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Abstract: We investigate, by simulations and experiments, the light
scattering of small particles trapped in photonic crystal membranes sup-
porting guided resonance modes. Our results show that, due to amplified
Rayleigh small particle scattering, such membranes can be utilized to
make a sensor that can detect single nano-particles. We have designed
a biomolecule sensor that uses cross-polarized excitation and detection
for increased sensitivity. Estimated using Rayleigh scattering theory and
simulation results, the current fabricated sensor has a detection limit of 26
nm, corresponding to the size of a single virus. The sensor can potentially
be made both cheap and compact, to facilitate use at point-of-care.
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1. Introduction

Preventive action and early detection of diseases are identified among the best and most cost
efficient means of improving health care [1, 2]. This can be done by developing efficient high
sensitivity biosensors that are cheap and small, allowing them to be applied by physicians at
point-of-care or even as a personal appliance in the comfort of our own homes. A technol-
ogy proposed to realize these next generation biosensors, is label-free optical biosensing [3,4].
Label-free optical sensors can be made using micro- and nano-technology that generally pro-
vides devices that are cheap and small. These sensors also have some of the highest sensitivities
reported today [5].
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All label-free optical biosensors are based on the same two basic principles. Firstly, a surface
is furnished with molecules that can capture a specific targeted molecule. The capture process
is generally a time-efficient one-step reaction, in contrast to label or tag assisted detection,
where a radioactive or fluorescent molecule is added to captured target molecules through a
multilevel chemical reaction. Secondly, the surface is optically designed to enable concentration
of light, from an excitation source, at the specific areas where captured molecules are made to
settle. This induces an optical response that is sensitive to changes in permittivity in the capture
zone. Capture events typically manifest themselves as a shift in resonance frequency, a dip in
transmission or reflection, or as scattering. Label-free biosensors can hence be considered to
be composed of two parts: A chemistry that provides selectivity and an optical transducer that
provides sensitivity. The focus of this article will be the optical transducer.

A number of different transducers exist. Mach-Zehnder interferometers [6, 7], optical ring
resonators [8, 9], photonic crystal cavity resonators [10], and techniques exploiting local
surface-plasmon-resonance (LSPR) in metal nano-particles are promising. Some are even re-
ported to sense changes in refractive index corresponding to a single molecule [5, 9, 11, 12].
Some of the above transducers do however call for elaborate alignment procedures in order to
couple light in and out of the transducer, and they all require complex designs to achieve a high
dynamic range. Consequently, these schemes seem more applicable as laboratory tools, and
less suitable in cheap and compact point-of-care devices. Sensors exploiting surface-plasmon-
resonance in periodic metal nano-structures [13–15], and photonic crystal sensors exploiting
coupling to guided resonance modes [16–18], have so far not reached single-molecule sensi-
tivity. These do in general have lower sensitivities, but are advantageous regarding in- and out
coupling of light and can be made with a high dynamic range.

In a recent report [17], we presented a photonic crystal based biosensor that exploits cou-
pling to guided resonance modes [19]. The transducer is composed of a membrane, where a
periodic square lattice of holes has been etched through the membrane. This creates a periodic
permittivity in the membrane plane that allows normal incident light to couple into in-plane
propagating modes. The particular mode that we excite, concentrates its field in the vicinity of
the membrane, primarily in the holes. It also produces a sharp dip in the reflected spectrum.

The center wavelength of the dip in reflectivity is highly sensitive to changes in permittivity
close to the membrane, especially at the hole walls, where the field is maximized. Covering a
pristine 2D PC membrane with a monolayer of biomolecules that has different permittivity than
the surrounding media, will hence shift the center wavelength of the dip, allowing the mono-
layer to be detected. However, when aiming for sensitivities on the order of single molecules,
captured molecules cannot be considered to be a monolayer. Single capture events are locally
bound defects that break the symmetry of the lattice. The defects will induce local shifts in the
frequency of resonant modes, but they will also provide new exit channels for light semi-bound
in the guided resonance mode. It is the latter effect that we exploit in our sensor. The membrane
is designed for high reflectivity in its native state [20–22], at a chosen operating wavelength.
When a particle is trapped in a hole, it will be located in a strong optical field that is scattered
out of the membrane. Consequently, a bright spot on a dark background, centered at the origin
of the particle, can be detected in transmission. Furthermore, the choice of making an intensity
based sensor, using a single operating wavelength, instead of tracking a shift in the resonance,
limits the required number of optical components in the design. This is advantageous in relation
to cost and compactness of a final device.

