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ABSTRACT

The statistical properties of the second-order Froude-Krylov
force on a cylinder (whether a vertical cylinder or a horizontal
submerged cylinder), for narrow-band spectra, are investigated.
For this purpose two families of stochastic processes are defined
and for each family the probability density function and the
probabilities of exceedance of the absolute maximum and of the
absolute minimum are obtained. It is then proven that the above-
mentioned Froude-Krylov force processes belong to these stochastic
families.

The predictions for the Froude-Krylov force on a horizontal
submerged cylinder agree with the results of a small-scale field
experiment.
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INTRODUCTION

The amplitude of the wave force on a large structure may be
obtained as the product of the Froude-Krylov force (which is defined as
the force on the equivalent water volume) and the diffraction coefficient
of the wave force (Sarpkaya and Isaacson, 1981). Therefore it is helpful
for the design of large offshore structures to investigate the properties
of the Froude-Krylov force.

According to the linear theory of wind-generated waves (Longuet-
Higgins, 1963; Phillips, 1967) the linear Froude-Krylov force, whether
on a vertical cylinder or on a horizontal submerged cylinder, represents
a random Gaussian process of time. Therefore both the absolute
maximum and the absolute minimum of the linear Froude-Krylov force
have the same Rayleigh distribution, if the spectrum is very narrow
(Longuet-Higgins, 1952).

Boccotti (2000) has shown that, for large horizontal cylinders, the two
random processes wave force on the solid cylinder, and Froude-Krylov
wave force have nearly the same very narrow spectrum, the same non-
linearity effects, and the same statistical properties: equal distribution of
the normalized crest-to-trough heights, distribution of the normalized

01-JSC221

F. Arena

absolute maximum and distribution of the normalized absolute
minimum. This conclusion is based on the evidence of a small-scale
field experiment which consisted in the real time comparison of the
wave forces on a horizontal submerged cylinder and on an ideal
equivalent water cylinder (see also Boccotti, 1996).

This paper deals with the statistical properties of the non-linear
Froude-Krylov forces exerted by narrow-band wind-generated waves
(Tayfun, 1980). For this purpose we define two families of non-linear
stochastic processes y; and y, : the first consisting of statistically
symmetric processes, the second consisting of statistically non-
symmetric processes. For each family of random processes we obtain
the probability density function, the probability of exceedance of the
absolute maximum and the probability of exceedance of the absolute
minimum. For the family y; these properties depend upon one

parameter &, for the family y, they depend upon two parameters o
and a,.

We prove that the horizontal component of the narrow-band
second-order Froude-Krylov force (whether on a vertical cylinder or on
a horizontal submerged cylinder) represents a random process of time
which belongs to the stochastic family i, and the expression of
parameter J is derived for this process. We prove also that the vertical
component of the narrow-band second-order Froude-Krylov force (on a
horizontal submerged cylinder) represents a random process of time
which belongs to the stochastic family y, and the expressions of
parameters «; and o, are obtained for this process.

Finally, we show that the analytical predictions for the Froude-
Krylov force on a horizontal submerged cylinder agree with the
conclusions of Boccotti (2000) based on experimental evidence.

STATISTICAL PROPERTIES OF TWO STOCHASTIC

FAMILIES WITH NARROW-BAND SPECTRUM
Let us define the two families of stochastic processes of time:
vi(1) = fasin[y ()] + gia” sin[2x(1) 1, 1)
V() = fracos|7(0] + gracos 1D+ hyasin’ [z (], (2)
where a is a Rayleigh distributed random variable, f;, g, f2, 22,
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hy are parameters with some fixed values and where

1O =wt+o, 3
with w the angular frequency and ¢ a random phase uniformly
distributed in (0,27) .

