
 

35. Overview of the topics and goals. Basic equations and linearization. Regular and irregular 
waves.  (F:3-26) 
 
 
Lecturing 
Main ‘hint’ symbols used: 
Hp:  Assumptions 
[..]   Hint and examples 
      Information on topics not treated in detail 
NB  Attention please 
F:     Faltinsen’s “sea loads” book 
 
 
Background. (F:3-11) 
The marine field is characterized by a broad variety of operating scenarios involving ships and 
ocean structures: ships with different type, size and speeds, ranging from small fishing vessels (say 
10 m long) to large container ships (say 400 m long), and speed varying greatly from very small 
values up to high speed vessels (say with 60 knots speed); oil and gas platforms, freely-floating 
with suitable mooring or dynamic positioning or alternatively tensioned or fixed to the sea floor; 
floating airports, with very large horizontal dimensions with respect to the vertical ones; 
aquaculture plants; wave energy devices; wind energy devices.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The activities involved are also various: transport, oil and gas production, infrastructures, sea food, 
renewable energy. The trends in terms of activities strategies are affected by many factors. Among 
them: the climate changes push toward greener alternative energy sources and greener transport, 
while the reduction in fuel availability at shallow and finite waters pushes toward deeper water 
exploitations (ocean space), new possible routes are opened by the planet warming involving arctic; 
the probability of extreme weather conditions seems to be increased.  
All these factors may need upgrade of the existing marine design and operational criteria. In this 
framework it is crucial to characterize the behaviour of the specific marine unit in its environmental 
conditions to ensure that the activities can be performed successfully, which means in safety, 
effectively and efficiently (in terms of time/costs).  
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One must identify the relevant sea conditions: waves, current, wind, and investigate their induced 
loads and motions on the specific marine unit. This allows to establish and classify critical problems 
and may guide toward design or operation strategy changes.  
The course will examine the sea loads with applications to displacement ships, supported by 
buoyancy and  with Froude number Fn=U/(gL)<0.4, and ocean platforms.  
The steps  will be:  

1. to characterize the sea conditions (wave, current and wind),  
2. to learn how to predict their induced loads and motions,  
3. to learn how to identify critical problems and related criteria-response variables, 
4. to learn how to minimize/control the response as required by regulations,  

        to learn how to design safe and effective operations. 
 
Step 1: Sea conditions  
Roughly speaking we will discuss the free-surface waves, i.e. perturbations propagating along the 
sea surface. The perturbation oscillate with certain amplitudes in time within a certain range of 
frequencies (periods),  and in space within a certain range of wavelengths.  
The currents will be characterized as steady incident water flows.  
The winds will be characterized as steady plus fluctuating incident air flows.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2: Induced loads and motions  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                            Fig. F:1.3  
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This requires a definition of the motions because different types of motions can be relevant for 
different marine units. In the seakeeping, the oscillatory translational and rotational motions are 
defined in the inertial reference frame Earth-fixed or translating with the vessel speed if any. They 
are respectively: surge, sway, heave, roll, pitch and yaw (Fig. 1.3 F). The rotational vector can also 
be indicated as R. The i-th component of the cross vector  rR  can be expressed as 
 
 
  kjijki rR rR  with ijk  is the permutation tensor   

 
 
According to the involved fluid-vessel interactions, the relevant motion features may vary. We 
distinguish between:  

1) wave-frequency motion,  
2) high-frequency motion,  
3) slow-drift motion and  
4) mean drift motion. 

The wave-frequency motion is mainly linearly excited in the wave-frequency range of  significant 
wave energy in the sea spectrum. Typically we expect that the relevant incident-wave periods are 
much greater than 1 sec, corresponding to wavelength about 1.5 m,  and much smaller than 1 min, 
corresponding to wavelength about 6km. The periods of interest are usually around  O(10sec). 
The other types of motions are caused by nonlinear effects because involve frequencies outside the 
excitation frequencies and non-zero mean values of the motionsor . What said for in terms of 
motions 1)-4) can be said for the induced loads.  
We will examine greatly 1) and then discuss the causes and simplified predictions for 2)-4). 
 
NB: Linear system=the output is proportional to the input, the output of a linear combination of 
inputs is a linear combination of the outputs to the single inputs linear superposition principle is 
valid. It means that: in transient  conditions, small variations in the initial conditions result in small 
changes in the output and can not modify the qualitative behaviour of the output. In steady-state 
conditions, if the input oscillates with a given period, the output will oscillate with the same period. 
Nonlinear system=the output depends nonlinearly on the input, so all features above are lost due to 
nonlinear interactions. 
  
The relative importance of 1) to 4) types of response depends on the specific marine unit. In 
particular, the natural periods identify the resonance conditions in the different degrees of freedom. 
The marine units will have largest motion amplitude near resonance and the amplitude will depend 
on the damping level. 
If the natural period of a certain degree of freedom (e.g. heave) is within the wave-frequency range 
then it can be excited, as 1), by linear wave-structure interactions and will dominate the behaviour. 
However, if the motions become large enough nonlinear effects may become relevant and excite 
high- and/or low-frequency motions, i.e. 2) and 3), and mean values of the response.  
If the natural period is outside the wave-frequency range, it can only be excited by nonlinear effects. 
The natural periods vary greatly with the marine units type, as well as the physical mechanisms that 
excite them or damp out the related oscillation amplitudes. As an example Table F:1.1. examines 
the heave natural periods for a wide range of marine units.  
We go from <1s for a high-speed vessel SES to >20s for semi-submersibles and high-speed vessel 
SWATH.   
The value of the natural periods depends on the restoring sources.  
In particular, the air-cushioning for the SES and elasticity of tethers result in small natural periods 
relative to relevant wave periods, the buoyancy connected with the waterplane area for the other 
units examined results in natural periods within the relevant wave periods ranges or greater.  

ijk = 
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-1 for

1
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1
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The excitation mechanisms of the natural periods, i.e. resonance conditions, are linear (within the 
incident-wave frequency) or nonlinear (otherwise).  
The amplitude of the motions at resonance depends on the damping mechanisms. The may be 
physical, provided by wave radiation and viscous effects, or artificial, provided by proper control 
systems. In general the higher the vessel speed the more control systems are require. The larger the 
amplitude the more important the nonlinear effects involved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                Table F:1.1 
 
From Table F:1.1. in the vertical plane, typically the wave-frequency motions are relevant for 
conventional ships, i.e. sec)10(OTn  . High-frequency motions can be important for TLPs 

platforms: examples are the ringing and springing of TLPs due to resonance in the vertical motions. 
For such platforms the restoring forces are provided by the tethers and the mass forces of the 
platform. The natural periods for the vertical modes are 2-4  sec, i.e. smaller than relevant wave 
periods. It means they are excited by nonlinear effects as said.  
Ringing is transient  oscillations, while springing is steady-state oscillations. In terms of design, 
ringing is relevant for the tethers’ extreme tension and springing for the tethers fatigue.  
Low-frequency motions can be important for the semisubmersibles since the natural period is 
>20sec. Typically slow-drift and mean drift motion can be caused by nonlinear effects connected 
with wave, current or wind interactions with the marine unit. For mooring systems, they may more-
easily occur in the horizontal plane since the restoring forces are given by the mooring lines and by 
masses forces of the involved platform. This leads to typical natural periods of 1-2 min. 
 
Let us assume that we have a marine unit in a certain region of the sea, which can be characterized 
by waves, current, wind. The interaction with the vessel induces loads (and motions) on the body 
which depend on the relative dimensions and features of the factors involved. For example, 
focusing on ocean structures and assuming that D is the typical dimension of the structure and  is a 
measure of the incoming-wave length. Fig. F:1.6 provides a qualitative hydrodynamic classification  
of the marine structures using a circular cylinder as representative of structural elements and 
examining the dominant loads.  
Near the wave-breaking limit nonlinear effects become important. Above this limit waves can easily 
break during the interaction with the structure. Below this limit:  
For /D<5 diffraction loads are important, i.e. those induced by the incident waves and their 
modification (diffraction) due to the structure. 
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For /D>5 (small-volume structures) the incident waves tend to be unaffected by the structure and 
long-wave approximation can be used, which means the induced loads are partially connected with 
the acceleration (mass loads) and partially with the velocity (viscous loads) of the incident waves at 
the center of the body, as the body was not there. Mass loads, i.e. proportional to acceleration (and 
so to the mass plus added mass term), are in general dominant as long as the incoming wave 
steepness H/D <10. If H/D <10, for sufficiently large /D viscous loads, i.e. connected with 
viscosity and flow separation and wake, varying as the squared power of the wave velocity, become 
dominant. As /D the wave behaves similarly as a slow-varying current. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                               Fig. F:1.6 
 
Step 3: Critical problems and related criteria-response variables 
One has to identify the critical problems for the given vessel, find a way to predict their features and 
consequences and identify proper criteria-response variables associated with them. 
Minimization/control criteria of such variables can provide safe and successful design and 
operations. Recognized seakeeping and wave loads problems/response variables for ships are (Fig. 
F:1.4): local motions, accelerations, slamming, water on deck, breaking waves, sloshing, wave 
bending moment.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                Fig. F:1.4 
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They may  be dangerous for local/global safety, comfort and performance. 
Generally speaking, the local water-vehicle relative motions represent important response variables, 
for example occurrence of slamming and water on deck phenomena can be assessed through them.   
Also accelerations may be an important response variable because there are limits that must be 
satisfied to ensure comfort/proper onboard work conditions/safety. Such limits may vary according 
to the type of vessel and of work activities. In general. accelerations associated with longer periods 
are more difficult to stand with, so the limits for large ships are stricter than for smaller vessels for 
which typical natural periods are shorter. 
Roll motion is of concern for different vessels, for example is relevant in terms of capsizing 
occurrence. Mechanisms to limit the roll amplitude are given by: bilge keels, anti-roll tanks and 
active fins.  
Other causes of capsizing could be: breaking waves hitting the side of the vessel; following waves 
with phase velocity similar to the vessel speed inducing unstable route change (broaching).  
Sloshing may be relevant any time there is a confinement of liquid (onboard tanks, ship decks with 
bulwark). It is a resonance phenomenon which is excited when the wave period is close to the  
natural period of the confinement region (i.e. the tank)  and may lead to large fluid motions due to 
the limited damping associated with the fluid motion. Violent sloshing may lead to slamming, wave 
breaking and other complex scenarios which may be connected with high local pressures on the 
structures as well as large global loads. Both relevant for the design.  
For large ships, another issue is the excitation of wave bending moment which may lead to 
whipping and springing, respectively, transient and steady-state elastic oscillations of the vehicle. 
They can be associated with linear and nonlinear excitation mechanisms. 
Ship motions and induced sea loads may lead to voluntary and involuntary speed reduction of the 
vessel. The former is decided as operational strategy to ensure safety, comfort, operations on board. 
The latter is a consequence of reduced performance, for instance due to off-regime of the propeller 
in waves, added resistance in waves.  
 
Step 4: Minimization/control criteria 
The response variables of interest may vary according to the vessel type. The following figure 
documents the operational criteria used up-to-now for ships with different size, features and 
activities. 
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What are our tools? How can we predict motions/loads and take them under control?  
The tools are: model and full scale experiments, analytical solutions, engineering tools (established 
methods like strip theory), and more general numerical solutions (Computational Fluid Dynamic, 
CFD, methods). 
Experiments remain still the major tool. Analytical solutions when available are very useful. CFD 
approach is getting more and more popular. 
 

Tool Advantages Disadvantages 

Experiments 
Complex geometries  

Visualization 
Local and global quantities 

Cost 
Reliability 

Scaling (if with models) 

Analytical solutions Fast & cheap 
Simplified models 
Simple geometries 

Engineering tools 
Relatively fast & cheap 

Well recognized reliability 
Wide, but not enough, models 
 Relatively simple geometries 

CFD methods 

Complex models 
Complex geometries  

Visualization 
Local and global quantities 

Reliability 
Costs 

 
 
 
Assumptions and  basic equations. (F:13-17) 
The water is considered continuous and with uniform density . For the problems of interest the 
temperature is assumed uniform and constant and the fluid evolution can be fully described once 
estimated the velocity V(r,t) and pressure p(r,t) fields. Assuming a Cartesian reference frame (x,y,z), 
alternative conventions are: r=(x,y,z)= xi+yj+zk=x1e1+ x2e2+ x3e3 ,  V= (u,v,w)=(u1,u2,u3). In 
alternative to r we will also use P. 
 
 
 
 
 
 
 
To solve the problem we need to identify:  
 
Governing Equations + Boundary Conditions + Initial Conditions. 
 
velocity (V) and  pressure (p)   we need 1 vectorial (3 scalar in3D) + 1 scalar equations. 
 
Governing Equations: 
1) Conservation of fluid mass           the fluid mass inside any volume  does not change in time  
                                                          formally as mass =m=const 
2) Conservation of fluid momentum the fluid momentum changes inside  balance the forces   
                                                              acting on the volume and along its enclosing surface  
                                                           formally as Fa m  (Newton 2nd Law) 
     
   
Basic assumptions:  

z, k,e3

y, j,e2

x, i,e1
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The fluid is inviscid in irrotational motion and incompressible potential flow theory 
 
 Inviscid:  
      means zero viscosity =0, i.e. the tangential stresses are null.     
 
 
 
 
 
 
 
 
 
 
 
 
 Irrotational: means that locally  the fluid does not tend to rotate   the vorticity =0   

=V=0  
 
[For a rigid body V=U+Rr   =2R= twice the angular velocity] 
 
 
 Incompressible: means that  locally the fluid volume does not change  

     V=0          [
z

w

y

v

x

u












 V  ] 

    
 
 
 
 
It means that the net flux across  any  is zero, i.e. the flux that enters in   ( Vn <0)  equals the 
flux going out from  (Vn >0).  
 
 
Consequences of the assumptions: 
 
V=0  V can be written as the gradient of a scalar variable,  

i.e. V= = kji
zyx 









 

  

with  a scalar called velocity potential defined unless a constant.  
 
The pressure  can be obtained from the Bernoulli eq.:  
 

 
  

quadraticandlineardynamic
static

a t
gzpp 2

2

1  



  

 
NB: The dynamic linear part is very important from practical perspective, i.e. in terms of induced 
loads and motions. 
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Advantage: we need to find only    (scalar) to solve for V and p 
                   1 scalar governing eq. instead of 1 vectorial and 1 scalar.  
 
 
Problem for : 
 
 
 
 
 
 
 
 
Governing eq:  

  00 2      in   (F:2.3)  Laplace eq. 
 
Boundary conditions:  
 
Sea-bottom kinematic condition: impermeability condition 

0



n


        on SSF   (F:2.5)    

 
Body kinematic condition:  impermeability condition  

 nVB 



velocitybody
n


   on SB    (F:2.6)     

 
Free-surface kinematic condition:  fluid particles on SFS,  0),,(  tyxz   ,  remain there  




0
)(

Dt

zD 
 

  
nonlinear

yyxxtz 


















 

   on ),,( tyxz    (F:2.10)     

 
Free-surface dynamic condition:  pressure equal to ambient pressure pa    

0
2

1
222
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







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
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
































  
nonlinear

zyxt
g

  on ),,( tyxz    (F:2.11)     

  
Far-field condition: waves are outgoing 
 
Two conditions are necessary on SFS because  is an unknown as .  
The problem depends on time through conditions (F:2.6), (F:2.10) and (F:2.11) and is nonlinear due 
to (F:2.10) and (F:2.11).  
 
Linearization of the problem 
Assuming  as measure of the problem nonlinearities, i.e. wave nonlinearities, the solution can be 
expressed as 
 
 
 ........

........
3
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substituting these expressions in the governing equation and boundary conditions and using Taylor 
expansion of the boundary conditions around the mean boundary configuration (i.e. body motions 
and free-surface deformations are expressed as power functions of  ) we can find the problems for 
each solution order. 
Assuming  small and neglecting terms O(n) with n>1,  conditions (F:2.10) and (F:2.11) can be 
linearized and applied at the mean free surface z=0 
 
NB: A consequence of linear theory is that the response (output), i.e. body-motion amplitude,  is 
proportional to the excitation (input), i.e. incident-wave amplitude. 
 
 

tz 




    on z=0  (F:2.12) 

0




t

g
  on z=0  (F:2.13) 

 
Differentiating (F:2.13) with respect to time and substituting in (F:2.12), the combined free-surface 
condition is obtained: 
 

0
2

2









z
g

t


 on z=0  (F:2.14) 

 
In steady-state conditions,  the solution oscillates with the incoming-wave frequency , and 
condition (F:2.14) becomes  

02 




z

g
    (F:2.15) 

Moreover space and time variables can be separated: 

   












dependencetime

ti

dependencespace

ezyxtzyx   ),,(),,,(   

 
NB: In linear conditions and steady-state conditions the ‘response’ (output) oscillates with the 
frequency of the ‘disturbance’ (input). 
 
This means that it is possible to avoid the time dependence from the problem and solve a one-shot 
problem only dependent from  (frequency domain analysis). In nonlinear conditions and/or in 
transient conditions the problem must be solved in time (time domain analysis).  
 
The environmental conditions of interest are: waves, currents and wind. We are interested to 
estimate the loads (and motions) induced by them.  
 
 
Environment  
The marine vehicles are subjected generally to an environment made of incident waves (generated 
far from them), wind and current. So we must estimate the related induced loads (and motions). 
 
Incident regular waves (F:17-23) 
Hp: Incoming free-surface regular gravity linear waves propagating in deep-water conditions. 
Incident: means generated far away 

10



 

2D/planar waves: means propagating along a plane/direction 
Free-surface waves: means propagating along the sea surface and null far from it 
Gravity waves: means governed by gravity, i.e. >>1cm (surface tension negligible) 
Regular: means oscillating with a certain frequency  = 2π/T and then with a certain wavelength  
 
 
 
 
 
 
 
 
 
 
 
 
 
Propagating: means the wave fronts (surfaces with constant phase, e.g. phase=/2   maximum 
wave elevation  wave peaks) move with a certain speed, called phase velocity, c 
Deep-water:  means in a region with very large water depth, i.e. h 
Linear:  means small   

/H   or  /Hk a   are a measure of the ‘steepness’ of the waves, i.e. of the wave 

nonlinearities, so that can be used as parameter .  
 
NB: Since the steepness is a  the nonlinearities are also expressed in powers of a  however the 

steepness is more appropriate to express the nonlinearities within a perturbation method. 
 
 

Hp: Waves propagating in x direction, with wavelength  and amplitude a. 
 

We  want to find  the solution for  representing a wave in these conditionsWe must find what 
features the waves must have to satisfy the problem:   
 

02    in     (a) 

02 




z

g
  on  z=0  (b) 

 zas0,    (c)  [far field condition] 
 
We do not find systematically the solution but we note that: 
 Condition (c) is satisfied by ekz  
 Eq. (a) is satisfied by  kxBkxAekz sincos   

           0sincossincos 22  kxBkxAekkxBkxAek kzkz  

 Oscillation with frequency  is ensured by   tcos with  a phase 
 So the solution could be written generally as  
              tkxBkxAekz cossincos   (d) 
 Substituting this in condition (b) we have a compatibility between space and time parameters: 
          gk2   [dispersion relationship] 
      i.e. waves with a certain length must oscillate with a certain period. 

H=2a

=2π/k

z

y

x



wave
fronts
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Expression (d) in general is not a propagating but a standing wave.  
 
 
 
 
 
 
 
to have a propagating wave space and time variations must be combined as  
      kxtCekz cos  (e) 
In this way   kxt  = const     tkx -const  indicates a wave front whose position x 
increases in time, i.e. the front  propagates along the positive x with a speed  
  c=dx/dt=/k (phase speed).  
 

   kxtCekz cos  is instead the solution for a wave propagating along the negative x. 
 
Inserting (e) in the dynamic free-surface condition  

  






kxt
g

C

tg z

sin
1

0

 so C/g=a   C =a g/ 

so the solution is found. 
 
  For waves with a generic direction  with respect to x 
       kxt  = const  becomes   rkt  = const  with k=(kcos,ksin) and r=(x,y) 
 
  For waves in finite water depth h  
      the z dependence ekz becomes coshk(h+z)/coshkzh  
       the dispersion relation becomes khgk tanh2   
 
Table F:2.1 gives the behaviour of the different variables in deep and water depth. They have in 
general maximum at different locations. Fig. F:2.1 shows this in terms of the wave elevation, 
pressure, velocity and acceleration along a wavelength and at a generic depth. We see that the 
dynamic pressure is negative under a trough and is positive under a crest. The same is true for u 
which then is in the wave-propagation direction under a crest and the opposite under a trough. The 
acceleration is greatest in magnitude under a node. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

standing wave propagating wave
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Fig. F:2.3 discusses the pressure behaviour according to linear theory. Since the pressure is given 
relative the atmospheric pressure it must go to zero at the free surface, which means that the static 
and dynamic contributions must balance each other. This is exactly satisfied at a crest but not at a 
trough, there a higher-order  error, O(n) with n>1, is committed.  
 

"Hydrostatic" pressure

ag 

Total pressure

ag 

 Linear dynamic pressure /

a

t

g

 
 

  

Total pressure

ag 

"Hydrostatic" pressure

ag 

 Linear dynamic pressure /

a

t

g

 
 

  

 
                                                                   Fig. F:2.3 
 
NB: At a fixed point the fluid velocity  has zero mean value but if we follow the fluid particle in its 
motion consistent with linear theory, then the fluid particle is drifted in time in the wave-
propagation direction with a velocity called Stokes drift velocity which is a second-order variable, 

i.e. )2exp( 0
2 kzka  , with z0 the particle position when there are no waves, see Fig. F:2.4. 
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The waves are associated with energy. The mean (potential and kinetic) wave energy in a 
wavelength and per unit width is  

        
2

2 ag
E   

The mean wave-energy density is  
2

2
agE 


  

E travels with a speed cg=/T =/k (group velocity) that is   k
c

gk

g



 2

1

2 

 in deep water. 

An important concept for practical application is the wave power, given by the wave-energy density 
multiplied by the wave-energy speed (group velocity):  

    



22

2
gg

P a
W   

 
So we have three different velocities associated with the waves: 

1) The fluid velocity =associated with an orbital path, circular in deep water  
2) The phase velocity c = of the propagating wave fronts 
3) The group velocity cg=of the wave energy 

 
 
NB: Regular incident waves are far from being similar to how ocean waves appear in reality. 
However they can be useful to describe more general waves under the assumption of linear 
conditions due to superposition principle. 
 
 
Incident long-crested irregular waves (F:23-27,29-31) 
Long-crested=the wave energy is propagating in one dimension, i.e. 2D waves 
Irregular= with energy within a certain range of frequencies 
 
An important consequence of linear conditions is that superposition principle is valid, i.e. the 
problem can be split in its single elements. 
 
In our case assuming an irregular wave with a wave spectrum S() (see fig. F:2.5) 

 
 
 
                               
 
 
 
 
 
 
 
 

        Fig. F:2.5  
       
The energy in the spectrum  can be split in  a finite (large)  number of regular wave components, i.e. 

       jjj

N

j
j xktA   



sin
1

   (1) 

  2s m s

15.0

7.5

0.75 1.5
min

max

 1rad s 

H1/3=8m,T2=10s

Number of wave
components N=22

 max min / N    

Wave amplitude of wave
component j:

 2j jA s   

How energy in a wave spectrum can
be distributed to individual regular
wave components



S()

j

0.5Aj
2=S(j)dj

dj

0.5Aj
2
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   )(
2

1 2 SAA jj  to preserve the wave energy 

 j  is a random phase to recover a statistic behaviour in time they are independent from 
each other 

 j and kj are linked through the dispersion relation 
 The wave elevation is Gaussian distributed 
 The probability density function for the maxima of   can be approximated by a Rayleigh 

distribution. 
 

Similarly we can obtain the velocity and other wave quantities. 
 
So we can study the response to irregular waves as the sum of the responses to regular waves. 
 
There are different recommendations in terms of S() to describe properly ocean waves:  
Examples are (see Fig. F:2.6)  

 Pierson-Moskowitz (used for Mediterranean sea) and  
 JONSWAP (used for the North sea). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The features of the spectrum in terms of width, symmetry, nonlinearities, are given by the spectrum 
moments  

 dSm k
k )(

0



   

m0 is also known as variance 2  and its square-root (standard deviation) gives the deviation from 
the mean value of the spectrum. 
As for the regular waves, we can define relevant  wave periods and heights, i.e.  

101 /2 mmT      

202 /2 mmT   (mean wave period)  

T0 (corresponding to the peak frequency of the spectrum, also known as modal period) 
 

15



 

3/1H  = significant wave height=mean of the one third highest waves 04 m  for Gaussian 

distribution. 
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Marine Field: Marine Field: ScenariosScenarios

Very large floating structures (VLFS)
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Aquaculture

l tplants

Pelamis wave energy plant

Offshore wind mills
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Coordinate system and rigid-body modes
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PressurePressure distributiondistribution in in regularregular linear linear waveswaves
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36. Waves (continuation). Wind. Current. Radiation and diffraction problems. Excitation 
loads. Added-mass and damping: physical meaning, strip-theory. (F:27-34,39-49,58-66) 
 
Incident long-crested irregular waves (F:27,29-31) 
 
Summary: Long-crested irregular waves, superposition principle, periods, significant wave-height.
 
The peak values of the wave elevation are an important parameter to examine  for safe design  and 
operations. If a Gaussian distribution (spectrum bell shaped) is a good approximation for the wave 
process, the Rayleigh distribution is considered a good a approximation for the probability density 
function of the maxima (peak values), say A,  of the wave elevation, i.e. 











0

2

0 2
exp)(

m

A

m

A
Ap      (F:2.32) 

The integration of it in a certain interval of maxima will provide the probability that the peak can 
have value in that interval.  
The most probable largest value maxA during a ‘short-term’ time t is then 

2
0max log2

T

t
mA       (F:2.35) 

The analysis so far considered is called as ‘short-term’ sea state. If  the features of the spectrum 
change in time one talks about long-term sea state.  
In this case the features of the sea state change in time, i.e. T0 and H1/3.  
 
 
 
 
 
 
 
 
 
 
 
 
This means that different sea states can alternate, and the persistence of re-occurrence of a certain 
sea state will depend on its probability, the greater the probability, the longer one can expect that 
sea state. This means that we can sum up the short-term prediction for each sea state, weighted by 
the probability of the sea state, to get the long-term prediction. To find the probability that a certain 
combination  (T0 , H1/3) occurs, joint probability, we need the scatter diagram. Table F:2.2 gives an 
example.  
In the table, you see the ranges of periods and significant wave heights which have a probability of 
occurrence. The numbers in the table give the occurrence of T0  and  H1/3  and the sum of all 
possible occurrences here is 100001, so the probability associated wit a certain occurrence is given 
by the occurrence divided by the sum of the occurrences. 
Examples of application of table F:2.2:  

1. The joint probability for 6m<H1/3<7m and T1=9sec is 00027.0
100001

27
ijp  

2. If you want the probability for a certain H1/3 for any value of the period, then you must sum 
all occurrences in the raw of that H1/3  and divide by the sum. Similarly is you want the 

time



S()

)1(
3/1

)1(
0 , HT



)2(
3/1

)2(
0 , HT
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probability for a certain T0 for any value of the significant wave height, then you must sum 
all occurrences in the column of  that T0 and divide by the sum.  
Ex., the probability for  

      -  H1/3 <6m is 96.0
100001

)483991181544225792321558636(



jp  

      -  H1/3 >6m is 04.0
100001

16195716041910282329
96.01 


jp  

         Hp: a certain criterion to be satisfied H1/3  must be <6m . From the table  
         the criterion is not satisfied  for 4% of the time during a year. 

      - 3m< H1/3 <6m is 29.0
100001

)4839911815442(



jp  

     
 
NB: Table F:2.2 does not provide information on the duration of a certain sea state.  
 
We have learned that for a regular wave the wave power is  

                 





sNmWin

gg

k

g
P

sm
mN

in

a

gk

velocity
group

density
energy
mean

a
W //

2222
/

/

22
2










    

 
This can be extended for irregular waves:  
In short-term perspective, assuming that the spectrum S() is split in elementary interval wide d 
each regular-wave  will contribute to the wave-power of the sea state with                       
                

                






22

)(2

22

2 gdSgggA
  

 
Summing all contributions, i.e. integrating from 0 to  we find the power as  
 

                



0

2 )(

2 
 dSg

PW    (1) 
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So for instance for the Pierson-Moskovitz spectrum we have  
 
                1

2
3/1

2005535.0 THgPW   

 
In long-term perspective,  the spectrum features, i.e. 13/1 TandH  will vary in time, so expression 

(1) contributes proportionally with the joint probability, say ijp  , of 13/1 TandH . Summing up all 

contributions the power will be  
 
                ( ) ( )

1/3 1( , )i j
W W ij

i j

P P H T p  

To evaluate the wave power on a long-term perspective we need then the scatter diagram. An 
example is given in the following figure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Incident short-crested irregular waves (F:27-29) 
Short-crested= the wave spectrum varies with direction , i.e. S(,). 
 
This mean that elementary waves in the spectrum have different propagation direction, and we can 
decompose the waves as 

                                        jkkjkjj

N

j
jk

K

k

ykxktA   
 

coscossin
1 1

   (1) 

 kjkjjkjk SAA   ),(
2

1 2  to preserve the wave energy 

 jk  is a random phase to recover a statistic behaviour in time 
 j and kj are linked through the dispersion relation 

T2 [seconds]

H1/3 [m] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sum

0.5 0 0 15 70 104 85 50 24 10 4 1 1 0 0 0 0 364

1 0 0 1 17 51 65 49 27 12 5 2 1 0 0 0 0 230

1.5 0 0 0 4 24 44 43 28 13 5 2 1 0 0 0 0 164

2 0 0 0 1 9 24 30 22 12 5 2 1 0 0 0 0 106

2.5 0 0 0 0 3 11 18 16 9 4 1 1 0 0 0 0 63

3 0 0 0 0 1 5 10 10 6 3 1 0 0 0 0 0 36

3.5 0 0 0 0 0 2 5 5 4 2 1 0 0 0 0 0 19

4 0 0 0 0 0 1 2 5 2 1 1 0 0 0 0 0 10

4.5 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 4

5 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2

5.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sum 0 0 16 92 192 237 208 137 70 30 11 5 0 0 0 0 998

T2 [seconds]

H1/3 [m] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sum

0.5 0 0 15 70 104 85 50 24 10 4 1 1 0 0 0 0 364

1 0 0 1 17 51 65 49 27 12 5 2 1 0 0 0 0 230

1.5 0 0 0 4 24 44 43 28 13 5 2 1 0 0 0 0 164

2 0 0 0 1 9 24 30 22 12 5 2 1 0 0 0 0 106

2.5 0 0 0 0 3 11 18 16 9 4 1 1 0 0 0 0 63

3 0 0 0 0 1 5 10 10 6 3 1 0 0 0 0 0 36

3.5 0 0 0 0 0 2 5 5 4 2 1 0 0 0 0 0 19

4 0 0 0 0 0 1 2 5 2 1 1 0 0 0 0 0 10

4.5 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 4

5 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2

5.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sum 0 0 16 92 192 237 208 137 70 30 11 5 0 0 0 0 998

 1/3 2,w w ij
i j

P P H T p
1/ 3 2

24
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We need to know the scatter diagram

10.5 /kW m
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 k is the direction relative to x of wave propagation 
 
Wind (F:31-33) 
Also the wind is typically described statistically with a spectrum that can vary in time and in space 
moving far from the sea level. One can identify  

 a mean wind responsible for mean loads and  
 gusts responsible for transient (even resonant) loads. 

 
NB: A one-hour mean wind speed at 10 m above the sea level U10  for design of offshore structures 
in North Sea is 40m/s. 
 
Current (F:33-34) 
The 10th ISSC distinguishes 6  current contributions:  

 Ut due to tides [depends on location] 
 Uw due to local wind 
 Us due to Stokes drift (see eq. (F:2.21)) [can be relevant and is a Lagrangian contribution] 
 Um due to major ocean circulation 
 Uset-up due to set-up and storm phenomena 
 Ud due to local density variations 

 
NB: A total current velocity U for design of offshore structures in North Sea is 1m/s. 
 
 
We will now discuss the “wave-frequency” loads/motions within the linear potential-flow theory, 
the sea environment is described by planar regular waves. 
 
Loads   
Under our assumptions of inviscid fluid, the forces and moments are obtained by integrating the 
pressure along the wetted surface of the body: 

                           
BB SS

dSpdSp nrMnF  

 
NB: The normal vector is directed inside the body, in the opposite case there is  ‘-‘ in the formula. 
 
The linear loads are obtained integrating the pressure  
 
                                                                 ,  
 
 
The hydrostatic part must be integrated on the instantaneous body surface to include all linear 
terms, i.e. up to O(a), the dynamic part which is O(a), along the mean body wetted surface S0,B. 
We now focus on PD: Using the notation with the generalized normal vector 

                        
  3
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k
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for k


     r n
 

we get  the generalized forces  
 
 
 
(i.e. forces for k=1,2,3 and moments for k=4,5,6). 
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Radiation and diffraction problems (F:39-41) 
Hp: Linear potential flow theory. Deep water. Regular incoming waves. Steady-state conditions. 
Zero forward speed. 
 
 
 
 
 
 
 
 
 
 
Incoming waves: 
  For the incoming-wave velocity potential, we found the solution 

                                    0 0( / ) cos( ) ( , , )kz i t
ag e t x y z e         k r  

  Here the additional phase was set to zero and we used                                         .  
        
 
Linearity+ steady state conditions                                                   
 the problem can be solved in  as we have discussed previously [analysis in frequency domain] 
 
Linearity  the superposition principle is valid and the potential can be decomposed in terms of the  
                    fundamental physical effects involved in the fluid-body interaction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this way the problem is split in two sub-problems:      
                    
 Diffraction problem (“problem A” in F) 
Hp: the body is assumed fixed and interacting with incident waves.  
The velocity potential is the sum  
 

0( , , , ) ( , , , ) ( , , , )D

diffractionincident wave

x y z t x y z t x y z t     
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NB: D is alternatively  indicated  as 7. 
        Also another convention is widely used (Newman pg. 288): 
 
 
 

 
The spatial potential satisfies   

                          0

( )
0o D

BS
n

  
  


P  

Splitting the problem in the problems of the two potentials:  
 
 
 
 
 
 
 
 
 
The flow due to 0 penetrates the body with normal velocity 0/n, i.e. like the body was not there. 
D satisfies a problem where the body oscillates in the opposite way to the incident waves, i.e. as an 
elastic body with normal velocity -0/n. 
This causes hydrodynamic loads on the body called  
wave excitation loads= Froude_Kriloff loads + diffraction loads: 
 
 
 
 
 

akexck FX  /|||),(| ,  is the transfer function for the excitation loads for a wave with frequency  

and direction , i.e. loads amplitude per unit wave amplitude. Once known, it allows to know the 
magnitude of the loads for any wave amplitude (within linear theory). 
 
 Radiation problem (“problem B” in F) 
Hp: the body is forced to oscillate in its 6 degrees of freedom with frequency. No incident waves.  
 
 
j=1..6: surge, sway, heave, roll, pitch, yaw, and ja is the oscillation amplitude in the j-th degree of 
freedom, as we have already learned. 
 
NB: The motion calculations are made in an inertial reference frame, Earth-fixed or translating if 
there is forward speed.  
 
Now                                            and can be split in 6 sub-problems as 
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j is the  velocity potential for the body oscillating with unitary speed  in the j-th mode.  It satisfies  

               0
j

j Bn S
n


  


P   

with nj the j-th component of the generalized normal vector. 
 
The moving body generates waves (radiated waves) and so is subjected to hydrodynamic loads 
identified as  added-mass, damping, and restoring terms: 
 
 
 
 
 
 

with 
0

( )
B

kj j k

S

A n dS  
 

  
  
     and 

0

( )
B

kj j k

S

B n dS   
 

   
  
  

 
Here the upper dots mean time derivatives. 
 
Akj ()  = added-mass terms   load contribution in phase with acceleration 
Bkj ()   = damping terms   load contribution in phase with velocity 
 
NB: We will analyse them more in detail later. 
 
Radiation & Diffraction link: Haskind relations (v. Newman 1977) 
 

 0 0

0/

B B

k n

k D
D k

S S
n

dS dS
n n



  

 

 


    (H) 

 
As a result of the Haskind relations, the excitation loads can be written in terms of 0 and  k 
(k=1,..6): 

 
0 0

0
, 0 0( )

B B

i t i t k
exc k D k k

S S

F t i e n dS i e dS
n n

          
                          
   

These two formulas are then alternative and in the second one, to estimate the diffraction loads one 
must know the incident waves and solve the radiation problem. It can be useful for check of the 
loads estimates. 
 
NB: The second formula is useful when to find k  is easier than to find D . For instance when for 

the radiation problem you can use the strip theory but not for the diffraction problem. If we want 
the pressure then we need to find D . 

 
 
Strip theory 
It is very useful to estimate loads (motions) both for ships and elongated parts of ocean structures.  
Basic Hp: The body is ‘slender’, i.e. elongated.  
 
The body is split in strips dx along x. The loads are estimated for each strip and then integrated 
along x to provide the 3D loads. 

0

, ( ) 1..6
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1

, 1..6kj j kj j
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A B k 

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For the radiation problem: Strip theory can be justified for the zero-speed problem when the 
frequency of oscillation corresponds to a wavelength which is the order of the cross-sectional 
dimension in (y,z) plane, because in this case the flow variations occur mostly in the (y,z) plane 
the 3D problem can be approximated as the sum of 2D problems.  
A strip theory cannot be rationally justified at forward speed as well as for longer wavelengths than 
mentioned above. However, the theory can give very satisfactory results and the difference between 
more theoretically correct and much more complicated linear theories are generally secondary. 
For the diffraction problem: We cannot theoretically justify a strip theory for the same frequency 
range as we can for the radiation problem, i.e. for wave lengths comparable with the cross-sectional 
dimension. However, this frequency range is not of primary importance in the seakeeping problem, 
i.e. the motions and accelerations are small. We can instead handle the diffraction problem with 
wavelengths large relative to the cross-section in (z,y) plane by considering a fictitious “forced” 
motion against the incident wave motion in combination with strip theory the 3D hydrodynamic 
problem can be approximated as the sum of  2D problems. In addition, it comes the Froude-Kriloff 
loads. 
 
 
Long-wave approximation (F:60-62) 
The excitation loads have a particular form in the case of long-wave approximation, or better small-
volume structure approximation, which is of practical relevance in many circumstances. 
 
Hp: Long waves: in case of an equivalent circular cylinder it means λ>> D   k<<1/D 
       The waves propagate along x and the characteristic length D is in the plane  (x,y). 
            
How much does it mean λ>> D? 
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The figure above confirms that the long-wave approximation is good for λ>5D. For λ<5D wave 
diffraction is important. 
 
Example: 2D body in (y,z) plane with area  A=y(zt-zb). Long waves in y direction. 
       

                                 

Area=Ay zt-zb

y

zwaves

zt

zm

zb

                                                                              
 
The vertical Froude-Kriloff force is 

2

,3 0 3 0 0

03

03

( ) exp( ) exp( )

exp( ) ( ) ( )

FK t b

t b

m t b m

wave vertical acceleration Area

F t p n dl p dl p dl g kz y g kz y

gk kz y z z a z A
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

   
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
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        

    



  

   

 
Here a Taylor expansion around zm has been used: 
exp( ) exp( ) exp( )( )

exp( ) exp( ) exp( )( )
t m m t m

b m m b m

kz kz k kz z z

kz kz k kz z z

  
  

 

 
So the force is given by the incident-wave vertical acceleration at the geometrical center of the 
cross-section multiplied by the mass of water displaced by the boy.  
 
NB: In the example the body is surrounded by water in the directions where FK force is estimated. 
These results cannot be used in the direction where this is not true, e.g. if the body is surface 
piercing or fixed to the sea floor.    
If a 3D body is small and fully submerged the Froude-Kriloff forces can be approximated as  
 
           , 0( ) 1..3FK k kF t a V k   

 
 with V the body volume. 
 
For the incident waves the body is transparent, i.e. permeable. So in our 2D example: 
 
 
 
                                                                                       

Time instant 1 Incident wave velocity

Time instant 2

Incident wave velocity
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This means the wave-body interaction must generate a flow opposite to the incident wave motion to 
ensure the impermeability: 
   
 
 
 
 
 
 
 
 
 
 
 
 
This causes the diffraction loads, as radiation loads due to the forced motion opposite to the incident 
waves to stop the flux across the body boundary. So they are associated with added-mass and 
damping terms respectively in phase with the opposite of the wave acceleration and with the 
opposite of the wave velocity. 
Using the assumption λ>> D,  for our 2D example we have:  
 

,2 22 02 22 02

,3 33 03 33 03

( ) ( ) ( )

( ) ( ) ( )
D

D

F t A a B u

F t A a B u

    

      

 
NB: In the diffraction problem the body DOES NOT move: incident-waves plus diffraction flow 
give zero velocity at the body surface. 
 
NB: Here we have velocity and acceleration opposite to those of the incident waves.  
        In the radiation problem they are the body velocity and acceleration. 
 
The general expression for diffractions forces in long-wave approximation is  

 , 0 0
1

3
( )D k j kj j kj

j

F t a A u B


   3..1k  

This shows in another way the link existing between the radiation and diffraction problems.  
 
Another consequence of the long-wave approximation (small ), is that the generated waves are 
small  the damping coefficients are small relative to the terms proportional to the acceleration, i.e. 
                   
