
 
 
 
 
 

Lecture Notes 
 
 
 
 

“HYDROELASTISITY” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
By 

 
Jan V. Aarsnes 

 
 

15 October 2009 
 
 



Page 2 of 158 
 

 
Table of content 

 

1  INTRODUCTION ....................................................................................... 5 

1.1  BACKGROUND ......................................................................................... 5 
1.2  INTRODUCTION TO HYDROELASTICITY ............................................................. 5 
1.3  MAIN TOPICS .......................................................................................... 5 

1.3.1  Vortex Induced Oscillations .............................................................. 5 
1.3.2  Whipping, Springing an Ringing ........................................................ 5 
1.3.3  Hydroelastic slamming .................................................................... 6 
1.3.4  Very Large Floating Structures ......................................................... 6 
1.3.5  Membrane Structure ....................................................................... 7 
1.3.6  Aquaculture structure ...................................................................... 7 

2  VORTEX INDUCED VIBRATION ................................................................. 8 

3  SPRINGING .............................................................................................. 9 

3.1  DESCRIPTION OF LINEAR SPRINGING .............................................................. 9 
3.2  SPRINGING RESPONSE CALCULATION – BEAM MODEL FOR ELASTIC HULL .................. 11 

3.2.1  General formulation ...................................................................... 11 
3.2.2  Free vibrations – natural frequencies and natural mode shapes ........... 11 
3.2.3  Forced oscillations ........................................................................ 14 

3.3  DISCUSSION OF SPRINGING RESPONSE ......................................................... 15 
3.4  NONLINEAR SPRINGING ........................................................................... 17 

4  IMPACT LOADS AND TRANSIENT HULL VIBRATIONS - WHIPPING ......... 21 

4.1  GENERAL DESCRIPTION OF WHIPPING ........................................................... 21 
4.2  WATER ENTRY AND SLAMMING LOADS ........................................................... 23 

4.2.1  Description of slamming ................................................................ 23 
4.2.2  Slamming pressure and slamming forces ......................................... 26 
4.2.3  Numerical calculation of Slamming pressure and slamming forces ....... 30 
4.2.4  Experimental Validation of Slamming Force calculation; “Slam2D” ....... 32 

4.3  DYNAMIC EFFECTS ON SLAMMING LOADS ........................................................ 36 
4.3.1  Effect of dynamic response – Given Impact load ............................... 36 
4.3.2  Measurements of slamming Loads ................................................... 39 

4.4  WHIPPING RESPONSE CALCULATION ............................................................ 41 
4.5  DISCUSSION OF WHIPPING RESPONSE .......................................................... 42 

4.5.1  Parameters governing the whipping response ................................... 42 
4.5.2  Contribution from elastic response to fatigue damage ........................ 42 
4.5.3  Contribution from elastic response to maximum values ...................... 46 

5  RINGING REPONSE OF OFFSHORE PLATTFORMS .................................... 48 

5.1  GENERAL ............................................................................................ 48 
5.2  EXCITATION OF RINGING .......................................................................... 49 
5.3  DESCRIPTION OF RESULTS FOR RINGING RESPONSE OF TLP ................................. 51 

6  NUMERICAL ANALYSIS  - SPRINGING AND WHIPPING RESPONSE ........ 55 

6.1  GENERAL ............................................................................................ 55 
6.2  EQUATION OF MOTION- STRUCTURAL FORMULATION .......................................... 56 
6.3  HYDRODYNAMIC FORCES .......................................................................... 58 

6.3.1  General formulation ...................................................................... 58 
6.3.2  Hydrodynamic Radiation forces ....................................................... 59 



Page 3 of 158 
 

6.3.3  Excitation forces ........................................................................... 60 
6.4  RESPONSE CALCULATION. ......................................................................... 61 

6.4.1  Response due to General loading – Direct Method. ............................ 61 
6.4.2  Response due to Linear Harmonic excitation – The Frequency Response 
Method. 62 
6.4.3  General nonlinear loading - Convolution integral method .................... 62 
6.4.4  Frequency dependency of added mass and hydrodynamic damping ..... 63 

7  MODEL TEST – SPRINGING AND WHIPPING .......................................... 65 

7.1  GENERAL ............................................................................................ 65 
7.2  SCALING LAWS ..................................................................................... 65 
7.3  SHIP MODELING .................................................................................... 67 

7.3.1  Backbone model ........................................................................... 67 
7.3.2  Fully elastic model ........................................................................ 68 
7.3.3  Hinged Models ............................................................................. 69 

7.4  MEASUREMENTS/INSTRUMENTATION ............................................................ 72 
7.5  TEST EXECUTION. .................................................................................. 73 
7.6  DECAY TEST ......................................................................................... 74 
7.7  ANALYSIS OF RESULTS FROM WAVE TESTS – WHIPPING AND SPRINGING. ................. 75 

7.7.1  General about test result analysis ................................................... 75 
7.7.2  Results for Springing Response. ...................................................... 75 
7.7.3  Results for Whipping Response. ...................................................... 77 

7.8  SCALING FROM MODEL TO FULL SCALE. ......................................................... 81 

8  HYDROELASTIC SLAMMING ................................................................... 82 

8.1  GENERAL ............................................................................................ 82 
8.2  THEORETICAL DESCRIPTION – ONE ELASTIC BEAM ............................................ 82 

8.2.1  Structural modelling ...................................................................... 82 
8.2.2  Impact Loads - Hydrodynamic Boundary Value Problem ..................... 85 
8.2.3  Simplified Solution ........................................................................ 87 

8.3  MODEL TEST RESULTS - SINGLE BEAM .......................................................... 90 
8.4  EFFECT OF AIR POCKET. ........................................................................... 94 
8.5  THREE BEAM MODEL ............................................................................... 95 

8.5.1  Theoretical formulation .................................................................. 95 
8.5.2  Model test results ......................................................................... 96 

8.6  3-D APPROACH ..................................................................................... 98 

9  VERY LARGE LOATING STRUCTURES .................................................... 102 

9.1  GENERAL DESCRIPTION ......................................................................... 102 
9.2  HYDROELASTIC ANALYSIS ....................................................................... 103 

9.2.1  General description ..................................................................... 103 
9.2.2  Linear,  Wave Frequency analysis ................................................. 104 
9.2.3  Non-Linear effects ...................................................................... 107 

9.3  CASE STUDY ...................................................................................... 107 

10  MEMBRANE STRUCTURES ..................................................................... 112 

10.1  GENERAL .......................................................................................... 112 
10.2  STATIC SHAPE OF MEMBRANE STRUCTURE .................................................... 113 

10.2.1  2-Dimesional membrane structure. ............................................... 113 
10.3  DYNAMIC TENSION IN WAVES – 2-DIMENSIONAL CASE. .................................... 118 

10.3.1  Theoretical formulation ................................................................ 118 
10.3.2  Numerical results. ...................................................................... 121 

10.4  3-DIMENSIONAL SOLUTION FOR HEAD SEA. .................................................. 123 
10.4.1  Theoretical formulation ................................................................ 123 



Page 4 of 158 
 

10.4.2  Hydrodynamic coefficients ........................................................... 126 
10.4.3  Numerical results for Membrane responses. .................................... 129 

10.5  COMPARISON WITH EXPERIMENT. .............................................................. 131 

11  AQUACULTURE STRUCTURES ............................................................... 133 

11.1  DESCRIPTION OF AQUACULTURE STRUCTURES ............................................... 133 
11.2  NUMERICAL SIMULATION OF RESPONSE IN WAVE AND CURRENT .......................... 135 

11.2.1  Hydrodynamic forces on Nets ....................................................... 135 
11.2.2  Hydrodynamic forces on the floater collar ....................................... 138 
11.2.3  Structural modelling of floating collar. ........................................... 140 
11.2.4  Mooring Forces ........................................................................... 140 
11.2.5  Equation of motion – Time integration ........................................... 140 
11.2.6  Approach time integration of net structure dynamic ......................... 141 

11.3  COMPARISON WITH MODEL TEST RESULTS ................................................... 144 
11.3.1  Net cage in uniform Current ......................................................... 144 
11.3.2  Flexible PEH cage with net in wave and current. .............................. 146 

12  REFERENCES ........................................................................................ 148 

A1  GENERAL .......................................................................................... 152 
A2  GENERAL FORMULATION ......................................................................... 152 
A3  FREE OSCILLATION ............................................................................... 152 

A3.1  Undamped Case ....................................................................... 152 
A3.2  Damped Case ........................................................................... 153 

A4  LINEAR, HARMONIC EXCITATION CASE ......................................................... 154 
A5  NON-HARMONIC LOADING - TRANSIENT RESPONSE ......................................... 156 

 



Page 5 of 158 
 

1 INTRODUCTION  

1.1 Background  

This compendium has been prepared for the Course “Hydroelasticity”. Parts of the notes 
are based on earlier lecture notes and “Power Point” presentations within this Filed. This 
includes contributions from the following; 
 

• Rong Zhao (in general) 
• Ole Hermundstad (Springing and whipping) 
• Ole David Økland (Springing and whipping) 
• Pål Lader (Aquaculture structures) 
• Reza Taghipour (VLFS) 

 
 

1.2 Introduction to hydroelasticity 

Different definitions of the term “hydroelasticity” have been use; 
 

• Hydroelasticity is the branch of science which is concerned with the motion of 
deformable bodies through liquids 

• Study of marine structures when fluid flow and the structural elastic reactions must 
be considered simultaneously and that we have mutual interactions 

• For a hydrodynamics the term hydroelasticity refers to the satisfaction of the 
deformable body surface boundary conditions of the boundary value problem for 
the velocity potential mathematical model. 
 

Each of them are covering important aspect of the topic Hydroelasticity. 
 
 In this course different areas area within marine technology where there is a strong 
interaction between hydrodynamic loading and elastic structural response will be outlined 
and discussed.    
 
 

1.3 Main topics  

The main topics to be covered within this course in Hydroelasticity can be summarized as 
follows; 
 

• Vortex Induced Oscillation 
• Springing, whipping and ringing response of ships and offshore structures 
• Hydroelastic Slamming 
• Large Floating Structures 
• Membrane structures 
• Aquaculture structures 
• Large Floating Structures 

 
 

1.3.1 Vortex Induced Oscillations  

See separate Presentation by Carl Martin Larsen 
 
 

1.3.2 Whipping, Springing an Ringing  

The ship hull can be regarded as an elastic structure with different natural modes and 
frequencies. As for rigid body motions resonance motions in the different modes can 
introduce large dynamic amplifications of the responses. It is therefore of fundamental 
importance to analyze the dynamic behavior of the ship structure also for the elastic 
modes of vibrations. 
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Dynamic response of an elastic structure may be generated  either by steady state 
excitation or by impact loads of short duration. The elastic response of the hull girder is 
denoted as springing and whipping respectively, i.e; 
 

• Springing Response; is steady state resonant hull girder vibrations due to wave 
loading. 

 
• Whipping Response; is transient hull girder vibrations due to wave loads that 

increase rapidly and with short duration (i.e slamming loads). 
 
The elastic hull structure vibrations may in principle occur both in the vertical and 
horizontal plan. For surface piercing ships the vertical forces will in general be dominating. 
This applies both to vertical wave loads and to slamming loads. We will therefore in this 
course limit our self to vibrations in the vertical plan. 
 
Ringing Response; is the transient high frequency response at the natural frequency of an 
elastic mode typically occurring in extreme wave conditions with large and steep individual 
waves. Ringing has been observed for offshore structures as Gravity Base Structures 
(GBS) and Tension Leg Platforms (TLP). These concepts are characterised with some 
relatively high elastic natural frequencies, which are outside the range of normal (i.e. 
linear) wave loading. The ringing excitation occurs in sea states with wave periods well 
above the elastic natural periods.  
 
Springing, whipping and Ringing responses in general are discussed in Chap 3, 4 and 5 
respectively.  
 
The springing, ringing and whipping responses can in principle be assessed by model tests 
and / or by theoretical methods. This is discussed in Chapter 6 and 7 respectively. 
 
  
 

1.3.3 Hydroelastic slamming  

A dynamic structural response will arise if the duration of the impact load is comparable 
to, or shorter than, the relevant natural period of the structure. For bow flare slamming on 
ships, the duration of the slamming load will often be long compared to the short natural 
period of the hull plating. Hence a quasi static approach is applicable. On the other hand 
slamming on the wetdeck of a catamaran may give rise to a dynamic structural response 
in the local plating since the rise time of the pressure is shorter than the plating natural 
period. Such cases where the duration of the slamming load is much shorter than the 
natural period of the structure is denoted Hydroelastic slamming. 
 
Hydroelastic slamming is discussed in Chapter 8. 
 
 

1.3.4 Very Large Floating Structures  

Very Large Floating structures (VLFS) are characterized by it’s huge dimensions. Typical 
dimensions can be Length x Breadth, LxB=5 km x 1 km. Design and construction of these 
structures are therefore associated with massive cost and labour. A key feature of VLFS’s 
is their large horizontal extension relative to  the vertical one. This leads to a significant 
elastic behaviour which is dominant relative to the rigid-body motions. Hence the flexibility 
and the coupling effect between structural deformation and hydrodynamic loads strongly  
affect the response. In this way the VLFS must be regarded as a hydroelastic structure. 
 
VLFS is discussed in Chapter 9. 
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1.3.5 Membrane Structure  

Applications of liquid filled membrane structures in the sea are restricted to liquids with 
density lighter than sea water.  Examples of existing applications are storage container, 
transporting fresh water and collection of oil spill from a damaged tanker or from a blow 
out. Fabric structures have also been used as pens for fish farming, but then connected to 
a frame structure or to a floating flexible collar. The fabrication costs for flexible containers 
are much lower than for conventional  structures used for sea-transportation as barges 
and ships. 
 
The response of a membrane structure in waves is highly hydroelastic as the membrane 
structure follows the wave action to a large extent and the elasticity of the fabric govern 
the hydrodynamic loading 
. 
Application of Membrane structure is discussed in Chapter 10. 
 
 

1.3.6 Aquaculture structure  

The marine fish farms used for aquaculture purpose consist of highly flexible structural 
components such as fish nets, anchor lines and elastic or hinged floating collar structures 
in the free surface zone. The mooring lines and nets are connected to the floaters. The 
installations are exposed to loads from wind, waves and current and due to the dominating 
elastic behavior of the different components, a hydroelastic approach will be required for 
design and analysis. 
 
Application of Aquaculture structures is discussed in Chapter 11. 
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2 VORTEX INDUCED VIBRATION  

See separate Lecture Note from Carl Martin Larsen  
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3  SPRINGING  

3.1 Description of Linear springing 

Springing may be explained in the following way. The ship hull can be regarded as a 
flexible beam and will have resonant natural modes and frequencies. If the wave loading in 
a sea state excite in the same frequency range as the natural frequency of the elastic hull, 
resonant hull girder vibration will be generated. This is called springing.  
 
Resonant vibrations implies that; 
 

• The vibration sustain over a certain period (”steady-state” phenomenon) 
• there are wave-forces that oscillate with the same frequency as  one of the 

natural frequencies of the hull girder – usually the lowest frequency 
 
For a monohull, the 2-node vertical vibration mode will normally have the lowest natural 
frequency. Typical natural period for this 2-node mode will be 1-2 s, depending on ship 
length. For a catamaran, the torsion (twisting) mode will often have the lowest frequency. 
Torsion vibrations may also be induced in monohuls with large deck openings (e.g. 
container ships).  
 
For a ship with forward speed U, the wave encounter frequency is given from; 
 

U
ge

2
0

0
ω

ωω +=                            (3.0) 

  

where 0ω  is the incoming wave frequency. Linear springing occur when the encounter 

frequency approach the natural frequency of the lowest natural flexible mode. This is 
illustrated in Fig 3.1 which shows the wave spectrum based on encounter frequency for a 
ship in head sea waves at different speed. The natural frequency of the 2-node mode for 
different ship size is also shown.  
 

 
 
Figure 3.1 Wave energy and natural frequency for 2 node mode of vibration for 

different size ships. 
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. 
 

It is seen that for the actual case the high frequency tail of the encounter wave spectrum 
has significant energy at the natural  frequency range for the 2-node mode for the larges 
ship size. 
 
The springing response  is illustrated in Fig. 3.2 where transferfunction for vertical bending 
moment midship is shown. The large peak at the resonance frequency represent the 
springing effect. This will typically occur for relatively short waves. For short waves the 
excitation forces of the global 2-node mode is relative small, but as they occur at high 
frequencies, the hydrodynamic damping is very low and hence high resonance response 
peaks may occur.  
 

 
 

 
Figure 3.2 Bending moment RAO (regular waves) Effect of Linear Springing. 
 
 
Calculations suggest that springing may give a significant contribution to the extreme 
response for some ships, but springing vibrations are generally more important for fatigue. 
It has been found, see Storhaug et al.(2006) for details, that springing may contribute to 
about 40% of the accumulated fatigue damage for long bulk carriers.  
 
It is therefore important to include the effect of springing in the design and analysis of ship 
designs. 
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3.2 Springing response calculation – Beam Model for Elastic Hull 

3.2.1 General formulation 

A ship can be regarded as an elastic beam with variable mass and bending stiffness 
distribution along the length. The simplest approach to the beam theory is the classical 
Euler beam. This approach is based on the following assumptions; 
 

• Shear deformation can be neglected.  
• Effect of rotary inertia is neglected. 
• Axial deformations is neglected 

 
The first assumption imply that loading normal to the beam axis is carried by a pure 
bending behavior. 
 
The differential equation for the vertical vibrations for an elastic beam can be derived by 
considering equilibrium in forces and moments acting on a small beam element. The 
results is the Beam Equation which applies for the vertical elastic deflection of the beam, 

),( txy  as function of longitudinal position, x and time t; 
 

),(),()(),()( 2

2

2

2

2

2

txq
x

txyxEI
xt

txyxm =⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
∂
∂

+
∂

∂
     (3.1) 

 
Where )(xm  is the structural mass pr length unit,  E  is the Young’s module, )(xEI  is the 

bending stiffness and ),( txq  is the total (hydrodynamic) force.  The total hydrodynamic 
force includes  both the wave excitation force (i.e the wave force acting on a fixed 
structure) and the hydrodynamic force due to forced oscillation in the elastic modes. This 
can be written on the following form; 
 

⎥
⎦

⎤
⎢
⎣

⎡
+

∂
∂

+
∂
∂

−= yxc
t
yxb

t
yxatxptxq )()()().(),( 2

2

     (3.2) 

 
Where ),( txp  is the wave excitation force , )(xa is the added mass coefficient, )(xb is the 

damping coefficient and )(xc is the hydrostatic force coefficient. The damping coefficient 
includes both the hydrodynamic damping and the structural damping and the damping 
effect of the cargo. 
 
Inserting eq. (3.2) into eq. (3.1) gives the following expression: 
 

[ ] ),()(),()()(),()()( 2

2

2

2

2

2

txpyxc
dx

txyxEI
xt

yxb
t

txyxaxm =+⎥
⎦

⎤
⎢
⎣

⎡ ∂
∂
∂

+
∂
∂

+
∂

∂
+   (3.3) 

 
The hydrostatic restoring term yxc )( , has normally very little effect on the springing 
response. 
 
 
 

3.2.2 Free vibrations – natural frequencies and natural mode shapes 

The solution of equation (3.3) is usually found by the “normal modes” approach.  The 
basis for this approach is that any forced deformation of the elastic structure can be 
approximated by the sum of a limited number of normal modes of the system multiplied 
by the time dependent principal coordinate of the different modes. The normal modes are 
determined from the free vibration case, i.e using 0),( =txq  and 0)( =xb in eq. (3.3). A 
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solution for the vertical beam deflection, ),( txy , can now be assumed on the following 
form; 
 

)(),( xetxy ti ψω∝          (3.4) 
 
which gives a harmonic oscillation in time and a time independent shape function (Normal 
Mode), )(xψ .  
 
As an example the simplified case with a uniform elastic beam is considered. Uniform 
beam assumption implies that all parameters in eq. (3.3) are constant along the ship 
length. The equation for free vibration can now be written; 
 

0)()()( 4

4
2 =+

∂
∂

+
+

− x
EI
c

x
xx

EI
am ψψψω       (3.5) 

 
Introducing the parameter β, defined from;  
 

4
2 ⎟

⎠
⎞

⎜
⎝
⎛=−

+
LEI

c
EI

am βω         (3.6) 

 
Gives the following equation for the free vibration; 
 

 0)()( 4

4

4

=⎟
⎠
⎞

⎜
⎝
⎛−

∂
∂ x

Lx
x ψβψ

        (3.5b) 

 
the general solution of the differential equation given by eq (3.5b) can be written as (see 
e.g Thomsen (1993) for details); 
  

)cosh()sinh()cos()sin()( x
L

Dx
L

Cx
L

Bx
L

Ax ββββψ +++=    (3.7) 

 
The unknowns in eq. (3.7) are determined from the actual boundary conditions. For the 
hull girder the boundary conditions are that the shear forces, V(x) and bending moment 
M(x) are zero at the ends of  the ship, i.e. at 0=x  and Lx = . This gives; 
 

00)( 3

3

=
∂
∂

⇒=
x

xV ψ
    for  0=x   and  Lx =          (3.8) 

00)( 2

2

=
∂
∂

⇒=
x

xM ψ
    for  0=x   and  Lx =          (3.9) 

 
Substituting the 4 boundary conditions into the general solution given by (3.7) gives 4 

linear equations, 2 for 2

2

x∂
∂ ψ

 and 2 for 3

3

x∂
∂ ψ

 as follows; 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0
0
0
0

D
C
B
A

 

 cosh  sinhβ   cosβ-   sinβ- 
sinh   coshβ    sinβ   cosβ- 
1         0          1-        0    
0         1          0          1-  

β
β

 

 
 
The solution of these 4 equations can be shown to give the following equation; 
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1coshcos =⋅ ββ           (3.10) 

 
This equation is satisfied for the following β values; 
 

0=iβ , 4.73,  7.853,  10.996 ,   ...      (3.11) 

 
01 =β ,         

)12(
2

−≈ ii
πβ ,    i=2, 3, 4...      

 
Using equation (3.6) gives the following results for the natural frequencies: 
 

am
c

am
EI

L
i

i +
+

+
⎟
⎠

⎞
⎜
⎝

⎛=
4

2 β
ω    

Which gives: 
 

)()(

4

am
c

am
EI

L
i

i +
+

+
⎟
⎠
⎞

⎜
⎝
⎛=

β
ω        (3.12) 

 
 

The mode shapes for the lowest mode shapes is shown in Fig 3.3 for the uniform beam 
case. It should be noted that from free vibrations only the shape of the modes is known. 
The actual amplitude of oscillations will depend on the imposed excitation force. 

 
 
 

 
 
Mode 1: 
Rigid Body Motion 
i=1 
 
 
 
 
Mode 2: 
Fundamental Mode 
i=2 
 
 
 
 
Mode 3: 
i=3 

 
Figure 3.3 Mode shapes for uniform beam  
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Example of calculated mode shapes for a   (storhaug and Moan (2006) 
 
For Rigid body motion (heave); 

 

01 ωω =
+

=
am

c
         

 
The first elastic mode is for i=2 which gives: 
 

)(
5.22 42 amL

EI
+

=ω         (3.13) 

 
 The natural period  for this fundamental mode will for a large monohull be typically 1-2 s. 

 
 
 

3.2.3 Forced oscillations 

One basic assumption is that the forced vertical elastic deflection of the beam, ),( txy can 
be written as a linear sum of the normal modes; 
 

)()(),(
1

xtqtxy i

N

i
i ψ∑

=

⋅=         (3.14) 

 
Where )(tqi are the time dependent principal coordinates. The normal modes )(xiψ , have 

the important property of  being orthogonal functions; 
     

0)()(
0

=∫ dxxx
L

ji ψψ      for    ji ≠               

 0)()(
0

≠∫ dxxx
L

ji ψψ    for    ji =        (3.15) 

 
Inserting the assumed solution given by eq. (3.14) into the Beam equation (3.3) gives; 
 

),(
)(

)()()()()()( 4

4

111
txp

dx
xd

tqEIxtqbxtqam i
N

i
i

N

i
i

N

i
ii =+++ ∑∑∑

===

ψ
ψψ &&&   (3.16) 

 
Where the assumptions of a uniform beam have been used.  To establish an equation for 
each mode i separately, the orthogonal properties of the normal modes, see equation 
(3.15) is used by multiplying equation (3.16) with )(xjψ and integrating over the length. 

This gives for mode i; 
 

∫∫∫∫ =⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+

L

ii

L

i
i

i

L

ii

L

i dxxtxptqdxx
dx

xd
EItqdxxbtqdxxam

00
4

4

0

2

0

2 )(),()()(
)(

)()()()()( ψψ
ψ

ψψ &&&

            (3.17) 
 

By introducing generalized mass, added mass, damping, stiffness and load eq. (3.17) can 
be rewritten to the form; 
 



Page 15 of 158 
 

ti
iA

ii
iii

ii

i
i

eef
am

qq
am

b
q ωω −

+
=+

+
+ ,

2 1
&&&       (3.18) 

 
In the above equation it has been used that the excitation force is assumed to be a 
harmonic oscillating function, i.e;. 
 

ti eexptxp ω−= )(ˆ),(  
 
Then generalized mass, stiffness and excitation terms are given by; 
 

∫=
L

i dxxmm
0

2 )(ψ ,             ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

L
i dx

x
x

EIk
0

2

2

2 )(ψ
     ∫=

L

i dxxxpf
0

)()( ψ      etc… 

 
In this way one has reduced the coupled system with infinite number of degree of freedom 
to an uncoupled system which can be solved independently. The solution of each of the 
equations is similar to the differential equations for a system with one degree of freedom, 
see Appendix A for details. 
 
