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Abstract

The exploitation of hydrocarbon reservoirs under the seabed in very deep water requires the use of innovative floating platform config-
urations. The hydrodynamic interaction of such platforms with ocean waves and the understanding and quantification of the non-linear
components of these interactions have been a subject of continuing research. This paper examines these non-linear interaction components
for a specific very deep draft spar platform type that is increasingly being used in the oceans. It investigates a formulation for two non-linear
force components — called the axial divergence force and the centrifugal force. The latter is invariably neglected in conventional analyses
but is shown in this paper to actually be of significant importance. Non-linear equations for wave loading and motion are developed and
solved, and the results are used to demonstrate the significance of the above terms. A limited comparison with experimental data is also

presented. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Spar platform; Non-linear forces; Numerical simulation; Non-linear equation of motion

1. Introduction

As the offshore industry depletes hydrocarbon reservoirs
below the sea bed in small to moderate water depths (up to
500 m), it is increasingly required to develop such deposits
in considerably deeper water. The high water depth makes
the use of sea bed mounted platforms uneconomic leaving
a variety of floating platform types as the only viable
options for oil and gas production operations. One such
option is the spar platform which is basically a very
large floating vertical cylindrical structure of around
200 m draft and 40 m or so in diameter. Such hull config-
urations have been shown to have several advantages over
other options such as tension leg platforms and ship shape
hulls. Some of these advantages include structural simpli-
city, low motions in moderate and extreme ocean waves
because of their relatively long natural periods, good
protection of riser connections to the sea bed, low cost
and so on — Vardeman et al. [1] give an overview of
the merits and drawbacks of Spar platforms.

Spar platforms are not new — smaller versions have been
built, including the US Navy spar for gathering oceano-
graphic data [2], the recently decommissioned Brent spar
for oil storage [3], the Agip spar for flaring gas and a loading
spar on the Draugen field [4]. Very recently, the first produc-
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tion spar in the world was installed in 1997, at Viosca Knoll
826, Gulf of Mexico, the first use of a very large spar in very
deep water [4]. Fig. 1 presents a sketch of the structure and
its mooring system.

In recent years the realisation that large spar platforms did
offer low cost production options in very deep water has
prompted several experimental studies and numerical simu-
lations to obtain a better understanding of their response to
ocean waves. Two such experimental studies are reported
by Weggel et al. [S] and by Carpenter et al. [6]. Research
using numerical simulations has utilised the two traditional
frequency domain and time domain approaches. One such is
presented by Weggel et al. [5] using the frequency domain
technique — it directly gives the statistical parameters of
the spar response at relatively low computational cost.
However, it may be subject to large errors due to the linear-
isation of some non-linear terms, such as the viscous term,
in the equations of motion. There is evidence that this line-
arisation probably overestimates viscous effects [7]. Most
researchers prefer, therefore, to simulate spar motion in the
time domain and this is the approach adopted in this paper.

Simulation of the motion of a spar buoy requires the
definition of the equations of motion and the evaluation of
all forces acting on it due to wind, current, ocean waves and
mooring lines. The conventional approach in offshore
engineering is to use the linear form of the equations to
describe the motions of rigid bodies. For large motions the
non-linear equations of motion [8] should be used but it is
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Fig. 1. A spar platform.

only practicable if the exciting forces can be calculated
without involving wave diffraction analysis.

A key element of the analysis of a spar buoy is to evaluate
the forces and moments on it due to ocean waves and
currents. One possibility to obtain these is to perform a
numerical analysis of the fully non-linear interaction
between the spar and its surrounding fluid. Although it is
not impossible, this task requires very powerful computer
resources and is, therefore, not feasible in practice. An alter-
native approach is to carry out a diffraction analysis based
on second order potential theory (see, for example, Ran et
al. [7]). The computational cost of this approach is still quite
high. Also, this method usually generates results in the
frequency domain and thereafter a transformation is needed
to obtain forces in the time domain.

