
Development and Implementation of
Computer-Based Control System for ROV
with Experimental Results

Espen Tolpinrud

Master of Science in Engineering and ICT

Supervisor: Asgeir Johan Sørensen, IMT

Department of Marine Technology

Submission date: June 2012

Norwegian University of Science and Technology

Master Thesis

Spring 2012

Development and Implementation
of Computer-Based Control

System for ROV with
Experimental Results

Keywords: Computer-Based Control Systems, Software Development
Thread Programming, LabView, HMI

Author:
Espen M. Tolpinrud

Supervisor:
Professor Asgeir J. Sørensen

Co-Advisors:
Martin Ludvigsen &

Fredrik Dukan

Delivered: 10.06.2012 Availability: Open

 NTNU Trondheim
 Norwegian University of Science and Technology
 Department of Marine Technology

MASTER THESIS IN MARINE CYBERNETICS

SPRING 2012

FOR

STUD. TECHN. ESPEN TOLPINRUD

Development and Implementation of Computer-Based Control System for ROV

with Experimental Results

Work description
The usage of Remotely Operated Vehicle (ROV) is expanding at a rapid pace. This gives a
demand for control systems that is easy to use. The implementation should also be carried out
in an intuitive and thought through way such that further development is not hindered. This
thesis continuous the work done in the fall 2011 project (Development of computer based
control systems with ROV example) where the solutions discussed will be carried out.
Implementation will take place in LabView with object oriented perspective. Unit-testing will
be conducted after new functionalities have been added to the system, with the exception of
user testing of the user interface which must be coordinated with voluntary participants. As
the implementation reaches a complete stage Hardware-In-the-Loop (HIL) testing will be
used to test communication and cooperation between the different modules in the control
system. The finalization of the system will be done by a sea trial.

Scope of work

1. Create a Software Requirement Specification (SRS) for the system.
2. Define constraints and interfaces between program modules.
3. Design a basic and an advanced Graphical User Interface (GUI) for the control

system.
4. Implement the requirements specified in the SRS in LabView.
5. Conduct necessary testing for the system.

o User testing of the GUI.
o Unit-testing of functions and modules.
o HIL testing and sea trial.

The report shall be written in English and edited as a research report including literature survey,
description of mathematical models, and description of control algorithms, simulation results, model
test results, discussion and a conclusion including a proposal for further work. Source code should be
provided on a CD with code listing enclosed in appendix. It is supposed that Department of Marine
Technology, NTNU, can use the results freely in its research work, unless otherwise agreed upon, by
referring to the student’s work. The thesis should be submitted in three copies within June 10th.

Advisors: Martin Ludvigsen Fredrik Dukan

Professor Asgeir Sørensen
Supervisor

iv

Preface

This Master thesis was written during the spring semester 2012 at the Norwegian
University of Technology and Science (NTNU). The main motivation for writing
this thesis is to create a computer-based control system, which is more flexible
regarding development and commissioning than its predecessor. It has also been
a goal to enlighten the understanding of what a Real-Time system is, and how to
implement control systems with those characteristics. There has also been a focus
on how techniques commonly used in the computer science industry, can be utilized
in the development process of a computer-based control system.

Quotations are in this thesis done in italic font with the reference to the source right
before the quotation starts. In definitions and examples, the reference is stated in
the definition- and example-header if it is a direct quotation. Notice that quotation
marks are used if the quotation is integrated in the text.

Section 4.3 and Section 6.2 have been written in cooperation with the Master
student Viktor Berg.

Espen Tolpinrud,
Trondheim, June 10, 2012

v

vi

Abstract

The demand for ROV operations has increased the last couple of decades. Still,
operations are heavily dependent on an experienced ROV pilot, but by developing
a sophisticated control system, operations can be performed with higher accuracy
than before. In addition the need for constant supervision will be reduced. It is
however important to acknowledge the fact that with increased level of automation,
fault tolerance must follow in order to maintain the reliability.

This thesis explore the various aspects development of a sophisticated computer-
based control system involves. As an overview, this includes planning, implementa-
tion, and commissioning, as well as all the steps between. The development process
utilized concepts from extreme programming in order to bring structure to the
planning and implementation phase.

The new structure of the control system use an Object-Oriented architecture in
order to create a generic setup. Commissioning work is then limited to setup of a
configuration file, and signal processing between the system and the ROV.

Together with the control system, a user interface has been created. The user
interface aims at making ROV operation more user-friendly, while at the same time
include the more advanced features. Usability testing have been conducted on both
the user interface and the control system.

The control system has been tested in a sea trial with the ROV SF 30k. The results
were promising even though it was the first time this type of a control system had
been connected to and used on SF 30k.

vii

viii

Acknowledgments

I am grateful to my supervisor Professor Asgeir J. Sørensen for his guidance both
in school and in life general. His enthusiasm together with his knowledge and
insight in the control industry is truly inspiring. Further, huge thanks to my advisor
phd. cand. Fredrik Dukan for always being helpful regarding questions and other
problems. Dr. Martin Ludvigsen deserves a thank you for his effort organizing the
preparations on the ROV 30k. The crew on R/V Gunnerus also deserves a thank
you for their hospitality during sea trials.

Huge gratitude to my classmates in room C1.072, especially Mats N̊avik Hval and
Viktor Berg for all the help, technical discussions and inspiration they have given
me during the semester. Mr. Berg deserves an extra thank you for helping me out
with bringing over modules from the old control system to the new one.

I would also like to thank Robert Nordan, P̊al Levold, Anna Makrygiannis and
Frøydi Røe Flobakk for participating in usability testing of the control system.
Without their help many faults and errors had stayed hidden.

Lastly, I want to thank my family for always being there, and believing in me.

Espen Tolpinrud,
Trondheim, June 10, 2012

ix

x

Nomenclature

ηd Desired position

ηref Position reference

ˆeta Estimated position

χ Number of flop per cycle on a given processor

σflop Number of flop per iteration

$ Data size in byte

fcore Clock Frequency for a given processor

flop FLoating-point OPeration

flops FLoating-point Operations Per Second

N Number of elements to be stored

ncore Number of cores

niter Number of iterations

AHRS Attitude and Heading Reference System

ASCII American Standard Code Information Interchange

AUR Applied Underwater Robotics

CPM Control Plant Model

cRIO compactRIO

DOF Degree Of Freedom

DP Dynamic Positioning

DVL Doppler Velocity Log

ECF Explicit Complementary Filter

FPGA Field-Programmable Gate Array

xi

xii

GUI Graphical User Interface

HIL Hardware-In-the-Loop

HiPAP High Precision Acoustic Position

HMI Human Machine Interface

HMI Light Hydrargyrum Medium-arc Iodide Light

I/O Input/Output

IDE Integrated Development Environment

LQR Linear-Quadratic Regulator

LVOOP LabView Object-Oriented Programming

NED North-East-Down

OO Object Oriented

PID Proportional-Integral-Derivative

PPM Process Plant Model

ROV Remotely Operated Vehicle

RT Real-Time

SIL Software-In-the-Loop

SRS Software Requirement Specification

TCP Transmission Control Protocol

UDP User Datagram Protocol

UTM Universal Transverse Mercator

UUV Unmanned Underwater Vehicle

WF Wave Frequency

WP WayPoint

XML eXtended Markup Language

Contents

Preface v

Abstract vii

Acknowledgments ix

Nomenclature xi

1 Introduction 1
1.1 Background and Motivation . 2

1.1.1 Underwater Vehicles . 2
1.1.2 Unmanned Underwater Vehicles 2
1.1.3 ROV Minerva . 3
1.1.4 ROV SF 30k . 3
1.1.5 Control Systems for Marine Vessels 4
1.1.6 Computer-Based Control Systems 4
1.1.7 Real Time Systems . 6

1.2 Contributions . 7
1.3 Outline of Thesis . 8

2 Software Development 9
2.1 Planning and Execution of Software Development 9

2.1.1 Scrum . 9
2.1.2 Requirement Analysis . 12
2.1.3 Object-Oriented Programming and Architecture 13
2.1.4 Event-Driven Programming and Architecture 14

2.2 Designing User Interface . 14
2.3 Software Testing . 15

2.3.1 Testing of Control Systems 15
2.3.2 Testing of User Interfaces . 17

2.4 Fault Tolerance in Software . 19
2.4.1 Introduction to Fault Tolerance 19
2.4.2 Redundancy . 24

2.5 Advanced Programming Techniques 25

xiii

xiv CONTENTS

2.5.1 Race Condition . 26
2.5.2 Semaphores . 27
2.5.3 Network Programming . 30

3 SRS for ROV DP system 33
3.1 Introduction . 33

3.1.1 Purpose . 33
3.1.2 Scope . 33
3.1.3 Definitions . 34
3.1.4 References . 35
3.1.5 Overview . 35

3.2 Description . 35
3.2.1 Product Perspective . 35
3.2.2 Product Functions . 35
3.2.3 User Characteristics . 36
3.2.4 Constraints . 36
3.2.5 Assumptions and Dependencies 36

3.3 Specific Requirements . 37
3.3.1 External Interface Requirements 37
3.3.2 Functional Requirements . 39
3.3.3 Other Functional Requirements 40
3.3.4 Performance Requirements 41

3.4 Design Constraints . 41
3.5 Software System Attributes . 42

3.5.1 Reliability . 42
3.5.2 Availability . 42
3.5.3 Security . 42
3.5.4 Maintainability . 42
3.5.5 Portability . 42

3.6 Other Requirements . 43

4 The Control System - Njord 45
4.1 Structure . 45
4.2 Initialization . 50
4.3 6-DOF Adaptation . 50

4.3.1 Observers . 51
4.3.2 Guidance Systems . 55
4.3.3 Controllers . 57
4.3.4 Thrust allocation . 58

4.4 Communication Between Systems . 58
4.4.1 Network Communication . 58
4.4.2 compactRIO . 59

4.5 Testing of the Control Structure . 60
4.6 Fault Tolerance in Njord . 61
4.7 Known Problems . 61

5 The Graphical User Interface - Frigg 63
5.1 Concept . 63
5.2 Panels, Dialog Boxes and Functionalities 65

5.2.1 DP Operations . 65
5.2.2 Tracking . 67
5.2.3 Joystick . 67
5.2.4 Camera Control . 69
5.2.5 Light Control . 69
5.2.6 Manipulator Control . 70
5.2.7 Collecting Unit . 72
5.2.8 Map Visualization . 72
5.2.9 Online Tuning . 73
5.2.10 Graph View . 75
5.2.11 Help Center . 75
5.2.12 Startup Dialog Box . 76
5.2.13 Set Origin Dialog Box . 76
5.2.14 Options Dialog Box . 76

5.3 Usability Testing . 78
5.3.1 User-Friendly Testing . 79
5.3.2 Functionality Testing . 80

6 Commissioning 81
6.1 NaviPac and Communication String Setup 81
6.2 Wet Test and Sea Trial . 82

7 Concluding Remarks 87
7.1 Conclusion . 87
7.2 Recommended Further Work . 89

Bibliography 93

Appendix A API Njord I

Appendix B Software Requirement Specification Template LIX

Appendix C Notation of SNAME(1950) for marine vessels LXIII

Appendix D Option Panels LXV

Appendix E Graph Panels LXIX

Appendix F Online Tuning Panels LXXIII

Appendix G Help Center Panels LXXVII

xv

xvi LIST OF FIGURES

List of Figures

1.1 Launching of the ROV SF 30k. 4
1.2 Control Structure, modified from [1]. 5

2.1 Schematic Illustration of unit testing as presented in [2]. 16
2.2 User friendly testing in development phase, translated from [3]. . . . 20
2.3 Conduction of user friendly testing, translated from [3]. 21
2.4 Regions of required and degraded performance from [4]. 23
2.5 Example of running pattern with threads. 25
2.6 Illustrative example of Race Condition and avoidance. 26
2.7 Example Code of a C-program with Deadlock. 29

4.1 Class Relations in Njord. 46
4.2 Complete model of the adaptive nonlinear passive observer. 55
4.3 Wave filter subsystem including adaptive law. 56
4.4 Modified bias estimator. 56
4.5 Modified wave estimator. 57

5.1 The user interface, Frigg. 64
5.2 DP Panel in Frigg. 66
5.3 Tracking Panel in Frigg. 67
5.4 Joystick Panel in Frigg. 68
5.5 Joystick Axis Command Value Characteristics. 69
5.6 Joystick Integrated on ROV Pilot Chair. 70
5.7 Camera Control Panel in Frigg. 70
5.8 Light Control Panel in Frigg. 71
5.9 Manipulator Control Panel in Frigg. 71
5.10 Collecting Unit Control Panel in Frigg. 72
5.11 Map Visualization in Frigg. 73
5.12 Tuning Panel in Frigg. 74
5.13 Graph View in Frigg. 75
5.14 Help Center for Frigg. 76
5.15 Startup Dialog Box in Frigg. 77
5.16 Set Origin Dialog Box in Frigg. 77
5.17 Option Dialog Box in Frigg. 78

6.1 Plots of Translational motion during DP test. 83
6.2 Plots of Rotational motion during DP test. 84
6.3 Plots of Translational motion during Direct Thrust Allocation Mode

with Joystick. 85
6.4 Plots of Rotational motion during Direct Thrust Allocation Mode

with Joystick. 86

D.1 DP Options Panel as viewed in Options Panel, Frigg. LXV
D.2 Tracking Options Panel as viewed in Options Panel, Frigg. LXV
D.3 Joystick Options Panel as viewed in Options Panel, Frigg. LXVI
D.4 Port Configuration Panel as viewed in Options Panel, Frigg. LXVII
D.5 Power Instruments Panel as viewed in Options Panel, Frigg. LXVII

E.1 Position Plots as viewed in GraphView, Frigg. LXIX
E.2 Velocity Plots as viewed in GraphView, Frigg. LXX
E.3 Thruster Plots as viewed in GraphView, Frigg. LXX
E.4 Altitude Plots as viewed in GraphView, Frigg. LXXI
E.5 MTi Plots as viewed in GraphView, Frigg. LXXI
E.6 ECF Plots as viewed in GraphView, Frigg. LXXII

F.1 Nonlinear PID Tuning Panel as viewed in Tuning Panel, Frigg. . . . LXXIII
F.2 LQR Tuning Panel as viewed in Tuning Panel, Frigg. LXXIV
F.3 Linear PID Tuning Panel as viewed in Tuning Panel, Frigg. LXXIV
F.4 Kalman Filter Tuning Panel as viewed in Tuning Panel, Frigg. . . . LXXV

G.1 The Main Display in Frigg Help Center. LXXVII
G.2 Joystick Help as displayed in Frigg Help Center. LXXVIII
G.3 Joystick Button Configuration as displayed in Frigg Help Center. . . LXXVIII
G.4 Tracking Help as displayed in Frigg Help Center. LXXIX
G.5 Camera Panel Help as displayd in Frigg Help Center. LXXIX
G.6 Light Panel Help as displayed in Frigg Help Center. LXXX
G.7 Map Visualization Help as displayed in Frigg Help Center. LXXX

List of Algorithms

1 Main Thread. 47
2 Control Structure. 48
3 Joystick Message Receive Thread. 49
4 Send TCP Message. 49

xvii

xviii LIST OF ALGORITHMS

5 Receive TCP Message. 50
6 Pseudo Code for the HMI Timer Button 71

Chapter 1

Introduction

In 2010 a DP system[5],[6] was implemented on Minerva. The current control system
stem from this, as well as contributions from several Master and PhD. students.
There have been no rules or guidelines regarding development, and it seems that
every contribution is created with low to none consideration to the rest of the
system. The result of this is a surface structure in the block diagram that is barely
readable, and time consuming to understand. The size of the block diagram is
approximately 19000 × 4800 pixels. This equals about 10 × 5 TVs with full HD
resolution or 14× 7 regular laptop screens.

The way the program has been created gives an impression of fast and ad-hoc
solutions. This can be a reflection from lack of predefined interfaces between
the modules. When developing large systems it is of major importance to have
clearly defined interfaces for the modules, especially if there are more than one
developer.

The lack of proper documentation makes it even worse to maintain the control
system, hence further development is not advised from the current foundation.

This thesis is written as a contribution to the Applied Underwater Robotics
Laboratory[7] (AUR-Lab). The AUR-lab is a reliance from NTNU where sev-
eral fields of study participate in research and development in the ocean space.
This include areas like marine biology and archeology, and robotics. AUR-Lab
was officially opened in August 2011. However, the concept had been in use for at
least a couple of years already. As of spring 2012 a new addition to the robotics
infrastructure were taken in use, the Remotely Operated Vehicle (ROV) 30k together
with the control system developed in this thesis.

1

2 CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

In the last couple of decades the demand for underwater operations and hence
Underwater Vehicles have had a strong increase. The main contributor of the
demand is the oil and gas industry as new oil reserves is found on depths outside
the reach of a human diver.

1.1.1 Underwater Vehicles

The history of underwater vehicles is quite young compared to the ancient history
of surface vessels. The earliest surface vessels is assumed to have been created
for about 45 000 years ago, however the earliest documentation of organized ship
use is dated to about 4th century BC. Underwater vehicles emerged in the 17th
century as a way to explore the sea floor. The military potential was however
quickly discovered.

Definition 1.1. From [8]

Underwater Vehicle: small vehicle that is capable of propelling itself beneath the
water surface as well as on the water’s surface. This includes unmanned
underwater vehicles (UUV), remotely operated vehicles (ROV), autonomous
underwater vehicles (AUV) and underwater robotic vehicles (URV). Underwa-
ter vehicles are used both commercially and by the navy.

1.1.2 Unmanned Underwater Vehicles

The first UUVs were torpedoes or torpedo shaped, and were not taken into com-
mercial use until the oil and gas industry recognized the potential within these
machines. Unmanned Underwater Vehicles are often used as a generic term for
AUVs and ROVs.

Autonomous Underwater Vehicles

In 1957 the first AUV was developed at the Applied Physics Laboratory at the
University of Washington. This was called Special Purpose Underwater Research
Vehicles (SPURV), and was used to study diffusion, acoustic transmission and
submarine wakes. Today AUVs are often used in survey missions like mapping the
seabed or inspection of laid pipelines.

1.1. BACKGROUND AND MOTIVATION 3

Remotely Operated Vehicles

The first ROVs were built in the 1950s by the Royal Navy (British Armed Forces),
and early development was funded by the US Navy. However, later on it was
commercialized as the oil and gas industry had an increasing demand in usage of
ROVs. An ROV is usually a highly maneuverable unmanned underwater vehicle
connected to a surface vessel through an umbilical. On the surface vessel, an ROV
pilot controls the movement of the vehicle through a control system interface. ROVs
are today commonly used in the offshore oil and gas industry, as well as inside the
field of military and science. ROVs are categorized by their size, weight, ability and
power.

Micro small in size and weight, usually below 3 kg.

Mini larger than the micro ROV, usually around 15 kg.

General typically less than 5 hp propulsion. May carry a small manipulator, and
max operation depth is less than 1000 meters.

Light Work Class typically less than 50 hp propulsion. Can carry more than one
manipulator, and max operation depth is less than 2000 meters.

Heavy Work Class typically less than 220 hp propulsion. Can carry at least two
manipulators, and max operation depth is down to 3500 meters.

Trenching/Burial typically more than 200 hp. Have the ability to carry a cable
laying sledge. Max operation depth is up down to 6000 meters.

1.1.3 ROV Minerva

Minerva is a SUB-Fighter 7500, and was a specially designed ROV by Sperre A/S
in 2003 to fulfill the needs of the research facilities at NTNU. With a maximal
depth of 700 meters and 2 brake horse power (bhp) propulsion on each thruster,
Minerva is classified as a general ROV. Minerva is being used in a wide range
of applications such as biological research, geological surveys and development of
control systems.

1.1.4 ROV SF 30k

SF 30k (Shown in Figure 1.1) is, as Minerva, also created by Sperre A/S, and is a
SUB-Fighter 30k. It was used by Trondheim Biological Station before NTNU and
AUR-Lab took over the operation in December 2010. The propulsion on SF 30k is
4 bhp on each thruster, while the umbilical is 1100 meters long. This results in a
classification between Light Work Class and General type of ROV.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Launching of the ROV SF 30k.

1.1.5 Control Systems for Marine Vessels

The first navigation control systems found on ships emerged at the latter half of
the 19th century. These were servo-controlled steering systems[9]. Later in 1911
Elmer Sperry introduced the first automated closed loop control for ship steering
mechanism.

Modern marine control systems follow the schematic layout shown in Figure 1.2
where the modules are separated in different time domains depending on their
update frequency.

The mission management contains planning of the mission, and execution of time
consuming applications which are too heavy to be run at real-time. The main focus
of this thesis however deal with the real-time control section, including monitoring
of the system through an user interface.

1.1.6 Computer-Based Control Systems

In the early 1950s the idea of using computers in control systems emerged. At
the beginning applications in missiles and aircrafts were investigated. A couple of
years later, in 1956, Thomson Ramo Woodridge (TRW) and Texaco studied the
feasibility of using computer control in the process industry, and in 1959 the system
went on-line [10]. In the following years and throughout the 1960s, many feasibility
studies of computer-based control systems in the process industry were carried out
and published in the journal Control Engineering.

The first control computers run as an operator guide or set-point control, due to

1.1. BACKGROUND AND MOTIVATION 5

Figure 1.2: Control Structure, modified from [1].

their lack of reliability. This was categorized as supervisory modes of an operation.
However, as the computer technology evolved in the 1960s, Direct Digital Control
(DDC) emerged. This mode gave the computer direct control of the process. The
DDC systems were more flexible than the old analog systems as no rewiring were
needed. The additional cost of adding another control loop were also small compared
to the old analog systems. The down side of DDC systems were however the initial
cost and the new way of designing control systems.

With the introduction of minicomputers in the second half of the 1960s, there
was a rapid increase of computer controlled applications. This was possible as the
computers became smaller in size, were faster at computations and were more reliable
than their predecessors. During the 1970s the microprocessors were introduced
as well as the financial costs were heavily reduced, especially during the 1980s.
This opened the possibility to use computer-based control systems in a larger scale
than before, and today practically all new control systems are based on computer
control.

6 CHAPTER 1. INTRODUCTION

1.1.7 Real Time Systems

For a control engineer it is important to know what a Real-Time (RT) system is, as
almost all control systems also are RT systems. A RT system can be defined as:

Definition 1.2. Real-Time System:
From [11]

Any system in which the time at which output is produced is signifi-
cant. This is usually because the input correspond to some movement in
the physical world, and the output has to relate to that same movement.
The lag from input time to output time must be sufficiently small for
acceptable timeliness.

From [12]

...any information processing activity or system which has to respond
to externally generated input stimuli within a finite and specified period.

From [13]

A real-time system is a system that is required to react to stimuli
from the environment (including the passage of physical time) within
time intervals dictated by the environment.

The definitions presented above in Definition 1.2 cover a wide range of computer
activities. In [14] it is stated that “the correctness of a real-time system depends
not only on the logical result of the computation, but also on the time at which the
results are produced”. What this means in practice depends on the application and
the criticality level of the timing. In order to distinguish between the different levels
of RT, additional terminology must be added. It is common to use soft, firm and
hard as description of the RT level requirements. In this thesis Definition 1.3 is
proposed for RT system categorization.

Definition 1.3. Motivated by [14], the following definition for Real-Time system
categorization is proposed.

Soft Real-Time - Allow a process to exceed a dead line, but the result is degraded.
This then has a bad influence on the overall system quality.

Firm Real-Time - An occasionally missed dead line is tolerated. However the
system quality may be degraded by this. The usefulness of the result after a
dead line is said to be zero.

Hard Real-Time - No missed deadlines are tolerated. If this occurs it results in
a total system failure.

In order to develop a RT software application, every component needs to be set up
for RT usage. Synchronous programming languages have to be used together with

1.2. CONTRIBUTIONS 7

a RT network on a RT operating system, especially if the application is said to be
mission critical.

1.2 Contributions

The contributions of this thesis is within development, implementation and com-
missioning of a computer-based control system with all its aspects. The author has
in addition helped out in the preparations of the ROV SF 30k. Contributions can
be categorized as following:

• DP Control system:

– Planning of the software architecture based on an Object-Oriented struc-
ture.

– Implementation of the planned software architecture in LabView with
both HIL-testing and sea trial as verification.

– Creating an Application Programming Interface for the control system.
(Appendix A)

• Graphical User Interface:

– Implementation of a completely independent user interface to be used
with the control system.

– Conduct usability testing of the user interface to verify user-friendliness.

Further, definitions of the following topics are proposed.

• RT system categorization is proposed (Definition 1.3).

• Class terms used in Object-Oriented programming (Definition 2.1).

• Access Scope used in Object-Oriented programming (Definition 2.2).

• Event as used in Event-driven programming (Definition 2.3).

• Deadlock (Definition 2.15).

• Livelock (Definition 2.17).

Source code for the project can be found in the repository folder at: https://
lerke.felles.ntnu.no:8443/svn/AURcontrolsystem. A Subversion (SVN) tool
must be used in order to access the files. The folder also has limited access, and
clearance must be given by the system administrators. The repository location is
in the AUR-folder on the Lerke-server, \\lerke.felles.ntnu.no\AUR.

https://lerke.felles.ntnu.no:8443/svn/AURcontrolsystem
https://lerke.felles.ntnu.no:8443/svn/AURcontrolsystem
\\lerke.felles.ntnu.no\AUR

8 CHAPTER 1. INTRODUCTION

1.3 Outline of Thesis

Chapter 2 presents how software can be developed in a structured manner. An
introduction to the extreme programming technique, Scrum, is given, as well
as outlining of software testing, especially on computer-based control systems.
Concepts of Object-Oriented programming and Event-driven programming
are described, as well as programming techniques used in development of RT
systems.

Chapter 3 outline the Software Requirement Specification used in the development
process. This chapter can be treated like an own document.

Chapter 4 explains how the control system, Njord, is build up. This include an
overall layout, class relations, communication interface and fault tolerance.
Further, the simulation testing is discussed.

Chapter 5 contains the concept of the user interface, Frigg. Documentation of
the different panels and their functionalities are explained. The results from
usability testing is also outlined.

Chapter 6 describe the preparations and the execution of the sea trial. Results
from the first DP operation is presented.

Chapter 2

Software Development

This chapter aims at giving the reader a proper foundation of understanding on
how a large computer-based control system can be implemented by using different
tools and procedures. In Section 2.1 the planning and execution phase of a software
project is outlined. Concepts when designing a user interface is explained in Section
2.2. Section 2.3 gives a brief introduction on software testing. The following section,
Section 2.4, introduce the aspect of fault tolerant systems. Lastly, in Section 2.5,
introduces the reader to programming techniques commonly used in Real-Time
applications.

2.1 Planning and Execution of Software Develop-
ment

2.1.1 Scrum

There are several different ways of developing computer programs. In the late 1990s
and early 2000 extreme programming gained popularity. Extreme programming
introduced an agile working environment which lead to large flexibility and also
more efficient working. A branch inside of extreme programming is scrum[15],[16].
This is a methodology embraced by many software developers, but also in corporate
settings, scrum has become popular.

