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many discussions. I am highly grateful for the opportunity I was given to work on this project,
to participate in model tests and to be introduced for foil dynamics.

Thank you.

Trondheim, June 10th, 2012 Fridtjof Camillo Eitzen
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Summary

This thesis considers a foil propulsion system on a supply vessel. In analysing the potential
of a foil propulsion system, it is imperative to establish a rigid mathematical model. In
that respect, modelling of the dynamic system is emphasised, and a comprehensive study is
presented on the matter.

The equations of motion for an oscillating foil and a vessel are derived, separately. The two
systems are then combined, to form the coupled vessel-foil structure. For the vessel, a time-
domain model based on Cummins’ equation is proposed. Cummins’ equation has proven
efficient in assessing a unified seakeeping and manoeuvring problem (Fossen [2011]). In line,
the vessel-foil system will be exposed to both vessel oscillatory motion due to waves and
forward speed effects, i.e seakeeping and manoeuvring. Moreover, the efficiency of the foil is
directly dependent on the two.

Additionally, aspects of foil control is looked into. In theory, active control could maximise
thrust while preventing stall, which would be ideal. The validity of simulations with active
control, however, is highly dependent on the accuracy of the basic vessel-foil model. Conse-
quently, effort has been focused on presenting a rigid mathematical foundation.
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Chapter 1

Introduction

In times of increased environmental awareness, and strong competition in the maritime sector,
development of innovative vessel concepts is of acknowledged importance. A vessel oscillating
in waves is exposed to large amounts of kinetic and potential energy. By harvesting some of
that energy, a vessel could increase its energy efficiency, prove more environmental friendly
and benefit economically. This thesis considers a foil propulsion system and attempts to verify
the potential associated with its employment.

PhD candidate Eirik Bockmann at Norwegian University of Science and Technology, is writing
his Doctoral Thesis on the subject of foil propulsion. This report is meant as support to his
work, where the overall objective is to verify whether a foil system is commercially viable.
That being said, the main emphasis has been put into establishing a solid mathematical
model. Thereafter, the model could hopefully serve as a basis for evaluating the potential of
a vessel-foil system.

The concept of foil propulsion is based on mounting a submerged wing in the bow-section
of a vessel. The foil utilises the relative vertical motion between the wing and the water
particles to create lift. In theory, the lift acts normal to the direction of the incoming flow.
As the vessel oscillates, the incoming angle of attack will oscillate, and some of the lift force
is directed forwards, as thrust.

In optimising the thrust the application of an active controller is discussed. In active control,
the foil is steered towards an optimal angle of attack. The optimal angle is calculated from the
ratio between the lift- and drag coefficients, and in the report the coefficients are identified
from experimental data. However, in controlling the foil the actual angle of attack must
also be a known variable. The application of pressure sensors and theoretical calculations is
used in finding the actual angle. Control theory is presented, although no valid simulations
were performed. The reason being that the application and simulation of a fixed foil was
complicated enough to verify.

The angle of attack is dependent on the vessel motion. Therefore, a rigid simulation model is
necessary for the foil forces to be modelled correctly. A time-domain model is chosen for the
purpose. The model is compared with computational results from VERES and experimental
data from model tests.

An outline of the important discussions in the report follows:

1



2 CHAPTER 1. INTRODUCTION

Part I :
Different vessel models are discussed. The classical frequency-domain model is de-
rived from potential theory, and a time-domain model using Cummins’ formulation is
proposed. The formulation adopts a fluid memory term to account for the frequency
dependency of the hydrodynamic coefficients. The fluid memory term is evaluated using
a state-space approximation. The time-domain model is chosen as the principle system
for assessing the foil propulsion system. VERES is used extensively in verification of
the method. An energy approach is utilised to account for forward speed effects

Part II :
The aspects of foil modelling is studied, and foil control is exemplified. In this part, the
foil model is combined with the vessel model to form the coupled vessel-foil system

Part III :
Model tests have been performed and the results are presented. Data from the model
tests of the foil is used to complement the mathematical model. The experimental
results are also used in verification of the simulation model proposed

Part IV :
Results form preliminary simulations is described. A conclusion is formulated



Part I

Mathematical Modelling

3





Chapter 2

Ship Model

The following chapter will propose various approaches in modelling a vessel, and discuss their
associated strengths and weaknesses. As a basis for the discussion, it is emphasised that a
linear (or linearised) system can be analysed in the frequency-domain, while any non-linear
system is operated in the time-domain.

The vessel can be modelled as a floating body satisfying Newton’s second law in six-degrees
of freedom

Mξ̈ = τhyd + τhs + τ foil (2.1)

where M = M6×6 is the inertia matrix, ξ̈ = ξ̈6×1 is the acceleration of the system state-
variables and τ {} = τ {}6×1 expresses the forces acting on the body. τhyd can be understood
as the forces induced due to hydrodynamic pressure. Hydrodynamic pressure arise due to
both vessel- and wave motion and τhyd consists of radiation-, diffraction- and Froude-Krylov-
forces. Both the radiation- and diffraction are found by solving a zero-penetration boundary
value problem for the body-surface. The Froude-Krylov forces originate from integration, of
the hydrodynamic pressure due to the presence of waves, over the body-surface. Further, τhs
is the restoring force due to changing hydrostatic pressure (buoyancy), as the body oscillates
vertically. The above forces are found by solving boundary value problems under potential
theory and will be elucidated in the coming sections.

2.1 Potential theory

The domain or control-volume, in which the body from (2.1) floats, is shown in figure 2.1.
It is restricted by the boundaries S−∞, S∞, S0, SB and SF (all ∈ S), where SB is the body
surface and SF the free-surface.

In potential theory, the following assumptions must be valid throughout the domain

1. Conservation of mass and -momentum apply

5
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Figure 2.1: The domain and boundaries of the Laplace fluid surrounding the floating body.
Courtesy of [Faltinsen, 1990, pg.46]

2. The fluid is incompressible → ρ = constant

3. The flow-field is irrotational and continuous → the field is conservative

2.1.1 Conservation of Mass

From the definition of conserved mass, and by employing the divergence theorem, we obtain

dm

dt
=
∫∫
S

ρv · n dS =
∫∫∫
V

div(ρv) dV = 0 (2.2)

where the velocity at an arbitrary position can be described by the vector v = ui + vj + wk
and n is the normal vector at the surface, S. The double integral can be understood as
the net flux of mass through the control-volume bound by S, which must equal to zero for
conservation of mass to be fulfilled. As the fluid is assumed incompressible, the density of
water, ρ is considered constant and can be cancelled out of the expression. (2.2) is valid for
every infinitesimal part of the domain and we thereby derive the continuity equation

div(v) = ∇ · v = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (2.3)

In the above, it is presumed that the velocity field is continuous throughout the domain.
Further, the domain is considered conservative, which in mathematical terms means that
any line integral is path independent. In physical terms, it implies that energy is not lost,
only replaced. A conservative vector-field is also irrotational, and can be described using
mathematical potentials as

v = ∇φ (2.4)
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where φ = φ(x, y, z, t) is a scalar. By introducing (2.4) in the continuity equation of (2.3), it
follows that the potential must satisfy the Laplace equation

∇2φ = 0 (2.5)

The process of describing the flow-field, of an incompressible and irrotational fluid, reduces
to finding the solution of the Laplace equation, with the relevant boundary conditions. The
solutions to the Laplace partial differential equation are harmonic functions, and the study
of such functions is known as potential theory.

2.1.2 Conservation of Momentum

From conservation of momentum, the Navier-Stokes equations appear as

ρ

(
∂v
∂t

+ v · ∇v
)

︸ ︷︷ ︸
Dv
Dt

= ρg−∇p+ µ∇2v (2.6)

where the parentheses on the left form the total vector field-acceleration, g = [0, 0,−g] are
the accelerations due to body forces, p = p(x, y, z, t) is the pressure at an arbitrary point and
µ is the fluid viscosity.

It is common to neglect the effects of viscosity and assume water to be inviscid. In that case,
the Navier-Stokes equations reshapes to form the Euler equations

ρ
Dv
Dt
− ρg +∇p = 0 (2.7)

The pressure can be found by integrating over a path, ds, and substituting for the velocity
potential. The result is recognised as the unsteady Bernoulli equation

p+ ρ
∂φ

∂t
+ ρ
|∇φ|2

2 + ρgz = C (2.8)

where C is interpreted as the total pressure at an arbitrary point in the domain. C must
be constant for conservation of momentum, in an inviscid fluid, to apply. By using the fact
that the total pressure at the free-surface is atmospheric, we impose the relation C = p0, and
accept that p = p0 and z = ζ. Consequently, under linear theory, the dynamic free-surface
boundary condition must hold

∂φ

∂t
+ gζ = 0

∣∣∣∣
z=0

(2.9)

By reorganising and linearising, equation 2.8 becomes

p− p0 = −ρ∂φ
∂t
− ρgz (2.10)
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For a floating body in equilibrium, the forces of interest arise due to a change in hydrodynamic-
or hydrostatic pressure. Ergo, the relative pressure is of essence, and p0 is conveniently set
to zero, implying that p = ∆p.

2.1.3 Forces

Force due to pressure is governed by the expression; dF = pndS. Introducing (2.10), and
generalizing, the expression yields

6∑
j=1

Fj =
∫∫
S

(
−ρ∂φ

∂t
− ρgz

)
dS (2.11)

where Fj is the force due to hydrodynamic- and hydrostatic pressure, in a given degree of
freedom, j. The hydrodynamic force from (2.1) is recognised as

τhyd =
∫∫
S

−ρ∂φ
∂t

dS (2.12)

while the hydrostatic force is

τhs =
∫∫
S

−ρgz dS (2.13)

By denoting the motion in an arbitrary point as z = ξ3 + yξ4 − xξ5, we obtain

τ ihs = −
6∑
j=1

ξj Cij (2.14)

where Cij is the restoring force coefficient.

Now that the forces, from Newton’s second law (from (2.1)), are identified we turn our
attention to finding the unknown potential, φ, for the Laplacian fluid.

2.1.4 Boundary Conditions

From Faltinsen [1990], we define the boundary condition for the free-surface and body-surface
to be

∂φ

∂n
= Un ∈ SB , SF (2.15)
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where U is a characteristic velocity. On the free-surface the characteristic velocity in the
vertical direction can be approximated (under linear theory) by the time derivative of the wave
elevation, ζ. Thus, a linear approximation of the kinematic free-surface boundary condition
reads

∂φ

∂z
= ∂ζ

∂t

∣∣∣∣
z=0

(2.16)

The kinematic- and dynamic boundary conditions (from (2.16) and (2.9), respectively) can
be combined to form the general boundary expression

∂2φ

∂2t
+ g

∂φ

∂z
= 0
∣∣∣∣
z=0

(2.17)

For a given point on the rigid body, translatory and rotary effects are included to make up
the characteristic velocity. The boundary condition thereby implies that, the velocity of the
body at a given point is the same as the velocity of the fluid at that same point. Moreover,
(2.15) is also valid at the sea-bottom S0, at z = −h, where h is the water depth, by setting
U = 0.

2.2 Boundary Value Problem (BVP)

Let us now imagine a floating vessel subjected to a single wave, what will happen? The wave
hits the vessel, and energy transferred from the wave to the vessel. Next, due to the excitation
force, the vessel is perturbed from equilibrium and starts to oscillate. As the vessel oscillates,
it sets up a wave-field where energy is transmitted away from the body by the radiating waves.
Finally, as all the energy is dissipated it reaches equilibrium once more. In short, the floating
vessel behaves like a mass-spring-damper system, and the wave is an impulse force. Such a
system can be modelled as

aξ̈(t) + bξ(t) + cξ(t) = δ(t) (2.18)

where ξ is the state variable, [a, b, c] are the system coefficients and δ is the impulse wave
force. The steady-state solution is

ξ(s) = c

1 + 2ς sω0
+
(
s
ω0

)2 (2.19)

where ς = b
2mω0

is the relative damping factor and ω0 =
√
c/m is the eigenfrequency. We

seek to find the system coefficients and the excitation force. The system coefficients are
found from a radiation BVP while the force is found by solving an excitation BVP. Under
potential theory superposition is valid and we can split the problem in two: the radiation-
and excitation problem. Greco [2010] denotes the total potential as

φ = φR + φ0 + φD (2.20)
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where φR is the radiation potential and φ0 + φD is the potential from solving the excitation
problem. The complete potential must satisfy the boundary conditions for the domain.

2.3 Radiation potential

A radiation potential is the induced wave potential due to radiating waves, as the vessel is
perturbed from equilibrium. In finding the potential, Newman [1977] proposed a solution
which has served as the basis for the frequency-domain formulation. Cummins [1962] formu-
lated a time-domain approach, while Ogilvie [1964] made the transformation between the two
procedures.

Newman [1977] suggested the radiation potential in all degrees of freedom (hereby referred
to as DOF) take the form

φR =
6∑
j=1

ξ̇j(t)ψj(t, r) where ∂ψj
∂nj

= nj (2.21)

Here, ψj is the potential per unit velocity, dependent on time, position and frequency of
oscillation (Newman [1977]) and ξ is the velocity of the vessel in the jth mode. Introducing
this potential to (2.12), yields the hydrodynamic force due to radiation

τ iR =
∫∫
S

−ρ∂φR
∂t

dS = −
6∑
j=1

ξ̈jρ

∫∫
S

ψjdS −
6∑
j=1

ξ̇jρ

∫∫
S

ψ̇jdS (2.22)

= −
6∑
j=1

ξ̈jAij −
6∑
j=1

ξ̇jBij (2.23)

and

Aij = Aij(ω) = ρ

∫∫
S

ψjdS (2.24)

Bij = Bij(ω) = ρ

∫∫
S

ψ̇jdS = iωρ

∫∫
S

ψjdS (2.25)

where Aij and Bij are the frequency dependent added mass- and damping coefficient. This
notation serves as the basis for what is commonly known as the frequency-domain seakeeping
model. The model is used extensively in literature and will be explained in detail within the
coming sections. Nevertheless, it is important to beware that the formulation is only valid
for steady-state response under influence of a sinusoidal force (oscillation at a single, unique
frequency), and does not account for transient dynamics (Cummins [1962]). In other words,
the formulation fail to fulfil its boundary condition at t = τ (initial condition), during an
impulse forcing, δ(t− τ).
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2.3.1 Cummins’ formulation

Cummins [1962] derived a procedure for evaluating the forces acting on a vessel, using impulse
response function in a convolution integral, thereby accounting for transient dynamics. The
procedure will be outlined in the following bulk.

Again, we consider an impulse force, acting on the body at t = τ . This time, we also
contemplate that the instantaneous velocity of the body is proportional to Dirac’s delta
function, ξ̇(t) = δ(t−τ) during the impulse. This implies that, the body will displace according
to a step-function, as the integral of a the delta function is a step. The instantaneous change
in velocity must be included in the total fluid potential for the problem to satisfy the given
boundary conditions, entirely. After the impulse, the body will oscillate and decay according
to the potential in (2.21).

Let us now examine the boundary conditions a little closer. We know that the wave elevation
initial condition must be: ζ = 0 and ζ̇ 6= 0. The dynamic boundary condition can then be
satisfied if, and only if, φ = 0. Furthermore, as φ = 0 and ζ̇ 6= 0, the kinematic boundary
condition fail. In order to satisfy both boundary conditions for all t an additional potential
must be derived. Let the impulse potential be φjR

∣∣∣
t=τ

so that the total potential from (2.20)
becomes

φ = φR + φjR

∣∣∣
t=τ

+ φ0 + φD (2.26)

The potential of the impulse can be estimated according to (2.21), as

φjR

∣∣∣
t=τ

= δj(t− τ)ϕj(r) (2.27)

where the unit potential, ϕj is independent on time and frequency (Cummins [1962]) and
ξ̇(t) = δ(t− τ). From the kinematic free-surface boundary condition we get

δj(t)
∂ϕj
∂z

= ∂ζ

∂t

∣∣∣∣
z=0

→ ζ = ∂ϕj
∂z

∣∣∣∣
z=0

as
∞∫
−∞

δ(t) = 1 (2.28)

Consequently, both boundary conditions are satisfied at the initial condition; ζ = 0 and
ϕj = 0, at t = τ .

Furthermore, it is known that arbitrary motion can be described by convolution integrals.
A convolution integral can be interpreted as the sum of impulse responses, hence it must,
under linear theory (superposition), be valid for the same boundary conditions as the unique
impulse potential, φjR

∣∣∣
t=τ

. Cummins proves this statement and generalises (2.27), for an
arbitrary motion

φjR

∣∣∣
t=τ

=
t∫

−∞

ϕj(t− τ)δj(τ)dτ (2.29)
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where the impulse potential in equation (2.27) is reformulated into a convolution integral by

t∫
−∞

ϕj(t− τ)δj(τ)dτ =
t∫

−∞

δj(t− τ)ϕj(τ)dτ = δj(t− τ)ϕj(τ) (2.30)

Now, by the same reasoning as presented by Newman [1977], Cummins introduces the po-
tential in (2.21), which satisfies the general boundary condition (combined kinematic and
dynamic), from (2.17). Subsequently, a complete potential in all DOF, valid for all t, yields

φjR = ξ̇jψj +
t∫

−∞

ϕj(t− τ)ξ̇(τ)dτ (2.31)

Similarly to the Newman’s procedure, the hydrodynamic forces due to radiation is found
through

τ iR =
∫∫
S

−ρ
∂φjR
∂t

dS (2.32)

=−
6∑
j=1

Aij ξ̈j +Bij ξ̇j +
t∫

−∞

Kij(t− τ)ξ̇j(τ)dτ

 (2.33)

where

Aij = ρ

∫∫
S

ψjdS (2.34)

Bij = ρ

∫∫
S

ψ̇jdS (2.35)

and

Kij(t− τ) = ρ

∫∫
S

∂ϕj(t− τ)
∂t

dS (2.36)

Here, Kij(t−τ) is the retardation function which accounts for fluid memory effects. The unit
velocity potentials, ϕ and ψ are still deemed unknown. They can be found from strip-theory.
Consequently, both A and B will be known.

2.3.2 Strip-theory

In finding the system coefficients the potential, ψ must be identified. This is normally done by
strip-theory (2-D potential theory) or panel methods (3-D potential theory). In strip-theory,
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the vessel is divided into a finite number of strips that are deemed two-dimensional under
a slender-body approximation. Hence, the 2-D coefficients are determined by 2-D potential
theory. The coefficients for the body as a whole can thus be found by summarising the
contributions from the lone strips (Faltinsen [1990]). Hydrodynamic codes, such as MAR-
INTEK’s ShipX-VERES (hereby referred to as VERES), use strip-theory to determine these
coefficients.