Another approach, often used in offshore engineering for
wave force evaluation, is based on slender body theory that
requires much less computational effort and can be directly
implemented in time domain analysis. In this approach, the
body is assumed ‘thin’ and the force (and/or moment) is
obtained by the sum of the force on each short segment of
the slender body. The force on each segment is decomposed
into two parts — an inviscid force and a viscous drag force.
One typical slender body wave force formulation is the well-
known Morison equation, in which the first part is proportional
to the relative acceleration and the second part to the product of
the relative velocity. In addition, Rainey [9,10] has derived an
alternative formula for the inviscid force on a slender body.
His approach modifies the Morison equation by including
axial divergence and centrifugal force terms acting on the

Fig. 2. The reference co-ordinate system for a spar platform.

spar body cross-section and by introducing additional point
forces at the two ends of the body. All of these forces are non-
linear and do not appear in the normal Morison equation
formulation. Several computational studies have been
reported in the research literature using the slender body
approach-all of them using different methods to calculate the
inviscid force. Chitrapu et al. [8] approximated the inviscid
force by the sum of a ‘Froude—Krylov’ force and inertia force.
The latter is evaluated in the same way in the Morison equation
but the former is estimated by the integration of the fluid
pressure over the spar hull in undisturbed flow. Mekha et al.
[11] considered the convective acceleration of the fluid and the
axial divergence term given by Rainey [9,10], but showed in
their case that the axial divergence term is not very important.
One of the main differences between the work is in the employ-
ment of non-linear inviscid force terms.

All of the results published by the above authors have
demonstrated that the slowly varying surge and pitch motion
may be much greater than the responses at the incident wave
frequency. This implies that non-linear effects play a very
important role in spar buoy performance and that the non-
linear force and moment need to be considered with great
care. The main purpose of this paper is to consider all the
terms involved in a full slender body formulation and to
investigate the relative importance of the non-linear terms
in this formulation. Particular attention is paid to the axial
divergence, the centrifugal and point forces that have either
been totally excluded or have been dealt with to a limited
extent in the past. The methodology employed uses the fully
non-linear equations of motion with the mooring lines
replaced by springs.

One question that does arise in considering slender body
theory, is its accuracy when applied to spar platforms.
According to the derivation of Manners and Rainey [12]
and the discussion by Rainey [9], the errors in using slender
body theory are of the order of (D/A)’, where A is the wave-
length and D is the diameter of the cylinder. Thus as long as
the ratio (D/A) is small enough, the theory can be sufficiently
accurate. Kim and Chen [13] compared results from slender
body theory with those from the diffraction analysis for the
second-order force acting on a fixed articulated platform, and
showed that the slender-body approximation could give very
similar results to those of diffraction theory when the length
scale of the structure is small (say less than 20%) relative to
the wave length. The work of this paper also follows this
criterion for the validity of slender body theory.

2. Equations of motion and forces

In order to describe the motion of a spar platform, two co-
ordinate systems are used, as illustrated in Fig. 2. Oxyz is a
space-fixed system with its z-axis being upward and its
origin at the centre of gravity of the spar when it is at rest.
OpxpypZp 1s a body-fixed system with its z,-axis along the
centreline and its origin always at the centre of gravity,
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and so is moving with the body. When the spar is at the rest,
the two systems coincide with each other.

The spar platform is considered as a rigid body. Its state
and attitude can be described by the translational displace-
ment (X) and velocity (Uy) of its centre of gravity, Euler
angles (0= {a,B,vy}) and angular velocity ({2). The
general non-linear equations of motion for a rigid body
are well known and can be written as:

v,

[M]? =F )

[1]% + QX[ =N @)

dX

T Uy (3
de

[B]E =0 )

where F is the total external force, N the moment of the
force about the centre of gravity, [M] and [/] are the mass
and inertia matrix, respectively and [B] is a matrix formed
by Euler angles («, B, ), defined by Ma [14], Eq. (3.3.18).

cos Bcosy siny O
[Bl]=] —cosBsiny cosy O ®)
sin B8 0 1

For convenience, the translation motion equations (1) and
(3) have been written in terms of components of vectors in
the Oxyz system while the rotational equations (2) and (4)
have been written in terms of components in the Opx,yp2Z;
system_Therefore, all non-diagonal entries in matrices [M]
and [/] are actually zero, and /,, = I, if the distribution of
the mass is axisymmetric. Furthermore, if the spar has no
initial angular velocity, it can be shown that £2, = 0 and so
O X [112 =0, under the slender-body assumption. That
means the spar actually has only 5 degrees of freedom.