In [17], we proposed that the detection principle can be modeled as enhanced Rayleigh scat-
tering. The current report is an extension of this work. We now present simulation and exper-
imental results that support our hypothesis. A modified optical setup is also presented, where
crossed polarizers [23] are used to suppresses the background and increases the signal-to-noise
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ratio. Using the new optical setup, we calculate a detection limit corresponding to single parti-
cles the size of viruses.

2. Images obtained with unpolarized light

Figure 1(a) shows a scanning electron microscope (SEM) image of the front side of a fabricated
2D photonic crystal (PC) membrane. It is composed of a square lattice of 100×100 holes with
radius 145±10 nm and period 490±5 nm. The holes are etched through three thin films, 50±5
nm Si3N4/50±5 nm SiO2/50±5 nm Si3N4, free-standing in air. This is the transducer in our
sensor. The motivation for choosing a three layered stack, is that a cylinder surface is then
define inside every hole, chemically different from the rest of the PC surface. In turn, this can
enable us to functionalize the inside of the holes to capture targeted molecules, while the rest
of the PC opposes molecule capture. A more detailed description of how molecules can be
immobilized in our structure is given in previous work [17].

Figure 1(b) shows a SEM image of the membrane backside, and Fig. 1(c) is an image of the
front side of the membrane recorded with an optical microscope. Two defects or contaminations
are visible in all the images, SEM as well as optical. The discrepancy located at the top in Fig.
1(a), resulting in the upper bright spot in Fig. 1(c), is not visible in Fig. 1(b). It hence lies on
the front side, and is known to be a contamination. It first appeared on the surface sometime
after fabrication. The left defect is especially well suited for preliminary studies. It is located
inside a hole, where we plan to capture biomolecules, and has a radius of 60±15 nm. We will
refer to it as defect A. The permittivity of the defect is unknown, but can be limited by possible
contaminations in our lab, that have a permittivity between 2 and 12.25.

From Fig. 1(b), showing the backside of the PC, it appears like defect A results from a hole
that has not been fully etched. This suggests that defect A is composed of a mix of Si3N4 and
SiO2, and has a permittivity between 2.25 and 4 for visible light. The lower limit is comparable
to the permittivity of relevant biological target molecules, which typically have a permittivity
between 2 and 2.5 [25].

The setup used for optical characterization, is shown in Fig. 1(d). It is composed of a narrow-
band light source irradiating the backside of the fabricated PC, and a microscope connected to
a CCD camera recording the transmitted light with spatial resolution. Two polarizers are placed
in the light path, one between the source and the PC, and a second between the PC and the
CCD camera. We return to results generated with polarizers Ls and Ld employed, and a laser
diode source in section 4. For now, we will focus on the image in Fig. 1(c), recorded with a
light source in the form of a halogen lamp routed through a monochromator, and without the
polarizers Ls and Ld in the light path [24]. The image depicts the unpolarized transmittance
of the membrane, for narrowband unpolarized light, normally incident on the backside of the
membrane at a center wavelength of 632 nm.

We have previously [17] proposed that the appearance of a particle trapped in a PC, as shown
by the bright spot pattern in Fig. 1(c), can be understood as amplified Rayleigh small particle
scattering. Provided that a particle trapped in a PC is sufficiently small, the mode field will not
be affected by its presence. This results in the overall transmittance being low, and the field in
the vicinity of the membrane being high. The mode field hence acts as a driving field, causing
particles that are trapped in the lattice to scatter the resonantly enhanced field in the membrane.
Scattered light will exit out into the surrounding medium as spherical waves with origin at the
particle center, and can be refocused to form bright spots on a detector.