The bending moment and shear force are now obtained as; 
 

)(
)(

)(),(
1

2

2

tq
x

x
xEItxM i

N

i

i∑
= ∂

∂
=

ψ
          

)(
)(

)(),(
1

3

3

tq
x

x
xEItxQ i

N

i

i∑
= ∂

∂
=

ψ
           

 
The “normal modes” solution used for equation (3.3)  is valid only for the case 0)( →xb , 
but it is also assumed to be a good approximation for a lightly damped system. The 
alternative to normal mode solution for forced oscillations is numerical integration. 
 
The main assumption for the use of Beam Theory is that the length is significantly larger 
than the breadth and height. The length in this context is to be understood as the length 
between two nodes. This imply that for higher order mode shapes the use of beam theory 
will be questionable. However for the global elastic response of the ship hull girder the 
main interest will be for the lowest few modes. 
 
Modal analysis require an linear system, i.e a system where there is a linear relation 
between load and structural responses. This is a reasonable assumption for global ship hull 
modeling. 
 
 

3.3 Discussion of Springing response 

An example of measured Bending moment stresses in full scale is shown in Fig. 3.4. Effect 
of springing with large peak at natural frequency of the  first elastic mode is seen in the 
measured response. From the equation for encounter frequency, eq. (3.0) and the 
equation for the natural frequency for the first elastic mode, eq. (3.13) it is clear that it 
will be ships with high speed and/or low natural frequency for the first elastic mode which 
will be most exposed to springing. Springing may therefore give significant contributions to 
global response for; 
 

• Ships with high forward speed (i.e. high encounter frequencies) 
• Ships with low natural frequencies. I.e. relatively flexible hulls compared to the 

mass. 
 

Practical examples of type of ships where spring can  be important ; 
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• High speed vessels 
• Vessels made of aluminum of fibre-reincorced plastics (low EI, ref eq. (3.13)) 
• Great-Lakes bulk carriers (shallow draft and with reduced scantlings give flexible 

ships with large excitation forces) 
 
 

 
 
Figure 3.4 Calculated and measured Bending moment stresses in full scale. Head sea. 

Effect of Springing with large peak at natural frequency first elastic mode. 
 
The physical parameters that govern the springing response can now be summarized as 
follows; 

   
• Hull girder stiffness. Lower stiffness generally gives more springing, since 

resonance will occur for longer waves, which contains more energy and also give 
higher excitation per unit amplitude (higher RAO) due to less cancellation (ship-
wave matching). 

 
• Bow (and stern) geometry. Blunt bows seem to give more springing than slender 

bows. Bow stem slamming and wave reflection can contribute to the springing 
forces. 

 
• Structural damping. Since springing occurs at relatively high frequencies, damping 

caused by wave generation is low. For high speed ships, however, hydrodynamic 
damping due to lift effects from the transom stern becomes important. For other 
ships, structural damping is important. Structural damping is very difficult to 
predict by theoretical methods. One needs to rely on measured data from the ship 
in question or from similar ships.   

 
• Loading condition. More cargo gives higher mass and lower eigenfrequency (natural 

frequency) of the hull girder. A lower eigenfrequency will generally cause more 
springing. However, more cargo also gives a higher draft. Since most hydrodynamic 

Encounnter frequency;  ωe 

ωN 
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pressures decay rapidly with draft, this means that the pressure variation (i.e. 
springing excitation forces) under the forward part of the ship bottom becomes 
lower.  This latter effect is normally stronger than the effect of a reduced 
eigenfrequency and springing is normally worse for ballast condition. A wide ship 
may also have a low draft even in loaded condition. 

 
• Ship speed. A higher speed will give resonance for longer waves, which in turn will 

give more springing. Some studies indicate that the springing vibration amplitude 
increases with the square of the forward speed. 

 
• Wave condition. Since relatively high encounter frequencies are needed to give 

springing, the phenomenon is most pronounced in moderate sea-states, where 
most of the wave energy is contained in relatively short waves. Linear springing 
forces normally come from very short waves, and they are therefore very sensitive 
to the high-frequency tail of the wave spectrum.  

 
• Nonlinear springing forces get a contribution from the interaction between waves 

with different frequencies and different directions. This gives rise to forces that 
oscillate with the sum of the frequencies of the different waves. The total springing 
forces are therefore dependent not only on the frequency-distribution of the wave 
energy, but also on the directional distribution.  

 
 
 

3.4 Nonlinear Springing 

The linear excitation forces for springing are associated with waves of small wave length 
relative to the ship length. Non-linear springing is steady state response generated by 
higher order wave forces. The different possible excitation effects for non-linear springing  
can be summarized as follows; 

 
• nonlinear excitation forces with frequency Nωe, where N=2,3,... .N=2 is the 

most important. 
 
• Waves with frequency ωej and ωek give nonlinear excitation forces with 

frequencies: 2ωej , 2ωek, ωej+ωek , ωej-ωek , ωek-ωej  
 

Is should be noted that Nonlinear springing occurs for much longer (and more energetic) 
waves. Nonlinear excitation forces increase with the square of the wave amplitude (2nd 
order forces). In summary second order forces excite over a broad frequency range and 
also for frequencies much higher than for linear wave force excitation. The effect is 
illustrated in Figure 3.5 which shows RAO for the Vertical midship bending moment in 
regular waves. The peak at Nω  is excitated at encounter frequency Ne ωω 5.0= . 

 
A typical example of nonlinear spring measured in model tests is shown in Figure 3.6. The 
ship is towed in head se waves in regular waves with encounter frequency Ne ωω 5.0≅ . 

From the time history plot of the measured midship vertical  bending moment response at 
two different frequencies are clearly shown. This is also shown on the response spectrum 
plot with two pronounced peaks, one at the encounter frequency of 0.4 Hz and one at the 
natural frequency of the first elastic mode at 0.8 Hz. The filtered signals shows that the 
wave frequency amplitude (i.e. from low pass filtering) is significantly smaller than the 
springing frequency contribution (i.e. from the high pass filtered signal), 125 000 kNm and 
175 000 kNm respectively for this case.  
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Figure 3.5 Bending moment RAO (regular waves) Effect of Nonlinear Springing. 
 
 
This test results clearly illustrate that nonlinear forces can give a very significant 
contribution to the total global responses when the first flexible mode is excited.  
 
The additional loading mechanisms which generate nonlinear springing (i.e additional force 
contributions relative to linear wave forces) can now be summarized as follow; 

   
• Quadratic terms in the pressure (Bernoulli’s equation). In linear theory these 

terms are neglected 
 

• Pressure acts on the instantaneous position of the hull on the instantaneous 
wetted area. In linear theory the pressure is evaluated and integrated over the 
mean position of the hull below z=0. 

 
• In the hydrodynamic boundary value problem, the body boundary condition 

should be satisfied on the instantaneous position of the hull on the 
instantaneous wetted area. In linear theory the body boundary condition is 
satisfied on the mean position of the hull below z=0. 

 
• The free surface condition(s) should be satisfied on the instantaneous position 

of the free surface. In linear theory, the free surface condition is satisfied on 
z=0. 

 
• Wave components with different directions will generate sum-frequency 

pressure oscillations (2nd order cross coupling terms). I.e. should not only 
consider long-crested waves in springing analyses. 

 
• “Regular” slamming loads at the bow  

 
• Nonlinear wave reflection at the bow (nonlinear 3D effect) 

 
 
The two last points illustrates that there is not always a clear dividing line between 
whipping and nonlinear springing. 
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Figure 3.6 Bending moment RAO (regular waves) Effect of Nonlinear Springing. Total 

time series, Power spectrum of total time series, Low pass filtered and High 
pass filtered response. 
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Calculation methods for Non-Linear springing can be categorized as follows; 
 

• Frequency-domain methods (2D or 3D)  
o Captures some of the nonlinear phenomena 

• Time-domain methods (2D or 3D) 
o Captures more of the nonlinear phenomena 
o But no complete theory has yet been developed! 

 
Numerical methods will be further discussed in Chap 6.  
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4 IMPACT LOADS AND TRANSIENT HULL VIBRATIONS - WHIPPING 

4.1 General description of Whipping 

Whipping is transient hull girder vibrations due to wave-loads that increase rapidly. This 
will normally be impact loads like those arising from bottom slamming or bow flare    
slamming as illustrated in Fig. 4.1. The 2-node and 3-node vertical vibration modes will 
normally be the most important. For catamarans, and for monohuls with large deck 
openings, torsion/twisting vibrations may also be important.  
 

 
 
Figure 4.1 Illustration of impact loads situation generating whipping response. 
 
 
Normally, whipping is associated with violent slamming loads in severe wave conditions. 
The highest hull girder responses are often associated with whipping events. Hence, 
whipping may contribute significantly to the design loads and are therefore important to 
assess. Another aspect of whipping response is that severe slamming/whipping will make 
the shipmaster slow down the speed. 
 
An example of observed whipping response measured in model tests for a monohull in 
head sea regular waves is shown in Fig. 4.2. The Pitch motion, relative wave motion and 
vertical bending moment amidships is shown as function of time. Also impact forces 
measured at two force panels in the bow area is included. The high peaks in the vertical 
bending moment following the impact loads illustrate the whipping response behaviour. 
 
In Fig. 4.2B measured vertical bending moment midship for a ridged and a elastic hull is 
shown, see Drummen et al. (2008). The results are from model tests with a container ship 
in head sea waves. Tests were carried out both with a ridged hull and an elastic modeled 
hull. Both were tested in the same wave condition. The trigging of the elastic hull girder 
vibration after hit by a large wave is clearly seen.  

Bottom Slamming 

Bow Flare Slamming 



Page 22 of 158 
 

 

 
Figure 4.2 Example of measured whipping response in mode with a monohull in regular 

head sea waves.  
 

  
 
Figure 4.2B Vertical bending moment midship. Left; Ridged hull. Right Elastic hull. 

Measured results from model tests. Calculated results also shown for both 
cases. (From Drummen at. al. (2008))  

 
 
In the past few years there has been some focus on whipping vibrations due to slamming 
loads on the aft part of the ship. This will typically occur for ships where the aftmost part 
the hull bottom is nearly flat and has a very low draft.  Comfort problems on passenger 
vessels have been reported. The problem is pronounced only at zero or moderate speeds. 
 
The response to slamming loads must be evaluated at two different levels, the local 
response and the global response. Local response is associated with the response of the 
plated structure around the position of the impact. Global response is associated with the 
vibration of the entire ship hull girder (or the entire platform in case of offshore 
structures). For the local response the local distribution in time and  space will be 
important. For this case the elastic dynamic response of the local plate structure may 
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interact with and influence on the slamming load. This case is discussed in Chap 7, 
Hydroelastic slamming.  
 
The global response caused by slamming is governed by how the impact loads can excite 
the global elastic modes of the hull girder. As the natural periods of the hull girder 
vibrations is much larger than the duration of the impact, information about the local 
pressure peaks and durations is not important for this case. For this case the response will 
be govern by the total force pulse. The local structure can therefore be regarded as rigid 
for slamming force calculations as input to global response calculations i.e for whipping.  
 
Slamming forces are discussed in the following.  

 

 
4.2 Water entry and Slamming Loads  

4.2.1 Description of slamming 

Slamming loads are defined as local impact forces that can introduce local structural 
deformation and stresses as well as global response in the hull girder. Slamming loads is a 
large problem for design of ships and offshore structures. For ship design typical slamming 
problems will be; 
 

• Bottom slamming in head sea waves, ballast condition 
• Bow flare and stern slamming 
• For Catamaran, wet deck slamming. 
 

For offshore structures additional slamming force situation will be ; 
• Impact from breaking waves towards vertical columns 
• Salmming underneeth horizontal deck structures 
• Impact forces on deck modules and equipment in case of green water above deck 

level 
 
In Figure 4.3 an example of local damage due to bow flare slamming on a turret moored 
FPSO is shown. 
 
Slamming loads are associated with a rapid increase of the added mass caused by the 
presence of the structure and its motion relative to the water. Near the edge of the 
expanding wet area, there will be high slamming pressures. Slamming loads may therefore 
be considered as a pressure-pulse that travels across the hull surface with a high velocity. 
This is illustrated in Fig. 4.4 for the case of water entry of a symmetric wedge. 
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Fig 4.3 Photo showing wave impact damage to bow of Schiehallion FPSO on UK 

sector and model testing of bow slamming incident for the same case 
 
 

 
Figure 4.4 Free surface elevation and pressure distribution on the body surface during 

water entry. 
 

Jet moving across the 
surface with speed c  
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An example of measured slamming pressure for  a slam event is shown in Fig. 4.5A. The 
measured pressures are on a vertical wall hit by a very steep wave. The upper pressure 
cell is hit by the wave front and a very high local pressure is observed.  At the position of 
the lower pressure cell an air pocket is formed and the peak pressure is lower but with a 
longer and more damped duration. This is due to the compressibility of the air pocket. 
  

 
Fig 4.5A Example of slamming force from a steep wave hitting a vertical wall.  
 
 
The average slamming pressure over a certain area will be strongly dependent on the size 
of the area. This is  shown in Figure 4.5B.  For local plating design a typical area of 
interest will be of the order of 5 m2.  For global whipping response the slamming force 
over a relatively large area is the main interest, typically the bow area.  
 

 
Fig 4.5B Typical relation between slamming pressure and area.  
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4.2.2 Slamming pressure and slamming forces 

The slamming loads are governed by the relative velocity at the instant of impact  and the 
angle between the structure and the free surface. Slamming pressures are high when the 
relative velocity VR is large and the relative impact angle αrel is small.  Impact pressure can 
than be written as;  
 

22/1 RP VCp ρ=          (4.1) 

 
Where CP is the impact pressure coefficient, which can be assumed to be a function of the 
angle between the structure and the free surface. Examples of calculated CP values are 
shown in Fig 4.6 for pressure distribution during water entry of a wedge with different 
deadrise angles. 
 
The local peak observed for low deadrise angles are very local in space (and time) and 
therefore not important for the integrated force over a practical plate area. One is more 
interested in the force acting on the body during an impact.  
 

 
Fig 4.6 Pressure distribution during water entry of a wedge as function of deadrise 

angle. 
 
 
For slamming calculations two different approaches is frequently used. The two different 
approaches are commonly referred to as; 
 

• Von Karman Model; neglecting the effect of Pile-up 
• Wagner Model; where effect of Pile-up is included 

 
The most simple one is to measure the wetted length of the body from the calm water (or 
undisturbed) level. This imply neglecting the Pile up of water during the penetration of the 
body into the fluid. This is illustrated in Fig. 4.7. This solution is commonly referred to as 
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von Karman solution, see Faltinsen (1990) for details. Neglecting the Pile-Up will 
underestimate the actual wetted surface during the impact phase.  
 
In the Wagner model the increase in wetted length due to the Pile-Up effect is included in 
the force calculations. This model require that the solution for the free surface elevation 
during the water entry phase is known.  
 
 

 
 
Fig 4.7 Illustration of  Wagner approach and Von Karman approach for slamming 

pressure calculation. 
 
 
As mentioned  a slamming event is associated with very high pressure peaks with a very 
local extent in time and space. For global responses the main interest is not this local 
pressure peak but rather the integrated force on the body when hitting the water surface 
and proceeds through the water.  
 
From Momentum considerations a formula for the slamming force acting on a body 
penetrating the free surface with a vertical velocity equal to  V can be written as (Faltinsen 
(1990)); 
 

( ) DSLAM gVVA
dt
dF ρ+= 33        (4.2) 

Where DV  is the submerged volume, and 33A  is the high frequency added mass in heave, 

i.e )(33 ∞→ωA as function of submergence relative to calm water.  Neglecting the 

hydrostatic term DgVρ  the slamming force can be expressed as: 

 

33
233

33
33 AaV

dz
dA

A
dt
dVV

dt
dz

dz
dA

F zSLAM +=+=     (4.3) 

 
where  the first term is the slamming force and the last term is the acceleration times the 
added mass which is equal to zero for constant impact speed. This shows that the 
slamming force can be determined from the relative impact velocity and the space 
derivative of Added mass.  
 
The above slamming force formula based on Momentum considerations applies both for 2-
Dimensional and 3-Dimensional flow.  
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For the 2-Dimensional case the instantaneous value of added mass as function of 
submergence can be estimated from the flat plate solution for the case )(33 ∞→ωA ; 

von Karman Solution; 
2

)2(
33 22

1
⎟
⎠
⎞

⎜
⎝
⎛=

BA Karman
D ρπ     (4.4) 

Wagner Solution;  

2
)2(

33 22
1

⎟
⎠
⎞

⎜
⎝
⎛= W

Wagner
D B

A ρπ   

 
The interpretation of instantaneous breadth is shown in Fig. 4.8. Using the von Karman 
approach the breath  B is simply the actual breath at the actual free surface.  For the 
Wagner approach the breath WB  also include the effect of Piled-up water, i.e the effecient 

wetted surface is used in the added mass calculation. 

 
Fig 4.8 Sketch of equivalent Flat plate breath as used in added mass calculation. 

von Karman and Wagner Solutions. 
 
It can be shown that for a wedge case as shown in Fig. 4.8 the difference in B due to pile 
up  can be written as; 

2
π

=
B

BW
         (4.5) 

 

which gives; 
 

47.2
2)2(

)2( 2

33

33 ≈⎟
⎠
⎞

⎜
⎝
⎛=

π

Karman

Wagner

DA
DA

      (4.6) 

 
This ratio will also apply for the difference in slamming forces calculated using the two 
different approaches. This results applies for a wedge solution.  
 
 
For the case of a 2-Dimensional circular cylinder the following results are obtained for the 
vertical impact force coefficient for the initial time of impact between a horizontal cylinder 
and a still water, see Faltinsen (1990).; 
 

von Karman Solution; π
ρ

==
DV

FC
R

S 22/1
 

Wagner Solution;  π
ρ

2
2/1 2 ==

DV
FC

R
S  
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Where CS is the slamming force coefficient derived from the slamming force as shown 
above. This shows that for the  circular cylinder case the slamming force ratio between 
Wagner and von Karman solution will be 2.0. 
 
The above values represent the initial impact. In Fig 4.9 results for measured and 
calculated slamming force coefficient for the entire water entry phase for a 2-Densional 
circular cylinder with radius R. The calculated  CS is based on the momentum formula, eq. 
(4.3) using the von Karman approach. The shown 33A  as function of submergence is based 

on numerically calculated added mass using a sink-source method. The shown CS value is 
than calculated from; 
 

22
2

33 2
2

RVCV
dz

dA
F S

D

SLAM
ρ

==     

 

 
 
Fig 4.9 Water entry for Circular cylinder. Constant vertical velocity, V. Slamming 

Force coefficient CS.  
 
The experimental results by Campbell & Weynberg (1980) is also shown in the figure. The 
agreement between calculated and measured slamming force is reasonable good for 
h/R<1., although the measured initial slamming force is closer to the Wagner solution 
value of π2 . For h/R>1 the jet will leave the cylinder surface and the upper part of the 
cylinder will remain dry even for h h/R>2. This is illustrated in the photos in Fig. 4.10 from 
water entry of circular cylinder. The theoretical assumptions used for wetted surface and 
hence as basis for the slamming force formula are therefore no longer valid when h/R>1. 
 
Due to the simplicity (no need for calculation of the free surface elevation during the water 
entry) the von Karman Approach is usually used for slamming load calculations as input to 
Whipping analysis. From the above results it can be concluded that this approach 
underestimates the actual slamming forces. 
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Fig 4.10 Flow visualization of water entry of a circular cylinder. (from Greenhow & Lin 

(1983)  
 
 
 

4.2.3 Numerical calculation of Slamming pressure and slamming forces 

The momentum method for slamming load calculation as discussed above is a 
simplification and does not account for the pile-up of water. Moreover it can not be applied 
directly to a flat ship bottom or to bulbous bow section. 
  
A numerical method for slamming force on a general 2-Dimensional section have been 
developed by Zhao et al. (1996). The solution is based on using a numerical Boundary 
Element Method. The method is implemented in the computer program “Slam2D”. The key 
feature of the method can be summarized as follows; 
 

• Generalization of Wagner’s (1932) method to larger deadrise angles and arbitrary 
section geometry. 

• Includes pile-up of water close to the section 
• 2D boundary value problem with kinematic boundary condition applied on the exact 

body surface.  
• Gravity neglected 
• Solved by a using a boundary element method (BEM) for each time-step. 
• Includes separation from points where geometry changes abruptly (simplified 

formulation), see Fig 4.10 
• Calculates pressure distribution – not only total sectional force 

 
One of the problem with slamming force calculation for arbitrary shaped sections how to 
handle abruptly geometry changes. This is illustrated in Fig. 4.11 for a typical bow section. 
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In this  numerical method this problem is overcome by introducing an artificially body 
shape following the separated flow as shown with blue line in Fig. 4.10. In this way a very 
robust code able to handle any 2-Dimensional shape is achieved.  
 
 

 
 
Fig 4.11 “Slam2D”;  Example of automatic modification of Geometry. 
 
 
Comparison of different methods for calculations of vertical slamming forces on a 
symmetric wedge during impact is shown in Fig. 4.12.  The slamming force is shown as 

function of deadrise angle α. On the vertical axis the term ( )2
3 tanα

ρ tV
FSLAM  is shown. Results 

from the following solution methods are shown; 
 

• Wagner solution. Gives ( ) 8.7tan 2
3 ≈α

ρ tV
FSLAM  

• “Slam2d” 
 
• Similarity solution 

• Von Karman solution. Gives ( ) 2.3tan 2
3 ≈α

ρ tV
FSLAM  

• Von Karman, Momentum approach 
 
It is seen that “Slam2d” gives almost identical results to the similarity solution. As for the 
earlier comparison the von Karman based method underestimates the slamming forces. 
The Wagner solution is seen to over predict the slamming forces for increasing deadrise 
angles. 
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Fig 4.12 Calculated vertical slamming forces an on symmetric wedges during water 

entry. Slam2D”;  Example of automatic modification of Geometry. 
 
“Slam2d” is as mentioned a 2-Dimensional method. It can be shown that for bow flare 
slamming loads the 2-D method will overpredict the slamming forces due to pronounced 
3-Deffects in the bow area. Hermundstad  and Moan (2005) introduced a correction 
method for 3-Dimensional effects and showed that this approach compared well with 
measured data. 
 
“Slam2d” can be regarded as a “state of the art” method for 2-Dimensional slamming 
force calculations. For 3-Dimensional flow situations slamming load methods have been 
developed based on different theoretical and numerical approaches; 
 

 3D BEM methods 
 3D Volume discretization methods (Solving Navier-Stokes equations) 

 
3-D Boundary element methods is used for bow flare slamming and for green water 
evaluation at the bow of ships and ship-shaped FPSO’s. Such methods are also used for 
fixed gravity based structure and for horizontal impact force calculations towards vertical 
cylinders. 
 
Navier-Stokes solver is methods becoming increasingly improved, but up to now they are 
not frequently used for design purposes. These methods require further development and 
validation before they are ready for commercial use for design purpose. 
 
 

4.2.4 Experimental Validation of Slamming Force calculation; “Slam2D” 

The case considered for validation of numerical calculations using the Slam2D code can be 
summarized as follow, see also Fig 4.13; 
 

• 290 m Cruse vessel 
• Head seas 
• Two sea-states: Hs=7m and Hs=9m 
• Three speeds: 0, 6 and 9 knots (i.e moderate speeds) 
• 4 slamming panels in bow flare 

 

”Slam2D” 

Wagner Solution 

von Karman Solution  

von Karman Momentum  

Similarity Solution 
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Fig 4.13 Model test verification of slamming force prediction from Slam2D. Pressure 

cells at flared part of bow. 
 
 
Comparison of calculated and measured time series for heave and Pitch motions are shown 
in Fig 4.14. The results is for Head sea waves, for forward speed of 9 knots. A quite good 
agreement for both heave and pitch motion amplitudes is observed.  For pitch motions a 
small phase lag is found. 
 
In Fig. 4.15 time series of measured and calculated slamming forces on 4 different 
slamming panels in the flared part of bow are shown. The position of the slamming force 
panels is shown in Fig 4.13. The results illustrate the uncertainties in slamming force 
measurements. Small differences in relative motions between bow and incoming wave can 
give large differences in measured slamming loads. This is both due to slamming force 

being proportional to 
2

RELU  and also due the dependency of impact angle between hull 
panel and the wave surface. The comparison in Fig 4.14 shows that for each of the  
individual slamming peaks the difference are in general quite large, but the load level are 
quite similar for measured and calculated slamming loads. The comparison should 
therefore be evaluated as a good agreement between measurements and calculations of 
slamming loads.  
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Fig 4.14 Model test verification of Slam2D. Measured and calculated heave and Pitch 

motions. U=9 knots, Hs=9.0 m 
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Fig 4.15 Model test verification of Slam2D. Measured and calculated Slamming force 

at Slam panels 1-4. U=9 knots, Hs=9.0 m 
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4.3 Dynamic effects on slamming loads  

4.3.1 Effect of dynamic response – Given Impact load 

The slamming force depends on the relative velocity squared between the water and the 

panel, i.e. 
2

RELU∝ . Taking the elasticity of the panel into account the vibrations of the 
panel will generally affect the relative velocity and hence the magnitude of the slamming 
force. The dynamic response of the structure is also important for the resulting stresses 
and hence for design. The magnitude of this amplification depends on the rise time and 
decay time of the force pulse and the natural period of the affected structure including any 
added mass of water moving with the plate panel. 
 