2.4 Excitation potential

In the following, we seek a potential describing the propagation of incident, regular waves
in the domain, as well as the diffraction potential due to interaction between waves and the
vessel. The potential due to incident waves can be found by solving the boundary value
problem for the domain (from (2.17) and (2.5)). The procedure is covered extensively in
many publications (Newman [1977], Dean and Dalrymple [1991]) and will not be emphasised
in this report. The potential can be represented by the following

φ0 = gζa
ω
ekzeik(x cos β+y sin β)eiωet (2.37)

where ω is the wave frequency, β is the wave propagation direction and ζa is the wave ampli-
tude. The vector r = xi + yj + zk is the position at where we are analysing φ0, while ωe is
the encounter frequency given by

ωe = ω + kU cosβ (2.38)

From (2.37) and the dynamic free-surface condition in (2.9), the wave elevation can be seen
to be

ζ = −iζaeik(x cos β+y sin β)eiωt (2.39)
= ζa cos(ωt+ θ(β, r)) (2.40)

where z = 0 and ωe = ω.

The diffraction potential can be found in a similar manner as the radiation potential. The
essential boundary condition assures that no water penetrates the hull and is given by (derived
from (2.15))

∂φD
∂n

= ∂φ0

∂n
(2.41)

where φ0 and φD is the incident- and diffraction potential, respectively. In this report,
the incident- and diffraction potential will be accounted for as one (in accordance with the
output from the computational programs used). The resulting hydrodynamic force can be
found according to equation (2.12) from

τwave1 =
∫∫
S

−ρ∂(φ0 + φD)
∂t

dS (2.42)
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where the force due to the incident potential is characterised as the Froude-Krylov force. The
total first-order force, due to hydrodynamic pressure from waves and diffraction, is denoted
τwave1. By means of strip-theory, the force can be calculated efficiently in hydrodynamic
computational programs where the output would be on the form

τ iwave1 = F iwave1(ω)ζ (2.43)

where

F iwave1 = |F iwave1|e∠F
i
wave1 (2.44)

and

|F iwave1| =
√

Im{F iwave1}2 + Re{F iwave1}2 (2.45)

∠F iwave1 = arctan
(

Im{F iwave1}
Re{F iwave1}

)
(2.46)

F iwave1 from (2.43) is a force response amplitude operator (hereby denoted RAO), which can
be represented by its characteristic transfer-function (|F iwave1(ω)|) and phase-shift function
(∠F iwave1(ω)), under complex theory. These results will be adopted at a later stage.

2.5 Second-order effects

2.5.1 Added resistance in waves

In the previous sections, linear potential theory has been applied to define the forces on a
vessel oscillating in a fluid. However, there will be substantial contributions to the force
picture from non-linear effects, and they should be accounted for. We will reduce ourselves
to identifying the second-order wave drift loads, which are the source of what is referred to as
added resistance. We shall see that the added resistance is highly dependent on the relative
vertical velocity between the ship and waves. In that respect, it is an important parameter
when assessing the benefits of using a submerged foil system on a vessel, as a foil reduces the
ship motion in both pitch and heave, and thus influence the added resistance.

In exemplifying the concept, we shall implement the direct pressure integration method
(Pinkster and van Oortmessen [1977], Faltinsen [1990]). Waves interact with a two-dimensional,
vertical body in a fluid. By assuming short wavelength i.e high frequency, the body can be
regarded as fixed. As incident waves are diffracted from the fixed body, the resulting wave-
field is made up of two waves travelling in opposite direction, which in fact is a standing wave.
The standing wave at the body (say x = 0) can then be expressed as

ζtot = ζa cos(ωt+ kx) + ζa cos(ωt− kx) (2.47)
= 2ζa cos(ωt)|x=0 (2.48)

The second-order drift forces from direct pressure integration method arise due to:



2.5. SECOND-ORDER EFFECTS 15

1. Second-order solution to the Laplace equation; φ = φ0 + φ2

2. A change of integration limits in the Bernoulli equation; −∞ to ζ

3. Inclusion of the velocity-squared term in the Bernoulli equation; |∇φ|2

The second-order solution, φ2 do not contribute to drift loads as the time-averaged integral is
zero. Furthermore, the pressure from Bernoulli’s equation is usually evaluated from z = −∞
to z = 0 at infinite water depth, which also give no contributions to a mean force. However,
when changing the upper limit to z = ζ, a constant drift force will appear. Additionally, the
squared velocity will give drift if evaluated from z = −∞ to z = 0. Here, z = 0 is used as the
upper limit as z = ζ would bring about fourth order forces.

Hence, the pressure to be integrated over the surface of the body is now

p = −ρgz − ρ∂φ
∂t
− ρ |∇φ|

2

2 (2.49)

Meanwhile, the drift force is found by a time-averaged integral given as

τ = −ρ
ζ∫

0

(
gz + ∂φtot

∂t
|z=0

)
dz − ρ

2

0∫
−∞

|∇φtot|2dz (2.50)

By using a potential and a wave elevation corresponding to the standing wave in (2.47), the
total force sums to match Maruo’s formula for short wavelengths:

τwave2 = 1
2ρgζa (2.51)

It can be understood as the force due to diffraction of waves. Faltinsen has derived a formula
which extends the applicability of (2.51) and account for forward speed ([Faltinsen, 1990,
pg.145]). It should be noted that, diffraction is governing only in a high-frequency environ-
ment. For larger wavelengths, added resistance due to resonance or radiation is what governs
the force picture.

As the body resonates in waves, the wetted surface of the body is dependent on the relative
motion between the ship and the waves, not only the wave motion, as was the case for
diffraction. Gerritsma and Beukelman [1972] showed the correlation between relative motion
and added resistance and derived a widely-used formula for added resistance. It is adopted
by for instance VERES (Fathi and Hoff [2010]) and VERES’ estimate of added resistance will
be used later in this report.

As a concluding remark, Faltinsen [1990] shows how (2.51) can be approximated to account
for relative vertical motion by setting ζa = ζR. Here, ζR is the relative displacement between
wave and body.

2.5.2 Calm water resistance

Calm water resistance of a full-scale vessel can be estimated based on scaling theory and
model tests. When scaling a model it is imperative that there exist a similarity in geometry,
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kinematics and kinetics (Steen [2007]). This implies that, both the Froude- and Reynolds-
number must remain unchanged in model- and full-scale. Froude-similarity can easily be
obtained, however consistency in Reynolds number is hardly possible. The friction force
coefficient is dependent on Reynold’s number. In order to obtain complete similarity a pull-
force must be applied to the model, to account for the difference in friction coefficients.

According to Steen [2007] the calm water resistance is calculated by the following algorithm:

• CRm = CTm − CVm Residual coeff. model scale

− CTm = RTm
1
2ρmV

2
mSm

Total coeff. model scale

− CVm = (1 + k)CFm Viscous coeff. model scale

− CFm = 0.075
(log(Rnm)−2)2 Friction ITTC-57 coeff. model scale

− Rnm = VmLWLm

νm
Reynolds number model scale

• CRs = CRm Froude scaling

• CTs = CRs + CV s Total resistance coeff. full scale

− CV s = (1 + k)(CFs + ∆CF ) Viscous coeff. full scale

− ∆CF = [110(HV )0.21 − 403]CFs Roughness friction coeff. full scale

− CFs = 0.075
(log(Rns)−2)2 Friction ITTC-57 coeff. full scale

− Rns = VsLWLs

νs
Reynolds number model scale

• RTs = CTs
1
2ρsV

2
s Ss

Total resistance full scale

Table 2.1: Resistance scaling from experimental data in model scale to full scale resistance
estimates. All of the equalities, given above, are dimensionless resistance coefficients
(apart from the Reynolds number, which is a dimensionless parameter). ‘coeff.’ is
short for coefficient, and m denotes model scale- and s full scale values. V is speed,
k is a form-factor, S is wetted surface, LW L is the water-line length, H (dimension
µm) is an estimated roughness factor and ν is fluid viscosity. All equations are
recited from Steen [2007]

From 2.1, the total calm water resistance can be found to be

RTs = λ3 ρs
ρm

RTm + (1 + k)[CFs + ∆CF − CFm] 12ρmV
2
mSm︸ ︷︷ ︸

Fs

 (2.52)

where the latter term, in the parentheses, is the tow-force, Fs. λ = LWLs

LWLm
is the Froude

scaling factor. The calm water resistance will be used later in the report.
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2.6 Equations of motion

Newton’s second law and rigid-body kinetics in seakeeping coordinates yields

Mξ̈ = τhyd + τhs + τ foil (2.53)

where

τhyd =
∫∫
S

−ρ∂(φ0 + φD + φR)
∂t

dS τhs =
∫∫
S

−ρgz dS (2.54)

In reformulating, using the identities in (2.42) and (2.32), the problem simplifies to

τhyd = τR + τwave1

= −

A(ω)ξ̈ +B(ω)ξ̇ +
t∫

−∞

K(t− τ)ξ̇(τ)dτ

+ τwave1 (2.55)

τhs = −Cξ (2.56)

and

[M +A(ω)]ξ̈ +B(ω)ξ̇ +
t∫

−∞

K(t− τ)ξ̇(τ)dτ + Cξ = τwave1 (2.57)

where the system coefficients A(ω) andB(ω) are assumed known by strip-theory. Equation
(2.57) is both time- and frequency dependent and is therefore unsuited for analysis in either
the time- or frequency-domain.

2.6.1 Frequency-domain model

By assuming the equation to be on the form of a classical mass-spring-damper system, hence
ignoring the contributions from the convolution integral, (2.57) simplifies to

[M +A(ω)]ξ̈ +B(ω)ξ̇ +Cξ = τwave1 (2.58)

This is the classical frequency-domain model. As it does not include the convolution integral,
and thus fails to describe transient dynamics, it is emphasised that (2.58) is only valid:

1. Under linear theory

2. For harmonically forced oscillations
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3. During steady-state response

This implies that the system must be analysed at a given frequency ω = ωn, and the excitation
force must be a (or a combination of many) sinusoidally varying forces. Superposition holds
and τwave1 is

τwave1 =
∞∑
n=1

f cos(ωnt+ θn) (2.59)

where f = Fwave1(ω)ζa is the force amplitude. Expression (2.58) is in reality still a false
time-domain model (Fossen [2011]). A more correct notation is found by taking the Fourier-
transform

(
−ω2[M +A(ω)]− iωB(ω) +C(ω)

)
ξ(iω) = τwave1(iω) (2.60)

where all initial conditions are set to zero. The system response is found by

ξ(iω) = H(ω)τwave1(iω) (2.61)

where H is the system transfer-function defined as

H =
[
−ω2[M +A(ω)]− iωB(ω)

]−1 (2.62)

2.6.2 Cummins’ equation

In finding a valid time-domain model, the system coefficients in (2.57) are assumed indepen-
dent of frequency; A(ω) = Â and B(ω) = B̂. The result is time-domain model known as
Cummins’ equation

[M + Â]ξ̈ + B̂ξ̇ +
t∫

−∞

K(t− τ)ξ̇(τ)dτ + Cξ = τwave1 (2.63)

Here, Â, B̂ and K(t− τ) are unknown.

2.6.3 Ogilvie’s transformation

Ogilvie [1964] presented a method in finding the unknown coefficients, by transforming the
time-domain model to the frequency-domain, from (2.58).

If
ξj = cos(ωt) (2.64)
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then (2.63) becomes

−ω2[M + Â] cos(ωt)− ωB̂ sin(ωt) (2.65)

− ω
t∫

−∞

K(τ) sin(ωt− ωτ)dτ + C cos(ωt) = τwave1 (2.66)

where a convolution identity is used∫
f(t− τ)g(τ) =

∫
f(τ)g(t− τ) (2.67)

Using the trigonometric identity

sin(ωt− ωτ) = sin(ωt) cos(ωτ)− cos(ωt) sin(ωτ) (2.68)

and rearranging

−ω2

M + Â− 1
ω

t∫
−∞

K(τ) sin(ωτ)dτ

 cos(ωt)

−ω

B̂ +
t∫

−∞

K(τ) cos(ωτ)dτ

 sin(ωt) +C cos(ωt) = τwave1 (2.69)

We wish to determine the retardation function and find the unknown variables of Â and B̂.
This can be done by comparison to the coefficients of the frequency-domain model, which
in turn are known from strip-theory. By introducing ξj = cos(ωt) to the frequency-domain
model in (2.58), the expression becomes

−ω2[M +A(ω)] cos(ωt)− ωB(ω) sin(ωt) +C cos(ωt) = τwave1 (2.70)

By comparing the coefficients of (2.69) and (2.70) the result yields

A(ω) = Â− 1
ω

t∫
−∞

K(τ) sin(ωτ)dτ (2.71)

B(ω) = B̂ +
t∫

−∞

K(τ) cos(ωτ)dτ (2.72)

Equation (2.71) is valid for all ω, including the limit ω →∞, so that
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lim
ω→∞

A(ω) = A(∞) = Â (2.73)

The impulse response function (retardation function) K(τ) is of finite energy (Kristiansen
and Egeland [2003]) and thus converges towards zero for infinite frequency. Thereby, we
define

B̂ = B(∞) (2.74)

It follows that the retardation function, K(τ) can be found by inverse Fourier transform of
either (2.71) or (2.72)

K(t) = −
∞∫

0

ω[A(ω)−A(∞)] sin(ωt)dω (2.75)

K(t) =
∞∫

0

[B(ω)−B(∞)] cos(ωt)dω (2.76)

which concludes the transformation.

2.6.4 Time-domain model

The time-domain equation of motion is formally known as

[M +A(∞)]ξ̈ +B(∞)ξ̇ +
t∫

0

K(t− τ)ξ̇(τ)dτ +Cξ = τwave1 (2.77)

where the limit is changed due to causality (Fossen [2011]). The system coefficients are

A(ω) = A(∞)− 1
ω

t∫
0

K(τ) sin(ωτ)dτ (2.78)

B(ω) = B(∞) +
t∫

0

K(τ) cos(ωτ)dτ (2.79)

where B(∞) can be proved to be zero (R. Taghipour and Moan [2008]), for zero speed.
However, it is kept as a formality for later derivations.
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2.6.5 State-space model

The convolution integral in (2.77) is “neither efficient for implementing numerical simulations
nor convenient for control system analysis and design”(Perez and Fossen [2008]). As a result,
Kristiansen and Egeland [2003] developed a state-space approximation to the convolution
term in Cummins’ formula. The method was later improved and implemented by Perez and
Fossen [2008]. The Laplace transform of the convolution integral is

L


t∫

0

K(t− τ)ξ̇(τ)dτ

 = sK(s)ξ(s) (2.80)

It is evident that it can be approximated by a linear transfer-function sK(s).

A transfer-function is in practice a filter, contributing to what is known as fluid memory
effects: adjustment in magnitude and phase-shift of the original signal (in this case ξ(s)).
Any transfer-function can be replaced by a state-space model and vice versa. Consequently,
the state-space model for the convolution integral becomes (Perez and Fossen [2008])

ẋ = Arx+Brξ̇ (2.81)
µ = Crx (2.82)

where

µ(s) = sK(s)ξ = L{
t∫

0

K(t− τ)ξ̇(τ)dτ} (2.83)

and
K(s) = Cr(sI −Ar)−1Br (2.84)

Ar, Br and Cr are parameters of the model and are found by Frequency-Domain Identifica-
tion using the MSS FDI Toolbox for MATLAB developed by Perez and Fossen (Fossen and
Perez [2004]).

In determining K(s) we use the sine-cosine Fourier transform

K(iω) =
∞∫

0

cos(ωt)k(t)− i
∞∫

0

sin(ωt)k(t) (2.85)

applied to (2.78) and (2.79), which gives

K(iω) = [B(ω)−B(∞)] + iω[A(ω)−A(∞)] (2.86)

In section 2.8.2, the derivation of K(iω) is exemplified.
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Figure 2.2: Orientation of coordinate system used by STF and VERES. Courtesy of Fathi
[2010]

2.7 Forward speed effects

Equation (2.77) is given in the seakeeping frame (see figure 2.2). The seakeeping frame
is inertial and follows the vessel with speed U , where the origin is placed at the vessel’s
equilibrium position. When the vessel is at speed, the hydrodynamic coefficients change.

Salvesen et al. [1970] (hereby, STF) have derived a method for finding the speed-dependent
coefficients, by redefining the zero-speed boundary value problem to account for velocity.

Fossen [2011] presents an alternative approach, more suitable for time-domain implementation
and control design. The method is based on an energy approach and identifies the speed-
dependent terms by means of mere mechanical transformations between reference systems.
Regardless, the method is still dependent on the zero-speed potential coefficients.

2.7.1 Salvesen, Tuck and Faltinsen 1970

Due to speed, the velocity potential is altered and forces due to radiation and excitation
change. Let the new potential be referred to as

φ = φR + φ0 + φD + Ux (2.87)

where Ux is a steady flow along the horizontal axis (a simulation of forward speed as the vessel
is held still). φR is the radiation potential while φ0 and φD is the incident- and diffraction
potential, accordingly, and make up the excitation potential. Using Bernoulli’s equation from
(2.8) in combination with (2.87), the pressure yields

p = −ρ( ∂
∂t

+ U
∂

∂x
)(φR + φ0 + φD) (2.88)
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Note that linear theory is still adopted; as a consequence all second-order terms are neglected.
Additionally, the hydrostatic force has been omitted as it is safely modelled in the restoring
force (2.13) (Salvesen et al. [1970]). In finding (2.88), we have used1

|∇φ|2 = |∇φU0|2 + 2U ∂φU0

∂x
+ U2 (2.89)

The first term in (2.88) is the dynamic pressure. The dynamic pressure is the source of
the speed-independent added mass- and potential damping coefficients and force RAO’s.
All of which were identified and discussed in sections 2.3 and 2.4. The second term in
(2.88), however, is the speed-dependent pressure that contribute in the equation of motion.
The problem can again be broken into two; contributions from the radiation- and excitation
potentials.

Radiation potential

In STF, the radiation term can be transformed by means of Stoke’s theorem into two, more
easily digestible terms; one surface integral and one line-integral.