Scrum can be difficult in the beginning as the team members are unaccustomed to
the changes introduced by this procedure. Other factors can be that the project is
complex such that there is a need for more advanced techniques in order to reduce
the complexity level and make it manageable. It is important that the developing
environment is set up for scrum as well.

9

10 CHAPTER 2. SOFTWARE DEVELOPMENT

In scrum there are several terms and expressions defining the different parts of the
procedure. The most important are described in this section. For further reading,
see [15] and [16].

Product Backlog is a high-level list containing what to be developed during the
process and is maintained during the project. Each entry in this backlog has
a broad description of the functionality prioritized by business value and is
managed by the product owner. During the sprint planning these entries
are given a development effort by the team. The sorting of the list is then
dependent on business value, and if there are two entries with same value
the one with lower development phase is prioritized as this will give a larger
increase on the Return-Of-Investment (ROI).

Sprint Backlog is a list of the tasks to be performed in the sprint. Each task
should give a work load between four to sixteen hours. The details in the
list is sufficient such that everyone in the team knows what to do. It is
recommended that the tasks is not to be assigned to, but rather picked by
the team members according to what their skill set are. This way of choosing
work tasks encourage self-organization in the team.

User stories are one or more sentences that capture the essence of what the user
want to achieve. They are created by the product owner or in some cases by
the customer, and are their way of influencing the development process. A
user story is usually on the following form:

As a <role>, I want <goal/desire> so that <benefit>

Sprints are the interval of time when implementation takes place. These periods
usually last between one to four weeks. During a sprint the team works with
the project in an intensive manner.

When working with scrum there are three characteristic roles. These are:

Scrum Master - This person is responsible for the scrum process, and makes sure
it is progress in the project. The Scrum Master also make sure the team stay
focused at the task at hand and achieve the sprint goals.

Product Owner - Sometimes called the “voice of the customers”. The product
owner ensure that the team deliver value to the business. The person also
create user stories to be used in the product backlog.

Team - A group of five to nine people usually with cross-functional skills. Their
task is to deliver the product. The team is preferably self-organized and self
led, but also with use of team management policies.

In addition to these roles, there are:

Stakeholders - Also called users or customers. They are the reason for the project
and whom the end result will benefit. Stakeholders are only active in the
scrum process during sprint review meetings.

2.1. PLANNING AND EXECUTION OF SOFTWARE DEVELOPMENT 11

Managers - People responsible for setting up the development environment.

An important part of scrum is “scrum-meetings”. These are divided into several
different types:

Daily Scrum - A short meeting, often limited to 15 minutes where every team
member answer the following questions:

• What have you done since yesterday?

• What are you planning to do today?

• Any impediments or stumbling blocks?

This meeting should also occur at the same time and place every day.

Scrum of Scrums - A meeting at the end of the day that focus on integration
and areas with overlap in the work. A designated person from each team is
attending the meeting such that every team is represented. The Scrum of
scrums meeting follow the same procedure as Daily Scrum described above,
but the following questions are also included:

• What has your team done since we last met?

• What will your team do before we meet again?

• Is anything slowing your team down or getting in their way?

• Are you about to put something in another team’s way?

Sprint planning meetings - This is a meeting that is held in the beginning of
every sprint cycle. Here the purpose is to prepare the “Sprint Backlog” and
identify amount of work to be done during the sprint. The meeting has a
time limit of eight hours, where the four first is allocated to product owner
and the team for a dialog for prioritizing the product backlog. The next four
hours is only for the team where they discuss a plan for the sprint. This last
part results in a sprint backlog.

Sprint review meetings - This is one of two meetings to be hold at the end of a
sprint. The meeting consist of a discussion of what was completed and not.
A presentation for the stakeholders about the achieved goals is also scheduled.
This type of meeting has a time limit on four hours.

Sprint retrospective - This is the second meeting in the end phase of a sprint.
All the team members reflect on the past sprint and try to come up with
improvements to be implemented in the work strategy immediately. The
questions to answer is:

• What went well during the sprint?

• What could be improved in the next sprint?

This meeting has a three hour time limit.

12 CHAPTER 2. SOFTWARE DEVELOPMENT

Notice that the time limits given above is for sprint lengths of four weeks. If the
sprint is shorter, the meeting lengths should be scaled accordingly. I.e. if the sprint
is a two week process, the meetings should be half of what it is for four weeks.

2.1.2 Requirement Analysis

When developing software it is important to know what the application is intended
for. In order to to so a requirement analysis is needed. Requirements express what
the application is meant to do, not how to implement it. [2] gives the following
example for an accounting application:

Correct - The system shall allow the user to access his account balance.

Incorrect - Customers’ account balances will be stored in a table called “balance”
in an Access database.

It should however be noted that the incorrect requirement given above as a matter
of fact can be correct if the user specifically asks for, in this case, that account
balances is stored in an Access database with the name given “balance”. This is
then the exception of the rule.

Requirements can be divided into layers of increasing details. A requirement given
with low details in a higher level, can in a lower level be the source for one or more
specific requirements. The total output from this analysis is then called Software
Requirement Specification (SRS) or just Requirement Specification. Requirement
analysis can be divided into two groups, Customer Requirements or C-Requirements
and Developer Requirements or D-Requirements. C-Requirements are overall
requirements describing the purpose of the application. They are created as the
name indicates by the customers, and is expressed through a language clear to them.
On the other hand the D-requirements are more specific and structural in their
formulation. These requirements are created by the developers. C-Requirements
is then characterized as fist level, and D-requirements is second level, where the
different levels are as described in the previous paragraph.

In order to make full use of SRS they have to be written down as it works like a
road map for the developers. Without a reliable source for the requirements it is
hard to know if a goal is accomplished, perform proper tests and also satisfy the
customers. Another important aspect is detection of defect requirements. A defect
requirement can be costly if not noticed until the end of the project. It is therefore
advised to invest time in finding such defects at an early stage of the development
process, and with use of the written SRS this can be done in a structural manner.
However, it often happen that the customers do not know what they want in the
start phase, which makes early defect detection impossible. It is then important
to have a close cooperative relation with the customers together with structured
iterative working loops.

The template from [17] is given in Appendix B, Definition B.1.

2.1. PLANNING AND EXECUTION OF SOFTWARE DEVELOPMENT 13

2.1.3 Object-Oriented Programming and Architecture

The main advantage with the use of Object-Oriented (OO) Architecture is the
intuitive way of modeling the different components in a system. The main building
block in OO Architecture are classes. An instance of a class is called object, hence
the name Object-Orientation. A class must always have one default constructor,
but it is often that classes have more than one constructor. Constructors should
be designed such that they initialize a new instance of the class depending on the
input arguments in the constructor.

Definition 2.1. Suggesting the following definition:

Class is a data type that have both state and behavior. These qualities are from
Data Members and Methods.

Data Members enables an instance of a class to maintain state. A Data Member
is a data field type.

Methods enables an instance of a class to have behavior, sometimes depending
on the state. Methods are functions and subroutines specifically made for the
class or an instance of the class.

OO programming support encapsulation of data members. This is used to protect
the values from volatile access, and limitation of property rights. Usually, write-
or set-methods are private for the class. “Private” is a keyword used to define the
access scope of data members and methods. The different access scopes are defined
in Definition 2.2.

Definition 2.2. Proposing the following definition for Access Scope:

Public access scope allows access for everyone.

Protected access scope allows access for the class and all sub classes of the
particular class.

Private access scope allows only the class itself to have access.

Community or friend access scope allows a function outside the class to have
access to private and protected data members and methods.

A huge advantage with OO programming is the class inheritance feature. Inheritance
is, as the name indicates, properties and qualities passed down to one or more child
classes. A widely used notation when talking about inheritance is parent and child,
where a child inherit from a parent.

A common use of inheritance is by utilizing abstract classes. These classes then
works as a template for the common properties among the child classes. Methods
can be specified to be overridden in child classes. This means that a method body
is redefined, but the method interface stays the same.

Alongside inheritance, polymorphism is achieved. By this it is meant that an object

14 CHAPTER 2. SOFTWARE DEVELOPMENT

can act as an instance of another class as long as it is inside of the inheritance chain.
This is commonly used when calling overridden methods, especially if the caller
may change.

In OO programming methods can be specified to be either dynamic or static
dispatched. A dynamic dispatched method is related to the calling instance and its
data members. On the other side, a static dispatched method is a generic method
which yields for all instances of the class. This means that a static dispatched
method will give the same output from a given input, regardless the calling object,
while the dynamic dispatched often is dependent on data members, which in turn
are related to the calling object.

2.1.4 Event-Driven Programming and Architecture

Event-driven programming is usually used as a supplementary programming paradigm
where its functionality is integrated with the main concept. The most common
form of this is exception handling, but also when creating GUI, the event-driven
paradigm is widely used. The principle consists of listeners and events. When a
listener detects a change in condition, e.g. a button is pressed, an event is thrown,
and a predefined piece of code is executed to match the desired action from the
user. This gives a dynamic execution where the executed code is in accordance to
what is desired.

Definition 2.3. Proposing the definition:
An Event is an action, for which a given reaction may or may not be created.

Further, an event must be added to a listener’s event-list in order to be detected.

From Definition 2.3 it is said that all possible events may not be handled by the
program. The reason for this is that it is neither necessary nor appropriate to do
so. However, when utilizing event-driven programming as error handling, it is a
goal to include restoration code for everything that can go wrong, even though this
is most unlikely to achieve.

When analyzing event-driven programs there are no one-way stream in the flow,
hence the implementation can look messy and hard to understand. It is recommended
to look at the independent components and their invocation code rather than the
whole system at once.

2.2 Designing User Interface

Development of a Human Machine Interface (HMI), or Graphical User Interface
(GUI), is slightly different from other programs. Input from a human user may not
always follow the guidelines of what is intended. Other differences revolve around
the external look of the user interface.

2.3. SOFTWARE TESTING 15

In [18] a list of eight guidelines has been assembled. These principles derive from
experience and are redefined over several decades. It should however be noted that
a complete and universal list cannot be made as validation and tuning is required
for each design domain, still it is a good starting point.

Definition 2.4. The Eight Rules of Interface Design as stated in[18]:

1. Strive for consistency.

2. Cater to universal usability

3. Offer informative feedback

4. Design dialogs to yield closure

5. Prevent errors

6. Permit easy reversal of actions

7. Support internal locus of control

8. Reduce short-term memory load

Especially point 5, Prevent errors, in Definition 2.4 must be emphasized. To reduce
the possibility of the user creating a system error is of major importance. This
include limiting button access, checking of input fields and such.

2.3 Software Testing

Testing is the only way to ensure system behavior according to specifications. It
is therefore good practice to allocate time in the development phase to conduct
various tests on parts or the whole system. It is important to derive a test plan
and follow it. This increases efficiency and time consumption is kept at a minimum.

Definition 2.5. In [2] it is stated:

Goal of testing - Maximize the number and severity of defects found per dollar
spent. Thus: test early

Limits of testing - Testing can only determine the presence of defects, never their
absence. Use proofs of correctness to establish “absence”

2.3.1 Testing of Control Systems

A common practice inside software engineering is to use unit testing.

Unit testing is the earliest types of testing available when developing a program,
and is a structural testing procedure. A unit is defined as the smallest testable
parts in the program. This can be a function, or an interface such as a class.

16 CHAPTER 2. SOFTWARE DEVELOPMENT

Figure 2.1: Schematic Illustration of unit testing as presented in [2].

The testing procedure aims at verifying each part to ensure correct behavior. In
Figure 2.1, a setup for a test schedule is shown. By utilizing this testing procedure,
errors introduced by the programmer are put to a minimum at an early stage of the
development process. In order to reduce faults and errors caused by communication
between modules a full system test is needed. HIL-testing has become more popular
in the control environment the later years. Despite the name “Hardware-In-the-
Loop”, HIL-testing is a computer-based software testing procedure. In order to
perform HIL testing an accurate simulator for the vessel is needed. The simulator
should be able to simulate dynamic response of the vessel, thruster and propulsion
systems, sensors, position reference systems, power generation distribution, main
consumers and other relevant equipment[19]. The control system and the simulator
is then connected to each other through the control system interface. The reason for
this is to create a realistic testing environment and also ensure proper information
exchange between the control system and the plant. The control system interface is
often a network connection or a bus interface.

HIL-testing is used to detect faults, errors and failures in the controller software.
Verification of the control system can also be done through this. HIL-testing can
contribute to perform virtual sea trials even before the vessel itself is built. This
leads to a more finalized version of the program to be implemented on the vessel,
which again gives shorter commissioning, integration and tuning times.

The main down side with HIL-testing is the constraint of Real-Time clock speed. A
new way of performing testing could then be through Software-In-the-Loop (SIL)
testing as described in [20]. This involves that the control system and the simulation
system runs at the same clock speed, and is then not restricted to real time clock

2.3. SOFTWARE TESTING 17

speed as the HIL testing is. This gives the ability to execute more tests in shorter
time. A critical requirement for the SIL testing is though that there are no user
inputs during the simulation. To overcome this, a predefined configuration file can
be created with programmed user inputs. It is however important to acknowledge
that SIL testing cannot replace HIL testing, but the two can be used in different
testing procedures to utilize their strong sides. SIL testing can have faster simulation
time compared to HIL testing and can be especially suited for long time simulations.
On the other hand HIL testing gives the ability to perform on-line tuning, as well
as real time results. HIL testing should then be used especially in finalization
tests.

When testing it is advised that another person performs them. By doing so the risk
of hiding weak points is reduced. Also, during HIL or system tests, persons without
any experience with the program should have a go at it. This will often bring out
unknown errors due to unforeseen scenarios by the engineer.

2.3.2 Testing of User Interfaces

User interfaces is usually tested in a bit different manner. There is no way of telling
a good interface from another until it has been used by the customer since it is the
customer that decides whether or not the interface fulfill their expectations and
needs. Often an expert is called in to perform a review of the interface. These
Expert Reviews often aim at locating faults and weaknesses in the interface.

There are different types of expert reviews which all have their own characteristics.

Definition 2.6. Expert Reviews as presented in [18]:

• Heuristic evaluation. The expert reviewers critique an interface to deter-
mine conformance with a short list of design heuristics, such as the Eight
Golden Rules (Definition 2.4). It makes an enormous difference if the experts
are familiar with the rules and are able to interpret and apply them.

• Guidelines review. The interface is checked for conformance with the
organizational or other guidelines document. Because guidelines documents
may contain a thousand items or more, it may take the expert reviewers some
time to absorb them and days or weeks to review a large interface.

• Consistency inspection. The experts verify consistency across a family of
interfaces, checking the terminology, fonts, color schemes, layout, input and
output formats, and so on within the interfaces as well as in the documentation
and online help.

• Cognitive walkthrough. The experts simulate users walking through the
interface to carry out typical tasks. High-frequency tasks are a starting point,
but rare critical tasks, such as error recovery, also should be walked through.

18 CHAPTER 2. SOFTWARE DEVELOPMENT

• Metaphors of human thinking (MOT). The experts conduct an inspec-
tion that focuses on how users think when interacting with an interface. They
consider metaphors for five aspects of human thinking: habit, the stream of
thoughts, awareness and associations, the relation between utterances and
thoughts, and knowing.

• Formal usability inspection. The experts host a courtroom-style meeting,
with a moderator or judge, to present the interface and to discuss its merits
and weaknesses. Design-team members may rebut the evidences about problems
in an adversarial format.

Another common practice when developing user interfaces is to include the customer
at an early stage. This makes it possible to define the customers desires and
constraints, and then design the user interface. Testing of the suggested solution
is an important part of this methodology. One or more end-users are asked to
participate in testing of the interface. In the testing procedure a prototype or
working prototype is presented to the test subject. The test subject is then given
one or more tasks and will try to perform these task with the prototype. The
prototype can be a schematic illustration, or a small program. However, it is
important that the prototype is a good reflection of the real interface.

This type of testing is often called user testing or usability testing. The testing
procedure is summarized in Definition 2.7

Definition 2.7. translated from Norwegian in [21]:

• Create realistic tasks for the user and find other users with the same knowledge
level as the expected end-users. Do not use persons familiar with the product.

• Describe the purpose with the test. Let them know that you are testing the
product, not them. They can also quit at any time. Ensure them that it does
not matter if they are doing something wrong, as it will enlighten problems in
the design.

• Give a brief presentation about the equipment

• Explain how to think loud, and ask the test subjects to verbalize what they are
thinking as they use the product.

• Describe the task, and introduce the product to the users.

• Ask if there are any questions before they start the testing. Afterwards start
the observation.

• Finish the observation. Tell the user what you found and answer their ques-
tions.

• Use the results.

Depending on where the development process is, different tests are conducted.

2.4. FAULT TOLERANCE IN SOFTWARE 19

Exploration test is early testing of the planned product or user interface. The
purpose of this test is to check the concept or idea behind the solution. The
test products are usually images or other prototypes that show the main
structure of the whole solution.

Evaluation test are tests conducted during the development phase. Here the
motive is to test whether or not the solution works in practice. The tests are
conducted on working prototypes with at least parts of the end functionalities
implemented.

Acceptance test is the finalization test. The product is set up against several
predefined requirements about user friendliness. A common practice is to ask
the test person some follow-up questions right after the test is finished. This
is then used to determine the users experience of the product.

Figure 2.2 and 2.3 are taken and translated from [3]. They show the flow of work
when designing and testing a user interface.

2.4 Fault Tolerance in Software

2.4.1 Introduction to Fault Tolerance

When performing safety critical operations it is of great importance that the
applications have some sort of fault tolerance. The definitions of fault, error, and
failure are as described in Definition 2.8

Definition 2.8. The following descriptions are based on [22] and [4]:

Fault - a mechanical or algorithmic cause of an error.

Error - designates the part of the state that is incorrect.

Failure - when the behavior of a system deviates from that which it is specified for.

In control theory a fault is separated into the three following categories.

Definition 2.9. [4] states:

Plant faults - Such faults change the dynamical I/O properties of the system.

Sensor faults - The plant properties are not affected, but the sensor readings have
substantial errors.

Actuator faults - The plant properties are not affected, but the influence of the
controller on the plant is interrupted or modified.

When talking about fault tolerance there are some terms used to describe the
performance of the system.

Definition 2.10. From [4] it is given that:

20 CHAPTER 2. SOFTWARE DEVELOPMENT

Figure 2.2: User friendly testing in development phase, translated from [3].

2.4. FAULT TOLERANCE IN SOFTWARE 21

Figure 2.3: Conduction of user friendly testing, translated from [3].

22 CHAPTER 2. SOFTWARE DEVELOPMENT

Safety describes the absence of danger. A safety system is a part of the control
equipment that protects a technological system from permanent damage. It
enables a controlled shut-down, which brings the technological process into a
safe state.

Reliability is the probability that the system performs its intended function for a
specified period of time under normal conditions.

Availability is the probability of a system to be operational when needed. Contrary
to reliability it also depends on the maintenance policies, which are applied to
the system components.

Dependability lumps together the three properties of reliability, availability and
safety. A dependable system is a fail-safe system with high availability and
reliability.

Fault tolerant systems are divided into different levels as shown in Definition
2.11.

Definition 2.11. From [14] but also described in [4]:

Full fault tolerance[14] or fail-operational[4] - the system continues to oper-
ate in the presence of faults, albeit for a limited period with no significant loss
of functionality of performance.

Graceful degradation (or fail soft)[14] or fail-graceful[4] - the system con-
tinues to operate in the presence of errors, accepting a partial degradation of
functionality or performance during recovery or repair.

Fail safe[14],[4] - the system maintains its integrity while accepting a temporary
halt in its operation.

Which level of fault tolerance to implement, depends on the application. All safety-
critical systems require in theory full fault tolerance. However in practice this is
often not achievable, instead systems that can suffer from physical damage have
several layers of graceful degradation. This can for instance be found in combat
aircrafts. On the other hand a safety system only needs to be fail safe. This will
ensure a minimizing of environmental damage, as well as the vessel is protected
from damaging itself.

Inside the field of Dynamic Positioning (DP) there are several strict requirements
for fault tolerance. This yields especially for ships and vessels operating in safety
critical regions, such as around drilling platforms. It is of major importance that
these systems continue to be functional, even in the presence of one or several errors.
When implementing fault tolerance in a system, a requirement is to have feedback
on the sensors. The purpose with fault tolerance is to locate the fault or error, and
reduce it before the system reaches a failure mode. Without feedback this is almost
impossible, since there is no certain way of saying where the error is.

By identifying the faults that can occur in the system, it is possible to create
methods to reduce their impact. But even with unlimited resources, it is almost

2.4. FAULT TOLERANCE IN SOFTWARE 23

impossible to find every fault that can happen in a modern system. It is therefore
equally important to take into account the unknown faults and errors as well, and
have a way to recover from them. An alternative inside the field of control theory is
a comparison check between simulated and measured values. If the values deviate
from each other, this indicates that a fault is present. The problem with this
method is that not all signals or states that can be measured due to financial costs
or complex solutions. A common practice is then to use a plant model, typically a
Process Plant Model (PPM) for the simulation, and a Control Plant Model (CPM)
for the controller. The movement of the vessel is then compared to the one given
from the PPM. Again, if it is deviation in the values, a fault is most likely the cause.
However, it is now hard to locate where the fault occurred.

Figure 2.4: Regions of required and degraded performance from [4].

In Figure 2.4, an illustration of fault detection and fault tolerance with comparison
is shown. The figure shows where a given output indicates a fault in the system, as
the output pair y1 and y2 should be inside the region of required performance. By
looking at the faults defined in Definition 2.11, Figure 2.4 typically yields for plant
faults.

The error recovery process can mainly be done in two different ways, forward error
recovery and backward error recovery. In a Fail Safe system, backward error recovery
is sufficient where the system will be put in the last safe state before continuing its
operation. In forward error recovery the system accepts the presence of an error

24 CHAPTER 2. SOFTWARE DEVELOPMENT

and tries to cope with it by isolating it while other modules covers the functionality
of the faulty component. In this way, the operation continues, as if nothing was
wrong, or with some degraded performance.

2.4.2 Redundancy

There are several meanings of redundancy. From a programmers point of view,
redundancy is to be avoided. The reason for this is that there are usually no
upsides to have the same piece of code several places in the program. When
taking the control engineers point of view, redundancy can be used in a good way to
increase the availability of the complete system by having multiplicity of components.
Components is in this context defined as the different parts and modules of the
complete system, such as a sensor, the whole computer-based control system or a
thruster. The difference between these two ways of looking at redundancy is the
level of scope. The programmer works at a much more detailed and low level scope
than the control engineer. Redundancy is however a topic that needs carefully
analysis and caution in order to be used as its full.

One obvious way to utilize redundancy in software is to have two instances of a
program running in parallel with a switching mechanism. This method is also called
process pairs. The first program to start becomes the master, while the other are
slaves. Only the master sends information to the vessel, but all the programs do
the calculations. The master program also broadcast a status message to the other
participants. If this message stops, the next program in line takes the masters place.
This is a kind of dynamic redundancy, since the number of running programs can
be changed without the need of other specifications. On the downside, a design
error in the program will in this case not be correctly handled, unless there are
some sophisticated fault tolerance implemented as well.

Another way of redundancy in the software is inspired from the hardware redundancy
such as Triple Modular Redundancy (TMR) and N Modular Redundancy (NMR)
as described in [14]. The system then has several versions of the program running
concurrent to each other where everyone does the calculations needed. A making or
voting process determines the correct output to be sent to the vessel. These programs
should be developed independently and with different programming languages, or
at least with different compilers on different processors. The reason for this is to
reduce the chance of error redundancy by the program and processor. This is a
technique used by the airplane business. However, the downside with this method
is the financial costs.

The common factor with these approaches it that the program is the redundant
component, not the code inside of the program.

Redundancy can increase the reliability for the system if caution is taken. The
program developed needs thorough testing to get rid of design errors. This is
important, since the programs run concurrently with each other, and the errors can

2.5. ADVANCED PROGRAMMING TECHNIQUES 25

propagate faster and create dangerous situations. It is therefore advised to keep
the redundancy in software to a minimum.

2.5 Advanced Programming Techniques

This chapter is meant to give an introduction to advanced programming techniques
commonly used when developing real time and concurrent systems. The topics
include synchronization, thread scheduling and network programming.

When developing systems where RT demands are crucial, programs consisting
of threads are often used. The reason for this is that different and independent
processes can be encapsulated in threads that will run concurrently. However, the
pitfall with threads is that the execution order of things is not set in stone. In order
to clarify the term parallel or concurrent execution, the example in Figure 2.5 is
used. The figure shows the code and the output for a small Java program created
to illustrate the problem.

Figure 2.5: Example of running pattern with threads.

The OS scheduler determines which process to be run in what order. Often for
small tasks such as in the example the scheduler will switch back and forth between
the processes on each step. However, as seen in the output this is not always the
case, even though the action in each thread is the same.

26 CHAPTER 2. SOFTWARE DEVELOPMENT

Figure 2.6: Illustrative example of Race Condition and avoidance.

2.5.1 Race Condition

To make matters worse, thread programming also introduce Race condition. The
LabView block diagram shown in Figure 2.6 illustrates the danger of Race Condition
in a system. Each thread pair share a common variable, where one thread increments
the value of the variable and the other decrements its value. The two upper loops
use global/local variables directly without any synchronization. The end result can
be seen in the “Num One” field on the right. When running the program the output
is never known, but in this case it is in the bounded area < −10000, 10000 >. The
two loops on the lower half in Figure 2.6 use semaphores to solve the synchronization
problem.

Definition 2.12. From [14]:
Data Race Condition is a fault in the design of the interactions between two or
more tasks whereby the result is unexpected and critically dependent on the sequence
or timing of accesses to shared data.

With Race Conditions present in the system, correct behavior can neither be
guaranteed nor proven. Race Conditions can only arise when threads or processes
access the same shared variable. Hence as a rule of thumb, shared or global variables
are to be kept at a minimum when creating code.

2.5. ADVANCED PROGRAMMING TECHNIQUES 27

2.5.2 Semaphores

From time to time the use of shared variables cannot be avoided in a RT system. In
order to avoid the occurrence of a race condition, mutual exclusion on the variable
must be created. This can be done with Semaphores.

Definition 2.13. From [23]:
A semaphore is like an integer, with three differences:

1. When you create the semaphore you can initialize its value to any integer,
but after that the only operations you are allowed to perform are increment
(increase by one) and decrement (decrease by one). You cannot read the
current value of the semaphore.

2. When a thread decrements the semaphore, if the result is negative, the
thread blocks itself and cannot continue until another thread increments the
semaphore.

3. When a thread increments the semaphore, if there are other threads waiting,
one of the waiting threads gets unblocked.

Definition 2.14. In this thesis the following definition of Mutual Exclusion is
proposed: Mutual Exclusion (mutex) is a semaphore mechanism used to control
concurrent access to shared resources, and limits the access to one (or a limited
number of) process(es) at a time in order to avoid Race Condition.

As the Definition 2.14 states, the mutex ensure that only one process or thread have
rights to a shared variable at any time. If a variable is locked when a thread wants
to access it, the thread has to wait for the variable to become available. Caution
must be taken when using mutex, as dead locks and starvation can occur. By using
the example, illustrated in Example 2.1, of dining philosophers these problems can
be enlightened.