Impact loads are transient problems and hence the traditional way of analysis of harmonic 
response can therefore not be used. To investigate the dynamic amplification of response 
due to a slamming loads a simple 1 degree of freedom dynamic system is considered; 
 

( ) )(tFcxxbxam =+++ &&&        (4.7) 
 

where m, a, b and c are the mass, added mass, damping and stiffness respectively. F(t) is 
the impact load. The natural frequency of this system is: 
 

am
c

N +
=ω           (4.8) 

 
For a harmonic excitation the steady state solution is well established and a function of 
excitation frequency only. For an general time dependent  impact force the equation must 
be solved with numerical time integration, see Appendix A for a general discussion of 
response of a 1 dof system.  In the following some special cases are considered. 
 
The ratio between the dynamic response and the static response to the maximum force 
can be expressed as a Dynamic Amplification Factor (DAF); 
 

cF
xDAF MAX

0

=          (4.9) 

 
The Dynamic Amplification Factor (DAF) will typically depend on the following parameters; 
 

• Rise time of the impact. Defined as the time from the impact starts to maximum 
value is reached. 

• Decay time 
• Natural frequency of the system excited. 
 

A typical impact can be assumed characterized by a linear rise and an exponential decay 
as shown in Figure 4.16. The parameters Rise Time (Tr) and half decay time (T½d) is 
defined in the figure. 
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Fig 4.16 Definition of rise time (Tr) and half decay time (T½d) for a slam. 
 
 
Results for the Dynamic Amplification Factor (DAF) for different ratios between Rise 
Time/Natural period  and Decay Half Time/Rise time is shown in Fig. 4.17. Some important 
results can be drawn from the figure; 
 

• Maximum dynamic amplification is 2.0. This occur for a vary low rise time (i.e much 
less than the natural period) and with a slow decay after maximum load. 
Theoretically DAF=2.0 requires a rectangular pulse with duration longer than 0.5 
time the natural period. 

 
• For Rise time greater than the natural period,  DAF=0.95-1.2 i.e very close to 1. 

For this case the DAF is not sensitive to the decay time. 
 
• For a triangular impact pulse the maximum DAF will be DAF=1.77 
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Fig 4.17 Dynamic Amplification Factor for a linear force rise and exponential decay.  
 
As an example consider a large local slam with the rise time Tr=0.01 s and half decay time 
T½d=0.01s. For a plate panel with natural period TN=0.1 the DAF will be approximately 
DAF=0.96, see Fig. 4.17. The time history of the impact force and response is illustrated in 
Fig 4.18. This shows that the dynamic amplification of the local panel can be less than 1. 
 
 

 
Fig 4.18 Example of slamming case with DAF<1.0  
 
 
Another example is shown in Fig 4.19 for a stiffened panel with an immersed natural 
frequency of 20 Hz. Assuming a rise time Tr=0.01 s and half decay time T½d=0.03s. The 
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Rise time divided by natural period is 0.2 and the ratio decay half time/Rise time is 3. This 
gives DAF=1.66 as shown in Figure 4.18. 
 

 
Fig 4.19 Example of slamming case with DAF>1.0  
 
The above results can be used for evaluation of dynamic amplifications of stress level for 
local plated structure.  
 
For the global whipping response this simplified 1 dof model may also be used for a 
approximately evaluation of dynamic amplification of a slam event. The relevant natural 
frequency for this case will be the lowest wet mode frequency. The slamming impact 
parameters for this case have to be based on the total slamming load (integrated over the 
entire bow flare area in case of bow flare slamming or bottom area in case of bottom 
slamming). 
 
 

4.3.2 Measurements of slamming Loads 

The transducer system used for measurements of slamming loads will show a similar 
dynamic behavior as discussed above for stiffened plates. This imply that the measured 
slamming force is not exactly the slamming pressure integrated over the transducer area 
but includes the dynamic response of the transducer system governed by the dynamic 
model as given in eq. (4.7). Two typical examples of measured “slamming force” is shown 
in Fig. 4.20. The first is for an impact with a long duration compared to the transducer 
natural frequency where no vibrations were generated. For this case the actual slamming 
loads can be detected with good accuracy. The second is from a slam where the impact 
has generated large resonance vibrations in the transducer. For this case it is difficult to 
estimate the actual slamming force.  
 
The effective oscillating mass of the transducer can be estimated from the oscillating 
structural mass of the transducer plus the actual added mass of the immersed transducer 
plate. The stiffness is determined from the natural frequency using the estimated total 
mass. By using numerical simulations similar to described above the actual slamming force 
can be determined. The measured response signal is used as input and the parameters as 
Rise time and duration of slam is tuned to fit the simulated response to the measured 
signal. An example of this process is shown in Fig. 4.21.  As can be seen a very good 
agreement between measured and simulated response have been achieved. In this way a 
reliable estimate of the actual slamming force time history have been obtained. 
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Fig 4.20 Example of measured slamming forces in Model tests.  

Left; a long slam, i.e with duration well above Natural period. 
Right; short impact with dominating transducer resonance vibrations. 

 

 
Fig 4.21 Example of measured slamming force and simulated response. End result is 

the Input slamming force. 
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4.4  Whipping Response Calculation 

The prediction of slamming force as input to whipping response calculation can now be 
summarized as follows; 
 

1. Use linear ship motion program to predict ship motions with forwards speed. 
2. Calculate relative vertical motion and velocity for each section 
3. Establish the slamming load for each section either by use of Momentum formula, 

eq. (4.3) or from numerical calculation, i.e. “Slam2d” 
4. Correct for 3-Dimensional effect if relevant 

 
For whipping response calculations it is normal to assume that the local structure responds 
statically I.e. structure can be assumed rigid when the slamming loads are calculated.  
 
The  Global structure (hull girder) responds dynamically to the slamming load. This elastic 
hull vibrations due to a slamming loads  can be described by the beam equation, i.e. using 
the same equations as for the springing response, see eq. (3.18). The solution was written 
as a sum of normal modes; 
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For the whipping case the hydrodynamic load is not a harmonic function, but a general 
time dependent function. This is accounted for by rewriting the beam equation on 
generalized form, eq. (3.18) to  the form; 
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dependent slamming force.  
 
Due to the general time dependency of the slamming force, the solution of this equation 
will  be given as a convolution integral (see Appendix A for details): 
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As the typical duration of a slam event is much shorter than the natural period of the first 
elastic mode of vibration of the hull girder it will not be the slamming force amplitude itself 
which is of importance, but the force pulse. Assuming a slam event at τ=t   with duration 
equal to tΔ  gives:  
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)( ττ  is the impulse of the generalized slamming force.  
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The slamming force pulse can be calculated as;  
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Where eq. (4.2) have been used for the slamming force (hydrostatic contributions 
neglected).  Equation (4.13) shows that the slamming force pulse is given from the actual 
value of vertical added mass times the impact speed. 
 
Numerical methods for whipping response calculations are discussed in more details in 
Chap 5. 
 
 

4.5 Discussion of Whipping Response  

4.5.1 Parameters governing the whipping response  

Since whipping is due to slamming loads, parameters influencing the slamming loads are 
important. Main parameters for slamming loads can be summarized as follows; 
 

• Bow (and stern) geometry. Wider shapes with pronounced flare give higher 
slamming loads. Wide and flat hull bottoms may also give large slamming forces 

• Draft. Low draft at bow (or stern) gives more frequent and normally more 
severe slamming. 

• Ship speed. Higher speed gives more frequent and normally more severe 
slamming. 

• Ship motions. Large heave and pitch motions will cause more slamming. 
• Wave condition. Waves that give large heave and pitch motions will give more 

slamming. Steep waves generally give more severe bow slamming loads. 
 
Many of the same parameters important for springing, see chap 3.3, will also be important 
for the whipping response. The dynamic hull girder response due to the slamming loads 
depends on the dynamic properties of the hull. For a given slam impact the dynamic 
response will be determined by the hull girder stiffness and mass distribution. Damping is 
normally of less importance for the extreme whipping responses, since the peak response 
occurs during the first vibration cycle. For fatigue calculation the damping is of importance 
as the damping strongly influence the following amplitude levels after the impact.  
 
 

4.5.2 Contribution from elastic response to fatigue damage 

A systematic assessment of the contribution due to wave induced vibration stresses have 
been carried out by Drummen et. al. (2006).  The study was  based on extensive model 
test results and full scale tests for a container vessel. The model test program was carried 
out using an elastic modeled hull (segmented) and covered a wide range of sea states and 
forward speed conditions. For each sea state the wave frequency and high frequency 
responses were identified and analyzed with respect to accumulated fatigue damage. The 
wave frequency response will be equal to the results obtained by a ridged body approach. 
The high frequency response is the additional response caused by vibration of the elastic 
hull girder. This imply that the high frequency response can be interpreted as the 
contribution from whipping and springing response. From test results, full scale and model 
tests, it is very difficult to split contribution from whipping and springing as both gives 
responses at the natural frequencies of the elastic hull beam. Possible contribution from 
both springing and whipping are therefore included in this evaluation.  
 
In Fig. 4.22 typical result from model tests for wave frequency and high frequency 
stresses measured at midship are shown. The actual sea condition is with spectral peak 
period, TP=19.4 s, and  significant wave height, Hs=5.0m. Ship speed is 20 kn, head sea. 
From the plot of the detailed whipping event it is seen that the whipping event gives a 
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significant contribution not only to the sagging moment but also to the hogging bending 
moment which is of concern for container vessels. 
 

 
Fig 4.22 Example of measured midship bending moment stresses. Sea state with 

Hs=5.0 m,  TP=10.4 s. U=20 kn. Top view; details of a whipping event. 
Lower left; High frequency contribution. Lower Right; wave frequency 
contribution. (From Drummen et al (2006)) 

 
In Fig. 4.23 the main results from model tests for contribution to fatigue damage from 
wave frequency and high frequency bending moment responses are summarized. The 
results are  given as function of the TP and Hs. The results shows that in general the wave 
frequency contribution to damage is larger than the high frequency damage. Increasing Hs  
is seen to increase the relative importance of the high frequency contribution. 
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Fig 4.23 Contribution to fatigue damage from wave frequency (full line) and high 

frequency responses (dotted line). Results given as function of Spectral peak 
period, TP and significant wave height, Hs. (From Drummen et al (2006)) 

 
The above results represent accumulated damage based on ½ hour duration of sea state. 
To establish the total accumulated damage, these results have to be combined with a 
wave scatter diagram covering the actual voyage of the ship. Resulting contour plots of 
lifetime contribution to fatigue damage is shown in Fig. 4.24 based on scatter diagram for 
North Atlantic. It is observed that the main contributions to fatigue damage occurs for sea 
states with TP around 14 s and Hs around 5 m for both wave frequency and high frequency 
contributions.  
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Fig 4.24 Contour plots of lifetime contribution to fatigue damage based on scatter 

diagram for North Atlantic. (From Drummen et al (2006)) 
 
By summing up over all sea states the following result were achieved for contribution to 
total fatigue damage during 20 years of operation in North Atlantic; 
 

• Wave frequency damage; 63 % 
• High frequency damage; 37 % 

 
Similar analysis were also carried out based on extensive full scale tests of a container 
ship operating in the northern part of the Pacific Ocean. The relative magnitude of the high 
frequency and wave frequency contribution to fatigue damage is shown in Fig. 4.25. The 
conclusion is in close agreement with the findings from the model test results outlined 
above. 
 
It should be noted that the common practice for ship design is still only to consider the 
contribution from wave frequency damage. 
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Fig 4.25 The relative magnitude of the high frequency and wave frequency 

contribution to fatigue damage based on analysis of full scale results for 
Container ship. (From Drummen et al (2006)) 

 
 
 

4.5.3 Contribution from elastic response to maximum values  

The effect of the hull flexibility on the maximum bending moment for a container ship has 
been considered by Drummen et. al (2008). Both model tests results and numerical 
analysis results using a nonlinear hydroelastic strip theory were presented. Both in model 
tests and for numerical calculations the effect of hydroelasticity was evaluated by 
comparing results for the rigid hull and for the flexible modeled hull.  
  
In Fig. 4.26 the measured and calculated midship vertical bending moment are shown for 
head sea waves in a sea state with Hs=8.0 m and Tp=12.57 s. Ship speed was U=15 kn. 
The results are presented in the form of exceedance plots, giving the short term 
cumulative probability distribution for the different responses. The probability distribution 
are presented for both assuming Flexible hull and Rigid hull from the different sources; 
 

• From linear calculations  
• From Experimentally measured hog amplitudes 
• From Experimentally measured sag amplitudes 
• From calculated nonlinear hog amplitudes 
• From calculated nonlinear sag amplitudes 

 
The experiments shows that the for Hs=8.0 m the sagging bending moment and the 
hogging bending moment are almost equal.  For the rigid hull case the agreement between 
model test and calculations are very good and it is observed that the nonlinear effects are 
moderate. The effect of flexibility is seen to significantly increase the maximum bending 
moment. 
 
In Fig 4.27 similar results is shown for a sea state with Hs=12.0 m, Tp=12.57 s and a ship 
speed of U=8 kn. For this case the effect of nonlinearity is more pronounced than for 
Hs=8.0 m. The effect of flexibility is slightly less than for Hs=8.0 m. The reason was 
explained with the lower forward speed for this case (8 kn v.s. 15 kn) which result in less 
severe slamming events.   
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Fig 4.26 Probability distribution of the vertical midship bending moment. Head sea 

waves Hs=8.0 m, Tp=12.57 s, U=15 kn.  Left; Flexible Hull case. Right; 
Rigid hull case. (From Drummen et al (2008)) 

 
 
 

 
 
Fig 4.27 Probability distribution of the vertical midship bending moment. Head sea 

waves Hs=12.0 m, Tp=12.57 s, U=8 kn.  Left; Flexible Hull case. Right; 
Rigid hull case. (From Drummen et al (2008)) 

 
 
In summary it has been found that the hull flexibility can increase the maximum vertical 
bending moment up to 35  % in irregular sea states relevant for ship design loads. The 
largest effect is for the sagging moment, but also the hogging moment is significantly 
increased due to the effect of flexibility. 
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5 RINGING REPONSE OF OFFSHORE PLATTFORMS  

5.1 General 

High frequency response has been observed in model tests and full scale tests with 
offshore structures as Gravity Base Structures (GBS) and Tension Leg Platforms (TLP), see 
Fig. 5.1,  These concepts are characterised with some relatively high elastic natural 
frequencies, which are outside the range of normal (i.e. linear) wave loading. For a TLP, 
the axial stiffness of the tethers gives natural periods in the range TN=2-4s  for heave and 
roll/pitch. For GBS designs the first elastic mode of the tower will be the most critical 
mode and a typical period will be in the same range. A general discussion of the Ringing 
behaviour is given by Jefferys and Rainey (1994). 
 
It is necessary to distinguish between the terms “springing” and “ringing”. As discussed in 
chap 3, springing is a steady state response at the natural frequency of an elastic mode 
(for ships; vertical bending mode, for TLP; heave/Pitch response) generated by linear 
wave loading (linear springing) or by second order wave effects (i.e non-linear springing). 
These responses are commonly observed both in mild sea states (linear springing) and 
severe sea states (mainly non-linear springing). 
  
Ringing is the transient high frequency response at the natural frequency of an elastic 
mode (same mode as for springing) typically occurring in extreme wave conditions with 
large and steep individual waves. The ringing excitation occurs in sea states with wave 
periods well above the elastic natural periods. The transient ringing response decay is 
govern by the actual damping. In Fig. 5.2 the difference between a typical springing 
response and ringing response is illustrated. Also details of a typical ringing response for a 
TLP are shown. 
 

  
 
Figure  5.1 Sketch of structure possibly exposed to Ringing;  
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Left;  Gravity Base Structure (GBS), Right; Tension Leg Platform (TLP).  
 
 

 
 

  
Figure  5.2 Top view; ;Sketch of a typical springing response (steady state) and ringing 

response (transient. Bottom view; Measured ringing response in model test 
with a TLP, wave signal and high-pass filtered tether tension 

 
 
 

5.2 Excitation of Ringing  

Ringing behaviour is observed in large, steep individual waves. Possible excitation sources 
for ringing response can be; 
 

• Higher order diffraction dominated horizontal wave excitation (above second order) 
• Horizontal slamming forces on the vertical column (?) 
• Viscous forces (?) 

 
For a TLP, horizontal wave forces acting on the vertical columns will trigger a Pitch motions 
through the Surge-Pitch coupling terms. Direct vertical higher order wave loading on the 
pontoons or at the column bottom is also a possible excitation source, but most work on 
ringing response is concentrated on the contribution from horizontal wave forces on the 
columns. For a GBS structures horizontal wave loading can trigger any of the elastic tower 
modes directly. 
 
The interesting natural periods for a TLP and GBS are typically in the range one fifth to  
one third of the peak period of the wave spectrum initiating ringing response. This means 
that 2nd order diffraction theory may largely underestimate the actual random wave loads 
as third and fourth order harmonic load terms are needed in the analysis. No consistent 
theory to 3rd order exist and different simplifications and approximations have therefore 
been used in attempting to describe the excitation of ringing response. Several studies 
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have indicated that the non-linear high frequency force contributions are dominated by 3rd 
order wave effects partly generated by 2nd order free surface wave effects.  
 
In Fig 5.3 an example of measured time series of horizontal forces on a vertical cylinder, 
intended to represent a typical TLP column  is shown, see Stansberg et.al (1995) for 
details. The actual sea state was Hs=0.28 m and Tp=2.4 s. (in model scale, full scale 
values Hs=15.4 m, Tp=17 s).  In the figure the wave elevation, measured horizontal force, 
both total and high-pass filtered, are shown. The situation shown represents the passage 
of an extreme and steep sharp-crested random wave. The high-pass filtered horizontal 
force signal has a oscillation period of about 1/5 of the peak period. This does not 
necessarily represent a 5th order force since the wave spectrum also includes significant 
energy at periods lower than Tp, but it clearly shows that excitation force of 3rd order and 
higher will be important and can introduce excitation at frequency range of the elastic 
modes.    
 
From measurements of typical ringing responses it is observed that the ringing response 
takes 2-3 cycles to build up which indicate that this is not a response initiated by 
slamming forces.  
 

 
Figure  5.3 Time series examples from irregular wave test for wave forces on vertical 

column.. Top view; wave elevation, Midle view; Total horizontal force, 
Bottom view; High pass filtered horizontal force (From Stansberg et.al 
(1995)) 

 
 
Morison drag forces may in principle also generate high frequency excitation and hence 
ringing like behavior. However the K-C number involved in a situation where ringing may 
occur is low and will give low drag coefficients. Calculations have shown that the drag 
effects are small compared to the excitation  from higher order diffraction theory / slender 
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body inertia terms. It is therefore concluded that viscous forces will not give a significant 
contribution to ringing response for the type of structures considered here.  
 
 
 

5.3 Description of results for Ringing response of TLP 

Zou et al (1998) presented results for TLP motions and tether tension. The used approach 
was based on using measured wave forces acting on a TLP model in a sea state with 
strong asymmetric waves. The used sea state had shown to initiate ringing response in 
previous model tests. The measure horizontal force was used as input for simulating the 
nonlinear response of the coupled TLP system. The simulated responses were also 
analyzed statistically to evaluate extreme values. 
 
Analysis were also carried out using a second order theoretical wave force model. This 
model produced springing only and was not able to reproduce the ringing response. This 
shows that  a second order force model will not cover the observed springing behaviour.  
 
 
In Fig 5.4 an example of measured wave elevation and measured vertical force and Pitch 
moment is shown. At about t=1200s a strong asymmetric wave hit the columns and a 
peak in the excitation forces is observed. 
 

 
Figure  5.4 Measured wave elevation, vertical excitation force and pitch excitation 

moment acting on the TLP model. Wave case 3.  
 
The response spectrum of the Pitch excitation moment is shown in Fig 5.5 for two different 
wave condition. Wave 1 is a numerical generated wave with close to zero asymmetry with 
Hs=10.8 m and Tp=14.1 s. Wave 3 is a slightly lower but steeper wave with Hs=9.9 m 
and Tp=11.0 s and this sea state contains strong asymmetric waves. The high frequency 
tail of the pitch excitation spectrum is highly different with a significant high frequency 
energy for wave 3. This  illustrate clearly the effect of the wave asymmetry.  
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Figure  5.5 Spectral for measured Pitch excitation moment for  different wave condition.  

Left; Wave 1 with Hs=10.8m and Tp=14.1s, symmetric waves. 
Right; Wave , Hs=9.9,  Tp=11.0s, containing strong asymmetric waves. 

 
The TLP structure was modeled as a rigid body with the tethers modeled as elastic springs 
using beam elements. Time domain simulations were used based on excitation forces from 
measurements as outlined above. Resonance frequency for different modes relevant for 
ringing were; 
 

• Heave;   ω3=3.53  
• Pitch;   ω5=3.37  

 
The simulated results are shown in Fig 5.6 for Wave 3. The results includes surge motion, 
heave motion, pitch motion and tether tension. The pitch motion and tether tension are 
seen to give a bursting behaviour when the strong asymmetry wave hit the structure at 
t=1200s.  
 
The surge motion is seen to be dominated by the low frequency motion. Heave motion 
also get a significant low frequency contribution due to the coupling with surge through 
the set down effect (pendulum motion). To further investigate the  different contributions  
to tether tension, the tension amplitude spectrum is shown in Fig. 5.7. The high frequency 
contribution is seen around the natural frequency for heave/pitch. The contribution to the 
total signal from this frequency range is significant.   
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Figure  5.6 Simulated motion response and tether forces. Wave 3.  
 
 
 

 
Figure  5.7 Tension Amplitude spectrum.  Wave 3.  
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The distribution of extreme tension is established based on the simulated time series for  
tether tension. The results are shown in Fig. 5.8 for Wave 1 and Wave 3. The amplitude of 
the tension is normalized by dividing the actual amplitude value by the standard deviation 
(SD) of the process.  Results are shown for the total tension (i.e including both 
contribution from wave frequency and high frequency response) and for the Maxima and 
Minima of the high frequency tension. The high frequency response were obtained by high-
pass filtering of the total response. In the figures also the amplitude distribution using the 
Rayleigh distribution, commonly used for linear, wave-induced  responses,  is included. For 
a probability of exceedence level of 10-3 (meaning one of 1000 amplitudes exceed this 
level) the Rayleigh distribution gives a response amplitude equal to approx 3.7*SD. For 
Wave 1 the total tension follows quite close to the Rayleigh distribution. For Wave 3 it is 
seen that the high frequency response largely deviate from the Rayleigh distribution and 
gives maximum amplitude values up to 7*SD. Normalised peak values for the high 
frequency tension at the level of 7*SD is a typical properties characterizing ringing 
response.   This large normalized peak value indicate also a strongly non-linear response 
behaviour. 
 

 
Figure  5.8 Distribution of extreme tension.  

Left; Wave 1 with Hs=10.8m and Tp=14.1s, symmetric waves. 
Right; Wave , Hs=9.9,  Tp=11.0s, containing strong asymmetric waves. 
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6 NUMERICAL ANALYSIS  - SPRINGING AND WHIPPING RESPONSE  

6.1 General 

The solution of the equation of motion can be presented on two, in principle, different 
ways; 
 

• Time domain solution 
• Frequency domain solution 

 
Time  domain solution is used for non-linear systems and for systems excited by a general 
time dependent load history or a load which is nonlinearly dependent on the structural 
responses.  The solution can be obtained either as a numerical  integration of the equation 
of motion in time or by the use of the impulse-response function. 
 
For the frequency domain solution the equation of motion is solved for harmonic excitation 
for a number of different frequencies. The system must be linear (or linearized). The 
solution gives directly the load frequency sensitivity of the structure. For a general 
excitation the loading can be described as a infinite sum of harmonic components. The 
frequency domain solution is specially well suited for problems with frequency dependent 
mass,  damping or stiffness. 
 
If the method of solution of the equation of motion  is based on the coupled equation  of 
motion the method is called Direct method.  Alternatively the equation of motion can be 
transformed to a set of uncoupled equations which can be solved independently. The 
transformation to uncoupled equations are performed by using modal superposition (or 
“normal modes”)  
 
Both for whipping and springing response analysis the flexible hull response can be 
assumed to be linear to a given hydrodynamic loading. Linear structural models will 
therefore be used. For this linear case the principle of superposition is valid and time 
series of responses due to different load contributions can be added to give the total 
response. 
 
For Harmonic loading the frequency response function method can be directly applied for 
solution of the equation of motions.  
 
For a general time dependent excitation the equation of motion may be solved either by 
analytical or numerical solutions as follow; 
 

1. Frequency Response method in combination with Fourier theory by representing 
the general time dependent excitation as a sum of harmonic components. This is a 
frequency domain solution. 

2. Impulse-Response  method (or Convolution integral method). This is a time domain 
solution 

3. Direct numerical time integration of the equation of motion. This is a time domain 
solution. 

 
Solution for a one degree of freedom system for method 1 and 2 is discussed in Appendix 
A. All three methods can in principal be used both for the coupled (i.e as a Direct method) 
or the uncoupled equation of motions based on Modal superposition Method. However the 
second method is most frequently applied for the equation of motions as they are  
transformed to uncoupled equations.  
 
For springing response which is excited by harmonic loads, frequency domain analysis is 
most frequently used. As whipping is a transient response with highly non-linear excitation 
time domain solution will normally be used for numerical analysis. 
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6.2 Equation of motion- Structural Formulation 

Two main approaches are commonly used for modelling of the ship structure for elastic 
structural response calculation; 
 

• Representation of Hull girder as a Timoshenko or Euler Beam , i.e a 2-D approach. 
Difficult/impossible to model local structural effects as openings etc. Analytical and 
simple to use. Often used for initial design stage. Torsion difficult to model.  