The probability density functions of the stochastic family v/

Let us consider the normalized random process
Y1 =¥
G =" “
Oy
where ¥ and o, are, respectively, the mean value and the standard
deviation of random process ;. Defining the two Gaussian random
processes of time

2.0) = acosi;((t)]

s

Z,() = %m 5)

where o is the standard deviation of the linear process asin[ y(¢)],

the normalized process £ may be rewritten as

G =vZ;+(6/V)Z.Z; (6)
where
v=1/1/1+52/4 5=2g0/|A| (M
given that
;1:0, Gyz,l :Gz(ﬁ2+02g12). ®)

The third and fourth moments of the family ¢, are given respectively
by:

=0, ©)

=3t 41882 +9(5/v)? . (10)

The vanishing of the third moment suggests that £} is a symmetric

process. To show this symmetry the probability density function of &

is derived. Firstly we evaluate the characteristic function of the process

£, which is defined as the mean value of PO

+00 +00 +o 19
- . 1 57
O = I J.emglle,Zz(ZbZz)dzldzz =§j€ 2 Ii(z1) dz, (11)

where f21,22 is the bi-variate Gaussian probability density function

(Z1,Z, are independent random variable of time) and the integral /; is
defined as

=L (cos(i\/;)/\/?,s:l/Z), A=ov+s/vz), (12)
where the Laplace transform is given by
L (cos(zﬁ YAt ,s): Jrls exp[=22/(4s)]. (13)

Substitution in Eq. 11 and some algebra give us

1 >

- —>? P2
eia’§1 _ e\/;_ L [005(10}5'\/;);5‘_%(V2+w252/v2)] (14)
T t

and finally the characteristic function results

2.2
9 Cexpl -2 1-— 99 N [ L2022 02 15
2 v+ w?s? v

The probability density function of £ is obtained by inverse Fourier

transform of ¢'®¢ (Eq. 15):
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+00

“l—— s
1@)=F [eg)- L [emdn. as

in which F - is the inverse-Fourier transform operator. The Eq. 16
leads the general expression of £, :

g Lo?[1- T@
e \ 2 v+ w?stiv?
f;l(g)z—jcos(wg, do. (17)
T 0 \/v2+a)252/v2

Note that this probability density function is symmetric with respect to
¢ =0, which means that the random process ¢ is statistically

symmetric. Note also that the probability density function f (Eq. 17)
of the normalized random variable ¢ approaches the probability

density function of the normalized Gaussian variable, as 6 approaches
zero. Figure 1 compares the f§1 for two values of & and the

probability density function of the normalized Gaussian random
variable.

The probability density functions of the stochastic family y/,

Let us consider the normalized random process
Yo~V
=212 (18)
%y,
where 7, and oy, are, respectively, the mean value and the standard
deviation of random process ¥, . As function of the processes Z, and

Zg (see Eq. 5), the process ¢, may be written as

&= ﬁ( Z, v Z2 +ay z‘f)— Blag +a,), (19)
where
h
alzag—z, ay =02, ﬂ=—1 > (20)
|2 |12] V1+2(af +a3)
given that
va=fola+a), o, =0’ fi/p. @1

The third and fourth moments of the family ¢, are given respectively
by:

04174
18] =0.15
0.3 1
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Figure 1. Comparison between the probability density
functions f (Eq. 17), for fixed values of &,

and the normalized Gaussian (dotted line).
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& =B (60 +8a; +8a3), (22)

3 =38%1+20af +4a3 +20a; +8aitas +20a3) .  (23)
Therefore the family ¢, is generally non-symmetric.

The characteristic function of £, is given by

M:L[mﬂ(dle) L cos(a)ﬂ\/;) o 1-2iwfa |
27 N 2

L[€ere
N

and by using both the Eq. 13 and the Laplace transform

L [‘% J: L (%,s—ﬁjz%, 25)

the characteristic function 24 is given by

N 2
%2 = Jexp| — 1 % exp| —iw f| () +a) +
2 1+ 4 wfay |

4 (@F)ya @B e }/\/1 wﬂ)zalaszZwﬂ (1 +a2) .