The surface integral appears due to the transformation from an inertial earth-fixed frame
to the seakeeping coordinate system. This has been shown to be true by Fossen [2005],
and will be discussed in the subsequent section. Secondly, the line-integral is what STF
refers to as end-terms. From literature, end-terms are also known as transom-stern effects
(Fossen [2011]) or hull-lift damping (Faltinsen [2005]). In his explanation of the hull-lift
damping effect, Faltinsen compares the submerged part of the vessel to a low-aspect ratio
lifting surface, where the trailing edge is at the transom stern. Such a lift-phenomena affect
the equation of motion.

By using strip-theory, the forces due to the radiation potential can be found. These will give
contributions to the added mass and potential damping, and we can say that

A(ωe, U) = A(ω) +α(ωe, U) (2.90)
B(ωe, U) = B(ω) + β(ωe, U) (2.91)

where A(ω) and B(ω) are the zero-speed potential coefficients from section 2.3. α(ωe, U) and
β(ωe, U) are the additional speed-dependent coefficients derived by STF. ωe is the encounter
frequency and indicate a speed- and heading-dependency. The coefficients in heave and pitch
are defined by Salvesen et al. [1970], as in table 2.2.

Motivated by table 2.2, we can redefine the parameters in a more systematic manner, on vector
form. For notational simplicity we do not account for hull-lift damping, in this example.

A(ωe, U) = A(ωe) + U

ω2
e

[
0 −B0

33
B0

33 A0
33

]
(2.92)

B(ωe, U) = B(ωe) + U

[
0 A0

33
−A0

33
U2

ω2
e
B0

33

]
(2.93)

1As given in [Faltinsen, 2005, pg. 247]
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A33 A0
33 − U

ω2
e
bA33

A35 A0
35 − U

ω2
e
B0

33 + U
ω2
e
xAb

A
33 − U2

ω2
e
aA33

A53 A0
53 + U

ω2
e
B0

33 − U2

ω2
e
xAb

A
33

A55 A0
55 + U2

ω2
e
A0

33 − U
ω2
e
x2
Ab

A
33 + U2

ω2
e
xAa

A
33

B33 B0
33 + UaA33

B35 B0
35 + UA0

33 − UxAaA33 + U2

ω2
e
bA33

B53 B0
53 − UA0

33 − UxAaA33
B55 B0

55 + U2

ω2
e
B0

33 + Ux2
Aa

A
33 + U2

ω2
e
xAb

A
33

Table 2.2: Heave- and pitch added mass and potential damping coefficients from STF-theory.
The superscript ’0’ indicate zero-speed while ’A’ distinguish the end-terms. xA is
the longitudinal distance from CO to stern and aij/bij is the two dimensional added
mass/damping coefficient at xA

Excitation potential

The diffraction potential, φD is found from the same principles as for the radiation potential.
The force contributions from the incident potential φ0, however, is more neatly analysed.
From (2.37) the potential is

φ0 = gζa
ω
ekzeik(x cos β+y sin β)eiωet (2.94)

and by applying it to (2.88), we get

p = −ρ( ∂
∂t

+ U
∂

∂x
)φ0 (2.95)

= −ρ(iω + iUk cosβ)φ0 → −ρωeφ0 (2.96)

where ω is the encounter frequency from (2.38). Furthermore, the pressure is integrated over
the surface of the vessel and the speed-dependent forces due to waves can be found:

τwave1 = Fwave1(ω,U, β)ζ (2.97)

As a concluding remark, hydrodynamic software like VERES implement the STF-theory and
can determine: A(ωe, U), B(ωe, U) and Fwave1(ωe, U, β) for an arbitrary 3D-model. By
knowing these parameters we can solve the frequency-domain model given as

[M +A(ωe, U)]ξ̈ +B(ωe, U)ξ̇ +Cξ = Fwave1(ω,U, β)ζ (2.98)

Alternatively, we can apply the parameters to the Cummins equation and time-domain model
from (2.77). In that case we must remember that we have adopted an infinite frequency
environment, which also must be imposed for the speed-dependent coefficients. Hence, most
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of the terms in table 2.2 actually vanish due to the singularities. For infinite frequency
equation (2.92) develops to

A(∞, U) = A(ω) (2.99)

B(∞, U) = B(ω) + UA0
33

[
0 1
−1 0

]
(2.100)

Here, it is made clear that the speed-dependent added mass for heave and pitch, at infinite
frequency, is equal to that of zero-speed. This also applies to the remaining DOF which are
not featured. The damping matrix is still dependent on speed.

2.7.2 Energy approach

An alternate approach can be derived using an energy approach and vectorial mechanics.
This approach will give the same results as those derived by STF, as explicitly proven by
Marshall et al. [1982]. Now, the energy approach is also the basis for Fossen [2011] marine
ship motion theory. The idea of the energy approach, being a substitute for conventional
potential theory, is highly interesting and a separate chapter will be devoted to the issue (see
chapter 3).

The seakeeping frame is inertial, meaning it is non-accelerating (at constant speed) and fixed
in orientation at the equilibrium position of the vessel. An inertial reference frame is not
capable of describing the real accelerations acting on the vessel at forward speed in waves.
On the contrary, a non-inertial, body-fixed reference system is free to translate and rotate
with respect to an inertial, earth-fixed system, and is more suited to describe the motions of a
vessel in 6 DOF. Additionally, the vessel excitation forces are derived from the fluid pressure
at the hull, which is known to act normally to the orientation of the vessel, i.e in body-fixed
coordinates. Figure 2.3 attempt to capture the concept visually.

Due to fact that a body-fixed coordinate system accelerate in space, fictitious forces appear.
These forces are the main ingredient in the speed-dependent hydrodynamical coefficients in
STF-theory, which we shall see in chapter 3.

2.8 System coefficients

The system coefficients are found by the ShipX Vessel Responses (VERES) software (Fathi
[2010]) and the Frequency-domain identification (FDI) tool in the MSS toolbox for MATLAB
(Fossen and Perez [2004]).

2.8.1 ShipX-VERES

VERES use strip-theory approximations according to section 2.3.2 and include forward speed
effects as of the STF-method (see section 2.7.1). The software input is a 3D-model of the ves-
sel, and relevant output span hydrodynamic coefficients and Response Amplitude Operator’s
(RAO’s). Additionally, VERES allows the user to add appendices like foils.
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Figure 2.3: Example of different reference frames. Top: Inertial system with coordinate system
in equilibrium and constant speed. Bottom: Non-inertial reference frame with
accelerating body-fixed coordinate system. The coordinate system in the corner
is inertial

Hydrodynamic coefficients

Output: A(ω,U), B(ω,U), C
VERES output frequency-, heading- and speed-dependent added mass-, potential damping-
and restoring coefficient matrices for all degrees of freedom (DOF). An example-curve for the
coefficients is given in figures 2.4 and 2.5.

Force RAO’s

Output: F (ω, β, U)
VERES create force RAO’s, in a relevant range of frequencies, for all headings and speeds,
in all DOF’s. The force RAO’s are independent of any appendices added to the model.
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Figure 2.4: Added mass coefficient in {33}
for zero speed
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Figure 2.5: Potential damping coefficient in
{33} for zero speed

Motion RAO’s

Output: H(ω, β, U)
VERES set up the motion RAO’s, in a relevant range of frequencies, for all headings and
speeds, in all DOF’s. The motion RAO’s are dependent on the appendices added to the
model, like foils, which means that the foil interaction will alter the vessel motion transfer-
function.

The RAO can be found by Laplace transformation. Originally the model is:

[M +A(ωe, U)]ξ̈ +B(ωe, U)ξ̇ +Cξ = τ (2.101)

and by transformation we get

ξ(s) = [(M +A(ωe, U))s2 +B(ωe, U)s+C]−1τ
∣∣
s=iω (2.102)

where

H(ω,U) = |ξ(iω)|
ζa

(2.103)

Added resistance

Output: RAW (ω, β, U)
VERES calculates the speed- and heading dependent added resistance due to waves by using
the Gerritsma & Beukelman method (see section 2.5).
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Figure 2.6: MSS fitted added mass- and damping coefficient for zero speed in dimension {33}

Calm water resistance

Output: RT (U)
VERES estimate the total calm water resistance curves, by either the Holtrop-84- or Hollenbach-
98 method.

Foil effects

Foils can be added manually in VERES. The output is additional added mass-, damping
and restoring coefficient matrices and additional force RAO’s. The vessel motion RAO will
depend on the foil coefficients.

2.8.2 FDI MSS toolbox

The FDI tool implement the state-space theory from section 2.6. The tool use frequency-
domain fitting to represent the zero-speed potential coefficients by transfer-functions. An
example of the fitted curves is shown in figure 2.6. From the transfer-functions the infinite
added mass can be identified. Furthermore, as A, B and A(∞) are determined, K(s) can
be found, using equation (2.86), from section 2.6.5. K(s) and A(∞) are key ingredients in
the time-domain model.



Chapter 3

Unified Seakeeping and
Maneuvering model

T. I. Fossen and T. Perez (Fossen [2011], Fossen [2005], Perez and Fossen[2008]) are among the
only authors that address the problem of transforming motions between the seakeeping- and
body-frame, in marine hydrodynamics. Their work provides an alternative to the Salvesen-
Tuck-Faltinsen (STF) method in deriving speed-dependent hydrodynamic coefficients, better
suited for time-domain simulations and thus control-design.

3.1 Preliminaries

3.1.1 Orientation

NED
North-East-Down oriented inertial and earth-fixed reference frame referred to as {n}.
The origin is at on

Body-fixed
Rotating reference frame fixed at body. The frame is denoted {b} and the origin is at
ob

Seakeeping
Inertial reference frame travelling at constant speed with an origin that coincides with
the equilibrium position of a {b}. The frame is assigned the abbreviation {s}

3.1.2 Notation

As of Fossen [2005] the generalised position, velocity and force vectors read

29
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*
RBC

*
AC( )RBC 

( )AC 

Rotating 
frame

NED Seakeeping

Body-fixed

Inertial frames

Figure 3.1: Transformation between coordinate systems impute the forming of Coriolis and
centripetal forces

Figure 3.2: Convention for direction of ship motion velocities as used by Fossen. Figure from
Fossen [2011]
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η = [n, e, d, φ, θ, ψ]T (3.1)
ν = [u, v, w, p, q, r]T (3.2)
τ = [X,Y, Z,K,M,N ]T (3.3)

Here, η is the position in an inertial earth-fixed frame, which can be represented by the
north-east-down position p = [n, e, d]T and the Euler angles Θ = [φ, θ, ψ]T , as follows

η = [p,Θ]T (3.4)

whereas, under the same convention, ν = [v,ω]T .

The seakeeping perturbation coordinates are defined relative to a constant speed inertial
reference frame, according to

ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]T (3.5)

where the velocity of the frame is assumed equal to ν0 = [U, 0, 0, 0, 0, 0]T .

3.1.3 Coefficients

The mass matrix at CG take the following form

M =


m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix −Ixy −Ixz
0 0 0 −Iyx Iy −Iyz
0 0 0 −Izx −Izy Iz

 (3.6)

whereas the added mass coefficient is denoted

MA =


A11 A12 A13 A14 A15 A16
A21 A22 A23 A24 A25 A26
A31 A32 A33 A34 A35 A36
A41 A42 A43 A44 A45 A46
A51 A52 A53 A54 A55 A56
A61 A62 A63 A64 A65 A66

 (3.7)

3.2 Rigid-body kinetics

Newton’s second law about centre of gravity og in {n} yields
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M
d

dt
η̇ = τ (3.8)

where τ is the external force.

3.2.1 Newton-Euler equations of motion

By means of Newtonian mechanics the inertial vectorial velocity η can be transferred to an
arbitrary body-frame. From (3.8), it can be shown that the force acting on {b} is (Egeland
and Gravdahl [2002] and appendix A)

m[v̇bb/n + ω̇bb/n × rbg + 2ωbb/n ×
drg
dt

+ ωbb/n × vbb/n + ωbb/n × (ωbb/n × rbg)] = f bb (3.9)

Here, rbg is the position-vector of an arbitrary point ob, with respect to og, expressed in {b}.
The sub- and superscripts define the system variables, according Fossen [2011]’s notational
convention, as

vbb/n : linear velocity of the point ob with respect to {n} expressed in {b}
ωbb/n : angular velocity about the point ob with respect to {n} expressed in {b}
f bb : force with line of action through the point ob expressed in {b}
mb
b : moment about ob expressed in {b}

As rbg is of constant value the Coriolis-term with its time derivative vanishes. Consequently,
the resulting force becomes

m[v̇bb/n + ω̇bb/n × rbg + ωbb/n × vbb/n + ωbb/n × (ωbb/n × rbg)] = f bb (3.10)

By similar derivations the moment about ob can be shown to be

Ibω̇
b
b/n + ωbb/n × Ibωbb/n +mrbg × (v̇bb/n + ωbb/n × vbb/n) = mb

b (3.11)

where Ig is the system inertia matrix about og.

A matrix-representation of equation (3.10) and (3.11) yields (Fossen [2011])

MRB ν̇ +CRBν = τ (3.12)

where
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MRB =
[
mI3×3 −mS(rbg)
mS(rbg) Ig −mS2(rbg)

]
(3.13)

CRB =
[

mS(ωbb/n) −mS(ωbb/n)S(rbg)
mS(ωbb/n)S(rbg) −S((Ig −mS2(rbg))ωbb/n)

]
(3.14)

In the above, S() is the cross-product operator defined by

S(λ)a = λ× a (3.15)

and the identity Ib = Ig −mS2(rbg) is used (Egeland and Gravdahl [2002]).

(3.12) is the non-linear rigid-body Coriolis and centripetal matrix. Basically, it represent the
forces that are concerned with rotations of a body about an inertial reference frame; the forces
felt by the body as it is accelerated arbitrarily in a domain. For comparison reasons, we are
going to need this matrix in the following sections to conclude our proof.

In VERES, it is custom to calculate the hydrodynamic forces through and about a point in
the waterline, within the same cross-section as og. Hence rbg = [0, 0, zg]. On component form
in 3 DOF (surge,heave and pitch), we have (Fossen [2011])

CRB(ν) =

 0 0 mw
0 0 −m(zgq + u)
−mw m(zgq + u) 0

 (3.16)

The Coriolis matrices are not unique and can be rearranged. In (3.16) we see that the term
C

[61]
RB and C [63]

RB cancel when multiplying out CRB(ν)ν. Thereby,

CRB(ν) =

 0 0 mw
0 0 −m(zgq + u)
0 mzgq 0

 (3.17)

The linear equivalent of (3.17) about ν = ν0 = [U, 0, 0, 0, 0, 0]T can be denoted

C∗RB(ν) =

 0 0 0
0 0 −mu
0 0 0

 = MLU (3.18)

as mwq is negligible under linear theory, because w and q are perturbations about ν0. In the
above

L =

 0 0 0
0 0 −1
0 0 0

 (3.19)
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3.2.2 Kirchhoff’s equations

In the previous section CRB was identified using the Newton-Euler equations of motions. An
alternate approach utilising the principles of Lagrangian mechanics is presented by Marshall
et al. [1982] and Fossen [2011]. The Euler-Lagrange equation is based on an energy method,
where the dynamics of a system can be found by ensuring that the equations are satisfied.
Furthermore, Kirchhoff derived an energy formulation better suited for fluid dynamics (Fossen
[2011]), which will be applied in the following.

Kirchhoff’s equations are given

d

dt

(
∂T

∂v

)
= ∂T

∂ω
× ω + f (3.20)

d

dt

(
∂T

∂ω

)
= ∂T

∂ω
× ω + ∂T

∂v
× v +m (3.21)

For notational convenience v = vbb/n and ω = ωbb/n when using Kirchhoff’s method. As,
λ× a = −a× λ and by using the identity in (3.15) we obtain

d

dt

(
∂T

∂v

)
+ S(ω)∂T

∂ω
= f (3.22)

d

dt

(
∂T

∂ω

)
+ S(ω)∂T

∂ω
+ S(v)∂T

∂v
= m (3.23)

where the kinetic energy, T , of the rigid-body can be written in a quadratic form as

T = 1
2ν

TMν (3.24)

whereas M = MRB and

M =
[
M11 M12
M21 M22

]
(3.25)

By using the same procedure as presented in Fossen [2011], the kinetic energy can be expanded

T = 1
2(vTM11v + vTM12ω + ωTM21v + ωTM22ω) (3.26)

Due to symmetry in M , M12 = MT
21 and M21 = MT

12. By applying matrix calculus, the
energy derivatives in (3.22) becomes

∂T

∂v
= M11v +M12ω (3.27)

∂T

∂ω
= M21v +M22ω (3.28)
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CG
[0,0, ]g gr z



0 [ ,0,0,0,0,0]TU 
SeakeepingEarth fixed

Body
CO

Figure 3.3: Reference coordinate systems: Earth-fixed, seakeeping and body-fixed, and the
relation between them

Equation (3.22) can be reformulated to represent the standard form MRBν̇+CRB(ν)ν = τ :

MRBν̇ +
[

S(ω)∂T∂v
S(ω)∂T∂ω + S(v)∂T∂v

]
︸ ︷︷ ︸

CRB(ν)ν

= τ (3.29)

where CRB(ν can be shown to be (Fossen [2011])

CRB(ν) =
[

03×3 −S(∂Tdv )
−S(∂Tdv ) −S(∂Tdω )

]
(3.30)

which for M = MRB , and by imposing the skew-symmetric property of the Coriolis matrix,
can be written as (Fossen [2011])

CRB(ν) =
[

mS(ωbb/n) −mS(ωbb/n)mS(rbg)
−mS(ωbb/n)mS(rbg) −S(Ibωbb/n)

]
(3.31)

The Coriolis term found by using the energy method is evidently similar to that of Newton-
Euler from (3.14), thus the procedure is a solid alternative. This will prove useful when
deriving the Coriolis term due to added mass.

3.3 Seakeeping- to body frame

3.3.1 Kinematics

Both the {n}-frame and the {s}-frame are inertial reference frames, and simple superposition
of velocities is valid. Transferring the earth-fixed velocity, η̇, to the seakeeping velocity, ξ̇,
yields
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η̇ = ν0 + ξ̇ =



U + ξ̇1
ξ̇2
ξ̇3
ξ̇4
ξ̇5
ξ̇6

 (3.32)

As for the {b}-frame, the velocities, ν, can be linearised about ν0 = [U, 0, 0, 0, 0, 0]T . This
gives

ν = ν0 +


δu
δv
δw
δp
δq
δr

 =


U + δu
δv
δw
δp
δq
δr

 (3.33)

The {b}-frame angular velocities, ωbb/n = [δp, δq, δr]T are given relative to the inertial axes,
which implies that

 ξ̇4
ξ̇5
ξ̇6

 =

 δp
δq
δr

 (3.34)

Assuming small angles, the kinematic transformation between {b} and {s} for the linear
velocity, can be shown to be (see appendix A).

