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Use of the program FOURIER for steady waves

John D. Fenton

Abstract

This document has accompanied the package of programs for several years. In
February 2012 both programs and this document received a major upgrade. The
home page is http://johndfenton.com/Steady-waves/Fourier.html. This document is
http://johndfenton.com/Steady-waves/Instructions.pdf; the package of programs and files is at
http://johndfenton.com/Steady-waves/Fourier.zip.

Revision History of Instructions.pdf

→ February 2012 Series of versions, becoming slowly incompatible with the program package

February 2012 → Combined and simplified program, this document corrected to agree with the program

March 2012 For the theory the origin of η changed to mean water level (back to Fenton (1988))

and many incorrect references to 2N + 5 variables and equations changed to 2N + 10.

All the section on theory in the Appendix has been re-written, including more

on numbers of variables and equations.

24 May 2012 Espen Engebretsen noted that it was not clear how the results in the output file

Flowfield.res (see Table 6-2) were made dimensionless. This is now

shown in the table, and in the program output.

1. Introduction
Throughout coastal and ocean engineering the convenient model of a steadily-progressing periodic wave train is
used to give fluid velocities, surface elevations and pressures caused by waves, even in situations where the wave
is being slowly modified by effects of viscosity, current, topography and wind or where the wave propagates past a
structure with little effect on the wave itself. In these situations the waves do seem to show a surprising coherence
of form, and they can be modelled by assuming that they are propagating steadily without change, giving rise to
the so-called steady wave problem, which can be uniquely specified and solved in terms of three physical length
scales only: water depth, wave length and wave height. In many practical problems it is not the wavelength which
is known, but rather the wave period, and in this case, to solve the problem uniquely or to give accurate results for
fluid velocities, it is necessary to know the current on which the waves are riding. In practice, the knowledge of
the detailed flow structure under the wave is so important that it is usually considered necessary to solve accurately
this otherwise idealised model.

The main theories and methods for the steady wave problem which have been used are: Stokes theory, an explicit
theory based on an assumption that the waves are not very steep and which is best suited to waves in deeper water;
and cnoidal theory, an explicit theory for waves in shallower water. The accuracy of both depends on the waves
not being too high. In addition, both have a similar problem, that in the inappropriate limits of shallower water
for Stokes theory and deeper water for cnoidal theory, the series become slowly convergent and ultimately do not
converge.

An approach which overcomes this is the Fourier approximation method, which does not use series expansions
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based on a small parameter, but obtains the solution numerically. It could be described as a nonlinear spectral
approach, where a series is assumed, each term of which satisfies the field equation, and then the coefficients are
found by solving a system of nonlinear equations. This is the basis of the computer program FOURIER. It has
been widely used to provide solutions in a number of practical and theoretical applications, providing solutions for
fluid velocities and pressures for engineering design. The method provides accurate solutions for waves up to very
close to the highest.

A review and comparison of the methods is given in Sobey, Goodwin, Thieke & Westberg (1987) and Fenton
(1990).

The aim of this article is to

• present an introduction to the theory so that input data supplied will be satisfactory

• describe the data format required by the program FOURIER

• describe the output files which are produced and how they might be used, including some graph-plotting
files, and,

• to describe the basis of the Fourier method and the numerical techniques used.

2. History and critical appraisal
The usual method for periodic waves, suggested by the basic form of the Stokes solution, is to use a Fourier
series which is capable of accurately approximating any periodic quantity, provided the coefficients in that series
can be found. The analytical solution is obtained by using perturbation expansions for the coefficients in the
series and solving linear equations at each order of approximation (Fenton 1985). For high waves, the series have
trouble with convergence. A reasonable procedure, then, is to calculate the coefficients numerically by solving
the full nonlinear equations. This approach would be expected to be more accurate than either of the perturbation
expansion approaches, Stokes and cnoidal theory, because its only approximations would be numerical ones, and
not the essential analytical ones of the perturbation methods. Also, increasing the order of approximation would
be a relatively trivial numerical matter without the need to perform extra mathematical operations.

This approach originated with Chappelear (1961). He assumed a Fourier series in which each term identically
satisfied the field equation throughout the fluid and the boundary condition on the bottom. The values of the
Fourier coefficients and other variables for a particular wave were then found by numerical solution of the nonlinear
equations obtained by substituting the Fourier series into the nonlinear boundary conditions. He used the velocity
potential φ for the field variable and instead of using surface elevations directly he used a Fourier series for that too.
Dean (1965) instead used the stream function ψ for the field variable and point values of the surface elevations,
and obtained a rather simpler set of equations and called his method ”stream function theory”. Rienecker &
Fenton (1981) presented a method based exclusively on Fourier approximation, whereas earlier work had used
other lower-order numerical methods in part. The nonlinear equations were solved by Newton’s method. The
presentation emphasised the importance of knowing the current on which the waves travel if the wave period is
specified as a parameter.

Results from these numerical methods show that accurate solutions can be obtained with Fourier series of 10-20
terms, even for waves close to the highest, and they seem to be the best way of solving any steady water wave
problem where accuracy is important. Sobey et al. (1987)made a comparison between different versions of the
numerical methods. They concluded that there was little to choose between them.