• 3-D Fem modelling. Details as openings can be modelled. Required for catamarans 
and multihull vessels. Time consuming and complex modelling and analysis.  

 
The Beam model was applied in the springing and whipping analysis discussed in Chap. 
3.2 and 4.3 respectively. However for numerical analysis of springing and whipping 
response the 3-D fem modelling approach is the commonly used method. This approach is 
therefore discussed in the following.  
 
The ship structure is assumed discredited by e.g. the finite element method. The equations 
of motions (or dynamic equilibrium equation) can be written as; 
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Where m is structural mass matrix,  c is the structural damping matrix, k is the structural 
stiffness matrix, f is the vector of external forces including fluid pressure forces and r is 
the vector of unknown motions (includes both displacements and rotations). m, c and k is 
matrixes with dimension mxm, where m is the number of degrees of freedom. Using a 
direct solution method eq. (6.1) is used directly for the solution procedure.  
 
For Direct numerical integration methods eq. (6.1) is used directly. Using the Modal 
superposition method, the global displacement may be approximated by an aggregate of 
the N lowest eigenmodes or eigenvectors  ),,( zyxiψ ; 
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Where pi(t) are the unknown displacement amplitudes called generalized coordinates. The 
eigenmodes or normal modes ),,( zyxiψ , is determined from the free vibration analysis, 

i.e. for eq. (6.1) with c=0 and f=0. Assuming harmonic oscillations, i.e. tie  ωψr =  gives 
 

     0)( 2 =− rmk ω  

 

0)( 2 =− ψmk ω  
 
The first 6 modes in eq. (6.2) are the rigid body motions; surge, sway, heave, roll, pitch 
and yaw. The remaining are eigenmodes of the flexible ”dry” structure. In theory infinitely 
many flexible modes are needed to describe responses of the vessel. For practical 
purposes however, the N first natural modes of the structure will describe the global 
response with sufficient accuracy. 
 
An Example of calculated eigenmodes of the segmented catamaran model is shown in Fig. 
6.1. Example of calculated and measured eigenmodes for an elastic model of container 
vessel is shown in Fig. 6.2 
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Figure  6.1 Calculated eigenmodes of the first four symmetrical flexible modes for the 
segmented model of a catamaran. 

 
 

 
Figure  6.2 Calculated and measured 2 and 3-node modes for Monohull. Meassured on 

model  
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By inserting eq. (6.2) into (6.1) and pre-multiply with the k’th eigenvector transposed we 
obtain the equation of motion on generalized form; 
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For k=1,....N, where i
T

kkiM mψψ= , i
T

kkiC cψψ=  i
T

kkiK kψψ=  are elements in the 

generalized mass-, damping- and stiffness matrices respectively. fψ T
kkF =  is a  element 

of the generalized external force vector.  
 
The generalized hull damping matrix is usually represented by the Rayleigh damping 
model; 
 

iiiiii KMC 21 αα +=         

 
Using this formulation the orthogonally properties of the mass and stiffness matrix will also 
apply to the damping matrix. If the property of orthogonally of the eigenmodes is used, 
see eq. (3.15) the equation of motion may be further simplified to an uncoupled system as 
follows; 
 

)()( 21 tFpKpKMpM iiiiiiiiiiii =+++ &&& αα       (6.4)
    

 
Comparing eq (6.1) with eq. (6.4) the introduction of N lowest eigenmodes  to represent 
the global displacement, one has reduced the coupled system with infinite number of 
degree of freedom to a uncoupled system with N degrees of freedom. The solution of each 
of the N equations can then be solved independently  and similar to the equations for a 
system with one degree of freedom (ref. also Appendix A). 
 
The generalized external force vector consist of the forces due to hydrodynamic pressure 
on the wetted hull surface, S. The hydrodynamic pressure forces are discussed below. 
 
 

6.3 Hydrodynamic Forces 

6.3.1 General formulation 

The fluid pressure forces in a particular mode k can be written on generalized form as; 
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S

kk dSpF nu         (6.5) 

The vector [ ]kkk
T

k wvu ,,=u  represent the three local displacement components of the kth 

eigenvector. n is the unit normal vector of S, positive into the fluid domain.  
 
The fluid pressure p is obtained from Bernoulli’s equation; 
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where ρ is the mass density of water and ),,,( tzyxΦ  is the total velocity potential, 
written on principal form as; 
 

),,,(),,,(),,,( tzyxtzyxUxtzyx us φφ ++=Φ      (6.7) 
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Where ),,,( tzyxsφ  is the potential due to the steady disturbed flow and  ),,,( tzyxuφ  is the 

unsteady potential due to the incoming waves, diffracted wave and perturbation potentials 
caused by ship motions in the different eigenmodes.  
 
Assuming linear wave theory the unsteady potential can be written as; 
 

∑
=

++=
N

i
iiDIu p

1
φφφφ         (6.8) 

 
Where; 
 Iφ  is the incident wave potential 

 Dφ  is the potential due to the diffracted waves  

 iφ  is the radiation velocity potentials due to unit excitation in mode i 

 
The total hydrodynamic force will for most practical  applications be split up into the two 
main parts, radiation forces and excitation forces on the form; 
 

  )()()( tFtFtF E
k

R
kk +=         (6.9) 

 
The unknown potentials given above are found by solving a hydrodynamic boundary value 
problem, including the effect of forward speed. A number of different approximations for 
this problem have been presented depending on the actual case. This includes 
approximations for special cases as the strip theories, see Salvesen et.al (1970), high 
speed formulation  see Faltinsen and Zhao (1991). See also Hermundstad et.al (1999)  for 
further details. 
  
For our case of dynamic response calculations, the contribution from the unsteady 
potential will be the main interest.  Only this contribution will therefore be considered in 
the following. 
 
 
 
 

6.3.2 Hydrodynamic Radiation forces 

Radiation forces are associated with forced harmonic motions of the structure in the 
different modes, i. For a harmonic response of the vessel generalized coordinates takes 
the form; 
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 The radiation potential can then be expressed as; 
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For the radiation pressure the quadratic terms in eq. (6.6) can be neglected and the 
generalized force in mode k can be expressed on  the form; 
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The generalized added mass, damping and hydrostatic restoring coefficients are derived by 
using eq. (6.5) and the definition of added mass and damping as given in eq. (6.11)  to be 
on the form; 
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Where kw  is the vertical displacement due to unit excitation of mode i. 

 
The hydrodynamic added mass and damping coefficients are generally dependent on the 
frequency of oscillation. For high frequency i.e. for ∞→ω , asymptotic value is reached. 
For frequency domain solutions the frequency dependency is covered directly in the 
analysis as the equation of motion is solved for each frequency. For time domain solution 
for whipping response calculations the high frequency limit is often used. This is discussed 
in more details in chap. 6.5.  
 
 

6.3.3 Excitation forces 

The total excitation force can be split up into one linear contribution and one non-linear 
contribution, i.e. on the form.; 
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The linear contribution contains the linear part of  Froude-Krylov and diffraction forces. 
The non-linear contributions includes the non-linear forces as slamming forces, and non-
linear modifications to Froude-Krylov and diffraction forces.  
 
The potentials Iφ and Dφ  in eq. (6.8) gives the Froude-Krylov forces and Diffraction forces 
respectively. Neglecting the quadratic terms in eq. (6.6) the linear generalized form in 
mode  k can be written as; 
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The linearized Froude-Krylov forces and Diffraction force gives a harmonic excitation 
contribution. The linear excitation force is now obtained as; 
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Nonlinear contributions to Froude-Krylov and diffraction forces will be partly due to the 
velocity squared terms in Bernoulli’s equation, see eq. (6.6) and partly from integration of 
the linear pressure up to the actual water line. Hydrostatic restoring forces will also give a 
nonlinear contribution when integrated up to the actual water line. The calculation of the 
nonlinear excitation force )(, tF knm is not straight forward and a number of simplifications 

and assumptions are used for practical applications depending on the actual case 
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considered. Slamming force calculations are discussed in Chap 4.2. A detailed  discussion 
of representation of slamming forces for whipping response calculations is also given by 
Økland (2002).  
 
One often used approach for monohuls for the nonlinear excitation force )(, tF knm  is as 

follows, see Wu et al (1997); 
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              (6.16) 
 

The first term represent the nonlinear modification of the Froude Kryloff force and the 
nonlinear modification of the hydrostatic restoring force. kz ,δ  is the vertical displacement 

of a cross section in mode k, ),( txQ  and  ),(0 txQ represent the areas of the instantaneous 

and mean submergence of the cross section respectively. )(0 xb is the sectional beam at 

mean draft. ),( txwREL is the vertical displacement of the ship hull relative to the wave 
surface. These two contributions are frequently assumed to represent the main nonlinear 
effects for the ordinary hydrodynamic force.  
 
The second term is the slamming force based on the momentum method ),(33 txa is the 

high frequency 2-D added mass for the instantaneous submerged cross section.  
 
This equation shows that the slamming force depends on the following parameters; 
 

• Relative velocity, Vrel, between the water surface and the ship section. 
• The velocity of the ship section may get an important contribution from the 

vibration velocity (e.g. vibrations caused by the previous slam).  
• The velocity/motion of the water surface gets contributions from the steady wave 

elevation, the diffraction and radiation waves.  
 
All other nonlinear contributions are neglected in the approach as given by eq. (6.16) 
above. 
 
 
 

6.4 Response calculation. 

 
6.4.1 Response due to General loading – Direct Method. 

We may in principle solve the nonlinear hydrodynamic boundary value problem for every 
time-step. The schematic calculation sequence can than be summarized with the following 
main steps; 
 

• Evaluate the pressure (6.6) on the instantaneous wetted part of the hull. 
• Position of hull including elastic deflection to be updated each time step. 
• Integrate the pressure to obtain the generalized hydrodynamic force from 

equation (6.5) 
• Solve the equations of motion (6.3) using a relevant time integration procedure. 
• Continue with next time-step 

 
This approach is extremely computationally demanding as it requires solution of the 
boundary value problem for each time step at the actual position of the body. The 
instantaneous position includes contributions from wave elevation, rigid body motions as 
well as the elastic deformations. For a practical application of this approach a number of 
assumptions have to be introduced.   
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Different simplifications for the solution of the hydrodynamic force have therefore been 
proposed. For the case with linear harmonic excitation (i.e the linear springing problem) 
the frequency response method can be used. For nonlinear loading (applies to both non-
linear springing and whipping response analysis) the most commonly used approach for a 
general time dependent excitation force is to use the  impulse response method (or 
convolution method).  
 
The frequency response method solution for linear, harmonic excitation and the impulse 
response method for general time dependent hydrodynamic loading are discussed in the 
following. 
 
 

6.4.2 Response due to Linear Harmonic excitation – The Frequency Response Method. 

By introducing eq. (6.9) into  the generalized equation of motion, eq. (6.3) and using 
equation (6.11) for the Radiation forces and only including the  linear contribution to the 
excitation forces as given by equation (6.15) we obtain the following equation for a 
harmonic excitation force;  
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The above equation can be solved for any frequency and for each mode by conventional 
methods for linear frequency response solutions. (N equations and N unknowns). The 
solution can be written on the form; 
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Where; 
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is the generalized linear frequency-response transfer function matrix on complex form. 
Phase information is implicitly included in the complex numbers. Note that using this 
approach the frequency dependency of hydrodynamic coefficients as added mass and 
damping is included in the solution.  
 
The above solution represents the particular solution (i.e. the steady-state solution). 
 
The global displacements are obtained from eq. (6.2) as;  
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For linear springing analysis the loading will be harmonic wave excitation. The above 
frequency domain solution can therefore be directly used for linear springing analysis. For 
details, see Hermundstad et.al. (1999). 
 
 
 

6.4.3 General nonlinear loading - Convolution integral method  

Using the above deviations for hydrodynamic forces the generalized equation of motion 
(6.3) is written on the form; 
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The total generalized response )(tp  is decomposed into its linear and nonlinear parts 
(similar to as for the excitation force); 
 

)()()( ttt nmlin ppp +=          (6.22) 

 
The linear response can now be obtained directly from the frequency domain solution, see 
eq. (6.19) and eq. (A.18) on the form; 
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Using this formulation for the time history of the linear response the solution can be found 
from one single integration of the generalized linear frequency-response transfer function.  
 
The nonlinear responses are found by applying convolution integration for each time step 
(see Appendix A for details of convolution integral); 
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Where )(th  is the impulse response function matrix. The impulse response function matrix 
is given from eq. (6.19) as; 
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Based on the linear and nonlinear response solutions given by eq. (6.24) and (6.25) any 
response quantity x(t) can now be calculated provided the modal value, ix ,  is known for 

each of the N nodes. The modal values for actual responses are found during calculations 
of the eigenmodes. The total response is now obtained from eq. (6.2) on the form;  
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Fundamental assumptions in the convolution method approach are: 
 

• We assume that the structural dynamic system is linear. This imply that  there is a 
linear relationship between force and response 

• A nonlinear force model is allowed. The relationship between incident wave and 
force may be nonlinear 

 
 
As an alternative to using convolution integral method, equation 6.21 can also be solved 
directly  by a numerical integration scheme. 
 
 
 

6.4.4 Frequency dependency of added mass and hydrodynamic damping  

The hydrodynamic added mass and damping matrices is generally dependent on the 
frequency of oscillation. This imply that the actual value will depend on the mode of 
oscillation. For the general time dependent load case, frequency dependency of added 
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mass and damping will introduce a memory effect which should be included in the 
response calculations. This will be a problem if direct numerical integration is used for 
solving the Equation of Motion, see eq. (6.21). One approach to account for this effect is 
outline below. 
 
For high frequencies an asymptotic value of added mass and damping is reached. The 
following split of added mass and hydrodynamic damping is therefore introduced; 
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Where ∞  indicate the high frequency asymptote and 0 means the deviation from the 
asymptotic value. Introducing the above approach into eq. (6.21) gives; 
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Here )(, tg ik  is the retardation function for the different mode of motions. The retardation 

function is determined from frequency dependent added mass and damping as follow; 
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Eq. (6.28) can now be used for an arbitrary time dependent loading and is solved in time 
domain by numerical integration. However the numerical implementation of the integral 
term for the retardation function to include the frequency dependency of added mass and 
damping is not straight forward. This memory effect is therefore often neglected in 
whipping response calculations and the added mass and damping is taken as the actual 
values corresponding to the natural frequency. 
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7 MODEL TEST – SPRINGING AND WHIPPING 

7.1 General 

Detailed comparison has shown that available numerical methods for springing response 
calculations significantly under predict the springing response. Also the whipping response 
is difficult to handle numerically. Model testing for investigation of these phenomena will 
therefore be of large importance. The use of model test results will be both for establishing 
design values and design verification for actual practical and for verification and validation 
of numerical methods. 
 
For model testing of concepts  where hydroelastic  response is important  the elastic 
properties of the model need to be reasonably correctly scaled. Examples where this will 
be the case are: 
 

• Marine risers (bending stiffness) and loading hoses (bending stiffness and axial 
elasticity) 

• Tethers for Tension leg platforms (both axial and bending stiffness) 
• Mooring lines (axial stiffness) 
• Springing and whipping of ships, both monohuls and catamarans (bending 

stiffness and tensional stiffness) 
• Floating bridges 
• Fish farming plants 
• Seismic cables 

 
This imply that for ship testing including springing and whipping response and for most 
offshore and coastal structure testing, one or more elements will require modeling of 
elastic properties.  For cases where the elasticity is not important the model is made 
“sufficient” stiff or “as stiff as possible” to avoid any artificially hydroelastic effects in the 
model. 
 
 

7.2 Scaling Laws 

In hydroelastic problems the hydrodynamic forces will depend on the structural response 
which again is governed by the inertial and elastic forces on the structure. The modeling of 
the elastic properties of structures will therefore give several additional problems 
compared to the modeling of wave induced dynamic response of rigid structures. 
Important examples where correctly scaled elastic behavior of the model is springing and 
whipping of ships, dynamic behavior of marine risers and mooring lines. Additional 
requirements to the elastic model can be summarized as follows: 
 

• Correctly scaled global structural stiffness  
• Structural damping must be similar to full scale values 
• The mass distribution must be similar. 

 
Geometrical similarity between model and full scale for an elastic structure will require that 
elastic deformations are similar. To illustrate this we will consider the deflection of a 
cantilever beam as an example. The deflection, δ , is given from: 

 
EI
FL3

∝δ  (7.1) 

 
where EI  is the flexural rigidity and  F is the hydrodynamic force which can be expressed 
as; 

 22 LUCF ρ∝  (7.2) 
 
where C is a force coefficient dependent on Fn, Re etc. The requirement of similarity in 
deformation in model and full scale gives: 
 



Page 66 of 158 
 

 F M
F M

F ML L
δ δ δ λδ= ⇒ =  (7.3) 

 
Using eq. (7.1) and (7.2)  this requirement is satisfied if the ratio: 
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is equal in model and full scale. Assuming equal force coefficient and density  we obtain 
the following requirement to the structural rigidity: 
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If all dimensions of the cross sectional shape of the beam are scaled geometrical similar, 
the moment of inertia, I, will satisfy the relation: 
 

 4
F MI I λ=  (7.6) 

We are than left the following requirement to the Young’s modulus, E,: 
 
 F ME E λ=  (7.7) 
 
This imply that the Young’s modulus for the model must be 1/λ times the value of the  full 
scale structure.  
 
It should be noted that eq. (7.6) and (7.7) is not to be regarded as requirements to the 
model. The bending stiffness requirement is given by eq. (7.5). In practical model testing 
the requirement given by (7.5) is often satisfied by manipulating the different parameters 
by applying other materials, other wall thickness or  modifying the structural build up of 
the beam. The outer geometry, which is exposed to the hydrodynamic forces, has however 
to be geometrical correct modeled. Also the requirements to correct modeling of mass 
distribution and structural damping have to be satisfied. This will be further discussed as 
part of the physical modeling. 
 
A similar results will be found for the axial stiffness and torsion stiffness. The requirement 
for the axial stiffness case is: 
 

3)()( λMS EAEA =         (7.8) 

 
where EA  is the axial stiffness. This relation gives equal strain in model and full scale. The 

cross sectional area, A, will satisfy the relation 2λMF AA = , which gives the same 
requirement to the Young’s modulus as shown above.  
 
 
For the dynamic response of an elastic structure the mass m and structural damping b 
should also be correctly modeled. This requirement gives; 
 
 

 
It is a requirement that  the modeling do not introduce additional damping.  Materials 
which shows hysteresis behavior should therefore not be used for modeling. Other source 

3λMF mm =

5.2λMS bb =
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for unwanted damping can be frictional forces between different components in the build 
up of the model.  
 
In general requirements of  correctly scaled elasticity of ship model will significantly 
increase the complexity (and hence cost) for model production and also test execution. In 
addition detailed information about the full scale elastic properties will be required to arry 
out the required modeling 
 
 

7.3 Ship modeling 

For elastic modeling of ships three different solutions have so far been used, see Maeda 
(1991): 

• Backbone model 
• Fully elastic model 
• Hinged model 

 
 

7.3.1 Backbone model 

In Figure 7.1 the two first alternatives are shown schematically for a monohull. For the 
backbone modeling, the elasticity of the model is represented by an elastic beam to which 
rigid segments are connected, see also Fig. 7.2. Using this modeling technique it is 
relatively easy to model the stiffness and materials as steel or aluminum with stable and 
well documented properties  can be used. Further it is easy to modify the structural 
properties and the structural damping is low. One problem with this modeling is the gap 
between the different sections. They may be closed using an elastic membrane, as shown 
in Fig 7.2, but it is difficult to avoid transfer of  tension through the membrane. If the gaps 
are open, each section have to be built water tight. Further the dynamic pressure at gaps 
may to some extent influence the results. For ship models with forward speed the gaps will 
give additional resistance due to the influence on the flow field around the ship.  
 

 
Figure  7.1 Principles for modeling of an elastic monohull.  
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One drawback with the backbone modeling is that it is difficult to adjust the stiffness and 
hence to obtain the correctly scaled mode shapes and natural frequencies. 
 
The responses as shear forces and bending moments are measured directly at the 
backbone, usually by means of strain gauges. 
 
 

7.3.2 Fully elastic model 

The fully elastic model is built up using cross sections with one or two different layers with 
different elasticity as shown in Figure 7.1. Glassfibere  resin in combination with a foam 
material can be used. The thickness of  the inner resin layer can be varied to achieve the 
correct elasticity. This method of modeling avoids the gap problems, but it is difficult to 
achieve the correct bending stiffness distribution. Further the use of foam material 
introduce some hysteresis effects and the structural damping may be too high for the 
model. For testing of springing response this is critical for the results. For whipping 
response the structural damping level is less critical. 
 
For the fully elastic model, measurements of shear forces and bending moments require 
extensive strain gauge instrumentation and the calibration is more difficult to carry out 
compared to the alternative modeling principles. The accuracy of the measurements may 
therefore be less good compared to the alternative methods. 
 
 

 
 
    Elastic Beam 

 
    Hull segment 
Figure  7.2 Elastic Backbone model of an elastic monohull.  
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Figure  7.3 Example of a fully elastic model.  
 
 

7.3.3 Hinged Models 

The hinged modeling is based on dividing the hull girder into a number of stiff segments 
connected by elastic spring as shown in Fig. 7.4. The springs can be made with adjustable 
stiffness. In this way it becomes easy to obtain the correct scaling of the first flexible 
mod(s). The spring stiffness may also be varied for systematical investigation of effect of 
natural frequencies. Within the rigid segments a framework is often used to ensure 
stiffness and give support for the springs and force transducers. The gap between the 
different segments may be closed using an elastic membrane. 
 
For springing response only the 1st elastic mode will be important and a 2 segmented 
model have been found to give a reasonable good modeling of the elastic performance, 
see Økland (2002). For whipping response 3 or 4 segment models is recommended. With a 
4 segmented model the first 3 global flexible vertical modes of the full scale ship may in 
principle be represented. The position of the cuts is important to give the best possible 
representation of the elastic modes. Usually the cut is located at ,4/Lx ±=   and at ,0=x , 
i.e. at quarter lengths and at midship.  The mode shapes for the hinged model can be 
quite similar to the actual mode shapes for the full scale ship. An example is shown in Fig 
7.5, from Drummen (2008), where both measured and calculated 1st and 2nd elastic modes 
for model as well as calculated for full scale vessel are shown. 
 
In the connections between the stiff segments well defined force transducers can be used. 
Very good accuracy of the measurements can therefore be obtained for this modeling. The 
drawback is that forces and moments can only be measured at the cut positions.  
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Figure  7.4 Sketch of a four segmented hinged model of a Monohull  
 

  
Figure  7.5 Example of mode shapes for 1st and 2nd modes for the segmented model as 

shown in Fig 7.3. Both measured and calculated for model as well as 
calculated for full scale vessel. (From Drummen, (2008)) 

 
While the  Backbone and fully elastic model is best suited for monohuls the hinged model 
solution has  also been used for catamarans, see Hermunstad et.al. (1995).  An example 
elastic modeling of catamaran using hinges model is shown in Figure 7.6. Each hull is 
divided in three rigid segments which are connected by springs. The springs are slender 
steel beams with dimensions determined to give correct bending and tensional stiffness. 
The two hulls are connected trough three transverse springs as shown in the figure. The 
hull segments are made of Foam/GRP similar to what is used for standard rigid model 
production. To make the segments stiff, an aluminum frame is mounted within each 
section. Rubber straps is attached between each segment to make the model water-tight.  
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Figure  7.6 Hinged model of an elastic  catamaran  
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7.4 Measurements/Instrumentation  

A typical set for measurements and instrumentation for model testing of flexible hull 
models can be summarized as follows; 
 

• 6 DOF motion measurements (e.g. optical system) 
• Accelerometers (FP, amidships, AP) (x,y,z-directions) 
• Wave probes (ahead of ship + fixed to ship bow for relative vertical motions) 
• Slamming panels (at hull bottom or in flare) 
• Pressure gauges at bottom and at flared part of bow section /wet deck 
• Hinged models:     Force/moment transducers at hinges 
• Backbone and fully flexible models:  Strain gauges at several sections 

  
 
The rigid body motions is measured by optical system based on sensors on one of the stiff 
segments close to midship.  
 
In fig 7.7 is shown an example of position and type of transducers for force and bending 
moment measurements at a cut for a hinged model. 3 transducers are used at each cut. 
At each force transducers forces in 3 d.o.f’s are measured. Combined with the distance 
between the transducers, axial force, shear forces, bending moments and torsional 
moment is obtained in the cut. 
 
 

  
 
Figure  7.7 Example of force / bending moment measurements for hinged model. 
 
 
In Fig. 7.8 typical instrumentation and position of transducers are shown for a test set up 
with a hinged Monohull. 
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Figure  7.8 Typical Instrumentation for testing with flexible hull models. 
 