A closer examination of the bright spot pattern in Fig. 1(c), reveals that this description of
the situation is inadequate. The pattern is composed of an ensemble of spots that follow the
symmetry of the lattice.
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Fig. 1. Images acquired using a scanning electron microscope (SEM) of the front side
(a) and backside (b) of a fabricated sample of the photonic crystal. An area of the image
showing a particle with a radius of 60±15 nm has been enlarged. The particle is a defect
in the lattice. (c) An image of the crystal, front side facing up, has been recorded using
an optical setup [24] with monochromatic illumination at 632 nm, normally incident from
the backside. The color scale gives the transmittance of the membrane. (d) Optical setup
with a collimated narrowband light source centered at 632 nm, emitting a beam directed
by a 45◦ aluminum mirror to the backside of a photonic crystal at normal incidence, via a
linear polarizer, Ls. Transmitted light is collected by a 50x/0.95 NA objective lens, passes
through a linear polarizer, Ld, and is recorded by a 2D CCD camera. The image displayed
in (c) is recorded with the optical setup in (d), not using polarizers Ls and Ld.

3. Simulation of particles trapped in 2D photonic crystals

Finite-difference-time-domain (FDTD) simulations [26] and rigorously coupled wave analysis
(RCWA) [27], have been done to further investigate the effect of placing a small particle in a
2D PC.

Results from simulation using RCWA are summarized in Fig. 2. A unit cell in the fabricated
PC, with nominal dimensions, is illustrated in Fig. 2(a). Figure 2(b) shows the simulated trans-
mittance of the perfectly periodic PC as a function of wavelength, for normal incidence light.
Two dips in transmission can be seen in the plot, resulting from coupling of incident light to
two guided-resonance modes. We utilize the mode causing the low-transmission dip at 631 nm.
The simulated spectrum in Fig. 2(b) agrees well with the transmitted spectrum of the fabricated
structure, as we have shown earlier [17], but is slightly shifted with respect to the measured
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Fig. 2. Results from RCWA simulations. (a) Unit cell of a 2D photonic crystal membrane,
and (b) the simulated transmittance of the crystal for normal incidence y-polarized light as
a function of wavelength. (c) Color image representations of the resonantly enhanced field
at the center plane, z = 0, is given for the dip at 631 nm. The bottom color scale gives the
field amplitude, relative to the amplitude of the incident field.

dip value at 632 nm. A simulation showing the field in the center plane of a unit cell of the
membrane at this wavelength, for incident light polarized in the y-direction, is given in Fig.
2(c). The y component of the mode field forms a saddle profile aligned with the y-axis, peaking
at the hole walls with an amplitude 10 times the incident amplitude. Inside the holes, the x and
z component are an order of magnitude or more smaller than the y component. Note that it is
the absolute value of the field that is plotted in Fig. 2. Crossing zero field nodes, the phase of
the fields change by a factor π .

The design of the FDTD simulation is illustrated in Fig. 3. A volume, having a refractive
index of air, n0 = 1, with a length corresponding to four lattice periods, 4p, and a cross section
of 15p× 15p, was defined. The spatial resolution was set to 20 nm in the z-direction, and 10
nm in the x- and y-direction. A slab with refractive index ns = 2 was centered at z = p. The
thickness of the slab was set to 160 nm and the unit cell in the lattice is composed of a hole
going through the slab with a radius of r = 145 nm. The lattice is square with a period p = 500
nm. All simulation boundaries are terminated with absorbing layers of the perfectly matched
type (PML) [28].

First, the frequency response of the PC was analyzed. This was done by imposing a planar
Gaussian pulse, truncated at the simulation boundaries, with normal incidence relative to the
membrane plane at z = 0.5p, with center frequency corresponding to a vacuum wavelength
of 650 nm. The frequency response was found by calculating the Fourier transform of the
amplitude of the transmitted wave, recorded at z = 4p in the center of the simulation domain
on the xy-plane. This allowed us to find the wavelength where the simulated PC supports the
particular mode field corresponding to the one displayed in Fig. 2(c). The simulated design
is not identical to the fabricated PCs, but has been modified to speed up the simulations. The
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Fig. 3. (Left) Illustration of the FDTD simulation domain, composed of a volume of air,
with refractive index set to nair = 1, measuring 15×15×4 periods, where the period p =
500 nm. All simulation boundaries are terminated with absorbing layers of the perfectly
matched type (PML). A plane incident wave, truncated at the simulation boundaries, is
imposed at z = 0.5p, traveling in the positive z-direction, and a photonic crystal membrane
with thickness t = 160 nm is centered at z = p, aligned with the xy-plane. The field is
recorded as a function of time at the observation point T, and the terminal field distribution
is recorded at the xy-plane at z = p. (Right) Drawing of the unit cell in the photonic crystal.
The period is p, and the radius of the hole is r = 145 nm. The membrane material has a
refractive index set to nmemb = 2, corresponding to Si3N4.

transmission spectra of the simulated and fabricated PC are therefore shifted relative to each
other, due to the small differences in materials, lattice period and membrane thickness. The dip
in transmission at 703.6 nm for the simulated PC, and the dip at 632 nm for the fabricated PC,
are both caused by the same guided resonance mode.