Example 2.1. In [24] dining philosopher problem is stated as:

In ancient times, a wealthy philanthropist endowed a College to accommodate five
eminent philosophers. Each philosopher had a room in which he could engage in his
professional activity of thinking; there was also a common dining room, furnished
with a circular table, surrounded by five chairs, each labeled by the name of the
philosopher who was to sit in it. The names of the philosophers were PHIL0, PHIL1,
PHIL2, PHIL3, PHIL4, and they were disposed in this order anticlockwise around
the table. To the left of each philosopher there was laid a golden fork, and in the
center stood a large bowl of spaghetti, which was constantly replenished.

A philosopher was expected to spend most of his time thinking; but when he felt
hungry, he went to the dining room, sat down in his own chair, picked up his own
fork on his left, and plunged it into the spaghetti. But such is the tangled nature of
spaghetti that a second fork is required to carry it to the mouth. The philosopher

28 CHAPTER 2. SOFTWARE DEVELOPMENT

therefore had also to pick up the fork on his right. When he was finished he would
put down both his forks, get up from his chair, and continue thinking. Of course, a
fork can be used by only one philosopher at a time. If the other philosopher wants
it, he just has to wait until the fork is available again.

When a philosopher sits down at the table and attempts to take a fork it can be
said that a mutex is invoked. If the fork is available the philosopher gets it. At
first this seems like an okay solution. But what happens if all philosophers starts
eating at the same time, and everybody is grabbing the fork at their immediate
left? The philosophers now needs a second fork in order to eat, however, all forks
are in use and none of the philosophers have two forks. They are now in a dead
lock situation!

Definition 2.15. Proposing the following definition of Deadlock:
Deadlock is a state where all processes in a system are blocked.

Definition 2.16. In [25] four conditions are listed as necessary and sufficient for
the occurrence of Deadlocks.

Serially reusable resources: the processes involved share resources which they
use under mutual exclusion.

Incremental acquisition: processes hold on to resources already allocated to them
while waiting to acquire additional resources.

No preemption: once acquired by a process, resources cannot be preempted
(forcibly withdrawn) but are only released voluntarily.

Wait-for cycle: a circular chain (or cycle) of processes exists such that each
process holds a resource which its successor in the cycle is waiting to acquire.

In Figure 2.7 a simple example where dead lock occur, is shown. Each thread
demands access to the same variables but not necessarily in the same order, as well
as there are no preemption.

In order to avoid Deadlocks a different synchronization mechanism must be used. A
suggestion is to have a maximum waiting time for accessing resources. By going back
to the dining philosophers (Example 2.1) a new rule is now added. A philosopher
can only hold a fork and wait up to 10 minutes to get access to the second fork
before laying the first fork back on the table. The possibility of deadlocks are now
eliminated as the “No preemption” (Definition 2.16) condition have been removed.
Once again the philosophers find themselves at the table feeling hungry. At the
same time all philosophers pick up the fork at their immediate left. Everyone waits
10 minutes, and then lay down their forks, just to pick it up again. The philosophers
does not experience the deadlock as earlier, but change between states without
having any progress. This is called a Livelock.

Definition 2.17. Proposing the following definition:
Livelock is a system condition where the processes are limited to switch between a

reduced set of states, and the system is not making any progress.

2.5. ADVANCED PROGRAMMING TECHNIQUES 29

Figure 2.7: Example Code of a C-program with Deadlock.

30 CHAPTER 2. SOFTWARE DEVELOPMENT

As seen from definition 2.17, the main difference from the Deadlock condition
is that the processes are not locked in one state. It should be mentioned that a
Livelock condition may not always occur as it is also dependable of the chance of bad
timing. However, if it is a possibility of Livelock (or Deadlock), the synchronization
mechanisms must be changed to avoid this.

When operating with synchronization, a third state can occur. This is called
starvation.

Definition 2.18. From [25]:
...Starvation, the name given to a concurrent-programing situation in which an

action is never executed...

Starvation is often a result of a timing problem, and can be hard to detect as it may
not always surface. Starvation can also occur when a process experience infinite
overtaking. In [24] this was illustrated by:

...Suppose that a seated philosopher has an extremely greedy left
neighbour, and a rather slow left arm. Before he can pick up his left
fork, his left neighbour rushes in, sits down, rapidly picks up both forks,
and spends a long time eating. Eventually he puts down both forks,
and leaves his seat. But then the left neighbour instantly gets hungry
again,rushes in, sits down, and rapidly snatches both forks, before his
long-seated and long-suffering right neighbour gets around to picking
up the fork they share. Since this cycle may be repeated indefinitely, a
seated philosopher may never succeed in eating...

This means that a given process almost never gain access to a desired resource.
This could be fixed by letting this particular task have infinite wait rather than
giving up after some time.

2.5.3 Network Programming

The most common practices inside Network Programming or Socket Programming
are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). Both
of these protocols can be used for message passing, but only TCP can guarantee
that a complete message is transmitted and received. Each server-client connection
requires their own port on the network, but when this connection is set up, messages
can be sent both ways.

A common practice when using TCP is to have one thread for sending, and one
for receiving messages. The reason for this is that each “send message” function
needs a “receive message” function on the other side, otherwise a dead lock occur.
By having these functions in their separated threads, a dead lock will not have
an impact on the rest of the system. This solution gives flexibility in the message
passing as there is no regulation on how often, or how many messages has to be
sent and received. This is especially useful when dealing with human interactions.

2.5. ADVANCED PROGRAMMING TECHNIQUES 31

The sending thread should have a limited frequency in order to avoid stacking up
messages at the receiving end.

UDP on the other hand has the ability to broadcast messages on one port. This is
handy when “I am alive”-messages is needed, or the same information needs to be
transmitted to many listeners. As with TCP a limited frequency should be used
when broadcasting. A high frequent broadcast can lead to network overload, which
again leads to collapse of the whole network.

32 CHAPTER 2. SOFTWARE DEVELOPMENT

Chapter 3

SRS for ROV DP system

This chapter contains the Software Requirement Specification (SRS) for the control
system developed during spring 2012, and can be treated as a separate document.
It follows the template outlined in Appendix B, Definition B.1. The document
is written in a concise way, without any outlining and explanation of different
topics.

3.1 Introduction

This document gives a description of the specifications to be implemented in the
new control system for ROVs in association of NTNU.

3.1.1 Purpose

This SRS is to be used as a part of the development and restructuring of the
computer-based DP control system for ROVs at NTNU.

The targeted group for this SRS is the developers of the control system at the
department of Marine Technology, as well as the project managers connected to the
AUR-Lab.

3.1.2 Scope

Two computer programs are to be developed in this process, a control system
communicating with the ROV, and an independent GUI showing the necessary
information to the pilot. A network connection between the control program and
the GUI ensure exchange of information between them.

33

34 CHAPTER 3. SRS FOR ROV DP SYSTEM

The control program shall be able to perform three different modes:

• DP Operations

– Point to Point

– Station Keeping

• Tracking and Path following

– Lines between WP, fixed heading

– Lawn Mower pattern

– Survey lines

– WP

• Joystick Mode

– Manual Thrust Allocation

– Position Reference

– Velocity Reference

3.1.3 Definitions

SRS: Software Requirement Specification

ROV: Remotely Operated Vehicle

DP: Dynamic Positioning

AUR-Lab: Applied Underwater Robotics Laboratory

GUI: Graphical User Interface

WP: WayPoint

OO: Object Oriented

UTM: Universal Transverse Mercator

XML: eXtended Markup Language

3.2. DESCRIPTION 35

3.1.4 References

3.1.5 Overview

3.2 Description

This program is created for controlling ROVs. Firstly it is aimed at the ROV
Minerva, but an overall goal is to create software that with ease can be ported to
other ROVs. The program is dependent of the hardware on the ROV.

3.2.1 Product Perspective

This control system is created with the programming language LabView and is
therefore dependent of LabView development environment during implementation.
As a final product the program is ported to an executable file which can be run
independently.

The program is following an OO structure.

The GUI is to be developed in correspondence with collaboration with students
from other study branches like Marine Biology and Marine Archeology, as well as
Marine Cybernetic. It should be noted that there is two main modes in the GUI.
Basic view is aimed at the average ROV Pilot during everyday operation. Advanced
view is created for debugging, tuning and performance analysis, and is therefore
mainly used by the developers of the program during testing procedures.

3.2.2 Product Functions

The control system has three main modes. These are DP operations, tracking and
manual control. The user change between these modes manually with different
buttons or switches in the user interface. Some security in the switching should be
present such that unnecessary and dangerous switching is avoided.

DP Operations

In this mode the user can choose either to stay at the current position or change
position to some new coordinates plotted in an input field or point on a map.

Tracking and Path following

WPs are given by the pilot such that a path is created by the reference model.
WPs can be given through manually typed coordinates in an input field, predefined

36 CHAPTER 3. SRS FOR ROV DP SYSTEM

coordinates from file, or points from a map.

Different modes of behavior can be chosen depending on the operation. These
include Aggressive Mode, Balanced Mode and Careful Mode. An own mode for
pursuing a moving target is also included. Here the following distance and cross
track error can be adjusted.

Joystick Mode

The ROV is to be controlled by input from a joystick. Direct thrust allocation shall
be default startup mode. Other modes include position and velocity reference.

3.2.3 User Characteristics

The targeted group for this program is the marine subsea industry, such as marine
biology, archeology, but also crew from the oil and gas industry. The regular
end-users have low or none experience with control theory. However, all of the users
have or are taking higher education, mostly master degree. The users need to have
knowledge on how to use a computer and connect to external hardware, such as
USB connections.

3.2.4 Constraints

The development environment for the control system is limited to LabView due to
the control box between the computer and the ROV which is created by National
Instruments. The user interface can be created in another language, but as LabView
is exceptionally good at gages and instrument presentation it is almost certain that
LabView is used for this as well.

3.2.5 Assumptions and Dependencies

The computers used to run the program is less than five years old and running a
Windows operating system connected to Internet.

3.3. SPECIFIC REQUIREMENTS 37

3.3 Specific Requirements

3.3.1 External Interface Requirements

User Interfaces

The basic view gives all the necessary information in order to functionally operate
the ROV at any circumstances. The user interface is developed with LabView.
An event driven structure is essential for the user interface as commands will be
taken care of as they are given by the pilot. The gages present at the user interface
are:

• Depth and altitude measurements

• Heading

• Signal check indicator

In addition a map view must be present. It should also be possible to have the map
in a separate window.

The different modes are activated by switches or buttons by clicking on them. Only
one mode can be active at a time.

A joystick shall be used to control the ROV. Configurations for different joysticks
shall be possible.

Manipulator control and light settings must be easily accessible from the top layer
as well as there should be speed key mapping to the joystick.

The advanced user interface view contains all information needed in order to perform
proper debugging, testing and tuning of the system. This includes tuning variables
for the controllers and observers, as well as graphs for positions, velocities, thruster-
and sensor output.

Possibility for live video feed from the ROV through network must be checked.

Hardware Interfaces

The program uses a National Instruments compactRIO to communicate with the
ROV. The host computer then needs at least an Ethernet port. An additional USB
port is needed for the joystick. The user interface will fit a screen resolution of
1920× 1080px (HD Resolution).

Software Interfaces

The system is composed of two main modules, the user interface and the control
system. On the user interface an event driven structure is chosen, while the control

38 CHAPTER 3. SRS FOR ROV DP SYSTEM

system has an OO-structure which is then separated into the following different
modules:

• Vessel

• Observer

• Guidance

• Controller

• Thrust Allocation

• Thruster

• Sensor

• Supervisor

Each module is to be implemented as a class. The Observer, Guidance and Controller
should be abstract classes to be inherit from by child classes. The Sensor class can
also be a parent class.

The communication between the modules are only through the vessel object and
especially its state cluster. Implicit communication is through a supervisor that
ensures correct behavior in each module.

Communication Interfaces

Between the user interface and the control system there are a TCP/IP connection
for information exchange. The communication between the control system and the
ROV is also through an Ethernet interface. Information to be sent is

• Position values

• Velocity values

• Altitude values

• Thruster values

• Sensor values

– MTi

– Doppler Velocity Log

– MRU6

– ECF

The compactRIO is connected to the host PC through an Ethernet cable. Bit values
are sent to the compactRIO through serial port connections, and passed on to the
control system with the ethernet cable.

3.3. SPECIFIC REQUIREMENTS 39

3.3.2 Functional Requirements

DP Operations

The DP operation mode include operations like station keeping and A to B movement.
DP operations take either a UTM coordinates directly from the Eiva NaviPac. An
alternative is to use a local coordinate system where the coordinates are given from
the mother ships (in this case R/V Gunnerus) GPS and MRU system together
with a HiPAP. A translation method between UTM and local coordinates must be
implemented.

In DP mode with joystick (see also section 3.3.2), the stepping size in x, y, and
z direction is 0.1 m-1 m, while the heading has 1◦-10◦. These are given through
direction- and push buttons on the joystick.

If no specific coordinates are given to the DP system when the mode is activated,
the current position is used in station keeping until new command arrives.

New coordinates is given through one of five modes:

• Change from current position in NED

• New position in NED

• Distance and Bearing

• Change in Surge and Sway direction

• From WP in map

Tracking and Path Following

In this mode the pilot gives the control system WPs such that a path can be
generated. The WPs is given through one of the following ways

• Manual coordinate input in array

• Predefined coordinates from file

• Point and click method in radar map, maybe in coordination with manual
input

• Lawn mower path generation with predefined parameter inputs.

The aggression level for the ROV can be adjusted by a slider or predefined modes
like

• Aggressive

• Balanced

• Careful

40 CHAPTER 3. SRS FOR ROV DP SYSTEM

These will change the behavior of the ROV while performing tracking and path
following. The aggressive mode will make the ROV go quick, but at the cost of
higher cross track error. On the other side the careful approach will give low cross
track error, and relatively low speed.

Manual Control Mode

The manual control mode gives the ability to control the ROV through a joystick.
The Joystick can either set desired thrust in wanted direction, or position and
velocity reference. The manual thrust allocation mode must be activated by default
when the system starts.

The position and velocity reference can be given through body and NED coordi-
nates.

3.3.3 Other Functional Requirements

Possibility for station keeping in heading and depth/altitude must be available in
all modes. 2D and 3D map of environments around the ROV. The program will
read a configuration file at the beginning of the running process in order to set up
the proper values for the system. The configuration file is written in XML format.
The file contains the following fields

• ROV Data

– ROV Name

– Number of DOFs

– Mass, Moment and Inertia

– Linear Damping

– Non Linear Damping

– Coriolis effects

– Added mass

– Buoyancy

– Umbilical data

∗ Weight

∗ Diameter

∗ Length

• Control System with both DP and Tracking specifications

– Observer

3.4. DESIGN CONSTRAINTS 41

∗ Gains

– Controller

∗ Gains

– Navigation and Reference Models

∗ Initial values.

– Thrusters

∗ Type

∗ Specification

∗ Position and orientation

∗ Saturation

∗ Coefficients for thruster expression

∗ Rotation axis if able

– Sensor

∗ ID

∗ Name

∗ Type

∗ Position and orientation

3.3.4 Performance Requirements

Only one pilot can connect and control the ROV at a time. The video feed can
however if the bandwidth allows it be accessed by several client computers.

3.4 Design Constraints

The program is running on a 5-7 Hz frequency sampling time. This is given by the
read-frequency between the compactRIO and the host PC.

42 CHAPTER 3. SRS FOR ROV DP SYSTEM

3.5 Software System Attributes

3.5.1 Reliability

It is desired that the software is fail-safe such that consistency is preserved. In
case of a major failure the backup joystick provided by the manufacturer is to be
activated, either automatically if possible, or through a switch.

3.5.2 Availability

When the system is running, backup of the last steady state should be stored. If the
system experiences a crash and needs a restart, this will happen automatically and
the last steady state is read from the backup log in order to maintain integrity.

If the connection between the user interface and the control system is lost, the
control system shall automatically enter DP operation and wait for the connection
to be reestablished.

3.5.3 Security

Global variables are to be kept at a minimum in the system, but where it is necessary,
proper synchronization techniques must be used. Input fields must have a max
variable size such that memory is not overwritten. If this is not present it opens for
intentionally crash of system or manipulated behavior of the system.

3.5.4 Maintainability

The software must be maintained with ease. It is important that at least key
features in the program are well written in an intuitive way such that new developers
understand what has been done. The software is divided into modules that can
easily be substituted by similar blocks.

3.5.5 Portability

The software is mainly developed for windows based computers, but can with ease
be exported to both Linux- and Mac-based operating systems by compiling for this.
The control system is also mainly created for the ROV Minerva, but it is important
to create the system such that another ROV can be used with another configuration
file at initialization.

3.6. OTHER REQUIREMENTS 43

3.6 Other Requirements

The computer needs at least LabView Run-Time Engine installed in order to run
the system. An installer such that everything will be set up correctly without the
need of complex configuration and debugging must be created. This will include
installation of LabView Run-Time Engine if the computer have not the environment
already installed.

44 CHAPTER 3. SRS FOR ROV DP SYSTEM

Chapter 4

The Control System -
Njord

This chapter describes the implementation of the new control system. It has been
given the name “Njord” after the Norse God of Sea Navigation. The control system
was implemented by using LabView Object-Oriented Programming (LVOOP). Other
OO languages could also have been used without any change in the structure.

In section 4.1 the structure of the program is outlined. The following section, section
4.2 explains the initialization process. Further in section 4.3 the transformation
to 6DOF is described. Section 4.4 outline the communication between the control
system and the other systems. In section 4.5 the testing of the control system is
explained. This is followed by section 4.6, where the fault tolerance for the system
is discussed. Lastly in section 4.7, issues and known problems are listed.

4.1 Structure

In the old control system the whole program was in one big thread. This made it
slightly easier to develop, and exchange information between modules. However,
the modularization were floating and it could be hard to separate different parts of
the system from each other.

In the new system, Njord, thread programming has been taken in use. As it was a
wish of having separate user interface and control system, this was a necessity. The
system has four threads running concurrently, one for the control loop, and three
for communication purposes. These are outlined respectively in algorithm 1, 3, 4
and 5.

Figure 4.1 shows the relationship between the different classes in Njord. This then
constitute the new software architecture of the system. In the diagram, inheritance

45

46 CHAPTER 4. THE CONTROL SYSTEM - NJORD

Figure 4.1: Class Relations in Njord.

relationship is marked with an arrow with hollow arrow head, as well as a text
with “«Extends»” on the arrow body. Class relations are shown with the arrows
with open arrow heads. In addition, these arrows have a relation indicator. The
indicators are as follows:

4.1. STRUCTURE 47

1 - Only one
* - Optional, zero or more
1..* - At least one

The Vessel class is the main element which ties all components together, and has at
least one object from each super class other than itself.

Algorithm 1 Main Thread.
1: function MainThread(Vessel vessel)
2: while !ExitFlag do
3: Semaphore.wait()
4: Supervisor.IterationNumber ← LoopNumber
5: vessel.Supervisor ← Supervisor
6: Call SignalProcessing() on Vessel
7: Call ControlStrucure() on Vessel
8: Call SendMessagecRIO() on Vessel
9: Supervisor ← V essel.Supervisor

10: Semaphore.signal()
11: end while
12: end function

The MainThread shown in Algorithm 1 will run until an exit signal from the user
interface is given. If the GUI experience an error and crashes, the MainThread will
still be running and make sure the ROV keeps its position.

The Control Structure will, with help from the Supervisor object, determine which
observer, navigation and controller module to be used. A vessel can have different
setups for the different modes in order to achieve optimal performance. This makes
the system flexible and tolerable for different states without much extra work. For
further inclusion of new observers, guidance strategies, or controllers the control
structure needs no modification at all, unless there are some special conditions and
logic that also must be taken care of.

The Receive Joystick Command Thread receive messages at a rapid pace in order to
have tolerable sampling rate of the user input. The loop receive messages even when
the joystick mode in the user interface is inactive. A flag in the message indicates
whether or not the joystick mode is active. When deactivating the joystick mode, the
control system goes to DP at the current position, awaiting new commands.

The Sending Thread will send a message every iteration. The frequency is set to
be 20Hz in order to achieve a good sampling rate on the map visualization and
graph plots. Before and during program execution, the sending thread can be set
to ignore locking of the semaphore. This will not give any problems as the sending
function only reads the values in the supervisor object without writing anything
back. This can be compared to taking a copy of a document rather than using the
original.

As stated in section 2.5.3, a receive function will wait for a message to arrive. In

48 CHAPTER 4. THE CONTROL SYSTEM - NJORD

Algorithm 2 Control Structure.
1: function ControlStructure
2: Update Tuning Matrices
3: if MTi is Active then
4: Call EstimateStates() on Attitude Observer
5: end if
6: if Control Loop is Active then
7: Call EstimateStates() on Desired Observer
8: else
9: Call EstimateStates() on Kalman Filter

10: end if
11: Call EstimateStates() on Altitude Observer
12: if MTi is Active then
13: Update Measured States
14: end if
15: if Control Loop is Active then
16: Call CalculateDesiredStates() on Desired Guidance
17: if Use Altitude Guidance then
18: Call CalculateDesiredStates() on Altitude Guidance
19: end if
20: Make States continuous
21: Call CalculateTau() on Desired Controller
22: else
23: if Joystick Mode Selected then
24: Call CalculateDesiredStates() on Joystick Guidance
25: end if
26: Make States continuous
27: Call CalculateTau() on Joystick Controller
28: end if
29: Call CalculateThrust() on Thruster Allocation
30: end function

4.1. STRUCTURE 49

Algorithm 3 Joystick Message Receive Thread.
1: function ReceiveJoystickCommandThread
2: loop
3: if !Connection.Healthy() then
4: ListenForClients() in 5000ms
5: end if
6: if No Error then
7: Semaphore.wait() in 25ms
8: if !Semaphore.TimedOut then
9: Supervisor.ReceiveJoystickTCPMessage()

10: Semaphore.signal()
11: end if
12: end if
13: end loop
14: end function

Algorithm 4 Send TCP Message.
1: function SendTCPMessage
2: while !ExitFlag do
3: if Communication Problems then
4: Supervisor.OperationType ← DPOperation
5: end if
6: if !Connection.Healthy() then
7: ListenForClients() in 5000ms
8: end if
9: if No Error then

10: if !Ignore Semaphores then
11: Semaphore.wait() in 25ms
12: end if
13: if !Semaphore.TimedOut then
14: LocalSupervisor ← GlobalSupervisor
15: if !Ignore Semaphores then
16: Semaphore.signal()
17: end if
18: end if
19: SendMessage() on LocalSupervisor
20: end if
21: end while
22: end function

50 CHAPTER 4. THE CONTROL SYSTEM - NJORD

Algorithm 5 Receive TCP Message.
1: function ReceiveTCPMessage
2: while !ExitFlag do
3: Semaphore.wait() in 25ms
4: if !Semaphore.TimedOut then
5: Supervisor.ReceiveMessage()
6: Semaphore.signal()
7: end if
8: end while
9: end function

order to avoid a forever waiting thread and then an eventual dead lock, a time
out limit is set on the receive function such that the thread will run and check for
messages rather than stand and wait for one to maybe arrive.

4.2 Initialization

In order to set up the system, a configuration file is used. This file contains initial
and default values for all the components in the system. The reason for using
such a file is to make the system less tailor made for one ROV. This will also
make commissioning work easier as the necessary work can be limited to tuning of
modules and parameter determination.

The file format is chosen to be eXtended Markup Language (XML) as it is structured
and easy to read both for humans and machines. XML is a tag-based metalanguage,
which means that an author is able to generate tags that specify the structure [26].
The syntactical layout XML gives, is advantageous regarding parsing of the file
during initialization of the system.

4.3 6-DOF Adaptation

The old control system yielded for 4-DOF, as well as it was specially made for the
ROV Minerva with some ad-hoc solutions. One of the primary goals for the new
system was to make it more accustomed to several UUVs, with main focus on ROVs.
In order to do so, all equations and system modules had to be expanded to 6-DOF
or at least work with a 6-DOF setup.

4.3. 6-DOF ADAPTATION 51

4.3.1 Observers

Sector Kalman Filter

The Kalman Filter observer from the old system has been translated to the new
structure. The output is transformed to work with a 6-DOF system. However, the
observer is not a 6-DOF observer!

The linearization has only been done with respect to 36 different yaw angles. If
this were to be done for both roll and pitch as well, the initialization would need to
iterate and store values from 363 iterations for a sampling interval of 10 degrees in
each rotation direction. The performance requirement needed can be calculated by
the following formulas:

N ×$ = Memory requirement (4.1)

N is the number of elements to be stored and $ is the data size. The processor usage
can be found by identifying FLoating-point OPerations (flop) in the routine and
how many FLoating-point Operations Per Second (flops) the processor is capable
to perform.

σflop × niter = flop (4.2)
χ×core ×ncore = flops (4.3)

flop

flops
= t (4.4)

σ is the number of flop per iteration, n is the number of iterations. In (4.3) χ is
number of flop the processor is able to perform on each cycle. On modern processors
this is usually 4. f is the clock frequency or cycle frequency of the processor, and
m is the number of cores available on the processor.

(2× (18× 363 × 18) + 18× 363 × 6)× 8B = 282175488B ∼= 282MB (4.5)

The expression in (4.5) applies for the linearization matrices Φ, Γ and ∆ in the
Kalman Filter. 282 MB free memory is needed for each Kalman Filter object
initialized in the system in order to store these matrices.

52 CHAPTER 4. THE CONTROL SYSTEM - NJORD

6943 flop

iteration
× 363 iterations = 323932608 flop (4.6)

4 flop
cycle

× 1.6e9 cycles
second

× 4 cores = 25.6e10 flops (4.7)

323932608 flop
25.6e9flops

∼= 0.01seconds (4.8)

The values in (4.3) is based on the authors PC which has a Intel i7-720QM [27],
hence the numeric result in (4.4) is only valid for this processor. It should however
be noted that the difference in run-time performance for the different processors is
of O(10−2), hence the calculation time for the matrices can be neglected.

With the results given in (4.5) and (4.8) there should in theory be no problem
running a 6 DOF linearized Kalman Filter on a modern PC. However, the system
performance may be reduced due to large memory operations, especially if global
variables are used [28], [29].

Passive Nonlinear Observer

A Passive Nonlinear observer was implemented in order to have access to a 6 DOF
observer for the system. The algorithms outlined for this observer described in [8]
and [1] applied to a 3 DOF surface vessel in DP, hence the equations had to be
slightly modified in order to be suitable for an ROV. The notation used in (4.9) is
explained in C.

˙̂
ξ = Aw +K1(ω0)ỹ (4.9)
˙̂η = J(η)ν̂ +K2ỹ (4.10)
˙̂
b = −T−1b̂+K3ỹ (4.11)

M ˙̂ν = −DLν̂ −DNL|ν̂|ν̂ + J−1b̂+ τ + J−1K4ỹ − Cν̂ (4.12)
ŷ = η̂ + Cw ξ̂ (4.13)

In the implementation y = η was chosen in order to have full 6 DOF system. It is
also possible to expand the the observer to include velocity measurements.