η̇1,2,3 = vbb/n + ξ4,5,6 × vbb/n + ωb/n × rbg (3.35)

In finding [ξ1, ξ2, ξ3]T , we apply (3.35). Neglecting higher order terms and using the fact that
η̇1,2,3 = [U + δu, δv, δw]T and rg = [0, 0, zg]T , we get

 U + ξ̇1
ξ̇2
ξ̇3

 =

 U + δu+ zgδq
δv + (U + δu)ξ6 − zgδp

δw − (U + δu)ξ5

 (3.36)

Let U >> δu and U + δu→ U and simplify

 ξ̇1
ξ̇2
ξ̇3

 =

 δu+ zgδq
δv + Uξ6 − zgδp

δw − Uξ5

 (3.37)

The accelerations yield
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ξ̈ =



δu̇+ zgδq̇
δv̇ + Uδr − zgδṗ

δẇ − Uδq
δ̇p

δ̇q

δ̇r

 (3.38)

which equivalently can be derived by linearising the acceleration terms from (3.10), about ν0.

Let ξ5 and ξ6 be

ξ5 = ξ5a cos(ωet)→ ξ̈5 = −ω2
eξ5a cos(ωet) (3.39)

ξ6 = ξ6a cos(ωet)→ ξ̈6 = −ω2
eξ6a cos(ωet) (3.40)

and hence

ξ5 = − 1
ω2
e

ξ̈5 ξ6 = − 1
ω2
e

ξ̈6 (3.41)

Using the above result the velocity becomes

ξ̇ =



δu+ zgδq
δv − U 1

ω2
e
δṙ − zgδp

δw + U 1
ω2
e
δq̇

δp
δq
δr

 (3.42)

The velocity (3.42) and the acceleration (3.38) can be written in compact form, as of Fossen
[2005]

ξ̇ = Jδν − U

ω2
e

Lδν̇ (3.43)

ξ̈ = Jδν̇ + ULδν (3.44)

where δν = [δu, δv, δw, δp, δq, δr]T and

J =


1 0 0 0 zg 0
0 1 0 −zg 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 L =


0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (3.45)
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As δν = ν −ν0 (see equation (3.33)), and therefore δν̇ = ν̇, (3.43) and (3.44) can be written

ξ̇ = Jν − U

ω2
e

Lν̇ − Jν0 (3.46)

ξ̈ = Jν̇ + ULν −���ULν0
=0 (3.47)

where the last term in (3.47) is zero, and the last term in (3.46) is a constant offset, equal
to ν0. Such an offset can be regarded as constant force when introduced in the equation of
motion, which we will see.

As an example of the methods validity, so far, we consider a vessel at zero speed, and again,
Newton’s second law. In addition, we demand symmetry by mathematically introducing JT :

(JTM∗J)ν̇ = JT τ∗ →MRBν̇ = τ (3.48)

Here, MRB will be identical to the generalised mass matrix derived by STF (Salvesen et al.
[1970]) and the MRB from (3.13). Additionally, (3.19) and (3.45) are identical, which they
should be.

3.3.2 Kinetics

The time-domain model from section 2.6.4 is

[MRB +A(∞)]ξ̈ +B(∞)ξ̇ +
t∫

0

K(t− τ)ξ̇(τ)dτ +Cξ = τ (3.49)

Setting, J = I to ease the example, introducing (3.46) and (3.47), the above expression yields

[MRB +A(∞)](ν̇ + ULν) +B(∞)(ν − U

ω2
e

Lν̇ − ν0)

+
t∫

0

K(t− τ)(ν − U

ω2
e

Lν̇ − ν0)dτ +Cξ = τwave1 (3.50)

(3.49) is analysed at ωe → ∞ and the 1
ω2
e
-terms vanish. By re-structuring, the expression

reads

[MRB +MA(∞)]ν̇ +C∗RBν +C∗Aν +B(∞)ν + µ+Cξ = τ + τν0 (3.51)

where
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MA(∞) = A(∞) (3.52)
C∗RB = UMRBL (3.53)
C∗A = UA(∞)L (3.54)

µ =
t∫

0

K(t− τ)(ν(τ)− ν0)dτ (3.55)

τν0 = ν0B(∞) (3.56)

CRB∗ and CA∗ are the linearised Coriolis-centripetal coefficients, where CRB∗ is consistent
with expression (3.18). τν0 is the linearised constant damping force in surge due to forward
speed. It can be interpreted as the vessel resistance due to manoeuvring.

In 3 DOF C∗A is

C∗A = U

 0 0 −A13
0 0 −A33
0 0 −A53

 (3.57)

3.4 Energy approach

Motivated by the fact that we were able to define the CRB from conservation of energy of
MRB , we wish to include the added mass term MA in a similar manner.

Applying the same methodology as described in section 3.2.2, we expect the Coriolis term
due to added mass CA to take the form

CA(ν) =
[

03×3 −S(∂Tdv )
−S(∂Tdv ) −S(∂Tdω )

]
(3.58)

where

∂T

∂v
= M11v +M12ω (3.59)

∂T

∂ω
= M21v +M22ω (3.60)

and this time M = MA defined by

MA =
[
M11 M12
M21 M22

]
(3.61)

On component form, the solution in 3 DOF yields (Fossen [2011])
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CA(ν) =

 0 0 a3
0 0 −a1
−a3 a1 0

 (3.62)

where

a1 = A11u+A13w +A15q (3.63)
a3 = A31u+A33w +A35q (3.64)

The equation of motion, due to rotation of the added mass in {b} about {n}, now is

MAν̇ +CAν = τ (3.65)

3.5 Comparing to STF

STF is based on solving a boundary value problem under potential theory. Meanwhile, the
energy approach is based on defining the dynamics of a system by keeping track of the
energy balance. VERES and other hydrodynamical programs use STF as a basis for their
computation of the speed-dependent terms in the system matrices; added mass, potential
damping and restoring. However, when reviewing the STF it is somewhat unclear how the
forces appear and what really causes them. A more flexible and transparent procedure is the
energy approach.

The classical frequency-domain formulation is given as

[M +A(ωe, U)]ξ̈ +B(ωe, U)ξ̇ +Cξ = τwave1 (3.66)

where A(ωe, U) and B(ωe, U) are speed-dependent added mass and damping coefficients
found from STF-theory by for instance VERES (see expression (2.99)). As we are using the
Cummins equation, the coefficients are to be evaluated at infinite frequency.

In deriving the STF coefficients by the energy approach, we will start in the {n}-frame and
work ourselves into seakeeping coordinates by the transformations presented in the previous
sections.

In {n}, we have

(M +MA) d
dt
η̇ = τ (3.67)

The transformation to {b}, is found from (3.65) and (3.12), and is

(MRB +MA)ν̇ +CRBν +CAν = τ (3.68)

The transformation matrices between {s} and {b} is given in (3.46) and (3.47). ν and ν̇ can
thus be expressed by seakeeping coordinates in the following manner
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Jν = ξ̇ + U

ω2
e

Lν̇ + Jν0 (3.69)

Jν̇ = ξ̈ − ULν (3.70)

For infinite frequency, setting J = I for the purpose of the example and ignoring ν0 for the
moment, the transformation reads

ν = ξ̇ (3.71)
ν̇ = ξ̈ − ULν (3.72)

Introducing the above to (3.68), the expression reads

(MRB +MA)ξ̈ − UMRBLξ̇ − UMALξ̇ +CRB(ν)ξ̇ +CAνξ̇ = τ (3.73)

Simplifying,

(MRB +MA)ξ̈ + (CRB(ν)−C∗RB)︸ ︷︷ ︸
CV ERES
RB

ξ̇ + (CA(ν)−C∗A)︸ ︷︷ ︸
CV ERES
A

ξ̇ = τ (3.74)

where the added mass Coriolis and centripetal term is given as

C∗A = U

 0 0 0
0 0 −A33
0 0 −A53

 (3.75)

CA(ν) =

 0 0 A33w +A53q
0 0 −A11u

−A33w −A53q +A11u 0

 (3.76)

≈ U

 0 0 0
0 0 −A11
0 A11 −A33 −A53

 (3.77)

where A13 = A15 = 0, A35 = A53, u = U and (A33w + A53q) = O(e2) is a second-order
perturbation term. The sum CV ERES

A = CA(ν)−C∗A is recognised as

CV ERES
A = U

 0 0 0
0 0 A33 −A11
0 A11 −A33 0

 (3.78)

VERES neglect the effect of A11 and by that it is made evident that the coefficient matches
the speed-dependent terms of the STF-formulation perfectly, in an infinite frequency envi-
ronment. It is stressed that VERES’ axes (x backwards, y port and z upwards) are de-
fined differently than those of Fossen [2011] (see section 3.1.1). The transformation satisfies
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AFossen = TAV EREST , where T = diag{−1, 1,−1,−1, 1,−1}. The same goes for B. Note
that also U changes direction.

The rigid-body Coriolis terms are

CRB(ν) =

 0 0 mw
0 0 −m(zgq + u)
0 mzgq 0

 C∗RB(ν) =

 0 0 0
0 0 −mu
0 0 0

 (3.79)

hence, by neglecting second-order terms CV ERES
RB = CRB(ν)−C∗RB the sum satisfies

CV ERES
RB = 0 (3.80)

It is made clear that the rigid-body terms have no immediate impact on the speed-dependent
seakeeping coefficients, in accordance with STF.

The speed-dependent, linear expression at ω =∞ reads

(MRB +MA)ξ̈ +CV ERES
A ξ̇ = τ (3.81)

Formulation (3.81) clearly states that, the speed-dependent terms within STF-theory are
solely caused by a mechanical transformation between the inertial earth-fixed frame and the
seakeeping frame (except for hull-lift damping). Consequently, frequency dependent terms
can be added to the solution without considering the effects of speed; that is the fluid-memory-
and infinite damping term in Cummins’ equation.

Kirchhoff ’s equation does not consider gravitational forces, and these must thus be included
separately.

From Cummins’ equation, valid formulations are:

In the seakeeping-frame:

(MRB +MA(∞))ξ̈ +CV ERES
A ξ̇ +B(∞)ξ̇ +

t∫
0

K(t− τ)ξ̇(τ)dτ +Cξ = τ (3.82)

In the body-fixed-frame:

(MRB +MA(∞))ν̇ +CRB(ν)ν +CA(ν)ν +B(∞)ν + µ+Cξ = τ (3.83)

where
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MA(∞) = A(∞) (3.84)
CV ERES
A = CA(νν0)−C∗A (3.85)

µ =
t∫

0

K(t− τ)(ν(τ)− ν0)dτ (3.86)

CA(ν) and CA(ν) are the non-linear Coriolis and centripetal matrices, due to rotation of
{b} around {n}, while CA(νν0) is the linear counterpart. C∗A is the linear Coriolis term due
to rotation of {b} about {s}.

VERES’ potential coefficients at infinite frequency can thereby be reformulated to

A(∞, U) = A(∞, 0) = MA(∞) (3.87)
B(∞, U) = B(∞, 0) +CV ERES

A (∞) (3.88)

The result is highly intriguing, as the user can apply 2D-potential, strip-theory for zero
speed to a unified seakeeping- and manoeuvring problem (at forward speed). As a curiosity,
the frequency dependent added mass coefficient is made superfluous in the above models.
The speed-dependent coefficients outputted from VERES are numerically unstable for low
frequency as the 1

ωe
-terms are difficult to interpret and physically abnormal. This problem is

circumvented by using the energy-approach and Cummins’ equation. It must be noted that
the frequency-dependent hull-lift damping terms (see section 2.7.1) are neglected using the
unified model.

Furthermore, it is also possible to utilise 3D potential theory programs, like WAMIT, for the
analysis of the equations of motion.

3.6 Verification

As a verification of the method, frequency response in heave and pitch is compared with the
response from the time-domain, unified model. The response from the time-domain model
is extracted by finding the standard deviation of the response from the time-series. The
standard deviation is related to response amplitude by ξa =

√
2σ. The results for heave and

pitch are illustrated in figures 3.4-3.9. The results from a model test using the same model is
also used in the comparison.

The frequency-domain model and the time-domain model coincide well for high and low
frequencies. The pitch angle is underestimated, and as the pitch and heave angles are coupled
within CV ERES

A the result is affected in heave response as well. This issue will have to be
looked into. At slow forward speed, the results correlate well.
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Figure 3.4: Frequency response of UT-751
supply vessel at 8 knots in heave
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Figure 3.5: Frequency response of UT-751
supply vessel at 8 knots in pitch
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Figure 3.6: Frequency response of UT-751
supply vessel at 10 knots in
heave

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Pitch motion of vessel at10 knots

Wave frequency [1/s]

P
itc

h 
R

A
O

 [d
eg

]

 

 
No foil: Freq−dom VERES calculation
No foil: Time−dom. frequency response
No foil: Time−dom experimental results

Figure 3.7: Frequency response of UT-751
supply vessel at 10 knots in
pitch
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Figure 3.8: Frequency response of UT-751
supply vessel at 12 knots in
heave
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Figure 3.9: Frequency response of UT-751
supply vessel at 12 knots in
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Chapter 4

Foil Model

4.1 Foil theory

Expressions for lift and drag on a foil can readily be derived from potential theory and by
using the assumption of conservation of fluid momentum (see section 2.1)(Newman [1977],
Faltinsen [2005]).

A lift force is caused by circulation around a foil. In fluid dynamics, circulation is related to
fluid velocity by the following

Γ =
∮
C

u · ds (4.1)

where s is a finite length along the path of the closed curve C. Now, letting ds = rdθ and
integrating, circulation can be expressed in terms of Biot-Savarts law

Γ = 2πru(r) (4.2)

where r is the radius of integration. Biot-Savarts law indicates that circulation is equivalent
to induced velocity circulating the foil. The induced velocity causes a relative speed difference
between the upper- and lower foil surface. By Bernoullis equation for 2D steady flow, a speed
difference over a thin foil sets up a pressure-field1.

∆p = ρ

2
[
(U + u(r))2 − (U − u(r))2] = 2ρUu(r) (4.3)

where r = r and ρgz = 0 due to the 1D nature of the foil. Figure 4.1 illustrates the effect.
The total lifting force can thus be expressed as

1As described in Steen [2007]

47
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U-u(r
)

dA



dp

Figure 4.1: Illustration of the concept of circulation and induced velocity of a foil at an angle.
Top: Foil at an angle with surrounding fluid streamlines. Middle: Induced velocity.
Bottom: Induced pressure-field and circulation

FL =
∫

∆pdl =
∮
C

∆p
2 ds (4.4)

= ρUΓ (4.5)

where (4.1) and (4.3) is used. Expression (4.4) is known as the Kutta-Joukowski theorem.
An important consequence of potential theory is that, the circulation around a closed curve
C circumpassing the fluid domain must remain constant, according to Kelvin’s Theorem
(Newman [1977]):

dΓC
dt

= 0 (4.6)

The fact that the total circulation in a fluid remains constant is vital for the understanding
of unsteady flow characteristics.

4.1.1 Quasi-static lifting theory

It is common to express the lifting force (and drag) as a function of a dimensionless coefficient,
where the coefficient is the ratio between the actual force and kinetic force in the undisturbed
flow-field,

CL = FL
0.5ρU2S

(4.7)
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1

2

3

Figure 4.2: Visualisation of the implication of unsteady flow on an airfoil. 1: No angle of
attack and no lift. 2: Instantaneous change in angle of attack and the onset of
circulation and vortex-shedding. 3: Steady-state flow and circulation

where CL is the lift coefficient, FL the lift force, U the undisturbed velocity and S the foil
surface area.

For a 2D steady flow in infinite fluid, over a flat plate, it can be shown (Faltinsen [2005])
that the circulation is Γ = Ucπα. Here, α is the foil angle of attack and c is the cord. By
Kutta-Joukowskis theorem (from (4.4)), the dimensionless lift coefficient yields

CL = FL
0.5ρU2c

= 2πα (4.8)

CL = 2πα is known as the ideal lift coefficient. Prandtl’s lifting line theory makes adjustments
for 3D effects and CL becomes

CL = 2πα
(1 + 2/Λ) (4.9)

where Λ = s2/sc is the foil aspect ratio and s the span. Prandtl’s theory gives good indication
of 3D effects for high aspect ratio’s (Faltinsen [2005]) and approaches the ideal lift coefficient
as Λ → ∞. Other effects such as free-surface- and strut interaction, might be included for
improved results.

When Prandtl’s lifting line theory is applied to problems including a time-dependent angle
of attack (α(t)), we call it quasi-static foil theory. Such theory describes unsteady flow by
steady-state principles, which might be a blunt assumption.

4.1.2 Unsteady lifting theory

Theodorsen [1935] studied the implications of unsteady flow on an airfoil. He derived what
is known as the Theodorsen function.
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Figure 4.3: Effective angle of attack on an airfoil according to quasi-static- and unsteady lifting
theory. For an impulse response (ω → ∞) the unsteady angle of attack is at a
phase with respect to the quasi-static angle

Let us study a foil that is subjected to an instantaneous change in angle of attack, as visualised
in figure 4.3. Firstly, we define effective angle of attack as the angle ’felt’ by the foil (what is
meant by ’felt’ will be discussed shortly). As a result, lift forces are estimated adopting the
effective angle of attack. Under quasi-static theory the effective angle of attack is equivalent to
the theoretical. Hence, the lift will be calculated based on the instantaneous step-functioned
angle from figure 4.3. However, a step-functioned lifting force is un-physical and therefore
subject to inaccuracies, when applied to mathematical models. Furthermore, Theodorsen
claimed that the effective angle acting on the foil could be represented by a filtered equivalent
of the instantaneous angle of attack. The filter is Theodorsen’s function. The characteristics
of unsteady flow can be understood from the following reasoning and figure 4.2.

Let a change in angle of attack inflict the circulation Γfoil. As the total circulation in the
fluid must remain constant, according to Kelvin’s theorem from (4.6), there must exist a
circulation Γ0 = −Γfoil within the fluid. Γ0 is a tip-vortex created at the trailing-edge due
to the change in angle of attack. The tip-vortex Γ0 induces velocity as of Biot Savart’s law
from (4.2), and the velocity in vertical direction reduces the effective, or ’felt’, angle of attack
on the foil. As the flow becomes steady the distance between Γfoil and Γ0 increase and the
induced velocity decrease inverse-proportionally as of (4.2).