1+4(a)ﬂa1)

24

(26)

Finally, the probability density function f{z is obtained by applying

the inverse Fourier transform to the characteristic function €2 , that

is:
T

- J 2 1+4 a)ﬂal)z
2 27)
lofeceriies]

\/1 4 a)ﬁ) o0y — Zza)ﬂ(al +a2)
Let us observe that if the parameters o ,a, approach zero, the non-
linearity vanishes and the probability density function of ¢, (Eq. 27)
tends to the Gaussian distribution.

Figure 2 shows the probability density function f-, (Eq. 27), for fixed

values of (a;, a5 ).

The probabilities of exceedance of the absolute maximum and of
the absolute minimum of the stochastic family v,

Being the family y; (Eq. 1) symmetric, the distribution of the
absolute maximum is equal to the distribution of the absolute minimum.
Therefore we derive only the probability of exceedance of the absolute
maximum.

If we rewrite the normalized process ¢ (Eq. 6) as

=Y in()+~ é(ijz sin(27) . (28)
c 2vio
the first derivative d¢;/d y vanishes if
Zycosz;(+cos;(—u:0. (29)
where
u=sal(vio). (30)
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In the following we analyze the roots of Eq. 29 in the domain of the
parameter 4 . If 4 — 0 the effects of non-linearity are negligible and
Eq. 29 reduces itself to cosy =0 : the abscissa y=7z/2 of the
maximum value is equal to the maximum abscissa for the linear process

¢y =(va/o)sin(y) . If g — o the non-linearity is predominant and

Eq. 29 reduces itself to cos? y =1/2: the abscissa of the maximum

value is y =z /4. For finite u , the abscissa of the maximum is within

7/4 and 7 /2 and Eq. 29 is satisfied if
Au

COS Y pax = F—, $IN Y max
14+41+324°

If we assume weak non-linear effects (that is ¢ <<1), for a fixed value

>0. 31)

of a/o, Eq. 31 may be expanded in Taylor series as

COS Frax 221 —1647 SN gy =1-24°. (32)

Substitution of expressions 32 in Eq. 28, after some algebra, by
retaining only the lower order terms, gives us the approximate
expression for the maximum

2

o
é,lmax:é,l( max)zvu"'ﬁu:s. (33)

Successive approximations procedure yields the following expressions
for u such that Eq. 33 is satisfied

g1
ug =%— > §1max (34)
and the probability of exceedance for the absolute maximum has
expression

P& >§):Pr{u >£—5—27<;3} (35)
v 2y
Having the wvariable u the Rayleigh distribution (that is
Puzz)= exp(—z2 /2)) the Eq. 35 becomes:
) 2
P > )= 3D —%42[%—257:2] . (36)

This probability of exceedance, for fixed values of &, is shown in
Figure 3. Let us note that the deviation from the Rayleigh distribution is
weak for |5 < 0.05 .

The probabilities of exceedance of the absolute maximum and of
the absolute minimum of the stochastic family y,

To achieve the distribution of the absolute maximum and the
distribution of the absolute minimum of the stochastic family y,, it is

convenient to rewrite the Eq. 2 as the following form:

y(5.2)= falr. hcos(z) + [ea (. 2)- e ] cos2)

(37
2

leale ) ol )L

The first derivative of y, is given by:

% =-a sin(;(){fz (x, z)+ 2 [g2 (x, z)— hy (x, z)|a cos(;()} , (3%
and vanishes if

sin(;() =0 39
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Figure 2. The probability density functions f,, (Eq.27),
for fixed values of «; (it has been assumed a, = —a).