A simpler method and computer program was given by Fenton (1988), where the necessary matrix of partial
derivatives is obtained numerically. In application of the method to waves which are high, in common with other
versions of the Fourier approximation method (Dalrymple & Solana 1986), it was found that it is sometimes
necessary to solve a sequence of lower waves, extrapolating forward in height steps until the desired height is
reached. For very long waves all these methods can occasionally converge to the wrong solution, that of a wave
one third of the length, which is obvious from the Fourier coefficients which result, as only every third is non-zero.
This problem can be avoided by using a sequence of height steps.

It is possible to obtain nonlinear solutions for waves on shear flows for special cases of the vorticity distribution.
For waves on a constant shear flow, Dalrymple (1974a), and a bi-linear shear distribution (Dalrymple 1974b) used
a Fourier method based on the approach of Dean (1965). The ambiguity caused by the specification of wave period
without current seems to have been ignored, however.
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Figure 2-1. Free surface for a wave of length L/d = 50 and a height of H/d = 0.786, 98% of the maximum height
possible for that length. There were N = 70 terms in the Fourier series, and the highest wave was computed from
a sequence of 20 waves, using initial solutions extrapolated from two previous solutions.

The present Fourier approach breaks down in the limit of very long and high waves, when the spectrum of coeffi-
cients becomes broad-banded and many terms have to be taken, as the Fourier approximation has to approximate
both the short rapidly-varying crest region and the long trough where very little changes, and approaching the
highest wave, the sharp crest. For example figure 2-1 shows results for the surface profile using the Fourier pro-
gram for a wave of length L/d = 50 and a height of H/d = 0.786, 98% of the maximum height possible for
that length. It can be seen with the very long wave and the crest approaching sharp makes the program have to
work very hard indeed, but it has obtained a solution. Fenton (1995) developed a numerical cnoidal theory so that
long waves could be treated without difficulty, however for wavelengths as long as 50 times the depth, the Fourier
method provides good solutions.

3. The physical problem
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Figure 3-1. One wave of a steady train, showing principal dimensions, co-ordinates and velocities

The problem considered is that of two-dimensional periodic waves propagating without change of form over a
layer of fluid on a horizontal bed, as shown in Figure 3-1. A co-ordinate system (x, y) has its origin on the bed,
and waves pass through this frame with a velocity c in the positive x direction. It is this stationary frame which is
the usual one of interest for engineering and geophysical applications. Consider also a frame of reference (X,Y )
moving with the waves at velocity c, such that x = X + ct, where t is time, and y = Y . It is easier to solve
the problem in this moving frame in which all motion is steady and then to compute the unsteady velocities. If
the fluid velocity in the (x, y) frame is (u, v), and that in the (X,Y ) frame is (U,V ), the velocities are related by
u = U + c and v = V .

4. The program FOURIER.EXE

In my previous package, up until February 2012, there were actually two programs – one ran the first to solve the
wave problem, then the second to obtain solutions for the wave profile, velocities, and accelerations. This can still
be accessed via the package at http://johndfenton.com/Steady-waves/OldFourier.zip.

In February 2012 I have streamlined and unified the programs, and have corrected this document so that it more
accurately describes what the program does. All the files necessary can be found at http://johndfenton.com/Steady-
waves/Fourier.zip. The executable program is FOURIER.EXE.
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5. Input data
It is well-known that a steadily-progressing periodic wave train is uniquely specified by three length scales, the
water depth d, the wave heightH, and the wavelength λ, or, in terms of only two dimensionless quantities involving
these, such as dimensionless wave height H/d and dimensionless wavelength λ/d. The program allows for the
specification of these, however in many practical situations it is not the wavelength which is known, but the wave
period τ . If this is the case, it is not enough to uniquely specify the wave problem, as if there is a current, any
current, then the period will be Doppler-shifted. Hence, it is necessary also to specify the current in such cases.
The value of this current will also affect the horizontal velocity components, and users of the program should be
aware of this and if it is unknown, some maximum and minimum values might be tried and their effects evaluated.

All input data are to be specified in terms non-dimensionalised with respect to gravitational acceleration g and
mean depth d.

There are three files necessary, which should be in the same directory as FOURIER.EXE:

5.1 DATA.DAT

The wave data is of the form as given in the first column of Table 5-1. Any other information, such as that in
column 2, can be placed after that on each line, such as we have done here, to label each line. A blank is also
allowed.

Test wave (A title line to identify each wave)

0.5 H/d

Wavelength Measure of length: ”Wavelength” or ”Period”

10. Value of that length: λ/d or T g/d respectively

1 Current criterion (1 or 2)

0. Current magnitude, ū1/
√
gd or ū2/

√
gd

20 Number of Fourier components

1 Number of height steps to reach H/d

Any number of other wave data can be placed here, each occupying 8 lines as above

FINISH Must be used to tell the program to stop - the file can continue after this

Table 5-1. Form of data to be supplied for each wave

Here we describe the nature of each element of the input data.