So for small-volume structure the excitation forces can be expressed in general as  

                 , 0 0
1

3
( ) 1..3exc k k j kj

jS

F t p n dS a A k


       (F:3.36) 

with the normal vector ),,( 321 nnnn pointing inside the body. 

 
NB: Long-wave approximation means 0  however in general is not good to estimate kjA  at 

=0 because they may diverge. For example, 33A  is infinite at =0 for 2D surface-piercing bodies 

in deep water. 
 

We imagine a forced motion that is minus the incident wave motion
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NB: If the body is elongated in one direction, in that direction the long-wave approximation is not 
valid but it might be valid to find the load components in other directions and then use a strip 
theory approach to find the 3D loads.  
 
 
Examples:  
 
1. For semisubmersible the length of the pontoons, say along x, is large but their cross-section, say 
in (y,z) plane, is small relative to incident waves of practical interest.  
In this case, we can combine strip-theory and long-wave approximation. For instance for the force 
in z we have: 
                

(2 )
,3 0 3

1

3
( ) ( , ) D

D j j
j x

F t a x t A dx


   

 
with 0 ja  estimated at the geometrical center of the cross-section and A3j

(2D) the 2D added-mass of 

the cross-section. 
           
2. Vertical fixed circular cylinder in finite water (F:58-60). 
Hp: Regular linear incident waves  
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Fixed body  no radiation waves. 
The Froude-Kriloff force is: 
 
 
 
but  for long waves: kx <<1 within the body cross-section 
    
   

1 cos

sin( ) sin cos cos sin
kx kR

t kx t kx t kx


  
  

    

so  
 
 
 

x

z

dz
dF

h

waves

x

y

R

r



n=(cos,sin)

0 0

0 2
0

,1 0 1 1

0

( ) ( )sin( )cos( )
B B

FK a

S S h

F t p n dS n dS g f z t kx Rd dz
t

     



     

   

01

0 0
2

,1 01

( )

( ) ( ) cos( ) ( )FK a

h ha z

F t R g kf z t dz A a z dz   
 

  

33



 

 

01( )a z is the horizontal incident-wave acceleration in the center of the cross-section of the strip z, i.e  

                       0
01

0

( ) ( )
x

a z z
t x





      
. 

 
The same approach could not be used for the vertical force because the cylinder is elongated, 
surface piercing and lays on the sea floor. 
 
Added-mass and damping coefficients (F:41-45) 
 
Akj  and Bkj =f(body geometry,  
                       frequency,  
                       vicinity of free surface,  
                       water depth,  
                       water confinement,  
                       forward speed U) 
 
Here we discuss some of them. 
 
NB: Akj  does NOT represents a finite ‘accelerated’ mass added to the body mass, for some 
components the dimensions are not even those of a mass. In an inviscid fluid, the body oscillations 
cause instantaneously a disturbance everywhere in the fluid but with different intensity.  
 
Example:  
Asymptotic value for  and deep water for added mass and damping in heave of a half circle 
Hp:    33333 sin   ta  

 
 
 
 
 
 
 
 
 
We want to find 
                                                                                                         
                                                                                                 (J) 
 
 
So we need to find 3. You can verify using polar coordinates that the solution is  

                    3

2

3

2

3 coscos  
r

R

r

R
   

and tells that the fluid everywhere reacts instantaneously to the motion but with intensity reducing 
as 1/r far from the body. 
 
NB: You can verify the solution by substituting in the Laplace eq. and boundary conditions. Hint: 
use polar coordinates 
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The pressure is 2
3 3/ / cosp t R r           

 
 
 
 
 
 
 
 
 
 
 
 
 
NB: Because 3 0  on z=0, it means that is constant, i.e. v=0 and w≠0  No radiated waves.  

The problem is equivalent to a circle in infinite fluid. 
 
 
 
 
 
                                                                                   
 
 
 33B  is zero because it is connected with the square power of the radiated waves (as we will see), 

which are zero. 
 33A  corresponds to half of the value for a circle in infinite fluid (see Newman 1977) because we 

integrated in the half-circle. 
 
 
Added-mass importance 
The added-mass is relevant in reducing the body acceleration. We see this through an example. 
Hp: A spherical air bubble immersed in infinite water is released at t=0. Bubble: volume=V, 
density= 3

0 /21.1 mkg , water: density= 3/2.998 mkg .  

 
 
 
 
 
 
 
 
 
Once released, due to geometrical and load symmetry, the bubble starts to move along the vertical 
direction and upwards being its buoyancy gV  much greater than its weight gV0 . If we consider 

only these forces, from the motion equation 
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This acceleration is clearly unphysical. In reality, as we have seen for the half circular cylinder, the 
bubble motion causes a disturbance in the water. As a result a force is induced proportional but 
opposite to the body acceleration (at t=0 the body velocity is zero so we can not have a damping 
effect initially):  
             3 33 3 30.5F A V       . 

The motion equation then gives 

          0
0 3 0 3

0

( 0.5 ) ( ) 2
0.5

V V gV g g
      

 


     


   

which is a more realistic acceleration. 
 
 
Damping meaning: energy relations (F:45-49) 
The damping coefficients are connected with the wave energy radiated from the body and so to the 
square power of the amplitude of the generated waves. We show this with an example. 
 
Forced oscillatory heave with frequency  and no coupling among the motions: 
 
Hp: 2D symmetric body. No incident waves. Deep water dispersion relationship. 
 
 
 
 
 
 
 
 
 
 
 
The motion is assumed as 

 3 3 cosa t    

The energy inside the control volume   is periodic with period  /2T  
 The rate of change of the energy in one period must be zero 
 The energy entering   in one period across BS , due to the work done by the body,  

     equals the energy leaving  in one period across FS SBS S S S    . 

 
The energy entering    in one period from the body:  

  
T

power

B dtFE
0

33  

with the force obtained from the 1-dof equation for the heave motion  
    
 
involving the mass, added-mass, damping and restoring (like spring term). 
It means 
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The energy leaving    in one period across FS SBS S S S    : 

FSS  + SBS  : Fluid particles on such surfaces remain on them  Zero energy flux across them 

S + S : They are control surfaces  there is energy flux across them, with the same amount due  
                                                               to symmetry. 
Across S :  

The energy leaving in one period is 
2 2 2
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with A3 the amplitude of radiated waves due to the heave motion. 
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           (F:3.26) 

    
This proves that the damping coefficient is directly linked to the amplitude of waves generated by 
the body, so we see why for the previous asymptotic case (), i.e. without generated waves, B33 
was zero. 
 
Can Aij and Bij be negative?  
From expression (3.26F) we see that the wave-induced (linear) damping Bjj can not be negative, 
while the added mass Ajj can be negative for certain frequencies and body shapes, e.g. for a 
catamaran. The cross-coupling terms can be negative. 
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H1/3>6

How to calculate available wave power
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Time instant 1 Incident wave velocity

Time instant 2

Incident wave velocity

We imagine a forced motion that is minus the incident wave motion

zwaves

y r
n=(cos ,sin )

x

dF
x

R

dz
dF

h
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2. Vertical fixed circular cylinder in finite water (F:58-60). 

Hp: Regular linear incident waves  

kxt
kh

hzkg
tzx a cos

)cosh(

)(cosh
),,(0

        kh

zf

)cosh(

)(

Fixed body  no radiation waves. 

x

zwaves

y

R

r
n=(cos ,sin )

The Froude-Kriloff force is:

dz
dF

h

x
R

0( )F t p n dS n dS

         

0 2

( )sin( ) cos( )ag f z t kx Rd dz

0 0

,1 0 1 1( )

B B

FK

S S

F t p n dS n dS
t

0h

but  for long waves: kx <<1 within the body cross-section 

    

sin( ) sin cos cos sint kx t kx t kx
1 cos

( )
kx kR

so  

0 0

2

,1 01( ) ( ) cos( ) ( )FK a

h h

F t R g kf z t dz A a z dz

A = mass displaced water in the 2D 

01( )a z =  horizontal incident-wave acceleration in the center of the cross-

01 ( )h ha z

section of the strip z, i.e 

                       
0

01

0

( ) ( )
x

a z z
t x .

3

R z =0R

y

z 3=0

n
r3

33 n
rn

n
n

2
=-sin

n
3
= cosn

3
 cos

Maximum heave instant

Zero heave instant

f2

3

2

d

dt

3
x

y

z

Vertical fluid velocity envelope

Zero pressure

Pressure envelope
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Hp: A spherical air bubble immersed in infinite water is released at t=0.  

Bubble: volume=V, density= 3

0 /21.1 mkg , water: density= 3/2.998 mkg .Bubble: volume V, density 0 /21.1 mkg , water: density /2.998 mkg .

gVgV
2

3

2

d

dt

Considering only weight and buoincy 

0 800V gV gV g g

0gV

0
0 3 0 3

0

800

buoyancy weight

V gV gV g g

This acceleration is clearly unphysical.  

In reality, the bubble motion causes a disturbance in the water. As a result a 

force is induced proportional but opposite to the body acceleration:  

             3 33 3 30.5F A V .

The motion equation then gives 

0
0 3 0 3

0

( 0.5 ) ( ) 2
0.5

V V gV g g
0 0.5

which is a more realistic acceleration.

3 3A 3ASFS

SB

S- S

SSB

Hp: 2D body. No incident waves. Deep water dispersion relationship. 

3 3A 3A

SB

SFS

SB

SSB

S- S

The motion is assumed as   3 3 cosa t

T

The energy entering  in T from the body:  

T

power

B dtFE
0

33

with the force from the 1 dof heave motionwith the force from the 1-dof heave motion

    
)1()( 333333333 FCBAm

It means    
2 2

33 3
2

B a

T
E B
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The energy leaving  in one period across FS SBS S S S :

S S Z fl thFS SBS S : Zero energy flux across them.

S S  : Energy flux across them, identical due to symmetry. 

2 2 2
1E gA g Ag

S : The energy leaving in  T is 
3 31

2 2 4

w
g

S

E gA g Ag
c T T T

          with A3 the amplitude of radiated waves due to the heave. 

Enforcing   
w

B g

S S

E
E c T

     

2
2

                  

2

3

3

3

2

33

a

Ag
B            (F:3.26) 

Reference Material  

On water waves:On water waves:

“Water Wave Mechanics for Engineers and Scientists”  

by Dean & Dalrymple

NB: In Sea Loads:

In WaterWave:

V

V

On Fluid Mechanics:

“Fluid Mechanics” by White
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37. Strip-theory applications. Methods to estimate cross-sectional added mass and 
damping. Forward speed effects. Restoring loads. Response in regular waves and 
irregular sea states.  (F: 37-39, 49-58, 66-68,262-265) 
 
 
Added mass and damping using strip theory (F:50-51) 
Generally added mass and damping coefficients of 3D bodies must be estimated solving 3D 
problems. But if 
 
Hp: The body is ‘slender’, i.e. elongated and  is large (small )  strip theory can be used 
 
In the following, it is implicitly assumed no incident waves when dealing with the radiation 
problem. 
 
Strip-theory applications: to a ship 
Hp: Forced heave and pitch, zero forward speed U=0  (F:56) 
Objective: find added-mass coefficientsLoads proportional to the body accelerations 
 
 
 
 
 
 
 
 
NB: typically 20 strips are considered, assuming that within each of them the ship cross-
section is uniform 
 
The local vertical displacement at location x is  

53353543333 )(   xsxxys  rR   (F:3.9) 

 
For the strip dx, the heave force is  

(2 ) (2 ) (2 )
3 33 3 3 33 5 33

sec

( ) ( ) ( ) ( )D D D

cross tion solution

dF x A x s dx A x dx xA x dx 
 

     
  

 
Once evaluated A2D

33(x) we can integrate 

 

33 35

(2 ) (2 )
3 3 3 33 5 33 33 3 35 5( ) ( ) ( )D D

radiation loadL L L

A A

F dF x A x dx xA x dx A A   



           
 

 

The pitch moment (generalized force with k=5) can be calculated as torque (moment of force) 
as  
 
 

1 2 3

(2 ) 2 (2 )
5 2 1 3 3 3 33 5 33

( , , )

( ) ( ) ( )D D

dF dF dF

dF d zdF xdF xdF xA x dx x A x dx 


       r F    

 
and integrating  

 

53 55

(2 ) 2 (2 )
5 5 3 33 5 33 53 3 55 5( ) ( ) ( )D D

radiation loadL L L

A A

F dF x xA x dx x A x dx A A   



          
 
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Similar approach can be used for the damping coefficients. 
 
In this way the 3D hydrodynamic coefficients are calculated in terms of 2D coefficients. We 
will discuss later the methods used to estimate the 2D coefficients. 
 
NB: If U=0, added-mass and damping coefficients are symmetric, i.e.    Akj=Ajk  and Bkj=Bjk. 
 
 
Strip-theory applications: to a deep-draught (D) buoy with circular cross-section 
Hp: Forced sway and roll. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The local lateral displacement at location z is  

2 2 2 2 3 4 2 4 2 2 4( ) ' ' ' 's x z z s z                  R r'   (F:3.9) 

 
with BGDzDzBGDzzBGDzz  2/'2/'02/'  
 
For the strip dz=dz’, by definition the sway force proportional to the acceleration is  
 

(2 ) (2 ) (2 )
2 22 2 2 22 4 22( ') ( ') ' ( ') ' ' ( ') 'D D DdF z A z s dz A z dz z A z dz        

 
In this case the 2D added mass is easy to be obtained because the related problem is 
equivalent to that of a circle in infinite fluid: A22

(2D) (z)=A, with  the water density and A 
the cross-section area (see example of the half-circle for   ). 
We can then integrate to get 

  


22 24

/2 /2 /2
(2 ) (2 )

2 2 2 22 4 22

/2 /2 /2

22 2 24 4

( ') ( ') ' ' ( ') '
D BG D BG D BG

D D

D BG D BG D BG

A A

radiation load

F dF z A z dz z A z dz

A A

 

 

  

     



   

  

   
 

 

 

 
The roll moment (generalized force with k=4) can be calculated as torque (moment of force) 
with respect to G, as 
 


1 2 3

(2 ) 2 (2 )
4 1 3 2 2 2 22 4 22

( , , )

( ' ) ' ' ' ' ( ) ' ( )D D

dF dF dF

dF d y dF z dF z dF z A z dz z A z dz 


       r F    

y

z

z
dz

s2
D/2

B

G y’
z’

4

2
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and integrating  

42 44

/2 /2 /2
(2 ) 2 (2 )

4 4 2 22 4 22

/2 /2 /2

( ') ' ( ') ' ' ( ') '
D BG D BG D BG

D D

D BG D BG D BG

A A

F dF z z A z dz z A z dz 
  

     



     
 

 

 42 2 44 4
radiation load

A A      

 
Let’s see what is the value of the added-mass terms: 

/2
(2 )

22 22

/2

/2
/2(2 ) 2

24 22 42/2
/2

/2
/22 (2 ) 3 2 3

44 22 /2
/2

( ') '

' ( ') ' ' / 2

' ( ') ' ' / 3 / 3

D BG
D

D BG

D BG
D BGD

D BG
D BG

D BG
D BGD

D BG
D BG

A A z dz AD

A z A z dz A z AD BG A

A z A z dz A z A D BG D



 

 



 




 
 




 
 

 

         

           







 

 
for  A44 we used that  

323223322333 26)33()33()()( bbababbaababbaababa      
with a=D/2+BG and b=-D/2+BG 
 
Similar approach can be used for the damping coefficients. 
2D added-mass and damping coefficients are then useful also for practical ‘3D’  cases. 
 
 
How to estimate the cross-sectional added mass and damping? 
There are two main ways used to estimate them, whose simplified description can be: 
1) Source technique=it is a numerical method, i.e. it provides an approximated solution, for 

2D and 3D problems.  
It uses source (sink) points, which are elementary solutions of the Laplace equation, with 
unknown strength. They are placed along the boundary S and used to express j , so  

 also j  satisfies the Laplace equation and  

 only the boundary conditions must be satisfied. This is done in a finite number of 
points, say N, i.e. splitting S in N parts. This makes available the strengths of the sources 
and therefore j everywhere in . 

      Example in 2D:  
 
 
                                                                                                                     
                                                                                                                      
 
 
 
 
        

 

SB

SFS SFS

S- S

SSF

SB

SFS SFS

S- S

SSF
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This means that the solution is not exact but has a certain order of accuracy. It is crucial to 
know the order of accuracy for engineering applications, as well as the rate to which the 
numerical solution converges to the physical one. Once found j , o the load coefficients 

can be estimated. There are also other numerical methods, similar to the source technique, 
which can be applied. 

 
NB: The source technique does not provide any solution for surface-piercing body at certain 
specific frequencies, called ‘irregular frequencies’. This is linked to the method, not to a 
physical reason. John (1950) found that the smallest irregular frequency satisfies 

/irr g D  , with D the vessel draft. So if the frequency range of interest for the motions of 

our structure contains only frequencies /g D  , irregular frequencies do not occur. This 

is typically the case for normal types of seakeeping calculations for ships. The problem of 
irregular frequencies can be avoided through method modifications. 
 
2) Conformal mapping= it provides an analytical solution and applies to 2D problems. It 

transforms the cross-sectional geometry through a mapping law in another geometry for 
which the solution is known analytically. The transformation of such solution back to the 
plane of the original cross-section provides the physical solution. 
Example, Joukowiski transformation from an airfoil to a circle: 

z x iy 

x

y

i   



 1
z 


 

Conformal Mapping
Joukowski Transformation

 
  

   The Lewis-form technique is an approximate conformal mapping technique suitable for 
conventional ships. It transforms a ship cross-section into a circle. I It considers the beam-
to-draft ratio B/D and the sectional area coefficient =A/(BD)=CB as the geometrical 
parameters sufficient to determine the added mass and damping coefficients of the cross-
section. 

    
                                       
Parameter analysis: influence of  on Aij and Bij (F:49-50) 
Added-mass and damping coefficients depend on the frequency. This can be understood with 
an example.  
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Hp: A 2D surface-piercing body forced to oscillate in heave with frequency  in deep water. 
 
The oscillations cause a perturbation 3  everywhere in the water and propagating (waves) 
along the free surface. Far from the body (far field), the waves are not affected explicitly by 
the body boundary condition but only by the free-surface boundary condition  

        2 3
3 0 0

FF
FF g z

z

  
   


 

i.e. they are in the form of the ‘incident’ regular waves: 

 3
3 3

( )
cos[ ( )] ( )FF kz FF i tgA

e t e      



     

with the sign ‘-‘ and ‘+’ in the amplitude and phase indicating, respectively, left and right 
location with respect to the body, and the term with the wave-number multiplied by the 
horizontal distance from the body is included in the phase.  
The generated waves in the far field are implicitly affected by the body boundary condition 
through their amplitude and phase. These depend on the frequency because, as we learned,  
affects the body capability in generating waves and the wave speed. 
If we use then the far-field solution 3

FF  in the added-mass and damping definition as rough 
approximation,  
 
 
 
 
we clearly see that a dependence from  must exist.  
Figure F:3.6 discusses the frequency dependence for a surface-piercing half circle oscillating 
in heave and sway 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                       Fig. F:3.6 
 
NB: B22 and B33  0  as 0 and    because in these case no waves are generated. A33 

 as 0  and this is true for any 2D surface piercing body in deep water. But as  0, 
finite water depth effects and 3D effects become important and make the added mass to be 
finite in reality. 
 
 

2/2RA 

0 0

33 3 3 33 3 3( ) ( )
B B

FF FF

S S

A n dS B n dS      
   

       
      
 
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Parameter analysis: influence of body shape  on Aij and Bij 
Added-mass and damping coefficients can be significantly affected by the body shape. 
Example for the added-mass:  
Hp: Forced heave of a surface-piercing rectangular cross-section with width B and draft D for  
.  
Fig. F:3.8 examines this with Lewis technique to calculate added-mass in heave:  

       

33High-frequency 2D added mass  in heaveA

33A

BD

A

BD


A
B

D
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2
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D

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2
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D


1.5
2

B

D


1.2
2

B

D


1.0
2

B

D


0.8
2
B
D


0.4
2

B

D


0.2
2

B

D


0 

Lewis-form technique

    2

33

2

1 3 0.5 3a aaA aa   

 1 0.5 0.5aa DB 

 

   
3

2

0.25 0.5

0.25 0.5 8 2 / 0.5

aa B

B BD

D

D A 

  

   

  30.5 0.5a B aD a  

 
                                                              Fig. F:3.8 
A33 increases as D/B reduces, i.e. as the structural mass in heave direction gets smaller.  has 
a limited effect and A33 increases with it. 
 
Forward speed effects (F:55-58) 
The forward speed U causes an ‘encounter’ frequency, which means that the ship ‘feels’ an 
oscillation frequency different than the incident-wave frequency  named encounter 
frequency e. 
 
Hp: 2D head incident regular waves. Deep water.  

x

z

x=x’+Ut

x’

z’

P

x’Ut

-Uiwaves

 
Here: 
 (x,y,z) is the inertial reference frame translating with -Ui, i.e. where the motions are 
calculated 
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 (x’,y’,z’) is the Earth-fixed reference frame 
 
The incident-wave potential is  

                        '
0 ( ', ', ) cos 'kzag

x z t e t kx
 


   

Because 0  is a scalar function it does not change with reference frame.  

If we express (x’,z’) in terms of (x,z) we have   

  
  

2

2

0

sin /

0

( ', ', ) cos cos

cos( ) ( , , )

e

kz kza a

u g k g

kza
e

g g
x z t e t k x Ut e U t kx

g

g
e t kx x z t





    
 

  






 
  
             
  

  

  

Here e=encounter frequency characterizes the time oscillations in the case with forward 
motion. It implies an encounter period Te=2π/e. e depends on , U and the direction of 
incident wave relative to the forward motion.  
 

NB: In the moving reference frame: 
becomes

U
t t x

  
 

  
 

Another way to introduce e is given in the following figure: 
 
 
 
  
 
 
 
 
 
 
 
 
 
 For U=0 a wave front (e.g. wave crest) covers a distance= in T, i.e.  
           )/2(  ccT               (A) 
   with  // gkc   the phase speed in deep water. 

 For U≠0, the relative wave front-ship speed is  
           

current
rel Ucu   

   and a wave front covers a distance= in Te ≠T, i.e. 
           )/2( erelerel uTu       (B)                    

 
Enforcing  (A) and (B) to be the same, we have  











g
UUcc e

e








1
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)(
2

      (F:3.28) 
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If the waves propagate along the direction β with respect to the x axis, we have 

 cos
2

U
ge        (F:3.29) 

It means, for instance, that e>  for head waves (β=0 deg), as well as for bow waves, and 
e<  for following waves (β=180 deg), as well as for quartering waves.  
 
NB: If from eq. (F:3.29) e<0 we must take the absolute value so that e is always positive. 
 
 
Parameter analysis: influence of forward speed on Aij and Bij (F:56-58) 
The forward speed U affects the added-mass and damping coefficients. We examine this by 
studying the seakeeping problem with forward speed U in simplified conditions. 
 
Hp: Linear potential-flow theory valid. Steady-state conditions. ‘Slender’ body. 
Linear problem  superposition principle valid.  

x

z

5

n
Uicurrent x’’

z’’

n’’

 
In this case: 
 (x,y,z) is the inertial reference frame translating with -Ui, i.e. where the motions are 
calculated 
 (x’’,y’’,z’’) is the body reference frame 
 
The body moves forward with constant speed –Ui so generates waves and causes a local flow 
velocity. This is steady in (x,y,z), say steady , and counteracts the current Ui  seen by the 
body to ensure impermeability condition, i.e. 0( 0 at steady BU S   + i) n P  

The total velocity potential can then be split as the sum of  
 
 
 
 
 
Here j is the radiation potential in j-th degree of freedom associated with velocity j , i.e. not 

unitary. 
In general the steady flow steady will affect the unsteady flow , but  
‘Slender’ body|steady|<<U 
  the local steady flow does not interact with the unsteady flow, so the seakeeping can be 
solved separately. 
 

NB: Care should be taken for Froude number  4.0/  gLUFn . 

 
However the current affects the seakeeping problems in many ways. It causes: 


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1. Different frequency, i.e. we have e instead of  both for D and each j .  

2. becomes U
t t x

  


  
 

 the combined free-surface condition becomes 
 
 
 

3. A time-varying velocity component in z when the body has a pitch motion (j=5) and in  
y when the body has a yaw motion (j=6). They must be counteracted to ensure 
impermeability condition, i.e. the  fluid velocity for these radiation problems are                                  
                            and                             , respectively.         
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                the body-boundary conditions for pitch and yaw are modified as 
      
 
 
As a result of items 1-3 the radiation potentials depend on U. This is also true for the 
diffraction potential, as we can understand since it is linked to j through the Haskind 
relations. This means that radiation and diffraction loads will depend on U. The Froude-
Kriloff loads cannot depend on U, due to their definition, i.e. they are due to the incident-
waves. 
In the radiation problem: 
 The dynamic pressure is given by 
 
                                                                                                             (1) 
 
 
  Here it has been emphasized that the solution j depends on U. 

 The added-mass and damping coefficients depend on U explicitly for the U term in the  
Bernoulli equation for p and indirectly for the variation in the boundary conditions. Moreover, 
because the vessel oscillates with e , kjA  and kjB must depend on e.  

Hp: If Froude number gLUFn /  is small, say <0.2, or if the frequency is large, the effect 

of U is mainly in the body boundary condition and in the presence of the encounter frequency. 
In this case kjA  and kjB can be expressed formally as power series of U, i.e.  
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with coefficients in the right-hand-side independent from U, i.e. obtained from the solution 
without forward speed. So using strip-theory we have: 

    

(2 ) (2 )

33 33 33 33

(2 ) (2 )
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2 2
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 

 

 

 

                               (F:3.30) 

 
With U≠0, Akj≠Ajk  and Bkj≠Bjk 

 
 
Strip theory for ships  
Theoretically: strip theory is good in head and bow waves but dangerous in following and 
quartering waves. The limitations are for e  that must be large to limit 3D effects.  

Other limits of validity of strip theory are connected with: 
- body geometry must be elongated e.g. there are limitation for ships with small 

length-to-beam ratio L/B (though the 18th ITTC says it can be used down to L/B=2.5).  
- linearity must be valid  i.e. not good for high sea states  
- steady-unsteady flow interaction is neglected  

       questionable for 4.0/  gLUFn . 

In practice: strip theory gives good results in the important frequency-range of ship motions.  
When the e becomes small, e.g. at forward speed and following and quartering sea, for the 

vertical motions there are some difficulties because the heave added mass goes to infinity. But 
the integrated effect is small because the added-mass force goes to zero, i.e. the acceleration 
goes to zero as 2

e , and the restoring terms dominate for vertical motions. However, there are 

some singular behaviours at forward speed when applying strip theory for estimating vertical 
shear force and vertical bending moment at small e . For lateral motions one can justify strip 

theory also for small frequencies, in this case added mass does not diverge. For roll viscous 
effects are important for the motion. For surge, 3D effects are larger than for the other 
motions, but the added mass is small relative to the ship mass. This can be checked using an 
approximated but practical formula by Søding (1982), i.e. 
                5/3 2

11 2.7 /A L   

with   the water density,   the displaced volume of water and L the ship length.  
 
NB: The waves generated by an advancing vessel in waves are different than those predicted 
by strip theory. However this difference does not matter for the vessel response and strip 
theory can be used to estimate the response, within the mentioned limitations. In this 
framework an important parameter is the ‘reduced frequency’ /eU g  . For 1/ 4   the 

group wave velocity is smaller than U, i.e. there are no waves moving upstream of the vessel. 
This fact occurs for 1/ 4  . In the latter regime the frequency-domain approach has 
problems.  
 
 

55



Restoring loads (F:58) 
We assume that the mean buoyancy is balanced by body weight, i.e.                   with V the 
displaced volume of water (also indicated as).  
Under these assumptions, the linear restoring loads are connected with the “hydrostatic” 
pressure                and caused by the change of the displaced volume, i.e. changes of the 
buoyancy, due to the rigid motions,.  
 

   

y

z

z’’

y’’

2

35

                                                            
The generalized restoring loads (forces and moments) can be written as  
                                                                                                      
 
 
with Ckj the restoring coefficients. The restoring coefficients can be obtained estimating the 
variation of the buoyancy loads due to the rigid motions.  
 
NB: Ckj >0 gives a stabilizing restoring load because counteracts the motion and tends to 
bring the system (body) in its original position.  Ckj <0 is destabilizing.  
The restoring loads are important in fixing the natural periods of the body motions, as we 
already discussed. 
 
Examples of restoring loads 
 
Example 1: Restoring coefficient in heave for a semisubmersible 
 
 
 
 
 
 
 
 
 
 
 
The restoring force associated with the heave motion is due to the change in displaced 
volume, i.e. 

6

,
1
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
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  
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wgAC  33       

with Aw the total waterplane area. 
 
NB: From this we understand that, for instance, 11C , 22C  and 66C are zero, i.e. surge, sway 

and yaw do not cause a variation of the displaced volume no restoring loads in these 
directions.  
 
Example 2: Restoring coefficient in pitch for a ship 

x

z dF3k

5

BB’’

G’’G

dF3k
  

           
NB: The arrows in the figure do not give information about the magnitude of the forces 
 
The restoring pitch moment Fexc,5 is characterized by two parts:  
     ,5exc a bF M M   

 
 aM  is stabilizing and due to variation of buoyancy  

       
2

3 5 5

W

a a

Adisplacement
in z direction

dM xdF x g x dS M g x dS              

   with Aw the waterplane area. 
 
 bM  is destabilizing  

      5 5/ /b G B

m V

M gV zdm m zdV V gV z z   
 

    
 
      

with V and m the displacement and body mass, respectively, and zG and zB  are the vertical 
position of center of mass (coincident with center of gravity for uniform gravitational field) 
and center of buoyancy, respectively.   

 
So the restoring pitch moment is  
    

     5555
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definitionby
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For a stable vessel, i.e. 55 0 LC GM  must be >0  

 It means that the metacenter must be higher than the center of mass.  
 
 
Example 3: Restoring coefficient in surge due to a mooring line. (F:262-265) 

h

X

TH

wds

 
Hp: A vessel is moored as in the figure and oscillates in surge about its mean configuration in 
wave-current-wind environment. 
 
Here:  w= weight per unit length of the line in water 
          HT =horizontal line tension,  H M

T =value of the force in the mean configuration. 

         sX l l x    distance from the anchor to the connection of the line to the vessel 

Defining /Ha T w : 

2 2
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Due to the motion, the horizontal tension oscillates in time around  H M

T , i.e. 

 
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with 1 the surge motion of the vessel point connected with the cable.  

Procedure to estimate 11C  (see figure F:8.4): 

1. Find the “average” wave, current and wind horizontal force, i.e.  H M
T  

2.  H M
T into eq. (F:8.21)   M

X X   

3. From eq. (F:8.21) estimate HdT

dX
 at  M

X X , i.e.
 M

H

X X

dT

dX 

 11C  
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Linear body motions in regular waves (F:66-68)  
 The body motions can  be evaluated by solving the system  
 
 
 
once estimated the loads Fk and known kjM .  

 
Hp: Zero forward motion. The body is stable in calm water mg gV , i.e. the weight of 
the body equals the weight of the displaced water in the mean position.  
 
The loads Fk  are only the result of wave-body  interactions, i.e. hydrodynamic loads: 
 
 
 
 
 
 
 
 
 
 
 
                                                  
                                                       Fig. F:3.1 
 
So that the body-motion system becomes   
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Here ja  and ( , )kX    are complex quantities. 

Assuming that we solved for the excitation and radiation loads, to estimate the motions we 
only need to know Mkj , the mass matrix of the body.  
 
The elements of Mkj  involve:  
 the body mass m,  
 

 the moments of inertia  
m

kjii dmxxI )( 22
33  with i=1..3 and j k i   

 the products of inertia dmxxI
m

jiji  33  with i,j=1..3 and ij   

 the coordinates of the center of mass mdmxx
m

iiG /,    

and are linked to the inertial force (the first 3 rows) and moment (the last 3 rows).  
 
The elementary inertial force is 3..1,  isdmdF ii  . 

We examine the component in heave as an example, which will provide the 3rd row of Mkj : 
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Now yG  is zero assuming a symmetry with respect to the (x,z) plane. Further, xG  can be set  to 
zero choosing the z axis passing through G.  
If this is so, the 3rd row of matrix Mkj is  [0,0,m,0,0,0].  
Similarly can be done for the 1st and 2nd rows, using the other 2 force components. 
 
The elementary inertial moment is  
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Let’s take the pitch component as an example. This will provide the 5th row of Mkj: 
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so the 5th row of Mkj is  [mzG,0,0,0,I55,0].  
Similarly can be done for the 4th and 6th rows, using the other 2 moment components. 
 
The motions can then be found as: 
 
 
 
 
Because the motions are linear in a  , ),( H  does not depend on a .  

| ),( H | gives the Response Amplitude Operator (RAO), which is the transfer function of 
the body motions, i.e. response amplitude per unit wave amplitude. 
 
NB: For sufficiently simple geometries, theoretical methods can provide analytical formulas 
for the different load terms and then for the response. In general (3D problems, generic body 
geometry), the diffraction-radiation problem, required to estimate the RAO, can not be solved 
analytically. Strip theory can be applied under certain assumptions (i.e. the problem is quasi 
2D). Otherwise 3D numerical techniques must be applied, similar as discussed in connection 
with the source technique to find 2D added-mass and damping. Experiments can be used to 
measure directly the RAO. 
 
 
Body motions in irregular sea state (F:37-39) 
The procedure is the same as done for the incident irregular waves. 
 
Hp: Short-term statistics we have a sea state with a certain spectrum S() that does not 
change in time, i.e. 0 1/3and T H  are constant.  For simplicity, let assume wave propagation in x 

direction 
 
The vessel response in a degree of freedom of interest (i.e. heave, pitch,..) can be obtained by 
splitting the spectrum in N regular-wave components, using an interval 

NMINMAX /)(   ,   each component with frequency j, amplitude   )(2 jj SA , 

randomic phase j, as already studied and then summing up the responses of the single 
regular-wave components. It means  
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with                       and (j)  the phase angle of the response with respect to the 
corresponding incident wave, i.e. this is a deterministic phase while j  is a random phase 

equal to the random phase of the incident wave. The approximate variance of the response is  

    
2

2 2

1

| ( ) |
2

N
j

r j
j

A
H 



   

which becomes 

    



0

22 )(|)(|  dSHr        (F:3.5) 

12

( , ) /

( ( )) ( )

a a

i

  

     




      

H η

M A B C X( , )

| ( ) | | | /a aH   

61



in the limit for N and 0. Assuming the response as a Gaussian process, the Rayleigh 
probability function can be used as approximation of the probability density function for the 
maxima (peak values) of the response, say R, i.e. probability of R is  


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
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
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2

2

2 2
exp)(

rr

RR
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
          (F:3.6) 

The most probable largest value maxR during a ‘short-term’ time t is  

r
r T

t
R log2 2

max                        (F:3.7) 

where  Tr is the mean period for the response variable (e.g. motion, velocity, etc.). Due to the 
assumption of linear wave-induced motions and loads this can be written as  T2 , which is the 
mean incoming wave period. 
 
Using short-term statistics results, by varying combinations of H1/3 and T0 (or T1 or T2), we 
can build up a long-term statistics.   
Assuming a combination of M wave heights H1/3 and K wave periods T0, the long-term 
probability for the response r to be less than a value R is  
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    (F:3.8) 

pjk is the joint probability for the significant wave height and the modal period to be in the 
interval-numbers j and k, respectively. 
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Strip-theory applications: to a deep-draught (D) buoy with circular cross-section

Hp: Forced sway and roll. 
z

z

dz

Th l l l l di l l i i

y
z

dz
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D/2

B

The local lateral displacement at location z is
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with BGDzDzBGDzzBGDzz 2/'2/'02/'

For the strip dz=dz’, by definition the sway force proportional to the acceleration is  

We can then integrate to get
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The roll moment (generalized force with k=4) can be calculated as torque (moment of force)

with respect to G, as p ,

1 2 3

(2 ) 2 (2 )

4 1 3 2 2 2 22 4 22

( , , )

( ' ) ' ' ' ' ( ) ' ( )D D

dF dF dF

dF d y dF z dF z dF z A z dz z A z dzr F
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and integrating  
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Let’s see what is the value of the added-mass terms: 
/2D BG NB: Cross-section like circle in infinite fluid

(2 )

22 22

/2

/2
/2

(2 ) 2

( ') '

' ( ') ' ' / 2

D

D BG

D BG
D BG

D

A A z dz AD

A z A z dz A z AD BG A

NB: Cross section like circle in infinite fluid

A22
(2D) (z)= A ( =water density, A=area)

24 22 42/2
/2

/2
/2

2 (2 ) 3 2 3

44 22 /2

( ) / 2

' ( ') ' ' / 3 / 3

D BG
D BG

D BG
D BG

D

D BG

A z A z dz A z AD BG A

A z A z dz A z A D BG D
/2D BG

Source point Sink point

P

SP

S h Q i l h fl f h fl d b h

Q>0 Q<0

2D: ( ) log(| |)S S

Q
PP P

Strength Q is equal  to the flux of the flow  generated by the source

( ) g(| |)
2

S S

SFS SFS

S

SFS SFS

SB

S- S

SSF

SFS SFS

SBSB

S- S
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Conformal Mapping

Joukowski Transformation
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5
(x,z) plane
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(x,y) plane
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35 33 33 53 33 33

,

,
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,
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Wave systems at forward speed

AA  crest no. 1, 2, 3
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U m s
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waves

5 /

0.61e

U m s

U

g

D1

waves Upstream effect when 

0 25
U

0.25eU

g

When 0 25 the group velocities ofWhen 0.25, the group velocities of

the wave systems in the ship direction

are smaller than the ship speed 
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Simplified estimates of wave angle
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Stabilizing Destabilizing

Moment Moment

z

G

5

G’’

dF3k
G G

xBB’’

dF kdF3k

Example 2: Restoring coefficient in pitch for a ship

5

x

z

B

G

5

B’’

G’’

dF3k

The restoring pitch moment F 5 is characterized by two parts:

M i bili i d d i i f b

dF3k

The restoring pitch moment Fexc,5 is characterized by two parts:

,5exc a bF M M

aM is stabilizing and due to variation of buoyancy  

2

3 5 5

W

a a

Adisplacement
i di i

dM xdF x g x dS M g x dS

in z direction

   with Aw the waterplane area. 

bM is destabilizingbM is destabilizing

5 5/ /b G B

m V

M gV zdm m zdV V gV z z

with V and m the displacement and body mass, respectively, and zG and zB  are the vertical 

position of center of mass (coincident with center of gravity for uniform gravitational field) 

and center of buoyancy, respectively.  

So the restoring pitch moment is  

5555

2

5 )/( CzzVdSxgVF
definitionby

GB

AW

0

heightcmetacentriallongitudin

LGB

A

MGgVzzVdSxgVC

W

)/(

0

2

55

F t bl l i 0C GM t b >0

metacenter

For a stable vessel, i.e. 55 0 LC GM must be >0

 It means that the metacenter must be higher than the center of mass. 
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sl

TH

l

s

h
wds

xx
X

Example 3: Restoring coefficient in surge due to a mooring line. (F:258-265) 

l

sl

h

TH

wds

Hp: A vessel is moored as in the figure and oscillates  

       in surge about its mean configuration in wave- 

current wind environment l

x
X

wdscurrent-wind environment.

H i ht it l th f th li i t

1=surge at the cable-vessel connection

XHere:  w= weight per unit length of the line in water

HT =horizontal line tension, H M
T =value of the force in the mean configuration. 

sX l l x distance from the anchor to the connection of the line to the vessel 

Defining /Ha T w :

2 2
sinh( / ) ( :8.14)

2 ( :8 17)
sl a x a F

l h ha F

1

2 ( :8.17)
[ cosh( / ) 1] ( :8.15)

1 2 / cosh (1 / ) ( ) ( :8.21)

s

H

l h ha F
h a x a F

X l h a h a h a f T F

( )HX f T( )Hf

Due to the motion, the horizontal tension oscillates in time around H M
T , i.e. 

1 11 1

M

H
H H HM M

by definitionX X

dT
T T T C

dX 11

M

H

X X

dT
C

dX

:  50H M
Hp T KN

( )HX f T

11

M

H

X X

dT
C

dX
(TH)M

(X)M
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38. Examples of response. (F: 76-79,89-91,99-100)  
 
Examples involving ocean structures and vessels are given in the following. 
 
1) Heave motion on a semisubmersible (F:76-79) 

 
 
 
Hp: 1. Regular beam waves.  
        2. Deep water.  
        3. Mass loads are dominant (λ>5D , 
            i.e. long-wave approximation). 
        4. Steady-state conditions.  
        5. Neglect coupling between degrees 
            of freedom 
         
Objective: Heave motion 
 
Using Hp 1+2: 


2

0

0

0

2
20

03

cos( )

sin( )

sin( )

sin( ) sin( )

kza

a

kz
a

kz kz
a a

g
e t ky

t ky

p g e t ky

a gk e t ky e t ky
t z



 


  

  

     


 

 

 


      
 

 

 
Using Hp 3:  
Because λ is large the wave-induced damping can be neglected in a first step approximation.  
 