The forces and moments appearing on the right-hand side
of Eqgs. (1) and (2) are evaluated based on slender body
theory. The forces due to inviscid flow given by Rainey
[10] are used, and the drag force in the Morison equation
is employed to account for viscous effects. According to
Rainey [10], the force due to inviscid flow may have four
parts but one of them appears to be zero for a circular
cylinder. This formula is applied here for the circular
cylindrical spar hull and is written as follows:

2.1. Force per unit immersed length (dF ;)
dF| = pS{a — g}, + M ){a + - [VIDw} — [M,]U

— 2[M, ] 02w, (6)

where, a = (dv)/(dt) + [V]v with v and {V} being the velo-

city and velocity gradient matrices of the incident wave,
respectively. U is the velocity of the body at the correspond-
ing point, i.e. U = U + £ X r (ris a vector from the centre
of gravity to the relevant point). [M,] is the added mass
matrix and satisfies [M,]r = O. Q is a matrix composed of
the components of angular velocity and defined by Qx =
0 X x for any axial vector x. { }, denotes the transverse
components normal to the axis of the spar. g is the gravita-
tional acceleration, pointing downwards, i.e. g = —ge_,
w =v — U is the relative velocity with w, being its axial
component, S is the cross-section area of spar hull and / is an
upward unit vector along the spar centreline.

The terms in the first pair of braces in Eq. (6) are the
Froude—Krylov force plus the transverse static buoyancy.
They are the force components acting on the spar segments
from both the wave-induced dynamic and hydrostatic pres-
sure in the undisturbed surrounding fluid and include the
hydrostatic forces due to non-zero angles of the spar from
the vertical. The forces due to the disturbance of the
surrounding fluid by the spar are considered in subsequent
terms — one of these corresponding to the normal diffrac-
tion force represented by the first term in the second pair of
braces. The second term in these braces

(MI{AVIDw) = (l%)[Ma]w

is called the axial divergence force. According to Manners
and Rainey [12], this term can be interpreted as the force
caused by a decrease of the added mass per unit length due
to the divergence of the axial incident flow. If the incident
flow in the direction of the spar centerline is a constant along
the spar, this term is zero. Otherwise, the force arises from
the velocities of the incident flow and the spar motion. The
term, [Ma]U , in Eq. (6) corresponds to the normal radiation
force due to the acceleration of the spar. The last term in that
equation is proportional to the cross product of angular
velocity and the relative velocity in the axial direction.
This is similar in some sense to the well-known Coriolis
force acting on a particle moving in a non inertial co-ordi-
nate system. In some simple cases such as a thin body
moving in a circle, this term is also able to be interpreted
as ‘negative centrifugal force’ (Rainey, [9,10]). In this
paper, the term is called centrifugal force following Rainey
[10].

2.2. Point force at an immersed end
This is given by:
Fy = pSl — (3w M W)l + I-w)[M,]w @)

where p = py, + p; is the sum of hydrodynamic and static
water pressures — the second of which provides the axial
buoyancy and hydrostatic restoring force together with the
term of { — g}, in Eq. (6). The velocity squared term in the
expression for pressure together with the second and third
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term in Eq. (7) provides a force that is of second order of
wave amplitude.

2.3. Point force at spar buoy—water surface intersection

This force is given by:
Fy = Ltan a[tw)[M,lw — (L X [M,Iw))I X w)] ®)

where « is the acute angle between the centreline of the spar
and the free-surface normal vector of the undisturbed wave;
and ¢ is a unit vector in their joint plane, normal to the spar
axis and pointing out of the fluid. If the spar has no initial
inclination, tan « is determined by the motion of the spar
and the wave, and such a point load is of third order with
respect to the wave amplitude.

In addition to the above inviscid force, the drag force per
unit length is expressed by:

dFdrg = pROCD|wn|wn (9)

where Cp is the drag coefficient and w,, is the component of
w normal to the spar axis.