The observer gains must be tuned to retain its passivity, and to relate the gains
to the dominating wave response frequencies. [1] proposes the following rules for
passive observer tuning.

The four gain matrices K1,K2,K3,K4 are all diagonal:

4.3. 6-DOF ADAPTATION 53

K1 =
[
diag{k1, · · · , k6}
diag{k7, · · · , k12}

]
(4.14)

K2 = diag{k13, · · · , k18} (4.15)
K3 = diag{k19, · · · , k24} (4.16)
K4 = diag{k25, · · · , k30} (4.17)

where the values k1, · · · , k30 have the following proposed values:

ki =

−2(ζni − ζi)ωci

ωi
if i = 1, · · · , 6

2ωi(ζni − ζi)ωci

ωi
if i = 7, · · · , 12

2ωci if i = 13, · · · , 18
(4.18)

where ωci > ωi is the filter cut-off frequency. ζci > ζi is a tuning parameter
(between 0.5 and 1.0). ki, i = 19, · · · , 24 should be large enough to ensure proper
bias estimation. The values ki, i = 25, · · · , 30 have to be tuned according to the
final performance of the observer.

ωi = 2π
Tpi

is the peak response frequency. In most cases, this frequency can be
approximated to the peak wave frequency. This is especially true for ROVs, which
are much more sensitive to the different wave frequencies than, for example, a
ship.

Adaptive Observer

In addition to the 4-DOF Kalman Filter and the 6-DOF Nonlinear Passive Observer,
an adaptive observer was implemented into the system. This observer is designed
for situations where the parameters of Aw are not known ([30]). This particular
feature makes the observer able to adjust wave filter gains to the current sea state
through an iterative process, thus making it viable to use in the wave zone for
prolonged periods of time.“It is uncommon to conduct important missions with an
ROV in the wave zone. However, with the addition of the adaptive observer, it is
possible to extend the range of ROV operations closer to the surface.”

Adaptive observer design is based on the augmented observer equations ((4.19)
through (4.23)).

54 CHAPTER 4. THE CONTROL SYSTEM - NJORD

˙̂
ξ =Awξ̂ +K1hỹf (4.19)
˙̂η =J(η)ν̂ +K2ỹ +K2lxf +K2hỹf (4.20)
˙̂
b =− T−1

b b̂+K3ỹ +K3lxf (4.21)
M ˙̃ν =−Dν̃ − J>(η)Gη̂ + J−1(η)b̂+ τ

+ J−1(η)(K4ỹ +K4lxf +K4hỹf) (4.22)

ŷ =η̂ +Cwξ̂ (4.23)

where K1h ∈ R12×6 and K2l,K2h,K3l,K4l,K4h ∈ R6×6 are additional gain
matrices to be determined. A new state has been introduced: xf , which is the
low-pass filtered innovation. It is defined as shown in (4.24) ([30])).

ẋf = −T−1
f xf + ỹ = −T−1

f xf + η̃ +Cwx̃i (4.24)

where xf ∈ R6, and T f = diag{Tf1, · · · , Tf6} contains filter constants. The
high-pass filtered innovation ỹf can be derived from 4.24 in the form of equation
4.25

ỹf = ẋf (4.25)

The adaptive observer operates with the estimation problem where the parameters
of Aw are unknown ([30]). The elements in the matrix vary depending on the
current sea-state. Assuming decoupled motions, the composition of the matrix Aw

is shown in (4.26).

Aw(θ) =
[
06×6 I6×6
−Ω2 −∆Ω

]
,

[
06×6 I6×6

−diag(θ1) −diag(θ2)

]
(4.26)

where θ =
[
θ>1 ,θ

>
2
]>. The vectors θ1,θ2 ∈ R6 contain the unknown values that are

to be estimated. In order for the adaptive law to operate, it is assumed that these
values are constant or at least slowly-varying compared to the system states.

Thus, the new Wave Frequency (WF) model is modified as shown:

˙̂
ξ = Aw(θ̂)ξ̂ +K1hỹf (4.27)

The parameter update law for θ is as follows:

˙̂
θ = −ΓwΦ(ξ̂)Chx̃a = −ΓwΦ(ξ̂)ỹf ,Γ > 0 (4.28)

4.3. 6-DOF ADAPTATION 55

The regressor matrix Φ(ξ̂) is defined as:

Φ>(ξ̂) ,
[
diag(ξ̂1) diag(ξ̂2)

]
(4.29)

The tuning matrices K1h,K2l,K2h,K3l,K4l and K4h should be tuned in a similar
manner to the original matrices K1,K2,K3 and K4, as described in Section
4.3.1.

The complete structure of the adaptive observer is displayed in Figure 4.2. The
structures for the bias and wave estimators, as well as the wave filter, are shown in
Figures 4.3, 4.4 and 4.5.

Figure 4.2: Complete model of the adaptive nonlinear passive observer.

4.3.2 Guidance Systems

There are two main guidance systems implemented in the system as of June 2012.
These are Dynamic Positioning and Joystick mode. The DP guidance system is
based on the work done in [31]. Some small modifications in vector and matrix

56 CHAPTER 4. THE CONTROL SYSTEM - NJORD

Figure 4.3: Wave filter subsystem including adaptive law.

Figure 4.4: Modified bias estimator.

dimension have been done, as well as a new architecture of the method. However,
the logic is the same.

The Joystick mode is based on the work done in [32]. Some small modifications
have been done in the implementation here as well as the joystick input have been
mapped to a number ∈ [−100, 100] rather than using a bit value ∈

[
−215, 215].

This mode has three main modes, direct Thrust Allocation, Position Reference,
and Velocity Reference. The joystick frame can also be modified between body and

4.3. 6-DOF ADAPTATION 57

Figure 4.5: Modified wave estimator.

NED.

Implementation of a third guidance strategy was attempted. This was a tracking
model with a synthetic reference model[33]. However, the complex nature of the
guidance strategy created problems during implementation and due to shortage of
time, it was abandoned.

All guidance systems implemented are set up for 6 DOF reference generation.
However, only 4 DOFs (Surge/North, Sway/East, Heave/Depth and Yaw/Heading)
are given reference values from the user.

4.3.3 Controllers

A selection of controller algorithms was developed for ROV Minerva. When the
system was rewritten to accommodate 6 DOFs, the controllers had to be redesigned
to be able to control pitch and roll as well as the other 4 DOFs. There are 4 different
controllers implemented in the system:

• Linear PID Controller - a very basic control algorithm.

• Nonlinear PID Controller - an expansion of the linear PID Controller, including
a feed-forward term. In the old control system for ROV Minerva, this controller
was preferred for full scale tests [6]. The controller also includes an optional
speed controller.

• LQR Controller - built on the framework of the nonlinear PID controller, but
calculates the proportional and derivative controller gain matrices (respectively
Kp and Kd) by solving the Riccati equation.

• Sliding Mode Controller - controls the system by forcing it to converge to a
stable set of state variables, the so-called sliding surface.

The nonlinear PID, LQR, and the Sliding Mode controller are based on the ones
described in [6].

58 CHAPTER 4. THE CONTROL SYSTEM - NJORD

Every controller requires adjustments in 2 main areas: integrators and tuning
matrices. Due to the way the integrators are implemented, they have to be expanded
from 4-DOF to 6-DOF, most notably the integrator initializing vectors and integrator
limits. The tuning matrices also have to be adjusted, in order to accommodate the
additional 2 DOFs.

The 6-DOF implementation is backwards-flexible. The controllers can now be used
for controlling 6-DOF systems, while retaining the possibility of controlling systems
with a reduced number of DOFs. This is achieved by simply setting the controller
gains for the irrelevant DOFs to 0.

4.3.4 Thrust allocation

During the implementation of the thrust allocation algorithm, several alterations
to the system were made in order to increase its adaptability in case of thruster
failure. The thrust allocation matrix is calculated in real-time during the operation
of the system. This allows to make it possible to dynamically alter the matrix in
the case of thruster failure. Any thrusters set to be disabled will be excluded during
computation of the matrix. In the future, an algorithm to detect any disabled
thrusters can be created, which would allow for the operation of the ROV to be
automatically adjusted in case of partial failure.

During the calculation of the thrust allocation matrix, a check is performed on the
contributions of the thrusters for different DOFs. Since the algorithm is numeric,
small rounding errors are present when calculating contributions that are close to
0. In order to avoid unnecessary strain on the ROV motors, errors below 10−6 are
rounded down to 0.

The control vector u that comes out of the thrust allocation algorithm is converted
to n[rpm] via (12.227) in [8], and is then limited using a saturation function. This
function prevents the values in the rpm vector from increasing past the maximum
allowed rotational velocity.

4.4 Communication Between Systems

As the user interface no longer is a part of the control system, the run time
performance is more stable, and less likely to be provoked by heavy user input
functions. All communication between Njord and Frigg is through TCP/IP.

4.4.1 Network Communication

The communication protocol between the control system and the GUI is through
TCP/IP. This means that the control system and the user interface can run on
separate computers as long as there are some sort of network between them. The

4.4. COMMUNICATION BETWEEN SYSTEMS 59

control system should be run on a server or a real time system to ensure stability.
The network messages sent to Njord are based on a number system where each
number indicates which action to be performed.

<L><C>:<M>
L - Length of string casted to string. Always 4 bytes long.
C - Code for action. Notice separation with ‘‘:’’.
M - Message body. Dependant of the code.

The message sent to the user interface has the following setup:

Package 1:
<L><P><Pest><Pdes><S><V><Vest><Vdes>

Package 2:
<L><T>,<nthrusters>,<R>

Package 3:
<L><A>,<aest>,<Ades>,<Aapprox>,<D>

Package 4:
<L><nMT_DATA>,<MT_DATA><E><Eest><O><Oest>

L - Length of string casted to string. Alway 4 bytes long.
P - Position vector. Values separated with ‘‘,’’
V - Velocity vector. Values separated with ‘‘,’’
S - Numeric Representation of a boolean array. Used to send sensor

status.
T - Thrust and moment vector. Values separated with ‘‘,’’
R - RPM values separated with ‘‘,’’ followed by the Thruster names.
A - Altitude
D - Data from the DVL unit. Values separated with ‘‘,’’
E - Euler angles vector. Values separated with ‘‘,’’
O - Rotational velocity vector. Values separated with ‘‘,’’

Package 1 - 4 are sent in a serial event. By this, it is meant that when Package 1
has arrived at the user interface, the next package is sent and so forth.

4.4.2 compactRIO

For this control system the compactRIO (cRIO) 9870 module[34] is used to commu-
nicate with the ROV. The cRIO contains a reconfigurable Field-Programmable Gate
Array (FPGA) as well as a embedded controller. In addition expansion cards can
be added to the cRIO in order to customize the Input-Output (I/O) configuration.
The cRIO used together with Njord has expansion card for serial-port connections.
They follow the RS-232 standard for serial port communication, and the hardware
interface use the DE-9 port standard. The serial ports are used to receive data from
the ROV- and the navigation-PC.

The cRIO is first of all used as a communication device where the interpretation
of the serial-port signals is done on the FPGA. However, it is a wish to run the

60 CHAPTER 4. THE CONTROL SYSTEM - NJORD

whole control system on the cRIO and take use of the RT-processor. With the
cRIO AUR-Lab holds, this is not possible due to lack of storage space. However,
with a larger storage device it should be possible to achieve RT-control with the
use of Njord on cRIO.

4.5 Testing of the Control Structure

The unit testing started at Module Combination-Level, with exception of small
independent functions and procedures were tested at forehand of the full control
loop test. This resulted in many errors to be fixed simultaneously and the testing
procedure took a while. However, this is hard to avoid as there were no good testing
environment as well as many of the modules are dependent on each other.

The Module Combination-Level testing were conducted in a SIL-Test setup for
Minerva. This means the control loop were integrated in the simulator and were
given signals as function arguments rather than reading from the control box. This
made testing of the control system easier, as there was no need for the cRIO.

Integration tests took place with HIL-Test setup, also for Minerva. As well as
functionalities in the program, the communication through the cRIO were tested.
Testing indicated good promise of the system.

During the testing the maximum waiting time of the communication threads had
to be adjusted as the system had a chance of starvation on the sending thread.
This thread is especially vulnerable for this situation as it runs on a timed loop,
as well as having a time-out limit on the synchronization. By removing the time-
out limit, i.e. the lock will wait for access, the starvation problem disappeared.
However, the sampling rate of the sending thread seemed a bit slow. Further, a
small modification was made in the sending thread, where the user can choose to
deactivate the synchronization. As mentioned in Section 4.1 this will not result
in any of the problems discussed in Section 2.5, as well as the performance is
increased. This types of synchronization avoidance must however be used with
caution, and is only valid in this case as the sending thread only reads the shared
Supervisor-object.

The first system test on the ROV Minerva resulted in a strange and unknown error
in the communication between the control system and the ROV. The control system
received sensor data, but were not able to send commands to the ROV, even though
no errors emerged on the control system side of the system. This stumbled both
the author and co-advisor phd. cand. Fredrik Dukan, especially since the system
worked well in HIL-test setup. Later HIL-tests were not conducted, but during the
sea trial (Section 6.2) communication worked both ways as intended. It is possible
that the problem mentioned above was a result of a failed compilation on the FPGA
module on the cRIO.

4.6. FAULT TOLERANCE IN NJORD 61

4.6 Fault Tolerance in Njord

Larger parts of the control system has of June 2012 unfinished fault tolerance
implementation. However, the structural layout of Njord is set up for error handling
such that forward error recovery can be attempted.

In the communication threads a check for healthy network connectivity is performed
at every iteration. If the connection breaks, the vessel is put in station keeping.
The thread continues with attempts to reestablish the connection with the user
interface until a successful connection, or it is aborted.

The “receive message”-thread has a time-out limit on the TCP-listening function.
This is used in order to avoid Deadlock and Livelock in the system as may or may
not arrive. If the TCP read function times out, the system throws the LabView
Error “Error 56”. As this is an error thrown by provoking the system, and has a
known source, it can be cleared without any concern. This then makes the thread
ready for its next iteration.

It can be appropriate to check for empty arrays and matrices online. If a variable is
empty, the previous stored value is used in order to maintain consistency. At the
same time an error message must be thrown such that the user is notified.

In case of a more serious failure, the vessel could be put in station keeping with a
fail-safe control loop to give the ROV pilot time to switch to manual control. These
should be failures that require a restart of the system. A more seamless solution for
these types of failures could be redundant setup of control systems. An assumption
to make this case valid must then be that the failure propagates from a fault not
present in all instances of the running control systems. By utilizing broadcasting
on UDP/IP ports an active-passive setup can be created. When the active control
system breaks down, the passive control system detects a halt in the broadcasting
and takes the place as the active one.

4.7 Known Problems

When changing from third to second quadrant in heading, the reference model in
DP-operation may misbehave. Setting a new reference with zero heading will make
the reference stable again. An alternative is to enter joystick mode, as this will also
calm the system.

The Passive Nonlinear Observers cannot run during deployment of the ROV as the
integrators have a risk of creating Not-a-Number (NaN) when the measurement
signals kicks in. The problem occur when the signals are given in UTM coordinates.
Otherwise the observer works properly.

62 CHAPTER 4. THE CONTROL SYSTEM - NJORD

Chapter 5

The Graphical User Interface
- Frigg

An important, but often neglected part of a computer-based control system is the
user interface. The ROV operator may not always have an education inside the
field of marine technology or control theory, hence the system should be intuitive
and easy to use such that a larger group can utilize its potential. The new user
interface have been designed with this in mind. It has also been given the name
“Frigg” after the Norse Goddess of Destiny.

In Section 5.1 the concept of the user interface is explained. Further in Section 5.2
the different panels and their functionalities are described. User testings have also
been conducted in three rounds. This is outlined in section 5.3.

5.1 Concept

A key factor when developing a user interface is to recognize who the end-user is.
Should the operation of an ROV be limited to persons with education inside the field
of control theory? Or should it be available for others as well? Frigg is designed to
be user friendly in every day usage. However, for the enthusiastic control engineer,
advanced views and settings are available in the menus, and through short keys.
This way the ROV operator may, if it is desired, look at plots and tuning settings
in order to adjust the behavior of the control system.

Frigg is implemented by using event driven architecture in LabView. LabView
makes the creation of GUI quite simple as drag-and-drop methods can be used,
without the concern of long and complex initialization methods.

A criteria for the user interface was that it should be independent from the control
system. This was solved by using TCP/IP connection in order to transmit messages

63

64 CHAPTER 5. THE GRAPHICAL USER INTERFACE - FRIGG

Figure 5.1: The user interface, Frigg.

and commands between these two systems. This opens up for the ability to develop
the control system in a different programming language, without the need of
changing the user interface, and vice versa. Another quality with this type of
independence is that Njord and Frigg can run on separate computers, hence the
risk of crashing the computer with the control system is reduced, which means the
availability of the control system is increased.

It is a known fact that a person is easily confused and distracted if presented to too
much data at once. Hence, a goal for the user interface was that only necessary
information should be displayed at the top level. At the same time there should be
easy access to different functionalities without having to search for it in different
places.

The video player in the middle of the interface can be used to stream live video
from the ROV. One requirement in order to achieve this is that the video is set
up for broadcasting on an IP-address. Another is that the bandwidth of the
connection support the amount of data traffic this requires. This gives the ability
to remotely operate the ROV and its control system from a different geographical
location.

5.2. PANELS, DIALOG BOXES AND FUNCTIONALITIES 65

5.2 Panels, Dialog Boxes and Functionalities

Frigg contains three main-areas where panels can be inserted. These are Mission
Control, Map Visualization, and Control Panel. Mission Control contains the panels
from DP Operation (Section 5.2.1), Tracking (Section 5.2.2) and Joystick Mode
(Section 5.2.3). The Control Panel area displays Light Control (Section 5.2.5),
Manipulator Control (Section 5.2.6), Camera Control (Section 5.2.4), and Collecting
Unit Control (Section 5.2.7). Map Visualization shows, as the name indicates, the
map (Section 5.2.8). Possibilities for 3D visualization have been created, but as this
was a non-critical part if the user interface, it was down prioritized and will not be
mentioned further in this chapter.

In addition to the panels, dialog boxes are created for certain functionalities. These
are Online Tuning (Section 5.2.9), Graph View (Section 5.2.10), Help Center (Section
5.2.11), Startup Dialog Box (Section 5.2.12), Set Origin Dialog Box (Section 5.2.13),
and Options Dialog Box (Section 5.2.14).

5.2.1 DP Operations

The panel shown in Figure 5.2 makes the user able to change the DP position in
five different ways. The new position is sent to the control system when pressing
the Apply Button.

Change NED

The user input is added to the current position of the vessel in order to create a
new desired position.

New NED

This is the most common way of changing set point during DP operation. The
input from the user will be the new desired position for the vessel.

Distance and Bearing

Distance and Bearing is the same as giving position in polar coordinates. The
program gets the current position, and calculate the new destination based on the
input from the user by using equation 5.1 and 5.2. The depth and heading is set
manually in their respectively input fields.

66 CHAPTER 5. THE GRAPHICAL USER INTERFACE - FRIGG

Figure 5.2: DP Panel in Frigg.

n = n0 + distance× cos(bearing) (5.1)
e = e0 + distance× sin(bearing) (5.2)

Surge and Sway

When using “Surge and Sway”-mode, the program will calculate the new NED
position depending on the current heading and position of the vessel with the
equations 5.3 and 5.4. The depth and heading angle input represents their new
positions, and is not added to the current position.

n = n0 + surge× cos(ψ0) + sway × sin(ψ0) (5.3)
e = e0 + surge× sin(ψ0) + sway × cos(ψ0) (5.4)

From Map

This mode retrieves the last placed WP from the map visualization, Section 5.2.8
and use the coordinates to determine the north and east position. The depth and
heading angle must be given manually.

5.2. PANELS, DIALOG BOXES AND FUNCTIONALITIES 67

5.2.2 Tracking

Figure 5.3 displays the tracking panel as it will appear in Frigg. The tracking panel
allows the user to enter WP coordinates manually in the table. Another alternative
is to generate a lawn mower pattern. When pressing the “Generate Pattern”-button
a dialog box with the correct input fields, pops up. A third alternative for generating
a pattern is through the map visualization outlined in Section 5.2.8. WPs are placed
by double clicking in the map, and is automatically appended to the WP-list.

Figure 5.3: Tracking Panel in Frigg.

Commands as “Pause” and “Abort” are placed in the tracking panel in order to
minimize the spreading of the tracking functionality. It is also possible to save the
WP-list to file, as well as import WPs from files. The WP-files have been chosen to
have the extension “*.wp”, but are regular American Standard Code Information
Interchange (ASCII) files. The advantage of using a self defined file extension is
that it reduces the chance of wrong file input from the user.

5.2.3 Joystick

When activating the joystick mode the panel shown in Figure 5.4 is displayed in
the “Mission Control”-frame. In order to give the ROV pilot maximum control, the
joystick input is being modified. Modifications include dead zone recognition and
scaling of the output range.

The reason for the usage of dead zone functions is to ignore small and unwanted
deflections on the joystick. A naive way of implementing this is to check if the
joystick deflection is larger than the given dead zone limit. If the deflection is not
larger, then the joystick command is set to zero. This gives a step in the joystick
axis commands which can be undesired as it can be hard to control and regulate.

68 CHAPTER 5. THE GRAPHICAL USER INTERFACE - FRIGG

Figure 5.4: Joystick Panel in Frigg.

A suggested solution to this problem is to use the formula

xmod(x) =
{
sign(x) xmax

xmax−DZx
(abs(x)−DZx) ∀ xmax ≥ |x| ≥ DZx

0 ∀ |x| < DZx
(5.5)

where xmod(x) gives the modified joystick command, xmax is the maximum deflection
value of the joystick. DZx is the specified dead zone in x-direction and x is the
current joystick deflection. The formula assume linear relation between joystick
deflection and joystick command value.

Figure 5.5 shows the characteristics of the different approaches regarding dead zone
mentioned above. The red line is the standard no dead zone output. The blue is
the naive method, while the yellow follows the equation 5.5.

In addition to a separate commercial joystick plugged into the computer the joystick
integrated in the ROV pilot chair, Figure 5.6, can be used. The joystick command
is however not handled by the user interface. The user interface notifies the control
system to take use of the joystick by reading the telegram buffer sent from the ROV
control panel.

5.2. PANELS, DIALOG BOXES AND FUNCTIONALITIES 69

Figure 5.5: Joystick Axis Command Value Characteristics.

5.2.4 Camera Control

The panel shown in Figure 5.7 is used to control the camera settings on the ROV.
This include pan, tilt and zoom of the main camera, as well as changing which extra
camera to be active in the ROV video.

5.2.5 Light Control

The light control panel is shown in Figure 5.8. Light settings are set in this panel,
and information is sent to the control system which takes care of the communication
to the ROV.

The Hydrargyrum Medium-arc Iodide Lights (HMI Lights) needs to be handled
with caution, they cannot be switched on again after being turned off, until about
5 minutes have passed. Pseudo code of the implementation is shown in algorithm
6.

70 CHAPTER 5. THE GRAPHICAL USER INTERFACE - FRIGG

Figure 5.6: Joystick Integrated on ROV Pilot Chair.

Figure 5.7: Camera Control Panel in Frigg.

5.2.6 Manipulator Control

The manipulator panel shown in Figure 5.9 is designed to work with the manipulator
arm installed at Minerva. A safety mechanism has been implemented on the power
switch such that if the arm is idle 15 seconds, the manipulator engine is turned of.
Another restriction is that only one junction can be controlled at once. This was
done in order to reduce the possibility of mixed inputs from the user.

5.2. PANELS, DIALOG BOXES AND FUNCTIONALITIES 71

Figure 5.8: Light Control Panel in Frigg.

Algorithm 6 Pseudo Code for the HMI Timer Button
function HMIButtonPressedEvent(void)

if Semaphore.free() && HMI then
Semaphore.signal()

else
HMI ← false

end if
end function
function TimerFunction(void)

loop
if !(HMI || Semaphore.free()) then

Semaphore.wait()
Reset Timer

else
Let Timer go

end if
end loop

end function

Figure 5.9: Manipulator Control Panel in Frigg.

72 CHAPTER 5. THE GRAPHICAL USER INTERFACE - FRIGG

5.2.7 Collecting Unit

Figure 5.10 shows the panel used to control the collecting unit on the ROV. This
panel was originally created tailor made for 30k. Functionalities include driving the
collecting unit in and out, and rotate the barrel back and forth.

Figure 5.10: Collecting Unit Control Panel in Frigg.

5.2.8 Map Visualization

As briefly mentioned in Section 5.2.2, a new feature in the control system is the
use of WP generation in the map view in the user interface. By adding a mouse
click listener in the event structure, the user can with ease set new WPs by double
clicking on the desired position. As the mouse position is given in pixel location
on the screen a transformation is needed in order to use the coordinates. The
function to convert the mouse pointer to map coordinates is given in equation 5.6
and 5.7.

X = XScale.Minimum+ (Coords.Horizontal − PlotBounds.Left)
XScale.Maximum−XScale.Minimum

PlotAreaSize.Width
(5.6)

Y = Y Scale.Minimum+ (Coord.V ertical − PlotBounds.Top)
Y Scale.Maximum− Y Scale.Minimum

PlotAreaSize.Height
(5.7)

5.2. PANELS, DIALOG BOXES AND FUNCTIONALITIES 73

Figure 5.11: Map Visualization in Frigg.

The naming follows what is used in LabView where XScale/YScale.Minimum and
XScale/YScale.Maximum are the axis boundaries. Coord.Horizontal/Vertical is the
mouse coordinate. PlotBounds.Left/Top is the number of pixels from the left/top
screen edge to the plotting object. PlotAreaSize.Width/Height is the distance in
pixels of the plotting area.

In addition to the Map Visualization Panel, a dialog box with a map view is
implemented. This view can be seen in Appendix ref. It must be mentioned that
the map view in the dialog box only displays the position of the mother ship and
the ROV, not WP and such.

5.2.9 Online Tuning

A requirement for the user interface was that there should be possible to adjust
the tuning values on both controllers and observers in RT while the program was
running. This was solved by creating different panels displayed in a frame, as shown
in Figure 5.12, for the different components to be tuned. Each panel generates a

74 CHAPTER 5. THE GRAPHICAL USER INTERFACE - FRIGG

string from one or more matrices which in turn are sent to the control system. In
order to limit the necessary size of the messages sent, the user can choose to extract
the diagonal elements and send them, instead of the full matrix. The user also has
to specify which tuning matrices to be updated.

Figure 5.12: Tuning Panel in Frigg.

Before tuning can be done, a list of the available controllers and observers has to
be obtained. This is done by pressing the “Update List”-button. A request is then
sent to the control system, which responds with a list of its available controllers
and observers. The Drop-Down Selector Menu in the Tuning Panel is then filed out
with these elements. The Tuning Panel has then no fixed list, but adepts itself to
represent the setup used by the control loop.

The tuning panels can be found in Appendix F, and include Nonlinear PID Tuning
(Figure F.1), LQR Tuning (Figure F.2), Linear PID Tuning (Figure F.3), and
Kalman Filter Tuning (Figure F.4).