Using Hp 3+5: 
The undamped equation of heave motion is  
   33 3 33 3 ,3 ,3 ,3( ) ( ) ( ) ( )exc FK Dm A C F t F t F t     

 
 
We need to know all terms to find 3 : 

 The mass m of the platform is given by 

y

zwaves

D

h

B

b

zm

zT

zB

L
y

x
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  Volume of the 2 pontoons: Vp=2hbL   
  Waterplane area of the 4 columns: AW=4D2 /4= D2 

  Volume of the wetted columns: AW(-zT) 
     Platform mass:  ( )p w T

V

m V A z 
   

  The restoring coefficient is 
    33 WC gA  

 
  The excitation force in vertical direction is associated to the pontoons and obtained as 
 
Using Hp 3:  
 
Froude-Friloff force: 
Let’s take the pontoon with center at y=B/2: 
 
- The incident-wave pressure on the bottom side is 

      
3

0 ,

, 1

sin( / 2) :Bkz
B a FK B B

uniform pressure n

p g e t kB Force F p Lb  


     

- The incident-wave pressure on the top side is 

      

3

0 ,

, 1

sin( / 2) : ( / 2)Tkz
T a FK T T W

uniform pressure n

p g e t kB Force F p Lb A  


       

   Here the wetted area is reduced of Aw/2 to account for the presence of the 2 columns on the  
   pontoon. 
 
The vertical force on the pontoon is 

   , , [ ]sin( / 2) sin( / 2) / 2B T Tkz kz kz
FK B FK T a a WF F g e e t kB Lb g e t kB A          

 
Using Taylor expansion about z=zm + Hp 3, i.e. kh<<1: 





/2

1

/2

1

2

2

m m mB

m m mT

kz kh kz kzkz

kh

kz kh kz kzkz

kh

kh
e e e e

kh
e e e e









  

  
 

kheee kzmkzkz TB   





, ,
/2

03

sin( / 2) sin( / 2) / 2

/ 2 sin(

m T

p

T

kz kz
FK B FK T a a W

V

kz
p a

added -mass at geometrical center
multiplied by mass of  displaced water
for a pontoont surrounded by water

F F gk e t kB Lbh g e t kB A

a V g e

     

   

      

 
NB 

( )

/ 2) / 2

sin( / 2)[ ] / 2m T m

W

kz k z z
a W p

t kB A

g e t kB e A kV   



  

 

 
Similarly on the other pontoon we have  

( )
, , sin( / 2)[ ] / 2m T mkz k z z

FK B FK T a W pF F g e t kB e A kV         

 
Knowing that  
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       (1) 

 
The total force on the 2 pontoons is  

  ( )
,3 , , sin( )cos( / 2)[ ]m T mkz k z z

FK FK B FK T a W ptot
F F F g e t kB e A kV        

 
Diffraction force: 
From the assumptions, the damping contribution is considered negligible. Further the added-
mass of the structure in heave, A33, is due to the 2 pontoons. So the vertical diffraction force 
acting on the two pontoons is 
 

   ,3 33 03 33 03 33

1 1
sin( ) cos

2 2 2 2 2
mkz

D a

at the geometrical center at the geometrical center

B B kB
F A a y A a y kg e t A                 

      
 

Here result from (1) has been used. 
 
The total vertical excitation force is  
  ,3 ,3 ,3exc FK DF F F   

which means  

( ) 33
,3 sin( ) cos( / 2)m T mkz k z z

exc a W p

A
F g e t kB e A k V  


  

    
         (F:3.63)

 

 
 
 
                                  phase difference      counteracting forces 
                                 between pontoons       on the pontoons 
 
Using Taylor expansion about z=0 + Hp 3:  
 

 )()](1[
2

)(
mTWWWmTW

zzk zzAgkgAAzzkgAge mT 






  

so 

2 2 2

2 2 2 2
,3 33

( )

2 2
33

sin( ) cos( / 2)[ ]

sin( ) cos( / 2)[ ( )]

m

p W T

m

kz
exc a W W m W T p

V A z V m

kz
a W W m

F e t kB gA A z A z V A

e t kB gA A z m A

    

      

    

   

     

   


 

 
Using Hp 4: 
Because we neglect damping, the response will be in phase with the excitation force, i.e. we 
can assume 3 3 sina t    . The steady-state equation of motion gives 

2
33 3 ,3[ ( ) ]W excm A gA F       

2
cossin2min

2
sincos

2
cossin)2/sin(

2
sincos

2
cossin)2/sin(

kB
tupgsum
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t
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tkBt

kB
t

kB
tkBt



















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,3 ,3 ,3
3 2 2 2

33 33
2

[ ( ) ] ( )
1 1
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W n

F F F

m A gA m A
gA gA
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       

     
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with n the heave natural frequency 33

33 33( ) ( )
W

n

C gA

m A m A

  
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The transfer function (RAO) is then:  


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There are circumstances for which |3a|=0 i.e. no motion. This occurs if: 
2

2
1) 1    and/or   2) cos( / 2) 0m

n

kz kB



    

These can be relevant for the design and operations. 
 
Condition 1) means: 

 
2

2 2 2 2

: z = | z |<0  2

(1 ) | | (F : 3.67)

1 | |m m

n
n m n m n c

m
n

kz z
g z

g

    


     
NB

   

this is the cancellation frequency. Because ,  the cancellation period is 

lower than the natural (resonance) period. 
 
Condition 2) means:  

,..2,1,0,2/2/0)2/cos(  nnkBkB   
So using the dispersion relationship 

2

2 2 4
/ 2 2 0,1,2,..

(1 2 )cn cn
cn

B B
B g n n T n

T g g n

     
 

          
 

 
Assuming the case in figure F:3.20 as an example: Tn=22s and B=50m 
From condition 1) we find  Tc=20.1s  

From condition 2) we find sT
g

B
Ts

g

B
T ccc 6.4

3

1

3

4
0.8

4
010 


 

These periods are shown in the qualitative figure below based on linear potential-flow theory. 
The split in regions without and with incident waves is due to the fact that for periods T larger 

than: Tn=22s the wavelengths are  mgTn 7572/2    and we expect in practice a 

negligible energy for such long waves. 

ncnc TT 
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The figure confirms that cancellation effects occur for periods smaller than the natural period. 
The inviscid solution gives a very small damping near resonance because of the long-wave 
regime there, viscous damping matters. Similar results are given in Fig. F:3.19 for different 
natural frequencies: the greater 2 | | /n mz g the smaller the secondary peak in the response and 

the shorter the cancellation period Tc. 

                 
                                                       Fig. F:3.19 
 
A semisubmersible: 
 is designed to have natural period  >20s to reduce the induced-wave motions 
 as a result the resonance can only be caused by nonlinear effects. Slowly-varying 

excitation loads, connected with 2nd order effects, matter 
 the long-wave theory is reliable for survival conditions 
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a kB
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2) Linear sway and roll of a buoy 
 
Hp: Linear problem. Deep-water regular incident waves in y direction. Strip theory + long-
wave approximation. Steady-state conditions. 

                                            
Using what learned before, the elementary excitation force in y direction is  
     

( 2 )
,2

( 2 )
,2

(2 ) 2
,2 02 22 02( ) 2 cos

D
FK

D
D

D kz
exc a

AF

F

dF Aa A a dz e t Adz


      


 

with A the cross-section area. So integrating along the body we have  
     

,2

,2 ,22 (1 )cos cos

exc a

kD
exc a exc a

F

F gA e t F t       

Similarly for the roll moment we find formally  
    ,4 ,4 cosexc exc aF F t  

 
Also in this case we neglect damping due to long-wave approximation. So in steady-state 
conditions the motions will be in phase with the corresponding excitation loads, i.e.

4,2),cos(  jtjaj  ,  giving  

 


2 2

22 2 24 4 ,2 ,2222 24

2 2
42 2 44 44 4 44 4 ,4 4 ,442 44 44 44

( ) cos ( )

( ) cos ( )

exc a exc aa

steadyexc a a exc a
state

MAT

m A A F t Fm A A

A I A C F t FA I A C
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                                 

 
 



with  
2 3

22 24 42 44 44, , / 3 ,   TA AD A AD BG A A A D BG D C gV GM                 
(V is the displaced volume) and the moment of inertia from its definition, i.e. 

 

2 2
44 ( )

m

I y z dm  . 

NB: Only the restoring term 44C is different than zero and has the same expression as 55C  but 

with the transverse metacentric height TGM in place of the longitudinal one. 

 
Enforcing the matrix determinant to be zero, i.e. Det(MAT)=0, we get the natural frequency as 

y

z

D

B
x

D/2

x
G



2

4
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2

44 44

( )

( )( ) ( )
T

n

m AD gV GM

m AD I A AD BG
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 

 


   
 

 
NB: The coupling between roll and sway affects the natural frequency. 
 
An important concept in this context is the center of roll: the point for which the horizontal 
displacement of the body is zero at any time, which identifies the axis about which the body 
rolls. It is important both for ships and ocean structures. For instance for a spar buoy, the 
center of roll is important for the attachment of a mooring line when located on the body, 
typically at the bottom part. However the center of roll may also be below the buoy, in this 
case physically the buoy moves as part of a “pendulum”.  
In general then the center of roll may not be on the body and may also not exist. Let’s see this 
with an example (see Faltinsen’s book “Hydrodynamics of high-speed marine vehicles”, pg. 
232): 
 
Hp: A vessel/ocean platform with sway and roll motions due its interaction with incident 
waves:  
       2 2 2 4 4 4sin( ) sin( )a at t            

 
The horizontal displacement of a point of the platform is  
 

)sin()sin( 4422422   tztzs aa  

 
Using that sin( ) sin cos cos sina b a b a b    
re-arranging and enforcing s2  to be zero at any time, we have 
 

2 2 2 4 4 2 2 4 4

0 0

( cos cos )sin ( sin sin )cos 0a a a as z t z t         
 

       

which leads to the system 

22 4

2 4 4

cos cos
0

sin sin
a

az

 
  

   
     

 

so a non-trivial solution exists only if the matrix determinant is zero: 

2 4 2 4 2 4cos sin sin cos 0 tan tan            

 
NB: Phases 2 4 and   depend on , for advancing vessels on e and U. So, in general they do 

not this condition. A concept similar to the center of roll exists also for the pitch motion. 
 
 
3) Heave motion of a 2D section in regular beam waves 

                                
Hp: Linear problem. Deep water waves. Steady-state conditions.                   

y

z
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The equation of motion is  
 
   (2 ) (2 ) (2 ) (2 )

33 3 33 3 33 3 ,3 3( ) cos( )     (1)D D D D
exc am A B C F t           

 
At the undamped resonance   
   (2 ) (2 ) 2 (2 ) (2 )

33 3 33 3 3 33 33 3( ) 0 [ ( ) ] 0D D D D
nm A C m A C            

So the natural frequency is 
(2 )

33
3 (2 )

33

D

n D

C

m A
 


 

The heave amplitude at undamped resonance, from eq. (1), is then 
(2 )

,3
3 (2 )

3 33

D
exc a

a D
n

F

B



  

Newman (1962) has derived the expression for the excitation loads per unit length on an 
infinitely long cylinder in beam sea. The amplitude of load depends on the corresponding 
damping coefficient for the cross-section:  

2
(2 ) (2 )

, 2,3, 4D D
exc ia a ii

g
F B i




       (F:3.45) 

So in our case we have  

3 3/2 (2 )
3 33

a a D
n

g

B

 


    

It means that the motion amplitude is larger for longer waves and for smaller damping level.  
 
 
4) Motions in marine operations: crane operations 

                           
Hp: Transfer of equipment, personnel, etc. between semisubmersible and supply ship. 
       Regular deep-water head waves.  
 

 Waves: T=10s, a=1m        0 sin( ) sin( ' ')a at kx t kx         

           =2/T, 2=gk   
 Phase shift between center of (x,y,z) on the semisubmersible and (x’,y’z’) on the  
      supply ship: t’=t+100k = t+4.024   (1) 
 Semisubmersible: 3=0.22sin(t) (m) , 5=-0.0075cos(t) (rad) 
 Supply ship: 3=0.73sin(t’-0.0872) (m) , 5=0.032sin(t’+1.4835) (rad) 

 
Objective: Relative vertical motion between A and B 
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s3

A=3-x5=0.22sin(t)-70(-0.0075)cos(t)=0.57sin(t+1.17)                      (m) 
s3

B=3-x5=0.73sin(t’-0.0872)-(-30)(0.032)sin(t’+1.4835)                        (m) 
                  =0.73sin(t+3.94)    -(-30)(0.032)sin(t+5.51)=1.20sin(t-1.4)   (m) 
 
Here, for s3

B relation (1) has been used and the expressions have been rearranged using  
2 2

2 2 2 2

cos( ) sin( )

sin( ) cos( ) sin( ) cos( ) sin( )
C

A B
A B A B C

A B A B
 

     


 

     
 

 
  

So the relative motion is: s3
A-s3

B=1.717 sin(t+1.54)    (m) 
 
Compared with the incident-wave amplitude a , the motion amplitudes of the two locations 

confirm the validity of linear theory. The amplitude of their relative motion is about twice a . 

This is important to account for to ensure safe and successful operations. 
 
5) Motions and sea loads on a barge (F: ex. 3.1 pg. 89) 

            
Hp: Floating barge with L=200m, B=30m, D=15m, with uniform density, and U=0. 
       Regular deep-water incident waves propagating in negative x axis, with λ=300m and  
       H=2a=20m 
       Linear potential flow theory theory. 
  
For the incident waves we have: 

       

 )sin()sin(

)sin(

)sin(

)cos(

20
2

03
0

2

0

0

0

0

2

kxtekxtegk
zt

a
xt

a

kxtegp

kxt

kxte
g

kz
a

kz
a

i
i

kz
a

a

kza



































 

 
Q: What is the vertical excitation force on the barge? 
      
      λ/D=300/15=20>>5    long-wave approximation can be used 
      (L/D13, L/B7)>>1   the body is elongated so we can apply strip theory  
        

B

D
x

z

y

L

waves
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Using the long-wave approximation and the strip theory: 
 ,3 ,3 ,3exc FK DF F F   

with 

      

   

 

/2

,3 0 3 3

/2 1

(2 )
,3 31

 

sin( )( )

1
cos( / 2) cos( / 2)

2
sin sin( / 2)

L
kD

FK a
waves contribution only Linsidealong x from bottomthe body

kD
a

kD
a

D
D

=0: symmetry
(y,z)

F B p n dl g Be t kx n dx

g Be t kL t kL
k

g Be t kL
k

F A

  

   

  



 





  

    





 


(2 ) (2 )

01 32 02 33 03

/2
(2 ) /2

33

/2

(2 ) /2
33

sin( )

2
sin sin( / 2)

D D

x =0: waves along x
 plane

L
D kD

a

Lsection uniform

D kD
a

a A a A a dx

A gk e t kx dx

A gk e t kL
k

 

 







 
 

  
 
 

  

 









 

 

  )2/sin(sin
22/)2(

333, kLt
k

egkABegF kD
a

DkD
aexc     

 
For the force to be finite k≠0 which is not true if 0 . In the latter case 03 0a   and  

,3
1 0

1 /2 0

2 sin( / 2)
sin( / 2)sin sin sin

/ 2
kD kD

exc a a a
as k

as kL

kL
F g Be kL t g BL e t g BL t

k kL
         

 
 

  


 

 
Q: Using A33

(2D)=0.8BD, no damping, what is the heave motion of the center of gravity? 
 
We are looking for the steady-state solution and because the damping is zero, the response 
oscillates in phase with the excitation load:  
   )sin(33 ta    

The equation of heave motion (without coupling with pitch and no damping) is: 
   3,33333

2 ])([ excFCAm    

with m=LBD (using the equilibrium between the weight and buoyancy),  A33=A33
(2D)L=

0.8 BDL , C33=gLB, we have: 

 

 

 

/2

,3
3 2 2

33 33

/2

2
0.8 sin( / 2)sin

sin
[ ( ) ] [ (1 0.8) ]

( / ) 1.6 sin( / 2)
sin

[ (2 / )(1.8) 1]

4.9sin( )      (m)

kD kD
a a

exc a

kD kD
a

g Be BDgk e kLF t k t
m A C BDL gBL

e De kL
t

D L

t

   
 

   

  


 


 

 


 

     




 


 

     

81



The heave is in phase with the incident wave at x=0 and its amplitude is about half of the 
incident-wave amplitude. 
 
Q: How is the pitch motion? 
 
The equation of pitch motion (without coupling with heave and no damping) is: 

  5,5555555
2 ])([ excFCAI    

 
Here the excitation moment is obtained by integrating between –L/2 and L/2 
 
   dFexc,5=-xdFexc,3   ,5 cos( )excF t  

 
The full expression can be found in F:90. 
 
The moment of inertia from its definition, i.e. 

  
 
m

dmzxI )( 22
55 . 

The added-mass coefficient comes from the hydrodynamic moment proportional to the pitch 
acceleration  


/2 /2 /2

(2 ) (2 ) (2 ) 2
,5 33 3 5 33 3 33 5 53 3 55 5

/2 /2 /2

( )
L L L

D D D
rad

radiation loadL L L
proportional to
 acceleration

F A x xdx A xdx A x dx A A     
  

               

so, as we have already seen, we have 

  

/2
(2 ) 2

55 33

/2

L
D

L

A A x dx


   

 
The restoring coefficient comes from the restoring moment 
 


/2 /2 /2

2
,5 3 5 3 5 53 3 55 5

/2 /2 /2

( )
L L L

hyd
hydrostatic loadL L L

F gB x xdx gBxdx gBx dx C C        
  

           

so we obtain 

  

/2
2

55

/2

L

L

C gBx dx


   

  
 Substituting these expressions in the pitch-motion equation, we can find   
 

5 5 cos( ) 0.15cos( )a t t        (rad) .  

 
The incident-wave steepness mid-ship (x=0) is:  
   

0
/ cos( ) 0.21cos( )ax

x k t t   


     (rad) 

 
so 5 is in phase with the mid-ship steepness and its maximum is about 2/3 of maximum 
steepness ak . 

Both heave and pitch amplitude results confirm that linear theory is valid. 
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Q: What is the vertical acceleration in the bow (x=L/2)?  
 
NB: this is the most critical region in head sea waves. 
 

 
3 3 5 3 5

2
3 3 5 3

[ ( / 2) ] sin( ) ( / 2) cos( )

sin( ) ( / 2) cos( ) sin( )

B
a a

B B
a a a

s L t L t

s t L t s t

     

      

   

      
 

The magnitude 2 2 2 2
3 3 5| | ( / 2)B

a a as L    =0.34g so it is limited in this case. 

 
Q: There is any danger of water exit or water on deck in the studied conditions?  
 
NB: Water exit=bottom out of water.  
        Water on deck=shipped water, a criterion for this is “water exceeding the freeboard”. 
 
To answer this question we need to estimate the relative vertical motion, i.e. between ship and 
waves, at the bow (where the motions are largest in head waves): 

 
 

3 3 5/2

2 2
3 , /2

( / 2) sin( / 2) 9.86sin 6.72cos

9.86 6.72 11.93 m

ax L

a x L

s L t kL t t

s

      






      

    
  

 
Water exit: The draft is  3 , /2

15 m >
a x L

D s 


   so there is no risk of water exit according to 

linear theory. 
Water on deck: The freeboard must be at least  3 , /2

12 m >
a x L

f s 


  or greater to avoid 

water on deck. 
 
6) Wave-induced accelerations of cargo and equipments (see Faltinsen’s book 
“Hydrodynamics of high-speed marine vehicles”, pg. 232-233): 
The wave-induced motions are estimated in the inertial reference frame (x,y,z) fixed or 
moving with the forward speed of the vessel. It is important to keep this in mind when 
estimating the loads acting on objects on the deck of the vessel which may risk for instance to 
lose grip in waves. An example is given in the figure below: 

                              
Hp: An object, with mass M and center of gravity (xc,yc,zc) in the (x,y,z) reference frame, is on 
the deck. The ship is oscillating in surge, heave and pitch due to its interaction with head 
incident waves. 
Objective: Find the equation of object motions in the body-fixed reference frame (x’’,y’’,z’’). 

5

5

''zF

''xF

''x

 1 5cz   i

5Mg

  2
1 5 )cz +(ε    i''
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The object is subjected to external forces '' ''and x zF F  due the contact with the deck (e.g. deck 

friction, fastening, etc.).  Moreover the ship motions cause additional forces. 
Along x’’: The pitch motion causes a time-varying component associated with the object 
weight 5Mg i'' . Moreover, the object center of gravity has an acceleration along x which is 

the same along x’’ within linear theory, i.e.     2
2 5 2 5 )c cz z (         i i'' +   so we have 

      
 2 5 5 ''      (1)c xM z Mg F     

   
Along z’’: With similar procedure we have  

      
 3 5 ''        (2)c zM x Mg F     

 
Equation (1) is useful to guarantee suitable fastening of the object. From equation (2) we see 
that for the object to not leave the deck  Fz’’ must be positive. 
 
 
7) Fluid motion in a moonpool (F:99-100, exercise 3.6) 

      
A moonpool is an opening in the ship used in oil field to provide access for the well drilling. 
 
Hp: -The ship motions are known.  
        -The moonpool has a horizontal cross-section uniform and circular with diameter D.  
        -The internal fluid motion is only vertical with uniform velocity d /dt and acceleration  
          d2 /dt2,  being the free surface elevation relative to the mean free-surface level in the  
          sea (the mean free-surface level from the ship bottom is the dradt d).  
Objective: We analyse occurrence of piston-mode (1D oscillations in z) resonance in the 
moonpool using linear theory. 
 
Q: What is the fluid acceleration?  
Within potential-flow theory, the fluid-momentum equation is given by the Euler equation:  

    
2

2

local- flow external forces: 
inertia force pressure gradient and gravity

d p
g

dt z

 
  

 
  (1)   

This gives directly the fluid acceleration  
2

2

1
      (F:3.85)

d p
g

dt z





  


. 

Q: Equation (1) is local in the fluid, what does it give its integration from z=-d to z=  within 
linear theory? 

  



2 2 2

2 2 2

2

2

( )

( ) ( )
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d z datmospheric
uniform second order

a a
using linear z d
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 

          


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2

2

1
                (F:3.86)

z d

d g

dt d d t

 



   


 

This equation is like a mass-spring system forced by the right-hand-side excitation load. The 
natural frequency of the system is obtained from the homogenous equation: 

  
2

2
02

0 0 2      (F:3.87)n n n
steady state

d g g g d
T

dt d d d g

                 
 

 
So the resonance condition is characterized by a period 0nT which only depends on d and 

increases with square root of it. This is because the moonpool beam (diameter D) is assumed 
small relative to the draft d.  
Molin (2001) has studied the piston-mode (1D oscillations) of a moonpool. The main 
geometrical parameters are in the figure below : 

               
In this case also other body dimensions, i.e. /mb d  and / 2 mB b , matter for the natural period, 

which becomes 

       

   
0

1
2 1 1.5 ln   

2

n

m
n

m

T additional term

bd B
T

g d b



 

   
 

       

 

This expression reduces to 0nT from Faltinsen’s formula (F:3.87) if / 0.mb d   The additional 

term leads to 0 greater than n nT T  if ln( / 2 ) 1.5mB b   which means if the side-hull beam SHB  

is sufficiently wide relative to the moonpool width.  
The parameter /mb d , by itself would tend to increase the natural period, but its increase may 

cause 3D effects in the moonpool flow. 
The ratio between the resonant moonpool amplitude and the amplitude of the heave motion, 

a
moonpool

a 3/  , is given in the figure below, as a function of mSH bB /  and shows a nearly 

linear trend for a given mbd /  and mbh / with h the water depth. 
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From the results, a
moonpool

a 3/ : 

- increases with increasing the side-hull beam SHB  

- increases with decreasing moonpool width mb  

- less sensitive to draft d and water depth h (not shown here) 
 
The resonant mass flux in the moonpool is larger than the heave mass flux and their ratio 
increases with mSH bB / . The trend is faster than linear for small mSH bB /  and tends to a linear 

behaviour as mSH bB /  gets large. This is shown in the figure below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The resonance of piston-type mode is also relevant in the case of a vessel (like an LNG 
tanker) near a terminal. In particular in the region between the two marine units (see example 
in the figure below: 
 
  
 
 
 
 
 
 
 
 
 
 
8) Mathieu-type instability in roll  
The roll motion of a marine structure can be subjected to a Mathieu-type instability.  
Hp: 1D roll motion problem  
 
The restoring term depends on the transverse metacentric height TGM , so if TGM changes in 

time also the restoring term will. In this case, the equation of motion becomes 

44 44 4 44 4 44 4( ) ( ) 0mI A B C f t       

 
with 44mC the restoring term corresponding to the mean transverse metacentric height, say 

TmGM . The function f(t) accounts for the time variation of the restoring term. Dividing by 

44 44I A  and writing explicitly f(t), we  have  
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with 44 44 44/ [2( ) ]nB I A   the fraction of the damping relative to the critical damping and 

44 44 44/ ( )n mC I A    is the natural frequency. TGM , e  and  are, respectively, the 

amplitude of the variation of TGM , its frequency and its phase relative to the roll motion. 

When f(t) becomes negative the restoring term is destabilizing. We talk about Mathieu 

instability and its existence plane in terms of 
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is given in the figure 

below: 

                                          
The white regions mean instability, those in grey stable conditions. 
Mathieu-type instability can be for instance excited for a spar platform by second-order 
effects responsible for the variation distance between the center of buoyancy and the center of 
gravity which is the dominating restoring contribution for such platforms due to the limited 
waterplane area. 
 
9) RAO from linear seakeeping model tests. 
The RAO | /a a|η  can also be estimated experimentally. The used techniques are mainly two 

and use a physical wavemaker to generate the incident waves: 
1) Regular-wave technique=each test generates regular-incident waves at a given   with 

amplitude so that ak is small (linear theory) and the RAO is measured.   is varied to 

study the whole relevant range for body motions.  
2) Transient-test technique=one test generates regular waves with different frequencies, 

first the shortest, slower, then increasing progressively  . The generated waves will 
‘meet’ in a prescribed point of the basin (i.e. at the ship location). This involves a 
focusing process and leads to a very concentrated disturbance of the free surface, wave 
packet. Its interaction with the body causes a response which can be splits in the 
different frequency components to provide the RAO as in 1). 

Technique 2) has the advantage that you can find one-shot the RAO for all   values of 
interest, it has no problems of wave reflections from the tank sides and high repeatability. But 
it has problems to study irregular waves.  
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Consequence of Mathieu type instability in roll
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39. Minimization of heave, pitch and roll motion. Second-order effects: mean values, 
difference and sum-frequency effects. Mean wave induced loads from direct pressure 
integration and conservation of fluid momentum. (F:81-89,131-133,142-143) 
 
 
Minimization of heave and pitch ship motions (F:81-85) 
The wave induced damping terms in heave and pitch are in general large, i.e. the vessel 
capability in generating waves in heave and pitch is high.  
This fact is particularly important near the resonance to keep the motions limited. Other 
important aspects that affect the motions features are cancellation effects of the motions and 
dependence of motions from geometry and operational conditions, i.e. without or with 
forward motion. 
We discuss this in a simplified way, the aim is to show general trends. 
 
Hp: - Linear regular deep-water head sea long waves  
           Long-wave approximation valid, i.e. cross-section small relative to the wavelength 
        - The ship is elongated and has uniform box-shaped cross-sections (i.e. like a barge), 
           symmetry about (x,z) and (y,z), U=0 
           Due to elongation, strip theory can be applied 
           Due to uniform cross sections, added mass A33, damping B33, and restoring C33, are  
               uniformly distributed along L, i.e. dA33=A33dx/L,  dB33=B33dx/L,  dC33=C33dx/L 
           Due to fore-aft symmetry, heave and pitch motions are uncoupled 
        - The mass m is uniformly distributed along L, i.e. dm=mdx/L   
           

         
                             Ship and its approximated barge (dash-dotted red line) 
 
For the linear regular deep-water head sea waves we have: 
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 Heave motion  
Using long-wave approximation + strip theory + symmetry about (x,z) and (y,z) + head waves, 
the excitation force in heave is:  
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Using that the cross-section is box shaped and uniform (i.e. like a barge), we have 
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The result says that in head sea the wave loads along the ship can counteract each other and 
cancel the total wave excitation loads, this occurs for  
       sin(kL/2)=0  for kL/2=n  λ/L=1/n with n=0,1,.. 
n=0 means no waves, n=1 means λ/L=1, i.e. at the resonance. 
 
NB: This means that, without forward speed, the cancellation effect on the heave motion in head-sea 
conditions may be dominant around the natural frequency for heave and pitch. 
 
Let’s now estimate the excitation force in heave induced by beam waves with the same 
parameters as the head waves assumed here: 

             
                     Ship cross-section and its approximation (dash-dotted red line) 
 
The incident waves are: 
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So, using valid the same assumptions, we have: 
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It means that the heave-force amplitudes in head and beam waves with identical parameters 
are linked as  

     ,3 ,3

2
| | | sin || |     (F:3.70)
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Due to the linearity, the motion amplitude is proportional to the excitation-force amplitude:  
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NB: Because the term| sin( / 2) / ( / 2) | 1 and tends to 1 for / 2 0kL kL kL  , the response in heave 
is in general smaller in head sea than in beam sea with the same parameters. 
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 Pitch motion 
We can use the same approach as for the heave. In head-sea waves the excitation moment is: 

   

0
,5 ,3

/2
0 0

,5 2
/2

sin( )

2
sin( ) cos sin cos

2 2

exc HS exc HS

L

exc HS

L

F
dF xdF x t kx dx

L

F F L L L
F x t kx dx k k t

L L k k



 


    

                  


 

 

NB:  
  














2/

2/

2/

2/ 0int0int

)sin()cos()cos()sin()sin(
L

L

L

L egralsymegralantisym

dxkxxtkxxtdxkxtx    

           
/2

2 2
/2

1 2
cos( ) cos( ) sin( ) cos sin cos

2 2

L

L

x L L L
t kx kx k k t

k k k k
 



                      
 

 
and the uncoupled pitch motion equation gives: 
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The I55 contribution with z2 can be neglected because it is connected with the draft D while 
the term in x2 is connected with the ship length L and we assume L/D large. 
 
The pitch amplitude in head sea is then  
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This can be related to the heave amplitude in beam sea obtained from 
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by expressing F0 in eq. (1) in terms of 3,| |BS , we have 
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 With forward motion 

Hp: We account only for the change in frequency due to U,  
        i.e. gUe /2  (head sea waves).   

        The natural frequency n is considered identical with and without speed 
         at U≠0 resonance is caused by longer waves because the encounter frequency is  
             greater than the incoming-wave frequency. 
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If we use the last assumption in the expressions of 3| |HS and 5| |HS , we have: 

 The cancellation effect on heave and pitch excitation loads appears less pronounced at U≠0 
 Heave and pitch at resonance may be greater within a certain limits of increasing Froude  
     number. 
 
Example. 
Hp: A ship with L=95m. Deep-water head sea waves. 
       Tn=7.8s is the period at resonance condition 2 / 0.805 /n nT rad s    

Obj: Find the incident wave length at natural oscillation frequency n . 

  
At U=0m/s    22 / 95 mn ng       

 
i.e. L/λ=1 

So there is heave cancellation. 

 At U=10m/s  
2
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g
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
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So for U=10m/s at resonance L/λU=95/222=0.428 giving  sin( / 2) sin( / ) 0.975U Uk L L   . 

This means that the cancellation effect is much reduced relative to zero forward speed. 
 
To find the heave and pitch amplitude at resonance in head sea we need to know the 
amplitude of the heave motion at resonance in beam waves. This can be estimated assuming 
negligible 3D effects (i.e. studying the heave motion of the cross-section) and using the 
Newman’s (1962) excitation vertical force on an infinitely long cylinder in beam sea (already 
discussed in the example of a 2D cross-section in beam waves):  
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with n3 the undamped natural (circular) frequency in heave and B33
(2D) the cross-sectional 2D 

damping in heave. B33
(2D) depends on n3.  

Using the Lewis-form technique to find the damping coefficient, the heave amplitude at 
resonance can be obtained, as reported in figure F:3.22 (given qualitatively below).  

                                                  
                                                             Fig. F:3.22  
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3| |BS  increases decreasing the beam-to-draft ratio B/D and increasing the sectional area 

coefficient =A/(BD) which in this case (box-shaped uniform cross-sections) is equal to the 
block coefficient, i.e. =CB . These results can be transferred to the heave and pitch amplitude 
in head sea. 
            
NB: The results obtained must be read as trends, i.e. considering large variations of the 
examined parameters. Making small changes may not show this behaviour since there are 
other parameters that matter: heave and pitch natural periods depend on the hull geometry and 
the cancellation effects in heave and pitch will vary from hull to hull.  
 
The RAO discussed here can be inserted in a statistical analysis assuming a spectrum S(). 
The analysis suggests that the vertical motions in head sea conditions depend on the ship 
length L and we expect that they decrease as L increases. Also this must be interpreted as a 
trend, i.e. it applies considering large variations in length. The vertical motions may also 
depend on other hull parameters than those considered here. Other aspects that could be 
relevant for the motions are: bulb, transom stern, pitch radius of gyration, U-form or V-form 
of the vessel. In the used simplified model, heave and pitch coupling is not accounted for due 
to the fore-aft symmetry of the vessel. In general the coupling matters for the motion 
amplitude.  
 
 
Minimization of roll  motion. (F:85-89) 
The wave induced roll damping can be limited in particular when the considered geometry 
has a limited capability in generating waves while rolling, e.g. cross-sections close to circular. 
In such conditions viscous damping becomes important associated with flow separation (we 
will see this later) which takes away a portion of the motion energy. When the vessel hull 
does not ensure sufficient roll damping, additional mechanisms are needed to ensure proper 
damping. Typical means used for ships are:  

1) Bilge keels: due to the presence of a geometrical singularity, flow separation is 
ensured. The roll stabilization is obtained by causing flow separation and then 
modifying the pressure distribution on the bilge keel and around the hull. This 
provides a load proportional to the square power of the roll velocity which acts as a 
damping for roll motion, i.e. it is proportional to 4 4| |   . 

 
  

 
 
 
 
 
 
 
 
 

2) Passive anti-roll tanks: they cause a roll moment, say MAT, counteracting the roll 
velocity. Both free-surface and U-tube tanks are used with this scope (see Fig. F:3.23). 
A detailed description can be found in Faltinsen’s book “Sloshing”, from pg. 82).  
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For them to work best, the tank natural period, say TN, must be close to the roll natural 
period, say Tn4. In this way the tank moment is almost 180 out-of-phase to the roll 
velocity (i.e. 90 out-of-phase to the roll motion). 

 
 
 
  

 
            
 
 
                                                

                                                          Fig. F:3.23 
            

In particular, fig. F:3.24 shows a free-surface tank at zero roll motion (maximum roll 
speed). In this condition a hydraulic jump forms in the middle and the related pressure 
distribution causes a maximum tank moment against the roll speed. 

            Some designers set Nn TT 4  , while others use TN  6-10% smaller than T4n.  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
                                                        Fig. F:3.24 
 
The damping effect is greater the tank causes a reduction, TGM , of the transversal 

metacentric height relative to the case without tank, TGM , in the range 

0.15 / 0.3T TGM GM  .    

 
Free-surface tank:  
The highest natural period 1T is connected with a wavelength λ=2b=2/k, so using the 

dispersion relationship in finite water depth khgk tanh2   we have  

   1 2 / ( / ) tanh(( / ) )       (F:3.75)T g b b h     

Because the water depth is typically small relative to b, shallow-water conditions 
apply, i.e. h/b0, so tanh( / ) /h b h b   and 

  2 /     (F:3.76)NT b gh                                  

nN TT 4
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The following figure shows the effect of the water depth h and the width of the tank b 
on the tank highest natural period T1 according to formula (F:3.75). For a given h, T1 
increases as b increases. For a given b, T1 decreases as h increases.  

                              
Due to the possibility to change the natural period by changing h, this type of anti-roll 
tank is well suited for ships operating with a wide range of metacentric heights. 
The ideal would be to have a linear moment from the anti-roll tank. The moment given 
by a free-surface tank is instead nonlinear, as shown in the figure below: 

      
The figure also proves as in quasi-steady conditions a sloshing tank is destabilizing for 
the roll motion, while it causes roll damping when the roll motion frequency is equal 
to the natural sloshing frequency. 
 
U-tube tank:  
Assuming a constant cross-section area A, the natural period can be obtained following 
the same approach as done for the piston-mode in a moonpool and assuming linear 
conditions:  
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An alternative approach can be based on the fact that at undamped resonance the sum 
of the kinetic energy  

    

2
1

2

ds
K lA

dt
    

 
 

and the potential energy  

    2
2

2s
gAP   

in the tank is constant, i.e. 
2 2

2 2

( )
0 2 0 2 0 natural period : 2

2N

d K P d s ds d s l
l gs A l gs T

dt dt dt dt g
 

 
         

 
A change of the natural frequency for sloshing is not so easy for a U-tube tank. If the 
metacentric height for the vessel may vary of a factor greater than 2 for different 
loading conditions, it is common to use two U-tube tanks. Side valves are used to 
control the fluid motion inside the tank. These can be part of an automatic control 
system. The U-tube tanks can provide a quasi-linear moment unless flow separation 
occurs. In the latter case the behaviour is nonlinear. The figure below shows an 
example of a U-tube tank on a patrol boat. The use of the anti-roll tank (curve: 
Stabilized) reduces the roll motion at the resonance with respect to the case without 
anti-roll tank (curve: Unstabilized). It also shows two side effects: existence of two 
natural frequencies and increase of the motion at smaller frequencies. 

                                       

Passive U-tube anti-rolling tanks on 53m long patrol boat

 /rad s

Coupled natural frequencies
Increased response

Stabilized
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A major problem for the passive anti-roll tanks is saturation, e.g. when the ship 
motions are very large tank roof impacts can occur reducing the tank ability of 
producing roll moment. 
Both free-surface and U-tube tanks may provide damping in a wider frequency range 
(i.e. not only at the resonance frequency) if damping is increased in the fluid inside the 
tank, i.e. introducing screens or other internal obstacles.  

 
Using Tn4 and /T TGM GM  allows to design the tank 

If we want to design a free-surface tank, we need to define the proper value for h, b 
and LT, with LT the tank length. The width b can be taken as the ship beam B, h can be 

obtained from  2

4 42 / 2 / /n N nT T b gh h b T g     and the length LT and vertical 

position relative to z=0 can be estimated by enforcing the ratio /T TGM GM within  

0.15 / 0.3T TGM GM  . Similar approach must be made to design a U-tube tank. 

 
The figure below shows how to design a U-tube and a free-surface tank to damp the 
motions of a tall building as a function of the building height H: 
 

                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 

Summary: Environment. Assumptions. Linear wave loads. Diffraction and radiation 
problems. Excitation loads. Added-mass, damping and restoring coefficients. Parameter 
analysis. Response. Minimization of vertical motions.  
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Second-order effects: mean, difference and sum wave-frequency effects (F:131-133) 
Up to now we have examined the linear response to linear wave systems. This means that we 
retained all terms O(1) and proportional to =ka. As the incident waves become steeper, i.e. 
ka increases, also higher order terms must be retained for a suitable estimate of the loads and 
motions. Using the perturbation approach, i.e. expressing the solution as 

             

 

 

1 2

1 2

2 3
1 2 3

2 3
1 2 3

........

........

 

 

      

      

   

   

  

    

We can proceed including terms O(2) (second-order terms) and examining their effects. In 
this way we are satisfying a bit better the conditions:  

- we enforce better the impermeability of the body in its instantaneous configuration,  
- the pressure to be atmospheric on the instantaneous free surface and  
- the normal fluid velocity at the free surface to be closer to the free-surface normal 

velocity. 
In other words, the problem is still approximated but with a smaller error, i.e. O(3).  
 
NB: It is more difficult to estimate second-order loads than linear loads, both experimentally 
and numerically, because they are typically small relative to the first-order contributions  
  they are more sensitive to the specific conditions (geometry, waves, first-order motion, 
etc).  
 
Hp: Let assume that we have a regular incident wave or a wave spectrum S(). 
Objective: we want to examine the response (motions/loads) accurate to the second order.  
 
First-order solution: the response has zero mean value and oscillates with the frequency of the 
incident waves, i.e. superposition principle is valid.  
 
Second-order effects cause on the response: 
1) a mean value                                                               constant (drift) 
2) a difference-wave frequency oscillatory behaviour   )( ji    long period 

3) a  sum wave-frequency oscillatory behaviour            )( ji    short period 

For a regular incident wave: i j     

 the 2nd order effects caused are a mean value and a sum wave-frequency behaviour.  
For a sea state with ( ) :   and i jS    are two generic regular components of ( )S   

 all 2nd order effects are caused. 
 
NB: Among effects 1)-2)-3): the sum wave-frequency effects are more challenging to be 
estimated, due to the fast time variations involved. The slow-drift effects are easier to estimate 
but require longer time analysis, especially when extreme values must be estimated and a 
statistics must be built for them, this is of concern in model tests. 
 
From where mean, difference and sum effects come from? 
 
Hp: Regular deep-water incident wave with amplitude a, frequency  and  propagating in x. 
 
The first-order incident wave velocity potential is: 
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 01 coskzag

e t kx
  


    

In the subscript of 01 , the first index ‘0’=incident wave, the second index indicates the order 

of approximation.  
The wave-induced loads can be obtained by integrating the pressure along the wetted surface 
of the body. This is given by the Bernoulli eq.: 

                            



 



 gz
t

p 
2

1
    (1) 

We can assume 1 2( ) (2 )      , i.e. the solution of the wave-body interaction accurate to 

the second order (NB: It has been emphasized that 1 2and   oscillate in time with  and 2  , 

respectively). This means that the pressure correct to the second order is 

                           
2

1 2
1 1

( ) ( )

1

2
a a

O O

p gz
t t

 

       
      

 
 

and in general we need to solve the linear and second-order problems to find the velocity 
potential, i.e. we need to estimate both 1 2and   .  