Theodorsen function (C(kf )) is given by

C(kf ) = H
(2)
1 (kf )

H
(2)
1 (kf ) + iH

(2)
0 (kf )

(4.10)

where H(2)
n (kf ) are Hankel functions (Faltinsen [2005]), that is

H(2)
n (kf ) = Jn − iYn (4.11)

Here, Jn and Yn are the Bessel functions of first and second kind, respectively. kf is the
reduced frequency, made dimensionless by the cord c and the velocity U , and defined as

kf = wec

2U (4.12)

(4.10) is plotted in figure 4.2, for a range of frequencies that is relevant for later analysis
(within spectral boundaries, as periods range 4− 30 seconds).
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Figure 4.4: Theodorsen function for relevant reduced frequencies. The ’vessel frequencies’, ωe,
range from 0.2− 1.6, which cooresponds to periods in the range of 4− 30 seconds

Frequency-domain fitting of Theodorsen’s function

Theodorsen’s function is useful when doing analysis in the frequency-domain, however it is
difficult to implement when operating in the time-domain. Motivated by this, the author has
designed a filter representing the characteristics of the Theodorsen function which is suitable
for time-domain simulation. A MATLAB-function take in the complex Theodorsen response
from (4.10), for a range of frequencies, and output the numerator and denominator of a least-
square fitted transfer-function. For the least-square fitting, a built-in MATLAB-function is
utilised (invfreqs.m). The stability of the transfer-function is checked and the approximation
plotted. Figure 4.5 illustrate that the approximation is in good compliance with the actual
function, hence the technique will be used in the simulations.

4.1.3 Drag

ρ
2 |∇φ|

2 in Bernoulli’s equation is the basis for calculating the drag forces, either by direct inte-
gration over the projected area in the direction of the fluid flow or by using Kutta-Joukowski’s
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Figure 4.5: Theodorsen approximation function in dotted red vs the actual Theodorsen re-
sponse in blue

formula (which is based on Bernoulli’s equation)(Faltinsen [2005]). The drag force is defined
in the same dimensionless manner as the lift force

CD = D

0.5ρU2S
(4.13)

and the drag coefficient is found to be

CD = 4πα2Λ
(Λ + 2)2 = C2

L

πΛ (4.14)

The drag coefficient is a function of the lift coefficient, and for that reason it is often called in-
duced drag. Additionally, viscous drag should be accounted for. This effect will be considered
by using experimental results from model tests.
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Figure 4.6: Oscillating foil in steady flow with velocity U . The foil is free to move vertically
(h) and to rotate about its own suspension (δ)

4.2 Oscillating foil

The vertical velocity of the foil for an arbitrary point x, can be expressed as

η̇3 = ḣ− (x− xs)δ̇ − Uδ (4.15)

where h is forced vertical displacement amid cord, and δ is the rotation about the position of
the foil suspension xs. U is the incident velocity parallel to the x-axis.

4.2.1 Circulatory forces

The lift force is a circulatory force. The resulting lift force acts through the centre of pressure,
which can be expected to lie at approximately x = −c/4. From quasi-static theory, the
instantaneous angle of attack is

α = − arctan
(
η̇3

U

)
≈ − η̇3

U

∣∣∣∣
x=−c/4

(4.16)

whereas the ambient fluid velocity over the foil is

V =
√
η̇2

3 + U2 ≈ U (4.17)

Both (4.16) and (4.17) can be linearised when U >> η̇3. Thereby, the linear, 2D unsteady
lift force yields
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fL = 0.5ρU2c
2π

(1 + 2/Λ)C(kf )︸ ︷︷ ︸
dfL
dα

α

= −dfL
dα

1
U

(ḣ− (− c4 − xs)δ̇ − Uδ) (4.18)

4.2.2 Non-circulatory forces

Added mass forces are a non-circulatory. The added mass force for a flat plate is found by

fA = −a33η̈3 = −ρπ( c2)2η̈3

∣∣∣
x=0

(4.19)

where −η̈3|x=0 is the acceleration at the foil centre, given by

η̈3 = ḧ− (−xs)δ̈ − Uδ̇
∣∣
x=0 (4.20)

and a33 = ρπ( c2 )2 is the added mass coefficient.

4.2.3 Forces on oscillating foil

Assuming linear theory and the foil to be a flat plate, the resulting external force on the foil
can be estimated by

f3 = fA + fL (4.21)

= −a33(ḧ+ xsδ̈ − Uδ̇)−
dfL
dα

1
U

(ḣ− (− c4 − xs)δ̇ − Uδ)

while the resulting moment is

f5 = xsfA − (− c4 − xs)fL (4.22)

considering that Newton’s second law for the foil is given by

Iδ̈ = f5 (4.23)

(4.23) can be rearranged to a more recognisable format:

af δ̈ + bf δ̇ + cfδ = τf (4.24)
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where

af = I + a33x
2
s

bf = dfL
dα

1
U

(− c4 − xs)
2 − xsa33U

cf = dfL
dα

(− c4 − xs)

τf = xsa33ḧ+ dfL
dα

1
U

(− c4 − xs)ḣ

4.2.4 Open-loop stability

The stability of the open-loop system in (4.24) is dependent on the position of the suspension,
xs. We can find the critical value of xs by considering the system eigenvalues. If the real part
of any eigenvalue for a mathematical system is positive, the system is deemed unstable.

The homogeneous part of the solution for a differential equation on the form ay′′+by′+cy = τ
is

y = Aeλ1 +Beλ2 (4.25)

where A and B are constants, while [λ1, λ2] are the system eigenvalues. The eigenvalues can
be found by solving the characteristic equation (the Laplace transform), of the homogeneous
differential equation. Now, by examining (4.25) it is evident that the solution is unstable if
either of the eigenvalues’ real part is greater than zero, as y would grow exponentially.

We can therefore determine the boundary of stability by finding the systems eigenvalues and
solving for xs. The characteristic equation is

λ2af + λbf + cf = 0 (4.26)

and the eigenvalues must satisfy

Re

−bf ±
√
b2
f − 4afcf

2af

 < 0 (4.27)

and as bf and af are larger than zero for all possible values of xs the stability criterion
becomes

cf > 0→ xs < −
c

4 (4.28)

As long as xs < − c
4 the foil system is stable, which is logical also by observation.
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Figure 4.7: Open- and closed-looped systems. hi are the system transferfunctions, u is the
input, y is the output and y0 is the reference signal. Signal e is the error on which
the regulator is controlled

4.2.5 Closed-loop stability

A system that contains feedback-control is called a closed-looped system. Figure 4.7 illustrates
the concept of feed-back control, where e is the difference (error) between the output signal, y,
and the reference-signal, y0. The output, u, from the regulator, hr, is the input to the system,
hu, which again outputs y. The loop is repeated for all time. A closed-looped system is stable
under the same criteria as for the open-looped equivalent, that is: Re(λi) < 0. However, the
eigenvalues are changed due to the controller, and the system can be made stable where it is
not in an open-loop set up.

4.3 Controller

Consider the open-loop foil system from equation (4.24). We wish to interact with the system
and be able to control the foil angle δ to approach a given reference signal. The reference signal
is the desired foil angle. The principles of control is to alter the original system parameters for
the system to behave in a desired manner and satisfy a certain control objective. A controller
applies external forces (through an actuator) that are proportional to the state variables. The
fundamental examples are the PD- and PID-controllers.

4.3.1 PID-controller

Figure 4.7 illustrate a feedback system. The controller takes in the error and manipulates
the signals to represent forces. The PID controller consist of proportional, -derivative and
integrator gains, as presented in table 4.1.

PID Name Function Cons. Feature
P Proportional Stiffness Kp Amplifies present error
I Integrator Damping Ki Estimates future error
D Derivative Force Kd Accumulate past error

Table 4.1: Features of a PID-controller

The control law for the PID-controller can be expressed as (Balchen et al. [2004])
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Figure 4.8: PID-controller. Cyan: Proportinal gain. Green: Integral gain. Red: Derivative
gain

τPID = −Kp(δ − δd)−Kd(δ̇ − δ̇d)−Ki

∫
t

(δ − δd)dt (4.29)

where (δ − δd) = e and δ is the actual angle of the foil, δd is the desired angle of the foil and
e is the error of the control process at a given time. The transform of 4.29 yields

τPID(s) = −Kpe(s)−Kde(s)s−Kie(s)
1
s

(4.30)

In the frequency-domain s indicates a derivative and 1
s an integral. Hence, the process from

(4.30) can be represented in a SIMULINK-block diagram as in figure 4.8. The effects of the
controller is exemplified in the following section.

4.3.2 PD-controller

For simplicity we consider a PD-controller where the integrator gain is set to zero i.e Ki = 0.
Considering the foil system in (4.24), and applying an external controller forcing we obtain

af δ̈ + bf δ̇ + cf (δ − δd) = τf + τPD (4.31)

For the sake of the example, we consider a zero value velocity reference signal δ̇d = 0. In
reality, this makes for a slightly different set up of the PD-controller, however this is not
important in the following discussion. The foil equation of motion now reads

af δ̈ + (bf +Kd)δ̇ + (cf +Kp)(δ − δd) = τf (4.32)
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Evidently, the system coefficients has changed, which again affect the dynamics and stability
of the system, in accordance with the system eigenvalues from (4.27).

In order to determine the value of the control gains, one could determine the desired char-
acteristics of the controlled system in (4.32) and in that way find the unknown gains. The
eigenfrequency, ω0, and the relative damping factor, ς, are customary choices for tuning the
control gains [Fossen, 2011, pg.372]:

ω0 =

√
cf +Kp

af
→ Kp = ω2

0af − cf (4.33)

ς = bf +Kd

2ω0af
→ Kd = 2ςω0af − bf (4.34)

In the above, we would like to tune Kp and Kd with a desired eigenfrequency, ωd, and a
desired relative damping factor, ςd, of the system. Thus, the below holds

ω0 = ωd (4.35)
ς = ςd (4.36)

so that (4.31) becomes

δ̈ + 2ςdωdδ̇ + ω2
dδ = ω2

dδd + τf
af

(4.37)

If we assume that af >> 1, the external forcing vanish. For the foil system this assumption
might prove blunt, and it must be experimented with. The following-condition now yields

x

xd
(s) ≈ ω2

d

s2 + 2ςdωds+ ω2
d

(4.38)

The integrator can be accounted for by a rule of thumb (Fossen [2011]): Ki = Kpωd/10.
However, the need for the integrator in foil control is questionable, as there is little constant
disturbance.

The step response of the following-condition in (4.38) is illustrated in figure 4.9. According
to the figure, and judging by the nature of a large oscillating foil, ωd < 5 and ς < 1 for speed.
Beyond this, the parameters should be tuned in a simulation model or experiments, which
will be considered later in the report.

4.4 Equation of motion

From (4.16) we know that the foil angle of attack can be expressed as

α = − ḣ
U

+ δ (4.39)
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where h is the vertical translation of the foil, and the vertical velocity due to a change in foil
angle δ̇ has been assumed negligible.

The foil is fitted to a vessel in a sea-state, and the vertical velocity over the foil will conse-
quently be affected by the vessel motion. The foil equation of motion and the vessel equation
of motion can therefore be considered coupled. The magnitude of ḣ can be denoted

ḣ = ξ̇3 − xf ξ̇5 − ξ5U − w (4.40)

where ξi is the mode of vessel motion, U is the vessel forward speed, xf is the longitudinal
position of the foil relative to CO and w is the vertical water particle velocity, defined as

w = ∂φ0

∂z
(4.41)

= iωekzζ (4.42)

where φ0 is the incident velocity potential and ζ is the wave elevation.

Again, we ignore the change in foil angle as source of vertical velocity and -acceleration. The
quasi-static force on the foil is found from (4.21) and is given as

f3 = −a33ḧ−
dfL
dα

1
U

(ḣ− Uδ) (4.43)

where the first term is the diffraction (non-oscillatory) force and the second term is the
(oscillatory) lift force. By applying 4.40, we obtain

f3 = −a33(ξ̈3 − xf ξ̈5 − ξ̇5U − ẇ) (4.44)

− dfL
dα

1
U

(ξ̇3 − xf ξ̇5 − w − ξ5U − Uδ) (4.45)

Considering the unsteady oscillatory effects of the lift force, we apply the Theodorsen’s filter
from section 4.1.2 to the angle of attack in the lift force. The unsteady oscillatory force can
then be characterised by

f3 = −a33(ξ̈3 − xf ξ̈5 − ξ̇5U − ẇ)

− dfL
dα

C(kf )
U

(ξ̇3 − xf ξ̇5 − w − ξ5U − Uδ) (4.46)

The foil forces are coupled with the equation of motion for the vessel, according to Newton’s
second law:

Mξ̈ = τhyd + τhs + τ foil (4.47)

where
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τ foil =


0
0
1
0
−xf

0


∫
s

f3ds (4.48)

Here, the foil force is integrated over the span. In this report, the cord length will be assumed
constant over the span s and the integral reduces to a constant multi-plum of s. For notational
convenience, the equation in (4.46) can be reformulated to

τ foil = −Af (ωe)−Bf (ωe)−Cf (ωe) + τ f (4.49)

where the added mass, potential damping and restoring coefficients are listed in table 4.2.

A33 a33s

A35 −xfa33s

A53 −xfa33s

A55 x2
fa33s

B33
dfL
dα

C(kf )
U s

B35 −xf dfLdα
C(kf )
U s− a33Us

B53 −xf dfLdα
C(kf )
U s

B55 x2
f
dfL
dα

C(kf )
U s+ xfa33Us

C35 −dfLdα
C(kf )
U s

C55 xf
dfL
dα

C(kf )
U s

Table 4.2: Added mass-, potential damping- and restoring coefficients due to the foil. All
remaining coefficients that are not listed above are null

4.4.1 Frequency-domain

The frequency-domain model for the foil is

[M +A(ωe, U)]ξ̈ +B(ωe, U)ξ̇ +Cξ = τwave1 + τ foil (4.50)

The frequency response, of the vessel and the foil combined, is found by using the coefficients
from table 4.2 and the motion RAO equation from (2.103). For the sake of verifying the
foil coefficients, Prandtl’s lifting line theory is used in deciding the lift coefficient. The foil
dimensions are given in table 5.2. From figures 4.11 and 4.12, it is evident that the foil
coefficients coincide well with VERES’. In the figures, a state-space and a simple time-domain
model (see section 4.4.2) is also used in the comparison.
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Figure 4.11: Frequency response of UT-751
supply vessel at 10 knots in
heave with foil
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Figure 4.12: Frequency response of UT-751
supply vessel at 10 knots in
pitch with foil

4.4.2 Time-domain

Opposed to in the frequency-domain, it is possible to add non-linear effects in a time-domain
simulation, and it is therefore attractive for foil control operations. A simple time-domain
model is shown in figure 4.13, where the black lines represent flow of forces. The foil forces
are calculated according to (4.48). The vessel response is calculated from the hydrodynamic
coefficients for a given frequency ωe and a constant speed U , as in (4.50). It is stressed
that, this model should be identical to VERES’ result as it utilises the same speed-dependent
coefficients, and not fluid memory. As can be seen from the figures 4.11 and 4.12, the time-
domain model matches well with the results from VERES. However, for lower frequencies
than those shown in the figures, the time-domain model is unstable. In a low-frequency
range the hydrodynamic coefficients outputted from VERES are ill-defined and unstable i.e
the eigenvalues for the motion RAO’s are positive (at least some). This is one of the major
reasons for why the application of Cummins’ equation and an energy approach is favourable,
over using the speed-dependent matrices from VERES and STF-theory. The reason for the
instability are the singularities in the speed-dependent therms 1/ωe (see section 2.7.1). These
are avoided in the infinite frequency environment of Cummins.

4.5 Thrust

The objective of the foil is to both reduce pitch motion and contribute with forward thrust.
The thrust producing capabilities of the foil can be defined by the lift and drag coefficient.
In theory,

fT = fL sin Φ− fD cos Φ (4.51)
≈ fLΦ− fD (4.52)
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Figure 4.13: A simple time-domain SIMULINK model. Gray: Incident wave. Light blue:
Vessel system. Peach: Foil system
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Figure 4.14: Characteristic angles and forces on foil in unsteady flow

according to figure 4.14. Here, Φ ≈ − ḣ
U − ξ5, when the forward speed is large compared with

the vertical velocity over the foil. Φ is a characteristic angle in the quasi-static approach, and
the angle of attack can thus be defined as

α = Φ + ξ5 + δ (4.53)

4.5.1 Time-averaged thrust

Motivated by Borgen [2010], a method for finding the frequency-domain time-averaged thrust
is presented. In the following we use Prandtl’s lifting line theory, so that the force from (4.51)
can be rewritten to
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fT = 1
2ρU

2S

(
CLΦ + C2

L

πΛ

)
(4.54)

where

CL = 2παe
(1 + 2/Λ) (4.55)

The time-dependent terms in (4.54) are αeΦ and α2
e, where αe = C(kf )α is the effective angle

of attack corrected for unsteady effects. Writing out Φ, we get

Φ = 1
U

(ξ̇3 − xf ξ̇5 − w) (4.56)

whereas α is defined in (4.53), and the foil is fixed, which leaves δ = 0. Now, the translations
can be expressed in terms of motion RAO’s for the vessel with a foil:

ξi = |H(ω)i| cos(ωet+ ∠Hi(ω) + ∠C(kf )) (4.57)

and the velocities as iωeξi. The motion RAO’s are extracted from VERES. The wave velocity
is given from (4.41) as w = iωekzf e−ikxf ζ whilst ζ = ζa cos(ωet). Thereby, the wave velocity
can formally be expressed as

w = |w
ζ
|ζa cos(ωet+ ∠

w

ζ
+ ∠C(kf )) (4.58)

Time-averaging yields

αeΦ = 1
Te

Te∫
0

αeΦdt (4.59)

α2
e = 1

Te

Te∫
0

α2
edt (4.60)

For the case of the UT-751 vessel with a fixed foil, the time-averaged thrust is obtained by

fT = 1
2ρU

2S
2π

(1 + 2/Λ)

(
αeΦ + 2

(Λ + 2)α
2
e

)
(4.61)

The method of Borgen [2010] will be verified using a time-domain model.
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Figure 4.15: Thrust from time-domain simulation and a time-averaged frequency-domain
model

4.5.2 Time-domain thrust

In the time-domain model from 4.13, thrust is outputted as a variable. The thrust is calculated
in line with the non-linear version of equation (4.51). As the time-domain model was verified
against the VERES, the model seems fit to verify the time-averaged thrust formulation from
the previous section.

