bottom hole pressure, reservoir pore pressure was identified by
the crossing of the horizontal axis and the best-fit regression line between
the total flow rate from the reservoir and the bottom hole pressure while
performing an excitation of the bottom-hole pressure by changing the choke
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valve opening or pump rates. The results show a reasonable performance for
this method for reservoir characterization in horizontal well.

Estimation based on low-order models

Nygaard et al. compared and evaluated the performance of the extended
Kalman filter, the ensemble Kalman filter and the unscented Kalman filter
based on a low order model to estimate the states and the production index
(PI) in UBD operation [82]. The results show that the unscented Kalman
filter has a better performance than other methods.

Nazari et al. [69] designed and compared the performance of the ensemble
Kalman filter and the unscented Kalman filter based on a low order model
developed in [80] to estimate the states. For extracting more reliable infor-
mation from several pressure sensors at each moment, two centralized and
distributed estimation fusion schemes based on the unscented Kalman filter
for estimating and monitoring mixture velocity of drill-string and annulus
was developed. The result of central estimation fusion method was more ac-
curate than the distributed estimation fusion method. But, the distributed
fusion presented more robust results.

Reservoir characterization in Under-Balanced Drilling

As mentioned above, reservoir characterization can be estimated by using
both low-order models and distributed models. Real-time updates of reser-
voir properties which are part of these models are able to improve efficiency
of the overall well construction by calculating reservoir characterization ac-
curately while drilling, ultimately enabling increased oil recovery by better
well completion.

Reservoir characterization during UBD has been investigated by several
researchers|39, 41, 52, 110, 111|, focusing mainly on the estimation of the
reservoir pore pressure and reservoir permeability by using the assumption
that the total flow rate from the reservoir is known [110]. Since the total
flow rate from the reservoir is usually unknown or unmeasurable online,
this thesis has designed novel methods to estimate reservoir properties with
only pressure measurements.This can highly improve safety and efficiency
of UBD operations.
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1.6.2 Control in UBD system

In oil and gas drilling operations, the main goal of automatic or manual
controller is to control the annulus pressure in the well under both static
and dynamic conditions. In addition, an other objective of well control in
UBD operations is to control influx of formation fluids. The most important
manipulated variables for control in UBD operations are the choke valve
opening, drilling fluid density and the drilling fluid injection flow rates.
These variables have different time-scales and effects on UBD operations.
The choke valve opening is generally used to control the rapid pressure fluc-
tuations during the UBD operations. The other manipulated variables can
be used to adjust pressure and friction in the well for long time scale.

Perez Tellez et al. [94, 95]proposed UBD flow control procedure based on
a mechanistic model for control of the bottom-hole pressure and influx of
formation fluids during routine operation and pipe connections procedures.
The mechanistic model was validated with both field measurements from
a Mexican well and full-scale experimental data. Manipulated variables in
this controller were the choke valve opening and the drilling fluid injection
flow rates. In this study, the choke valve is adjusted manually based on the
calculated set-point. This method can cause some errors if the planned pipe
connection is not performed properly

Nygaard et al.|81] designed a nonlinear model predictive control(NMPC)
based on a detailed model for regulating bottom-hole pressure during the
drilling operations and pipe connections procedures. This controller was
compared by two other control algorithms, a PI controller with feed-forward
control of the pump rates and a manual controller. The PI scheme parame-
ters were tuned by Ziegler-Nichols closed loop algorithm based on a low-order
model. The performance of all algorithms was tested on the detailed model.
The results showed that the nonlinear model predictive control has a better
performance than the PI and the manual controller.

Nygaard et al. [84, 87| used a nonlinear model predictive control algo-
rithm based on detailed model to obtain optimal choke pressure and pump
rate for controlling the bottom-hole pressure during pipe connection in a gas
dominant well. They used the unscented Kalman filter for nonlinear model
to estimate the states, and the permeability of the reservoir. The reservoir
was divided into three zones, and the permeability of the reservoir for each
zone was estimated. The results show that this control algorithm can reduce
fluctuations in the bottom hole pressure during UBD operations.

In Nygaard et al. [85], a finite horizon nonlinear model predictive control
in combination with an unscented Kalman filter was designed for controlling
the bottom-hole pressure based on a low order model developed in [81]. In
this study the unscented Kalman filter (UKF) was used to estimate the
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states, and the friction and choke coefficients.

1.7 Background on control of heave disturbance in offshore

MPD

There is a specific disturbance occurring during drilling from floaters that
significantly affects MPD operations. In this case, the rig moves vertically
with the waves, referred to as heave motion. As drilling proceeds, the drill
string needs to be extended with new sections. Thus, every couple of hours
or so, drilling is stopped to add a new segment of about 27 m to the drill
string. During drilling, a heave compensation mechanism is active to isolate
the drill string from the heave motion of the rig. However, during connec-
tions, the pump is stopped, and the string is disconnected from the heave
compensation mechanism and rigidly connected to the rig. The drill string
then moves vertically with the heave motion of the floating rig and acts like
a piston on the mud in the well. The heave motion may be more than 3
m in amplitude and typically has a period of 10-20 s, which causes severe
pressure fluctuations at the bottom of the well. Pressure fluctuations have
been observed to be an order of magnitude higher than the standard limits
for pressure regulation accuracy in MPD (about £2.5 bar) [24]. Downward
movement of the drill string into the well increases pressure (surging), and
upward movement decreases pressure (swabbing). Excessive surge and swab
pressures can lead to mud loss resulting from high-pressure fracturing of the
formation or a kick-sequence (uncontrolled influx from the reservoir) that
can potentially grow into a blowout as a consequence of low pressure.
Rasmussen et al.|99] compared and evaluated different MPD methods for
the compensation of surge and swab pressure. In Nygaard et al. [86], it is
shown that surge and swab pressure fluctuation in the BHP during pipe con-
nection can be suppressed by controlling the choke and main pump. Nygaard
et al. [87] used a nonlinear model predictive control (MPC) algorithm to ob-
tain optimal choke pressure for controlling the BHP during pipe connection
in a gas-dominant well. Pavlov et al. [93] presented two nonlinear control
algorithms for handling heave disturbances in MPD operations. Mahdianfar
et al. [61, 62| designed an infinite-dimensional observer that estimates the
heave disturbance. This estimation is used in a controller to reject the effect
of the disturbance on the downhole pressure. In all the above mentioned
papers, the controllers are designed for the nominal case disregarding the
uncertainty in the parameters, although several parameters in the well could
be uncertain during drilling operations. In addition, the heave disturbance,
which is inherently stochastic and contains many different spectral harmon-
ics, is approximated by one or a couple of sinusoidal waves with known fixed
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frequencies throughout controller design and simulations [50]. In this the-
sis, a stochastic model for the heave motion in the North Sea is given and
used in simulations. This thesis develops a model predictive controller for
the first time to control the annular pressure in a well to deal with heave
disturbances during offshore MPD operations. This can improve safety and
performance of MPD operations.

1.8 Research Objective

Based on background studies, the main research objective of this thesis is
to develop methods using both distributed and low order model to estimate
the states and geological properties of the reservoir during UBD operations.
Since reservoir properties determine anticipated influx of formation fluids
during UBD operations, reservoir characterization has important role in
the safety and efficiency of UBD technology. Real-time updates of reser-
voir properties may improve efficiency of the overall well construction by
accurate estimation of reservoir characterization while drilling. And conse-
quently, enabling increased oil recovery by better well completion.

Since heave motion in offshore drilling induces severe pressure fluctua-
tions at the bottom of the well, improper control leads to loss of mud, rig
blowout and formation kicks. Therefore, in this work it has been developed
algorithms to control the annular pressure in a well to deal with heave dis-
turbances during offshore MPD operations. In some cases, short-term heave
motion can be predicted based on forward-looking sensors such as ocean
wave radar and used directly in MPC controller. Short-term heave motion
prediction can also improve performance of MPC to deal with heave distur-
bance.

1.9 Summaries and Outline of the Thesis

Advancement of automation on drilling technologies solved quite a few chal-
lenges in this sector in the past few decades. However, still there are many
more challenges that has to be addressed. This work addresses two of the
important challenges that drilling technology faces nowadays :

1. Accurate reservoir characterization in UBD

2. Control of heave disturbance in offshore MPD operations

To solve these challenges, this thesis includes novel solutions. The summary
of contributions of each chapter is as follows. Each of the following chapters
is based on a number of papers that are published independently, or sub-
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mitted for publication:

Chapter 2. Nonlinear Moving Horizon Observer for estimation
of states and parameters in Under-Balanced drilling operations:
This chapter describes a nonlinear Moving Horizon Observer to estimate the
annular mass of gas and liquid, and production constants of gas and liquid
from the reservoir into the well during UBD operations with measuring the
choke pressure and the bottom-hole pressure. This observer algorithm which
is based on a low-order lumped model is evaluated against Joint Unscented
Kalman filter for two different simulations with low and high measurement
noise covariance. The results show that both algorithms are capable of iden-
tifying the production constants of gas and liquid from the reservoir into the
well, while the nonlinear Moving Horizon Observer achieves better perfor-
mance than the Unscented Kalman filter. A version of the contents of this
chapter was presented in [74].

Chapter 3. Reservoir characterization in Under-balanced Drilling
using Low-Order Lumped Model: Estimation of the production index
of oil and gas from the reservoir into the well during UBD operations is
studied. This chapter compares a Lyapunov-based adaptive observer and a
joint unscented Kalman filter (UKF) based on a low order lumped (LOL)
model and the joint UKF based on the distributed drift-flux model by using
real-time measurements of the choke and the bottom-hole pressures. Using
the OLGA simulator, it is found that all adaptive observers are capable of
identifying the production constants of gas and liquid from the reservoir into
the well, with some differences in performance. The results show that the
LOL model is sufficient for the purpose of reservoir characterization dur-
ing UBD operations. Robustness of the adaptive observers is investigated in
case of uncertainties and errors in the reservoir and well parameters of the
models. A version of the contents of this chapter has been submitted in [79],
based on preliminary results in |73] and [78].

Chapter 4. State and parameter estimation of a Drift-Flux Model
for Under-Balanced Drilling operations: This chapter presents a drift-
flux model describing multiphase (gas-liquid) flow during drilling. The drift-
flux model uses a specific slip law which allows for transition between single
and two phase flows. With this model, we design Unscented and Extended
Kalman Filters (UKF and EKF) for estimation of unmeasured state, pro-
duction and slip parameters using real time measurements of the bottom-
hole pressure, outlet pressure and outlet flow-rate. The OLGA high-fidelity
simulator is used to create two scenarios from UBD operations on which
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the estimators are tested: A pipe connection scenario and a scenario with
a changing production index. A performance comparison reveal that both
UKF and EKF are capable of identifying the production constants of gas
from the reservoir into the well with sufficient accuracy, while the UKF is
more accurate than the EKF. Robustness of the UKF and EKF for the
pipe connection scenario is studied in case of uncertainties and errors in the
reservoir and well parameters of the model. It is found that these methods
are very sensitive to errors in the reservoir pore pressure value. However,
there are robust in case of error in the liquid density value of the model. A
version of the contents of this chapter has been submitted in 77|, based on
preliminary results in |76].

Chapter 5. Design constrained MPC for heave disturbance at-
tenuation in offshore Managed Pressure drilling systems: This chap-
ter presents a constrained finite horizon model predictive control (MPC)
scheme for regulation of the annular pressure in a well during managed
pressure drilling from a floating vessel subject to heave motion. In addition
to the robustness of a controller, the methodology to deal with heave distur-
bances despite uncertainties in the friction factor and bulk modulus is inves-
tigated. The stochastic model describing sea waves in the North Sea is used
to simulate the heave disturbances. The results show that the closed-loop
simulation without disturbance has a fast regulation response, without any
overshoot, and is better than a proportional-integral-derivative controller.
The constrained MPC for managed pressure drilling shows further improved
disturbance rejection capabilities with measured or predicted heave distur-
bance. Monte Carlo simulations show that the constrained MPC has a good
performance to regulate set point and attenuate the effect of heave distur-
bance in case of significant uncertainties in the well parameter values. A
version of the contents of this chapter was presented in |75], based on pre-
liminary results in |72].

Chapter 6. Conclusions. This chapter presents main conclusions of
this thesis and possible future research directions.

1.10 Main Contributions

The main contributions of this work can be summarized as follows:

B Nonlinear Moving Horizon Observer using a Low-Order Lumped model
for estimation of states and parameters in UBD operations, chapter 2.
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B The proof of stability of Lyapunov-based adaptive observer based on a
Low-Order Lumped model for estimation of Production Index in UBD
operations, chapter 3.

B Comparasion of the joint unscented Kalman filter and a Lyapunov-
based adaptive observer for estimating the states and production con-
stant of gas and liquid from the reservoir into the well based on a
Low-Order Lumped model for UBD operation, chapter 3.

B Applying the unscented Kalman Filter for estimation of states and
parameters of a Drift-Flux Model, chapters 3 & 4.

B Constrained model predictive control (MPC) scheme for regulation of
the annular pressure in a well and heave disturbance attenuation in
offshore MPD systems, chapter 5.

1.11 Publications

The main contribution of this thesis presented in several conferences and
journal papers which are listed below:

e Nikoofard, A., Johansen, T. A., Mahdianfar, H., and Pavlov, A.
(2013, June). Constrained MPC design for heave disturbance attenua-
tion in offshore drilling systems. In OCEANS-Bergen, 2013 MTS/IEEE
(pp. 1-7). IEEE.

e Nikoofard, A., Johansen, T. A., Mahdianfar, H., and Pavlov, A.
(2014). Design and comparison of constrained MPC with pid controller
for heave disturbance attenuation in offshore managed pressure drilling
systems. Marine Technology Society Journal, 48(2), 90-103.

e Nikoofard, A., Johansen, T. A., and Kaasa, G. O. (2014, June). De-
sign and comparison of adaptive estimators for Under-Balanced Drilling.
In American Control Conference (ACC), 2014 (pp. 5681-5687). IEEE.

e Nikoofard, A., Johansen, T. A., and Kaasa, G. O. (2014, October).
Nonlinear Moving Horizon Observer for Estimation of States and Pa-
rameters in Under-Balanced Drilling Operations. In ASME 2014 Dy-
namic Systems and Control Conference (pp. V003T37A002-V003T37A002).
American Society of Mechanical Engineers.

e Nikoofard, A., Aarsnes, U. J. F., Johansen, T. A., and Kaasa, G.
O. (2015, May). Estimation of States and Parameters of a Drift-Flux
Model with Unscented Kalman Filter. In Proceedings of the 2015 IFAC
Workshop on Automatic Control in Offshore Oil and Gas Production
(Vol. 2, pp. 171-176).
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Evaluation of Lyapunov-based Adaptive Observer using Low-Order
Lumped Model for Estimation of Production Index in Under-balanced
Drilling. In Proceedings of 9th IFAC international symposium on ad-
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CHAPTER

Nonlinear Moving Horizon Observer for
estimation of states and parameters in
Under-Balanced drilling operations

2.1 Introduction

In recent years there has been increasing interest in Under-Balanced Drilling
(UBD). UBD has the potential to both decrease drilling problems and im-
prove hydrocarbon recovery. In conventional (over-balanced) drilling, or Man-
aged Pressure Drilling (MPD), the pressure of the well must be kept greater
than pressure of reservoir to prevent influx from entering the well. But in an
UBD operation, the hydrostatic pressure in the circulating downhole fluid
system must be kept greater than pressure of collapse and less than pressure
of reservoir

Peoll (t, ) < Puelt(t, ) < pres(t, x) (2.1)

at all times ¢t and positions z. Since hydrostatic pressure in the circulating
downhole fluid system is intentionally lower than the reservoir formation
pressure, influx fluids (oil, free gas, water) from the reservoir are mixed with
rock cuttings and drilling fluid (“mud") in the annulus. Therefore, modeling
of the UBD operation should be considered as multiphase flow. Different
aspects of modeling relevant for UBD have been studied in the literature
[19, 47, 81, 106].

Estimation and control design in MPD has been investigated by several
researchers [38, 63, 72, 75, 92, 105, 113, 114]. However, due to the complexity
of multi-phase flow dynamics in UBD operations, there are few studies on
estimation and control of UBD operations [56, 73, 81, 82, 85]. Nygaard et
al. [82| compared and evaluated the performance of the extended Kalman
filter, the ensemble Kalman filter and the unscented Kalman filter to esti-
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mate the states and production index in UBD operation. Lorentzen et al.[56]
designed an ensemble Kalman filter to tune the uncertain parameters of a
two-phase flow model in the UBD operation. In Nygaard et al [85], a finite
horizon nonlinear model predictive control in combination with an unscented
Kalman filter was designed for controlling the bottom-hole pressure based
on a low order model developed in [81], and the unscented Kalman filter
was used to estimate the states, and the friction and choke coefficients. Gao
Li et al. presented an algorithm for characterizing reservoir pore pressure
and reservoir permeability during UBD of horizontal wells |51, 52|. Since
the total flow rate from the reservoir has a negative linear correlation with
the bottom hole pressure, reservoir pore pressure can be identified by the
crossing of the horizontal axis and the best-fit regression line between the
total flow rate from the reservoir and the bottom hole pressure while per-
forming an excitation of the bottom-hole pressure by changing the choke
valve opening or pump rates. Nikoofard et al.|73| designed Lyapunov-based
adaptive observer, recursive least squares and joint unscented Kalman filter
based on a low-order lumped model to estimate states and parameters during
UBD operations by using the total mass of gas and liquid as measurements
calculated from pressure measurements using a model. The performance of
adaptive estimators are compared and evaluated for two cases.The results
show that all estimators were capable of identifying the production constants
of gas and liquid from the reservoir into the well, while the Lyapunov based
adaptive observer had the best performance comparing with other methods
when there was a significant amount of noise. This chapter estimates states
and parameters only by using real-time measurements of the choke and the
bottom-hole pressures.