 
 

7.5 Test Execution. 

For model testing of elastic models it is of fundamental importance to verify the structural 
properties of the model. This includes mass distribution, tuning of natural frequency and 
mode shapes for the different elastic modes as well as documentation of the structural 
damping ratios. These verification activities are typically carried out prior to wave tank test 
and includes the following;  
 
• Dry tests:  

o Calibration of all sensors 
o Hammer impact tests to measure natural frequencies and damping ratios 
o Static tests with known forces to verify force/moment measurements 
 

• Calm water tests: 
o Hammer impact tests at zero speed to measure wet natural frequencies and 

damping (frequencies decrease due to added mass) in the relevant modes 
o Hammer impact tests at forward speed (hydrodynamic damping may increases 

with speed – lift effects) 
o Tests at various forward speeds to measure trim and sinkage 
o Roll decay tests at zero speed and forward speeds to measure roll natural 

frequency and damping 
 
Tests in waves can be carried out in a towing tank or in a Ocean Basin. For both cases 
both towed model (or for zero speed, position keeping by springs) and self propelled 
model are used. Depending on the purpose of the test the following wave tests will 
normally  be included; 
 
• Regular wave tests:  

o 1 - 3 headings (head seas and bow quartering seas) + other headings less 
relevant for springing/whipping. Following seas if stern slamming at zero speed. 

o 8 – 12 wave periods for each heading 
o Repetitions for the most critical periods 
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o Repetitions with steeper waves (for the most critical periods) to study nonlinear 
effects  

• Irregular wave tests: 
o A number of different sea-states (moderate, high , very high (survival 

condition), depending on purpose of tests) 
o 1 -3 headings (as above) 
o Duration of time-series corresponding to 1 - 3 hrs full-scale (for whipping) 
o Long time-series are obtained by running the model many times across the 

tank/basin and then merging the different runs. 
 

• Speeds: Service speed, survival speed + possibly intermediate speed 
 
 

7.6 Decay test 

Decay tests will give important information about natural frequencies and mode shapes, 
added mass  and damping (linear and quadratic) of a dynamic system. Decay tests are 
frequently carried out both for dry (i.e. in air) and wet (i.e floating in water) conditions.  
 
An example of measured response from decay test with an elastic modeled monohull is 
shown in Fig. 7.9. The model is excited by a force pulse and the resulting response is 
measured. 

 

 
Figure 7.9  Time series of midship horizontal force after application of an impulse force. 

Right; Time series. Left; spectral density function. 
 
The natural frequencies (representing the 2-node and 3-node modes) are clearly identified 
from the spectral density function of the response. 
 
In order to determine the damping ratio for the different modes the signal needs to be 
band pass filtered around the actual natural frequency to identify the response at the 
different modes. Result for time series after filtering around the 2-node mode is presented 
in Fig. 7.10.  
 
The damping ratio is now obtained from the ratio of two peaks, separated m cycles as; 
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Where F n
AX ,   is the nth peak of the time series  )(tF X .  The result for the damping ratio is 

also included in Fig 7.10. The actual modal damping of the mode, c, is now obtained from 
the definition of the ratio between the modal damping and the critical damping: 

0/2 ω
ξ

k
c

=  

  
Where k  represent the modal stiffness and 0ω is the natural frequency of the mode. 

  
Figure 7.10  Left; Time series from fig 7.9 after band pass filtering around the natural 

frequency of the 2-node mode. Right; Damping ratio obtained from filtered 
time series 

 
 
 

7.7 Analysis of Results from Wave tests – Whipping and Springing. 

7.7.1 General about test result analysis 

Standard analysis method of results from wave tests will be; 
 

• Measured time series from regular waves: 
o Fourier analysis to obtain RAO’s (linear and higher order responses) and phase 

between the different responses. 
 

• Measured time series from irregular waves: 
o Filtering to split wave frequency contributions and high frequency response for 

responses influenced by elastic modes 
o Spectral analysis to investigate frequency content  
o Statistical analysis to estimate statistical distributions and extreme values 
o Rain flow counting to evaluate fatigue damage  

 
Some examples will be discussed in the following 
 
 

7.7.2 Results for Springing Response. 

For regular waves with encounter frequency close to Ne ωω 2/1≈  or Ne ωω 3/1≈  

significant springing response will be generated. This will be most pronounced in relative 
steep waves  where nonlinear wave excitation effects (not slamming forces) are important. 
A typical example is shown in Fig. 7.11 where the measured time history of the vertical 
shear forces and  vertical bending moment at midship and relative vertical motions at bow 
are shown. The corresponding energy spectra for the responses are also included. The 
encounter frequency is close to 1.1 Hz. For the vertical shear forces and bending moment  
the dominating response frequency is 3 times larger, i.e at 3.3 Hz which corresponds to 
the lowest  natural frequency (wet mode) of the model. These results clearly shows that 
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higher order wave excitation forces can generate springing type response. This is denoted 
as Nonlinear Springing (see also chap 3.5) 
 

 
 
Figure  7.11 Measured time history and corresponding energy spectra of the vertical 

shear forces , vertical bending moment and relative vertical motions at bow 
(FP). Regular waves, H=0.1 m, T=1.8 s, Froude number Fn=0.5. 
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7.7.3 Results for Whipping Response. 

En example of measured whipping response for a catamaran in head sea waves is shown 
in Fig. 7.12. The actual sea state is Hs=0.17 m and Tp=1.65 s. Froude number, Fn=0.5.  
The upper time series plot shows the measured total vertical bending moment in a cut. 
The total signal was low pass and high pass filtered to split into  the wave frequency 
contribution and response at higher frequency. The power spectra for relative vertical 
motion at bow and the vertical bending moment are also shown in the figure. For this 
wave condition significant wet deck slamming was measured. The relative motion response 
contain only energy at the encounter frequency of the incident waves, seen to give a peak 
frequency at Hzfe 2.1≈ . For the bending moment and shear forces two different peaks 

occur. The low frequency region corresponds to the encounter frequency of the incident 
wave. The energy at higher frequencies is a result of the resonant vibration close to the 
first elastic mode and natural frequency of the model. This high frequency response is 
partly generated by springing (nonlinear in this case) and partly due to wet deck 
slamming, i.e whipping. It is not possible to split these two contributions from the test 
results.  
 
In Fig. 7.13 the cumulative probability distribution for the amplitudes of the  vertical shear 
force and bending moment and for the heave and pitch motions  are shown. The heave 
and Pitch motions are seen to follow quite closely to the Rayleigh distribution and hence 
indicating that the motions are not significantly effected by slamming forces or other 
nonlinear effects. Both the shear forces and bending moments deviate significantly from 
the Rayleigh distribution. The maximum amplitude value at probability level 0.999 (i.e 1 of 
1000 amplitudes exceed this level) is seen to be 1-5-2 times the amplitude value predicted 
from the Rayleigh distribution indicating a strong influence of non-linear effects. Hence 
assuming Rayleigh distribution for this case will largely underpredict the maximum values.   
 
The distribution shown in Fig 7.13 was for the total measured signal. In Fig 7.14 the 
cumulative distribution of the high pass and low pass filtered responses are shown for the 
vertical shear forces. The low pass filtered response, i.e the wave frequency part, is seen 
to follow very closely to the Rayleigh distribution. The high frequency response, i.e. 
response at resonant vibration part, is seen to be close to the exponential distribution. The 
maximum value of the two different contributions  is seen to be of the same order of 
magnitude for this case. Using a rigid model for this case the response contribution  at the 
resonant elastic vibration would have been lost and the total response for bending moment 
and shear forces would therefore have been largely underestimated. 
 
This clearly show the importance of accurate modeling of the elastic properties of the ship 
and carful analysis of the measured results to give a realistic result for the global 
structural responses. 
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Figure  7.12 Whipping response measurements. Results for catamaran in head sea. 

Irregular waves with Hs=0.17 m, Tp=1.65 s. Fn=0.5. 
a:  Time history plot of measured vertical bending moment. Total signal, low 
pass filtered (i.e wave frequency part), and high pass filtered (i.e due to 
whipping response.  
b: Power spectra for relative vertical wave  motions at Bow and power 
spectra of vertical bending moment. 
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Figure  7.13 Cumulative probability distribution for the vertical shear force, vertical 

bending moment and heave and pitch motions. Results for catamaran in 
head sea. Irregular waves with Hs=0.17 m, Tp=1.65 s. Fn=0.5. 
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Figure  7.14 Cumulative probability distribution for the total measured vertical shear 

force and for the wave frequency and high frequency part of the vertical 
shear force. .Irregular waves with Hs=0.17 m, Tp=1.65 s. Fn=0.5. 



Page 81 of 158 
 

7.8  Scaling from model to Full scale. 

Requirements to physical modeling of the elastic properties of a full scale ship in model 
scale are discussed in chap 7.2 above.  Scaling of model test results to full scale values 
(assuming properly scaled elastic properties of the model!) is  based on Froude Scaling. 
 
The following scaling relations from model to full scale are obtained; 

 

• Time:    λ⋅= MS tt  

• Wave frequency:  
λ

ω
ω M

S =  

• Surge, sway, heave motions: ληη ⋅= MS  

• Roll, pitch, yaw motions:  MS ηη =  

• Accelerations:   MS aa =  

• Pressures:    λ⋅= MS pp  

• Forces:    3λ⋅= MS FF   

• Moments:   4λ⋅= MS MM   
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8 HYDROELASTIC SLAMMING 

8.1 General 

A dynamic structural response will arise if the duration of the impact load is comparable 
to, or shorter than, the relevant natural period of the structure. For bow flare slamming on 
ships, the duration of the slamming load will often be long compared to the short natural 
period of the hull plating. Hence a quasi static approach is applicable. On the other hand 
slamming on the wetdeck of a catamaran may give rise to a dynamic structural response 
in the local plating since the rise time of the pressure is shorter than the plating natural 
period. Such cases where the duration of the slamming load is much shorter than the 
natural period of the structure is denoted Hydroelastic slamming 
 
For multihull vessels heavy wetdeck slamming may occur in waves. The wetdeck is the 
structural part connecting the side hulls  of a catamaran.  The high slamming loads on the 
wetdeck structure will introduce local and global hydroelastic effects of the vessel. Other 
applications where local hydroelasticity can be important is for stern slamming towards 
structural part of the hull which is close to horizontally. Also for horizontal deck structure 
on fixed and floating platforms with insufficient freeboard, the effect of hydroelasticity may 
be important for slamming load and response due to wave run up and direct slamming 
loads. 
  
In summary, for an impact to be hydroelastic, it is essential that a large force pulse occurs 
during a small time period relative to the wet natural period of the analyzed structural 
part. For a general discussion of hydroelastic slamming, see the review article by Faltinsen 
(2000). 
 
 

8.2 Theoretical description – One Elastic Beam  

8.2.1 Structural modelling 

The local hydroelastic effects will be considered by investigating a typical wetdeck 
structure exposed to slamming loads from a incoming wave hitting the wetdeck.  A typical 
wetdeck structure between the hulls of a multihull vessel is shown in Fig. 8.1.  
 

 
Figure  8.1 A detail of the wetdeck structure of a Multihull vessel.. 
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The wetdeck between two transverse stiffeners (see Fig. 8.1) is modeled as an elastic 
beam. The beam properties includes both the plate and the longitudinal stiffeners. The 
beam equation of motion is written as (see also eq. (3.1)); 
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       (8.1) 

 
Where BM  is the structural mass pr length unit, ),( txw is the elastic beam deflection, t is 

time and x is a longitudinal coordinate along the length LB of the beam. E  is the Young’s 
module, EI  is the bending stiffness. Note that the above figures include both the effect of 
the plate and the longitudinal stiffeners. LB is the length between the transverse stiffeners. 

BM  and EI  are assumed to be constant. See also Fig. 8.2 
 

 
 
Figure  8.2 Definition of single beam model. 
 
The term ),,( twxp  is the hydrodynamic pressure. Note that for this case the pressure is 
assumed to be a function of the elastic beam deflection w.  
 
Effect of rigid body accelerations are neglected since it will be small compared to the beam 
deflection acceleration term in eq. (8.1) 
 
In the above structural formulation (Euler Beam) the effects of shear and axial 
deformation have been neglected. Studies by Kvålsvold (1994) have shown that these 
simplifications had insignificant effects on the maximum response values.  
 
One basic assumption is that the elastic beam deflections ),( txw can be written as a linear 
sum of “dry” normal modes; 
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where )(tai are the time dependent principal coordinates. “dry” indicating that the effect of 

surrounding water on the normal modes )(xiψ  is not included. The normal modes have to 

satisfy the boundary conditions given by; 
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The last boundary condition is based on continuity of the bending moment at the ends. 
The assumed spring stiffness at the ends of the beam is equal to  θk , see Fig. 8.2, which 

gives a restoring end moment equal to bek θθ− .  beθ  is the rotation angle at a beam end. 

 
The natural frequencies and normal mode shapes are determined from the free vibration 
case, see the discussion in chap 3.2.2.    
 
The general solution of eq. (8.1) with eq. (8.2) implemented are discussed under springing  
in chap 3.2.2, see eq. (3.7). The solution can be written as; 
 

)cosh()sinh()cos()sin()( xpDxpCxpBxpAx iiiiiiiii +++=ψ    (8.4) 

 
Where the coefficients iA  iB iC   and iD  are determined from the boundary conditions, eq. 

(8.3). 
 
The modal solution of ),( txw  expressed by eq. (8.2) is substituted into eq. (8.1), 

multiplied with )(xjψ and integrated over the length of the beam (see also the discussion 

in chap 3.2.3).  By using the orthogonally property of the normal modes, the governing 
modal beam equation of motions in vibration mode  i  becomes; 
 

∫
−

==+
)(

)(

),()(),,()()(
tc

tc

H
iiiiiiii twFdxxtwxptaCtaM ψ&&     (8.5) 

 
Where iiM  and iiC are the modal mass and restoring coefficient respectively written as; 
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The natural circular frequency is given from; 
 

ii

ii
i M

C
=2ω           (8.8) 

 
The term c(t) in eq. (8.5) represent the position of the edge of the jet flow following the 
impact. This value determines the integration limits for the hydrodynamic pressure. 
 
In the above discussion the effect of rigid body acceleration have been neglected. 
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8.2.2 Impact Loads - Hydrodynamic Boundary Value Problem  

The hydrodynamic pressure is found by solving a two-dimensional boundary value problem 
in an incompressible fluid and irrotational flow. The fluid accelerations are assumed to be 
much larger than gravity. The formulation of the boundary value problem is shown in Fig 
8.3. φ  is the velocity potential in the fluid due to the impact. The velocity potential 

satisfies a 2-D Laplace equation in the fluid.  
 
The boundary conditions on the wetted part of the beam; 
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  on 0=z ,     )()( tcxtc ≤≤−     (8.9) 

 
Where )(tV  is the vertical velocity of the beam (from global ship motions including heave 

and pitch motions). Here )(tV  should be interpreted as the total relative vertical velocity 
between the water surface and the rigid body.  
 
 

 
 
Figure  8.3 Boundary value problem for analysis of impact between plate and wave crest 
 
 
The instantaneous wetted area of the plate is given from the outer position of the yet flow 
measured from x=0, denoted as c(t). 
 
 The free surface boundary condition is; 
 

)(0 tcx ≥=φ   on 0=z , )(tcx ≥       (8.10) 

 
The most simple solution of the above defined boundary value problem is obtained by 
assuming that the vertical velocity in the water impact region is independent of space and 
only time dependent. The vertical velocity on the wetted length of the beam is 
approximated by its mean value in space. This gives a pure time dependent velocity; 
 

)(),( twtxw =  
 
The solution of the velocity potential for this case becomes the classical solution of heaving 
plate in infinite fluid, see e.g  Newman (1977). 
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Where t
tw

∂
∂ )(  is the mean vertical beam vibration velocity over the wetted length of the 

beam. The hydrodynamic pressure force is now obtained from; 
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The flow situation at an initial phase of the impact is shown schematically in Fig. 8.4. High 
local pressure occurs at the vicinity of x=c(t).  
 
 
 

 
 
Figure  8.4 Sketch of pressure distribution p(x,t) and wetted length including pile-up, 

c(t).   
 
 
The wetted length c(t) can be obtained either from a von Karman approach or a Wagner 
(1932) approach. A generalization of both methods is required due to the effect of the 
elastic deflection of the beam. Further details about solution of the boundary value 
problem for this hydroelastic case can be found in Kvålsvold (1994) and Kvålsvold and 
Faltinsen (1995).  
 
The above discussion is based on a simplified approach for the deflection of the beam.  
Different more complete solution methods can be used for solution of the above boundary 
value problem: 
 

1. Exact solution in case of a wedge (similarity solution) 
2. Nonlinear numerical solution 
3. Generalized Wagner solution 

 
Further details about the different solution methods are given by  Kvålsvold (1994).  
 
In the above discussion zero forward speed, i.e. U=0, is assumed. Effect of forward speed 
on the above defined boundary value problem is discussed by Faltinsen (1997).  
 
 

-V(t) 
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8.2.3 Simplified Solution  

In the original study of hydroelastic slamming for beam model by Kvålsvold and Faltinsen 
(1995), many modes were included in the structural response calculations. However the 
experimental studies, Aarsnes (1994), showed clearly that the lowest mode had the 
dominant effect on the maximum strain values. Based on this result a simplified method 
were derived by Faltinsen (1997). The method is outlined below. 
 
 The structure is represented by a beam model, see eq. (8.1)-(8.4) above.  
 
The problem is divided into two phases: 
 

1. Structural inertia  phase 
2. Free vibration phase 

 
The first phase is associated with large acceleration of the plate caused by the large 
hydrodynamic impact force and the small structural mass. The second phase is the free 
vibration phase with initial conditions obtained from the first phase. The time scale of the 
first phase is relatively short relative to the second phase. The duration of the second 
phase is of the order of the 1st  wet natural period of the beam. The two phases are 
illustrated in Fig 8.5. 
 
 

 
 
Figure  8.5 Sketch of the two phases of a hydroelastic  impact  used in the simplified 

solution  
 
Inertia  phase: 
In the beam equation the effect of structural elasticity (i.e the bending stiffness) is 
neglected for this phase as the inertia term will dominate due to the high hydrodynamic 
load. The impact force is balanced by structural inertia forces in this phase. The Beam 
equation (8.1)  can than be written as; 
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Boundary conditions on wetted part of beam and on free surface are given by eq. (8.9) 
and (8.10). 
 
The contribution from velocity terms in Bernoulli’s equation is neglected in the above 
equation. By integrating the above equation in time we get; 
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where t1 is the duration of the inertia phase.  
 
Based on a detailed analysis of the above defined boundary value problem, Faltinsen 
(1997) showed that at the end of the inertia phase the following approximations could be 
used; 
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and for deflection; 
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These approximations are used as initial conditions for the free vibration phase discussed 
below. 
 
 
Free vibration phase: 
Only the lowest mode shape corresponding to the highest natural period is important in 
the solution. From complete analysis and model test results it is found that higher modes 
have initial small amplitudes and these modes will disappear due to relative high damping 
for these modes. The elastic beam deflections eq. (8.2) can then be written as; 
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After the structural inertia phase the beam starts to vibrate as a free vibration with an 
initial vibration velocity V and zero deflection. This phase has a time scale of the highest 
natural wet period of the beam, T1. The problem can hence be regarded as an initial value 
problem where at t=0; 
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This follows from the matching with the Inertia phase. 
 
The structural vibration is obtained from eq. (8.1), but now the hydrodynamic pressure 
causes an added mass and damping effect only. As the beam is totally submerged in this 
phase, the wetted length is fixed and c(t) is not a part of the solution.  
 
The generalized added mass and damping are found by forcing the beam to oscillate 
harmonically with a vertical deflection; 
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where it is understood that the real part has physical meaning. Steady state oscillations 
are assumed.  The radiation potential can for fixed beam length be written by separation 
of time and space as; 
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The boundary value problem for the velocity potential 1φ  is determined from its  boundary 
conditions on the wetted part of the beam; 
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The free surface boundary condition is; 
 

      01 =φ          on 0=z ,     
2

BLx >      

 
The pressure is;  
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Inserted eq. (8.11) into the beam equation on generalized form we obtain: 
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Generalized Mass, added mass and stiffness are defined as: 
 

∫
−

=
2/

2/

2
111 )(

B

B

L

L
B dxxMM ψ     

∫
−

=
2/

2/
1111 )()(

B

B

L

L

dxxxA ψφρ     

∫
− ∂

∂
=

2/

2/
14

1
4

11 )(
)(B

B

L

L

dxx
x

x
EIC ψ

ψ
     

 
Inserting above expressions in eq. (8.12) and using eq. (8.11) for the elastic deflection we 
obtain; 
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The wet  natural circular frequency for the first elastic mode is now given from; 
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Analytical formula for the generalized added mass is given by Kvålsvold and Faltinsen 
(1995). Equations for mode shapes and the resulting bending stresses for this case are 
presented by Faltinsen et. al (1997).  
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8.3 Model test results - Single Beam 

To support the development of the theoretical methods for hydroelastic slamming and for 
validation of theoretical results, model tests have been carried out with horizontal elastic 
plates by using drop tests. Drop tests give very well defined conditions for slamming 
response testing giving reliable results and are therefore well suited for verification 
purpose. 
 
Results are described by Aarsnes (1994) and Kvålsvold et.al. (1995). The shape of the 
plates used in the tests is shown in Fig. 8.6 
 
 

 
 
Figure  8.6 Details of the elastic test plates used in drop tests. 
 
 
The total drop section was divided into three parts, one measuring section with a dummy 
section on each side as shown in the figure. The measuring section was connected to the 
drop rig using two force transducers.  
 
The instrumentation includes pressure cells, vertical force transducers connected to the 
measuring section, wetted surface measurements, accelerometers for acceleration and 
velocity measurements for the rig and for the elastic plate and strain measurements on 
the plate using strain gauges, see Figure 8.6. Vertical deflection in center of measuring 
plate was also included. 
 
Systematical drop tests were carried out for drop speed range 2.2 m/s to 6.2 m/s. The 
plate were dropped towards wave crest for regular waves with different radius of 
curvature, R . ∞=R  represent drop towards calm water. The results for measured strain 
in center of the plate (i.e at SG2 in Fig. 8.6) are shown in Fig. 8.7 as function of 
nondimensional drop speed. The strain is made non-dimensional using; 
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where mε  is the measured strain and az  is the distance from neutral axis of the beam to 

the strain measurement position. 
 
 

 
 
Figure  8.7 Measured maximum nondimensional strain amplitude in center of the 

horizontal steel and aluminum plates as function of nondimensional impact 
velocity. 

 
 
The results  shows that the maximum strain is proportional to the velocity. It is also 
observed that the effect of the ratio RLB  is small except for the largest ratio, i.e. for 

198.0=RLB  . The structural mass of the steel plate is approx. 3 times larger than the 
mass of the aluminum plate, but the difference in measured strain is insignificant.  
 
For forward speed U and an angle of attack of the plate equal to α  the effective drop 
velocity can be defined as; 
 

)( ZT uUVV −⋅−−= α         (8.15) 
 
Where Zu is the vertical velocity of the incident waves at the impact position. The velocity 
term V used in the nondimensional strain values in Fig 8.7 can be replaced by the effective 
drop velocity, TV . 

 
In Fig 8.8 measured maximum pressure from different drop tests of horizontal plates are 
plotted as function of drop speed. Some very high pressures are measured. It is observed 
that the maximum pressure is very dependent on the physical conditions as the exact 
wave profile and where the wave initially hit the wetdeck plate relative to the position of 
the pressure cells. In fig 8.9 an example of measured pressure time history in P1 and P3 
(see Fig 8.6) are  shown. It is  observed that the time duration of very high pressures is 
very small, and typically less than 10-4 s. Also the pressure peaks will be very 
concentrated in space.  
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Figure  8.8 Measured maximum pressure from different drop tests with horizontal plates 

as function of drop speed.  
 
 
En example of measured strain time histories in two positions of the elastic plate, SG1 and 
SG3 (see Fig 8.6 for details) are shown in Fig 8.10. Comparing the time scale in Fig 8.9 for 
pressure and 8.10 for strain it is seen that maximum strain occurs after approx 0.005 s 
which is much later than the occurrence of maximum pressure. The peak pressure shows 
large scatter even for similar test conditions, while the observed maximum strain shows 
little scatter as can be seen from Fig. 8.8. The large scatter for the pressure and the 
difference in time scale for maximum pressure and maximum strain shows that the 
measured pressure peaks do not give any valuable information about the actual structural 
loading for the hydroelastic slamming case. 
 
The pressure time history shown in Fig. 8.9 includes also a comparison between the 
measured and calculated pressure using the simplified approach of Faltinsen (1997). This 
approach describe only the free vibration phase, i.e. not the initial phase of the impact.  
Neglecting the initial high pressure peaks it is seen that the theory gives a reasonable 
agreement with measured pressure for the first half of the plate oscillation period. For the 
second half oscillation period it is observed that the under pressure relative to atmospheric 
pressure occur. The minimum pressure is seen to be approx -1 bar i.e. close to the vapor 
pressure.  This means that cavitations occur in this phase. It is also noted that the two 
pressure cells gives almost identical pressure for this phase. Due to the large 
underpressure in combination with small distance to the free surface in this phase air may 
be drawn in under the palate and ventilation may occur. This imply that the plate will not 
be fully wetted in this phase and the response calculation based on “wet” modes 
overpredict the added mass effect of the fluid pressure. 
 
In Fig 8.10 a  comparison between measured and calculated strain in the elastic plate 
using the simplified approach of Faltinsen (1997) is shown. As for the pressure the 
agreement is quite good for the first half of the oscillation period.  The maximum strain is 
seen to occur at approximately ¼ of the lowest wet natural period.  For the second half of 
the oscillation period the theory is seen to overpredict the response. For this phase the 
test results also gives a significant lower response period compared to the first half of 
oscillation and also compared to the calculations which is based on the 1st  “wet” mode. 
This can be explained by the effect of cavitation/ventilation discussed above which will 
make the plate partly dry for this phase and the response is more closely related to the 
“dry” free vibration solution. This can explain both the lover oscillation period and the 
lower response amplitude. 
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Figure  8.9 Example of measured pressure during impact towards an elastic plate. 

Measured in drop test and from simplified approach (Faltinsen (1997)). 
 
 
 

 
Figure  8.10 Strain as two position on plate as function of time. Measured in drop test 

and from simplified approach (Faltinsen (1997)). Drop height 0.5 m. 
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8.4 Effect of Air Pocket.  