5.1.1 Description
A line containing any identifier or description of the wave, up to 100 characters

5.1.2 Wave height
The relative wave height H/d is specified. There is a formula for the maximum wave height Hm/d for a particular
wavelength λ/d, given as equation (A-1) in Appendix A. In many problems, where it is the period that is specified
it is not possible to calculate the highest possible wave height a priori. The program, after it solves a wave, prints
out the theoretical maximum Hm/d for the calculated wave length. The user could then reconsider the value of
H/d to specify.

5.1.3 Wavelength or Period
If ”Wavelength” is chosen, then a value of λ/d is then specified in the next line; if ”Period” then a value of
dimensionless period τ

p
g/d is to be given.
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5.1.4 Current
This is described in more detail in Appendix B.2 below. There are actually two definitions of currents, the first,
identified by 1 here is the ”Eulerian mean current”, the time-mean horizontal fluid velocity at any point denoted by
ū1, the mean current which a stationary meter would measure. In irrotational flow this is constant everywhere. A
second type of mean current is the depth-integrated mean current, the ”mass-transport velocity”, which we denote
by ū2. If there is no mass transport, such as in a closed wave tank, ū2 = 0. Usually the overall physical problem
will impose a certain value of current on the wave field, thus determining the wave speed. To apply the methods
of this theory if wave period rather than length is known, to obtain a unique solution it is necessary to specify both
the nature (1 or 2) and magnitude of that current. If the current is unknown, any horizontal velocity components
calculated are approximate only.

5.1.5 Number of Fourier components
This is the primary computational parameter in the program, which we denote by N . The program now has no limit
(previously it was N = 32), but for many problems, N = 10 is enough – results show that accurate solutions can
be obtained with Fourier series of 10-20 terms, even for waves close to the highest, although for longer and higher
waves it may be necessary to increase N . The adequacy of the particular value of N used can be monitored by
examining the output file SOLUTION.RES, where the spectra of Fourier coefficients obtained as part of the solution
is presented, the Bj which are at the core of the method, as presented in equation (B-5) for j = 1, . . . , N , and the
Fourier coefficients of the computed free surface, the Ej as presented in equation (C-9). The Bj decay rather more
rapidly than do the Ej . The value of EN should be sufficiently small (less than 10−4 say) that there would be no
identifiable high-frequency wave apparent on the surface plotted from the solution (cf. figure 2-1 above).

5.1.6 Number of height steps
In application of the method to waves which are high and long, in common with other versions of the Fourier
approximation method, the Fourier method may converge to a wave of 1/3 of the wavelength (Dalrymple & Solana
1986, with comments by Fenton and Sobey noted in the References), but this can be remedied by solving for lower
waves of the same length and stepping upwards in height (Fenton 1988). This occurrence of this phenomenon is
made obvious from the Fourier coefficients which result, as only every third is non-zero. The present program
overcomes this by solving a sequence of lower waves, extrapolating forward in height steps until the desired height
is reached. For waves up to about half the highest H ≈ Hm/2 it is not necessary to do this, and a value of 1 in the
eighth line of the data file is all right, but thereafter it is better to take 2 or more height steps. For waves very close
to Hm for a given length it might be necessary to take as many as 20. The evidence as to whether enough have
been taken is provided by the spectrum, as noted above.

5.2 CONVERGENCE.DAT

This is a three-line file which controls convergence of the iteration procedure, for example:

Control file to control convergence and output of results
20 Maximum number of iterations for each height step; 10 OK for ordinary waves, 40 for highest
1.e-4 Criterion for convergence, typically 1.e-4, or 1.e-5 for highest waves

5.3 POINTS.DAT

This controls how much information is to be printed out afterwards to show the velocity and acceleration fields.
For example:

Control output (for graph plotting etc.)
50 M , Number of points on free surface (the program clusters them near crest)
8 Number of velocity/acceration profiles over half a wavelength to print out, including x = 0 and x = λ/2.
20 Number of vertical points in each profile, including points at bottom and surface.

6. Output files
The program produces output to the screen showing how the process of convergence is working. Three files are
produced:
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6.1 SOLUTION.RES

After a heading block, including the theoretical highest wave for this length of wave, the program prints out the
global parameters of the wave train, where all quantities are shown first non-dimensionalised with respect to ρ, g
and k, where k = 2π/λ is the wavenumber of the wave, and then the value non-dimensionalised with respect to g
and depth d. The results are:

Quantity Dimensionless w.r.t. Reference

k d This document Fenton (1988)

Water depth kd d/d = 1

Wave length kλ = 2π λ/d

Wave height kH H/d

Wave period τ
√
gk τ g/d

Wave speed c k/g c/
√
gd

Eulerian current ū1 k/g ū1/
√
gd (B-13) Symbol cE , p358

Stokes current ū2 k/g ū2/
√
gd (B-14) Symbol cS , p359

Mean fluid speed Ū k/g Ū/
√
gd (B-5)