The dashed line is the Gaussian distribution, obtained for ¢ =0.
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Figure 3. The probability of exceedance P({},,,, >¢) of the

absolute maximum (Eq. 36), for fixed | & |. The probability
P(1max >¢) 1s equal to the Rayleigh distribution for ¢ =0.

or, for the general case of g, (x,z) % hy (x,z) ,if

3 folx,z)
. (40)
2[g5(x.2) =y (x,2)]a
Assuming that Eq. 40 has no solution, the unique stationary points of
v, are the stationary points of the linear process

cos(z)=

y/zL(x,z) =f5(x,z)acos(y) (this condition is satisfied if the ratio

between the amplitude of the linear component and the amplitude of the
non-linear component is greater than 4).
Therefore if f, <0 the abscissa of the absolute maximum is given by

Xmax =7 and the abscissa of the absolute minimum is given by
Zmin =0. The amplitudes of the absolute maximum and of the
absolute minimum (in absolute value) are given respectively by:

Wamax = f2(%:2)a+ g3(x,2)a? 1)
Pomin == f2(x.2)a - g5(x,2)a’. 42)

Let us define the dimensionless variables:

he) 2 Pomi 2
é’zmaxz—max =u/3+a1[7’u . é’zmin = min =uﬂ—0¢1ﬂu (43)
%) Oy,
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where #, a; and a, are defined by Eq. 20 and where the random

variable u has Rayleigh distribution. Therefore the probabilities of
exceedance of the absolute maximum P({ 2max > & ) and of the absolute

minimum P({ 2min > ¢ ) are given by

if ¢;>0:
P(é/zmax >§):fa(§)9
Hg) if ¢<B/@la), (44)
P(§2m1n > é/): N
0 if ¢>p/(4]e),
if o1 <0:

HE) it C<p/E ),
0 if ¢>p/4]a)), 45)
P& >$)=1(0),

where the functions f,, and f} are respectively:

fa&)= exp{— (1—1/1+4|a1|§/ ,sz /(80:12)} , (46)
6o (1T 75 ) )|
-ouf (1Al 5 ) |

(the parameters ¢, a, and S are defined by Eq. 20).

PG >4):{

47

Figure 4 shows the probabilities of exceedance P({y,,. >¢) of the
absolute maximum and P({y,, >¢) of the absolute minimum for

fixed values of ¢ (and for |a,|=¢;). Observe that for o

approaching zero both the probabilities of exceedance reduce
themselves to the Rayleigh distribution. For o #0 the two

distributions are different: in particular for a fixed threshold of the
probability of exceedance, if o >0 the absolute maximum is greater

than the absolute minimum [and therefore each realization of the
process is a sequence of waves which have crest amplitude (absolute
maximum) greater than the trough amplitude (absolute minimum)]; if
a; <0 the absolute minimum is greater than the absolute maximum

(and therefore each realization of the process is a sequence of waves
which have the trough amplitude greater than the crest amplitude). It is
also easy to verify that the distributions of Figure 4 are not modified if
a, ranges between —|¢q| and | ¢ |.

APPLICATIONS

Let us assume the reference frame (x,y,z) with the x-axis horizontal

(direction along which the waves attack), the y-axis horizontal and the
z-axis vertical with origin at the mean water level, as well as d the
bottom depth.

The narrow-band second-order Froude-Krylov force processes, both for
a vertical cylinder and for a horizontal submerged cylinder, are derived
by analytical integration of the narrow-band second-order wave
pressure.

The steepness ¢ (being £=ko, k the wave number and o the
standard deviation of the linear surface displacement) ranges typically
between 0.05 and 0.08.
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Figure 4. Probal())ilities 0% exceedgnce for %ixed Va14ll€S of | gzl | (assu(r)ning
that |a, || o | ). (i) Positive ¢; : continuous lines are the absolute
maximum distribution P({,,.. >¢) , dashed lines are the absolute
minimum distribution P(&5,;, >¢) - (i) Negative ¢ : continuous

lines are the P(&,,. >¢) , dashed lines are the P({5,,, >¢)

The second-order random wave pressure in an undisturbed field, for
a narrow spectrum, is given by

cosh[k(z +d)]
Ap(x,z,t) = pga———"—""Z cos(kx — wt — @) +
p(x z ) pga cosh(id) cos( wt — @)
.12

+pgka2 3cosh[2k(3z+d)]—smh (kd) cos[2(ke —wt — )]+ (48)

4sinh” (kd) cosh(kd)
~ poka® cosh[2k(z+d)]-1

8 2sinh(2kd)

and belongs to the stochastic family y, (Arena and Fedele, 2000a).