Simulations using a continuous wave source tuned to 703.6 nm were thereafter performed
for a pristine PC and for a PC with one particle, vertically centered, in the center hole. This was
done by imposing a plane wave, truncated at the simulation boundaries, with normal incidence
relative to the membrane plane at z = 0.5p, traveling in the positive z-direction. The fields in
the center plane of the PC were observed. Three lateral positions of the particle were simulated:
At the center of the hole, and off-centered in the x-direction and y-direction, touching the hole
wall. The radius of the particle was set to 60 nm, similar in size to defect A. It is set to have
a refractive index of 2, corresponding to Si3N4. Simulations with three different particle radii,
centered both laterally and vertically in the center hole, were also done. Nominally, the radius
of the particles were 40, 60 and 80 nm. Due to the discrete spatial resolution in the FDTD
simulations, the actual simulated volumes of the particles were 2.4 ·105, 8.8 ·105, and 20.6 ·105

nm3. We will refer to these particle sizes as VS, VM, VL, in the following text.
The procedure of simulating a crystal of finite size is computationally intensive. Using pe-

riodic boundary conditions and a smaller simulation domain would speed up the simulations,
and should be chosen if the aim is to investigate the effect of inserting a particle in every hole
in a pristine PC, or every other, third, etc. In contrast to such investigations, we aim to find
the effect of inserting one single particle in a pristine PC, for the case when a small fraction
of the scattered light is emitted from the hole with the particle, and many holes around the
particle emit scattered light. Even when terminating our 15×15 periods domain with periodic
boundary conditions, and simulating the effect of inserting one particle in the center of this
super cell, it is hard to extract the separate contribution from each particle. In order to see their
contributions independently, we have therefore chosen to terminate the boundaries with PML,
and hence been able to visualize the outward flow of optical power along the membrane from
the particle.
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Fig. 4. Color image representations of fields resulting from continuous wave FDTD simu-
lations of a pristine photonic crystal, illuminated with normal incidence y-polarized light
at a wavelength of 703.6 nm, without a particle in the lattice (row 1), and photonic crystals
with a particle inserted at three selected lateral positions in the center hole: Center (row 2),
off-centered in the x-direction (row 3), and off-centered in the y-direction (row 4). The first
three columns show the absolute value of the field components Ex, Ey, and Ez, respectively.
Illustrations in the fourth column, corresponds to the areas in-plane over which the field
has been plotted. The color scales represent the amplitude (absolute value) of each of the
three components of the E-vector, divided by the amplitude of the E-vector of the incident
plane wave.

3.1. Position dependence of particles trapped in photonic crystals

The FDTD simulations for a single wavelength (contiuous wave) allow us to compute an elec-
tric field vector, E, as a function of position. The vector E, has three components Ex, Ey, and Ez,
each component being a complex phasor representing the amplitude and the phase relative to
the incident wave. The upper row of field plots in Fig. 4, shows |Ex|, |Ey|, and |Ez| in the center
plane of a pristine PC. The excited guided resonance mode forms as rows of holes parallel to
the incident polarization oscillate in phase and couple to a mode with in-plane k-vectors parallel
to the x-axis. Since the boundaries of the simulation are terminated with absorbing walls, we
are not simulating an infinite lattice, which is why the mode field declines as we approach the
edge of the crystal [29]. The lower three rows in Fig. 4, show what happens when a particle is
inserted in the crystal: The mode field is retained, and the effect of the particle is only visible
in the immediate vicinity of the particle.

