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High temperature X-ray diffraction and thermo-
gravimetrical analysis of the cubic perovskite 
Ba0.5Sr0.5Co0.8Fe0.2O3-δ in different atmospheres 

M.G. Sahini, J.R. Tolchard, K. Wiik and T. Grande*  

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) with the cubic perovskite structure is known to be metastable at 
low temperature in oxidizing atmosphere. Here, the thermal and chemical expansion of BSCF 
were studied by in situ high temperature powder X-ray diffraction and thermo-gravimetrical 
analysis (TGA) in partial pressure of oxygen ranging from inert atmosphere (~10-4 bar) to 10 
bar O2. The BSCF powder, heat treated at 1000 ºC and quenched to ambient prior to the 
analysis, was shown to oxidize in oxidizing atmosphere before thermal reduction took place. 
With decreasing partial pressure of oxygen the initial oxidation was suppressed and only 
reduction of Co/Fe and loss of oxygen were observed in inert atmosphere. The thermal 
expansion of BSCF in different atmospheres was determined from the thermal evolution of the 
cubic unit cell parameter, demonstrating that the thermal expansion of BSCF depends on the 
atmosphere. Chemical expansion of BSCF was also estimated based on the diffraction data and 
thermo-gravimetrical analysis. A hexagonal polymorph BSCF, coexisting with the cubic 
polymorph, was observed to form above 600 ºC during heating. The formation of the 
hexagonal polymorph was driven by oxidation, and the unit cell of cubic BSCF was shown to 
decrease with increasing amount of hexagonal BSCF formed. The hexagonal BSCF polymorph 
disappeared upon further heating, accompanied with an expansion of the unit cell of the cubic 
BSCF.     
 

Introduction  

Ba0.5Sr0.5Fe0.8Co0.2O3-δ (BSCF) with the cubic perovskite 
structure has the last decade been considered as one of the most 
promising membrane materials for oxygen separation from air 
and as a cathode material for solid oxide fuel cells1-8. BSCF is a 
derivative of the cubic perovskite SrFe0.8Co0.2O3-δ (SCF), 
formed by partial substitution of Sr with Ba to stabilize the 
cubic perovskite crystal structure while retaining a high 
concentration of oxygen vacancies. Since the first report on 
BSCF there has been a tremendous effort to study the superior 
transport properties and ionic conductivity of BSCF and related 
materials9-10. Low vacancy formation energy and low activation 
barrier for vacancy diffusion accounts for high oxygen vacancy 
concentration and high ionic mobility in BSCF11. The material 
exhibits very high oxygen permeation flux over a considerable 
temperature range. 
 Despite the high oxygen permeation properties of BSCF, 
the long term stability of the material under operation 
conditions is of great concern. Švarcová et al. reported that the 
cubic BSCF become unstable with respect to a hexagonal 
polymorph below 850-900 ºC under oxidizing conditions12. The 
transition from the cubic to the hexagonal polymorph is quite 
complex, involving formation of several phases13-19. The 
structural phase transformation has also been observed by 
compressive creep measurements20,21, showing that cation 

diffusion is slowed down by formation of the hexagonal 
polymorph, reflecting the slow kinetics of the phase reaction 
below 900 ºC. The creep rate of BSCF ceramics is 
exceptionally high, illustrating the challenge of keeping the 
cation diffusion low while optimizing the oxygen vacancy 
mobility20. The low creep resistance questioning the actual use 
of BSCF in high temperature gas separation membranes and 
several attempts to stabilize BSCF by chemical substitution 
have appeared, both to avoid the formation of the hexagonal 
polymorph and to increase the creep resistance22-23.   
 Chemical expansion24-25, particularly for ceria and 
perovskite materials with transition metals (Co, Fe) on the B–
site is another concern with respect to the mechanical stability 
of oxygen permeation membranes26-32. The chemical and 
thermal expansion of BSCF has also been reported by several 
groups33-38, showing lower chemical expansion than other 
similar candidate membrane materials due to smaller changes in 
oxygen stoichiometry and a generally larger unit cell, which is 
less sensitive to temperature and stoichiometry changes38.  
 In this contribution we report on chemical and thermal 
expansivity behaviour of BSCF, conducted by in situ high 
temperature X–ray diffraction (HTXRD) and thermo-
gravimetrical analysis (TGA) in various partial pressures of 
oxygen. The study shows that oxidation/reduction and thereby 
oxygen anion mobility in bulk BSCF take place at a 
temperature as low as ~200 ºC. Thermal expansion and 
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chemical expansion was determined from the experimental 
data. Finally, the investigation provides additional information 
on the structural instability of cubic BSCF with respect to the 
hexagonal polymorph in oxidizing atmospheres.  
  