Wave volume flux, q = Ūd−Q q k3/g q/ gd3 p359

Bernoulli constant, r = R− gd rk/g r/gd p360

Volume flux Q k3/g Q/ gd3 (B-3) p360

Bernoulli constant Rk/g R/gd (B-4) p360

Momentum flux Sk2/ρg S/ρgd2 p362

Impulse I
√
k3/ρ

√
g I/ρ gd3 p362

Kinetic energy Tk2/ρg T/ρgd2 p362

Potential energy V k2/ρg V/ρgd2 p362

Mean square of bed velocity u2bk/g u2b/gd p362

Radiation stress Sxxk
2/ρg Sxx/ρgd

2 p362

Wave power Fk5/2/ρg3/2 F/ρg3/2d5/2 p362

Fourier coefficients (dimensionless) Bj Ej (B-5,C-5) p360, p362

B1 E1

. . . . . .

BN EN

Table 6-1. Quantities printed out at the head of file SOLUTION.RES

Following the global parameters shown in table 6-1, the spectra of the velocity potential coefficients Bj and the
surface elevation coefficients Ej are given, for j = 1, . . . , N , the two corresponding coefficients on each row.
These spectra should be checked, as suggested above, to ensure that the coefficients have become small enough
that the solution has converged satisfactorily, and that it has not converged to one which is 1/3 of the wavelength.

6.2 SURFACE.RES

This file contains co-ordinates of points on the surface, all given non-dimensionally with respect to the water depth
d. It contains three columns, the first Xi/d = (i/ (M/2))2 λ/d/2 for i = −M/2.. + M/2, where M is the
number of surface points defined in the description of file POINTS.DAT above. The points extend over a range
trough-crest-trough, and are clustered quadratically near the crest for plotting purposes. The second column is the
free surface elevation (total water depth) ηi/d. The third column contains a check on calculations, the computed
value of the pressure on the surface pi/ρgd from equation (C-10), which should be zero, and they are indeed very
close to zero, being typically of the order of the last surface Fourier component EN .

6.3 FLOWFIELD.RES

This contains a number of profiles of velocity components and time derivatives, the number of profiles and the
number of points in each profile determined by file POINTS.DAT. For a sequence of (here equi-spaced) X/d values
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between 0 (crest) and λ/d/2 (trough), and then for each for a number of y/d from 0 (the bed) to the local free
surface elevation η/d, quantities output on each line are shown in table 6-2. Note that all are dimensionless with
respect to g and d, the mean depth.

y

d

u√
gd

v√
gd

∂φ/∂t

gd

∂u/∂t

g

∂v/∂t

g

∂u

∂x

d

g
= −∂v

∂y

d

g

∂u

∂y

d

g
=

∂v

∂x

d

g

Bernoulli check,
equation C-12

Table 6-2. Line of output in file FLOWFIELD.RES

6.4 Graphical output
The package includes a file that enables the plotting of data from the results files. When run with the Gnuplot
program (http://www.gnuplot.info/), file FIGURES.PLT (which uses file SETOUTPUT.PLT) produces three figures
as shown here in figure 6-1.
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Figure 6-1. Figures obtained by Gnuplot from output files produced by the program
for a wave of height H/d = 0.5 and length λ/d = 10
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302(1466), 139–188. http://www.jstor.org/stable/36960

Appendix A. Maximum wave height possible for a given length

The range over which periodic solutions for waves can occur is given in Figure A-1, which shows limits to the
existence of waves determined by computational studies. The highest waves possible, H = Hm, are shown by
the thick line, which is the approximation to the results of Williams (1981), presented as equation (32) in Fenton
(1990):

Hm

d
=

0.141063 λ
d + 0.0095721

¡
λ
d

¢2
+ 0.0077829

¡
λ
d

¢3
1 + 0.0788340 λ

d + 0.0317567
¡
λ
d

¢2
+ 0.0093407

¡
λ
d

¢3 . (A-1)

Nelson (1987 and 1994), has shown from many experiments in laboratories and the field, that the maximum wave
height achievable in practice is actually only Hm/d = 0.55. Further evidence for this conclusion is provided by
the results of Le Méhauté, Divoky & Lin (1968), whose maximum wave height tested was H/d = 0.548, described
as ”just below breaking”. It seems that there may be enough instabilities at work that real waves propagating over
a flat bed cannot approach the theoretical limit given by equation (A-1).

0

0.2

0.4

0.6

0.8

1

1 10 100

Wave height/
depth
H/d

Wavelength/depth (λ/d)

Solitary wave

Nelson H/d = 0.55
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Eqn (32) of Fenton (1990)
Ur2 = 1/2

Figure A-1. The region of possible steady waves, showing the theoretical highest waves (Williams) and the fitted
equation (1), and the highest long waves in the field (Nelson).

Also shown on the figure, although not so important for applications of the FOURIER program is the boundary
between regions where Stokes and cnoidal theories can be applied, as suggested by Hedges (1995):

U =
Hλ2

d3
= 40, (A-2)

where U is the Ursell number. The FOURIER program can be used over almost the whole region of possible
waves, up to within 2% of the boundary given by equation (A-1).