In the above discussion of hydroelastic slamming possible effect of air pocket has not be 
included. From the drop test with horizontal plate it was observed from pressure 
distribution and wet surface measurements that an air pocket was present. The formation 
process for an air pocket is shown in Fig 8.11.  
 
 
 

 
 
Figure  8.11 Course of events as the air pocket is created and collapsed From Miyamoto 

and Tanizawa (1985)  
  
 
As the plate approach the still water surface an underpressure is created at the corners 
due to high velocity of air forced out towards the corners. This lift up the water surface at 
the corners and an air pocket is created underneath the plate. The air cushion pressure 
will increase caused by the vertical velocity of the plate. During this process the pressure 
the pressure will be almost space independent. It was shown by Faltinsen (1997) that the 
time duration of the air cushion process is small compared to the time scale of the free 
vibration phase. The consequence on the maximum strain amplitude of the possible 
formation of an air pocket underneath the plate was therefore found to be insignificant. 
However the local pressure distribution (in time and space) for the Inertia phase will be 
very different for the case with and without air pocket generated. 
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8.5 Three Beam Model  

8.5.1 Theoretical formulation 

The one beam model discussed in previous section has also been extended to a 3 beam 
model, see Fig. 3.11. As for the one beam case the beam equation, eq. (8.1) with eq. 
(8.2) is also used for the structural representation for this 3 beam case.  A restoring spring 
is introduced at each node as shown in Fig. 8.12.  
 
 
 

 
 
 
Figure  8.12 Definition of wetdeck modeled as 3 beams.. 
 
 
For the 3 beam case the required number of boundary conditions for solving the normal 
mode shapes and natural frequencies will be 12, i.e. 4 for each beam. The boundary 
conditions become; 
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The superscript j means that 0),( =txw j  is referred to beam j,  (j=1,2,3), see Fig 8.12. In 
total 12 boundary conditions. 
 
The normal mode shapes for this 3 beam model is shown in Fig. 8.13. 
 
The solution of the hydrodynamic boundary value problem for the 3 beam case is in 
principal similar to the single beam model. Details are given by Haugen (1997). 
 

x1 x2 x3 x4 
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Figure  8.13 Calculated mode shapes for the elastic plate consisting of 3 beams  
 
 

8.5.2 Model test results 

Drop test have also be carried out for the 3 beam model case. The 3 plate model is shown 
in Fig. 8.14. Tests were carried out for two different cases; 
 

• Horizontal Plates and zero forward speed. 

• Plates mounted with a constant pitch angle o8.55 =η  and forward speed U=3.5 m/s 

 
The drop rig was connected to the towing carriage in the towing tank and for the forward 
speed case towed towards the wave direction. The relative angle between the plate and 
the wave surface at the time of initial impact is given by; 
 

 )sin(5 TAREL kXkζηα −=         (8.16) 

 
Here Aζ  is the regular wave amplitude, k is the wave number and TX  is the distance from 

the wave crest to the centre of the plate at time instant of initial impact. 0=RELα  means 
that the plate hits the wave parallel to the wave surface. 
 
The effective drop velocity is obtained from eq. (8.15), but now with α  replaced by RELα  

 

 
 
Figure  8.14 Sketch of model used for in drop tests with 3 beam model. 
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The measured maximum nondimensionalized strain amplitudes (see eq. (8.14)) in the 
center of the plates is shown in Fig. 8.15 as function of  the relative angle between the 
plate and the wave surface RELα . The results are for the drop tests with zero speed.  The 

results are shown for different values of the wave crest radius, R. For  o2≤RELα  the 

measured strain is approximately independent of the position where the wave crest hits 
the plate.  The strain decrease significantly for large values of RELα  
 

 
Figure  8.15 Measured maximum nondimensional  strain amplitude in the center of the 

plates as function of RELα  model. Zero forward speed. 
 
The effect of forward velocity and effective drop velocity on the resulting strain in center of 
the plate is shown in Fig 8.16.  Results are shown only for tests where the plate hit parallel 
to the wave surface. The results show that there are small differences in measured 
nondimensional strain. The effect of effective drop velocity and radius of the wave, TV  and 
R, is seen to be insignificant. These results imply that the combined effect of forward 
speed and a pitched plate is properly accounted for by correcting the total drop velocity as 
given by eq (8.14).  
 

 
Figure  8.16  Measured maximum nondimensional  strain amplitude in the center of the 

plates as function of the total relative normal velocity.  
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Comparing with the results for measured strain for the one beam case shown in Fig. 8.7 
the results for the 3 plate case shows slightly higher values. 
 
Based on the results presented above the following conclusions apply for hydroelastic 
slamming for elastic plates hit by waves; 
 

• The maximum stress amplitude will be proportional to effective drop velocity TV  

• For realistic ratios of the R
LB  the maximum stress amplitude will not be influenced 

by the radius of the wave crest, R 
• The combined effect of forward U and the pitch of the plate 5η  is included by 

adding the term 5ηU to the drop velocity 

• For  o2≤RELα  the measured strain is approximately independent of the position 

where the wave crest hits the plate.  The strain decrease significantly for large 
values of RELα  

• Measured maximum peak pressure is very local in time and space and do not give 
any indication of maximum strain for an impact situation 

  
 
 
 

8.6 3-D Approach 

The above discussion of hydroelastic slimming is based on 2-D theory. The theory have 
been extended to the 3-D case by Faltinsen (1999) considering an elastic hull with  V-
shaped cross  sections. The geometry of the cross section and stiffened plating are shown 
in Fig 8.17. β is the dead-rise angle of the section. 

 

 
 

  
 
Figure  8.17 Wedge shaped cross section. Stiffener arrangement on plating and Cross 

sections of longitudinal stiffeners. 
 

Longitudinal stiffener 
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The differential equation for the lateral deflection of the 3-D plate is written as; 
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Where m  is the average structural mass pr unit area.  xD  and yD are the flexural rigidity 

parameters and B is the torsional rigidity parameter which can be expressed as;  
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See Fig. 8.17 for definition of structural parameters used in the above equations. 
 
As for the 2-D case it is assumption is that the elastic deflections of the plate, ),,( tyxw can 
be written as a linear sum of “dry” normal modes; 
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where )(tWij is the time dependent principal coordinates and )(xX i  and )(yjψ is the “dry” 

normal modes of vibrating beams. 
 
The hydrodynamic boundary value problem was solved using a generalization of Wagner’s 
method to include the effects of elastic vibrations. This is similar to the method used for 
the 2-D case, but now with a 3-D correction. Local 2-D flow is assumed for each cross 
section  but allowing for different pile-up of water for each cross section. A 3-D coupling is 
achieved through the 3-D plate deflection. 
 
The results from the 3-Dimensional analysis of the wedge shaped case as defined in Fig 
8.17 are presented in Fig 8.18 in terms of maximum nondimensional strain. The result is 
shown as function of the dead-rise angle, β and the dimensionless impact velocity, NDV , 

defined from;  

EI
LVV B

TND

3ρ
=          (8.18) 

 
Note that the measured strains are for this case made non-dimensional  as;  
 

22
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m
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βε

ε =′          (8.19) 

 
This is based on the assumption that the maximum strain is proportional to impact velocity 

2
TV  as in quasi static pressure loading (and not proportional to TV  as used in Fig. 8.7, 

8.15 and 8.16).  tan(β) is introduced to account for the way the slamming load depend on 
the dead-rise angle, see also Fig. 4.12.  
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From the results shown in Fig 8.18 deviation from straight horizontal  line indicate that 
hydroelastic  effects will be important, see the line denoted “Plate Theory” in the figure. It 
is observed from the figure that the dead-rise angle limit for when hydroelastic effects will 
be important depends on the nondimensional drop velocity, NDV . Increasing velocity tends 

to increase the dead-rise angle range for where hydroelasticity is important. 
 
 
 

 
 

 
Figure  8.18 Maximum nondimensional strain amplitude in middle of longitudinal 

stiffener. Presented as function of tan(β)  
 
 
Introducing the parameter; 
 

EILVV
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=         (8.20) 

 
and re-plotting the results for maximum nondimensional strain  in Fig 8.18 s function of 
this parameter, gives result as shown in Fig 8.19. It is found that the results merge into 
one line and hydroelastic effects become important when; 
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In the hydroelastic range the solution fits very well with the hydroelastic beam theory as 
discussed above. For this case the maximum strain is proportional to velocity i.e. Tm V∝ε  

as discussed in detail for the 1 beam  and 3 beams cases above. 

From Fig. 8.19 it is observed that for 
EI
LV B

T

3

25.0tan ρ
β ⋅≥ the quasi steady theory may 

underpredict the maximum strain. This represent cases where the dynamic amplification of 
the plate give a DAF larger than 1, see the discussion in Chap 4.3 and Fig. 4.17 based on 
dynamics of response of 1 degree of freedom systems due to impulse loads.  
 
 

 
 

Fig  8.19 Maximum nondimensional strain amplitude in middle of longitudinal 
stiffener.  
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9 VERY LARGE LOATING STRUCTURES    

 
9.1 General Description 

Very Large Floating structures (VLFS) have been used for a variety of purposes; 
 

• As floating airports or floating runways 
• Bridges 
• Breakwaters  
• Piers and docks 
• Storage facilities  
• Wind and solar power plants 

 
Examples of built or planned VLFS are shown in Fig. 9.1 and 9.2. The shown application 
are characterized by it’s huge dimensions. Typical dimensions can be Length x Breadth, 
LxB=5 km x 1 km. Design and construction of these structures are therefore associated 
with massive cost and labour. As this is novel technology, also significant risk will be 
involved with the execution of  these projects. Another special feature of these structures 
is very long design lives, typically 50-100 years, compared to 20-25 years most frequently 
used as basis for design of ships and other offshore structures.  
 
 

  
 

Fig  9.1 VLFS used as Floating Air Port,  Japan.  
 
 

 
 

Fig  9.2 VLFS used as Floating Oil Storage, Shirashima and Kamigoto, Japan.  
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A key feature of VLFS’s is their large horizontal extension relative to  the vertical one. This 
leads to a significant elastic behaviour which is dominant relative to the rigid-body 
motions. Hence the flexibility and the coupling effect between structural deformation and 
hydrodynamic loads strongly affect the response. This property is illustrated in Fig. 9.3 
which shows a typical response to a static point load for a ship structure and for a typical 
VLFS. In this way the VLFS must be regarded as a hydroelastic structure. 
 
 

 
 

Fig  9.3 Typical response from Point Load. Right; Conventional ship design.  
Right; Typical response of o VLFS.  

 
 
The VLFS can be classified into two main types of structures; 
 

• Pontoon-type VLFS;  Box type of structure, usually designed for relatively sheltered 
areas. Examples of such designs are shown in Fig. 9.1. Characterised with very 
large size and low draft / freboard. 
 

• Semisubmersible type; Designed for open water application. Hulls composed of 
many flexible modules interconnected by joints with certain flexibility. Example of 
this type of VLFS designs are shown in Fig. 9.4 

 
 
 

 
 
Fig  9.4 Examples of semisubmersible type of VLFS  
 
 
 

9.2 Hydroelastic Analysis  

9.2.1 General description 

A number of theories and methods have been developed for predicting the hydroelastic 
wave induced response of VLFS. For simple structures as beams and plated structures, 
one, two and three dimensional hydroelastic theories have been developed by using 
analytical formulations and numerical methods. Based on modal representation of the 
structural behaviour combined with linear potential theory for the hydrodynamic loads, the 
hydroelastic formulation have been developed to predict the response of beam like and 
arbitrary shaped structures.  
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In the following a method for hydroelastic analysis developed Taghipour et.al. (2006) is 
described in some detail. The method is based on using a Boundary Element Code (BEM) 
for the hydrodynamic part of the analysis and a Finite Element Method  Code (FEM) for the 
structural formulation, WAMIT and ABAQUS respectively. The approach is based on linear, 
frequency domain analysis, but may be extended to time domain to include nonlinear 
viscous effects and structural nonlinearities in connections between structural elements.  
 
 

9.2.2 Linear,  Wave Frequency analysis  

The VLFS structure is assumed  modeled by the Finite Element Method. The generalized 
displacements ),,,( tzyxr   can be expressed by the Mode expansion method as a weighted 

sum of the eigenmodes or eigenvectors  ),,( zyxiψ  as follow; 
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Where qi(t) are the unknown displacement amplitudes or generalized coordinates. The 
eigenmodes or normal modes ),,( zyxiψ , is determined from the free vibration analysis as 

described in chap. 6.2. The first 6 modes in eq. (9.1) are the rigid body motions; surge, 
sway, heave, roll, pitch and yaw. The remaining modes are eigenmodes of the flexible 
”dry” structure. The solution for the different elastic generalized eigenmodes can be 
obtained by using finite element packages like ABAQUS or ANSYS. 
 
In theory infinitely many eigenmodes (or modes shapes) are required to represent the 
displacement vector, but for practical purpose the modal superposition is used which 
implies that only a limited number of the lowest eigenmodes are applied. 

 
The hydrodynamic formulation used here is described by Newman (1994). Linear potential 
theory is applied. Irrotational flow of an inviscid incompressible fluid is assumed. Infinite 
water depth is also assumed. The total velocity potential is then defined as the sum of the 
incoming wave potential, diffraction potential and the sum of the radiation potentials as 
follows; 
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Where; 
 Iφ  is the incident wave potential 

 Dφ  is the potential due to the diffracted waves  

 jφ  is the radiation velocity potentials due to unit excitation in mode j 

  
j=1,6 represent the rigid body motions. j=7-(6+N) represent the elastic modes. The two 
first contributions to the total velocity potential in eq. (9.3), DI φφ   and  , represent the 
wave excitation part i.e the velocity potential for the case with a fixed body. The last 
potentials, N... jj += 61 φ  represent the velocity potential due to forced motion of the 

body in the different modes. 
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The unknown potentials Dφ  and jφ , shall  satisfy the following conditions; 

 

1. Continuity equation (Laplace’s); 02 =Φ∇  
 

2. Linearized free Surface Condition; 0on             0 ==Φ−∂
Φ∂ zkz  

 

3. Body boundary condition;                nn
ID

∂
∂=∂

∂ φφ for diffraction pot. 

          nu ⋅=∂
∂

j
j in ωφ

 for radiation potentials 

 
4. Radiation condition; The waves radiate away from the body, i.e. outgoing waves. 

 

5. Bottom Condition;    hzz −==∂
Φ∂ on             0  

 
 

 
[ ]321 ,, nnn=n  is the unit normal vector of the wetted surface S with the Cartesian 

components n1,  n2 and n3 , positive into the fluid domain. The vector [ ]jjj
T

j wvu ,,=u  

represent the three Cartesian  components of the jth eigenvector ),,( zyxjψ . This gives; 

 

321 nwnvnun jjjjj ++=⋅= nu        (9.3) 
 

The above formulated boundary value problem for the unknown velocity potentials Dφ  and 

jφ , j=1,N+6, are obtained from software as WAMIT, see Lee and Newman (2000) for 

details.  
 
When the velocity potentials  are known the fluid pressure p, is obtained from Bernoulli’s 
equation; 
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where ρ is the mass density of water. For linear analysis the second order term is 
neglected and we are left with; 
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The fluid pressure forces in a particular mode i is obtained by integrating the pressure over 
the mean wetted surface of the body, S. On generalized form this gives; 
 

∫∫ ⋅⋅⋅−=
S

ii dSpF nu                (9.5) 

 
From the different contributions to the total hydrodynamic potential given in Eq. (9.2) and 
using eq. (9.4) and (9.5) for pressure and forces, the total hydrodynamic force on 

generalized form 
HYD

iF ,  can be  split into the following contributions; 
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Where 
EX

iF is the generalized wave excitation forces, 
RAD

iF is the generalized radiation 

force expressed in terms of a added mass coefficient  ijA , and damping coefficients ijB .   

The term 
HS

iF is the generalized hydrostatic force expressed through the hydrostatic 

restoring coefficient ijD .  ω   is the incident wave frequency. iw  is the vertical 

displacement due to unit excitation of mode i. 
 
 
For a harmonic loading the dynamic equilibrium equation on generalized form for the 
structure can be written as (see also eq. (6.3); 
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For i=1,....N, where j
T

iijM mψψ= , j
T

iijC cψψ=  j
T

iijK kψψ=  are elements in the 

generalized structural mass-, damping- and stiffness matrices, M , C  and K ,respectively. 

fψ T
i

HYD
iF =  is a  element of the generalized external force vector which for this case is 

equal to the hydrodynamic force.  
 
Inserting from eq. (9.6)-(9.9) into eq. (6.3) gives the generalized equation of motion for a 
flexible structure floating in waves; 
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The generalized mass and stiffness matrix M  and K  can be obtained by using finite 
element packages like ABAQUS and ANSYS. The structural damping in the above equation 
can be modeled by Rayleigh damping, i.e.;  
 

iiiiii KMC 21 αα +=         

 
Theoretically, an infinite number of flexible modes are needed to represent the structural 
behavior in elastic vibration. For practical purposes a finite number of them to effectively 
express the behavior in practical cases. Convergence tests is often used to establish the 
required number for each case. 
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9.2.3 Non-Linear effects 

Most studies of VLFS dynamic behaviour assume that the linear analysis is valid. However 
some local phenomena will require a nonlinear investigation. Due to the limited draft of 
many VLFS, parts of the structure can experience water-exit and water-entry phenomena’s 
leading to bottom slamming and green water on deck. These phenomena require a 
nonlinear analysis. A method to include local nonlinear effects for VLFS has  been 
described by Greco et. al. (2006).  The nonlinear loading is established based on linear 
analysis motion response and then added to the other linear loads for a “corrected” linear 
global motion analysis. When including this “corrected” loads, time domain analysis have 
to be carried out. In this way the effect of local nonlinear loads on the global response can 
be accurately accounted for. 
 
 
 

9.3 Case Study   

A case study have been carried out for a very large offshore mat structure. Experimental 
results have been reported Yago and Endo (1996). Numerical results for the same case 
have been presented by Fu et. al. (2006) and Taghipour et. al. (2006).  
 
The main particulars of the offshore mat structure are summarised in Table 9.1 and in Fig  
9.5.  
 

 
 

Table 9.1 General parameters of the offshore mat structure.  
 

 
 

Fig  9.5 Main dimensions of the flexible mat structure used in Case Study.  
 
The structural analysis was carried out based on 3 dimensional FEM analysis using shell 
elements in ABACUS. Typical FEM Shell element size was 1 x 1 m on bottom and on free 
surface and 1 x 0.25 m on sides and ends. Results for some of the normalized mode 
shapes are shown in Fig. 9.6.  The natural frequencies of the 10 first elastic modes are 
summarized in Table 9.2. Mode shape No 7, 8 and 10 represent the 2-node, 3-node and 4- 
node modes (or first, second and third Bending Modes) respectively. Mode 9 is the first 
Torsion mode. 
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Table 9.2 Natural frequency of the 10 first elastic modes of the offshore mat (from 
Taghipour et. al (2006)).  

 

 
 
Fig 9.6 Results for some of the normalized mode shapes of the offshore mat (from 

Taghipour et. al (2006)).  
 
 
The results for principal coordinate responses (q ) are shown in Fig. 9.7 as function of 
wave frequency. The results are shown for mode 7, 8 and 10 for head sea, wave heading 0 
degrees. The torsional mode, mode 9 is as expected not excited for head sea waves. The 
agreement between the different approaches is seen to be very good for Mode no 7, but 
for the higher modes an increasing discrepancy is observed for high wave frequency (i.e 
short waves). 
 
In fig 9.8 similar results are shown for wave heading 150 degrees for mode 7, 8, 9 and 10. 
When using the 2-D method only bending modes is excited. The result from this method is 
therefore not included for mode no 9. The torsional mode, mode 9 is as expected not 
excited for head sea waves. Also for this case some  discrepancy is observed between the 
results from Fu and the calculations of Taghipour et al. for the higher modes. 
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Fig 9.7 Results for principal coordinate response transfer functions for mode 7, 8 

and 10 for head sea waves. (from Taghipour et. al (2006)).  
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Fig 9.8 Results for principal coordinate response transfer functions for mode 7, 8, 9  

and 10 for wave heading 30 degrees. (from Taghipour et. al (2006)).  
 
 
Another key result from the calculations is the hydroelastic vertical displacement along the 
length of the structure. Experimental data for this parameter is available from the test 
carried out by Yago and Endo (1996).  The comparison between the calculated vertical 
displacement measured along the center line of the structure and measurements is shown 
in Fig 9.9 for head sea waves. The results are shown for wave lengths ranging from 60 m 
to 300 m. In the numerical calculations 37 mode shapes were included in this study. For 
all cases the two numerical models gives almost equal results. The agreement between 
numerical calculations and model tests is seen to be very good for wave length λ=60 m 
and λ=120 m. The difference in response at fore and aft end is seen to be equal in both 
calculations and experiments. This difference in response will be due to the diffraction 
potential which are quite different at the fore and aft end of the structure.  
 
For λ=240 m discrepancies with experimental results are observed. Possible error sources 
will be due to nonlinearities in the hydrodynamic loading e.g. slamming or viscous effects 
which cannot be taken into account in this linear hydroelastic theory.  
 
Results for Rigid body motions are also included in the figure. It is observed that the 
difference between rigid body motion and elastic  motion increase with increasing wave 
length. This imply that the effect of elasticity on the dynamic response increase with 
increasing wave length.  
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Fig 9.9 Comparison between calculated and measured vertical displacement along 

the structure for head sea, wave heading 0 degrees. Wave length of 60 m, 
120 m, 240 m and 300 m is included. (from Taghipour et. al (2006)).  
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10 MEMBRANE STRUCTURES   

10.1 General 

Applications of liquid filled membrane structures is restricted to liquids with density lighter 
than sea water.  Examples of existing applications are storage container, transportation of 
fresh water and collection of oil spill from a damaged tanker or from a blow out. Fabric 
structures have also been used as pens for fish farming, but then connected to a frame 
structure or to a floating flexible collar.  
 
 
The development of the “Dracone” barge which is a long and flexible tube designed to 
carry and transport oil and liquids lighter than sea water  was the first reported application 
of membrane structure for transportation purpose.  This is described by Hawthorne 
(1961).  More recently bags for water transport with volume up to 30.000 m3 have been 
built, see fig. 10.1 which shows a 10.000 m3 bag during full scale testing. The size of the 
10.000 m3  bag was length equal to 108 m, Breadth equal to 23 m and draft equal to 6.5 
m. These bags ware used to transport of fresh water from Greek Mainland to islands and 
from Turkey to northern Cyprus. 
 
   

 
 
Figure  10.1 Nordic water Bag with volume of  10.000 m3 for transport of Fresh water. 

Picture taken  during full scale test in Sognefjorden 
 
 
Another example of application of membrane structure is the Unitor Oil bag designed for 
collection of Oil spill. The size of the bags were from 50 m3 to 500 m3. In Fig. 10.2 a 
picture from towing test with the 500 m3 version is shown. 
 
The main motivation for application of fabric structure is that the fabrication costs for 
flexible containers are much lower than for conventional  structures used for sea-
transportation as barges and ships. 
 
From a hydrostatic and hydrodynamic point of view there are 3 major problems which are 
important for design of such floating membrane structures; 
 

1. Static tension and shape of a flexible floating bag. 
2. Stresses, motions and shapes of the flexible bag in waves 
3. Towing resistance and directional stability of a flexible bag under tow. 
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Figure  10.2 Towing tests with Unitor Oil Bag.  
 
 
The membrane structure is very thin, typically 2-4 mm thick. It is flexible with almost zero 
bending stiffness. Depending on the used material and texture the  breaking strength of 
the fabric can be up to 500 N/mm.  The elasticity module will also depend on materials, 
but a typical elongation at break will be 10-15 %.      
 
 
 

10.2 Static Shape of membrane structure 

10.2.1 2-Dimesional membrane structure.  

In Fig 10.3 a typical static shape of a membrane structure in calm water is shown. The 
fluid density inside and outside the membrane structure are  iρ and oρ  respectively. It is 

assumed that io ρρ > . Further it is assumed that the thickness of the membrane is 

infinitely thin. The mass of the membrane can therefore be neglected. 
 

 
Figure  10.3 Typical shape of a 2-Dimensional membrane structure in calm water  
 
The static shape and static tension is dependent of the fractional filling ratio and the 
difference in inside and outside density. The fractional filling ratio is defined from; 
 

2
00

R
A

A
A

MAX π
γ ==          (10.0) 
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where 0A  is the actual area inside the 2-dimensional membrane and  MAXA  is the cross 

sectional area for maximum filling. R is the radius of a cylinder with the same 
circumference length. 
 
The static shape for a membrane structure is given from the equation of equilibrium of a 
small membrane element, see fig. 10.4; 
 

dspdT ⋅Δ=⋅⋅ )
2

sin(2 θ
        (10.1) 

 
where  θ  and s  are defined in Fig 10.4.  pΔ  is the difference in static pressure between 
the inside and outside of the membrane and T is the static hoop tension.  By assuming 
that frictional forces are small compared to pressure forces (equal to zero for static case) 
the tension will be constant in the circumferential direction, i.e. dT=0.   
 
 

 
 
Figure  10.4 Definition of forces acting on a infinitesimal membrane element.  
 