Experimental   

 Ba0.5Sr0.5Fe0.8Co0.2O3-δ (BSCF) powders were prepared by 
spray pyrolysis as described elsewhere12. Stoichiometric 
amount of Sr, Ba, Co and Fe-nitrate solutions were used as 
precursors to prepare the powders. The raw powder was 
calcined at 750 ºC for 24 hours and ball milled in ethanol for 24 
h, followed by heat treatment of the powder compacts at 1000 
ºC in air for 12 hours. The powder was finally pulled out of the 
furnace in order to cool the sample fast to ambient temperature 
to obtain the cubic BSCF polymorph and hinder the formation 
of the hexagonal polymorph during cooling. The particle size of 
the powder after heat treatment was investigated by scanning 
electron microscopy (SEM) using a Hitatchi S-3400N 
instrument. 
 Phase purity was determined using a Bruker AXS D8 
Advance diffractometer. High temperature X-ray diffraction 
(HTXRD) measurements were performed using Bruker AXS 
D8 Advance diffractometer equipped with an MRI TCP20 high 
temperature camera. All the data except the 10 bar O2 data were 
collected using a radiant heater with samples contained within 
an alumina sample holder. Data collected at 10 bar was 
measured using a Pt strip type resistive heater which also 
functioned as a sample support. A temperature interval of 25 ºC 
and heating rate of 200 º/h were used, with data collected from 
100 ºC to about 1000 ºC under various atmospheric conditions: 
10, 1, 0.2 (air) and 0.01( 1% O2 in N2) bar O2, and pure N2 
(partial pressure of oxygen estimated to ~10-4 bar). An S-type 
thermocouple mounted in close proximity to the sample (∼1 
mm from the sample edge) was used for temperature 
determination using the radiant heater, while the thermocouple 
was welded to the Pt-strip in the high pressure setup. Patterns 
were collected across an angular range 15−75° 2θ, which was 
the 2θ range possible using the radiant heater. A step size of 
0.016° 2θ was used. Total collection time per scan at one 
temperature was approximately 40 min. The heating rate 
between each temperature was 1 °C/s. The sample temperature 
was calibrated against separate HTXRD of a corundum 
standard. The unit cell parameters of BSCF were extracted via 
Pawley method refinement using the Bruker TOPAS software 
and a cubic model ( 3Pm m ) for BSCF. 
 Themogravimetric measurements were conducted using 
Netzsch Thermal analysis system 4 (STA449). Measurements 
were conducted using a Al2O3 crucible at a heating rate of 200 
º/h from 100 ºC to 1000 ºC, with a dwell time of 40 minutes 
after every 25 ºC. The time-temperature program of the TGA 
experiments corresponds exactly to the program used for the 
HTXRD experiments. Data were collected in different 
atmospheres: air, N2, and O2 in a similar way as the high 
temperature XRD measurements were taken. The mass changes 
prior to the measurement of samples were corrected for 
buoyancy by measurements on an empty Al2O3 crucible. The 
weight reported at each dwell temperature is the weight 
recorded in the end of each dwell period of 40 min. 
 The relative changes in the oxygen non-stoichiometry were 
calculated based on the TGA data, and the absolute change in 
the stoichiometry was estimated by using recent data for the 
oxygen non-stoichiometry of BSCF reported by Yaremchenko 
et al.38. The temperature dependence of the oxygen non-
stoichiometry (3-δ) was calculated by using the stoichiometry 

2.53 (δ=0.44) as the oxygen non-stoichiometry of BSCF at 900 
ºC in air38 as a reference point. The corresponding oxygen 
stoichiometry in O2 and N2 was estimated, assuming that the 
oxygen non-stoichiometry was equal for BSCF at 200 ºC in all 
the three atmospheres used.    
      
