Lecture Note 1

35. Overview of the topics and goals. Basic equations and linearization. Regular and irregular
waves. (F:3-26)

Lecturing

Main ‘hint” symbols used:

Hp: = Assumptions

[..] = Hintand examples

T > Information on topics not treated in detail
NB -> Attention please

F: - Faltinsen’s “sea loads” book

Background. (F:3-11)

The marine field is characterized by a broad variety of operating scenarios involving ships and
ocean structures: ships with different type, size and speeds, ranging from small fishing vessels (say
10 m long) to large container ships (say 400 m long), and speed varying greatly from very small
values up to high speed vessels (say with 60 knots speed); oil and gas platforms, freely-floating
with suitable mooring or dynamic positioning or alternatively tensioned or fixed to the sea floor;
floating airports, with very large horizontal dimensions with respect to the vertical ones;
aquaculture plants; wave energy devices; wind energy devices.

The activities involved are also various: transport, oil and gas production, infrastructures, sea food,
renewable energy. The trends in terms of activities strategies are affected by many factors. Among
them: the climate changes push toward greener alternative energy sources and greener transport,
while the reduction in fuel availability at shallow and finite waters pushes toward deeper water
exploitations (ocean space), new possible routes are opened by the planet warming involving arctic;
the probability of extreme weather conditions seems to be increased.

All these factors may need upgrade of the existing marine design and operational criteria. In this
framework it is crucial to characterize the behaviour of the specific marine unit in its environmental
conditions to ensure that the activities can be performed successfully, which means in safety,
effectively and efficiently (in terms of time/costs).
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One must identify the relevant sea conditions: waves, current, wind, and investigate their induced
loads and motions on the specific marine unit. This allows to establish and classify critical problems
and may guide toward design or operation strategy changes.
The course will examine the sea loads with applications to displacement ships, supported by
buoyancy and with Froude number Fn=U/v(gL)<0.4, and ocean platforms.
The steps will be:

1. to characterize the sea conditions (wave, current and wind),

2. to learn how to predict their induced loads and motions,

3. to learn how to identify critical problems and related criteria-response variables,

4. to learn how to minimize/control the response as required by regulations,

—> to learn how to design safe and effective operations.

Step 1: Sea conditions

Roughly speaking we will discuss the free-surface waves, i.e. perturbations propagating along the
sea surface. The perturbation oscillate with certain amplitudes in time within a certain range of
frequencies (periods), and in space within a certain range of wavelengths.

The currents will be characterized as steady incident water flows.

The winds will be characterized as steady plus fluctuating incident air flows.
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Step 2: Induced loads and motions

Coordinate system and rigid-body modes
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This requires a definition of the motions because different types of motions can be relevant for
different marine units. In the seakeeping, the oscillatory translational and rotational motions are
defined in the inertial reference frame Earth-fixed or translating with the vessel speed if any. They
are respectively: surge, sway, heave, roll, pitch and yaw (Fig. 1.3 F). The rotational vector can also
be indicated as R. The i-th component of the cross vector Rxr can be expressed as
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2
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3
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-1 for 3@2
According to the involved fluid-vessel interactions, the relevant motion features may vary. We
distinguish between:
1) wave-frequency motion,
2) high-frequency motion,
3) slow-drift motion and
4 mean drift motion.
The wave-frequency motion is mainly linearly excited in the wave-frequency range of significant
wave energy in the sea spectrum. Typically we expect that the relevant incident-wave periods are
much greater than 1 sec, corresponding to wavelength about 1.5 m, and much smaller than 1 min,
corresponding to wavelength about 6km. The periods of interest are usually around O(10sec).
The other types of motions are caused by nonlinear effects because involve frequencies outside the
excitation frequencies and non-zero mean values of the motionsor . What said for in terms of
motions 1)-4) can be said for the induced loads.
We will examine greatly 1) and then discuss the causes and simplified predictions for 2)-4).

(Rxr), = &y R;r, with ¢, is the permutation tensorg,, =

NB: Linear system=the output is proportional to the input, the output of a linear combination of
inputs is a linear combination of the outputs to the single inputs—> linear superposition principle is
valid. It means that: in transient conditions, small variations in the initial conditions result in small
changes in the output and can not modify the qualitative behaviour of the output. In steady-state
conditions, if the input oscillates with a given period, the output will oscillate with the same period.
Nonlinear system=the output depends nonlinearly on the input, so all features above are lost due to
nonlinear interactions.

The relative importance of 1) to 4) types of response depends on the specific marine unit. In
particular, the natural periods identify the resonance conditions in the different degrees of freedom.
The marine units will have largest motion amplitude near resonance and the amplitude will depend
on the damping level.

If the natural period of a certain degree of freedom (e.g. heave) is within the wave-frequency range
then it can be excited, as 1), by linear wave-structure interactions and will dominate the behaviour.
However, if the motions become large enough nonlinear effects may become relevant and excite
high- and/or low-frequency motions, i.e. 2) and 3), and mean values of the response.

I the natural period is outside the wave-frequency range, it can only be excited by nonlinear effects.
The natural periods vary greatly with the marine units type, as well as the physical mechanisms that
excite them or damp out the related oscillation amplitudes. As an example Table F:1.1. examines
the heave natural periods for a wide range of marine units.

We go from <1s for a high-speed vessel SES to >20s for semi-submersibles and high-speed vessel
SWATH.

The value of the natural periods depends on the restoring sources.

In particular, the air-cushioning for the SES and elasticity of tethers result in small natural periods
relative to relevant wave periods, the buoyancy connected with the waterplane area for the other
units examined results in natural periods within the relevant wave periods ranges or greater.
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The excitation mechanisms of the natural periods, i.e. resonance conditions, are linear (within the
incident-wave frequency) or nonlinear (otherwise).

The amplitude of the motions at resonance depends on the damping mechanisms. The may be
physical, provided by wave radiation and viscous effects, or artificial, provided by proper control
systems. In general the higher the vessel speed the more control systems are require. The larger the
amplitude the more important the nonlinear effects involved.

Natural heave periods

SES TLP Ship Semi-sub SWATH

=

LT ~==

s saseam

JE

T,>20s

T,<1s

T ~+LI15 ;
=4-16s T,>20s
Table F:1.1

From Table F:1.1. in the vertical plane, typically the wave-frequency motions are relevant for
conventional ships, i.e.7, = O(10sec). High-frequency motions can be important for TLPs

platforms: examples are the ringing and springing of TLPs due to resonance in the vertical motions.
For such platforms the restoring forces are provided by the tethers and the mass forces of the
platform. The natural periods for the vertical modes are 2-4 sec, i.e. smaller than relevant wave
periods. It means they are excited by nonlinear effects as said.

Ringing is transient oscillations, while springing is steady-state oscillations. In terms of design,
ringing is relevant for the tethers’ extreme tension and springing for the tethers fatigue.
Low-frequency motions can be important for the semisubmersibles since the natural period is
>20sec. Typically slow-drift and mean drift motion can be caused by nonlinear effects connected
with wave, current or wind interactions with the marine unit. For mooring systems, they may more-
easily occur in the horizontal plane since the restoring forces are given by the mooring lines and by
masses forces of the involved platform. This leads to typical natural periods of 1-2 min.

Let us assume that we have a marine unit in a certain region of the sea, which can be characterized
by waves, current, wind. The interaction with the vessel induces loads (and motions) on the body
which depend on the relative dimensions and features of the factors involved. For example,
focusing on ocean structures and assuming that D is the typical dimension of the structure and A is a
measure of the incoming-wave length. Fig. F:1.6 provides a qualitative hydrodynamic classification
of the marine structures using a circular cylinder as representative of structural elements and
examining the dominant loads.

Near the wave-breaking limit nonlinear effects become important. Above this limit waves can easily
break during the interaction with the structure. Below this limit:

For A/D<=5 diffraction loads are important, i.e. those induced by the incident waves and their
modification (diffraction) due to the structure.




For A/D>=5 (small-volume structures) the incident waves tend to be unaffected by the structure and
long-wave approximation can be used, which means the induced loads are partially connected with
the acceleration (mass loads) and partially with the velocity (viscous loads) of the incident waves at
the center of the body, as the body was not there. Mass loads, i.e. proportional to acceleration (and
so to the mass plus added mass term), are in general dominant as long as the incoming wave
steepness H/D <~10. If H/D <~10, for sufficiently large A/D viscous loads, i.e. connected with
viscosity and flow separation and wake, varying as the squared power of the wave velocity, become
dominant. As A/D oo the wave behaves similarly as a slow-varying current.

Classification of wave forces

H
D =4
e
-
A uDa Viscous
tx10 777777TITIrrrrrs 7 _forces
Wave breaking
limit
Mass forces
1
1
1
Diffraction! A
D
~5

Fig. F:1.6

Step 3: Critical problems and related criteria-response variables

One has to identify the critical problems for the given vessel, find a way to predict their features and
consequences and identify proper criteria-response variables associated with them.
Minimization/control criteria of such variables can provide safe and successful design and
operations. Recognized seakeeping and wave loads problems/response variables for ships are (Fig.
F:1.4): local motions, accelerations, slamming, water on deck, breaking waves, sloshing, wave
bending moment.

Hydrodynamic Problems

Overview

Slamming

Water on deck

Liquid sloshing in tanks

Effect of breaking waves

Fig. F:1.4

5



They may be dangerous for local/global safety, comfort and performance.

Generally speaking, the local water-vehicle relative motions represent important response variables,
for example occurrence of slamming and water on deck phenomena can be assessed through them.
Also accelerations may be an important response variable because there are limits that must be
satisfied to ensure comfort/proper onboard work conditions/safety. Such limits may vary according
to the type of vessel and of work activities. In general. accelerations associated with longer periods
are more difficult to stand with, so the limits for large ships are stricter than for smaller vessels for
which typical natural periods are shorter.

Roll motion is of concern for different vessels, for example is relevant in terms of capsizing
occurrence. Mechanisms to limit the roll amplitude are given by: bilge keels, anti-roll tanks and
active fins.

Other causes of capsizing could be: breaking waves hitting the side of the vessel; following waves
with phase velocity similar to the vessel speed inducing unstable route change (broaching).

Sloshing may be relevant any time there is a confinement of liquid (onboard tanks, ship decks with
bulwark). It is a resonance phenomenon which is excited when the wave period is close to the
natural period of the confinement region (i.e. the tank) and may lead to large fluid motions due to
the limited damping associated with the fluid motion. Violent sloshing may lead to slamming, wave
breaking and other complex scenarios which may be connected with high local pressures on the
structures as well as large global loads. Both relevant for the design.

For large ships, another issue is the excitation of wave bending moment which may lead to
whipping and springing, respectively, transient and steady-state elastic oscillations of the vehicle.
They can be associated with linear and nonlinear excitation mechanisms.

Ship motions and induced sea loads may lead to voluntary and involuntary speed reduction of the
vessel. The former is decided as operational strategy to ensure safety, comfort, operations on board.
The latter is a consequence of reduced performance, for instance due to off-regime of the propeller
in waves, added resistance in waves.

Step 4: Minimization/control criteria

The response variables of interest may vary according to the vessel type. The following figure
documents the operational criteria used up-to-now for ships with different size, features and
activities.

Bottom Bow flare Deck Vertical Vertical Roll Propeller
slamming slamming wetness  accel. motion emerg.
= : e ! fgj
--___-—In ___,-'—'['—._ - :'.:___\_\_":‘:- = F) .-',._; . = |
p—— | *"H|_H g AN ]
p— g - - ) - =L
Large laden Yes
oil/bulk
carrier | ballast Yes Yes
Large container Yes Yes Yes Yes
vessel
Ge_neral cargo Yes Yes Yes Yes
ship
Ro-Ro Yes Yes Yes Yes
Passenger vessel Yes Yes Yes Yes




What are our tools? How can we predict motions/loads and take them under control?

The tools are: model and full scale experiments, analytical solutions, engineering tools (established
methods like strip theory), and more general numerical solutions (Computational Fluid Dynamic,
CFD, methods).

Experiments remain still the major tool. Analytical solutions when available are very useful. CFD
approach is getting more and more popular.

Tool Advantages Disadvantages
Complex geometries Cost
Experiments Visualization Reliability
Local and global quantities Scaling (if with models)
Analytical solutions Fast & cheap g.' mplified modgls
imple geometries
Engineering tools Relatively _fast & ghegp Wide,_but not enough, mod_els
Well recognized reliability Relatively simple geometries
Complex models
CED methods Complex geor_netries Reliability
Visualization Costs

Local and global quantities

Assumptions and basic equations. (F:13-17)

The water is considered continuous and with uniform density p. For the problems of interest the
temperature is assumed uniform and constant and the fluid evolution can be fully described once
estimated the velocity V(r,z) and pressure p(r,¢) fields. Assuming a Cartesian reference frame (x,y,z),
alternative conventions are: r=(x,y,z)= xi+yj+zk=x;e1+ x,€,+ x363 , V= (u,v,w)=(us,uzu;3). In
alternative to r we will also use P.

z, ke

Y18
X, i,e;

To solve the problem we need to identify:
Governing Equations + Boundary Conditions + Initial Conditions.

velocity (V) and pressure (p) > we need 1 vectorial (3 scalar in3D) + 1 scalar equations.

Governing Equations:

1) Conservation of fluid mass —> the fluid mass inside any volume Q does not change in time
-> formally as mass =m=const

2) Conservation of fluid momentum-> the fluid momentum changes inside Q balance the forces

acting on the volume and along its enclosing surface 02
> formally as ma = F (Newton 2" Law)

Basic assumptions:




The fluid is inviscid in_irrotational motion and incompressible—> potential flow theory

o Inviscid:
means zero viscosity pu=0, i.e. the tangential stresses are null.
- >0
I u=U>0
> “inviscid”
=0 »u 0
z[ = U0 u=0 water
S ———]
xX,u
u=0 water 2 >0
I u=U>0 o "
. viscous
uiz) = water tangential stress:
T =/

o Irrotational: means that locally the fluid does not tend to rotate - the vorticity ®=0 =
o=VxV=0

[For a rigid body V=U+wrxr 2> ®=2mg= twice the angular velocity]

o Incompressible: means that locally the fluid volume does not change

S V.V=0 [V.V:a_”+@+a—w] N
ox 0Oy Oz

on

It means that the net flux across any 0Q is zero, i.e. the flux that enters in Q ( V-n <0) equals the
flux going out from Q (V-n >0).

Consequences of the assumptions:

V>\/=0 = V can be written as the gradient of a scalar variable,

ie.V=Vp= %i +%j +%k
ox Oy oz
with ¢ a scalar called velocity potential defined unless a constant.

The pressure can be obtained from the Bernoulli eq.:

o4 1 ,
oy == por—p? 2 (v
PP, =ZpE= P Zp( 9)

dynamic linear and quadratic

static

NB: The dynamic linear part is very important from practical perspective, i.e. in terms of induced
loads and motions.



Advantage: we need to find only ¢ (scalar) to solve for V and p
—> 1 scalar governing eq. instead of 1 vectorial and 1 scalar.

Problem for ¢:

Governing eq:
V-(Vg)=0->V?p=0 inQ (F:2.3) Laplace eq.

Boundary conditions:

Sea-bottom kinematic condition: impermeability condition

o¢ =0 on Ssr (F:2.5)
on

Body kinematic condition: impermeability condition

%: Vg -n onSz (F:2.6)
on

—
body velocity

Free-surface kinematic condition: fluid particles on Srs, z—¢(x,y,t)=0,

DE=¢) o, 00 _0C 0008 060C \ _ r(xyr) (F:2.10)
Dt 0z Ot Ox Ox Oy Oy

nonlinear

Free-surface dynamic condition: pressure equal to ambient pressure p,

o8 1|(o4\ (09) (04Y|_ ~ .
gé’+5+§{(5j +(gj +[gj ]0 on z=¢(x,y,t) (F:2.11)

nonlinear

Far-field condition: waves are outgoing

Two conditions are necessary on Sgs because £ 'is an unknown as ¢.

remain there

The problem depends on time through conditions (F:2.6), (F:2.10) and (F:2.11) and is nonlinear due

to (F:2.10) and (F:2.11).

Linearization of the problem

Assuming ¢ as measure of the problem nonlinearities, i.e. wave nonlinearities, the solution can be

expressed as
p=de+d,e* + ¢ +........

C=Ce+C8" +8e8 +



substituting these expressions in the governing equation and boundary conditions and using Taylor
expansion of the boundary conditions around the mean boundary configuration (i.e. body motions
and free-surface deformations are expressed as power functions of &) we can find the problems for
each solution order.

Assuming & small and neglecting terms O(€") with n>1, conditions (F:2.10) and (F:2.11) can be
linearized and applied at the mean free surface z=0

NB: A consequence of linear theory is that the response (output), i.e. body-motion amplitude, is
proportional to the excitation (input), i.e. incident-wave amplitude.

99 _9¢ onz=0 (F:2.12)

oz Ot
gé’+%:0 onz=0 (F:2.13)

Differentiating (F:2.13) with respect to time and substituting in (F:2.12), the combined free-surface
condition is obtained:

o’ 0¢
—+o—=00nz=0 (F:2.14
Py P =0 (F:214)

In steady-state conditions, the solution oscillates with the incoming-wave frequency ®, and
condition (F:2.14) becomes
—a)2¢+g%=0 (F:2.15)
0z
Moreover space and time variables can be separated:
it

p(x,y,z,t) =R o(x,y,z) e

——

space depen dence'ime dependence

NB: In linear conditions and steady-state conditions the ‘response’ (output) oscillates with the
frequency of the ‘disturbance’ (input).

This means that it is possible to avoid the time dependence from the problem and solve a one-shot
problem only dependent from o (frequency domain analysis). In nonlinear conditions and/or in
transient conditions the problem must be solved in time (time domain analysis).

The environmental conditions of interest are: waves, currents and wind. We are interested to
estimate the loads (and motions) induced by them.

Environment
The marine vehicles are subjected generally to an environment made of incident waves (generated
far from them), wind and current. So we must estimate the related induced loads (and motions).

Incident regular waves (F:17-23)
Hp: Incoming free-surface regular gravity linear waves propagating in deep-water conditions.
Incident: means generated far away
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2D/planar waves: means propagating along a plane/direction

Free-surface waves: means propagating along the sea surface and null far from it

Gravity waves: means governed by gravity, i.e. 2>>1cm (surface tension negligible)

Regular: means oscillating with a certain frequency @ = 2z/T and then with a certain wavelength A

A=2n/k

Propagating: means the wave fronts (surfaces with constant phase, e.g. phase=n/2 €<-> maximum
wave elevation <-> wave peaks) move with a certain speed, called phase velocity, ¢

Deep-water: means in a region with very large water depth, i.e. 41 2

Linear: means small &

HIA or k{,=nHIA are a measure of the ‘steepness’ of the waves, i.e. of the wave

nonlinearities, so that can be used as parameter ¢.

NB: Since the steepness is o ¢, the nonlinearities are also expressed in powers of ¢ however the
steepness is more appropriate to express the nonlinearities within a perturbation method.

Hp: Waves propagating in x direction, with wavelength A and amplitude ¢,.

We want to find the solution for ¢ representing a wave in these conditions>We must find what
features the waves must have to satisfy the problem:

Vip=0in2 (a)
—a)2¢+g% =0 on z=0 (b)
0z
& Vo —0 as z— —oo (c) [far field condition]

We do not find systematically the solution but we note that:
. Condition (c) is satisfied by ¢
. Eq. (a) is satisfied by e“[4cos kx + Bsin kx]
> k?eF[Acoskx + Bsin kx] - k*e* [4coskx + Bsin kx| =0
. Oscillation with frequency e is ensured by cos(awt +a) with a a phase
« So the solution could be written generally as
¢ = e [Acoskx + Bsin kx]cos(er + &) (d)
« Substituting this in condition (b) we have a compatibility between space and time parameters:
w® = gk [dispersion relationship]
i.e. waves with a certain length must oscillate with a certain period.
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Expression (d) in general is not a propagating but a standing wave.

@@

standing wave propagating wave

to have a propagating wave space and time variations must be combined as
¢ = Ce* cos(at —kx + y) (e)
In this way ar—kx+y = const = kx=wt—y-const indicates a wave front whose position x
increases in time, i.e. the front propagates along the positive x with a speed
c=dx/dt=aw/k (phase speed).

¢ = Ce” COS(a)t + kx + 7/) is instead the solution for a wave propagating along the negative x.

Inserting (e) in the dynamic free-surface condition

£ = _1d9 _ @sin(wt —kx+y)s0 Calg=4, > C=Cig/o

gotl., &
so the solution is found.

T For waves with a generic direction 4 with respect to x
> wt—kx+y =const becomes ot —K-r+y =const with k=(kcosp ksinf) and r=(x,y)

T For waves in finite water depth /
> the z dependence " becomes coshk(h+z)/coshkzh

- the dispersion relation becomes w® = gk tanh k#

Table F:2.1 gives the behaviour of the different variables in deep and water depth. They have in
general maximum at different locations. Fig. F:2.1 shows this in terms of the wave elevation,
pressure, velocity and acceleration along a wavelength and at a generic depth. We see that the
dynamic pressure is negative under a trough and is positive under a crest. The same is true for u
which then is in the wave-propagation direction under a crest and the opposite under a trough. The
acceleration is greatest in magnitude under a node.

WAVE PROFILE GIVEN TIME INSTANT
: iy

OYNAMIC
PRESSURE I

x-come v
VELOU"EPT t

N
/\
TN
2-COMPONENT \_/
N

VELOCITY

X-COMPONENT \_/
ACCELERATION R

2- (OMPOKENT
utumnunT[__\

12\_/

Fig. 2,1, \!ﬁave _e]cvmion, pressure, velocity and acceleration in long-crested
b waves propagating along the positive x-axis (see Table




Fig. F:2.3 discusses the pressure behaviour according to linear theory. Since the pressure is given
relative the atmospheric pressure it must go to zero at the free surface, which means that the static
and dynamic contributions must balance each other. This is exactly satisfied at a crest but not at a

trough, there a higher-order error, O(&") with n>1, is committed.

—— e T —
o %
——— e -
"Hydrostatic" pressure ,*1 .
PN Total pressure
I , :
[ x
g

rg¢,
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= ——
&

/
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| Linear dynamic préssure (—pog/ ot)
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Fig. F:2.3

"Hydrostatic" pressure
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Total pressure |
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|
Linear dynamic pressure(—pog/ot) |

rg¢,

NB: At a fixed point the fluid velocity has zero mean value but if we follow the fluid particle in its
motion consistent with linear theory, then the fluid particle is drifted in time in the wave-
propagation direction with a velocity called Stokes drift velocity which is a second-order variable,

Ie. g“aza)k exp(2kz,), with z, the particle position when there are no waves, see Fig. F:2.4.

ROy

1

ta0  tall .

L TLUNY 7.
W W

lo=2m
A=100m
2, = =041

T3/

-

Fig. 2.4. Trajectory of a fluid particle in sinusoidal waves computed from

first-order {linear) velocity potential (§, = wave amplitude, A =
wavelength, 7, = z-coordinate of fluid particle at rest.) {Ogilvie,

1983.)
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The waves are associated with energy. The mean (potential and kinetic) wave energy in a
wavelength and per unit width is

2
FoP8s. A
2
2
The mean wave-energy density is % = %
E travels with a speed c¢,=0d4/JT" =dw/dk (group velocity) thatis ¢, = %% in deep water.

a)Z:gk
An important concept for practical application is the wave power, given by the wave-energy density
multiplied by the wave-energy speed (group velocity):

rs. g
2 2w

P, =

So we have three different velocities associated with the waves:
1) The fluid velocity Vg=associated with an orbital path, circular in deep water
2) The phase velocity ¢ = of the propagating wave fronts
3) The group velocity c,=of the wave energy

NB: Regular incident waves are far from being similar to how ocean waves appear in reality.
However they can be useful to describe more general waves under the assumption of linear
conditions due to superposition principle.

Incident long-crested irregular waves (F:23-27,29-31)
Long-crested=the wave energy is propagating in one dimension, i.e. 2D waves
Irregular= with energy within a certain range of frequencies

An important consequence of linear conditions is that superposition principle is valid, i.e. the
problem can be split in its single elements.

In our case assuming an irregular wave with a wave spectrum S(w) (see fig. F:2.5)

, How energy in a wave spectrum can
(@)(m*s)  pe distributed to individual regular
j wave components

s
Wave ; ;
spectrum Time domain. 15.0

Random elevation Number of wave

components N=22

Ao = (@ — @iy )| N

max

H,,5=8m,T,=10s

‘ ) s
' 75 |
Regular
/ wave components.
‘ Random phases. |
R4

Fig. F:2.5

Wave amplitude of wave
component j:

A, = JZs(a),)Aa)

(Umax

1

Ll

]

L ,l' - c/)(md S’l)
@ 0.75 1.5

The energy in the spectrum can be split in a finite (large) number of,regular wave components, i.e.

N _ S(w)
¢=24, sinfw, i~k x+g,) (1)
= 05473 0.547=S(w)dw,

J
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4, - %Ajz = S(w)Aw to preserve the wave energy

e ¢ is arandom phase to recover a statistic behaviour in time-> they are independent from
each other

e  and k; are linked through the dispersion relation

e The wave elevation is Gaussian distributed

e The probability density function for the maxima of £ can be approximated by a Rayleigh
distribution.

Similarly we can obtain the velocity and other wave quantities.

So we can study the response to irregular waves as the sum of the responses to regular waves.

There are different recommendations in terms of S(w) to describe properly ocean waves:
Examples are (see Fig. F:2.6)

. Pierson-Moskowitz (used for Mediterranean sea) and

« JONSWAP (used for the North sea).

0040 r-' B

0035 |

Shu)

[
|
l
|

0025 -
0020
0015 |-
0010 - [\ .

0005 + N ' .
/ N

0 44 i ) 1 ¢
0 05 10 15 20 ¢

=4 ' : |
{T,=10s1

Fig. 2.6. Examples of wave spectra. (H} = significant wave height, T, = me
wave period). Modified Pierson-Moskowitz spectrum (see
equation (2.24)), JONSWAP spectrum ———— (see equation
(2.30)).

The features of the spectrum In terms ot width, symmetry, nonlinearities, are given by the spectrum
moments

m, = Ia)kS(a))da)
0

2

my 1S also known as variance ¢ and its square-root (standard deviation) gives the deviation from

the mean value of the spectrum.
As for the regular waves, we can define relevant wave periods and heights, i.e.

T, =2mmy I m,

T, =2x+m,/m, (mean wave period)
T, (corresponding to the peak frequency of the spectrum, also known as modal period)
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H,,, = significant wave height=mean of the one third highest waves =4,/m, for Gaussian
distribution.

16



Marine Field: Scenarios
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Coordinate system and rigid-body modes
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Classification of wave forces

H
D c—
—f
/_\E/"‘\__/""x_
- :
A D, Viscous
~10 ol forces
Wave breaking
limit
Mass forces
1
|
1
iffraction!

O~

~5

Hydrodynamic Problems

Overview

Stamming

Water on deck -
Liquid sloshing in tanks

Effect of breaking waves

Operational criteria for ships

Bottom Bow flare Deck Vertical Vertical Roll Propeller
slamming slamming wetness  accel. motion emerg.
[
' —5
Ny 3 ] =
. ™= - = i -
Large laden Yes
oil/bulk
carrier | ballast Yes Yes
Large container Yes Yes Yes Yes
vessel
General cargo Yes Yes Yes Yes
ship
Ro-Ro Yes Yes Yes Yes
Passenger vessel Yes Yes Yes Yes
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WAVE PROFILE GIVEN TIME INSTANT

A —=
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VELDUITY B /.
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Fig, 2.1. “F‘nve _el-cvnion, pressure, velocity and acceleration in long-crested
al waves p along the positive x-axis (sze Table

2.1).

Pressure distribution in regular linear waves

"Hydrostatic" pressure
Y p SR

_ N _— T
"Hydrostatic" pressure ) ‘[\\
pel, [ Total pressure |
| rge, Total pressure, /\‘/
r! pg¢, |
|
ke N Linear dynamic pressure(—pdp/0t) _d
| Linear dynamic présgure(—pdp/ or) gl |
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| |
| |
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[ |
| [
E%z La=2m
a A=100m
1 2 =-641m
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—| [} T 17 x/%a

Fig. 2.4. Trajectory of a fluid particle in sinusoidal waves computed from
first-order (linear) velocity potential (§, = wave amplitude, A =

wavalenath g = suranrdinate of Auid narticle at recr ) (Nailuia
WAVEICRELY, Jp = 2-C00IQINAe O DIUIC parlicie at resl.) (LFghvig,

21




, How energy in a wave spectrum can
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Fig. 2.6. Examples of wave spectra. (Fy = significant wave height, 7', = me
wave period). Modified Pierson—Moskowitz spectrum (see
equation (2.24)), J ONSWﬂpectmm ——— (see equation
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Lecture Note 2

36. Waves (continuation). Wind. Current. Radiation and diffraction problems. Excitation
loads. Added-mass and damping: physical meaning, strip-theory. (F:27-34,39-49,58-66)

Incident long-crested irregular waves (F:27,29-31)

| Summary: Long-crested irregular waves, superposition principle, periods, significant wave-height. |

The peak values of the wave elevation are an important parameter to examine for safe design and
operations. If a Gaussian distribution (spectrum bell shaped) is a good approximation for the wave
process, the Rayleigh distribution is considered a good a approximation for the probability density
function of the maxima (peak values), say A, of the wave elevation, i.e.

2
p(4) :iexp(— 4 ] (F:2.32)
m, 2m,
The integration of it in a certain interval of maxima will provide the probability that the peak can
have value in that interval.

The most probable largest value A4, during a ‘short-term’ time ¢ is then

A = |2m logt  (F:2.35)
T2

The analysis so far considered is called as ‘short-term’ sea state. If the features of the spectrum
change in time one talks about long-term sea state.
In this case the features of the sea state change in time, i.e. T and H;.

A

QO
76(1) ' Hl/3(l)

AN :

time

7-6(2) , H1/3(2)

[0 [0

This means that different sea states can alternate, and the persistence of re-occurrence of a certain
sea state will depend on its probability, the greater the probability, the longer one can expect that
sea state. This means that we can sum up the short-term prediction for each sea state, weighted by
the probability of the sea state, to get the long-term prediction. To find the probability that a certain
combination (7, , H,;) occurs, joint probability, we need the scatter diagram. Table F:2.2 gives an
example.
In the table, you see the ranges of periods and significant wave heights which have a probability of
occurrence. The numbers in the table give the occurrence of 7, and H;; and the sum of all
possible occurrences here is 100001, so the probability associated wit a certain occurrence is given
by the occurrence divided by the sum of the occurrences.
Examples of application of table F:2.2:

27

100001
2. If you want the probability for a certain H,,; for any value of the period, then you must sum
all occurrences in the raw of that H,; and divide by the sum. Similarly is you want the

1. The joint probability for 6m<H,;;<7m and T)=9sec is p; = =~ 0.00027
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probability for a certain 7, for any value of the significant wave height, then you must sum
all occurrences in the column of that 7, and divide by the sum.
Ex., the probability for

(8636 + 32155+ 25792 + 15442 + 9118 + 4839)

- Hiz<6mis p, ~0.96
RO 100001
- Hyy>6m iSp21_0.96:2329+1028+419+160+57+19+6+120.04
’ 100001

Hp: a certain criterion to be satisfied H;; must be <6m . From the table
the criterion is not satisfied for 4% of the time during a year.

. 15442 + 9118+ 4839
-3m< H;3<6mis p, z( ) =0.29
100001
Table 2.2. Joint frequency of significant wave height and spectral peak period. Representative data for the northern North Sea
Significant
wave height
(m)(upper  Spectral peak period (s)
limit of
interval) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 Sum
1 59 403 1061 1569 1634 1362 982 643 395 232 132 74 41 22 12 7 4 2 2 8636
2 9 212 1233 3223 5106 5814 5284 4102 2846 1821 1098 634 355 194 105 56 30 16 17 32155
3 0 8 146 831 2295 3896 4707 4456 3531 2452 1543 901 497 263 135 67 33 16 15 25792
4 0 0 6 85 481 1371 2406 2960 2796 2163 1437 849 458 231 110 50 22 10 7 15442
5 0 0 [1] 4 57 315 898 1564 1879 1696 1228 748 398 191 84 35 13 5 3 9118
6 0 0 0 0 3 39 207 571 950 1069 885 575 309 142 58 21 7 2 1 4339
7 0 0 0 0 0 2 27 136 347 528 533 387 27 98 37 12 4 1 0 2329
8 0 0 0 0 0 0 2 20 88 197 261 226 138 64 23 7 2 0 0 1028
9 0 0 0 0 0 0 0 2 15 54 101 111 78 39 14 4 1 0 0 419
10 0 0 0 0 0 0 0 0 2 11 30 4 3¢ 2 8 2 1 0 0 160
11 0 ] 1] 0 0 0 0 0 0 2 7 15 16 11 5 1 0 0 0 57
12 [ ] 0 L] 0 0 0 0 0 0 1 4 6 5 2 1 00 0 19
13 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 0o 0 0 0 6
14 [ ] 0 0 0 0 0 0 0 0 0 0 0 1 o 0 0 0 0 1
15 0 ¢ 0 ] 0 0 0 0 0 0 0 0 0 o 0 ¢ 0 0 0 0
Sum 68 623 2446 5712 9576 12799 14513 14454 12849 10225 7256 4570 2554 1285 594 263 117 52 45 100001

| NB: Table F:2.2 does not provide information on the duration of a certain sea state.

We have learned that for a regular wave the wave power is

wzzgk
Y P R

B, in Wim=N/s
2 2k 2 2w
— = ——
mean group in mls
energy velocity Nilm
density

This can be extended for irregular waves:
In short-term perspective, assuming that the spectrum S(w) is split in elementary interval wide dw
each regular-wave will contribute to the wave-power of the sea state with

pgAzingZS(a))da)é
2 2w 2 2w

Summing all contributions, i.e. integrating from 0 to oo we find the power as

P, =,0LZT S(w)dw 1)

2, o
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So for instance for the Pierson-Moskovitz spectrum we have
P, =0.005535pg2H, T,

In long-term perspective, the spectrum features, i.e. H,,, and T, will vary in time, so expression
(1) contributes proportionally with the joint probability, say p, , of H,,; and T,.Summing up all
contributions the power will be

FW = ZZPW (HlIS(i)’Y?L(j))pij
i

To evaluate the wave power on a long-term perspective we need then the scatter diagram. An
example is given in the following figure.

Long-term statistics for available wave power in a specific area

We need to know the scatter diagram

T, [seconds] —
Hy/s [m] |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sum
0.5 0 0 15 70 104 | 85 50 24 10 4 1 1 0 0 0 0 364
1 0 0 17 51 65 49 27 12 5 2 1 0 0 0 0 230
1.5 0 0 4 24 44 43 28 13 5 2 1 0 0 0 164
2 0 0 0 1 9 24 |30 |22 2 |5 2 1 0 0 0 0 106
25 0 0 0 0 3 11 18 16 9 4 1 1 0 0 0 0 63
3 0 0 0 0 v s 10 10 6 3 1 0 0 0 0 0 36
35 0 0 0 o Ao 2 5 5 4 2 1 0 0 0 0 0 19
4 0 0 0 o, |o 1 2 5 2 1 1 0 0 0 0 0 10
45 0 0 0 K 0 0 1 1 1 1 0 0 0 0 0 0 4
5 0 0 o /o ] 0 0 1 1 0 0 0 0 0 0 0 2
55 0 o ,o'/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 o Jfo 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum 0 o |16 92 192 [ 237 | 208 | 137 |70 30 11 5 0 L _0----1998
P, = —— for H . =2m;T,=6s F, = F\Hys. 1) Py
l] 998__”___,__—»«“’1%3 ! 2 : .

:iO.JSkW/m

Incident short-crested irregular waves (F:27-29)
Short-crested= the wave spectrum varies with direction 6, i.e. S(w, ).

This mean that elementary waves in the spectrum have different propagation direction, and we can
decompose the waves as

¢ = Z Ajksin(a)jt—ijcosBk—kjycossk+gjk) (1)

k=1

.MZ

Il
LN

J

o A, > %Ajkz =S(®,,9,)Am,A, to preserve the wave energy

e & isarandom phase to recover a statistic behaviour in time
e  and k; are linked through the dispersion relation
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e @ is the direction relative to x of wave propagation

wind (F:31-33)
Also the wind is typically described statistically with a spectrum that can vary in time and in space
moving far from the sea level. One can identify

« amean wind responsible for mean loads and

« gusts responsible for transient (even resonant) loads.

NB: A one-hour mean wind speed at 10 m above the sea level U,, for design of offshore structures
in North Sea is 40m/s.

Current (F:33-34)

The 10™ 1SSC distinguishes 6 current contributions:

U, due to tides [depends on location]

U,, due to local wind

U, due to Stokes drift (see eq. (F:2.21)) [can be relevant and is a Lagrangian contribution]
U,, due to major ocean circulation

User.up due to set-up and storm phenomena

U,due to local density variations

| NB: A total current velocity U for design of offshore structures in North Sea is 1m/s. |

We will now discuss the “wave-frequency” loads/motions within the linear potential-flow theory,
the sea environment is described by planar regular waves.

Loads
Under our assumptions of inviscid fluid, the forces and moments are obtained by integrating the
pressure along the wetted surface of the body:

F:.fpndS M=J‘pr><ndS

Sp S

[ 1

| NB: The normal vector is directed inside the body, in the opposite case there is ‘-* in the formula. |

The linear loads are obtained integrating the pressure

o¢
p=—p —pgz
ot ——
—— — hydrostatic

dynamic=F,

The hydrostatic part must be integrated on the instantaneous body surface to include all linear
terms, i.e. up to ~O(¢,), the dynamic part which is ~O(¢,), along the mean body wetted surface S .
We now focus on Pp: Using the notation with the generalized normal vector

B n, fork=12,3
- (rxn), , fork=4,5,6

we get the generalized forces
¢
FE()=—p | —=ndS k=1.6
(D) PS:!.E or n

n

(i.e. forces for £=1,2,3 and moments for k=4,5,6).
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Radiation and diffraction problems (F:39-41)
Hp: Linear potential flow theory. Deep water. Regular incoming waves. Steady-state conditions.
Zero forward speed.

incoming waves =z lg

elncoming waves:
For the incoming-wave velocity potential, we found the solution

¢ = (g¢, | w)e” cos(wt —k-r) = 9{{¢0(x1y’z)eim}

Here the additional phase was set to zero and we used exp(ia) =cosa +iSin« .
{4 =34
AeC ~

Linearity+ steady state conditions >  #(x, y,2,1) = gJq{(/>(x,y,2)e"””}
-> the problem can be solved in ¢ as we have discussed previously [analysis in frequency domain]

Linearity = the superposition principle is valid and the potential can be decomposed in terms of the
fundamental physical effects involved in the fluid-body interaction

Linear hydrodynamic loads

Excitation Added mass Linear wave-induced

loads Damping motions, accelerations
Hydrostatic and structural loads
restoring

In this way the problem is split in two sub-problems:

e Diffraction problem (“problem A” in F)
Hp: the body is assumed fixed and interacting with incident waves.
The velocity potential is the sum

#(x,y,2,1) = ¢ (x, ,2,0) + 4, (x, . 2,1)

incident wave diffraction
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NB: ¢p is alternatively indicated as ¢,.
Also another convention is widely used (Newman pg. 288):
¢(x,y,Z,t) = ¢0(xlylz’t)+¢s(x!yyzyt)

incident wave scattering

diffraction

The spatial potential satisfies
oo, +p) _
on
Splitting the problem in the problems of the two potentials:

VP e S,,

-----
----

e 0 (00 v
Incommg

a(pD_ agoo
on

Wa"ii O(poton) _
% on

The flow due to ¢, penetrates the body with normal velocity dpy/cn, i.e. like the body was not there.
op satisfies a problem where the body oscillates in the opposite way to the incident waves, i.e. as an
elastic body with normal velocity -Jdpy/cn.