The contributions from 3 4
1 2 2 2 and  a a            to the square-velocity term must 

be neglected. We now examine the features of this second-order term using the contribution 

 2

1 / x   at x=0: 

Squaring the linear velocity component along x  

   

1

0

cos( )
x

A t
x

  



 


  

we have 

  
2 2 2 2 2

1 0
/ cos ( ) / 2 cos[2( )] / 2

x
constant term sum- frequency term

x A t A A t    


        

NB: 2cos ( ) {1 cos[2( )]}/ 2t t         
 
It means that we have a mean load and a sum-frequency load effect.  
The second-order term due to 2 / t   gives a sum-frequency load effect and zero mean value 

because 2 / sin(2 )t t    . 

 
Hp: Two incident wave components of a sea state with spectrum ( )S  ,  wave 1 and wave 2, 

with amplitudes a1 and a2, frequencies 1 and 2 and  propagating in x. 
 
The first-order incident-wave velocity potentials are  

         1 2(1) (2)1 2
01 1 1 1 01 2 2 2

1 2

cos cosk z k za ag g
e t k x e t k x

      
 

        

Here the apex indicates the wave.  
Now the velocity potential accurate to the second order is 
     
  ),()()( 2122

)2(
11

)1(
121    
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with 2 involving a combined effect from the two incident waves. We analyse as before the 

contribution of  2

1 / x  to the square-velocity term at x=0: 

Squaring the linear velocity component along x 

1
1 1 1 2 2 2

0

cos( ) cos( )
x due to interaction with wave 1 due to interaction with wave 2

A t A t
x

    



   

     

 
we have 

 2 2 2 2 2
1 1 1 1 2 2 2 1 2 1 1 2 20

/ cos ( ) cos ( ) 2 cos( )cos( )
x

x A t A t A A t t        


        
 

 

NB:  2cos ( ) {1 cos[2( )]}/ 2t t         

         1 1 2 2 1 2 1 2 1 2 1 2cos( )cos( ) {cos[( ) ] cos[( ) ]}/ 2t t t t                      
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

ncy  term


So the second-order body interaction with a sea state with spectrum ( ),S  involves mean 
loads and loads oscillating in time as ji   . 

 

 
What is the practical relevance of second-order loads? 
Mean (drift) loads resulting from second-order effects are important in many contexts: 

- design of mooring systems 
- design of thrusters systems 
- towing 
- offshore loading 
- submarines 
- capsizing of semisubmersibles 
- added resistance in waves 

If the two wave frequencies involved are very similar, the sum-frequency effect is of an 
oscillation period almost half of the incident-wave period and the difference effect is of an 
oscillation period almost zero, i.e. very slowly-varying loads.   
The slowly-varying loads can cause resonance in surge, sway and yaw of a moored structure, 
for which relevant periods are O(1-2min). 
The high-frequency loads can cause resonance in heave, pitch and roll of TLPs, for which 
relevant periods are O(2-4sec). 
 
We will now discuss the three second-order effects 1)-2)-3) in terms of loads. Most of the 
discussion is in terms of forces but similarly can be done for the moments. 
 
The forces of a marine structure can be estimated in two ways: 

1) The direct pressure integration: integrating the pressure along the instantaneous wetted 
surface of the body 
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  dSgz
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BB SS

nnF      

       with n pointing inside the body  
             
NB: We are assuming zero viscosity otherwise the tangential stresses should also be 
considered.  

 
2) The conservation of the fluid momentum: given a certain fluid volume 

(material/fixed/etc.), the fluid momentum may vary in time because of the forces 
acting in the volume, like the gravity, or on its enclosing surface, normal and 
tangential (zero for zero viscosity) stresses, and of the net flux of fluid momentum 
through its enclosing surface, i.e. 

      
0

0

( ) ( )n n n n

S S S

if flux leaving 

d
d V U dS p dS g d V U dS

dt 
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 

  

 
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 
    


S VV F F V n k V  

      with n pointing out of the fluid volume, k the unit vector vertical and upwards and Un 
the normal velocity of the boundary surface (Un =0 for a control surface and Un = Vn 
for a solid or free surface). If Ω is a fluid volume enclosed by our marine structure, a 
part of the free surface and a remaining control surface, then from (1) we know that 
the force on the body can be expressed as  

      ( )
B

n n

S S S

d
d p dS g d V U dS

dt
  

  

 
       

 
   F V n k V     (2) 

Expression (2) is formally more complicated than (1) and involves volume integrals, but there 
are circumstances where, when the mean loads are of interest, the integrals simplify and may 
reduce to an integral on a ‘far-field’ control surface that can be estimated more simply and 
correctly than that in (1). Expression (1) involves terms that counteract each other and may 
make it difficult to estimate accurately the loads. Further, approach (2) offers an important 
physical interpretation of the mean loads, as we will see (i.e. Maruo’s formula). 
 
NB: Expressions (1) and (2) are ‘exact’, i.e. no perturbation process has been introduced, the 
latter must be considered when we want to estimate explicitly the second-order effects. 
 
 
Mean wave (drift) forces: direct pressure integration.  (F:142-143) 
The sources of second-order terms in the loads are: 
 
- The pressure: Its expression up to the 2nd order is 
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It involves two second-order terms: the time derivative of the second-order contribution of the 
velocity-potential and the square power of the first-order velocity. Only the latter causes  
mean forces. 
 
 
- The body motions: The body motions contribute  

z=0
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in two ways to the second-order effects, (a) their 
first-order value modifies the linear dynamic  
pressure and causes (if rotational motions) 
a time variation of the normal vector, (b) their  
second-order value modifies the hydrostatic pressure. 
These second-order effects cause mean forces. 
   

 
 
- The body wetted surface: The free-surface  

evolution results in the time variation of the body  
wetted surface and this has a contribution to the  
second-order effects. These second-order effects  
cause mean forces. 
 

For example the mean value coming from second-order effects in the variation of the wetted 
surface of the body  is shown in Fig. F:5.1: 
 
 
 
 
 
 
                                                             
                                                           Fig. F:5.1 
 
The different second-order effects come out when we use the perturbation technique to 
estimate the loads up to the second order. The second-order contribution to the forces can be 
formally written as the sum of five terms: 
      2 1 2 3 4 5F = I + I + I + I + I  

They can be interpreted as: 
I1=correction of local flow acceleration, it is the only one connected to 2 , i.e. to 2 / t     

I2=quadratic term of the velocity 
I3=pressure correction due to changes in the body wetted surface  
I4=pressure correction due to body motions 
I5=change of the first-order force direction due to body rotations 
 
F2 has mean value different than zero connected with I2-I5.  
I1 has zero mean value because 2 / sin(2 )t t     has zero mean value. 

 
NB: 2 does not contribute to the mean (drift) forces so to evaluated the mean loads we do not 
need to find 2, but just to solve the problem for the first-order velocity potential 1. 
 
The mean loads are due to the body capability in generating waves, i.e. by its capability in 
diffracting the incident waves and irradiating waves.  
It means that the mean loads are relevant for large structures and are negligible for small 
vessels (relative to the incident waves). 
 
 

waves

Mean loads small

waves

Mean loads large



z=0

0n

(t)n

Non-zero
mean force
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Why a free-surface tank causes a maximum damping when 

Natural sloshing period Natural roll periodFree-surface tank:
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Free-surface antirolling tank
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Tuned liquid dampers
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Environment. Assumptions. Linear wave loads. Diffraction
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Coordinate System and Rigid-Body Modes

1 2 3s i j k

r

i j k4 5 6 ,

x y z

i j k

r i j kyj

1 5 6z y

z x

s i

j2 4 6

3 4 5

z x

y x

j

k

110



Environment

• 2D Regular, short-term and long-term 

long crested and short crestes waveslong-crested and short-crestes waves

• Wind

• Current

Scatter Diagram: Sea State Probabilityg y

Classification of Motions/Loads

Natural Heave Periods

SES TLP Ship Semi-sub SWATH

Natural heave periods

SES TLP Ship Semi-sub SWATH

T 1
Tn>20s

Tn<1s

/1.5nT L

n

Tn=2-4s 4 16

n

s Tn>20s

Hi h f W f L fHigh-frequency

range

Wave-frequency

range

Low-frequency

range

LinearNonlinear NonlinearExcitation Linear

effects

Nonlinear

effects

Nonlinear

effects

c tat o

mechanisms:
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H
Classification of wave forces

H

D

ViscousD

10

Viscous

forces

Wave breaking

limit

Mass forces

limit

Diffraction

5
D

Diffraction

Basic Assumptions and Problem

Potential flow theory:Potential flow theory:

l

Inviscid zero tangential stresses
VIrrotational

Incompressible

V

2 0

and from scalar function p V

Problem:

Gouverning eq.

+B C +I C

Linearity:

Bernoulli eq. +B.C.+I.C.

y

Small parameter , i.e. wave steepness

Solution in
Time domain

Frequency domainFrequency domain

2D Regular

Pressure: hydrostatic and dynamic parts

2D Regular

Linear

"Hydrostatic" pressure

ag

Total pressure

"Hydrostatic" pressure

agLinear

Incident Waves

Total pressure

ag

Linear dynamic pressure /

a

t

g

ag

Linear dynamic pressure / t
ag

ag

Phases of wave variables

Stokes drift velocity (Lagrangian)Stokes-drift velocity (Lagrangian)
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2S m s
How energy in a wave spectrum can

be distributed to individual regular 

15.0
wave components

1. Split in N wave components

H1/3=8m T2=10s

max min / N

7.5

H1/3 8m,T2 10s
2. Wave amplitude of wave component j:

2j jA S

3. Random phase of wave component j:

max

j

0.75 1.5
min

max

1rad s

min

Time and Frequency Domain of Waves

Time domain
Wave 

Time domain.

Random elevation
spectrum

RegularRegular

wave components.

Random phases.p

From Regular Short-Term Long-Term 
Example: available wave powerExample: available wave power

2

a g
P

g
R l

Wave energy 

22

a
wPRegular waves

Wave energy density

propagation velocity

2g S
dPSh t t t t

Wave spectrum

0
2

w

g
dPShort-term sea state

L t l i ( ) ( )i j

( ) ( )i jT H

Long-term analysis ( ) ( )

0 1/3( , )i j

w

i j

jw i P T HP p

P b bilit f t t ( ) ( )

0 1/3,i jT HProbability of sea state
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Scatter Diagram: Sea State Probabilityg y

Linear Wave-Induced Body Motions

RadiationDiffraction Wave-body interaction
Problem

Decomposition:

E it ti l d Added mass Linear wave induced

Haskind

Relations

Excitation loads:

Froude-Kriloff

Diffraction

Added mass

Damping

Hydrostatic restoring

Linear wave-induced

motions, accelerations

and structural loads

Hydrodynamic loads Response

Hydrodynamic Loads: Diffraction Problem

Hp: Fixed body in incident waves

Froude-Kriloff  loads Diffraction  loads

n

0
nn

D 0

Incoming

waves

0
)( 0 D

0
)(

n

Due to incident-wave

pressure, as the body 

was not there

Due to flow motion 

against incident waves to 

ensure impermeability

Dynamic pressure integrated on the mean wetted body surfacey a c p essu e teg ated o t e ea wetted body su ace
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Hydrodynamic Loads: Radiation Problem

Hp: Body forced to oscillate in its 6 d.o.f. without incident  waves

From linear dynamic pressure: From ”hydrostatic” pressure:

[ ] 1..6
j j

contribution j

p U j
t x

y p

p gz

y p

contribution j
due to forward

 motion

Integrated on the mean wetted body surface

Integrated on the instantaneous 

wetted body surface

Added mass loads Damping loads Restoring loads

6

,

1

( ) , 1..6rad k kj j kj j

j

F t A B k

6

,

1

( ) 1..6 hydr k kj j

j

F t C k

Added-Mass and Damping

Meaning Parameter dependence

Added-mass
• Do NOT represent a finite ‘accelerated’ 

mass added to the body mass

Meaning

Akj and Bkj

Parameter dependence

coefficients
• Affect the body acceleration

kj kj

=f(body geometry,

frequency,

vicinity of free surface

Damping

coefficients

• Connected to the square power of the 

amplitude of body generated waves
2

2

3Ag

vicinity of free surface,

water depth,

water confinement,

forward speed U)coefficients
ex. Heave:

3
33 3

3a

Ag
B forward speed U)

Estimation

• In general solving a 3D problem for j .
(2 ) (2 )D D

Encounter frequency

Different B.C.
/ /t U x

j

• If strip-theory valid: from

from:

(2 ) (2 )and D D

ij ijA B

(2 ) (2 ) and D D

ij ijA B - Source technique

C f l i
ij ij

- Conformal mapping

Strip Theory
H

Classification of wave forces

the 3D problem as the sum of 2D problems.

For radiation problem : theoretical/practical

applicability in terms of frequency

F diff ti bl th ti l/ ti l
10

D

Viscous

forces

W b ki

D

the 3D problem as the sum of 2D problems.

For diffraction problem: theoretical/practical

applicability in terms of frequency

For ships: theoretical/practical applicability
Diffraction

Mass forces

Wave breaking

limit

in terms of ,  ,  body slenderness,...e Fn 5
D

Long-Wave Approximation

S i l f f E it ti l d

Strip theory 

combined with

Special forms for Excitation loads, e.g.

, 0 0 0

1

3
( ) ( ) 1..3exc k k j kj j kj

jS

F t p n dS a A u B k

Long-wave approximation Further approximation for 

small submerged geometries

small
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Response & Response Amplitude Operator (RAO)p p p p ( )

• In: Regular waves, short-term and long-term seas

A i l i i l i l d• As: Motions, relative motions, accelerations, loads…

• Relevant phenomena:

- Resonance for ships, ocean structures, fluid (piston mode, 

sloshing)

- Instability  (Mathieu-type instability for roll)

- Wave-induced accelerations on equipmentsq p

• Experimental RAO:

- Regular-wave tests

- Transient testsTransient tests

• Minimization of  vertical motions

Hp: Two incident wave components of a sea state with spectrum ( )S ,  wave 1 and wave 2,

with amplitudes a1 and a2, frequencies 1 and 2 and propagating in x.

The first-order incident-wave velocity potentials are

1 2(1) (2)1 2
01 1 1 1 01 2 2 2cos cosk z k za ag g

e t k x e t k x01 1 1 1 01 2 2 2

1 2

cos cose t k x e t k x

Here the apex indicates the wave.  

Now the velocity potential accurate to the second order is 

),()()( 2122

)2(

11

)1(

121

with 2 involving a combined effect from the two incident waves. We analyse as before the

contribution of 
2

1 / x to the square-velocity term at x=0:

S i th li l it t lSquaring the linear velocity component along x

1
1 1 1 2 2 2

0

cos( ) cos( )
x

due to interaction with wave 1 due to interaction with wave 2

A t A t
x

we have 
2

2 2 2 2/ cos ( ) cos ( ) 2 cos( )cos( )x A t A t A A t t1 1 1 1 2 2 2 1 2 1 1 2 20
/ cos ( ) cos ( ) 2 cos( )cos( )

x
x A t A t A A t t

NB:
2cos ( ) {1 cos[2( )]} / 2t t

1 1 2 2 1 2 1 2 1 2 1 2cos( )cos( ) {cos[( ) ] cos[( ) ]} / 2t t t t

2
2 2

1 1 20
/ ( ) / 2

x

constant term

x A A

Constant term
2 2

1 1 1 2 2 2 1 2 1 2 1 2cos[2( )] / 2 cos[2( )] / 2 cos[( ) ]

cos[( ) ]

constant term

Sum- frequency terms

A t A t A A t

A A t

Constant term

Sum-frequency term

1 2 1 2 1 2cos[( ) ]

Difference- freque

A A t

ncy term
Difference-frequency term

S h d d b d i i i h i h ( )S i lSo the second-order body interaction with a sea state with spectrum ( ),S involves mean 

loads and loads oscillating in time as ji .
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The sources of second-order terms in the loads

The pressure:
mean value=0 mean value 0

2
1 1

1 1

2
p

t t
gz

The pressure:

z=0

2( ) ( )aaO O

First order Second order

The body motions:

(t)
(a) their 1st-order value modifies the linear dynamic

mean value 0

z=0

0n

(t)n
(a) their 1 order value modifies the linear dynamic

pressure and causes (if rotational motions) a time

variation of the normal vector,

(b) their 2nd-order value modifies the hydrostatic( ) y

pressure.

A major contribution to vertical mean wave 

force on a Spar platform in survival condition:

Linear Solution

5

2

1d
MFirst order ”horizontal” hydrodynamic force= 2
M

dt
First order horizontal hydrodynamic force=

A major contribution to vertical mean wave 

force on a Spar platform in survival condition:

5

Second-order force
5

2

2

1
52

d
M

dt
Mean vertical force

2

1

2

d
M

dt
First order ”horizontal” hydrodynamic force=
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The sources of second-order terms in the loads

The pressure:
mean value=0 mean value 0

2
1 1

1 1

2
p

t t
gz

The pressure:

z=0

2( ) ( )aaO O

First order Second order

The body motions:

(t)
(a) their 1st-order value modifies the linear dynamic

mean value 0

z=0

0n

(t)n
(a) their 1 order value modifies the linear dynamic

pressure and causes (if rotational motions) a time

variation of the normal vector,

(b) their 2nd-order value modifies the hydrostatic( ) y

pressure.

The body wetted surface: mean value 0The body wetted surface:

The free-surface evolution causes a time variation of

the body wetted surface and this has a contribution to

th 2nd d ff t

mean value 0

the 2nd -order effects.

Non-zero

mean forcemean force

waves

Mean loads small

waves

Mean loads large
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40. Drift loads from body capability in generating waves. Maruo’s formula. 
Conservation of fluid momentum. Direct-pressure integration versus conservation of 
fluid momentum. Added resistance in waves. Viscous effects on mean wave forces.  (F: 
134-141,143-155) 
 
 
Drift loads from body capability in generating waves. 
If the waves are very short relative to the structure, they only see a vertical wall. 
 
 
 
 
 
 
 
 
 
We can then estimate the mean force due to the wave-structure interaction by approximating 
the problem as the problem of an incident wave interacting with an infinitely long vertical 
wall. 
 
Hp: 2D deep-water incident regular beam waves interacting with an infinitely long vertical  
        (fixed) wall.      
Obj: Mean wave (drift) force in sway. 
 
 
 
 
 
 
 
 
 
 
 
 
Incident-wave first-order velocity potential: 

 01 0 coskzag
e t ky

  


    

As in general, without current and without forward motion, 2 does not contribute to the mean 
loads, we only need to find the first-order wave-wall interaction solution 1 to estimate the 
mean force. 
 
NB: 2 could contain a space-dependent term constant in time. In the case of current or forward 
motion such term could contribute to the drift loads through the pressure additional term 

2 /U x    . 

 
The problem is a diffraction problem because the body does not move, so it can only diffract 
(reflect) the incident waves. We need to find D , its problem is: 

y

z
waves

n
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2
1 1

2 2
1

0

0 0 0

 : 0     cos( ) sin( )

 : 0 0

 : sin( )  cos( )

: 0 satisfied as 

D D

D
D

kz kzaD D
a D

y y y

kz
D D

Laplace eq. A k y B k y

FS B.C. g z gk gk
z

g
Wall B.C. e t e t ky

n y y

Far field as z e

 
  

      


 
  

       


      


 
       

  

   

P 


 

 
 
 
 
  

   

 
The solution is then: 

cos( )kza
D

g
e t ky

 


   

The total first-order solution is  

   1 0 cos cos 2 cos coskz kz kza a a
D

g g g
e t ky e t ky e t ky

       
  

       ,  

with wave elevation 1 sin( ) sin( ) 2 sin cosa a at ky t ky t ky           .  

This is a standing (non propagating) wave with amplitude twice the incident wave amplitude: 
 

                                     
To find the mean horizontal force, we need to integrate the pressure along the wall, retain all 
force terms proportional to 2

a and find the mean value of their sum. The pressure accurate to 

the second order is  
 

2

1 2
1 1

( ) ( )

1
       (1)

2
a a

O O

p gz
t t

 

       
      

 
 

 
The first two terms in eq. (1) are linear so their contribution to the second-order horizontal 
force is obtained integrating from 0 to 1 along the wall.  

                                                     

H=4a

gz

1

0zt








y

z
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The second two terms in eq. (1) are 2
a  so their contribution to the second-order horizontal 

force is obtained integrating from -  to 0 along the wall. Among these second-order pressure 
terms, only the square power of the velocity contributes to the mean value of the horizontal 
force. 2 / t   does not contribute to the force mean value because, as 2 , it is periodic with 

frequency 2 so 
0

2
2n dz

t







  has zero mean value. 

The second-order contribution to the horizontal force with non-zero mean value is: 

 



   

1

1

11 0

0
1

2 1 1 2 2
001 1 0

2
0 2

1 1

0 0 0 0

0
22 2 2

/

1

2

1

2 2

1
2 cos 2 sin (2 sin ) 2

2
z

z y

y y z

kz
a a a

t

F n dz gz n dz
t

z
dz z g

z t

t e g t t g
k







   

  

        



   

  


 

  
           

    
          

       

 



  22 sina t 

 

   2 22 2

2 2

cos 2 sin

[1 cos(2 )] / 2 2 [1 cos(2 )] / 2

a a

a a

g t g t

g t g t

     

     

  

    
 

The mean value of 2F   is then  

  2 2 2
2 / 2 2 / 2 / 2a a aF g g g         . 

 
NB: This formula shows that the force is proportional to the square power of the reflected 
wave amplitude, in this case this amplitude coincides with the incident wave amplitude, i.e. it 
is the largest possible value of the reflected wave amplitude. This means that this is the 
maximum possible value for 2F  without current and without forward speed. 

        
Mean wave (drift) forces:  Conservation of fluid momentum. (F:135-137) 
 

( )
B

n n

S S S

d
d p dS g d V U dS

dt
  

  



 
       

 
   


M

F V n k V        (1) 

Here the normal vector points outside the fluid domain . 
 

  

SB

SFS

SSB n

n
S S

Un=0 Un=Vn=0

Un=Vn

Un=Vn

p=pa
z, k
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Hp: The 3D fluid domain Ω is enclosed by the surface S made by the body, a control surface 
S, i.e. fixed and transparent for the fluid, and the portion of free surface and of the flat sea 
floor limited by such surface. The boundary conditions are given in the following figure. 
 

The pressure appears in equation (1) in the term , i.e. in the term
BS S

p dS


 F n   

    (using the Gauss theorem, see eq. (F:5.6))
S

p dS pd


   n  

 
The free-surface pressure is equal to the atmospheric pressure pa which is uniform and 
constant so its gradient is zero, i.e.  

 
0 ( )a a a

S S S

p dS p d p p dS p dS


         n n n  

 
It means that if we express the pressure relative to pa, i.e. p-pa,  the results for the force do not 
change. This has the advantage that on the free surface we have  

( ) 0
FS

a

S

p p dS  n     

So the contribution from the free surface to the mean force will be zero. From now on, the 
symbol p will then indicate p-pa. Time averaging expression (1) over one period of oscillation 
T we can get the mean force. The mean value of dM/dt is zero because it is periodic with 
period T, So, in terms of force components, the mean value from eq. (1) reduces to: 
  

   
3

0 3
1 3

( )        1, 2,3
SB

i i i n i i

S S i
i

F pn VV dS pn dS g d i  
   

 

        
 

The right-hand-side must be intended as a mean-value expression. The mean vertical force 
component depends on a volume integral associated with the gravity, which can be 

transformed in a surface intergral, i.e. 
S

g d gz dS 


  k n .  

For the mean horizontal force components: the gravity term does not contribute and the term 
connected with the sea bottom (second term) is also zero because SSB has a vertical normal 
vector. It implies that the horizontal force components are given by the integral along the 
control surface, i.e. 

      ( ) 1, 2i i i n

S

F pn VV dS i


       (F:5.9) 

Formula (F:5.9) was derived by Maruo. Newman derived a similar formula for the mean 
wave-drift yaw moment starting from the conservation of fluid angular momentum.  
Formula (F:5.9) is valid also in 2D, in this case the control surface has two parts S- and S, 
respectively upstream and downstream of the body. 
 
NB: Despite the control surface has been named as S, there are no restrictions on its location, 
i.e. it can be close to the body. The location and shape is chosen to make easier the load 
estimation. It is a great advantage of this method when compared with the direct-pressure 
integration method. 
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Maruo derived a simpler expression for the horizontal mean wave-drift force under additional 
assumptions, which shows more explicitly the fact that the drift loads are due to the body 
capability in generating waves. 
 
 
Maruo’s formula. (F:137-141) 
Hp: 2D incident regular beam-sea waves in deep water. No current. No forward motion.  
Obj: Find mean wave (drift) force in sway 2F . 

 
 
 
 
 
 
 
The first-order incident-wave velocity potential is 

 01 0 coskzag
e t ky

  


    

Diffraction waves will be generated by the body presence. Radiation waves will be generated 
by body motions. As a result we have: 
 
Upstream of the body:  
    incident waves  
     (propagating in positive y direction) 
       amplitude = a 
    reflected waves =diffraction +radiation waves  
      (propagating in negative y direction) 

       amplitude =AR , 1
st-order velocity potential:  cos  kzR

R

gA
e t ky  


    

 
Downstream of the body:  
  transmitted waves = incident+ diffraction + radiation waves  
    (propagating in positive y direction) 

    amplitude =AT , 1
st-order velocity potential:  


  kyte

gA kzT
T cos  

Applying eq. (F:5.9) in this 2D case to find the mean wave force along y, we have: 
 

        
2

2 2
2 2 2 2 2 2 2 2 2

1 1

2 2

0( )

nS S S S

R T

S S

F pn V dz pn V dz p V n dz p V n dz

p dz p dz
y y

   

   

   

 

 

           

                               

   

 

n= j

V n V n

 
When integrating, it is convenient to split S±. in two parts:  
        S0±  : between z=-  and z=0   
         the second-order pressure terms provide the second-order contribution 
        S1±  : between z=0    and z=    
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        the first-order pressure terms provide the second-order contribution 
 
So introducing the Bernoulli equation for the pressure, we have: 
 

22

0 0
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which means 
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                  (F:5.14) 

 
This can be generalized for finite water depth h  (Longuett-Higgins, 1977) as: 
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which coincides with expression (F:5.14) in the limit for  

       kh , i.e. 
)2sinh(

2

kh

kh
0 

 
Hp: The average energy flux is zero through the body surface  
        This means that body can not be an active wave-power device. 
 
The reason for this is that a wave-power device must absorb energy which means that there is 
an energy flux through its surface. This can be achieved by combining in a suitable way its 
motions, as for instance shown in the figure below, examining a symmetric body and 
addressing what is the condition to have a perfect absorber:  
 
 
 
 
 
 
 
 
 
 
 
 

To absorb waves means to generate waves

(Falnes,2002)

Incident waves

Symmetric wave generation

Anti-symmetric
wave generation

Total wave field
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The assumption that there is zero energy flux through the body surface implies that (a) there is 
no work done on the body during one period of oscillation. Moreover, (b) the variation of the 

energy has zero mean value, i.e. / 0dE dt  . (a) +(b) lead to 

    222
TRa AA    (1) 

It means that the mean incident-wave energy is split in the reflected and transmitted wave 
energy. As a result the mean wave drift force becomes  
 

     2
2 2 RA

g
F


      (F:5.16) 

 
This is known as Maruo’s formula. It is consistent with the formula obtained using the direct 
pressure integration for the 2D example of an incident wave interacting with an infinitely long 
vertical wall. Indeed such example corresponds to the asymptotic value of the Maruo’s 
formula for  , i.e. short waves relative to the structure. In this case there are no 
transmitted waves, i.e. 

2
2    (2)     (3)

2R a a

g
A F

      

Using relation (1) above we see that (2) is the largest value for the reflected wave amplitude. 
This confirms that (3) is the largest value of the mean drift force without current and without 
forward speed.  
Formula (F:5.16) states that drift loads are due to the body capability in generating waves:  

- radiated waves connected with body motions and  
- diffracted waves connected with the body presence.  

 
So the mean-wave (drift) force is smaller for submerged bodies and reduces as the 
submergence depth, say d, increases. Moreover it is smaller for geometries which generate 
smaller waves. 
Ogilvie (1963) showed that AR=0 for all frequencies and all d in the case of a submerged  
horizontal circular cylinder fixed or moving in circular orbits. 
 
A typical behaviour of the drift force for a 2D surface piercing body in deep-water beam sea 
waves is as given in fig. F:5.5: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                              Fig. F:5.5 
 
 It  goes to zero as the waves get longer  

Heave resonance
Asymptotic value:0.5
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    the body follows the waves, i.e. it does not generate much waves.  
 It has a local maximum at the heave resonance when the vertical motions are largest. In this 
region the relative vertical motions matter  
     radiation waves are important.  
 It increases again as the waves get shorter  
    diffraction waves become important 
    the asymptotic value for   is the value in the case of an infinite vertical wall. 
 
Maruo (1960) has derived an extension of formula (F:5.16) for drift forces of 3D bodies under 
the following assumptions. 
Hp:  3D body. Regular incident waves. Zero current. Zero forward speed. Conservation of 
energy, i.e. viscous effects are neglected. 
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Here  is the incident-wave direction with respect to the x direction and rA /)(  is the 

amplitude of waves generated by the body at large horizontal radial distance 22 yxr 
from it. These waves include the waves radiated by body motions and diffracted by body 
presence. The angle  is defined by  sin,cos ryrx  . Also these expressions confirm 
that drift forces are connected with the body ability of generating waves. 
 
NB: In beam and head waves the drift force is in the direction of the incident waves but in a 
general wave heading the force direction can be different than the incident wave direction.  
 
Maruo’s 3D formulas do not show which wave directions are responsible for greater drift 
forces. This is discussed in figure F:5.6, which examines the influence of the wavelength and 
wave direction on the transverse drift force on a ship. 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
                                                                 Fig. F:5.6 
Here  =0 means head sea waves. Two wavelengths are considered. The maximum value of 
the transverse drift force occurs at the smallest , in particular in beam sea. For the largest  
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the force is almost zero in beam sea and largest for wave headings 45 and 135. This is 
because for this wavelength the ship follows better the incident waves if they are at 90 (beam 
sea), i.e. the generated waves are small. 
 
NB: This confirms that, the wave headings which result in greater wave generation 
correspond to higher wave-drift force. 
 
What is the importance of  2F  for a 2D surface-piercing body with respect to the 
horizontal force caused by a current Uc in calm water (i.e. without incident waves)? 
As we will see later in the course, the force associated with the current is proportional to the 
square power of the current speed and can be expressed as  

21

2c D cF C DU  

Here CD is the drag coefficient for the current flow and D is the body draught. So we have   
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    (1) 

 
Example. 
Hp:  Uc =1m/s, D=10m and CD =1  

        2
2 / Rc AFF    (with the reflected wave amplitude given in metres).   

 
So the wave-drift force is rather important for large volume structures like ships, causing 
reflected waves with large amplitude. 
 
NB: Expression (1) of the force ratio assumes that there is no interaction between waves and 
current. In reality:  
        the current affects the waves  
          so AR will be affected 
        the wave-current interaction modifies the flow separation around the body 
          so CD will be affected 
 
Figure below examines the longitudinal drift force for a TLP in regular waves propagating 
along the positive x axis, without and with current. The trend and maximum value of the force 
as a function of the incident-wave period change introducing the current and depend on the 
current direction. This is because the current affects the body capability in generating waves.  
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Methods to estimates the mean loads: direct-pressure integration versus conservation of 
fluid momentum. 
As we have discussed, the direct-pressure integration (DPI) and the conservation of fluid 
momentum (CFM) offer two alternative ways to evaluate the drift forces. The figure below 
shows a comparison between numerical results using the two methods for the vertical mean 
force on a vertical cylinder.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Large differences occur near the zone where the mean force should change sign according to 
CFM. This is due to errors associated with cancellation effects of load contributions when 
using DPI. Estimation through DPI involves different terms which counteract each other. This 
may lead to accuracy problems. It also involves a greater sensitivity of the force values to the 
approximation made for the body geometry. Geometrical singularities represent a source of 
numerical errors in this context. This discussion does not mean that one must not use the DPI 
method but only that one must be careful when applying it and one must make sure that the 
results obtained are converged, i.e. they do not depend on the numerical parameters.  
 
 
Extension of the asymptotic value of Maruo’s 2D formula for   
Faltinsen has generalized the asymptotic value of the Maruo’s 2D formula for short waves 
(i.e.  ) to 3D structures with vertical sides. 
Hp: 3D body with vertical sides at the water-plane. Regular incident short waves. No current. 
No forward speed. 
Assuming that the body geometry is as in figure F:5.8: 

                                       
                                                              Fig. F:5.8 
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we have:  
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 (F:5.21) 

Here 1 2 6sin , cos  and cos sinn n n x y        and the integration is along the non-

shadow part of the body (i.e. the part exposed to the incident waves) with length L1 along the 
waterline. This formula is valid for the horizontal force components and the yaw-drift 
moment integrated along the water-plane non-shadow curve. 
 
Some examples of applications. (F:144-145) 
 
1) Infinitely long horizontal cylinder  (L) with generic heading : 
 =0 deg, xnnn  621 10  
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So the only mean load is the horizontal force component normal to the cylinder surface. If 
=90 sin | sin | 1   . This is the maximum value of the drift force and gives  
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agF
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 
  

for the force per unit length, i.e. 2D force. In this way we recovered the Maruo’s 2D formula 
for   and we have again the confirmation that this is the maximum value we can have 
for the drift force, i.e. wave right against an infinitely extended body, without current and 
without forward speed. 
 
2) Structure with circular water-plane area of radius r: 
 0sin)cos(cos)sin(cossin 621   rrnnn  
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So, due to the radial symmetry of the body: the moment must be zero and the two mean loads 
are identical and 90 degree out-of-phase from each other. 
 
3) Structure with circular water-plane area consisting of 2 circular ends of radius r and a 
parallel part of length 2l: 
 In the circular part: 1 2 6sin cos ( sin )cos ( cos )sinn n n l r r              

                                                                           cosl    
 In the linear part:  xnnn  621 10   
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The geometry comes from combining the geometries in examples 2) and 3). As a result: the 
forces are given by simply summing the forces for those two geometries. A moment is caused 
by the fact that the radial symmetry of the circle is broken by the elongated central part. This 
is equal to zero if the wave direction is parallel or normal to the central part.  
 
 
Added resistance in waves. (F:145-150) 
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The wave-drift force represents an additional resistance in the case of a vessel advancing with 
forward speed U in waves. It is then called added resistance in waves and usually indicated as 
RAW. 
Hp: Blunt ship forms with vertical sides at the waterplane. Small Froude number, i.e. 
Fn<~0.2. Head sea regular deep-water waves (in this case it means =0 deg). Small 
wavelengths, i.e. λ/L<~0.5. 
 
The mean horizontal force due to second-order effects in the wave-body interactions is 
 

           
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Here   is the (circular) frequency of the waves, i.e.  /22 ggk  , and L1 is the non-
shadow part of the body.  
Formula (F:5.22) is sensitive only to the bow part of the vessel and increases as the body 
becomes blunter, i.e. greater wave reflection. This is analysed by figure F:5.10 in terms of the 
variation of added resistance with respect to a reference value 0F . 

 
 
 
 
 
 
 
 
 
 
 
                                                     Fig. F:5.10 
From  expression (F:5.22) and substituting 1AWR F , we have: 

( 0)

( 0)
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1AW Fn
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R U
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Using this formula:  
If we choose for instance λ/L=0.5 (i.e. limit of validity)  
  ( 0) ( 0)1 7AW Fn AW FnR Fn R     

which means an important effect of  the forward speed.  
 
Also the effect of a current is important for drift loads in the case of large marine structure 
A current of 1 m/s could increase the drift forces of 50% (shown by Zhao et al. 1988) 
 
For a ship at moderate Fn the added resistance in head sea waves is typically as in the figure 
F:5.11: 

- For λ/L<0.5 the added resistance in waves is dominated by the bow-wave reflection, 
i.e. eq. (F:5.22) can be used.  

- In the resonance region, i.e. around λ/L=1, the wave generation connected with ship 
motions governs. It means that RAW depends strongly on the relative vertical motion 
between vessel and waves. 

- For longer waves the added resistance in waves becomes negligible. 
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-  
 
 
 
 
 
 
 
 
 
 
 
 
                                                                Fig. F:5.11 
 
The drift loads are also affected by confined waters. This means that when performing 
experiments in a tank, the tank-wall effects influence the loads. Figure below examines this 
for the longitudinal drift force on a hemisphere in regular waves and with forward speed.                   

                         
Both measurements and numerical results modelling the tank walls show a more complex 
behaviour of the drift force in terms of the frequency, with respect to the numerical results not 
modelling the tank walls. 
 
From what discussed we have learned that: 
Hp: A regular incident wave with frequency , direction   and amplitude a  

The induced mean wave (drift) loads are 2),( aiF   .  

It means that 2/),( aiF   is independent on the wave amplitude and represents then the 

transfer function for the mean-wave drift loads for a given regular wave with frequency   and 
direction . So to mean drift loads caused by a wave with these parameters and amplitude A 
will be:  
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The drift loads in regular waves can be used to estimate the drift loads in irregular long-
crested waves with a spectrum S() and propagating in  direction.  
Approximating the spectrum as N wave components with amplitude                    
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         2
max min2 ( )( ) /j jA S N    ,  

the velocity potential can be written as  
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 So for the regular wave component with j ,   and jA  the  drift loads are given by 

 

 2 2( , ) /i j a jF A    

 
and summing up for all N wave components of the wave spectrum, the mean-wave loads 
associated with the sea state are obtained, i.e. 
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which becomes 
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for N  . 2( , ) /i aF     can be calculated independently from the spectrum for any 

combination of j and   and then used to estimate the mean wave drift loads for the specific 
spectrum.  
 
The added resistance s

AW FR 1  in short waves can be obtained as 
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It means that 2
3/1HRAW   and it reduces as T1 increases.  

 

If the wave elevation can be considered as a Gaussian process: 



0

03/1 )(4,4  dSmH  

NB: To use formula (F:5.30) one must require that there is no significant waves energy for  λ/L>~0.5. 
 
Example of application of formula (F:5.30) 
Hp: One-parameter Pierson-Moskowitz spectrum 
The condition that there must be no significant waves energy for  λ/L>~0.5, in this case means 
   1/3  must be <0.0065H L  

 If L=300m  1/3  must be <1.95mH  

   This occurs about 40% of the time in the North Atlantic. 
 If L=100m  1/3  must be <0.65mH  

   This occurs less than 4% of the time in the North Atlantic.   
 
This confirms that this formula is relevant for large volume structures. 
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Viscous effects on mean wave forces (F:152-155) 
When the wavelength is large relative to the cross-dimensional lengths of the structure, the 
wave generation capability of the structure is small. Hence the wave drift loads due to 
potential flow effects are small. However, if the wavelength is large and the wave amplitude 
is sufficiently large, then viscous effects can cause important wave drift loads. The reason is 
that their contribution to drift loads is of higher order than second order in terms of wave 
amplitude. 
In general we may say that wave drift forces are due to  

- the body capability in generating waves (inviscid effects) 
- viscous effects 
 

Practical example where viscous effects are important:  
A semisubmersible in incident waves long relative to the cross-sections of the 
semisubmersible. 
 
Hp: Head regular waves in deep water. Wavelength large compared with the cross-sectional 
dimensions of the platform length and wave amplitude large. Small platform motions.   
Obj: Discuss mean wave force in x direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the following we use the cross-flow principle for the flow around pontoons and columns of 
the platform to express the drag force contributions from the pontoons and columns. We 
decompose the forces into components in the Earth-fixed coordinate system and time average 
over one wave period. In this way we find non-zero mean wave loads proportional to 3

a . 

 
Pontoons contribution: 
The drag force normal (i.e. in the N-direction) to the pontoons can be found as 
 

      
/ 2

2

/ 2

2 | |
2

L

N D RN RN a
2 pontoons L

F b C V V dl
 



    (1) 

 
Here b is the transversal size of the pontoon, CD the drag coefficient and VR is the relative 
velocity between a body strip and the incident waves in N direction. This can be 
approximated as  

3 dt

d 3

x
dt

d 5

waves w~a
~a

~a
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       3 5
RN

Hp: small wave velocity
motions velocity due

to motions

d d
V x w

dt dt

 
  


  

because the motions are small and the error committed is of higher order than a . 

The absolute value in (1) is due to the fact that the force is directed as VR, i.e. it acts as a 
damping force. The incident-wave vertical velocity w is )cos( kxtew kz

a   . 

 
The pitch motion causes a force component along x: 
 

3
5 with 0x N a xF F F      

 
This then gives a mean (drift) force due to third-order effects associated with viscous effects, 
as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Columns contribution: 
There will be a similar contribution to the horizontal mean force due to the columns. We will 
here limit ourselves to consider only the contribution from the time varying wetted surface. 
Further, if we for simplicity neglect the longitudinal platform velocity we can write the 
horizontal force per column as 

| |      (1)
2x D

h

F C D u u dz




   

with D the column diameter, h the column draft and a u the horizontal incident-wave velocity.  
Because waves are long compared with the cross-sectional dimensions, we can take u in the 
expression (1) as )sin( 0kxteu kz

a   , with x0 at the center of the column. 