Results and discussion  

 Only reflections indexed to cubic BSCF with space group 
3Pm m  were observed after quenching the BSCF powder in air 

from 1000 ºC. The initial BSCF powder used in this study was 
therefore phase pure according to X-ray diffraction. The 
particle size of the BSCF was shown to be sub-micron by SEM 
(not shown). 
 Only reflections due to the cubic BSCF polymorph could be 
observed by HTXRD in N2 atmosphere. Two typical patterns of 
the BSCF powder observed during heating in inert (N2) 
atmosphere are shown in Fig. 1. The cubic unit cell of BSCF as 
a function of temperature, obtained by refinement, are shown in 
Figure 2a) together with the change in the relative weight of the 
BSCF powder measured in N2. Below around 300 ºC the 
thermal expansion of the cubic unit cell follows a linear 
relationship (red dotted line) with temperature. A non-linear 
expansion of the unit cell sets in at around 300 ºC, associated 
with a significant mass loss. Above 400 ºC the expansion of the 
lattice become close to linear again, accompanied with a steady 
mass loss. 
 The onset of the weight loss observed around 300 ºC is due 
to thermal reduction of Co/Fe in BSCF, described by the 
heterogeneous reaction 
 
Ba0.5Sr0.5Co0.8Fe0.2O3-δ = Ba0.5Sr0.5Co0.8Fe0.2O3-δ’ + (δ-δ’)/2 O2(g) (1) 

The BSCF powder had been rapidly cooled down in air prior to 
HTXRD, freezing in a relatively high oxygen vacancy 
concentration since oxidation during cooling could not occur 
due to the fast cooling rate. During reheating in inert 
atmosphere the material equilibrated with the surrounding 
atmosphere when the oxygen anions became sufficiently 
mobile and the redox equilibrium (1) could take place. At 
around 400 ºC the observed weight loss slowed down 
suggesting that above this temperature the BSCF materials is in 
equilibrium with the N2 atmosphere within each isothermal 
dwell of 40 min. Below 300 ºC the thermal reduction of BSCF 
was kinetically hindered due to the slow diffusion of oxygen 
anions. Between 300 and 400 ºC the relaxation time for the 
equilibration approaches the experimental time scale, and at 
around 400 ºC equilibrium between the oxide material and the 
surrounding was possible to establish within the timescale of 
the isothermal hold39.  
 The coefficient of thermal expansion (TEC) of BSCF in N2 
below 300 ºC and above 400 ºC are 21.6·10-6 and 25.0·10-6 K-1 
respectively, determined by a linear fit to the data in the 
temperature range 100-300 and 400-900 ºC. The thermal 
expansion of the BSCF powders is significantly higher than 
values obtained by dilatometry on polycrystalline BSCF 
ceramics38.  
 Reflections indexed to the cubic BSCF polymorph was also 
observed by HTXRD up to about 600 ºC in pure O2.  
Representative X-ray diffraction patterns collected in O2 are 
shown in Fig. 1. The cubic unit cell of BSCF as a function of 
temperature is shown in Figure 2b) together with the change in 
the relative weight of the BSCF powder measured in O2. 
Initially the unit cell increases linearly with the temperature, 
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volume of BSCF is large and the oxygen vacancy concentration 
is high, and both these two phenomena, which are also related, 
may reduce the activation barrier for cation motion. The 
formation of the hexagonal BSCF is most likely limited by 
diffusion of A-cations since B-cations are reported to be 
significantly more mobile in related LaMO3 materials50-54. The 
hexagonal polymorph was not observed to be formed in N2 and 
the disappearance of the hexagonal polymorph was shifted to 
higher temperature in pure O2 relative to air and 0.01 bar O2 
(see Fig 2a). These observations demonstrate that the phase 
transformation to the hexagonal polymorph is strongly 
dependent on the partial pressure of oxygen, and that cubic 
BSCF only become metastable with respect to the hexagonal 
polymorph at oxidizing conditions.     

Conclusions 

 The thermal evolution of the unit cell and oxygen non-
stoichiometry of cubic BSCF were determined as a function of 
temperature and partial pressure of oxygen. Oxidation/-
reduction of BSCF was already observed to occur at 
temperature as low as ~200 ºC. The lattice parameter is clearly 
dependent on both temperature and partial pressure of oxygen 
reflecting the significant thermal and chemical expansion of 
BSCF. The oxygen non-stoichiometry varied from 2.75 at ~300 
ºC in pure O2 to about 2.45 in N2 at 1000 ºC. The thermal 
expansion coefficient of BSCF was determined in different 
atmospheres as well as the chemical expansion. Formation of 
hexagonal BSCF was observed around 600 ºC in oxygen and 
air, and the formation was driven by oxidation. The formation 
of the hexagonal polymorph reduced the unit cell of the cubic 
BSCF reflecting the change in chemical composition due to the 
precipitation of the hexagonal polymorph.       
 
 
Acknowledgements 
 The support from the Research Council of Norway (RCN) 
through the CLIMIT program for SEALEM (project number 
224918) is gratefully acknowledged.  
 