From Egs. (6) and (9), the total force and moment acting
on the spar can be written as:

F:J dFl+J dFdrg+F2+F3
L L

=Fm +Fa+Fdiv +F2v +Fdrg +Fbp +Fsp +Fg +Fmr
(10)

sz erFl +J’ rdFdrg+reF2+rfF3 +rmrFmr
L L

=Nm+Na+Ndiv+N2V +Ndl’g +Nbp+NSp+Ng

+ N 1rn)

where L is the wetted length of the spar; F,; (or V) is the
force (or moment) due to the mooring line; r, r; and r,,, are
the position vectors of the immersed end, the intersection
point and the fairleads of mooring line to the centre of
gravity, respectively. For ease of explanation in the follow-
ing, the force components have been rearranged to give
components with different subscripts. Subscript a represents
the force and moment due to fluid acceleration; div due to an
axial divergence term; 2v due to a centrifugal term; drg due
to the drag term; bp due to the point load at the immersed
end excluding the static pressure; sp due to the force at the
free-surface intersection and g represents the force due to
the static pressure including ps in Eq. (7) and pS{—g}, in
Eq. (6). The force F, and moment N,, depend on the accel-
eration of the body. These terms will be moved to the left-
hand side of Egs. (1) and (2) to make them more suitable for
time-domain integration. The details of this reformulation
can be found in Pauling and Webster [15].

The above integration to obtain the forces and moments is
performed on the instantaneous wetted centreline of the

spar. This means that the wave parameters are evaluated
at instantaneous positions with the length L changing with
time due to the relative motion between the spar and the free
surface. The resultant terms are given in Eqgs. (10) and (11).
The following components of the non-linear force can be
readily identified within these equations: (a) the acceleration
of the fluid; (b) the axial divergence term; (c) the centrifugal
force; (d) the drag force; and (e) the two point forces at the
immersed end and at the intersection of the free surface. The
non-linearity of all the terms except for (a) results from
the products of the wave and motion parameters as well as
the influence of the change of position and wetted length
of the spar. For component (a), the non-linearity also arises
from the temporal acceleration in addition to the convective
acceleration, the latter of which is from the product of wave
parameters. The non-linearity from the former is caused
solely by the change of position and wetted length of the
spar. Terms (a) and (d) have been considered by all authors
who use slender body theory. The axial divergence term was
taken into account by Mekha et al. [11] but it was suggested
to be very small in their cases. Part of the influence of Fy,
and Ny, could have been taken into account by Chitrapu et
al. [8] if the integration on the incident wave pressure had
been performed over the whole spar wetted surface includ-
ing the immersed end (although it is not clear if this was
actually done or not). The effect of centrifugal force, which
is clearly of the same order in wave amplitude as the other
non-linear terms, has not been considered to date. Although
the point force at the free surface is not taken into account in
the literature either, it may not play an important role
because this term is of higher order than the others. The
work presented below investigates the relative importance
of the centrifugal force, the axial divergence force and the
point force at the immersed end. It will be shown that the
effect of these forces is significant in practical circum-
stances.

It should be noted that the above formula may not give
mean drift force correctly because the drift force from the
formula is zero in some special cases where it should not be.
Mekha et al. [11] included the drift force using empirical
expressions and investigated their effects on spar motions.
They showed that the inclusion of the drift forces can make
the mean offset closer to the experimental results but it has
little influence on the oscillatory motion. This paper is
concerned with the effects of the non-linearities on the
spar buoy oscillatory motion, and consequently does not
consider the mean drift force.

3. Numerical procedure

The system of equations described above is highly non-
linear, not only because some products of motion para-
meters in Eq. (4) are included but also because the
evaluation of all the forces and moments are dependent on
the position, velocity and acceleration of the spar, which are
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not known before solving the equations. In order to solve
this system of equations, the following numerical procedure
is employed:

(1) Start from an initial state in which the displacement
and velocity of the spar are zero (or with any other known
values), and the parameters of the wave are given.

(2) Find the length of the wetted spar hull.

(3) Evaluate the force and moment vectors by numerical
integration.

(4) Solve the motion equations to give the new position
and velocity of spar.

(5) Go to step (2) and repeat.

3.1. Instantaneous length of spar

In order to determine the instantaneous length of the spar,
one needs to find the common point of the spar centreline
and the free surface. This is actually equivalent to finding
the common point between a three-dimensional curved
surface and a straight line in space. Since the surface
changes with time, and the attitude of the spar is determined
during the process of the solution, this point has to be found
in each time step. Although this is quite straightforward, a
suitable function needs to be constructed for implementing
the numerical solution. To do so, the free surface and the
centreline of the spar are expressed by the following two
equations, respectively:

z={(x,y,t) for wave

z=A(Ox + B ()y + C, (1)
for the spar

2= Ay(x + By(n)y + Cy(1)