 
NB: According to expression (1) the magnitude of the force per unit length is largest at the free 
surface. This is unphysical because the force per unit length must go to zero at the free surface. The 
vertical position of the maximum magnitude must be found experimentally. Typically it is around the 
25% of the wave amplitude down in the fluid from the free surface. 
 
Introducing the expression of u in the force and integrating, we have: 
 

Proportional to longitudinal
force component

5RN RNV V 

RN RNV V

5
Mean

value
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So only the integration near the free surface can provide a mean value. The mean force is 
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This expression depends on the horizontal location of the column center.  
For instance if x0=0: 

   2 3 2 31 2
3

4 3 3a ax D DF C D C D
    
 

      
 

 

 
while if x0=±λ/2: 

   2 3 2 31 2
3

4 3 3a ax D DF C D C D
    
 

     
 

 

 
NB: This means that, depending on the phase angles between platform motions and wave 
motions, viscous effects can create a force that causes the platform to move against the waves. 
This is not possible according to Maruo’s formula based on potential flow theory. 
 
 
Summarizing: The main parameters affecting the drift loads are: 
 wave amplitude: 

- potential flow  2
a  

- viscous effects  3
a  

 wavelength 
 wave direction 
 structural form 
 difference between restrained and moving body 
 current  <50% 
 forward motion 
 confined waters, e.g. wall effects when performing experiments 
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Studies on Absorbers by Maeda et al. (1981)

R0

2D Drift Force (Uc=0, U=0)  
Maeda et al. (1981)

R0=body dimension length

a =wave amplitude

Vg=group velocity

=g/(2 )

K =wave number

= 2/g
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Heave resonance

Asymptotic value:0.5
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Drift force in head sea and small wave lengths
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1/3
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4
1 sin( ) (F:5.30)
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Hp: A one-parameter Pierson-Moskowitz spectrum 

Expression (F:5.30) can be used if H1/3 <0.0065L

For L=300m H1/3 <1.95 m (in the North Atlantic  40% of  the time)

For L=100m H1/3 <0.65 m (in the North Atlantic  <4% of  the time)

No significant wave energy must be for > 0.5L

3waves w~ a dt

d 3 ~ a
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Relative velocity along N: VRNN
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From cross-flow principle
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41.  Slow-drift motions. Slow drift motions in irregular waves. Wave-drift damping. 
Eddy-making damping: equivalent linearization. (F: 155-166) 
 
 
Slow drift motions: general. (F:155-157) 
Slow-drift motions are resonance oscillations excited at frequencies low compared with the 
incoming-wave frequencies due to nonlinear interactions. Such motions are caused by slowly-
varying drift loads connected with second-order difference-frequency effects.  
 
From where do these loads come from? 
Hp: An incident irregular wave.  
This will induce a slowly varying drift force on a marine structure like in the figure below. 
We can approximate locally the irregular wave as a regular wave, with a certain period and 
amplitude. This will cause a mean-drift force due to second order effects. At a following time, 
we can approximate the irregular wave as a regular wave with different frequency and 
amplitude. This will cause a different mean-drift force. As a result, the mean-drift force will 
slowly vary in time and its envelope gives the slowly-varying drift force caused by the 
irregular wave.  
 
 
 
 
     
 
 
 
 
 
The period associated with the slowly-varying drift loads is of concern when it is close to the 
resonance period for the considered marine structure.  
For example: 
 For a freely-floating structure with small waterplane area, restoring terms in vertical plane 

are small so natural periods are large, e.g. O(30 s), and slowly-varying drift (slow-drift) 
motions can occur in the vertical plane  heave, roll and pitch   

      An example is a spar buoy platform. 
 For a moored structure, the restoring provided by the mooring lines leads to large 

resonance periods for the horizontal motions, e.g. O(1-2 min), slow-drift motions can 
occur in the horizontal plane  surge, sway and yaw 

 For a structure with small waterplane area and moored, the slow-drift motions can occur 
both in the horizontal and vertical plane  

 
Large periods mean low frequencies so 
 wave-radiation linear damping is small  
 large amplification of the motions occurs near resonance  
In this case viscous damping becomes important. In addition there is a wave-drift damping 
which is not the same as the wave-radiation linear damping. We will later discuss the main 
damping mechanisms involved.  
An example of motion amplification is shown below for the transverse motion around a 
period O(1-2 min). This leads to large slowly varying motions.   
 

Slowly varying drift force
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The slowly-varying motions can be connected with a wave-current-wind environment (see 
sketch in figure below) and are relevant for stationary marine structures that are moored or 
kept in position by a dynamic-positioning system. Considering the use of mooring lines as in 
the figure below, the control forces due them counteract the mean forces connected with the 
wave-current-wind environment, while these control forces are small compared with wave-
induced first order forces, i.e. they can not counteract the first order forces. Due to the 
presence of the mooring lines the moored system will have natural periods in the horizontal 
plane which are large compared with the incident-wave period range. Such periods can be 
excited by second-order difference-frequency effects.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The slow-drift motions are critical for instance for the design of mooring lines and risers. 
Figure below shows how the anchor line force can become relevant when the horizontal 
motion of a moored ship becomes large in irregular waves. This occurs when the ship motions 
show a slowly-varying drift behaviour relative to the incident waves. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wind

Current

Small control
forces

Large mass
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Transverse motion amplitude

1min

Large amplification
due to small damping

Wave elevation
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of moored ship

Anchor
line force
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Figure below shows the results from full-scale model tests on the wave-energy ship Kaimei, 
i.e. used to extract energy through a system of oscillating water columns where the air inside 
the columns is compressed and expanded by the change of the internal water level and drives 
the motion of air turbines. 
In irregular waves, the anchor line force showed a slow-drift behaviour with period much 
higher than the incident wave-frequency range. The peaks of the force appeared dangerously 
close to the ultimate force for the designed anchor line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure F:5.17 confirms that slow-drift motions are relevant in the horizontal plane also for a 
TLP.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   
                                                                Fig. F:5.17 
 
The case refers to irregular waves with sTmH 12,7 03/1  . In these conditions, the surge 

motion is clearly dominated by a slow-drift behaviour (T=O(100s)). The air gap (i.e. the 
relative vertical motion between the underside of the platform deck and the waves) is within 
the incident-wave frequency range. It means that the surge motion is dominated by second-
order effects and the air gap by first-order effects.  

Wave elevation(m)

Anchor line force

6

Ultimate force

(84.4 tons)

Air gap for a TLP in irregular sea(m)

Wave frequency
oscillations dominate

Surge(m)
Slow-drift
dominates
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How large the slow-drift motion amplitude can be?  
Obj: Discuss slowly-varying motions versus linear motions. 
 
Examples 
1. Turret-moored production ship, i.e. designed to be weather varying so to work with head or 
almost head sea waves: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Deep-draft moored floater: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NB: Both results show that the second-order effects (slow-drift motions) are relevant when 
compared with the first-order effects. This is due to resonance at periods large compared with 
the incident-wave periods caused by the presence of mooring lines. In these conditions the 
slow-drift motions dominate on the linear motions. 
 
Slow-drift motions can then be larger than the linear motions. However, because they are 
slowly varying motions, their velocities and accelerations are small compared with linear 
velocities and accelerations. 
 
Another example of marine unit where first-order effects could be limited or negligible while 
second-order effects matter is a submerged bridge: 

- linear wave effects go to zero very quickly (exponentially) with the submergence in 
the case of deep water (as we have learned) 

- second-order slowly-varying wave effects go to zero more slowly than linear wave 
effects (as we will see later) 

10deg. heading
H1/3=15.5m, T2=13.5s

13.7deg.13.6deg.Yaw

7.8m7.0mSway

22.2m17.5mSurge

Combined 1. 
and 2.order

Slow-drift

13.7deg.13.6deg.Yaw

7.8m7.0mSway

22.2m17.5mSurge

Combined 1. 
and 2.order

Slow-drift

Head sea, H1/3=15.5m , T2=13.5s

2.9deg.2.1deg.Pitch

0.95m0.74mHeave

9.2m5.1mSurge

Combined

1. and 2.order
Slow-drift

2.9deg.2.1deg.Pitch

0.95m0.74mHeave
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1. and 2.order
Slow-drift
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So the slow-drift response of the submerged bridge, caused by second-order difference-
frequency effects, can be relevant and must be estimated. The main damping mechanism in 
this case is connected with the viscous damping. The main restoring mechanisms are due to 
the tethers and to the elasticity properties of the bridge.  

                                
 
 
Slow drift motions in irregular waves. (F:155-157) 
For a single body in open sea, slow-drift motions can not be caused by body interactions with 
a regular wave, because a single regular wave with frequency  can only cause two types of 
second-order effects: a mean value and a sum-frequency oscillation behavior with frequency 
2. Second-order difference-frequency effects responsible for slow-drift motions on a single 
body in open sea need at least two waves with different frequencies to be caused. In general 
slow-drift motions are caused by irregular waves. 
 
How we can estimate the slow-drift loads SV

iF ? 

Hp: Two incident deep-water regular waves propagating in x direction, with first-order  
        velocity potentials 

     
   1 2(1) (2)1 2

01 1 1 1 01 2 2 2
1 2

cos  and cosk z k za ag g
e t k x e t k x

      
 

       

The expression for slow-drift excitation loads can be obtained as done for the mean-drift 
loads, i.e. 1) direct pressure integration or 2) conservation of fluid momentum (angular 
momentum for the moments).  
In general the second-order velocity potential 2 contributes to the slow-drift loads, so first 

and second order problems must be solved to estimate these loads. We know how to find the 
linear solution, we will discuss the second-order problem later while in the following we 
assume that it has been solved. 
 
NB: In general, to find an accurate solution of the 2  problem is not straightforward because 
the second-order solution is usually small, i.e. smaller than first-order solution, and goes to 
zero slowly moving far from the body. 
 
We then assume that we estimated the slow-drift loads caused by the body interaction with the 
two regular waves. They are second-order difference-frequency effects so they can be 
formally written as  

    12 122 1 2 1 2 1 2 1cos[( ) ( )] sin[( ) ( )] 1,..,6SV ic is
iF C t C t i                  

with the amplitudes 
12 12 1 2 and ic is

a aC C     i.e. 
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ic

aa
ic TC 122112   and is

aa
is TC 122112  . 

Here 12 12 and ic isT T  do not depend on the wave amplitudes and therefore are the transfer 

functions of the slow-drift loads, i.e. second-order transfer functions. They depend on   

     12 12 1 2, ( , ,  wave direction, body geometry,..)ic isT T f    

 
NB: In the superscripts  ‘ic’ and ‘is’, ‘i’ indicates the load component, ‘c’ and ‘s’ refer to the 
coefficient of the cosine and sine function, respectively.   
 
We can then write: 

   )]()sin[()]()cos[( 1212122112121221   tTtTF is
aa

ic
aa

SV
i  

If we have a sea state with spectrum S() of N incoming regular-wave components with 
amplitudes  

 
2 ( )j jA S   

 
The second-order loads become 

 )]()sin[()]()cos[(
1 1
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jkjkjk
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jkkj
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k

SV
i tTtTAAF   

 

   (F:5.39) 

This expression includes both the mean- and slow-drift (difference-frequency) contributions. 
To see this we take N=2 and omit the phases for simplicity: 
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Generalizing to N incident regular-wave components of the spectrum, the mean-drift term is 

   ic
jj

N

j
j

SV
i TAF 




1

2      (F:5.41) 

this is the same as the formula already discussed in connection with the mean-drift loads in 
irregular waves, i.e. 

2
2 2

1

( , ) ( , )
(F:5.27)

jj

N
i j i js ic

i j
j a a

F F
F A T

   
 

    

So the second-order transfer function of the slow-drift load in i direction, ic
jjT , connected with 

the wave with frequency j , is equal to the second-order transfer function of the mean-drift 

load in i direction connected with the same wave. 
 
NB: It means that the second-order transfer function ic

jjT  depends only on the first-order 

solution in regular waves, as far as there is no current and no forward speed. 
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Newman approximation (F:157-158) 
The Newman’s approximation concerns the second-order transfer functions and implies that  

       

1
( ) and 0       (F:5.42+5.43)

2
ic ic ic ic is is
jk kj jj kk jk kj

Newman's definition Newman's definition

Newman's approximation Newman's approximation

T T T T T T     
 
 

 

This approximations allows to simplify greatly expression (F:5.39), as we will see. Newman’s 
approximation corresponds to taking the values of the second-order transfer functions along 
the line kj   . Indeed in this case j=k and expressions (F:5.42+5.43) are satisfied. In 

reality we are not on the line kj    but we can be near to this line if  and  j k  are close, 

i.e. if k j    is small.  The Newman’s approximation is a good approximation if: 

1) we are interested to small k j    , e.g. for the horizontal motions of moored 

systems for which the natural periods are O(1-2min); 
2) Tjk

ic and Tkj
ic do not change much with the frequency, so that they can be approximated 

using the same expression as if we were along the line kj   . 

If conditions 1) and 2) are satisfied, we have also that  

         

0.5( )ic ic ic ic
jj kk jj kk

arithmetic average geometric average

T T T T 
 

 

because ic ic
jj kkT T . This means that the geometric average can also be used to approximate Tjk

ic 

and Tkj
ic.

 

 
 
An example when the Newman’s approximation is valid is given in figures F:5.18 and F:5.19 
showing, respectively, the calculated second-order transfer functions ic

jkT  and is
jkT  for the 

difference-frequency horizontal force on a 2D circular cross-section with the axis in the mean 
free surface and radius R. 
 
  
 
 
 
                                                                                              
 
 
 
 
 
 
 
 
 
 
           Fig. F:5.18                                                                           Fig. F:5.19 
                                               
NB: Newman’s approximation does not represent a good approximation for instance when 

j  is close to the resonance frequency in heave and the heave damping is small. In this case: 

 large motions occur  
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 the second-order transfer functions have pronounced maxima along the line kj   , i.e.  

     they change greatly near this line (NB: This is because along the line kj  
 
we have  

    ic
jjT which is equal to 2( ( , ) / )i j aF    and this is large for large motions) 

In general the Newman’s approximation is less good for vertical motions because the natural 
periods involved are large but not as for the horizontal motions, i.e. they are O(30 s). 
 
Introducing the Newman’s approximation in expression (F:5.39) and using the geometric 
average leads to: 

1 1

cos[( ) ( )]
N N

SV ic ic
i j k jj kk k j k j

j k

F A A T T t   
 

      

 
Important consequence of Newman’s approximation:  
To find SV

iF  there is no need to calculate the second-order velocity potential 2 . This is 

because the terms ic
jjT  are transfer functions of mean-drift loads, so they depend only on the 

first-order solution in regular waves as long as there is no current and no forward motion. This 
means a great reduction in terms of computational costs. 
 
An additional simplification of the slow-drift load expression is obtained introducing a sum-
frequency term in the slow-drift loads expression. This term is not physical but provides a 
much simpler formula and, being a high-frequency contribution, it does not affect the slow-
drift response that we want to estimate: 

1 1

1 1

cos[( ) ( )] cos[( ) ( )]

{ cos(

N N
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 



N

j
jj

ic
jjj

SV
i tTAF

1

2

)cos(2      (F:5.44) 

In this way we need to sum only N terms instead of N2 needed in the previous expression and 
in expression (F:5.39). 
  
 
Pinkster’s formula (F:159-160) 
Pinkster’s formula provides the spectral density of the low-frequency part of the loads, i.e. 
connected with the difference-frequency oscillation behaviour.  
We can start considering the contribution to SV

iF  given by two wave components of the wave 

spectrum ( )S  with frequencies j and k. Using the Newman’s approximation 
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0.5( ) and 0ic ic ic ic is is

jk kj jj kk jk kjT T T T T T     
 

We have 
 

, 0

,

( )

cos[ ( ) ]    (1)
SV

i jk

SV ic ic
i jk j k jj kk k j k j

F

F A A T T t



   


        
 

NB: To obtain eq. (1) we used that cos[( ) ] cos[( ) ]k j k j j k j kt t               

 
The frequency  has a small value because it is the difference of two frequencies and we are 
interested to long periods near the low-frequency resonance.  
As an example: If the period of interest is T =90s  2 / 90 0.07 rad/s    
 
Obj: Find the spectral density of the low-frequency part of the loads, i.e.

 
( ).FS 

 
 
The wave amplitudes are related to the wave spectrum given in the figure below by 

2 ( )j jA S     and 2 ( ) 2 ( ) .k k jA S S           

                              
  
Let’s study n   , then k becomes k=j+n, with 1, 2,..n   
So index j is connected with the incident-wave frequency   and index n is connected with 
the low frequency . 

Because  is small, we can approximate ( )ic
jj jT   and ( )( ) ( )ic

j n j n jT      with the value at 

mean position / 2j  , i.e. ( / 2)ic
jT   .  

 
The slow-drift loads due to the spectrum become then 
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We know that the load amplitude  , 0( )i jnF is linked to the slow-drift load spectrum by 

 
2

2 2 2 2
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1 1
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 


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       

Substituting the expressions of the wave amplitudes in terms of the wave spectrum (see 
above) and letting N, we have 

    

2

2
0

( / 2)
( ) 8 ( ) ( ) (F:5.45)i
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This is the spectral density for the low-frequency part of the loads and is linked to the 
significant-wave height as follows 

 1/3

2 2
1/3 1/3

2
1/3

2

4
2

0

( )

( / 2)
( ) 8 ( ) ( ) i

F
aH H

f H
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S S S d H
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 
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 
   

 
 


 

 
Hp: One degree of freedom motion. 
Obj: Find the amplitude of the slow-drift response )(

0
  tiexx .  

 
The motion equation is 
    0( ) i t

i imx bx cx F t F e         

with m the mass term, b the damping term, c the restoring term and ( )iF t the slow-drift 

excitation force. 
2

0 0( ) i
im i b c x e F       

So the response amplitude is   

  
0 0 02 2 2 2

1
| ( ) |     (1)

( )
i ix F H F

m c b


 
 

  
 

with |H()| the response transfer function also named as Response Amplitude Operator 
(RAO). 
 
The amplitude of the force and of the response can be expressed in terms of their 
corresponding spectral densities as  
      dSF Fi )(22

0    

and  
      dSx x )(22

0    

So using the link (1) above, we have 
     )(|)(|)( 2  Fx SHS  .  

 
The variance of the response is  

2
2 2 2 2

0 0

1
( ) ( )      (F:5.47)

( )x x FS d S d
c m b

    
 

 

 
    

If the response variable x is the surge, the term m would be in general )( 11AMm  , with M 

and A11 the ship mass and added mass in surge, 11b B and 11c C .   

 
NB: As we have seen previously, the variance is an important parameter. Its square-root, i.e. 
the standard deviation, gives a measure of the response deviation from its mean value, so it is 
directly linked to the most probable largest value of the response. 
 
We are interested to the slow-drift resonance, i.e. the frequency  is in the vicinity of 

resonance. Let then mcn / . If we assume that the damping term b is small, i.e. small 

relative to the critical damping 2mn, then the major contribution to the variance comes from 
the resonance, i.e.  )()( nFF SS   , because at resonance the response is largest. 
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The figure below shows this circumstance by plotting the spectrum of the slow-drift force and 
the other factor of the integrand in (F:5.47), together with the incident wave spectrum. The 
damping is small near the resonance. As a result, it is apparent that the variance of the slow-
drift motion is mostly affected by the contribution near n  while it does not have basically 

contribution from the incident-wave frequency range and from elsewhere. 

Then we can approximate 2
x as follows 

bc
Sd

bmc
S nFnFx 2

)(
)(

1
)(

0
2222

2 


 


 


   (F:5.48) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Example of application 
Hp: A moored tanker.  
Obj: Find the standard deviation x  of the slow-drift surge motion using formula (F:5.48). 

  
To estimate x  we need SF(n), b and c. The steps to do are the following: 

1. The restoring term 11c C  is given by the mooring system characteristics (we have seen 

how to find this through an example of a moored vessel). 

2. n  is the resonance frequency, i.e. 11 11/ / ( )n c m C M A    . So we need to calculate 

the added-mass in surge, for instance using the 3D source technique. 
3. The slow-drift spectrum )(FS  for surge can be obtained once known the drift forces in 

regular waves (see Pinkster’s formula). The drift forces can be estimated using a numerical 
solver and applying the conservation of fluid momentum or direct-pressure integration. 
Then )( nFS  becomes available. 

4. The damping term b is given by skin friction, eddy-making damping, wave-drift damping 
and anchor-line damping. The wave-drift damping dominates for high sea states, for 
example,  

    Hp: A ship long L=235m.  
    For H1/3=8.1m the wave-drift damping represents the 85% of the total damping, while it is  
    negligible for H1/3=2.8m. 
    In the case of sway, both eddy-making and wave-drift damping are important. 
 
 
Slow-drift damping  
The main sources of slow-drift damping are connected with nonlinear phenomena and can be 
listed as: 

 FS 

n




1 2 10

  22 2 2
11 11 11

1

C M A B     

Wave spectrum
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1. wave-drift damping    
2. viscous hull damping 
3. viscous anchor-line damping 

 
Wave-drift damping (F:161-164) 
It is due to the body interaction with incident waves. For a marine vehicle/platform, it can be 
quantified for instance doing free-decay model tests of the vehicle/platform in calm water and 
in regular waves. In the latter case it is found that the decay is faster, and so the damping-level 
is higher. The additional damping is a wave-drift damping and is due to the interaction 
between the rapid oscillating behaviour of the incident waves and the slow-drift motion 
connected with the free decay. 
Figure F:5.20 documents this in terms of surge decay for a TLP in two cases: (a) in calm 
water and (b) in regular waves. The results show that, once filtered the incident-wave 
frequency from the measurements in waves, the decay of the motion appears clearly stronger 
with respect to the case in calm water. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                     Fig. F:5.20 
 
 
 
Let’s consider the surge-motion case.  
The second-order difference-frequency effects of the body-irregular wave interaction cause a 
slow-drift surge speed in the vessel. This interacts with the rapid oscillation behaviour of the 
incident waves causing a wave-drift damping. This is because an average force (a mean-drift 
force) is caused which acts as a damping force to the motion. 
We can interpret the slow-drift surge speed induced as a quasi-steady forward and backward 
speed, say U.  
If we then split the spectrum in elementary regular incident waves, we can study the vessel 
with such quasi-steady speed in incident head-sea regular waves. 
We need then to find the mean-drift force in surge. This coincides with the added-resistance 
in waves. For instance for L>>λ, i.e. λ<0.5L, in head sea we have 

    
1

2
2

1 1

2
1 sin( )

2
a

AW
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g U
R F n dl

g

   
 
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     (F:5.22) 

 

Regular waves
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The U-term in the formula can be interpreted as a damping of the form UBWD

11
, so the 

coefficient 
11

WDB  will be 

      dlnB
L

a
WD

1
22

1

11
)sin(       (F:5.49) 

This is the slow-drift damping coefficient, proportional to 2
a  and is due to the interaction 

between the slow-drift motion in surge and the rapid oscillation behaviour of the waves. 
 
NB: Formula (F:5.49) is valid for small wavelengths compared to the ship length, Zhao et al. 
(1988) developed a numerical method to evaluate the wave-drift damping for any . 
 
NB: If we consider the slow-drift surge speed U as it is, i.e. oscillating with low frequency, 
then we find that the damping has also a slowly-varying behaviour. This aspect is not 
discussed in the lecture in further detail. 
  
An example of the procedure to find numerically WDB

11
 is given in fig. F:5.22. 

Hp: - A vertical circular cylinder that is free in surge in linear motions. Incident regular waves  
          in deep water.  

- The slow-drift surge speed is interpreted as quasi-steady forward and backward current 
with values U1=U and U2=-U, positive value means a speed in the wave direction.  

- Using this quasi-steady approach one can express the wave-drift damping as a power 
series of the current speed. Here we estimate the first term of this series, i.e. a term like 

UBWD

11
with WDB

11
independent from the current speed. This has the same form as the 

damping force providing the wave-drift damping for small wavelengths given by eq. 
(F:5.49). 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                      Fig. F:5.22 
 
The procedure to find WDB

11
is: 

1. We calculate the mean-drift force in surge 1F  for U1 and U2 and varying the incident 

wave frequency. 

Mean force

U

F

0.0452U gD 

Wave drift damping

11
WD F

B
U





Calculation of wave drift damping
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2. We estimate the variation F of the mean force connected with the velocity variation 
U=U2 –U1 for every incident frequency. 

3. We then use the fact that this force variation is a damping force, i.e. 

11 11
/WD WDF B U B F U       .  

The damping curve in figure F:5.22 shows an important increase with the square power of the 
incident-wave frequency. 
 
Being a second-order effect, also the wave-drift damping is not easy to estimate. Fig. F:5.21 
shows the wave-drift damping in surge measured for two ship hulls in head regular waves. 
Also the wave-drift expression (F:5.49) valid for small wavelengths compared with the ship 
length is reported. One must note that the experiments can show easily large scatter in the 
measurements. This means that high accuracy is required when doing model tests. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                     Fig. F:5.21  
 
Tank-wall effects can cause bias in the estimation of the wave-drift damping. An example is 
given in the figure below. The case refers to a hemisphere in regular waves along x direction. 
Both model tests and numerical results accounting for the side walls of the tank show a wave-
drift damping reducing as the incident-wave period increases, with an oscillatory behaviour 
which leads to negative values of 

11

WDB . The negative values are connected with the presence 

of the walls which can cause exchange of energy from the fluid to the body, while the wave-
drift damping in open waters is positive.  
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The wave-drift damping associated with a given spectrum ( )S   can be obtained using a 
formula similar to that for the mean-drift force. So if for the mean-drift force in surge we have 

    1
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2 ( )        (F:5.28)s
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for the wave-drift damping in surge we will have 
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NB: 2
3/111

HBWD   because it is proportional to 2
a in the case of regular waves with amplitude 

a . Since the spectrum of slow-drift force FS  4
3/1H  , then from expression (F:5.48): 

2 ( ) / (2 )x F nS bc   , with  WDBb
11 3/1/ HbSFx  . This is unexpected since we 

talk about second-order variables, i.e. we would expect a dependence on 1/3H to the square 

power. 
 
The probability density function of the extreme values of the slowly-varying response can be 
approximated by a Rayleigh distribution. Strictly speaking this requires that the response is a 
Gaussian narrow-banded process. In this case, the most probable largest value of the response 
in a storm of duration t is  





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




N
x T

t
x log2max     (F:5.50) 

with TN the natural period of the slow-drift response.  
If , for instance, t=5h and TN =100s  max 3.22 xx   
Børresen has proposed a pragmatic formula to estimate the most probable largest value of the 
response, accounting for first- and second-order effects. It is based on Rayleigh distribution 
for the extreme values of both the first-order and the slowly-varying second-order response 
and on summing them up,  i.e. 
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The approximated expression is obtained considering typical duration t of a storm, typical 
mean period of the first-order response Tr1 and typical slowly-varying period of second-order 
response, Tr2. For instance t=O(5h), Tr1 can be approximated as the mean incident-wave 
period T2, e.g. O(10 s),  and  Tr2=TN2=O(100s). 
 
Formula (F:5.50) gives a rough estimate of the most probable largest value. An improvement 
can be obtained with a better hydrodynamic and statistical analysis. In particular, an improved 
statistical analysis means that one should consider several long-time random realizations of 
the wave spectrum and estimate from them a proper distribution of the extremes, i.e. with 
several samples of extreme values.  
The procedure to be used for the estimation of the most probable largest value of the motion is 
examined in the figure below in terms of the slow-varying motions.  
The figure shows 4 random-time realizations of the same process. The differences in the time 
histories are due to different random phases, necessary to reproduce a random process. The 
procedure is the following: 
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1) The extreme value (absolute maximum) recorded in each time series is stored; 
2) The most probable largest value is found as the mean among the stored maxima of the 

motion.  
We understand that in reality we need more realizations to build a proper statistical analysis 
and have a proper estimation of the most probable largest value, as well as of other statistical 
quantities. As mentioned above, this implies the need for long-time simulations and model 
tests, which could be impractical or too expensive.  
The standard deviation is less sensitive to the use of different random-time realizations than 
the extreme values and so it can be estimated more easily. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Eddy-making damping: equivalent linearization (F:164-166) 
Eddy-making damping is connected with vortex shedding. It is nonlinear, i.e. it behaves as the 
square power of speed, i.e. as | |DB y y   . It means that in general the response must be found 

in time domain. If we want to use the more efficient frequency-domain approach, we need to 
linearize the eddy-making damping. 
Let’s see how to perform the linearization in the case of slow-drift sway motion. The 
uncoupled 1D motion is: 

     
)(||)(

22222 tFyCyyByAM SV
D     (F:5.51) 

Here M and A22 are the ship mass and added mass in sway and C22 is the restoring term, for 
instance connected with the mooring system. F2

SV is the slow-drift excitation force in sway. 
The damping coefficient is BD=0.5CDA, with  the water density, CD the drag coefficient 
and A the frontal area of the submerged  structure against the motion. 
 
We can find an equivalent linear damping eB by   

1) assuming that the slow-drift response is a Gaussian process (not always true) and  
2) enforcing that the linearization must ensure an energetic equivalence, i.e. that the 

energy taken from the system by the linear damping is the same as the energy taken 
from the system by the nonlinear damping.  

This gives  

     2/4 yD
e BB        (F:5.52) 

so that 

Simulation

1

2

3

4
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   )()(
22222 tFyCyByAM SVe    

Using the approximation of the response standard deviation given by  

              

2

22

( )
2y F n e

S
B C

     (F:5.48) 

and the fact that, as the response slowly oscillates with frequency , 

             

2 2 2 2 2 2 2| | | |   | | | |   ( ) ( )  y y y yy y y y S S                  

we have 
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

    

1/3

2

22

2
( )

8y n F n
D

S
B C

   
 

    
 

     (F:5.54) 

 

This shows that 3/1 Dy B  , so 1/3
y DB  , where DB  is like a drag force damping 

coefficient. y is not affected much from the damping, i.e. 100% increase damping causes 

only about 20% decrease. 
  
NB: 4 1/3 4/3

1/3 1/3andF y F yS H S H       

 
 
Slow-drift damping from mooring lines  
The mooring lines contribute to the slow-drift damping. An example is shown below for the 
case of a mooring line to a ship surging in irregular waves. 
The results show an important contribution to the damping in the region of small frequencies, 
i.e. periods larger than the incident wave-period range. While the effect of the mooring line is 
negligible for the surge response within the wave-period range. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

No anchor-line damping

With anchor-line damping
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Slowly varying drift forcey y g

Approximate regular wave Drift force in regular waves

+
TransverseTransverse

motion

amplitude

Large amplification 

due to small damping
p

1min1min

=

Large slowly varying motions

Moored offshore platformsff p f

Wind Large mass

Waves

Current

Small control 

forcesforces

Slow-drift motions are important mooring line design

Wave elevation

Horizontal motions 

of moored ship

Anchor

li fline force
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Full scale test of the wave energy ship Kaimei

Wave elevation(m)Wave elevation(m)

6

Anchor line force
Ultimate force

(84 4 tons)(84.4 tons)

Surge(m)
1/3 07 ,  12H m T sTLP in irregular sea with:

g ( )

Slow-drift

dominates

(100 )T O s

Air gap for a TLP in irregular sea(m)

Wave frequency

oscillations dominate

Extreme motions of turret-moored production ship

10deg. headingg g

H1/3=15.5m, T2=13.5s

Slow-drift Combined 1. Slow drift

and 2.order

Surge 17.5m 22.2mg

Sway 7.0m 7.8m

Yaw 13.6deg. 13.7deg.
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Extreme motions of deep-draft floater

Head sea, H1/3=15.5m , T2=13.5s

Slow-drift Combined

1. and 2.order

Surge 5.1m 9.2m

Heave 0.74m 0.95m

Pitch 2.1deg. 2.9deg.

Is the fact that second order motions are larger than first 

order motions contradictory?

Submerged floating bridge

Linear wave effects (deep water)

D i H 2 T 5 2

Linear wave effects (deep water)

Design wave: H1/3=2m. Tp=5.2s

Slow Drift Loads
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Slow-Drift Loads
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Newman’s approximation:
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Free-decay test in surge of TLPy g f

Calm water

Regular waves

T=12s H=8mT=12s,H=8m

The regular waveThe regular wave

frequency filtered out

Note:Larger damping

Wave drift force dampingf f p g

Slow-drift surge velocity

Average force depends on U(t)Average force depends on U(t)

Damping contributionp g

Mean force
Calculation of

d if d i
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wave drift damping
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Wave drift damping:

WD F
11

WD F
B

U
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Wave drift damping

in surge of a shipin surge of a ship

Small wavelength theory

f dd d i tfor added resistance

Wave-drift damping
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Note negative damping

g
T

c

T
D

Extreme values of slowly varying motions

Simulation

11

22

3

4

170



Slow-drift damping contribution

from a mooring linefrom a mooring line

Influence of anchor-line damping on surge

No anchor-line damping

With anchor-line dampingp g
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Auxiliary information 
 
Dear all, I will update this file if necessary and put information I was asked about from some 
of you, in case it might be useful for others. 
 
 Derivation of added-mass and damping expressions:  
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42. Slowly varying oscillations due to wind. Slow-drift models. Sum-frequency effects.  
Current and wind loads. (F: 166-169,174-177) 
 
 
Slowly varying oscillations due to wind (F:166-168) 
The wind can also cause slowly-varying oscillations of marine structures, this is due to wind 
gust with high energy content at periods of O(1-2min).  
 
Hp: A wind speed )(')( tuUtU  with U  the mean value and )(' tu the gust velocity, i.e. 

changing randomly in time, and with amplitude  |||'| Uu  .  
 
The horizontal force induced by the wind in its direction can be written in the form of a drag 
force, i.e. 

2 2 2 2

'

1 1 1
( ) [ ( ') 2 '] '

2 2 2
D

D

D air D air D air D air D

fluctuating drag F
mean drag F

F C AU t C A U u Uu C AU C AUu   




      
 

with A the frontal area of the structure against the wind and CD the drag coefficient. So for the 
fluctuating part we have 
     ' '

D

D air D

transfer function
from u' to F '

F C AU u


 

The gust spectral density is usually given in frequency f (Hertz) instead of in circular 
frequency =2f (rad/s), i.e. )( fSW . )( fSW  and )(WS  are linked by  

     dffSdS WW )()(   
implying the same energy content. This means that  

   
1

( ) ( )2 ( ) ( ) ( )
2

W W W W WS d S df S f df S S f    


    . 

The wind-gust spectrum is linked to the power spectrum of FD’ as  

     )()(
2

fSUACfS W
Dair

W
F   

 
We can then use the same procedure as in waves to estimate the slow-drift response x due to 
wind, i.e. assuming one degree of freedom:  
  '( )Dmx bx cx F t     
 

 
So we can have evaluate the variance of the response, obtaining similarly as in eq. (F:5.48): 

   2 1
( ) ( )

2 4
W W

x F N F NS S f
bc bc

  
 

here the link between )( fSW  and )(WS  has been used. 
 
The standard deviation of the surge motion can be connected with the mean offset x  due to 
the steady wind, for example assuming the Harris wind spectrum  (not recommended for 
frequencies lower than 0.01Hz) 
   

NB: The air density air is very small, i.e. 1.21 Kg/m3 at 20 degrees Celsius  the added mass 

connected with the marine structure in air is negligible.  

Lecture Note 8
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   5/6
2 2

10( ) 4 / 2WS f kfU f     

with 10U  the one hour mean wind speed at 10 m above the sea level, k the surface drag 

coefficient (in this framework the surface is the free surface) for example 0.003, and 

10/f Lf U with f the frequency and L a characteristic length, for example 1800m,  we have 

  5/6
20.038 / 2x N Nf p f x     

   

with p the ratio between the damping b and the critical damping 2mN. 
 
Assuming 10 40 /U m s ,  TN=100s and b the 10% of the critical damping  

 x is 30% of the offset x . 
 
 
Limitations of slow-drift models 
Typically slow-drift models, used to estimate slow-drift loads and motions, are based on the 
perturbation approach and therefore neglect the influence of 2nd order motions on 1st order 
motions.  
In reality there are circumstances where second-order effects can influence linear motions, for 
instance: 

- A slow-drift yaw motion changes the incident-wave heading and this affects the 1st 
order response if the slow-drift yaw motion is sufficiently large. 

- A slow-drift sway motion causes a frequency of encounter effect on the 1st order roll 
in beam waves, i.e. ( )e kV t    with V(t) the slow-drift sway speed. This means 

that ( )e t . If we are close to the roll natural frequency, then ( )e t  may go in and out 

of resonance causing motion amplification. The consequence of this is examined in the 
figure below considering free-decay model tests in regular beam waves near the roll 
resonance.             

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the model tests the slow-drift sway connected with the free decay tests induces 
an envelope in the roll motion modulating the high-frequency behaviour 
corresponding to the encounter frequency. Such envelope is evident even when the 
sway motion reduces drastically. 
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Sum-frequency effects (F:168-169) 
Using the square velocity term in the Bernoulli equation for the pressure we have seen that 
there are 3 contributions connected with sum-frequency effects connected with wave 
frequencies j and k : i.e. 2 ,2 ,j k j k    .  

In general the sum-frequency effects depend on the second-order wave-body interaction 
velocity potential 2 , which in some circumstances may represent the major contribution. 
 
Examples of: Sum-frequency loads in deep-water conditions 
 
1. A vertical offshore structure with deep draft D, e.g. a buoy, in waves. Zero current. 
    In deep water:  
      the linear velocity dies out exponentially with z 
      the square-velocity term in the pressure dies out also exponentially with z 
The vertical force is connected with the pressure at the bottom of the platform, i.e. at z=-D. 
There, the square-velocity term in the pressure is small and the major sum-frequency 
contribution comes from the second-order velocity potential which dies out less quickly than 
the linear velocity potential, as we will see. 
 
2. A modified Wigley hull in head-sea regular waves. No forward speed. No ship motions. 
Figure below shows the amplitude of the vertical second-order sum-frequency force as a 
function of the incident wavelength-to ship length ratio. From the results, the 2 contribution 

is much larger than the contribution from the square-velocity term in the pressure (NB: The 
latter contribution for the force is opposite in sign with respect to the second-order potential 
term, this is why the total force is smaller than the contribution from 2. ).  

                
  
In the following we briefly analyse the 2  related problem.  
Hp: Deep water conditions. 

2  satisfies the Laplace eq. and inhomogeneous free-surface and body-boundary conditions 

which depend on the first-order solution 1 .  

For example the combined free-surface condition is obtained by Taylor expansion around the 
mean free surface, z=0, of the nonlinear combined free-surface condition, keeping only the 

terms )( 2
aO   and reads 

 

 2
3

2
a

a

F

gL



 

/ L

Due to velocity-square 
term in Bernoulli’s eq.

Due to second-order
potential

Total 
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22 22 2
2 2 1 1 1 1 1 1

2 2

1

1
    on 0   (F:5.62)

 ( )

g g z
t z t x y z g t z t z

Source term

       



                                              


So the first-order solution acts as a disturbance, i.e. a sort of pressure distribution, on the free 
surface. In equation (F:5.62) the effect of current and forward speed is neglected and so it is 
done in the next discussion. 
 
Let’s examine the second-order velocity potential solution with the following assumption.  
Hp: The linear solution is 

1 21 2
1 1 1 1 2 2 2

1 2

cos( ) cos( A )k z k zgA gA
e t k x e t k x    

 
       (F:5.63 ) 

This represents for 
A= +1 two 2D (long-crested) waves propagating in the same direction 
A= - 1 two 2D (long-crested) waves  propagating in opposite directions 
 
A particular second-order solution, satisfying the Laplace equation and the combined free-
surface boundary condition eq. (F:5.62), is  

 

1 2

1 2

| |1 2 1 2 1 2
2 1 2 1 2 1 22

1 2 1 2

| |1 2 1 2 1 2
2 1 2 1 2 1 22

1 2 1 2

2 ( )
A 1 sin[( ) ( ) ( )]    (F:5.64)

( ) | |

2 ( )
A 1 sin[( ) ( ) ( )]    (F:5.65)

( ) | |
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g k k
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 

      
 






        

   


        
   

   

From this solution we see two things: 
1. A sum-frequency effect occurs if the waves propagate in opposite direction and a 

slow-drift effect otherwise. 
2. 2  (and therefore the pressure contribution 2 / t    ) goes to zero slowly as 

z  when 1  and 2 are close because then also k1 and k2 are close (NB: 
Remember the application to the slowly-varying motion of a submerged floating 
bridge.). It does not decay at all if 21   . In the latter case both the dependence on x 
and z disappear (Longuett-Higgins 1953). This is true both in the case of difference- 
and of sum-frequency effects.  
If 1 2     and A=+1 2 0.    

If 1 2     and A=-1 2 is of the form 2 1 2 1 2sin(2 )A A t        . This does 

not decay with z. A similar effect occurs in 3D. This behaviour means that the pressure 
term 2 / t     does not give any force on a fully submerged body, because its 

gradient is zero. It is instead relevant for surface-piercing bodies. As an example this 
gives a sum-frequency vertical force contribution from the column bottom of a TLP. 