 
For small angles θd ,  Eq. (10.1) can be rewritten as; 
 

T
p

ds
d Δ

=
θ

          (10.2) 

 
   

This differential equation is used for determining the shape of the 2-Dimensional 
membrane structure. The equation can be solved by; 
 

1. Analytical method available for a few special cases, see Leonard (1988) 
2. Using a numerical iteration scheme.  

 
The numerical iteration scheme has to be used for the general case.  It is used that the 
static 2-D shape will be symmetric about the vertical axis. This imply that the fabric 
element at y=0 will be horizontal, i.e. πθ = . The steps in the method of solution  can be 
summarized as follows, see also Fig. 10.5; 
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• Start the solution from a point on the vertical axis sa with coordinates  ( )wz,0 , see 

Fig 10.5. 

• Assume the pressure inside the membrane is 0
inp  

• For the given point  sa  and pressure 0
inp  there exist only one static shape. The 

hoop tension for the static shape is assumed to be sT  

• If we assume the lowest point on the membrane  is eb , so the angle θ  is 0 and π  

at the points sa  and sb  respectively, see Fig. 10.5. 

• Using eq. (10.2) to evaluate the development in y-z coordinates from 0=θ   to 
πθ =  numerically  for an assumed hoop tension value, T, gives; 

 

s
T
psi

s
i

s
i

s Δ⋅
Δ

=−=Δ + θθθ 1
       

  

which gives 
 

s
T
psi

s
i

s Δ
Δ

+=+ θθ 1
         

  where sΔ  is the length of the membrane element  
• The final hoop tension sT  is not known at the start of iteration. For sTT ≠  the y-

coordinate for πθ =  will differ from 0 as shown in Fig. 10.5. The next step in the 
iteration is to use a new tension value either higher or lower dependent on the 
solution from the previous time step.  

• This procedure is repeated until a solution is obtained which gives   πθ =  for y=0. 
 

 
 
Figure  10.5 Iteration process for solution of static shape. Illustration of the dependency 

of  y-z coordinates of the hoop tension T.  
 
The iteration procedure are described in more detail in Zhao and Triantafyllou (1994) and 

Løland and Aarsnes (1994). For small filling ratios the overpressure at the top, 0
inp , is very 

small compared to the maximum pressure in the outside fluid. It may therefore be difficult 
to get convergence of the shooting method for such cases.  
 
Based on the x-y coordinates of the membrane structure, the filling ratio of the static 
shape can be calculated using eq. (10.1). 
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For a given point sa , the filling ratio is dependent on the chosen pressure inp 0
. To predict 

the static shape for a given filling ratio, iteration by assuming different values of  inp 0
 will 

be required.  
 
Results for static shape for different filling ratios are shown in Fig. 10.6. Results for static 
shape for different density differences oi ρρ  are shown in Fig. 10.7. For both case the 

circumference length have been kept fixed for all cases. It is observed that the static 
shape is strongly dependent on the filling ratio. Increasing filling ratio gives reduced beam 
and increased draft. Filling ratio equal to 1.0 gives a circular shape.  
 

 
Figure  10.6 Static 2-Dimensinal cross sectional shape of membrane structure as function 

of fractional filling  
 
From Fig 10.7 it is seen that the density difference give a small effect on the static shape. 
It is observed that the lowest point for each curve is almost the same for the different 
relative fluid densities oi ρρ  

 

  
Figure  10.7 Static 2-Dimensinal cross sectional shape of membrane structure as function 

of relative density difference oi ρρ . 
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In Fig. 10.8 the hoop tension is shown as function of filling ration and density difference. It 
is observed that for fractional filling above 0.8 the hoop tension increase very fast with 
increasing filling ratio.  

 
Figure  10.8 Hoop tension for a static 2-Dimensinal cross sectional shape of membrane 

structure as function of filling ratio and relative density difference oi ρρ . 

 
In Fig. 10.9 the relative tension for the different fluid densities oi ρρ is shown.  The results 

show that the relative tension is almost linearly dependent on the filling ratio. 
 
 

 
 
Figure  10.9 The relative tension for different relative densities oi ρρ   as function of 

filling ratio. 
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10.3 Dynamic tension in waves – 2-Dimensional Case.  

 
10.3.1 Theoretical formulation 

A linear 2-Dimensional theory for wave induced dynamic tension in waves of a floating 
membrane structure have been developed for the beam sea case (Zhao (1995). The 
approach is based on the assumption that the amplitude of the incident waves are small 
compared to the characteristic dimensions of the membrane. The problem is solved in the 
frequency domain. Viscous effects are neglected and the problem is solved using potential 
theory.  
 

Two velocity potentials are introduced; { }ti
II e ωφRe=Φ  and { }ti

OO e ωφRe=Φ which is the 

velocity potential inside and outside the membrane structure respectively. Formal 
requirements to the potentials; Laplace equation; 
 

02 =Φ∇ I   00
2 =Φ∇       (10.3) 

   

The velocity potential outside the membrane structure can be divided  into the following 
contributions;  
 

321 Φ+Φ+Φ=ΦO         (10.4)

      
Where 1Φ  is the velocity potential of the linear incident wave which can be written as; 

 

⎭
⎬
⎫

⎩
⎨
⎧=Φ +− kzikyti

Aegtzx ως
ω

Re),,(1       (10.5)

  
Here Aς , ω  and  k  are the incident wave amplitude, the circular frequency of oscillations 

and the wave number. The relation between ω  and k  are given by the dispersion 
relation; 

g
k

2ω
=          (10.6) 

2Φ  is the diffraction potential when the motion of the membrane is ignored (i.e “fixed”) 

and 3Φ  is the velocity potential due to the motions of the membrane.  This last term 

covers the hydroelastic behavior of the membrane structure. 
 
The linear boundary condition on the free surface for the different potentials in OΦ  is; 

02 =
∂
Φ∂

+Φ−
z

g O
Oω   on   z=0    (10.7)

  
The body boundary condition for 2Φ  and 3Φ  are; 

 

nn ∂
Φ∂

−=
∂
Φ∂ 12

   on   1BS      (10.8)

  

nn
I

∂
Φ∂

=⋅=
∂
Φ∂

nV3
  on   1BS      (10.9)

  
Where V , n  and  1BS  are the velocity for each point on the membrane structure, the 
normal vector with positive direction into the fluid and the mean wetted body surface, see 
Fig. 10.10. 
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A similar boundary condition is satisfied for IΦ  namely; 
 

1nV ⋅=
∂
Φ∂
n

I
   on   BS         (10.10)

  
Where 21 BBB SSS +=  is the mean surface of the membrane as shown in Fig. 10.10 and 1n  
is the normal vector with positive direction into the inner fluid. 
 
 
 

 
 
 
Figure10.10 Definition of boundary value problem for2-Dimensional  membrane structure 

in beam sea. 
 
In addition to the above defined boundary conditions 2Φ  and 3Φ  must satisfy the 

radiation condition, which imply that the body can only generate waves which propagate 
away from the body. 
 
Due to the hydroelastic deformation of the membrane structure, we need linear dynamic 
equations for the motion of each element of the membrane in the n  and s  directions, see 
Fig. 10.10. The mass of the membrane is neglected and zero thickness is assumed. The 
following force equilibrium equations are then obtained for a small membrane element  in 
n  direction (see Triantafyllou (1990)); 
 

0)( =+−−=++
+

+−== D
D

S
S

DDS
DS

SDnn P
ds

d
T

ds
d

TPP
ds

dd
TTmF

θθθθ
η&&       (10.11) 

 

where eq. (10.2) has been used for the static pressure and the term  
ds

d
T D

D
θ

is neglected. 

In s  direction; 

0=
∂

∂
==

s
T

mF D
SS η&&        (10.12) 

 
Where DT  and  ST  are the dynamic and static tension respectively and Dθ  and  Sθ  are the 

dynamic and static part of  SD θθθ += .  DP  is the dynamic pressure difference  obtained 

as; 
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ODIDD PPP −=        (10.13) 

 
where 

zg
t

P I
I

IID Δ−
∂
Φ∂

−= ρρ   on   21 BBB SSS +=   (10.14) 

 
are the dynamic pressure inside the membrane due to the motion of the membrane. The 
dynamic pressure outside the membrane can be written as; 
 

zg
t

P O
O

OOD Δ−
∂
Φ∂

−= ρρ   on   1BS    (10.15) 

 
zΔ  is the vertical component of the displacement of the membrane. 

 
The unknowns in the above formulated boundary value problem, see eq. (10.3)–(10.15) 
are  2Φ  , 3Φ  and  IΦ . These potentials must be solved with a numerical method. The 

diffraction potential  2Φ , can be solved in the same way as used for rigid body motions, 
see e.g. Zhao and Faltinsen (1988).  
 
By applying Green’s second identity the potential  3Φ  and IΦ  can be written as (see e.g. 

Faltinsen (1990) p 128); 
 

),,(log),,(),,(log),,(2 tdS
n

rt
n

trtzy
S

ξηξηξηπ ∫ ⎥⎦
⎤

⎢⎣
⎡

∂
∂

Φ−
∂

Φ∂
=Φ  (10.16) 

Where; 
22 )()( ξη −+−= zyr    

 

For the outer problem, CFFB SSSSS +++= 211  , see figure 10.11. 1FS  and 2FS  is the 

mean free surface and CS  is the control surface which is far from the body. 

 
For the inner problem 21 BB SSS +=  

 

 
 
Figure 10.11  Definition of the surfaces used in the boundary element method. 
 
For the numerical solution of the above formulated problem, the surfaces is divided into 
straight line segments as indicated in Fig. 10.11. For each element we assume 3Φ  is 

unknown and n∂Φ∂ 3  is known (from boundary conditions (10.7) and (10.9)). Then the 
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total number of unknown is  11 FB NN +  where  1BN   and 1FN  is the number of elements 

on   1BS   and 1FS  respectively. 
 
The integral equation eq. (10.16), is satisfied at the midpoint of each element on  1BS   and 

1FS , thus we obtain 11 FB NN +  equations.  
 
It should be noted that 3Φ  and the potential for the inside fluid IΦ  have to be solved for 

simultaneously.  Further details of the numerical solution method are presented  by Zhao 
(1995).  
 
 

10.3.2 Numerical results. 

An example of numerical calculated results for dynamic deformation of the membrane 
structure is shown in Fig. 10.12. The instantaneous displacements of the membrane 
surface are shown for three different frequencies. The case considered is filling ratio γ=0.9 
and relative density 7.0=oi ρρ . The incident wave amplitude RA ⋅= 2.0ς . Case b; shown 

in the figure corresponds to the frequency which gave the highest membrane tension. 
From the figure it is seen that the membrane structure closely follow the waves for long 
waves, i.e case a;. For short waves, case c; the membrane motions is seen to be small. 
  

 
Figure10.12 Static and dynamic position of the membrane structure at 3 different 

frequencies. The filling ratio is γ=0.9 and relative density 7.0=oi ρρ . The 

incident wave amplitude RA ⋅= 2.0ς . Static position (full line)  and position 
at ωt=0, π/2 , π and 3π/2 shown.  

 



Page 122 of 158 
 

The dynamic tension in beam sea waves is shown in Fig. 10.13 as function of incident 
wave frequency for different filling ratios. In Fig 10.14 the dynamic tension is shown for 
different relative density differences oi ρρ . It is seen that the maximum dynamic tension 

is increasing with increasing filling ration and with decreasing relative density. 
 
 

 
Figure10.13 Dynamic tension for different filling ratios. Results shown for relative density 

7.0=oi ρρ . The incident wave amplitude RA ⋅= 2.0ς .  

 

 
 
Figure10.14 Dynamic tension for different relative density differences oi ρρ . Results 

shown for filling ratio is γ=0.9. The incident wave amplitude RA ⋅= 2.0ς .  
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10.4 3-Dimensional Solution for Head sea.  

 
10.4.1 Theoretical formulation 

For head sea (or following sea) a strip theory approach is used for the calculation of 
response of the membrane structure in waves. 
 
The coordinate system used in the analysis is shown in Fig. 10.15. The y-axis is on the 
mean water surface.  It is assumed that the length of the container, L, is large compared 
with the cross sectional dimension, D, (i.e. D/L small).  Due to the slenderness assumption 
the flow inside the membrane is treated as a one-dimensional problem for the cases when 
the wave length, λ , is much larger than the cross sectional dimension. Outside the 
membrane the boundary element method based on the 2-Dimensional strip theory 
approach is used. This approach is valid for wave lengths smaller than the length of the 
container. 
 

 
 
Figure10.15 The used coordinate system for 3-Dimensional analysis of Membrane 

structure.  
 
Formally the above assumptions results in the requirement; LD <<<< λ . For a practical 
application one may apply the theory for a larger range of  λ .  
 
The problem is solved in  the frequency domain. For each strip (cross section) we have the 
following 4 unknowns; 
 

• ),(1 txP ; is the average dynamic pressure inside the membrane structure for 
each section 

• ),(3 txη ; is the vertical motion of the rigid body (based on 2-D static shape) 

• ),(1 txA ; is the change of the filling of fluid for each section 

• ),(1 txV ; is the longitudinal velocity (one-dimensional) inside the structure. 
 
 
The four equations for solving the problem are; 
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33 η&&mmgF =Δ−Δ                   (10.19) 
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where; 
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IAm ρ1=Δ                          (10.22) 
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Eq. (10.17) is the one-dimensional equation for the motion of the fluid inside the 
membrane structure, eq. (10.18) is the one-dimensional equation for continuity and eq. 
(10.19) is applied Newton’s second low for each section. The last equation assumes that 
the pressure ),(1 txP  for each section can be expressed as function of ),(3 txη , ),(1 txA  and 

it’s derivatives, as well as exF (x) , )(xEI  and  )(xT . Here; 

 
• )(xFex  is the 2-dimensional vertical excitation force of the incident wave 

• 33A  , 33B  and 33C  is the 2-dimensional added mass, damping and stiffness force in 

the vertical direction due to heave motions of the rigid body.  
• 1AA  , 1AB  and 1AC  is the 2-dimensional added mass, damping and stiffness force in 

the vertical direction due to the mode motion 1A  (i.e. change of the filling for each 
section). 

• )(xEI  is the bending stiffness of the membrane structure. 

• )(xT  is the part of longitudinal tension which has contribution to the vertical force. 

• ),( txz is the average vertical motion of the fluid inside the two-dimensional 
membrane as function of time 

• )(0 xA  is the static filling of the membrane, total filling is 10 AAA += .  

• )(xm is the mass of each section at the static equilibrium position. 

• 1AP ,  1AP& , 1AP && , 3ηP , …… are the dynamic pressure components outside the tube 

which are proportional to 1A , 1A& , 1A&& ,  3η .......  

 
Details for calculation of the hydrodynamic coefficients used in Eq. (10.21) are given in 
chap 10.4.2 below.  
 

The coefficients used in Eq. 10.20;  
1
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similar approach as for the static problem. One assumes the total dynamic pressure for 

each section outside of the tube,  ti
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For each component of dynamic pressure outside the tube one may evaluate the 
corresponding dynamic pressure inside the tube and the dynamic tension. The dynamic 
pressure and tension we obtain are the coefficients in eq. (10.20) and eq. (10.24), se 

below. The term 
1

1

AP
P

∂
∂

 can therefore be interpreted as the change of internal pressure, 1P , 

due to change of the part of the outer pressure which is proportional to 1A . Similar 
interpretation can be established for the other coefficients. Further details about the 
calculation of these coefficients are given by Zhao and Triantafyllou (1994). 
 
 
After one have obtained all the coefficients in Equations (10.17) – (10.20), we can solve 
these four equations numerically. 
 
As shown in Fig. 10.16 the membrane container is divided into N segments and N+1 
sections. For each section we  have 4 unknowns; ),(1 txP , ),(3 txη , ),(1 txA  and ),(1 txV . 

The problem is solved using a finite difference method. The boundary conditions are; 
 

• ),(1 txV =0    at the ends (i.e. for section 1 and N+1)  

• Bending Moment, ),( txM =0  at the ends (i.e. for section 1 and N+1)  

• Shear Forces, ),( txQ =0   the ends (i.e. for section 1 and N+1) 
 

Which gives a total of 6 boundary conditions. 
 
 
 

 
 
Figure10.16 Illustration of segments and sections used in the numerical computation. 
 
  
After one has solved the problem for the 4 unknowns as function of longitudinal position, 
the dynamic tension in the transverse direction can be evaluated by the following 
equation; 
 

T
P
T

EI
P
T

e
P

T
ie

P
T

P
T

P
T

P
T

A
P
T

A
P
T

A
P
T

T

x
z

x
z

ti

Fex

ti

Fex

AAA

2

2

4

4

11

)Im(

1

)Re(

1

3
3

1
3

3

1
3

3

1
1

1

1
1

1

1
1

1

1
1

∂

∂

∂

∂
∂
∂

+
∂
∂

+
∂

∂
+

∂
∂

+

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=

ωω

ηηη

ηηη &&&&&&

&&&&&&

       (10.24) 

 

The coefficients in Eq. 10.24, 
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10.4.2 Hydrodynamic coefficients  

The added mass and damping coefficients and the wave excitation force as used in eq. 
(10.21) can be obtained by solving a 2-D boundary value problem. The fluid outside the 
membrane structure is represented by the velocity potential; 
 

123130 Aee titi
T φηφφφ ωω +++=Φ           (10.25) 

 

where tie ωφ0 is the velocity potential of the incident wave, tie ωφ3  is the diffraction potential 

of the incident wave, 31ηφ  is the potential due to the heave motion of the rigid body 

(based on static shape) and 12 Aφ  is the potential due to the mode motion 1A  (change of 
the filling for the cross section). 
 
The above potentials iφ ,  i=1,2,3, shall satisfy the linear free surface condition; 
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and the body boundary condition; 
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The velocity potential can be solved by applying Green’s second identity in a similar way 
as  discussed above. Further details about the numerical method are  given by Zhao and 
Faltinsen  (1988).  
 
After obtaining the solution for the potential iφ  the hydrodynamic coefficients can be 

calculated from;  
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Numerical calculated results for the above coefficients and excitation forces are presented 
in Fig. 10.17-10.21. The results show that the coefficients are strongly dependent on the 
filling ratio γ , and the  relative density oi ρρ .  
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Figure  10.17 Added mass coefficient 33A  as function of filling ratio γ   and the 

 Relative  density oi ρρ  

 
 
 

  
Figure 10.18 Damping coefficient 33B  as function of filling ratio γ   and the relative 

density oi ρρ  
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Figure  10.19 Added mass coefficient 1AA  as function of filling ratio γ  and relative 

density oi ρρ  

 
 

  
Figure  10.20 Damping coefficient 1AB  as function of filling ratio γ  and relative 

density oi ρρ  
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Figure  10.21 Damping coefficient 1BB  as function of filling ratio γ  and relative 

density oi ρρ  

 
 

10.4.3 Numerical results for Membrane responses.  

Equation (10.17) – (10.20) is solved by a finite difference method. In general the 
hydroelastic deformations and tension of the membrane structure depends on many 
parameters so only some key results are presented in the following. 
 
The case considered was a structure with L=20D, where D is the diameter of the tube 
when filling ratio 0.1=γ . The cross sectional shape has been assumed to be constant 
along the length.  In Fig 10.22 the maximum values of heave motion (i.e the result for the 
cross section giving the maximum response) as function of  wave frequency are shown.   
 

 
Figure  10.22 Heave motion for the section which gave maximum response 
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In Fig 10.23 and 10.24 the results for maximum dynamic pressure inside the membrane 
structure, 1P , and the maximum dynamic membrane  tension, 1T ,  are shown as function 
of wave frequency. For most cases the maximum tension and pressure occurs at the 
region close to the end points of the tube. The peaks in the results for tension and 
pressure are due to resonance of the internal surge motion. The two first peaks (i.e low 
frequencies) can be significantly reduced if viscous damping is introduced for the internal 
surge motion. 
 
The effect of elasticity (i.e elongation of the fabric) is not included in the present analysis. 
For practical applications this effect will be important and tend to reduce the peak pressure 
and membrane tension. 
 

 
Figure  10.23 Maximum dynamic pressure inside the membrane structure, 1P   
 

 
Figure  10.24 Maximum dynamic Tension in the membrane structure, 1T   
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From model test it has been observed that the nonlinear effects are very important for the 
dynamic  membrane tension in waves. This is especially important when the density iρ  is 

close to Oρ  which is the case for many practical applications. Fig. 10.6 shows that the 

intersection between the water line and the membrane structure is not wall-sided and the 
distance between water line and top of the membrane structure is small. Under normal sea 
states the vertical motion may be large and the tube can be totally submerged. Position 
dependency of added mass, hydrostatic forces  and excitation force (which is not covered 
in the present analysis) will therefore be important. 
 
The theory presented above is based on the assumption that dynamic pressure and 
tension are small compared to the static values. This is not the case for low filling ratios or 
the relative density oi ρρ  is close to 1, see Fig. 10.8. In the case that the dynamic 

tension is larger than the static tension the used approach will break down because the 
total tension cannot be less than zero.  Model test have shown that flexible bag can have 
large hydroelastic deformations when the incident waves are larger than some limit. Such 
cases cannot be predicted by the theory. 
 
 

10.5 Comparison with experiment.  

Model tests have been performed with a 3-D membrane structure in the Marintek Towing 
Tank. The shape of the model is shown in Fig 10.25. Tests were carried out both for beam 
sea (for verification of 2-D model) and in head sea (for verification of 3-D model). The test 
results have been compared to numerical calculations, see Zhao and Aarsnes (1998) for 
details. 
 

 
 
Figure  10.25 Shape of model and position of measuring the transverse elongation. 
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In fig. 10.26 comparison between theoretical and experimental results in beam sea waves 
are shown. The filling ratio was 9.0=γ and relative density 914.0=oi ρρ . The wave 

amplitudes were in the range 1-3 % of the diameter. For all tests the wave amplitude was 
sufficient low to avoid negative tension. Nonlinear effects are therefore believed to be 
relatively unimportant in these tests, see the discussion above. A reasonable agreement 
between test results and calculations is achieved. 
 

 
Figure  10.26 Comparison between theoretical and experimental results for hoop 

 tension in Regular beam sea waves. Full line is from calculations  
 
In fig. 10.27 the comparison between theoretical and experimental results in head sea 
waves are shown. The filling ratio was 0.9 and  relative density 914.0=oi ρρ . Also for 

this case a reasonable agreement between test results and calculations is achieved, but 
the numerical approach overpredict tension for lower frequencies. 
 
 

 
Figure  10.27 Comparison between theoretical and experimental results for hoop 

tension in Regular head sea waves. Full line is from calculations  
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11 AQUACULTURE STRUCTURES  

11.1 Description of Aquaculture structures  

The marine fish farms used for aquaculture purpose consist of highly flexible structural 
components such as fish nets, anchor lines and elastic or hinged floating collar structures 
in the free surface zone. The mooring lines and the nets are connected to the collar 
floaters. The installations are exposed to loads from wind, waves and current and due to 
the dominating elastic behavior of the different components, a hydroelastic approach will 
be required for analysis. 
 
Categorization of type of cages used for fish farming; 
 

• Gravity nets;  
• Net structures enclosed by stiff framework 

 
Gravity nets retain their shape based on gravity connected at the cage bottom. This is the 
dominant net cage type in use today. The nets are connected to a collar frame floating at 
the surface.  The floating collar may be either built up of  a flexible polyethylene rings or 
built as a hinged steel structure. The mooring lines are connected to the floater. 
 
An example of a hinged steel floater supporting the nets is shown in Fig. 9.1. A typical size 
of each cage is 25m x 25m. Draft of the nets will be typically 20-30 m with weights 
connected at the bottom of the nets. Number of cages will be typically 4-10 for each fish 
farm / location. 
 

 

 
Figure  9.1 Example of Net pens of gravity type. Hinged steel cages. 
 
An example of using flexible Polyethylene Rings as floater supporting the nets and mooring 
system is shown in Fig. 9.2. A typical size of each cage is Diameter D=20-30 m. The 
weights are connected at the bottom of the nets either as clump weights or an elastic ring 
with integrated weight for stretching out the net as shown in Fig 9.2. 
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Figure  9.2 Example of Net pens of gravity type. Polarcirkel cage with flexible PEH ring 

as strength element. 
 

 
In Fig 9.3 the Form Ocean Cage system intended for exposed locations is shown. The net 
is kept in position by the stiff sinker tube which again is connected to the stiff top frame.  
 

 
 
Figure  9.3 Example of Net pens enclosed by stiff framework. Farmocean Offshore Cage 

system 
 
From a hydrodynamic and structural analysis point of view, aquaculture structures as 
described above are a rather new type of marine structures with special challengers for 
analysis different from those usually found for offshore structures and ships. The floating 
part may be a compliant or hinged  with very low buoyancy. The cross sectional 
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dimensions are normally small compared to the wave height, which implies that the 
structural members can be exposed to large displacements and hence also large changes 
of submergence during a wave cycle. The mooring system is an integrated part of the 
structure, and due to the small buoyancy, the effect of vertical mooring forces have to be 
considered. Also the contributions from horizontal mooring forces may be of the same 
order of magnitude as the stiffness forces of the floating collar. The total system including 
effect from the fish net and mooring system, therefore  represent a highly complicated 
structural / hydrodynamic problem. The large structural deformations in waves and 
current, see Fig. 9.4, implies that a hydroelastic analysis will be required. 
 
 

 
 
Figure  9.4 Example of deformation of a Net pen in current.  
 
 
 

11.2 Numerical simulation of response in Wave and Current 

As described in the previous section a typical aquaculture plants can be divided into a 
floater part (stiff or elastic), a net part connected to the floater collar and a mooring 
system. In the numerical analysis the following force contributions are included; 
 

• Hydrodynamic forces on the nets 
• Tension forces in the nets (or net structural forces) 
• Hydrodynamic forces on the floater collar 
• Mooring forces 
• Structural modeling of floater collar 

 
Doe to the highly elastic behavior of the structure and nets it is of fundamental importance 
that the hydrodynamic forces are established at the actual position of the different 
structural elements in each time step. This imply that the numerical analysis has to be 
carried out in the time domain. 
 