Then the co-ordinates of the common point (x,,y,,z;) should
satisfy the equation:

(L0 v D) = (A0 + By )y + CUOT) + (L0 v, 1)
= [Ax(0)x; + By 1)y, + C(0])°
=0
This is equivalent to minimising the following function:
G(xe,ysr 1) = {0, ysr 1) = [A1(Dx + By (Dys + C(D])

+ {0 ¥ D) — [Ax(Dx + By(t)y, + Co(0)])

The simplex method is used to minimise G(x,y,,t) with the
tolerable error being taken as 0.0001. This method requires
evaluations of functions only without a need for derivatives
of functions that are computationally expensive to find. In
addition, this method is also fast if a good initial estimate of
the minimum can be specified for the problem. In this case,
the co-ordinates of the intersection point between the spar
centreline and the mean free surface can be taken as the
initial estimate.

3.2. Evaluating the force and moment

After the instantaneous wetted length of the spar is
found, the forces and moments can be evaluated using a
numerical integration method. In this work, an adaptive
recursive Simpson’s rule is employed. As is well known,
a feature of the method is that the number of divisions
along the spar will be automatically doubled if the error
tolerance is exceeded. This feature can reduce the compu-
tational cost in the sense that no more than the necessary
computation is needed to achieve the desired accuracy. Its
disadvantage is that the segments are halved uniformly
according to a global error estimate, and so when the inte-
grand changes rapidly in some areas and distributes quite
uniformly in others, the segments in the latter part of the
domain may become too small. In this case, since the wave
parameters decay exponentially with water depth and the
spar hull is very long, the property of the integrand must be
very different in the area near the immersed end and in the
area near the free surface. If the adaptive recursive
Simpson’s rule is simply used over the whole spar hull,
it can be expected that the segments in the lower part of
the spar may become unnecessarily small so that the
computational cost is higher. To avoid this, the spar is
first divided into a number of parts, e.g. five parts along
its centreline, and then the adaptive recursive Simpson’s
rule is applied to each of the parts in turn. The relative error
tolerance (€;) needed in this rule to control the process is
chosen so that further reduction of €, leads to a negligible
difference.

3.3. Solving the equations of motion

The equations of motion are a system of first order, non-
linear ordinary differential equations with X, 8, U, and 2
being the unknown variables. Some researchers [8] have
used a fourth order Runge—Kutta method with a fixed step
to solve the system and some have used the Newmark-3
scheme. In this paper, the fifth order Runge—Kutta method
with an adaptive stepsize control is used. The details of this
method may be found in Shampine [16]. In this method,
each time step is iteratively determined to achieve a desired
accuracy. The relationship between the time step and esti-
mated error is given by:

AO 0.2

A (12)

ho = ph

where u is a coefficient chosen artificially — it is taken as
0.8 in this paper. A, is an error produced when the time
step is taken as k. The value of A, is estimated based on
the difference between the solution of the fifth-order
Runge—Kutta method and the embedded fourth-order
formula. In this specific case, there are several variables
to be solved and A, is determined using the maximum error
of the displacement components at a point away from the
centre of gravity. The displacement at this point is
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Table 1
Principal particulars of a spar platform

Diameter (2R,) 40.5 m
Initial draft (L) 1982 m
Mass (with entrapped water) 2.6x 10" kg
Radius of gyration (pitch and 62.33 m

roll)

Centre of gravity from keel 92.4m
Fairleads from keel 92.6 m

Drag coefficient Cp=0.6
Added mass coefficient m,=pS*

Density of water p = 1025 kg/m’®

* S is the area of cross-section.

calculated by the angular and translational displacement of
this centre. Although the velocity of the spar is not expli-
citly included in determining A, it is implicitly related to
A because the displacement is obtained by integrating the
velocity. A, is the desired accuracy that is specified as
Ay = e;max(X, 1076), where €, is the relative error toler-
ance and X is the maximum of the three displacement
components of the above point at previous time step. €,
has been determined by numerical tests.

3.4. Programming

The above methodology is programmed using MATLAB.
In the code, €; = ¢, is used, leaving the choice of only one
parameter associated with accuracy control, although the
two error tolerances are not necessarily relevant. This
choice makes the investigation of convergence simpler. If
the error is small enough, the results should not be different
from those obtained by using two different error tolerance
values.