Appendix B. Theory

Here we present an outline of the theory. If the fluid is incompressible, in two dimensions a stream function
ψ(X,Y ) exists such that the velocity components are given by

U = ∂ψ/∂Y, and V = −∂ψ/∂X.
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If motion is irrotational, then∇× u = 0 and it follows that ψ satisfies Laplace’s equation throughout the fluid:

∂2ψ

∂X2
+

∂2ψ

∂Y 2
= 0. (B-1)

The kinematic boundary conditions to be satisfied are

ψ(X, 0) = 0 on the bottom, and (B-2)
ψ(X, d+ η(X)) = −Q on the free surface, (B-3)

where Y = d + η(X) on the free surface and Q is a positive constant denoting the volume rate of flow per unit
length normal to the flow underneath the stationary wave in the (X,Y ) co-ordinates. In these co-ordinates the
apparent flow is in the negative X direction. The dynamic boundary condition to be satisfied is that pressure is
zero on the surface so that Bernoulli’s equation becomes

1

2

Ãµ
∂ψ

∂X

¶2
+

µ
∂ψ

∂Y

¶2!
+ g (d+ η) = R on the free surface, (B-4)

where R is a constant.

The basis of the method is to write the analytical solution for ψ in separated variables form

ψ(X,Y ) = −Ū Y +

r
g

k3

NX
j=1

Bj
sinh jkY

cosh jkd
cos jkX, (B-5)

where Ū is the mean fluid speed on any horizontal line underneath the stationary waves, the minus sign showing
that in this frame the apparent dominant flow is in the negative x direction. The B1, . . . , BN are dimensionless
constants for a particular wave, and N is a finite integer. The truncation of the series for finite N is the only
mathematical or numerical approximation in this formulation. The quantity k is the wavenumber k = 2π/λ where
λ is the wavelength, which may or may not be known initially, and d is the mean depth as shown on Figure 3-1.
Each term of this expression satisfies the field equation (B-1) and the bottom boundary condition (B-2) identically.
The use of the denominator cosh jkd is such that for large j the Bj do not have to decay exponentially, thereby
making solution rather more robust. For points on the free surface, where Y = d+ η, for large jkd

sinh jk (d+ η)

cosh jkd
∼ ejkη,

not nearly as large as the numerator and denominator would be.

If one were proceeding to an analytical solution, the coefficients Bj would be found by using a perturbation
expansion in wave height. Here they are found numerically by satisfying the two nonlinear equations (B-3) and (B-
4) from the surface boundary conditions. Substituting Y = d+ η(X) , into the surface equations and introducing
the variables q = Ūd − Q, the volume flux due to the waves which is actually a positive quantity, and r =
R− gd, the energy per unit mass with datum at the mean water level, and dividing through to make the equations
dimensionless:

NX
j=1

Bj

∙
sinh jk (d+ η)

cosh jkd

¸
cos jkX − Ū

p
k/g kη − q

s
k3

g
= 0, and (B-6)

1

2

⎛⎝−Ūpk/g +
NX
j=1

jBj

∙
cosh jk (d+ η)

cosh jkd

¸
cos jkX

⎞⎠2

+
1

2

⎛⎝ NX
j=1

jBj

∙
sinh jk (d+ η)

cosh jkd

¸
sin jkX

⎞⎠2

+kη − rk/g = 0, (B-7)

both to be satisfied for all x. In both equations, we will never evaluate the terms in square brackets as they are
written, for both numerators and denominators can become very large. Instead we re-write them and evaluate them

10
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in the forms

Cj(kd, kη) =
cosh jk (d+ η)

cosh jkd
= cosh jkη + tanh jkd sinh jkη, (B-8a)

Sj(kd, kη) =
sinh jk (d+ η)

cosh jkd
= sinh jkη + tanh jkd cosh jkη. (B-8b)

The two functions of jkη here are much smaller than cosh jk (d+ η), while the tanh jkd function is not a problem,
as it simply goes to 1 for large arguments.

To solve the problem numerically these two equations are to be satisfied at a sufficient number of discrete points
so that we have enough equations for solution. If we evaluate the equations at N + 1 discrete points over one half
wave from the crest to the trough for m = 0, 1, . . . ,N , such that Xm = mλ/2N and kXm = mπ/N , and where
ηm = η(Xm), then (B-6) and (B-7) provide 2N + 2 nonlinear equations in the 2N + 5 dimensionless variables:
kηm for m = 0, 1, . . . , N ; Bj for j = 1, 2, . . . , N ; Ū

p
k/g; kd; q

p
k3/g; and rk/g. We now consider more

equations and variables.

An extra equation is the expression requiring that the mean of the dimensionless depths kηm be zero, simply using
the trapezoidal rule:

1

N

Ã
1

2
(kη0 + kηN ) +

N−1X
m=1

kηm

!
= 0. (B-9)

For quantities which are periodic such as here, the trapezoidal rule is very much more accurate than usually
believed. It can be shown that the error is of the order of the last (N th) coefficient of the Fourier series of the
function being integrated. As that is essentially the approximation used throughout this work, where it is assumed
that the series can be truncated at a finite value of N , this is in keeping with the overall accuracy.