This causes hydrodynamic loads on the body called

wave excitation loads= Froude Kriloff loads + diffraction loads:

Fexck(t)_ Ip ndsS — J.

SOI:‘

64”; dS = m{j—l“’e p(coowD)"de} (R X (0. f)} k=16

SOB

Froude—Kriloff loads diffraction loads
| X, (0, B)H F,.., |/ £, is the transfer function for the excitation loads for a wave with frequency @

and direction g, i.e. loads amplitude per unit wave amplitude. Once known, it allows to know the
magnitude of the loads for any wave amplitude (within linear theory).

¢ Radiation problem (“problem B” in F)
Hp: the body is forced to oscillate in its 6 degrees of freedom with frequency . No incident waves.

n,(t)=n,, cos(wr) = %{njaei”’}

j=1..6: surge, sway, heave, roll, pitch, yaw, and 7, is the oscillation amplitude in the j-th degree of
freedom, as we have already learned.

NB: The motion calculations are made in an inertial reference frame, Earth-fixed or translating if
there is forward speed.

Now #(x,»,2,t) =@, (x,»,2,%) and can be split in 6 sub-problems as
%,—/

radiation

¢R(x,y,z,t)=iR Z f]j ?;

= — —
velocity in mode j  potential per unit velocity
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@; is the velocity potential for the body oscillating with unitary speed in the j-th mode. It satisfies

0.
anj =n, VPeS,

with n; the j-th component of the generalized normal vector.

The moving body generates waves (radiated waves) and so is subjected to hydrodynamic loads
identified as _added-mass, damping, and restoring terms:

F.0)= _I pﬁnde k=1.6

SOB
6

-3 (i B kL6

J=1

with Akj(a)):SR{p | gojndeJ and Bkj(a))z—a)ﬁ{p | ¢jnkd5}

SOI:‘ SOB

Here the upper dots mean time derivatives.

Aj; (@) € R =added-mass terms -> load contribution in phase with acceleration
By (w)e R = damping terms -> load contribution in phase with velocity

| NB: We will analyse them more in detail later.

Radiation & Diffraction link: Haskind relations (v. Newman 1977)

[ a¢de j a% ds (H)

Sos A/—‘ %/—‘
=My ==0j0

As a result of the Haskind relations, the excitation loads can be written in terms of ¢y and ¢
(k=1,..6):

. iot 8 8
= Faer ) = %{f"“’e P(%WD)”MS}:m{fﬂa’e p(% ;) 0 a%]a's}

Sos Sos

These two formulas are then alternative and in the second one, to estimate the diffraction loads one
must know the incident waves and solve the radiation problem. It can be useful for check of the
loads estimates.

NB: The second formula is useful when to find ¢, is easier than to find ¢, . For instance when for

the radiation problem you can use the strip theory but not for the diffraction problem. If we want
the pressure then we need to find ¢, .

Strip theory
It is very useful to estimate loads (motions) both for ships and elongated parts of ocean structures.
Basic Hp: The body is ‘slender’, i.e. elongated.

The body is split in strips dx along x. The loads are estimated for each strip and then integrated
along x to provide the 3D loads.
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For the radiation problem: Strip theory can be justified for the zero-speed problem when the
frequency of oscillation corresponds to a wavelength which is the order of the cross-sectional
dimension in (y,z) plane, because in this case the flow variations occur mostly in the (y,z) plane->
the 3D problem can be approximated as the sum of 2D problems.

A strip theory cannot be rationally justified at forward speed as well as for longer wavelengths than
mentioned above. However, the theory can give very satisfactory results and the difference between
more theoretically correct and much more complicated linear theories are generally secondary.

For the diffraction problem: We cannot theoretically justify a strip theory for the same frequency
range as we can for the radiation problem, i.e. for wave lengths comparable with the cross-sectional
dimension. However, this frequency range is not of primary importance in the seakeeping problem,
i.e. the motions and accelerations are small. We can instead handle the diffraction problem with
wavelengths large relative to the cross-section in (z,y) plane by considering a fictitious “forced”
motion against the incident wave motion in combination with strip theory ->the 3D hydrodynamic
problem can be approximated as the sum of 2D problems. In addition, it comes the Froude-Kriloff
loads.

Long-wave approximation (F:60-62)
The excitation loads have a particular form in the case of long-wave approximation, or better small-
volume structure approximation, which is of practical relevance in many circumstances.

Hp: Long waves: in case of an equivalent circular cylinder it means A>> D - k<<I1/D
The waves propagate along x and the characteristic length D is in the plane (x,y).

How much does it mean 1>> D?

Horizontal wave

. F, Long wave length
for(Fe amp“tUd_e 0.25pgD 2C, approximation
F, in waves with ;
amplitude ¢, 5]
5
i > 5
. D b
D
TN .
3
" |
A ~—— Mac-Camy&Fuchs
D 2] 3
. 2 h oo 4pgtanh (kh)<,
1 a - 3 , 2 ' 2
A /cf\/[Jl(/cR)] +[V(kR)]" 4
o 2 4 : =] =] 10 12 14 16 14 DZD
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The figure above confirms that the long-wave approximation is good for A>5D. For A<5D wave
diffraction is important.

Example: 2D body in (y,z) plane with area 4=A4y(z,-z). Long waves in y direction.

A
waves z
_—
-
| | |y
Zt

Ay| Area=A | ZrZb zm

RERE

The vertical Froude-Kriloff force is
FFK,s(t) = jpon3dl = _j Dodl + jpodl =-pg¢ eXp(th)Ay +pgs EXp(kZb)Ay
t b

wZ

= _gké/exp(kzm) pAy(Zt _Zb) = aOS(Zm)pA

wave—vertical—acceleration Area

= g pA

Here a Taylor expansion around z,, has been used:
exp(kz,) = exp(kz, ) + kexp(kz, )(z, - z,)

exp(kz,) = exp(kz, ) + kexp(kz, )(z, - z,,)

So the force is given by the incident-wave vertical acceleration at the geometrical center of the
cross-section multiplied by the mass of water displaced by the boy.

NB: In the example the body is surrounded by water in the directions where FK force is estimated.
These results cannot be used in the direction where this is not true, e.g. if the body is surface
piercing or fixed to the sea floor.

If a 3D body is small and fully submerged the Froude-Kriloff forces can be approximated as

Fo () =TypV k=13

with J the body volume.

For the incident waves the body is transparent, i.e. permeable. So in our 2D example:

Time instant 2

Time instant 1 Incident wave velocity

/ e e

[
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This means the wave-body interaction must generate a flow opposite to the incident wave motion to
ensure the impermeability:

We imagine a forced motion that is minus the incident wave motion

This causes the diffraction loads, as radiation loads due to the forced motion opposite to the incident
waves to stop the flux across the body boundary. So they are associated with added-mass and
damping terms respectively in phase with the opposite of the wave acceleration and with the
opposite of the wave velocity.

Using the assumption A>> D, for our 2D example we have:

FD,z (t) = _Azz (_a_oz) - Bzz (_7/702)
FD,3 (1) = — Ay (_6_103) — By, (_7’703)

NB: In the diffraction problem the body DOES NOT move: incident-waves plus diffraction flow
give zero velocity at the body surface.

NB: Here we have velocity and acceleration opposite to those of the incident waves.
In the radiation problem they are the body velocity and acceleration.

The general expression for diffractions forces in long-wave approximation is
3
F, ()= (a4, +u,B,)  k=1.3
j=1
This shows in another way the link existing between the radiation and diffraction problems.

Another consequence of the long-wave approximation (small ), is that the generated waves are
small - the damping coefficients are small relative to the terms proportional to the acceleration, i.e.

So for small-volume structure the excitation forces can be expressed in general as
3
F;xc,k(t) Ej.ponkds—i_zaojAkj k =13 (F336)
S j=1

with the normal vector n = (n,,n,,n,) pointing inside the body.

NB: Long-wave approximation means @ — 0however in general is not good to estimate 4,; at

=0 because they may diverge. For example, A4, is infinite at w=0 for 2D surface-piercing bodies
in deep water.
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NB: If the body is elongated in one direction, in that direction the long-wave approximation is not
valid but it might be valid to find the load components in other directions and then use a strip
theory approach to find the 3D loads.

Examples:

1. For semisubmersible the length of the pontoons, say along x, is large but their cross-section, say
in (v,z) plane, is small relative to incident waves of practical interest.

In this case, we can combine strip-theory and long-wave approximation. For instance for the force
in z we have:

3
INOCED j @y, (x, 1) Ay, Pl

J=1lx

with a,, estimated at the geometrical center of the cross-section and 4 5" the 2D added-mass of
the cross-section.

2. Vertical fixed circular cylinder in finite water (F:58-60).
Hp: Regular linear incident waves
o (x,2,8) = g¢, coshlk(z +1)) cos(et — k)
cosh(kh)
e

A

/n'=(cos9,sin69

dz l\\\‘

77777 7772

Fixed body - no radiation waves.
The Froude-Kriloff force is:

027
F () =~ j poydS = j p‘zl;nlds =— j j pgl. f(z)sin(wt —kx) cos(9) Rd dz
Sos NY) -h 0

but for long waves: kx <<1 within the body cross-section

= sin(wt — kx) = sin wt COS kx —cos wt  Sin kx
—_— —
~1 ~kx=kRc0s@
S0

Foe1(0)= prR° [ g f () cos(er) dz = pA [ @y (2)dz

—h

ay (2)
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a,, (z) is the horizontal incident-wave acceleration in the center of the cross-section of the strip z, i.e

NI
ay(z) = 8t( o jx-O( )

The same approach could not be used for the vertical force because the cylinder is elongated,
surface piercing and lays on the sea floor.

Added-mass and damping coefficients (F:41-45)

Ay and By; =f(body geometry,
frequency,
vicinity of free surface,
water depth,
water confinement,
forward speed U)

Here we discuss some of them.

NB: 4;; does NOT represents a finite ‘accelerated’ mass added to the body mass, for some
components the dimensions are not even those of a mass. In an inviscid fluid, the body oscillations
cause instantaneously a disturbance everywhere in the fluid but with different intensity.

Example:
Asymptotic value for o»—oo and deep water for added mass and damping in heave of a half circle

Hp: 77, =7n,, Sin(a)t) Py = m{ﬁs%} 1

73

We want to find

Ay =R

P _f (/)3n3a’S] By, = _0)3|:P J‘ %”3‘151 )

Sos Sos

So we need to find ¢;. You can verify using polar coordinates that the solution is
2 2

R R .
@3 =—C0SY = ¢, = ——C0S 91},
r r

and tells that the fluid everywhere reacts instantaneously to the motion but with intensity reducing
as 1/r far from the body.

NB: You can verify the solution by substituting in the Laplace eq. and boundary conditions. Hint:
use polar coordinates
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The pressure is p =—pog, | ot =—pR’ | r cos 9j,
Zero heave instant

Maximum heave instant

d2773 . Vertical fluid velocity envelope
dtz z

Zero pressure

NB: Because ¢, =0o0n z=0, it means that is constant, i.e. v=0 and w#0 - No radiated waves.
The problem is equivalent to a circle in infinite fluid.

wl2 2
R r 1
Ay, :9%{0 _[ ?cosgcongd }:pRZE:EpA
—l2 ds

7l2
B, = —wﬁ{p [R*(cos 9 ds} =0
-rl2

e B, is zero because it is connected with the square power of the radiated waves (as we will see),

which are zero.
e A,, corresponds to half of the value for a circle in infinite fluid (see Newman 1977) because we

integrated in the half-circle.

Added-mass importance
The added-mass is relevant in reducing the body acceleration. We see this through an example.
Hp: A spherical air bubble immersed in infinite water is released at =0. Bubble: volume=/,

density= p, =1.21kg/ m*®, water: density= p = 998.2kg / m°.

A

pgV r

dr?

; OgV

Once released, due to geometrical and load symmetry, the bubble starts to move along the vertical
direction and upwards being its buoyancy pgV much greater than its weight p, gV . If we consider
only these forces, from the motion equation

PV i = (p—py) gV = i, = 220 g ~800g

2o
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This acceleration is clearly unphysical. In reality, as we have seen for the half circular cylinder, the
bubble motion causes a disturbance in the water. As a result a force is induced proportional but
opposite to the body acceleration (at /=0 the body velocity is zero so we can not have a damping

effect initially):
Fy == Ay}, = 0.5V
The motion equation then gives
(oo +0.5pV )i, =(p— po)gV = iy =—L—Lo
Py +0.5p

which is a more realistic acceleration.

Damping meaning: energy relations (F:45-49)
The damping coefficients are connected with the wave energy radiated from the body and so to the
square power of the amplitude of the generated waves. We show this with an example.

Forced oscillatory heave with frequency @ and no coupling among the motions:

Hp: 2D symmetric body. No incident waves. Deep water dispersion relationship.

o G ==
SB/
S, 0 s,
/SSB

The motion is assumed as

M= 1, 008(0r)

The energy inside the control volume (2 is periodic with period 7' =27/ w

-> The rate of change of the energy in one period must be zero

-> The energy entering £2 in one period across S, , due to the work done by the body,

equals the energy leaving £2in one period across S,, +Sg, +S  +S,, .

The energy entering £2 in one period from the body:

T
Ey= ngﬁs dt
0 power

with the force obtained from the 1-dof equation for the heave motion
(m+ Ay )ijy + Bygtpy + Cygn = Fy @

involving the mass, added-mass, damping and restoring (like spring term).
It means
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T T T
E, =o'n,, (m+ A33)jcos(wt)sin(wt)dt +w°n,, By, | [sin(en ) dt — wn,, " C, J' cos(cor )sin(eot )dt
0 0 0
=0 =T/2 =0

B 2 2
= By0°11s,

NN

The energy leaving €2 in one period across S, +Sg, +S .+, :
S,s +S; : Fluid particles on such surfaces remain on them = Zero energy flux across them

S__+S_ : They are control surfaces = there is energy flux across them, with the same amount due
to symmetry.
Across S, :
_pgdilg . pgtAl
. 2 2w 4o
with 4; the amplitude of radiated waves due to the heave motion.

The energy leaving in one period is (%chj

Then enforcing E, = (%chj

S_ oS,
2 A 2
= B, = %[fj (F:3.26)
3a

This proves that the damping coefficient is directly linked to the amplitude of waves generated by
the body, so we see why for the previous asymptotic case (w—x), i.e. without generated waves, B;;
was zero.

Can 4;and B;; be negative?

From expression (3.26F) we see that the wave-induced (linear) damping B;; can not be negative,
while the added mass 4; can be negative for certain frequencies and body shapes, e.g. for a
catamaran. The cross-coupling terms can be negative.
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Table 2.2. Joint frequency of significant wave height and spectral peak period. Representative data for the northern North Sea
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wave height
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R | pgé/ g ~—— Wave energy
eguiar waves ,
g w ) 260 propagation velocity
Wave energy density
Wave spectrum
Short-term sea state P = ’0 g I—dw
Pierson- Moskowitz spectrum
2
P,=0.005535pg HmT
T, [seconds] —™
H,;5 [m] |4 2 3 4 5 6 |7 8 9 0 (11 |12 [13 |14 [15 |16 | sum
0.5 0 0 15 70 104 85 50 24 10 4 1 1 0 0 0 0 364
1 0 0 1 17 51 65 49 27 12 2 1 0 230
1.5 0 0 0 4 24 44 43 28 13 5 2 1 0 0 0 0 164
2 0 0 0 1 9 24 |30 22 12 5 2 1 0 0 0 0 106
25 0 0 0 0 3 1 18 16 9 4 1 1 0 0 0 0 63
3 0 0 0 [ 1/'1 5 10 10 6 3 1 0 0 0 0 0 36
35 0 0 0 0 , /0 2 5 5 4 2 1 0 0 0 0 0 19
4 0 0 0 0 0 1 2 5 2 1 1 0 0 0 0 0 10
45 0 0 0 b 0 0 1 1 1 1 0 0 0 0 0 0 4
5 0 0 0 | 0 [ 0 0 1 1 [ [ 0 0 0 0 [ 2
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6 [ 0 /o 0 [ 0 0 0 [ [ [ 0 0 0 0 [ [
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Time instant 1 Incident wave velocity

Time instant 2

Incident wave velocity

We imagine a forced motion that is minus the incident wave motion

waves
e

/1;=(cosl9,sin69

dz
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2. Vertical fixed circular cylinder in finite water (F:58-60).
Hp: Regular linear incident waves
cosh(k(z+h
@y (x,2,1) = 8¢, Mcos(m —kx)
w cosh(kh)

, S a=(eostsing)

f(z) 2
Fixed body = no radiation waves. =2 <|>

The Froude-Kriloff force is:

0
FFKJ(t):_J Po’hds:J p%nlds . -

Sz So
027

=— j j pgl.f(2)sin(at — kx) cos($) Rd Idz

~h 0

= sin(wt — kx) = sin wt cos kx —cos wr  sin kx
cos X
=1 ~kx=kR cosf

0 0

© Fp, ()= prR® [ g M (2)cos(ot)dz = pA @, (2)dz
gred VT

h ay (2) h

pA = mass displaced water in the 2D

am(z): horizontal incident-wave acceleration in the center of the cross-
section of the strip z, i.e

am%(%] @)

Zero heave instant

Maximum heave instant

Vertical fluid velocity envelope

Zero pressure
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Hp: A spherical air bubble immersed in infinite water is released at /=0.
Bubble: volume=V, density= p, =1.21kg/m*, water: density= p = 998.2kg/m’ .

A
d'n,
dr*
44
Considering only weight and buoincy
P=P

pVil = pgl —pogV =iy = g ~800g

buoyancy  yeight 0

This acceleration is clearly unphysical.

In reality, the bubble motion causes a disturbance in the water. As a result a
force is induced proportional but opposite to the body acceleration:

Fy =—4,7j, =-0.5pV7j;

The motion equation then gives

PP

(PV +0.50V)ijs =(p—p)gV =iy =————g~2¢g
P, +0.5p
which is a more realistic acceleration.
Sks _I 73 —_— 4
Sy -
S
. o .

Hp: 2D body. No incident waves. Deep water dispersion relationship.

The motion is assumed as 773 = 7, cos(a)t)

T
oThe energy entering (2 in 7 from the body: Ey = IF3773 dt

0 power
with the force from the 1-dof heave motion
(m+ A33)17; + Byyipy + Cynp = F, M

E,= B33m2773a2 %

It means
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oThe energy leaving €2 in one period across Sps + g +5_, + 5,
Sps+Ssp:
S, +S, .

across them.

them, identical due to symmetry.

E, peA’ 1 g . pg’dl
S, : The energy leaving in T'is [7chl = 23 55T= 4w3 T

with 43 the amplitude of radiated waves due to the heave.

EH)
Enforcing By = (TCgTJ
S_,+5,,

2 2

pg (| A

=By, = [773) (F:3.26)
3a

Reference Material
On water waves:

“Water Wave Mechanics for Engineers and Scientists”
by Dean & Dalrymple

NB: In Sea Loads: V= V¢
In WaterWave:V = -V ¢

On Fluid Mechanics:
“Fluid Mechanics” by White

45




Lecture Note 3

37. Strip-theory applications. Methods to estimate cross-sectional added mass and
damping. Forward speed effects. Restoring loads. Response in regular waves and
irregular sea states. (F: 37-39, 49-58, 66-68,262-265)

Added mass and damping using strip theory (F:50-51)
Generally added mass and damping coefficients of 3D bodies must be estimated solving 3D
problems. But if

Hp: The body is ‘slender’, i.e. elongated and o is large (small A) = strip theory can be used

In the following, it is implicitly assumed no incident waves when dealing with the radiation
problem.

Strip-theory applications: to a ship

Hp: Forced heave and pitch, zero forward speed U=0 (F:56)

Objective: find added-mass coefficients=>Loads proportion%l to the body accelerations
3

@m

NB: typically 20 strips are considered, assuming that within each of them the ship cross-
section is uniform

The local vertical displacement at location x is
Sy =15 +(Rxr)y =0y +yn, —xns =1, —xn; = 8, =7j; — xij; (F:3.9)

For the strip dx, the heave force is
dF;(x) = _A33(2D)(x)§3 dx = —ij3A33(2D)(x)dx +7jsxdy, " (x)dx
e — |

cross—section—solution

Once evaluated 4% 33(x) we can integrate
F, = [dFy(x) = =i, [ 4,7 (e +7j, [ xA,CP(dx = = Ayl — Ay,
L L

L radiation load

A33 _ASS
The pitch moment (generalized force with &=5) can be calculated as torque (moment of force)
as

dF;=(rx dE ), =zdF —xdF; = —xdF, = 7 x AP () dx — 17,7 Ay, P (x)dx

=(dF,,dF,,dFy)

and integrating
F; = _[dFs (x) =1 v"951433(21))()6)‘11?5 — 175 Ix2A33(2D)(x)dx = — Ag;17y — Ass]s
L

L L radiation load

—4s3 Ass
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Similar approach can be used for the damping coefficients.

In this way the 3D hydrodynamic coefficients are calculated in terms of 2D coefficients. We
will discuss later the methods used to estimate the 2D coefficients.

| NB: If U=0, added-mass and damping coefficients are symmetric, i.e. Ay=4; and By=By. |

Strip-theory applications; to a deep-draught (D) buoy with circular cross-section

Hp: Forced sway and roll. 4
zZ
-2 N BT
Z e >
T 2
D/2
Bo v
ol |
G L
> y 772
T4

The local lateral displacement at location z is
s, =1, +(Rxr"),=n,+x'n,—z'n,=n,-z'n, =5, =1,—-z'717, (F:3.9)

with z'=z+ D/2+ BG z=0<2z'=D/2+BG z=-D < z'=-D/2+BG

For the strip dz=dz’, by definition the sway force proportional to the acceleration is

dF,(z") =-A4,,"" (2")s,dz"' = —j,A,,°" (z")dz '+ 7j,z" 4,,°" (zdz'

In this case the 2D added mass is easy to be obtained because the related problem is
equivalent to that of a circle in infinite fluid: 42,*” (z)=pA, with p the water density and 4

the cross-section area (see example of the half-circle for @ — ).
We can then integrate to get

D/2+BG D/2+BG D/2+BG
F= [ dr@E)=—h [ 4,°7)dz'+i, [ 24,07 (z)dz
-D/2+BG -D/2+BG -D/2+BG
A22 _A24

=z — Ayl — A1,

radiation load

The roll moment (generalized force with &=4) can be calculated as torque (moment of force)
with respect to G, as

dF,=(F'x  dE ), =y'dF, —z'dF, =—2'dF, = ij,2' 4, (2)*” dz —j,2* 4, (2)dz

=(dF, dF, dF;)
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and integrating

D/2+BG D/2+BG D/2+BG
— N — ' (2D) U ' Y 12 (2D) [} [}
Fo= [ dF()=d, [ 24,°7(z)dz'=5, [ 2% 4,7 (z)dz
-D/2+BG -D/2+BG -D/2+BG
7A42 A44

- Ayily — Ay,

radiation load

Let’s see what is the value of the added-mass terms:
D/2+BG

4, = J- Azz(ZD)(Z')dZ':PAD
~D/2+BG
D/2+BG

A== [ 2'4,°P(Ndz'=—pa[z%/2]" " =—paD-BG =4,
-D/2+BG - *
D/2+BG B ooy | D24 BG . .
A, = 2% 4,002z =—pA[z°/3] " = pd[ D-BG*+D*/3]

-D/2+BG

for A4, we used that
(a+b) —(a-b)’ =(a’ +3a’b+3ab”> +b’)—(a’ —3a’b+3ab’ —b’) = 6a’b+2b’
with a=D/2+BG and b=-D/2+BG

Similar approach can be used for the damping coefficients.
2D added-mass and damping coefficients are then useful also for practical ‘3D’ cases.

How to estimate the cross-sectional added mass and damping?

There are two main ways used to estimate them, whose simplified description can be:

1) Source technique=it is a numerical method, i.e. it provides an approximated solution, for
2D and 3D problems.
It uses source (sink) points, which are elementary solutions of the Laplace equation, with
unknown strength. They are placed along the boundary S and used to express ¢, , so

= also ¢, satisfies the Laplace equation and

- only the boundary conditions must be satisfied. This is done in a finite number of
points, say N, i.e. splitting S in N parts. This makes available the strengths of the sources
and therefore ¢, everywhere in €2
Example in 2D:

SFS SFS SFS SFS

] ] ] ] ]

T T T T T
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This means that the solution is not exact but has a certain order of accuracy. It is crucial to
know the order of accuracy for engineering applications, as well as the rate to which the
numerical solution converges to the physical one. Once found ¢;, o the load coefficients

can be estimated. There are also other numerical methods, similar to the source technique,
which can be applied.

NB: The source technique does not provide any solution for surface-piercing body at certain
specific frequencies, called ‘irregular frequencies’. This is linked to the method, not to a
physical reason. John (1950) found that the smallest irregular frequency satisfies

w,. 2+/g/ D, with D the vessel draft. So if the frequency range of interest for the motions of

irr
our structure contains only frequencies @ <+/g/ D , irregular frequencies do not occur. This

is typically the case for normal types of seakeeping calculations for ships. The problem of
irregular frequencies can be avoided through method modifications.

2) Conformal mapping= it provides an analytical solution and applies to 2D problems. It
transforms the cross-sectional geometry through a mapping law in another geometry for
which the solution is known analytically. The transformation of such solution back to the
plane of the original cross-section provides the physical solution.

Example, Joukowiski transformation from an airfoil to a circle:

Conformal Mapping
Joukowski Transformation

1
z=(+—

g=g+in

1

Cylinder™

z=Xx+1iy

/

Use complex variables
to map from one geometry
to another

Airfoil

The Lewis-form technique is an approximate conformal mapping technique suitable for
conventional ships. It transforms a ship cross-section into a circle. I It considers the beam-
to-draft ratio B/D and the sectional area coefficient o0=A4/(BD)=Cp as the geometrical
parameters sufficient to determine the added mass and damping coefficients of the cross-
section.

Parameter analysis: influence of @ on 4;and B;; (F:49-50)
Added-mass and damping coefficients depend on the frequency. This can be understood with
an example.
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Hp: A 2D surface-piercing body forced to oscillate in heave with frequency @ in deep water.

The oscillations cause a perturbation ¢; everywhere in the water and propagating (waves)
along the free surface. Far from the body (far field), the waves are not affected explicitly by
the body boundary condition but only by the free-surface boundary condition

FF
_a)2¢3FF+gaé32 —0 =0

i.e. they are in the form of the ‘incident’ regular waves:

¢3FF _ gA; () o~ cos[ et + P ()] = m{%FF (a))eia)t}
w

with the sign ‘-* and ‘+’ in the amplitude and phase indicating, respectively, left and right
location with respect to the body, and the term with the wave-number multiplied by the
horizontal distance from the body is included in the phase.

The generated waves in the far field are implicitly affected by the body boundary condition
through their amplitude and phase. These depend on the frequency because, as we learned, @
affects the body capability in generating waves and the wave speed.

If we use then the far-field solution @;" in the added-mass and damping definition as rough
approximation,

[

we clearly see that a dependence from @ must exist.
Figure F:3.6 discusses the frequency dependence for a surface-piercing half circle oscillating
in heave and sway

20
18
16
14
12
1.0
08
06
04
0.2

A=7nR?*/2

o ) —— .
5 ST W W NS NN O NS W S S S S BN i B AT B R A1

0 05 10 15 20 w'R

Fig. F:3.6

NB: B;;and B;; —0 as w—>0 and @—>o0 because in these case no waves are generated. 433
—o0 as @—0 and this is true for any 2D surface piercing body in deep water. But as &#—0,
finite water depth effects and 3D effects become important and make the added mass to be
finite in reality.
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Parameter analysis: influence of body shape on 4;;and B

Added-mass and damping coefficients can be significantly affected by the body shape.
Example for the added-mass:

Hp: Forced heave of a surface-piercing rectangular cross-section with width B and draft D for
W—>0.

Fig. F:3.8 examines this with Lewis technique to calculate added-mass in heave:

High-frequency 2D added mass A4, in heave

aa, =—0.25(0.58+D)

Lewis-form technique +0.25J(0.53 + D)’ ~8(24/x—0.5BD)

I aa, =0.5(O.58—D)
=0
, £, [? a=0.5(0.58+D)-aa,
= A ¥
4;3 — B3
B 2D 2 2
pBD A, =p 0.5ﬂ((a+aal) +3(au;) )

0.750
BN
s =
»

0.000

T T T T
0500 0625 0.750 0875 woo A

Fig. F:3.8
Ajzs increases as D/B reduces, i.e. as the structural mass in heave direction gets smaller. ¢ has
a limited effect and 433 increases with it.

Forward speed effects (F:55-58)

The forward speed U causes an ‘encounter’ frequency, which means that the ship ‘feels’ an
oscillation frequency different than the incident-wave frequency @ named encounter
frequency ..

Hp: 2D head incident regular waves. Deep water.
—

waves -Ui
—_—

ZA

Ut x’

v

x=x"+Ut

Here:

e (x,,z) is the inertial reference frame translating with -Ui, i.e. where the motions are
calculated
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e (x’,y’,z’) is the Earth-fixed reference frame

The incident-wave potential is
By(x',z't) = g{ £24 6% cos (@t —kx')

Because ¢, is a scalar functlon it does not change with reference frame.
If we express (x’,z”) in terms of (x,z) we have

2
By (x',z',t) = g( 22a, cos[a)t k(x- Ut)] = g 224 0¥ cos [a)+a)—th—kx
o g

using k=a? /g
=0,

e

= 84 o cos(at— ) = ¢ (x, 2.1)
(4]

Here w.=encounter frequency characterizes the time oscillations in the case with forward
motion. It implies an encounter period 7,=27/@,. @, depends on @, U and the direction of
incident wave relative to the forward motion.

NB: In the moving reference frame: 2 2 0 —+U 9
at becomes at ax

Another way to introduce @, is given in the following figure:

ESSESZE= r_:r.- i
ESSESSI=

e For U=0 a wave front (e.g. wave crest) covers a distance=Ain 7, i.e.
A=cT =c2r/w) (A)
with ¢ = w/k = g/ the phase speed in deep water.

e For U#0, the relative wave front-ship speed is
Uy, =c+ U
current
and a wave front covers a distance=A in T, #7, i.e.
A=u,Tl,=u,,2r/w,) (B)

rel rel

Enforcing (A) and (B) to be the same, we have

vt FE oo, —(0(1+U j (F:3.28)
0] 0] g

e
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If the waves propagate along the direction £ with respect to the x axis, we have
2

0, =0 +a)—Ucosﬂ (F:3.29)
g

It means, for instance, that @,>® for head waves (=0 deg), as well as for bow waves, and
w.<w for following waves (=180 deg), as well as for quartering waves.

‘ NB: If from eq. (F:3.29) @,<0 we must take the absolute value so that @, is always positive. ‘

Parameter analysis: influence of forward speed on 4;and B;; (F:56-58)
The forward speed U affects the added-mass and damping coefficients. We examine this by
studying the seakeeping problem with forward speed U in simplified conditions.

Hp: Linear potential-flow theory valid. Steady-state conditions. ‘Slender’ body.
Linear problem —> superposition principle valid.

current Ui

In this case:

e (x,,z) is the inertial reference frame translating with -Ui, i.e. where the motions are
calculated

e (x"y",z"") is the body reference frame

The body moves forward with constant speed —Ui so generates waves and causes a local flow
velocity. This is steady in (x,),z), say V@esar , and counteracts the current Ui seen by the
body to ensure impermeability condition, 1.e. (Vg,, , TUi)n=0at VP e S,

The total velocity potential can then be split as the sum of

¢:seakeeping — problem steady— forward —motion
I 1 no—incident—waves

B () = (1) + B (1 1)+ 3 (1) + 600, (1) + Ux

incident+diffraction - local steady
radiation

teady

Here ¢ is the radiation potential in j-th degree of freedom associated with velocity 7, , i.e. not

unitary.
In general the steady flow @yeqqy Will affect the unsteady flow ¢, but
‘Slender’ body=> | Viseaay| <<U
—> the local steady flow does not interact with the unsteady flow, so the seakeeping can be
solved separately.

NB: Care should be taken for Froude number Fn=U/,/gL >~ 0.4.

However the current affects the seakeeping problems in many ways. It causes:
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1. Different frequency, i.e. we have w. instead of @ both for ¢, and each ¢,.
0

2. ﬁ becomes 2+U—
ot ot Oox

- the combined free-surface condition becomes

o oY o9,
—+U— | ¢. + L =0 i=D,1.6 z=0,>0
(ar ij #+8 / ‘

3. A time-varying velocity component in z when the body has a pitch motion (j=5) and in
y when the body has a yaw motion (j=6). They must be counteracted to ensure
impermeability condition, i.e. the fluid velocity for these radiation problems are
V=Vg.+Unk and V =Vg —-Un,j, respectively.

(x,z) plane (x,y) plane

Ui x” j—Unﬁj”;—Un6j+0(52)
~—=Unk"= Unk+0() ;

Ui

—> the body-boundary conditions for pitch and yaw are modified as

o¢ o¢

5 . 6 5

" +Unsn, =nsn; Ung, =nm, YPeS,,,t=20
additional —term additional —term

As a result of items 1-3 the radiation potentials depend on U. This is also true for the
diffraction potential, as we can understand since it is linked to ¢ through the Haskind
relations. This means that radiation and diffraction loads will depend on U. The Froude-
Kriloff loads cannot depend on U, due to their definition, i.e. they are due to the incident-
waves.

In the radiation problem:

¢ The dynamic pressure is given by

a¢j(U)+U8¢j(U) —16 (D
ot ox I

pP—pP, =P
%f_/
contribution j

Here it has been emphasized that the solution ¢, depends on U.

e The added-mass and damping coefficients depend on U explicitly for the U term in the
Bernoulli equation for p and indirectly for the variation in the boundary conditions. Moreover,
because the vessel oscillates with w, , A,q. and B, must depend on w,.

Hp: If Froude number Fn=U/,/gL is small, say <0.2, or if the frequency is large, the effect

of U is mainly in the body boundary condition and in the presence of the encounter frequency.
In this case 4,; and B, can be expressed formally as power series of U, i.e.

~ (0) o )72
Ak/‘ = Aki + Akj U+ Akj U
~ (0) o )y 72
B, =B, +B,"U+B,"U
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with coefficients in the right-hand-side independent from U, i.e. obtained from the solution
without forward speed. So using strip-theory we have:

(2D) (2D)
Ay =[ Ay dv, By=[B, dx
L L
(2D) U (2D) U
A35 ~ —J‘ xA33 dx + FBB , A53 = —j XA33 dx - B33
L e L ¢

N o (F:3.30)
By=—[xB, dx-Udy,, By=-[xB dx+UA,
L

(2D) U? (2D) U?
~ .2 (.2
A = Ix Ay dx+t—5A4,, B = J.x B, dx+—5 B,
L 0)@ L a)e

With U#£0, AkﬁﬁAjk and BkﬂéB ik

Strip theory for ships
Theoretically: strip theory is good in head and bow waves but dangerous in following and
quartering waves. The limitations are for @, that must be large to limit 3D effects.
Other limits of validity of strip theory are connected with:
- body geometry must be elongated—> e.g. there are limitation for ships with small
length-to-beam ratio L/B (though the 18" ITTC says it can be used down to L/B=2.5).
- linearity must be valid = i.e. not good for high sea states
- steady-unsteady flow interaction is neglected
= questionable for Fn=U//gL >~ 0.4.

In practice: strip theory gives good results in the important frequency-range of ship motions.
When the @, becomes small, e.g. at forward speed and following and quartering sea, for the
vertical motions there are some difficulties because the heave added mass goes to infinity. But
the integrated effect is small because the added-mass force goes to zero, i.e. the acceleration
goes to zero as @, , and the restoring terms dominate for vertical motions. However, there are
some singular behaviours at forward speed when applying strip theory for estimating vertical
shear force and vertical bending moment at small @, . For lateral motions one can justify strip
theory also for small frequencies, in this case added mass does not diverge. For roll viscous
effects are important for the motion. For surge, 3D effects are larger than for the other
motions, but the added mass is small relative to the ship mass. This can be checked using an
approximated but practical formula by Seding (1982), i.e.
A, =27V
with p the water density, V the displaced volume of water and L the ship length.

NB: The waves generated by an advancing vessel in waves are different than those predicted
by strip theory. However this difference does not matter for the vessel response and strip
theory can be used to estimate the response, within the mentioned limitations. In this
framework an important parameter is the ‘reduced frequency’ r=w,U/g. For r>1/4 the
group wave velocity is smaller than U, i.e. there are no waves moving upstream of the vessel.
This fact occurs for 7<1/4. In the latter regime the frequency-domain approach has
problems.
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Restoring loads (F:58)

We assume that the mean buoyancy is balanced by body weight, i.e. pglV =mg,with V the
displaced volume of water (also indicated as V).

Under these assumptions, the linear restoring loads are connected with the “hydrostatic”
pressure P =—pgz and caused by the change of the displaced volume, i.e. changes of the
buoyancy, due to the rigid motions,.

»

Fpai(==>.Cyn, k=1.6 (F:3.32)

=1
with Cj; the restoring coefficients. The restoring coefficients can be obtained estimating the
variation of the buoyancy loads due to the rigid motions.

NB: Ci >0 gives a stabilizing restoring load because counteracts the motion and tends to
bring the system (body) in its original position. Cj; <0 is destabilizing.

The restoring loads are important in fixing the natural periods of the body motions, as we
already discussed.

Examples of restoring loads

Example 1: Restoring coefficient in heave for a semisubmersible

------------------------------------------------------------------

The restoring force associated with the heave motion is due to the change in displaced
volume, i.e.
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dF, .5 = pgdV = pgdS(-ns)

= Foys=—pg [ dSny=—pgdy, = —Cyn,
A,

Ly
by—definition

= C,;=pgd,
with 4,, the total waterplane area.

NB: From this we understand that, for instance, C,,, C,, and C,are zero, i.e. surge, sway
and yaw do not cause a variation of the displaced volume—> no restoring loads in these
directions.

Example 2: Restoring coefficient in pitch for a ship
UE

i ] T Ay

| NB: The arrows in the figure do not give information about the magnitude of the forces

The restoring pitch moment £, 5 is characterized by two parts:
F .=M,+M,

exc,5

« M, is stabilizing and due to variation of buoyancy

dM = —xdF,=-xpg xn, dS=M, :—pg_[ x*dSn,
—

displacement Ay

in z direction

with A4,, the waterplane area.
« M, is destabilizing

M, :ngUzdm/m—jde/V]ns = pgV (25 =2, )7
m 4

with 7 and m the displacement and body mass, respectively, and zg and zz are the vertical
position of center of mass (coincident with center of gravity for uniform gravitational field)

and center of buoyancy, respectively.

So the restoring pitch moment is

Fy =—ng(Ix2dS/V+ZB —zg)s = —Csss

o)
Ay by—definition
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>0
—

:>C55=ng(Ix2dS/V+zB—zG)=ng 5]\7L
Ay longitudinal metacentric height

metacenter

For a stable vessel, i.e. Cs; >0 —> GM, must be >0
—> It means that the metacenter must be higher than the center of mass.