5.2. PANELS, DIALOG BOXES AND FUNCTIONALITIES 75

Figure 5.13: Graph View in Frigg.

5.2.10 Graph View

In order to determine the performance of the control loop and its components, plots
of the different states is a necessity. These are shown in a separate dialog box which
must be activated by the user. The Graph View window, shown ing Figure 5.13,
contains a panel frame where the selected Plot Panel is shown. Selection of which
plots to be shown is done with a Drop-Down Selection Menu. As of June 2012
the Graph View includes Position Plots (Figure E.1), Velocity Plots (Figure E.2),
Thruster Plots (Figure E.3), Altitude Plots (Figure E.4), MTi Data Plots (Figure
E.5) and Explicit Complementary Filter (ECF) Plots (Figure E.6).

The different Plot Panels can be found in Appendix E.

5.2.11 Help Center

A Help Center (Figure 5.14) has been created in order to make Frigg easier to learn
and understand. It is accessible from the Top Menu Bar and on the short key “F1”.
A navigation tree is used to select which panel to be showed inside the frame.

In Appendix G the different panels added to the help center are shown. These
panels are the Main Display (Figure G.1), Joystick Help (Figure G.2), Joystick
Button Configuration (Figure G.3), Tracking Help (Figure G.4), Camera Panel
Help (Figure G.5), Light Panel Help (Figure G.6), and Map Visualization Help
(Figure G.7).

76 CHAPTER 5. THE GRAPHICAL USER INTERFACE - FRIGG

Figure 5.14: Help Center for Frigg.

5.2.12 Startup Dialog Box

When the user attempts to connect to Njord, or another compatible control system,
the dialog box shown in Figure 5.15 appears. The user has to write the IP address
of the computer running the control system as well as the communication ports.
An option for a restart connection is also present, and can be used if the control
loop is already running while the user interface crashed.

5.2.13 Set Origin Dialog Box

The Set Origin Dialog Box displayed in Figure 5.16 pops up when the user activates
the control loop, and press the “Set Origin”-button on the Front Panel of Frigg. The
Drop-Down Selector Menu which coordinate system the position is to be displayed
in. ROV-coordinate system indicates that the current position is to be set to origin.
The manual selection allows the user to set origin to a predefined coordinate set in
the two input boxed, and UTM follow, as the name indicate, the UTM-coordinate
system.

5.2.14 Options Dialog Box

All preferences and options are gathered in the dialog box shown in Figure 5.17.
Again, sub-panels are used to show different sites which is determined by the the
Drop-Down Selector.

In Appendix D the different panels are displayed. These include DP Options Panel
(Figure D.1), Tracking Options Panel (Figure D.2), Joystick Option Panel (Figure
D.3), Port Cofiguration Panel (Figure D.4), and Power Instruments Panel (Figure
D.5).

5.2. PANELS, DIALOG BOXES AND FUNCTIONALITIES 77

Figure 5.15: Startup Dialog Box in Frigg.

Figure 5.16: Set Origin Dialog Box in Frigg.

78 CHAPTER 5. THE GRAPHICAL USER INTERFACE - FRIGG

Figure 5.17: Option Dialog Box in Frigg.

5.3 Usability Testing

As stated in section 5.1 the aim for the GUI is to be intuitive and user friendly for
a large range of users. In order to test this, a selection of voluntary co-students
were asked to operate the system in a simulation. The testing was conducted in two
phases. The first phase where conducted with a GUI connected to a server program
and were aimed to find faults and errors due to wrong user input or behavior. The
requirement for the testers were that they could not have knowledge of how to

5.3. USABILITY TESTING 79

operate the system at beforehand. This can be compared to “Monkey Testing” or
more specific “Dumb Monkey Testing” as the input, in this case from the human
user, were uniformly distributed.

Between each tester, the system went through a development phase to fix the faults
and errors found. This way each user test evolved the system to a more reliable
state. The development model has then been similar to the iterative development
process.

The second and third phase of the testing were conducted in HIL-test setup and
were aimed at detecting instabilities in the control system as well as the user
interface.

5.3.1 User-Friendly Testing

Several co-students were asked to have a go at the user interface during the
development phase. They were deliberately not given any training at beforehand, so
that they had to try and figure out how the program worked by exploratory browsing.
After they had tested the system, they were asked how they experienced the user
quality of the GUI. The feedback from the first test phase dealt with the confusion
around connecting to the control system and that it was hard to get started. The
terminology also seemed a bit confusing for non-marine students.

Before the next phase, the user interface experienced a face lift as an attempt to
make the system easier to get started with. The connection button were given a
new icon, a distinctive text, and were resized to a larger button. Small hints and
explanations were also added in a text box when the mouse pointer hover over
buttons or areas of interest.

The second test phase reported that it was still hard to figure out the order of
button presses in order to start the system, i.e. first connection button, then bring
the ROV to a depth where position signals were given, and then start the control
loop. On the other side, after the starting procedure, the system seemed intuitive
for the tester.

As a measure to limit the choices given to the user at start up, it was implemented
that only the “Connect”- and “Exit”-button are available. When the user has
connected, the “Start Control Loop”-button is enabled, and the joystick can be
used to drive the ROV to an appropriate starting point. When the “Start Control
Loop”-button is activated, the rest of the functionalities is enabled.

In the third testing phase, the tester experienced the user interface as intuitive and
easy to use as their choices during start up were limited by reduced accessibility of
the buttons. During this testing phase none of the test subjects were able to make
the system crash, hence the interface can be said to be robust.

80 CHAPTER 5. THE GRAPHICAL USER INTERFACE - FRIGG

5.3.2 Functionality Testing

Early functionality tests were aimed at detecting faults and errors in the subroutines
in the user interface. The majority of these tests have been conducted by the
developer as new functionalities have been added to the system.

In the early stages of the development phase, a “server” program was created in
order to verify the TCP messages sent from the GUI, as well as checking the values
from the subroutines. The server program also sent messages to the user interface
in order to simulate signals from an ROV, and at the same time check the position
display functionalities.

Chapter 6

Commissioning

Prior to the sea trials for the ROV 30k that took place in the end of May, the author
contributed in practical tasks and configuration of the navigation system setup.
The work was done at Trondheim Biological Station (TBS). Areas that had to be
checked included the system computers, installing sensors, finding the proper weight
- buoyancy ratio, and installation and testing of the new manipulator arm[35]. In
Section 6.1 a brief introduction to the navigation-PC used in ROV operations is
given. Further in Section 6.2

6.1 NaviPac and Communication String Setup

NaviPac[36] is a Navigation Software developed by the Danish company Eiva
A/S[37]. This software runs on a computer where the sensor data is sent to such
that an output string can be generated by NaviPac for use on a host PC through a
control box.

The sensor string is generated by the NaviPac program by defining a “Data Output”.
The user then has to define recognition code, separator character and the order
of data to be sent. It is possible to combine information from several sensors in
one string. When using such a string in a control system it is important that the
developer has a proper documentation on how the string is set up.

A Doppler Velocity Log (DVL)[38] was used to measure heading, depth, altitude,
and velocity, while a High Precision Acoustic Position (HiPAP)[39] sensor gave the
measured position in north and east coordinates. With these combined the NaviPac
String was chosen to be

!Init;e;n;v;u;a1;a2;a3;a4;d;c;es;ns;cs

n - North

81

82 CHAPTER 6. COMMISSIONING

e - East
v - Velocity in sway
u - Velocity in surge
a1 - altitude measurement 1
a2 - altitude measurement 2
a3 - altitude measurement 3
a4 - altitude measurement 4
d - depth
c - compass heading
es - East Mother Ship
ns - North Mother Ship
cs - Compass Heading Mother Ship

6.2 Wet Test and Sea Trial

A couple of days before the sea trial for the ROV 30k, a series of wet tests were
conducted. These were aimed at checking the functionality of original system and
ensuring that it worked properly. The vessel’s behavior had to be modified such
that it had a good balance both in weight-buoyancy ratio and weight distribution.
After some weight had been added to the ROV, it seemed more relaxed and easy to
control.

The night before the sea trial, the ROV was finally ready to be connected to the
new control system. However, during the sea trials, time had to be used on establish
full communication between the control system and the ROV. As this was the first
time the control system were connected to 30k, there were problems in the sensor
setup which had to be fixed before the ROV could be launched in the sea. After
the communications were established, the manual thrust control mode was used
to check maneuverability given the thruster allocation developed in [40]. The new
control system was superior to the original system in this area as the desired thrust
is run through thruster allocation. Unwanted movement was then to some degree
accounted for, e.g. compensation in pitch angle when going forward.

Due to limited window of operation, tuning of the Kalman Filter was prioritized
instead of the Nonlinear PID controller, as it was a necessity in order to be able to
try the DP system. After reducing the response of the estimated surge and sway
velocities, û and v̂, the observer behaved in accordance with the measured values.
The bias component had to be tuned as well, as there were stationary deviations in
the North and East position estimates.

Figure 6.1 shows the position data for 30k during DP operation. From 10 to about
90 seconds the ROV performed station keeping at its position at the activation time
for DP Mode, ηref = [0, 0, 33.5, 2.2, 1.8,−50]>. Even though the Nonlinear PID
controller was not tuned, it managed to keep the ROV on position. The lack of
controller tuning can especially be seen in the transit between two set points. After

6.2. WET TEST AND SEA TRIAL 83

0 100 200 300 400 500 600 700
−4

−2

0

2

4

Time [s]

N
o

rt
h

 [
m

]

North

Measured

Estimated

Desired

0 100 200 300 400 500 600 700
−4

−2

0

2

4

Time [s]

E
a

s
t

[m
]

East

Measured

Estimated

Desired

0 100 200 300 400 500 600 700
31

32

33

34

35

Time [s]

D
e

p
th

 [
m

]

Depth

Measured

Estimated

Desired

Figure 6.1: Plots of Translational motion during DP test.

about 90 seconds a new position was given to the ROV, ηref = [2, 0, 33.5, 0, 0, 0]>.
The first graph in Figure 6.1 indicates that the proportional gain is too low. This
is in accordance with the fact that the tuning values used are exactly the same as
for Minerva, which is a much smaller and more agile ROV. The reference model
parameters in the guidance system were also suited for Minerva rather than 30k,
which can be seen by the rapid increase in desired position.

The orientation of the ROV during DP operation is shown in Figure 6.2. Graph
number three is of most interest as it illustrates the heading angle of . It can be
seen that the controller makes the ROV follow the reference. However, the same
problem as described above yield in yaw as the controller is too weak to reduce
the error in a timely manner. The orientations of the ROV is measured with a
Xsense MTi[41], which is a gyro-enhanced Attitude and Heading Reference System
(AHRS). This sensor has its own observer and is more accurate than the compass
measurements from the DVL. The estimated attitude values are sent to the Kalman
Filter in order to estimate the yaw rate, r̂, as well as being used in the estimated
position vector, η̂. Because of this the plot of the measured heading values is hidden
behind the estimated values.

84 CHAPTER 6. COMMISSIONING

In Figure 6.2, the first station keeping period (10-90 seconds) has desired values
in accordance to the logic mentioned above, i.e. station keeping of position at
activation time for DP Mode. When a new reference position is given, a fault occurs
in the desired roll value. This should have been set to zero. However, as both roll
and pitch are not independently controlled due to the ROV thruster configuration,
the fault never propagates and becomes a failure.

0 100 200 300 400 500 600 700
−2

0

2

4

6

Time [s]

R
o

ll
[d

e
g

]

Roll

Measured

Estimated

Desired

0 100 200 300 400 500 600 700
−2

0

2

4

6

Time [s]

P
it
c
h

 [
d

e
g

]

Pitch

Measured

Estimated

Desired

0 100 200 300 400 500 600 700
−100

0

100

200

Time [s]

Y
a

w
 [

d
e

g
]

Yaw

Measured

Estimated

Desired

Figure 6.2: Plots of Rotational motion during DP test.

After about 680 seconds in Figure 6.1 and 6.2, or 50 seconds in Figure 6.3 and 6.4
manual thrust control with joystick was activated. These plots indicate that the
observer manages to follow the measurements in a satisfactory manner, hence the
Kalman Filter is working properly.

In Joystick Mode with Force control frame, the desired position values are set to
the estimated values, ηd = η̂. This results in a plot with only one graph for yaw
angles as measured, estimated and desired values are the same.

6.2. WET TEST AND SEA TRIAL 85

0 100 200 300 400 500 600 700 800 900 1000
−20

−10

0

10

Time [s]

N
o
rt

h
 [
m

]

North

Measured

Estimated

Desired

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

20

Time [s]

E
a
s
t
[m

]

East

Measured

Estimated

Desired

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

Time [s]

D
e
p
th

 [
m

]

Depth

Measured

Estimated

Desired

Figure 6.3: Plots of Translational motion during Direct Thrust Allocation Mode
with Joystick.

86 CHAPTER 6. COMMISSIONING

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

Time [s]

R
o

ll
[d

e
g

]

Roll

Measured

Estimated

Desired

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

Time [s]

P
it
c
h

 [
d

e
g

]

Pitch

Measured

Estimated

Desired

0 100 200 300 400 500 600 700 800 900 1000
−200

−100

0

100

200

Time [s]

Y
a

w
 [

d
e

g
]

Yaw

Measured

Estimated

Desired

Figure 6.4: Plots of Rotational motion during Direct Thrust Allocation Mode with
Joystick.

Chapter 7

Concluding Remarks

7.1 Conclusion

Development of computer-based control systems can be a complex and difficult
process. The widen usage of computers in the control industry have led to new
challenges for the control engineer not only in form of different faults and errors,
but also the implementation procedure has changed. It is of major importance
that the system is looked upon as a whole. By utilizing scrum or other software
development procedure, solid communication among the developers is ensured.
Software procedures also bring along the SRS such that there are no doubt on what
the goal is.

It must be emphasized that the planning phase is one of the most important parts
when developing new software systems. If a good development plan is deduced, then
the implementation work will be easier to carry out. The same yields for testing. A
test plan is strongly advised. Software testing is an own field of study, and has huge
influence on the development phase. It is common to include the customers in the
planning phase as they contribute with wanted specification and can help out with
user-testing. During the beginning of the thesis the SRS (Chapter 3) was created in
order to have a structured layout of what to be implemented later on. This document
could with advantage, have been created in cooperation with both supervisor and
co-advisors to ensure correct interpretation of the requirements.

In projects with low to none communication between the developers and the end-
users, the customers usually end up with a system they do not understand, as well
as lack of functionality of what they asked for. With scrum an increased connection
between the developers and the end-users is guaranteed as the concept contains
mandatory meetings between these groups. This helps the developers to understand
what they are developing, as well as the customers get what they are paying for. The
development process have not followed all of the scrum characteristics. However, an

87

88 CHAPTER 7. CONCLUDING REMARKS

open dialog have been maintained between all involved parts to ensure a successful
end result.

When creating systems that is planned for further development, documentation is
needed in order to bring new developers up to speed. Documentation also helps
interfacing different modules of the system. Adequate comments in the code is
also helpful for newcomers as it will help telling what an algorithm does without
having to investigate every detail. In accordance with the development of Njord,
an Application Programming Interface (API)[42] have been created (Appendix A).
The API is intended to be used as a reference book for future developers such that
it is easy to find information about the different modules in the program. Hence, it
is important that the API is updated together with the control system.

The implementation process for the complete system with both Njord and Frigg
took about four months. The main challenge when implementing the control system
from scratch was the lack of testing environments. This led to a huge testing process
in the later part of the development phase, rather than conducting tests as functions
and modules became finished. Frigg was however developed in parallel with the
Njord. A server program was created to simulate the control system such that both
communication and event handling could be tested.

A valid resource for error detection is usability testing. Co-students were asked to
try out the user interface to see if they were able to operate the system. As the
tester explored the system, they performed actions that the author did not foresee,
which again led to an error of failure. Later usability tests were conducted with
both SIL and HIL setup, where the control system also were tested. The usability
tests uncovered errors and failures not detected by standard tests, hence helped to
create a more stable and less faulty system.

The new software architecture have shown promising trends both in performance
and implementation work. As the interface between the different sections in the
program now are predefined, the integration of newly implemented modules require
no modification in the control structure. This results in three steps the developer
needs to take when implementing a new control theory module. The first step is
to implement the equations and the logic required. Afterwards the configuration
file must be updated to include the new tags needed in order to initialize the new
module. Lastly in the third step reading methods for the new tags must be created
in the “Read Configuration File”-method. The required knowledge of the complete
system is then reduced, hence further development is easier.

There are no working tracking guidance implemented in the system as of June 2012.
The intended tracking guidance strategy proved to be too complex, and tailor made
for the old system. With more time, it is possible that the module could have been
made to work.

Unfortunately there was only time for one sea trial with the new control system.
However, the results were promising considering the circumstances. With one more
day at the sea, it is believed that the performance of the DP operation with the

7.2. RECOMMENDED FURTHER WORK 89

ROV 30k would be enhanced.

By the authors experience, LabView is not suited for development of heavy and
complex systems such as the control system. During the development phase the
Integrated Development Environment (IDE) crashed many times, often with no
warnings or chance to save the work. However, LabView is a good language for
inexperienced programmers as syntactical faults are easily detected by the IDE as
well as the building blocks are accessible without the need of knowing obscured
syntax.

Even though with the problems with LabView mentioned above, further development
of Njord and Frigg is encouraged. Especially the architecture of Njord is believed
to create a solid foundation, and even with advanced programming techniques used
in the framework, implementation of new control theory modules can be done with
ease. With some small modifications in the control structure, hybrid control can be
achieved. Further, the potential for fault tolerant control and redundant software
setup, combined with the user-friendly graphical interface, the complete systems
usability is increased to a new level.

7.2 Recommended Further Work

Even though the system works in both DP operation and Joystick Mode, there are
lots of work to be carried further. The most important aspect to fix, is the logic
used in DP Guidance. The reference model has a strange behavior when moving
from one point to another. It may be appropriate to change the whole guidance
block, as the logic has been done in a cumbersome way. In addition, a weakness
in the filter-based reference model used by the DP guidance strategy is that the
integrators are coupled such that all DOFs must be within a limit in order to stop
integrating.

Further it is recommended that a guidance system for Tracking will be implemented.
An attempt to get the guidance strategy outlined in [33] working have been done
by the author without success. The logics implemented in this guidance block is
very complex and difficult to understand. Also here it is advised to revise the logic
implementation, and try to make it easier.

As discussed in Section 4.6, the reliability of the control system can be increased by
using redundant versions of the control system. By utilizing UDP/IP connection
two or more instances of the control system can communicate with each other with
“I am alive”-messages. If the active control system breaks down, the waiting one
will step up and take over the control. This will make the DP system for the ROV
more in accordance to a DP2 or DP3 classification[43] for ships. If this is to be
implemented it is important to set up communication to all the instances of the
control system from the user interface.

It is strongly advised to develop the Error handling further such that Njord is able

90 CHAPTER 7. CONCLUDING REMARKS

to fix smaller problems on-line, without the need of a restart. It is recommended
that Frigg is made fully fault tolerant as well, such that unnecessary crashes of the
software can be avoided.

The 3D visualization of the ROV in Frigg can be further improved to include full
thruster display and attitude orientation. This could later be extended to 3D map
display. Mapping of the sea bed could also be a nice feature to include. Images of
the sea bed could be stored in a database and accessed depending on the UTM
coordinates.

The tuning panel can be expanded to include fast scalar tuning. By this it is meant
that gains and matrices can be scaled by multiplying them with a number. This
will create a fast and easy way to tune the different modules.

It is recommended to expand the library of controllers and observers such that
the system can offer a wide range of configurations. This can be expanded to
utilize hybrid control. Another alternative is to have tailor made configurations for
different sea states, such that the control system can run with a supervisory control
using the conditions as an input. A manual selector to override the decision should
in such cases also be included. A wide selection of controllers and observers will
also bring a professional feel to the whole system, and commissioning of ROVs will
be closer to what is found in the ship industry.

Bibliography

[1] A. J. Sørensen. Lecture Notes Marine Control Systems. Department of Marine
Technology, NTNU, UK-2011-76, 2011.

[2] E. J. Braude. Software Engineering - An Object oriented Perspective. Wiley
and Sons, Inc., 2001.

[3] Ø. Olsen. Praktisk Brukertesting. Statistisk Sentralbyr̊a, 2006.

[4] M. Blanke, M. Kinnaert, J. Lunze, and M. Starowiecki. Diagnosis and Fault-
Tolerant Control. Springer, 2003.

[5] F. Dukan, M. Ludvigsen, and A. J. Sørensen. Dynamic positioning system
for a small size rov with experimental results. Technical report, Norwegian
University of Science and Technology, 2011.

[6] M Kirkeby. Comparison of controllers for dynamic positioning and tracking of
rov minerva. Master’s thesis, Norwegian University of Science and Technology,
2010.

[7] NTNU. Applied underwater robotics laboratory. http://www.ntnu.no/
aur-lab, 2011. [visited 14.12.2011].

[8] T. I. Fossen. Handbook of Marine Craft hydrodynamics and Motion Control.
John Wiley and Sons Ltd., 2011.

[9] S. Bennett. Nicolas minorsky and the automatic steering of ships. Control
Systems Magazine, 1984.

[10] K. J. Åström and B. Wittenmark. Computer-Controlled Systems. Prentice
Hall Inc., 1997.

[11] J. Daintith and E. Wright. Oxford Dictionary of Computing. Oxford University
Press, 2008.

[12] S. Young. Real Time Languages: Design and Development. Ellis Horwood,
1982.

[13] B. Randell, J.-C Laprie, H. Kopetz, and B Littlewood. Predictably Dependable
Computing Systems. Springer Verlag, 1995.

91

http://www.ntnu.no/aur-lab
http://www.ntnu.no/aur-lab

92 BIBLIOGRAPHY

[14] A. Burns and A. Wellings. Real-Time Systems and Programming Language 4th
edt. Addison-Wesley, 2009.

[15] K Schwaber and J. Sutherland. The Scrum Guide. Scrum.org, 2011.

[16] A. Pham and Pham P.-V. Scrum in Action: Agile Software Project Management
and Development. Course Technology, 2012.

[17] IEEE Computer Society. IEEE Recomended Practice for Software Requirements
Specifications. IEEE, 1998. reafirmed 2009.

[18] B. Shneiderman and C. Plaisant. Designing the User Interface. Pearson
Addison-Wesley, 2010.

[19] A. J. Sørensen, Pedersen E., and Ø. Smogeli. Simulation-based design and
testing of dynamically positioned marine vessels. In MARSIM’03, August 2003.

[20] J. Bélanger, P. Venne, and Paquin J.-N. The what, where and why of real-time
simulation. Planet-RT, 10(2), 2010.

[21] E. Hvam. Brukergrensesnitt og menneske - maskin
interaksjon. http://www.sv.ntnu.no/psy/bjarne.fjeldsenden/
TermPapers/EvaHvam.html#_Toc450895986, 2000. [visited 12.12.2011].

[22] B. Randell, P. Lee, and P.C. Treleaven. Reliability issues in computing system
design. ACM Computing Surveys (CSUR), 10(2):123–165, 1978.

[23] Allen B. Downey. The Little Book of Semaphores. Free Software Foundation,
2008.

[24] E. W. Dijkstra. Communicating Sequential Processes. Prentice Hall Interna-
tional, 1985.

[25] J. Magee and J. Kramer. Concurrency - State Models and Java Programs.
John Wiley and Sons, Inc., 2006.

[26] L. W. Lacy. OWL: Representing Information Using the Web Ontology Language.
Trafford Publishing, 2004.

[27] Intel Corporation. Intel processor specifications. http://www.intel.com/
content/www/us/en/processor-comparison/processor-specifications.
html?proc=43122, 2009. [visited 18.05.2012].

[28] National Instruments. Using local and global variables carefully.
http://zone.ni.com/reference/en-XX/help/371361E-01/lvconcepts/
using_local_and_global/, 2008. [visited 18.05.2012].

[29] National Instruments. Are labview global variables good or bad, and when is it
ok to use them? http://zone.ni.com/devzone/cda/tut/p/id/5317, 2011.
[visited 13.12.2011].

[30] J. Strand and T. I. Fossen. Nonlinear passive observer design for ships with
adaptive wave filtering. In H. Nijmeijer and T.I. Fossen, editors, New Directions

http://www.sv.ntnu.no/psy/bjarne.fjeldsenden/TermPapers/EvaHvam.html#_Toc450895986
http://www.sv.ntnu.no/psy/bjarne.fjeldsenden/TermPapers/EvaHvam.html#_Toc450895986
http://www.intel.com/content/www/us/en/processor-comparison/processor-specifications.html?proc=43122
http://www.intel.com/content/www/us/en/processor-comparison/processor-specifications.html?proc=43122
http://www.intel.com/content/www/us/en/processor-comparison/processor-specifications.html?proc=43122
http://zone.ni.com/reference/en-XX/help/371361E-01/lvconcepts/using_local_and_global/
http://zone.ni.com/reference/en-XX/help/371361E-01/lvconcepts/using_local_and_global/
http://zone.ni.com/devzone/cda/tut/p/id/5317

BIBLIOGRAPHY 93

in nonlinear observer design, volume 244 of Lecture Notes in Control and
Information Sciences, pages 113–134. Springer Berlin / Heidelberg, 1999.
10.1007/BFb0109924.

[31] S. Ø. Kørte. Guidance and control strategies for uuvs. Master’s thesis, Norwe-
gian University of Science and Technology, 2011.

[32] F. Dukan and A. J. Sørensen. Joystick in closed-loop control of rovs with
experimental results. Technical report, Norwegian University of Science and
Technology, Department of Marine Technology and Centre for Ships and Ocean
Structures, 2012.

[33] D. A Fernandes, F. Dukan, and A. Sørensen. Reference model for higher
performance and lower energy consumption in motions of marine crafts: Theory
and experiments. IEEE Journal of Oceanic Engineering, 2011.

[34] National Instruments. compactrio. http://www.ni.com/compactrio/, 2011.
[visited 14.12.2011].

[35] Kraft Robotic Science and Technology. Raptor force feedback manipula-
tor. http://krafttelerobotics.com/products/raptor.htm, 2012. [visited
27.05.2012].

[36] Eiva A/S. About navipac. http://download.eiva.dk/online-training/
About%20NaviPac.htm, 2012. [visited 27.05.2012].

[37] Eiva A/S. Eiva a/s home. http://www.eiva.dk/, 2012. [visited 27.05.2012].

[38] Teledyne RD Instruments. Workhorse navigator doppler velocity log. http:
//www.rdinstruments.com/navigator.aspx, 2012. [visited 01.06.2012].

[39] Kongsberg Maritime A/S. Hipap 501 - high precision acoustic position-
ing and underwater navigation system. http://www.km.kongsberg.com/
ks/web/nokbg0240.nsf/AllWeb/245AB9FBAACCD3C6C1256A7E00385C5C?
OpenDocument, 2012. [visited 01.06.2012].

[40] V. Berg. Development and commissioning of a dp system for rov sf 30k.
Master’s thesis, Norwegian University of Science and Technology, 2012.

[41] Xsense. Mti. http://www.xsens.com/en/general/mti, 2012. [visited
01.06.2012].