Due to mathematical complexity presented by nonlinearity, state and pa-
rameter estimation of nonlinear dynamical systems is one of the challenging
topics in the control theory and has been the subject of many studies since
its advent. The adaptive observer was proposed by Carrol et al. in 1973
[14]. The Lyapunov based adaptive observer is generally used to design a
Luenberger type observer for the state while appropriate adaptive law to
estimate the unknown parameters [33, 43, 68, 71]. If the observability and
persistency excitation condition is satisfied, then both the state and the
parameter estimation will converge to their true values. Nonlinear Moving
Horizon Estimation is one of the powerful method which estimates states
and parameters simultaneously |34, 65, 98]. At each sampling time, a Mov-
ing Horizon Estimation estimate the state and parameter by minimizing a
cost function over the previous finite horizon, subject to the nonlinear model
equations. Robustness to lack of persistent excitation and measurement noise
is due to the use of an apriori prediction model as well as some modifications
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to the basic MHE algorithm [35, 107]. The original Kalman filter based on
linear model was developed to estimate both state and parameter of the
system usually known as an augmented Kalman filter. Several Kalman fil-
ter techniques have been developed to work with non-linear system. The
unscented Kalman filter has been shown to have a better performance than
other Kalman filter techniques for nonlinear system in same cases [104, 112].

Total mass of gas and liquid in the well could not be measured directly,
as well as some geological properties of the reservoir such as production
constants of gas and liquid from the reservoir might vary and could be un-
certain during drilling operations. Therefore, they must be estimated by
adaptive estimators during UBD operations. It is assumed that the bottom-
hole pressure (BHP) readings are transmitted continuously to the surface
through a wired pipe telemetry with a pressure sensor at the measurement
while drilling (MWD) tool [31]. This chapter presents the design of a non-
linear Moving Horizon Estimation based on a nonlinear two-phase fluid flow
model to estimate the total mass of gas and liquid in the annulus and geo-
logical properties of the reservoir during UBD operation. The performance
of this methods is evaluated against Joint Unscented Kalman Filter for the
case of pipe connection operations where the main pump is shut off and
the rotation of the drill string and the circulation of fluids are stopped. The
estimators are compared to each other in terms of speed of convergence,
sensitivity of noise measurement, and accuracy.

This chapter consists of the following sections: The modeling section
presents a low-order lumped model based on mass and momentum balances
for UBD operation. The adaptive observer section explains nonlinear Mov-
ing Horizon Estimation for simultaneously estimating the states and model
parameters of a nonlinear system from noisy measurements. In the Simu-
lations section, the simulation results are provided for state and parameter
estimation. At the end, the conclusion that has been made through this
chapter are presented.

2.2 Modeling

Modeling of Under-balanced Drilling (UBD) in an oil well is a challenging
mathematical and industrial research area. Due to existence of multiphase
flow (i.e. oil, gas, drilling mud and cuttings) in the system, the modeling
of the system is very complex. Multiphase flow can be modeled as a dis-
tributed (infinite dimension) model or a lumped (finite dimension) model.
A distributed model is capable of describing the gas-liquid behavior along
the annulus in the well. In this chapter, a low-order lumped (LOL) model
is used. The lumped model considers only the gas-liquid behavior at the
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drill bit and the choke system. This modeling method is very similar to the
two-phase flow model found in [1, 81]. The simplifying assumptions of the
LOL model are listed as below:

B Ideal gas behavior

B Simplified choke model for gas, mud and liquid leaving the annulus
B No mass transfer between gas and liquid

B Isothermal condition and constant system temperature

B Constant mixture density with respect to pressure and temperature.

B Liquid phase considers the total mass of mud, oil, water, and rock cut-
tings.
The simplified LOL model equations for mass of gas and liquid in an
annulus are derived from mass and momentum balances as follows

m

Mg = Wy, d + Wy res(Mg, my) — nglwout(mga my) (2.2)
. my
my = Wy, d + Wi res(Mg, my) — mwom(mg, mp) (2.3)

where my and my; are the total mass of gas and liquid, respectively. The
liquid phase is considered incompressible, and p; is the liquid mass density.
The gas phase is compressible and occupies the space left free by the liquid
phase. wg 4 and w; 4 are the mass flow rate of gas and liquid from the drill
string, wg res and wy s are the mass flow rates of gas and liquid from the
reservoir. The total mass outflow rate is denoted by weys.

The total mass outlet flow rate is calculated by the valve equation

mg +my

Wout = KCZ Va

vV Pc — Pco (2'4)
where K, is the choke constant. Z is the control signal to the choke opening,
taking its values on the interval (0,1]. The total volume of the annulus is
denoted by V. peo is the constant downstream choke pressure (atmospheric).
The choke pressure is denoted by p., and derived from ideal gas equation

RT myg

=5 1/ _ m
Myas Vo — 22

Pe (2.5)

where R is the gas constant, T' is the average temperature of the gas, and
Myqs is the molecular weight of the gas. The flow from the reservoir into
the well for each phase is commonly modeled by the linear relation with the
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pressure difference between the reservoir and the well. The mass flow rates
of gas and liquid from the reservoir into the well are given by

Kg (pres - pbh)7 if Pres > pon
w = 2.6
ores {0, otherwise. (2:6)
Kl (pres - pbh)7 if Dres > Dbh
w = 2.7
bres {0, otherwise. (27)

where ppes is the known pore pressure in the reservoir, and K, and K;
are the production constants of gas and liquid from the reservoir into the
well, respectively. Finally, the bottom-hole pressure is given by the following
equation

mg + my)gcos(Af
pbh:pc+( ¢ 11)49 ( )+Apf (2.8)

where ¢ is the gravitational constant, A is the cross sectional area of the
annulus, Af is the average angle between gravity and the positive flow di-
rection of the well, Apy is the friction pressure loss in the well

Apy = Kf(wga+wiq)? (2.9)

and Ky is the friction factor.

Reservoir parameters could be evaluated by seismic data and other geo-
logical data from core sample analysis. But, local variations of reservoir pa-
rameters such as the production constants of gas and liquid may be revealed
only during drilling. So, it is valuable to estimate the partial variations of
some of the reservoir parameters while drilling is performed [82].

2.3 Adaptive Observer

In this section, first the Nonlinear Moving Horizon Estimation (MHE) to
estimate states and parameters in UBD operation is explained. Then, the
joint unscented Kalman filter is presented for same problem.The choke and
the bottom-hole pressures are outputs and measurements of the system. The
measurements and inputs of the observer are summarized in Table 2.1. The
production constant of gas (K,) and liquid () from the reservoir into the
well are unknown and must be estimated. Below K, and K; are denoted by
01 and 6, respectively.
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Table 2.1: Measurements and Inputs

Variables Type
Choke pressure (p,) Measurement
Bottom-hole pressure (ppn) Measurement
Drill string mass flow rate of gas (wg,q) Input
Drill string mass flow rate of liquid (w; 4) | Input
Choke opening (Z) Input

2.3.1 Nonlinear Moving Horizon Estimation

The LOL model based on equations (2.2)-(2.3) can be represented by a
discrete explicit scheme given by

T = f(@h—1,up—1) + Qi (2.10)
Yk = h(zg) + 7 (2.11)
(k) = [Pes pon]” (2.12)

where g; and r; are the process noise and the measurement noise, and uy is
the input. At time t, the information vector of the N + 1 last measurements
and the N last inputs is defined as

It = COl(Yt—Ny ooy Yty Ut— Ny ooy Ug—1) (2.13)

N + 1 is the finite horizon or window length . This information can be
summarized in a single vector for measurement and input as follow

Yt—N Ut—N
Yt—N+1 Ut—N+1
Y; = ) U, = . (2.14)
Yt Ut—1

Nonlinear MHE cost function can be considered as follows

J(@1—np Be—ng, 1) = WYy — Ho(@e—n) 1> + |V (@—np — Ze—na) P
(2.15)

where V, W are the positive definite weight matrices. Choosing the tuning
matrices V, W in the MHE specify trade-offs in the MHE design. Choosing
small tuning matrices V., W lead to faster track of data and convergence
but more uncertainty in the estimation. Choosing larger tuning matrices W
and V lead to slower track of data and convergence but less uncertainty in
the estimation. The cost function (2.15) consists of two standard terms: one
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is a term that penalizes the deviation between the measured and predicted
outputs, the other term weights the difference between the estimated state at
the start of the horizon from its prediction. The Nonlinear MHE minimizes
the cost function (2.15) over the window of the current measurement and
the historical measurement, subject to the nonlinear model equations. x§_ Nt
is the optimal solution of this problem.The sequence of the state estimates
Zit (1=1t—N,...,t) can be yielded from the noise free nonlinear model
dynamics. So, a sequence of denoted as estimated output vectors Yt can be
formulated as follows

h(Z¢—nNt)

N h(f¥—N(z,_
Y = H(#-ny, Ur) = Hi(2-Ny) = U :(xt wal) (2.16)

B (L (PN (B xg)

A one-step prediction Z;—n; is determined from z7_ N—1t-1 88 follow

TNt = f(lI??foLtprthfl) t=N+1,N+2,... (217)

For parameter estimation, x is augmented with the unknown parameter
vector # with the dynamic model 6,41 = 6,.

2.3.2 Joint Unscented Kalman Filter

The Unscented Kalman Filter (UKF) was introduced in [36, 37, 109]. The
main idea behind the method is that approximation of a Gaussian distribu-
tion is easier than approximation on of an arbitrary nonlinear function. The
UKF estimates the mean and covariance matrix of estimation error with
a minimal set of sample points (called sigma points) around the mean by
using a deterministic sampling approach known as the unscented transform.
The nonlinear model is applied to sigma points instead of a linearization of
the model. So, this method does not need to calculate explicit Jacobian or
Hessian. More details can be found in [36, 104, 109, 112].

Two common approaches for estimation of parameters and state vari-
ables simultaneously are dual and joint UKF techniques. The dual UKF
method uses another UKF for parameter estimation so that two filters run
sequentially in every time step. At each time step, the state estimator up-
dates with new measurements, and then the current estimate of the state is
used in the parameter estimator. The joint UKF augments the original state
variables with parameters and a single UKF is used to estimate augmented
state vector. The joint UKF is easier to implement [109, 112].

Using the joint UKF, the augmented state vector is defined by x% =
[X, 0]. The state-space equations for the the augmented state vector at time
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instant k is written as:

Tk J1(Xg—1,011-1)

T2k _ fQ(Xk—heQ,k—l) _ fa(Xk—lyek—lauk—l) + g (218)
01 01,51

0 0o 11

mg and my are denoted by 1 and zg, respectively. The discrete measure-
ments of the system can be modeled as follows:

Yk = h(Xy) + 1% (2.19)
W(Xk) = [Pes pon] " (2.20)

where 7, ~ N(0, Ry) is the zero mean Gaussian measurement noise.

2.4 Simulation Results

The parameter values for the simulated well, LOL model and reservoir are
summarized in Table 2.2. These parameters are used from the offshore test of
WeMod simulator[89]. WeMod is a high fidelity drilling simulator developed
by the International Research Institute of Stavanger (IRIS). In WEMOD,
the drift-flux model was used for modeling one-dimensional two-phase flow
in well. To derive thermodynamic relations, it is generally assumed a system
in thermodynamic equilibrium (PVT-models), ideal gas law, and a more
detailed model for mud PVT properties[89]. The process noise covariance
matrix used in this plant model (LOL model) is

Q = diag[1071,1071, 1074, 1074

UKF parameters are determined empirically and used in the series of
equations presented in the Appendix.A. The parameter values for nonlinear
MHE and joint UKF are summarized in Table 2.3.

The time-step used for discretizing the dynamic model and adaptive es-
timator was 1 seconds. The initial values for the estimated and real states
and parameters are as follows

r1 = 5446.6, x9 = 54466.5, 61 =5 , Oy =5
F1 = 4629.6, &9 = 46296.2, 0, =4.25, 0y = 4.25
The scenario in this simulation is as follows, first the drilling in a steady-
state condition is initiated, then at t = 10 min the main pump is shut off

to perform a connection procedure. The rotation of the drill string and the
circulation of fluids are stopped for 10 mins. Next after making the first pipe
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Table 2.2: Parameter Values for Well and Reservoir

Name LOL Unit
Reservoir pressure (pres) 270 bar
Collapse pressure (Peoir) 255 bar
Friction pressure loss (Apy) 10 bar
Well total length (Lgot) 2300 m
Well vertical depth (L) 1720 m
Drill string outer diameter (Dy) 0.1397 m
Annulus volume (V) 252.833 m?
Annulus inner diameter (D,) 0.2445 m
Liquid flow rate (w; q) 44 Kg/s
Gas flow rate (wg,q) 5 Kg/s
Liquid density (p;) 1475 Kg/m?
Production constant of gas (Kj) 5x 1076 | Kg/Pa
Production constant of liquid (K;) | 5 x 1075 | Kg/Pa
Gas average temperature (1) 25 °C
Average angle (Af) 0.726 rad
Choke constant (K.) 0.013 m?

Table 2.3: Parameter Values for Estimators

Parameter | Value || Parameter | Value

w 100 % diag (0.1,0.1, 0.03, 0.05)
N+1 15 K 0

B 2 a 0.5

connection at t = 20 min the main pump and rotation of the drill string are
restarted. Then at t=52 min the second pipe connection procedure is started,
and is completed after 12 mins. Two different simulations with low and high
measurement noise covariances are performed. In the first simulation, the
choke and the bottom-hole pressures measurements are corrupted by zero
mean additive white noise with the following covariance matrix

R = diag|0.5%,0.57]

Figures 2.1 and 2.2 show the measured and estimated total mass of gas
and liquid, respectively. The nonlinear MHE is more accurate than UKF to
estimate the total mass of gas and liquid. The estimation of the production
constants of gas and liquid from the reservoir into the well are shown in
Figures 2.3 and 2.4, respectively. In estimation of the production constants
of gas and liquid from the reservoir into the well, nonlinear MHE has a very
fast convergence rate, about 30 seconds or less. UKF take much longer and
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it is in the order of minutes. After convergence to the value, the correct
nonlinear MHE has more small fluctuations than UKF for estimation of the
production constants of gas and liquid.

Total mass of gas
5560 ‘

— Nonlinear MHE
— Real system
— UKF

5550

5540

5530

5520

5510

Mass (kg)

5500

5490

5480

5470

5460 L L L L L
0 20 40 60 80 100 120

Time (min)

Figure 2.1: Total mass of gas with the low measurement noise covariance

In second simulation, the choke and the bottom-hole pressures are cor-
rupted by zero mean additive white noise with the following covariance ma-
trix

R = diag[50%, 50

Figures 2.5 and 2.6 show the measured and estimated total mass of gas and
liquid, respectively. It is found that the nonlinear MHE is more accurate
than UKF to estimate the total mass of gas and liquid. The estimation of
the production constants of gas and liquid from reservoir into the well are il-
lustrated in Figures 2.7 and 2.8, respectively. In estimation of the production
constants of gas and liquid from the reservoir into the well, the nonlinear
MHE has a very fast convergence rate, about 30 seconds or less, while the
UKF takes almost 7 minutes.

In this section, performance of these adaptive estimators is evaluated
through the root mean square error (RMSE) metric. The RMSE metric for
nonlinear MHE and UKF in two cases are summarized in Table 2.4.
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Figure 2.2: Total mass of liquid with the low measurement noise covariance
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Figure 2.3: Production constant of gas with the low measurement noise covariance
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Figure 2.4: Production constant of liquid with the low measurement noise covari-
ance
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Figure 2.5: Total mass of gas with the high measurement noise covariance
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Figure 2.7: Production constant of gas with the high measurement noise covariance
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Estimation of KI
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Figure 2.8: Production constant of liquid with the high measurement noise covari-
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Table 2.4: RMSE metric

Method R I X9 91 92

MHE Low | 0.315 | 10.3 | 0.04 0.100
UKF Low | 0.328 | 36.4 | 0.078 | 0.152
MHE High | 0.978 | 34.9 | 0.115 | 0.667
UKF High | 1.631 | 96.3 | 0.084 | 0.177

According to the RMSE metric table, nonlinear Moving Horizon Observe
has the better performance than joint UKF for state and parameter estima-
tion while it has low and high measurement noise covariances.