Example 3: Restoring coefficient in surge due to a mooring line. (F:262-265)

:TH o

wds

X

Hp: A vessel is moored as in the figure and oscillates in surge about its mean configuration in
wave-current-wind environment.

Here: w= weight per unit length of the line in water
T ,,=horizontal line tension, (T ;) ,, —Vvalue of the force in the mean configuration.

X =1-1_+x =distance from the anchor to the connection of the line to the vessel
Defining a =T, /w:
[, =asinh(x/a) (F:8.14)
h=[acosh(x/a)—1] (F:8.15)
= X =I-hV1+2a/h+acosh™ (I+h/a)= f(T,)  (F:821)

}:ﬂf =h’+2ha (F:8.17)

Due to the motion, the horizontal tension oscillates in time around (7', ) 4o 1€
_dry, dT ,
dx dX

n > (TH)M_C11771:>C11 =
X=(X), by—definition

r H™ (T H )M
X:(X)M
with 7, the surge motion of the vessel point connected with the cable.
Procedure to estimate C,, (see figure F:8.4):

1. Find the “average” wave, current and wind horizontal force, i.e. (T H)

2. (T,), intoeq. (F:8.21) > X =(X)

M

M

2> C,

M

dT dr
3. Fromeq. (F:8.21) estimate A at X=(X) ,ie.—1Z
9. (F:8.21) X (X)» 1o

x=(x)

58



T, (KN}

150 ‘Il Ir. _ — e e
100
TH
1)
( H)M 50 r dX X:(X)M
) —
80 BS % (X)y % Ximi

Fig. 8.4. Example of the horizomtal foree from an enchor line on a vessel asa
functien of the horizontal distance X between the anchor and the
point where the anchor line is connecied w the vessel. (The vessch
znd thr anchor line configuration is shown in Fig, §,3.) Water
depth: 25 m. Weight per unit length of chain in warer; 828 N m™'.
Chain length: 100 m.

Linear body motions in regular waves (F:66-68)
The body motions can be evaluated by solving the system

6
DM, ij, =F, k=1.6
IE
once estimated the loads Fj and known M .

Hp: Zero forward motion. The body is stable in calm water> mg = pgV , i.e. the weight of
the body equals the weight of the displaced water in the mean position.

The loads Fj are only the result of wave-body interactions, i.e. hydrodynamic loads:

Added mass
Damping and Restoring
forces and moments

Excitation loads

Fig. F:3.1

So that the body-motion system becomes

- i[— 0 (M, + A, () +i0B,, (@) +Cy 11,0 = £, X, (@, )

J=1
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Here n,, and X, (@, ) are complex quantities.

Assuming that we solved for the excitation and radiation loads, to estimate the motions we
only need to know Mj;, the mass matrix of the body.

The elements of Mj; involve:
« the body mass m,

« the moments of inertia /

3+i3+i

= j(xf +x,”)dm with i=1..3 and j#k #i

« the products of inertia 7, ;

= jxl.x_/.dm with ij=1..3and j#i

m

« the coordinates of the center of mass x;; = jxl.dm/ m

m

and are linked to the inertial force (the first 3 rows) and moment (the last 3 rows).

The elementary inertial force is dF, = dms,,i =1..3.
We examine the component in heave as an example, which will provide the 3™ row of My

dFy=dm §, =dm(ij, — x7j; + y7j,)

= F, = [ (i, + yii, - xij;)dm = mij, +7j, [ ydm 3 [ xdm

m m m
[ — [

myqs mxg

= F, =01, + 017, + mij; + my 77, + mx ;175 + 07j,

Now yg is zero assuming a symmetry with respect to the (x,z) plane. Further, x¢ can be set to
zero choosing the z axis passing through G.

If this is so, the 3" row of matrix M,;is [0,0,m,0,0,0].

Similarly can be done for the 1* and 2™ rows, using the other 2 force components.

The elementary inertial moment is
dM =rx dF  =dm(rxs)=i(ys; —x8,)dm+ j(z5 — x8;)dm + k(x§, — ys, )dm

(dF |,dF, ,dFy)

in roll in pitch in yaw

Let’s take the pitch component as an example. This will provide the 5™ row of My

dM , = dFs = (28, — x8;)dm = [z(7], + z7]5 — y1js) — x(7]; + y1j, — X1]5)]dm
= zdm7j, + 07j, — xdm7j, — xydmij, +(x* + z°)dmijs — yzdmij,

:>F5:J.dF5 =mzgif; + 077, —m xg 17, — 1y My +1ss7]s = I U
— — —
m Hp:=0 =0 symmetry (xz) =0 symmetry (xz)
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so the 5™ row of Myjis [mzs,0,0,0,155,0].
Similarly can be done for the 4™ and 6™ rows, using the other 2 moment components.

The motions can then be found as:
H(o,p)=n,/¢,
=[-0*(M + A(0)) +iwB(@)+C] X(w,5)
Because the motions are linear in ¢, , H(w, ) does not depend on ¢, .

| H(w, f)| gives the Response Amplitude Operator (RAO), which is the transfer function of
the body motions, i.e. response amplitude per unit wave amplitude.

NB: For sufficiently simple geometries, theoretical methods can provide analytical formulas
for the different load terms and then for the response. In general (3D problems, generic body
geometry), the diffraction-radiation problem, required to estimate the RAO, can not be solved
analytically. Strip theory can be applied under certain assumptions (i.e. the problem is quasi
2D). Otherwise 3D numerical techniques must be applied, similar as discussed in connection
with the source technique to find 2D added-mass and damping. Experiments can be used to
measure directly the RAO.

Body motions in irregular sea state (F:37-39)
The procedure is the same as done for the incident irregular waves.

Hp: Short-term statistics> we have a sea state with a certain spectrum S(w) that does not
change in time, i.e. 7, and /,,, are constant. For simplicity, let assume wave propagation in x

direction

The vessel response in a degree of freedom of interest (i.e. heave, pitch,..) can be obtained by
splitting the spectrum in N regular-wave components, using an interval

Aw = (w,,y —®,, )/ N, each component with frequency @, amplitude 4, = ,/25(»,)A® ,

randomic phase g, as already studied and then summing up the responses of the single
regular-wave components. It means

iAj |H(w,)|sin[wi+6(w;)+¢e,] (F:3.4)

J=1

with  [H(w)|=n,[/{, and &w) the phase angle of the response with respect to the
corresponding incident wave, i.e. this is a deterministic phase while ¢, is a random phase

equal to the random phase of the incident wave. The approximate variance of the response is
N A?
o=y | Hw)F =
J=l 2
which becomes

o’ = T| H(w) | S(w)dw  (F:3.5)
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in the limit for N> and Aw—>0. Assuming the response as a Gaussian process, the Rayleigh
probability function can be used as approximation of the probability density function for the
maxima (peak values) of the response, say R, i.e. probability of R is

p(R) = izexp[— 2R22 ] (F:3.6)

o o

r r

The most probable largest value R, during a ‘short-term’ time ¢ is

R, [25° 1ogTi (F:3.7)

where T, is the mean period for the response variable (e.g. motion, velocity, etc.). Due to the
assumption of linear wave-induced motions and loads this can be written as 7%, which is the
mean incoming wave period.

Using short-term statistics results, by varying combinations of H;; and Ty (or T; or T5), we
can build up a long-term statistics.

Assuming a combination of M wave heights H;; and K wave periods 7), the long-term
probability for the response 7 to be less than a value R is

P(R) =1—§:§plk exp _R—2.2 (F:3.8)
P 2(0,;"‘)

pjk 1s the joint probability for the significant wave height and the modal period to be in the
interval-numbers j and &, respectively.
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173

UH

4

Strip-theory applications: to a deep-draught (D) buoy with circular cross-section
Hp: Forced sway and roll.

The local lateral displacement at location z is
s, =1+ (Rxr"), =1, +%ZZ'774 =n,—z'n,= 58, =1,-z'f, (F:3.9)

Sz
D2

e .

with z'=z+ D/2+ BG z=0&2'=D/2+BG z=-D<z'=-D/2+BG

For the strip dz=dz’, by definition the sway force proportional to the acceleration is
dF,(z") = _Azz(zu)(z N, dz' = _ﬁzAzz(zm(Z Yz '+ 7~7~4sz22(20)(2')0[2'

We can then integrate to get

D/I2+BG DI2+BG D/2+BG
_ n_ @2D) v [ ' 2D) /v '
E= [ drG)=-h [ 4 PE)dvi, [ 24,000
-DI2+BG ~DI2+BG -D/3+BG
Ay, —A
z - Aty — Aty
radiation load
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The roll moment (generalized force with &=4) can be calculated as torque (moment of force)

with respect to G, as

dF,=(r% dE ), :y';ié(;z'dﬂ =z’

=(dF, dFy dFy)

and integrating

D/2+BG D/2+BG

dF, =ij,z" 4y (Z)(zmdz /2 ° Azz(m)(z)dz

D/2+BG

Fo= [ dR@)=ii, [ 24" [ 2 4, @

-D/2+BG -D/2+BG

-D/2+BG

Ay

= - AAZﬁZ - A44’74

-«
radiation load

Let’s see what is the value of the added-mas
D/2+BG

e

S terms:

NB: Cross-section like circle in infinite fluid

Ay = D/ZJ.BG 4,%7(z)dz" = pAD >A4,,°P) (z)=pA (p =water density, A=area)
D/2+BG DI2+BG
Ay, = j 24,2 = —pA[27/2] ' =—pAD-BG = A,
-D/2+BG
D/2+BG DI2+BG
Ay= [ 2247 (0d'=—pa[z°/3] " =pA[D-BG*+D/3]

-D/2+BG

Source point
SN P
SN

0>0

Sink point

\@/

/[\

0<0

Strength Q is equal to the flux of the flow generated by the source

0

2D: ¢, (P) =
27

log(| P~ P )

Sps Sts
Sy
S S,
Sse
Sps { & ) ‘?rs )
— —+—
e e e e
1 s, 4
S, + + S,
bttt
Ssr
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Conformal Mapping
Joukowski Transformation

N

1
z—é’+§

g=g+in

Wiy

e
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Cylinder

Use complex variables
to map from one geometry
to another

2D added mass and damping of hemicircle in deep water
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0750
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High-frequency 2D added mass 4, in heave
aa, =-025(0.58+ D)

Lewis-form technique *0-25\/(0-515”r D)’ -8(24/ 7 ~0.5BD)
aa, =0.5(0.58-D)

! _
s . r. [0 a=0.5(0.58+D)~aa,
=N A’
4] qida) Iy
pBD s

A, =p 0.57[((a+aal )2 +3(aa3) )




x=x"+Ut

current

Ui
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(x,z) plane (x,y) plane

\Q\,X
Ui X L"g—Umj”E—UUGHO(SZ)
——=Unk"=z Unk+0() ;

Ui

(2D) (2D)
A=A, dv, By= (B, dx
L L
D) U D) U
Ag=—[xd, di+— B | Ag=—[xd, d-—Byi| 4 A, k]
L a, L A d Jh ’
(2D) (2D) .
B = —J.xB23 a - B, = —_[xB33 dx B,#B, k#]j
epy U? en U?
o = Jx2A33 dx+— Ay, By = '[szB dx+— B,
L we L a)c
Wave systems at forward speed
2000~ ~
SaTNI~ —— AA crestno. 1,2, 3
150 ~ .~ ——- D1crestno. 10, 20, 30
~ — — - D2crestno.1,2,3
100+ w,=12rad/s
U=5m/s
50
=29 o1
— g
E ot
)
Upstream effect when
—sor r=2Y 025
4
=100
- When 7 > 0.25, the group velocities of
~150 - “_ -7 " thewave systems in the ship direction
P z :’ are smaller than the ship speed
P
-200 = = : ;
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Simplified estimates of wave angle
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Stabilizing ‘ Destabilizing
Moment Moment

2t dFsk

Example 2: Restoring coefficient in pitch for a shi

. U @m dFik
“ G G
g \\t%>A /f 7
s

The restoring pitch moment Fl. 5 is characterized by two parts: g

B g.r
F,.,=M,+M, dF sk /\ e

exe,5

« M, is stabilizing and due to variation of buoyancy

dM, =—xdF, =—xpg xn, dS=M,6 =-pg _[xzdSiys

displacement Ay
in z direction

with 4,, the waterplane area.
« M, is destabilizing

M, = ng( jzdm/m—jde/ans =pgV(z5—24)7s

m v
with V and m the displacement and body mass, respectively, and zg and zp are the vertical
position of center of mass (coincident with center of gravity for uniform gravitational field)
and center of buoyancy, respectively.

So the restoring pitch moment is

F=—pgV([¥dS/V+z,-250n, = —Cigs
Ay by—definition
>0
= Cys =gV ( [X°dS 1V + 2, ~25) = pgV GM,
Ay longitudinal metacentric height

metacenter

For a stable vessel, i.e. Cy; >0 — GM, must be >0
- It means that the metacenter must be higher than the center of mass.
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Example 3: Restoring coefficient in surge due to a mooring line. (F:258-265)

Hp: A vessel is moored as in the figure and oscillates T
in surge about its mean configuration in wave- L
current-wind environment. L was "
77,=surge at the cable-vessel connection
‘ X

Here: w= weight per unit length of the line in water X
T ,, =horizontal line tension, (T, )M =value of the force in the mean configuration.

—— X =/-[ +x =distance from the anchor to the connection of the line to the vessel
Defining a=T ,,/w:
I, = asinh(x/ a) (F:8.14)
|i:[acosh(x/a)—l] (F :8.15)
X =1-hJ1+2a/h+acosh™ (1+h/a) = f(T,) (F:8.21)

=1 =h +2ha (F:8.17)

s

=X=1(T;)

Due to the motion, the horizontal tension oscillates in time around (7 ,,) , i.e.

M
dr
TH_(TH)M_ dXH moz (TH)M_C11771 :>C11:dT7H
X=(x),  by-definition dx e),
Hp: (T,), =50KN
T, AkNY
X:f(TH) L R e e
0w
dar
(Tu)m 5o > — =C
/ Xl
, —] A Z
50 85 ® (X % xim

Fig. 8.4, Bxample of the hurizontal furce from an enchor line on a vessel as o
fitnetion of the horizontal distance X bewween the ancher and the
poiat where the anchor ling it connecied to the vessel, (The veasch
and the anchor line configaration js shown in Fig. 3.3.) Water
depth: 25 m. Welight per unit Icng7|e chain in water: 828 Nm™!.
Chatin length: 100 m.




Linear hydrodynamic loads

Excitation Added mass Linear wave-induced

loads Damping motions, accelerations
Hydrostatic and structural loads
restoring
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Lecture Note 4
38. Examples of response. (F: 76-79,89-91,99-100)
Examples involving ocean structures and vessels are given in the following.

1) Heave motion on a semisubmersible (F:76-79)

A

waves P N
_— >
|
R @ @
y x L
Y
@ @
r
Zn o —1__| L]t '
B —
b
< —>
B
Hp: 1. Regular beam waves. | Difforonce b  rod and

2. Deep water.

3. Mass loads are dominant (A>5D ,
i.e. long-wave approximation).

4. Steady-state conditions.

5. Neglect coupling between degrees
of freedom

green pressure gives vertical
farce on the pontoans

2_Only green pressure at
junctions between
columns and pontoons

3. The loads mentioned in 1.
and 2. are 180deg. out of
phase

Objective: Heave motion

Using Hp 1+2: O — B l'
——= ] 1 Small heave

TTrTt

¢, = g—g"e"z cos(awt — ky)
(4]

Go =6, Sin(at —ky)
Po = pgg,e" sin(ot —ky)

2
Ay, = O _ — gk & e" sin(wt —ky) = —0°¢ e* sin(wt — ky)
Otoz =
Using Hp 3:

Because 1 is large the wave-induced damping can be neglected in a first step approximation.

Using Hp 3+5:
The undamped equation of heave motion is
(m+ Ag)ijy + Cogtpy = F, 3 (8) = Fye 5(6) + Fp 5 (1)

We need to know all terms to find 7,
e The mass m of the platform is given by


espen
Underline

espen
Highlight


Volume of the 2 pontoons: V,=2hbL
Waterplane area of the 4 columns: 4y=42D’ [4=n D’
Volume of the wetted columns: 4y(-z7)

> Platformmass: m=p(V,-4,z;)

14

e The restoring coefficient is
Cy, = pgd,

e The excitation force in vertical direction is associated to the pontoons and obtained as

Using Hp 3:

Froude-Friloff force:
Let’s take the pontoon with center at y=B/2:

- The incident-wave pressure on the bottom side is
Pos = PgC.e” sin(wt —kB|2) = Force: F , =  p,Lb
[ —
uniform pressure, ny=1
- The incident-wave pressure on the top side is
Por = pgé.e™ sin(wt —kB12) = Force Fyy , =—p,(Lb— A4, 12)
uniform pressure, n3=—1
Here the wetted area is reduced of 4,,/2 to account for the presence of the 2 columns on the
pontoon.

The vertical force on the pontoon is
Fog g+ Fpo = pgg, [ —e“rIsin(ewt — kB 2)Lb+ pgl e sin(wt —kB12) A, |2
Using Taylor expansion about z=z,, + Hp 3, i.e. kh<<I:

kz kz,,—khl2 kz kh kz,
e B — e m ; e m __ e m
. 2
kh<<1
k: kz,, +khil2 kz kz,
e = =e Zn T % e m +_e m

kh<<1
= esz _ esz ~ _ekzmkh
= Fop+Fogr = —pgk( e Siﬂ(wt—kB/Z)Al;laﬁpgé’aesz sin(wt—kB12)A4, 12

v,12

— kzp o
aypV, 12 +pgl e sin(wt —kB12)A4,, 12
| —;

added -mass at geometrical center

multiplied by mass of displaced water

for a pontoont surrounded by water

= pg¢ e sin(wt —kB 1 2)[e"“ ) 4, —kV 112

=
N

[oe]

Similarly on the other pontoon we have
= Fop 5+ Frer = pg¢e sin(ot + kB 2)["C " 4, —kV 112

Knowing that
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sin(wt — kB/2) =sin a)tcosk?—coswtsink—B B

summing up = 2Sin @t C0S— 1)
. . kB . kB 2
sin(at + kB[ 2) =sin a)tcos?+ coswtsm7

The total force on the 2 pontoons is
Frea=(Fup + Frer ) = pgg,e™ sin(er) cos(kB/ 2)[e" ™ 4, — kV,]

Diffraction force:

From the assumptions, the damping contribution is considered negligible. Further the added-
mass of the structure in heave, 433, is due to the 2 pontoons. So the vertical diffraction force
acting on the two pontoons is

! By, 1 B i kB
Fp s :§A33 o3 (y = _Ej +51‘133 o3 (y :Ej =—kg§aek”’ sin(awt) COS(7J Ay

at the geometrical center at the geometrical center

Here result from (1) has been used.

The total vertical excitation force is

Fexc,3 ZFFK,S + FD,3
which means
. A
— kzm k(ZT_Zm) _ ﬁ
F,.,=pgd.e ™ sin(wt) cos(kB/Z){e 4, k(VP + P ﬂ (F:3.63)
NG J

T

phase difference  counteracting forces
between pontoons  on the pontoons

Using Taylor expansion about Az=0 + Hp 3:

= pge* A, = pell+ k(z, —z,)]4, = pgd, + pgkA, (z; —z,)
-

=w2

S0
= F,_,=¢ " sin(wr)cos(kB | 2)[pgA, — pa’A,z

exc,3 — m

+ po’Ayz - pa’V, —o° Ay

——wzp(Vp — Ay zp V=—a? pV =—&’m

= ¢ " sin(wt) cos(kB 1 2)[pgA, — pw’ 4, z, — &* (m+ 4,,)]

Using Hp 4:
Because we neglect damping, the response will be in phase with the excitation force, i.e. we
can assume 77, =15, Sinat . The steady-state equation of motion gives

[~® (m+ 4y,) + pgd, I, = F,

exc,3
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F

exc,3

F

_ — exc,3
[’ (m+ 4,) + pgd, ] {—a)2 (m+ A4;)
pgAa,

F

exc,3

0)2
+ 1} PEAy {— o + 1} P4,

n

=175

. A
with @, the heave natural frequency o, = \/ G _ \/ P2y
(m+ Ay) (m+ A4y)

The transfer function (RAQ) is then:

|77, | _ | cos(kB 1 2)[ pgdy, — pe’ 4y z, — @ (m+ 43,)]| _|e" cos(kB/2) [1- " - _‘0_2]
= 2 - 2 m 2
% ‘ [ +1pgd, ‘ ‘ -] L Y
o, ", =k
. kz
=le"™ cos(kB | 2)[1-—=5-]
w
e,

n

There are circumstances for which |7;,|=0-> i.e. no motion. This occurs if:
a)z
2

These can be relevant for the design and operations.

1) kz, =1- and/or 2) cos(kB/2)=0

Condition 1) means:
2

[0 ),
o’ =0’ (1-kz,) =", + —lz, |0, =0 =——=— (F:3.67)
NB:z,=—|z,|<0 & 1— | Zn | a)zn

this is the cancellation frequency. Because @, >, = T. <T,, the cancellation period is
lower than the natural (resonance) period.

Condition 2) means:

cos(kB/2)=0=kBl2=712+nnr , n=012,..
So using the dispersion relationship
2
w,’Blg=rn+2nr = 2z £=7r+2n7r:>Tm= B n=012,.
o) & g(1+2n)

Assuming the case in figure F:3.20 as an example: 7,=22s and B=50m
From condition 1) we find 7.=20.1s

From condition 2) we find 7, = 4B =8.0s T, = 4B = LTC0 =4.6s

\ ¢ 3¢ 3
These periods are shown in the qualitative figure below based on linear potential-flow theory.
The split in regions without and with incident waves is due to the fact that for periods T larger

than: 7,=22s the wavelengths are /1>ng2/ 27 =75/m and we expect in practice a
negligible energy for such long waves.
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A
7754 | Wave region
s No waves
1
0.5
4 8 12 16 20 22 T( )
S
Iy T I, T,

Natural period: near here
viscous damping is important

The figure confirms that cancellation effects occur for periods smaller than the natural period.
The inviscid solution gives a very small damping near resonance because of the long-wave
regime—> there, viscous damping matters. Similar results are given in Fig. F:3.19 for different

natural frequencies: the greater o,

the shorter the cancellation period
773(1

¢, cos(kB/2)
[

15 <4

1.0

n“<m

05

'z, lg= —0.125§

?| z,, | /g the smaller the secondary peak in the response and
T..

Cancellation of
wave excitation

A semisubmersible:

o

T
20 T

Fig. F:3.19

is designed to have natural period >20s to reduce the induced-wave motions
as a result the resonance can only be caused by nonlinear effects. Slowly-varying

excitation loads, connected with 2" order effects, matter

the long-wave theory is reliable for survival conditions
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2) Linear sway and roll of a buoy

Hp: Linear problem. Deep-water regular incident waves in y direction. Strip theory + long-
wave approximation. Steady-state conditions.

L = | Yo V.

D/2

7,

Using what learned before, the elementary excitation force in y direction is
dF, , =(pAay, + 4,,°” ay,,)dz = 20°¢ “ cos wt p Adz
Fi 2 pA

2
FD,Z( D)

with A4 the cross-section area. So integrating along the body we have

F,.,=2pgAl ,(1—e®)coswt =F, ,, COSwt
Similarly for the roll moment we find formally
F,..=F coSs wt

exc,4a

Also in this case we neglect damping due to long-wave approximation. So in steady-state
conditions the motions will be in phase with the corresponding excitation loads, i.e.
n,=n,cos(at), j=24, giving

(m+ A,,)17, + Ay77, = F,

exc,2a COS wit _(02 (m + AZZ) _a)z A24 {nza } F;,xc,Za
.. . = =
ApTiy + Lyy + Ay )iy + Coatly = F, 4, COS O | o0, —a)2A42 ~’ (1 s+ Au) +Coy | Mg F,

exc,4a

state /
=MAT

with

Ay, = pAD, 4, =-pAD-BG = 4,,, 4,, = pA| D-BG* + D*I3], C,, = pgV -GM,
(V'is the displaced volume) and the moment of inertia from its definition, i.e.

1, =J'(y2 +2%)dm .

NB: Only the restoring term C,, is different than zero and has the same expression as C,, but
with the transverse metacentric height G, in place of the longitudinal one.

Enforcing the matrix determinant to be zero, i.e. Det(MAT)=0, we get the natural frequency as
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" = (m+ pAD)pgV -GM,
(m+ pAD)(1,, + 4,,) ~ (pAD- BG)*

| NB: The coupling between roll and sway affects the natural frequency.

An important concept in this context is the center of roll: the point for which the horizontal
displacement of the body is zero at any time, which identifies the axis about which the body
rolls. It is important both for ships and ocean structures. For instance for a spar buoy, the
center of roll is important for the attachment of a mooring line when located on the body,
typically at the bottom part. However the center of roll may also be below the buoy, in this
case physically the buoy moves as part of a “pendulum”.

In general then the center of roll may not be on the body and may also not exist. Let’s see this
with an example (see Faltinsen’s book “Hydrodynamics of high-speed marine vehicles”, pg.
232):

Hp: A vessel/ocean platform with sway and roll motions due its interaction with incident
waves:

=1, 8Nt +&,) 1, =mn,,sin(or +¢,)
The horizontal displacement of a point of the platform is
S, =1, —z1n, =n,, Sin(et + &,) —zn,, sin(et + &,)

Using that sin(a+5b) =sinacosb+cosasinb
re-arranging and enforcing s> to be zero at any time, we have

s, = (1,, cos &, —zn,, cos&,)sinwt + (1,, Sin ¢, —zn,,, Sing,) coswt =0
=0 =0
which leads to the system

{cos £, —Cos¢g, } {’72(1 } o

sine, -sing, ||zn,,

so a non-trivial solution exists only if the matrix determinant is zero:
= —C0S¢,Sing, +Sing, cosg, =0=tang, =tang,

NB: Phases &, and ¢, depend on a, for advancing vessels on @, and U. So, in general they do
not this condition. A concept similar to the center of roll exists also for the pitch motion.

3) Heave motion of a 2D section in reqular beam waves

z
R

SN
N y

\4

Hp: Linear problem. Deep water waves. Steady-state conditions.
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The equation of motion is

(m+ A33(2D))ﬁ3 + Bss(ZD)ﬁs + C33(2D)773 =F,

exc,3a

@D cos(ewt —a;) (1)

At the undamped resonance
(m+ A33(2D))ﬁ3 + C33(2D)773 =0= [_wnsz (m+ A33(2D)) + C33(2D)]773 =0

(2D)
So the natural frequency is @, = #33@)

(2D)
The heave amplitude at undamped resonance, from eq. (1), is then 7,, :%

n3733

Newman (1962) has derived the expression for the excitation loads per unit length on an
infinitely long cylinder in beam sea. The amplitude of load depends on the corresponding
damping coefficient for the cross-section:

2
=g [PE B =234 (F:3.45)
w

F
So in our case we have

g / V%
. =6, wn33/2 W

It means that the motion amplitude is larger for longer waves and for smaller damping level.

4) Motions in marine operations: crane operations

— 70m |
| 30m
i
' I =] . waves
- As z L B — .
G u g” — =5/ /\_/
| X G
B “—%om 1 40m |
, -
- 100m l

Hp: Transfer of equipment, personnel, etc. between semisubmersible and supply ship.
Regular deep-water head waves.

« Waves: 7=10s, ¢,=1m &, =&, sin(at +kx) =&, sin(ot '+ kx')
w=27/T, & =gk

« Phase shift between center of (x,y,z) on the semisubmersible and (x’,y’z") on the
supply ship: ot’=wt+100k = wt+4.024 (1)

« Semisubmersible: 7;=0.22sin(¢) (M) , 75=-0.0075co0s( ) (rad)

« Supply ship: 77;=0.73sin(wt -0.0872) (M) , 175=0.032sin(ct '+1.4835) (rad)

Objective: Relative vertical motion between A and B
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55" =n3-x15=0.22sin( r)-70(-0.0075)cos(wr)=0.57sin(wr+1.17) (m)
s37=1n3-x15=0.73sin( et -0.0872)-(-30)(0.032)sin(wt +1.4835) (m)
=0.73sin(wt+3.94) -(-30)(0.032)sin(w+5.51)=1.20sin(wt-1.4) (m)

Here, for s5” relation (1) has been used and the expressions have been rearranged using

. A . B .
Asin(a) + Bcos(a) = A® + B> ——=sin(a) + ————=cos(a) = Csin(a + )
Y 2 2 2 2

-C VA +B NA°+B

~cos(8) ~sin(4)
So the relative motion is: s5?-s5°=1.717 sin(wr+1.54)  (m)

Compared with the incident-wave amplitude &, the motion amplitudes of the two locations

confirm the validity of linear theory. The amplitude of their relative motion is about twice ¢, .
This is important to account for to ensure safe and successful operations.

5) Motions and sea loads on a barge (F: ex. 3.1 pg. 89)

/}

z

A

; >

Hp: Floating barge with L=200m, B=30m, D=15m, with uniform density, and U=0.
Regular deep-water incident waves propagating in negative x axis, with A=300m and
H=2¢,=20m
Linear potential flow theory theory.

For the incident waves we have:
B = g—;”e"z cos(wt + kx)
10}
Go =6, sin(at + kx)
Po = Pg¢ e sin(or + kx)

g 0 O
“ owox, % otoz

=—gk( e” sin(wt + kx) = —w°¢ e sin(wt + kx)
——
Q: What is the vertical excitation force on the barge?

A/D=300/15=20>>5 -> long-wave approximation can be used
(L/D=13, L/B=7)>>1 -> the body is elongated so we can apply strip theory
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Using the long-wave approximation and the strip theory:
Fs= FFK,s + FD,3

exc,3
with
LI2

) = Bj po g dl = pgl Be ™ j sin(ot + kx)(n,)dx

[}

F

FK,
waves inside contribution only _L/2 1
along x th‘e body from bottom

= —%pgé’aBekD [cos(wt + kL | 2) — cos(wt — kL | 2)]

= %pg(aBe"‘D sin ersin(kL / 2)

(2D) — (2D) - (2D)=
J. A Ay, + A Ay + Ay ay, |dx
x —0 symmetry =0: waves along x
0.z) plane
L2
== A" gk, e | sin(ot + for)dx
\_Y_J

section uniform -LI2

_ _% 4,7 gk e sin wrsin(kL 1 2)

=F

exc,3

{ £ Be ™ —A33(2D)gk§ae"‘D’2}%sin wt sin(kL | 2)

For the force to be finite £#0 which is not true if @ — 0. In the latter case a,, — 0 and

F.s=PgC Be_kDgSin(kLIZ)sin ot = pgl BL ™ Sin(kL/2)

o ‘ k ’ »m»o kL / 2

—1as kLI2—0

sinwt = pgd BLSIn ot

Q: Using 43;*”=0.8pBD, no damping, what is the heave motion of the center of gravity?

We are looking for the steady-state solution and because the damping is zero, the response
oscillates in phase with the excitation load:

13 =15, Sin(ax)
The equation of heave motion (without coupling with pitch and no damping) is:

[ w (m+A3)+C3]773 exc3
with m=pLBD (using the equilibrium between the weight and buoyancy), As;=A3""L=
0.8pBDL, C;3=pgLB, we have:

. i) 2

F., sinor {pgg”aBe ** —0.8pBDgk( e lez}%Sln(kLIZ) .

, _ o
[~@® (m+ Ay;) + Cy,] [-»*(1+0.8) pBDL + pgBL]

{(i/ﬂ)e_kD ~1.6De™"?} £, sin(kL 1 2)
[-(27 1 2)(1.8)D+1]L
=4.9sin(ewt) (M)

;=

sin ot
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The heave is in phase with the incident wave at x=0 and its amplitude is about half of the
incident-wave amplitude.

Q: How is the pitch motion?

The equation of pitch motion (without coupling with heave and no damping) is:
[_(02 (Iss + Ass) + Css 175 = F, s

Here the excitation moment is obtained by integrating between —L/2 and L/2

dFexc,5:'XdFexc,3 9 F

exc,b

oc cos(wt)

The full expression can be found in F:90.

The moment of inertia from its definition, i.e.
Iy = j(xz +2z%)dm.

The added-mass coefficient comes from the hydrodynamic moment proportional to the pitch

acceleration
L2 LI2 LI2

Fos= J. A33(2D) (775 — x7js ) xdx = I A33(2D)deﬁ3 - I A33(2D)x2dx7'7'5 = — Agl]s — Agsls

-LI2 —LI2 —LI2 radiation load
proportional to
acceleration

S0, as we have already seen, we have
LI2

A = _[ A33(2D)x2dx

-LI2

The restoring coefficient comes from the restoring moment

L2 L2 L2

Fus= [ peBln,—xn)xdc= [ pgBxday— [ pgBx’dwm, = —Cyppy=Cagri
~LI2 ~LI2 —LI2 hydrostatic load
SO we obtain

L12
Cy = I pgBx*dx

-L/2

Substituting these expressions in the pitch-motion equation, we can find
ns =15, C0s(at) =—0.15cos(ewt) (rad) .

The incident-wave steepness mid-ship (x=0) is:

0 1 ox| _, = k¢, cos(wr) =0.21cos(wr) (rad)

so 75 is in phase with the mid-ship steepness and its maximum is about 2/3 of maximum
steepness k¢, .
Both heave and pitch amplitude results confirm that linear theory is valid.
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Q: What is the vertical acceleration in the bow (x=L/2)?

| NB: this is the most critical region in head sea waves.

sy =, = (L1 2)n,] = s, sin(er) = (L] 2)n;, cos(eot)
= §,° = -0 [n,, sin(wr) — (L1 2)n,, cos(wr)] = 5,,” sin(wr + &)

The magnitude |5,,° |= a)z\/nsf +(L12)%n,,? =0.34g so it is limited in this case.

Q: There is any danger of water exit or water on deck in the studied conditions?

NB: Water exit=bottom out of water.
Water on deck=shipped water, a criterion for this is “water exceeding the freeboard”.

To answer this question we need to estimate the relative vertical motion, i.e. between ship and
waves, at the bow (where the motions are largest in head waves):

[s5-C]._,,, =1~ (L12)ns ¢, sin(er + kL[ 2) =9.86sin o +6.72cos wt

=[s,-¢], ., =V9.86" +6.72° =11.93 m

Water exit: The draftis D=15m>[s,—¢] _ . so there is no risk of water exit according to

linear theory.
Water on deck: The freeboard must be at least /=12 m>[s,-¢] _  or greater to avoid

water on deck.

6) Wave-induced accelerations of cargo and equipments (see Faltinsen’s book
“Hydrodynamics of high-speed marine vehicles”, pg. 232-233):

The wave-induced motions are estimated in the inertial reference frame (x,y,z) fixed or
moving with the forward speed of the vessel. It is important to keep this in mind when
estimating the loads acting on objects on the deck of the vessel which may risk for instance to
lose grip in waves. An example is given in the figure below:

Hp: An object, with mass M and center of gravity (x.,y.z.) in the (x,y,z) reference frame, is on
the deck. The ship is oscillating in surge, heave and pitch due to its interaction with head
incident waves.

Objective: Find the equation of object motions in the body-fixed reference frame (x"’,y",z").
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The object is subjected to external forces F. and .. due the contact with the deck (e.g. deck

friction, fastening, etc.). Moreover the ship motions cause additional forces.
Along x’’: The pitch motion causes a time-varying component associated with the object
weight Mgn.i'" . Moreover, the object center of gravity has an acceleration along x which is

the same along x " within linear theory, i.e. (7, + z7j; )i = (7, + z,7j; )i"" + (&°) S0 we have
M(772 +Zc775):Mg775 +F. (1)

Along z’’: With similar procedure we have
M (7'7'3 - xcﬁs) =-Mg+F,. (2)

Equation (1) is useful to guarantee suitable fastening of the object. From equation (2) we see
that for the object to not leave the deck F.-- must be positive.

7) Fluid motion in a moonpool (F:99-100, exercise 3.6)

O
|

=+ L

D
A moonpool is an opening in the ship used in oil field to provide access for the well drilling.

Hp: -The ship motions are known.
-The moonpool has a horizontal cross-section uniform and circular with diameter D.
-The internal fluid motion is only vertical with uniform velocity d¢ /dt and acceleration
d’C/dr, ¢ being the free surface elevation relative to the mean free-surface level in the
sea (the mean free-surface level from the ship bottom is the dradt d).
Objective: We analyse occurrence of piston-mode (1D oscillations in z) resonance in the
moonpool using linear theory.

Q: What is the fluid acceleration?
Within potential-flow theory, the fluid-momentum equation is given by the Euler equation:

d2§ op
0 = _— ()g’ 1
dt? Oz (1)
——

local- flow external forces:
inertia force pressure gradient and gravity

2
This gives directly the fluid acceleration % = _i@_p_g (F:3.85).
dt p Oz

Q: Equation (1) is local in the fluid, what does it give its integration from z=-d to z=¢ within
linear theory?

¢ 2 2 2
d’c  op d*¢ ¢
=L _ o ldz= + d=— — p |-pe(C+d
NP ae =" PE|ETP S P Py ~ P pg(¢+d)
v N atmospheric ~ z=—d
uniform second order
d’ 0
= P fd ={pa ~Pa p% +pg(—d)}—pg(§+d)
using linear dt at z=—d

Bernouilli eq. for p
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¢ g, 10

ar  d dot|_,
This equation is like a mass-spring system forced by the right-hand-side excitation load. The
natural frequency of the system is obtained from the homogenous equation:

2
Ceili0 o [‘wn”g}#owf\/g:nfzn ¢ (ramm)
dr* d o d d g

steady state

=

(F:3.86)

So the resonance condition is characterized by a period T, which only depends on 4 and

increases with square root of it. This is because the moonpool beam (diameter D) is assumed
small relative to the draft d.
Molin (2001) has studied the piston-mode (1D oscillations) of a moonpool. The main
geometrical parameters are in the figure below :

B

2p

BSH bm

Instantaneous
velocity

In this case also other body dimensions, i.e. b, /d and B/2b,, matter for the natural period,
which becomes

T =2r d 1+lb—"’ 1.5+ ni
g 7 d 2b,
—

Tho additional term

This expression reduces to T, from Faltinsen’s formula (F:3.87) if b, / d — 0. The additional
term leads to 7 greater than 7, if In(B/2b,) >—-1.5which means if the side-hull beam B,

is sufficiently wide relative to the moonpool width.
The parameter b, / d, by itself would tend to increase the natural period, but its increase may

cause 3D effects in the moonpool flow.
The ratio between the resonant moonpool amplitude and the amplitude of the heave motion,

¢ " Iy, is given in the figure below, as a function of B, /b, and shows a nearly
linear trend for a given d /b, and h/b, with i the water depth.

moonpool
S 80

heave

o 70
50 b
40




moonpool /

From the results, &, -
- increases with increasing the side-hull beam By,

- increases with decreasing moonpool width b,
- less sensitive to draft d and water depth 4 (not shown here)

The resonant mass flux in the moonpool is larger than the heave mass flux and their ratio
increases with By, /b, . The trend is faster than linear for small B, /b, and tends to a linear
behaviour as B, /b, gets large. This is shown in the figure below:

moonpool
é’a bm

ﬂ:eave 2BSH 4
38

3.6
3.4
3.2

3
2.8
2.6
24

. ; ; ;
0 2 4 6 8

Bay/bo’

The resonance of piston-type mode is also relevant in the case of a vessel (like an LNG
tanker) near a terminal. In particular in the region between the two marine units (see example
in the figure below:

8) Mathieu-type instability in roll
The roll motion of a marine structure can be subjected to a Mathieu-type instability.
Hp: 1D roll motion problem

The restoring term depends on the transverse metacentric height GM,., so if GM . changes in
time also the restoring term will. In this case, the equation of motion becomes

(Lyg + A )7y + Butty + Cyy, - f (€)1, =0

with C,,, the restoring term corresponding to the mean transverse metacentric height, say
GM ,, . The function f{z) accounts for the time variation of the restoring term. Dividing by

1,, + 4, and writing explicitly f(z), we have
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SGM.,
i, + 2 7, + 1+ —7Lsin(wt+ =0
iy + 280,17, + 0, Cii (o, ﬂ)}m

Tm

ft)=time-varying part of restoring term

with &=B,,/[2(1,, + 4,,)®,]the fraction of the damping relative to the critical damping and

@, =|Cpup | (L +4,) is the natural frequency.6GM,, @, and f are, respectively, the

amplitude of the variation of GM,, its frequency and its phase relative to the roll motion.
When f(z) becomes negative the restoring term is destabilizing. We talk about Mathieu

2 2
instability and its existence plane in terms of 5_62\/[ (—"] and (QJ is given in the figure
1) w

Tm e e

below:

TN bl
: )

WTAN

The white regions mean |nstab|I|ty, those in grey stable conditions.