In practice the physical dimensions of mean water depth d and wave height H are known giving a numerical value
of H/d for which an equation can be provided connecting the crest and trough heights kη0 and kηN respectively:
H = η0 − ηN ,which we write in terms of our dimensionless variables as

kη0 − kηN − kd
H

d
= 0. (B-10)

B.1 Specification of wavelength
In some problems we know the wavelength λ and so we have a numerical value for kd, that we write here as an
equation

kd− 2π d
λ
= 0, (B-11)

and the problem is now closed.

B.2 Specification of wave period and current
In many problems it is not the wavelength λ which is known but the wave period τ as measured in a stationary
frame. The two are connected by the simple relationship

c =
λ

τ
, (B-12)

where c is the wave speed, however it is not known a priori, and in fact depends on the current on which the waves
are travelling. In the frame travelling with the waves at velocity c the mean horizontal fluid velocity at any level
is −Ū , hence in the stationary frame the time-mean horizontal fluid velocity at any point denoted by ū1, the mean
current which a stationary meter would measure, is given by

ū1 = c− Ū . (B-13)

In the special case of no mean current at any point, ū1 = 0 and c = Ū , which is Stokes’ first approximation to the
wave speed, usually incorrectly referred to as his ”first definition of wave speed”, and is that relative to a frame in
which the current is zero. Most wave theories have presented an expression for Ū , obtained from its definition as

11
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a mean fluid speed. It has often been referred to, incorrectly, as ”the wave speed”.

A second type of mean fluid speed or current is the depth-integrated mean speed of the fluid under the waves in
the frame in which motion is steady. If Q is the volume flow rate per unit span underneath the waves in the (X,Y )
frame, the depth-averaged mean fluid velocity is −Q/d, where d is the mean depth. In the physical (x, y) frame,
the depth-averaged mean fluid velocity, the ”mass-transport velocity”, is ū2, given by

ū2 = c−Q/d. (B-14)

If there is no mass transport, such as in a closed wave tank, ū2 = 0, and Stokes’ second approximation to the wave
speed is obtained: c = Q/d. In general, neither of Stokes’ first or second approximations is the actual wave speed,
and the waves can travel at any speed. Usually the overall physical problem will impose a certain value of current
on the wave field, thus determining the wave speed. To apply the methods of this section, where wave period is
known, to obtain a unique solution it is also necessary to specify the magnitude and nature of that current.

Appendix C. Program details

C.1 Initial solution
We calculate the initial values from linear wave theory, assuming zero current. The well-known solution for angular
frequency σ = 2π/τ in terms of kd is

σ2 = gk tanh kd. (C-1)

If the wave period and hence σ is known, it is necessary to solve for kd. The equation could be solved using
standard methods for solution of a single nonlinear equation, however Fenton & McKee (1990) have given an
approximate explicit solution:

kd ≈ σ2d

g

µ
coth

³
σ
p
d/g

´3/2¶2/3
. (C-2)

This expression is an exact solution of (C-1) in the limits of long and short waves, and between those limits its
greatest error is 1.5%. Such accuracy is adequate for the present approximate purposes. Having solved for kd
linear theory can be applied for an assumption of zero current in relating wavelength and period. We set q = 0,
r = Ū2/2 (noting that it would have been nicer if Fenton (1988) had defined r as being solely due to the wave
motion r = R − gd − Ū2/2, so that it would be zero in the small wave limit). We assume η = 1

2H cos kx
and substitute into the surface equations with B1 non-zero and all higher terms in the series zero. The kinematic
boundary condition (B-6) gives, taking the terms in the square brackets to be unity, thereby linearising:

B1 tanh kd cos kX − Ū
p
k/g

kH

2
cos kx = 0, (C-3)

and repeating for the dynamic boundary condition (B-7), expanding the terms in brackets and considering only
linear terms:

−Ū
p
k/gB1 cos kX +

kH

2
cos kx = 0, (C-4)

with solutions Ū
p
k/g =

√
tanh kd, that we could have written down from equation (C-1), making the zero

current aproximation Ū = c. What is more useful here is the other solution obtained from the pair of equations,
B1 = kH/2/

√
tanh kd. Hence we have the linear solution, and in view of the common occurrence, we use the

symbol C0 =
√
tanh kd borrowed from Fenton (1985).

kηm =
1

2
kH cos

mπ

N
, for m = 0, . . . , N,

Ū
p
k/g = c

p
k/g = C0,

B1 =
1

2

kH

C0
, Bj = 0 for j = 2, . . . , N,

q = 0,

rk/g = 1
2

Ū2k

g
= 1

2C
2
0 .

12
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For the currents, we use ū1 or ū2, if we have a value. Otherwise we assume zero.

C.2 Dimensionless variables
Here we set out and number all the variables above, made dimensionless with respect to ρ, g, and wavenumber
k, and in the last column add the initial linear solution. Once an initial value of kd has been calculated, all other
quantities can be calculated sequentially.