2.5 Conclusions

This chapter describes nonlinear MHE to estimate states and parameters
during pipe connection procedure in UBD operations. The low-order lumped
model presented here only captures the major phenomena of the UBD oper-
ation. Simulation results demonstrate satisfactory performance of nonlinear
MHE and joint UKF for state and parameter estimation during pipe con-
nection procedure with low and high measurement noise covariances. It is
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found that the nonlinear MHE shows better convergence and performance
than joint UKF with low and high measurement noise covariances. Accord-
ing to the RMSE metric, nonlinear MHE can perform better in terms of
accuracy and robustness to measurement noise.
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CHAPTER

Reservoir characterization in

Under-balanced Drilling using Low-Order
Lumped Model

3.1 Introduction

Since the number of depleted formations and cost of field exploration and
development has increased, there has been increasing interest in new technol-
ogy and automation of drilling process which can improve drilling efficiency
and increase oil recovery for the past two decades. UBD is a technology that
enables drilling with the downhole pressure lower than the pore pressure of
the formation. The UBD has several advantages compared to conventional
drilling in increasing the ultimate recovery from the reservoir, reducing the
non-productive time (NPT), minimizing the risk of lost circulation, increas-
ing the rate of penetration (ROP), reducing drilling-fluid costs through the
use of cheaper, lighter fluid systems, and reducing drilling problems such as
hole cleaning and differential sticking [9, 97].

Real-time updates of reservoir properties may improve efficiency of the
overall well construction by more accurate reservoir characterization while
drilling, ultimately enabling increased oil recovery by better well comple-
tion. Reservoir characterization during UBD has been investigated by several
researchers|39, 41, 52, 110, 111|, focusing mainly on the estimation of the
reservoir pore pressure and reservoir permeability by using the assumption
that the total flow rate from the reservoir is known [110]. Kneissl proposed an
algorithm to estimate both reservoir pore pressure and reservoir permeabil-
ity during UBD while performing an excitation of the bottom-hole pressure
[41]. However, the variations of fluid flow behavior in the downhole and the
annuls section might introduce significant uncertainties to estimation of the
reservoir pore pressure. Vefring et al. [110, 111] compared and evaluated
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the performance of the ensemble Kalman filter and an off-line nonlinear
least squares technique utilizing the Levenberg-Marquardt optimization al-
gorithm to estimate reservoir pore pressure and reservoir permeability during
UBD while performing an excitation of the bottom-hole pressure. The result
shows that excitation of the bottom-hole pressure might improve the esti-
mation of the reservoir pore pressure and reservoir permeability [110, 111].
Gao Li et al. presented an algorithm for characterizing reservoir pore pres-
sure and reservoir permeability during UBD of horizontal wells [51, 52]. The
total flow rate from the reservoir has a negative linear correlation with the
bottom hole pressure. Therefore, reservoir pore pressure can be found at the
intersection of the horizontal axis and the best-fit regression line between
the total flow rate from the reservoir and the bottom hole pressure. It must
be performing an excitation of the bottom-hole pressure by changing the
choke valve opening or pump rates for estimation of reservoir pore pressure
(see example in section 3.5).

In this chapter, it is assumed that reservoir pore pressure is known by
identifying from Li’s method [52] or other algorithms. The main focus is
to estimate both production constants of gas and liquid during UBD oper-
ations, simultaneously. Due to the complexity of the multi-phase flow dy-
namics of a UBD well coupled with a reservoir, the modeling, estimation
and control of UBD operations is still considered an emerging and challeng-
ing topic in drilling automation. Nygaard et al. compared and evaluated
the performance of the extended Kalman filter, the ensemble Kalman filter
and the unscented Kalman filter based on a low order model to estimate the
states and the production index (PI) in UBD operation [82]. Lorentzen et al.
designed an ensemble Kalman filter based on a drift-flux model to tune the
uncertain parameters of a two-phase flow model in the UBD operation [56].
In Nygaard et al. [85], a finite horizon nonlinear model predictive control in
combination with an unscented Kalman filter was designed for controlling
the bottom-hole pressure based on a low order model developed in [81], and
the unscented Kalman filter (UKF) was used to estimate the states, and
the friction and choke coefficients. A Nonlinear Moving Horizon Observer
based on a low-order lumped model (LOL) was designed for estimating the
total mass of gas and liquid in the annulus and geological properties of
the reservoir during UBD operation for pipe connection procedure in [74].
Aarsnes et al. introduced a simplified drift-flux model and estimation of the
distributed multiphase dynamics during UBD operation. This model used
a specific empirical slip law without flow-regime predictions [2]. The esti-
mation algorithm separates slowly varying parameters and potentially more
quickly changing parameters such as the PI. Fast changing parameters are
estimated online simultaneously with the states of the model, but other pa-
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rameters are calibrated infrequently and offline. Nikoofard et al. designed an
UKEF for estimation of unmeasured states, production and slip parameters of
simplified drift-flux model using real time measurements of the bottom-hole
pressure and liquid and gas rate at the outlet [76]. Di Meglio et al. designed
an adaptive observer based on a backstepping approach for a linear first-
order hyperbolic system of Partial Differential Equations (PDEs) by using
only boundary measurements with application to UBD [15]. It is shown that
this method has exponential convergence for the distributed state and the
parameter estimation. This adaptive observer is applied to estimate dis-
tributed states and unknown boundary parameters of the well during UBD
operations. Nikoofard et al. designed Lyapunov-based adaptive observer, a
recursive least squares estimator and a UKF based on a LOL model to esti-
mate states and parameters during UBD operations by using the total mass
of gas and liquid as measurements calculated from pressure measurements
using a model [73]. The performance of the adaptive estimators were com-
pared and evaluated for pipe connection procedure using a simple simulation
model. This model was the extended version of adaptive observer used in
[73] for directly using real-time measurements of the choke and the bottom-
hole pressures to estimate states and parameters [78|. The performance of
the adaptive observers was compared and evaluated for typical drilling case
to estimate only production constant of gas using a simulated scenario with
drift-flux model . In this chapter, the performance of the adaptive observers
from [78] is compared and evaluated for an UBD case study to estimate
both production constants of gas and liquid using some simulated scenarios
with the OLGA simulator. The OLGA dynamic multiphase flow simulator
is a high fidelity simulation tool which has become the de facto industry
standard in oil and gas production, see |8]. These adaptive observers were
tested by two challenging scenarios:

1. Changing for production constant of gas.

2. Pipe connection.

The performance of the estimation algorithms to detect and track the change
in production parameters is investigated. It shows that how the estimators
performs in a more realistic setting.

Lyapunov based adaptive observers and the Kalman filter are widely
used for the estimation of state and parameters. A Lyapunov based adap-
tive observer is generally designed as Luenberger type observer for the state
combined with an appropriate adaptive law to estimate the unknown param-
eters [33]. The unscented Kalman filter (UKF) has been shown to typically
have a better performance than other Kalman filter techniques for nonlinear
system [104, 112].
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The purpose of the chapter is to evaluate the LOL model for reservoir
characterization in UBD employing an adaptive observer that uses the bot-
tom hole and choke pressure measurements from a simulated scenario with
the OLGA simulator. This chapter presents the design of a Lyapunov-based
adaptive observer and an UKF based on LOL model, and an UKF based on
a simplified drift-flux model to estimate the states and geological properties
of the reservoir (production parameters) during UBD operation. The perfor-
mance of the adaptive observers based on LOL model is evaluated against
UKF based on a simplified drift-flux model by using measurements from the
OLGA simulator. The adaptive observers are compared with each other in
terms of rate of convergence and accuracy. Robustness of the adaptive ob-
servers is investigated in case of errors in the reservoir and well parameters
of the models.

This chapter consists of the following sections: Section 3.2 describes the
basic concept of the UBD process. The modeling section presents a LOL and
simplified drift-flux model based on mass and momentum balances for UBD
operation and the reservoir model. Section 3.4 explains the Lyapunov-based
adaptive observer for and joint UKF methods for simultaneously estimating
the states and model parameters from real-time measurements. At the end
the conclusion of the chapter is presented.

3.2 Under balanced drilling

In drilling operations, the drilling fluid is pumped down through the drill
string and the drill bit (see Figure 3.1). The annulus is sealed with a rotating
control device (RCD), and the drilling fluid exits through a controlled choke
valve, allowing for faster and more precise control of the annular pressure.
The drilling fluid carries cuttings from the drill bit to the surface.

In conventional (over-balanced) drilling, or managed pressure drilling
(MPD), the pressure in the well is kept greater than pressure of reservoir to
prevent influx from entering the well [29]. In UBD operations, on the other
hand the pressure of the well is kept below the pressure of the reservoir,
allowing formation fluid flow into the well during the drilling operation.

Nitrogen unit, Rotating control devices (RCD), Chemical injection equip-
ment, Surface separation equipment, choke and manifold system, geologic
sampler, emergency shut-down system and Non-return valve (NRV) are the
main surface equipments involved in normal UBD operations [102]. The
pump flow rate, choke valve and density of the drilling fluid (mud) are the
various inputs used to adjust the pressure in the well-bore. The choke valve
is the most common input used to regulate the pressure in the annulus dur-
ing MPD and UBD operations. Furthermore, real time knowledge of states
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Figure 3.1: Schematic of an UBD system

and parameters of a dynamic model for the multi phase flow in the well is
very useful in controllers, fault detection systems and safety applications in
the well during petroleum exploration and production drilling. Some states
for a dynamic model of multi phase flow in the well can not be measured
directly or have a delay or low measurement frequency, and some parame-
ters may be varied only during drilling. So, states and parameters for the
dynamic model of multi phase flow in the well must be estimated.

3.3 Modeling

Due to the existence of multiphase flow (i.e. oil, gas, water, drilling mud
and cuttings) in the system, the modeling of the system is challenging. Mul-
tiphase flow can be modeled by a distributed model or a simplified LOL
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model. A distributed model is capable of describing the gas-liquid behav-
ior along the annulus in the well. The simplified LOL model is based on
some simplifying assumptions, and considers only the gas-liquid behavior at
the drill bit and the choke system. The LOL model used in this chapter is
very similar to the two-phase flow model found in |1, 81]. In the simplified
drift-flux model and the LOL model, the drilling fluid, oil, water, and rock
cuttings are lumped into the liquid phase. All models neglect the effects of
cutting transport as one of their assumption.

3.3.1 Simplified drift-flux model

There are two common methods for modeling distributed multiphase flow
in UBD operations. The most general and detailed method is called a two-
fluid model. This method uses four partial differential equations (PDE’s) for
conservation of mass and momentum in each phase. The two-fluid model is
difficult to solve both analytically or numerically, because the source terms
reflecting interphase drag are stiff and this can lead to significant problems
in the numerical computation [19]. Due to the complexity of the two-fluid
model, the drift-flux model is derived by merging the momentum equations
of both phases (gas/liquid) into one equation. Therefore, difficult phase in-
teraction terms cancel out, and the missing information in the mixture mo-
mentum equation must be replaced by a slip equation which gives a relation
between the flow velocities of the phases. The mechanistic models use dif-
ferent relations between the phase slip velocities and pressure loss terms for
different flow patterns [46, 56]. These models need to predict flow patterns at
each time step. In this chapter, a simplified drift-flux model (DFM) is used.
The simple DFM uses a specific empirical slip law, without flow-regime pre-
dictions, but which allows for transition between single and two phase flows.
The isothermal simple DFM formulation of the conservation of mass and
momentum balance are given by [3]

om  Omyy

Tt R o 3.1

ot + oz ’ (3.1)

on  Onv,

i -0 3.2

ot + ox ’ (3.2

d(mu + nw,)  O(P 4+ muf 4+ nv?) - 2f(m + n) v |vm|
57 + B = —(m +n)gcos A — D .

(3.3)
where the mass variables are defined as follows

m = api, N = Qgpyqg
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where k = [, g denoting iquid and gas, respectively, pi is the phase density,
and qy is the volume fraction satisfying

o +ag = 1. (3.4)

Further v, denotes the velocities, and P the pressure. All of these variables
are functions of time and space. We denote ¢ > 0 the time variable, and
x € [0, L] the space variable, corresponding to a curvilinear abscissa with
x = 0 corresponding to the bottom hole and x = L to the outlet choke posi-
tion. In the momentum equation (3.3), the term (m + n)g cos Af represents
the gravitational source term, g is the gravitational constant and A#@ is the
mean an%le between gravity and the positive flow direction of the well, while

_ 2f(m+ accounts for frictional losses. The closure relations, bound-
ary condltlons and discretization schemes for this model can be found in

[3]-

U |V |

3.3.2 LOL model

The so-called low-order lumped (LOL) model is perhaps the simplest method
for modeling multiphase flow in UBD. A LOL model is suitable for conven-
tional model-based control design methods and can be used for prediction
and estimation in an observer and controller algorithms. The most important
simplifying assumptions of the LOL model are listed as below:[81, 106]

Ideal gas behavior

Simplified choke model for gas, mud and liquid leaving the annulus

No mass transfer between gas and liquid

Isothermal condition and constant system temperature

Constant liquid density with respect to pressure and temperature

Uniform flow pattern along the whole drill string and annulus

The simplified LOL model equations for mass of gas and liquid in the
annulus are derived from mass and momentum balances as follows [73]

m

mg = Wq.d + wg,res(mga ml) - mwout(mm ml) (3'5)
. my
m; = w4+ wl,res(mga ml) - Wwout(mga ml) (3'6)

where mg and my are the total mass of gas and liquid, respectively. The liquid
phase is assumed incompressible, and p; is the liquid mass density. The gas
phase is compressible and occupies the volume left free by the liquid phase.
wy 4 and wy g are the mass flow rates of gas and liquid from the drill string,
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and wgres and  wyres are the mass flow rates of gas and liquid from the
reservoir. The total mass outflow rate is

mg +my

V. V' Pc — PcO (3.7)

where K. is the choke constant. Z is the control signal to the choke opening,
taking its values on the interval (0,1]. The total volume of the annulus is
denoted by V,, and peo is the constant downstream choke pressure (atmo-
spheric). The choke pressure is denoted by p., and derived from ideal gas
equation

Wout = KCZ

RT my

= m
Myas Vo — 22

De (3.8)
where R is the gas constant, T is the average temperature of the gas, and
Myqs is the molecular weight of the gas. The bottom-hole pressure is given
by the following equation

mg + my)g cos(AG
pbh:pc+( ! lzlg ( )+Apf (3.9)

where A is the cross sectional area of the annulus,Apy is the friction pressure
loss in the well

Apf = Kf(wg’d + wl,d)2 (3.10)

and Ky is the friction factor.

3.3.3 Reservoir flow

The mass flow from the reservoir into the well for each phase is modeled by
a linear relation

w _ Kg(pres - pbh)7 if pres > Don (3 11)
gres 0, otherwise. '
Kl (pres - pbh), if Dres > Dbh
w = 3.12
bres {0, otherwise. ( )

where pres is the known pore pressure in the reservoir, and K, and K
are the production constants of gas and liquid from the reservoir into the
well, respectively. Reservoir parameters could be evaluated by seismic data
and other geological data from core sample analysis. Still, local variations of
reservoir parameters such as the production constants of gas and liquid may
be revealed only during drilling. So, it is valuable to estimate the partial
variations of some of the reservoir parameters while drilling is performed

([82])-
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3.4 Estimation Algorithm

In this section, first a Lyapunov-based adaptive observer to estimate states
and parameters in UBD operation for the LOL model is derived. Then, the
joint unscented Kalman filter is presented for both the distributed and LOL
models. The measurements and inputs of models are summarized in Table
3.1. We assume the pore pressure p,es is known, and the production constant
of gas (Ky) and liquid (K;) from the reservoir into the well are unknown and
must be estimated. We will later mention why p,.s can be assumed known
by considering offline estimation and study the sensitivity to errors in pjes.
K, and K; are named by 6; and 6y, respectively, for notational purposes.

Table 3.1: Measurements and Inputs

Variables Measurement /Input
Choke pressure (p) Measurement
Bottom-hole pressure (ppr) Measurement

Drill string mass flow rate of gas (wg,q) Input

Drill string mass flow rate of liquid (wy;,q) | Input

Choke opening (Z) Input

The friction factor (k) and choke constant (k.) of the model are known.
These parameters could be estimated offline by using separation flow rates
and topside data. Other parameters that are used in this chapter such as
density, temperature and well volume come from well data.

3.4.1 Lyapunov-based adaptive observer

A full-order state observer for the system (2.2)-(2.3) is

Mg = Wy g + Wgres(01) mgnjfml Wout (Mg, 1) + k1(Dpr — Do) (3.13)

1My = wyq + Wi res(02) — Tfﬂlwwout(mg-/ my) + ki(pon — Pon)  (3.14)
where

W,res = 01(Pres — Pon) (3.15)

Wires = 02(Pres — Don) (3.16)
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Mg + 1Y

Wout = K2 v V' Pec — PcO (3'17)
) Mg + my)gcos(Af
P = po+ 8 11)49 (29) | Apy (3.18)

Note that the observer gains are chosen equal (k1 = ko) since it is based
on Lyapunov theorem. However, in practice it might be possible to choose
different gains based on tuning since Lyapunov theorem is conservative.
%1 = l1 has to be chosen sufficiently large positive. m, and m; are estimates
of states mg and m;. Defining the state estimation errors e; = my — m, and
e = my — my, él and ég are estimates of parameters ¢; = K, and 6, = Kj.

él — q1(pres - pbh)el (319)
0y = q2(Pres — Dbn)e2 (3.20)

where the gains ¢; and g9 are positive tuning parameters that specify trade-
offs in the observer design. Choosing larger gains results in faster convergence
but large overshoot and undershoot in estimation, or sometimes instability.
Choosing smaller gains results in slower convergence and small overshoot
and undershoot, or sometimes without any overshoot in estimation. Since
the total mass of gas and liquid in the well could not be measured directly,
they are computed by solving a series of nonlinear algebraic equations (3.8)-
(3.9) using measurements of the choke and the bottom-hole pressures.