Mathieu-type instability can be for instance excited for a spar platform by second-order
effects responsible for the variation distance between the center of buoyancy and the center of
gravity which is the dominating restoring contribution for such platforms due to the limited
waterplane area.

9) RAO from linear seakeeping model tests.
The RAO |n,|/¢, can also be estimated experimentally. The used techniques are mainly two

and use a physical wavemaker to generate the incident waves:
1) Regular-wave technique=each test generates regular-incident waves at a given @ with

amplitude so that k¢, is small (linear theory) and the RAO is measured. o is varied to

study the whole relevant range for body motions.
2) Transient-test technique=one test generates regular waves with different frequencies,

first the shortest, slower, then increasing progressively A . The generated waves will
‘meet’ in a prescribed point of the basin (i.e. at the ship location). This involves a
focusing process and leads to a very concentrated disturbance of the free surface, wave
packet. Its interaction with the body causes a response which can be splits in the
different frequency components to provide the RAO as in 1).

Technique 2) has the advantage that you can find one-shot the RAO for all @ values of

interest, it has no problems of wave reflections from the tank sides and high repeatability. But

it has problems to study irregular waves.
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Consequence of Mathieu type instability in roll
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Linear Seakeeping Model Tests
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Lecture Note 5

39. Minimization of heave, pitch and roll motion. Second-order effects: mean values,
difference and sum-frequency effects. Mean wave induced loads from direct pressure
integration and conservation of fluid momentum. (F:81-89,131-133,142-143)

Minimization of heave and pitch ship motions (F:81-85)

The wave induced damping terms in heave and pitch are in general large, i.e. the vessel
capability in generating waves in heave and pitch is high.

This fact is particularly important near the resonance to keep the motions limited. Other
important aspects that affect the motions features are cancellation effects of the motions and
dependence of motions from geometry and operational conditions, i.e. without or with
forward motion.

We discuss this in a simplified way, the aim is to show general trends.

Hp: - Linear regular deep-water head sea long waves
-> Long-wave approximation valid, i.e. cross-section small relative to the wavelength
- The ship is elongated and has uniform box-shaped cross-sections (i.e. like a barge),
symmetry about (x,z) and (y,z), U=0
-> Due to elongation, strip theory can be applied
-> Due to uniform cross sections, added mass 433, damping Bj;;s, and restoring Cj;, are
uniformly distributed along L, i.e. dA33=A33dx/L, dB33=333dx/L, dC33=C33dX/L
-> Due to fore-aft symmetry, heave and pitch motions are uncoupled
- The mass m is uniformly distributed along L, i.e. dm=mdx/L

73 a

&%’75

waves

<
<

Ship and its approximated barge (dash-dotted red line)

For the linear regular deep-water head sea waves we have:
Lo =¢, sin(ar — k)
Po = pgg,e" sin(ot — kx)

¢, 2 e o
a,=——=—-wC e" sin(wt — kx
03 6taZ é/a ( )

o Heave motion
Using long-wave approximation + strip theory + symmetry about (x,z) and (y,z) + head waves,
the excitation force in heave is:

Foans = .[ —pongdS+_[A33(2D)503dx (normal vector pointing inside the fluid)
Son L

Using that the cross-section is box shaped and uniform (i.e. like a barge), we have

&b


espen
Highlight

espen
Underline


L2 2F, . (kL
F = e P — %4, PP tP12 sin(wt — kx)dx = =—Lsin sin wt
wests = Sa [pg 33 ] I ( ) % >

exc,
—LI2

=FRyIL

NB:

LI2
'[ sin(a)t—kx)dxz%[cos(a)z—kx)]i [coswtcosloc+sma)tsmloc] o _Zsin(k%jsin ot

—-LI2

The result says that in head sea the wave loads along the ship can counteract each other and
cancel the total wave excitation loads, this occurs for

sin(kL/2)=0 - for kL/2=nx > A/L=1/n with n=0,1,..
n=0 means no waves, n=1 means A/L=1, i.e. at the resonance.

NB: This means that, without forward speed, the cancellation effect on the heave motion in head-sea
conditions may be dominant around the natural frequency for heave and pitch.

Let’s now estimate the excitation force in heave induced by beam waves with the same
parameters as the head waves assumed here:

waves Z1

Ship cross-section and its 'apbrokﬁnation (dash-dotted red line)

The incident waves are:
é/() = é/a Sin(a)t + k.y)
= pgl e“ sin(ot + ky)

¢y
a =—w’C €° sin(wt +
8= o, ., (ot + ky)
So, using valid the same assumptions, we have:
LI2
Floaps = I —pOnSdS+IA P agdx = ¢, [pge‘kD —0)2A33(2D)e_w/2] I dx -sin(at) = F, sin(at)
Soz y:O —LI2

—E /L
0 I

It means that the heave-force amplitudes in head and beam waves with identical parameters
are linked as

|F s =2 |sin| XL "L I Fonss | (F:3.70)
kL

Due to the linearity, the motion amplitude is proportional to the excitation-force amplitude:

kL
170 o ol s |sm[ ]nmml (F:3.71)

NB: Because the term|sin(kL / 2)/ (kL /2)|<1 and tends to 1 for kL /2 — O, the response in heave
is in general smaller in head sea than in beam sea with the same parameters.
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a Pitch motion
We can use the same approach as for the heave. In head-sea waves the excitation moment is:

F, .
dF, . c.s =—xdF, = —Toxsm(a)t — kx)dx

ext exc,3HS —

L2
= F, sus - b I xsin(a;t—loc)dx:—§{£cos[k£]—£sin[kéﬂcosa)t
’ L L 2

-LI2 k 2 k?
Li2 L/2
NB: | xsin(wt—kx)dx= [ |sin(wr) xcos(kr) —cos(er) xsin(kx) |dx
-LI2 -LI2 antisym=>int egral=0 sym=int egral0
L2
= —cos(a)t)[—fcos(loc) +izsin(lcx)} = £cos(kéj —%sin (kéj Cos wt
k k e Lk 2) k 2

and the uncoupled pitch motion equation gives:
12 F;'xc’,SHS

J— (m+ Ay) +iwBy, + Cyy

= (Los + Ass )5 s + Besls s + Cosls s = Fyests = Msps =

LI2 2 LI2 2
K K..L
NB:ISS:I(x2+22)dm§ﬁ I Ve ="L , Ky = _[ XdK, =—2 | xPdx=—2
m L —LI2 12 t;l'goigy Ka L -LI2 12
withK = 4, B, C

The Is5 contribution with z* can be neglected because it is connected with the draft D while
the term in x° is connected with the ship length L and we assume L/D large.

The pitch amplitude in head sea is then

L Zzsin(ij—Lcos[ij
Lk 2) k 2

\/[_a)2 (m+ Ag) + C33]2 + a)zBssz

12
| D55 |= ?

@)

This can be related to the heave amplitude in beam sea obtained from
F,

: |
‘\/[—a)2 (m+ 4,)+C, + @’ By ‘
by expressing Fyin eq. (1) in terms of |7, .. |, we have

12 2

L | L°k?

(M + Ag3)fsps + Bagllaps + Cagllaps = F, 385 = 135 |5

) L 1 L
Sin(k—=) ——cos(k— F:3.72
( 2) Tk ( 2)||773le ( )

| s s =

o With forward motion
Hp: We account only for the change in frequency due to U,

i.e. o, = w+ w’U | g (head sea waves).

The natural frequency , is considered identical with and without speed
—> at U#0 resonance is caused by longer waves because the encounter frequency is
greater than the incoming-wave frequency.

94




If we use the last assumption in the expressions of |7, |and |7, |, we have:

-> The cancellation effect on heave and pitch excitation loads appears less pronounced at U#0
-> Heave and pitch at resonance may be greater within a certain limits of increasing Froude
number.

Example.
Hp: A ship with L=95m. Deep-water head sea waves.

T,=7.8s is the period at resonance condition> @, =2z /T, =0.805rad [ s
Obj: Find the incident wave length at natural oscillation frequency @, .

AtU=0mIs > w=m, >Ai=2rgl/n’=95m ie. L/A=1

So there is heave cancellation.
2

At U=10m/s > @, = w+2-U = e, =0.805rad | s
g

—-0.5+,/0.
e +4/0.25+ 47U I(gT,)
2U I g

~0.527rad I s

= 2, =27 = 200m
(4

So for U=10m/s at resonance L/,=95/222=0.428 giving sin(k,L/2)=sin(zL/A,)=0.975.
This means that the cancellation effect is much reduced relative to zero forward speed.

To find the heave and pitch amplitude at resonance in head sea we need to know the
amplitude of the heave motion at resonance in beam waves. This can be estimated assuming
negligible 3D effects (i.e. studying the heave motion of the cross-section) and using the
Newman’s (1962) excitation vertical force on an infinitely long cylinder in beam sea (already
discussed in the example of a 2D cross-section in beam waves):

2
2D %4 2D
|Fexc,335( )lzga _B33( )
\ @,

So we have:

| 7hgs = & —2= =2 (F:3.74)

302 (2D)
3 By,

with @,; the undamped natural (circular) frequency in heave and B3;*” the cross-sectional 2D
damping in heave. B3;“” depends on w,;.

Using the Lewis-form technique to find the damping coefficient, the heave amplitude at
resonance can be obtained, as reported in figure F:3.22 (given qualitatively below).

| 7555 | D=3 | 7555 | O=W,3
¢, <, /2D=0.666
2 2
/B/2D=].5
1 1
0 > 0 >
02 46 8pg/p 0 05 10 C,
Fig. F:3.22
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| 77555 | increases decreasing the beam-to-draft ratio B/D and increasing the sectional area

coefficient o=4/(BD) which in this case (box-shaped uniform cross-sections) is equal to the
block coefficient, i.e. o=Cjz. These results can be transferred to the heave and pitch amplitude
in head sea.

NB: The results obtained must be read as trends, i.e. considering large variations of the
examined parameters. Making small changes may not show this behaviour since there are
other parameters that matter: heave and pitch natural periods depend on the hull geometry and
the cancellation effects in heave and pitch will vary from hull to hull.

The RAO discussed here can be inserted in a statistical analysis assuming a spectrum S(w).
The analysis suggests that the vertical motions in head sea conditions depend on the ship
length L and we expect that they decrease as L increases. Also this must be interpreted as a
trend, i.e. it applies considering large variations in length. The vertical motions may also
depend on other hull parameters than those considered here. Other aspects that could be
relevant for the motions are: bulb, transom stern, pitch radius of gyration, U-form or V-form
of the vessel. In the used simplified model, heave and pitch coupling is not accounted for due
to the fore-aft symmetry of the vessel. In general the coupling matters for the motion
amplitude.

Minimization of roll motion. (F:85-89)

The wave induced roll damping can be limited in particular when the considered geometry
has a limited capability in generating waves while rolling, e.g. cross-sections close to circular.
In such conditions viscous damping becomes important associated with flow separation (we
will see this later) which takes away a portion of the motion energy. When the vessel hull
does not ensure sufficient roll damping, additional mechanisms are needed to ensure proper
damping. Typical means used for ships are:

1) Bilge keels: due to the presence of a geometrical singularity, flow separation is
ensured. The roll stabilization is obtained by causing flow separation and then
modifying the pressure distribution on the bilge keel and around the hull. This
provides a load proportional to the square power of the roll velocity which acts as a

damping for roll motion, i.e. it is proportional toz, |77, |.

2) Passive anti-roll tanks: they cause a roll moment, say M,r, counteracting the roll
velocity. Both free-surface and U-tube tanks are used with this scope (see Fig. F:3.23).
A detailed description can be found in Faltinsen’s book “Sloshing”, from pg. 82).
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For them to work best, the tank natural period, say 7y, must be close to the roll natural
period, say 7,,. In this way the tank moment is almost 180° out-of-phase to the roll
velocity (i.e. 90° out-of-phase to the roll motion).

b

b

Fig. F:3.23
In particular, fig. F:3.24 shows a free-surface tank at zero roll motion (maximum roll

speed). In this condition a hydraulic jump forms in the middle and the related pressure
distribution causes a maximum tank moment against the roll speed.

Some designers set 7,, =T, , while others use 7y 6-10% smaller than 7,.

@goll speed
TN = T4n

Hydraulic jump

L

{2 B S N

@ank moment

Fig. F:3.24

The damping effect is greater the tank causes a reduction, §Gi,., of the transversal
metacentric height relative to the case without tank, GM,, in the range
0.15<6GM, | GM, <0.3.

Free-surface tank:
The highest natural period 7is connected with a wavelength A=2b=27/k, so using the

dispersion relationship in finite water depth @* = gktanhkh we have
T,=2x/g(x/b)tanh((z /b))  (F:3.75)

Because the water depth is typically small relative to b, shallow-water conditions
apply, i.e. &/b=>0, so tanh(zh/b) ~ zh /b and

T,=2b/\[gh (F:3.76)
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The following figure shows the effect of the water depth % and the width of the tank »
on the tank highest natural period 7; according to formula (F:3.75). For a given 4, T;

increases as b increases. For a given b, T; decreases as 4 increases.
14

T (sec
1( 12)— 4m

cé“%@&
1090 h=2m—

0 ‘ICIIIm 2|0m 3|Om 4dm 5CIIm Bdm
Tank width b
Due to the possibility to change the natural period by changing 4, this type of anti-roll
tank is well suited for ships operating with a wide range of metacentric heights.
The ideal would be to have a linear moment from the anti-roll tank. The moment given
by a free-surface tank is instead nonlinear, as shown in the figure below:

Free-surface antirolling tank M, =01
0.015 <
H . . . t ,7Km /B—B\E\\
p . 774 - 774(1 Sin w ’// g ,Olgb3Lt , iG. o L’\\E\
Tank roll moment=K7 sin(wt 4-¢,) 000 =N \;
’ \§
@ ! NERATA
w < w, (quasi-steady) = ¢,=0 | Ve L\ \
’ M= 0:0333
= Tank moment=K, sin(wt), | B AR
i.e. destabilizing moment. 'l N
1
1 % 05 1 1.0
w= = e,=-90° 1 / w\blg
Tank moment—K \ v
= an‘ moment=-K, cos(wt), T .
= _K/u/r]'-'l /(wn-l(l)’ 8Y(deg) % ?
i.e. sloshing causes roll damping. —o0
Lowest sloshing fre cy: 0 M ;
west sloshing frequency . = - n N
=2m /T = 7\gh /b g

The figure also proves as in quasi-steady conditions a sloshing tank is destabilizing for

the roll motion, while it causes roll damping when the roll motion frequency is equal
to the natural sloshing frequency.

U-tube tank:

Assuming a constant cross-section area 4, the natural period can be obtained following

the same approach as done for the piston-mode in a moonpool and assuming linear
conditions:
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¢ d’s op s-k
pLl o P 5o 2K g
L =ar,

d’s d’s | 1
=>p —s5 + ———[ p, — P }—pg[(l)bw(o)_]
- ) 7\.,4 2
second order atmospheric  s==1/2

TN R )
ﬁ‘or:;t_':zear dtz 2 Pa™ P at s=—112 &
Bernouilli

2
:>d—f+2—gs = _29¢ = natural period: 7, =27z L (F:3.77)
dt [ [ Ot =112 2¢g

An alternative approach can be based on the fact that at undamped resonance the sum
of the kinetic energy

1 ds \
K==pl4] £
2” (drj

and the potential energy
2

s
P=2Apg—
,082

in the tank is constant, i.e.
d(K+P)
dt

A change of the natural frequency for sloshing is not so easy for a U-tube tank. If the
metacentric height for the vessel may vary of a factor greater than 2 for different
loading conditions, it is common to use two U-tube tanks. Side valves are used to
control the fluid motion inside the tank. These can be part of an automatic control
system. The U-tube tanks can provide a quasi-linear moment unless flow separation
occurs. In the latter case the behaviour is nonlinear. The figure below shows an
example of a U-tube tank on a patrol boat. The use of the anti-roll tank (curve:
Stabilized) reduces the roll motion at the resonance with respect to the case without
anti-roll tank (curve: Unstabilized). It also shows two side effects: existence of two
natural frequencies and increase of the motion at smaller frequencies.

Passive U-tube anti-rolling tanks on 53m long patrol boat

Sr N4a

at Unstabilized

d?s ds d?s . /
0| /—+2 A—=0=]—+2gs=0= natural period: 7, =2 |—
( dr’ gst dr ar L P VT 2g

Coupled natural frequencies

Increased response
~ ~ 3_

~

~ o Stabilized 4
~ 7 X

S

0 02 04 06 08 1 12 14
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A major problem for the passive anti-roll tanks is saturation, e.g. when the ship
motions are very large tank roof impacts can occur reducing the tank ability of
producing roll moment.

Both free-surface and U-tube tanks may provide damping in a wider frequency range
(i.e. not only at the resonance frequency) if damping is increased in the fluid inside the
tank, i.e. introducing screens or other internal obstacles.

Using Tns and SGM, | GM,, allows to design the tank

If we want to design a free-surface tank, we need to define the proper value for 74, b
and Ly, with L7 the tank length. The width 5 can be taken as the ship beam B, 4 can be

obtained from 7, =T, = 2b/./gh = h =(2b/Tn4)2 I g and the length L7 and vertical
position relative to z=0 can be estimated by enforcing the ratio sGM,. / GM , within
0.15< 5(71\7[T /GJVIT <0.3. Similar approach must be made to design a U-tube tank.

The figure below shows how to design a U-tube and a free-surface tank to damp the
motions of a tall building as a function of the building height H:

""""" ~ - _ Tuned liquid dampers
Highest natural period = =~ ~ _
7;(s) of the building T~

~ Access hateh Water
~ «

°
4 P /
3 /z:
2| G 0
° /.'
. o A
1l Guiding wall Damping vanes

U-tube
Sloshing period=Building period 7;

0 50 100 150 200 250 300 350
Building height H(m)

Free-surface tank 20
300 ! U-tube @

£/.5/ ‘ length
2507 VVVVVVVVVV " VVVVVVVVVVVV x/ PG 15,

H(m) ‘ / ; I(m)

200 S S Do
w| )] R 2
100} £/~ b :

3 3 T R S s IR
50k /o \

ob— "1

05 3 5 i 2Ob(m) 0 50 100 150 200 250 300 H(m)

Summary: Environment. Assumptions. Linear wave loads. Diffraction and radiation
problems. Excitation loads. Added-mass, damping and restoring coefficients. Parameter
analysis. Response. Minimization of vertical motions.
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Second-order effects: mean, difference and sum wave-frequency effects (F:131-133)
Up to now we have examined the linear response to linear wave systems. This means that we
retained all terms O(¢7) and proportional to e=k¢,. As the incident waves become steeper, i.e.
k¢, increases, also higher order terms must be retained for a suitable estimate of the loads and
motions. Using the perturbation approach, i.e. expressing the solution as

ho b

— ==
=g+, +de’ +........

C=Ce+le* + 0+
FAr

We can proceed including terms O(&’) (second-order terms) and examining their effects. In
this way we are satisfying a bit better the conditions:

- we enforce better the impermeability of the body in its instantaneous configuration,

- the pressure to be atmospheric on the instantaneous free surface and

- the normal fluid velocity at the free surface to be closer to the free-surface normal

velocity.

In other words, the problem is still approximated but with a smaller error, i.e. O(€’).

NB: It is more difficult to estimate second-order loads than linear loads, both experimentally
and numerically, because they are typically small relative to the first-order contributions

- they are more sensitive to the specific conditions (geometry, waves, first-order motion,
etc).

Hp: Let assume that we have a regular incident wave or a wave spectrum S(w).
Objective: we want to examine the response (motions/loads) accurate to the second order.

First-order solution: the response has zero mean value and oscillates with the frequency of the
incident waves, i.e. superposition principle is valid.

Second-order effects cause on the response:
1) amean value —> constant (drift)
2) adifference-wave frequency oscillatory behaviour > (o, —@,) long period

3) a sum wave-frequency oscillatory behaviour 2 (o, + ;) short period
For a regular incident wave: o, = 0, = @

> the 2" order effects caused are a mean value and a sum wave-frequency behaviour.
For a sea state with S(w): , and o, are two generic regular components of S(w)

- all 2" order effects are caused.

NB: Among effects 1)-2)-3): the sum wave-frequency effects are more challenging to be
estimated, due to the fast time variations involved. The slow-drift effects are easier to estimate
but require longer time analysis, especially when extreme values must be estimated and a
statistics must be built for them, this is of concern in model tests.

From where mean, difference and sum effects come from?
Hp: Regular deep-water incident wave with amplitude £, frequency wand propagating in x.

The first-order incident wave velocity potential is:
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By _ 8 e cos(wt —kx+¢)
w
In the subscript of ¢,,, the first index ‘0’=incident wave, the second index indicates the order
of approximation.
The wave-induced loads can be obtained by integrating the pressure along the wetted surface

of the body. This is given by the Bernoulli eq.:

op 1
=—p|—+=Vp-Vo+ 1
p p{at S VeV gZ} 1)
We can assume ¢=¢ (o) +¢,(2w), i.e. the solution of the wave-body interaction accurate to
the second order (NB: It has been emphasized that ¢ and ¢, oscillate in time with @ and 2w,

respectively). This means that the pressure correct to the second order is

o, o9, 1
— por—pA_ T2 57y4 .V
P==pPg =P PP -V

0(<,) 0(£,2)
and in general we need to solve the linear and second-order problems to find the velocity
potential, i.e. we need to estimate both ¢ and ¢, .
The contributions from V¢, -V, oc £ ° and Vg, -V, o« £,* to the square-velocity term must
be neglected. We now examine the features of this second-order term using the contribution
2

(0¢,10x)" at x=0:
Squaring the linear velocity component along x

o _ Acos(wt + &)

ox |, o
we have

2

(041 0x ) = A4*cos’(wt+e)= 412 + A% cos[2(wt+¢)]/ 2

constant term

sum- frequency term

NB: cos®(wt + &) = {1+ cos[2(wt + &)}/ 2

It means that we have a mean load and a sum-frequency load effect.
The second-order term due to 0¢, / 0t gives a sum-frequency load effect and zero mean value

because 0¢, / 0t o« sin(2at) .

Hp: Two incident wave components of a sea state with spectrum S(w), wave 1 and wave 2,
with amplitudes ¢,; and ¢,», frequencies w; and @, and propagating in x.

The first-order incident-wave velocity potentials are

4O = 85a e cos(wt—kx+s) P = 8z g s (ot —kyx+é,)
@y W,
Here the apex indicates the wave.
Now the velocity potential accurate to the second order is

p=0 +¢, =4" (@) + 8 (@,) + 4, (0, ,)
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with ¢, involving a combined effect from the two incident waves. We analyse as before the

contribution of (o4, / ax)2 to the square-velocity term at x=0:
Squaring the linear velocity component along x
o,

v 4 cos(mt+¢&) + A,cos(w,t+¢,)

x=0 due to interaction with wave 1~ due to interaction with wave 2

we have
(0104 _, )2 = A2 oS (ot + &) + Ay COS* (wyt + &,) + 24,4, COS(yt + £,) COS(o,t + &,)

NB: o cos’(wt + &) ={1+Ccos[2(wt + £)]}/ 2
o COs(ayf + &) cos(wyt +&,) ={cos[(e, + w,)t + & + &,]+cos[(@ —w,)t + & —&,]} 2

= (g 1ox] ) = (A2 + 4212
+ A2 cos[2(emyt + &)1/ 2+ A, cos[2(w,t + &,)]/ 2+ A, A, COS[(@, + @,)t + £, + &,]

Sum- frequency terms

+ 4 4, cos[(w, —w,)t + & —¢&,]

Difference- frequency term

So the second-order body interaction with a sea state with spectrum S(w), involves mean
loads and loads oscillating intime as o, + o, .

What is the practical relevance of second-order loads?
Mean (drift) loads resulting from second-order effects are important in many contexts:

- design of mooring systems

- design of thrusters systems

- towing

- offshore loading

- submarines

- capsizing of semisubmersibles

- added resistance in waves
If the two wave frequencies involved are very similar, the sum-frequency effect is of an
oscillation period almost half of the incident-wave period and the difference effect is of an
oscillation period almost zero, i.e. very slowly-varying loads.
The slowly-varying loads can cause resonance in surge, sway and yaw of a moored structure,
for which relevant periods are O(1-2min).
The high-frequency loads can cause resonance in heave, pitch and roll of TLPs, for which
relevant periods are O(2-4sec).

We will now discuss the three second-order effects 1)-2)-3) in terms of loads. Most of the
discussion is in terms of forces but similarly can be done for the moments.

The forces of a marine structure can be estimated in two ways:

1) The direct pressure integration: integrating the pressure along the instantaneous wetted
surface of the body
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0 . Livgp
F=|[pndS=-p|| ==+=|Ve|* +gz |ndS = 1
S{p ps{(at S1V¢1 gzj @

with n pointing inside the body

NB: We are assuming zero viscosity otherwise the tangential stresses should also be
considered.

2) The conservation of the fluid momentum: given a certain fluid volume
(material/fixed/etc.), the fluid momentum may vary in time because of the forces
acting in the volume, like the gravity, or on its enclosing surface, normal and
tangential (zero for zero viscosity) stresses, and of the net flux of fluid momentum
through its enclosing surface, i.e.

i[IdeQj =Fy+F, — [V (V,-U,)dS = — [ pndS - [ pgkdQ~[ pV (¥, U, )dS
dt Q S N Q N

=0

if >0 flux leaving Q
with n pointing out of the fluid volume, k the unit vector vertical and upwards and U,
the normal velocity of the boundary surface (U, =0 for a control surface and U, = V,
for a solid or free surface). If Q is a fluid volume enclosed by our marine structure, a
part of the free surface and a remaining control surface, then from (1) we know that
the force on the body can be expressed as

F :—i[jpvm}— j pnds—jpgkdg—ij(V;—Un)dS )
dt Q S-S Q s
Expression (2) is formally more complicated than (1) and involves volume integrals, but there
are circumstances where, when the mean loads are of interest, the integrals simplify and may
reduce to an integral on a ‘far-field’ control surface that can be estimated more simply and
correctly than that in (1). Expression (1) involves terms that counteract each other and may
make it difficult to estimate accurately the loads. Further, approach (2) offers an important
physical interpretation of the mean loads, as we will see (i.e. Maruo’s formula).

NB: Expressions (1) and (2) are ‘exact’, i.e. no perturbation process has been introduced, the
latter must be considered when we want to estimate explicitly the second-order effects.

Mean wave (drift) forces: direct pressure integration. (F:142-143)
The sources of second-order terms in the loads are:

- The pressure: Its expression up to the 2" order is -------------

o4 o4, 1. . z=0 s .
=—poz—p-—r T2 5G4V
P==pg =P TP TP ¢V
0(&,) oA

It involves two second-order terms: the time derivative of the second-order contribution of the
velocity-potential and the square power of the first-order velocity. Only the latter causes
mean forces.

- The body motions: The body motions contribute
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in two ways to the second-order effects, (a) their
first-order value modifies the linear dynamic
pressure and causes (if rotational motions)

a time variation of the normal vector, (b) their
second-order value modifies the hydrostatic pressure.
These second-order effects cause mean forces.

- The body wetted surface: The free-surface
evolution results in the time variation of the body
wetted surface and this has a contribution to the
second-order effects. These second-order effects 1 ;
cause mean forces. T

For example the mean value coming from second-order effects in the variation of the wetted
surface of the body is shown in Fig. F:5.1:

Pressure

Partly in
orout -
of water
- Non-zero

- — T-
Out of the M€ mean force

water

Fig. F:5.1

The different second-order effects come out when we use the perturbation technique to
estimate the loads up to the second order. The second-order contribution to the forces can be
formally written as the sum of five terms:

F=1+L+1L+1,+1
They can be interpreted as:
I.=correction of local flow acceleration, it is the only one connected to ¢, , i.e. to —p0¢, / Ot
I,=quadratic term of the velocity
Is=pressure correction due to changes in the body wetted surface

I,=pressure correction due to body motions
Is=change of the first-order force direction due to body rotations

F, has mean value different than zero connected with I,-1s.
11 has zero mean value because 0g¢, / 0t oc Sin(2wt) has zero mean value.

NB: ¢, does not contribute to the mean (drift) forces so to evaluated the mean loads we do not
need to find ¢, but just to solve the problem for the first-order velocity potential ¢,.

The mean loads are due to the body capability in generating waves, i.e. by its capability in
diffracting the incident waves and irradiating waves.

It means that the mean loads are relevant for large structures and are negligible for small
vessels (relative to the incident waves).

waves
R
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Free-surface tank U-tube tank
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@?oll speed
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Hydraulic jump
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Free-surface tank:Natural sloshing period ~ Natural roll period

Why a free-surface tank causes a maximum damping when

the forcing frequency is equal to the natural sloshing period?

@

or+0=0

)

®)

orHo=T/4|

>‘< >
I

O

orHo=m/2
i
1

X

227

- — L 3 =n,:; N,=0
1,=0; ,=max.pos. 1,=0.71,,; M,=posit. =Ny M,
Moment=max.negat. Momen?:negat, Moment=0
@) () oW

(s (s |
oro=3m/4 orHo=n | OH+O=5T/4
|
1
/ | -

|
-l

n,=0.7n,; T, =negat.
Moment=posit.

7

1,=0; T,=max.neg.
Moment=max.posit.

n,=-0.7m,,; N,=negat.
Moment=posit.
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Free-surface antirolling tank L, =01
0.015 2 e
" ot 7K1 e
. — - BN
Pty = M MWL T gL, |
Tank roll moment=K" sin(wt +¢,) 000 L
ot
1 %
w < w, (quasi-steady) = £,=0 | iV
' hi=-0.0333
= Tank moment=FK, sin(wt), | o X
i.e. destabilizing moment. '|
1 ey
0
1 . ,
w=w =e="90 | ’ ?”b/ v
: had|
= Tank moment=-K, cos(wt), ! o .7
_ . 1
= _Kmﬁr]ﬂl /(wn4a)7 Ev,(deg)
i.e. sloshing causes roll damping. o0
4 oy /&
et ;gfg
Lowest sloshing frequency: [ © 8
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Passive U-tube anti-rolling tanks on 53m long patrol boat
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-------- - __Tuned liquid dampers

Highest natural period ~~

~
<~
s ~
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Ti(s) of the building S Accesshach ) Water
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o
4 4
3 ;:
B
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1e : Guiding wall Damping vanes
U-tube
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Summary

Environment. Assumptions. Linear wave loads. Diffraction
and radiation problems. Excitation loads. Added-mass,
damping and restoring coefficients. Parameter analysis.
Response. Minimization of vertical motions.

Coordinate System and Rigid-Body Modes

s=mi+n,jtnk
+@OXr
® =n,i+7j+17K,
r=xi+yj+zk

e
2227 s=(n +zns -y, )i
+(772 —Zl]y +x776)j

+(773 + 1, _xns)k
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Environment

» 2D Regular, short-term and long-term
long-crested and short-crestes waves

* Wind

e Current

Scatter Diagram: Sea State Probability

Table 2.2. Joint frequency of significant wave height and spectral peak peviod. Representative data for the northern Novth Sea

Significant
wave height
(m)(upper Spectral peak period (s)
limit of
interval) 3 4 5 6 7 8 9 10/11/ 2 13 14 15 TeU7 18 19 21 2 Sum
1 59 403 1061 1569 1634 1362 4 2 2 86
2 9 212 1233 3223 5106 5814 5284 30 16 17 32155
3 0 8 146 831 2295 3896 4707 31615 257
4 ¢ ¢ 6 8 481 1371 24 22 10 7 1541
s o o o 4 57 A 8 135 3 o
3 000 0 o 3 39 7 2 1 48
7 0 0 0o 0 0 2 4 1 0 238
8 00 0o o0 o 0 2 2 0 0 0%
9 00 0 0 © 0 0 4 1.0 0 a9
10 o0 0 0 0 0 0 2 100 160
1 00 0 0 o 0 0o o s 1 00 0 ST
12 o0 o 0 0 © 0 0 s 2 1 000 19
13 00 0 0 o 0 o o o0 o 0 1 2 2 1 0 000 3
14 o0 o0 0o ©o © 0 0 0 o 0 0 o 1 0 0 00 0 1
15 o 6 0 0o o © 0 0 0 0 0 0 0 0 0 0 000 0
Sum 68 623 2446 5712 9576 12799 14513 14454 12849 10225 7256 4570 2554 1285 594 263 117 52 45 100001
. . .
Classification of Motions/Loads
Natural heave periods
SES TLP Ship Semi-sub SWATH
[----1-
T,>20:
T,<1s nels
km
T ~JL/15
=4-16s T,>20s
High-frequency =~ Wave-frequency ~ Low-frequency
range range range
Excitation Nonlinear Linear Nonlinear
mechanisms: effects cffcst:‘ effects




Classification of wave forces

Wave breaking

H
D c—
—f
S — .
A D, Viscous
l~10 CE forces

limit
Mass forces
|
|
1
1
iffraction! A
5 D
Basic Assumptions and Problem
Potential flow theory:
Inviscid-> zero tangential stresses
Irrotational> V' =V4
Incompressible> V'¢=0
@ Problem:
p and V from scalar functio Gouverning eq.
Bern;v;lli eq. +B.C.+1.C.
Linearity:
Small parameter & i.e. wave steepness
o Time domain
Solution in 7 Frequency domain
Pressure: hydrostatic and dynamic parts
2D Regular N T
——Ne e T e N
o "Hydrostatic" m\m:: i - .\\
Linear FIETIN e I
| P, ol pressure {4
. LN o
Incident Waves N g o) TSm0 4
' o ’
Phases of wave variables | ' ‘I
| H
Et . - Stokes-drift velocity (Lagrangian)
e gty g
I Zo=-64m
. te0 pall pudl ST
VELOUTY t

Z-comPoNNT W,

Velocity D
X-COHPONENT \__/ /

ACCELERATION 1 T

N 6 B 1! */%a

2- (OMPONENT \__/

ALceLERATION
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How energy in a wave spectrum can
S () (m’s) be distributed to individual regular
wave components

15.0 -
1. Split in N wave components
Ao=(w,, — o)/ N
H.5=8m,T,=10s 2. Wave amplitude of wave component j:
. 4,= 25 (o,) A0

3. Random phase of wave component j:

Time and Frequency Domain of Waves

Slw)

Wave [

spectrum Time domain.

Random elevation

Regular
wave components.
Random phases.

From Regular - Short-Term = Long-Term

Example: available wave power

_ pg(j & — Wave energy
N 2w propagation velocity

Wave energy density

Regular waves F,

© Wave spectrum
Short-term sea state P, = I

Long-term analysis P = Zzp[
il

Probability of sea state 7,”, H, "
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Scatter Diagram: Sea State Probability

Table 2.2. Joint frequency of significant wave height and spectral peak period. Representative data for the northern North Sea

Significant
wave height
(m)(upper  Spectral peak period (s)
limit of
interval) a4 5 6 7 8 9 ) 10 18 19 21 2 Sum
1 59 403 1061 1569 1634 1362 982 643 7 4 2 2 863
2 9 212 1233 3223 5106 S8l4 5284 4102 s6 30 16 17 32155
3 0 8 146 831 2295 3896 4707 4456 67 33 16 15 25792
4 0 0 6 85 481 1371 240¢ 2960 50 22 10 7 15442

0 0 0 4 57 315 1564 33 13 5 3 98
@ —o—o6—o—3—39>Q07 )sn 207 2 1 483

0o 0 0o 0 o 2 136 12 4 1 0 239
8 0o 0 o o o 0 2 20 7 2 0 0 102
9 o0 0 0 ¢ 0 0 2 4 1.0 0 49
10 o0 0o 0o ¢ 0 0 0 2 1.0 0 160
i 5 6 o o @ o e e 10 0 0 s7
12 o0 o 0 0 0 0 0 1 000 19
13 o0 o o o 0 0 0 0 00 0 6
14 o0 0 0 o 0 0 0 0 00 0 1
15 o0 0 0o o 0 0 ] 0 00 0 0
Sum 68 623 246 5712 9576 12799 14513 14454 12849 /10225 7256 4570 2554 1285 594 263 117 52 45 100001

Problem . . L . .

. Diffraction Radiation Wave-body interaction

Decomposition:
Haskind
Relations

Excitation loads: Linear wave-induced

i motions, accelerations

Hydrostatic restoring o and structural loads |
| Y

| Hydrodynamic loads | ‘ Response |

Hydrodynamic Loads: Diffraction Problem

Hp: Fixed body in incident waves

Froude-Kriloff loads Diffraction loads
e dop 09,
S T — on on
Incoming
wav% 0(po+ ) -0
% on
Due to incident-wave Due to flow motion
pressure, as the body against incident waves to
was not there ensure impermeability

Dynamic pressure integrated on the mean wetted body surface
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Hydrodynamic Loads: Radiation Problem

Hp: Body forced to oscillate in its 6 d.o.f. without incident waves

From linear dynamic pressure: From ”hydrostatic” pressure:

a4, od, _
=—p[—L+ UL ] j=1.6 pP=-pg
p ol Py o 17

dueto forward

contribution j

motion Integrated on the instantaneous
Integrated on the mean wetted body surface wetted body surface
Added mass loads Damping loads Restoring loads

N/ |
Foix (n)== Zﬁl %w’ Jk=1.6 Efydr-k 0= ;{_ij”/} k=1.6
1 J=

Added-Mass and Damping

Meaning Parameter dependence

[+ Do NOT represent a finite ‘accelerated’
Add‘ed-Amass - mass added to the body mass A o and B,
coefficients —f(b dj ]t

L * Affect the body acceleration =f(body geometry,

frequency,
_ vicinity of free surface,
* Connected to the square power of the water depth,

. amplitude of body generated waves ~
Damping B 2y 2 wa onfinement,
coefficients . B = PE 3 forward speed
ex. Heave: BT 3| T
@ 7730

- Encounter frequency
>0/0t+Ud/ ox
* In general solving a 3D problem for ¢ . - Different B.C.