To clarify the change in fields, the absolute value of the change, |∆E| =
|E(PC with particle) − E(pristine PC)|, is plotted in Fig. 5, for all three field compo-
nents and particle positions. The plots show that the particle behaves similar to an ideal dipole:
Inside the holes, the dominant field component of the mode field lies in-plane, pointing in
the y-direction. The particle radiates spherical waves in the shape of a torus, with its axis of
symmetry oriented parallel to the y-axis. It hence radiates strongly in the x-direction, and very
weakly in the y-direction. The scattered light can either exit directly out into the surrounding
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Fig. 5. Color image representations of absolute values of changes in the complex-valued
field components Ex, Ey and Ez, at the center plane of a pristine photonic crystal, caused
by inserting a particle in the crystal. The photonic crystal is illuminated with normally
incident y-polarized light at a wavelength of 703.6 nm. Three selected lateral positions of
the particle in the center hole have been investigated: Center (row 1), off-centered in the
x-direction (row 2), and off-centered in the y-direction (row 3). Illustrations to the far left
correspond to the areas in-plane over which the field has been plotted. The change has been
calculated by subtracting the field distribution for a pristine photonic crystal shown in Fig.
4 (top row), from the field distribution in a photonic crystal with a particle trapped in the
lattice, Fig. 4 (row 2-4). The plotted fields hence correspond directly to the E-field scattered
by the particles. The color scales represent the absolute value of the change in of each of the
three components of the E-vector, divided by the amplitude of the E-vector of the incident
plane wave.

medium, or couple to guided resonance in the membrane. The torus shape of the radiation
diagram of an oscillating dipole in free space, will therefore be strongly distorted, but we
still expect to see high |∆E|-values perpendicular to the axis of polarization, and very low
|∆E|-values parallel to the axis of polarization. This symmetry is clearly present in Fig. 5,
especially in the |∆Ey|-plot.

Moreover, there is an increase in |∆E| as the particle is moved towards the wall in the y-
direction where the guided-resonance mode field is maximized, and a decrease as the particle
is moved towards the wall in the x-direction where the mode field is minimized. Finally, note
that scattered light from a particle close to a wall, shows stronger coupling to the side where
the wall is closest to the particle.

3.2. Size dependence of particles trapped in photonic crystals

Going from left to right in Fig. 6(a), plots show the absolute value of the change in the y com-
ponent of the vector E, |∆Ey| = |Ey(PC with particle)−Ey(pristine PC)|, caused by inserting
particles with volumes VS, VM, and VL in the center hole of a pristine PC. Qualitatively, all
particle sizes induce the same change in field distribution. This is also the case for the x and z
component of the field (not shown). The volume dependence is clarified in Fig. 6(b), showing
a line plot of normalized field strengths from Fig. 6(a) superimposed on each other along the
x-direction at y = 0.
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Fig. 6. (a) Color image representation of the y component of the field at the center plane of
a pristine photonic crystal illuminated with normal incidence y-polarized light at a wave-
length of 703.6 nm, caused by inserting a particle in the center hole of the crystal. Three
different particle sizes have been simulated, as shown in the three illustrations at the top.
(b) Line plot crossing the field plots in (a) in the x-direction at y = 0. The color scale in (a)
and the abscissa in (b) both represent the absolute value of the change in Ey divided by the
amplitude of the incident plane waves.

The field change resulting from the largest particle is scaled with 1, the medium particle
with VL/VM and the smallest particle with VL/VS. In the holes where the particle is located, the
near field dominates the field distribution, and the plots do not overlap. A period away from
the center hole the line plots are virtually overlapping, meaning the amplitude of the change is
proportional to the particle volume.

We point out that forbidden asymmetries are visible especially in the plots showing |Ex| for
the pristine PC in Fig. 4 and |∆Ex| for the centered particle in Fig. 5. It has been verified, by
increasing the grid resolution for selected structures, that these asymmetries are dominantly
caused by numerical errors attributed to insufficient grid resolution. We also note that PML
does not work well for waves having k-vectors parallel to the PML [28]. The presence of such
waves in the simulations is known to give rise to unphysical reflections from the boundary. The
effect is present in our simulations, but is too weak to be visible in Figs. 4–6.
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4. Experiment

Employing the two linear polarizers, Ls and Ld, included in the optical setup illustrated in Fig.
1(d), enables polarized excitation, and cross-polarized excitation and detection. The source is
in this case a diode laser producing a 1.1 mrad divergence collimated beam with a line width of
∼4.5 nm centered at 632 nm. The center wavelength corresponds to that of the desired guided
resonance mode.