We can interpret the two waves in 1 has incident waves. In this case we see that the second-
order incident-wave potential in deep water connected with a wave with frequency   is zero. 
We can also interpret the two waves in 1 as connected with the wave-body interaction 
problem: assuming a 2D body in deep water.  
The interaction between incident regular waves and waves reflected from the body is an 
example of sum-frequency effect. In this case 21    and A=-1. 
In the transmitted waves, the interaction of the waves generated by the body with the incident 
waves is an example of difference-frequency effect.  In this case 21    and A=+1 and there 
is no second-order effect in the downstream far field in deep water. 
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NB: In 3D the waves generated by the body propagate in different directions, the interaction 
with the incident waves along the incident-wave direction is affected by the interactions in 
other directions   second-order effects in 3D are different than in 2D. 
 
Newman (1990) has shown that approximating the source term in the combined free-surface 
condition with its far-field behaviour (i.e. far from the body), 2 goes to zero as the inverse of 

the depth instead of exponentially for large depths. 
 
Examples of sum-frequency effects for offshore structures 
Example of consequence of 2nd order sum-frequency effects is the springing on Tension Leg 
Platforms (TLP):  
 
 
 
 
 
 
 
 
 
This is a steady-state resonant elastic motion of the platform in the vertical plane. 
Sum-frequency effects can cause resonant vertical motions, because the natural period is Tn= 
O(2-4 sec) and the effects go to zero slowly with the depth as the 2nd order potential goes to 
zero slowly. 
 
Example of consequence of 3rd and 4th order sum-frequency effect is the ringing for instance 
on TLPs and gravity based monotowers: 
 
 
 
 
 
 
 
 
 
This is a transient resonant elastic motion of the platform caused in survival conditions. 
Survival conditions correspond to large incident-wave periods connected with high waves. If 
we assume for instance incident waves with mean period T2=O(15 sec) and bending moment 
natural period of the monotower Tn= O(5 sec), then resonance can be caused by 3rd order 
effects, i.e. oscillations with frequency 3ω. Because of the high waves 3rd and 4th order can be 
relevant. The figure below shows the ringing caused by irregular waves on a TLP: 
 
 
 
 
 
 
 

Wave elevation Tension
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It is apparent the high-frequency behaviour of the tension measured with respect to the 
incident wave time history. 
 
The figure below shows the ringing caused by irregular waves on a gravity-based monotower 
(Farnes et al. 1993). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A quasi-static approach is used to calculate the excitation linear and nonlinear wave loads, i.e. 
the monotower is assumed rigid and fixed. Then the response is estimated assuming the 
monotower free to dynamically interact with incident waves. The results in terms of loads 
show a dominance of the first-order wave effects with respect to the nonlinear effects. The 
dynamic overturning moment of the monotower highlights that the nonlinear response is of 
similar importance as the linear one. 
 
What can cause ringing? 
In survival conditions, high waves can reach the monotower, partially rising along it and 
partially propagating around it (see figures below). Waves from the opposite sides of the 
monotower will later collide against each other on the back of the cylindrical structure and 
then hit the mono-tower. The nonlinear effects involved in such a wave evolution are at least 
of the 3rd order. They can excite transient elastic resonant oscillations. 
Therefore ringing can be caused by transient nonlinear phenomena due to higher-order wave-
body interactions and associated with high-frequency behaviour near the elastic resonance 
period of the platform. 
 
 
 
 
 
 
 
 
 
                           Side view                                                Back view                      
 
Summary: Second-order effects. Mean (drift) loads. Maruo’s formula. Slow-drift loads 
and damping. Newman approximation. Pinkster formula. Slow-drift effects due to wind. 
Sum-frequency effects due to second- and higher-order effects. 
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Current and wind loads.  (F:174) 
The general sea environment is characterized by wave, wind and current. Current corresponds 
to a steady water flow. Wind corresponds to an air flow with a steady component plus a 
slowly-varying fluctuating part (gust). Current is relevant for second-order drift effects. 
Waves and current are relevant environment for small-volume structures like jackets and 
risers. Current and winds may matter for all marine structures exposed to them and result in 
viscous effects.  
In the following we assume no waves and discuss the current and wind loads. There are 
similarities between the current and mean wind loads, though water and air have different 
properties and therefore current and wind speed can be rather different, i.e. Design values in 
North Sea are:  wind speed =O(40m/s), current speed =O(1 m/s). 
 
Several parameters can affect the flow past a body and the resulting loads and motions: 
 Reynolds number=Rn  // UDUD    

(U=characteristic free-stream velocity, D=characteristic body length,  the fluid density,  
and  the dynamic and kinematic viscosity, respectively) 

 Roughness number=k/D  
(k=characteristic dimension of body roughness) 

 Body form 
 Free-surface effects 
 Sea-floor effects 
 Nature and direction of the ambient flow 
 Reduced velocity DfU n/   

(with fn  the natural frequency of the structure) 
 
The Reynolds number measures the importance of kinetic energy relative to the tangential 
(shear) stresses connected with viscous effects. In practical cases for offshore structures, at 
full scale Rn may be large, i.e. O(107). For ships at forward speed it is O(109). 
Examples: 
 In water ( =1.0510-6 m2/s at 20 oC):  
   - Current speed U=1m/s and a column of a semi-submersible with D=15m  
      Rn=1.4107 
 In air ( =1.5010-5 m2/s at 20 oC):       
   - Wind speed U=40m/s and a structure with characteristic length D=20m  
      Rn=5.3107 

But at model scale, as well as for full-scale structures with smaller characteristic lengths (e.g. 
jackets, risers, pipelines), the Reynolds number can be much smaller. 
Examples: 
 In water ( =1.0510-6 m2/s at 20 oC):  
     1) Model tests by Froude scaling the semi-submersible to 1:50, i.e. U=0.14m/s, D=0.3m 
           Rn=4.0104  
     2) Full-scale pipeline with D=1m in a current with speed U=1m/s   
           Rn=9.5105 
 
Different values of the Reynolds number may correspond to different flow regimes leading to 
different loads on the structure.  
In this framework, viscous effects matter in connection with tangential (shear) stresses in the 
boundary layer along the structure and in connection with flow separation.  These aspects are 
discussed in the following.  

179



A simple and relevant example is represented by the problem of the flow past a circular 
cylinder because it shows fundamental features that can characterize more general geometries. 
Here we assume a current as environmental condition and start with the features of the 
separated flow of a circular cylinder in steady ambient flow. 
 
Steady ambient flow past a (fixed) circular cylinder (F:174-177)  
 
Hp: Non-separated flow and high value of Rn 
         viscous effects negligible  
         potential flow theory is valid 

                                            
 
The total velocity potential is   xUtot  with  the flow associated to the body-current 

interaction which must satisfy the problem: 
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This problem is satisfied by a dipole singularity in x direction placed at the center of the 
cylinder, i.e. rr /cos/ 2   ri . The unknown strength  is found enforcing the 
impermeability condition along the body: 
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which means that the tangential velocity on the body is  
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and has a maximum at =/2.  
 
The pressure on the body can be obtained from the steady Bernoulli equation: 
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with p0 the ambient pressure. We can define the pressure coefficient as  
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Under these assumptions there is no force on the cylinder: 
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and similarly in y direction. This is the D’Alembert’s paradox:  
A body in an infinite potential steady flow is not subjected to any force. 
 
NB: In general a moment exists for a body in an infinite potential steady flow: the Munk’s 
moment, we will later discuss it. 
  
Actually in the real case the flow separates in the back side of the cylinder, say for >=0. 
Flow separation occurs when the flow is not able to follow the body. In this case the flow 
follows another streamline (called separation streamline) and the pressure along the body part 
with separated flow remains almost uniform and smaller than p0, this implies that 
  1pC   at = 

This is shown in fig. F:6.2 in terms of the time-average pressure coefficient on the cylinder 
for different Reynolds numbers: 
 
 
 
 
 
 
 
 
 
 
 
 
 

U

p0

Stagnation points

Ue=2UUe=U
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 For Rn the pressure on the back of the cylinder recovers the pressure on the front, i.e. 
there is zero drag force.   

 As Rn reduces the pressure, downstream of a certain angle , becomes nearly uniform and 
remains smaller than the ambient pressure, this leads to a non-zero drag force.  

                                         
So, flow separation causes a horizontal force, i.e. in the current direction (while the force 
along y is still zero due to pressure symmetry). A rough estimation can be obtained assuming 
the flow as potential for 2/2/    and the pressure uniform p=pB<p0  (pB is called 
‘base pressure’) for the other angular positions along the cylinder, as shown in the figure 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is based on the fact that the major contribution to the drag force comes from integrating 
the pressure forces in the vicinity of 0 and | | .     It involves errors near / 2.    
Under these assumptions: 
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Here Q gives an average measure of the pressure loss due to flow separation and must be 
obtained empirically, i.e. from experiments. The drag coefficient can be defined as 

2

1
       (F:6.6)

1 3
2

x
D

F
C Q

DU 

     

This expression gives results in qualitative agreement with experiments.  
For example integrating the time-average pressure coefficient along the cylinder given in fig. 
F:6.2 for Rn=1.1105 it gives Q=-1.25 and from expression (F:6.6) we have CD=0.92 which is 
in qualitative agreement with accepted experiments. 
 
The Reynolds number is a very important parameter for the drag coefficient because the flow 
has different regimes according to Rn. 
For sufficiently small Rn the flow is in laminar conditions, for large Rn the flow becomes 
turbulent: 
 Laminar    = the flow is well organized 
 Turbulent  = the flow is characterized by a mean (organized) component and a fluctuation  
                           about the mean component. 
 

U

p0

Stagnation points

Ue=2UUe=U
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Example:  
Hp: A group of people. We ask them to march in order at the same speed .U  
• If U is small, they are able to do so  
   this corresponds to a laminar flow 
• If U is higher, someone can have problems  
   this corresponds to disturbances in the flow 
• If U is sufficiently high, people will march in average with U but each of them can go 
  slightly faster or slower  
   this corresponds to turbulent flow, with speed 'U U u  , 'u  being a fluctuation around  
       the mean value U . 
The transition from laminar to turbulent conditions is connected with flow instability and the 
speed associated with the transition (flow instability) is called critical speed. 
If the day is windy then the speed at which the organized march is lost, i.e. the critical speed, 
is smaller than without wind. This means that the ambient flow is important. 
 
Going back to the circular cylinder: The Rn is important for the location of the separation 
point and for the transition from laminar to turbulent flow. We also understand that the flow 
tends to be laminar in the upstream part of the cylinder while it tends to become turbulent 
moving downstream due to its acceleration for increasing .  

183



Relative damping for turret-moored ship

Operational condition Design  conditionp g

Organization

number
Surge Sway- Surge Sway-yaw

number yaw

4 2% 4%

5 2% 5% 2% 5%5 2% 5% 2% 5%

14 1% 1%14 1% 1%

20 10% 10%

Relative damping for deep-draft floater

Organization Operational DesignOrganization

number

Operational

condition

Design

condition

4 15.0% 30.0%

5 1.2% 1.7%

14 1.0% 1.0%

20 10.0% 10.0%

Free decay test in regular beam waves

close to roll resonanceclose to roll resonance
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Second-order sum-frequency vertical force amplitude F3a
(2 ) on

modified Wigley hull in head sea. Zero speed. No ship motions.

Importance of second-order potential

2

3

2

a

a

F

gL Due to second-order

potential

Total 

Due to velocity-square 

term in Bernoulli’s eq.

/ L

First and second-order solutions
Free-surface boundary conditionFree surface boundary condition

2

1 1

2
0 on 0g z

t z

2

2 2

2 1 o ( ) n 0Sourg zce t
t z

erm
t z

Springing of Tension Leg Platforms (TLP)

Resonant vertical motions due to sum-

frequency nonlinear wave loads

Resonance period Tn=2-4s

The second-order sum-frequency 

potential decays slowly with depthpotential decays slowly with depth
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A third and fourthf

order wave load

effect in survivaleffect in survival

conditions

Wave elevation

Ringing measurementsRinging measurements

for TLP

Tension
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Linear
Wave profile

Linear

Wave 

load
Nonlinear

Wave load

Linear

response Nonlinearp
response

Ringing of monotower in survival condition

Steep local

waveswaves

propagating

on the two 

sides of 

the cylinder

The wavesThe waves

start on the

upstream hullupstream hull

side when 

there is athere is a

wave trough187



Ringing of monotower in survival condition

The two steepThe two steep

propagating

waves willwaves will

later collide

Big splash

Summaryy

Second-order effects. Mean (drift) loads. Maruo’s formula. Slow-drift

loads and damping. Newman approximation. Pinkster formula. Slow-

drift effects due to wind. Sum-frequency effects due to second- and

higher-order effects.

Solution accurate to the second order

3

1 2

2
S l i f b d

= wave steepness

1 2 3

3

21

........

( )O

Solution of wave-body

interaction problem:
21 ( )

First-order solution: 

has zero mean value and oscillates with the frequency of thehas zero mean value and oscillates with the frequency of the

incident waves (if Uc=0 & U=0), i.e. superposition principle valid.

Second-order solution:

1) Mean value constant (drift)

2) Diff f ill ti ( ) i l i d2) Difference-frequency oscillations ( k- j) , i.e. long period

3) Sum-frequency oscillations ( k+ j) , i.e. short period
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Second-order effects

A regular incident wave with frequency :

= k= j a mean value and sum-frequency oscillations with 2 .

2
2 2

Example, from square-velocity term in the pressure:  

/ / 2 [2( )] / 2A A t2 2

1 0
/ / 2 cos[2( )] / 2

x

sum - frequency teconstant ter

x A A t

m rm

An irregular incident wave with spectrum S( ):

All second-order effects are caused.

Second-order loads Relevance: Practical examples

M (d ift) l dMean-wave (drift) loads:

Design of mooring and thruster systems, towing

Offshore loadingOffshore loading

Submarines

Capsizing of semisubmersibles

Difference-frequency (slow-drift) loads:

Added resistance in waves (involuntary speed loss)

Vertical motions of structures with small waterplane area, 
Tn=O(30s)

Difference-frequency (slow-drift) loads:

Horizontal motions of moored structures, Tn=O(1-2min)

Sum-frequency 2nd and higher-order loads:

Vertical motions of TLPs, Tn=O(2-4s)

Springing of TLPs, ringing of TLPs and gravity-based
t

q y g

monotowers

How to estimate the second-order loads?

Di t P I t ti (DPI)Direct Pressure Integration (DPI):

Integrate pressure from Bernoulli equation along the body surface

Conservation of Fluid (angular for moments) Momentum (CFM): 

Use the conservation in a fluid domain enclosed by the body, free-

f b tt d t l fsurface, sea bottom and control surfaces.

DPI versus CFM:

The general form of CFM is more complicated. Convenient in some

cases, e.g. horizontal drift loads. The advantage is to integrate along

t l f th t b h tha control surface that can be chosen smooth.

With DPI involves terms counteracting each other, this can lead to

accuracy problems. Difficulties with body geometric singularities.accuracy problems. Difficulties with body geometric singularities.
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Direct pressure integration: Source of 2nd order effects

Second-order Force (Uc=0, U=0)

2

I I

 Mean - drift forces + Low - dri

I

ft forces + Sum - frequency forcesF

c

1 32I

correction of  local
flow acceleratio

I

square-velocity in 
the pressure  

I

pressure correction
due to wetted-surface 

changes
n

4

g

I

pressu er
5

st

I

 correction rotation of  1  order force 
due to body motions F due to body motions

1
due to body motions F due to body motions

The body motions:

( )

The body wetted surface:
The pressure:

z=0

0n

(t)n
z=0

1

2

1

( ) ( )

1 1
2 1

2

a a
O O

p gz
t t

First order Second orderFirst order Second order

Second-order loads

In general they require to find the solution of the wave-bodyIn general they require to find the solution of the wave body

interaction problem accurate to the second order, i.e.
1 2

NB: In general to find numerically is not straightforward: itNB: In general, to find 2 numerically is not straightforward: it

involves smaller and higher frequencies requiring a well-refined

and sufficiently-large computational grid.

Mean-drift loads:

If U =0 and U=0, they do not depend on 2 If U 0 or U 0, 2

y g p g

If Uc 0 and U 0, they do not depend on 2. If Uc 0 or U 0, 2

can contribute through the additional pressure term
2 / .U x

Sl d if l dSlow-drift loads:

In general they depend also on 2. If Newman’s approximation is

valid and U =0 and U=0 no dependence onvalid and Uc=0 and U=0, no dependence on 2.

Sum-frequency loads:

In general they depend also on 2.

Mean-wave (drift) loads

U i t ti l fl th th d t th b d bilit iUsing potential flow theory, they are due to the body capability in

generating waves, i.e. in diffracting incident waves and irradiating

waves Relevant for large structures (relative to the incidentwaves Relevant for large structures (relative to the incident

waves)

• 3D horizontal forces (from CFM by Maruo):3D horizontal forces (from CFM, by Maruo):

( ) 1, 2i i i nF pn VV dS i
S

• 2D drift force (from CFM, by Maruo):
g 2 2 2

2 ( )
4

reflected wavesincident wa trasmitted ve

a R T

as w ves

g
F A A

NB: For a perfect absorber:
2

2
4

a

g
F
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Mean-wave (drift) loads

H Z fl th h th b d f iHp: Zero average energy flux through the body surface, i.e.

the body is not an absorber.

2 2 2A A2 2 2

a R TA A

2g
F A

• 2D drift-force Maruo’s formula: 

2g
F

Maximum value of the

force if Uc=0 and U=0,
2

2
RF A 2

2
as 

aF c ,

because a is the

maximum value of AR.

2

• Extension to 3D bodies (by Maruo): 

2

1

0

2

2

2

(cos cos )
4

)(
g

F d

g

A

2

2

0

(sin sin)
4

( )
g

F A d

Mean-wave (drift) loads

• Extension of Maruo’s asymptotic formula to 3D bodies (by Faltinsen):
2

2
sin( ) 1,2,6

2

a
i i

g
F n dl i

1
2

L

non shadow parorig a tin l

• Added-resistance in head waves (by Faltinsen):

Relevant assumptions: short waves and small Fn.p

22

1 1

2
1 sin( )

2
a

Ug
F n dl

g
1

2
L

g

d if l d i i l d d i ff

Incident-wave frequency

• Mean-drift loads in irregular waves and due to viscous effects

Mean-wave (drift) loads

Using potential flow theory we found that

For small wavelengths: they are dominated by diffraction effects.

Near the resonance: they are dominated by radiation effects

Using potential flow theory, we found that

Near the resonance: they are dominated by radiation effects.

For large wavelengths: they become negligible.

Non-dimensional added resistance of a ship

2 2

AWR L

g Bag B
Head sea

L

Ship motionsBow wave 

reflection

L
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Mean-wave (drift) loads

M i tMain parameters:p g

wave amplitude: 

- potential flow
2

- potential flow a

- viscous effects 
3

a

wavelengthwavelength

wave direction 

structural form 

difference between restrained and moving bodydifference between restrained and moving body

current  <50% 

forward motion 

fi d t ll ff t h f i i tconfined waters, e.g. wall effects when performing experiments

Slow-drift loads

C t d ith i d t i t

For a single body in open sea can not be caused by body interaction with a regular

I l th t d ith i l

Connected with a wave-wind-current environment.

Slowly varying drift force

wave. In general they are connected with irregular waves.

Approximate regular wave Drift force in regular wavesApproximate regular wave Drift force in regular waves

+
Transverse 

i
Large amplification

motion 

amplitude

Large amplification

due to small damping

1min

=

Large slowly varying motionsLarge slowly varying motions

Slow-drift motions

• Relevant for design of mooring lines and risers

Th b l th li ti b t th li•They can be larger than linear motions but the linear

velocities and accelerations are larger than slow-drift values

)]()i [()]()[( isic
N N

SV tTtTAAF

•They are caused by slowly-varying loads:

)]()sin[()]()cos[(
1 1
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1

Slow-drift loads using Newman’s approximation 

and       
1

( ) 0
2

ic ic is is

j

ic ic

jjk kkkj jk kjT TT T T T

Newman's definition Newman's definition

Newman's approximation Newman's approximation

2

2 cos( )ic
N

S

i j jj

V

j jF A tT
1

j jjj j

j

2This formula is independent on  if 0 and 0cU U2 c

Slow-drift loads and response

2

• Pinkster formula for the spectral density of low frequency

part of the loads (based on Newman’s approximation):

2

2

4

1/3

0

( /
( ) 8 (

2
)

)
( ) i

a

FS S S d H
F

2 ( )FS

• Variance of the response:

( )
2

x F nS
bc

M t b bl l t l ( i R l i h di t ib ti )• Most probable largest value (using Rayleigh distribution):

max 2 logx

t
x

TNT

Slow-drift damping
Three main sources are:

1) Wave-drift damping

2) Viscous hull damping

3) Viscous anchor line damping3) Viscous anchor line damping

Wave-drift damping:

Connected with the interaction of a slow-drift motion with rapid oscillations ofConnected with the interaction of a slow drift motion with rapid oscillations of

incident waves. It is important in high sea, because

We discussed how to find it.

2

1/3 .WDB H

Eddy-making damping:

It is connected with vortex shedding and nonlinear, i.e.

We discussed equivalent linearization

| | .DB y y

We discussed equivalent linearization.

Standard deviation of the response:

If WD HBb
2Using ( ) / (2 )r F nS bc

1/3

4/3

1/3

If   

If    D

r

WD

r

HB

b B H

b
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43. Current and wind loads.  Boundary-layer. Wake. Current loads on ships. (F: 177-
190) 
 
 
Boundary layer and Flow regimes (F:177-181) 
Let’s assume a current U∞ past a fixed 2D body and take local coordinates with x,u  as 
position and velocity along the body surface and y,v  as position and velocity normally to the 
body (y=0 on the body).  
In the potential-flow theory the body is impermeable and a tangential velocity, say u=Ue, 
exists along the body: free-slip condition (see the potential-flow solution for the circular 
cylinder). In reality the fluid velocity must go to zero at the body surface, i.e. it must be equal 
to the body velocity. This is called no-slip condition. So u must go from Ue to zero within a 
certain distance, say (x), from the body. 
The layer of fluid with thickness (x) is called boundary layer (BL) and there viscous effects 
are important, even if viscosity is small. The reason is that the shear/tangential stresses, of the 
form /u y    , can be large because the normal gradient brings u from 0 to Ue within the 

distance (x). So the smaller the boundary layer thickness the larger the shear stresses. This 
fact gives another contribution to the drag force on the body. In general we have:  a 
friction/shear force due to tangential stresses along the body surface and a pressure force due 
to the pressure losses caused by flow separation.  
 
NB: The friction/shear force is dominant for streamlined bodies while the pressure force due 
to viscous effects is more relevant for blunt bodies with separation.  
For example, in the case of a ship usually the frictional component is more important than the 
pressure loss, because the form is typically as much as possible streamlined. However ships in 
manoeuvring can be associated with relevant flow separation and therefore loss in pressure in 
this case is greater than normally. 
 
The thickness (x) of the boundary layer can be defined in many ways. The reason is that u 
tends to Ue asymptotically, i.e. as y∞. One possible definition is: at any location x,  is the 
distance y=(x) where the tangential velocity u becomes the 99% of the tangential velocity 
just outside the boundary layer Ue(x).  
For a laminar boundary layer of a circular cylinder, the velocity u at =80 appears as in fig. 
F:6.4.   
 
 
 
 
 
 
 
 
 
 
 
 

In this case: u=0.99Ue   at   
2

2 2
by BL thickeness
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U R U Ry
R

R R Rn

 
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So if 5/ 1 10 0.01Rn U D R       at this location and it decreases increasing Rn in 

laminar conditions. 
                                    
In isothermal conditions, the governing equations of the flow evolution inside BL are the 
conservation of fluid mass (for incompressible flow) and the Navier-Stokes (NS) equations. 
Let us study the boundary layer along a 2D body long L assuming laminar flow.  
In terms of orders of magnitude, we have that:   ( ),  ( ) and ( )u O U x O L y O     

Assuming steady conditions, inside the boundary layer, we have: 
1. From the continuity equation, the normal velocity and its variation along the body 

surface are small  ( ),  / ( )v O v x O      
2. Introducing 1. in the NS equation in y direction, the normal derivative of the pressure 

can be neglected  / 0p y         
        This means that the pressure is equal to the pressure of the flow just outside the  
            BL. There, the flow is inviscid and does not ‘see’ the BL, so p can be obtained  
            from the Euler eq. in x direction applied along the body, i.e.  

      / /e eU U x p x        (1)    

3. So the conservation of the fluid mass and the NS equation in x direction represent   
the equations governing the flow evolution  in the BL: 

      

2 2

2 2 2 2

/

/ / 0

/ / / ( / / )
it can be neglected because 
much smaller than u y  

u x v y

u u x v u y p x u x u y  

 

    

              (2)  

      with BC conditions: u=0 and v=0 at y=0 and u=Ue at y=. p is given by eq. (1) 
           (NB: The integration is up to y=  because u tends to Ue asymptotically.) 
 
Condition for flow separation: 
Using the tangential velocity profiles (see figure below for a 2D body) we can determine the 
condition for flow separation along a body. 
 
 
 
 
 
 
 
 
 
 
 
 
In the region where the flow is attached to the body 
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while, in the region where flow separation has occurred, the fluid motion near the body is 
reversed creating vortices so that   
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This suggests that the separation point (SP) can be defined as the point on the body with                                

      0
0





y
y

u
      (F:6.8) 

This means that the separation point is an extreme point for the velocity u. Starting from the 
separation point, the flow will follow the separation streamline instead of the body surface. 
When there is flow separation, somewhere in the boundary layer there must be a minimum of 
u due to the reversed flow, i.e.  

   0/ 22  yu   
This means that the separation point must be connected with a minimum of u on the body 
surface, i.e. 

    

2

2

0

0
y

u

y






 

Applying the NS equation in x direction on the body surface, i.e. at y=0, in steady conditions 
gives: 

  2 2

00
/ /

yy
u y p x


      

This tells that we have separation only if 

   
0

/ 0
y

p x


     

which means if there is an adverse pressure gradient, i.e. the pressure increases. 
 
NB: As a result, there is no separation in the case of a uniform free-stream velocity U∞ with 
zero angle of attack past a flat plate with zero thickness. In this case the potential flow 
solution is uniform, i.e. Ue=U∞  / 0eU x    along the plate, so using the Euler equation 

(1) we find / 0p x    , i.e. the pressure never increases. 
  
For the circular cylinder, if we assume a laminar boundary layer and potential-flow tangential 
velocity Ue for the flow external to the BL, the separation condition tells that separation 
occurs at ±100.  
In reality the separation in laminar conditions occurs at about ±80, this is because the 
potential-flow solution sin2  UUe  is not a good representation of the velocity outside the 

boundary layer along the whole cylinder, i.e. at any . It is a good approximation only within 
4/4/    for values of Rn of practical interest. 

Moreover the flow in the boundary layer is laminar before the separation only up to a certain 
Rn. For larger Reynolds numbers, the flow becomes turbulent before the separation. 
 
Flow regimes:  
According to the value of Rn we can distinguish four flow regimes. Assuming a smooth 
circular cylinder: 
1) 5102 Rn                                  subcritical flow regime  
2) 5 52 10 5 10Rn                      critical flow regime 
3) 65 103105  Rn                 supercritical flow regime 
4) 6103 Rn                                  transcritical flow regime 
 
In the subcritical regime (1): the boundary layer is always laminar.  
In the supercritical and transcritical regimes (3 and 4): the boundary layer is turbulent 
upstream of the separation point.  
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Figure below shows the boundary-layer conditions for a value of  Rn in the transcritical 
regime. 
 
 
 
 
 
 
 
 
 
 
In this case, more than the global Reynolds number /Rn UD  , it is important the local 
Reynolds number Rnx=U x/, with x the distance along the body starting from =0. As we 
move downstream along the body, Rnx increases, as well as . Flow instability occurs at the 
location x where Rnx=Rncrit. Downstream of the critical point disturbances appear in the flow 
which amplify and after a transition zone (which corresponds to a range of Rnx) the flow 
becomes turbulent at the location x where Rnx=Rntr. 
 
NB: The boundary layer thickness depends differently on the global and local Reynolds 
numbers Rn and Rnx. We have seen in laminar conditions that  decreases by increasing Rn, 
while it increases increasing Rnx.  
 
In terms of the global Reynolds number: 
As Rn increases  the point where instability occurs moves upstream and in particular at  
smaller than the separation point.  
As Rn reduces   the instability point moves closer to the separation point until we reach the 
condition when the flow remains laminar in the boundary layer before separation.  
The distance between the instability point and the separation point is measured 
experimentally. 
 
In laminar flow the (laminar) viscosity  leads to an exchange of fluid momentum between 
fluid layers through viscous (laminar) shear stresses, inside the BL this occurs normally to the 
body surface, i.e. along y. The turbulence leads to a greater exchange of fluid momentum. 
This can be seen as another viscosity in the flow, connected with turbulent stresses, which is 
added to the laminar viscosity, leading to a greater effective viscosity.  
As a result, the turbulent flow leads to 
 a greater thickness   of the boundary layer 
 a larger normal gradient of the tangential velocity at the body, 

0
/

y
u y


 

 
 then to higher tangential stresses

 

This is shown by the figure below giving the velocity profiles in laminar and turbulent BLs 
for a flat plate.   
 
 
 
 
 
 
As we said, separation can not occur for a flat plate.  
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For a circular cylinder, as well as for a generic body geometry, a larger 
0

/
y

u y


   means that 

for a turbulent flow the condition for flow separation, i.e. 
0

/ 0
y

u y


   , occurs with a spatial 

delay with respect to a laminar flow.  
This means that, if the flow becomes turbulent upstream of the separation point, the location 
of the separation point changes, with respect to the location with laminar flow upstream of the 
separation point, and moves downstream along the body. For example, for a circular cylinder, 
the separation point moves from ±80to ±120. 
 
Important general consequences of turbulence are: 

1) higher friction drag contribution due to  
- the greater velocity gradients and  
- the greater effective viscosity due to larger fluid-momentum exchange  

2) lower pressure drag contribution because the BL remains attached in a larger portion 
of the body 

 
NB: The position of the separation point is the most important scale effect for the pressure 
drag because typically Froude scaling is used and the Rn at model scale is then smaller than at 
full scale. As a result, the flow regimes at model and full scales can be different.  
 
Going back to the circular cylinder, we understand now the behaviour of the drag coefficient 
in the different Reynolds regimes. If we limit ourselves to a smooth cylinder (see figure 
below): 
 In the laminar regime, the drag coefficient is mainly due to pressure loss for the 

separation. 
 In the critical regime, there is a drop in drag coefficient due to the delay in the separation. 
 In the supercritical and transcritical regimes, the drag coefficient tends to increase due to 

the increase in the frictional stresses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A smooth cylinder means that the surface roughness k is zero. Experimental values of CD  also 
including the effect of the roughness are given in fig. F:6.3. 
The results show that k/D affects the drag coefficient. In general each curve shows a drop of 
the drag for a given Rn=Rncrit. This corresponds to the critical zone where the separation point 
location shifts suddenly downstream. As k/D increases, the laminar value of the drag 
coefficient tends to increases due to a greater frictional effect, the CD  drop in the critical zone 
becomes then less marked and occurs at lower Rn, i.e. Rncrit becomes smaller, because the 
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roughness represents a flow disturbance and so supports the flow instability, i.e. the flow 
becomes earlier turbulent. 
 
  
 
 
 
 
 
 
 
 
 
                                                             Fig. F:6.3 
 
NB: The separation process studied here occurs because of viscous effects, but inviscid 
separation may also occur, which means that the flow detachment from the body is not due to 
viscous phenomena. This may happen: 

a) when there is a geometrical singularity and the flow is not able to follow the body  
surface 

        b) when the pressure along the body tends to become smaller than the ambient pressure, 
            e.g. during water entry (we will later discuss this phenomenon). 
 
 
Wake behaviour (F:181-184) 
In the boundary layer the vorticity   V  is non-zero   the flow is rotational. 
For a 2D body, the vorticity component in the direction normal to the flow-motion plane is: 
        0///  yuyuxvz  
At the separation point, a flux of vorticity is shed from the body in the form of vortices 
(leading to vortex sheets, i.e. free-shear layers) also indicated as wake. Inside the shear layers 
the flow is then viscous and rotational. This vorticity flux is given by  
 

  2

0 0

1
/

2z sudy u yudy U
 

        

where sU is the tangential velocity just outside of the BL at the separation point location. This 

flux is equal to the time rate of change of the circulation  
    

C

dlV   

in the wake. Here C is a closed line that intersects a separation point (in the example in figure 
below this is point B) and does not intersect any vortex sheet.  
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B
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C

B
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Assuming that  is positive when anti-clockwise, we have 
 

2 21 1
       (F:6.14+6.15)

2 2
A B

sA sBU U
t t

 
  

 
 

 
for the time derivatives of the circulations connected with vortex shedding from separation 
points A and B, respectively. At time t=0 the circulation is zero  A(0) and B(0) are zero 
and expressions (F:6.14+6.15) tell how A and B evolve in time.  
From the Kelvin’s theorem (see i.e. Newman 1977): In an inviscid fluid under conservative 
forces (e.g. gravity), the circulation along a material curve, i.e. moving with the fluid, remains 
constant. So if it is initially zero (irrotational flow) it will remain zero at any time. 
This means that as  was zero around the cylinder at t=0, it will remain zero along any 
closed curve which surrounds the cylinder and does not intersect the vortex sheets. 
 
NB: The free shear layers released from the body become easily unstable, i.e. turbulent. So 
even when the boundary layer detaches as laminar, the flow downstream the separation is 
typically turbulent. 
 
 
Vortex shedding (F:184-187) 
In the starting process of a separated flow around a circular cylinder the vortices are released 
symmetrically from separation points A and B, but due to instabilities the vortices are shed 
alternatively from the two separation points. 
Von Karman studied the stability of vortex shedding considering idealised vortex streets, i.e. 
the body does not appear in the problem like it was far away. The results of the analysis are 
valid for a generic blunt body.  
The vortices are modelled as point vortices with strength || which travel in two parallel rows 
distant h with opposite sign of vorticity. Vortices in the same row are distant l from each 
other. He found that only two solutions are possible: 

1) One with vortices travelling in couple  
2) The other with vortices travelling symmetrically staggered 

 
Configuration 1) is unstable, 2) is also unstable except for when   

               28.02cosh
1 1  

l

h
   (F:6.16) 

This solution is shown in figure F:6.9. 
 
 
 
 
 
 
 
 
 
 
 
                                                     Fig. F:6.9 
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The vortices in the body reference frame move with speed  

                           
8

tot vor

induced by the
other vortices

u U
l




   

It means that the period of shedding is given by the following relationship 

                            
1/

8
v

v

f

T U l
l





   
 

              (F:6.18) 

i.e. as  the time interval for a vortex to cover the distance l and so the time interval between 
two following vortex shedding from the same separation point. Here vf  is the shedding 

frequency. 
To estimate Tv we need to know  and l which depend on the body geometry, not included in 
the Von Karman’s problem formulation. 
In the case of the circular cylinder we can set as a first approximation that h=D and 
approximate the vortex velocity as tot voru U , i.e. neglecting the velocity reduction due to 

the other vortices. Then combining (F:6.16) and (F:6.18) we have: 

                            
0.28v

D
T U   

This is usually expressed in terms of a non-dimensional parameter called Strouhal number 

                          



U

Df
St v                  (F:6.20) 

St gives the ratio between the cylinder diameter and the distance covered by the current during 
a shedding period. 
In the examined case we find St=0.28 which is consistent with the vortex shedding in 
transcritical regime. In subcritical conditions a better approximation is given using h1.2D  

and / ( 8) 0.85tot voru U l U    as the vortex velocity. This means that the vortex rows 

spread outwards with respect to the body transverse dimension and the velocity reduction due 
to the other vortices in the row matters. This leads to St=0.2  
An important practical consequence of a vortex shedding is that if there is a cylinder in the 
wake of another cylinder then the incident current for the downstream cylinder has speed 

    


 U
l

U
8

 

It means that this cylinder experiences a smaller drag than the upstream cylinder because the 
drag force goes as the square power of the involved current speed.  This is an effect of wake 
interaction. 
 
NB: Not always behind the body we see a vortex street and not always there is only one 
shedding frequency. In critical and supercritical conditions there is a spectrum of shedding 
frequencies. 
 
In subcritical flow past a circular cylinder we can divide the wake in three parts:  

1. a formation region (lfr),  
2. a stable region with uniform vortex sheet (lsr) and  
3. an unstable region (lur). 

The lateral extension h increases as we move downstream and h/l may vary greatly: from 0.19 
to 0.3. 
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Oscillatory forces due to alternate vortex shedding: 
 
 
 
 
 
 
 
 
 
The alternate vortex shedding results in a force in the normal direction with respect to the 
current, i.e. a lift force 
 
     ( ) | | cos(2 )L L vF t F f t       (F:6.21) 

 
The lift coefficient  

DU

F
C L

L 25.0

||






   (F:6.22) 

is 1.35 in subcritical regime for a fixed cylinder. 
In a 3D cylinder, one could think to estimate the total transverse (lift) force assuming that 
locally the flow is 2D and using a strip-theory approach, i.e. summing up the 2D lift-force 
contributions along the cylinder axis. 
This would be a good approximation if the phase  was the same along the cylinder axis 
because this would mean that the body cross-sections are correlated with each other and the 
sum of the 2D force contributions gives the total force. In this ideal case the correlation length 
lc, i.e. the length along the body where the phase  remains constant, is equal to the cylinder 
length.  
In reality,  varies along the cylinder axis, this means that the correlation length of the vortex 
shedding is small and as a result 
 The total lift force on the cylinder is clearly reduced due to the cancellation effects.  
The correlation length is lc<5D in subcritical regime and reduces to 1D-2D in transcritical 
regime. The behaviour of lc/D as a function of the Reynolds number is given in the figure 
below. 
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The drop of lc/D when the flow becomes unstable and turbulent can be understood 
considering that a turbulent flow is not organized so it is more difficult to maintain a similar 
phase of the lift force, i.e. of the vortex shedding, as we move along the cylinder axis. One 
must also note that as the flow becomes turbulent the 3D effects become more important. 
 
The alternate vortex shedding causes also an oscillatory drag force. In this case a mean 
(constant) value of the force exists due to the mean frictional terms and pressure losses around 
the cylinder, i.e. 
   ( ) cos(4 )    (F:6.23)D D D vF t F A f t     

The amplitude AD of the oscillatory part is typically the 20% of DF .  

Also the phase  varies along the axis of a 3D cylinder which means that cancellation effects 
occur also for the drag as for the lift. 
 
A vortex is shed every 1/2Tv alternatively from the two sides. From this it depends the 
oscillation period for the lift and drag forces:  
1. For the lift, the change of the cylinder side where shedding occurs it matters, because the 

lift is sensitive to variations in the transverse direction. This means that   
       the lift oscillation period is Tv  
2. For the drag, the change of the cylinder side where shedding occurs it does not matter, 

because the drag is only sensitive to variations in the current direction  
         the drag oscillation period is  Tv/2 
 
NB: The oscillatory forces may cause resonance phenomena, i.e. vortex-induced vibrations 
(VIV), as we will see later. In case of Vortex Induced Vibrations (VIV) the correlation length 
along the cylinder will be larger and this results in higher oscillatory forces.  
 
 
Example from the sea: fishes 
If we observe the motion of a fish tail, we see a shedding of vortices alternatively with 
opposite sign. They induce a speed on each other. 
 
 
 
 
 
 
 
 
 
As for a fixed circular cylinder in a current also a moving fish is then associated with a vortex 
shedding but the sign of the vortices is reversed (see figure below).  
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As a result: in the case of the cylinder, the vortex shedding causes drag and oscillatory forces; 
in the fish case, the vortex shedding leads to trust generation.  
As for the circular cylinder, also for fishes the wake interaction can have positive effects. For 
example let’s assume the case of a fish in the wake of two upstream fishes as in the figure 
below. The vortices shed by the upstream fishes cause a flow velocity in the motion direction 
on the downstream fish, so this one needs a lower trust to swim with the same velocity as the 
upstream fishes.  
 
 
 
 
 
 
 
 
 
 
 
 
Triantifyllou et al. (1995) studied the Strouhal number for different fishes defining the 
parameters of an equivalent circular cylinder, as reported in the figure below. 
From the results, the St varies in a range between 0.2 and 0.4. The smaller is this value the 
higher is the fish speed U relative to the product of the amplitude with frequency of tail 
motion, fA. It means that the fish locomotion is more efficient. On the other hand the 
capability of the fish to reach large accelerations and to manoeuvre reduces as St reduces 
because the frequency of tail motion f becomes small compared to U/A. In this framework the 
best range of St for fishes is considered around 0.25 and 0.35.   
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Current loads on ships (F:187-190) 
We assume a current, with speed Uc, along the longitudinal axis of a ship long L, in calm 

water (i.e. no incident waves). In this case, the Froude number LgUFn c / is usually 

small, for example a typical design current in North Sea is Uc=1m/s,  so for L>25m Fn<~0.06. 
This means that the wave resistance, i.e. due to the wave generation by the body, can be 
neglected and the resistance is dominated by viscous resistance. Viscous effects play then a 
dominant role for current loads and flow separation has in general relevance.  
Assuming a current Uc with a direction  with respect to the ship longitudinal axis. The 
current loads can be obtained by decomposing the current and assuming that: 

- the longitudinal component Uc cos  causes only a drag force  
- the transverse component Uc sin  is responsible for flow separation and causes a 

transverse force and a yaw moment. 
 
These assumptions allow to study separately the longitudinal (drag) force and the transverse 
loads. In the latter case we can apply the ‘cross-flow’ principle’.  
These loads are often obtained using empirical formulas, i.e. from the experiments. 
 