[42] Various. Application programming interface. http://en.wikipedia.org/
wiki/Application_programming_interface, 2011. [visited 15.12.2011].

[43] Det Norkse Veritas A/S. Special Equipment and Systems - Dynamic Positioning
Systems, pages 1–40. Det Norske Veritas A/S, 2011. Part 6, Section 7 in Rules
for Classification of Ships.

http://www.ni.com/compactrio/
http://krafttelerobotics.com/products/raptor.htm
http://download.eiva.dk/online-training/About%20NaviPac.htm
http://download.eiva.dk/online-training/About%20NaviPac.htm
http://www.eiva.dk/
http://www.rdinstruments.com/navigator.aspx
http://www.rdinstruments.com/navigator.aspx
http://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/245AB9FBAACCD3C6C1256A7E00385C5C?OpenDocument
http://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/245AB9FBAACCD3C6C1256A7E00385C5C?OpenDocument
http://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/245AB9FBAACCD3C6C1256A7E00385C5C?OpenDocument
http://www.xsens.com/en/general/mti
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface

94 BIBLIOGRAPHY

Appendix A

API Njord

I

NORWEGIAN UNSIVERSITY OF SCIENCE AND TECHNOLOGY

Application Programming
Interface

Njord

Espen Tolpinrud

07.06.2012
Revision: 1.0.0

This document is meant to be used as an Application Programming Interface (API) for future control
system developers.

Table of Content
Introduction ... 3

Objects ... 4

Vessel.lvclass ... 4

Supervisor.lvclass .. 9

Thrust Allocation.lvclass .. 21

Thruster.lvclass .. 22

Sensor.lvclass ... 23

Observer.lvclass ... 24

Kalman Filter.lvclass .. 25

Kalman Filter Altitude.lvclass .. 26

Passive Observer.lvclass .. 27

Adaptive Passive Observer.lvclass ... 29

Guidance.lvclass .. 30

Altitude Guidance.lvclass .. 31

DP Guidance.lvclass ... 32

Joystick Guidance.lvclass ... 33

Tracking Guidance.lvclass .. 36

Tracking STRM Guidance.lvclass ... 37

Controller.lvclass ... 39

Joystick Controller.lvclass .. 40

PID Controller.lvclass ... 41

Linear PID Controller.lvclass .. 42

Non Linear PID Controller.lvclass .. 43

LQR Controller.lvclass .. 44

Sliding Mode.lvclass .. 45

Backstepping.lvclass .. 46

Adaptive Backstepping.lvclass ... 47

Stand-Alone Methods ... 48

mainVI.vi .. 48

mainVI_SIL.vi ... 48

Reference Model ... 48

Kinematics ... 48

Integrators ... 50

Signal Processing ... 50

Others .. 51

Configuration File .. 53

Table of tags and attributes .. 53

Introduction
It is recommended to have some basic knowledge of LabView and programming before reading this
documentation.

Explanation of expressions
Cluster is a gathering of value types much like struct in other programming languages.

Matrix is a typedef 2D Array of Double
Complex Matrix is a typedef of 2D Array of Complex Numbers.

Objects

Vessel.lvclass
Labview Object.lvclass
 ∟ Vessel.lvclass

Implemented by Espen Tolpinrud.

The Vessel class is a representation of the craft in the control system.

Constructor summary
Name Note
Vessel() Creates a Vessel Object where the TCP port number is set to default, 8500.
Vessel(UInt 16 port) Creates a Vessel Object where the TCP port number is set to be the given port
Vessel(FPGA VI Ref) Creates a Vessel Object where the FPGA VI Ref is set. The TCP ports is set to

default

Field summary
Data Type Name Note
1D Array of
Observer.lvclass

Array Altitude Observer Array of Observer objects for Altitude

1D Array of
Controller.lvclass

Array Controllers Array of Controller objects

1D Array of
Observer.lvclass

Array Observer Array of Observer objects for position, velocity and
acceleration estimation.

Double Buoyancy The Buoyancy value for the vessel
1D Array of
Double

CB The Center of Buoyancy for the vessel
(Maybe to be removed)

1D Array of
Double

CG The Center of Gravity for the vessel
(Maybe to be removed)

Cluster of
{UInt16,1D Array
of Double}

Coordinate Reference Contains the type of coordinate system to be used
together with an array of offset values.

Matrix Coriolis_RB A Matrix with Coriolis effects for the vessel
Int32 DOF The number of Degrees of Freedom in the system
Int32 DP Altitude Observer Index The Index pointing to the observer object to be used

from Array Altitude Observer during DP operation
Int32 DP Controller Index The Index pointing to the controller object to be used

from the Array Controllers during DP operation
Int32 DP Guidance Index The Index pointing to the guidance object to be used

from the Guidance Array during DP operation
Int32 DP Observer Index The Index pointing to the observer object to be used

from the Array Observers
1D Array of Int32 Drop Out Array Array indicating healthy and unhealthy sensors.
Cluster of {1D DVL Cluster containing information from the Doppler

Array of Double,
1D Array of
Int32}

Velocity Log
- Value (1D Array of Double)
- Signal (1D Array of Int32)

FPGA Interface FPGA VI Reference A Reference to the FPGA VI implemented on the NI
compactRIO.

Double Height The height of the vessel (Maybe to be removed)
Int32 Joystick Guidance Index The Index pointing to the guidance object to be used

from the Guidance Array during Joystick Mode
Double Length The length of the vessel. (Maybe to be removed)
Matrix Linear Damping Matrix containing linear damping values for the vessel
Matrix Mass_A Matrix containing the Added Mass effects for the

vessel
Matrix Mass_RB Matrix containing the Rigid Body Mass for the vessel
1D Array of
Double

Max Thrust Array with maximum thrust in each degree of freedom
for the vessel.

1D Array of
Double

Max_Acc Array with maximum acceleration defined in body
coordinates in each degree of freedom for the vessel.

String Name Name of the ROV
Matrix NonLinear Damping Matrix containing nonlinear damping values for the

vessel.
1D Array of
Double

Nu_max Array with maximum velocity defined in body
coordinates in each degree of freedom for the vessel.

1D Array of
Cluster of {Int16,
Int8, Int8, Int8,
Int8}

Port Configuration Array with communication information used to
communicate with the NI compactRIO.
The cluster contains the fields:

- Baud Rate (Int16)
- Data Bits (Int8)
- Parity (Int8)
- Stop Bits (Int8)
- Flow Control (Int8)

Double Sampling Time The sampling time for the control loop. Determines
the frequency of iteration.

Cluster of 4
{Cluster of {1D
Array of Double,
1D Array of
Double, 1D Array
of Double, 1D
Array of Double},
Cluster of {
Double, Double,
Double, Double,
Double}, 1D
Array of Double,
1D Array of
Double, Cluster
of {4 1D Array of

States Contains the different states for the system
- Measured (Cluster)

o Eta (1D Array of Double)
o Nu (1D Array of Double)
o Eta_dot (1D Array of Double)
o Nu_dot (1D Array of Double)

- Estimated (Cluster)
o Eta (1D Array of Double)
o Nu (1D Array of Double)
o Eta_dot (1D Array of Double)
o Nu_dot (1D Array of Double)

- Desired (Cluster)
o Eta (1D Array of Double)
o Nu (1D Array of Double)
o Eta_dot (1D Array of Double)

Double}} o Nu_dot (1D Array of Double)
- Previous Desired (Cluster)

o Eta (1D Array of Double)
o Nu (1D Array of Double)
o Eta_dot (1D Array of Double)
o Nu_dot (1D Array of Double)

- Tau (1D Array of Double)
- Rpm (1D Array of Double)
- Altitude (Cluster)

o Measured
o Estimated
o Desired
o Previous Desired
o Approximated

- Attitude
o Theta Measured
o Theta Estimated
o Omega Measured
o Omega Estimated

Supervisor.lvclass Supervisor A Supervisor object used to communicate with a user
interface and ensure correct behavior in the system.

Thrust
Allocation.lvclass

Thrust Allocation A Thrust Allocation object used to keep track of the
thrusters for the vessel

Int32 Tracking Altitude Observer
Index

The Index pointing to the observer object for altitude
to be used from the Array Observer Altitude during
Tracking

Int32 Tracking Controller Index The Index pointing to the controller object to be used
from the Array Controllers during Tracking

Int32 Tracking Guidance Index The Index pointing to the guidance object to be used
from the Guidance Array during Tracking

Int32 Tracking Observer Index The Index pointing to the observer object to be used
from the Array Observers during Tracking

1D Array of
Sensor.lvclass

Used Sensors Array containing all sensors used by the vessel.

Double Width The width of the vessel. (Maybe to be removed)

Methods summary
Data Type Name with input

arguments
Note

Void Add Element in Array
Altitude
Guidance{Guidance.lvclass
new Altitude Guidance

Inserts a new altitude guidance object in the array.

Int32 Add Element in Array
Altitude Observer
(Observer.lvclass new
Altitude Observer)

Inserts a new Altitude Observer object in the Array
Altitude Observer and returns the index of the new
element.

Int32 Add Element in Array
Controller
(Controller.lvclass new
Controller)

Inserts a new Controller object in the Array Controllers
and returns the index of the new element.

Int32 Add Element in Array
Guidance (Guidance.lvclass
new Guidance)

Inserts a new Guidance object in the Array Guidance
and returns the index of the new element.

Int32 Add Element in Array
Observers (Observer.lvclass
new Observer)

Inserts a new Observer object in the Array Observers
and returns the index of the new element.

Void Add Element in Available
Sensors (Sensor.lvclass new
Sensor

Inserts a Sensor object in the Available Sensors array

Void Add Element in Used
Sensors (Sensor.lvclass new
Sensor)

Inserts a Sensor object in the Used Sensors array.

Void Control Structure () Performs an iteration of the control loop. Must be
placed in an outer loop structure in order to work
properly.

Void Discrete to Continuous
(Void)

Transforms the angels in estimate and desired states
from discrete to continuous.

Int32 Find Controller by Name
(String name)

Finds the index of the controller with the specified
name in the controller array. If not present the
method returns -1.

Int32 Find Observer by Name
(String name)

Finds the index of the observer with the specified
name in the observer array. If not present the method
returns -1.

Int32 Find Sensor by ID (String
Sensor ID)

Searches through the Used Sensors array and returns
the Index of the desired Sensor, or -1 if no match is
found.

Observer.lvclass Get Active Altitude
Observer ()

Returns the Altitude Observer object for the active
task. Default task is DP operation.

Controller.lvclass Get Active Controller () Returns the Controller object for the active task.
Default task is DP operation.

Guidance.lvclass Get Active Guidance () Returns the Guidance object for the active task.
Default task is DP operation.

Observer.lvclass Get Active Observer () Returns the Observer object for the active task.
Default task is DP operation.

Void Measurement Substitution
(Void)

Substitutes the angle measured state with the ones
from MTi.

Void Read Configuration File () Initializes the invoker and makes the system ready for
execution.

4 1D Array of
Double

Read FPGA FIFO () Reads the FIFO stack on the NI compactRIO and return
arrays with the sensor values.
NB! This method is only to be used together with a NI
compactRIO unit. Use “Read ROV String_SIL” for non
NI compactRIO setup.
Return values is:

- MRU
- MT_DATA
- Signals out
- Dvl_m

2 1D Array of
Double

Read ROV String_SIL (String
ROV string, String NAVI
string)

Reads the sensor strings and returns the sensor
values. This is a substitution for the Read FPGA FIFO ()
for setup with no NI compactRIO setup.
Return Values is:

- Signals out
- Dvl_m

Void Signal Processing (1D Array
of Double MRU, 1D Array
of Double MT_DATA, 1D
Array of Double Signals in,
1D Array of Double dvl_m)

Translates the sensor values into position and velocity
measurements. The Sensors health is checked.
State variables are set in the invoking vessel object.

Void Store Active Altitude
Observer (Observer.lvclass
observer)

Replaces the Altitude Observer object for the active
task. Updates will then be carried on in the system.

Void Store Active Controller
(Controller.lvclass
controller)

Replaces the Controller object for the active task.
Updates will then be carried on in the system.

Void Store Active Guidance
(Guidance.lvclass guidance)

Replaces the Guidance object for the active task.
Updates will then be carried on in the system.

Void Store Active Observer
(Observer.lvclass observer)

Replaces the Observer object for the active task.
Updates will then be carried on in the system.

Void Write to cRIO () Create and write the telebuf to the NI compactRIO
FIFO stack.

NB! To not use this unless a NI compactRIO unit is
connected. Use “Write to cRIO_SIL” instead.

1D Array of UInt8 Write to cRIO_SIL () Create the telebuf and send it as output.

This is a substitute for the “Write to cRIO”.

Supervisor.lvclass
Labview Object.lvclass
 ∟ Supervisor.lvclass

Implemented by Espen Tolpinrud.

The Supervisor object works as a communication administrator and execution flow manager.

Constructor Summary
Name Note
Supervisor() Default constructor to create a supervisor object.

Field Summary
Data Type Name Note
Boolean Auto Depth Used to give message about running auto depth in

joystick control.
Boolean Auto Depth Tele Used to give message about running auto depth in

joystick control. Message from ROV control panel.
Boolean Auto Heading Used to give message about running auto heading in

joystick control. Message from Joystick.
Boolean Auto Heading Tele Used to give message about running auto heading in

joystick control. Message from ROV control panel.
Cluster of {
Boolean, Int8,
Double, Double,
Double, Double,
Double}

Altitude Cluster containing:
- Altimeter Active (Boolean)
- Beam Select (Int8)
- Measured (Double)
- Estimated (Double)
- Desired (Double)
- Previous Desired (Double)
- Approximated (Double)

Cluster of {
Boolean,
Boolean,
Boolean, Int32 }

Altitude Cluster Cluster containing:
- Use Integrator (Boolean)
- Use FeedForward (Boolean)
- Use Reference Model (Boolean)
- Desired Altitude

Cluster of { 4x 1D
Array of Double}

Attitude Cluster containing:
- Theta Measured (1D Array of Double)
- Theta Estimated (1D Array of Double)
- Omega Measured (1D Array of Double)
- Omega Estimated (1D Array of Double)

Cluster of {
Boolean}

Attitude Cluster Cluster containing:
- Initialize (Boolean)

Cluster of { Int32,
Boolean,
Boolean,
Boolean,
Boolean}

Camera Control Cluster containing:
- Camera Number (Int32)
- Camera Up (Boolean)
- Camera Down (Boolean)
- Camera Left (Boolean)
- Camera Right (Boolean)

Cluster of { 4x
Boolean}

Collecting Unit Contains:
- In (Boolean)
- Out (Boolean)
- Rotate CW (Boolean)
- Rotate CCW (Boolean)

UInt16 Control Mode Selector for the different control modes the vessel can
operate in during Joystick mode.

Boolean Control System Active Flag used to determine if the control loop is to be run.
UInt16 Coordinate System Selector for the different coordinate reference

systems the vessel can operate in.
Cluster of {1D
Array of Double,
1D Array of
Double, 1D Array
of Double, 1D
Array of Double}

Desired Desired State values from the vessel.

1D Array of
Double

Dvl data Sensor values from the Doppler Velocity Log.

String Error Msg Contains an Error Message from the system, if
everything is OK, it should say “OK”.

Cluster of {1D
Array of Double,
1D Array of
Double, 1D Array
of Double, 1D
Array of Double}

Estimated Estimated State values from the vessel.

Boolean Exit Flag Change when user interface demands it
UInt16 Frame Mode Selector for the different frame modes the vessel can

operate in during joystick mode

Cluster of {
Boolean,
Boolean, Int8,
Boolean,
Boolean, Cluster
of {Double,
Double, Double,
Double}, Cluster
of {Boolean, 1D
Array of Double}}

Guidance Cluster Cluster contains:
- Set Origin (Boolean)
- New WP (Boolean)
- Types of Change (Int8)
- Make Change (Boolean)
- Optimal Heading (Boolean)
- New SetPoint

o North
o East
o Depth
o Heading

- Update Reference
o Mode Change
o Current Position

Int32 Iteration Number The iteration number for the control loop
Cluster of
{Cluster of
{Double, Double,
Double}, Cluster
of {Double,
Double, Double}}

Joystick Axis Cluster with joystick axis inputs.
Contains:

- Axis Translation
o X-Axis
o Y-Axis
o Z-Axis

- Axis Rotation
o X-Axis
o Y-Axis
o Z-Axis

Cluster of
{Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean, Int32}

Joystick Commands Cluster with joystick button inputs.
Contains:

- Button 1 (Boolean)
- Button 2 (Boolean)
- Button 3 (Boolean)
- Button 4 (Boolean)
- Button 5 (Boolean)
- Button 6 (Boolean)
- Button 7 (Boolean)
- Button 8 (Boolean)
- Button 9 (Boolean)
- Button 10 (Boolean)
- Button 11 (Boolean)
- Button 12 (Boolean)
- POV Direction (Int32)

Cluster of { 2
Double Matrix, 2
Boolean}

Kalman Filter Observer
Tuning

Contains new tuning values for the Kalman Filter
observer. Elements are:

- R (Double Matrix)
- Q (Double Matrix)
- Update R (Boolean)
- Update Q (Boolean)

When the Booleans are set to true the corresponding
matrices in the Non Linear PID object are updated to
contain the values from the matrices in this cluster.

Cluster of
{Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean, Int32,
Int32}

Light Settings Cluster with Light control inputs.
Contains:

- Light 1
- Light 2
- Light 3
- Light 4
- HMI 1
- HMI 2
- Light Intensity 1
- Light Intensity 2

Cluster of
{Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean, Boolean
}

Manipulator Control Cluster with Manipulator control inputs.
Contains:

- Power Switch (Boolean)
- Upper Arm Up (Boolean)
- Upper Arm Down (Boolean)
- Lower Arm Up (Boolean)
- Lower Arm Down (Boolean)
- Arm Left (Boolean)
- Arm Right (Boolean)
- Claw Open (Boolean)
- Claw Close (Boolean)
- Rotate Clockwise (Boolean)
- Rotate Counterclockwise (Boolean)

Cluster of {1D
Array of Double,
1D Array of
Double, 1D Array
of Double, 1D
Array of Double}

Measured Measured State values from vessel.

1D Array of
Single

MT_DATA Contains values from the MT sensor. Used in Attitude
Observer.

Boolean MTi Active Flag to determine if MTi Observer shall run
Boolean MTi Gyro Flag to determine if MTi Gyro sensor shall be used.
Boolean New WP List Flag to notify about new WP List.

Cluster of { 4
Double Matrix, 4
Boolean}

Non Linear PID Tuning Contains new tuning values for the Non Linear PID
Controller. Elements are:

- KP (Double Matrix)
- KD (Double Matrix)
- KI (Double Matrix)
- KA (Double Matrix)
- Update KP (Boolean)
- Update KD (Boolean)
- Update KI (Boolean)
- Update KA (Boolean)

When the Booleans are set to true the corresponding
matrices in the Non Linear PID object are updated to
contain the values from the matrices in this cluster.

Boolean Only New HiPAP Flag to determine if only new HiPAP measurements
are to be sent to the observer.

UInt16 Operation Type Selector which keeps track of which mode is active for
the vessel the supervisor object belongs to.

Cluster of
{Double, Double}

Origin Represents the UTM coordinates for a desired origin.
Contains:

- North (Double)
- East (Double)

Cluster of { 10x
Boolean}

Power Instruments Contains
- HPR (Boolean)
- Sonar 1 (Boolean)
- Sonar 2 (Boolean)
- Doppler (Boolean)
- Laser (Boolean)
- KRAFT (Boolean)
- Pan/Tilt (Boolean)
- Transponder (Boolean)
- Still Cam (Boolean)
- HD Cam (Boolean)

Boolean Reset Controller Flag to reset integrators in the controllers.
Boolean Reset Observer Flag to reset the values in the observers.
Boolean Reset ROV Flag to set the desired position to current estimated

position.
Boolean Reset SP Flag used to notify if signal processing is to be reset.
1D Array of
Double

RPM RPM values for the vessel the supervisor object
belongs to.

Cluster of {1D
Array of Int32, 1D
Array of Boolean}

Sensor Status Contains:
- Sensor Drop Out (1D Array of Int32)
- Sensor Health (1D Array of Boolean)

2D Array of
Double

Table of WP An array with the waypoints to be used in tracking.

1D Array of
Double

Tau_scaled A percentage representation of the desired thrust in
each Degree of Freedom.

1D Array of String Thruster Names A string array with the thruster names.

Cluster of{Cluster
of {Double,
Double, Double,
Double, Double,
Double, Double,
Double}, 2D
Array of Double,
Cluster of {
Double, Double,
Double, Double,
Double, Double,
Double, Double,
Double}, UInt16,
Boolean,
Boolean,
Boolean,
Boolean}

Tracking Cluster A Cluster with tracking performance settings.
Contains:

- Performance Behavior
o % Velocity max lin to exp (Double)
o % Velocity zero lin to exp (Double)
o % Total distance at max velocity

(Double)
o Max Angular Velocity (Double)
o Time to max linear velocity (Double)
o Min distance at max velocity (Double)
o Max linear velocity (Double)
o Time to max angular velocity (Double)

- Table of WP (2D Array of Double)
- Tracking Options

o Superior Bound (Double)
o Inferior Bound (Double)
o Duration No operation period

between motions (Double)
o Tolerance of initial angle (Double)
o Distance to activation waiting function

(Double)
o Distance to deactivation waiting

function (Double)
o (2) Fixed Heading (Double)
o (3) PoI N (Double)
o (3) PoI E (Double)

- Heading Mode (UInt16)
- Start (Boolean)
- Use Position (Boolean)
- Pause (Boolean)
- Abort (Boolean)

Boolean Update Ports A Boolean to notify the system about new port
configurations.

1D Array of
Cluster of {Int16,
Int8, Int8, Int8,
Int8}

Updated Port
Configurations

Array with communication information used to
communicate with the NI compactRIO.
The cluster contains the fields:

- Baud Rate (Int16)
- Data Bits (Int8)
- Parity (Int8)
- Stop Bits (Int8)
- Flow Control (Int8)

Boolean Use Altitude Guidance A Boolean to notify the system about using altitude
guidance.

Boolean Use Chair Joystick A Boolean to notify the system about using the chair
joystick instead of the one connected to the host pc.
Yields only for 30k.

Method Summary
Data Type of
Return

Name with input
arguments

Note

TCP Network
Reference

Receive TCP Message (TCP
Network Reference ref)

Receive run-time commands through the TCP
protocol. Usually from a user interface.

TCP Network
Reference

Receive TCP Message
Joystick (TCP Network
Reference ref)

Receive Joystick commands through the TCP protocol
and fills out Joystick Axis and Joystick Commands.
Usually from a user interface.

TCP Network
Reference

Send TCP Message (TCP
Network Reference ref)

Sends status messages through the TCP protocol,
usually to a user interface.

Method Details

Receive TCP Message (TCP Network Reference ref)
This method is used to listen for new inputs from the user interface. Each message contains a code and a
message body.

Code Message Body Note
1: 1 Exit message to the system.
2: Double North,Double East,Double

Depth,Double Heading
Notification of new DP position. The coordinates
should be given in NED coordinates with Heading in
radians.

3: Integer nWP,Double wp1index,Double
wp1n,Double wp1e,Double
wp1d;…;Double wpNindex,Double
wpNn,Double wpNe,Double wpNd;

Notification of tracking operation. The whole
waypoint list is sent starting with the number of
waypoints, N, and then continuing with N sets of NED
coordinates.

4: 3charString code,Integer value Message for Manipulator control on the ROV. The
code has to consist of 3 and only 3 characters! The
valid codes are:

- PSM (Power Switch Manipulator)
- UA (Upper Arm)

o U (Up)
o D (Down)

- LA (Lower Arm)
o U (Up)
o D (Down)

- MA (Manipulator Arm)
o R (Right)
o L (Left)

- CL (Claw)
o C (Close)
o O (Open)

- AR (Arm Rotation)
o L (Counterclockwise)
o R (Clockwise)

The integer values should be either 0 (for false) or 1
(for true). The true condition can however be set to
any integer not equal to 0.

5: 2charString code,Integer value Message for Camera settings on the ROV. The code
has to consist of 2 and only 2 characters! The valid
codes are:

- CN (Camera Number)
- CU (Camera Up)
- CD (Camera Down)
- CL (Camera Left)
- CR (Camera Right)

The integer value should be for all codes except CN be
0 (for false) or 1 (for true). For CN the integer value
should be a whole number.

6: 2charString code,Integer value Message for Light settings on the ROV. The code has
to consist of 2 and only 2 characters! The character at
the back must be an integer.
The valid codes are:

- L (Light)
o 1
o 2
o 3
o 4

- H (Hydrargyrum medium-arc iodide light)
o 1
o 2

- I (Light Intensity)
o 1
o 2

The integer value should for all codes except for I be 0
(for false) or 1 (for true). For I the value should be a
whole number between 0 and 127.

7: Joystick Command String. (See details below)
8: 3charString,Double value Message for changing options for Tracking
9: 1charString,Integer Message for Pause or Abort Tracking.
10: 8x[Integer PortNumber,Integer

BaudRate,Integer DataBits,Integer
Parity,Integer StopBit,Integer
FlowControl;]

Message for configuration of port connections
between the system and the compactRIO. 8 port
configurations are sent from the user interface.

11: Integer value Notification to the system to set new origin point. The
integer value should be 0 (for false) or 1 (for true).

12: Integer value Message used to switch between using estimated and
measured values in the controller.

13: Integer value Message used to switch frame mode during joystick
operations. The integer value points to a selector
position.

14: Integer value Message used to switch control mode during joystick
operations. The integer value point to a selector
position.

15: Integer value Message to notify the system to start the control loop.
The integer value should be 0 (for false) or 1 (for true).

16: Integer value Message to notify the system to reset the observer.
The integer value should be 0 (for false) or 1 (for true).

17: Integer value Message to notify the system to reset the controller.
The integer value should be 0 (for false) or 1 (for true).

18: Integer value Message to notify the system to reset the ROV. The
integer value should be 0 (for false) or 1 (for true). The
controller is also reset by this call. The desired position
is set to be the estimate.

19: 3charString,[1charString:1charString]
[MatrixValuesString]

Message to notify the system to update the tuning
matrices for a controller or observer. Which module to
be updated, is given in the message.

20: Integer Value Message to notify the system to activate/deactivate
the MTi. The integer value should be 0 (for false) or 1
(for true).

21: Integer Value Message to notify the system to activate/deactivate
the MTi Gyro. The integer value should be 0 (for false)
or 1 (for true).

22: Integer Value Message to notify the system to activate/deactivate
the auto tuning of Omega used by the reference
model. The integer value should be 0 (for false) or 1
(for true).

23: Empty message body Activates the joystick mode in force frame. Used as a
fail-safe mechanism.

24: Integer Value Message to notify the system to activate/deactivate
the use of the joystick on the chair (for 30k only). The
integer value should be 0 (for false) or 1 (for true).

25: Integer Value Message to notify the system to activate/deactivate
the HPR. The integer value should be 0 (for false) or 1
(for true).

26: Integer Value Message to notify the system to activate/deactivate
the Sonar 1. The integer value should be 0 (for false)
or 1 (for true).