Notes and references 
a Department of Materials Science and Engineering, Norwegian 

University of Science and Technology, NO-7491 Trondheim, Norway. E-

mail: grande@ntnu.no. 

 

1 Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong and G. Xiong, J. 

Membr. Sci., 2000, 172, 177. 

2 S. Liu, X. Tan, Z. Shao and J.D.C. da Costa, AIChE J., 2006, 52, 

3452. 

3 P. Zeng, Z. Chen, W. Zhou, H. Gu, Z. Shao and S. Liu, J. Membr. 

Sci., 2007, 291, 148. 

4 F.J.H. Liang, H. Luo, J. Caro and A. Feldhoff, Chem. Mater., 2011, 

23, 4765. 

5 A. Baumann, J.M. Serra, M.P. Lobera, S. Escolástico, F. Schulze-

Küppers and W. A. Meulenberg, J. Membr. Sci., 2011, 377, 198. 

6 A.V. Kovalevsky, A.A. Yaremchenko, V.A. Kolotygin, A.L. Shaula, 

V.V. Kharton, F.M.M. Snijkers, A. Buekenhoudt, J.R. Frade and E.N. 

Naumovich,  J. Membr. Sci., 2011, 380, 68. 

7 Z. Shao and S. M. Haile, Nature, 2004, 431, 170. 

8 W.  Zhou, R.  Ran and Z. Shao, J. Power Sources, 2009, 192, 231. 

9 J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. 

Lin and J.C.D. da Costa, J. Membr. Sci., 2008, 320, 13. 

10 M. Czyperek, P. Zapp, H.J.M. Bouwmeester, M. Modigell, K. Ebert, 

I. Voigt, W.A. Meulenberg, L. Singheiser and D. Stover, J. Membr. 

Sci., 2010, 359, 149. 

11 L. Wang, R. Merkle, J. Maier, T. Acartürk, and U. Starke, Appl. 

Phys. Lett., 2009, 94, 071908. 

12 S. Švarcová, K. Wiik, J. Tolchard, H.J.M. Bouwmeester and T. 

Grande, Solid State Ionics, 2008, 178, 1787. 

13 M. Arnold, T.M. Gesing, J. Martynczuk and A. Feldhoff, Chem. 

Mater., 2008, 20, 5851. 

14 D.N. Mueller, R.A. De Souza, T.E. Weirich, D. Roehrens, J. Mayer 

and M. Martin, Phys. Chem. Chem. Phys., 2010, 12, 10320. 

15 K. Efimov, Q. Xu and A. Feldhoff, Chem. Mater., 2010, 22, 5866. 

16 P. Müller, H. Störmer, M. Meffert, L. Dieterle, C. Niedrig, S.F. 

Wagner, E. IversTifée and D. Gerrthsen, Chem. Mater., 2013, 25, 

564. 

17 R. Kriegel, R. Kircheisen and J. Töpfer, Solid State Ionics, 2010, 181, 

64. 

18 J.I. Jung and D.D. Edwards, J. Mater. Sci., 2011, 46, 7415. 

19 F. Wang, T. Nakamura, K. Yashiro, J. Mizusaki and K. Amezawa, 

Phys. Chem. Chem. Phys., 2014, 16, 7307. 

20 J.X. Yi, H.L. Lein, T. Grande, S.  Yakovlev and H.J.M.  

Bouwmeester, Solid State Ionics, 2009, 180, 1564. 

21 B. Rutkowski, J. Malzbender, R.W. Steinbrech, T. Beck and H.J.M. 

Bouwmeester, J. Memb. Sci., 2011, 381, 221.   

22 S. Yakovlev, C.Y. Yoo, S. Fang and H.J.M. Bouwmeester, Appl. 

Phys. Lett., 2010, 96, 254101. 

23 S.M. Fang, C.Y. Yoo and H.J.M. Bouwmeester, Solid State Ionics, 

2011, 195, 1. 

24 S. B. Adler, J. Am. Ceram. Soc., 2001, 84, 2117. 

25 A. Atkinson and T.M.G.M. Ramos, Solid State Ionics, 2000, 129, 

259. 

26 A. Fossdal, M. Menon, I. Wærnhus, K. Wiik, M.-A. Einarsrud, and 

T., Grande, J. Am. Ceram. Soc., 2004, 87, 1952. 