Drag current force: 
The drag current force is mainly due to frictional resistance. The latter is  connected with the 
tangential stresses along the vessel wetted surface, say S, and so is primarily dependent on S. 
It means that 
 an equivalent flat plate with the surface equal to the ship wetted surface S can be used to 
have a first approximation of the frictional resistance. 
The 3D effects related to the shape of the vehicle contribute to an increase of the force with 
respect to the flat plate contribution, so   
 empirical form coefficients can be considered to account for this. 
 
Using the assumptions above, in the case of a current along , the resistance is caused by the 
longitudinal component (see figure below). 
 
 
 
 
 
 
An empirical formula commonly used for the frictional resistance on ship hulls is given by 
ITTC (1957) 
    

  2
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   (F:6.24)   

Here CF is the frictional coefficient and agrees well with experimental results for the turbulent 
flow along a smooth flat plate. The absolute value in (F:6.24) is due to the fact that the force 
is in the direction of the current, so if  2/2/    the force is directed as x, otherwise it 
is directed as –x. 
The Reynolds number in the formula is defined as 

   

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NB: Other formulas exist for the CF of a turbulent smooth flat plate. 
 
To accounts for the 3D effects connected with the ship shape, the formula for the frictional 
coefficient in (F:6.24) can be modified as  
    (1 )F fC k  

Here kf is a form factor (usually indicated as k in the literature), found from experiments. 
Typical values for kf are between 0.2 and 0.4 for =0. If the flow separates at the stern kf may 
rise up to 0.8. This can be understood considering that when the flow separates, downstream 
of the separation line (a separation point in 2D becomes a separation line in 3D), the flow 
does not follow the body surface but another streamline, the separation streamline, which 
corresponds to a blunter ‘body’  3D effects become more important.  
 
The roughness is an important parameter for the frictional resistance (see Faltinsen’s book 
“Hydrodynamics of high-speed marine vehicles”, pg. 232). There are many types of 
roughness. Schlichting (1979) presents the frictional coefficient CF as a function the 
roughness height k in the case of sand roughness k=ks uniformly distributed on a plate long L. 
The results are shown in the figure below as a function of the Reynolds number of the plate 
Rn=U∞L/ and of the parameters U∞k/ and L/k. 
                            
  
 
 
 
 
 
 
 
 
 
 
 
 
CF increases when reducing the parameter L/k. Along curves with constant L/k, CF becomes 
independent from Rn beyond the dashed line in the figure. This is because the flow becomes 
fully rough. For increasing values of U∞k/  the frictional coefficient increases, as the 
roughness makes more turbulent the flow. The roughness has no effect on CF if U∞k/=100 
(and <100)kadm=100/U∞. This roughness value is called admissible and it means that if 
k=kadm it is like the plate was smooth. From the expression of kadm we see that a ship can 
behave as smooth at model scale. At full scale, a smooth behaviour requires a very small 
admissible roughness due to the higher ship speed with respect to model tests and the fact that 
 is the same at model and full scale.  
There are different empirical formulas expressing the increase of the frictional coefficient CF 
due to the roughness with respect to the smooth plate. The formula by Bowden and Davison 
(1974)  

     3 1/3 1/310 44 ( / ) 10 0.125FC AHR L Rn       

accounts for the correlation between model tests and full scale and includes the effect of 
average hull roughness AHR (in the formula expressed in meters). 
 
Transverse current force and current yaw moment: 

  
L

k 
U k
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U L
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 1000 FC

smooth
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If the current angle  is not small, in the meaning that the current has an important transverse 
component, then the transverse force and the yaw moment caused by the current are important 
and one can estimate them using the cross-flow principle. The basic assumptions are: 

1) The flow separates due to the cross-flow past the ship 
2) The longitudinal current component does not affect the transverse forces on a cross-

section 
3) The transverse forces on a cross-section are meanly due to the pressure loss connected 

with flow separation  
 

 
 
 
 
 
 
 
 
It means that we can express the transverse cross-section force as  
 

 2
2

1
( ) ( ) ( ) sin | sin |

2
c

D cdF x C x D x U dx    

  
with CD(x) the drag coefficient for cross-flow past an infinitely long cylinder with the cross-
sectional area equal to the one at location  x along the ship and D(x) the sectional draught.  
We can then use the strip theory approach to get the loads on the vessel: 
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and 
2
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1
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2
c c

a c D

L L

F xdF x U C x D x xdx        (F:6.27a) 

c
aF6 is only one of the two contributions to the ship yaw moment in a current. The other is the 

so-called Munk moment, which is associated with inviscid effects, i.e. it can be derived from 
non-separated potential flow theory (see figure below), and is a destabilizing moment. As we 
have seen, in general a body in an infinite potential steady flow is subjected to a moment 
(Munk moment) and to zero force (D’Alembert’s paradox).  
Because the force is zero, the Munk moment is a pure torque, i.e. it does not depend on a 
reference point, while the viscous moment does it. In the real case due to separation we will 
also have a force. Examples of pressure distribution along the body in potential and real flows 
are shown in the figure below. 
 
 
 
 
 
 
In our assumptions of a current with zero vertical (along z) component the Munk moment can 
be expressed as  

Potential flow
UMunk moment

+zero force
(D’Alembert’s 
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Real flow
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
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A B
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2sin)(
2

1
1122

2
6 AAUF c

c
b                                                     (F:6.27b) 

with A11 and A22 the added masses in surge and sway.  
 
The Munk moment is zero if 
 1). A11 = A22, which is unlike to happen for a ship 
 2) =0, (longitudinal current) or /2 (transverse current). 
 
The two, viscous and inviscid, contributions to the yaw moment have then different angular 
dependence, see Fig. F:6.10. As the transverse force, also the viscous moment is zero when 
=0,, i.e. when the current is along x,  but these load formulas connected with the current are 
valid far from this condition, i.e. when the transverse current component is important. 
 
 
 
 
 
 
 
 
 
 
                                                             Fig. F:6.10 
 
The comparison with experiments confirms that formulas (F:6.26) and (F:6.27=6.27a+6.27b) 
for the transverse force and yaw moment are good near =90, see figures  F:6.11 and F:6.13.  
In figure F:6.13, the yaw moment is with respect to the vertical axis through the ship center of 
gravity and is assumed positive for a ship rotation toward larger  angles. 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
                    Fig. F:6.11                                                                   Fig. F:6.13 
 
From experiments in Fig. 6.13, the viscous and Munk moments are of equal importance. This 

can be seen comparing the yaw moment at =90 where c
aF6  has maximum amplitude (and 

Cross-flow
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negative value) and c
bF6  is zero, with the yaw moment at =45 where c

bF6 has maximum 

amplitude (and positive value) and c
aF6 is 1 / 2  times its value at =90. 

For small angles ( close to 0) a good approximation is obtained assuming the hull and 
rudder as low aspect-ratio lifting surfaces. An idea of what this means is given in the figure 
below for the hull and similarly could be considered for the rudder.  
 

                        
 
The ship and rudder are like flat plates in a current with an angle of attack. A pressure 
distribution is caused with suction pressure (below the ambient pressure) in one side and 
overpressure in the other. As a result a lift force and a yaw moment are caused. 
 
 

Uc

hull


Pressure below 
the ambient pressure

Pressure above
the ambient pressure
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Boundary layer along a 2D body
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Condition for flow separation along a 2D body
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The instability and separation points depend on the

Reynolds number and the boundary layer flowy y y f
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Drag coefficient for a circular cylinder
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Von Karman wake for a blunt body
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Fish: tail motion
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Current loads on a ship
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Roughness effects of submerged hull

Empirical formula by Bowden and Davison (1974):

1/33 1/310 44 / 10 0.125FC AH L RR n

It accounts for correlation between model and full scale
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as well as average hull roughness (here in meters).AHR 
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Yaw moment on a ship due to current
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44. Parameter analysis for CD of ships. Current loads on offshore structures. Wind 
loads. Vortex-induced resonance oscillations. (F: 191-197,200-212) 
 
 
Parameter analysis for CD of ships  (F:191-197) 
Hp: A current Uc with a direction  with respect to the ship longitudinal axis, say x. 
 
The sectional drag coefficient CD(x) in the expressions of the current viscous transverse force 
and yaw moment 2 6 and c c

aF F  is affected by several factors: 

1) free-surface effects 
2) beam-draught ratio effects 
3) bilge radius effects 
4) bilge keel effects  
5) Reynolds number effects, i.e. laminar or turbulent flow effects 
6) 3D effects 

To analyse factors 1 to 5 we will consider the 2D problem in the cross-sectional plane with 
uniform current U equal to the transverse current component Uc sin. 
 
1. Free surface effects: 
Hp: Calm water, i.e. no incident waves. Steady conditions. No viscous effects on the free-
surface.  
 
The combined free-surface boundary condition is  
 
                                                
                                                 
 
 

As we have seen, /Fn U gL associated with current is typically small, so  

 equation (1)  leads to / 0 at 0z z     
 the free surface acts as a rigid wall, i.e. as an infinitely long splitter plate 
This leads to a smaller drag coefficient.  
 
Why is this so?  
Using the mirroring about the rigid wall in z=0, the problem is equivalent to a double body in 
infinite fluid with symmetric vortex shedding. Indeed the physical vortices shed from the 
body (below the free surface) are paired by ‘image’ vortices above the free surface and 
symmetric with respect to z=0. The image vortices have identical strength magnitude |(t)| as 
the physical vortices but with opposite sign (NB: the strength of the vortices corresponds to 
the circulation). This ensures zero vertical flow speed at z=0 as required by the rigid wall (see 
figure below). 
 
 
 
 
 
 
 

t




 

2

2
2

2
sin

' '
0  at 0 0  at ' 0    (1)

' '
cU nondimensional 

variables  
steady conditions

U g z Fn z
x z x z

  


 
    

            
 

U



-

z=0

Lecture Note 10

224

espen
Highlight

espen
Underline



If the same double body geometry was in a steady current in a real infinite fluid, i.e. without 
free surface, the symmetric shedding would be unstable and a von Karman wake with 
alternate vortex shedding would occur. This means that the free surface has a strong influence 
because it is able to maintain stable a symmetric vortex shedding while without the free 
surface the vortex shedding would become alternate. This fact reduces the drag, because the 
symmetric vortex shedding leads to a smaller drag than an alternate vortex shedding.  
  All these aspects mean that the free-surface effects matter in the case of a steady current. 
 
In this framework, the use of splitter plates to reduce the drag has been investigated. Hoerner 
(1965) examined the CD-values for bodies with splitter plates of finite length in steady 
incident flow. His results confirm that a splitter plate causes a clear reduction of the drag 
coefficient. 
 
 
 
 
 
 
2. Beam-draught ratio effects:  
Experiments by Tanaka et al. (1982) show a little effect of B/D with the exception of small 
B/D. In the case of a midship cross-section, this means a small effect if B/D>0.8, the reason is 
that as B increases relative to D is like going toward a flat plate geometry and shear stresses 
will play the main role while the presence of a draught will be less and less important. 
 
3. Bilge radius effects: 
Experiments by Tanaka et al. (1982) show a strong effect of the bilge radius. As r increases 
the drag coefficient decreases because the vortex shedding becomes less intense. The link is 
exponential 
 

2
/

1 CeCC Dkr
D    

 
where C1 and C2 are two positive constants of similar magnitude and D is the draught. An 
example of k value is 6. 
 
4. Bilge-keel effects: 
These effects are strong due to the inviscid separation which always occurs and increases the 
drag coefficient with respect to the case without bilge keels. The drag coefficient is not very 
sensitive to the breadth of the bilge keel. 
 
NB: The flow separation at the bilge keels occurs due to the geometric singularity, so the 
separation points are not scale dependent. Because the bilge keels are typically centered 
midships with a length half of the ship length, their presence avoids the serious problems 
connected with scaling of the transverse current force from model to full scale, while there is 
an uncertainty for the yaw moment.   
 
5. Laminar/turbulent flow effects: 
Where/if there are no bilge keels, the separation is usually dominated by viscous effects and 
depends on Rn. Aarnes (1984) has studied the 2D cross-flow past ship cross-sectional forms 
and calculated the drag coefficient. He showed that:  

B

D
r

Bilge keel
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 CD can be greatly different depending on laminar or turbulent separation. This is shown by 
figure F:6.16 in terms of the drag coefficient along the ship in subcritical (laminar 
separation) and transcritical (turbulent separation) flow.  From the results, the transcritical 
flow regime leads to a lower drag coefficient.  

 
 
 
 
 
 
 
 
 
 
 
 The reason for the smaller drag coefficient in turbulent flow is analysed by figures F:6.17 

and F:6.18 showing the time evolution of the flow separation at the midship cross-section.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       Fig. F:6.17  Rn<Rncrit                   Fig. F:6.18    Rn>Rncrit   
 

In subcritical conditions: two large vortical structures detach from the leading and trailing 
edges. In transcritical conditions: the leading-edge vortical structure has disappeared. So, 
if the flow is laminar, the boundary layer (BL) tends to separate both at the leading and 
trailing edges of the ship cross-section. If the flow is turbulent the BL may sustain better 
adverse pressure gradients and remain attached at the leading edge due to the greater 
fluid-momentum exchange. 

 
When flow separation occurs at the two corners roughly the drag coefficient is twice the drag 
coefficient obtained when flow separation occurs only at one corner.  
These aspects lead to important scale effects if at model scale the flow is laminar while at full 
scale the flow is turbulent. When separation occurs from sharp corners one would expect less 
severe scale effects. 
As already mentioned, the reason of the scale effects is that the examined flow separation 
depends on viscous effects and so on Rn. We have no scale effect if the Reynolds numbers at 
model and full scale are equal, i.e. 
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It means that in the model tests Rn could be in the subcritical regime while in full scale it is 
typically in transcritical regime. This means that the experimental results could be 
qualitatively different than in full scale. To overcome this problem, turbulence stimulation is 
used in model tests. 
 
6. 3D effects:  
Aarnes (1984) pointed out that 3D effects associated with the edges of the ship reduce the 
drag coefficient with respect to the 2D cross-sectional estimations. 
To see this let us consider the case with a transverse current Uc. The flow separation at the 
two edges causes two eddies. The shed vortical structures induce a velocity in x direction 
opposite to the incident current. The induced velocity is shown in the right plot of the figure 
below. The vortical structure at each edge of the ship is approximated as a vortex point 
centered. 
 
                                                                            
 
 
 
 
 
 
 
 
The velocity induced by the vortices is large only in their vicinity and goes to zero far from 
them. This means that near the edges we must consider a smaller effective inflow velocity, 
say v< Uc. This leads to a reduction of the drag force because the forces on the cross-sections 
near the ship edges are proportional to v2. As a result, since the drag coefficient is made 
nondimensional by a term proportional to Uc

2, i.e. to the square of the incident-current speed, 
the reduction factor of the drag coefficient is  v2/Uc

2 (see figure F:6.20). 
 
 
 
 
 
 
 
 
 

Uc
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Current loads on offshore structures (F:200-206) 
What discussed for ships can be extended to offshore structures that consist of slender 
structural parts. 
Examples are: risers, cables, columns and pontoons of semisubmersibles and TLPs.  
We consider a current Uc and, also in this case, we can assume that: 

- its longitudinal component causes only shear forces which can be calculated as done 
for the longitudinal drag forces on a ship.  

- its transverse component causes flow separation. The forces in a cross-section due to 
flow separation can also be calculated similarly as done for the ship.  

 
In the following we focus on the loads caused by the transverse current component UN. 
 
Hp: A slender structure and a steady incident current Uc, as in the figure below. The flow is 
assumed nearly 2D in the cross-sectional planestrip theory can be applied 
 
 
 
 
 
 
 
 
 
 
 
The mean (i.e. constant in time) force per unit length (i.e. the cross-section mean force) is in 
general characterized by two components: one in-lined and one orthogonal to UN, which can 
be expressed, respectively, as  

2
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    (F:6.47)
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     (F:6.48)
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Here D is a characteristic cross-sectional length (e.g the diameter for a circular cylinder).  
For a circular cylinder we have seen that 0LF . In general, the mean lift force is zero in the 
case of any single body symmetric about the current direction and in infinite fluid. Otherwise 

LF  can be non-zero. 

Coefficients  and D LC C  must be determined empirically. Major parameters affecting them are 

the same as for the drag coefficient for ships, in addition one must consider the influence of 
hydrodynamic interactions between structural elements.  
 
Wake interaction effects: 
Hp: A uniform current past a 2D circular cylinder centered at x=0 and y=0 (see figure below).  
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We briefly discussed the wake interaction effects using the von Karman wake, i.e. 
approximating the shed vortices as point vortices. Here we do not make this approximation 
but apply to the cylinder the wake solution downstream of a 2D body as given by Schlichting 
(1979). In this case, the mean wake velocity component u in the direction of the free stream 
U   at a point (x,y), with  x and  y, respectively, the longitudinal and transversal distance from 
the cylinder, can be written as 
 

2 /41 0.95    (F:6.49)

/ 0.0222                 (F:6.50)
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Here CD is the drag coefficient of the cylinder. This expression is a good approximation of u 
if x/(CDD)>50, i.e. it is a long-distance approximation. However, Blevins considered a 
fictitious origin placed 6D upstream of the cylinder and applied this formula for smaller 
distances x from the cylinder. He found good results. 
 
Now let us place a second cylinder in the wake of the cylinder, i.e. centered at x=l and y=0. 
Using expressions (F:6.49+6.50), the local  inflow velocity of the downstream cylinder is  
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and its drag coefficient (2)
DC  is smaller than the drag coefficient CD of the upstream cylinder, 

i.e. 
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For example if CD =1 and l/D=100 CD
(2) = 0.81. We understand that CD

(2) may even 
become negative if the downstream cylinder is sufficiently close to the upstream cylinder,  but 
one must note that strictly speaking the applied formula is valid for sufficiently large 
distances between the two cylinders. 
In a more general framework, if a structural element is in the wake of another one, the loads 
on it are not the same as if this element was isolated in infinite fluid. The element will be 
subjected to a lower local current u and this leads to a smaller drag coefficient because CD

(2) 
goes as  (u/U)2<1.  
 
NB: Because the discussed wake solution is the solution of a linear problem, one can apply 
the superposition principle in the case of clusters of bodies. As an example, if we have a series 
of side-by-side circular cylinders we can consider the wake behind each of them. This will 
give a velocity reduction as in expression (F:6.49)  and we can sum up the effects of all wakes 
to estimate the local mean longitudinal wake velocity.  
 
Zdravkovich (1985) has studied the interaction of pipe clusters in steady incident flow.  
For the case of 2 cylinders we can have 3 different possible regimes:   

- proximity interference (P) 
- wake interference (W) 
- no interference 
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Figure F:6.24(a) gives the existence plane of these regimes for cylinders with equal diameter 
D. Only one cylinder is shown in the figure centered at (0,0). The location (x/D,y/D) 
represents the position of  the center of the other cylinder, x/D>0 means downstream location. 
 
 
 
 
 
 
 
 
 
 
 
 
                                                    Fig. F.6.24 (a)           
 
Wake interference occurs if one cylinder is in the wake of the other cylinder. Proximity 
interference occurs for sufficiently close cylinders but none in the wake of the other. No 
interference occurs when none of the cylinders is in the wake of the other and their distance is 
sufficiently large. In the figure, bistable flow indicates the positions of the second cylinder 
where two different vortex-shedding solutions could be stable.   
Figure F:6.24(b) gives examples of flow features in the different regions. In a side-by-side set, 
i.e. the second cylinder is at (0,y/D):  

- If 2.11.1/1  Dy  there is only a single vortex street for both cylinders  
- If 54/7.2  Dy  there are 2 vortex streets mirroring each other. 
- If 5/ Dy  the mutual influence of the cylinders is small. 

In a tandem set, i.e. the second cylinder is at (x/D,0):  
- If 8.12.1/1  Dx  the vortex street behind the cylinders is given by the 
      free-shear layer detached from the upstream cylinder 
- If 8.34.3/8.12.1  Dy  the free-shear layer from the upstream cylinder 

reattaches to the cylinder downstream.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                      Fig. F.6.24 (b)           
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Figure 6.25 shows an experimental photo of vortex formation around two vertical cylinders in 
a close tandem arrangement in steady incident flow. The cylinders were towed in a model 
basin. The image shows that a vortex shed from the upstream cylinder can be trapped between 
the two cylinders. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                          
        
                                                         Fig. F.6.25           
 
Zdravkovich (1985) studied the tandem configuration in subcritical and supercritical flow 
regimes. He found that if the cylinders are close, i.e. their distance is x/D<4, the drag 
coefficient may be negative on the second cylinder in a tandem position. The results depend 
on the Reynolds number, on the roughness ratio k/D and on the number of cylinders in the 
tandem configuration. The minimum drag coefficient reported is -0.6. 
 
These aspects are of practical importance in many contexts.  
 
Example: fish farms.  
The nets used in fish farms are similar to small cylinders, see figure below. 
 
 
 
 
 
 
 
They can be placed in sequence in the case of a complex farm, as shown in the figure below. 
 
 
 
 
 
 
 
 
 

CU

0.85 CU

0.85 0.85 CU
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In this case there is an inflow reduction when the current goes through successive nets. The 
reduction factor must be accounted for to ensure proper water exchange inside the nets. Figure 
above provides an estimation of the inflow reduction for the specific aquaculture-plant 
configuration using the long-distance approximation for the mean wake velocity in the 
longitudinal direction given by formula (F:6.49). This does not account for the effect of fishes 
inside the farm, e.g. the effect of fish schooling on the local current, but this could be 
important. 
                                      
 
Wind loads (F:207) 
Can be estimated similarly as for the current loads. Also in this case empirical/experimental 
data are necessary. 
 
 
Vortex-induced resonance oscillations (F:207-212) 
The current interaction with a blunt body causes alternate vortex shedding. For a circular 
cylinder the forces associated with alternate vortex shedding are 
 

( ) | | cos(2 )L L vF t F f t    (lift) 

)4cos()(   tfAFtF vDDD   (drag) 

 
These forces may cause resonance problems: vortex induced oscillations. Strictly speaking, 
we talk about vortex induced motions (VIM) in case of rigid motions and about vortex 
induced vibrations (VIV) in case of elastic motions. In the following the VIV term is used to 
indicate both phenomena.  
VIV is relevant for many slender marine structures: risers, spar platforms, pipelines, deep 
draft floaters, submerged bridges. 
 
Important parameters for VIV are:  

- Strouhal number / / ( )v c v cSt f D U D T U  , which means the ratio of the 

characteristic length of the body (e.g. circular cylinder diameter) and the distance 
covered by the current during a vortex shedding period. 

- Reduced velocity / ( ) /R c n n cU U f D T U D  , which means the ratio between the 

distance covered by the current during a natural period of the structure and the the 
characteristic length of the body (e.g. circular cylinder diameter).  

 
NB: These definitions refer to the vortex-shedding and natural periods without VIV. As we 
will see, the occurrence of VIV changes in general Tn and Tv. To emphasize this, when 
necessary ‘0’ will be used to indicate the variables in absence of VIV. 
 
We can have VIV in two orthogonal directions, called respectively:  

- cross-flow VIV, in the lift direction (transverse to the current, say y) and  
- in-line VIV, in the drag direction (parallel to the current, say x) 

 
Roughly speaking, we have cross-flow VIV when the oscillation period of the lift force, Tv, is 
equal to the transverse natural period. We have in-line VIV when the oscillation period of the 
drag force, Tv/2, is equal to the in-line natural period. These conditions are just indicative of 
where we are to have VIV. Actually VIV occurs in a broader range. 
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The cross-flow VIV is associated with larger oscillation amplitudes and larger reduced-
velocity values than the in-line VIV. UR is larger because the lift force oscillates with a period 
twice the oscillation period of the drag force. It means that cross-flow VIV is usually more 
critical and relevant for ultimate strength design.  
In-line VIV is relevant for fatigue, because it involves smaller UR which means higher natural 
frequencies, i.e. large number of oscillation cycles in time. 
We discuss here the VIV phenomenon in terms of cross-flow VIV. All examples consider an 
academic uniform current. 
 
1. Excitation of cross-flow VIV 
Hp: A moored loading buoy in a current with speed Uc  in x direction. The buoy is a vertical 
cylinder, long L, with diameter D<<L. 
 
As rough condition we can say that cross-flow VIV occurs if Tv is equal to the sway (yUc) 
natural period, say Tn, of the structure. Again, this condition is only indicative, as we will 
discuss later, cross-flow VIV occurs in a broader range because it is able to change the vortex-
shedding and natural periods. The consequences of cross-flow VIV are large vortex-induced 
sway oscillations and drag-forces.  
 
 
 
 
These aspects are of practical importance for instance for mooring systems. In particular 
anchor-line excursions and drag forces experienced due to interaction with a current are 
important for the correct design of the mooring system. 
 
In our example, the vortex shedding period can be found from 

1
v

c

D
T

St U
    (1)  

Let us assume Uc=1m/s and D=20m, while the Strouhal number can be obtained from Fig. 
F:6.26 in terms of the Reynolds number and of the roughness. The figure is for a fixed 
cylinder in steady incident flow. 
 
 
 
 
 
 
 
 
 
 
                                                                Fig. F:6.26 
 
The Reynolds number in our case is Rn2107 and assuming a rough cylinder, for instance 
with k/D310-3, we obtain: 
    St0.25 from  
    Tv=80s. 
This must be then compared with Tn. 
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NB: When performing model tests the Reynolds number is smaller. This leads to scale 
effects which affect the separation point location, the wake features, the body forces, the 
vortex-shedding frequency fv. If the Rn is in the critical or supercritical flow regime and the 
cylinder behaves as smooth, the Strouhal number St will have a large variation depending on 
the roughness (see fig. F:6.26) but this is a false effect because at full scale the Rn number 
could be in transcritical flow regime. A model-scale St different than at full scale means a 
model-scale fv different than at full scale. One way to avoid this effect is to use a greater 
roughness in model tests, i.e. larger than in reality, in this way St values are more reasonable. 
 
Vortex-induced oscillations may cause elastic resonant oscillations of the 3D structure. 
Roughly speaking this occurs if the vortex-shedding period Tv=f(St,D,Uc)  is equal to an 
eigenperiod  Tn  of the structure. 
 
Hp: A riser in a current with speed Uc. 
Let us assume Uc=1m/s and D=1m. This leads to a Reynolds number Rn8105 and 
considering a rough cylinder so that St=0.25 we can then estimate the vortex-shedding period 
as Tv=5s. 
The example in figure F:6.28 refers to a family of risers with the same features but for the 
length because they are attached to the sea floor at different water depths h. The same top 
tension 1250 kN is applied for all risers. The natural periods Tn (with n=1,2,..) of a riser 
depend on the riser length and so on the water depth. This leads to the curves in the figure. 
The horizontal dashed line represents Tv=5s.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           Fig. F:6.28 
 
Resonance occurs at the intersection of this horizontal line with a natural-period curve. So, 
this value of the vortex-shedding period can cause resonance for certain modes at certain 
water depths. Other realistic current speeds could cause resonance on the same modes at 
different water depths and on different modes at the same water depth because would lead to 
different values of Tv. 
In connection with such elastic resonance phenomena we talk about hydroelastic oscillations, 
because the elastic oscillations are affected by the flow and affect in return the flow, i.e. there 
is a coupling between structural and hydrodynamic problems. One must also note that VIV 
involves nonlinear behaviour of the system. 

Water depth (m)

Tn(s)

Eigenmodes n

Example:
D=1m, U=1m/s

58 10Rn  

Note Strouhal number
is Reynolds and rough-
ess number dependent
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2. Cross-flow VIV affects the vortex-shedding frequency 
Feng (1986) performed experiments for a current past a lightly damped 2D circular cylinder 
free to oscillate transversally in infinite fluid. The model tests were made in air.  
We have three frequencies involved in this problem: the oscillation frequency of the cylinder

cf , the natural frequency of the cylinder nf and the vortex-shedding frequency vf . 

Fig. F:6.29 shows /  , with   or ,n c vf f f f f f  and the transverse oscillation amplitude A as a 

function of the reduced velocity / ( )R c nU U f D .  

Due to the current-cylinder interaction vortex shedding is caused: 
- If we assume small UR, the vortex-shedding frequency of the cylinder vf  is equal to the 

value for a stationary cylinder 0 /v c n Rf StU D f StU  , which increases linearly with UR. This 

remains true up to when 0vf  becomes close to nf , i.e. up to 1 / 5RU St  (in subcritical flow 

regime St=0.2). 
- When 0vf  becomes close to nf , cross-flow VIV occurs, i.e. resonant vibrations of the 

cylinder caused by vortex shedding in the direction transverse to the current. Moreover, in this 
circumstance also the oscillation frequency of the cylinder, say cf , is close to .nf If we 

continue to increase UR, /  and /v n c nf f f f  remain nearly constant and slightly less than unity. 

This occurs until an upper threshold value of the reduced velocity, say 7RU  . For 7RU  , 

vf  jumps suddenly back to the value for the stationary cylinder 0vf .   

 
 
 
 
 
 
 
 
 
 
 
 
                                                       Fig. F:6.29  
 
The region 75  RU  where cross-flow VIV occurs is referred to as lock-in region because 
the vortex shedding frequency locks on the natural frequency of the body. It is also called 
synchronization region, capture region, or resonance region. In the lock-in region, the 
amplitude A of transverse oscillations increases greatly with UR until a maximum. For higher 
UR it drops suddenly and then decreases with UR. If we start from high values of UR and 
decrease it down to the lock-in region, the amplitude A will follow the solid line in figure 
F:6.29 and then continue along the dashed line at the end of the solid line. This means that A 
increases less when starting from large UR and decreasing it than when starting from small UR 
and increasing it. 
 
NB: This example confirms that VIV affects vf  and shows that 0v nf f  or StU R /1  is a 

rough condition for cross-flow VIV occurrence. This must be just taken as an indication of 
where we are for VIV occurrence, especially in water, because in water the extension of lock-
in region is larger than in air. 
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3. Cross-flow VIV in water affects the natural frequency 
Hp: A current past a 2D circular cylinder in infinite water. The cylinder has a spring C and no 
structural damping. Free transverse oscillations of the cylinder. 
 
The previous example was in air, when the fluid is water the added mass is relevant. This is 
analysed here. 
The natural frequency without VIV is obtained from the one d.o.f. motion equation setting to 
zero the excitation force, i.e. 
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Hp: St=0.2 (subcritical regime).  
 
A condition for VIV occurrence is given by 1/ 5RU St  which means 0v nf f . This gives 

an indication, because VIV will occur within a certain range of UR, i.e. also for UR<5.  
 
NB: According to DNV rules, onset for VIV is UR=3-5, the upper limit is UR=16. 
 
When VIV occurs, the amplitude of oscillations varies much, see figure below, leading to a 
variation in added mass.  
 
 
 
 
 
 
 
 
 
 
From the figure above, the lock-in region, corresponding to important increase of the 
amplitude, is wider than in fig. F:6.29. The reason is that in water the added mass plays an 
important role and will make broader the possibility of VIV excitation with respect to the case 
in air where the added-mass effects are negligible.  
With VIV we may formally write the added mass as 
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Ca giving the variation of the added mass. This means that the natural frequency is now 
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So, when VIV occurs, both vf  and nf  change. The constraint is that they remain roughly 

equal, i.e. nv ff  , during VIV, i.e. 

 

0

c
R

n

U
U

f D


A

D

4 6 8 10 12 14

1.0

0.8

0.6

0.4

0.2

fn0=fv, St=0.2

UR=5 VIV changes the
natural frequency

236



    
( )

22

( )
22

( )
0 22 0/

( ) 1
0.2

noVIV

noVIV
n v c

RnoVIV
n a a nM mass ratio=m A

f f StUm A M
U

f m C A M C Df

  
   

 
   

which means that  ( )a RC f U . 

These conditions could be reproduced (e.g. experimentally) to estimate the effect of VIV on 
the natural period. 
 
4. Cross-flow VIV oscillation amplitude  
Hp: A current past a 2D circular cylinder in infinite water. The cylinder has a spring C and no 
structural damping. Forced transverse oscillations of the cylinder. 
 
 
 
 
 
Due to the oscillations a lift force is caused. The lift coefficient can be written as 
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 and mh dhC C  are proportional, respectively, to the added mass and damping and depend on 

A/D and U/fD. 
If the oscillations were free instead of forced, the lift force would be the excitation force in the 
body motion equation, i.e.  
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According to the sign of dhC  in the motion equation (1) the damping can be positive ( dhC >0) 

or negative  ( dhC <0). 

Positive damping reduces the oscillation amplitude       energy from the body to the fluid 
Negative damping increases the oscillation amplitude   energy from the fluid to the body  
Zero damping gives resonance condition                        no energy exchange 
 
NB: Using potential flow theory, we have seen that the radiation damping due to forced 
oscillations of the body will never be negative. Here we see an example where the interaction 
with a current can lead to negative damping. 
 
The resonant steady-state condition gives: 
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This is the condition for lock-in/VIV because it means that the system energy remains 
constant.  
We can identify the occurrence of VIV for instance reproducing these conditions 
experimentally:  
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1. We can study forced oscillations and vary the forced oscillation frequency and the 
forced oscillation amplitude ratio A/D.  

2. For each combination we can measure CL. Using its decomposition in sine and cosine 
functions, we can estimate Cmh and Cdh, respectively, from the component proportional 
to the acceleration and from the component proportional to the velocity, and then Ca. 

3. In this way we can construct a family of dhC  iso-curves. The iso-curve 0dhC  gives 

the resonance condition, i.e. the forced oscillation frequency f is nff  . A/D measured 

along 0dhC  provides the oscillation amplitude ratio A/D due to VIV.  

The figure below gives an example of how to find A/D at resonance as a function of UR.  
 
 
 
 
 
 
 
 
 
 
 
 
There is an error source when applying this approach. This is connected with the use of forced 
oscillations of the cylinder with a frequency of oscillation f in general vff  . This is the 

reason why the results of A/D obtained using forced and free oscillations may not coincide, as 
in the figure below (from C.M. Larsen’s studies). 
 
 
 
 
 
 
 
 
 
 
 
 
The maximum amplitude of transverse oscillation in the lock-in region depends also on the 
structure mode shapes. Sarpkaya (1978) studied the maximum amplitude Amax of the 
transverse oscillations in the lock-in range for both elastically-mounted and flexible cylinders. 
He wrote the maximum amplitude for any mode shape (z) as  

2

2max
max 242

( )
20.32

   (F:6.54) ,     (F:6.55) , (2 )    (F:6.56)
( )0.06

sL
r

r
L

z dz
A m

St
D Dz dz


   


   

 




In this empirical formula, z is along the structure, L is the structure length and s  is the 

fraction of the structural damping to critical damping, St is the Strouhal number for the non-
oscillating cylinder,  is the fluid density and m is the sum of structural mass and added mass 
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per unit length. For marine applications r  has small effect  we can set r =0. Once the 
mode shapes and Amax  are known, we can estimate the stresses connected with cross-flow 
VIV. This is relevant for instance for risers. 
 
5. Important consequences of Lock-in  
Sarpkaya and Shoaff (1979) studied the lock-in region numerically using a discrete vortex 
method. According to their results, the lock-in consequences are   

A. Correlation length of vortex shedding lc increases  more relevant total loads on the 
3D structure 

B. Vortex strength increases  
C. vf  locks onto nf   

D. The greater the amplitude A the wider the band width of lock-in  in terms of reduced 
velocity 

E. Oscillations are self-limiting, i.e. maximum relative amplitude A/D1  
F. In-line (drag) force increases 

 
Some of these consequences are linked: 
- A and C are connected because, due to C, vortex shedding must be in phase with cylinder 
oscillations which can not vary rapidly along the cylinder for structural constraints. So the 
correlation length must increase.  
- B and F are connected because the strength of vortices is linked to the circulation  in the 
wake and drag and lift forces are also linked to   (this can be shown using the Blasius 
theorem). 
A rough estimate of the drag coefficient on a 2D circular cylinder during lock-in is: 
  
     ]/21[ max0 DACC DD   

 
which can be interpreted as the effect of an apparent projected area D+2Amax  (per unit length) 
with respect to D. See figure below: 
 
 
Let assume Amax as the maximum oscillation 
amplitude in the cross-flow direction.  
 
 
 
 
6. Cross-flow and in-line VIV 
Cross-flow and in-line VIV can couple increasing the risks for the structure. It means that 
locally the cross-sections follow a ‘8’ path with greater amplitude in the cross-flow direction. 
Figure below gives an example of cross-flow and in-line VIV coupling, this application is 
relevant for instance for free-spanning pipelines. 
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7. How to avoid VIV? 
We can avoid VIV using spoilers which reduce the lift and increase the drag or by increasing 
the damping.  
One can also try to ensure a reduced velocity outside the lock-in range. Taking the example of 
a submerged bridge. Cross-flow VIV could be avoided by design, enforcing that the reduced 
velocity  0/ ( )R c nU U f D  is smaller than the threshold value to have lock-in. This means that 

in-line VIV can not be avoided because it occurs at smaller RU than cross-flow VIV. However 

in-line VIV is connected with small oscillation amplitudes. 
 
 
Common way to suppress VIV is to use helical strakes. 
The optimal configuration it is said to be with three spirals  
and pitch equal to 5D, with D the structure diameter. 
The height of the fins of the strakes should be 0.1-0.12 D. 
A negative effect is that the fins increase the drag. 

D

=5D
~0.1D-0.2D
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Munk moment versus Viscous moment

• The Munk moment is a pure torque, it

comes from steady infinite potential

flow with zero force from D’Alembert

paradox

It does not depend on a reference
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• It is destabilizing, i.e. It tends to

increase the angle of attack For example, for the ship

we studied in fig F:6 13

• The viscous moment is a not pure
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we studied in fig. F:6.13
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• It might be stabilizing or destabilizing

depending on the body geometry
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Effects of geometry on CD
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Effects of flow regime on CD
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3D current effects on CD

3D induced
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Point vortex 
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3D current effects on CD
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Normal drag force FD=Fn for oblique flow (Ersdal)

From model tests

Oblique towing tests of very

long submerged circularlong submerged circular

cylinder

Empirical formulas for FD=Fn (Ersdal)
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Drag coefficient of downstream cylinder
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Hydrodynamic interaction between two

cylinders in infinite fluidcylinders in infinite fluid
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Interaction between two cylinders
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CoupledCoupled

vortex
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flow

Single
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x/D

street

One vortex street
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Viscous loads and flow through fishing nets
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Fish farms

Nonlinear wave loads

on floaters
Hydroelasticity

Damages

Environmental

impact of fish 

escapep

Similarities in behavior 

with oil booms
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Sufficient water exchange inside the nets needed for the 

health and growth of a fish

Reduction of flow through nets of aquaculture plant

health and growth of a fish

Reduction of flow through nets of aquaculture plant

with the mesh size0.15DC D
with the mesh size0.15

0 85U

0.85 0.85 CU

U

0.85 CU
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Does the fish have an influence?

Hydrodynamics and ethology (animal behavior)
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Vortex Induced Vibrations (VIV)

JumperJumper

FPSO, FPSO, 

Barge .Barge .....
TankerTanker TLPTLP

JumperJumper

Mooring Mooring 

lineslines

gg

Flexible,Flexible,

SteepSteep--SS

CatenaryCatenary,,

Free HangingFree Hanging

Risers Risers 
ArraysArrays

CatenaryCatenary,,

LL

CVARCVAR

Free HangingFree Hanging LazyLazy--wavewave

Cross-flow VIV

Uc

x

y
In-line VIVx

Vortex shedding and Strouhal number St 

for circular cylinder
vf D

St
U

for circular cylinder

v

C

f D
St

U

v

C

f D
St

U

Smooth

47.5 10
k

D

CU

D

47.5 10
k

D 33 10
k

D

249



Riser data

Natural periods for risers
T (s)Tn(s)

Example:

D=1m, U=1m/s

Eigenmodes n
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Experiments for a circular cylinder free to oscillate transversally 
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D

Cross-flow VIV 

amplitude A for rigid 

i l li d f

In water, steady current
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dhC Sarpkaya’s experiments
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VIV experiment, no mechanical damping starting from large amplitude

Reduction:
Steady state:
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Empirical formula for the maximum transverse amplitude 

for a generic mode shape (Sarpkaya 1978)f g p ( p y )

D

2

max 0.32
   (F:6.54) 

0 06
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D 0.06 r

2 ( )z dz

z

max 4

( )

    (F:6.55) 
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VIV example. Tow-out of monotower. U=1.3m/s
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Coupling between in-line and cross-flow oscillations

C.M.Larsen

Free spanning pipelines:
Gas pipeline from Ormen Lange Gas pipeline from Ormen Lange 

to shore terminal
C.M.Larsen

In-line VIV cannot be avoidedCross-flow VIV must be avoided.
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45. Galloping. Viscous wave loads and damping. Stationkeeping. Thrusters. (F:212-
215,223-225,228-230,238-248,257-258,270-277) 
 
 
Galloping (F:212-215) 
Lock-in (cross-flow VIV): is a resonance phenomenon, connected with  close to v nf f , zero 

damping of the system and self-limiting oscillation amplitudes. 
Galloping: is a dynamic-instability phenomenon, implying negative damping of the system. 
When galloping occurs the system is unstable and unbounded oscillations can occur when 
perturbed. ‘Unbounded’ means that galloping motions are not self-limiting as lock-in 
oscillations. At high velocities the oscillation amplitude is proportional to the incident 
velocity. Luckily there are limitations on how large the inflow velocity Uc, and so the reduced 
velocity / ( )R c nU U f D , can be. UR represents an important parameter for galloping. 