27: Integer Value Message to notify the system to activate/deactivate
the Sonar 2. The integer value should be 0 (for false)
or 1 (for true).

28: Integer Value Message to notify the system to activate/deactivate
the Doppler Velocity Log. The integer value should be
0 (for false) or 1 (for true).

29: Integer Value Message to notify the system to activate/deactivate
the Laser. The integer value should be 0 (for false) or 1
(for true).

30: Integer Value Message to notify the system to activate/deactivate
the KRAFT Manipulator Arm Control. The integer value
should be 0 (for false) or 1 (for true).

31: Integer Value Message to notify the system to activate/deactivate
the Pan/Tilt. The integer value should be 0 (for false)
or 1 (for true).

32: Integer Value Message to notify the system to activate/deactivate
the Transponder. The integer value should be 0 (for
false) or 1 (for true).

33: Integer Value Message to notify the system to activate/deactivate
the Still Camera function. The integer value should be
0 (for false) or 1 (for true).

34: Integer Value Message to notify the system to activate/deactivate
the HD Camera. The integer value should be 0 (for
false) or 1 (for true).

35: 2charString,Integer Value Message to notify the system to activate/deactivate
the Collecting Unit functions. The integer value should
be 0 (for false) or 1 (for true).
Codes are:

- OU – Out
- IN – In
- CC – Counter Clockwise
- CW - ClockWise

36: Integer Values Message to notify the system to activate/deactivate
the “Only New HiPAP”. The integer value should be 0
(for false) or 1 (for true).

37: Integer Value Message to notify the system to reset the Signal
Processing. The integer value should be 0 (for false) or
1 (for true).

38: Empty Message body Notifies the system to send a list of all available
controllers and observers to the user interface.

Receive TCP Message Joystick (TCP Network Reference ref)
This method is used to receive joystick commands from the user interface. This has been given its own
method due to frequent message receiving. By running this method in a separate thread concurrent with
Receive TCP Message () no user inputs are ignored.

Code Message Body Note
7: Integer value,Double X,Double Y,

Double Z, Double ZRot,Integer
Buttons,Integer POV

The integer value is a numeric representation of a
Boolean value of whether or not the joystick is in use
or not. X is the X-Axis position, Y is the Y-Axis position,
Z is the Z-Axis position and the ZRot is the Z-Axis
Rotation. The integer Buttons is a numeric
representation of a Boolean array and has a value of
∑ 2𝑖𝑘
𝑖=0 where k is the number of buttons on the

joystick. Each button combination then has its own
unique value and no button pressed is set to 0. The
POV integer gives the direction angle in degrees from
0 to 360 with step of 45 degrees. No direction is
defined as -1.

Send TCP Message (1D Array of TCP Network Reference ref)
This method builds and sends a string of data to the user interface. There are separate TCP Network
References for each type of data set to be sent.

The different data sets are:

- Position states
- Velocity states
- Thruster values and RPMs
- Altitude and dvl sensor
- MTi data (Not implemented yet)
- Other sensors can be added.

Thrust Allocation.lvclass
LabView Object.lvclass
 ∟ Thrust Allocation.lvclass

Implemented by Viktor Berg.

Constructor Summary
Name Note
Thrust Allocation() Default constructor to create an instance of the class.

Field Summary
Data Type Name Note
1D Array of
Thruster.lvclass

Array Thrusters Array of the thruster objects that belongs to the
invoking thrust allocation object.

Matrix Thrust Allocation Matrix A matrix with thruster impact in each Degree of
Freedom. Each row represents Degree of Freedom,
and the columns are the thrusters. Also called T.

Matrix Thrust Coefficients Matrix A Matrix with the relationship between thrust in force
and thruster RPMs. Also called K.

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate
Thrust(Vessel.lvclass
vessel)

Converts the desired thruster forces and torques to
thruster RPMs with the expression

𝑢 = 𝐾−1𝑇†𝜏
Void Insert

Thruster(Thruster.lvclass
thruster, Int32 Index)

Insert a new thruster object in the Array Thruster. The
thruster impact in each Degree of Freedom is
calculated and added to the Thrust Allocation Matrix.

Void Thrust Coefficients (1D
Array of Double rpm)

The method calculates the Thrust Coefficients to be
used by the Calculate Thrust method.

Void Write Col in Thrust
Allocation Matrix (

This is a private method for the Thrust Allocation
object and is used to add a column in the Thrust
Allocation Matrix.

Thruster.lvclass
LabView Object.lvclass
 ∟ Thruster.lvclass

Implemented by Espen Tolpinrud.

Constructor Summary
Name Note
Thruster() Default constructor to create an instance of the class.
Thruster (1D Array of
Double input, String
Type, String Name)

Constructor that fully initialize the object.

Field Summary
Data Type Name Note
1D Array of
Double

Coefficients Array with coefficients for the relationship between
Force and RPM. Contains both for positive and
negative RPM, and is made for second order
relationship.

Double Max RPM A matrix with thruster impact in each Degree of
Freedom. Each row represents Degree of Freedom,
and the columns are the thrusters. Also called T.

String Name A Matrix with the relationship between thrust in force
and thruster RPMs. Also called K.

1D Array of
Double

Position Vector The position vector represents the thruster position in
body coordinates. First index is x, second y, third z,
fourth rotation about z-axis, fifth rotation between x-y
plane and z-axis. This is similar to spherical
coordinates.

1D Array of
Double

Rotation Vector If thruster is Azimuth, this vector tells which axis to
rotate about.

UInt16 Thruster Type Selector of thruster type. Yields for fixed and Azimuth.

Method Summary
None

Sensor.lvclass
LabView Object.lvclass
 ∟ Sensor.lvclass

Implemented by Espen Tolpinrud.

This class may be unnecessary at the moment. Removal of the class is suggestible.

Constructor Summary
Name Note
Sensor() Default constructor to create an instance of the class.
Sensor (1D Array of
String input)

Constructor that fully initialize the object.

Field Summary
Data Type Name Note
String ID The Sensor ID
String Name The Name of the sensor
String PosX The x position of the sensor from Center of Origin
String PosY The y position of the sensor from Center of Origin
String PosZ The z position of the sensor from the Center of Origin
String RotX The x rotation of the sensor
String RotY The y rotation of the sensor
String RotZ The z rotation of the sensor
String Type The type of the sensor.

Method Summary
Data Type of
Return

Name with input
arguments

Note

Boolean Check Health (Int32 Drop
Out)

Checks the health of the invoking sensor. NB! To be
developed further.

Void WriteAllData (1D Array of
String)

Fully Initialize the object. Is used in Sensor(1D Array of
String input)

Observer.lvclass
LabView Object.lvclass
 ∟ Observer.lvclass

Implemented by Espen Tolpinrud.

This is a template or abstract class for all observers and should never be used stand alone.

Constructor Summary
Name Note
Observer() Default constructor to create an instance of the class.
Observer(String input) Constructor that sets the name of the Observer object.

Field Summary
Data Type Name Note
String Observer Name The name of the observer

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass EstimateStates
(Vessel.lvclass vessel)

A method that every child of Observer.lvclass must
override. The method calculates the estimated states
for the system.

Kalman Filter.lvclass
LabView Object.lvclass
 ∟ Observer.lvclass
 ∟ Kalman Filter.lvclass

Implemented by Viktor Berg.

Constructor Summary
Name Note
Kalman Filter() Default constructor to create an instance of the class.
Kalman Filter
(Vessel.lvclass vessel)

Constructor that initializes PHI, GAMMA, and DELTA.

Field Summary
Data Type Name Note
Matrix DELTA Sector matrix for Kalman Filter.
Matrix GAMMA Sector matrix for Kalman Filter.
Matrix PHI Sector matrix for Kalman Filter.
Matrix Q Tuning matrix for Kalman Filter.
Matrix R Tuning matrix for Kalman Filter.

Method Summary
Data Type of
Return

Name with input
arguments

Note

2D array of Int32 Drop Out Converter (1D
Array of Int32 Drop Out)

Transform the drop out vector to a measurement
matrix. May not be needed anymore.

Vessel.lvclass EstimateStates
(Vessel.lvclass vessel)

Estimate states by using predictors and Kalman Filter
equations.

3 1D Array of
Double

Init Observed Values Set up the measured values to be given the Kalman
Filter. The output is:

- y (1D Array of Double)
- y_last (1D Array of Double)
- tau (1D Array of Double)

Note to developer: May need revising.
5 Matrix Read Q and R Returns DELTA, GAMMA, PHI, Q and R.

Methods Details

EstimateStates(Vessel.lvclass vessel)
//TODO: Insert equations used to calculate the estimated states.

Kalman Filter Altitude.lvclass
LabView Object.lvclass
 ∟ Observer.lvclass
 ∟ Kalman Filter.lvclass
 ∟ Kalman Filter Altitude.lvclass

Implemented by Espen Tolpinrud.

Constructor Summary
Name Note
Kalman Filter
Altitude()

Default constructor to create an instance of the class.

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass EstimateStates
(Vessel.lvclass vessel)

Estimates the altitude of the vessel.

Method Details

EstimateStates (Vessel.lvclass vessel)
// TODO: Insert equations for estimating the states.

Passive Observer.lvclass
LabView Object.lvclass
 ∟ Observer.lvclass
 ∟ Passive Observer.lvclass

Implemented by Espen Tolpinrud.

Constructor Summary
Name Note
Passive Observer() Default constructor to create an instance of the class.

Field Summary
Data Type Name Note
Matrix Aw System matrix for wave filter.
Matrix Cw Measurement matrix for wave filter.
Matrix Delta Wave damping matrix. Typical values are 𝜁𝑛𝑖 = 1.0
Matrix K1 Tuning matrix for wave filter.

Typical values are

𝐾1𝑖(𝜔𝑜𝑖) = −2(𝜁𝑛𝑖 − 𝜆𝑖)
𝜔𝑐𝑖

𝜔𝑜𝑖
 ,∀𝑖 = 1. .6

𝐾1(𝑖+6)(𝜔𝑜𝑖) = 2𝜔𝑜𝑖(𝜁𝑛𝑖 − 𝜆𝑖),∀𝑖 = 1. .6
Matrix K2 Tuning matrix for observer.

Typical values are 𝐾2𝑖 = 𝜔𝑐𝑖
Matrix K3 Tuning matrix for bias estimator. Typical values

𝐾3 = 0.1𝐾4
Matrix K4 Tuning matrix for observer.
1D Array of
Double

Lambda Tuning variables to determine the notch. Typical value
is 𝜆𝑖 = 0.1

Matrix Omega The diagonal elements are the frequency of the time
periods for the waves. Ω = 𝑑𝑖𝑎𝑔 �2𝜋

𝑇𝑖
,∀𝑖 = 1. .6�

where typical values for 𝑇𝑖 = 5. .20 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
1D Array of
Double

Omega_cutoff The cutoff frequency for the wave period. Must be
larger than Omega.

Matrix T Time constants for the bias estimator.

Method Summary
Data Type of
Return

Name with input
arguments

Note

1D Array of
Double

Bias Estimator (1D Array of
Double 𝑦�, Double dt)

Estimates the bias.

Vessel.lvclass EstimateStates
(Vessel.lvclass vessel)

Estimates the states for the system using the
equations for the passive observer. Have both bias
estimator and wave filter. Wave filter is optional.

Void Initialize Matrices () Initializes the system matrices using tuning
expressions.

1D Array of
Double

Wave Estimator (1D Array
of Double 𝑦�, Double dt)

Wave filter for the passive nonlinear observer.

Method Details

Bias Estimator (1D Array of Double 𝒚�, Double dt)

EstimateStates (Vessel.lvclass vessel)

Initialize Matrices ()

Wave Estimator (1D Array of Double 𝒚�, Double dt)

Adaptive Passive Observer.lvclass
LabView Object.lvclass
 ∟ Observer.lvclass
 ∟ Passive Observer.lvclass
 ∟ Adaptive Observer.lvclass

Implemented by Viktor Berg.

Constructor Summary
Name Note
Adaptive Observer() Default constructor to create an instance of the class.

Field Summary
Data Type Name Note
Matrix Gamma wave
Matrix K1h
Matrix K2h
Matrix K2l
Matrix K3h
Matrix K3l
Matrix K4h
Matrix K4l
Matrix Omega h
Matrix Omega l
Matrix Tf

Method Summary
Data Type of
Return

Name with input
arguments

Note

Matrix Adaptive Law (…)
1D Array of
Double

Bias Estimator

Vessel.lvclass EstimateStates
(Vessel.lvclass vessel)

Estimates the states.

 Filter
Void Initialize Matrices ()
1D Array of
Double

Wave Estimator

Guidance.lvclass
Labview Object.lvclass
 ∟ Guidance.lvclass

Implemented by Espen Tolpinrud.

This is a template or abstract class for all guidance modules in the control system.

Constructor Summary
Name Note
Guidance() Default constructor to create an instance of the class.

Field Summary
Data Type Name Note
Matrix Delta Tuning matrix for filter based reference model

(Outgoing)
Matrix Omega Tuning matrix for filter based reference model

(Outgoing)

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate Desired States
(Vessel.lvclass vessel)

Calculates the desired position and velocity for the
vessel. This method must be implemented by all
children of this class.

Altitude Guidance.lvclass
Labview Object.lvclass
 ∟ Guidance.lvclass
 ∟ Altitude Guidance.lvclass

Implemented by Espen Tolpinrud.

Guidance Law for altitude.

Constructor Summary
Name Note
Altitude Guidance() Default constructor to create an instance of the class.

Field Summary
Data Type Name Note
Double K_ff Tuning value for feed forward term
Double K_i Tuning value for integrator term
Double K_p Tuning value for proportional term

Method Summary
Data Type of
Return

Name with input
arguments

Note

- Altitude GL Private function for Altitude Guidance, used by
Calculate Desired States

Vessel.lvclass Calculate Desired States
(Vessel.lvclass vessel)

Calculates the desired altitude the vessel.

DP Guidance.lvclass
Labview Object.lvclass
 ∟ Guidance.lvclass
 ∟ DP Guidance.lvclass

Implemented by Espen Tolpinrud.

Constructor Summary
Name Note
DP Guidance() Default constructor to create an instance of the class.

Field Summary
Data Type Name Note
Double Criterium for Optimal

Heading
Tuning value used in the optimal heading method (Not
implemented) (Can be removed?)

1D Array of
Double

Position Reference

Cluster of {1D
Array of Double,
1D Array of
Double, 1D Array
of Double, 1D
Array of Double}

Previous Kinematics

1D Array of
Double

Restart Criteria Tuning for the feedback method. Used to determine
when to restart desired position updates.

1D Array of
Double

Wait Criteria Tuning for the feedback method. Used to determine
when to wait for the vessel to catch up to the
reference.

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate Desired States
(Vessel.lvclass vessel)

Calculates the desired position and velocity for the
vessel.

3 1D Array of
double, Boolean

Feedback (Vessel.lvclass
vessel, Boolean reset_in,
Boolean
use_estimated_values)

Calculate the next desired step if the vessel is close
enough to the current desired step. If not, the
reference waits for the vessel to catch up.

Joystick Guidance.lvclass
Labview Object.lvclass
 ∟ Guidance.lvclass
 ∟ Joystick Guidance.lvclass

Implemented by Espen Tolpinrud.

Constructor Summary
Name Note
Joystick Guidance() Default constructor to create an instance of the class.

Field Summary
Data Type Name Note
UInt16 Control Mode Selector of what control mode the joystick input is set

for. Modes are Position, Velocity and Thrust.
UInt16 Control Mode Previous Selector of what control mode the joystick input is set

for from last time step
1D Array of
Double

Eta Set A copy of desired position. Helps to restrain depth
changes due to uncontrolled pitch movement while
driving.

Uint16 Frame Mode Selector of what frame mode the joystick input is set
for. Modes are Body, NED and cylindrical.

UInt16 Frame Mode Previous Selector of what frame mode the joystick input is set
for from last time step.

Cluster of
{Boolean,
Boolean,
Boolean,
Boolean}

Inside_Dead_Zone A cluster of Booleans. A cluster element is true if the
input in the corresponding direction or rotation is
zero i.e. inside the dead zone.

Cluster of
{Boolean,
Boolean,
Boolean,
Boolean}

Inside_Dead_Zone_Previous A cluster of Booleans. A cluster element is true if the
input in the corresponding direction or rotation is
zero i.e. inside the dead zone from last time step.

Int32 Loop count The iteration number for the control system.
Double Radius The radius used in cylindrical frame mode.
Double Radius Initially The initially radius in cylindrical frame mode.
Boolean Set Origin A Boolean used to notify whether or not to set origin.
Boolean Set Turn Point A Boolean used to notify whether or not to set turn

point.
Double Step Depth A standard step in depth direction. Usually used to

make small corrections in the direction by button
inputs or POV direction stick.

Double Step Heading A standard step in heading angle. Usually used to
make small corrections on the angle by button inputs

or POV direction stick.
Double Step Surge A standard step in surge direction. Usually used to

make small corrections in the direction by button
inputs or POV direction stick.

Double Step Sway A standard step in sway direction. Usually used to
make small corrections in the direction by button
inputs or POV direction stick.

Double Theta Used in cylindrical frame mode
Cluster of {19
Boolean}

VI Flow Criteria The cluster is updated on each time step by the
Compute Conditions method. The cluster contains

- (1) CylinderMode AND (2)
- (2) Out of DeadZone-Z-Axis Rot AND (3)
- (3) Change ControlMode OR (10)
- (4) Out of DeadZone XY-Plane
- (5) Out of DeadZone XY-Plane OR Set Origin

Point
- (6) Set Origin Point
- (7) Deactivating CylinderMode OR Initialize
- (8) Deactivate CylinerMode
- (9) Initialize
- (10) Activating CylinderMode
- (11) Set Turn pos OR (10)
- (12) (11) AND CylinderMode
- (13) (11) OR (1)
- (14) (1) OR (16)
- (15) Activating OR Deactivating CylinderMode
- (16) (15) OR Initialize
- (17) (5) OR (16)
- (18) Out of DeadZone Z-Axis Rot OR (17)
- (19) Out of DeadZone Z-Axis Rot

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate Desired States
(Vessel.lvclass vessel)

Calculates the desired position and velocity for the
vessel. Input from user through joystick is used to
generate the desired states.

Void Compute Condition
(Double X-Axis, Double Y-
Axis, Double Z-Axis, Double
Z-Rotation, Int32 Loop nr,
Boolean First)

Compute the Boolean values in the cluster VI Flow
Criteria.

1D Array of
Double

Cylinder Kinematics
Modification (1D Array of
Double Max Velocity,
Double Radius)

Modify the max velocity to cylinder coordinates.

1D Array of
Double, Double,
Double

Eta Set Update (1D Array of
Double eta, Boolean
condition, Boolean
CylinderMode)

Updates the position reference used to maintain
desired depth and heading.

Boolean Initialize Check (Int32 Loop
Counter)

Checks if the system needs to be initialized or re-
initialized.

Tracking Guidance.lvclass
Labview Object.lvclass
 ∟ Guidance.lvclass
 ∟ Tracking Guidance.lvclass

Constructor Summary
Name Note
Tracking Guidance() Default constructor to create an instance of the class.
Tracking Guidance
(Matrix Omega,
Matrix Delta)

Constructor which also sets the reference model tuning matrices.

Field Summary
Data Type Name Note
Double Acceptance Circle Representation of the tolerance of position error in

order to change way point.
Cluster Previous Kinematics States from last time step.
1D Array of
Double

Restart Criteria Tuning for the feedback method. Used to determine
when to restart desired position updates.

1D Array of
Double

Wait Criteria Tuning for the feedback method. Used to determine
when to wait for the vessel to catch up to the
reference.

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate Desired States
(Vessel.lvclass vessel)

Calculates the desired position and velocity for the
vessel. Uses a list of waypoints to perform simple and
naive tracking. (To be substituted at a later point)

3 1D Array of
Double

Feedback (Vessel.lvclass
vessel, 1D Array of Double
eta_ref, Boolean reset_in,
Boolean Use Estimated
Values)

Calculate the next desired step if the vessel is close
enough to the current desired step. If not, the
reference waits for the vessel to catch up.

Tracking STRM Guidance.lvclass
Labview Object.lvclass
 ∟ Guidance.lvclass
 ∟ Tracking Guidance STRM.lvclass

Implemented by Espen Tolpinrud.

Constructor Summary
Name Note
Tracking Guidance
STRM()

Default constructor to create an instance of the class.

Field Summary
Data Type Name Note
Boolean Abort Boolean flag used to notify if tracking action is to be

aborted.
Cluster of {19
Double}

Guidance Engine
Parameters

Running variables for guidance engine. (May be
removed)

UInt16 Heading Mode Selector of heading mode for tracking.
Boolean Pause Boolean flag used to notify if tracking is to be paused.
Cluster {8
Double}

Performance Behavior Cluster of settings regarding ROV behavior in tracking.
Values are:

- % Velocity max lin to exp
- % Velocity zero lin to exp
- % Total dist at max velocity
- % Max angular velocity
- Time to max angular velocity
- Min dist at max velocity
- Max linear velocity
- Time to max linear velocity

Double psivar Heading, used in variable heading case.
Boolean Reset Boolean flag used to notify if tracking action is to be

reset.
Boolean Start Boolean flag used to notify if tracking action is to be

started.
Cluster of {4
Double}

STRM Cluster with values from the SynThetic Reference
Model (STRM)

Boolean Tracking Active Boolean flag used to notify if tracking action is active.
Cluster {6
Boolean}

Tracking Engine Run-Time
Logic

Cluster of Boolean flags used by the guidance engine.
Values are:

- Complete
- Running
- clrRMmemo
- faststart

- newcalc
- aborting

Cluster {} Tracking Options Cluster with settings for the tracking.
Values are:

- (2) Fixed Heading
- (3) PoI N
- (3) PoI E
- % Superior Bound
- % Inferior Bound
- Duration no operation period between

motions
- Tolerance of initial angle
- Distance to activate waiting function
- Distance to deactivate waiting function

Boolean Use Depth Boolean flag used to notify if tracking action is to use
current depth.

Boolean Waiting Function Boolean flag used to notify if tracking action is to use
waiting function.

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate Desired States
(Vessel.lvclass vessel)

Calculates the desired position and velocity for the
vessel. This method must be implemented by all
children of this class.

Boolean Check if Done () Checks if complete and not running
Boolean Reset Action () If reset, set waiting function and use depth to false.

Controller.lvclass
Labview Object.lvclass
 ∟ Controller.lvclass

Implemented by Espen Tolpinrud.

A template or abstract class for controller modules in the control system.

Constructor Summary
Name Note
Controller() Default constructor to create an instance of the class.
Controller (String
name)

Constructor which sets the name of the controller.

Field Summary
Data Type Name Note
String Controller Name The name of the controller, not much used.

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate Forces
(Vessel.lvclass vessel)

Calculates the desired forces for the vessel. This
method must be implemented on all children of this
class.

Joystick Controller.lvclass
Labview Object.lvclass
 ∟ Controller.lvclass
 ∟ Joystick Controller.lvclass

Implemented by Espen Tolpinrud.

Controller used to control the vessel with direct thrust input

Constructor Summary
Name Note
Controller() Default constructor to create an instance of the class.

Field Summary
Data Type Name Note
Cluster of {3
Double}

PID Gains Heading Tuning values for PID controller for heading

Cluster of {3
Double}

PID Gains Depth Tuning values for PID controller for depth

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate Forces
(Vessel.lvclass vessel)

Gets joystick commands and sets up a desired thrust
according to the input. Contains auto depth and auto
heading as well.

PID Controller.lvclass
Labview Object.lvclass
 ∟ Controller.lvclass
 ∟ PID Controller.lvclass

Implemented by Espen Tolpinrud.

Constructor Summary
Name Note
PID Controller() Default constructor to create an instance of the class.

Field Summary
Data Type Name Note
Matrix K_D Tuning matrix for the derivative term in the controller.
Matrix K_I Tuning matrix for the integral term in the controller.
Matrix K_P Tuning matrix for the proportional term in the

controller.

Method Summary
Data Type of
Return

Name Note

Vessel.lvclass Calculate Forces
(Vessel.lvclass vessel)

Calculates the desired forces for the vessel. This
method must be implemented by all children of this
class.

Void Set Gains (3D Array of
Double)

The tuning matrices are given through a 3D array and
then set in their respective fields. K_P should be at the
first index, followed by K_I in second. Last the K_D
should be on the third index.

Linear PID Controller.lvclass
Labview Object.lvclass
 ∟ Controller.lvclass
 ∟ PID Controller.lvclass
 ∟ Linear PID Controller.lvclass

Implemented by Espen Tolpinrud.

Constructor Summary
Name Note
Linear PID Controller() Default constructor to create an instance of the class.
Linear PID Controller
(Matrix KP, Matrix KI,
Matrix KD)

Constructor which gets and sets the tuning matrices.

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate Forces
(Vessel.lvclass vessel)

Calculates the desired forces for the vessel with the
expression 𝜏 = −(𝐾𝑃𝜂� + 𝐾𝐼∫ 𝜂�𝑑𝑡 + 𝐾𝐷�̇�)

Non Linear PID Controller.lvclass
Labview Object.lvclass
 ∟ Controller.lvclass
 ∟ PID Controller.lvclass
 ∟ Non Linear PID Controller.lvclass

Implemented by Viktor Berg. Modified by Espen Tolpinrud to include optional Speed Controller.

Constructor Summary
Name Note
Non Linear PID
Controller ()

Default constructor to create an instance of the class.

Non Linear PID
Controller (Matrix KP,
Matrix KI, Matrix KD)

Constructor which gets and sets the tuning matrices.

Field Summary
Data Type Name Note
1D Array of
Double

Int_limit Used to check if the integral term shall integrate the
error. If the error is larger than the Integral limit, zero
is sent to the integrator.

Matrix K_anti Tuning matrix for the anti-wind up effect in the
integral term.

Matrix K_I_speed Tuning matrix for the integral effect for the speed
controller term

Boolean Speed Controller Flag to determine if to use speed controller term or
not.

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate Forces
(Vessel.lvclass vessel)

Calculates the desired position and velocity for the
vessel. Similar to the linear PID but also include a Feed
Forward term to include non-linear effects.

Method Details

LQR Controller.lvclass
Labview Object.lvclass
 ∟ Controller.lvclass
 ∟ PID Controller.lvclass
 ∟ Non Linear PID Controller.lvclass
 ∟ LQR.lvclass

Implemented by Viktor Berg. Revised by Espen Tolpinrud.

Changes from the old system: Inherit from Non Linear Pid Controller.lvclass as the controller algorithm is
the same.

This is a type of optimal control. The controller equation is based on the non-linear PID controller. The
main difference between LQR and its parent Non Linear PID Controller is the automatic tuning of the
matrices K_P and K_D.

Constructor Summary
Name Note
LQR() Default constructor to create an instance of the class.
LQR (Matrix K_i,
Matrix Q, Matrix R)

Constructor which gets and sets the tuning matrices.