J
« If strip-theory valid: from 4,%” and B,*”

. |- Source technique
4,47 and B,*” from: que
- Conformal mapping

Estimation

Strip Theory

y Classification of wave forces

D
A %; Viscous
~10 ol forces

Wave breaking
limit

—the 3D problem as the sum of 2D problems.

For radiation problem : theoretical/practical
applicability in terms of frequency

For diffraction problem: theoretical/practical
applicability in terms of frequency

Mass forces

For ships: theoretical/practical applicability
in terms of ®,, Fn, body slenderness,... ~

Long-Wave Approximation

Special forms for Excitation loads, e.g.

3
Strip theory Foes @ > (@, A,{j =1.3
combined with < =l

Long-wave approximation Further approximation for small
small submerged geometries
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Response & Response Amplitude Operator (RAO)

« In: Regular waves, short-term and long-term seas
* As: Motions, relative motions, accelerations, loads. ..
* Relevant phenomena:
- Resonance for ships, ocean structures, fluid (piston mode,
sloshing)
- Instability (Mathieu-type instability for roll)
- Wave-induced accelerations on equipments
* Experimental RAO:
- Regular-wave tests
- Transient tests
* Minimization of vertical motions

Hp: Two incident wave components of a sea state with spectrum S(@), wave 1 and wave 2,
with amplitudes ¢;; and ¢, frequencies @; and @;and propagating in x.

The first-order incident-wave velocity potentials are
¢0@= LTS cos(wf—kx+é¢) ¢0@= 8 i cos(w, —k,x+¢,)
@, @,
Here the apex indicates the wave.
Now the velocity potential accurate to the second order is

with ¢, involving a combined effect from the two incident waves. We analyse as before the

p=¢+¢, 8" (@) + 4 (o,

contribution of (¢, / ax)2 to the square-velocity term at x=0:

Squaring the linear velocity component along x

o¢,

1 —

el A cos(ot+¢&) + A, cos(mt+¢,)
%=0 e to interaction with wave I due to interaction with wave 2

we have

(6¢, /ox] )2 = A7 cos’ (wt +&) + A, cos” (ayt +&,) + 24 A, cos(wyt + &) cos(@yt +&,)

NB: o cos’(wt + &) = {1+ cos[2(at + )]}/ 2
o Cos(@1 +&)cos(a,f +&,) = {cos[(@) + @)1 + & +&,]+cos[(@ —@,) + & —&,]}/ 2

2 2 2
=(0g/ox|_,) =47+ 47)/2
Constant term
+ A7 cos[2(wt +&)]/ 2+ 4,7 cos[2(w,t + &,)]/ 2+ A A, cos[(@, + @,)t + &, + &,]

Sum-frequency term
+ A4, cos[(w, —a,)t + ¢ —¢,]

Difference-frequency term

So the second-order body interaction with a sea state with spectrum S(®), involves mean

loads and loads oscillating in time as @, t @, .
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The sources of second-order terms in the loads

| mean value=0 ” mean value#0 |
The pressure: ————===

/ \\ ,
i« o _ 0¢2 " 1 k
,,,,,,, o I i ‘K o2 a;\ VA V¢‘ _v,¢",

o, z)

‘ First order | Sedqnd order ‘

mean value#0 |

e linear}ynamic
otions) a time

(a) their 15-order value modifie
pressure and causes (if rotational

. variation of the normal vector,
(b) their 2"-order value modifies the

pressure.

A major contribution to vertical mean wave
force on a Spar platform in survival condition:

‘ Linear Solution ‘

75

—

dn,
dr’

First order "horizontal” hydrodynamic force= M

A major contribution to vertical mean wave
force on a Spar platform in survival condition:

. / ‘ Second-order force ‘
5

s ,|:> Mean vertical force

-- d’
First order "horizontal” hydrodynamic force= M dt,“%
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The sources of second-order terms in the loads

mean value=0 " mean value#0 |

The pressure: —== —===_
A \
5 0 o i
=_poz— Oh_ 9w “Vdé -V !
,,,,,,, 0 1 - PEmpEEER a;\\p o’ 2 2 % ’(/f"
0(¢.) o)
‘ First order | | Second order ‘
The body motions: mean value=0 |
Y (a) their 15-order value modifies the linear dynamic
. : \\> pressure and causes (if rotational motions) a time
T / variation of the normal vector,
By . / (b) their 2"-order value modifies the hydrostatic
h pressure.

The body wetted surface: [ mean value0 |

The free-surface evolution causes a time variation of
the body wetted surface and this has a contribution to
the 2" -order effects.

Pressure

Partly in
or out -
of water
- Non-zero

B . o .
Out of the 1ime mean force

water

Mean loads small

waves

=
_J

Mean loads large
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Lecture Note 6

40. Drift loads from body capability in generating waves. Maruo’s formula.
Conservation of fluid momentum. Direct-pressure integration versus conservation of
fluid momentum. Added resistance in waves. Viscous effects on mean wave forces. (F:
134-141,143-155)

Drift loads from body capability in generating waves.
If the waves are very short relative to the structure, they only see a vertical wall.

—_

>

We can then estimate the mean force due to the wave-structure interaction by approximating
the problem as the problem of an incident wave interacting with an infinitely long vertical
wall.

Hp: 2D deep-water incident regular beam waves interacting with an infinitely long vertical
(fixed) wall.
Obj: Mean wave (drift) force in sway.

N

\\IQ\W‘Q\\\\\‘

\I\\\\\
=

waves

NN
-

Incident-wave first-order velocity potential:
8%,
b= = > e“ cos(wt —ky)
As in general, without current and without forward motion, ¢, does not contribute to the mean

loads, we only need to find the first-order wave-wall interaction solution ¢; to estimate the
mean force.

NB: ¢, could contain a space-dependent term constant in time. In the case of current or forward
motion such term could contribute to the drift loads through the pressure additional term

—pUd¢, | Ox.

The problem is a diffraction problem because the body does not move, so it can only diffract
(reflect) the incident waves. We need to find ¢p , its problem is:
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Laplace eq.:V’$, =0 VP eQ = ¢, < Acos(k,y) + Bsin(k,y)
FSB.C.:—a)2¢D+gﬂ=o z=0= o’ =gk, = gk
0z

_00) __ %%
o oy

Far field: ¢, -0 as z—»—ow satisfied as ¢, oc e

Wall B.C.: %
on

=-w( e sin(ot) = ¢, = 26 e” cos(wt + ky)
w

y=0

»y=0

The solution is then:
@, = 8% e cos(wt + ky)

[4]
The total first-order solution is

b =d,+¢,= gg“e’“cos(wt ky)+ 8%, ekzcos(a)t+ky):2g—§“ekzc05a)tcosky,
[0

with wave elevation ¢, =¢, Sin(a)t—lg/) + ¢, sin(at + ky) =24, sinwt cosky .
This is a standing (non propagating) wave with amplitude twice the incident wave amplitude:

To find the mean horizontal force, we need to integrate the pressure along the wall, retain all
force terms proportional to ¢ ?and find the mean value of their sum. The pressure accurate to

the second order is

e a@_%_l
P=—pgE=p_ P 2¢ Vg 1)

0(<,) 0(&2)

The first two terms in eq. (1) are linear so their contribution to the second-order horizontal
force is obtained integrating from 0 to ¢, along the wall.

z
o4, —) o
o4l
p at z=0 E
y
-pgz
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The second two terms in eq. (1) are o« g”az so their contribution to the second-order horizontal

force is obtained integrating from -0 to 0 along the wall. Among these second-order pressure
terms, only the square power of the velocity contributes to the mean value of the horizontal
force. O0¢, / Ot does not contribute to the force mean value because, as ¢,, it is periodic with

0
frequency 2w so —pj %nzdz has zero mean value.

The second-order contribution to the horizontal force with non-zero mean value is:

0 1 ¢1 a¢l
F, = —pI—Vqﬁl-ngilnzdz—pI —| +gz|n,dz
—ooz H_T 0 at z=0 t’f 0
2 = N

0 2 24;1
1( o4, o z
= — —| L= dz — —r +o—
= pLz(azyJ ‘ p[azzoz gz}

»y=0 0
0
=-2pw’s,?(cos a)t)2 [iez"z} - p(—2g¢, sinwt) (28, sinwr) -2 pgd,? (sin a)t)2
2k o TT
oglor,_, 1

=—pgl(cosar) +2pgl 2 (sinar)
=—pgl *[L+cos(Rat)]/ 2+2pgl F[L1—cos(amt)]/ 2
The mean value of F, is then

F,=—pgl12+2pgg212=pgg 212,

NB: This formula shows that the force is proportional to the square power of the reflected
wave amplitude, in this case this amplitude coincides with the incident wave amplitude, i.e. it
is the largest possible value of the reflected wave amplitude. This means that this is the

maximum possible value for F, without current and without forward speed.

Mean wave (drift) forces: Conservation of fluid momentum. (F:135-137)

F:—i[IdeQ]— [ pnds—| pgkdQ—[pv (7,-U,)as (1)
df Q 5-Sg Q S

=M
Here the normal vector points outside the fluid domain 2.
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Hp: The 3D fluid domain Q is enclosed by the surface S made by the body, a control surface
S, 1.e. fixed and transparent for the fluid, and the portion of free surface and of the flat sea
floor limited by such surface. The boundary conditions are given in the following figure.

The pressure appears in equation (1) in the term F + J' pndsS, i.e. in the term
S-Sy

jpndS :ijdQ (using the Gauss theorem, see eg. (F:5.6))
S Q

The free-surface pressure is equal to the atmospheric pressure p, which is uniform and
constant so its gradient is zero, i.e.

[p.nds =[Vp,d2=0= [(p-p,)nds =[ pnas
s Q s S

It means that if we express the pressure relative to p,, i.e. p-p,, the results for the force do not
change. This has the advantage that on the free surface we have

[ (p—p,)nds =0

Sks

So the contribution from the free surface to the mean force will be zero. From now on, the
symbol p will then indicate p-p,. Time averaging expression (1) over one period of oscillation
T we can get the mean force. The mean value of dM/dt is zero because it is periodic with
period 7, So, in terms of force components, the mean value from eq. (1) reduces to:

E==[(pn,+pV7,)dS— [ pndS—[pg 5,dQ i=123
S, Q =~

Ssp =0 i#3

=1i=3

The right-hand-side must be intended as a mean-value expression. The mean vertical force
component depends on a volume integral associated with the gravity, which can be

transformed in a surface intergral, i.e. jpgde = J.pgzndS .
Q N

For the mean horizontal force components: the gravity term does not contribute and the term
connected with the sea bottom (second term) is also zero because Ssz has a vertical normal
vector. It implies that the horizontal force components are given by the integral along the
control surface, i.e.

F==[(pn,+pV¥,)ds i=12 (F5.9)
Se

Formula (F:5.9) was derived by Maruo. Newman derived a similar formula for the mean
wave-drift yaw moment starting from the conservation of fluid angular momentum.

Formula (F:5.9) is valid also in 2D, in this case the control surface has two parts S...and S.,
respectively upstream and downstream of the body.

NB: Despite the control surface has been named as S.., there are no restrictions on its location,
i.e. it can be close to the body. The location and shape is chosen to make easier the load
estimation. It is a great advantage of this method when compared with the direct-pressure
integration method.
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Maruo derived a simpler expression for the horizontal mean wave-drift force under additional
assumptions, which shows more explicitly the fact that the drift loads are due to the body
capability in generating waves.

Maruo’s formula. (F:137-141)
Hp: 2D incident regular beam-sea waves in deep water. No current. No forward motion.
Obj: Find mean wave (drift) force in sway F,.

INCIDENT REFLECTED TRANSMITTED
WAVES WAVES WAV ES

—,K:%:«—_»c/’%j_ﬁ ___ ____v7>\

The first-order incident-wave velocity potential is

Gy =y = gg“ekzcos(wt—ky)

Diffraction waves will be generated by the body presence. Radiation waves will be generated
by body motions. As a result we have:

Upstream of the body:
e incident waves
(propagating in positive y direction)
- amplitude = ¢,
o reflected waves =diffraction +radiation waves
(propagating in negative y direction)

- amplitude =4, 1*-order velocity potential: ¢, =

(a)t+ky+g)

Downstream of the body:
e transmitted waves = incident+ diffraction + radiation waves
(propagating in positive y direction)

gA,
- amplitude =4, 1*-order velocity potential: ¢, = <~ ¢* cos(wt — ky + 5)
w

Applying eg. (F:5.9) in this 2D case to find the mean wave force along y, we have:

E:—I{pn2+pV2V'n}dz— J‘{pn2+pV2V'n}dz = —J‘{p+pV22}z%dz— J‘{p+pV22}£%dz
S_

s, n=mj s -1 S,

J{( 2]} 5]

When integrating, it is convenient to split S... in two parts:
e S0.., : between z=-c0 and z=0
—> the second-order pressure terms provide the second-order contribution
o Sl :betweenz=0 andz=¢

£ =1
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—> the first-order pressure terms provide the second-order contribution

So introducing the Bernoulli equation for the pressure, we have:

| _g(a<¢o+¢R)j2+g o+ | .
S AN 2 o

=0

5253

=0

+ J‘ —pgz—pM dz + '[ pgz+p% dz
ot ot
S1 ., z=0 S1, z=0

= F =—%(§j +AR2)+”—2g(§a2 +AR2)+”TfAT2—p—2gAT2

which means

- pTg(gj +A4,2-A47) (F:5.14)

This can be generalized for finite water depth 2 (Longuett-Higgins, 1977) as:
F=LE( e a —Aﬁ)(uij

sinh(2kh)
which coincides with expression (F:5.14) in the limit for
kh>o ,ie — o0
sinh(2kh)

Hp: The average energy flux is zero through the body surface
—> This means that body can not be an active wave-power device.

The reason for this is that a wave-power device must absorb energy which means that there is
an energy flux through its surface. This can be achieved by combining in a suitable way its
motions, as for instance shown in the figure below, examining a symmetric body and
addressing what is the condition to have a perfect absorber:

To absorb waves means to generate waves

Incident waves

Anti-symmetric
wave generation

124 (Falnes,2002)



The assumption that there is zero energy flux through the body surface implies that (a) there is
no work done on the body during one period of oscillation. Moreover, (b) the variation of the

energy has zero mean value, i.e. dE|dt=0. (@) +(b) lead to
2 2 2
é/a :AR +AT (1)
It means that the mean incident-wave energy is split in the reflected and transmitted wave
energy. As a result the mean wave drift force becomes

F, :%ARZ (F:5.16)

This is known as Maruo’s formula. It is consistent with the formula obtained using the direct
pressure integration for the 2D example of an incident wave interacting with an infinitely long
vertical wall. Indeed such example corresponds to the asymptotic value of the Maruo’s
formula forw — o, i.e. short waves relative to the structure. In this case there are no
transmitted waves, i.e.
4=¢, @ =F=CE00 @)
Using relation (1) above we see that (2) is the largest value for the reflected wave amplitude.
This confirms that (3) is the largest value of the mean drift force without current and without
forward speed.
Formula (F:5.16) states that drift loads are due to the body capability in generating waves:

- radiated waves connected with body motions and

- diffracted waves connected with the body presence.

So the mean-wave (drift) force is smaller for submerged bodies and reduces as the
submergence depth, say d, increases. Moreover it is smaller for geometries which generate
smaller waves.

Ogilvie (1963) showed that 4z=0 for all frequencies and all 4 in the case of a submerged
horizontal circular cylinder fixed or moving in circular orbits.

A typical behaviour of the drift force for a 2D surface piercing body in deep-water beam sea
waves is as given in fig. F:5.5:

24 5 Heave resonance

pgs; Asymptotic value:0.5

long
waves

020

I T I T a)
0,60 080 100 120

Fig. F:5.5

0,00

=5

e It goes to zero as the waves get longer
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—> the body follows the waves, i.e. it does not generate much waves.
e It has a local maximum at the heave resonance when the vertical motions are largest. In this
region the relative vertical motions matter

—> radiation waves are important.
e It increases again as the waves get shorter

-> diffraction waves become important

—> the asymptotic value for @ — «ois the value in the case of an infinite vertical wall.

Maruo (1960) has derived an extension of formula (F:5.16) for drift forces of 3D bodies under
the following assumptions.

Hp: 3D body. Regular incident waves. Zero current. Zero forward speed. Conservation of
energy, i.e. viscous effects are neglected.

27
F = % j A*(0)(cos f—cosB)dd  (F:5.17)
0

F, =pTgTAZ(9)(sinﬁ—sin 0)d0  (F:5.18)

Here 3 is the incident-wave direction with respect to the x direction and A(8)/~/r is the

amplitude of waves generated by the body at large horizontal radial distance » = 4/x* + y?
from it. These waves include the waves radiated by body motions and diffracted by body
presence. The angle @ is defined by x=rcosé,y=rsin@. Also these expressions confirm
that drift forces are connected with the body ability of generating waves.

NB: In beam and head waves the drift force is in the direction of the incident waves but in a
general wave heading the force direction can be different than the incident wave direction.

Maruo’s 3D formulas do not show which wave directions are responsible for greater drift
forces. This is discussed in figure F:5.6, which examines the influence of the wavelength and
wave direction on the transverse drift force on a ship.

2

pgLs?
0,40

0,30

AlIL=0.35

10,20

r0,10

, : 0
0102030 4560 75 90 w520 135 160 180 3(deg.)

Fig. F:5.6
Here 2 =0° means head sea waves. Two wavelengths are considered. The maximum value of
the transverse drift force occurs at the smallest A, in particular in beam sea. For the largest A
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the force is almost zero in beam sea and largest for wave headings 45° and 135°. This is
because for this wavelength the ship follows better the incident waves if they are at 90° (beam
sea), i.e. the generated waves are small.

NB: This confirms that, the wave headings which result in greater wave generation
correspond to higher wave-drift force.

What is the importance of F, for a 2D surface-piercing body with respect to the
horizontal force caused by a current U. in calm water (i.e. without incident waves)?
As we will see later in the course, the force associated with the current is proportional to the
square power of the current speed and can be expressed as

1
F.=2pCyDU
Here Cp is the drag coefficient for the current flow and D is the body draught. So we have

2

F,  05pgd," g4, )
F. 05pC,DU° C,DUS?

Example.
Hp: U.=1m/s, D=10m and Cp =1

> F,IF. = AR2 (with the reflected wave amplitude given in metres).

So the wave-drift force is rather important for large volume structures like ships, causing
reflected waves with large amplitude.

NB: Expression (1) of the force ratio assumes that there is no interaction between waves and
current. In reality:
e the current affects the waves
- s0 Ag will be affected
o the wave-current interaction modifies the flow separation around the body
- s0 Cpwill be affected

Figure below examines the longitudinal drift force for a TLP in regular waves propagating
along the positive x axis, without and with current. The trend and maximum value of the force
as a function of the incident-wave period change introducing the current and depend on the
current direction. This is because the current affects the body capability in generating waves.

F )
péif( )
400.0 -

200.0 - UC:1.26m/s
U.=0 m/s
U.=-1.26m/s
00 +——

6.0 9.0 1270 15.0




Methods to estimates the mean loads: direct-pressure integration versus conservation of
fluid momentum.

As we have discussed, the direct-pressure integration (DPI) and the conservation of fluid
momentum (CFM) offer two alternative ways to evaluate the drift forces. The figure below
shows a comparison between numerical results using the two methods for the vertical mean
force on a vertical cylinder. Z*

-

— Heave resonance

&
2 —_
PLSIR u=0
45 1 )
Direct pressure
30 “— Integration
Conservation
157 of momentum
0.0
1.5 A

Large differences occur near the zone where the mean force should change sign according to
CFEM. This is due to errors associated with cancellation effects of load contributions when
using DPI. Estimation through DPI involves different terms which counteract each other. This
may lead to accuracy problems. It also involves a greater sensitivity of the force values to the
approximation made for the body geometry. Geometrical singularities represent a source of
numerical errors in this context. This discussion does not mean that one must not use the DPI
method but only that one must be careful when applying it and one must make sure that the
results obtained are converged, i.e. they do not depend on the numerical parameters.

Extension of the asymptotic value of Maruo’s 2D formula for @=> o«

Faltinsen has generalized the asymptotic value of the Maruo’s 2D formula for short waves
(i.e. @ — o) to 3D structures with vertical sides.

Hp: 3D body with vertical sides at the water-plane. Regular incident short waves. No current.
No forward speed.

Assuming that the body geometry is as in figure F:5.8:
Shadow region

Wave propagation

direction

Fig. F:5.8
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we have:

F =”gT§a2 [[sin@+A]ndl  i=12,6 (F:5.21)

—— L

original

non shadow part

Here n, =siné, n, =cos@ and n, =xcosd—ysin@d and the integration is along the non-

shadow part of the body (i.e. the part exposed to the incident waves) with length L; along the
waterline. This formula is valid for the horizontal force components and the yaw-drift
moment integrated along the water-plane non-shadow curve.

Some examples of applications. (F:144-145)

1) Infinitely long horizontal cylinder (L->o0) with generic heading £
e 9=0deg, n, =0 n,=1 ny=x

=0

eS|

2
E:ﬂsinﬁhinﬁu (It means that F, — oo if L — )
2 %,—/
~0if O<pr
— ,Ogé/az ) 5 (L2 B pgé’az . ) L2
F, _T(sm 5) J:mxdx_T(sm B)2[x*12] =0

So the only mean load is the horizontal force component normal to the cylinder surface. If
F£=90° =>sin g |sin g |=1. This is the maximum value of the drift force and gives

F, _pegs/

L 2

for the force per unit length, i.e. 2D force. In this way we recovered the Maruo’s 2D formula
for w — oo and we have again the confirmation that this is the maximum value we can have
for the drift force, i.e. wave right against an infinitely extended body, without current and
without forward speed.

2) Structure with circular water-plane area of radius r:
e n, =sSiN6 n, =cosd n, =(-rsind)cosd—(—rcosd)singd =0




2 7-f
F = pgja L |:Sin(6+ﬂ):|2 sin Hrdezgpgrgaz COSIB

-

el

2 7-p
=_/’g2§a j[sin(¢9+ﬂ)]2Coserd9=§pgré“a25inﬁ
-$

Fy=0
So, due to the radial symmetry of the body: the moment must be zero and the two mean loads
are identical and 90 degree out-of-phase from each other.

3) Structure with circular water-plane area consisting of 2 circular ends of radius » and a
parallel part of length 2/
e In the circular part: n, =sin@ n, =cosé ng =(x/ —rsinfd)cosd—(-rcosb)sinf

=+/cosé

e In the linear part: n, =0 n, =1 ny=x

21

1y

X

L 5 r
— pgl |7 2 . 2
F=50 '[[sm(¢9+ﬂ)} sin@rdf+ 0 :Epgrg“azcosﬁ

-B linear

circular

7 _pest g 2 o a2 o
F, = J [sin(0+ )] cos@rd+sin B|sin B 21 p = pgc, 3rsm/3+lsm/3|smﬂ|
,ﬂ —

linear

circular

2 0 7—f 2
7 =285 11 [ [sin(0+ B) | cos0d0—ir [ [sin(0+§)] cosodo+ 0 =—pgl+§asin2ﬂ

-8 0 linear

two semicircles

The geometry comes from combining the geometries in examples 2) and 3). As a result: the
forces are given by simply summing the forces for those two geometries. A moment is caused
by the fact that the radial symmetry of the circle is broken by the elongated central part. This
is equal to zero if the wave direction is parallel or normal to the central part.

Added resistance in waves. (F:145-150)
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The wave-drift force represents an additional resistance in the case of a vessel advancing with
forward speed U in waves. It is then called added resistance in waves and usually indicated as
RAW-

Hp: Blunt ship forms with vertical sides at the waterplane. Small Froude number, i.e.
Fn<~0.2. Head sea regular deep-water waves (in this case it means S=0 deg). Small
wavelengths, i.e. //L<~0.5.

The mean horizontal force due to second-order effects in the wave-body interactions is

F=P8s [1+ ZU"_UJI [sin(8)]'mdl (F:5.22)

2 g
L
Here o is the (circular) frequency of the waves, i.e. ® = gk =2gx/A, and L; is the non-
shadow part of the body.

Formula (F:5.22) is sensitive only to the bow part of the vessel and increases as the body
becomes blunter, i.e. greater wave reflection. This is analysed by figure F:5.10 in terms of the
variation of added resistance with respect to a reference value Fyj .

0.29F, 0.36F,
———— “-—-—.J
0,59F,
WATERPLANE
| 1
8 9 FP

Fig. F:5.10
From expression (F:5.22) and substituting R, = F;, we have:

R
N AW (Fn#0) 1+ 20U

RAW(Fn:O) g
Using this formula:
If we choose for instance 2/L=0.5 (i.e. limit of validity)
> RAW(Fn¢0) = (1"‘ 7Fn)RAW(Fn:O)

which means an important effect of the forward speed.

Also the effect of a current is important for drift loads in the case of large marine structure
—>A current of 1 m/s could increase the drift forces of 50% (shown by Zhao et al. 1988)

For a ship at moderate Fn the added resistance in head sea waves is typically as in the figure
F:5.11:

- For A/L<0.5 the added resistance in waves is dominated by the bow-wave reflection,
i.e. eq. (F:5.22) can be used.

- In the resonance region, i.e. around A/L=1, the wave generation connected with ship
motions governs. It means that R, depends strongly on the relative vertical motion
between vessel and waves.

- For longer waves the added resistance in waves becomes negligible.
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The drift loads are also affected by confined waters. This means that when performing
experiments in a tank, the tank-wall effects influence the loads. Figure below examines this
for the longitudinal drift force on a hemisphere in regular waves and with forward speed.

EXPERIMENTS: E

Y _oea F,
V28R PERS?

Nurherical results
_~without fank wall
/’/l ," X

Horizontal 10
drift force on

hemisphere
With
05 tank wall
N ®’R

08 ‘ 12 ' 1?. g
Both measurements and numerical results modelling the tank walls show a more complex

behaviour of the drift force in terms of the frequency, with respect to the numerical results not
modelling the tank walls.

From what discussed we have learned that:

Hp: A regular incident wave with frequency @, direction # and amplitude ¢,

The induced mean wave (drift) loads are F,(w, ) oc ;az.

It means that F,(w, )/ ¢,? is independent on the wave amplitude and represents then the

transfer function for the mean-wave drift loads for a given regular wave with frequency o and

direction £ So to mean drift loads caused by a wave with these parameters and amplitude 4
will be:

{Fi(go;ﬂ)} Py
The drift loads in regular waves can be used to estimate the drift loads in irregular long-

crested waves with a spectrum S(@) and propagating in g direction.
Approximating the spectrum as N wave components with amplitude

132



A7 =28(0, )@ = @i ) | N,
the velocity potential can be written as

N ogA.
J= J

So for the regular wave component with @, g and 4, the drift loads are given by

(@, p)1¢.})4]

and summing up for all N wave components of the wave spectrum, the mean-wave loads
associated with the sea state are obtained, i.e.

independent on
wave amplitude

—, & (F(»,p) .
F=> (g—JZJAj i=1.,6 (F5.27)
contribution from j-th wave

which becomes

J

E‘:ZTS(w)Mda) i=1.,6 (F:5.28)

a

for N>w. F(o,f)/¢° can be calculated independently from the spectrum for any

combination of @, and £ and then used to estimate the mean wave drift loads for the specific
spectrum.

The added resistance R, = F,* in short waves can be obtained as

Ry =P8 1,2 |14 Fn T [E [[sin(@)] md! (F:5.30)
16 L \g)

with H,,, significant wave height and 7] = 27r&,ml = ij(w)dm.
m

1 0

It means that R, oc H1,32 and it reduces as 7 increases.

If the wave elevation can be considered as a Gaussian process: H ,, = 4,/m, ,= 4[5((0)61(0
0

| NB: To use formula (F:5.30) one must require that there is no significant waves energy for 2/>~0.5. |

Example of application of formula (F:5.30)

Hp: One-parameter Pierson-Moskowitz spectrum

The condition that there must be no significant waves energy for 1/L>~0.5, in this case means
- H,,, must be <0.0065L

e If L=300m - H,,; must be <1.95m

This occurs about 40% of the time in the North Atlantic.
e If L=100m - H,,, must be <0.65m

This occurs less than 4% of the time in the North Atlantic.

This confirms that this formula is relevant for large volume structures.
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Viscous effects on mean wave forces (F:152-155)
When the wavelength is large relative to the cross-dimensional lengths of the structure, the
wave generation capability of the structure is small. Hence the wave drift loads due to
potential flow effects are small. However, if the wavelength is large and the wave amplitude
is sufficiently large, then viscous effects can cause important wave drift loads. The reason is
that their contribution to drift loads is of higher order than second order in terms of wave
amplitude.
In general we may say that wave drift forces are due to

- the body capability in generating waves (inviscid effects)

- viscous effects

Practical example where viscous effects are important:
A semisubmersible in incident waves long relative to the cross-sections of the
semisubmersible.

Hp: Head regular waves in deep water. Wavelength large compared with the cross-sectional

dimensions of the platform length and wave amplitude large. Small platform motions.
Obj: Discuss mean wave force in x direction.

dipy
waves =) /W~§a ’73‘ — /TZ %
drs ¥
—X =g,

In the following we use the cross-flow principle for the flow around pontoons and columns of
the platform to express the drag force contributions from the pontoons and columns. We
decompose the forces into components in the Earth-fixed coordinate system and time average

over one wave period. In this way we find non-zero mean wave loads proportional to ¢ °.

Pontoons contribution:
The drag force normal (i.e. in the N-direction) to the pontoons can be found as

Li2
Fy =- % J.bchVRN|VRN|dZOC§a2(1)

2 pontoons _J |2

Here b is the transversal size of the pontoon, Cp the drag coefficient and Vx is the relative
velocity between a body strip and the incident waves in N direction. This can be
approximated as
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- e
Hp: slmall dt dt wave velocity
motions velocity due

to motions

because the motions are small and the error committed is of higher order than ¢, .
The absolute value in (1) is due to the fact that the force is directed as V, i.e. it acts as a
damping force. The incident-wave vertical velocity w is w = o, e* cos(wt — kx).

The pitch motion causes a force component along x:
F,=Fyns <, with F,#0

This then gives a mean (drift) force due to third-order effects associated with viscous effects,
as shown in the figure below.

Proportional to longitudinal

- /‘\\force component
/
VRN|775
Mean
N 5N\ 4
\\\\__/\/ / value
\ !
wn | \ ]
& \\‘ 1"\
N/ ™ |V RN|
N\ /
i e wt

0,00 1,5:71 S,JIM 'o‘1712 E,IZES

Columns contribution:

There will be a similar contribution to the horizontal mean force due to the columns. We will
here limit ourselves to consider only the contribution from the time varying wetted surface.
Further, if we for simplicity neglect the longitudinal platform velocity we can write the
horizontal force per column as

P ¢
szchDj wluldz (1)
—h

with D the column diameter, 4 the column draft and a « the horizontal incident-wave velocity.
Because waves are long compared with the cross-sectional dimensions, we can take « in the

expression (1) as u = w¢ e sin(wt — kx,) , with x, at the center of the column.

NB: According to expression (1) the magnitude of the force per unit length is largest at the free
surface. This is unphysical because the force per unit length must go to zero at the free surface. The
vertical position of the maximum magnitude must be found experimentally. Typically it is around the
25% of the wave amplitude down in the fluid from the free surface.

Introducing the expression of « in the force and integrating, we have:
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—h

0 ¢ (xg)
:%cDDwZ;jsin(m—kxo)|sin(a)t-kxo)|[j e dz + j dz}
0

2

_ ____\f_____
odd*even= mean value=0 even*even= mean value+0

- L D [%(1 Yy sin(@t — kxy) [sin(of — kxy) [+ £, Sin? (of — kx,) [ sin(or — kx,) |

So only the integration near the free surface can provide a mean value. The mean force is

m—kxy 2m—kxy
FX:—C Do’ { J. sin® y dy-— I Sinsj/d]/}
-

2T —kxg y=ot—kxy —kxg

p 1 3 m—kxg 1 3 27 —kxy
=L C Dw’C3{| —cos3y —=cos —| —co0s3y —=cos
4z PP {{12 heats } { et } }

—kxg 12 m—kxy

=L ¢ D¢ [—Ecos 3kx, +Scos kx, } - {Ecos 3kx, ~Scos kxo}
4 ‘ 12 4 12 4

- ﬁ C,Dw*¢? {—% cos 3kx, +3¢0s kxo}

This expression depends on the horizontal location of the column center.
For instance if x,=0:

m_P 23] 1 2,0

F=£c,D ~Z+3t=+=£C,D

Az P w{a{ 3 } 37 CoPO'¢
while if x,=3+4/2:

_ P _2p
C,Dw =-Pc. D
iy ‘:{3 } 37 CoPVE

NB: This means that, depending on the phase angles between platform motions and wave
motions, viscous effects can create a force that causes the platform to move against the waves.
This is not possible according to Maruo’s formula based on potential flow theory.

Summarizing: The main parameters affecting the drift loads are:
« wave amplitude:

- potential flow > o ¢

- viscous effects > oc £ °

. wavelength

« Wwave direction

« structural form

. difference between restrained and moving body

. current = <50%

« forward motion

. confined waters, e.g. wall effects when performing experiments
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So introducing the Bernoulli equation for the pressure, we have:

R {_E(sz+g(a<¢o+¢k>j2}dz

50 2 oz 2 oy

0

. E(%jz_ﬂ a4 )|,
so. |2\ 0z 2\ oy

=0
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i J‘{ 6(¢0+¢R)
:_%(gj+Aﬁ)+%(§f+Aﬁ)+%»f—ﬁm¥

—poz— o TR
pPEZ—P or

Sl

o

To absorb waves means to generate waves

Incident waves
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Studies on Absorbers by Maeda et al. (1981)

2D Dirift Force (U=0, U=0)

Maeda et al. (1981)

a =wave amplitude
V ,~group velocity F _
2o ':>1 —= FD: g
K =wave number 7pga2 FPa Vol [
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2D drift force in beam sea. Deep water.
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Vertical mean wave force on a vertical
cylinder

= Heave resonance
5
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Drift force in head sea and small wave lengths
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No significant wave energy must be for A>~0.5L

prg 4z |L . 2
R, :EHU}{HMT \EJ [[sin@] mel (F:5.30)

1 L

Hp: A one-parameter Pierson-Moskowitz spectrum
—> Expression (F:5.30) can be used if H,,; <0.0065L

e For L=300m > H, /; <1.95 m (in the North Atlantic ~40% of the time)

e For L=100m > H,/; <0.65 m (in the North Atlantic <4% of the time)
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Force per unit length

e From cross-flow principle

e More physical behaviour
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Lecture Note 7

41. Slow-drift motions. Slow drift motions in irregular waves. Wave-drift damping.
Eddy-making damping: equivalent linearization. (F: 155-166)

Slow drift motions: general. (F:155-157)

Slow-drift motions are resonance oscillations excited at frequencies low compared with the
incoming-wave frequencies due to nonlinear interactions. Such motions are caused by slowly-
varying drift loads connected with second-order difference-frequency effects.

From where do these loads come from?

Hp: An incident irregular wave.

This will induce a slowly varying drift force on a marine structure like in the figure below.
We can approximate locally the irregular wave as a regular wave, with a certain period and
amplitude. This will cause a mean-drift force due to second order effects. At a following time,
we can approximate the irregular wave as a regular wave with different frequency and
amplitude. This will cause a different mean-drift force. As a result, the mean-drift force will
slowly vary in time and its envelope gives the slowly-varying drift force caused by the
irregular wave.

Slowly varying drift force

———

Vo
f—l

The period associated with the slowly-varying drift loads is of concern when it is close to the

resonance period for the considered marine structure.

For example:

e For a freely-floating structure with small waterplane area, restoring terms in vertical plane
are small so natural periods are large, e.g. O(30 s), and slowly-varying drift (slow-drift)
motions can occur in the vertical plane = heave, roll and pitch
An example is a spar buoy platform.

e [For a moored structure, the restoring provided by the mooring lines leads to large
resonance periods for the horizontal motions, e.g. O(1-2 min), slow-drift motions can
occur in the horizontal plane = surge, sway and yaw

e For a structure with small waterplane area and moored, the slow-drift motions can occur
both in the horizontal and vertical plane

Large periods mean low frequencies so

-> wave-radiation linear damping is small

-> large amplification of the motions occurs near resonance

In this case viscous damping becomes important. In addition there is a wave-drift damping
which is not the same as the wave-radiation linear damping. We will later discuss the main
damping mechanisms involved.

An example of motion amplification is shown below for the transverse motion around a
period O(1-2 min). This leads to large slowly varying motions.
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The slowly-varying motions can be connected with a wave-current-wind environment (see
sketch in figure below) and are relevant for stationary marine structures that are moored or
kept in position by a dynamic-positioning system. Considering the use of mooring lines as in
the figure below, the control forces due them counteract the mean forces connected with the
wave-current-wind environment, while these control forces are small compared with wave-
induced first order forces, i.e. they can not counteract the first order forces. Due to the
presence of the mooring lines the moored system will have natural periods in the horizontal
plane which are large compared with the incident-wave period range. Such periods can be
excited by second-order difference-frequency effects.

Wind\ Large mass

Small control
forces

The slow-drift motions are critical for instance for the design of mooring lines and risers.
Figure below shows how the anchor line force can become relevant when the horizontal
motion of a moored ship becomes large in irregular waves. This occurs when the ship motions
show a slowly-varying drift behaviour relative to the incident waves.

Wave elevation

.

Horizontal motions
of moored ship

TIME

Anchor
line force
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Figure below shows the results from full-scale model tests on the wave-energy ship Kaimei,
i.e. used to extract energy through a system of oscillating water columns where the air inside
the columns is compressed and expanded by the change of the internal water level and drives
the motion of air turbines.

In irregular waves, the anchor line force showed a slow-drift behaviour with period much
higher than the incident wave-frequency range. The peaks of the force appeared dangerously
close to the ultimate force for the designed anchor line.

Wave elevation(m)

GTI'I.qnll.qm H*L]_h..l " tme

Anchor line force )
Ultimate force

(84.4 tons)

-

100 200 (s}

Figure F:5.17 confirms that slow-drift motions are relevant in the horizontal plane also for a
TLP.

Surge(m)
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Fig. F:5.17

The case refers to irregular waves with H,,, = 7m,T, =12s . In these conditions, the surge

motion is clearly dominated by a slow-drift behaviour (7=0(100s)). The air gap (i.e. the
relative vertical motion between the underside of the platform deck and the waves) is within
the incident-wave frequency range. It means that the surge motion is dominated by second-
order effects and the air gap by first-order effects.

149



How large the slow-drift motion amplitude can be?
Obj: Discuss slowly-varying motions versus linear motions.

Examples
1. Turret-moored production ship, i.e. designed to be weather varying so to work with head or
almost head sea waves:

AFTSHP & FORE SHIP 10deg. heading
AT H,,=15.5m, T,=13.5s
; < ahgf. i :'_f-:'._. 15.14,13,
754 a. 2. | n. zc;. ._;n‘l‘ I':*!ﬂ z=-150m Slow-drift Combined 1.
HALF BREADTH =20.5M. DRAFT =150M and 2.order

= _ Surge 17.5m 22.2m

123456 7801011121314151817181920
Xx=115m Section no. X=-115m
AP P

Sway 7.0m 7.8m

Yaw 13.6deq. | 13.7deg.

2. Deep-draft moored floater:

=4
o T Head sea, H,,;=15.5m, T,=13.5s
) i : ﬁL D=20m -
oy-7om [ 5 | Slow-drift Combined
o i g1 [l Cornaion 1. and 2.order

|
z=-150m [ o ¥ 14m

Surge 5.1m 9.2m

Heave 0.74m 0.95m

Pitch 2.1deqg. 2.9deg.