4. Results and discussion

The numerical calculations in the following are based on
a large spar, which is very similar to the structure installed at
the Viosca Knoll 826 field and has the same parameters as
those used by Weggel et al. [5]. Table 1 presents the princi-
pal particulars of this platform design. The spar is positioned
by four catenary mooring lines — two of them being in the
xoz plane and the others in the yoz plane. In the simulation,
each of the mooring lines is considered as a non-linear
spring with its stiffness taken as 191 kN/m up to an offset
of 13.7m and 398 kN/m at offsets larger than this. The
natural period of the spar for a linear response is about
328 s for surge, 68 s for pitch and 27 s for heave without
accounting for viscous effects. In the simulation, a cosine
taper function is imposed on the force and moment in order
to reduce the transient effects produced by the impulsive
nature of loading. Unless mentioned otherwise, the taper
period is 50 s. The waves are assumed to propagate along
the x-axis. With this configuration, the spar moves only in
the xoz plane — surging, pitching and heaving. The follow-
ing discussions are based on the results of the special case,
but the methodology described in previous sections can be
applied to general cases with any degrees of freedom.

4.1. Convergence

The first case presented here for the response of the spar
uses incident monochromatic wave with the wave height
being H = 6 m and the period being T = 14 s, with and
without current. As mentioned previously, the accuracy of
the results may be controlled by the error tolerance variable
in the integration of the force and in the solution of the
equations of motion. Two values of this tolerances have
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Fig. 3. The response of the spar subjected to waves without current. (a) Surge at the centre of gravity. (b) Pitch.
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Fig. 4. The response of the spar subjected to wave with a constant current (0.5 m/s) (a) Surge at the centre of gravity. (b) Pitch.

been used: € = €, = 10~ and € =6 = 107 for this
case. The resultant surge and pitch motions are plotted in
Fig. 3 for the case without current and Fig. 4 for the case
with a constant current of 0.5 m/s with depth. It can be seen
that the difference between the results corresponding to
different error tolerance values is negligible, which implies
that 10~ may be small enough for these cases. It should be
noted that a suitable error tolerance does depend on the
wave, current and spar parameters, and therefore should
be chosen accordingly. All the results presented in the
following are obtained using €; = €, = 1073,

One interesting feature of the spar buoy responses is
touched on here. It concerns the persistence of the long
period oscillation of surge. The natural period in surge of
the example spar buoy used here is about 328 s. Fig. 5 shows
calculations carried out for a time scale of the order of
6000 s. The surge oscillation suggests very strongly that
the long period oscillation seen here may be due to transient
effects. This result reinforces the fact that damping in surge

Surge (m)

1.5

for spar buoys is so small that transient effects take a very
long time to die away. Due to this effect, any analysis aimed
at determining steady state parameters (such as motion spec-
trum) should be based on long periods of simulated or
experimental results. This long transient phenomenon is
not clearly identified in previous work on the spar buoys.

4.2. Comparison with experimental results

The published experimental results by Weggel et al. [5]
are used here to check numerical results obtained in this
work. Fig. 6 represents the pitch responses for two cases.
The taper period here is about 200 s in order to simulate the
start period in the experimental results. One case in this
figure is the same as the above. Another case is for the
spar subjected to bichromatic waves with periods and ampli-
tudes being (16s, 17.5s) and (6 m, 6 m), respectively.
Generally speaking, the numerical results have the same
trends as experimental ones and the agreement is fairly

| |
1000 2000

|
3000

| | |
4000 5000 6000

t (sec)

Fig. 5. The surge response over a longer time scale (all the parameters are the same as those in Fig. 3).
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Fig. 6. Comparison with experimental results for pitch of spar subjected to the mono- and bichromatic waves. (The experimental results are duplicated from

Weggel et al. [5]).

good, although slight differences do exist. There is also
similar good agreement for surge motion, and the figure is
not given here for brevity. The small differences between
the numerical solution and experiments may be due to the
effects of mean drift force, the mooring line drag force
(through coupling between the spar and mooring lines)
and other factors not considered here.

4.3. Investigation of non-linear forces

As mentioned earlier, the centrifugal force has not been
considered adequately yet in the research literature and the
axial divergent force is either ignored or shown to be small.
In this section, these two components and the point forces at
the immersed end of the spar are compared with the non-
linear component from the acceleration of the fluid. The last
is obtained by subtracting the linear part, which is the inte-
gration of the temporal acceleration of fluid at the mean
position (fixed position and length) of the spar, from the
total value by integrating the whole acceleration term on
the instantaneous position of the spar.