The narrow-band second-order Froude-Krylov force on a vertical
cylinder

The sectional force

Let us consider an ideal water vertical cylinder with radius R (see
Figure 5). The Froude-Krylov force (force for unitary lenght), at a fixed
level z, is given by

2z

F(z)=— I RAp(R,0,z)cos(0)d 0 (49)

0
(we consider the variable transformation x =rcosé;y =rsiné - see
Figure 5).
From expression 48 for the wave pressure, the narrow-band horizontal
component of the Froude-Krylov force (see Eq. 49), is given by

2z

M J. cos(chosH—wt—(p) .

F, (z) =—pgR
x (@) =-pgRa cosh(kd)

242 3cosh[2k(z +d)] - sinh® (kd)

Figure 5. Frotude-Krylov force on a vertical cylinder:
the reference frame.

The solution of the integrals in Eq. 50 leads
cosh[k(z + d)]

Fy(z2)=-pg 2nRaJy(kR
x(2)=-pg 2xRaJi(kR) cosh(kd)

sin(wt+@)— pg 27 kR-

(51)
3cosh[2k(z + d )] - sinh? (kd)
4sinh’ (kd) cosh(kd)

The process F, (Eq. 51) belongs to the symmetric family y; with

-a*J,(2kR) sin[2(w? + @)].

parameter
_ kR 3 cosh[2k(z + d )] - sinh? (kd)) 52)
1(kR)|  2sinh? (kd)cosh[k(z +d)]

in which J;(x) is the Bessel function of the first kind.

The total force

The total force, which is defined as

0
Fy = [F, (53)
—h
is given by
F. =-pg ZﬁRdaJl(kR)%sin(wt + @)+
sinh(2kd) —sinhz(kd)
- pg2mkRda® J,(2kR)—2Kd : (54)
4sinh” (kd) cosh(kd)

-sin[2(wt + @)].
This process belongs to the family y; (Eq. 1) with parameter

_J1(2kR) 3 sinh(2kd) — 2kd sinh® (kd)

- 55
[J1(kR) 4sinh*(kd) &

In Figure 6 the projection of the parameter /& as function of kR is
shown, for fixed values of kd . Let us note that the parameter &
decreases as the depth increases; it is also small: for kd >1.5 we have

-cos0dl - pgk (50) |0 < 0.5¢ (thatis | & |<0.025+0.04).
4Siﬂh3(kd )cosh(kd) Therefore the second-order Froude-Krylov force on a vertical cylinder
2 (Eq. 54), for a narrow-band spectrum, is a symmetric quasi-Gaussian
. J' cos[2(kR cos0 — wi— p)]cos® d6 . process; as a consequence the probabi!it_ies of exceedance of the
absolute maximum and of the absolute minimum are very close to the
0 Rayleigh distribution (compare to Figure 3).
01-JSC221 F. Arena Page 5 of 8
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Figure 6. Froude-Krylov force on a vertical cylinder:
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the parameter J/¢ as function of AR , for fixed values of &d .

Figure 7. Froude-Krylov force on a horizontal submerged cylinder:

The narrow-band

the reference frame.

horizontal submerged cylinder

Let us consider an ideal water-horizontal cylinder with radius R and
centre at the level z=-h. The Froude-Krylov force components

(forces for unitary lenght) are respectively

2z 2
F, = f RAp(R.0)cos0)d0, F, =—jRAp(R,9)sin(e)da (56)

0
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where (7,6 ) define polar co-ordinates (x =rcos@ , z=—-h+rsiné -
see Figure 7).