NB: Both results show that the second-order effects (slow-drift motions) are relevant when
compared with the first-order effects. This is due to resonance at periods large compared with
the incident-wave periods caused by the presence of mooring lines. In these conditions the
slow-drift motions dominate on the linear motions.

Slow-drift motions can then be larger than the linear motions. However, because they are
slowly varying motions, their velocities and accelerations are small compared with linear
velocities and accelerations.

Another example of marine unit where first-order effects could be limited or negligible while
second-order effects matter is a submerged bridge:
- linear wave effects go to zero very quickly (exponentially) with the submergence in
the case of deep water (as we have learned)
- second-order slowly-varying wave effects go to zero more slowly than linear wave
effects (as we will see later)
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So the slow-drift response of the submerged bridge, caused by second-order difference-
frequency effects, can be relevant and must be estimated. The main damping mechanism in
this case is connected with the viscous damping. The main restoring mechanisms are due to
the tethers and to the elasticity properties of the bridge.

Slow drift motions in irregular waves. (F:155-157)

For a single body in open sea, slow-drift motions can not be caused by body interactions with
a regular wave, because a single regular wave with frequency @ can only cause two types of
second-order effects: a mean value and a sum-frequency oscillation behavior with frequency
2w. Second-order difference-frequency effects responsible for slow-drift motions on a single
body in open sea need at least two waves with different frequencies to be caused. In general
slow-drift motions are caused by irregular waves.

How we can estimate the slow-drift loads F*" ?

Hp: Two incident deep-water regular waves propagating in x direction, with first-order
velocity potentials
¢, _ 8bu g cos(wt—kx+eg) and ¢,? _ 8u cos(wyt —k,x+&,)
2] W,

The expression for slow-drift excitation loads can be obtained as done for the mean-drift
loads, i.e. 1) direct pressure integration or 2) conservation of fluid momentum (angular
momentum for the moments).

In general the second-order velocity potential ¢, contributes to the slow-drift loads, so first
and second order problems must be solved to estimate these loads. We know how to find the
linear solution, we will discuss the second-order problem later while in the following we
assume that it has been solved.

NB: In general, to find an accurate solution of the ¢, problem is not straightforward because

the second-order solution is usually small, i.e. smaller than first-order solution, and goes to
zero slowly moving far from the body.

We then assume that we estimated the slow-drift loads caused by the body interaction with the
two regular waves. They are second-order difference-frequency effects so they can be
formally written as

FY = CE cos[(w, — @)t + (&, — )]+ C.. sin[(w, - )t + (6, - )] i=1,..,6

with the amplitudes C and C < £\, i.e.
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Cly = CulTi and Cpp =C,¢,T,
Here 7, and 7;, do not depend on the wave amplitudes and therefore are the transfer
functions of the slow-drift loads, i.e. second-order transfer functions. They depend on

T5, T = f(w, w,, wave direction, body geometry,..)

121712

NB: In the superscripts ‘ic’ and ‘is’, ‘i’ indicates the load component, ‘c” and “s’ refer to the
coefficient of the cosine and sine function, respectively.

We can then write:

FiSV = (S 011y Cosl(w, — )t + (g, — &)1+ ¢ 1 &, T Sin[(@, — @)t + (&, — &,)]
If we have a sea state with spectrum S(w) of N incoming regular-wave components with
amplitudes

4, =,/28(w;)Ao

The second-order loads become
N

N
FY =33 4,4, cosl(, - )i + (g, — )]+ T sinl(o, —o,)t + (5, —5,)]} (F:5.39)
j=1 k=1
This expression includes both the mean- and slow-drift (difference-frequency) contributions.

To see this we take N=2 and omit the phases for simplicity:
=1 =0

F = A AT cos(e — @)t + T;; sin(e, — )]
+ 4 A4,[T;; cos(w, — o)t + T; sin(, - @,)1]
+ 4, A[T;; cos(e, — @, )t + Ty sin(@, - @,)1]
=C0S(aw,— )1 =-sin(a, - )t
+ AzAz [Tzl; COS(&)Z - a)z)t + Tllg Sin(wz - a)z)t]
U
= (A’T;; + 4;T,;) : mean drift

+ A A, [(Tl"; +T,;)cos(w, — )t + (T —T;; ) sin(w, — a)l)t] : slow drift

Generalizing to N incident regular-wave components of the spectrum, the mean-drift term is
FY =X ATy (F:5.41)
j=1

this is the same as the formula already discussed in connection with the mean-drift loads in
irregular waves, i.e.

— N F(w,, . F(w,,
F=> ’(—fzﬂ)Aj (F:5.27) =T :,(_,Zﬁ)
Jj=1 é/a ! é/a
So the second-order transfer function of the slow-drift load in i direction, Tj;.", connected with
the wave with frequency w;,, is equal to the second-order transfer function of the mean-drift

load in 7 direction connected with the same wave.

NB: It means that the second-order transfer function TJ;.C depends only on the first-order
solution in regular waves, as far as there is no current and no forward speed.
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Newman approximation (F:157-158)
The Newman’s approximation concerns the second-order transfer functions and implies that

Ty =T, =%(T,§”+7;’;f) and T, =-T; =0 (F:5.42+5.43)

Newman's definition Newman's definition

Newman's approximation Newman's approximation
This approximations allows to simplify greatly expression (F:5.39), as we will see. Newman’s
approximation corresponds to taking the values of the second-order transfer functions along
the line @, = w,. Indeed in this case j=k and expressions (F:5.42+5.43) are satisfied. In

reality we are not on the line @, =, but we can be near to this line if @, and «, are close,
i.e.if u=aw, —w;is small. The Newman’s approximation is a good approximation if:
1) we are interested to small =, —w,, e.g. for the horizontal motions of moored

systems for which the natural periods are O(1-2min);
2) Ty and Ty do not change much with the frequency, so that they can be approximated
using the same expression as if we were along the line @, = @, .

If conditions 1) and 2) are satisfied, we have also that

05(Ts +75) = TNy

[ —

arithmetic average geometric average

because T]] = T . This means that the geometric average can also be used to approximate 7"
and T/,

An example when the Newman’s approximation is valid is given in figures F:5.18 and F:5.19
showing, respectively, the calculated second-order transfer functions Tjk and Tj",j for the

difference-frequency horizontal force on a 2D circular cross-section with the axis in the mean
free surface and radius R.

srzc  Second order transfer function for 2D Second order transfer function for 2D
Jk . . .
semi-submerged circular cylinder 5725 semi-submerged circular cylinder

Newman’s approximation PE

Newman'’s approximation
T =T =05(T} + T ) os

4
l o2

. rrrrr A
:‘{ l)nﬁ‘_,?jw 5

/__,zl't‘
S
N
NN re

Tp =15 =0

3 ORI ZI5D0
ci BRaiiestetete el ggz:::,:‘:,:,o
Sufficient to know mean ""3122‘1‘2"2?'“{{%}@.‘g}a‘ﬁ‘o’.‘q
load in regular waves Jln -2 gl SRR \:.__\&‘3?" !

Fig. F:5.18 Fig. F:5.19

NB: Newman’s approximation does not represent a good approximation for instance when
o, is close to the resonance frequency in heave and the heave damping is small. In this case:

-> large motions occur
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— the second-order transfer functions have pronounced maxima along the line @, = @, , i.e.
they change greatly near this line (NB: This is because along the line @, = @, we have
Tj;.” which is equal to (E(a}j,ﬂ) /¢ ?)and this is large for large motions)

In general the Newman’s approximation is less good for vertical motions because the natural
periods involved are large but not as for the horizontal motions, i.e. they are O(30 s).

Introducing the Newman’s approximation in expression (F:5.39) and using the geometric
average leads to:

N N
= FY =23 A ATIT cos[(o, —w,)t+ (&, —€,)]

j=1 k=1

Important consequence of Newman’s approximation:
To find F* there is no need to calculate the second-order velocity potential @,. This is

because the terms Tjj.c are transfer functions of mean-drift loads, so they depend only on the

first-order solution in regular waves as long as there is no current and no forward motion. This
means a great reduction in terms of computational costs.

An additional simplification of the slow-drift load expression is obtained introducing a sum-
frequency term in the slow-drift loads expression. This term is not physical but provides a
much simpler formula and, being a high-frequency contribution, it does not affect the slow-
drift response that we want to estimate:

N
= z A, AT Ty ycos[(w, —w))t + (g, —&,)]+cos[(@, + @, )t + (&, +&,)]
j=1 k=1

original difference- frequency term additional sum- frequency term

N N
= AAT T { cos(wt+¢,)cos(at +&,) +sin(wt + &) sin(w, + £,)
j=1 k=1

+cos(wt +¢&,)cos(at +¢.)—sin(wt+¢&,)sin(at +&,)}

Il
N

A, AT Ty cos(w,t +&,) cos(ayt + &)

M=

=1

4, \/Fcos(a) t+e; )ZA \/Ecos(a)kthek

NV

Il
N

II
=

J

N
=F" = ZZ[A‘”/T; cos(w ;1 + gj)]z (F:5.44)
j=1

In this way we need to sum only N terms instead of N” needed in the previous expression and
in expression (F:5.39).

Pinkster’s formula (F:159-160)
Pinkster’s formula provides the spectral density of the low-frequency part of the loads, i.e.
connected with the difference-frequency oscillation behaviour.

We can start considering the contribution to F*" given by two wave components of the wave
spectrum S(w) with frequencies @; and a. Using the Newman’s approximation
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Ty =T; =05(T; +T;) and T, =-T; =0
We have
= F’ = 4,4, T +T; |cos[ (o, —w)t+5,-£] (1)
%/_/

i,jk
%/—/
=(Fi§/!; Jo =#

NB: To obtain eq. (1) we used that cos[(@, —®,)t +¢, —¢,]=cos[(w, —m, )t + &, —&,]

The frequency u« has a small value because it is the difference of two frequencies and we are
interested to long periods near the low-frequency resonance.
As an example: If the period of interest is 7=90s - u=27/90=0.07 rad/s

Obj: Find the spectral density of the low-frequency part of the loads, i.e. S, ().

The wave amplitudes are related to the wave spectrum given in the figure below by

A4, =/2S(w;)Aw and 4, =\/25(a)k)Aa) =\/25(a)j + 1)Au.

S(e) 4, = [28(w)) A0
4, =2S(w,)Aw
=\ 25(e + 1) A

W Wy W

O —W; =H 4 ='low’ frequency in the loads
withincrement Au

ot

Let’s study = nAw, then k becomes k=j+n, with n=1,2,..
So index j is connected with the incident-wave frequency @ and index » is connected with
the low frequency 1 .

Because 4 is small, we can approximate T (w,) and T, ... (@, +u) with the value at

mean position @, +u/2,i.e. T“(w, + ul2).

The slow-drift loads due to the spectrum become then

o =z ﬁ: {ZAJAAW [T“’(a)j+,u/2)J}COS(,ut+gj+n—8j)

n j=1

=(F (pjem Do

We know that the load amplitude (Z; ), is linked to the slow-drift load spectrum by

-1 2 13 2 4 2ppic 2
S =22 (Fiom )y =5 244740, T (@, + 112 (2)
j=1 J=1 —

:Fi(a)j+y/2)
¢
Substituting the expressions of the wave amplitudes in terms of the wave spectrum (see
above) and letting N>, we have
o — 2
S, (1) =8 S() S (w+ u){w} do (F:5.45)
0 a
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This is the spectral density for the low-frequency part of the loads and is linked to the
significant-wave height as follows

— 2
< F(o+ul?2
SF(,u)=8'[S(a))S(a)+,u){%} do och3
Oty ami oo 70 2
#f(H2,)

ocH

Hp: One degree of freedom motion.
Obj: Find the amplitude of the slow-drift response x = x,e'***),

The motion equation is
mi +bx+cx = F(t) = F e
with m the mass term, » the damping term, ¢ the restoring term and F;(¢z) the slow-drift
excitation force.
= (—p’m+iub+c)xe” =F,
So the response amplitude is
1

Xo = \/(—m,uz o) +,uzb2 Fo=lH(@)|F, (1)
with |H(w)| the response transfer function also named as Response Amplitude Operator
(RAO).

The amplitude of the force and of the response can be expressed in terms of their
corresponding spectral densities as

F =28, (u)du

and
xXo =28, (u)du

So using the link (1) above, we have
S ()= H()|” S (1)

The variance of the response is
o’ =S (w)du=|S
S dn= ]800

If the response variable x is the surge, the term m would be in general m = (M + 4,,), with M
and 4, the ship mass and added mass in surge, b= B, and c=C,; .

du (F:5.47)

NB: As we have seen previously, the variance is an important parameter. Its square-root, i.e.
the standard deviation, gives a measure of the response deviation from its mean value, so it is
directly linked to the most probable largest value of the response.

We are interested to the slow-drift resonance, i.e. the frequency x is in the vicinity of
resonance. Let then u =+/c/m. If we assume that the damping term b is small, i.e. small

relative to the critical damping 2m,, then the major contribution to the variance comes from
the resonance, i.e. S, (u)=S.(u,), because at resonance the response is largest.

156




The figure below shows this circumstance by plotting the spectrum of the slow-drift force and
the other factor of the integrand in (F:5.47), together with the incident wave spectrum. The
damping is small near the resonance. As a result, it is apparent that the variance of the slow-

drift motion is mostly affected by the contribution near £, while it does not have basically
contribution from the incident-wave frequency range and from elsewhere.
Then we can approximate axz as follows

0. =5, ()]

T
du==S —— (F:5.48
O(C_ﬂZM)2+b2ﬂ2 F(/un)Zbc ( )

Sr (,U) 1 Wave spectrum

:Hh\\\/ ‘n‘ [Cll - (M + All),u2 ]2 + B u? /

I
P
-
/.’
—
e ———

3 1

Example of application K,
Hp: A moored tanker.

Obj: Find the standard deviation o of the slow-drift surge motion using formula (F:5.48).

To estimate o, we need Sg(u4,), b and c. The steps to do are the following:

1. The restoring term ¢ =C,, is given by the mooring system characteristics (we have seen
how to find this through an example of a moored vessel).
2. p, is the resonance frequency, i.e. u, =</c/m =./Cy, /(M + 4,) . So we need to calculate

the added-mass in surge, for instance using the 3D source technique.

3. The slow-drift spectrum S, (x) for surge can be obtained once known the drift forces in
regular waves (see Pinkster’s formula). The drift forces can be estimated using a numerical
solver and applying the conservation of fluid momentum or direct-pressure integration.
Then S (1,) becomes available.

4. The damping term 5 is given by skin friction, eddy-making damping, wave-drift damping
and anchor-line damping. The wave-drift damping dominates for high sea states, for
example,

Hp: A ship long L=235m.

For H,;=8.1m the wave-drift damping represents the 85% of the total damping, while it is
negligible for H,,;;=2.8m.

In the case of sway, both eddy-making and wave-drift damping are important.

Slow-drift damping
The main sources of slow-drift damping are connected with nonlinear phenomena and can be
listed as:
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1. wave-drift damping
2. viscous hull damping
3. viscous anchor-line damping

Wave-drift damping (F:161-164)

It is due to the body interaction with incident waves. For a marine vehicle/platform, it can be
quantified for instance doing free-decay model tests of the vehicle/platform in calm water and
in regular waves. In the latter case it is found that the decay is faster, and so the damping-level
is higher. The additional damping is a wave-drift damping and is due to the interaction
between the rapid oscillating behaviour of the incident waves and the slow-drift motion
connected with the free decay.

Figure F:5.20 documents this in terms of surge decay for a TLP in two cases: (a) in calm
water and (b) in regular waves. The results show that, once filtered the incident-wave
frequency from the measurements in waves, the decay of the motion appears clearly stronger
with respect to the case in calm water.

‘r'h
A AEAT]  Calm water
VI ki,
F v/
— . » TIME
100s 300s 500s

EM Regular waves
T=12s,H=8m

.
P

JANEIDN Regular wave

}f (VAAVAS. freq. filtered out

-
»

I

Let’s consider the surge-motion case.

The second-order difference-frequency effects of the body-irregular wave interaction cause a
slow-drift surge speed in the vessel. This interacts with the rapid oscillation behaviour of the
incident waves causing a wave-drift damping. This is because an average force (a mean-drift
force) is caused which acts as a damping force to the motion.

We can interpret the slow-drift surge speed induced as a quasi-steady forward and backward
speed, say U.

If we then split the spectrum in elementary regular incident waves, we can study the vessel
with such quasi-steady speed in incident head-sea regular waves.

We need then to find the mean-drift force in surge. This coincides with the added-resistance
in waves. For instance for L>>], i.e. .<~0.5L, in head sea we have

R, =F= pgs.” (1+ Zij”sin(H)]znldl (F:5.22)
2 g )i
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The U-term in the formula can be interpreted as a damping of the form BLVDU , SO the
coefficient B"” will be
B = pw¢,* [[sin@)fmdl  (F:5.49)
L
This is the slow-drift damping coefficient, proportional to g“az and is due to the interaction
between the slow-drift motion in surge and the rapid oscillation behaviour of the waves.

NB: Formula (F:5.49) is valid for small wavelengths compared to the ship length, Zhao et al.
(1988) developed a numerical method to evaluate the wave-drift damping for any A.

NB: If we consider the slow-drift surge speed U as it is, i.e. oscillating with low frequency,
then we find that the damping has also a slowly-varying behaviour. This aspect is not
discussed in the lecture in further detail.

An example of the procedure to find numerically BLVD is given in fig. F:5.22.

Hp: - A vertical circular cylinder that is free in surge in linear motions. Incident regular waves
in deep water.
- The slow-drift surge speed is interpreted as quasi-steady forward and backward current
with values U;=U and U,=-U, positive value means a speed in the wave direction.
- Using this quasi-steady approach one can express the wave-drift damping as a power
series of the current speed. Here we estimate the first term of this series, i.e. a term like

B""U with B"” independent from the current speed. This has the same form as the

damping force providing the wave-drift damping for small wavelengths given by eq.
(F:5.49).

Calculation of wave drift damping
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Fig. F:5.22

The procedure to find B” is:

1. We calculate the mean-drift force in surge F, for U; and U, and varying the incident
wave frequency.
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2. We estimate the variation AF of the mean force connected with the velocity variation
AU=U, -U, for every incident frequency.

3. We then use the fact that this force variation is a damping force, i.e.
AF=BLVDAU = BLVD=AF/AU.

The damping curve in figure F:5.22 shows an important increase with the square power of the
incident-wave frequency.

Being a second-order effect, also the wave-drift damping is not easy to estimate. Fig. F:5.21
shows the wave-drift damping in surge measured for two ship hulls in head regular waves.
Also the wave-drift expression (F:5.49) valid for small wavelengths compared with the ship
length is reported. One must note that the experiments can show easily large scatter in the
measurements. This means that high accuracy is required when doing model tests.

Bwo/L 4
_nig = Mean experimental value (Faltinsen et al. 1988)
p? ---- Experiments (Wichers 1982)

15 - —— Asymptotic theory (Faltinsen et al. 1986)

Wave drift damping
in surge of a ship

5 o TN Small wavelength theory
/’ ™. for added resistance
N
f/ \\\ v_
r \.-—-'"-—-
/! ——
/
/
,’I
! T T T T T -
1 2 3 4 5 3 L
. wig
Fig. F:5.21

Tank-wall effects can cause bias in the estimation of the wave-drift damping. An example is
given in the figure below. The case refers to a hemisphere in regular waves along x direction.
Both model tests and numerical results accounting for the side walls of the tank show a wave-
drift damping reducing as the incident-wave period increases, with an oscillatory behaviour

which leads to negative values of BZD. The negative values are connected with the presence

of the walls which can cause exchange of energy from the fluid to the body, while the wave-
drift damping in open waters is positive.

Bj"
pSiyeD,
wdiste THEORY
hemisphere 5 (ZHAO & FALTINSEN)
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Note negative damping
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The wave-drift damping associated with a given spectrum S(w) can be obtained using a
formula similar to that for the mean-drift force. So if for the mean-drift force in surge we have

E' = ZTS(a)) [%}m (F:5.28)

for the wave-drift damping in surge we will have

B = ZT S(w) ( BllWZ(Z), B) )da)

NB: B!” H 2, because it is proportional to ¢, in the case of regular waves with amplitude
¢, . Since the spectrum of slow-drift force S, oc H,}, , then from expression (F:5.48):
0.2 =8,(u,)!l(2bc), with b=B"" = & o \[S, /b o Hy,. This is unexpected since we

talk about second-order variables, i.e. we would expect a dependence on H,,to the square
power.

The probability density function of the extreme values of the slowly-varying response can be
approximated by a Rayleigh distribution. Strictly speaking this requires that the response is a
Gaussian narrow-banded process. In this case, the most probable largest value of the response
in a storm of duration ¢ is

] (F:5.50)

with T the natural period of the slow-drift response.

If, for instance, #=5h and 7y =100s > X, =3.220,

Barresen has proposed a pragmatic formula to estimate the most probable largest value of the
response, accounting for first- and second-order effects. It is based on Rayleigh distribution
for the extreme values of both the first-order and the slowly-varying second-order response
and on summing them up, i.e.

t . t
X - l.order 2 IO — |+ 2.order 2 IO v
max X g T X g T

rl r2

t
x =o. |2log] —
max X g[T

N

l.order 2.order

=40, +30,
The approximated expression is obtained considering typical duration ¢ of a storm, typical
mean period of the first-order response 7,,; and typical slowly-varying period of second-order
response, 7,,. For instance r=0(5h), 7,; can be approximated as the mean incident-wave
period 75, e.g. O(10 s), and 7,,=Tx>=0(100s).

Formula (F:5.50) gives a rough estimate of the most probable largest value. An improvement
can be obtained with a better hydrodynamic and statistical analysis. In particular, an improved
statistical analysis means that one should consider several long-time random realizations of
the wave spectrum and estimate from them a proper distribution of the extremes, i.e. with
several samples of extreme values.

The procedure to be used for the estimation of the most probable largest value of the motion is
examined in the figure below in terms of the slow-varying motions.

The figure shows 4 random-time realizations of the same process. The differences in the time
histories are due to different random phases, necessary to reproduce a random process. The
procedure is the following:
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1) The extreme value (absolute maximum) recorded in each time series is stored,
2) The most probable largest value is found as the mean among the stored maxima of the
motion.

We understand that in reality we need more realizations to build a proper statistical analysis
and have a proper estimation of the most probable largest value, as well as of other statistical
guantities. As mentioned above, this implies the need for long-time simulations and model
tests, which could be impractical or too expensive.
The standard deviation is less sensitive to the use of different random-time realizations than
the extreme values and so it can be estimated more easily.

Simulation

MAX. VALUE

1 By 4 <t 4
_ MAX. VALUE
2 ——_ |

| Max. VALUE

i MAX. VALUE
"o.a B P -0 .0 Y040
- —
= TIME

Eddy-making damping: equivalent linearization (F:164-166)
Eddy-making damping is connected with vortex shedding. It is nonlinear, i.e. it behaves as the
square power of speed, i.e. as B,y || . It means that in general the response must be found

in time domain. If we want to use the more efficient frequency-domain approach, we need to
linearize the eddy-making damping.
Let’s see how to perform the linearization in the case of slow-drift sway motion. The
uncoupled 1D motion is:

(M +4,)y+Bpy | y|+Cpy = F," (1) (F:5.51)
Here M and A,, are the ship mass and added mass in sway and C,; is the restoring term, for
instance connected with the mooring system. F,*" is the slow-drift excitation force in sway.
The damping coefficient is Bp=0.5pCpA, with p the water density, Cp the drag coefficient
and 4 the frontal area of the submerged structure against the motion.

We can find an equivalent linear damping B‘py
1) assuming that the slow-drift response is a Gaussian process (not always true) and
2) enforcing that the linearization must ensure an energetic equivalence, i.e. that the
energy taken from the system by the linear damping is the same as the energy taken
from the system by the nonlinear damping.

This gives
B =4B,0,/N2n  (F:5.52)
so that
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(M +A4,)y+ By +Cpy = FZSV (®)
Using the approximation of the response standard deviation given by
c2=8 (1) ——— (F:5.48)

’ 2B°C,,
and the fact that, as the response slowly oscillates with frequency g,
|VEulyl = 1pl=u" 1yl = S,(W) =S (1) = o, =40,

2

we have
N2
o= u?S T 2SN
¥y ll’ln F (/’In) ZB@CZZ /’ln F (/’ln) 8BDO_yC22
TN 27

=0, {ufSF (4,) J (F:5.54)

8B,Cy,

This shows that o, < B, , so o, oc B, ™, where B, is like a drag force damping
coefficient. o is not affected much from the damping, i.e. 100% increase damping causes
only about 20% decrease.

NB: S, Hy, and o, xS, =0, o H);"

Slow-drift damping from mooring lines

The mooring lines contribute to the slow-drift damping. An example is shown below for the
case of a mooring line to a ship surging in irregular waves.

The results show an important contribution to the damping in the region of small frequencies,
i.e. periods larger than the incident wave-period range. While the effect of the mooring line is
negligible for the surge response within the wave-period range.

I SURGE-SPECTRUM

No anchor-line damping

FREQUENCY (H2)
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Full scale test of the wave energy ship Kaimei
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Extreme motions of deep-draft floater

Head sea, H,;3=15.5m , T,=13.5s

Slow-drift |Combined
1. and 2.order

Surge 51m 9.2m

Heave 0.74m 0.95m

Pitch 2.1deg. 2.9deg.

Is the fact that second order motions are larger than first
order motions contradictory?

Submerged floating bridge

Linear wave effects (deep water)

Design wave: Hq;;=2m. T,=5.2s

Slow-Drift Loads

M=

syi
E:

Jj=1

A, A T cos[(w, —w)t+ (5, —&,)]

b
Il

1

+Tj’,f sin[(@, —a)j)t+(8k —b"j)]}

166




ST2C Second order transfer function for 2D
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Newman’s approximation:
Ty =Ty =05(T) +Ty) Ty=T,; =0
N4 o ] Q
FY =344 E(T’C +7;)  cos[(@, —w,)t+ (g, —¢,)]
j=1 k=1
arithmetic average

Contributioln from @;and
ES/Z 5 — 4,4, (T];c + T ) cos[(w, —w )+ (s, — )]

1 ic ic
+EAjAk(TJ.j +T;)cos[(w, —w, )t + (g, —&,)]

= A, A (T + T )cos[(w, —w,)t+ (g, —&,)]
N
=H

Slow-drift effects in the wave spectrum

S(@) - [25(0)hw
4, =28(w,)Aow
=\ 25(0) +1)Au

a)/@ ‘low’ frequency in the loads

A low frequency increment

1

27 2d'u
[C _(M+A11);u] + B u

Gi = ISF (/U)

Wave spectrum

SF

\
A
\

l
.' i
1 |
1 |
L !
\\ : |
3 \\? \\’:\

I

\
I\ 1
Gy (M+A ]+Bl11u /
\
_/‘ \'L\\_______ .

0 v 1 l
\
J 168




Free-decay test in surge of TLP
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Slow-drift damping contribution
from a mooring line

Influence of anchor-line damping on surge
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Auxiliary information

Dear all, 1 will update this file if necessary and put information | was asked about from some
of you, in case it might be useful for others.

e Derivation of added-mass and damping expressions:
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Lecture Note 8

42. Slowly varying oscillations due to wind. Slow-drift models. Sum-frequency effects.
Current and wind loads. (F: 166-169,174-177)

Slowly varying oscillations due to wind (F:166-168)
The wind can also cause slowly-varying oscillations of marine structures, this is due to wind
gust with high energy content at periods of O(1-2min).

Hp: A wind speed U(f) =U +u'(f)with U the mean value and u'(r) the gust velocity, i.e.
changing randomly in time, and with amplitude |u'|<</U |.

The horizontal force induced by the wind in its direction can be written in the form of a drag
force, i.e.

F, = 1 P, CrAU(t) = 1 P, CrAlU% + ')’ +20u" = 1 P.,CrAU? + p. C AU
2 2 2 (LA

“N———~——"  fluctuating drag=F},'
mean drag=Fy,

with A4 the frontal area of the structure against the wind and C), the drag coefficient. So for the
fluctuating part we have
F,'=(p,,CpAU )u'
%/_/

transfer function
Sfromu'to Fp'

The gust spectral density is usually given in frequency f (Hertz) instead of in circular
frequency w=27f (rad/s), i.e.S” (). S” (f) and S” (w) are linked by

S" (w)dew=S" (f)df
implying the same energy content. This means that

S"(w)dw =S" (0)2xdf =S" (f)df = S” (w) =iSW(f).

The wind-gust spectrum is linked to the power spectrum of )’ as
S:" (1) =0, CoaU ) ™ (1)

We can then use the same procedure as in waves to estimate the slow-drift response x due to
wind, i.e. assuming one degree of freedom:

mx +bx+cx=F, ()

NB: The air density p,,. is very small, i.e. 1.21 Kg/m® at 20 degrees Celsius - the added mass
connected with the marine structure in air is negligible.

So we can have evaluate the variance of the response, obtaining similarly as in eq. (F:5.48):
1
O-x F (a)N) Zbc F (fN) 4bC
here the link between S” (1) and S” (@) has been used.

The standard deviation of the surge motion can be connected with the mean offset x due to
the steady wind, for example assuming the Harris wind spectrum (not recommended for
frequencies lower than 0.01Hz)
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~— ~,\5/6
S”(f)=4KT," 1 (2+F7)
with U,, the one hour mean wind speed at 10 m above the sea level, k the surface drag

coefficient (in this framework the surface is the free surface) for example 0.003, and
f = Lf | U, with f'the frequency and L a characteristic length, for example 1800m, we have

o =+/0.0387, /[\/;(2#;)5’6}?

with p the ratio between the damping 4 and the critical damping 2may.

Assuming U,, =40m /s, Ty=100s and b the 10% of the critical damping
- o is 30% of the offset X .

Limitations of slow-drift models
Typically slow-drift models, used to estimate slow-drift loads and motions, are based on the
perturbation approach and therefore neglect the influence of 2" order motions on 1% order
motions.
In reality there are circumstances where second-order effects can influence linear motions, for
instance:
- A slow-drift yaw motion changes the incident-wave heading and this affects the 1%
order response if the slow-drift yaw motion is sufficiently large.
- A slow-drift sway motion causes a frequency of encounter effect on the 1% order roll
in beam waves, i.e.®, =@ +kV(t) with V(z) the slow-drift sway speed. This means

that w,(¢) . If we are close to the roll natural frequency, then @,(t) may go in and out

of resonance causing motion amplification. The consequence of this is examined in the
figure below considering free-decay model tests in regular beam waves near the roll

resonance. A SWAY (M)
1.0

0.5 ] I

0.0 4

-0.5
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TIME(S)
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From the model tests the slow-drift sway connected with the free decay tests induces
an envelope in the roll motion modulating the high-frequency behaviour

corresponding to the encounter frequency. Such envelope is evident even when the
sway motion reduces drastically.

-30.
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Sum-frequency effects_ (F:168-169)

Using the square velocity term in the Bernoulli equation for the pressure we have seen that
there are 3 contributions connected with sum-frequency effects connected with wave
frequencies w;and @, : i.e.20,,20,, 0, + @, .

In general the sum-frequency effects depend on the second-order wave-body interaction
velocity potential ¢,, which in some circumstances may represent the major contribution.

Examples of: Sum-frequency loads in deep-water conditions

1. A vertical offshore structure with deep draft D, e.g. a buoy, in waves. Zero current.

In deep water:

-> the linear velocity dies out exponentially with z

—> the square-velocity term in the pressure dies out also exponentially with z
The vertical force is connected with the pressure at the bottom of the platform, i.e. at z=-D.
There, the square-velocity term in the pressure is small and the major sum-frequency
contribution comes from the second-order velocity potential which dies out less quickly than
the linear velocity potential, as we will see.

2. A modified Wigley hull in head-sea regular waves. No forward speed. No ship motions.
Figure below shows the amplitude of the vertical second-order sum-frequency force as a

function of the incident wavelength-to ship length ratio. From the results, the ¢, contribution
is much larger than the contribution from the square-velocity term in the pressure (NB: The
latter contribution for the force is opposite in sign with respect to the second-order potential
term, this is why the total force is smaller than the contribution from ¢,.).

F(Zu})
s 0.05-
pgLS | Due to secor_1d—order
potential
0.04 -
| |
0.034 Py o
| /
0.02 \ Total
] :/ Due to velocity-square
N\ term in Bernoulli's eq.
0.014 ) |
_________ --
| e
[ ..--""------
0.00 N - AL

025 030 035 040 045 050

In the following we briefly analyse the @, related problem.
Hp: Deep water conditions.
¢, satisfies the Laplace eq. and inhomogeneous free-surface and body-boundary conditions

which depend on the first-order solution ¢,.

For example the combined free-surface condition is obtained by Taylor expansion around the
mean free surface, z=0, of the nonlinear combined free-surface condition, keeping only the

terms O(¢,%) and reads
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2 2 2 2 2
6_¢252+g8_¢2:_£ (%) + a_¢1 +(a_¢1) +la_¢1£ a_?]-+g6_¢1 onz=0 (F562)
ot 0z ot|\ ox oy 0z g Ot 0z| ot 0z

= Source term(4,)

So the first-order solution acts as a disturbance, i.e. a sort of pressure distribution, on the free
surface. In equation (F:5.62) the effect of current and forward speed is neglected and so it is
done in the next discussion.

Let’s examine the second-order velocity potential solution with the following assumption.
Hp: The linear solution is

b = S o cos(ant —kx+6,) + E22 ¢ cos(yt - Ak,x+5,) (F5.63)
2] @,
This represents for
A= +1-> two 2D (long-crested) waves propagating in the same direction
A= - 1-> two 2D (long-crested) waves propagating in opposite directions

A particular second-order solution, satisfying the Laplace equation and the combined free-
surface boundary condition eq. (F:5.62), is

A=+1= ¢, = ZAlAza’lf’z(“’l_“’z) 7 sin[(e, - w,)t — (k, — k,)x +(5,-5,)]  (F:5.64)
—(0,—@,)" +g |k —k,|
24, A,0,0,(0, + @,)
_(a)1+a)2)2 +glk —k,|

From this solution we see two things:
1. A sum-frequency effect occurs if the waves propagate in opposite direction and a
slow-drift effect otherwise.
2. ¢, (and therefore the pressure contribution —pog@,/0t) goes to zero slowly as

z—>—-o when o, and w,are close because then also k; and k, are close (NB:
Remember the application to the slowly-varying motion of a submerged floating
bridge.). It does not decay at all if o, = @, . In the latter case both the dependence on x
and z disappear (Longuett-Higgins 1953). This is true both in the case of difference-
and of sum-frequency effects.
If o=, =w, and A=+1> ¢, =0.
If o=, =w, and A=-1> ¢,is of the form ¢, =—wA A, sin(2wt + 6, +J,). This does
not decay with z. A similar effect occurs in 3D. This behaviour means that the pressure
term —p0g, /Ot does not give any force on a fully submerged body, because its
gradient is zero. It is instead relevant for surface-piercing bodies. As an example this
gives a sum-frequency vertical force contribution from the column bottom of a TLP.
We can interpret the two waves in ¢, has incident waves. In this case we see that the second-
order incident-wave potential in deep water connected with a wave with frequency @ is zero.
We can also interpret the two waves in ¢; as connected with the wave-body interaction

problem: assuming a 2D body in deep water.
The interaction between incident regular waves and waves reflected from the body is an

example of sum-frequency effect. In this case @, = @, and 4=-1.

In the transmitted waves, the interaction of the waves generated by the body with the incident
waves is an example of difference-frequency effect. In this case @, = @, and 4=+1 and there
is no second-order effect in the downstream far field in deep water.

A=-1=¢, = " sin[(w, + w,)t — (k, — k,)x +(5,+6,)] (F:5.65)
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NB: In 3D the waves generated by the body propagate in different directions, the interaction
with the incident waves along the incident-wave direction is affected by the interactions in
other directions - second-order effects in 3D are different than in 2D.

Newman (1990) has shown that approximating the source term in the combined free-surface
condition with its far-field behaviour (i.e. far from the body), ¢, goes to zero as the inverse of

the depth instead of exponentially for large depths.

Examples of sum-frequency effects for offshore structures
Example of consequence of 2" order sum-frequency effects is the springing on Tension Leg
Platforms (TLP):

_,-,';‘ug

This is a steady-state resonant elastic motion of the platform in the vertical plane.
Sum-frequency effects can cause resonant vertical motions, because the natural period is 7,=
O(2-4 sec) and the effects go to zero slowly with the depth as the 2" order potential goes to
zero slowly.

Example of consequence of 3" and 4™ order sum-frequency effect is the ringing for instance
on TLPs and gravity based monotowers:

Ringing o |

|_ =i +

This is a transient resonant elastic motion of the platform caused in survival conditions.
Survival conditions correspond to large incident-wave periods connected with high waves. If
we assume for instance incident waves with mean period 7,=0(15 sec) and bending moment
natural period of the monotower 7,= O(5 sec), then resonance can be caused by 3 order
effects, i.e. oscillations with frequency 3w. Because of the high waves 3™ and 4™ order can be
relevant. The figure below shows the ringing caused by irregular waves on a TLP:
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It is apparent the high-frequency behaviour of the tension measured with respect to the
incident wave time history.

The figure below shows the ringing caused by irregular waves on a gravity-based monotower
(Farnes et al. 1993).
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A quasi-static approach is used to calculate the excitation linear and nonlinear wave loads, i.e.
the monotower is assumed rigid and fixed. Then the response is estimated assuming the
monotower free to dynamically interact with incident waves. The results in terms of loads
show a dominance of the first-order wave effects with respect to the nonlinear effects. The
dynamic overturning moment of the monotower highlights that the nonlinear response is of
similar importance as the linear one.

What can cause ringing?

In survival conditions, high waves can reach the monotower, partially rising along it and
partially propagating around it (see figures below). Waves from the opposite sides of the
monotower will later collide against each other on the back of the cylindrical structure and
then hit the mono-tower. The nonlinear effects involved in such a wave evolution are at least
of the 3" order. They can excite transient elastic resonant oscillations.

Therefore ringing can be caused by transient nonlinear phenomena due to higher-order wave-
body interactions and associated with high-frequency behaviour near the elastic resonance
period of the platform.

BO09 36 1k

Side view Back view

Summary: Second-order effects. Mean (drift) loads. Maruo’s formula. Slow-drift loads
and damping. Newman approximation. Pinkster formula. Slow-drift effects due to wind.
Sum-frequency effects due to second- and higher-order effects.
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Current and wind loads. (F:174)

The general sea environment is characterized by wave, wind and current. Current corresponds
to a steady water flow. Wind corresponds to an air flow with a steady component plus a
slowly-varying fluctuating part (gust). Current is relevant for second-order drift effects.
Waves and current are relevant environment for small-volume structures like jackets and
risers. Current and winds may matter for all marine structures exposed to them and result in
viscous effects.

In the following we assume no waves and discuss the current and wind loads. There are
similarities between the current and mean wind loads, though water and air have different
properties and therefore current and wind speed can be rather different, i.e. Design values in
North Sea are: wind speed =O(40m/s), current speed =O(1 m/s).