Variable reference Dimensionless Physical Initial value from

number j variable zj quantity linear theory

1 kd Depth Known kd or eqn (C-2)

2 kH Wave height kd× (H/d)

3 τ
√
gk Period 2π/C0

4 c k/g Wave speed C0

5 ū1 k/g Mean Eulerian current 0 or
√
kH × ū1/

√
gH

6 ū2 k/g Mean Stokes current
√
kH × ū2/

√
gH or 0

7 Ū k/g Mean fluid speed in frame of wave C0

8 q k3/g Discharge due to waves 0

9 rk/g Energy due to waves 1
2C0

10..N + 10 kηm, m = 0..N N + 1 surface elevations 1
2
kH cos mπ

N

N + 11..2N + 10 Bm, m = 1..N N Fourier coefficients B1 =
1
2
kH/C0, B2 = 0, . . .

Table C-1. List of dimensionless variables to be determined

C.3 Equations
In all the following it is assumed that values of H and d are known, plus a value of either λ or values of τ and
either ū1 or ū2.

Equation 1 –Wave height in terms of H/d

kH − kd× (H/d) = 0

Equation 2 –Wave height in terms of wavelength or period, whichever is known

kH − (H/λ)× 2π = 0 or

kH − ¡H/gτ2
¢× ³τpgk

´2
= 0.

Equation 3 – Definition of wave speed c = λ/τ , equation (B-12) in dimensionless terms,

c
p
k/g × τ

p
gk − 2π = 0.

Equation 4 –Mean Eulerian current, equation (B-13)

ū1
p
k/g + Ū

p
k/g − c

p
k/g = 0.

Equation 5 –Mean mass-transport current, equation (B-14) converted to use q

ū2
p
k/g + Ū

p
k/g − c

p
k/g − q

p
k3/g

kd
= 0.
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Equation 6 – From known or assumed numerical value of one current or the other ū1/
√
gH or ū2/

√
gH

ūm
p
k/g − ūm√

gH
×
√
kH = 0, form = 1 or 2.

Equation 7 –Mean value of η is zero, equation (B-9)

1

2
(kη0 + kηN ) +

N−1X
m=1

kηm = 0.

Equation 8 – Definition of wave height, equation (B-10)

kη0 − kηN − kH = 0.

Equations 9 to N+9 – Kinematic free surface boundary condition (B-6): using equation (B-8b) and with kXm =
mπ/N for m = 0..N :

NX
j=1

BjSj(kd, kηm) cos
jmπ

N
− Ū

p
k/g kηm − q

s
k3

g
= 0.

Equations N + 10 to 2N + 10 – Dynamic free surface boundary condition (B-7): using equations (B-8) and with
kXm = mπ/N for m = 0..N :

1

2

⎛⎝−Ūpk/g +
NX
j=1

jBjCj(kd, kηm) cos
jmπ

N

⎞⎠2

+
1

2

⎛⎝ NX
j=1

jBjSj(kd, kηm) sin
jmπ

N

⎞⎠2

+kηm − rk/g = 0.

C.4 Enumeration of variables and equations
From Table C-1 it can be seen that there are 2N + 10 variables and here we have written out 2N + 10 equations.
Some formulations of the problem (e.g. Dean, 1965) allow more surface collocation points and the equations are
solved in a least-squares sense. This is a good idea and in general would be thought to be desirable, but in practice
seems not to make much difference, and here the procedure of Rienecker & Fenton (1981) and Fenton (1988) is
followed, where the same numbers of equations as unknowns is used. In the computer program the numbering of
variables follows that of Fenton (1988)

C.5 Computational method
The system of nonlinear equations can be iteratively solved using Newton’s method. If we write the system of
equations as

Fi(x) = 0, for i = 1, . . . , 2N + 10,

where Fi represents equation i and x = {xj , j = 1, . . . , 2N + 10}, the vector of variables xj (there should be
no confusion with that same symbol as a space variable), then if we have an approximate solution x(n) after n
iterations, writing a multi-dimensional Taylor expansion for the left side of equation i obtained by varying each of
the x(n)j by some increment δx(n)j :

Fi (x(n+1)) ≈ Fi (x(n)) +
2N+5X
j=1

µ
∂Fi
∂xj

¶(n)
δx
(n)
j .

If we choose the δx(n)j such that the equations would be satisfied by this procedure such that Fi (x(n+1)) = 0, then

14
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we have the set of linear equations for the δx(n)j :

2N+5X
j=1

µ
∂Fi
∂xj

¶(n)
δx
(n)
j = −Fi (x(n)) for i = 1, . . . , 2N + 10,

which is a set of equations linear in the unknowns δx(n)j and can be solved by standard methods for systems of
linear equations. Having solved for the increments, the updated values of all the variables are then computed for
x
(n+1)
j = x

(n)
j + δx

(n)
j for all the j. As the original system is nonlinear, this will in general not yet be the required

solution and the procedure is repeated until it is.