Figure 4.15 indicate that the two methods are, in fact, consistent. However, the time-averaged
thrust slightly overestimate the thrust at resonance frequency compared to the time-domain
counterpart. This might be due to the non-linear nature of figure 4.15.

4.6 Active control

To avoid stall and maximise thrust, active control of the foil is proposed. The theory is based
on finding the theoretical optimal angle of attack and controlling the foil to this angle at all
times. If the stall angle is known, stall could be avoided by limiting the angle of attack, by
steering the foil angle δ.

From a theoretical viewpoint, maximum thrust is found by differentiation of the thrust force,
with regards to the angle of attack. If the force is

fT = fLΦ− fD (4.62)

then differentiation leaves
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0 = fL
dα

Φ− fD
dα

(4.63)

where the angle of attack now is optimal; α = αopt. For Prandtl’s lifting line theory, the
linear optimal angle of attack is found by rearranging (4.63) into

αopt = Λ
4 (4.64)

Now, if the foil could be steered to follow the optimal angle of attack we would maximise
thrust. The optimal foil angle is found from (4.53) when δ = δopt

δopt = αopt − Φ− ξ5 (4.65)

In the above, the optimal foil angle is found from a theoretical approach, including neither
viscous effects, non-linearities nor dynamic stall. A more solid methodology would be to use
either non-linear theory or experimental results, in determining the optimal angle of attack
and estimating the stall angle. In this report, we will use experimental results to find our
optimal angle, which again will serve as a reference signal to our controller steering the foil.
The results from the experimental findings are discussed in part II.

4.6.1 The controller

A PID-controller will be considered, according to section 4.3. The desired angle of the foil is
to be calculated instantaneously, according to the theory in the previous section and used as
a reference signal in the control algorithm. The control force then follows

τPID = −Kp(δ − δopt)−Kd(δ̇ − δ̇opt)−Ki

∫
t

(δ − δopt)dt (4.66)

Such a controller can be implemented in both a time-domain simulation and a frequency-
domain model. For the frequency-domain model the motion RAO’s must be calculated based
on the controller gains. Consequently, the frequency-domain approach is not specifically
suited for tuning the gains, but give valid approximations once the gains are set. The time-
domain model is better suited for control design, and the main emphasis in this report will
thus be on time-domain simulation models.

4.6.2 Spring-loaded foil

A spring-loaded foil can be simulated by a P-controller, hence the system is closed-loop with
regards to the displacement of the foil.



Part II

Model Tests
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Chapter 5

Models

The thrust-producing capability of the foil was tested in both the Marine Cybernetics Lab-
oratory (hereafter called the MC-lab) and the towing tank, at MARINTEK in Trondheim.
In the MC-lab the foil-model was run freely, while it was installed on a vessel-model for the
experiments in the towing tank.

The vessel is of UT-751 Rolls Royce design in scale 1:16. The principal hull data for the full-
and model-scale vessel is given in table 5.1.

Symbol Unit Ship Model
Length overall LOA [m] 93.9 5.869
Length between perpendiculars LPP [m] 80.8 5.050
Breadth moulded B [m] 21 1.312
Depth to 1st deck D [m] 8.2 0.512
Draught at loading condition T [m] 4.3 0.269
Wetted surface S [m2] 632.94 2.472

Table 5.1: Principal hull data and dimensions for the UT-751 design vessel in full- and model-
scale

Figure 5.1: Vessel 3D drawing from ShipX
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Figure 5.2: Foil system, including struts, motor and force transducers

The foil system was built independently of the vessel and could be installed or dismounted
at will. During the tests in the towing tank, the foil was rigidly fitted through a ’moonpool’
in the bow of the UT-751, whilst the vessel itself was free to move in all degrees of freedom.

5.1 Foil system

The foil is 3D-printed in a standardised NACA-0015 profile, equipped with five pressure
sensors. The pressure sensors are meant to detect an actual angle of attack by knowing the
pressure difference over the foil at all given angles. Further, the angle of the foil is mechanically
adjustable by a small motor, interconnected by an arrangement of wires running within a
strut. The strut is suspended between a hinged connection at the foil and the motor. Above
the motor, sits the force transducers. The force transducers measure the relative vertical-
and horizontal force between the foil system and the carriage/vessel. This can be interpreted
as lift and drag forces. A figure of the foil system is given in 5.2.

Symbol Unit Ship Model
Span length s [m] 28.072 1.7545
Cord length c [m] 2.845 0.1778
Aspect ratio Λ [−] 9.867 -
Wetted surface (3D) S [m2] 164.09 0.6603

Table 5.2: Principal dimensions for the NACA-0015 foil in full- and model-scale



Chapter 6

Marine Cybernetics Lab

6.1 Experimental set up

The foil system was connected to a hydraulic cylinder on the carriage in the MC-lab, in
accordance with figure 6.1.

6.2 The experiments

6.2.1 Quasi-static approach

In the MC-lab, experiments were performed on a free-standing, bare foil (no vessel) to assess
its performance in producing lift and its proneness to drag. Firstly, the foil was run at a
range of static angles, α, at different velocities U .

α [deg] ∈ − 14 : 14 (6.1)
U [m/s] ∈ [0.772, 1.029, 1.286, 1.543, 1.800] (6.2)

From this data, under the assumption of quasi-static theory, the lift- and drag coefficient
curves were calculated. The curves are shown graphically in figures 6.2 and 6.3. The dimen-
sionless lift coefficients shows good compliance within the range of tested velocities, hence
only a single run at U = 1.286 is reproduced in the figures. Although the drag coefficient
deviate more among the velocities, figure 6.3 represent a fair trend. By regression, a trend line
was found (the blue lines in figures 6.2 and 6.3) which represent the result of the quasi-static
analysis.

The quasi-static lift coefficient valid for the range in (6.1), in radians, is

CL = −37.618α3 − 0.197α2 + 5.614α (6.3)
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Figure 6.1: Experimental set up in Marine Cybernetics Lab

whereas the drag coefficient for the same range, in radians, is

CD = 1.806α2 + 0.015 (6.4)

According to equation (4.9) and the foil dimensions from 5.2, Prandtl’s lifting line theory
stipulate a CL = 5.224α, opposed to the linearised CL from (6.3), which has a gradient of
5.614. The results are in harmony.

As for the drag coefficient, Prandtl’s theory underestimates the actual drag measured in the
experiments. On the contrary, the fitted curve overestimates the drag for low angles of attack.
Nevertheless, the assumption of overestimating the drag force is preferred over the alternative.
The constant term in (6.4) is referred to as viscous drag effects.

For the quasi-static theory, stalling appear at around 11 degrees, according to figure 6.2.

Angle of attack from pressure data

To be able to efficiently control the foil, the fluid velocity over the foil and the angle of attack
should be known. One way of determining the angle of attack is by using pressure sensors on
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Figure 6.4: Pressure nozzles on the foil. The five pressures sensors named p1 − p5, in the
clockwise direction are shown

the foil (see figure 6.4). The pressure at the sensors are sensitive to the angle at which the
foil is projected. During the static runs the angle of attack and the pressure at all five sensors
is monitored. By post-processing the data, a relation between pressure and angle of attack
can be deducted. Using this relation and by monitoring the pressure data from the sensors
in real-time, the pressure could be utilised in finding the angle of attack.

Firstly, a simple method of estimating the angle of attack is to use the pressure difference
over the foil. From the experiments, the pressure difference, p5− p1, seemed to give the most
stable and coherent results when plotting against angle of attack. The dimensionless pressure
difference was consistent for all the static runs, at different forward speeds. An illustration
of the results is given in figure 6.5. In this method, the speed over the foil is still unknown
and must be assumed.

An alternate approach in finding the angle of attack was proposed by PhD-candidate Eirik
Bockmann. In this procedure, the pressure-differences p5 − p3 and p3 − p1 were plotted
against each other, in a two-dimensional scatter-plot (see figure 6.6). Each point in the
scatter represent an angle of attack, at a given speed. The theory encompassed using the
entire 2D-domain in finding both the velocity over the foil and the angle of attack. In real-
time, as p1, p3 and p5 is known, the two differences make up a single point in the graph. By
means of interpolation the velocity and angle of attack can be determined. In this method,
both speed and angle can be decided. However, the method is restricted to operate within a
quasi-static non-stalling environment which limit its applicability in dynamic systems. This
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is because the dynamic stall angle far exceeds its quasi-static equivalent, which we shall see.
Additionally, the method is prone to numerical errors in the interpolation.
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6.2.2 Dynamic approach

Using the hydraulic cylinders, the foil was exposed to oscillatory motion. A range of heave-
amplitudes and periods were experimented with, to define the characteristics of the foil in an
unsteady flow regime. Two scenarios will be highlighted in the discussion to follow; flow below
stall angle and flow on the verge of stalling. Unfortunately, the results never actually showed
clear signs of stalling as the angle at which stall occurred was much higher than expected. As
result, we were unable to describe the dynamic effects in full. As a basis for understanding
the graphs to be discussed, a brief explanation is appropriate:

Angle of attack: The angle of attack was calculated based on

1. data from the pressure sensors. A fitted line from the plot in figure 6.5 is used to
estimate the angle of attack

2. relative vertical velocity at foil centre of pressure. The relative velocity was cal-
culated by time differentiation of the heave-displacement measured in the exper-
iments. The heave velocity was then filtered with a zero-phase low-pass filter,
to reduce noise. The quasi-static angle of attack was found by −ξ̇3/U , accord-
ing to the theory. The angle of attack was adjusted for unsteady effects using
Theodorsen’s function

Lift forces: The lift forces were found based on

1. forces on the vertical transducers. This is referred to as the actual lift force of the
foil and is measured
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2. the estimated angles of attack. Here, either the quasi-static non-linear CL from
(6.3) could be used or Prandtl’s theory. Both procedures were utilised. However,
Prantdl’s theory proved more accurate for large angles of attack. The speed over
the foil was estimated geometrically by the forward speed and the vertical velocity.

Added mass forces: The added mass forces were calculated from the acceleration of the foil.
Again, a low-pass filter was used in omitting noise from the signals after differentiation.
The added mass is made dimensionless in the same manner as the lift coefficient

Hysteresis: The lift coefficient was plotted against the angle of attack for one period of
oscillations

6.2.3 Scenario 1: No stall

In the scenario described below, the maximum angle of attack obtained was ten degrees, well
below the quasi-static stall angle. Figures 6.7-6.8 exemplify the run from post-processing,
while the info-box below present the parameters.

Scenario 1
Speed carriage U 1.286 m/s
Period of oscillation T 2.375 s
Heave amplitude ξ3a 0.0886 m
Maximum angle of attack αmax 10◦

The relative vertical velocity overestimate the angle of attack, with respect to the pressure
approach. However, when the unsteady effects are accounted for by Thedorsen’s function the
estimates are in line (see figure 6.7).

When using the estimated angles of attack to find the lift force, the result coincide well with
the actual vertical force measured by the transducers, as illustrated in figure 6.7. In this
range of angles, the Prandtl theory and the quasi-static CL give the same results.

Figure 6.8 illustrate the lift coefficient and the dimensionless non-oscillatory added mass
coefficient. It is evident that the lift forces are dominating when the foil is at speed. From
the hysteresis plot, we see that the lift coefficient runs more or less along the quasi-static lift
coefficient curve and there are few traces of dynamic effects.

6.2.4 Scenario 2: Stalling

In this scenario we consider a run which exceeds the stalling limits of 11 degrees, from quasi-
static theory. The maximum angle of attack approaches 15 degrees, and it seems the foil is
on the verge of stalling.

Scenario 2
Speed carriage U 1.286 m/s
Period of oscillation T 2.125 s
Heave amplitude ξ3a 0.135 m
Maximum angle of attack αmax 15◦
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From figure 6.9 it is evident that, the pressure-estimate for the angle of attack suffer from
what appear to be stall. Turbulence seem to build up around the pressure sensors and they
are incapable of describing the actual angle of attack. From scenario 1, the relative vertical
velocity over the foil proved to be sound in estimating the angle of attack. In this scenario
it suggests the angle of attack is approaching 15 degrees. From figure 6.5, it is apparent that
the pressure sensors start deviating from the constant gradient and thus are not suitable for
estimating the angle, as illustrated here. Moreover, 6.9 suggest that the unsteady effects are
very important for this range of angles. The hysteresis plot in figure 6.10, also show signs of
dynamic effects and a phase shift appearing.

Figure 6.9 show that the relative velocity prediction seems to coincide well with the actual
lift force, which indicate that the foil has not yet approach its stalling-limit. Meanwhile, the
pressure sensors predict stall and are thus proven unsuitable to describe the angle of attack
for large angles.

Additionally, figure 6.9 clearly indicate that the non-linear, quasi-static lift coefficient from
6.3 is unusable for prediction of the lift force at large angles.
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Figure 6.7: Angle of attack (left) and lift forces (right). Angle of attack calculated from pres-
sure (blue) and relative vertical velocity with and without Theodorsen’s function
(green and red, respectively). Actual measured lift force (blue) vs forces calcu-
lated from pressure (red) and relative vertical velocity (green is Prandtl’s theory
and black non-linear theory). Carriage speed U = 1.286m/s, period of oscillation
T = 2.375s and heave amplitude ξ3a = 0.0886m

6.2.5 Thrust

The main aim of the experiment in the MC-lab is to be able to predict the thrust force. From
the discussion of the two different scenarios, it is made clear that the relative vertical velocity
give the most representative angle of attack. Hence, this angle of attack is used for estimation
of the thrust force. Firstly, the lift force was identified as in the above discussion. Meanwhile,
the drag force was calculated based on the CD from (6.4). The thrust was then computed
according to equation (4.51). From figures 6.11 and 6.12, we see that the estimate give a fair
indication of the actual thrust force.
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Figure 6.8: Plot A: Comparison of oscillatory and non-oscillatory forces and angle of attack.
Plot B: Hysteresis plot; CL vs α. Cariiage speed U = 1.286m/s, period of oscilla-
tion T = 2.375s and heave amplitude ξ3a = 0.0886m
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Figure 6.9: Angle of attack (left) and lift forces (right). Angle of attack calculated from
pressure (blue) and relative vertical velocity with and without Theodorsen function
(green and red, respectively). Actual measured lift force (blue) vs forces calculated
from pressure and relative vertical velocity (green is Prandtl’s theory and black
non-linear theory). Carriage speed U = 1.286m/s, period of oscillation T = 2.125s
and heave amplitude ξ3a = 0.135m
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Figure 6.10: Plot A: Comparison of oscillatory and non-oscillatory forces and angle of attack.
Plot B: Hysteresis plot; CL vs α. Cariiage speed U = 1.286m/s, period of
oscillation T = 2.125s and heave amplitude ξ3a = 0.135m
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Figure 6.11: Thrust force on foil from sce-
nario 1. Red: Actual. Blue:
Estimate
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Chapter 7

MARINTEK Towing Tank

7.1 Experimental set up

Divinicell

Moonpool

Mounting bar

Figure 7.1: Experimental set up in towing tank

The experiments in the towing tank were performed with the foil mounted to the UT-751
supply vessel model. The foil system set up was identical to the one in the MC-lab and fitted
through a moonpool in the bow of the vessel, as visualised in figure 7.1. The space between
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the vessel hull and the struts was filled with divinicell foam, with some space left for the
struts to displace without touching the foam. As for the MC-lab experiments, vertical and
horizontal transducers monitored the lift and thrust force.

7.2 The experiment

Test were performed for the vessel without foil, with a fixed foil and using active control of the
foil. The runs with a bare ship were performed in order to calculate the calm water resistance
and have a benchmark for the test including the foil. The results from the tests with a fixed
foil proved the most interesting. We were able to set op motion RAO’s, thrust curves and
added resistance profiles to compare with the bare-vessel runs. That being said, the results
showed many signs of irregularities which have been difficult to predict and explain, and thus
pose a challenge when establishing a simulation model. As there were many irregularities in
the simple set up for a fixed foil, the irregularities and experimental errors were many-folded
when introducing an actively controlled foil. Consequently, the findings from the runs with
active control will be discussed in section 7.4, but not be included directly in the analysis of
the results. The performance was too poor and the results bound with too many uncertainties.

The runs were performed in regular waves for range of wave periods at wave height 3 m, at
a range of vessel speeds (see 7.1).

Towing tank runs
Speed carriage U 8 kn, 10 kn, 12 kn
Wave period T 6.5 s, 7.5 s, 8.5 s, 9.5 s, 10.5 s, 11.5 s
Wave amplitude ζa 1.5 m

Table 7.1: Run data for towing tank

The aim is to be able to predict the results of the experimental results using the procedures
presented in the MC-lab chapter. If we are able to estimate the results from the towing tank,
the basis for making a solid simulation model is set. In the following we shall see how the
estimates coincide with the experimental data.

7.2.1 Time-series

Graphed run: U = 10 kn, T = 9.5 s and ζa = 1.5 m

The time series used as a principle area of discussion in this section is from the time-series
in figure 7.2. The time-series spans all the velocities from table 7.1, however the data within
U = 10 kn is primarily used (middle part of the time-series). The wave period is T = 9.5 s
and the wave amplitude is ζa = 1.5 m.

7.2.2 RAO’s

In comparing the RAO’s from the experimental data with RAO’s from VERES, the general
observations are (see figures 7.5-7.10):
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Figure 7.2: Time series results from towing-tank in model-scale. Top: Total surge force on
vessel [N ]. Top-lower: Thrust force from foil [N ]. Bottom-upper: Speed of carriage
[m/s]. Bottom: Lift force on foil [N ].

In heave:

1. Without foil

(a) For low speed the response in the experiments surpass the response from
VERES

(b) For low speed there is a dip in the RAO at pitch resonance

(c) For high speed the trends correlate well, although VERES slightly underesti-
mate the response

2. With foil

(a) For low speed there is a dip in the response at pitch resonance which is not
reflected in the VERES results

(b) For higher speed the results coincide well

In pitch:

1. Without foil

(a) At low speed at resonance frequency there is a dip in the pitch response

(b) The result coincide well for higher and lower frequencies

(c) For high speed relative deviation is approximately constant

2. With foil

(a) VERES overestimate the pitch response for all speeds and frequencies
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(b) The relative deviation is approximately constant for all speeds and frequencies.

It is evident that the experimental data match fairly well with the computational results at
moderate vessel response. When the vessel is experiencing large response action the frequency-
domain, linear model is not coping. This might indicate that the bare vessel is experiencing
non-linear effects. However, when the foil is fitted the response reduction is significant and
VERES’ model is in line.