1 (pbh — Pc — Apf)A pcMgasVa
;= - 3.21
i 1— 1’3%79&8 ( g cos(A0) RT (321)
)
pcMgas(Va - ﬁ)
o= & 3.22
mg RT ( )

The adaptation laws (3.19)-(3.20) can be implemented by using e; = m{ —
mgy and ez = m{ — my. The error dynamics can be written as follows

€1 = (01 — 01)(Pres — Pon) — (ﬂ%wout - mgnj_mlwout)

— l1gcos(Af)(e1 + e2) (3.23)
2 = (02 = 02) pres = pon) = (Lt = i)

— l1gcos(Af)(e1 + e2) (3.24)

Let 91 =0, — 91, ég = 0y — 92, and the Lyapunov function candidate for
adaptive observer design be defined as

1 s L
Vie.d) =5+ e+ o'+ ¢;'03) (3.25)
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It is easy to check that V (e, é) is positive definite, and we continue to analyze
if it can be made decrescent. From (3.23) and (3.24), the time derivative of
V (e, 0) along the trajectory of the error dynamics is

2 )
. ~ e w ~ _ ~
V(e,0) = — ligcos(Af) (e + 62)2 — 7m1 _:j;l + 01 [(Pres — Pon)e1 + ¢ 191]
g
A 17 ml€2 (wout - w:)ut) e%wout
6 - 19,] — —
+ 02 [(Pres — Pon)e2 + g5 02] iy + 77 m———
myez(er + e2)Wout mger(er + e2)Wour

(mg +my)(my +my) — (mg +my)(my + my)
_ mgel (wout - w;ut)
mg +my

(3.26)

The detail calculations of the derivative of the Lyapunov function is pre-
sented in Appendix B:

— 2 | 22

/ ) ou +e )

V(e,0) < — ligcos(AB)(e2 + €3) — Wout( €1 + €5

(e, 0) 19 cos(Af)(ex 2) mg + my + /mg +my\/mg +my
gy (Y

— eyea( 2l1gcos(Af) — mg+my

Mg+ my + /g T mi/my +7ﬁ1)
(3.27)

By choosing [y sufficiently large, then

w t(i\/%*ml)
ou /

0< | 2l1gcos(Af) — Mgt

( ! (A9) mg +my + /mg +my\/mg + 1y

> < 2l1g cos(AB)

(3.28)

The lower bound of [y is

» o
2l1g cos(Af) — ( Wout < My mi - ) >0
mg + my VMg +my+ /Mg + My
0 + 2 ou
< Vg T > <1 (et (3.29)

= = 5 <7
\/mg+ml+ mg+ml mg+ml

v

= h> 2g cos(A0)

(3.30)
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In real drilling problem we usually have (v < 1), therefore the lower bound
of [; is small, and this gives

V(e,0) < —l1gcos(A0)(e? + e2) + 211 g cos(A0)|eq||es]

Wout e% + eg)

— 3.31
mg +my + /Mg + my\/mg + 1My (3:31)

By using Young’s inequality 2|e1||ez| < €2 + €2,
Vie,0) < — Wou( €1 +€3) (3.32)

Mg +my + /Mg +my \/mg+ml

which implies that all signals ey, eg, 01,05 are bounded. From (3.23),(3.24)
and 61762,01,02 € L, €1,€ are bounded. It follows by using Barbalat’s
lemma that ej,es converge to zero. Based on equation (3.19)-(3.20), the
adaptation laws can be written as follows:

i o _{ql oHres—pbh 0 ]H
92 0 @ 0 Pres — Dbh| | €2
F—ﬁj 0], 6 = (pres — D)1, c—{zjﬁ 0=To¢  (3.33)

q2

Based on the persistency excitation theorem,limt%ooé = 0* if and only if
there exists some «, T > 0 such that, for any ¢t > 0, the following inequality
is satisfied ([33]):

t+T
/ O(r)¢" (1) dr > al >0, Vit >t (3.34)
t

So,

t+T 4T
/ d)(T)d)T(T) dr = / (pres(T) - pbh(T))Ql dr > al > 0, Yt > tg
t t
(3.35)

Thus according to theorem 4.9 in [40], the adaptive observer system is glob-
ally asymptotically stable if the persistency excitation condition is satisfied.
There must be flow from the reservoir to satisfy persistence exciting condi-
tion.

3.4.2 Joint Unscented Kalman Filter

The Kalman filter using linearization to estimate both the state and param-
eter vectors of the system is usually known as an augmented Kalman filter.
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The UKF technique has been developed to work with non-linear systems
without using an explicit linearization of the model (|36, 37]). The UKF
estimates the mean and covariance matrix of the estimation error with a
minimal set of sample points (called sigma points) around the mean by us-
ing a deterministic sampling approach known as the unscented transform.
The nonlinear model is applied to propagate uncertainty of sigma points
instead of using a linearization of the model. So, this method does not need
to calculate the explicit Jacobian or Hessian. More details can be found in
(36, 104]).

The augmented state vector is defined by ® = [ X, 8] where X is the state
of the model. The discrete state-space equations for the the augmented state
vector at time instant k is written as:

{Xk} _ [f(thekl)
O Or—1

where g ~ N (0, Q) is the zero mean Gaussian process noise (model error).
Here, we apply the UKF to both the LOL and DFM. When using the DFM,
the number of states that must be estimated by the joint UKF is equal
to three times of the number of spatial discretization cells in the drift-flux
model. The discrete measurements of the system can be modeled as follows:

Ye = "(Xg) + 7k (3.37)

h(Xk) = [pe: pon]” (3.38)

where 1, ~ N(0, Ry) is the zero mean Gaussian measurement noise.

} +ar = [ Xg—1,00-1) + @ (3.36)

3.5 Simulation Results

The parameter values for the simulated well and reservoir are summarized
in Table 3.2, and used in the OLGA simulator. The measurements have
been synthetically generated by using the OLGA dynamic multiphase flow
simulator. The OLGA simulator uses the same model for the mass flow from
the reservoir into the well as in equations (3.11)-(3.12).

A discretization of the time and space variables is required for using
numerical methods. The PDE of the drift-flux model are discretized by using
a finite volumes method for the joint UKF based on DFM. where 6 cells
were used for the spatial discretization. A measurement sampling period of
10 seconds were used and the model was run with time steps of 10 seconds.
The parameter values for the nonlinear adaptive observer and UKF for both
models are summarized in Table 3.3.

The initial values for the estimated and real parameters are as follows:

K, =005 K =01, K,=007 K =0.13
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Table 3.2: Parameter Values for Well and Reservoir

Name DFM Unit
Reservoir pressure (Dycs) 279 bar
Collapse pressure (Peoir) 155 bar
Well total length (L) 2530 m
Drill string outer diameter (D) 0.1206 m
Annulus inner diameter (D,) 0.1524 m
Liquid flow rate (wy,q) 13.33 ke /s
Gas flow rate (wg,q) 0 kg /s
Liquid density (pr,) 1000 kg/m?
Production constant of liquid (Kr) | 0.1 kg /s/bar
Gas average temperature (T) 285.15 K
Average angle (A0) 0 rad
Choke constant (K,) 0.0057 m?

Table 3.3: Parameter Values for Model and Estimators

Parameter | Value Parameter | Value

¢ 25x 1075 || & 4%x1079
Q2 5x 10714 L 4

KLOL 0 KDFM 0

aror 0.00001 ADFM 0.00001
Bror 2 Borum 2

The case study that is used in this chapter considers UBD operation of a
vertical well drilled into an oil and gas reservoir. Two scenarios are simulated.
In first scenario, first drilling in a steady-state condition is initiated with the
choke opening of 12 %. After 1 hour, there is a linear decrease in the choke
opening from 12 % to 8 % for 1 hour. After 4 hours, there is a linear increase
in the choke opening from 8 % to 12 % for 1 hour. After 7 hours, there is
a linear and sharp increase in the production constant of gas from 0.05
kg/s/bar to 0.07 kg/s/bar (change of reservoir height). Choke opening in
this simulation is illustrated in Figure 3.2. The parameter covariance matrix
of UKF used for both models and scenarios is

Q = diag[8+107%,2%1079]

Choosing the process noise covariance matrix in the UKF (Qy) specify trade-
offs in the UKF design. Choosing larger process noise in the UKF (Qy)
leads to faster track of data and convergence but typically more uncertainty
in the estimation. Choosing smaller process noise in the UKF (Qy) leads
to slower track of data and convergence but typically less uncertainty in
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Choke opening

0.09

0.085
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Figure 3.2: Choke opening

the estimation. The choke and the bottom-hole pressure measurements are
corrupted by zero mean additive white noise with the following covariance
matrix

~ [0.9%0.42 0

2
R= 0 0.9 % 0.22| (bar”)

In order to estimation the reservoir pressure offline, consider Li’s method.
Figure 3.3 shows the best-fit regression line between the three points of
estimation based on two characteristics of the well, total gas flow rate from
the reservoir and the bottom hole pressure. The time of testing points are
chosen 1.5, 3 and 6 hours. The offline estimation of reservoir pressure is 278.8,
calculated by using Li’s method. This estimation is very close to the actual
value of 279 bar obtained from OLGA simulator. The total flow rate from
the reservoir can be estimated by the Lyapunov-based adaptive observer in
section 3.4 by changing adaptation laws for estimation of the total gas flow
rate from the reservoir instead of the production constants.

The estimation of the production constants of gas and liquid from the
reservoir into the well are shown in Figures 3.4 and 3.5, respectively. The
estimates of all algorithms are converging to the true value quite fast, about
0.5 hour. UKF based on LOL model produces less accurate results than
the other methods for estimation of the production constant of gas from
the reservoir into the well during transient time. The results is shown that
reasonable performance of the estimation algorithms to detect and track
changing at production constant of gas. The Lyapunov-based adaptive ob-
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Figure 3.3: Estimation of total gas flow rate from the reservoir versus the bottom
hole pressure and the best-fit regression line.

server has better performance than the other methods for estimation of
the production constants of gas and liquid from the reservoir into the well
when the production constant of gas is increased from 0.05 kg/s/bar to 0.07
kg/s/bar. In DFM, it is shown that estimation of the slip parameters can
improve accuracy of the production parameters estimation |76]. Therefore,
errors in slip parameters might cause small bias in the estimation of the pro-
duction parameters with UKF based on DFM when the reservoir parameters
change.

The measured and estimated bottom-hole pressure and choke pressure
at the wellhead are illustrated in Figures 3.6 and 3.7, respectively. The only
error measurement that was injected to the nonlinear Lyapunov-based adap-
tive observer is bottom hole pressure. Since the choke pressure in LOL model
during transient time has an error, estimation of choke pressure with non-
linear Lyapunov-based adaptive observer has a small bias during transient
time and estimation of bottom hole pressure with UKF has a small bias
during transient time. Since the LOL model is a much simpler model than
the distributed model, it has some mismatch with OLGA simulator. So, this
mismatch influences the estimation of parameters and states. The measure-
ment covariance of the UKF determines the priority of measurements for
the UKF. The Lyapunov adaptive observer tries to reduce errors of states
and parameters by injecting the error between estimation and measurement
of bottom hole pressure (the last terms in Equations (3.13) and (3.14)). The
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Figure 3.5: Actual value and estimated production constant of liquid
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bottom hole pressure and the choke pressure are correlated with each other
with the mass and momentum balances. So, the error between estimation
and measurement of choke pressure is indirectly affected by the Lyapunov
adaptive observer. But, the error between estimation and measurement of
bottom hole pressure is affected directly by the Lyapunov adaptive observer.
Simulation time of adaptive observers based on LOL model executes at least
100 times faster than joint UKF based on DFM.

Trend

250
—Measurements from OLGA

—Lyapunov based adaptive observer
UKF based on LOL model
245 ; — UKF based on DFM

230

225

1

1
220 4 5
Time [h]

Figure 3.6: Measured and estimated bottom-hole pressure

In this chapter, performance of these adaptive observers is evaluated
through the root mean square error (RMSE) metric for the parameters K,
and K; . The RMSE metric for Lyapunov-based adaptive observer and UKF
for both models during the whole estimation period and after initial transient
(t > 0.5hour) are summarized in Table 3.4.

According to the RMSE metric Table 3.4, the Lyapunov-based adaptive
observer has better performance than the other methods for estimation of
the production constants of gas and liquid from the reservoir into the well.

Robustness of the adaptive observers is tested in case of errors in the
reservoir and well parameters of the models. This test is performed in case
of errors in the reservoir pore pressure and liquid density. The RMSE metric
for the adaptive observers in two case of 1% error on the reservoir pore
pressure and 10% error on the liquid density are summarized in Table 3.5
and 3.6, respectively.
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Figure 3.7: Measured and estimated choke pressure
Table 3.4: RMSE metric
Whole estimation period After initial transient
Metl
ethod K, ie K, ie
Lyapunov method 14x1073 [ 40x 1073 11x1073 [ 33x%x10°3
UKEF based on LOL model | 3.6 x 1073 | 5.0 x 1073 3.4x1073 | 45 x 1073
UKF based on DFM 35x1073 | 6.8 x 1073 33x1073 | 5.2x 1073

Table 3.5: RMSE metric in case of error in the reservoir pressure value

Method K, K; Pres true | pres model
Lyapunov method 4 %1073 8 x 1073 279 282
UKF based on LOL model | 5.7 x 1073 | 9 x 1073 279 282
UKF based on DFM 59 %1073 [ 9.9 x 1073 | 279 282

Table 3.6: RMSE metric

in case of error in the liquid density value

Method K, K; pr true | pr model
Lyapunov method 2.6 x 1073 [ 5.2 x10~3 | 1000 1100
UKF based on LOL model | 3.4 x 1073 | 6.4 x 10=3 | 1000 1100
UKF based on DFM 3.6 x1073 | 6.9 x 1072 | 1000 1100
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Since the reservoir pore pressure has a direct effect on the mass flow
rates from the reservoir into the well, small inaccuracies in the reservoir pore
pressure have a significant effect on the estimation of production constants.
Therefor these methods are very sensitive to errors in the reservoir pore
pressure value. Adaptive observers based on LOL model are more sensitive
to errors in the liquid density value than UKF based on DFM.

The second scenario in this case study is as follows, first the drilling in a
steady-state condition is initiated with the choke opening of 10 %, then at
t = 1 hour and 35 min the main pump is shut off to perform a connection
procedure, and the choke is closed to 6 %. The rotation of the drill string
and the circulation of fluids are stopped for 15 mins. Next after making the
first pipe connection at t = 1 hour and 50 min the main pump and rotation
of the drill string are restarted. After 1 hour and 45 min (i.e. 3 hour and 35
min), the choke is closed to 5 %, and the second pipe connection procedure
is started, and is completed after 15 mins. Then the choke is opened to 10 %
at t= 3 hours and 50 min. The measured bottom-hole pressure (ppy), choke
pressure (p.), choke opening (Z), and mass flow rate of liquid from the drill
string (wyq) is illustrated in Figure 3.8.
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Figure 3.8: Measured bottom-hole pressure, choke pressure, choke opening, and

mass flow rate of liquid from the drill string for pipe connection scenario

The parameter values for the nonlinear adaptive observer and UKF for
both models for pipe connection scenario are the same as previous scenario.
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The initial values for the estimated and real parameters are as follows:
K, =007, K; =01, K,=0091, K;=0.13

The estimation of the production constants of gas and liquid from the reser-
voir into the well are shown in Figures 3.9 and 3.10, respectively. These
parameters are identified correctly by all estimators. In estimation of pro-
duction constant of liquid from the reservoir into the well, Lyapunov-based
adaptive observer has better performance than the other methods. Since the
model is significantly less accurate during the pipe connection, we need to
prevent that the PI estimates drift away. Hence, the gains value (g1 and ¢2)
for Lyapunov-based adaptive observer and the parameter covariance of UKF
for both models are 1000 times smaller than the nominal value during the
pipe connection. For the same reason, the measurement covariance of UKF
for both models are 1000 times larger than the nominal value during the
pipe connection.
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Figure 3.9: Actual value and estimated production constant of gas for pipe connec-
tion scenario

The measured and estimated bottom-hole pressure and choke pressure
at the wellhead for pipe connection scenario are illustrated in Figures 3.11
and 3.12, respectively. This results show that adaptive observers have error
in estimation of the bottom hole and choke pressure during pipe connection
because the model is less accurate during pipe connection. Since the bottom
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Figure 3.10: Actual value and estimated production constant of liquid for pipe
connection scenario

hole and choke pressure are measured, errors of the bottom hole and choke
pressure are not the main concern in this situation. Based on Nygaard et al.
studied that some parameters of the model such as friction factor varies dur-
ing pipe connection [85]. Since we assumed these parameters are constant,
it introduces some errors to the model during pipe connection.

The RMSE metric of the parameters K, and K; for Lyapunov-based
adaptive observer and UKF for both models after initial transient (¢ >
0.5hour) are summarized in Table 3.7.