 
Let us discuss this phenomenon with an example. 
Hp:  - A long cylinder with uniform rectangular cross-section in a uniform current with speed 
           Uc  We can study the problem as 2D in the (x,y) cross-section plane with x// Uc 
        - The body is symmetric about x axis of the current  No force in y without perturbation 
        - The fluid forces are quasi-steady, i.e. oscillating vortex-shedding forces are not  
           important. This is approximately correct for reduced velocity UR>10. 
        - The body is attached to linear springs and has natural (giro) frequency n for y motion. 
 
 
 
 
 
 
 
 
Galloping motion will occur if the hydrodynamic forces cause a sufficiently large negative 
damping of the transversal oscillations.  
Let us assume that small perturbations cause an oscillatory body motion in y direction, 2. 
The body oscillations result in a time-dependent angle of attack of the incident current in the 
body reference frame: 
 

       


2

2 2( ) arctg( / ) /
c

c c
U

t U U


  


   


      (small) 

This results in a transverse current force Fy : 

      

21
( )

2y yF U AC   

with  the fluid density, A the projected area along x, U the effective incident-flow  velocity 
and the drag coefficient Cy is function of . Cy(=0)=0 because of the body symmetry about 
y. For small  , U

2 Uc
2 and using a Taylor expansion about =0, we find  
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This will be an excitation force for the body motion, i.e. the 1D equation of motion is  

    22 2 22 2 22 2( ) 2 ( )s n yM A M A C F           
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with s the non-hydrodynamic damping as a fraction of the critical damping 222( ) nM A  . 

The restoring coefficient 22C  is given by the linear springs attached to the body. Substituting 
the expression of the transverse current force, we find  

     22

22 2 22 2 22 2

0

1
( ) 2 ( ) 0

2
y

s n c

B

C
M A M A U A C



     




 
      

  
 


 

Condition for a negative damping , i.e. B22 <0, is  
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4 ( )y s n

c

C M A

U A

 
 



 
 


 

If D is the characteristic length of the cross-section and / (2 )n nf   , we can rewrite the 

condition for galloping in terms of the reduced velocity DfUU ncR / , i.e.  

     

22

0

8 ( )
  (F:6.64)y s

R

C M A

U AD


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

 
 


 

In practice, galloping occurs at large UR, typically higher than for VIV, e.g. UR >10. 
 
NB: -  For a circular cylinder, due to the axial symmetry of the body, Cy/|=0=0  
            Galloping can not occur 
        - Practical examples for which galloping is relevant are riser bundles and ships with a  
          single-point mooring system or towed. 
 
Challenges connected with currents: Deep and ultra-deep waters. Internal waves.  
Currents play an important role in different parts of the World and in some circumstances the 
design current velocity in extreme conditions can be larger than 1m/s used for the North Sea, 
e.g. in Gulf of Mexico. Currents represent in general an important design parameter in deep 
and ultra-deep waters because they can act along the whole column of water while wave 
effects go to zero quickly with the depth. Currents in general have a spatial variation. This has 
not been accounted for in our examples, i.e. academic uniform currents were examined. 
Internal waves, i.e. waves caused in stratified regions of the sea, travel along the interface 
between layers of sea with different density and are associated with large periods of 
oscillation, and therefore large wavelength. They are not relevant as dynamic excitation but 
act mostly as a steady current with features slowly varying in time. Similarly as free-surface 
waves, their disturbances may go to zero exponentially going far from the interface. In this 
case ‘far’ means far up and far down from the interface. In some cases the internal waves can 
be represent the main ‘current’ design parameter. An example is the Lufeng field in South of 
China. There, the currents vary typically between 0.2 and 0.4 m/s with maximum values 
between 1.0 and 1.2 m/s, the internal waves have period of oscillations of 20 min and behave 
as a steady current with a behaviour along the water depth like in the figure below, i.e. with a 
change in direction and maximum value much larger than for the true currents.  
 
 
 
 
 
 
 
 

-300
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0

Horizontal current speed (m/s)

Depth(m)

Return period (year)
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The figure shows the value of the horizontal velocity for different design criteria. Historically 
internal waves have been studied in connection with dead waters and with ships travelling 
with small forward speed in regions with stratification interface sufficiently close to the sea 
surface. Today they may be relevant for marine operations and may affect the acoustic 
propagation in the ocean. 
 
 
Viscous wave loads and damping (F:223-225,228-230,238-248) 
Viscous flow phenomena are important in several problems related with wave loads on ships 
and offshore structures. Examples are: wave loads on jackets, risers, tethers, pipelines, roll 
damping on ships and barges, slow-drift oscillation damping of moored structures in irregular 
sea and wind, anchor-line damping, ‘springing’ damping of TLPs. 
 
The main parameters are the same as discussed for the current loads, i.e., Rn, k/D, body form, 
free-surface effects, sea-floor effects, nature and direction of ambient flow. In addition we 
have: 
 Keulegan-Carpenter number KC DTUM / , for ambient oscillatory flow with velocity 

UMsin(2t/T+), which represents the ratio between the distance covered moving with the 
maximum velocity UM during an oscillation period and the characteristic body length. 
From this, KC∞ means steady ambient flow.  
If we assume that the oscillatory flow is given by an incident wave with amplitude A, in 
the linear case 2 / .MU A A T   Then KC can be rewritten as KC 2 /A D  and 

represents a measure of the importance of A relative to D. In this case large KC means 
high waves relative to the structure characteristic dimension. 

 Relative current number= Mc UU / , when there is a steady current velocity cU parallel to 

the oscillatory velocity UMsin(2t/T+). This measures the importance of the current 
relative to the oscillatory ambient flow. 

 
Morison’s equation 
It is used often to calculate wave loads in circular cylindrical structural members of fixed 
offshore structures when viscous forces matter, but it can also be applied for other cross-
section shapes. It is a long-wave approximation, i.e. it assumes λ/D>5.  
 
Hp: Incident waves in x direction. A vertical rigid fixed circular cylinder with diameter D. 
 
Morison’s equation provides the horizontal force, i.e. normal to the cylinder axis, along the 
wave direction. The contribution dF from the strip dz is   
 



11

2

1 | |
4 2

A

M D Mass Drag

=A =added mass
in infinite fluid

D
dF C a dz C D u udz dF dF

 



   


  (F:7.1) 

 
 
 
with a1 and u the horizontal incident-wave acceleration and velocity at the midpoint of the 
strip. The positive direction is the incident-wave propagation direction. The two force 
components are called mass and drag force, respectively. 
 

dF

D

dz
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What are these forces? 
The drag force is the in-line force, i.e. along the incident-wave direction and in the cross-
sectional plane, due to flow separation and shear stresses along the body. The Morison’s 
equation does not provide instead the oscillatory forces due to vortex shedding in the lift 
direction, i.e. orthogonal to the incident-wave propagation and in the cross-sectional plane. 
Concerning the mass force, let us assume negligible viscous effects, in this case the Morison’s 
equation gives  
     

2
1

0

( / 4) .Drag Mass MdF dF dF C D a dz 


  

  Now, in potential-flow long wave approximation, the elementary excitation force is 

      

2
1 11 1 12 ( / 4) .

FK DdF dF

dF Aa dz A a dz D a dz        

It means that CM =2 and CD =0. So the Morison’s equation gives the correct inviscid 
excitation force on the body in the asymptotic condition of large λ/D.  
 
In general, the mass and drag coefficients and M DC C  in equation (F:7.1) must be estimated 

empirically and depend on the parameters mentioned above about viscous wave loads. If the 
acceleration can be neglected, the Morison’s equation is a good empirical formula for the time 
average force. Typical CD and CM values for transcritical flow past a smooth circular cylinder 
are 0.7 and 1.8 at KC>40, i.e. toward steady inflow conditions. A roughness number 
k/D=0.02 may increase more than 100% the CD, implying a greater importance of the 
roughness in oscillatory ambient flow than in a steady incident flow. 
 
Assuming deep-water linear incident wave solution in equation (F:7.1), we find that the mass 
and drag force per unit length are largest near the free surface and decrease with z, 
respectively, as 2 and kz kze e . So the drag force is the most concentrated near the free surface. 
The application of Morison’s equation near the free surface requires accurate estimate of the 
undisturbed velocity distribution under a wave crest because using the linear solution involves 
an error near the free surface. In this case the largest force per unit length is predicted at the 
free surface while in reality the force per unit length must go to zero as we approach the free 
surface because one must recover the fact that the pressure is atmospheric (see figure below). 
 
 
 
 
 
 
 
The vertical position of the maximum absolute value of the force is below the free surface and 
must to be found experimentally. As a rough estimate, it could be at z distant the 25% of the 
incident-wave amplitude from the free surface. 
The force on the 3D cylinder can be obtained integrating equation (F:7.1) along the cylinder 
wetted surface. Because FMass and FDrag  on the structure are out of phase of 90 degrees, if the 
cylinder corresponds to a wave node the force is only given by the mass force which is also 
maximum, and if it corresponds to a wave crest the force is only given by the drag force 
which is also maximum (see figure below).  
 
 
 

 From Morison’s eq. (using linear waves)

Force per unit length

 More physical behaviour

z

x
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NB: As we have already mentioned for the Froude-Kriloff force, one must integrate along 
the correct wetted surface of the body. This is critical at the junctions of structural elements, 
e.g. at the junction between a pontoon and a column of a semisubmersible. 
 
Morison’s equation can be modified to account for the horizontal motion 1 of the body in x 
direction. 
Hp: Incident waves in x direction. A vertical rigid circular cylinder with diameter D and surge 
motion 1.   
 
The Morison’s equation states that the horizontal hydrodynamic force  
dF on the strip dz , in the body-fixed coordinate system, is   

     

1 1

2 2

1 1

| | ( )
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4 4

D

M M

dF C D u u dz

D D
C a dz C dz

  

   

  
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 


   (F:7.2)  

From the formula, the drag-force contribution is connected with the relative velocity between 
incident waves and body while there is not a pure dependence on the relative acceleration for 
the remaining force contribution. This can be understood if we consider that in potential-flow 
theory the Froude-Kriloff force depends only on the incident-wave acceleration, i.e. not on the 
rigid-body acceleration. 
 
NB:  and M DC C  in equation (F:7.2) can be different than for a fixed cylinder. 

 
The Morison’s equation can also be applied to inclined cylinders assuming that only the 
velocity and acceleration components normal to the cylinder axis will contribute to the force. 
The force direction will be normal to the cylinder axis. In the potential flow case this is the 
correct expression. In the viscous case it means that we use the ‘cross-flow’ principle. The 
method can also be generalized to the case when the cylinder axis is not in the incident-wave 
propagation plane. For example if the cylinder is horizontal and the waves propagate along x 
normally to the cylinder axis, a modified version of the Morison’s equation provides the wave 
forces along x and z. In case of wave-current environment, the Morison’s equation is usually 
applied by setting the velocity term in the equation as the vector addition of the wave and 
current velocities.  
 
Flow separation 
Oscillatory inflow reduces the possibility of flow separation in blunt bodies with no sharp 
corners because the incident velocity changes direction in time, so the flow can remain 
attached more easily to the body. In this case it is more difficult to set a criterion for flow 
separation. The criterion in steady ambient flow, which is zero shear stress on the body 
surface, i.e. in 2D:

0
/ 0

y
u y


   , is not generally accepted as criterion for flow separation 

in unsteady ambient flow. If this condition occurs one talks about ‘detachment point’ 
(Telionis 1981).  
Let us assume a blunt-shaped marine structure without sharp corners.  
• The flow does not separate in oscillatory ambient flow at very small KC numbers, which 
means when the inflow oscillation periods (or the wave amplitudes) are very small. As an 
indication we could say for KC<2 though flow separation has been reported for KC smaller 
than 2 (Sarpkaya 1986 for a circular cylinder).  
• The flow separates always in a steady current.  

dF

D 1

dz
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• In the case of combined steady current and oscillatory inflow (in the same direction), the 
existence of a threshold KC number, say KClim, for flow separation depends on the relative 
current number Mc UU / .  Roughly speaking the flow may be able to not separate if the 

ambient flow velocity in the current direction changes sign in time. Flow separation always 
occurs if Mc UU / >1 (see figure below) because in this case the flow does not return in time 

toward the body. 
                 
 
 
 
 
 
 
Example: flow separation around a hemisphere in waves and current. 
The figure below gives experimental results for flow-separation occurrence. It confirms that 
for sufficiently small relative current number and small KC number, flow separation can be 
avoided. As the current velocity Uc increases relative to the amplitude of the oscillatory 
velocity UM, then flow separation occurs even for very small KC numbers. 
 
 
 
 
   
 
 
 
 
NB: There results are relevant also for large volume structures. Typically for them we neglect 
flow separation and assume potential flow theory. Now we see that flow separation can occur 
depending on KC and / .c MU U  In this case, it is important to quantify how extended flow 

separation is, i.e. if it is very localized then the consequences can be limited in terms of loads. 
 
Separated flow at small KC-numbers 
Oscillatory inflows with small KC-numbers, are relevant for damping of slow-drift motions of 
moored structures and roll damping of ships and barges.  
Using Berman’s (1985) work for a circular cylinder in waves and without current, roughly 
speaking when flow separation occurs at KC<7 the flow is symmetric. This means zero lift 
force.  
Graham (1980) found that at small KC-numbers the CD is strongly dependent on the local 
flow at the separation point. His analysis considers only the effect of flow separation on the 
pressure along the body, i.e. viscous shear forces are not included. He assumed fixed 
separation point and found this empirical behaviour for the drag coefficient: 
 
 
 
with  the body internal angle at the separation point. The larger is  the smaller is the vortex-
shedding intensity and then CD. In particular we have 
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For instance for the eddy making slow-drift damping: Graham’s results for a rectangular 
cross-section indicate that the damping does not depend on KC;  those for a flat plate can be 
used to find the damping connected with bilge keels and show a great influence of KC on the 
damping. The eddy-making slow-drift damping is important for slow-drift motions of moored 
structures. An exception is surge motion of a ship for which flow separation does not play a 
role. In this case the viscous damping is given by shear stresses (frictional forces) along the 
body. 
Figure F:7.8 shows the experimental results of CD for a circular cylinder in subcritical 
conditions at small KC numbers. When the laminar boundary layer is without flow separation, 
i.e. KC<1, the measurements show a decrease of CD as KC increases and agree with the 
viscous formula by Wang (1968) 

          
1/2 1 3/233 1

   (F:7.21)
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With flow separation the measurements show an increase of CD as KC increases and agree 
with the formula by Graham. The latter is true up to KC about 10. 
 
 
 
 
 
 
 
 
 
                                                       Fig. F:7.8 
 
Separated flow at high KC-numbers 
Flow separation at high KC-numbers is relevant for predicting wave loads on jackets and 
risers in extreme weather conditions. At KC>10, the oscillatory ambient flow is like a quasi-
steady current that changes direction in large time. In a steady current we learned that the 
vortices released by the body induce in the wake locally a velocity against the inflow current. 
When the quasi-steady current changes sign the vortex induced velocity increases the inflow 
velocity, say of an average quantity u (at the center of the cylinder), and so the CD.  One talks 
about ‘returning vortices’ because the wake is like it was upstream of the body. This effect 
reduces as KC∞, i.e. as we approach steady inflow conditions. It means that the increase of 
the drag coefficient with respect to steady conditions is formally given by 
 
  
and modelling the vortical structures as discrete vortices we find 
 
 
Parameter dependence of CD 
The drag coefficient in oscillatory ambient flow, and so the eddy-making damping, depends in 
general on, for instance: the free-surface effects, beam-to-draught ratio B/D, bilge keel 
dimensions, bilge radius r, current, Reynolds number Rn, roughness ratio k/D and Keulegan-
Carpenter number KC. The free surface is relevant in waves as for in steady current and 
reduces CD. An exception is for small KC because in this case, both with and without the free 
surface, i.e. double body in real infinite fluid, the vortex shedding is symmetric. B/D has a 
small effect but for small B/D especially at KC<10 (in this case B/D must be <1). r is 

2 2( ) /   (F:7.32a)D D M MKC
C C u U U
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important and reduces CD. Bilge keels are important especially at small KC and increase CD. 
At high KC, CD is not very sensitive to the bilge-keel breadth, i.e. as in steady current, while 
at small KC it increases enlarging the breadth. Concerning Rn, scale effects are small when 
flow separation occurs at sharp corners like bilge keels. Without sharp corners, scale effects 
are not severe for small KC and their relevance is also reduced when bilge radius is small, i.e. 
it becomes close to a sharp corner. Otherwise scale effects matter. 
 
NB: Cross-flow VIV can also occur in ambient harmonic oscillatory flow for KC>7 (which 
means an asymmetric vortex shedding), as well as with combination of waves and current. In 
this case for vertical structures lock-in can not occur along the whole structure at the same 
time because wave effect attenuates with depth.  
Waves can also mitigate the occurrence of VIV. An example is deep-draught floaters.This 
needs long and high waves the current velocity is smaller than wave velocity and the waves 
can work against the lock-in excitation by changing in time the direction of the inflow and 
may avoid VIV.   
 
 
Stationkeeping (F:257-258) 
Thrusters and mooring systems are used to ensure precise position and motion control of ships 
and floating structures. They must be designed properly to counteract the mean loads due to 
waves, current and wind. They also provide a damping and lead to a restoring for the motions 
in the horizontal plane, i.e. surge, sway and yaw motions, which do not have any restoring due 
to gravity.  
Mooring systems provide a static positioning, while the thrusters give a dynamic positioning. 
The former are easier to design and realize, the latter are more flexible, both in terms of water 
depth and manoeuvring. Mooring lines and thrusters can be used separately or in combination. 
In the latter case one talks about thruster assisted position mooring (POSMOOR).  
Here we briefly mention about the mooring systems and discuss more in detail about the 
thrusters. 
 
Mooring systems 
Mooring systems are made of sets of cables connecting the vessel to the sea floor (either 
laying or attached to the sea floor). An initial tension (or pre-tension) is used to keep the lines 
in place. System motion consequent to the environmental conditions modifies the lines 
geometry and so their tension. Thus the mooring cables have an effective stiffness, partially 
elastic and partially geometric. We have discussed the restoring force due to the anchor-lines 
in the case of surge motion, i.e. 11 1 1( / )HC dT dx  . They also contribute in terms of slow-

drift damping to the system, which is a viscous damping, e.g. in surge: || 1111  B . 
 
Thrusters/dynamic positioning  (F:270-277) 
Thrusters can be used in set both on vessels and offshore structures. On vessels, bow and 
azimuth (can be rotated) thrusters are combined with the main (stern) thruster. 
 
 
 
 
 
 

bow azimuth main
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Thrusters are combined to provide restoring and damping through proper phasing of the 
forces (thrust) that they produce. The damping in this case is much larger than for mooring 
lines, as a rough estimate it can be about the 60% of the critical damping.  
 
NB: The phasing of the thrusters forces is very important for the damping provided, both in 
terms of absolute level and sign (positive or negative) of damping.  
 
To design the thrusters, for example to fix the propeller disk area A0 and the number of 
revolutions per second n at which they should work, open-water tests are considered, i.e. the 
propeller is studied as isolated and in infinite fluid. This provides the thruster characteristics 
in terms of thrust T and torque Q. Corrections must then be considered to account for thrust 
losses connected with: 

- interaction with other thrusters 
- interaction with the hull/structure  
- work near the free surface  
- work in wave-current-wind environment 

 
These factors can modify the inflow to the propeller and/or its jet flow. Let us discuss some of 
them. 
 
Interaction with the hull/structure:  
If there is a portion of the structure in the wake of the thruster, the slip stream of the thruster is 
attracted by the structure. This is known as Coanda effect. 
To understand this let us first approximate the slip stream as a circular jet emerging from a 
circular opening and merging with the surrounding fluid at rest: 
 
 
 
 
 
 
 
 
 
The jet is characterized by high speed and brings on its motion also part of the surrounding 
fluid. This means that the jet attracts the surrounding fluid, acting as a line of ‘sinks’ along its 
axis. As a result, the jet spreads outwards moving downstream and the cross-sectional area 
increases, i.e. A2>A1. 
 
NB: An estimate of the jet widening is that the point with velocity half of the maximum 
sectional speed is deviated outwards of 5 degrees. 
 
Moving downstream, as the jet spreads outwards, the velocity in the center of the jet 

(maximum velocity) reduces, i.e.    ,2 ,1max max
.j jV V  

Let us approximate then the jet as a line of sink points along its axis and examine what 
happen if this distribution of sinks meets a wall parallel to its axis. Let us neglect the wall 
boundary layer for simplicity. 
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The wall is an obstruction to the flux toward the inner jet because it is impermeable, i.e. the 
normal velocity is zero there. It means that its presence is like to have another distribution of 
sink points symmetric about the wall.  
The two sink lines attract each other  the wall attracts the jet and deviates the jet axis. 
If the portion of the wall is sufficiently long, the jet may reach it, this leads to frictional forces 
and so to thrust losses. For a thin jet released at distance h from an infinitely long wall, it 
takes about 6h to reach the wall. 
 
 
 
 
 
 
 
 
 
 
NB: For a ship, thrust losses due to Coanda effect can be up to 30%-40%. For a 
semisubmersible, if a thruster is aligned to a pontoon the loss of power could be 10-15%. 
 
Loss of efficiency due to current/forward  speed: 
The forces generated by a tunnel thruster are affected by the flow of a current past the 
entrance and exit of the tunnel. For example, a current not in-lined with the thruster slip 
stream can reduce the thrust furnished by the thruster because can deviate the jet direction. In 
the case of a bow thruster on an advancing ship, thrust losses are partially due to the 
interaction with the hull and partially due to the deviation caused by the ‘ ahead current’ 
effect. Fig. F:8.11 shows experimental results and documents large trust reduction. 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
Example: If we assume a ship speed Uship=1m/s, a thruster disk area A0=3.5m2 and a design 
thrust  Tsw=130kN,  the jet speed is 

 2
0

0

6 /sw
sw j j

T
T A V V m s

A



    and / .17ship jU V    

Then from fig. F:8.11 we find that the thrust is 80%  of the thrust in still water Tsw. 
The thrust losses due to current, depend obviously on the current direction. This is examined 
in the figure below in terms of thrust-to-thrust in still water ratio for a bow thruster in a 
current with velocity equal to 0.2 times the thruster jet velocity.  

-Uship Vj

thruster

h

Velocities higher than  in 
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Jet flow
thrust
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Influence of free-surface effects on thruster characteristics: 
Wave-induced motion affects the thruster behaviour when the thruster is sufficiently close to 
the free surface. 
Minsaas et al. (1986) studied wave effects using model tests in calm water. This approach is 
reasonable because the wave frequencies of practical interest are much smaller than propeller 
rotation frequencies quasi-steady approximation can be applied. 
The parameters studied in the tests by Minsaas et al. (1986) are: 

- submergence of the propeller axis, h  
- propeller radius, R=D/2  
- number of revolutions/sec, n 

 
 
 
 
 
 
 
The experimental information can be transferred to the case with the waves, e.g. waves 
generated by ship motion,  by interpreting h as the instantaneous submergence of the propeller 
axis h(t) under local wave surface (see Fig. F:8.12). This is possible on the basis of the quasi-
steady assumption. Results are reported in figure F:8.12 in terms of the ratio between actual 
thrust and thrust in open-water conditions (i.e. with the propeller fully immersed), 

0( / ) /T T TK h R K  with 42/ DnTKT  ,  as a function of h/R. 

 
 
 
 
                                                      
   
 
 
                                                      Fig: F:8.12 
 
Figure F:8.13  documents an important effect on T  of 

- loss of effective propeller-disk area 010 / tAA   

- number of revolutions/sec n 
For h/R>=1.5, T =1. For h/R<1.5, the loss of disk area leads to a reduction of thrust ratio. 
This effect becomes less important as n is sufficiently high because another stronger effect 
becomes visible in terms of a sudden drop of T . This is the ventilation effect. Higher n 
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Thrust

Thrust
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means higher blade loading  higher suction pressure, i.e. higher dynamic pressure  lower 
static pressure. Thus, sufficiently close to the free surface, i.e. when the hydrostatic pressure is 
small, a large n can lead locally to pressure lower than the atmospheric pressure in the suction 
side of the blades. In this case, air can move toward the blades leading to propeller ventilation.  
 
 
 
 
 
 
 
 
 
 
 
The consequences of ventilation are: 

- air is attracted and brought into the water during the blades rotation 
- entrapped air means a reduction in the blade loading and thrust reduction 

The amount of air on a blade will reduce as the blade moves at higher immersion because of 
the higher hydrostatic pressure. The result is a variation in time of the thrust reduction. It 
means that, in the case of ventilation, the calm-water tests are not reliable to describe the 
wave-induced effects, because the quasi-steady assumption in not valid.  
 
Minsaas et al. (1986) tried to apply their experiments in regular waves for  bow thrusters and 
ducted propellers to different ships and sea states. They found an influence of: n, h, R, 
propeller pitch and hull form and great reduction of T  in rough sea states.  
 
Thruster performance and dynamic positioning:  
We want to determine the loads that thrusters in a dynamic positioning (DP) system must 
provide to ensure proper control in waves, current and wind. We can express the total thruster 
loads as  

6,..,1)(
6

1

 


kCBFF j
DP

kj
j

j
DP

kjkk    (F:8.40) 

For a dynamically positioned ship we are interested to surge, sway and yaw (k=1,2,6). 
The mean loads kF  must balance the mean wave, current and wind loads. The motions j  are 

the slowly-varying motions of the structure obtained by filtering the high-frequency motions 
due to waves because these can not be controlled by a DP, i.e. they are too fast for the system 
to react effectively and the related loads are too high to be counteracted. 
We have discussed the mean loads connected with waves (higher-order effects) and current 
(for wind they are similar to current). Let’s see the procedure to estimate the damping and 
restoring that must be provided to a ship by a DP system: 

1) As first step approximation the coupling can be neglected, i.e.  
0, 0 if DP DP

kj kjB C k j    

2) ,6,2,1, kC DP
kk  are chosen on the basis of the natural period that we want for our 

DP+ship system, for example in the range 100 200nkT s   in surge, sway and yaw.  

3) ,6,2,1,, kB DP
kk can be set equal to the 60% of the critical damping in mode k, i.e. 

 nkkkkk TAM /2)(26.0   
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Example: surge motion of a ship. 
The equation for the slow-drift surge motion can be written as: 

       
windSWDPDP FFCBBAM 1111111111111 )()(       (F:8.41) 

In eq. (F:8.41): M=ship mass, A11=surge added mass, B11=hydrodynamic surge damping, 
DPDP CAMB 111111 )(2.1  assuming 60% of the critical damping, 2

11 1 11(2 / ) ( )DP
nC T M A   

from the resonance condition (Tn1 could be for instance 100s ), F1
SW=slowly-varying wave 

excitation force (with zero mean value), F1
wind=slowly-varying gust excitation force (with 

zero mean value). In this case we have not included the viscous hull damping. If the ship has 

also a mooring system then an additional restoring term, say 11 1
mC  , must be added. The 

mooring lines will also provide damping, say 11 1 1| |mB   , but this is small compared to the 

damping given by the thrusters system. 
An important parameter is the variance of the slow-drift motion. As we learned, this can be 
obtained as  
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      as eq.  ( F:5.47) 

 
which gives a measure on how wide is the motion spectral density for a given force spectrum. 
Another important parameter is the variance for the total thruster surge force given by eq. 
(F:8.40). Here we discussed the total thruster forces, they must be distributed among the 
single thrusters of the DP system. 
An example of  dynamic positioning (DP) system is given in the figure below:  

1. Measurements are made for position (with satellites, hydroacoustics, etc.), heading 
(with gyrocompass, GPS) and motions (accelerometers) of the vessel and for the wind 
(anemometers), typically by redundant methods, and processed (signal processing)     

2. High-frequency components (also those connected with waves) are filtered out and 
variables of interest not measured are predicted (vessel observer) 

3. Damping and restoring loads needed from thrusters are estimated on the basis of the 
desired control conditions  and their thrust quantified (controller/power management 
system/thrust allocation) 

4. The control model could need to be modified if the weather changes greatly (adaptive 
law), or if required by an operator or by a specific additional control criterion 
(reference model) 
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Additional remarks: 
• There are circumstances when vertical motions must also be considered by the DP. An 
example is given by semisubmersibles for which vertical motions have large resonant periods 
(>20 s) which could be excited by the DP through the coupling between horizontal and 
vertical motions. This should be taken into account by the DP so that a proper damping for the 
vertical motions is provided. 
• In extreme sea states the wave-frequency motion is not filtered out by the DP in the aim to 
behave as good as possible in such circumstances. In these conditions it is more appropriate to 
enforce a constant torque than a constant pitch/rpm (rotation per minutes) because the 
provided power is smoother (see figure below). Power with sharp changes could lead to the 
break up of the system. A constant torque can only be provided by electrically driven 
propellers. 
 
  
 
 
 
 
 
 
 
 
Summary: Current and wind loads. Viscous wave loads and damping. Stationkeeping. 
  

POWER

PITCH or RPM CONTROL

VARIABLE
TORQUE

CONSTANT
TORQUE

TORQUE CONTROL

POWER

A. Sørensen

271



Scale effects: Issue for VIV
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Stability of Single-Point Mooring System (Whichers 1988)
Stability criterion
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Stability of Single-Point Mooring System (Whichers 1988)
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Loop current rings in the Gulf of 

Mexico on the Na Kika fieldMexico on the Na Kika field

• Water depth 1770-2300 m

• Typical background current velocities is

in the order of 0.2-0.5 m/s

Condition
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Free surface

0.46 m/s (0.9 kts)

At 500 m depth
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0y

storm

100 year hurricane

( )
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*Th l t i t d d t b t 1000

1.95 m/s (3.8 kts) 0.5 m/s (1.0 kts) 0.3 m/s (0.6 kts)

*The loop current ring extends down to about 1000 m

Internal waves
Internal waves may form if the water is stratified i e contains layers with different densityInternal waves may form if the water is stratified, i.e. contains layers with different density

We may see the internal waves on the free surface
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Lufeng – Internal waves
Depth(m)

0

• Characteristic time scale of 

Depth(m)

Return period (year)

internal waves in the South China 

Sea is 20 minutes

• Act as a static current

The typical ambient current velocity on the 
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Time instants of maximum mass and drag force

Intersection between two structural members

• Froude-Kriloff loads: One must integrate on the correct wetted surface

• The Froude Kriloff force in Morison’s equation can be associated with cancellations• The Froude-Kriloff force in Morison s equation can be associated with cancellations

of large Froude-Kriloff pressures

Morison’s equation for moving body

Incident waves

D 1

dFdz
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Other applications/generalizations of Morison’s equation

Inclined cylinders Cylinders with axis not in the 

plane of wave propagation

Incident waves Incident waves
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Small KC-number separated flow
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.DC KC8.0DC KC D

lim
, 10Subcritical KC KC

KC li i f fl iKC limit for flow separation

Drag coefficient of circular cylinder with subcritical flow:

in wavesin waves

Flow separation

C =0 2KCCD from linear CD=0.2KCD

viscous force
1/2 1 3/233 1

2 4
D

Rn Rn Rn
C

KC KC KC KC

Oscillatory flow past a cylinder at high KC number

U t
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Oscillatory flow past a cylinder at high KC number

The returning vortices increase the g

effective inflow velocity

U t

Vortex-induced average velocity 

at the cylinder center

u

y

KC-dependence at high KC

2

2

1 0 58exp 0 064D MC u U
KCC

Assuming discrete vortices

Experiments

1 0.58exp 0.064D M

D M

KC
C U

D

D

C

C

p

CKC

Wave and current loads on risers

Fluid accelerations and 

velocities influenced by the 

l tfplatform

Slow-drift velocities comparable 

to current velocities
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Current and waves are relevant for

Marine Seismic Survey SystemsMarine Seismic Survey Systems

Pump tower in LNG membrane tankPump tower in LNG membrane tank Which factors  influence

the CM and CD coefficients

1. Side wall effects

in Morison’s equation? 

2. Interaction between 

structural members

Does VIV matter in 

the oscillatory flow of

/vSt f D U

the oscillatory flow of

sloshing waves? 

V t h ddi f f t b

0.3

0.4

0.5
Vortex shedding frequency fv must be

in the vicinity of a structural natural 

frequency fv

0.2

0.3

Both cross-flow and in-line VIV 

must be considered
Rn

10 5 1010
5

2 5 5 10
764

22

R
Rn

Example when waves can avoid lock-in: deep-draft floater

Strouhal number=0.13 for two 

Hp: no incident waves

cylinders in tandem (S/D=3.0)

Tv=154 sec when U=1 m/s

TN (Sway) =176 sec
Cross-flow VIV dangerous 

f i li f tTN (Sway) 176 sec for mooring-line safety

Long and high waves can avoid VIV because their velocities

can be larger than current velocity and avoid lock-in excitation
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Thrusters

on ships

bow azimuth main

on offshore structures

Free-surface and wave effects on propeller performance

Propeller disk area

R

0A0

nn

Number of propeller 

revolutions per second

Thrusters: slip stream as a circular jet

u=0

5
Position of half 

of maximum jet 

velocity

Velocity profile 

in the jet

u=0

velocity
1

in the jet

2
u 0

A1
A2

Flow toward the jet center

jet behaves as a sink
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Thrusters: slip stream as a circular jet

Line of sinks 

Thrusters: jet-wall interaction

image

wall

sinks

physical

sinks

Thrusters: Coanda effect

Velocities higher than  in 

the other side of the jet Frictional lossesthe other side of the jet 6h
Frictional losses

h

J t fl

thrust

thruster

Jet flow
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Bow Thrusters: thrust losses due to ahead current/ship speed 

U-Uship Vj

Hp: Uship=1m/s, disc area A0=3.5 m2,

thrust in still water Tsw= 130KN

T2

0

0

6

0 1

/

/ . 7

sw

ship j

sw j j

T
T A V V m s

A

U V /ship jU Vship j

Effect of current velocity on thruster capacity

Current velocity=0.2Thruster jet velocity

Thruster

and thrust Current direction

Thrust

Th still waterThrust

Free-surface and wave effects on propeller performance

R 0A
h

R

1A

0A

Loss of propeller
n

oss o p ope e

disk area

h(t)
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Free-surface and wave effects on propeller performance

open water

Thrust

Thrust
T

Minsaas et al. (1986)

h/R

Thrusters: Thrust losses due to free-surface effects

Minsaas et al. (1986)

T , n = 5.0 revs / s

0 1 0/= A A

T , n = 12.5 revs / s open water

Thrust

Thrust
T

0 1 0

h/R

propeller ventilation

Propeller Ventilation
(Califano  & Kozlowska, 2009)

h/R = 1.72 

n=14 rps( f , )

h/R = 1 40h/R = 1.40

n=14 rps
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Surge equation of dynamically positioned ship

11 1 111 11 1 111 1

SW WinDD dP PM A B F tB C F t11 1 111 11 1 111 1M A B F tB C F t

22

11 11

2DP

n

C M A
T

Tn=100s, for example

11 11 111.2DP DPB M A C i.e. 60% of critical 
11 11 111.2B M A C

damping, for example

Dynamic Positioning Control Architecture

THRUSTER

SETPOINTS
MEASUREMENTS

Process Plant
SIGNAL

PROCESSINGTHRUST

ALLOCATION

POWER

POWER

LIMITS

VESSEL

OBSERVER

MANAGEMENT

SYSTEM ADAPTIVE

LAW

COMMANDED

THRUST 

VESSEL MOTIONS

CONTROLLER

OPERATOR

REFERENCE

MODEL

OPTIMAL 

SETPOINT 

CHASING

O O

A. Sørensen

Dynamic positioning of ships and 
floating structures in extreme conditionsfloating st uctu es in ext e e conditions

POWER

PITCH or RPM CONTROL

POWER

TORQUE CONTROL

POWER

Nonlinear robust 

controllers for Extremecontrollers for Extreme

Sea Conditions 

VARIABLE

TORQUE

CONSTANTCONSTANT

TORQUE

A. Sørensen
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Position and motion control

• Manoeuvring modelsStation keeping models • Manoeuvring models

• Linearized about some Uo

• Sea keeping 

• Motion damping

• Station keeping models

• Marine operation models

• Slender structures

• Multibody operations • Motion damping

(rudders are used)

• Multibody operations

(thrusters are used)

High speed tracking/Transit

Low speed tracking

Marked position

0 1 2 3 4 5 6 7

Speed [knots]
Station keeping

0 1 2 3 4 5 6 7 …..

A. Sørensen

Summaryy

Current and wind loads. Viscous wave loads and damping.

StationkeepingStationkeeping.

Viscous loads

Relevant Parameters

k/D

Relevant Parameters

/Rn UD

Current & wind loads

steady incident flow

Viscous wave loads

oscillatory incident flow

(also combined with current)

Body form

Free surface

Sea floor ( )
Inflow nature & direction

/R nU U f D

/MKC U T D

Relative current n.
M

/c MU U

Risers, cables, jackets, pipelines, columns and

pontoons of semisubmersibles and TLP spar

Practical relevance: ’slender’ marine structures

pontoons of semisubmersibles and TLP, spar

platforms, deep draft floaters, submerged

bridges, ships,….
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Steady uniform inflow past a blunt body

u=U

Boundary layer (BL):
Body

f

y,v
x,u

u Ue

(x)

u=0

surface No-slip condition

/ 0u y
Criterion for flow separation:

0
/ 0

y
u y

2 2

00
/ 0 / 0

yy
u y p x

Turbulent flow leads to

•Larger fluid momentum exchange

y

Laminar vs turbulent flow: •Larger

•Larger

•Spatial delay in flow separation
0

/
y

u y

/u U

Laminar

Turbulent

Flow regimes: subcritical critical supercritical transcritical

/ eu U

Flow regimes: subcritical, critical, supercritical, transcritical

Steady uniform inflow past a blunt body
A,B = separation points

Through the separation points

vorticity is shed from the body in

A
, p p

the form of vortices, i.e. wake B

C

B

From Von Karman: only staggered

vortex shedding is stable
h

-| |

Stable solution if h/l=0.28
U

g

Strouhal number /vSt f D U
ll/2

| |

Wake interaction effects: fishes, fish farms, pipe clusters, etc., , p p ,

Steady uniform inflow past a blunt body

y FL

cU

x,FD

y,FL ( ) | | cos(2 )L L L vF t F F f t

( ) cos(4 )   D D D vF t F A f t
x,FD

Mean forces Oscillatory forces

Drag force :

• friction force (shear stresses)

• pressure force (flow separation)

DF
• and change along the 3D body

Small correlation length

Cancellation effects for the total 3D

Lift force :

Zero for a single body simmetric

about inflow direction in infinite

LF

Cancellation effects for the total 3D

loads

• They can cause resonance problems:
about inflow direction in infinite

fluid, e.g. circular cylinder
VIM & VIV

Force coefficients to be found empirically
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Mean Current loads on ships and offshore structures
To find the loads, it is usually assumed that:To find the loads, it is usually assumed that:

•The longitudinal current component causes shear forces

Drag force

•The transversal current component causes flow separationp p

Transverse loads, from cross-flow principle

Ships Offshore structures

Uc

x

y

Uc

UN LF

DF

2

1Long : ( )( )/f

c

fC Rn k DF f U S k

UN

2( )F f UC D1Long.: ( , , , , , )( , )/f c fC Rn k DF f U S k

2

2 6Transv.: , ( ( ), , , ( ), ) c c

Da cCF F f x U D x

(Current causes also the Munk moment)

( , , , )NDDF f UC D

2( , , , ) NLLF f UC D

( )

Parameter analysis for CD, CL

Vortex induced vibrations (VIV)

General features Lock-in’s consequences:

• Resonance phenomenon caused by   

oscillatory forces due to vortex shedding

• Greater correlation length

• Greater vortex strength

• fv locks onto fn : VIV changes fv and

/St f D U /RU U f D
• Relevant parameters:

• Nonlinearities. Hydroelasticity.
fv locks onto fn : VIV changes fv and

in water also fn

• The greater A the wider lock-in region

• Oscillations are self-limiting

VIV types

/v cSt f D U /R c nU U f D g

• Greater in-line (drag force)

Uc
y

Cross-flow VIV

In line VIV • VIV practical relevance

VIV studies

x
In-line VIV

Roughly:

Cross-flow VIV: fv close to fn

VIV practical relevance

• How to estimate VIV

(scale effects issue)

• How to suppress VIV

Cross-flow VIV is associated with larger

fv fn

In-line VIV: 2fv close to fn

pp

oscillation amplitudes A and larger UR

than in-line VIV. They can couple.

Galloping
• Dynamic-instability phenomenon negative dampingy y p g p g

• It occurs when forces are quasi-steady, i.e. oscillatory forces small (UR>10)

• Oscillations are not self-limiting

• Relevant parameter: UR

Oscillatory incident flow

• It involves a mass and a drag force

• Applicability

Morison’s equation Boundary layer
• Flow separation less easy than in a current

• No separation at very small KC

• Symmetric vortex shedding for KC<7pp y • Symmetric vortex shedding for KC<7

• Separated flow at small and large KC

• CD parameter analysis

Wave and current environment
• Examples of when they are relevant

VIV b d• VIV can be caused
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Stationkeeping
• For position and motion control of ships and offshore structuresp p

• Aimed to counteract mean wave-current-wind loads

• Provides damping and leads to restoring in the horizontal plane

Mooring systems vs Thrusters
(static positioning) (dynamic positioning)

M fl ibl• Easier to realize • More flexibles

• Provide larger damping

Parameter analysis of performances

How does a DP work
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