Fig. 7 presents the time histories of the non-linear surge
force components when the spar is excited by a monochro-
matic wave with H = 9 m and 7 = 16 s. Here the fa2 term
represents the non-linear force from acceleration, the fdiv
term is the axial divergent force, f2v represents the centri-
fugal force and fbp is the point force at the immersed end of

the spar. It can be seen that in this case each of the ampli-
tudes of fdiv and f2v are about 50% of that of fa2 while fbp
is about a third of fa2. This is one example that demonstrates
that fdiv, fdiv and fbp should be taken into account when
compared to fa2. The relative values of these components to
fa2 clearly depend on the wave parameters for any given
spar. In order to investigate the behaviour of these non-
linear forces in a more general case, the calculations and
comparisons have been carried out below for different wave
period and amplitudes.

In order to usefully compare the non-linear forces for
various cases, the oscillation heights of the forces are used
— measured from minimum to maximum during the steady
part of their time histories. The incident wave in these calcu-
lations is similar to that used above but the wave height and
period are varied. In Fig. 8, the various non-linear compo-
nents of the surge force corresponding to different wave
periods are plotted with the oscillation heights of the forces
non-dimensionalised by (1/2)pgRoH 2. The wave height used
to obtain the results is H = 9 m. It can be seen from Fig. 8
that in the range of shorter periods, fa2 dominates over the
other terms; and fdiv is smaller than fa2 but evidently larger
than the other two. With increase in wave period, however,
fa2 and fdiv decrease while the other terms tend to increase.
When the period is large, f2v can become as large as fa2
while fdiv can become much smaller than others. It can
clearly be seen that the importance of each non-linear
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Fig. 7. The time history of various non-linear forces (H =9 m and T = 16s).

component largely depends on the wave period, and that the
centrifugal force, the point force and the axial divergent
force may not always be negligible compared to fa2.

The relative magnitudes of the force term are examined as
a function of wave height next. Figs. 9 and 10 present the
variation of these forces with wave heights for periods of 14
and 16 s, respectively. As before, the forces are non-dimen-
sionalised by division with (1/2)pgR,H>. The axial
divergent force in Fig. 9 is larger than the centrifugal
force. In Fig. 10, however, the former is smaller than the
latter, and both are closer to fa2 than in Fig. 9. This relation-
ship continues to hold when the wave height increases.

Similar comparisons have also been made for the
moments corresponding to the above force components.
These comparisons show that the non-linear moment due
to the acceleration of the fluid largely dominates over the
other components. The reason may be due to the fact that the
non-linear part of fa2 is mainly concentrated on the area
near the water line, while the distribution of the other forces
such as fdiv and f2v are relatively flat along the spar. There-
fore, even though fdiv and f2v can be comparable to fa2, the
moments corresponding to the former may be much smaller
than those corresponding to the latter.

It should be noted that, for all the computed cases using



38 Q.W. Ma, M.H. Patel / Applied Ocean Research 23 (2001) 29-40

Nonlinear force components (nondimensionalised)

030 9 —o—fa2

\ —A—lg(%iv

o v

040 \ —&— fbp
030 \

y
0.20 \\\
0.10 .\\\
000 e

10 15 20 25 30

wave period (sec)

Fig. 8. Non-linear force components via wave period (H = 9 m).

monochromatic waves, the non-linear components oscillate
mainly at half the wave period, due to their second-order
dominated behaviour, and are very small compared to the
total forces.

As a consequence, these non-linear forces have a very
small effect at and around the usual wave period range of
from 4 to 20 s. However, there are also components of non-
linear forces that arise at frequencies given by the difference
in frequency components in the incident wave spectrum.
Effects of these non-linear forces at difference frequencies
are significant because they can excite responses in spar
surge and pitch motions which tend to have relatively
long natural periods compared to predominant wave peri-
ods. This surge and pitch response at resonance, when
excited by difference frequency wave components, is the
most critical design case for spar moorings. Also the reso-
nant response and consequential mooring line loads are
limited only by damping — making this a particularly
important parameter requiring accurate estimation in this
design case.

The non-linear forces at such difference frequencies are
examined next by considering a bichromatic incident wave.