Table 3.7: RMSE metric for estimate of K, and K; for pipe connection scenario

Method Ky (after t > 0.5h) | Kj(after t > 0.5h)
Lyapunov-based adaptive observer | 0.7 x 103 1.6 x 1073
UKF based on LOL model 0.7 x 1073 3.7x 1073
UKF based on DFM 1.3 x 1073 3.7x 1073

According to the RMSE metric Table 3.7, the Lyapunov-based adaptive
observer has better performance than the other methods for estimation of
the production constants of gas and liquid from the reservoir into the well
in pipe connection scenario.
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Figure 3.11: Measured and estimated bottom-hole pressure for pipe connection
scenario
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Figure 3.12: Measured and estimated choke pressure for pipe connection scenario
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3.6 Conclusion

A simplified DFM and a LOL model describing a multiphase (gas-liquid)
flow in the well during UBD has been used. This chapter presents Lyapunov-
based adaptive observer and joint UKF based on LOL model for reservoir
characterization during UBD operations. Furthermore, it describes a joint
UKF to estimate parameters and states for the simplified DFM by using
real-time measurements of the choke and the bottom-hole pressures from
OLGA simulator. The results show that all estimators are capable of iden-
tifying the production constants of gas and liquid from the reservoir into
the well. All adaptive observers have a quite fast convergence rate, about
0.5 hour. Simulation results demonstrated reasonable performance of the
estimation algorithms to detect and track a changing gas production coeffi-
cient using a simulated scenario with OLGA. The nonlinear Lyapunov-based
adaptive observer has better accuracy than the other methods for estima-
tion of the production constants of gas and liquid from the reservoir into the
well. Adaptive observers based on the LOL model are computationally sim-
pler than joint UKF based on DFM. However, adaptive observers based on
LOL model are more sensitive to errors in the reservoir and well parameters
of the model than joint UKF based on DFM.
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CHAPTER

State and parameter estimation of a
Drift-Flux Model for Under-Balanced

Drilling operations

4.1 Introduction

There have been an increasing research focus on automation of drilling for
exploration and production of hydrocarbons in the recent years. Modeling for
estimation, and model-based control techniques have been studied in a wide
range of drilling and production scenarios. In Managed Pressure Drilling
(MPD), a back-pressure pump in conjunction with a back pressure choke is
used to control the pressure in the well, posing new control and estimation
challenges. In a typical scenario, the control goal is to keep the pressure
of the well (pwen(t,x)) greater than pressure of the reservoir (pres(t,z)) to
prevent influx from entering the well, but lower than the fracture pressure
(Ptrac(t, ) to avoid the loss of drilling fluids to the reservoir |24]

pres(ta l') < pwell(ta ‘/E) < pfrac(ta m) (4'1)

at all times ¢ and along the well profile x € [0, L].

In an alternative approach, known as Under-Balanced Drilling (UBD),
the pressure in the well is kept greater than the collapse pressure of the well
but lower than the pressure of the reservoir |9]

pcoll(ta CU) < pwell(ta ZL‘) < pres(ta 1') (4'2)

In this case, due to the pressure drawdown (meaning the positive difference
of the reservoir pressure and well pressure) inflow fluid, in many cases gas,
is produced continuously from the reservoir. The rate of reservoir inflow is
typically approximated mathematically by a so-called Production Index (PI)
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parameter

Qinflux = PI * max(pres — Dbh; 0) (43)

Especially for under-balanced wells producing gas, the magnitude of the PI
has a significant impact on the dynamics of the UBD and thus also on the
control problem. Hence, accurate estimates of the PI and reservoir pressure
are important for an UBD operation.

Modeling of UBD operations and MPD scenarios handling influx requires
a multiphase model. A popular model in the literature is the Drift-Flux
Model (DFM) [19, 45, 56]. The drift flux model is a set of first order non-
linear hyperbolic partial differential equations (PDE). In case of two-phase
flow, it consists of three governing equations. The Low-Order Lumped (LOL)
models are simpler methods that can be used. However, these models are
only able to capture the major effects in the well and for the general purpose
it produces less accurate results [73, 81, 106].
Due to the complexity of the multi-phase flow dynamics of a UBD well cou-
pled with a reservoir, the modeling, estimation and model based control of
UBD operations is still considered an emerging and challenging topic within
drilling automation. Nygaard et al.[82] compared and evaluated the perfor-
mance of the extended Kalman filter, the ensemble Kalman filter and the
unscented Kalman filter based on a low order model to estimate the states
and the PI in UBD operation. In Nygaard et al. [85], a finite horizon non-
linear model predictive control in combination with an unscented Kalman
filter was designed for controlling the bottom-hole pressure based on a low
order model developed in [81] for a pipe connection scenario. The unscented
Kalman filter was used to estimate the states, and the friction and choke
coefficients. Nikoofard et al.[73| designed a Lyapunov-based adaptive ob-
server, a recursive least squares estimation and a joint unscented Kalman
filter based on a low-order lumped model to estimate states and parameters
during UBD operations. This model was the extended version of an adap-
tive observer used in [73| for directly using real-time measurements of the
choke and the bottom-hole pressures to estimate states and parameters [78].
The performance of the adaptive observers was compared and evaluated for
a typical drilling case to estimate only production constant of gas using a
simulated scenario with a drift-flux model. A Nonlinear Moving Horizon Ob-
server based on a low-order lumped model was designed for estimating the
total mass of gas and liquid in the annulus and geological properties of the
reservoir during UBD operation in [74]. The problem of parameter estima-
tion in multiphase flows is often referred to as ’soft-sensing’ in the context
of production, see[l1, 28, 57, 58, 108|.

Lorentzen et al. designed an ensemble Kalman filter based on the drift-
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flux model to tune the uncertain parameters of a two-phase flow model in
the UBD operation [56]. Vefring et al.[110, 111] compared and evaluated
the performance of the ensemble Kalman filter and an off-line nonlinear
least squares technique utilizing the Levenberg-Marquardt optimization al-
gorithm to estimate reservoir pore pressure and reservoir permeability during
UBD while performing an excitation of the bottom-hole pressure. The result
shows that excitation of the bottom-hole pressure might improve the esti-
mation of the reservoir pore pressure and reservoir permeability [110, 111].
Aarsnes et al.|2] used a drift-flux model and an Extended Kalman Filter to
estimate the states and PI online, and suggested a scheme combining this
with off-line calibration using the algorithm in [110]. The provided analysis
also suggests how such a scheme fits into the UBD operating envelope as
proposed by [26], and explored in [3]. Di Meglio et al. designed an adaptive
observer based on a backstepping approach for a linear first-order hyperbolic
system of Partial Differential Equations (PDEs) by using only boundary
measurements with application to UBD [15]. It is shown that this method
has exponential convergence for the distributed state and the parameter es-
timation. This adaptive observer is applied to estimate distributed states
and unknown boundary parameters of the well during UBD operations. Gao
Li et al. presented an algorithm for characterizing reservoir pore pressure
and reservoir permeability during UBD of horizontal wells |52]. Since the
total flow rate from the reservoir has a negative linear correlation with the
bottom hole pressure, reservoir pore pressure can be identified by the cross-
ing of the horizontal axis and the best-fit regression line between the total
flow rate from the reservoir and the bottom hole pressure while perform-
ing an excitation of the bottom-hole pressure by changing the choke valve
opening or pump rates. The unscented Kalman filter (UKF) has been shown
to typically have a better performance than other Kalman filter techniques
for nonlinear systems (|104, 112]). Nikoofard et al. used an UKF with the
drift-flux model for the first time [76]. They designed an UKF for estimation
of unmeasured states, production and slip parameters of simplified drift-flux
model using real time measurements of the bottom-hole pressure and liquid
and gas rate at the outlet [76]. This chapter is an extended version of work
published in [76] which presents the design of a UKF based on a simplified
drift-flux model to estimate the states, geological properties of the reservoir
and slip parameters during UBD operation. In this work, both production
constants of gas and liquid and unmeasured states are estimated by us-
ing only measurements of the choke and the bottom-hole pressures during
UBD operation for a pipe connection procedure. The performance of UKF
is evaluated against EKF by using measurements from the OLGA simulator
and the consequences of not estimating slip parameters are discussed.These
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adaptive observers were tested by two challenging scenarios:

1. Changing the production constant of gas.

2. Pipe connection.

The performance of the estimation algorithms to detect and track the change
in production parameters is investigated. Robustness of the UKF and EKF
for the pipe connection scenario is studied in case of uncertainties and errors
in the reservoir and well parameters of the model. This chapter is organized
as follows: Section 4.2 presents the simplified drift-flux model based on mass
and momentum balances for UBD operation. Section 4.3 explain UKF and
EKF for simultaneously estimating the states and parameters of a simplified
drift-flux model from OLGA simulator measurements. In the section 4.4,
the simulation results are provided for state and parameter estimation. The
conclusions are presented at the end of the chapter.

4.2 The drift lux model

The model employed is the same as the one used in [3|. It expresses the
mass conservation law for the gas and the liquid separately, and a combined
momentum equation. The mud, oil and water are lumped into one single
liquid phase. In developing the model, the following mass variables are used

m = aLpr, n =agpa

where for £ = L, G denoting liquid or gas, pi is the phase density, and ay, is
the volume fraction satisfying

ar +ag =1. (4.4)

Further v, denotes the velocities, and P the pressure. All of these variables
are functions of time and space. We denote ¢ > 0 the time variable, and
x € [0, L] the space variable, corresponding to a curvilinear abscissa with x
= 0 corresponding to the bottom hole and x = L to the outlet choke position
(see Fig. 4.1). The isothermal equations are as follows,

om  Omuy,

R (45)
on  Onvg

i =0 .6
ot " or (4.6)
d(mur +nvg) (P + mu? +nvd)

+
ot ox
2
= —(m+mn)gcos Af — f(m —|—g)vm\vml‘ (4.7)
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Figure 4.1: Drilling process schematic for UBD.

In the momentum equation (4.7), the term (m + n)gcos A represents the
gravitational source term, ¢ is the gravitational constant and A@ is the
mean angle between gravity and the positive flow direction of the well, while

—w accounts for frictional losses. The mixture velocity is given

as

VU = QGUG + aLvL. (4.8)

Along with these distributed equations, algebraic relations are needed to
describe the system.
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4.2.1 Closure Relations

Both the liquid and gas phase are assumed compressible. This is required
for the model to handle the transition from two-phase to single-phase flow.
The densities are thus given as functions of the pressure as follows

P P
PG = —5, PL = PLO + —5, (4.9)
e L

where ¢, is the velocity of sound and pr o is the reference density of the
liquid phase given at vacuum. Notice that the velocity of sound in the gas
phase cg depends on the temperature as suggested by the ideal gas law. The
temperature profile is assumed to be known.

Combining (4.9) with (4.4) we obtain the following relations for finding
volume fractions from the mass variables:

2
1 En+m+VA
- L

ag = - — 4.10
2,OL,o ( )
2 ) 2
C C
A= (pro—Sn—m) +4%SnpLg (4.11)
‘L ‘L

Then the pressure can be found using a modified expression to ensure pres-
sure is define when the gas vanishes

m 2, ifag <ok
P (nl—gc pL’O) L @ =% (4.12)
S=CEs otherwise.
G

ay, is typically chosen as 0.5. Because the momentum equation (4.7) was
written for the gas-liquid mixture, a so-called slip law is needed to empiri-
cally relate the velocities of gas and liquid. To handle the transition between
single and two-phase flow, a relation with state-dependent parameters is
needed ([18, 103]).

vg = (K — (K — 1)ag)vm + arS (4.13)

where K > 1 and S > 0 are constant parameters.

4.2.2 Boundary Conditions

Boundary conditions are given by the mass-rates of gas and liquid injected
from the drilling rig and flowing in from the reservoir. Denoting the cross
sectional flow area by A, the boundary fluxes are given as:

1

va|z:0 = Z (WL,res (t) + WL,inj (t)>7 (414)
1

NG |g=0 = 1 (WG’,res(t) + WG,mj(t)>- (4.15)
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The injection mass-rates of gas and liquid, W in;, Wi in;, are specified by
the driller and can, within some constraints, be considered as manipulated
variables. The inflow from the reservoir is dependent on the pressure on
the left boundary, for which, within the operational range of a typical UBD
operation, an affine approximation should suffice, i.e.

WL,res =ky, maX(Pres_P(O)a O) (416)
WG,T@S = kG maX(Pres_P(0)> 0) (417)

Here P,.s is the reservoir pore pressure and k¢, ky, are the production index
(PI) of the gas and liquid respectively.

The topside boundary condition is given by a choke equation relating
topside pressure to mass flow rates

muy, nvg 7C’U(Z) —
ot Vol ~ A v/max (P(L,t) — P,0), (4.18)

where C, is the choke opening given by the manipulated variable Z. Y €
[0,1] is a gas expansion factor for the gas flow and Ps is the separator
pressure, i.e. the pressure downstream the choke.

4.2.3 Numerical Implementation

The drift flux model described above was implemented using a fully implicit
Backwards Time-Central Space (BTCS) finite differences numerical scheme
with an explicitly derived Jacobian as described in [3].

The state vector consists of the conserved mass variables m and n and
the combined momentum I = mvy +nvy, u = [m n I ]T. For each of the
states we use the following definition for finite differences,

mF = m(kAt,iAz), ete.

where ¢ =0,1,...,Nand £ =0,1,.... We arrange the terms into a vector

k k k k k k k
u, = [ml,mQ,...,mN,nl,...,nN,Il,...,IN .

Consequently, propagating the states in time from uy to ug41 equates to
solving a set of nonlinear equations that are implicit in ugy;, which we
denote as

F(upep,up) =0,  F:R¥N xRN 5 R3V, (4.19)

These are solved using Newton steps which require the inverse of the Ja-
cobian of F' w.r.t. Xz,1 denoted F,_ ,. We note that the existence of this
inverse is guaranteed by the 1/At terms making up the diagonal of F, ..
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4.3 Unscented and Extended Kalman Filter

4.3.1 UKF

The implemented drift-flux model based on equations (4.5)-(4.18), although
solved implicitly, can conceptually be represented as

Xi = f(Xg-1,0) + q, (4.20)
Ye = h(Xk) + 7k (4.21)

where g ~ N(0,Q—1) is the zero mean white Gaussian process noise and
model error, and r, ~ N(0, Rg) is the zero mean white Gaussian measure-
ment noise.

The Kalman filter based on a linearized model was developed to estimate
both state and parameter of the system usually known as an augmented
Kalman filter. The augmented state vector is defined by z* = [X,0]. The
state-space equations for the the augmented state vector at time instant k
are written as:

[Xk] _ {f(ch—la Ok—1) + a

— Y Xp1,Op 1) + 4.22
ak 0k—1 f(kl kl) qx ( )

The UKF technique has been developed to work with non-linear systems
without using an explicit linearization of the model (|36, 37, 109]). The
UKF estimates the mean and covariance matrix of the estimation error with
a minimal set of sample points (called sigma points) around the mean by
using a deterministic sampling approach known as the unscented transform.
The nonlinear model is applied to sigma points to predict uncertainty instead
of using a linearization of the model. More details can be found in (|36, 104,
109]).

Dual and joint UKF techniques are two common approaches for estimation of
parameters and state variables simultaneously. The dual UKF method uses
another UKF for parameter estimation so that two filters run sequentially
in every time step; the state estimator updates with new measurements, and
then the current estimate of the state is used in the parameter estimator.
The joint UKF augments the original state variables with parameters and a
single UKF is used to estimate augmented state vector. In this chapter, the
joint UKF is used.

4.3.2 EKF

For the implementation of an Extended Kalman Filter,to be used for com-
parison we need the Jacobian of the explicit formulation of the system equa-
tion. A first order Taylor series expansion around the trajectory u, noting
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that F(Qg4+1,0;) = 0, yields
F_)(kJrl (ﬁk+1,ﬁk)l~1k+1 +FXk(ﬁk+171_1k)1~1k =0. (4.23)

where Fy, (Qg+1,05) is F with respect to a Xj. Hence, for the system Ja-
cobian, we get

—1 /= _ — —
J = —Fx, . (Qrp1, 0x) Fx, (Ug41, )

where the partial derivatives are evaluated at the trajectory. We recognize
Fx, ., tobe the Jacobian, previously discussed, the inverse of which is known

to exist.

4.4 Simulation results

4.4.1 Simulation with perfect model data

First, the presented DFM, (4.5)-(4.15) was used to create the measurements
and true states in this simulation study. In this case the estimated states
and parameters, in several configurations of unknown parameters to be esti-
mated, converged to the true states (results not shown). Convergence tran-
sients were typically 0.5 hours for the UKF and 1.5 hours for the EKF.
Of significantly more interest, however, is how the estimators performs in a
more realistic setting where we would have model errors to deal with. Such
a scenario is considered next.

4.4.2 Simulation with OLGA data

The parameter values for the simulated well and reservoir are summarized in
Table 4.1. These parameters are used from the OLGA simulator. The OLGA
dynamic multiphase flow simulator is a high fidelity simulation tool which
has become the de facto industry standard in oil and gas production, see [8].
The measurements have been synthetically generated by using OLGA. The

OLGA simulator uses the same model for the mass flow from the reservoir
into the well as in equations (4.16)-(4.17).

In the following, a measurement sampling interval of 10 seconds was used,
and the model was run with time steps of 10 seconds using different spatial
discretization cells (N = 6,12, 20).