It is possible to obtain the array of derivatives of every equation with respect to every variable, ∂Fi/∂xj by
performing the analytical differentiations, however as done in Fenton (1988), it is rather simpler to obtain them
numerically. That is, if variable xj is changed by an amount εj , then on numerical evaluation of equation i before
and after the increment (after which it is reset to its initial value), we have the numerical derivative

∂Fi
∂xj
≈ F (x1, . . . , xj + εj , . . . , x2N+5)− F (x1, . . . , xj , . . . , x2N+5)

εj
.

The complete array is found by repeating this for each of the 2N +10 equations for each of the 2N +10 variables.
Compared with the solution procedure, which is O(N3), this is not a problem, and gives a rather simpler program.

C.6 Post-processing to obtain quantities for practical use
Once the solution has been obtained, quantities rather more useful for physical calculations can be evaluated,
notably surface elevations and velocities and accelerations.

It can be shown from (B-5) and the Cauchy-Riemann equations

∂Φ

∂X
=

∂ψ

∂y
and

∂Φ

∂y
= − ∂ψ

∂X
,

where Φ is the velocity potential in the frame moving with the wave, and X = x− ct, such that

Φ(X, y) = −Ū X +

r
g

k3

NX
j=1

Bj
cosh jky

cosh jkd
sin jkX.

In the physical frame, the now unsteady velocity potential φ(x, y, t) is written

φ(x, y, t) = Φ(x− ct, y) + c (x− ct)

such that the horizontal velocities in the two systems are related by

u =
∂φ

∂x
=

∂Φ

∂x
+ c = U + c,

which result would have been obtained by just adding cx to Φ, but it is slightly simpler to have φ expressed also as
a function of x− ct. The additional function of time does not affect the dynamics, it will merely affect the manner
in which we subsequently write the unsteady Bernoulli equation. Now we have

φ(x, y, t) =
¡
c− Ū

¢
(x− ct) +

r
g

k3

NX
j=1

Bj
cosh jky

cosh jkd
sin jk (x− ct) . (C-5)

The velocity components anywhere in the fluid are given by u = ∂φ/∂x, v = ∂φ/∂y:

u = c− Ū +

r
g

k

NX
j=1

jBj
cosh jky

cosh jkd
cos jk (x− ct) , (C-6)

v =

r
g

k

NX
j=1

jBj
sinh jky

cosh jkd
sin jk (x− ct) , (C-7)
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and as φ is a function of x− ct we have simply

∂φ

∂t
= −c∂φ

∂x
= −cu. (C-8)

Acceleration components can be obtained simply from these expressions by differentiation, and from the Cauchy-
Riemann equations, and are given by.

∂u

∂t
= −c× ∂u

∂x
, where

∂u

∂x
= −

p
gk

NX
j=1

j2Bj
cosh jky

cosh jkd
sin jk (x− ct) ,

∂v

∂t
= −c× ∂v

∂x
, where

∂v

∂x
=
p
gk

NX
j=1

j2Bj
sinh jky

cosh jkd
cos jk (x− ct) ,

∂u

∂y
=

∂v

∂x
,

∂v

∂y
= −∂u

∂x
.

The total material accelerations of a fluid particle are then

Du

Dt
=

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
, and

Dv

Dt
=

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
.

The free surface elevation at an arbitrary point requires another step, as we only have it at discrete points kηm,
obtained as part of the solution. We take the cosine transform of the N + 1 surface elevations:

Ej =

NX00

m=0

kηm cos
jmπ

N
for j = 1, . . . , N,

where Σ00 means that it is a trapezoidal-type summation, with factors of 1/2 multiplying the first and last contribu-
tions. The cosine transform could be performed using fast Fourier methods, but asN is not large, simple evaluation
of the series is reasonable. The interpolating cosine series for the surface elevation is then

η(x, t) =
2

N

NX00

j=0

Ej cos jk (x− ct) , (C-9)

which can be evaluated for any x and t.

The pressure at any point can be evaluated using Bernoulli’s theorem, but most simply in the form from the steady
flow, but using the velocities as computed from (C-6) and (C-7):

p

ρ
= R− gy − 1

2

³
(u− c)2 + v2

´
. (C-10)

We consider how this relates to the unsteady Bernoulli equation

∂φ

∂t
+

p

ρ
+ gy +

1

2

¡
u2 + v2

¢
= f(t), (C-11)

where f(t) is an arbitrary function of time, determined by boundary conditions. Substituting equation (C-10) for
pressure into this gives

∂φ

∂t
+R− f(t) + cu− 1

2
c2 = 0.

From equation advect we have ∂φ/∂t+ cu = 0, giving the expression for f which is, in fact, a constant:

f = R− 1
2
c2,

16



Use of the program FOURIER for steady waves John D. Fenton

so we have the unsteady Bernoulli equation in the form

∂φ

∂t
+

p

ρ
+ gy +

1

2

¡
u2 + v2

¢− µR− 1
2
c2
¶
= 0. (C-12)

As a partial check on the subroutine POINT included in the C++ program, where ∂φ/∂t, velocities u and v (and
accelerations) are calculated, it also calculates the value of the left side of this equation.
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