In the following results, microscope images have been recorded using two different polar-
izer configuration: Polarized excitation and unpolarized detection, where only polarizer Ls is
applied, and cross-polarized excitation and detection, where both polarizers, Ls and Ld, are
applied, and the source polarization is perpendicular to the detected polarization.

Eight recordings of the PC displayed in Fig. 2, are given in Figs. 7(a) and 7(b). One image
displays the entire matrix of holes, and a smaller cut, labeled D, frames the immediate vicinity
of defect A. Images in Fig. 7(a) are recorded using only polarizer Ls, and images in Fig. 7(b)
are recorded with cross-polarized excitation and detection. Each row holds results for a fixed
orientation of polarizer Ls, and arrows drawn on-top of a 3×3 hole matrix show the orientation
of Ls and Ld relative to the lattice. The color scale shows the transmission, found by recording
an image of the PC and dividing each pixel value by the mean background pixel value, found
by recording an image without the PC in the light path.

A measure of the signal-to-background ratio (SBR) in each recoding is also displayed in
Fig. 7. It has been calculated in the following way: Two sets of pixels with the same size were
defined, corresponding to the area holding defect A [pixels D] and an area with hardly any
observable defects [pixels M]. The locations of pixels D and M are the same in all recordings
and have been marked with white frames labeled M and D, at the top left image in Fig. 7. The
mean-, Mmean, and rms-value,Mrms, of pixels M, and the maximum value in pixels D, Dmax, is
found, and the signal-to-background ratio defined as SBR = (Dmax−Mmean)/Mrms.

The difference between the two polarizer configurations is clarified in Fig. 7(c), which holds
line plots for both unpolarized detection and cross-polarized excitation and detection. The lines
cross the recorded images in the y-direction, intersecting the peak in intensity in pixels D. The
x-axis represents optical power per pixel, obtained by dividing each bit-value in the picture file
by the exposure time.

4.1. Polarization dependent scattering from particles trapped in photonic crystals

The appearance of defect A for polarized excitation and unpolarized detection is shown in Fig.
7(a). As for unpolarized excitation and detection, resulting in the image in Fig. 1(c), the defect
produces an ensemble of bright spots that coincide with the lattice. Light scattered by defect
A is observed as a maximum, corresponding to the location of the defect, and scattered light
coupled into the membrane, guided away from the defect center, is observed as re-scattering
from the surrounding holes. However, in contrast to the pattern in Fig. 1(c), the symmetry of the
patterns in Fig. 7(a) is not four fold symmetric. As predicted by the simulation results in Figs.
5 and 6, it is only two fold symmetric. Weaker scattering is observed from holes neighboring
the defect along the line parallel to the incident polarization.

4.2. Decreasing background signal using cross-polarized excitation and detection

The signal-to-background ratio, is calculated to be 60, 80, 64 and 47 for the four different
incident polarizations with unpolarized detection. Looking at the images in Fig. 7(a), the back-
ground signal is mainly limited by the non-zero and inhomogeneous transmittance of the mem-
brane.

Using crossed polarizers, the signal-to-background ratio is changed to 91, 57, 147 and 97,
respectively. The background signal is hence on average decreased relative to detected particle
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Fig. 7. Images recorded with the optical setup illustrated in Fig. 1(d). (a and b) Results are
collected for four orientations of polarizer Ls, with polarizer Ld (a) not employed and (b)
oriented orthogonal to Ls. Arrows drawn on-top of a 3×3 hole matrix show the orientation
of Ls and Ld relative to the lattice, for each recording. A set of pixels D, corresponding to
the position of defect A has been enlarged, for every recording. The color scales located at
the bottom of column (a) and (b) show the transmittance of the membrane, calculated by
dividing the pixel values resulting from a recording of the membrane, by the mean pixel
value in a recording without the membrane in the light path. (c) Line plots of pixel values,
going from point A to B, crossing the crystal in the y-direction, intersecting the peak in
pixel value in pixels D. The ordinate in the plots in (c) represents optical power per pixel,
computed by dividing each bit-value in the picture file by the exposure time.

irradiance, and mainly created by two sources of unwanted depolarization: Depolarization at
the lattice boundaries and at numerous localizable points across the membrane.
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5. Discussion

We have so far only focused on defect A. The two other defects or contaminations seen in
the lower and upper part of of Fig. 1(a), are not reported on in this study. This is because these
defects cannot be considered to resemble molecular capture events. They are both too large with
respect to Rayleigh small particle scattering theory, and also lie close to the lattice boundary,
where the PC performance suffers from edge effects. We also note that in biosensing it is most
relevant to focus on detection of nano-particles in water. However, in this proof of principle
study, we have chosen to design the PC for detecting nano-particles in air. A discussion on
what needs to be done in order for the sensor to be used to detect nano-particles in water is
found in previous work [17].