The horizontal component F,

Assuming the second-order wave pressure given by expression 48,

the narrow-band horizontal component F, may be written as
2z

ae—i(wH(p) ( )
F, =Res— pg——— R | cosh[kld —h+ Rsinf)]-
x P& osh(id) .[ [ ]
0

3k ale2iwHe)

R
4sinh> (kd) cosh(kd)

-exp(ik Rcosf)cos@ dO0—pg

27 (57)
. J.cosh[Zk(d —h+ Rsin 0)] exp(2ik Rcos@)cosOd b+
0

. 2z
k aZe—Zl(w t+¢)

+pg——— R | exp(2ik RcosB@)cosHdb ;.
P8 4 inhGidycoshiid) ) P )
0
in which Re{x} is the real part of x . Analytical integration and some
algebra yield
F, = —pgﬂkRzaMsin(w t+ @) — pg 2 7kR a’-
cosh(kd)

(58)
p_3cosh2k(d )] J1(24R) }sin[Z(Wl"'(D)]-

4sinh® (kd)cosh(kd) ~4sinh(kd)cosh(kd)

It is easy to verify that the process force F, (Eq. 58) belongs to the
stochastic family y; (Eq. 1), with parameter
3 cosh[2k(d —h)]  J,(2kR)
sinh? (kd ) kR
cosh[k(d — h)]sinh(kd)

5=-

(59

In Figure 8 the parameters & /¢ as function of kR are shown, for fixed
values of h/d and kd. Let us note that for fixed radius R the
parameter 0 decreases as the depth d increases. The non-linear effects
are weak (the parameter | J | is smaller than 0.05), so that the process
F,. (Eq. 58) may be considered symmetric quasi-Gaussian and the

probabilities of exceedance of the absolute maximum and of the
absolute minimum (Eq. 36) are very close to the Rayleigh distribution
(Figure 3).

The vertical component F,

Assuming the second-order wave pressure given by expression 48,
the narrow-band vertical component F, (Eq. 56) may be written as
2z
R Jcosh[k(d —h+ Rsin0)]-
0 2 -2i(wt+p)
=2i(wt+o
?ki e R
4sinh” (kd)cosh(kd)
27 (60)
. jcosh[Zk(d —h+ Rsin 9)] exp(2ikRcosd)sinfd 0+
0

ae—z(wt+go)

F,=Res—pg———
{ re cosh(kd)

-exp(ikRcosf)sindd@—pg

2z

2
ka” g jcosh[Zk(d —h+rsind)|sin0do b

+ —_—
P& sinh(2kd)
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Figure 8. Horizontal component of the Froude-Krylov force on a
horizontal submerged cylinder. The parameter 6 /¢ as function of AR ,
for fixed values of kd : (a) h/d =0.25; (b) h/d =0.50; (c) h/d =0.75

by solving analytically the integrals in Eq. 60 one gets the following
expression of the vertical force component F,
R sinh[k(d — h)]

cos(wt + @)— pg2rkRa* -
cosh(kd) oS0+ )= pgamkRa

F, =—pgrnk
(61)

cos[2(wt + @)]—

| 3ksinh[2k(d ~ )]
2sinh(2kd)

4sinh® (kd ) cosh(kd)
in which /;(x) is the modified Bessel function of first kind. This

sin(2k(d ], kR)}

process belongs to the stochastic family y, (Eq. 2) with parameters
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Figure 9. Vertical component of the Froude-Krylov force
on a horizontal submerged cylinder: the parameters «; /&

and «, /¢ as function of kd , for fixed values of 7/R .
(@) kR=3;(b) kR=.5;(c) kR=1;(d) kR=1.5;(c) kR=2.