 

11.2.1 Hydrodynamic forces on Nets 

The nets are assumed modeled by single elements and nodes as shown in Fig. 9.5. The 
elements are four sided with a node in each corner. A mass and a weight (gravity) are 
associated with each node. The nodes can be either free, fixed or have their motion 
prescribed (from the structural interface towards the top frame). 
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Figure  9.5 Overview of the net model 
 
 

The hydrodynamic forces for each net element is divided into drag and lift forces, N
DF  and 

N
LF  respectively. The forces on each net element is given from; 

 

DnUF 2

2
1 ACD

N
D ρ=         (9.1) 
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N
L AC nUF 2

2
1 ρ=         (9.2) 

 
where  DC   and LC  are the drag and lift coefficients respectively, A   is the element area, 

U is the relative velocity vector between the fluid and the net element while  Dn  and Ln  
are the unit vectors of the net element in direction of the drag and lift forces respectively. 
The Drag forces is parallel to the flow while the lift force is perpendicular to the flow 
direction. It is assumed that U  is constant over the whole area of the element and that 
the velocity is evaluated in the element centre; 
 

SCW UUUU −+=         (9.3) 

 
where WU  is the wave particle velocity, CU  is current velocity and SU  is the structural 

velocity of the element. The wave particle velocity is calculated from the incident wave 
kinematics (linear theory or a higher order wave theory may be applied). The wave and 
current velocity is assumed to be undisturbed by the net structure, which imply that 
shielding is not taken into account. 
 
The unit vector  for drag and lift are given from the following relations; 
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where en  is the unit normal vector of the net element, positive in the flow direction. This 

vector is found by taking the cross products of two unit vectors parallel to the diagonals of 
the element, see Fig 9.6: 
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Figure  9.6 Definition of element normal vector en   

 
 

The drag and lift coefficients can for a net structure be calculated from the following 
empirical formulas, see Aarsnes et. al (1990); 
 

αcos)7.1324.104.0(04.0 32
nnnD SSSC +−+−+=     (9.7) 

 

α2sin)1.1054.357.0( 32
nnnL SSSC ++=      (9.8) 

 
where  nS   is the solidity of the net defined as the ratio between the area covered by the 

twins of the net nA  (i.e the solid area),  and the total area enclosed by the net, A ; 
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2
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where t is the diameter of the thread and d is the mesh size.  
 

α  is the angle of attack and is defined as the angle between the direction of U and the 
normal vector of the net element as shown  in Fig 9.7. 
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Figure  9.7 Definition of angle of attack α   
 
 
The element area is not constant, but varies with the deformation of the element. 
Consequently the solidity ratio, nS , will also varies accordingly since the solid area nA  is 

constant. The effective solidity must therefore be corrected to account for the change of 
element area as follows; 
 

A
A

SS nn
0

0,=          (9.10) 

 
where 0,nS  and 0A  are the solidity ratio and element area corresponding to un-deformed 

net element.   
 
The hydrodynamic force acting on each element is distributed equally to each element 
node, where the equation of motion is solved.  
 
 
 

11.2.2 Hydrodynamic forces on the floater collar  

The floater collar is for simplicity represented by a tube in the numerical model. The tube 
is divided into a number of elements. In waves, part of the collar may be in the surface, 
totally submerged or totally out of water. It is therefore required that the hydrodynamic 
forces are calculated in the instantaneous position of the element, taking into account both 
the position of the element and the wave elevation at the actual position. It is important 
that the collar elements are sufficient small to have reasonable equal submergence over 
the element length. A more detailed description of this topic is given by Ormberg (1991) 
and Huang et.al. (2006) 
 
The  hydrodynamic load model is based on two-dimensional strip theory, which requires 
the structural elements to be long and slender. The load normal to the element consist of; 
 

• wave excitation forces 
• Wave impact forces 
• added mass and damping forces 
• Viscous drag forces 

 
Each of these contributions is discussed in the following. 
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The drag forces acting on a tube elements is illustrated in Fig. 9.8. 
 
 

 
 
Figure  9.8 Illustration of hydrodynamic forces acting on a floater collar element,  

top view (left) and side view (right). 
 
 
The drag forces are calculated assuming the cross flow principle from the following 
equation; 
 

njjDC
C

nD lhC eUF ⋅= 2
, sin

2
1 βρ       (9.11) 

 
where now DCC   is the drag coefficient of the collar element, jh   and  jl   are  the 

submerged draft and  the length of the collar element, U is now the relative velocity 
vector between the fluid and the collar element while  ne  and  te  are the unit vectors 

normal to and along the collar element axis as shown in Fig 9.8. β  is the angle of attack 

and is defined as the angle between the direction of U and the collar element axis as 
shown  in Fig 9.10. The force is assumed to attack in the center of the submerged part of 
the collar element. 
 
The tangential skin friction forces shown as tD,F  will by much smaller than the cross flow 

drag and is neglected. 
 
The wave induced excitation force includes the Froude Kriloff and the diffraction forces as 
well as the buoyancy forces. This force contribution can be calculated from; 
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where MC   is the added mass coefficient for the collar element (for simplicity assumed to 

be independent of submergence of the element), jA   is the submerged cross sectional 

β 

U 
FD,t 
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area of the collar element which means that jj lA  is the instantaneous submerged volume 

of the element j.  tW ∂∂U  is the wave particle acceleration. ge   is unit vector for gravity. 

The first term represent the wave excitation force. The second term is the buoyancy force.  
 
The vertical wave impact forces are calculated using the momentum approach;  
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where ZU   is the relative vertical velocity. For small volume structure this contribution is 
relatively unimportant for most cases. 
 
The added mass force contribution can be calculated from; 
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where 
22 t∂∂ x  is the acceleration vector of the element. Note that the potential damping 

term has been neglected in this deviation (will be small for this type of small volume 
structure). 
 
 

11.2.3 Structural modelling of floating collar.  

The structural modelling of the floating collar is done by f.e.m. The model needs to be able 
to handle hinged structures as well as highly elastic components. Large deflection of the 
structure  may occur and a non-linear model should therefore be applied. Application  of 
non-linear f.e.m. models  is given by Ormberg (1991) based on using Riflex and  by 
Berstad et. al. (2004). 
 
 

11.2.4 Mooring Forces  

The mooring forces are usually assumed to be represented by linear springs connected to 
the floater collar. The forces can then be calculated as  
 

xkF M
C
M =          (9.14) 

 
where Mk  is the quasi static stiffness matrix for the mooring system. 
 
Alternatively the mooring lines can be modeled as submerged collar elements in  the f.e.m 
model with given geometry, weight, buoyancy and axial elasticity properties.  
 
 

11.2.5 Equation of motion – Time integration  

The strongly nonlinear behavior both for hydrodynamic  loads and in structural responses 
needs to be covered by the analysis. Using a nonlinear f.e.m. code for solution of the 
coupled floating collar / net panels / mooring line system, a large number of elements will 
be required to give a realistic representation of the this complex structural behavior. Due 
to the strong coupling effects, the entire Fish farming plant needs to be described by one 
model. The analysis will hence be quite time consuming (both in terms of modeling time 
and computer time).  
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The basic idea of the f.e.m. analysis solution is to establish equilibrium between the total 
external loads, extR  , acting on the structure at a given time instant (forces established in 

actual position) and the total internal reaction forces, intR ,  i.e; 

 

0int =+=∑ RRF ext         (9.15) 

 
In order to establish equilibrium, the tangential  stiffness method is be used. External 
loads are incremented to find the state of equilibrium. Having established equilibrium in 
time  step i-1, the conditions for step i, is predicted as; 
 

ΔrKrRrRrΔR 1i1i1i
11

int )()()( −
−

−
−− =+= i

t
ii

ext
i      (9.16) 

 

where 1−i
tΔK  is the tangential stiffness matrix at configuration i-1. The eternal loads are 

calculated based on the configuration of the structure at t-1. This gives a prediction of a 
new set of displacements (j=1). Based on eq. (9.16), a prediction for the total 
displacement 1r =j , is found as; 

 
Δrrr 1i1 += −=j         (9.17) 

 
Based on this estimate for new displacement, both external and internal forces are derived 
based on new structural geometry, and the residual force is put into the equation of 
equilibrium as follows; 
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Note that both the external and internal forces will vary for each iteration, j, due to the 
strongly hydroelastic and position dependent nature of the fluid structure interaction.  
 
Equation (9.18) is solved for the displacement Δr . Incrementing j with one the total 
displacement is now updated as; 
 

Δrrr 1 += −jj          (9.19) 

 
Now if Δr  found from equation (9.19) is larger than the tolerated error in the 
displacements, equation (9.17) is updated (j=j+1) and eq. (9.18) is solved based on the 
new prediction for displacement. This iteration process is repeated until Δr  is smaller than 
a tolerated error, then; 
 

ji rr =           (9.20) 

 
 i  is increased with one and eq. (9.17) is carried out for the new load increment. The 
Newmark-Beta scheme is frequently used for the dynamic time domain integration. 
 
 
 

11.2.6 Approach time integration of net structure dynamic  

A simple numerical model for calculation of response of a flexible netting panel is 
described in the following. The method is based on known top point motions of the net 
panel (fixed or with prescribed motions). The method is  described in more detail by Lader 
at al (2003) and Lader and Enerhaug (2006).  
 
The net is assumed modeled by single elements and nodes as shown in Fig. 9.5. The 
hydrodynamic forces acting on the nets structure are given by eq. (9.1) and (9.2) above.  
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The twines of a flexible net are subjected to an elasticity effect when the external forces 
are applied. The structural modeling of the net elements is shown in Fig 9.8. Each node is 
assumed connected to the other nodes through a non-linear spring. Each spring is 
assumed to have the following force –elongation relationship; 
 

εε 1
2

2 CCFS +=   for 0≥ε      (9.21) 

0=SF    for   0<ε   

 
where SF  is the structural force and ε  is the global elongation. The global elongation is 

given by 00 )( lll −=ε  where 0l  is the un-deformed length and l  is deformed length of 

the panel. 1C  and  2C  are constants describing the stiffness characteristics of each 
spring. For each element there is 6 springs which gives a total of 12 force contributions, 3 
in each node as shown in Fig. 9.9. 
 

 
 
Figure  9.9 Structural modeling of net elements. Node numbers are given in circles and  
   spring number in squares.  
 
 
The force in the spring between node n and m, nmS ,F   is now calculated using eq. (9.21) as 

follow; 
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where and nmε  is the elongation given by; 
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and nmn  is the unit directional vector for the force given by; 
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The total net system is divided into elements which are exposed to external forces as 
outlined above.  The forces are distributed to the nodes to form a system of equation of 
motions. The hydrodynamic and structural forces are calculated in each element and the 
forces are then distributed to each node. The equation of motion is evaluated for the 
nodes. For one node surrounded by the four elements  1e  , 2e  , 3e   and  4e  the total 

structural and hydrodynamic forces from the nets in the node, see Fig. 9.10 for details, is 
given by; 
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The equation of motion, aF m= , are then evaluated in each node as; 
 

anFF mwg gHydStruct =++        (9.27) 

 
where w  and m  is the weight and mass respectively associated with the node, gn   is 

gravity unit vector [0, 0, -1], and  a  is the acceleration vector associated with the node.   

 
 

  
 
Figure  9.10 Structural forces in one node (Left). Hydrodynamic forces in one node 

(Right) 
 
The acceleration of each element is found from the equation of motion, eq. (9.27). To 
calculate the movement of the node, the acceleration is integrated twice, i.e; 
 

∫ ∫∫ ⋅=⋅= dtdtadtux x )(        (9.28) 

 
A 4th  order Runge-Kutta method can be  used for the for the numerical integration 
solution of eq. (9.27). 
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11.3 Comparison with Model Test results  

Two cases are considered, a net cage with fixed top frame in steady current and an elastic 
PEH cage with net exposed to waves and current. 
 
 

11.3.1 Net cage in uniform Current 

Model tests with a circular net in steady current have been carried out by Lader and 
Enerhaug (2005), see also Lader et.al. (2003). The Test set up is shown in Fig 9.11. 
Different size weights were attached to the bottom of the net. The tests were carried out 
in a flume tank. The deformation of the nets and the total drag and lift forces were 
measured. The netting is knotless with a mesh size of d=32 mm and twine thickness of 
t=1.8 mm. This gives a solidity ratio, 225.0=nS . 

 
  

 
 
Figure  9.11 Model tests with net cylinder in steady current. Test set up and test 

condition. 
 
 
In fig 9.12 measured  and calculated deformation of the net structure are shown for the 5 
different current speeds U=0.13 m/s - 0.52 m/s. Bottom weights equal to 16*0.4 kg were 
used. It is seen from the figure that the net deformation is reasonable well reproduced by 
the numerical model. 
 

 
 

Figure  9.12 Deformation of Net pen in current. U=0.13m/s, 0.21m/s, 0.26 m/s, 0.33m/s 
   and 0.52 m/s. Top view; measured in tests. Bottom view; Simulated shape  
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In Fig. 9.13 examples of measured time history for drag forces are shown for different 
current speed. The figure (left view) shows the development of drag force during the 
transient start-up phase of the flow to a steady state condition is reached. This phase is 
used for validation of the numerical model and it is seen that the agreement is good 
except for the lowest speed where the numerical model underestimate then drag force. In 
the same figure (right view) the steady state drag force is shown for the different cases 
tested. Both measured and simulated results are shown.  For the velocity range 0.2-0.4 
m/s good agreement is found, while for higher current speed the numerical simulations 
overpredict the drag force.  
 
The deviations found for the lowest and highest current speed were explained by Reynolds 
number dependency of the drag coefficient.  As can be seen from eq. (9.8) the drag 
coefficient was assumed to be independent of Reynolds number, but the above results 
shows that this may not be the case. 
 

  
 
Figure  9.13 Comparison between calculated and measured drag forces.  

Left; Time histories for drag force for different velocities for weight 16*0.6kg 
Right; Steady state drag force as function of current speed for the different 
weight cases.  
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11.3.2 Flexible PEH cage with net in wave and current.  

Model test with a flexible PEH Cage with net, see Fig. 9.2, in waves and current have been 
carried out. The tests were carried out in the Ocean Basin at MARINTEK. A description of 
the tests and comparison with nonlinear numerical simulations have been presented by  
Ormberg and Slaattelid (1993) and Ormberg (1991).  
 
In the model tests the floating, flexible PEH collar, the nets and the mooring system were 
modeled based on correctly scaled stiffness and geometry of the floating collar as well as 
solidity ratio for the nets. The full scale dimensions of the cage were  Diameter, D=22.3m 
and depths of nets equal to draft=20 m. The measurements included tension in mooring 
lines, bending moment in floating collar at 4 positions and displacement at different 
positions around the collar. The tests were carried out in current and in combine current 
and regular waves. The numerical simulations were carried out using a version of the  
non-linear f.e.m. program  RIFLEX developed to handle elements in the free surface zone 
and net elements, see Ormberg (1991) for details. The wave force model used for collar 
and nets were as outlined above.  
 
In Fig 9.14 the measured and calculated response of the floating collar in current are 
shown. The top view shows the bending moment around the collar including the measured 
bending moment in the 4 positions used. The lower view shows the shape and offset of the 
collar. For the bending moment the agreement is seen to be very good between calculated 
and measured results. For the shape also reasonable agreement is obtained when taking 
into account the nonlinear behavior and the large deformations observed. 
 

 
 
Figure  9.14 Comparison between calculated and measured response of floating collar in  

current. Current velocity 0.5 m/. Top view; bending moment in floating 
collar. Bottom view; shape and offset of floating collar   
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In Fig. 9.15 the comparison of bending moment in the floating collar in combined current 
and regular waves is shown. In the figure the mean value as well as maximum and 
minimum bending moment values are shown as function of position along the 
circumference of the collar. Some small deviations between computed and experimental 
results can be found, but taking into account all uncertainties involved, it can be concluded 
that the overall agreement is satisfactory.  
 
Both the applied hydrodynamic load models for net / collar and the structural formulation 
will therefore give a realistic prediction of the behavior of an elastic cage system with nets 
in wave and current.  
 

 
Figure  9.15 Comparison between calculated and measured shape and offset of floating  
  collar in current. Current velocity 0.5 m/s 
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Appendix A 
 
 
 

Dynamic analysis 
1 Degree of Freedom System 

 
 
 

A1 General 

As the response of a dynamic system due to an arbitrary loading is a key issue in 
hydroelastic analysis, a short summary of methods for dynamic analysis relevant for 
hydroelastic response calculation is presented in this Appendix. 
 
Good references for a general description of dynamic analysis are Thomsen (1993) and 
Clough and Penzien (1975)  
 
 
 

A2 General formulation 

A simple 1 degree of freedom dynamic system is considered; 
 

)(tFkxxbxm =++ &&&          (A.1) 
 
where m, b and c are the mass, damping and stiffness respectively. F(t) is the excited 
load.  
 
The general solution of eq. (A.1) consist of two parts, the homogeneous and the particular 
solution, i.e; 
 

)()()( txtxtx PH +=          (A.2) 
 
The particular solution is determined by the excitation force  F(t). 
 
 
 

A3 Free Oscillation  

A3.1 Undamped Case 

Free oscillations is the case with zero excitation load, ie F(t)=0 in eq. (A.1). The solution to 
the equation of motion for this case is given by the homogeneous solution, )(txH . 

 
For the undamped case the equation of free oscillation can be written as a homogeneous 
second-order linear differential equation; 
 

02 =+ xx Nω&&           (A.3)

  
The natural circular frequency of this system is given from: 
 

m
k

N =ω            (A.4) 
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The natural period is given from the circular frequency as; 
 

N
NT

ω
π2

=           (A.5) 

 
The motion is harmonic and  the general solution of eq. (A.3) is; 
 

tBtAtx NNH ωω cossin)( +=        (A.6) 

 
where the coefficients A and B is determined from the initial conditions. Introducing the 
initial conditions for position and velocity the solution can be shown to reduce to ; 
 

txtxtx NN
N

H ωω
ω

cos)0(sin)0()( +=
&

       (A.7) 

 
Where  )0(x  and )0(x&  is the initial position and velocity respectively. 
 
 

 A3.2 Damped Case 

 For the case the equation of free oscillation can be written as; 
 

0=++ kxxcxm &&&          (A.8)
  

The solution of this equation depends on the damping ration. Here we will only consider 
underdamped systems which means that the damping is less than the critical damping 
defined from; 
 

kmmc Ncr 22 == ω          (A.9) 

 
The damping ratio is defined as; 
 

Ncr m
c

c
c

ω
ς

2
==  

 
The solution for the under critical damped system, 1/ <= ςcrcc  is given on the form; 

 
( )tBtAetx DD

t
H

N ωωςω cossin)( += −
       (A.10) 

 
where the coefficients A and B is determined from the initial conditions. Dω  is the damped 
natural frequency given by; 
 

2)(1 crND cc−= ωω          

 
Introducing the initial boundary conditions for position and velocity the solution can be 
shown to reduce to; 
 

)cos)0(sin)0()0(()( txtxxetx DD
D

t
H

N ωω
ω

ςω +
−

= − &
     (A.11) 

 
where  )0(x  and )0(x&  is the initial position and velocity respectively. 
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 It should be noted that due to damping the homogeneous solution will be a transient. In  
Fig. A.1 an example of damped transient response is shown. 
 

 
Figure A.1 Damped transient response. Undercritical damping case 
 
 
 

A4 Linear, harmonic excitation case 

For a linear, harmonic excitation i.e exciting force can be written as; 
 

)sin()()( 0 tFtF ωω=          (A.12) 

 
where )(0 ωF  is the force amplitude and ω is the frequency of excitation. The particular 

solution of this equation is a steady state oscillation with the same frequency as the 
excitation given on the form; 
 

)sin()()( 0 εωω −= tXtxP         (A.13) 

 
where )(0 ωX  is the amplitude of oscillation andε  is the phase of the displacement relative 

to the excitation. Inserting eq. (A.13) into (A.1) we get the following solutions; 
 

222

0
0

)()(

)(
)(

ωω

ω
ω

cmk

F
X

+−
=        (A.14) 

 
and 
 

⎟
⎠
⎞

⎜
⎝
⎛

−
= −

2
1tan

ω
ωε
mk

c
         

 
Using complex notation we can write the harmonic loading as; 
 

tieFF ωωω )()( 0=          (A.15) 

 
Where F0 is the complex load vector. The particular solution of eq. (A.1) with the load 
given by eq. (A.15) will also be a harmonic response on the form; 
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titi

P eFHeXx ωω ωωωω )()()()( 00 ==       (A.16) 

 
)(ωH  is the complex frequency response function.  Inserting eq. (A.16) into (A.1) we get 

the following solutions; 
 

kcim
H

++−
=

ωω
ω 2

1)(         (A.17) 

 
)(ωH  gives the same result as equation (A.14)  

 
The results given by eq. (A.14) (or similar equation (A.17)) are presented in Fig. A.2. The 
ratio between the dynamic response and the static response can be expressed as a 
Dynamic Amplification Factor (DAF); 
 

)0(
)(

00 H
H

F
Xk

kF
X

DAF
ω

===         

 
This factor is shown in Fig. A.2. The results are shown as function of damping ratio. 
 
 

 
Figure A.2 Dynamic response of 1 degree of freedom system excited by a harmonic 

load. 
 
The solution in time domain can be obtained from the frequency domain solution given by 
(A.16) by superposing the contribution from all frequencies (alternatively by direct use of 
the Fourier transformation) as; 
 

ωωω
π

ω deFHtx ti∫
∞

∞−

= )()(
2
1)( 0                                               (A.18)
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A5 Non-harmonic loading - Transient Response 

When a dynamic system is excited by a general nonperiodic excitation F(t), the response 
will be a transient response.  For a general time dependent force the equation can be 
solved with numerical time integration.  The particular solution can also be found using 
Fourier theory by representing the general nonperiodic excitation as a sum of harmonic 
components or by the impulse-response method. The later is discussed below. 
 
An arbitrary excitation F(t), is assumed represented by a superposition of  very short 
impulse excitations. From solution from each of these pulses the total response of a linear 
dynamic system  will be given by superposition of the solutions for each of the pulses.  
 
Impulse is the time integration of the force; 
 

∫= dttFI )(           (A.19) 

 
A unit impulse or delta function, )(tδ , is defined from the following requirements; 
 

0)( =− atδ  for   at ≠       

1)( =−∫
∞

∞−

dtatδ          (A.20) 

 
The response of the dynamic system given by eq. (A.1) caused by this unit impulse, i.e; 
 

)()( ttFcxxbxm δ==++ &&&         (A.21) 
 
 
The response of the system due to the unit pulse is denoted h(t) and often called the 
impulse-response function; 
 

)()( thtx =           (A.22) 
 
For a random pulse I, at time τ, with force )()( τδ −= tItF the response will be; 
 

)()( τ−⋅= thItx           
 
The response due to pulse I, at time τ, is illustrated in Fig. A.3. 
 

 
 
Figure A.3 Illustration of response due to unit impulse. 
 
The impulse-response function can now be used to calculate the total response for an 
arbitrary excitation F(t). The load is divided into a series of impulses which acts at 
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different time steps and different impulse values. This is illustrated in Fig A.4. The impulse 
shown act at time τ=t  with impulse equal to ττ Δ)(F .  

 
Figure A.4 Arbitrary force represented by series of  impulses. 
 
 
Using equation (A.19) this impulse gives a response; 
 

)()(),( ττττ −⋅Δ⋅= thFtx          (A.23) 
 
By integration over all pulses we obtain; 
 

∫ ⋅⋅−=
t

dFthtx
0

)()()( τττ         (A.24) 

 
This integral is known as the convolution integral or as the superposition integral.   
 
The impulse-response function can be obtained by using equation (A.21). After the 
duration of the  unit impulse free oscillations of the system will take place.  
 
For an undamped system the impulse-response function h(t) can be obtained from eq. 
(A.7) assuming a system initially at rest and excited by an impulse, i.e 0)0( =x  and 

mIx /)0( =& .  This gives; 
 

t
m

th N
N

ω
ω

sin1)( =          (A.25) 

 
Inserting into eq. (A.24) gives; 
 

∫ ⋅⋅−=
t

N
N

dFt
m

tx
0

)()(sin1)( τττω
ω

      (A.26) 

 
For a damped system the impulse-response function h(t) can be obtained from eq. (A.10) 
assuming a system initially at rest and excited by an impulse. For the damped case  this 
gives; 
 

te
m

th D
t

D

N ω
ω

ςω sin1)( −=         (A.27) 
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Inserting into eq. (A.24) gives for the damped case; 
 

∫ ⋅⋅−= −−
t

D
t

D

dFte
m

tx N

0

)( )()(sin1)( τττω
ω

τξω      (A.28) 

 
 
This expression is known as the Duhamel Integral and give the particular solution for a 
general excitation. 
 
The solution to the impulse-response function h(t) can also be obtained from the 
frequency domain solution for harmonic response given by eq. (A.17). By use of Laplace 
Transformation it can be shown that relation between the impulse-response function  and 
the frequency response function eq. (A.17), can be written as; 
 

ωω
π

ω deHth ti⋅= ∫
∞

∞−

)(
2
1)(         (A.29) 

 
Equation (A.29) shows that the impulse response function can be determined from the 
frequency response function. Similar we obtain the inverse relation; 
 

dtethH tiωω −
∞

∞−

⋅= ∫ )()(         (A.30) 

 
 
Results for response to different types of nonperiodic loadings will be discussed in chap 4 
and 6 as part of evaluation of dynamic response to slamming loads. 
 