Field Summary
Data Type Name Note
Matrix Q Tuning matrix for Riccati equation
Matrix R Tuning matrix for Riccati equation

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate Forces
(Vessel.lvclass vessel)

Calculates the desired forces for the vessel. This
method also calls on the parent calculate Forces () in
order to find the forces.

Void Set Gains LQR (Matrix K_I
Matrix Q, Matrix R, Matrix
K_anti, 1D Array of Double
Integral Limit)

Sets the tuning matrices for the controller.

Sliding Mode.lvclass
Labview Object.lvclass
 ∟ Controller.lvclass
 ∟ Sliding Mode.lvclass

Implemented by Viktor Berg.

Constructor Summary
Name Note
Sliding Mode () Default constructor to create an instance of the class.
Sliding Mode (Matrix
K_s, Matrix K_pid, 1D
Array of Double
Lambda, 1D Array of
Double Phi)

Constructor that gets and sets the tuning matrices.

Field Summary
Data Type Name Note
1D Array of
Double

Int_limit Used to check if the integral term shall integrate the
error. If the error is larger than the Integral limit, zero
is sent to the integrator.

Matrix K_pid Tuning matrix for the standard PID controller used in
the algorithm.

Matrix K_s Tuning Matrix
1D Array of
Double

Lambda Tuning Matrix

1D Array of
Double

Phi Tuning Matrix

Method Summary
Data Type of
Return

Name Note

Vessel.lvclass Calculate Desired States
(Vessel.lvclass vessel)

Calculates the desired position and velocity for the
vessel. This method must be implemented by all
children of this class.

Void Set Gains (Matrix K_s,
Matrix K_pid, 1D Array of
Double Lambda, 1D Array
of Double Phi, 1D Array of
Double Integral Limit)

Sets the tuning matrices from the corresponding
input.

Backstepping.lvclass
Labview Object.lvclass
 ∟ Controller.lvclass
 ∟ Backstepping.lvclass

Not implemented yet!

Constructor Summary
Name Note
Backstepping() Default constructor to create an instance of the class.

Method Summary
Data Type of
Return

Name with input
arguments

Note

Vessel.lvclass Calculate Desired States
(Vessel.lvclass vessel)

Calculates the desired forces for the vessel.

Adaptive Backstepping.lvclass
Labview Object.lvclass
 ∟ Controller.lvclass
 ∟ Backstepping.lvclass
 ∟ Adaptive Backstepping.lvclass

Not implemented yet!

Stand-Alone Methods

mainVI.vi
This is a stand-alone VI used when running the system together with a compactRIO unit. The VI starts by
reading a configuration file and setting up TCP/IP connections to the user interface. Four threads is then
started to run concurrently sharing the same supervisor object. Mutual Exclusion mechanisms are
implemented to avoid race conditions. The locks have time out limits in order to avoid dead locks.
Starvation can occur, with wrong timing.

mainVI_SIL.vi
This is a stripped down version of the mainVI.vi as it is to be run with the simulator “in place”. Three of
the four threads are moved out to the simulator environment to ensure concurrent running. Only the
“main loop” remains.

Reference Model
This is a polymorphic VI which contains a library of reference models used in different settings. The
polymorphic VI can change between different VIs depending on the input, but can also be set to a fixed
through a selector in the block diagram.

Method Summary
Data Type of
Return

Name Note

 Reference Model Altitude Filter based method, scalar (Not part of polymorphic
VI)

 Reference Model DP Filter based method, vector
 Reference Model Joystick Filter based method, vector
 Reference Model Tracking Filter based method, vector

Kinematics

Rotation matrix 𝑱(𝚯) = �𝑹(𝚯) 𝟎𝟑×𝟑
𝟎𝟑×𝟑 𝑻(𝚯)�

Data Type of
Return

Name Note

Matrix RotationMatrix (1D Array
of Double eta)

A polymorphic VI for Rotation matrices. A selector
specifies which of the two RotationMatrix~ methods
to be run.

Matrix RotationMatrix6DOF (1D
Array of Double eta)

Gives the rotation matrix in Euler angles for a 6 DOF
system based on the position vector eta given in Euler
angles.

Matrix RotationMatrixQuaternions
(1D Array of Double eta)

Gives the rotation matrix in quaternions for a 6DOF
system based on the position vector eta given in
quaternions.

Matrix TransformationMatrix (1D
Array of Double eta)

A polymorphic VI for Transformation matrices. A
selector specifies which of the two
TransformationMatrix~ methods to be run.

Matrix TransformationMatrixEuler
(1D Array of Double eta)

Gives the transformation matrix in Euler angles for a 6
DOF system based on the position vector eta given in
Euler angels.

Matrix TransformationMatrix
Quaternions (1D Array of
Double eta)

Gives the transformation matrix in quaternions for a 6
DOF system based on the position vector eta given in
quaternions.

Matrix SkewMatrix (1D Array of
Double)

A polymorphic VI for creating a Skew matrix based on
the input vector. A selector determines which of the
3DOF or 6DOF version to run.

Matrix SkewMatrix3DOF (1D Array
of Double vector)

The input vector must be of size 3. These elements are
then used to create the Skew Matrix.

Matrix SkewMatrix6DOF (1D Array
of Double nu)

The input vector should be of size 6. The three last
elements in the input vector are used to set up the
skew matrix.

Matrix J Library (1D Array of
Double eta)

A polymorphic VI for creating the rotation matrix J. A
Selector decides what form of the J matrix to be sent
as an output

Matrix J_euler (1D Array of Double
eta)

Creates the rotation matrix J for 6DOF system using
Euler angles.

Matrix J_quart (1D Array of
Double eta)

Creates the rotation matrix J for 6DOF system using
quaternions.

Matrix Jtrans_euler (1D Array of
Double eta)

Creates the rotation matrix J for 6DOF system using
Euler angels. Returns the transposed of J.

Matrix Jtrans_quart (1D Array of
Double eta)

Creates the rotation matrix J for 6 DOF system using
quaternions. Returns the transposed of J.

Matrix Jinv_euler (1D Array of
Double eta)

Creates the rotation matrix J for 6DOF system using
Euler angles. Returns the inverse of J.

Matrix Jinv_euler (1D Array of
Double eta)

Creates the rotation matrix J for 6 DOF system using
quaternions. Returns the inverse of J.

Matrix Jdot (1D Array of Double
eta, 1D Array of Double nu)

Creates the time derived of rotation matrix by
calculating �̇� and �̇�. Only Euler angles are used for
this.

1D Array of
Double

EtaTransformation (1D
Array of Double eta)

Transform a vector between Euler angles and
quaternions using either Eta_Euler2QEta_Quart or
Eta_Quart2Eta_Euler depending on transformation
direction.

1D Array of
Double

Eta_Euler2Eta_Quart (1D
Array of Double eta)

Transforms the input vector given in NED + Euler
angels to a vector given with NED + quaternions.

1D Array of
Double

Eta_Quart2Eta_Euler (1D
Array of Double eta)

Transforms the input vector given with NED +
quaternions to a vector in NED + Euler angles.

1D Array of
Double

euler2q (1D Array of
Double eta)

Calculates the angles in quaternions from Euler angles.
Method is taken from MSS toolbox written by Thor I.
Fossen.

1D Array of
Double

q2Euler(1D Array of Double
eta)

Calculates the angles in Euler angels from quaternions.
The method is taken from MSS toolbox written by
Thor I. Fosse and translated to LabView code.

Other
Data Type of
Return

Name Note

- Rad 2 PI-PI Polymorphic VI for the two following methods.
Double Rad 2 PI-PI Scalar (Double) Converts the angle in radians to the interval –𝜋 to 𝜋.
1D Array of
Double

Rad 2 PI-PI Vector(1D Array
of Double)

Converts angles in radians to the interval –𝜋 to 𝜋.

Integrators
Data Type of
Return

Name Note

Double/1D Array
of Double

Integrator Trapezoid A Polymorphic VI for the trapezoid integrators in the
system. Both the input and a selector can be used to
determine the method to be used.

Double Integrator Trapezoid scalar A Scalar integrator using the trapezoidal rule.
1D Array of
Double

Integrator Trapezoid vector A vector integrator using the trapezoidal rule.

Signal Processing
Data Type of
Return

Name Note

 Alt_input
 Alt_IO
 Cocoord
 Configure sub-VI
 CRIO write
 DVL_2_QUAD
 Input converter
 JS chair get
 MRU_IO
 MRU_SP
 MRUinput subVI
 MT_DATA_TRANS
 MT_GET
 MT MOD
 NAVI_IO 2
 NAVIpacinput subVI
 NAVIpacinput subVI 30k
 Origin SP

 Port 3 IO
 ROV_IO 2
 ROV_IO 30k
 ROVinput 30k subVI
 ROVinput subVI
 Search string
 Set Length
 Signal IO
 Signal IO SIL
 SP BC
 SP_mod
 Write sub-VI

Others
Data Type of
Return

Name Note

Double Matrix AutoParameter Guidance
Omega (1D Array of Double
eta_ref, 1D Array of Double
eta_last)

Calculates desired omega values for the filter
reference model.

1D Array of
Double

Error Calculations (1D
Array of Double eta, 1D
Array of Double eta_des)

Used to calculate the difference between the current
position and the desired position.

1D Array of
Double

Eta2cont Transform a discrete angle to continuous angle.
Should not be placed such that it can miss any time
step!

Double, Boolean Get_set_point(Double
setpoint, Boolean flag)

When flag is true, the current setpoint is stored and
sent as output until flag is true again. (Switch on,
switch off mechanism)

Matrix, Matrix LQR Used to calculate the tuning matrices for the LQR
controller. (May move to class)

Matrix Mass 2 Coriolis Used to calculate the Coriolis matrix. Used in Non
Linear PID and Non Linear Passive Observer.

String Read Node Name (Tag
Reference ref, String
AttributeName)

Reads the attribute matching the field AttributeName
in the tag ref points to. Used in the configuration file
reader.

TCP Connection
Reference

Reconnection Procedure Polymorphic VI for the two following methods.

TCP Connection
Reference

Reconnection Procedure
Scalar (TCP Connection
Reference ref, UInt16 Port)

Checks if connection is lost, if so tries to reconnect to
client.

1D Array of TCP
Connection
Reference

Reconnection Procedure
Array (1D Array of TCP
Connection Reference ref,
1D Array of UInt16 ports)

Checks if the connection is lost, if so tries to reconnect
to client. All connections must be reestablished or
none are.

String Scan Token Generator Generates the scan-string used to read integer and
double values from a string. Used in the String to
Matrix methods.

1D Array of
UInt16

Sperre thrust alloc Minerva Converts the desired actions from the control system
to a telebuffer/telegram which is to be sent to the
vessel.

1D Array of
UInt16

Sperre thrust alloc Neptune Converts the desired actions from the control system
to a telebuffer/telegram which is to be sent to the
vessel.

Matrix String to Matrix A polymorphic VI that transform a String of numbers
to a Matrix.

Matrix String to Matrix Diag Transforms a String of number to a diagonal matrix
where the numbers in the String is the values on the
diagonal in the matrix.

Matrix String to Matrix Norm Transforms a String of number to a matrix where each
row in the matrix is separated by “;” in the String.

1D Array of
Double

String to Vector Transforms a String of numbers to a 1D Array of
Double.

Boolean ToggleSwitch Used to convert a constant True/False Signal to a
pulse True signal.

Boolean True Once Used to convert a constant True/False Signal to one
pulse of True. True only once!

Configuration File
The configuration file is unique for each vessel to be used with the control system. This is what decides
the setup for the system. It is therefore important that the configuration file is correct. The format on
the file is set to xml as it is easy for both machines and humans to read. Keep in mind that the tags must
be exact as well as the attributes.

Table of tags and attributes
Tag Parent Tag(s) Attributes Notes
<Configuration> - - Start tag for configuration
<Sensor> <Configuration> ID, Name, Type,

PosX, PosY, PosZ,
RotX, RotY, RotZ

Tag for initializing sensors

<Vessel> <Configuration> Name, Type,
NDOF

Tag for vessel initialization.

<TechincalData> <Vessel> DOF, Length,
Width, Height,
Buoyancy,
CenterGravity,
CenterBuoyancy,
TimeStep, TauMax

Tag used for vessel data

<PortConfiguration> <Vessel> - Tag for initialization of
communication ports for
compactRIO unit

<Port> <PortConfiguration> ID, BaudRate,
DataBits, Parity,
StopBits,
FlowControl

Tag for data used to set up a
port for the compactRIO

<Matrix> <Vessel> - Tag for matrix
<Mass> <Matrix> Type, Size, Values Tag for Mass matrix
<AddedMass> <Matrix> Type, Size, Values Tag for Added Mass matrix
<LinearDamping> <Matrix> Type, Size, Values Tag for Linear Damping matrix
<NonLinearDamping> <Matrix> Type, Size, Values Tag for Non Linear Damping

matrix
<Observer> <Vessel> - Tag for observer collection
<KalmanFilter> <Observer> Mode Tag for Kalman Filter Observer
<KalmanFilterAltitude> <Observer> Mode Tag for Altitude Kalman Filter

Observer
<Passive> <Observer> Mode Tag for Passive Non Linear

Observer
<TuningKalman> <KalmanFilter>,

<KalmanFilterAltitude>
- Tag for tuning fields for Kalman

Filters
<TuningPassive> <Passive> - Tag for tuning fields for Kalman

Filters.
<R> <TuningKalman> Type, Size, Value Tag for tuning matrix R
<Q> <TuningKalman> Type, Size, Value Tag for tuning matrix Q

<Wave> <TuningPassive> TypeOmega,
SizeOmega,
ValueOmega,
TypeDelta,
SizeDelta,
ValueDelta,
TypeLambda,
SizeLambda,
ValueLambda

Tag for wave filter values

<K1> <TuningPassive> Type1, Size1,
Value1, Type2,
Size2, Value2

Tag for tuning matrix K1.
Consists of two 6x6 matrices.
Can be set to zero as they will
be calculated in the control
system by tuning equations.

<K2> <TuningPassive> Type, Size, Value Tag for tuning matrix K2.
<K3> <TuningPassive> Type, Size, Value Tag for tuning matrix K3
<K4> <TuningPassive> Type, Size, Value Tag for tuning matrix K4
<T> <TuningPassive> Type, Size, Value Tag for time constant matrix T
<Navigation> <Vessel> - Tag for navigation collection
<DPOperation> <Navigation> Mode Tag for DP Guidance
<Tracking> <Navigation> Mode Tag for Tracking Guidance
<TrackingSTRM> <Navigation> Mode Tag for Tracking Guidance with

synthetic reference model
<Joystick> <Navigation> Mode Tag for Joystick Guidance
<Criteria> <DPOperation>,

<Tracking>, <Joystick>
SizeRestart,
Restart, SizeWait,
Wait

Tag for restart and wait criteria
values for guidance objects.

<Omega> <DPOperation>,
<Tracking>, <Joystick>

Type, Size, Value Tag for reference model tuning
matrix omega.

<Delta> <DPOperation>,
<Tracking>, <Joystick>

Type, Size, Value Tag for reference model
damping matrix

<Controller> <Vessel> - Tag for controller collection
<PIDLinear> <Controller> Mode Tag for Linear PID Controller
<NonLinearPID> <Controller> Mode Tag for Non Linear PID

Controller
<LQR> <Controller> Mode Tag for LQR Controller
<SlidingMode> <Controller> Mode Tag for Sliding Mode Controller
<TuningPID> <PIDLinear>,

<PIDNonLinear>,
<LQR>

- Tag for tuning fields for PID
based controllers. These
include linear, non-linear PID as
well as LQR

<TuningSliding> <SlidingMode> - Tag for tuning fields for Sliding
Mode controller.

<KP> <TuningPID> Type, Size, Value Tag for Proportional term
tuning matrix

<KI> <TuningPID> Type, Size, Value Tag for Integral term tuning
matrix

<KD> <TuningPID> Type, Size, Value Tag for Derivative term tuning
matrix

<R> <TuningPID> Type, Size, Value Tag for tuning matrix R used in
LQR computations.

<Q> <TuningPID> Type, Size, Value Tag for tuning matrix Q used in
LQR computations.

<KS> <TuningSliding> Type, Size, Value Tag for tuning matrix in Sliding
Mode.

<KPID> <TuningSliding> Type, Size, Value Tag for PID tuning matrix used
in Sliding Mode controller.

<Lambda> <TuningSliding> Value Tag for tuning in Sliding Mode
<Phi> <TuningSliding> Value Tag for tuning in Sliding Mode
<IntegralLimit> <TuningSliding> Value Tag for integral limits set on the

integrator
<SensorInstalled> <Vessel> NumberOfSensors,

SensorIDs
Tag used to set which sensors
are used by the vessel.

<Thruster> <Vessel> ID, Name, Type,
PosX, PosY, PosZ,
RotTheta, RotPhi,
MaxRPM,
Coefficient

Tag for Thruster data.

LVIII APPENDIX A. API NJORD

Appendix B

Software Requirement
Specification Template

Definition B.1. SRS template with description from [17]

1 Introduction - The introduction of the SRS should provide an overview of the
entire SRS. It should contain the following subsections:

1.1 Purpose

• Delineate the purpose of the SRS.

• Specify the intended audience for the SRS.

1.2 Scope

• Identify the software product(s) to be produced by name.

• Explain what the software product(s) will, and, if necessary, will not
do.

• Describe the application of the software being specified, including
relevant benefits, objectives, and goals.

• Be consistent with similar statements in higher-level specifications if
they exist.

1.3 Definitions, acronyms, and abbreviations - This subsection should provide
the definitions of all terms, acronyms, and abbreviations required to
properly interpret the SRS. This information may be provided by reference
to one or more appendixes in the SRS or by reference to other documents.

1.4 References

• Provide a complete list of all documents referenced elsewhere in the
SRS.

LIX

LXAPPENDIX B. SOFTWARE REQUIREMENT SPECIFICATION TEMPLATE

• Identify each document by title, report number (if applicable), date,
and publishing organization.

• Specify the sources from which the references can be obtained.

1.5 Overview

• Describe what the rest of the SRS contains.

• Explain how the SRS is organized.

2 Overall description - This section of the SRS should describe the general
factors that affect the product and its requirements. This section does not state
specific requirements. Instead, it provides a background for those requirements,
which are defined in detail in Section 3 of the SRS, and makes them easier to
understand.

2.1 Product Perspective - This subsection of the SRS should put the product
into perspective with other related products. If the product is independent
and totally self-contained, it should be so stated here. If the SRS defines
a product that is a component of a larger system, as frequently occurs,
then this subsection should relate the requirements of that larger system
to functionality of the software and should identify interfaces between
that system and the software.

A block diagram showing the major components of the larger system,
interconnections, and external interfaces can be helpful.

This subsection should also describe how the software operates inside
various constraints. For example these constraints could include

• System interfaces

• User interfaces

• Hardware interfaces

• Software interfaces

• Communication interfaces

• Memory

• Operations

• Site adaption requirements

2.2 Product functions - This subsection of the SRS should provide a summary
of the major functions that the software will perform. For example, an
SRS for an accounting program may use this part to address customer
account maintenance, customer statement, and invoice preparation with-
out mentioning the vast amount of detail that each of those functions
requires.

LXI

Sometimes the function summary that is necessary for this part can be
taken directly from the section of the higher-level specification (if one
exists) that allocates particular functions to the software product. Note
that for the sake of clarity

• The functions should be organized in a way that makes the list of
functions understandable to the customer or to anyone else reading
the document for the first time.

• Textual or graphical methods can be used to show the different func-
tions and their relationships. Such a diagram is not intended to
show a design of a product, but simply shows the logical relationships
among variables.

2.3 User characteristics - This subsection of the SRS should describe those
general characteristics of the intended users of the product including
educational level, experience, and technical expertise. It should not be
used to state specific requirements, but rather should provide the reasons
why certain specific requirements are later specified in Section 3 of the
SRS.

2.4 Constraints - This subsection of the SRS should provide a general de-
scription of any other items that will limit the developer’s options. These
include

• Regulatory policies

• Hardware limitations

• Interface to other application

• Parallel operation

• Audit functions

• Control functions

• Higher-order language requirements

• Signal handshake protocols

• Reliability requirements

• Criticality of the application

• Safety and security considerations

2.5 Assumptions and dependencies - This subsection of the SRS should list
each of the factors that affect the requirements stated in the SRS. These
factors are not design constraints on the software but are, rather, any
changes to them that can affect the requirements in the SRS. For example,
an assumption may be that a specific operating system will be available
on the hardware designated for the software product. If, in fact, the

LXIIAPPENDIX B. SOFTWARE REQUIREMENT SPECIFICATION TEMPLATE

operating system is not available, the SRS would then have to change
accordingly.

3 Specific Requirements - This section of the SRS should contain all of the
software requirements to a level of detail sufficient to enable designers to design
a system to satisfy those requirements, and testers to test that the system
satisfies those requirements. Throughout this section, every stated requirement
should be externally perceivable by users, operators, or other external systems.
These requirements should include at a minimum a description of every input
(stimulus) into the system, every output (response) from the system, and all
functions performed by the system in response to an input or in support of an
output. As this is often the largest and most important part of the SRS, the
following principles apply:

• Specific requirements should be stated in conformance with all the char-
acteristics described in section 4.3 in [17]

• Specific requirements should be cross-referenced to earlier documents that
relates.

• All requirements should be uniquely identifiable.

• Careful attention should be given to organizing the requirements to maxi-
mize readability.

Appendix

Index

For further details see [17].

Appendix C

Notation of SNAME(1950)
for marine vessels

DOF forces and linear and positions and
moments angular velocities Euler angles

1 surge X u x
2 sway Y v y
3 heave Z w z
4 roll K p φ
5 pitch M q θ
6 yaw N r ψ

Table C.1: The Notation of SNAME for Marine Vessels

Body: peb/n =

 x
y
z

 Longitude and
latitude:

Θen =
[
l
µ

]

NED: pnb/n =

 N
E
D

 Attitude: Θnb =

 φ
θ
ψ

Body-fixed
linear veloc-
ity:

vbb/n =

 u
v
w

 Body-fixed angu-
lar velocity:

ωbb/n =

 p
q
r

Body-fixed
force:

fbb =

 X
Y
Z

 Body-fixed mo-
ment:

mb
b =

 K
M
N

LXIII

LXIV APPENDIX C. NOTATION OF SNAME(1950) FOR MARINE VESSELS

η =
[

pbb/n
Θnb

]
, ν =

[
vbb/n
ωbb/n

]
, τ =

[
fbb
mb
b

]
(C.1)

Appendix D

Option Panels

Figure D.1: DP Options Panel as viewed in Options Panel, Frigg.

Figure D.2: Tracking Options Panel as viewed in Options Panel, Frigg.

LXV

LXVI APPENDIX D. OPTION PANELS

Figure D.3: Joystick Options Panel as viewed in Options Panel, Frigg.

LXVII

Figure D.4: Port Configuration Panel as viewed in Options Panel, Frigg.

Figure D.5: Power Instruments Panel as viewed in Options Panel, Frigg.

LXVIII APPENDIX D. OPTION PANELS

Appendix E

Graph Panels

Figure E.1: Position Plots as viewed in GraphView, Frigg.

LXIX

LXX APPENDIX E. GRAPH PANELS

Figure E.2: Velocity Plots as viewed in GraphView, Frigg.

Figure E.3: Thruster Plots as viewed in GraphView, Frigg.

LXXI

Figure E.4: Altitude Plots as viewed in GraphView, Frigg.

Figure E.5: MTi Plots as viewed in GraphView, Frigg.

LXXII APPENDIX E. GRAPH PANELS

Figure E.6: ECF Plots as viewed in GraphView, Frigg.

Appendix F

Online Tuning Panels

Figure F.1: Nonlinear PID Tuning Panel as viewed in Tuning Panel, Frigg.

LXXIII

LXXIV APPENDIX F. ONLINE TUNING PANELS

Figure F.2: LQR Tuning Panel as viewed in Tuning Panel, Frigg.

Figure F.3: Linear PID Tuning Panel as viewed in Tuning Panel, Frigg.

LXXV

Figure F.4: Kalman Filter Tuning Panel as viewed in Tuning Panel, Frigg.

LXXVI APPENDIX F. ONLINE TUNING PANELS

Appendix G

Help Center Panels

Figure G.1: The Main Display in Frigg Help Center.

LXXVII

LXXVIII APPENDIX G. HELP CENTER PANELS

Figure G.2: Joystick Help as displayed in Frigg Help Center.

Figure G.3: Joystick Button Configuration as displayed in Frigg Help Center.

LXXIX

Figure G.4: Tracking Help as displayed in Frigg Help Center.

Figure G.5: Camera Panel Help as displayd in Frigg Help Center.

LXXX APPENDIX G. HELP CENTER PANELS

Figure G.6: Light Panel Help as displayed in Frigg Help Center.

Figure G.7: Map Visualization Help as displayed in Frigg Help Center.

	Title Page
	Preface
	Abstract
	Acknowledgments
	Nomenclature
	Introduction
	Background and Motivation
	Underwater Vehicles
	Unmanned Underwater Vehicles
	ROV Minerva
	ROV SF 30k
	Control Systems for Marine Vessels
	Computer-Based Control Systems
	Real Time Systems

	Contributions
	Outline of Thesis

	Software Development
	Planning and Execution of Software Development
	Scrum
	Requirement Analysis
	Object-Oriented Programming and Architecture
	Event-Driven Programming and Architecture

	Designing User Interface
	Software Testing
	Testing of Control Systems
	Testing of User Interfaces

	Fault Tolerance in Software
	Introduction to Fault Tolerance
	Redundancy

	Advanced Programming Techniques
	Race Condition
	Semaphores
	Network Programming

	SRS for ROV DP system
	Introduction
	Purpose
	Scope
	Definitions
	References
	Overview

	Description
	Product Perspective
	Product Functions
	User Characteristics
	Constraints
	Assumptions and Dependencies

	Specific Requirements
	External Interface Requirements
	Functional Requirements
	Other Functional Requirements
	Performance Requirements

	Design Constraints
	Software System Attributes
	Reliability
	Availability
	Security
	Maintainability
	Portability

	Other Requirements

	The Control System - Njord
	Structure
	Initialization
	6-DOF Adaptation
	Observers
	Guidance Systems
	Controllers
	Thrust allocation

	Communication Between Systems
	Network Communication
	compactRIO

	Testing of the Control Structure
	Fault Tolerance in Njord
	Known Problems

	The Graphical User Interface - Frigg
	Concept
	Panels, Dialog Boxes and Functionalities
	DP Operations
	Tracking
	Joystick
	Camera Control
	Light Control
	Manipulator Control
	Collecting Unit
	Map Visualization
	Online Tuning
	Graph View
	Help Center
	Startup Dialog Box
	Set Origin Dialog Box
	Options Dialog Box

	Usability Testing
	User-Friendly Testing
	Functionality Testing

	Commissioning
	NaviPac and Communication String Setup
	Wet Test and Sea Trial

	Concluding Remarks
	Conclusion
	Recommended Further Work

	Bibliography
	Appendix API Njord
	Appendix Software Requirement Specification Template
	Appendix Notation of SNAME(1950) for marine vessels
	Appendix Option Panels
	Appendix Graph Panels
	Appendix Online Tuning Panels
	Appendix Help Center Panels