Two scenarios are simulated. The first scenario of this chapter is the
same simulation scenario as [2|, considering UBD operation of a vertical
well drilled into a dry gas reservoir (i.e. Wr, s = K = 0). The scenario
in this simulation is as follows. First drilling in a steady-state condition is
initiated with the choke opening of 10 % , then the choke is closed to 8 %
at 1 hour. After 2 hours, the choke is closed to 7 %. After 3.5 hours, there
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Table 4.1: Parameter Values for Well and Reservoir

Name DFM Unit
Reservoir pressure (Pres) 279 bar
Collapse pressure (Peor) 155 bar
Well total length (L) 2530 m
Drill string outer diameter (D) | 0.1206 m
Annulus inner diameter (D,) 0.1524 m
Liquid flow rate (wy,q) 13.33 kg/s
Gas flow rate (wg,q) 0 kg/s
Liquid density (pr,) 1000 kg/m?
Gas average temperature (7T') 285.15 K
Average angle (Af) 0 rad
Choke constant (K.) 0.0053 | m?

is a linear and sharp increase in the production constant of gas from 0.072
kg/s/bar to 0.12 kg/s/bar. Then the choke is closed to 6 % at 6 hours,
and after 8 hours, the choke is closed to 5.5 %. The choke opening of this
simulation scenario is summarized in Table 4.2.

In the first scenario, it is assumed that only bottom-hole pressure (P(0))

Table 4.2: Choke opening used in this scenario

Time | Choke Opening
0-1h 10 %
1-2h 8%
2-6 h 7%
6-8 h 6 %
8-10 h 5.5 %

and liquid and gas rate at the outlet are measured. The joint UKF and EKF
estimate the states, production constant of gas, and slip parameters (.S, K)
simultaneously. The initial values for the estimated production constant of
gas is (Kg = 0.08 kg/s/bar). UKF parameters are determined empirically
(k =0, 8 =2, a=0.00001 ). The measurement noise covariance matrix is
R = diag[0.01,0.0004, 0.04]. The covariance matrix used in this simulation
for both EKF and UKF is

Q - diag[@sv Qp]
Q, = diag[1073,2%x107%,2%x107%] , p = [K¢, K, 5]

where Qs and @, are the state covariance matrix and parameter covariance
matrices, respectively. We used the same the state covariance matrix for
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Figure 4.2: Estimating production constant of gas with different spatial discretiza-
tions

two scenarios. The estimations of the production constant of gas from the
reservoir into the well for different spatial discretizations for both UKF and
EKF are shown in Figure 4.2. The estimation algorithms are quite fast to
detect and track changing at production constant of gas. However, there is
a small deviation between the estimated and actual value of the production
constant of gas. The number of steps in the spatial discretization does not
have a significant effect on the accuracy of estimation, although the results
show that decreasing number of steps can improve the convergence rate.

Figures 4.3 and 4.4 show the estimated slip parameters K and S for dif-
ferent spatial discretization cells for both UKF and EKF, respectively. The
estimation of slip parameters does not always converges to constant values
for steady state. However, estimation of production constant of gas has some
errors during most of the scenario. On the other hand, estimation of pro-
duction constant of gas in UKF has less error. In this case estimation of slip
parameters varies during steady state. Since slip parameters are artificial
parameters and has no reference value their convergence may not be impor-
tant. As a production constant is a physical parameter, the convergence for
estimation of production constant is vital for success of UBD operations.

Figure 4.5 shows the estimation of the production constant of gas with
different fixed slip parameters by using UKF with 6 spatial discretization
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Figure 4.4: Estimating slip parameter (S) for different spatial discretization cells
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Figure 4.5: Estimating production constant of gas with fixed slip parameters

Table 4.3: Simulation runtime for different spatial discretization cells

Number of Cells | UKF (seconds) | EKF(seconds)
6 630.38 63.88
12 1110.82 67.27
20 2326.35 78.16

cells. The results show that estimation of the slip parameters can improve
accuracy of the estimation of the production constant of gas. The measured
bottom-hole pressure and choke pressure is illustrated in Figure 4.6.

The runtime of the simulations for different spatial discretization cells

for both UKF and EKF are summarized in Table 4.3 by using 3.00 GHz
Processor with 4 GB RAM running MATLAB, the runtime of the simula-
tions for EKF are less than the runtime of the simulations for UKF, but
we emphasize that the implementation is not optimized for computational
efficiency.
Performance of these adaptive observers is evaluated through the root mean
square error (RMSE) metric for the parameter Kg. The RMSE metric for
UKF and EKF for different number of spatial discretization cells is summa-
rized in Table 4.4.

According to the RMSE metric table, UKF with fewer cells in the spatial
discretization has a slightly better performance than UKF with larger num-
ber of spatial discretization cells and EKF with different number of spatial
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Figure 4.6: Bottom-hole pressure and choke pressure

Table 4.4: RMSE metric for estimate of K¢g

Number of Cells | UKF EKF

6 48x 103 [ 82x1073
12 48%x 1073 | 8x 1073
20 5.16 x 1073 | 8.3 x 1073

discretization cells for PI estimation, although the number of cells in the
spatial discretization does not have a significant effect on the accuracy of
estimation.

The second case study that is reported in this chapter considers UBD
operation of a vertical well drilled into an oil and gas reservoir. First the
drilling in a steady-state condition is initiated with the choke opening of 10
%, then at t = 1 hour and 35 min the main pump is shut off to perform
a connection procedure, and the choke is closed to 6 %. The rotation of
the drill string and the circulation of fluids are stopped for 15 mins. Next
after making the first pipe connection at t = 1 hour and 50 min the main
pump and rotation of the drill string are restarted. After 1 hour and 45 min
(i.e. 3 hour and 35 min), the choke is closed to 5 %, and the second pipe
connection procedure is started, and is completed after 15 mins. Then the
choke is opened to 10 % at t— 3 hours and 50 min. The measured bottom-
hole pressure (ppp,), choke pressure (p.), choke opening (Z), and mass flow
rate of liquid from the drill string (w; q) is illustrated in Figure 4.7.
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Figure 4.7: Measured bottom-hole pressure, choke pressure, choke opening, and
mass flow rate of liquid from the drill string for pipe connection scenario

Since these two scenarios model two drilling cases with different specifi-
cations, different measurements and different parameters for each scenario
was used. Due to the fact that the liquid and gas flow rate at the outlet are
sometimes measured by flow meter after separator, these measurements have
usually some delay. Also, these measurements are sometimes not available.
Therefore, the purpose of the second scenario is to show how the estimator
works without these measurements. This way we can answer a wide range of
problems in UBD operation with choosing different measurements by using
these two scenarios.

In the second scenario, it is assumed that only bottom-hole pressure
(P(0)) and choke pressure (P(L)) are measured. The UKF and EKF esti-
mate the states and production constants of gas and liquid (K¢, K1 ). Slip
parameters in this simulation are fixed (K = 1.15,S = 0.56). The parameter
values for the UKF for pipe connection scenario are the same as previous
scenario. The initial values for the estimated and real parameters are as
follows:

Ko =007, K, =0.1, Kg=0.091, K;,=0.13

The choke and the bottom-hole pressure measurements are corrupted by
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zero mean additive white noise with the following covariance matrix

0.9 % 0.42 0 9
R= 0 0.9 0.22| (bo7)

The covariance matrix for parameter variations uses in this simulation for

both EKF and UKF is

Q, = diag[4 ¥ 107421073, p=[Kg, K).
Figures 4.8 and 4.9 show the estimated production constants of gas and

liquid from the reservoir into the well for different spatial discretization cells
for both UKF and EKF, respectively.

The RMSE metric of the parameters K¢ and K, for UKF and EKF for
different spatial discretization cells after initial transient (¢ > 0.5hour) are
summarized in Table 4.5. The results show that UKF and EKF with fewer
cells in the spatial discretization for the estimation of gas and liquid pro-
duction constants have a better accuracy than UKF and EKF with larger
spatial discretization cells with different spatial discretization cells for the es-
timation of gas and liquid production constants during the pipe connection.
Since the model is significantly less accurate during the pipe connection, we
need to prevent that the PI estimates drift away in order to compensate for
other model errors. Hence, the @, of UKF and EKF is 1000 times smaller
than the nominal value during the pipe connection. For the same reason, the
measurement covariance of UKF and EKF is tuned 1000 times larger than
the nominal value during the pipe connection.

Table 4.5: RMSE metric for estimate of Ko and K, for pipe connection scenario

K¢ (after ¢t > 0.5h) K, (after t > 0.5h)

Number of Cells UKE KT UKF KT
6 14x1073 [ 15x107% | 3.6x10~3 [ 36x10"3
12 1.8x1073 | 22x1073 | 38x 1073 | 3.8 x 1073
20 24x1073 | 3.1 x1073 | 48x 1073 | 49x 1073

Based on the RMSE metric in Table 4.5, UKF with fewer cells in the
spatial discretization for the estimation of gas production constant (K¢)
has a slightly better performance than UKF with larger spatial discretization

cells and EKF with different spatial discretization cells for the estimation of
Kg.
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Figure 4.8: Estimating production constant of gas with different spatial discretiza-

tion cells for pipe connection
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Figure 4.9: Estimating liquid production constant with different spatial discretiza-

tion cells for pipe connection
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4.4.3 Robustness analysis of UKF and EKF in case of
uncertainties and errors in the reservoir and well
parameters of the model

Robustness of the adaptive observers is investigated in case of errors in the
reservoir and well parameters of the model. This test is performed in case of
errors in the reservoir pore pressure and liquid density for pipe connection
scenario. The RMSE metric for UKF and EKF in the two cases of 1% error
on the reservoir pore pressure (Presmoder = 282 bar) and 10% error on the
liquid density (prmoder = 1100 kg/m3)for different spatial discretization
cells after initial transient (¢ > 0.5hour) are summarized in Table 4.6 and
4.7, respectively.

Table 4.6: RMSE metric in case of error in the reservoir pressure value for pipe
connection scenario

K¢ (after t > 0.5h) K, (after ¢t > 0.5h)

Number of Cells UK ERT TKE ERE
6 54x103 [ 56x102[52x10°]53x%x10°3
12 58x 1072 | 6.0x 1072 | 6.0x 1073 | 6.0 x 10~3
20 62x1072% | 6.7x1072 | 6.1 x1072 | 6.3 x 1073

Table 4.7: RMSE metric in case of error in the liquid density value for pipe con-

nection scenario

K¢ (after t > 0.5h) K, (after t > 0.5h)

Number of Cells UKE EKE UKE EKF
6 14x1072% [ 1.6x103 [ 3.7x 1073 [ 3.8 x 103
12 1.9%x 1073 | 22%x1073% | 39%x 1072 | 3.9 x 103
20 24 %1073 | 3.1x1072% | 4.8 x 1073 | 5.0 x 1073

Since the reservoir pore pressure has a direct effect on the mass flow
rates from the reservoir into the well, small inaccuracies in the reservoir pore
pressure have a significant effect on the estimation of production constants.
Therefore these methods with different number of spatial discretization cells
are very sensitive to errors in the reservoir pore pressure value. The results
show that UKF and EKF with different number of spatial discretization cells
are robust in case of error in the liquid density value of the model.
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4.5 Conclusion

In this chapter, the joint UKF and EKF have been applied to the drift-flux
model for different spatial discretization cells to estimate the distributed un-
measured states, geological properties of the reservoir (PI) and slip param-
eters (S, K) during UBD operations using measurement of the bottom-hole
pressure and liquid and gas rate at the outlet. Furthermore, both produc-
tion constants of gas and liquid and unmeasured states were estimated by
using only measurements of the choke and the bottom-hole pressures for
the pipe connection procedure. Simulation results demonstrated reasonable
performance of the joint UKF and EKF to detect and track a changing
gas production coefficient using the simulated scenario with OLGA. Even
though the simulation scenario is somewhat idealized the results are encour-
aging. The number of spatial discretization cells was found to not have a
significant effect on accuracy of estimation. The UKF was also found to es-
timate more accurately than the EKF. The results show that these methods
are very sensitive to errors in the reservoir pore pressure value.

79






CHAPTER

Design constrained MPC for heave
disturbance attenuation in offshore
Managed Pressure drilling systems

5.1 Introduction

In drilling operations, a drilling fluid (mud) is pumped down through the drill
string and flows through the drill bit at the bottom of the well (Figure 5.1).
The mud flows up the well annulus carrying cuttings out of the well. The mud
is separated at the surface from the return well flow, conditioned, and stored
in storage tanks (pits) before it is pumped down into the well for further
drilling.To avoid fracturing, collapse of the well, or influx of formation fluids
surrounding the well, it is crucial to control the pressure in the open part of
the annulus within a certain operating window. In conventional drilling, this
is done by using a mud of appropriate density and adjusting mud pump flow
rates. In managed pressure drilling (MPD), the annulus is sealed, and the
mud exits through a controlled choke, allowing for faster and more precise
control of the annular pressure. In MPD operation, the dynamic pressure of
the well must be kept higher than the reservoir pore pressure to prevent gas
or formation fluids from entering the well and less than a formation fracture
pressure at all times ¢ and positions x.

pres(l') < pwell(xa t) < pfrac(a;) (5-1)

where are reservoir pore pressure, well pressure, and formation fracture pres-
sure, respectively. In automatic MPD systems, the choke is controlled to
keep the annular mud pressure between specified upper and lower limits.
There are several studies about different aspects of MPD modeling (e.g.,
see [38, 48, 50, 63, 96]). Estimation and control design in MPD have been
investigated by several researchers (e.g., see [12, 25, 38, 83, 113, 114]). These
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studies are mainly focused on pressure control during drilling from a fixed
platform without any heave motion.

The automatic MPD system has several advantages compared to conven-
tional drilling as follows:

e Reducing the drilling costs as a result of reducing the nonproductive
time.

Increasing the rate of penetration.

Improving well-bore stability.

e Minimizing the risk of lost circulation.

Extending control over bottom-hole pressure (BHP) to operational sce-
narios such as connections and trips and when the rig pumps are off.

e Improvement in safety and well control resulting from more detailed
design and planning required for accomplishment.

When designing MPD control systems, one should take into account var-
ious operational procedures and disturbances that affect the pressure in-
side the well. There is a specific disturbance occurring during drilling from
floaters that significantly affects MPD operations. In this case, the rig moves
vertically with the waves, referred to as heave motion. As drilling proceeds,
the drill string needs to be extended with new sections. Thus, every couple
of hours or so, drilling is stopped to add a new segment of about 27 m to
the drill string. During drilling, a heave compensation mechanism is active
to isolate the drill string from the heave motion of the rig. However, during
connections, the pump is stopped, and the string is disconnected from the
heave compensation mechanism and rigidly connected to the rig. The drill
string then moves vertically with the heave motion of the floating rig and
acts like a piston on the mud in the well. The heave motion may be more
than 3 m in amplitude and typically has a period of 10-20 s, which causes
severe pressure fluctuations at the bottom of the well. Pressure fluctuations
have been observed to be an order of magnitude higher than the standard
limits for pressure regulation accuracy in MPD (about £2.5 bar) [24]. Down-
ward movement of the drill string into the well increases pressure (surging),
and upward movement decreases pressure (swabbing). Excessive surge and
swab pressures can lead to mud loss resulting from high-pressure fracturing
of the formation or a kick-sequence (uncontrolled influx from the reservoir)
that can potentially grow into a blowout as a consequence of low pressure.

Hauge et al.|30] designed an adaptive observer to estimate the unknown
states, the magnitude and location of the in /out flux and parameters of
the hydraulic system during MPD. It is also used control law for choke to
attenuate the in/out flux during drilling. This adaptive observer is verified
with several experimental and simulation results. Carlsen et al.|13] designed
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Figure 5.1: Schematic of an MPD system (courtesy of Dr. Glenn-Ole Kaasa, Statoil
Research Centre).
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linear MPC, PI and internal model controller based on simple first order
model to stabilize the well pressure during MPD operations. The perfor-
mance of these controllers was evaluated on three different drilling scenarios
while the well kicked during these scenarios. Manipulated variables in the
linear MPC and the internal model controller are choke valve and pump.
while manipulated variable in the PI is only choke valve. The simulations
show that the controllers have a good performance to stabilize the well pres-
sure in case of change in drilling conditions and disturbances. Asgharzadeh
et al.|[7] designed nonlinear MPC (NMPC) with adaptive observer for kick
detection and attenuation, regulation of the bottom hole pressure and rate
of penetration (ROP) with direct pressure measurements from wired pipe
telemetry technology during MPD. This Controller works for both normal
drilling and kick event. Some parameters of the drilling model drilling could
not be measured directly. Therefore, the annulus friction factor and density
is estimated by a nonlinear moving horizon estimator. In this case the gas
influx flow rate is estimated by an extended Kalman filter with measure-
ment of choke valve, down-hole and pump pressures. Manipulated variables
in the NMPC are mud pump flow rate, choke valve position, drill string ro-
tation rate, and weight-on-bit (WOB). The objective function of the NMPC
is using an ¢inorm instead of conventional squared error norm for better
noise and drift rejection. Asgharzadeh et al.|6] studied effect of temporarily
communication loss in the NMPC during kick event. This paper shows that
distributed pressure measurements with multiple sensor can improve kick
attenuation of NMPC during kick event due to availability of a sensor closer
to the influx location [6].