As a whole, there is a significant reduction in pitch and heave response for the case with a
fixed foil compared to the response of a bare vessel. The heave response for the vessel with a
fixed foil is reduced with 60%, for a wave period of T = 7.5 s. The pitch response reduction
is 50%, at the same period. Figures 7.3 and 7.4 illustrate the heave and pitch reduction in
percent. This reduction will directly affect the added resistance as it is dependent on the
vessel response (see section 2.5), and thereby the fuel efficiency of a foil fitted vessel.
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Figure 7.3: Heave reduction from experi-
ments
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Figure 7.4: Pitch reduction from experi-
ments
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Figure 7.5: Experimental RAO in heave at
8 knots
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Figure 7.6: Experimental RAO in pitch at
8 knots
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Figure 7.7: Experimental RAO in heave at
10 knots
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Figure 7.8: Experimental RAO in pitch at
10 knots
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Figure 7.9: Experimental RAO in heave at
12 knots
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Figure 7.10: Experimental RAO in pitch at
12 knots

7.2.3 Angle of attack

Graphed run: U = 10 kn, T = 9.5 s and ζa = 1.5 m

In order to estimate the lift, drag and thrust force in the foil, the angle of attack was identified,
using the same techniques as for the MC-lab experiment post-processing. This time, the
relative velocity was more intricate, as wave action (at the foil depth), and pitch- and heave
response was taken into account. Additionally, the phase of the relative velocity depended on
the position of the foil with regards to CO, Theodorsen’s function and the wave action.

The angle of attack was also estimated by the pressure data. From figure 7.11, it is made clear
that the angle of attack found from the pressure method in figure 6.5 and the one calculated
from relative vertical velocity concur. The pressure estimate from Bockmann’s interpolation
method undershoot corresponding to the two others, and is faced with a slight phase shift.
It is noted that Bockmann’s method was applied real-time during the experiments and is
therefore prone to a phase shift when filtering the signals before interpolation.
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Figure 7.11: Angle of attack of foil. Blue: Angle estimated by Bockmann interpolation
method. Red: Calculated from relative vertical velocity. Green: Estimated
from pressure sensors

7.2.4 Lift, drag and thrust

Graphed run: U = 10 kn, T = 9.5 s and ζa = 1.5 m

The thrust- and the lift force was both measured during the tests and estimated in post-
processing. The lift and drag was found based on the angle of attack from relative vertical
velocity (which concurred well with the angle of attack from pressure). Prandtl’s lifting line
theory was used in finding the lift coefficient (as the experimental CL performed poorly in
a unsteady flow regime), while the experimental CD was the basis for calculating drag. The
measured and estimated lift force is illustrated in figure 7.12, and they seem to match well.
The measured and calculated thrust force is graphed in figure 7.13. It is evident that the
thrust-estimate is largely exaggerating the actual measured thrust, which is odd. During
the downward action of the foil the measured thrust halts, while the lift force is unaffected.
The phenomena is unknown to the author, and will cause large deviations when it comes to
estimating the thrust force for a given sea-state. According to the figure it can be expected
that the mean actual thrust force is half that of the estimate.

The mean thrust force was extracted from the experimental data and plotted against the time-
averaged thrust from section 4.5.1 (see figures 7.16, 7.18 and 7.20). Confirming our suspicion,
the mean experimental thrust lies significantly lower than the time-averaged, especially at low
speed. The fact that the models for estimating thrust is poor, complicates the implementation
of mathematical simulations.
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Figure 7.12: Lift force on foil in [N ] at
10 kn. Red: Measured force.
Blue: Estimated from relative
velocity
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Figure 7.13: Thrust force on foil in [N ] at
10 kn. Red: Measured force.
Blue: Estimated from relative
velocity

7.2.5 Total resistance

The total resistance of the vessel is measured with and without foil. The reduction in resis-
tance at resonance frequency approaches 65%, which indicate massive fuel saving potential.
Figure 7.14 illustrate the resistance reduction for all frequencies.

7.2.6 Calm water resistance

In order to find the added resistance, it is imperative to identify the calm water resistance.
From the experiments, the total resistance of the model in calm water is deemed known. Using
the algorithm in 2.5.2 we can find the full-scale calm water resistance. The total resistance is
shown in figure 7.15, along with the estimate from VERES (Holtrop).

7.2.7 Added resistance

In advanced time-domain simulations, the added resistance plays an important role in mod-
elling the horizontal forces correctly. Therefore, we try to deduct the added resistance from
the model test data.

The force equilibrium in horizontal direction for the full-scale vessel reads:

Fx = RT +RAW − FT (7.1)

where Fx is the resistance force measured in the model test, RT is the calm water resistance
and FT is the thrust force on the vessel from the foil. It is stressed that the force conversion
from model to full-scale is proportional to λ3, where λ is the scaling factor between model-
and full-scale.
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Figure 7.14: Total resistance reduction between a vessel- with fixed foil and without foil at
8 kn (blue), 10 kn (red) and 12 kn (green). Conditions: T = 9.5 s and ζa = 1.5 m
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From (7.1) the added resistance can be estimated. Figures 7.17 to 7.21 show the experimen-
tal added resistance versus VERES’ estimate using Gerritsma & Beukelmanns eqaution for
wave drift (see section 2.5). The figures indicate that the added resistance is substantially
higher than what is expected, particularly for the vessel without foil. As added resistance is
proportional to the square of the wave relative response amplitude, rather small deviation in
response-estimation will be exponentially inflated in the added resistance calculations, which
defend the large discrepancies in the figures.

Moreover, at resonance frequency the added resistance is reduced with approximately 50% for
the foil case. For lower frequencies, however, the added resistance is more or less the same.
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Figure 7.16: Thrust force 8 kn. Red:
Experimental. Blue: Time-
average
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Figure 7.17: Non-dimensional added resis-
tance 8 kn. Dots: Experimen-
tal. Line: VERES
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Figure 7.18: Thrust force 10 kn. Red:
Experimental. Blue: Time-
average
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Figure 7.19: Non-dimensional added resis-
tance 10 kn. Dots: Experi-
mental. Line: VERES
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Figure 7.20: Thrust force 12 kn. Red:
Experimental. Blue: Time-
average
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Figure 7.21: Non-dimensional added resis-
tance 12 kn. Dots: Experi-
mental. Line: VERES

7.3 Concluding remarks

The model test show large reduction in both heave and pitch when applying a fixed foil to the
vessel. As a result, the added resistance is significantly reduced. Furthermore, the reduction
in added resistance combined with the forward thrust from the foil contributes to reducing
the total resistance of the vessel with 65%, at most. A reduction in resistance is synonymous
with fuel efficiency, which is desirable in many respects. However, it must be noted that the
experimental tests were performed under optimal conditions, in head sea and in a sea state
where the vessel experienced large heave and pitch responses.

What is more, the model test gave us important feedback with respect to the validity of the
prediction methods for thrust. The tests showed that the angle of attack, most probably, can
be calculated in decent compliance with the actual angle. However, although the calculated
lift force complied respectably, the thrust force showed large deviation and was about half of
the expected mean value, which was strange.

7.4 Active control

In active control, the aim is to optimise the angle of attack and to prevent stall from setting
in. The latter has proven difficult, as the dynamics of the flow complicate the modelling and
stalling is delayed with respect to the quasi-static theory. The theory of maximising thrust
was partly successful. Successful due to the fact that the resistance was generally reduced
with about 0 − 10% comparing to the runs with fixed foil. Partly, because the behaviour of
the foil when actively controlled was difficult the explain, and the method was bound with
many uncertainties and sources of error.

The active control algorithm was based on calculating an optimal angle of attack and con-
trolling the foil accordingly, in real-time. The following algorithm was adopted in real-time
guidance and control of the foil:
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1. The angle of attack was found from the pressure sensors by adopting Eirik Bockmann’s
interpolation code and the graph in 6.4

2. Φ (from equation 4.53) was calculated based on the angle of attack and the pitch angle

3. The optimal angle of attack could be calculated from Φ = CD/CL (see equation 4.63).
Here, the quasi-static CL and CD from (6.3) and (6.4) coefficients were utilised

4. By knowing the optimal angle of attack, the optimal foil angle δopt could be deducted
according to 4.65

5. δopt was regarded as the input-value to the PID-controller and the motor steering the
foil

The theory seems fine, however the following list sums up the areas of uncertainty:

1. The active control algorithm was based on quasi-static theory and the non-linear CL
and CD, from (6.3) and (6.4). The post-processing from the MC-lab experiments clearly
showed that the CL was unsuitable in an unsteady flow environment, as it predicts
abrupt stalling when the dynamic system is not even close to its stall limit. The test
showed that the foil could encounter a 15◦ angle of attack without stalling, whilst the
quasi-static CL was based on a 10− 11◦ limit

2. The towing tank post-processing showed that there was a delay in the signals coming
from the interpolation code, which again is relayed into the control of the foil

3. The interpolation code itself is limited to operating within ±12◦, which again underes-
timates the dynamic effects

4. The PID-controller was sat in the motor which again took in the guidance signal δopt.
By investigation, there was a large delay from relaying the input-signal, to when the foil
was actually in position. A better approach would have been to have the PID-controller
in the computer algorithm, which then could control the moment (force) to be excited
on the motor. By this, an unnecessary link would have been avoided

5. The physical set up of the wiring between the motor and the foil was too weak. The
wiring slipped and the foil moved out of position when exposed to large forces. In turn
it was impossible to determine the actual foil angle

6. The motor itself was not strong enough to withstand the forces on the foil and acted
more as a stiff spring

7. There might have been errors in the SIMULINK-code

Throughout the simulations, a LabView real-time interface was used. The control algorithm
was coded in SIMULINK and compiled for the LabView software to interpret. The following
sections give an overview of the hardware and software used in the active control system.

7.4.1 Hardware and Software

For control and monitoring of the foil system, a National Instrument CompactRIO (NI
cRIO-9074) data-acquisition and processing unit was used (www.ni.com). The CompactRIO
chassis is an integrated system that combines a real-time processor and a reconfigurable



90 CHAPTER 7. MARINTEK TOWING TANK

field-programmable gate array (FPGA). The CompactRio has eight slots for NI-C-Series In-
put/Output (I/O) modules. The I/O modules are linked to the foil system sensors and
control signals. The FPGA is programmed in the National Instrument (NI) LabView soft-
ware, through a LabView Virtual Instrument (VI). LabView is a graphical programming
environment that can target FPGA’s on NI Reconfigurable I/O (RIO) hardware (in this case
a CompactRIO). To implement the foil control algorithm in LabView, a SIMULINK model
is created. By using the Mathworks Simulation Interface Toolkit (SIT) and the Real-Time
Workshop, the SIMULINK model can be converted to a dynamic link library (DLL) file,
which again is readable by LabView. The DLL-file is stored on the real-time processor in
the CompactRIO. When the DLL file is communicating with a LabView VI, all variables in
the original SIMULINK model (filname.mdl) can be altered and monitored at will, real-time
[Wahl].

The actual actuation of the foil was done by a MARINTEK controller and motor.

Simulation Interface Toolkit (SIT)

The SIT provides the code for a seamless interface between the LabView-software and a
SIMULINK-model. SIMULINK is a model-based programming environment integrated in
MATLAB. The SIT package is an add-on from the basic SIMULINK package and includes a
plug-in for a Real-Time workshop.

Figure 7.22: Simulation Interface Toolkit flowchart. Source: www.ni.com

A model for the controller design is set up in SIMULINK. The conventional input and out-
put ports in SIMULINK are replaced by their SIT input- and output counterparts. When
compiling the SIMULINK model into a DLL-file the system recognises these as real-time I/O
connection points i.e the physical signals to be used when controlling the foil (pressure, ve-
locity etc) can later be connected to the SIMULINK model via these ports. The SIMULINK
model can then incorporate the signals in the model algorithm, process the signal according
to the defined model and output new variables through the SIT output-port. LabView then
gains access to the output-values from the SIMULINK model and uses those outputs accord-
ing to the model set up in the LabView VI. For active control of the foil, the output from
SIMULINK is a controller input signal. This signal is then relayed to the physical controller
steering the foil angle through LabView. LabView takes in the signals from the pressure
sensors etc. which again are relayed back to SIMULINK. And so it goes. However, it is not
that simple.
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In our case, we are to run the SIMULINK model on a real-time processor (the CompactRIO)
and we thus need to convert the SIMULINK model into a dynamic link library file (DLL-
file) that LabView can interpret and call. This is done by the Real-Time Workshop. The
Real-Time Workshop converts the SIMULINK model-file to C-code and then compiles the
C-code into a DLL-file using Microsoft Visual Basics (see figure 7.22 for a flowchart of the
process). The DLL-file can then be run, independently of SIMULINK, through a model-VI
on the real-time target (our CompactRIO).

LabView

LabView is a graphical programming platform that allows for GUI-programming. In LabView,
we set up a new FPGA-project. FPGA is a field-programmable gate array that is situated
on the CompactRIO unit. In short the FPGA is a programmable microchip. The microchip
communicates with the I/O modules of the CompactRIO. For foil control, the FPGA is used
to digitise the analogue signals from our sensors that are connected to the I/O modules. The
signals are then transferred to the Real-Time processor in the CompactRIO chassis (being
our Real-Time (RT) target), which also handles the model-DLL through the host-VI.

In the FPGA-project in LabView, we create a virtual instrument (VI), being our host-VI. The
VI is of GUI interface and is what the user sees and what the system appears as on the screen.
This VI is set up according to the needs of the experiment, including features for monitoring
and manipulation of variables. For example, as we monitor the performance of our controller
we can alter the control parameters of a PID-controller (being the proportional-, derivative- or
integral gains) real-time. Or we could plot the foil angle of attack in real-time. This is possible
as the VI is coupled to the original SIMULINK model (now our model-DLL) using the SIT
Connection Manager tool in LabView. Here we link our host-VI (GUI-interface) to the RT
target (CompactRIO). The features for monitoring and manipulation of variables in the VI
in LabView are mapped to the corresponding variables in the original SIMULINK model. In
addition, the hardware connected to the FPGA (sensors etc) is mapped to its corresponding
SIT I/O ports in the original SIMULINK model, as mentioned. Through the SIT Connection
Manager it is also possible to log data, which is accumulated on the CompactRIO processor,
when running the model.

The host-VI and the RT-target (CompactRIO) communicate over a TCP or IP network.
Figure 7.23 illustrate the communication scheme and the different parts of the total system.

The routine for implementing a LabView-SIMULINK model is featured in appendix B.
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Figure 7.23: Flowchart of the communication between the Real-Time (RT) target and the
Host-VI. The RT target is the CompactRIO hardware while the Host Computer
is the user hardware. Source: www.ni.com
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Figure 7.24: Picture taken of the experimental set up, from above
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Chapter 8

Choice of Model

Throughout the previous chapters, some theory of mathematical modelling and verification
with model tests has been presented. It has been emphasised that, in order to verify the
potential of a foil propulsion system a solid model should be established. On that account,
a simulation model has been chosen to best fit the purpose of simulating a vessel with a foil
system. In deciding upon the model the following was considered:

1. The model should be as versatile as possible and should be designed so that it can easily
be expanded to account for effects not included in this report

2. Any type of forces can be applied including resistance, added resistance etc.

3. Non-linear effects can be accounted for

4. Simulations can be done for any sea-state and in any heading

5. Active foil control or a spring-loaded can be appended

6. The user can easily adjust the controller gains

7. The model can be used for any speed

With that in mind, a time-domain model based on Cummins’ equation seems best fit. A
time-domain model is capable of coping with non-linear effects and can easily be expanded
and adjusted at will. The foil forces are easily implemented, and active control can be tested.
As for Cummins equation, the model is then independent of speed-dependent added mass and
damping coefficients from potential theory. This is favourable in modelling arbitrary speed
profiles.

The frequency-domain models are highly powerful and fast, and give important feed-back in
a preliminary design phase. However, it is of the authors opinion that a time-domain model
is more suited for verifying the potential of the concept. For instance, the thrust force in
the experimental results from the towing tank showed strange behaviour. This is difficult to
implement in a frequency-domain model, but can be accounted for by non-linear effect in a
time-domain equivalent. Moreover, control design is best done in a time-domain model.

It should also be mentioned that, VERES’ hydrodynamic coefficients are invalid for frequen-
cies lower than approximately 0.2 rad/s. A time domain simulation with VERES’ coefficients,
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at forward speed, in a low-frequency environment, is unstable. This is not possible to de-
termine by only examining the RAO’s. The source of the instability lies in the eigenvalues
of the motion RAO’s - some of the eigenvalues of the six degree of freedom RAO’s are pos-
itive (the real part). Once the eigenvalues are positive, the system is unstable, as discussed
in section 4.2.4. The reason for why the eigenvalues are positive, lies in the nature of the
speed-dependent hydrodynamic coefficients. For any dynamic system existing in the world,
the inertia matrix is symmetric and of positive nature (T. I. Fossen), which is not the case
for VERES’ added mass coefficients. In summary, the VERES coefficient can not be used in
time domain simulation, for a sea-state where the frequencies span from zero and upwards.

That being said, it is possible to use the motion RAO’s for time-domain simulation in forward
speed. The response contributions for all frequencies in a sea state can be superposed, and
we get the resulting response. However, for such a model the foil forces must be included
together with a fluid-memory term and we are back where we started.

Using Cummins equation, and the state space fluid memory term, is an elegant way of in-
cluding the frequency dependency of the added mass and potential damping. As Cummins
equation is evaluated at infinite frequency, any force at any frequency can be excited on the
system without concern. The fluid memory term can be understood as a filtered velocity
term that acts as damping to the system. The filter can either be represented as a state-space
model or a time-dependent retardation function (integral). The integral might give numerical
difficulties, therefore a state-space representation is preferred (Fossen [2011]).

In the time-domain model, the force RAO’s for waves and added resistance are used to
represent the wave forces acting on the model.



Chapter 9

The Model and Verification

9.1 Ship model

The time-domain model is built, block by block in SIMULINK.

Figure 9.1: Vessel block diagram, with force RAO and a single frequency regular wave

Figure 9.1 illustrate the layout of the model of the UT-751 vessel. Here, a single frequency
regular wave is excited on the system. By means of the force RAO the wave excitation forces
(diffraction and Froude-Krylov forces) are applied onto the vessel. The structure of the vessel
block follows from figure 9.2.