Several parameters can affect the flow past a body and the resulting loads and motions:
« Reynolds number=Rn= pUD/ u=UDIv

(U=characteristic free-stream velocity, D=characteristic body length, o the fluid density, u
and vthe dynamic and kinematic viscosity, respectively)

Roughness number=4/D

(k=characteristic dimension of body roughness)

Body form

Free-surface effects

Sea-floor effects

Nature and direction of the ambient flow

Reduced velocity=U/ f, D
(with £, the natural frequency of the structure)

The Reynolds number measures the importance of kinetic energy relative to the tangential
(shear) stresses connected with viscous effects. In practical cases for offshore structures, at
full scale Rn may be large, i.e. O(10’). For ships at forward speed it is O(10°).
Examples:
In water (v=1.05-10"° m?/s at 20 °C):
- Current speed U=1m/s and a column of a semi-submersible with D=15m
> Rn=1.4-10’
In air (v=1.50-10"° m?/s at 20 °C):
- Wind speed U=40m/s and a structure with characteristic length D=20m
- Rn=5.3-10’
But at model scale, as well as for full-scale structures with smaller characteristic lengths (e.g.
jackets, risers, pipelines), the Reynolds number can be much smaller.
Examples:
In water (v=1.05-10"° m?s at 20 °C):
1) Model tests by Froude scaling the semi-submersible to 1:50, i.e. U=0.14m/s, D=0.3m
> Rn=4.0-10"
2) Full-scale pipeline with D=1m in a current with speed U=1m/s
> Rn=9.5-10°

Different values of the Reynolds number may correspond to different flow regimes leading to
different loads on the structure.

In this framework, viscous effects matter in connection with tangential (shear) stresses in the
boundary layer along the structure and in connection with flow separation. These aspects are
discussed in the following.
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A simple and relevant example is represented by the problem of the flow past a circular
cylinder because it shows fundamental features that can characterize more general geometries.
Here we assume a current as environmental condition and start with the features of the
separated flow of a circular cylinder in steady ambient flow.

Steady ambient flow past a (fixed) circular cylinder (F:174-177)
Hp: Non-separated flow and high value of Rn

-> viscous effects negligible
-> potential flow theory is valid

y
U 0 r n=(cosd,—sinf)
_, 7 o x=-7rC0SH,y=rsing
n

The total velocity potential is ¢, =U_x+¢ with ¢ the flow associated to the body-current
interaction which must satisfy the problem:

2 2
VZQO,:0:>V2¢:OEZ—?+EZ—¢+%2£:0 VP eQ
r r or r

5¢m,:0:>%:_ywi.n:_Uwcos¢9 VP e S,
on on

¢ —0 r—> 0

This problem is satisfied by a dipole singularity in x direction placed at the center of the
cylinder, i.e. g=yi-r/r*> =—ycos@/r. The unknown strength v is found enforcing the
impermeability condition along the body:

¢ 1o 1 0% [2 1 1
— = =yC0SO| ——+—+—
or* ror r*oe 4 Pt
9 __ ¢ =—l2c050=—Uwcose VPeS,=y=RU,
on or|_, R

¢p—0 r — oo satisfied

}EO VP eQ

So the solution is

RZ
¢, =-U., (r + —j cosé

r
which means that the tangential velocity on the body is

U, = 1% =2U,sin@
r 00 | _.
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and has a maximum at =7r/2.

The pressure on the body can be obtained from the steady Bernoulli equation:
1 2 _ 1 2 _ 1 2 . 2
p+5PUL = o+ 5 pUL = ppy =5 pULIL=4(sinO)]

with p, the ambient pressure. We can define the pressure coefficient as

_ P P01 s(a 2
C =1 =1-4(sind)

P

2

27V U

C, =1 at =0, z (stagnation points)
C,>0 if U,<U,
C,<0 if U,>U,

Under these assumptions there is no force on the cylinder:
2

F. = §(p—po)nldz = %pRUwZ j [1—4(sin ) ]cosad6 =0
0
and similarly in y direction. This is the D’ Alembert’s paradox:
A body in an infinite potential steady flow is not subjected to any force.

o Stagnation points

NB: In general a moment exists for a body in an infinite potential steady flow: the Munk’s

moment, we will later discuss it.

Actually in the real case the flow separates in the back side of the cylinder, say for 8>=0,.
Flow separation occurs when the flow is not able to follow the body. In this case the flow
follows another streamline (called separation streamline) and the pressure along the body part
with separated flow remains almost uniform and smaller than pg, this implies that

Cp <latf&=r

This is shown in fig. F:6.2 in terms of the time-average pressure coefficient on the cylinder

for different Reynolds numbers:
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incident flow velocity, & defined in Fig. 6.1, p, = smbient pressure.)
[Roshka, 1961.) )
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e For Rn—>w the pressure on the back of the cylinder recovers the pressure on the front, i.e.
there is zero drag force.

e As Rn reduces the pressure, downstream of a certain angle €, becomes nearly uniform and
remains smaller than the ambient pressure, this leads to a non-zero drag force.

So, flow separation causes a horizontal force, i.e. in the current direction (while the force
along y is still zero due to pressure symmetry). A rough estimation can be obtained assuming
the flow as potential for —7/2<8<x/2 and the pressure uniform p=pz<p, (ps is called
‘base pressure’) for the other angular positions along the cylinder, as shown in the figure
below.

o Stagnation points

This is based on the fact that the major contribution to the drag force comes from integrating
the pressure forces in the vicinity of #=0 and |#|=z. It involves errors near @ =+x/2.
Under these assumptions:

l2 37z/2
szlpRUwzj [1-4(sin0)°1c0s0dO+ R | [p,~ p,]cos6d6 (Fi6.5)
2 -rl2 7l2 —

=pU, %012

2

Here Q gives an average measure of the pressure loss due to flow separation and must be
obtained empirically, i.e. from experiments. The drag coefficient can be defined as

1 1
=—p2RU.*|-=—
rES [ 3 Q}

chlL?l—Q (F:6.6)
5 PDU: 3

This expression gives results in qualitative agreement with experiments.

For example integrating the time-average pressure coefficient along the cylinder given in fig.
F:6.2 for Rn=1.1-10° it gives 0=-1.25 and from expression (F:6.6) we have C»=0.92 which is
in qualitative agreement with accepted experiments.

The Reynolds number is a very important parameter for the drag coefficient because the flow

has different regimes according to Rn.

For sufficiently small Rn the flow is in laminar conditions, for large Rn the flow becomes

turbulent:

e Laminar =the flow is well organized

e Turbulent = the flow is characterized by a mean (organized) component and a fluctuation
about the mean component.
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Example:
Hp: A group of people. We ask them to march in order at the same speed U.
« If U is small, they are able to do so
-> this corresponds to a laminar flow
« If U is higher, someone can have problems
-> this corresponds to disturbances in the flow
« If U is sufficiently high, people will march in average with U but each of them can go
slightly faster or slower
- this corresponds to turbulent flow, with speed U =U +u", u' being a fluctuation around
the mean value U .
The transition from laminar to turbulent conditions is connected with flow instability and the
speed associated with the transition (flow instability) is called critical speed.
If the day is windy then the speed at which the organized march is lost, i.e. the critical speed,
is smaller than without wind. This means that the ambient flow is important.

Going back to the circular cylinder: The Rn is important for the location of the separation
point and for the transition from laminar to turbulent flow. We also understand that the flow
tends to be laminar in the upstream part of the cylinder while it tends to become turbulent

moving downstream due to its acceleration for increasing 6.
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Relative damping for turret-moored ship

Operational condition |Design condition
Organization | Surge Sway- Surge Sway-yaw
number yaw
4 2% 4%
5 2% 5% 2% 5%
14 1% 1%
20 10% 10%

Relative damping for deep-draft floater

Organization Operational Design
number condition condition
4 15.0% 30.0%

5 1.2% 1.7%

14 1.0% 1.0%

20 10.0% 10.0%

Free decay test in regular beam waves
close to roll resonance
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Second-order sum-frequency vertical force amplitude F;, ?® on
modified Wigley hull in head sea. Zero speed. No ship motions.

Importance of second-order potential

F(Z(u)
s 0.05+
pgLs; | Due to secor_1d—order
potential
0.04 l
4 /.- ) -
0.034 ry P —y
| \ Total
0.024 \
| \ Due to velocity-square
0014 term in Bernoulli’'s eq.
000 T . AL
025 030 035 040 045 050

First and second-order solutions
Free-surface boundary condition

2
F, 0,

> onz=0
ot oz
o4, 09
——+g—==5 ! onz=0
Y g P ource term(g,) z

Springing of Tension Leg Platforms (TLP)

Resonant vertical motions due to sum-
frequency nonlinear wave loads

Resonance period T,=2-4s

The second-order sum-frequency
potential decays slowly with depth
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A third and fourth
order wave load
effect in survival

conditions
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Wave elevation

Ringing measurements
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Tension I

-
vow N/ Z
— vam 5

GRAVITY BASE? g)gTOWER




WAVE
MOMENT ELEVATION
(k) (m)

“10® T
20 20

- . Wave profile
0 Linear f 1
w0
Wave Nonlinear o~ L 10
o load | Wave load 5
f '1( 5
A o
-0 4 #
-10
20
15
-0 T T T T T T T -20

T
1880 1866 1870 1875 1880 1885 1890 1808 1800

TIME (Sec.}
Ref.: Fames et al (1993)

QUASISTATIC OVERTURNING MOMENT
MONCTOWER

Hyy=164m, T, =18.1s

MOMENT
{ikNm)

.100
30

Linear

20 [ Nonlinear
| response

response

104

10

\
20— \

a0

I T T 1 T T T
1860 1865 1870 1875 1880 1885 1830 1895 1900

TIME {Sec.)

DYNAMIC OVERTURNING MOMENT
MONOTOWER

Hyg=164m, T, =18.15

Fed.: Farnes et al (1993

Ringing of monotower in survival condition

Steep local
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sides of
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Ringing of monotower in survival condition

The two steep
propagating
waves will
later collide

.
‘W‘W’m Big splash
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Summary

Second-order effects. Mean (drift) loads. Maruo’s formula. Slow-drift
loads and damping. Newman approximation. Pinkster formula. Slow-
drift effects due to wind. Sum-frequency effects due to second- and

higher-order effects.

Solution accurate to the second order

¢1 ¢2 ‘ & = wave steepness
— T
Solution of wave-body ¢ = ¢15 + ¢25 + ¢3<9 SR TP
interaction problem:
=@ +¢, +0(e %)

First-order solution:
has zero mean value and oscillates with the frequency of the
incident waves (if U,=0 & U=0), i.e. superposition principle valid.

Second-order solution:

1) Mean value —> constant (drift)
2) Difference-frequency oscillations = (w;-w)) , i.e. long period
3) Sum-frequency oscillations 2 (otw)) , i.e. short period
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Second-order effects

A regular incident wave with frequency w:
w=w,=o; = amean value and sum-frequency oscillations with 2.

Example, from square-velocity term in the pressure:

(0a/ax ) =  4£/2  + Lcos2wr+e)]/2

constant 1erm gy _ frequency term

An irregular incident wave with spectrum S(w):
All second-order effects are caused.

Second-order loads Relevance: Practical examples

Mean-wave (drift) loads:
= Design of mooring and thruster systems, towing
Offshore loading
Submarines
= (Capsizing of semisubmersibles
Added resistance in waves (involuntary speed loss)

Difference-frequency (slow-drift) loads:
= Vertical motions of structures with small waterplane area,
T,=0(30s)
= Horizontal motions of moored structures, 7, =O(1-2min)

Sum-frequency 2nd and higher-order loads:
* Vertical motions of TLPs, 7,=0(2-4s)
= Springing of TLPs, ringing of TLPs and gravity-based
monotowers

How to estimate the second-order loads?

Direct Pressure Integration (DPI):
Integrate pressure from Bernoulli equation along the body surface

Conservation of Fluid (angular for moments) Momentum (CFM):
Use the conservation in a fluid domain enclosed by the body, free-
surface, sea bottom and control surfaces.

DPI versus CFM:

The general form of CFM is more complicated. Convenient in some
cases, e.g. horizontal drift loads. The advantage is to integrate along
a control surface that can be chosen smooth.

With DPI involves terms counteracting each other, this can lead to
accuracy problems. Difficulties with body geometric singularities.
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Direct pressure integration: Source of 2" order effects
Second-order Force (U =0, U=0)

F, = Mean-drift forces + Low-drift forces + Sum- frequency forces

= I, + I, +
correction of local square-velocity in
flow acceleration the pressure
+ I, + I
= . . o - -
pressune correction  rotation of 1+ order force
due to Hody motions F, due to body motions
The pressure The body motions:
—] n [
- - o> — P A
n,
o4, of, 1
p=-pgz-p——p—-—pP=V§-V4
ot ot 2 " ‘
N S
0(<,) ot
‘ First order ‘ ‘ Second order ‘

Second-order loads

In general they require to find the solution of the wave-body
interaction problem accurate to the second order, i.e. ¢ = ¢ + ¢,

NB: In general, to find ¢, numerically is not straightforward: it
involves smaller and higher frequencies requiring a well-refined
and sufficiently-large computational grid.

Mean-drift loads:
If U=0 and U=0, they do not depend on ¢,. If U #0 or U#0, ¢,
can contribute through the additional pressure term —pU0¢, / Ox.

Slow-drift loads:
In general they depend also on ¢@,. If Newman’s approximation is
valid and U,=0 and U=0, no dependence on ¢,.

Sum-frequency loads:
In general they depend also on ¢,.

Mean-wave (drift) loads

Using potential flow theory, they are due to the body capability in
generating waves, i.e. in diffracting incident waves and irradiating
waves > Relevant for large structures (relative to the incident
waves)

* 3D horizontal forces (from CFM, by Maruo):
F==[(pn,+pVy,)ds i=1,2
S.

oo

* 2D drift force (from CFM, by Maruo):
R=P5C ¢, "+ 4 - 4
4 " —

—
incident waves reflected waves trasmitted waves
r 2
NB: For a perfect absorber: F, = 'OT:g g,

100
| IRvVAY)



Mean-wave (drift) loads

Hp: Zero average energy flux through the body surface, i.c.
the body is not an absorber.

- =4+ 47

A 4

* 2D drift-force Maruo’s formula:

Maximum value of the
F :ﬁA[f - F= PrE > force if U =0 agd U=0,
as a:"_) o 2 because ¢, is the

maximum value of 4.

* Extension to 3D bodies (by Maruo):
F = % JirAz(H)(cos B—cos0)d

2z
F = %g [ 4*(©O)(sin p—sin )d0
0

Mean-wave (drift) loads

* Extension of Maruo’s asymptotic formula to 3D bodies (by Faltinsen):

2
Fo % [[sin@+pTndl  i=12.6

i
—— L

.. NS
original non shadow part

* Added-resistance in head waves (by Faltinsen):
Relevant assumptions: short waves and small Fn.

Fl:ﬁ 2[1 2(0UJ 'Qzldl
2§a 7;}[[5111( )] n

Incident-wave frequency

* Mean-drift loads in irregular waves and due to viscous effects

Mean-wave (drift) loads
Using potential flow theory, we found that

For small wavelengths: they are dominated by diffraction effects.
Near the resonance:  they are dominated by radiation effects.
For large wavelengths: they become negligible.

Non-dimensional added resistance of a ship
RAWL

peslB’

Head sea

Bow wave Ship motions /1

reflection
T
10

y
05



Mean-wave (drift) loads

Main parameters:
. wave amplitude:
- potential flow > o £,

- viscous effects 2 o § a3
. wavelength
« wave direction
« structural form
. difference between restrained and moving body
« current 2> <50%
. forward motion
. confined waters, e.g. wall effects when performing experiments

Slow-drift loads

Connected with a wave-wind-current environment.

For a single body in open sea can not be caused by body interaction with a regular
wave. In general they are connected with irregular waves.

_—--c7----f5--==——> Slowly varying drift force

Approximate regular wave ——> Diriftforce in regular waves

+
Transverse I
. < Largeamplification
mOt_Ion due to small damping
amplitude

~ ]JImm PERIOD

Large slowly varying motions

Slow-drift motions

* Relevant for design of mooring lines and risers

*They can be larger than linear motions but the linear
velocities and accelerations are larger than slow-drift values

*They are caused by slowly-varying loads:

AjAk{ij; cos[(@, —w )t + (&, — &)1+ T sin[(0, —w,)t + (&, —gj)]}

M=

FY =Y

N
Jj=

=~
i

1

F(,,)

a

with 7,7 =f( ,) forj # k and " = £ /(¢) ifU =0,U=0
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Slow-drift loads using Newman’s approximation

. . 1 .
ic __ moic _ ic ic s __ is _
T, =T, = E(T[’ +7) and T, =-T,; =0
N N
Newman's definition Newman's definition
Newman's approximation - Newman's approximation

N _ 2
FY = ZZ:[AJ‘1 T cos(w;t + gj)}
=1

This formula is independent on ¢, if U, =0 and U =0

Slow-drift loads and response

* Pinkster formula for the spectral density of low frequency
part of the loads (based on Newman’s approximation):

S, (1) = 8T S(@)S(+ y){M} do

52 o H .}

1/3

* Variance of the response:

c’=S .
x F(:Lln)zbc

* Most probable largest value (using Rayleigh distribution):

t
X =0 /210 —
max X g(TNJ

Slow-drift damping
Three main sources are:
1) Wave-drift damping
2) Viscous hull damping
3) Viscous anchor line damping

Wave-drift damping:

Connected with the interaction of a slow-drift motion with rapid oscillations of
incident waves. It is important in high sea, because B"” o H,,,>.

We discussed how to find it.

Eddy-making damping:

It is connected with vortex shedding and nonlinear, i.e. B,y | y|.
We discussed equivalent linearization.

Standard deviation of the response:

If 5=B"" > o, « H,,
If b=B, - o, < H,"
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Uoo o Stagnation points
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Lecture Note 9

43. Current and wind loads. Boundary-layer. Wake. Current loads on ships. (F: 177-
190)

Boundary layer and Flow regimes (F:177-181)

Let’s assume a current U, past a fixed 2D body and take local coordinates with x,u as
position and velocity along the body surface and y,v as position and velocity normally to the
body (y=0 on the body).

In the potential-flow theory the body is impermeable and a tangential velocity, say u=U,,
exists along the body: free-slip condition (see the potential-flow solution for the circular
cylinder). In reality the fluid velocity must go to zero at the body surface, i.e. it must be equal
to the body velocity. This is called no-slip condition. So # must go from U, to zero within a
certain distance, say J(x), from the body.

The layer of fluid with thickness d(x) is called boundary layer (BL) and there viscous effects
are important, even if viscosity is small. The reason is that the shear/tangential stresses, of the
form 7 = uou/dy, can be large because the normal gradient brings u from 0 to U, within the

distance o(x). So the smaller the boundary layer thickness the larger the shear stresses. This
fact gives another contribution to the drag force on the body. In general we have: a
friction/shear force due to tangential stresses along the body surface and a pressure force due
to the pressure losses caused by flow separation.

NB: The friction/shear force is dominant for streamlined bodies while the pressure force due
to viscous effects is more relevant for blunt bodies with separation.

For example, in the case of a ship usually the frictional component is more important than the
pressure loss, because the form is typically as much as possible streamlined. However ships in
manoeuvring can be associated with relevant flow separation and therefore loss in pressure in
this case is greater than normally.

The thickness o(x) of the boundary layer can be defined in many ways. The reason is that u
tends to U, asymptotically, i.e. as y=>o0. One possible definition is: at any location x, J'is the
distance y=0(x) where the tangential velocity u becomes the 99% of the tangential velocity
just outside the boundary layer U,(x).

For a laminar boundary layer of a circular cylinder, the velocity u at 6=80° appears as in fig.

F:6.4. v ‘ P
—_ @ &

05 10 @l
Fig. 6 4. Examnple of mngential velocity distribution u inside & sieady laminar
boundary layer flow around & circular eylinder. The results are for
one angular position @ and are presemted a5 4 function of the
y-coordinate norms! w the body surface (y =0 is at the body
surface). UJ,{8) = tangential potential fow velocity just cutside the
boundary laver at the same angular pesition 6 *

In this case: u=0.99U, at Y /M = é /U”R =2=0=2 ﬁ R.
R 14 by BL thickeness R v hY; Rn

definition
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So if Rn=U_D/v=1-10°=6=0.01R at this location and it decreases increasing Rn in

laminar conditions.

In isothermal conditions, the governing equations of the flow evolution inside BL are the
conservation of fluid mass (for incompressible flow) and the Navier-Stokes (NS) equations.
Let us study the boundary layer along a 2D body long L assuming laminar flow.
In terms of orders of magnitude, we have that: u=0O(U,), x=0(L) and y = O(9)
Assuming steady conditions, inside the boundary layer, we have:
1. From the continuity equation, the normal velocity and its variation along the body
surface are small 2 v =0(5), ov/ox = 0(5)
2. Introducing 1. in the NS equation in y direction, the normal derivative of the pressure
can be neglected 2> op /0y =0
—> This means that the pressure is equal to the pressure of the flow just outside the
BL. There, the flow is inviscid and does not ‘see’ the BL, so p can be obtained
from the Euler eq. in x direction applied along the body, i.e.
pUOU,/ox=—0p/ox (1)
3. So the conservation of the fluid mass and the NS equation in x direction represent
the equations governing the flow evolution in the BL:

Ou/ox+0v/oy=0
pudu/ox+ pvou/dy=—0p/ox+u(  Oulox’  +0ul/dy’) (2)

it can be neglected because
much smaller than 6*u/oy*

with BC conditions: u=0 and v=0 at y=0 and u=U, at y=co. p is given by eq. (1)
(NB: The integration is up to y=co because u tends to U, asymptotically.)

Condition for flow separation:
Using the tangential velocity profiles (see figure below for a 2D body) we can determine the
condition for flow separation along a body.

u profiles End of boundary layer

Separation
_ ﬁtreamline

Separated flow

Body S S
a5y, 6)/‘ > 0 for separated flow
for attached flow Ideal pressure

Real pressure

In the region where the flow is attached to the body

8_u>0

W,
while, in the region where flow separation has occurred, the fluid motion near the body is
reversed creating vortices so that

ou

oy

<0.

y=0
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This suggests that the separation point (SP) can be defined as the point on the body with
ou
W1,

This means that the separation point is an extreme point for the velocity u. Starting from the

separation point, the flow will follow the separation streamline instead of the body surface.

When there is flow separation, somewhere in the boundary layer there must be a minimum of
u due to the reversed flow, i.e.

o*uloy® >0
This means that the separation point must be connected with a minimum of u on the body
surface, i.e.

o0’u
2
V|,

Applying the NS equation in x direction on the body surface, i.e. at =0, in steady conditions
gives:

2 2 _
10| Oy \y:O =aplo
This tells that we have separation only if
ap/ 8x| >0

which means if there is an adverse pressure gradient, i.e. the pressure increases.

=0 (F:6.8)

>0

NB: As a result, there is no separation in the case of a uniform free-stream velocity U, with
zero angle of attack past a flat plate with zero thickness. In this case the potential flow

solution is uniform, i.e. U,.=U, = 0U,/0x=0 along the plate, so using the Euler equation

(1) we find Op/0x =0 , i.e. the pressure never increases.

For the circular cylinder, if we assume a laminar boundary layer and potential-flow tangential
velocity U, for the flow external to the BL, the separation condition tells that separation
occurs at +100°.

In reality the separation in laminar conditions occurs at about +80°, this is because the
potential-flow solution U, = 22U sin@ is not a good representation of the velocity outside the

boundary layer along the whole cylinder, i.e. at any 6. It is a good approximation only within
—n/4<60< /4 for values of Rn of practical interest.

Moreover the flow in the boundary layer is laminar before the separation only up to a certain
Rn. For larger Reynolds numbers, the flow becomes turbulent before the separation.

Flow regimes:
According to the value of Rn we can distinguish four flow regimes. Assuming a smooth

circular cylinder:

1) Rn<~2-10° subcritical flow regime
2) x2-10° < Rn<~5-10° critical flow regime

3) x5-10° < Rn <= 3-10° supercritical flow regime
4) Rn>=3-10° transcritical flow regime

In the subcritical regime (1): the boundary layer is always laminar.
In the supercritical and transcritical regimes (3 and 4): the boundary layer is turbulent
upstream of the separation point.
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Figure below shows the boundary-layer conditions for a value of Rrn in the transcritical
regime.

Laminar Transition q;""";/TurbuIence

|
boundary layer M=% o— Separation point
U D
== _10°%

Rn

| %4 Instability

point.

U

9]

In this case, more than the global Reynolds number Rn=UD /v, it is important the local
Reynolds number Rn,=U., x/v, with x the distance along the body starting from 6=0°. As we
move downstream along the body, Rn, increases, as well as 0. Flow instability occurs at the
location x where Rn,=Rn.,,. Downstream of the critical point disturbances appear in the flow
which amplify and after a transition zone (which corresponds to a range of Rn,) the flow
becomes turbulent at the location x where Rn,=Rn;,.

NB: The boundary layer thickness depends differently on the global and local Reynolds
numbers Rn and Rn,. We have seen in laminar conditions that ¢ decreases by increasing Rn,
while it increases increasing Run,.

In terms of the global Reynolds number:

As Rn increases = the point where instability occurs moves upstream and in particular at €
smaller than the separation point.

As Rn reduces > the instability point moves closer to the separation point until we reach the
condition when the flow remains laminar in the boundary layer before separation.

The distance between the instability point and the separation point is measured
experimentally.

In laminar flow the (laminar) viscosity u leads to an exchange of fluid momentum between
fluid layers through viscous (laminar) shear stresses, inside the BL this occurs normally to the
body surface, i.e. along y. The turbulence leads to a greater exchange of fluid momentum.
This can be seen as another viscosity in the flow, connected with turbulent stresses, which is
added to the laminar viscosity, leading to a greater effective viscosity.

As a result, the turbulent flow leads to

—> a greater thickness ¢ of the boundary layer

—> a larger normal gradient of the tangential velocity at the body, ou / 8y|y: o

-> then to higher tangential stresses
This is shown by the figure below giving the velocity profiles in laminar and turbulent BLs
for a flat plate.

12
O Turbulent ,f

Laminar

\ 7
T u/G
As we said, separation can not occur for a flat plate.
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For a circular cylinder, as well as for a generic body geometry, a larger ou / 6y|y: , means that
for a turbulent flow the condition for flow separation, i.e. du / 8y|y:0 =0, occurs with a spatial

delay with respect to a laminar flow.

This means that, if the flow becomes turbulent upstream of the separation point, the location
of the separation point changes, with respect to the location with laminar flow upstream of the
separation point, and moves downstream along the body. For example, for a circular cylinder,
the separation point moves from £80°to +120°.

Important general consequences of turbulence are:
1) higher friction drag contribution due to
- the greater velocity gradients and
- the greater effective viscosity due to larger fluid-momentum exchange
2) lower pressure drag contribution because the BL remains attached in a larger portion
of the body

NB: The position of the separation point is the most important scale effect for the pressure
drag because typically Froude scaling is used and the Rn at model scale is then smaller than at
full scale. As a result, the flow regimes at model and full scales can be different.

Going back to the circular cylinder, we understand now the behaviour of the drag coefficient

in the different Reynolds regimes. If we limit ourselves to a smooth cylinder (see figure

below):

o In the laminar regime, the drag coefficient is mainly due to pressure loss for the
separation.

« In the critical regime, there is a drop in drag coefficient due to the delay in the separation.

« In the supercritical and transcritical regimes, the drag coefficient tends to increase due to
the increase in the frictional stresses.

U (61 Smooth surface
C:D
12 : :
| \ \ Turbulent boundary layer
Laminar \ l—» _ i
boundary layer. v—l ! Separation:@ =120
Separation: 6 ~ 82° :
0.6 ' I !
\ 1
b 1
UD

10 10° 10° v

Subcritical biticaléupercritical‘ Transcritical

A smooth cylinder means that the surface roughness & is zero. Experimental values of Cp also
including the effect of the roughness are given in fig. F:6.3.

The results show that k/D affects the drag coefficient. In general each curve shows a drop of
the drag for a given Rn=Rn,,;;. This corresponds to the critical zone where the separation point
location shifts suddenly downstream. As k/D increases, the laminar value of the drag
coefficient tends to increases due to a greater frictional effect, the Cp drop in the critical zone
becomes then less marked and occurs at lower Rn, i.e. Rn..; becomes smaller, because the
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roughness represents a flow disturbance and so supports the flow instability, i.e. the flow

becomes earlier turbulent.
C 1.2

D :
1.0 A'T}\\?m‘f%\o\h | 00—y s S

s T2000-10-2
10 gy
900-10'5ﬁa g 8%
06 70010_5 \._
400 19075~ 11
0.4 1 200:
0.2 [ Rn
2:10° 4 6 b 6 8% 10° 2 b

NB: The separation process studied here occurs because of viscous effects, but inviscid
separation may also occur, which means that the flow detachment from the body is not due to
viscous phenomena. This may happen:
a) when there is a geometrical singularity and the flow is not able to follow the body
surface
b) when the pressure along the body tends to become smaller than the ambient pressure,
e.g. during water entry (we will later discuss this phenomenon).

Wake behaviour (F:181-184)
In the boundary layer the vorticity @ =V xV is non-zero = the flow is rotational.
For a 2D body, the vorticity component in the direction normal to the flow-motion plane is:

@, =0v/Ox—ou/dy=—oul/oy#0
At the separation point, a flux of vorticity is shed from the body in the form of vortices
(leading to vortex sheets, i.e. free-shear layers) also indicated as wake. Inside the shear layers
the flow is then viscous and rotational. This vorticity flux is given by

IO @ udy = —IO ou/ oyudy = _EUS

where U is the tangential velocity just outside of the BL at the separation point location. This

flux is equal to the time rate of change of the circulation
r=§v .di
C

in the wake. Here C is a closed line that intersects a separation point (in the example in figure
below this is point B) and does not intersect any vortex sheet.

A,B = separation points




Assuming that /”is positive when anti-clockwise, we have

or 1 or 1
4 i sA2 . :_Usz

ot 2 ot

(F:6.14+6.15)

for the time derivatives of the circulations connected with vortex shedding from separation
points 4 and B, respectively. At time =0 the circulation is zero = /(0) and [3(0) are zero
and expressions (F:6.14+6.15) tell how 7 and /3 evolve in time.

From the Kelvin’s theorem (see i.e. Newman 1977): In an inviscid fluid under conservative
forces (e.g. gravity), the circulation along a material curve, i.e. moving with the fluid, remains
constant. So if it is initially zero (irrotational flow) it will remain zero at any time.

—>This means that as /" was zero around the cylinder at /=0, it will remain zero along any
closed curve which surrounds the cylinder and does not intersect the vortex sheets.

NB: The free shear layers released from the body become easily unstable, i.e. turbulent. So
even when the boundary layer detaches as laminar, the flow downstream the separation is
typically turbulent.

Vortex shedding (F:184-187)
In the starting process of a separated flow around a circular cylinder the vortices are released
symmetrically from separation points A and B, but due to instabilities the vortices are shed
alternatively from the two separation points.
Von Karman studied the stability of vortex shedding considering idealised vortex streets, i.e.
the body does not appear in the problem like it was far away. The results of the analysis are
valid for a generic blunt body.
The vortices are modelled as point vortices with strength |/] which travel in two parallel rows
distant /4 with opposite sign of vorticity. Vortices in the same row are distant / from each
other. He found that only two solutions are possible:

1) One with vortices travelling in couple

2) The other with vortices travelling symmetrically staggered

Configuration 1) is unstable, 2) is also unstable except for when

21 osh N2 =028 (F:6.16)
I

This solution is shown in figure F:6.9.

Examples of velocities _ 0.5
induced by.ﬁother vortices > Uyor 171 (8

____________________________

/2
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The vortices in the body reference frame move with speed
r
u =U, ——~=
tot vor l\/g
—_—

induced by the
other vortices

It means that the period of shedding is given by the following relationship
r

T |U —=|=I (F:6.18)
;7( l\/§J

1.e. as the time interval for a vortex to cover the distance / and so the time interval between
two following vortex shedding from the same separation point. Here f, is the shedding

frequency.

To estimate 7, we need to know / and / which depend on the body geometry, not included in
the Von Karman’s problem formulation.

In the case of the circular cylinder we can set as a first approximation that 2=D and
approximate the vortex velocity as u = U, , i.e. neglecting the velocity reduction due to

tot vor
the other vortices. Then combining (F:6.16) and (F:6.18) we have:
U, -2
0.28
This is usually expressed in terms of a non-dimensional parameter called Strouhal number

_LD
U

St gives the ratio between the cylinder diameter and the distance covered by the current during
a shedding period.

In the examined case we find Sr=0.28 which is consistent with the vortex shedding in
transcritical regime. In subcritical conditions a better approximation is given using h=[.2D

=U, T/ (l\/g) = 0.85U, as the vortex velocity. This means that the vortex rows

spread outwards with respect to the body transverse dimension and the velocity reduction due
to the other vortices in the row matters. This leads to S=0.2
An important practical consequence of a vortex shedding is that if there is a cylinder in the
wake of another cylinder then the incident current for the downstream cylinder has speed
U, - L <U,

18
It means that this cylinder experiences a smaller drag than the upstream cylinder because the
drag force goes as the square power of the involved current speed. This is an effect of wake
interaction.

St

(F:6.20)

and u

tot vor

NB: Not always behind the body we see a vortex street and not always there is only one
shedding frequency. In critical and supercritical conditions there is a spectrum of shedding
frequencies.

In subcritical flow past a circular cylinder we can divide the wake in three parts:

1. a formation region (/5),

2. a stable region with uniform vortex sheet (/) and

3. an unstable region (/).
The lateral extension /4 increases as we move downstream and /4// may vary greatly: from 0.19
to 0.3.

203




A\
A
A\
A
v

Q‘ I,<~5R 5R<l,<I2R I >12R

Oscillatory forces due to alternate vortex shedding:

F, (Lify

- \/ F;) (Drag)

The alternate vortex shedding results in a force in the normal direction with respect to the
current, i.e. a lift force

F,(t)=|F, |cosQr ft+a) (F:6.21)

The lift coefticient

_ IR,
0.50U,°D

is 1.35 in subcritical regime for a fixed cylinder.

In a 3D cylinder, one could think to estimate the total transverse (lift) force assuming that

locally the flow is 2D and using a strip-theory approach, i.e. summing up the 2D lift-force

contributions along the cylinder axis.

This would be a good approximation if the phase o was the same along the cylinder axis

because this would mean that the body cross-sections are correlated with each other and the

sum of the 2D force contributions gives the total force. In this ideal case the correlation length

l., 1.e. the length along the body where the phase « remains constant, is equal to the cylinder

length.

In reality, « varies along the cylinder axis, this means that the correlation length of the vortex

shedding is small and as a result

-> The total lift force on the cylinder is clearly reduced due to the cancellation effects.

The correlation length is [.<5D in subcritical regime and reduces to 1D-2D in transcritical

regime. The behaviour of //D as a function of the Reynolds number is given in the figure

below.

(F:6.22)

L

4

S |~

wi il 10° 10* 10° RN
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The drop of [/D when the flow becomes unstable and turbulent can be understood
considering that a turbulent flow is not organized so it is more difficult to maintain a similar
phase of the lift force, i.e. of the vortex shedding, as we move along the cylinder axis. One
must also note that as the flow becomes turbulent the 3D effects become more important.

The alternate vortex shedding causes also an oscillatory drag force. In this case a mean
(constant) value of the force exists due to the mean frictional terms and pressure losses around
the cylinder, i.e.

F,(t)=F,+ A, cos(4xft+p) (F:6.23)
The amplitude 4p of the oscillatory part is typically the 20% of F,, .

Also the phase [ varies along the axis of a 3D cylinder which means that cancellation effects
occur also for the drag as for the lift.

A vortex is shed every /27T, alternatively from the two sides. From this it depends the
oscillation period for the lift and drag forces:
1. For the lift, the change of the cylinder side where shedding occurs it matters, because the
lift is sensitive to variations in the transverse direction. This means that
—> the lift oscillation period is 7,
2. For the drag, the change of the cylinder side where shedding occurs it does not matter,
because the drag is only sensitive to variations in the current direction
- the drag oscillation period is 7,/2

NB: The oscillatory forces may cause resonance phenomena, i.e. vortex-induced vibrations
(VIV), as we will see later. In case of Vortex Induced Vibrations (VIV) the correlation length
along the cylinder will be larger and this results in higher oscillatory forces.

Example from the sea: fishes

If we observe the motion of a fish tail, we see a shedding of vortices alternatively with

opposite sign. They induce a speed on each other.
1 _ 2

As for a fixed circular cylinder in a current also a moving fish is then associated with a vortex
shedding but the sign of the vortices is reversed (see figure below).




As a result: in the case of the cylinder, the vortex shedding causes drag and oscillatory forces;
in the fish case, the vortex shedding leads to trust generation.

As for the circular cylinder, also for fishes the wake interaction can have positive effects. For
example let’s assume the case of a fish in the wake of two upstream fishes as in the figure
below. The vortices shed by the upstream fishes cause a flow velocity in the motion direction
on the downstream fish, so this one needs a lower trust to swim with the same velocity as the
upstream fishes.

N A (o
f-‘-..q__/ A
\ N /J %‘"\

Triantifyllou et al. (1995) studied the Strouhal number for different fishes defining the
parameters of an equivalent circular cylinder, as reported in the figure below.

From the results, the St varies in a range between 0.2 and 0.4. The smaller is this value the
higher is the fish speed U relative to the product of the amplitude with frequency of tail
motion, f4. It means that the fish locomotion is more efficient. On the other hand the
capability of the fish to reach large accelerations and to manoeuvre reduces as St reduces
because the frequency of tail motion f'becomes small compared to U/A. In this framework the
best range of St for fishes is considered around 0.25 and 0.35.

Theoretical
optimal range
= =
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Strouhal number for afish o
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Current loads on ships (F:187-190)
We assume a current, with speed U, along the longitudinal axis of a ship long L, in calm

water (i.e. no incident waves). In this case, the Froude number Fn=U,/,/Lg is usually

small, for example a typical design current in North Sea is U.=1m/s, so for L>25m Fn<~0.06.
This means that the wave resistance, i.e. due to the wave generation by the body, can be
neglected and the resistance is dominated by viscous resistance. Viscous effects play then a
dominant role for current loads and flow separation has in general relevance.
Assuming a current U, with a direction £ with respect to the ship longitudinal axis. The
current loads can be obtained by decomposing the current and assuming that:

- the longitudinal component U, cosf causes only a drag force

- the transverse component U, sinf is responsible for flow separation and causes a

transverse force and a yaw moment.

These assumptions allow to study separately the longitudinal (drag) force and the transverse
loads. In the latter case we can apply the ‘cross-flow’ principle’.
These loads are often obtained using empirical formulas, i.e. from the experiments.

Drag current force:

The drag current force is mainly due to frictional resistance. The latter is connected with the
tangential stresses along the vessel wetted surface, say S, and so is primarily dependent on S.
It means that

-> an equivalent flat plate with the surface equal to the ship wetted surface S can be used to
have a first approximation of the frictional resistance.

The 3D effects related to the shape of the vehicle contribute to an increase of the force with
respect to the flat plate contribution, so

-> empirical form coefficients can be considered to account for this.

Using the assumptions above, in the case of a current along £, the resistance is caused by the
longitudinal component (see figure below).