27 Y. Chen and S. B. Adler, Chem. Mater., 2005, 17, 4537. 

28 S.R. Bishop, T.S. Stefanik and H.L. Tuller, J. Mater. Res., 2012, 27, 

2009. 

29 D. Chen, S.R. Bishop and H.L. Tuller, J. Electroceram., 2012, 28, 62. 

30 X. Chen and T. Grande, Chem. Mater., 2013, 25, 3296. 

31 X. Chen and T. Grande, Chem. Mater., 2013, 25, 927. 

32 D. Marrocchelli, S.R. Bishop, H.L. Tuller and B. Yildiz, Adv. Funct. 

Mater., 2012, 22, 1958. 

33 B. Wei, Z. Lü, S. Li, Y. Liu, K. Liu and W. Su, Electrochem. Solid 

State Lett., 2005, 8, A428. 

34 Q. Zhu, T. Jin and Y. Wang, Solid State Ionics, 2006, 177, 1199. 

35 J. Ovenstone, J.I. Jung, J.S. White, D.D. Edwards and S.T. Misture, 

J. Solid State Chem., 2008, 181, 576. 

36 Z. Li, B. Wei, Z. Lü, Y. Zhang, K. Chen, J. Mia, W. Su,. Ceram. Int., 

2012, 38, 3039. 

37 M.B. Choi, S.Y. Jeon, H.N. Im, E.D. Wachsman and S.J. Song, J. 

Electrochem. Soc., 2012,159, P23. 

38 A.A. Yaremchenko, S. M. Mikhalev, E.S. Kravchenko and J.R. 

Frade, .J. Europ. Ceram. Soc., 2014, 34, 703. 

39 T. Grande, J. R. Tolchard, and S. M. Selbach, Chem. Mater., 2012, 

24, 338. 



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 2012  J. Name., 2012, 00, 1‐3 | 7 

40 H. Wang, W. Yang, C. Tablet and J. Caro, Diff. Fundam., 2005, 2, 

46. 

41 S. McIntosh, J.F. Vente, W.G. Haije, D.H.A. Blank and H.J.M. 

Bouwmeester, Chem. Mater., 2006, 18, 2187. 

42 E. Bucher, A. Egger, P. Ried, W. Sitte and P. Holtappels, Solid State 

Ionics, 2008, 179, 1032. 

43 B. Liu, Y. Zhang and L. Tang, Int. J. Hydrogen Energy, 2009, 34, 

435. 

44 R. Kriegel, R. Kircheisen and J. Töpfer, Solid State Ionics, 2010, 181, 

64. 

45 J.I. Jung, S.T. Misture and D.D. Edwards, Solid State Ionics, 2010, 

181, 1287. 

46 Z. Yáng Z, A.S. Harvey, A. Infortuna, J. Schoonman, L.J. Gauckler, 

J. Solid State Electrochem., 2011, 15, 277. 

47 D.N. Mueller, R.A. De Souza, H.I. Yoo and M. Martin, Chem. 

Mater., 2012, 24, 269. 

48 A. Jun, S. Yoo, O. Gwon, J. Shin and G. Kim, Electrochim Acta, 

2013, 89, 372. 

49 A.C. Tomkiewicz, M.A. Tamimi, A. Huq and S. McIntosh, Solid 

State Ionics, 2013, 253, 27. 

50 I. Wærnhus, N. Sakai, H. Yokokawa, T. Grande, M.-A. Einarsrud, K. 

Wiik, Soli State Ionics, 2004, 175, 69. 

50 J. B. Smith and T. Norby, Solid State Ionics, 2006, 177, 639. 

51 M. Palcut, K. Wiik and T. Grande, J. Phys. Chem. C, 2007, 111, 813. 

52 M. Palcut, K. Wiik and T. Grande, J. Phys. Chem. B, 2007, 111, 

2299. 

53 M. Palcut, J.S. Christensen, K. Wiik, T. Grande, Phys. Chem. Chem. 

Phys., 2008, 10, 6544. 

 

 
   



D

A

This 

 

 

Cub
foll
 

alton T

ARTICLE 

journal is © The 

bic unit cell a
owed by therm

ransacti

Royal Society of C

and oxygen no
mal reduction 

ion 

Chemistry 2013 

on-stoichiome
and formation

Graphic

try of Ba0.5Sr
n of hexagona

cal abstra

0.5Co0.8Fe0.2O3

l polymorph. 

act 

3-δ during hea

R

Dalton

ating in O2, de

RSCPubli

n Trans., 2013, 0

emonstrating o

shing 

00, 1‐3 | 8 

oxidation 

 