The vessel block is designed according to Cummins equation:

(MRB +MA(∞))ξ̈ +CV ERES
A ξ̇ +B(∞)ξ̇ + µ+Cξ = τ (9.1)

where

µ =
t∫

0

K(t− τ)ξ̇(τ)dτ (9.2)

B(∞, U) = B(∞) +CV ERES
A (9.3)

B(∞) approaches null for zero speed (seen in figure 2.5), and viscous effects are neglected.
CV ERES
A is the speed dependent Coriolis coefficient, which can be either linear or non-linear
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Figure 9.2: The vessel block according to Cummins formula. Cyan: Coriolis term. Pink:
Fluid-memory state-space block

depending on the needs of the model. However, the differences between the two, have not
been investigated. The sum of B(∞) and CV ERES

A in heave and pitch is identical to the
speed dependent damping matrix provided by VERES. For zero speed, the Coriolis term is
zero. The rigid-body Coriolis term is always zero when the coordinates are expressed in the
{s}-frame. µ is the fluid memory term represented by the state-space model:

µ(s) = K(s)ξ̇ (9.4)

where

K(s) = Cr(sI −Ar)−1Br (9.5)

The system coefficients Ar, Br and Cr are found by the MSS FDI Toolbox described in
section 2.8.2. In figure 9.3 and 9.4 the response of the time domain model and the motion
RAO steady-state response is given. We see that the solutions approach one another in time.

The comparison between the time-domain model and VERES’ model in the frequency-domain
is given in figures 3.4-3.9 in section 3.
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Figure 9.3: Time-domain- versus steady-
state response for zero speed
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Figure 9.4: Time-domain- versus steady-
state response at 12 kn

9.2 Foil model

The foil is model according to chapter 4. The combined vessel and foil model in SIMULINK
is given in figure 9.5.

Figure 9.5: Combined vessel and foil model in SIMULINK

Simulations were performed on the combined model. Figures 9.7 and 9.8 illustrate the heave
and pitch response at 8 kn. The heave response concur well with the experimental data in
heave, while it overestimates slightly in pitch. Figures 9.9 and 9.10 show the heave and pitch
response at 12 kn, where VERES seem to coincide better in heave while the time-domain
formulation satisfy the pitch response better. In general, the time-domain model need some
tuning but has potential.

9.3 Extended Simulations

There is definitely room for improvements of the model presented in the above. Nevertheless,
the model was tested in a more advanced environment, to impute the possibilities that lies
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Figure 9.6: Foil block diagram according to foil theory
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Figure 9.7: Time-domain heave response
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Figure 9.8: Time-domain pitch response
with foil. Blue: Time-domain.
Green: VERES. Star: Experi-
mental at 8 kn

within reach when using a time based model. In this section, a six-degrees of freedom time-
domain model with fluid memory was tested. The model is based on the same principles
as outlined in the report so far, only now including added resistance, the experimental calm
water resistance and speed control. It is stressed that the model bears uncertainties and that
the results are to be regarded thereafter. The model is based on the following:

1. The original model is from the MSS Toolbox (Fossen [2011]) where adjustments have
been made to fit the scope of work. A foil system is added, the water particle velocity
and acceleration is calculated, the Coriolis terms are amended according to the theory
presented in the report, the calm water resistance is included and speed control is fitted

2. The added resistance is based on VERES estimates for a vessel without foil. The reason
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Figure 9.10: Time-domain pitch response
with foil. Blue: Time-domain.
Green: VERES. Star: Experi-
mental at 12 kn

being that, the experimental results for the vessel with foil coincidently match VERES’
result without foil, satisfactorily (seen from figures 7.17-7.21).

3. The calm water resistance is based on the experimental findings

9.3.1 Regular and irregular seas

For regular seas, the thrust force is calculated, and the results are visualised in figure 9.11.
The results more or less concur with what we have experienced earlier, however the results
worsened when altering the sea-state. In irregular seas, using the JONSWAP-spectrum for
long-crested waves, with a significant wave height of 3 m, the thrust-efficiency was reduced
drastically. The validity of the results is questionable. Nevertheless, the figures in 9.12
represent the thrust found. Figure 9.13 graph the spectrum and 9.14 visualise the sea-state
used in the simulation. A more scientific approach, regarding the implementation of the foil
propulsion system in irregular seas will be left for further work.
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Figure 9.11: Thrust for extended model at 8 kn (left) and 12 kn (right). Blue-star: Time-
domain. Red-circle: Experimental. Green: Time-averaged
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Figure 9.12: Thrust for extended model at 8 kn (left) and 12 kn (right). Blue-star: Time-
domain in irregular sea. Red-circle: Experimental in regular waves. Green:
Time-averaged in regular wave
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Chapter 10

Conclusions and Discussions

This master thesis has evolved into a discussion of methods for modelling a foil propulsion
system. The main emphasis has been on understanding the dynamics of a foil and a vessel,
to deliberately be able to suggest a mathematical model that serves the purpose. In line, the
author believes that a strong mathematical model is essential in verifying the potential of a
foil propulsion system.

Mathematical theory has been revised, and different vessel- and foil models have been sug-
gested and verified throughout the report. As a basis for the verification, VERES has been
used extensively. VERES is a trusted computational program that provides hydrodynamic
data that has proven to match exceptionally well with the experimental data. However, the
hydrodynamic data from VERES is frequency-domain based, while this report has been con-
cerned with time-domain simulations of the vessel-foil system. A time-domain model is more
robust and versatile when it comes to control system design and non-linearities. Addition-
ally, time-domain simulations allows the user to interact with the model in a simple manner,
which makes it flexible and transparent. For more intricate and complicated simulations this
is important.

For the simulations of the foil propulsion system, a time-domain model based on Cummins
[1962]’ equation and Ogilvie [1964]’s transformation is suggested. Cummins equation evalu-
ates the equation of motion in an infinite frequency regime. Fluid memory effects account for
the frequency dependency. The fluid memory effects were included using the MSS Toolbox
and a state-space representation. One of the benefits of using Cummins’ equation is that the
1/ω2

e -terms, which normally are an important part of the added mass and damping coeffi-
cients, according to STF-theory, vanishes. Consequently, the equation is applicable to any
frequency, without the numerical problems that follows from the singularities.

Moreover, an alternative approach to using the STF coefficients is proposed. The basis for
the approach was motivated by Fossen [2011] and Fossen’s use of mechanical transformation
between coordinate system, to account for speed-dependent effects in the hydrodynamic coef-
ficients. Fossen [2011] utilises an energy approach to identify Coriolis terms in the equation of
motion. It is shown that, the Coriolis term due to added mass matches the speed-dependent
terms in the STF-theory. In other words, speed-dependency of the damping and added mass
matrices (exempting hull-lift damping) is a direct consequence of mechanical transformation
in space, from one reference frame to the other. It is noted that the result is only verified
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when using Cummins’ equation. The link between the STF-theory (and thus VERES’ coeffi-
cients) and the Coriolis term, is to the authors understanding unique and is not referred to in
literature. The findings were a direct result of discussions with Thor Inge Fossen, Professor of
Guidance, Navigation and Control at NTNU. Using the Cummins equation and including the
Coriolis term, is the basis for the time-domain model used for the foil propulsion simulations.

The model was tested against VERES’ frequency-domain approach with satisfactory results.
At zero speed, the time-domain model matches VERES perfectly. As the speed increases,
there is a dip in the heave motion RAO around pitch resonance, compared to VERES, a
behaviour that is unclear at this point. A possible explanation is the omitted hull-lift damping
terms that are included in VERES’ analysis. Furthermore, the VERES and time-domain
model was compared to experimental data from the towing tank, with reasonable correlation.
However, this far VERES, seem to estimate the response more accurately. Concluding, the
time-domain model is still premature, however the author believes it bears potential to be a
rigid simulation base, both for analysis of foil propulsion systems and other marine operations,
in the future.

Also included in the report, is the results of several model tests. In general, the results from the
test were promising with regards to reducing overall vessel resistance. The thrust-producing
capacity of the vessel-foil system was significant. Firstly, the foil was tested in the Marine
Cybernetics laboratory. The experiments gave important insight on the characteristics of the
chosen foil profile, and its performance in a dynamic flow field. The results were the basis for
the active control algorithm that was to be used in the towing tank. The hypothesis was that,
using active control could maximise thrust and avoid foil stall. However, the system did not
operate optimally and the results from the active control model tests were poor. Consequently,
the emphasis of this report was shifted towards designing an effective simulation model. It
seemed logical that a simulation model should be in place before designing the control system
of the foil.

Regarding the results from the model tests, under optimal conditions and in head sea for
regular waves of magnitude 3 m the resistance reduction peaked at 65%. The reduction in
heave response peaked at more than 60% while the pitch response was reduced by 50%, at
maximum.



Chapter 11

Recommendations for Further
Work

In this thesis some aspect of vessel and foil modelling has been covered, and many more are
left undiscovered. Some of the recommendations for further work follow:

Verification :
A time-domain model based on Cummins’ equation has been proposed. However, the
model deviate from the VERES model when the speed increases. The reason for this is
unclear and should be evaluated

Expanding :
The time-domain model is fit for expansion and should be evaluated in irregular seas, at
different headings and at larger range of speeds. The foil effects in roll damping should
also investigated

Foil control :
When the model is completely verified a control system can be included

Foil propeller :
It would have been interesting to evaluate the efficiency of a foil propulsion system that
was modified to act as a a stand-alone propulsion system, say in calm seas, by subjecting
the foil to a forced oscillations

Extremum-seekeing : Extremum-seeking build son the concept of finding an optimal set-
point, without the basis of a mathematical model. Such a system could be of interest
for a foil propulsion system
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Appendix A

Rigid-body kinetics

Rigid-body kinetics

An equation of motion is always computed with respect to the centre of gravity CG. In
order to solve the equation of motion, the acceleration (and velocity) at CG must be known.
However, hydrodynamic coefficients are often computed with respect to an arbitrary centre
of origin. Hence, the body-fixed coordinate system is placed at CO while the acceleration is
found at CG. The distance between CO and CG is rg, while the distance from the inertial
coordinate system to its body-fixed equivalent (CO) is r0.

Firstly, we seek the translational motion about CO and define the vectors from A.1

rg =
3∑
i=1

xiûi (A.1)

r0 =
3∑
i=1

yiv̂i (A.2)

where û = [̂i, ĵ, k̂] is the unit vector of the body-fixed coordinates and xi is the distance
between CO and CG in direction i. v̂ = [̂i, ĵ, k̂] is the unit vector for the inertial system,
while yi is the distance between the inertial origin and CO in direction i. The vector from
the inertial frame to CG is then

r = r0 + rg

=
3∑
i=1

yiv̂i +
3∑
i=1

xiûi (A.3)

and the velocity is found by differentiation in time
ṙ = ṙ0 + ṙg

=
3∑
i=1

ẏiv̂i +
3∑
i=1

yi ˙̂vi +
3∑
i=1

ẋiûi +
3∑
i=1

xi ˙̂ui (A.4)

III



IV APPENDIX A. RIGID-BODY KINETICS

r 0r

gr


1u


3u

1v

3v

1
gx

3
gx

3
0y

1
0y

3y

1y

CG

CO

Inertial

Body

Figure A.1: Rigid-body kinematics

where the unit vector time derivative can be expressed as1

˙̂u = θ̇û × û = ωû × û (A.5)

and ωu is the angular velocity of the body-fixed coordinate system relative to the inertial
frame. From (A.4) it is made clear that time differentiation of a vector in a moving reference
frame is

drg
dt

= vûg + ωû × rg (A.6)

=
(
d

dt
+ ωû×

)
rg (A.7)

where we have used

3∑
i=1

ẋiû = vûg (A.8)

3∑
i=1

xi(ωû × û) = ωû ×
3∑
i=1

xiû = ωû × rg (A.9)

1From [Taylor, 2004, pg. 343]



V

(A.6) is known as the basic kinematic equation.1

On the other hand, the axes of the inertial system are fast and the time derivative of the unit
vector (ωv̂) is zero (the earth’s motion relative to a star-fixed inertial system is eliminated)
and we define

˙̂v = ωv̂ × v̂ = 0 (A.10)

Now, (A.4), (A.5) and (A.10) combines to

v = ṙ =
3∑
i=1

ẏiv̂i +
3∑
i=1

ẋiûi +
3∑
i=1

xi(ωû × û) (A.11)

and the acceleration exist so that

v̇ =
3∑
i=1

ÿiv̂i +
3∑
i=1

ẍiûi +
3∑
i=1

ẋi ˙̂ui

+
3∑
i=1

ẋi(ωû × û) +
3∑
i=1

xi[(ω̇û × û) + (ωû × ˙̂u)] (A.12)

=
3∑
i=1

ÿiv̂i +
3∑
i=1

ẍiûi + 2ωû ×
3∑
i=1

ẋiû+αû ×
3∑
i=1

xiû (A.13)

+ ωû × (ωû ×
3∑
i=1

xiû) (A.14)

By using the identities from (A.8)-(A.9) and simplifying we find the resulting fictitious accel-
eration acting on CG:

v̇ = v̇v̂0 + v̇ûg + 2ωû × vûg︸ ︷︷ ︸
Coriolis acc

+ ω̇û × rg︸ ︷︷ ︸
Transversal acc

+ ωû × (ωû × rg)︸ ︷︷ ︸
Centripetal acc

(A.15)

where ω̇û is the angular acceleration and v̇ûg the linear acceleration of rg, in body-coordinates.
v̇v̂0 is the acceleration of CO in the inertial frame. Assuming that CG is fixed in the body-
frame then rg is constant. Subsequently, vûg = 0 and v̇ûg = 0, and the Coriolis-acceleration
dissipates. In summary, the acceleration is

v̇ = v̇v̂0 + ω̇û × rg + ωû × (ωû × rg)
∣∣
rgfixed

(A.16)

whereas, under the same convention the velocity from (A.11) yields

v = vv̂0 + ωû × rg (A.17)
1From [Cor, 2011, pg. 213]
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Figure A.2: Geometry of vessel at an exaggerated angle, at forward speed

The one remaining task is to translate vv̂0 and v̇v̂0 from the inertial frame to the body-fixed
frame. The velocity is found from a geometrical perspective, as illustrated in figure A.2. In
accordance with figure A.2, the vertical velocity can be denoted

v3 = w cos(ξ5)− u sin(ξ5) (A.18)
≈ w − uξ5 (A.19)

where all angles are assumed small, i.e linear theory. The velocity vv̂ can be generalized in
body-fixed coordinates as follows

vv̂0 = vû + ξ4,5,6 × vû (A.20)

where ξ4,5,6 are the seakeeping angles (assuming zero heading and translation along x-axis).
The acceleration v̇v̂ is found by the kinematic relation in (A.6) as

v̇v̂0 = v̇û + ωû × vû (A.21)

Finally, the linear velocity and acceleration of CG with respect to the inertial frame, expressed
in body-fixed coordinates becomes

v = vû + θû × vû + ωû × rg (A.22)
v̇ = v̇û + ωû × vû + αû × rg + ωû × (ωû × rg) (A.23)

Similarly, and by using the Parallel-axes Theorem, the rotational motion about CO can be
derived (Egeland and Gravdahl [2002], Fossen [2011]). This will not be done here.



VII

Newton’s second law revisited

Restating Newton’s second law from (2.1) as

Ma = τhyd + τhs (A.24)

where a is the acceleration. Inserting (A.23) and the force due to rotational acceleration
([Fossen, 2011, pg. 52]), we get

MRBν̇ +CRB(ν)ν = τhyd + τhs (A.25)

where we have used Fossen’s notation ν = [vû,ωû] and ν̇ = [v̇û, ω̇û]. Here, MRB is the rigid-
body mass matrix accounting for the position of CG with regards to CO. The non-linear
CRB(ν) is called the Coriolis-Centripetal matrix, even though the Coriolis-term in (A.15) is
cancelled out.
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Appendix B

Programming flow

For the courtesy of others, who are to implement a LabView project that interacts with a
SIMULINK model and I/O modules, the programming flow goes as follows:

1. Create a FPGA-project and a VI

2. Create a SIMULINK model. The model must include the Signal Probe block, standing
freely. All input and output ports must be of SIT in/out type for compatibility. The
blocks are found under the NI SIT Blocks in SIMULINK, provided the SIT and Real-
Time Workshop is installed

3. In SIMULINK, choose ’Simulation’ and ’Configuration Parameters’

(a) Under ’Solver’:

i. Set ’Stop time’ to inf. This must be done as the model is to run real-time

ii. Set ’Type’ to Fixed-step in the drop-down menu

iii. Set ’Fixed-step size’ to 0.02, or the step-size corresponding to your sampling
frequency in the experiment

(b) Under ’Real-Time Workshop’:

i. Find ’Browse’ in ’Target Selction’. Choose ’nidll.tlc - NI Real-Time target...’.
Click ’OK’, ’Build’ and ’Apply’ if prompted. Set the MATLAB ’Current Di-
rectory’ to the directory in which you are working

ii. Find ’Browse’ again. Choose ’nidll vxworks.tlc - NI Real-Time VxWorks...’.
Click ’OK’, ’Build’ and ’Apply’, if prompted

4. Exit ’Configuration Parameters’ by clicking ’OK’. We are done in SIMULINK

5. Connect the CompactRIO device to the network so that your computer recognises the
device

6. Go to the LabView VI. Insert all the features that are applicable; graphs, variable
controls etc.

7. Under ’Tools’, find ’SIT Connection Manager’

IX
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(a) Under ’Model and Host’:

i. Browse ’Real-Time Target’ and click ’Change’. Choose ’Existing target or
Device’ and ’Discover an..’

A. Find ’Real-Time CompactRIO’ and choose ’name of device’. You need to
know the name of your CompactRIO i.e ’NI-cRIO9974-0154C2CF’

B. Click ’OK’

ii. Browse ’Current Model DLL’. Choose the DLL-file that was created by SIMULINK

iii. Browse ’Project Directory’. Choose ’Use current...’ and choose the folder in
which you work

(b) Go to ’Mappings’. Here, all the indicators and controllers in the VI are mapped to
the variables and input- and output ports of the original SIMULINK model. Map
them by clicking ’Change Mapping’

(c) Find ’Data LoggingÃÿ if data log is to be used. The data log files are stored
on the CompactRIO and can be accessed through FTP. The files re found under
’ni-rt/system’

(d) Go to ’Hardware I/O’. When the FPGA is configured, the input and output mod-
ules can be found by clicking ’Configure HW I/O’. Here the analogue I/O signals
can be mapped to their cohering model I/O’s

(e) We are done in the ’SIT Connection Manager’ window

8. The VI should now be compatible and communicate with the Real-Time target. The
project can be run by clicking ’Operate’ and ’Run’
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