Rasmussen et al.[99] compared and evaluated different MPD methods
for the compensation of surge and swab pressure. In Nygaard et al. [86],
it is shown that surge and swab pressure fluctuation in the BHP during
pipe connection can be suppressed by controlling the choke and main pump.
Nygaard et al. [87] used a nonlinear model predictive control (MPC) al-
gorithm to obtain optimal choke pressure for controlling the BHP during
pipe connection in a gas-dominant well. Pavlov et al. [93] presented two
nonlinear control algorithms for handling heave disturbances in MPD oper-
ations. Mahdianfar et al. |61, 62] designed an infinite-dimensional observer
that estimates the heave disturbance. This estimation is used in a controller
to reject the effect of the disturbance on the downhole pressure. In all the
above mentioned papers, the controllers are designed for the nominal case
disregarding the uncertainty in the parameters, although several parameters
in the well could be uncertain during drilling operations. In addition, the
heave disturbance, which is inherently stochastic and contains many differ-
ent harmonics, is approximated by one or a couple of sinusoidal waves with
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known fixed frequencies throughout controller design and simulations. In
this chapter, a stochastic model for the heave motion in the North Sea is
given and is used in simulations.

MPC is one of the most popular controller design methodologies for com-
plex constrained multivariable control problems in the industry and has been
the subject of many studies since the 1970s(e.g. see |23, 60, 64, 67]). At each
sampling time, an MPC control action is acquired by the online solution of
a finite horizon open-loop optimal control problem. Only the first part of
the optimal control trajectory is applied to the system. At the next sam-
pling time, the computation is repeated with new measurements obtained
from the system. The purpose of this chapter is to study a constrained MPC
scheme for controlling the pressure during MPD oil well drilling using mea-
surements and optionally predictions of the heave disturbances. In some
cases, short-term heave motion prediction based on forward-looking sensors
such as ocean wave radar may be predictable [44|, and we can use them
directly in our MPC controller. One of the criteria for evaluating the con-
troller performance is its ability to handle heave disturbances. This scheme
is compared with a standard proportional-integral-derivative (PID) control
scheme. Furthermore, the robustness of the controller to deal with heave
disturbances despite significant uncertainties in the friction factor and bulk
modulus is investigated by Monte Carlo simulations.

In the following sections, a model based on mass and momentum balances
that provides the governing equations for pressure and flow in the annulus
is given. A stochastic modeling of waves in the North Sea is used, and the
heave disturbance induced by the elevation motion of the sea surface is
modeled. The design of a constrained MPC scheme is presented and applied
on MPD. In the cases with and without the predictive heave disturbance
feed-forward and prediction, it is shown that this controller outperforms a
PID controller. Finally robust performance of an MPC controller is evaluated
through Monte-Carlo simulations.

5.2 Mathematical Modeling

In this section, the distribution of single-phase flows and pressures in the
annulus and the drill string is modeled by two coupled partial differential
equations (PDEs). Then, the PDE model is discretized by using the finite
volume method. Finally, the model describing the vessel’s heave motion in
response to the stochastic sea waves in the North Sea is presented and used
as the heave disturbance.
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5.2.1 Annulus flow dynamics

The governing equations for flow in an annulus are derived from mass and
momentum balances based on 1-D hydraulic transmission line [50].

dp_ _Bo%
ot Adax (52
0 A0 F

122 24 Ag cos(a(x)) (5.3)

ot poOx  po

where p(x,t) and g(x,t) are the pressure and volumetric flow rate at location
x and time ¢, respectively. The bulk modulus of the mud is denoted by 5.
A(z) is the cross section area, p is the (constant) mass density, F is the
friction force per unit length, g is the gravitational constant and «a(x) is the
angle between gravity and the positive flow direction at location x in the
well (Figure 5.2). To derive a set of ordinary differential equations describing
the dynamics of the pressures and flows at different positions in the well,
equations (5.2) and (5.3) are discretized by using a finite volumes method. To
solve this problem, the annulus is divided into a number of control volumes,
as shown in Figure 5.2, and integrating (5.2) and (5.3) over each control
volume. This model will be used for the MPC design.

Landent et al. [50] found that five control volumes could capture the
main dynamics of the system in the case of heave disturbance for a well
from the Ullrigg test facility with a particular length of about 2,000 m and
with water-based mud. Ullrigg is a full scale drilling test facility located at
the International Research Institute of Stavanger (IRIS). The parameters
corresponding to that well are used as a base case throughout this chapter.
The set of nine ordinary differential equations describing five control volumes
in the annulus are shown below ([48, 49])

P = A’illl(—fh — vgAq) (5.4)
P2 = Aing(QI =) (5.5)
P3 = ﬁ(% - q3) (5.6)
P1= fiz(qz - q4) (5.7)
Ps = ﬁ}{)(% — Ge + Qopp) (5.8)

86



5.2. Mathematical Modeling

T 'q
C (___q
RI L J |_ ] bpp
I I $
I |9n-1
p L - — 4| I=Ah
N-1
I I
A I
I IqN_2
| Drill | y
Strin
B.p | g |
a
I I
g
- L -
Drilling |
Bit
L — — — J1q,
R L ]

Figure 5.2: Control volumes of annulus hydraulic model [50]

A Fi(ai)Ai Aig%
lipi lip; l;
qc = Kev/pe — poG(u) (5.10)

where, ¢ = 1, ..., 4, and the numbers 1, ..., 5 refer to control volume number,
with 1 being the lower most control volume representing the down hole pres-
sure (p1 = ppit), and 5 being the upper most volume representing the choke
pressure (ps = pc). vq is the heave vertical velocity due to ocean waves. The
length of each control volume is denoted by [, and the height difference is
Ah;. Since the well may be non-vertical, I; and Ah; may in general differ
from each other. The means for pressure control are the back pressure pump
flow gppp and the choke flow g..The flow from the back pressure pump gy, is
linearly related to the pump frequency and cannot be changed fast enough to
compensate for the heave-induced pressure fluctuations. Therefore, it is the

G = 7—(pi — Pit1) — (5.9)
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choke flow that is used primarily for control, which is modeled by nonlinear
orifice equation 5.10. K, is the choke constant corresponding to the area of
the choke and the density of the drilling fluid. pg is the (atmospheric) pres-
sure downstream the choke and G(u) is a strictly increasing and invertible
function relating the control signal to the actual choke opening, taking its
values on the interval [0, 1].

Based on experimental results from full scale tests at Ullrigg, the friction
force in the annulus is considered to be a linear function of the flow rate
[50]. Friction force on the it* control volume is approximately modeled as

k ricHi
Fi(g) = =5 (5.11)

where ky.;. is the constant friction coefficient.

Some components of the transient hydraulic model, equations (5.2) -

(5.3), have significant uncertainties, such as the following [63]:

B Rheology and viscosity of drilling fluid: Most drilling fluids are
non-Newtonian, that is, with a nonlinear relation between shear stress
and shear rate. Consequently, the viscosity will not be constant over
a cross-sectional flow area. To measure the shear stress-shear rate re-
lationship, the viscometer measurements must be correlated with the
rheological model applied. However, information is limited and nor-
mally inadequate for a model of high accuracy, particularly for modern
oil-based muds. Also, viscosity may depend on pressure and tempera-
ture. Manual rheology measurements are normally performed period-
ically on the rig at the atmospheric pressure and temperature of the
mud in the pit. Thus, information on the influence of temperature and
pressure variations is missing |21, 27, 53].

B Frictional pressure loss models for drill pipe and annulus:
The frictional pressure loss depends on the mean cross-sectional veloc-
ity, drilling fluid viscosity, flow regime, hydraulic diameter, and pipe
roughness. The accuracy of all these derived parameters is question-
able. Moreover, the Fanning friction factor is a function of Reynolds
number where the Reynolds number is a function of the fluid viscosity
for a characteristic diameter [21, 38, 53].

B Effective bulk modulus: A bulk modulus is used because the degree
of mechanical compliance of casing, pipe, hoses, and other components
is uncertain and also because it is impossible to predict the amount of
gas pockets, bubbles, or breathing of the well [38].
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5.2.2 Waves Response Modeling

Environmental forces in the vertical direction due to waves are considered
disturbances to the motion control system of floating vessels. These forces,
which can be described in stochastic terms, are conceptually separated into
low-frequency (LF) and wave-frequency (WF) components, [22]. The LF
part is not considered any farther since it is very slow compared to the
dynamics of the mud circulation system and dealt with by other controllers
and operationally (e.g., pipe connection).

During normal drilling operations, the WF part of the drill-string motion
is compensated by the heave control system ,[16, 42, 44]. However, during
connections, the drill string is disconnected from the heave compensation
mechanism and rigidly connected to the rig. Thus, it moves vertically with
the heave motion of the floating rig and causes severe downhole pressure
fluctuations.

Linear Approximation for WF Position

When simulating and testing feedback control systems, it is useful to have
a simple and effective way of representing the wave forces. Here, the motion
response amplitude operators(RAOs) are represented as a state-space model
where the wave spectrum is approximated by a linear filter. In this setting,
the RAO vessel model is represented in Figure 5.3, where H,q(s) is the
wave amplitude-to-force transfer function and H,(s) is the force-to-motion
transfer function. In addition to this, the response of the motion RAOs and
the linear vessel dynamics in cascade is modeled as constant tunable gains,
[22]. This means that the RAO vessel model is approximated as (Figure 5.3)

K = diag{K', K* K3 K* K° K% (5.12)

Hyao(8)H,y(s) = K (5.13)

W Axk Twavel Nw

Figure 5.3: Linear approximation for computation of wave-induced positions.

Since the vessel is typically designed to avoid resonances in the dominant
WF, the fixed-gain approximation |[equation 5.13| produces good results in
a closed-loop system where the purpose is to test the robustness and perfor-
mance of a feedback control system in the presence of waves.
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Then, the generalized WF position vector n, in Figure 5.3 becomes
N = KHg(s)w(s) (5.14)

where Hg(s) is a diagonal matrix containing transfer function with the spec-
tral factors of the wave spectrum S(w). The WF position for the degree of
freedom related to heave motion becomes

n = Kheh (5.15)
¢'(s) = W (s)w"(s) (5.16)

where h"(s) is the spectral factor of the wave spectral density function S(w)
and w"(s) is a zero-mean Gaussian white noise process with unity power
across the spectrum:

P (w) =1.0 (5.17)

Hence, the power spectral density (PSD) function for £7(s) can be computed
as
Ply(w) = [A"(jw)|* Pl (w) = [h*(jw)[? (5.18)

Joint North SeaWave Project Spectrum

The Joint North Sea Wave Project (JONSWAP) formulation is based on an
extensive wave measurement program known as the JONSWAP carried out
in 1968 and 1969 in the North Sea, between the island Sylt in Germany and
Iceland. The JONSWAP spectrum is representative of wind-generated waves
under the assumption of finite water depth and limited fetch [22, 90].The
spectral density function is written as

—944
T

H2
S(w) = 1553w exp < w—4)7Y (5.19)
1

where Hj is the significant wave height, T3 is the average wave period,

v =3.3 and
0.191wTy — 1\2
Y = ———F 5.20
o { ( V20 ) ] (5:20)

where

B {0.07 for w < 5.24/T1 (5.21)

~10.09 for w > 5.24/T}
The modal period, Tp, is related to the average wave period through 77 =
0.834 Tp, [22].
Figure 5.4, produced using MSS Toolbox, shows the JONSWAP spectrum
power distribution curve. The parameter values for H; and T are taken from
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[66]. From Figure 5.4, we can see that the JONSWAP spectrum is a narrow
band spectrum, and its energy is mainly focused on 0.5 —1.5rad/s, and the
peak frequency is wp = 0.7222 rad/s.

JONSWAP Spectrum
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Figure 5.4: JONSWAP spectrum and its approximation.

Second-Order Wave Transfer Function Approximation

As discussed earlier, a finite dimensional,rational transfer function wave re-
sponse approximation for H(s) is usually preferred by ship control systems
engineers, because of its simplicity and applicability:

2 \woo's

h*(s) =
(s) s + 2)wos + W

(5.22)

where A = 0.1017, o0 = 1.9528, Hy, = 4.70, Ty = 8.70, wp = 0.7222, and
K" = 9.1 are typical parameters for heave motion of the drilling rig. The
transfer function approximation is shown in Figure 5.4.
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5.3 Controller Design

The model described by equations (5.4)-(5.10) is in form of a nonlinear strict
feedback system, with an unmatched stochastic disturbance. By considering

K fric .
R ] ] . D fric _
aj = AT bj = Loy G = ol the model in state-space form would be

X = AX + Bu, + By + Ed
5.23
{ y=CX (523)
where
T
X=1[p1 &t p» @ p3s @3 P+ @ ps]
[0 —az 0O 0 0 0 0 0 07
by —¢¢ =by 0 0 0O 0 0 0
0 aa 0 —a O 0 0 0 O
0 0 bg —C2 —bQ 0 0 0 0
A=]0 0 0 a 0O —az O 0 0
0 0 0 0 bg —C3 —b3 0 0
0 0 0 0 0 a 0 —a O
00 0 0 0 0 by —cx —by
o 0 0 0 0 0 0 a O ]
B=[0 0000000 a
By =-2637814[0 1 0 1 0 1 0 1 o0]"
E=[-220857 0 0 0 0 0 0 0 0]"
C=[1 000000 O0 O (5.24)
and
Ug = Qbpp — e (5.25)

The output y = p; is the BHP. The heave disturbance vy in equation (5.4)
will be compensated by using constrained MPC as designed in the following
section. Note that the hydrostatic pressures in equation (5.9) are included
in the states p; in (5.4)-(5.8).

5.3.1 MPC

The main MPC objective in this chapter is to regulate BHP to desired
values (set points) during pipe connection by minimizing the cost function
and satisfying output and input constraints.
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Constrained MPC design

Consider the discrete-time linear time-invariant input-affine system [equa-
tion 5.23] while fulfilling the constraints

Ymin S y(k) S Ymazs Umin S u(k) S Umazx (526)

at all time instants k > 0.

In (5.23)-(5.26), n , p and m are the number of states, outputs and inputs
respectively, and x(k) € R" , y(k) € RP |, d(k) € R" and u(k) € R™ are the
state, output, disturbance and input vectors respectively.

The constrained MPC solves a constrained optimal regulation problem
at each time k.

N
min  {J(uwy,r) = D [(ul g Rup i+ Au g ReuAug

A
U={ug, up4nN} i=1

+ (Yetilk — Tk+i\k)TQ(yk+i\k = Thyilk)]}

subjectto  Ymin < Vigklk < Ymaz ¢ =1,---, N,
Umin < Uitklk < Umaz i=1,---,N,
Atppin < Aui+k|k < Aupmgr t=1,---,N,
Zij = 2(k) (5.27)

Tight1lk = AdiTiprk + Baitisrk + Bai + Eaidip g
Yirklk = CaiTiyk|k

where N, J and r are the finite horizon, cost function and reference tra-
jectory, respectively. The matrices Ag;, Bai, Bai,1, Fai, and Cy; follow from
a discretization of the system. The subscript "(k + i|k)" denotes the value
predicted for time k44, and it is assumed that Q,Rs,, and R are the positive
definite matrices.

Since the states x; are not directly measurable, predictions are computed
from the estimation of states. Since the pair (C, A) is detectable, a state
observer is designed to provide estimation of states xj, as described in the
Kalman Filter for State Estimation section. The controller computes the op-
timal solution U by solving the quadratic programing (QP) | equation 5.27].
If the future value of disturbances and/or measurement of disturbances are
not assumed to be known, then disturbances are assumed to be zero in the
MPC predictions.
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Controller parameters such as weight of inputs, inputs’ rate, and outputs
and control horizon must be tuned to achieve the good performance and
stability in this problem. The prediction horizon should be chosen large
enough to ensure the closed-loop stability of the control system.

MPC Constraints

The upper and lower bounds on the input are chosen from the choke open-
ing modes, which are fully opened and fully closed, respectively. Enforcing
pressure of the annulus in a certain operating window is the main reason for
using MPD. The hydrostatic pressure of the well must be kept between both
the reservoir formation pressure and collapsing pressure on one side and the
fracturing pressure on the other side. The typical limit for pressure regula-
tion accuracy in MPD is about +2.5 bar. The controlled output constraints
for the limits for pressure regulation accuracy in MPD must be softened by
the addition of slack variables.

MPC Cost Function

The cost function | equation 5.27| consists of three standard terms. The first
term penalizes the prediction input effort, and the second term in the cost
function penalizes variation in the prediction control input. The last term
weights the deviations of the output variable from the reference trajectory

Tk+ilk-

5.3.2 Kalman Filter for state estimation

The discrete-time Kalman filter is a recursive algorithm based on discrete
linear dynamic systems and known stochastic models of noise and distur-
bance. The Kalman filter has the ability to estimate states with the minimum
variance of the estimation error. This algorithm has two distinct steps: pre-
diction and correction. In the prediction step, predicted state (fﬁk\k—l) and
predicted estimate covariance (Pj,—1) are computed. In the correction step
with updated measurement, optimal Kalman gain (K}) is computed. Then,
the updated state (&), ) and updated estimate covariance (Py;,) are com-
puted with optimal Kalman gain. More details on Kalman filtering can be
found in [104].

5.4 Simulation Results

The nominal parameters for simulations, identified from the IRIS drill sim-
ulator [89], are given in Table 5.1.
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Table 5.1: Parameter values

Parameter Value

a 2.254 x 10% [Pa/m?]
b 1276 x 10 [m*/K g]
g (gravitational constant) 9.806 [m/s?]

A (annulus area) 0.0269 [m?]

Ag (drill string area) 0.0291 [m?]