4.4. Spar response to bichromatic waves
Here, the spar is excited by a sum of two monochromatic
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Fig. 9. Non-linear force components via wave height (wave period 14 s).

Nonlinear force components (nondimensionalised)

030

——fa2
— —&— —fdiv
-2y
—- = - fbp
0.20
0.10
| EEEERERIR Y SRR EEEERR Ly L =
- — = — == — W — e — e — e — e — - —n
0.00
9 12 15 18 21

wave height (m)

Fig. 10. Non-linear force components via wave height (wave period 16 s).

ocean waves with heights and periods expressed by (H;, H,)
and (T}, T,), respectively. In the first case, the wave para-
meters are taken as H; = H, = 12m, T, = 14.00 s and
T, = 13.43 s. The period corresponding to the difference
frequency of the two waves is about 330 s, which is close
to the natural period of surge motion with the catenary
moorings providing the necessary system stiffness. In
order to investigate the non-linear effects of the resultant
wave forces, Fourier analysis on the time history of the
surge motion is carried out to obtain the non-linear slow
motion (corresponding to the difference frequency wave).
The result is presented in Fig. 11, where ‘without f2v’
denotes that the surge force and pitching moment with the
centrifugal term are not included. A similar meaning is used
for the ‘without fdiv and f2v’ labels. It can be seen from this
figure that when the axial divergent and the centrifugal
forces are all included, the slow surge motion is much larger
than the motion without them. When the centrifugal force is
not included, the difference is also visible but is not as
marked. Similar results for the second case are presented
in Fig. 12, in which H; = H, = 12m, T; = 16.17 s and
T, = 17 s; and the corresponding period of the different
frequency is about 331 s. Again, when the axial divergent
and the centrifugal forces are not included, the slow surge is
much smaller than when the spar is excited by the force
calculated with the full formulation. In this case, however,
the influence of the centrifugal force on the surge motion is
more evident. These two figures demonstrate that the influ-
ence of fidv and f2v on the responses may be important in
many cases when the period corresponding to the difference
frequency of incident waves is close to a natural period of
the spar. The influence of fbp on the motions corresponding
to the above two cases has also been investigated but its
effect is not as large as that of fidv and f2v. This may be
due to the fact that the amplitude of fbp in these cases is
much smaller than those of fdiv and f2v. In addition,
whether with or without fdiv and f2v, pitch motions (not
presented here for brevity) differ very little from each other
in these cases. This is primarily because the period of the
non-linear forces is very different from that of the pitch
motion.
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Fig. 11. Low Frequency surge at the centre of gravity due to a bichromatic wave (H; = H, = 12m, T} = 14 s and T, = 13.43 ).

5. Conclusions

This paper has presented a formulation of the non-linear
forces acting on spar platforms that includes the effects of
some significant components that have been neglected in the
past. The formulation calculates ocean wave forces on a spar
based on Rainey [9,10] and combines these with a drag
force calculation used in the Morison equation. These forces
and the fully non-linear equations of motion have been
solved using a fifth order Range—Kutta technique with adap-
tive step size control.

Once this full formulation was set up, it has been used to
investigate the components of various non-linear forces on
the spar. Particular attention has been paid to three force
components — the so-called centrifugal force, the point
force at the spar lower end and an axial-divergence force.
The first two of these forces have not been included in
computation on spar buoys reported in the literature. The
last of these forces has been included although it has then

slow surge (m)

been shown to be small for the wave conditions used and
then neglected thereafter.

The work in this paper demonstrates that effects of the
centrifugal and axial-divergence force components may be
significant compared to those of the non-linear force due to
wave acceleration. It is also shown that the magnitudes of
these two forces components are strongly dependent on
wave conditions and may be small in some circumstances
but cannot be neglected in general. This point has a parti-
cular significance for the non-linear difference frequency
forces which have a disproportionate effect on spar horizon-
tal motions and mooring loads because they invariably are
in a long period range capable of exciting mooring system
resonance.

There is no significant difficulty or computational penalty
in including these three force components — the centrifugal
force, the point force at the lower end and the axial diver-
gence force. It is recommended that they are included as part
of the formulation for wave loads on all spar buoys.
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Fig. 12. Low frequency surge at the centre of gravity due to a bichromatic wave (7} = 16 s and 7, = 17.2 s).
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