, 1h(2kR) }

sinh?(kd) KR

, 1i(2kR) }
sinh®(kd) kR

In this case the process is non-symmetric. In Figure 9 the parameters
a; and «a, as function of kd are showed, for fixed values of 4/ R and
kR . Let us note that for a fixed depth kd and a fixed kh, ¢

increases as the radius AR increases; for fixed kd and AR, o

. cosh[k(d —h)]| 3
7 sinh(kd)
(62)

. cosh[k(d — h)] 3
27" sinh(kd)

decreases as the &k increases (that is as the cylinder tends to approach
the bottom).
Furthermore, from Figure 9 we observe that maximum values of ¢

and a, are within 0.05 and 0.08 (being the maximum value of «; /¢
and a, /¢ very close to 1).
Finally, being o >0 (in the ranges of values considered in Figure 9),

the probabilities of exceedance of the positive peak (absolute
maximum) of F, (Eq. 61) and of the negative peak (absolute
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minimum) of F, are different: in particular for a fixed threshold of

probability of exceedance, the crest (positive peak) of the wave force
F, are greater than the trough (negative peak). In words for o >0

each realization of the process Froude-Krylov vertical force F, is a

sequence of waves, which have crest amplitude greater than trough
amplitude (Figure 4).

COMPARISON WITH EXPERIMENTAL DATA

To check our results we have resorted to the file data of the small-
scale field experiment of Boccotti (1996) which is relevant to the forces
on a horizontal submerged cylinder. Let us start with the horizontal
component of the Froude-Krylov force. We have estimated parameter
0 by means of Eq. 52 from the data set of this experiment: the peak
period (being necessary to obtain wave number & ), root mean square
surface displacement (being necessary to obtain & ), water depth d,
submergence /1 of the cylinder centre, radius R of the horizontal
cylinder. We have evaluated the value of 6 for each record of the
experiment, and these values prove to range between —0.05 and 0.01. In
our analytical approach we have shown that the probability of
exceedance of the absolute maximum and the probability of exceedance
of the absolute minimum are equal to each other and are given by Eq.
36. With | ¢ | within 0.05 as in the experiment we are dealing with, Eq.
36 is very close to the Rayleigh form (see Figure 3).

Hence we can expect that both the probability of exceedance of the
absolute maximum and the probability of exceedance of the absolute
minimum of the horizontal Froude-Krylov force are very close to the
Rayleigh form. This is what actually occurs, and can be appreciated
from Figure 11.9.a of Boccotti (2000).

Let us pass to the vertical component of the Froude-Krylov force. We
have estimated the pair a;,a, for each record of the experiment by
means of Eq. 62. Parameter o proves to range between 0.011 and
0.027, and parameter «a, between 0.011 and 0.041. For each pair
a),a, we have obtained the probability of exceedance of the absolute
maximum and the probability of exceedance of the absolute minimum
by means of Eq. 44. The two extreme probabilities of exceedance for
the set of pairs a;,a, are shown in Figure 10 (lines @ and b). [The
upper panel is relevant to the absolute maximum and the lower panel to
the absolute minimum.] We see that the probability of exceedance of
the absolute maximum (positive peak of F,) is greater than the
probability of exceedance based on the Rayleigh form. On the contrary,
the probability of exceedance of the absolute minimum (negative peak
of F,) is smaller than the probability of exceedance based on the
Rayleigh form. The data points for the probability of exceedance are
those of Boccotti (2000) (see his Figure 11.9.c), they are relevant to the

whole set of record during the experiment, and they clearly confirm the
trend of our theoretical predictions.
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Figure 10. The distributions of the peaks of the vertical Froude-
Krylov force on a horizontal submerged cylinder: (i) positive
(upward) peak; (ii) negative (downward) peak. Continuous lines are
the predictions from Eq. 44: lines (a) are obtained for o =0.011,

lines (b) are obtained for o =0.041, which are the minimum value
and the maximum ¢, in the experimental range of kR, kh and
kd , assuming € =0.06 (the corresponding «, are equal to 0.011
and 0.041 respectively). Data from Boccotti (2000).
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