K (friction coefficient) 5.725 x 10° [sPa/m?]
Qvpp (backpressure pump flow) | 369.2464 [m?3/s]

K. (choke constant) 2.32

c 14.4982[1 /sm?]
po(atmospheric pressure) 101325 [pa]

The time-step used for discretizing the dynamic optimization model was
0.1 s. This is also the sampling interval of measurements and the update
prediction of the Kalman filter and MPC. The input weight (R), input rate
weight (Rg,, ), output weight (Q) and prediction horizon (N') are chosen 150,
0, 17 and 100, respectively. In this problem, the prediction horizon (10 s)
is relatively large compared with the settling time to ensure the closed-loop
stability of the control system. The weights specify trade-offs in the controller
design. Choosing a larger output weight or smaller input weight results in
overshoot in the closed-loop response and, sometimes, broken constraints.
On the other hand, if a larger input weight or smaller output weight is
chosen, then the closed-loop response is slower or sometimes unstable.

To compare the impact of MPC on the drilling system with other con-
trollers, a PID controller was applied to the system as well. A PID controller
is chosen due to its popularity in the industry. PID gains are chosen as 0.75,
0.002, and —1, respectively. The Bode plot of the loop transfer function with
the PID is shown in Figure 5.5. Bandwidth with PID is less than 1.3 rad/s,
and the phase drops very quickly. Therefore, it is not realistic to get a band-
width of about 5 rad/s or more, as would be desirable for this disturbance,
which has dominating frequencies of about 0.5-1.5 rad/s.

Several simulations are performed. The first simulation is shown in Figure
5.6, where the nominal model is used for generating the measurements, and
there is no heave motion.A soft constraint of +2.5bar (compared to the
reference pressure) and a constraint of choke opening taking its values on
the interval [0, 1] are included in the constrained MPC optimization. Figure
5.6(a) compares the responses of the PID controller and constrained MPC
to regulate a set point trajectory. In the proposed MPC controller, the BHP
approaches to set point quickly without any overshoot. In comparison to

the MPC controller, the PID controller has some overshoot and a slower

95



5. Design constrained MPC for heave disturbance attenuation in offshore
Managed Pressure drilling systems

Bode Diagram
Gm =11.8dB (at 1.23 rad/s) , Pm = 59.7 deg (at 0.32 rad/s)
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Figure 5.5: Bode plot of the loop transfer function with the PID.

response. The choke control signal in the constrained MPC is illustrated in
Figure 5.6(b).

The second simulation is shown in Figures 5.7 and 5.8, where the nomi-
nal model with heave disturbance is used for generating the measurements.
The same constraints as in previous simulation are enforced to the con-
troller. Figure 5.7 compares the responses of constant input (gyp, = ) and
constrained MPC to track the set point reference with existing heave dis-
turbance. A constant input couldn’t reduce the effect of heave disturbance
and track the set point reference. Figure 5.8(a) compares the responses of
PID controller and constrained MPC to track the set point reference with a,
heave disturbance. It is found that the MPC controller is capable of main-
taining the constraints, whereas the PID controller is not. Performance of
the controller is evaluated through the root mean square (RMS) tracking
error metric. The RMS tracking errors for the MPC and PID controllers are
1.2524 and 1.6273, respectively, which means that the effect of disturbances
is reduced to 77.0% by the MPC compared to the PID. As indicated in
this figure and the RMS tracking error, the constrained MPC shows good
disturbance rejection capabilities. The choke control signal is illustrated in

96



5.4. Simulation Results

266

265

264

n
(%}
W

Pressure (bar)
n
A

N
(%]
o

259

258

257

0.44

0.42

o
~

o
w
©

Choke opening

Bottom-hole pressure

(b) MPC control signal to the choke without disturbance.

——PID i
—— MPC
1 1 1 1 1
0 10 20 30 40 50 60
Time (s)
(a) Bottom-hole pressure without disturbance.
Choke Input
T
| | | | |
10 20 30 40 50 60
Time (s)

Figure 5.6: Output and control signal of MPC without disturbance.
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Figure 5.8(b). Figure 5.9 shows heave disturbance pressure variations.
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Figure 5.7: Bottom-hole pressure

The next simulation is shown in Figure 5.10 where the nominal model
with heave disturbance is used for generating the measurements. The same
constraints as in the previous simulation are enforced to the controller. In
this simulation, the heave disturbance is assumed to be predictable. The
heave disturbance is given by vy = cos(27t/12)[m], where 27 /12 corresponds
closely to the most dominant wave frequency in the North Atlantic, with
reference to the JONSWAP spectrum [49, 50|. The input weight for MPC
with future knowledge of heave disturbance is chosen R = 85. Figure 5.10
compares the responses of MPC controller without future knowledge of heave
disturbance and MPC with future knowledge of heave disturbance to track
the set point reference. It is found that the MPC controller with future
knowledge of heave disturbance reduces the effect of heave disturbance more
significantly than the MPC controller without future knowledge of heave
disturbance. The MPC can therefore efficiently utilize predictions of future
heave disturbance to improve the control.
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Figure 5.8: Output and control signal of MPC with heave disturbance.
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5.5. Conclusions

5.4.1 Robustness Analysis of Closed-Loop System Using Monte
Carlo Simulations

Finally, the robustness of the constrained MPC without future knowledge
of heave disturbance with the presence of uncertainties in the friction fac-
tor and bulk modulus, 25% each, is evaluated by Monte Carlo simulations.
Each simulation time was 200 s, and the simulations were done over 400
Monte Carlo runs in the uncertainty region with uniform distribution. We
evaluated the performance by computing the ratio of average of RMS of
the tracking error to RMS of the stochastic disturbance. The result indi-
cates that the controller was successful to attenuate the disturbance in the
uncertain system to 74.34%.

5.5 Conclusions

In this chapter, a dynamical model describing the flow and pressure in the
annulus is used. The model was based on a hydraulic transmission line and
is discretized using a finite volume method. The disturbance due to drill
string movement is simulated as a stochastic model describing sea waves in
the North Sea applied to the flow in the bottom hole of the well.

A constrained MPC for controlling bottom-hole pressure during oil well
drilling was designed. It was found that the constrained MPC scheme is able
to successfully control the downhole pressure. It was also found that a con-
strained MPC shows improved attenuation of heave disturbance. Comparing
the PID controller results with MPC shows that the MPC controller has a
better performance than the PID controller, being able to reduce the effect
of disturbances to 77%. Monte Carlo simulations show that the constrained
MPC has a good performance to regulate the set point and attenuate the
effect of the heave disturbance in case of significant uncertainties in the
well parameter values. Finally, it is shown that performance can be further
improved by prediction of the heave motion about 10 s into the future.
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CHAPTER

Conclusions and suggestions for future
work

The final chapter presents the conclusions that can be drawn from the work
of this thesis, and gives possible directions for future work.

6.1 Conclusions

Since the oil production in Norway decreased from 3.22 million (B/D) in
2001 to 1.46 million (B/D) in 2013 !, the number of depleted reservoirs and
formations with low pressure margins in Norway have increased. In order
to increase recovery, it is very vital to invest in developing advanced tech-
nologies which can be utilized for depleted reservoir and formations with
narrow pressure window. Underbalanced drilling (UBD) and Managed pres-
sure drilling (MPD) are drilling technologies which has been developed to
work on challenging reservoir and reducing drilling problems. In order to fur-
ther advance these technologies, the objectives of this work are to estimate
the states and geological properties of the reservoir during UBD operation,
and design of a controller to attenuate heave disturbance in offshore MPD
system.

Novel methods has been designed and developed to estimate reservoir prop-
erties with using only pressure measurements and different lumped and dis-
tributed models. Meanwhile, methods to control the pressure during MPD
oil well drilling using measurements and predictions of the heave disturbance
has been developed.

To achieve the objectives of this work following step has been accomplished:

1. This thesis presents a nonlinear Moving Horizon Observer and joint
UKF based on a nonlinear two-phase fluid flow model to estimate the

Lhttp://www.opec.org/
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104

annular mass of gas and liquid, and production constants of gas and
liquid from the reservoir into the well during UBD operations with
measuring the choke pressure and the bottom-hole pressure. The per-
formance of the adaptive observers was tested by two different simu-
lations with low and high measurement noise covariance during pipe
connection procedure in UBD operations. In all simulations, there is
no model mismatch as the same model is used for simulation and esti-
mation. It was found that both methods are capable of identifying the
production constants of gas and liquid from the reservoir into the well
with sufficient accuracy. The results show that the nonlinear Moving
Horizon Observer achieves better convergence and performance than
the joint UKF with low and high measurement noise covariance.

Both the nonlinear Lyapunov-based adaptive observer and Unscented
Kalman filter based on the LOL model, and the Unscented Kalman
filter based on the distributed drift-flux model were designed to es-
timate states and the geological properties of the reservoir by using
real-time measurements of the choke and the bottom-hole pressures
during UBD operations. The performance of these adaptive observers
was evaluated by using OLGA simulations of two drilling scenarios: a
pipe connection scenario and a scenario with a changing production
index. The results show that reasonable performance for both adaptive
observers to detect and track a changing at production constant of gas
with sufficient accuracy, while the nonlinear Lyapunov-based adaptive
observer has better accuracy than the other methods for estimation
of the production constants of gas and liquid from the reservoir into
the well. Adaptive observers based on the LOL model are computa-
tionally simpler than joint UKF based on drift-flux model. Robustness
of the adaptive observers for the scenario with a changing production
index was tested in case of uncertainties and errors in the reservoir
and well parameters of the model. The results show that adaptive ob-
servers based on LOL model are more sensitive to errors in the reservoir
and the liquid density value than joint UKF based on drift-flux model.
However, it was also found that the LOL model is sufficient for the
purpose of reservoir characterization during UBD operations.

The Unscented and Extended Kalman filters were applied to the drift-
flux model for different number of spatial discretization cells to estimate
the unmeasured states, production constant of gas from the reservoir
into the well, and slip parameters (S, K) during UBD operations using
measurement of the bottom-hole pressure and liquid and gas rate at
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the outlet. The results show reasonable performance for both adaptive
observers to detect and track a changing gas production coefficient us-
ing the simulated scenario with OLGA, while the Unscented Kalman
filter is more accurate than the Extended Kalman filter. In addition,
both production constants of gas and liquid and distributed unmea-
sured states were estimated by using only measurements of the choke
and the bottom-hole pressures for the pipe connection procedure. It
was found that the number of cells in the spatial discretization does
not have a significant effect on the accuracy of estimation. Robustness
of the adaptive observers with different number of spatial discretization
cells was investigated despite uncertainties in the reservoir and well pa-
rameters of the models. Since the reservoir pore pressure has a direct
effect on the mass flow rates from the reservoir into the well, small
inaccuracies in the reservoir pore pressure have a significant effect on
the estimation of production constants. Therefore the Unscented and
Extended Kalman filters are very sensitive to errors in the reservoir
pore pressure value. However, these methods with different number of
spatial discretization cells are robust in case of error in the liquid den-
sity value of the model.

. Offshore MPD operation in hostile environment, such as the North Sea,
is a challenging problem in drilling, since vertical movement of floating
rigs with the waves, called as heave motion, induces severe pressure
fluctuations at the bottom of the well. Therefor a constrained finite
horizon model predictive control (MPC) scheme is designed to control
the annular pressure in a well to deal with heave disturbances during
offshore MPD operations. The heave disturbances were simulated as
the stochastic model describing sea waves in the North Sea applied to
the flow in the bottom hole of the well. The performance of this con-
troller was compared with a standard proportional-integral-derivative
(PID) control scheme. The results show that both controllers without
disturbance are able to successfully control the downhole pressure. It
was found that the MPC controller, with heave disturbances, has a
better performance than the PID controller and can reduce the effect
of disturbances to 77 %. The results show that the performance can be
further improved by prediction of the heave motion about 10 s ahead.
Monte Carlo simulations show that the MPC has a good performance
to control the downhole pressure and attenuate the effect of the heave
disturbance, while it has significant uncertainties in estimation of the
well parameter values (the friction factor and bulk modulus).
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6.2 Future works

6.2.1 Adaptive observer for UBD operations
Testing proposed adaptive observers with more data:

The adaptive observers proposed in this thesis were evaluated by the high-
fidelity OLGA simulator. The future research could be to evaluate these
proposed methods with field drilling data and full scale tests of UBD in real-
time. The performance of the proposed methods should also be evaluated in
scenarios with both field data and experimental data.

Using an adaptive observer for model based controller in UBD
operation:

The main focus of this thesis is to estimate reservoir parameters during
UBD operations. Since the primary goal of controller in UBD is to control
the bottom-hole pressure and influx from the reservoir during UBD opera-
tions, the reservoir inflow model has a significant effect on a model based
controller. Therefore, even small inaccuracies in the reservoir parameters will
affect performance of model based controller significantly. To improve the
controller performance, it appears useful to integrate the proposed adaptive
observers with model-based controller. Since the LOL model is computa-
tionally simpler and faster than the drift flux model, this may be a good
motivation to use the LOL model for the prediction part of a model predic-
tive controller.

Modeling:

To improve the modeling , one may extend the simplified LOL model and
the simplified drift flux model to capture the effects of cutting transport
and dynamic temperature inside the annulus section of the well. For the
simplified LOL model further development would be to include the dynam-
ics of mass and momentum balances inside the drill string section of the
well. Since the friction pressure loss in the well has a significant effect on
the bottom-hole pressure and the reservoir model has a vital role on the in-
flux from the reservoir, a direction of future modeling could be studying on
improvement of the transient reservoir model and the model of the friction
pressure loss in the well.

Estimation of the friction pressure loss in the well:

The model of the friction pressure loss in the well is function of drilling fluid
viscosity, pipe roughness, velocity, Reynolds number, and flow regime (such
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as slug flow, churn flow, dispersed bubble flow, Annular flow). Since the
parameters of the friction pressure loss in the well have uncertainties during
drilling, it is valuable to estimate the friction pressure loss in the well while
drilling is performed.

6.2.2 MPC for MPD operations

Implementing the controller in real conditions:

The constrained MPC in this work was tested by simulation. Further work
could be to test the constrained MPC in more realistic conditions such as
high-fidelity simulator, laboratory experiment or eventually real MPD oper-
ations. Furthermore, it would be interesting for industry to implement the
constrained MPC on programmable logic controller (PLC). This work may
motivate further research on short-term heave motion prediction based on
forward-looking sensors such as ocean wave radar.

Using an adaptive observer to constrained MPC in MPD operations:

As mentioned in chapter 5, some elements of the transient hydraulic model
such as effective bulk modulus, rheology and viscosity of drilling fluid, and
friction factor have significant uncertainties during MPD operations. There-
fore, it is worthwhile to design adaptive estimator to estimate uncertain pa-
rameters of the transient hydraulic model for future work, and using these
estimations to improve the controller performance by calibrating and tuning
online the model of the MPC.
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APPENDIX

Unscented Kalman Filter

The Unscented Kalman Filter (UKF) was introduced in[36, 37, 109]. The
main idea behind the method is that approximation of a Gaussian distri-
bution is easier than an arbitrary nonlinear function. The UKF estimates
the mean and covariance matrix of estimation error with a minimal set of
sample points (called sigma points) around the mean by using a determin-
istic sampling approach known as the unscented transform. The nonlinear
model is applied to sigma, points instead of a linearization of the model. So,
this method does not need to calculate explicit Jacobian or Hessian. More
details can be found in [36, 104, 109, 112].

A set of 2L+1 sigma points is derived from the augmented state

(kal)i :.'f/’kfl +( (L+)\)PK_1)l Z: 1,...,L (Al)

where L is the dimension of the augmented states. (1/(L + \)Pg_1); is col-
umn i of the matrix square root of (L + A\)Px_1. (xx—1): is the ith column
of the sigma point matrix xx_1. The design parameter A is defined by

A=a*(L+k)—L (A.2)

The spread of the sigma points around the state estimate is denoted
by the constant o and usually set to 107* < a < 1, s is a secondary
scaling parameter usually set to zero[109]. The UKF has two distinct steps:
prediction and correction. In UKF prediction step, compute the predicted
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state mean Z,  and the predicted error covariance P, as

(k)i = f*((Xk-1)i)  ,i=0,...,2L (A.3)
2L

Ty, = Z W™ (k)i (A.4)
@

By = Wl = ;0w — 17 + Qu (A5)
i=0

where Q) is the process covariance matrix. I/Vl-(m) and VVi(C) are defined by

A

wim _ T (A.6)
wim) = Q(le i=1,..,2L

éC)_(Li\LA)+<1_a2+ﬁ) (A7)
Wi = Q(le i=1,..,2L

W) and W(© are the weighting matrix for the state mean calculation and
the covariance calculation, respectively. The scaling parameter 3 is used to
incorporate part of the prior knowledge of the distribution of state vector
. For Gaussian distribution, 5 = 2 is optimal [36]. In UKF correction step,
the predicted weighted mean measurement can be computed as follows

2L
DAL T (A.9)
=0

In the UKF formulation, the Kalman gain is computed as follows

O N (A.10)
where
2L
Page = > W) — a7 1Y) — 9517 (A.11)
i=0
2L
Py = W(Y)i — 97 11(Ya)i — 9517 + Ra (A.12)
=0
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covariance of the measurement and the cross-covariance of the state and
measurement are denoted by Py, g, and Pj, g, , respectively. Ry is the mea-
surement noise covariance matrix. Finally, the last step is to compute the
updated state mean & and the updated error covariance Py given by

T =2, + Ki(yw — 3;,) (A.13)
Py =P, — KyPy, 4, K (A.14)

113






APPENDD(]E%

Calculation of derivative of the Lyapunov
function
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