In our particular design, incident light couples to a guided resonance mode that supports
high fields in the holes. Simulation results in Fig. 2(c), show how the mode field in the holes
can be considered as a driving field that has a dominant component parallel to the incident
polarization. Figures 4 and 5 show how this driving field causes particles that are trapped in
the holes to scatter, but is only locally affected by the presence of the particle. In Fig. 6(c), it
is evident that the field in the hole where the particle is located, is strongly perturbed due to
the near-field of the scattering particle, but in the closest neighboring holes to the particle, the
mode field is approximately retained. Even for the largest particle, causing the largest change
in the field, the maximum amplitude of the y component of the scattered irradiation is 0.7 times
the amplitude of the incident field. This is only 0.2 times the absolute value of the y component
of the resonantly enhanced E-field at the center plane of the membrane, averaged over one unit
cell.

The reason for the spot pattern coinciding with the lattice can be explained by two distin-
guishable effects. One, light scattered from defect A cannot only radiate out into the medium
surrounding the membrane. Part of the scattered irradiance can couple to the membrane and be
guided away from the hole where defect A is located. This light will re-scatter when it meets
neighboring holes. For unpolarized normal incidence light, as is used to obtain the image in Fig.
1(c), spherical waves will hence radiate out into the surrounding media directly from defect A,
and from the nearest neighboring holes. The center spot in the pattern is directly related to scat-
tered irradiance from defect A, and has an observed intensity set by the mode field amplitude at
its location. Surrounding spots are a result of scattering from holes neighboring defect A, driven
by the irradiance from defect A coupling to the membrane. Two, the light that is coupled out
of the membrane via scattering by defect A, is dominantly drawn from the guided resonance
mode. Consequently, the mode phase-matched to interfere destructively with directly transmit-
ted light looses some of its power. This power is also locally bound to defect A and can create
a spot pattern that coincides with the symmetry of the lattice.

5.1. Dipole like behavior of particles trapped in photonic crystals

We have previously proposed that the spatial distribution of the scattered light is similar to an
ideal dipole, with the zero-field axis aligned with the driving field. Field plots in Figs. 5 and 6
support that this is the case. Particles trapped in the lattice scatter dominantly perpendicularly
to the polarization of the driving field. These simulation results also agree with the experi-
mental observation in Fig. 7(a), showing the result of polarized excitation. Strong scattering
is seen from the hole where the defect is located, and from the neighboring holes, going out
from the defect center, in a direction perpendicular to the incident polarization. Weaker scat-
tering is seen from the holes, going out from the defect center, in a direction parallel to the
incident polarization. Consequently, all images displayed in Fig. 7(a) show spot patterns with
two folded symmetry. The minor deviations from two folded symmetry, can be explained by
the off-centered position of defect A in the hole. This also agrees with the simulation results
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in Fig. 5, where it is evident that scattered light from the defect couples stronger to the side
where it is touching the hole wall. Hence, we see stronger scattering from the lower and left
neighboring holes.

Since we only have one PC holding one ideal test particle, we have not been able to verify
experimentally the size dependence evident in Fig. 6. Furthermore, our simulation results show
that the direction of propagation and strength of scattered light from the defect is strongly
dependent on its position in the hole, and we have not been able to find a non-destructive
method to determine the chemical composition of our defect. We therefore hesitate to infer
anything about permittivity and size of our defect from our measurements.

The |∆E|-plots in Fig. 6(b) show that the amplitude of the scattered light is proportional to
the volume of the scattering particle, and results presented in Fig. 5 show how the scattered
amplitude is increased when the particle is moved into areas with a stronger driving field. This
complies with Rayleigh scattering theory [30], which says that the amplitude of scattering from
isolated particles is proportional to the volume of the scattering particle and the amplitude of
the driving field. Since the intensity recorded by the CCD camera in our optical setup is the
field amplitude squared, the sensitivity of the sensors is proportional to the volume of particles
squared, and can be improved by increasing the amplitude of the driving field.

5.2. Decreased background signal by use of crossed polarizers

As shown by the zero-transmission dip at 631 nm in Fig. 2(b), an infinite pristine PC can
function as a mirror. When a particle is present in the lattice, it can therefore be observed in
transmission as a bright spot, or a group of spots, on a background that in theory can be made
black. In practice, the reflectivity is limited by fabrication accuracy, finite extent of the lat-
tice, non-zero divergence of the excitation source and a finite source bandwidth. The minimum
transmittance in our experiments is consequently closer to 20%, as can be seen in Fig. 7(a).
This relatively high background, in combination with a sensitivity that is proportional to the
volume of the particles squared, is limiting. As particles are reduced in size, the scattered light
they produce falls fast below the noise floor. Alternative methods for reducing the background
signal are therefore needed.

Experimental results presented in Fig. 7 show how cross-polarized excitation and detection
is an alternative, that increases the signal-to-background ratio by up to a factor of three. This
method is especially well suited in our design. For normal incidence plane waves, incident on a
square 2D PC, the symmetry of the lattice forces the reflected and transmitted fields to retain the
original polarization in the far-field. If the orthogonal polarization is present in transmission, it
must originate from defects in the crystal or from imperfect extinction present in the measure-
ment setup independent of the membrane. Cross-polarized excitation and detection hence filters
out all but exactly what we are looking for, namely defects in the crystal.

It is further possible to argue that our signal-to-background ratio is a modest estimate. The
calculated rms-value of the background, does not only include noise related to the detector chip.
Although it is found by sampling an area with little defects, there is a contribution from lattice
discrepancies. The sensor is meant to capture biomolecules. Detection is done by comparing the
transmittance of the membrane before and after a molecule is captured, subtracting the initial
image from the image taken after capture. By this procedure, contributions to the background
signal from static defects in the crystal can be removed and lead to an increased signal-to-
background ratio.

As seen in Fig. 7(b), displaying results from measurements using cross-polarized excitation
and detection, depolarization of the incident light is observed at numerous localizable points
across the membrane. The points lie along lines parallel to the PC lattice axes, and we believe
they are a result of deviations in lattice period, hole radius and hole shape. These structural
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discrepancies cannot be seen using SEM. The assumption hence implies that the current back-
ground signal is mainly limited by fabrication accuracy of the PC, and the sensitivity of the
sensor exceeds the resolution of our SEM, i.e. we should be able to detect 20-40 nm diameter
particles. This also agrees with the calculated signal-to-background ratio, which predicts that
the detection limit is close to 26.1 nm: rmin =

(
r6

p/SBRmax
)1/6

=
(
(60±15 nm)6/147

)1/6
=

26.1±6.5 nm.
This detection limit allows us to detect particles the size of single viruses. The sensitivity of

the sensor hence has to be improved in order to detect proteins, which typically have a radius of
2-10 nm. This presents a challenge, since the sensitivity is proportional to the volume of trapped
particles square. The sensitivity can however be improved by increasing the amplitude of the
driving field, which can be done by utilizing a guided resonance mode with a higher Q-factor.
An increased Q-factor of guided resonance modes can be achieved by decreasing the scattering
strength of the PC. In practice, it is a question of production accuracy, and can e.g. be done by
reducing the size of the holes in the PC [19, 31].

6. Conclusion

We have designed, fabricated, and characterized a PC that can be used as a nano-particle sensor.
The key component in our scheme is a photonic crystal membrane supporting guided resonance
modes. Simulation and experimental results presented in this report, show how detection is a
result of amplified small particle scattering. Small particles trapped in photonic crystals, excited
by normal incident light coupling to a guided resonance mode, scatter similar to ideal dipoles.

Provided a chemistry that facilitates capturing of biomolecules, the current design should en-
able detection of single viruses. The design is simple and composed of standard optical compo-
nents, allowing it to be made cheap. It can also be made compact, by replacing the microscope
by a set of lenses specific to the application. Further optimization of the design is needed to
reach the sensitivity level of targets like proteins.
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