< —
U,

B
U.,=U.cosp
An empirical formula commonly used for the frictional resistance on ship hulls is given by
ITTC (1957)

= LszlpSUc2 cosf|cos | (F:6.24)
(log,, Rn—=2)" 2
D S —

Cr

Here Cr is the frictional coefficient and agrees well with experimental results for the turbulent
flow along a smooth flat plate. The absolute value in (F:6.24) is due to the fact that the force
is in the direction of the current, so if —z/2 < f# < /2 the force is directed as x, otherwise it
is directed as —x.
The Reynolds number in the formula is defined as
U.|cosp|L

1%

c

Rn =
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\ NB: Other formulas exist for the Cr of a turbulent smooth flat plate. \

To accounts for the 3D effects connected with the ship shape, the formula for the frictional
coefficient in (F:6.24) can be modified as
Co(1+k,)

Here ky is a form factor (usually indicated as & in the literature), found from experiments.
Typical values for krare between 0.2 and 0.4 for f=0°. If the flow separates at the stern kr may
rise up to 0.8. This can be understood considering that when the flow separates, downstream
of the separation line (a separation point in 2D becomes a separation line in 3D), the flow
does not follow the body surface but another streamline, the separation streamline, which
corresponds to a blunter ‘body’ = 3D effects become more important.

The roughness is an important parameter for the frictional resistance (see Faltinsen’s book
“Hydrodynamics of high-speed marine vehicles”, pg. 232). There are many types of
roughness. Schlichting (1979) presents the frictional coefficient Cr as a function the
roughness height £ in the case of sand roughness k=k; uniformly distributed on a plate long L.
The results are shown in the figure below as a function of the Reynolds number of the plate
Rn=U,L/v and of the parameters U,k/v and L/k.
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Cr increases when reducing the parameter L/k. Along curves with constant L/k, Cr becomes
independent from Rn beyond the dashed line in the figure. This is because the flow becomes
fully rough. For increasing values of U,k/v the frictional coefficient increases, as the
roughness makes more turbulent the flow. The roughness has no effect on Cr if U.k/1v=100
(and <100)2k,4,=1001/U,. This roughness value is called admissible and it means that if
k=kuam 1t 1s like the plate was smooth. From the expression of k,;, we see that a ship can
behave as smooth at model scale. At full scale, a smooth behaviour requires a very small
admissible roughness due to the higher ship speed with respect to model tests and the fact that
vis the same at model and full scale.

There are different empirical formulas expressing the increase of the frictional coefficient ACr
due to the roughness with respect to the smooth plate. The formula by Bowden and Davison
(1974)

10°AC, =44 (4HR/L)"* —=10Rn™" |+0.125

accounts for the correlation between model tests and full scale and includes the effect of
average hull roughness AHR (in the formula expressed in meters).

Transverse current force and current yaw moment:
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If the current angle £ is not small, in the meaning that the current has an important transverse
component, then the transverse force and the yaw moment caused by the current are important
and one can estimate them using the cross-flow principle. The basic assumptions are:

1) The flow separates due to the cross-flow past the ship

2) The longitudinal current component does not affect the transverse forces on a cross-

section
3) The transverse forces on a cross-section are meanly due to the pressure loss connected
with flow separation cross-flow

separation
A B

IRIvAY R
Cbx

Ug=Using A

U

It means that we can express the transverse cross-section force as
: 1 : .
dF,(x)= E'OCD (x)D(x)U,” sin B |sin B | dx

with Cp(x) the drag coefficient for cross-flow past an infinitely long cylinder with the cross-
sectional area equal to the one at location x along the ship and D(x) the sectional draught.
We can then use the strip theory approach to get the loads on the vessel:

F, = % pU,*sin B|sin 8| [ Cp, (x)D(x)dx (F:6.26)
L

and

E = deFz“(x) :%pUcz sin S |sin 3 | J‘CD (x)D(x)xdx (F:6.27a)
L L

F,,“is only one of the two contributions to the ship yaw moment in a current. The other is the

so-called Munk moment, which is associated with inviscid effects, i.e. it can be derived from
non-separated potential flow theory (see figure below), and is a destabilizing moment. As we
have seen, in general a body in an infinite potential steady flow is subjected to a moment
(Munk moment) and to zero force (D’ Alembert’s paradox).

Because the force is zero, the Munk moment is a pure torque, i.e. it does not depend on a
reference point, while the viscous moment does it. In the real case due to separation we will
also have a force. Examples of pressure distribution along the body in potential and real flows
are shown in the figure below.

Potential flow | Real flow

Munk moment
+zero force
(D’Alembert’s
paradox)
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Fﬁbc = %UCZ(Azz —4,,)sin2p (F:6.27b)

with A4;; and 4, the added masses in surge and sway.

The Munk moment is zero if
1). A;; = A, which is unlike to happen for a ship
2) f=0,r (longitudinal current) or 7/2 (transverse current).

The two, viscous and inviscid, contributions to the yaw moment have then different angular
dependence, see Fig. F:6.10. As the transverse force, also the viscous moment is zero when
f=0,m, i.e. when the current is along x, but these load formulas connected with the current are
valid far from this condition, i.e. when the transverse current component is important.

14 Viscous o sin S|sin A
0.5
0° 180°
o
s
-0.54 /
Munk moment oc sin2 /[
1 \—_/
Fig. F:6.10

The comparison with experiments confirms that formulas (F:6.26) and (F:6.27=6.27a+6.27b)
for the transverse force and yaw moment are good near /=90°, see figures F:6.11 and F:6.13.
In figure F:6.13, the yaw moment is with respect to the vertical axis through the ship center of
gravity and is assumed positive for a ship rotation toward larger S angles.

. Yaw moment on a ship due to current
Transverse current force on a ship
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_ll?_ —_ Fe
05pULLD 05pUED
10 005 77 T
EXPERIMENTS { I ] l —1 ,/-'—'-- . 1 | J. 4 |
—_ | ; it : AQADED. .
caLcuLaTions L L | | \oapep || Lifting __/// \\ 1 e !
r = BALLASTED ——| ARE -
i . N/ surface ' \' | \D( Cross-flow
05 = NG theory {___"_;_ <3 pr|nC|pIe
AT TN + RN
g N Munk \ Y Munk moment |
J A1 11| Cross-flow [INN wsin® § . NS 1
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Fig. F:6.11 Fig. F:6.13

From experiments in Fig. 6.13, the viscous and Munk moments are of equal importance. This
can be seen comparing the yaw moment at /=90° where F,,° has maximum amplitude (and
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negative value) and F,,° is zero, with the yaw moment at /=45° where F,‘ has maximum

amplitude (and positive value) and F, “is 1/ V2 times its value at =90°.

For small angles (/3 close to 0°) a good approximation is obtained assuming the hull and
rudder as low aspect-ratio lifting surfaces. An idea of what this means is given in the figure
below for the hull and similarly could be considered for the rudder.

¢

Pressure below
the ambient pressure

—F

hull

Pressure above
the ambient pressure

The ship and rudder are like flat plates in a current with an angle of attack. A pressure

distribution is caused with suction pressure (below the ambient pressure) in one side and
overpressure in the other. As a result a lift force and a yaw moment are caused.
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Boundary layer along a 2D body

Hp: U, = tangential
. . velocity on the body
from potential-flow
solution

»yv

Body
surface = ‘ Free-slip condition ‘

P

S5(x)

X,u U 0
Body 7

»v

surface

N

‘ No-slip condition

Tangential velocity u in the boundary layer: circular cylinder
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Fig. 6.4, Example of tangential velocity distribution u inside & steady laminar
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Velocity profiles and pressure along a 2D body
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Condition for flow separation along a 2D body

Maximum of u as y>o

uldy’| >0 o’uléy* >0
For separated flow

Separation point
a minimum of u exists

Minimum for u

The instability and separation points depend on the
Reynolds number and the boundary layer flow
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The instability and separation points depend on the
Reynolds number and the boundary layer flow
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Drag coefficient for a circular cylinder
in steady ambient flow

c1.2 Effect of roughness
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Von Karman wake for a blunt body
Stable solution if 4//=0.28

Examples of velocities _ 0.5
induced byﬁother vortices > Uyor 17[(8)

/2 /

Wake in subcritical conditions: circular cylinder

Cylinder

Q 1,<~SR 5R<l,<I2R 1 >12R

Formation region Stable region Unstable region

Oscillatory forces due to alternative vortex shedding
Circular cylinder

F, :Lift
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Fish: tail motion

Wake structure and generation

The flow separation causes

—’/’g’)—x‘.’)‘> drag and oscillatory forces
% associated with the vortex
shedding
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The wake of a swimming fish has reverse rotational
direction, associated with thrust generation

The diamond pattern

B Forward flow velocity between two fish wakes
Il Save energy by reducing thrust
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The diamond pattern

B Forward flow velocity between two fish wakes
Il Save energy by reducing thrust
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Current loads on a ship
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Resistance of sand - roughened plate with length L and roughness height k
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Roughness effects of submerged hull
Empirical formula by Bowden and Davison (1974):

10°AC, = 44| (AHR/ L) =10Rm™" |+0.125

It accounts for correlation between model and full scale
as well as average hull roughness 4AHR (here in meters).

For newly built ships: 75um < AHR <150 um

cross-flow separation

Potential flow

Munk moment+zero force
(D’Alembert’s paradox)

Real flow
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Yaw moment on a ship due to current
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Lecture Note 10

44. Parameter analysis for Cp of ships. Current loads on offshore structures. Wind
loads. Vortex-induced resonance oscillations. (F: 191-197,200-212)

Parameter analysis for Cp of ships (F:191-197)
Hp: A current U, with a direction g with respect to the ship longitudinal axis, say x.

The sectional drag coefficient Cp(x) in the expressions of the current viscous transverse force
and yaw moment F,° and F,,° is affected by several factors:

1) free-surface effects
2) beam-draught ratio effects
3) bilge radius effects
4) bilge keel effects
5) Reynolds number effects, i.e. laminar or turbulent flow effects
6) 3D effects
To analyse factors 1 to 5 we will consider the 2D problem in the cross-sectional plane with

uniform current U equal to the transverse current component U, sing.

1. Free surface effects:
Hp: Calm water, i.e. no incident waves. Steady conditions. No viscous effects on the free-
surface.

The combined free-surface boundary condition is
2

2 1 1
g +u 2 ¢+g%:0 atz=0 = Fnz%+a—¢|:0 atz'=0 (1)
=U:gnﬂ OX oz nondirﬁsional OX oz

=~ variables
steady conditions

As we have seen, Fn=U / /gL associated with current is typically small, so

- equation (1) leadsto 0¢/oz=0atz=0

-> the free surface acts as a rigid wall, i.e. as an infinitely long splitter plate
This leads to a smaller drag coefficient.

Why is this so?

Using the mirroring about the rigid wall in z=0, the problem is equivalent to a double body in
infinite fluid with symmetric vortex shedding. Indeed the physical vortices shed from the
body (below the free surface) are paired by ‘image’ vortices above the free surface and
symmetric with respect to z=0. The image vortices have identical strength magnitude |/{t)| as
the physical vortices but with opposite sign (NB: the strength of the vortices corresponds to
the circulation). This ensures zero vertical flow speed at z=0 as required by the rigid wall (see
figure below).
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If the same double body geometry was in a steady current in a real infinite fluid, i.e. without
free surface, the symmetric shedding would be unstable and a von Karman wake with
alternate vortex shedding would occur. This means that the free surface has a strong influence
because it is able to maintain stable a symmetric vortex shedding while without the free
surface the vortex shedding would become alternate. This fact reduces the drag, because the
symmetric vortex shedding leads to a smaller drag than an alternate vortex shedding.

- All these aspects mean that the free-surface effects matter in the case of a steady current.

In this framework, the use of splitter plates to reduce the drag has been investigated. Hoerner
(1965) examined the Cp-values for bodies with splitter plates of finite length in steady
incident flow. His results confirm that a splitter plate causes a clear reduction of the drag
coefficient.

Bilge keel

2. Beam-draught ratio effects:

Experiments by Tanaka et al. (1982) show a little effect of B/D with the exception of small
B/D. In the case of a midship cross-section, this means a small effect if B/D>0.8, the reason is
that as B increases relative to D is like going toward a flat plate geometry and shear stresses
will play the main role while the presence of a draught will be less and less important.

3. Bilge radius effects:

Experiments by Tanaka et al. (1982) show a strong effect of the bilge radius. As r increases
the drag coefficient decreases because the vortex shedding becomes less intense. The link is
exponential

—kr/D
C,=Ce™®+cC,

where C; and C, are two positive constants of similar magnitude and D is the draught. An
example of k value is 6.

4. Bilge-keel effects:

These effects are strong due to the inviscid separation which always occurs and increases the
drag coefficient with respect to the case without bilge keels. The drag coefficient is not very
sensitive to the breadth of the bilge keel.

NB: The flow separation at the bilge keels occurs due to the geometric singularity, so the
separation points are not scale dependent. Because the bilge keels are typically centered
midships with a length half of the ship length, their presence avoids the serious problems
connected with scaling of the transverse current force from model to full scale, while there is
an uncertainty for the yaw moment.

5. Laminar/turbulent flow effects:

Where/if there are no bilge keels, the separation is usually dominated by viscous effects and
depends on Rn. Aarnes (1984) has studied the 2D cross-flow past ship cross-sectional forms
and calculated the drag coefficient. He showed that:
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« Cp can be greatly different depending on laminar or turbulent separation. This is shown by
figure F:6.16 in terms of the drag coefficient along the ship in subcritical (laminar
separation) and transcritical (turbulent separation) flow. From the results, the transcritical
flow regime leads to a lower drag coefficient.

fc, Fuil-load
20 o Subcritical
calculation { = Transcritical
-Estimation f

e I W IO N SOV SO S S N T S S T
AP 2 3 4 5 B 7 8 9 W T 12431418 16 17 1B 19 20
P

Fig. 6.16. Calculated and estimated drag coefficients €y, for two-dimensional
cross-flow past cross-sections along the ship presented in Fig. 6.15.
(Adapted from Aarsnes et al., 1985.)

. The reason for the smaller drag coefficient in turbulent tlow 1s anarysed by figures F:6.17
and F:6.18 showing the time evolution of the flow separation at the midship cross-section.
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S >

Fig. F:6.17 Rn<Rngt Fig. F:6.18 Rn>Rngi

In subcritical conditions: two large vortical structures detach from the leading and trailing
edges. In transcritical conditions: the leading-edge vortical structure has disappeared. So,
if the flow is laminar, the boundary layer (BL) tends to separate both at the leading and
trailing edges of the ship cross-section. If the flow is turbulent the BL may sustain better
adverse pressure gradients and remain attached at the leading edge due to the greater
fluid-momentum exchange.

When flow separation occurs at the two corners roughly the drag coefficient is twice the drag
coefficient obtained when flow separation occurs only at one corner.

These aspects lead to important scale effects if at model scale the flow is laminar while at full
scale the flow is turbulent. When separation occurs from sharp corners one would expect less
severe scale effects.

As already mentioned, the reason of the scale effects is that the examined flow separation
depends on viscous effects and so on Rn. We have no scale effect if the Reynolds numbers at
model and full scale are equal, i.e.
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UL L
M:#ju zuqu (1)

vV

Rn, =Rn; = m
m Vf Vi=Vn

Here the subscript “f” stands for full scale and ‘m’ for model scale. In reality this does not
occur because Froude scaling is used in the model tests, i.e.

Fn =Fn, =-2n__ Js ~U_=U, =<y (2)
m f \/E \/ﬁ m f Lf f

and this implies

3/2
LU UL
L L S N = Rn_<Rn,
4 usingw;q.(Z) 14 Lf 14 |_f

It means that in the model tests Rn could be in the subcritical regime while in full scale it is
typically in transcritical regime. This means that the experimental results could be
qualitatively different than in full scale. To overcome this problem, turbulence stimulation is
used in model tests.

6. 3D effects:

Aarnes (1984) pointed out that 3D effects associated with the edges of the ship reduce the
drag coefficient with respect to the 2D cross-sectional estimations.

To see this let us consider the case with a transverse current U.. The flow separation at the
two edges causes two eddies. The shed vortical structures induce a velocity in x direction
opposite to the incident current. The induced velocity is shown in the right plot of the figure
below. The vortical structure at each edge of the ship is approximated as a vortex point
centered.

H\

3-D
induced velocity

/H

0.0 2 5 8 Crlos'._s.f

section
The velocity induced by the vortices is large only in their vicinity and goes to zero far from
them. This means that near the edges we must consider a smaller effective inflow velocity,
say v< Uc. This leads to a reduction of the drag force because the forces on the cross-sections
near the ship edges are proportional to v2. As a result, since the drag coefficient is made
nondimensional by a term proportional to U2, i.e. to the square of the incident-current speed,
the reduction factor of the drag coefficient is v¥/U¢? (see figure F:6.20).
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Fig. 6.20. Three-dimensional reduction factor of local drag coefficient due (o
the vertical vortex system a2531? ends described in Fig. 6.1%.
(Adapted from Aarsnes ez al., 1983.)



Current loads on offshore structures (F:200-206)
What discussed for ships can be extended to offshore structures that consist of slender
structural parts.
Examples are: risers, cables, columns and pontoons of semisubmersibles and TLPs.
We consider a current U; and, also in this case, we can assume that:
- its longitudinal component causes only shear forces which can be calculated as done
for the longitudinal drag forces on a ship.
- its transverse component causes flow separation. The forces in a cross-section due to
flow separation can also be calculated similarly as done for the ship.

In the following we focus on the loads caused by the transverse current component Uy.

Hp: A slender structure and a steady incident current Ug, as in the figure below. The flow is
assumed nearly 2D in the cross-sectional plane->strip theory can be applied

The mean (i.e. constant in time) force per unit length (i.e. the cross-section mean force) is in
general characterized by two components: one in-lined and one orthogonal to Uy, which can
be expressed, respectively, as

F =§CDDUN2 (F:6.47)

F =§<§LDUN2 (F:6.48)

Here D is a characteristic cross-sectional length (e.g the diameter for a circular cylinder).

For a circular cylinder we have seen thatF, = 0. In general, the mean lift force is zero in the
case of any single body symmetric about the current direction and in infinite fluid. Otherwise
F, can be non-zero.

Coefficients C, and C, must be determined empirically. Major parameters affecting them are

the same as for the drag coefficient for ships, in addition one must consider the influence of
hydrodynamic interactions between structural elements.

Wake interaction effects:
Hp: A uniform current past a 2D circular cylinder centered at x=0 and y=0 (see figure below).
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We briefly discussed the wake interaction effects using the von Karman wake, i.e.
approximating the shed vortices as point vortices. Here we do not make this approximation
but apply to the cylinder the wake solution downstream of a 2D body as given by Schlichting
(1979). In this case, the mean wake velocity component u in the direction of the free stream
U, ata point (x,y), with x and vy, respectively, the longitudinal and transversal distance from
the cylinder, can be written as

u:Uw{l_O.% Q} (F16.49)
X

n=y/,/0.0222C_,Dx (F:6.50)

Here Cp is the drag coefficient of the cylinder. This expression is a good approximation of u
if x/(CpD)>50, i.e. it is a long-distance approximation. However, Blevins considered a
fictitious origin placed 6D upstream of the cylinder and applied this formula for smaller
distances x from the cylinder. He found good results.

Now let us place a second cylinder in the wake of the cylinder, i.e. centered at x=I and y=0.
Using expressions (F:6.49+6.50), the local inflow velocity of the downstream cylinder is

u:Uw{l—O.QS /C?D}uw

and its drag coefficient C,® is smaller than the drag coefficient Cp of the upstream cylinder,
Ie.

2 2
CD(”:cD(Ui] =c{1—o.95 /CTD} z(:{1—2(0.95 CTDH

=C,-1.9C,*" TD
For example if Cp =1 and 1/D=100> Cp® = 0.81. We understand that Cp® may even
become negative if the downstream cylinder is sufficiently close to the upstream cylinder, but
one must note that strictly speaking the applied formula is valid for sufficiently large
distances between the two cylinders.

In a more general framework, if a structural element is in the wake of another one, the loads
on it are not the same as if this element was isolated in infinite fluid. The element will be
subjected to a lower local current u and this leads to a smaller drag coefficient because Cp®

goes as (U/U,)?<1.

NB: Because the discussed wake solution is the solution of a linear problem, one can apply
the superposition principle in the case of clusters of bodies. As an example, if we have a series
of side-by-side circular cylinders we can consider the wake behind each of them. This will
give a velocity reduction as in expression (F:6.49) and we can sum up the effects of all wakes
to estimate the local mean longitudinal wake velocity.

Zdravkovich (1985) has studied the interaction of pipe clusters in steady incident flow.
For the case of 2 cylinders we can have 3 different possible regimes:

- proximity interference (P)

- wake interference (W)

- no interference
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Figure F:6.24(a) gives the existence plane of these regimes for cylinders with equal diameter
D. Only one cylinder is shown in the figure centered at (0,0). The location (x/D,y/D)
represents the position of the center of the other cylinder, x/D>0 means downstream location.
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Wake interference
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I
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Fig. F.6.24 (a)

Wake interference occurs if one cylinder is in the wake of the other cylinder. Proximity
interference occurs for sufficiently close cylinders but none in the wake of the other. No
interference occurs when none of the cylinders is in the wake of the other and their distance is
sufficiently large. In the figure, bistable flow indicates the positions of the second cylinder
where two different vortex-shedding solutions could be stable.

Figure F:6.24(b) gives examples of flow features in the different regions. In a side-by-side set,
i.e. the second cylinder is at (0,y/D):

- Ifl<y/D<1.1-1.2 thereis only a single vortex street for both cylinders

- If 27 <yl D <4-5 there are 2 vortex streets mirroring each other.

- If y/D >~5 the mutual influence of the cylinders is small.

In a tandem set, i.e. the second cylinder is at (x/D,0):

- If1<x/D <1.2-1.8 the vortex street behind the cylinders is given by the
free-shear layer detached from the upstream cylinder

- 1f1.2-1.8<y/D <3.4-3.8 the free-shear layer from the upstream cylinder
reattaches to the cylinder downstream.
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Fig. F.6.24 (b)
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Figure 6.25 shows an experimental photo of vortex formation around two vertical cylinders in
a close tandem arrangement in steady incident flow. The cylinders were towed in a model
basin. The image shows that a vortex shed from the upstream cylinder can be trapped between
the two cylinders.

Fig. F.6.25

Zdravkovich (1985) studied the tandem configuration in subcritical and supercritical flow
regimes. He found that if the cylinders are close, i.e. their distance is x/D<~4, the drag
coefficient may be negative on the second cylinder in a tandem position. The results depend
on the Reynolds number, on the roughness ratio k/D and on the number of cylinders in the
tandem configuration. The minimum drag coefficient reported is ~-0.6.

These aspects are of practical importance in many contexts.

Example: fish farms.

The nets used in fish farms are similar to small cylinders, see figure below.

i
i i
2 & a3
S
L i i s :
[ g

ence in the case of a complex farm, as shown in the figure below.

L .

They can be placed in sequ

231



In this case there is an inflow reduction when the current goes through successive nets. The
reduction factor must be accounted for to ensure proper water exchange inside the nets. Figure
above provides an estimation of the inflow reduction for the specific aquaculture-plant
configuration using the long-distance approximation for the mean wake velocity in the
longitudinal direction given by formula (F:6.49). This does not account for the effect of fishes
inside the farm, e.g. the effect of fish schooling on the local current, but this could be
important.

Wind loads (F:207)
Can be estimated similarly as for the current loads. Also in this case empirical/experimental
data are necessary.

Vortex-induced resonance oscillations (F:207-212)
The current interaction with a blunt body causes alternate vortex shedding. For a circular
cylinder the forces associated with alternate vortex shedding are

F () =| F_|cos(2z ft+ ) (lift)
F,(t) = Fy + A, cos(4xf t+ ) (drag)

These forces may cause resonance problems: vortex induced oscillations. Strictly speaking,
we talk about vortex induced motions (VIM) in case of rigid motions and about vortex
induced vibrations (VIV) in case of elastic motions. In the following the VIV term is used to
indicate both phenomena.

VIV is relevant for many slender marine structures: risers, spar platforms, pipelines, deep
draft floaters, submerged bridges.

Important parameters for VIV are:

- Strouhal number St=fD/U ,=D/(TU,), which means the ratio of the
characteristic length of the body (e.g. circular cylinder diameter) and the distance
covered by the current during a vortex shedding period.

- Reduced velocity U, =U_/(f,D)=TU, /D, which means the ratio between the

distance covered by the current during a natural period of the structure and the the
characteristic length of the body (e.g. circular cylinder diameter).

NB: These definitions refer to the vortex-shedding and natural periods without VIV. As we
will see, the occurrence of VIV changes in general T, and T,. To emphasize this, when
necessary ‘0’ will be used to indicate the variables in absence of VIV.

We can have VIV in two orthogonal directions, called respectively:
- cross-flow VIV, in the lift direction (transverse to the current, say y) and
- in-line VIV, in the drag direction (parallel to the current, say x)

Roughly speaking, we have cross-flow VIV when the oscillation period of the lift force, Ty, is
equal to the transverse natural period. We have in-line VIV when the oscillation period of the
drag force, T./2, is equal to the in-line natural period. These conditions are just indicative of
where we are to have VIV. Actually VIV occurs in a broader range.
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The cross-flow VIV is associated with larger oscillation amplitudes and larger reduced-
velocity values than the in-line VIV. Ug is larger because the lift force oscillates with a period
twice the oscillation period of the drag force. It means that cross-flow VIV is usually more
critical and relevant for ultimate strength design.

In-line VIV is relevant for fatigue, because it involves smaller Ug which means higher natural
frequencies, i.e. large number of oscillation cycles in time.

We discuss here the VIV phenomenon in terms of cross-flow VIV. All examples consider an
academic uniform current.

1. Excitation of cross-flow VIV
Hp: A moored loading buoy in a current with speed U, in x direction. The buoy is a vertical
cylinder, long L, with diameter D<<L.

As rough condition we can say that cross-flow VIV occurs if T, is equal to the sway (yLUc)
natural period, say T, of the structure. Again, this condition is only indicative, as we will
discuss later, cross-flow VIV occurs in a broader range because it is able to change the vortex-
shedding and natural periods. The consequences of cross-flow VIV are large vortex-induced
sway oscillations and drag-forces. Ty

X

UC

These aspects are of practical importance for instance for mooring systems. In particular
anchor-line excursions and drag forces experienced due to interaction with a current are
important for the correct design of the mooring system.

In our example, the vortex shedding period can be found from
1D
T=—— (1
'StU, @
Let us assume U.=1m/s and D=20m, while the Strouhal number can be obtained from Fig.
F:6.26 in terms of the Reynolds number and of the roughness. The figure is for a fixed
cylinder in steady incident flow.

SI:fVD T
Ue | |
05+
r —=75.10"
04
03
~, _‘:’/
02F——F—F
¢ - ‘-":H|. E‘.:..Rn
104 2 5 105 2 5 10° 2 5 107
Fig. F:6.26

The Reynolds number in our case is Rn=2-10" and assuming a rough cylinder, for instance
with k/D=3-10", we obtain:

- St=0.25 from

- T,=80s.
This must be then compared with T,.
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NB: When performing model tests the Reynolds number is smaller. This leads to scale
effects which affect the separation point location, the wake features, the body forces, the
vortex-shedding frequency f,. If the Rn is in the critical or supercritical flow regime and the
cylinder behaves as smooth, the Strouhal number St will have a large variation depending on
the roughness (see fig. F:6.26) but this is a false effect because at full scale the Rn number
could be in transcritical flow regime. A model-scale St different than at full scale means a
model-scale f, different than at full scale. One way to avoid this effect is to use a greater
roughness in model tests, i.e. larger than in reality, in this way St values are more reasonable.

Vortex-induced oscillations may cause elastic resonant oscillations of the 3D structure.
Roughly speaking this occurs if the vortex-shedding period T,=f(St,D,U;) is equal to an
eigenperiod T, of the structure.

Hp: A riser in a current with speed U..

Let us assume Ucs=1m/s and D=1m. This leads to a Reynolds number Rn=8-10° and
considering a rough cylinder so that St=0.25 we can then estimate the vortex-shedding period
as Ty=5s.

The example in figure F:6.28 refers to a family of risers with the same features but for the
length because they are attached to the sea floor at different water depths h. The same top
tension 1250 kN is applied for all risers. The natural periods T, (with n=1,2,..) of a riser
depend on the riser length and so on the water depth. This leads to the curves in the figure.
The horizontal dashed line represents T,=5s.

T.(s)

n

130
120

Example:
D=1m, U=1m/s

U

Rn=8-10°

110

100 Eigenmodes n

Note Strouhal number
is Reynolds and rough-
ess number dependent

Choose rough cylinder
so that St=0.25

Water depth (m)

W S0 1000 1500 2000

Fig. F:6.28

Resonance occurs at the intersection of this horizontal line with a natural-period curve. So,
this value of the vortex-shedding period can cause resonance for certain modes at certain
water depths. Other realistic current speeds could cause resonance on the same modes at
different water depths and on different modes at the same water depth because would lead to
different values of T,.

In connection with such elastic resonance phenomena we talk about hydroelastic oscillations,
because the elastic oscillations are affected by the flow and affect in return the flow, i.e. there
is a coupling between structural and hydrodynamic problems. One must also note that VIV
involves nonlinear behaviour of the system.
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2. Cross-flow VIV affects the vortex-shedding frequency

Feng (1986) performed experiments for a current past a lightly damped 2D circular cylinder
free to oscillate transversally in infinite fluid. The model tests were made in air.

We have three frequencies involved in this problem: the oscillation frequency of the cylinder
f., the natural frequency of the cylinder f_and the vortex-shedding frequency f, .

Fig. F:6.29 shows f /f ,with f = f_ orf = f,,and the transverse oscillation amplitude A as a
function of the reduced velocity U, =U_/(f,D).

Due to the current-cylinder interaction vortex shedding is caused:
- If we assume small Ug, the vortex-shedding frequency of the cylinder f, is equal to the

value for a stationary cylinder f , =StU_ /D = f StU,, which increases linearly with Ur. This
remains true up to when f,, becomes close to f_, i.e. up to U, =1/ St = 5 (in subcritical flow
regime St=0.2).

- When f,, becomes close to f,, cross-flow VIV occurs, i.e. resonant vibrations of the

cylinder caused by vortex shedding in the direction transverse to the current. Moreover, in this
circumstance also the oscillation frequency of the cylinder, say f., is close to f .If we

continue to increase Ug, f, /f, andf,/ f remain nearly constant and slightly less than unity.
This occurs until an upper threshold value of the reduced velocity, say U, = 7. For U, >~ 7,
f, jumps suddenly back to the value for the stationary cylinder f ;.

2.0
£1f, £,01,
1.5-
1.0 2AID
fVT/ fn fC/ fn L0.8
L0.6
0.5 A
J L 0.4
0.0

5 6 7 8 U.,=U_(fD)
Fig. F:6.29

The region 5<U, <7 where cross-flow VIV occurs is referred to as lock-in region because

the vortex shedding frequency locks on the natural frequency of the body. It is also called
synchronization region, capture region, or resonance region. In the lock-in region, the
amplitude A of transverse oscillations increases greatly with Ug until a maximum. For higher
Ug it drops suddenly and then decreases with Ug. If we start from high values of Ug and
decrease it down to the lock-in region, the amplitude A will follow the solid line in figure
F:6.29 and then continue along the dashed line at the end of the solid line. This means that A
increases less when starting from large Ur and decreasing it than when starting from small Ug
and increasing it.

NB: This example confirms that VIV affects f, and shows that f,, = f, or U, =1/St is a

rough condition for cross-flow VIV occurrence. This must be just taken as an indication of
where we are for VIV occurrence, especially in water, because in water the extension of lock-
in region is larger than in air.
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3. Cross-flow VIV in water affects the natural frequency
Hp: A current past a 2D circular cylinder in infinite water. The cylinder has a spring C and no
structural damping. Free transverse oscillations of the cylinder.

The previous example was in air, when the fluid is water the added mass is relevant. This is
analysed here.

The natural frequency without VIV is obtained from the one d.o.f. motion equation setting to
zero the excitation force, i.e.

(m+ Azz(novw))y +Cy=0

1 C
= fo = o
2\ m+ paD* /4
Hp: St=0.2 (subcritical regime).

A condition for VIV occurrence is given by U, =1/St =5which means f, = f_;. This gives
an indication, because VIV will occur within a certain range of Ug, i.e. also for Ug<5.

\ NB: According to DNV rules, onset for VIV is Ug=3-5, the upper limit is Ug=16.

When VIV occurs, the amplitude of oscillations varies much, see figure below, leading to a
variation in added mass.

Us=5 [ VIV changes the
natural frequency
0.2[—

; U

Up=—%
| | | | | | f.D
4 6 8 10 12 14

From the figure above, the lock-in region, corresponding to important increase of the
amplitude, is wider than in fig. F:6.29. The reason is that in water the added mass plays an
important role and will make broader the possibility of VIV excitation with respect to the case
in air where the added-mass effects are negligible.

With VIV we may formally write the added mass as

(noVIV)
Azz = Ca A22

Ca giving the variation of the added mass. This means that the natural frequency is now

f=t c
" T 27 M C A,

So, when VIV occurs, both f, and f, change. The constraint is that they remain roughly
equal, i.e. f, = f,_,during VIV, i.e.
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f(=1f) [ m+A, B M+1  StU, 02U
an m+ Ca AZZ(HOVIV) M =mass rati(:;m/A2z(”°V'V) M + Ca Dan S

which means that C_, = f(Uy).

These conditions could be reproduced (e.g. experimentally) to estimate the effect of VIV on
the natural period.

4. Cross-flow VIV oscillation amplitude
Hp: A current past a 2D circular cylinder in infinite water. The cylinder has a spring C and no
structural damping. Forced transverse oscillations of the cylinder.
Ty
c y = Asin(ot) o=2af

—_—

Due to the oscillations a lift force is caused. The lift coefficient can be written as

) :LZ = C.,sinwt-C, COSa)tz—thLz— dhi
05,0UC D formallyv;gmaywrite A Aw
C,, and C,, are proportional, respectively, to the added mass and damping and depend on

A/D and U/fD.
If the oscillations were free instead of forced, the lift force would be the excitation force in the
body motion equation, i.e.

M+ A,y +Cy=F = O-SPDUcZ[_th AZ)Z ~Can ! j

Aw
— (M+C,A, ™)y +C, pDU2 - +Cy=0 (1)
2Aw
with
50DU °
Ca =1+ (?Asa;oz'A\ZJ(cno\C/:I\T)h '
2

According to the sign of C,, in the motion equation (1) the damping can be positive (C,,>0)
or negative (C,,<0).
Positive damping reduces the oscillation amplitude <-> energy from the body to the fluid

Negative damping increases the oscillation amplitude <-> energy from the fluid to the body
Zero damping gives resonance condition <-> no energy exchange

NB: Using potential flow theory, we have seen that the radiation damping due to forced
oscillations of the body will never be negative. Here we see an example where the interaction
with a current can lead to negative damping.

The resonant steady-state condition gives:

1 C
“2r \/m +C,A,,"™" a

This is the condition for lock-in/VIV because it means that the system energy remains
constant.

We can identify the occurrence of VIV for instance reproducing these conditions
experimentally:
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1. We can study forced oscillations and vary the forced oscillation frequency and the
forced oscillation amplitude ratio A/D.

2. For each combination we can measure C.. Using its decomposition in sine and cosine
functions, we can estimate Cn, and Cgp, respectively, from the component proportional
to the acceleration and from the component proportional to the velocity, and then C,.

3. In this way we can construct a family of C,, iso-curves. The iso-curveC,, =0 gives

the resonance condition, i.e. the forced oscillation frequency fis f = f_ . A/D measured
along C,, =0 provides the oscillation amplitude ratio A/D due to VIV.
The figure below gives an example of how to find A/D at resonance as a function of Ug.

Contour plot of -Cgyy, (Gopalkrishnan et al.)

AT O\

A/D at Resonance

02

% o005 o1 015 02 025 03 D
fD/U=f,D/U=1/Up, U

There is an error source when applying this approach. This is connected with the use of forced
oscillations of the cylinder with a frequency of oscillation f in general f = f,. This is the

reason why the results of A/D obtained using forced and free oscillations may not coincide, as
in the figure below (from C.M. Larsen’s studies).

—-I-— Gopalkrishnan (forced motions)
—&—  Vikestad (freely oscillating cylinder)

1.2

' /%M\K
N AN
/ x\x
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The maximum amplitude of transverse osciliation in the lock-in region depends also on the
structure mode shapes. Sarpkaya (1978) studied the maximum amplitude Anax Of the
transverse oscillations in the lock-in range for both elastically-mounted and flexible cylinders.

He wrote the maximum amplitude for any mode shape yA(z) as

A 0.32y _ 1 . 2 2MG,

ax _ (F:654), y =y, |=———— (F6,55), A, = (275t)> ==z

D /0.06+A,2 [v*(2)dz oD’
L

In this empirical formula, z is along the structure, L is the structure length and ¢ is the

fraction of the structural damping to critical damping, St is the Strouhal number for the non-
oscillating cylinder, p is the fluid density and m is the sum of structural mass and added mass

(F:6.56)
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per unit length. For marine applications A, has small effect - we can set A, =0. Once the

mode shapes and Anax are known, we can estimate the stresses connected with cross-flow
VIV. This is relevant for instance for risers.

5. Important consequences of Lock-in
Sarpkaya and Shoaff (1979) studied the lock-in region numerically using a discrete vortex
method. According to their results, the lock-in consequences are
A. Correlation length of vortex shedding I increases - more relevant total loads on the
3D structure
B. Vortex strength increases
C. f, locksonto f,

D. The greater the amplitude A the wider the band width of lock-in in terms of reduced
velocity

E. Oscillations are self-limiting, i.e. maximum relative amplitude A/D~1

F. In-line (drag) force increases

Some of these consequences are linked:

- A and C are connected because, due to C, vortex shedding must be in phase with cylinder
oscillations which can not vary rapidly along the cylinder for structural constraints. So the
correlation length must increase.

- B and F are connected because the strength of vortices is linked to the circulation 77in the
wake and drag and lift forces are also linked to /7~ (this can be shown using the Blasius
theorem).

A rough estimate of the drag coefficient on a 2D circular cylinder during lock-in is:

CD :CDO[1+2Amax/D]

which can be interpreted as the effect of an apparent projected area D+2Amax (per unit length)

with respect to D. See figure below: P
I Amax
Let assume Anaxas the maximum oscillation
amplitude in the cross-flow direction. D
Amax

6. Cross-flow and in-line VIV

Cross-flow and in-line VIV can couple increasing the risks for the structure. It means that
locally the cross-sections follow a *8” path with greater amplitude in the cross-flow direction.
Figure below gives an example of cross-flow and in-line VIV coupling, this application is
relevant for instance for free-spanning pipelines.

( ‘) C.M.Larsen



7. How to avoid VIV?

We can avoid VIV using spoilers which reduce the lift and increase the drag or by increasing
the damping.

One can also try to ensure a reduced velocity outside the lock-in range. Taking the example of
a submerged bridge. Cross-flow VIV could be avoided by design, enforcing that the reduced
velocity U, =U_/(f ,D) is smaller than the threshold value to have lock-in. This means that

in-line VIV can not be avoided because it occurs at smaller U , than cross-flow VIV. However
in-line VIV is connected with small oscillation amplitudes.

Common way to suppress VIV is to use helical strakes. \/
The optimal configuration it is said to be with three spirals ~0.1D-0.2D ¢

and pitch equal to 5D, with D the structure diameter. \
The height of the fins of the strakes should be 0.1-0.12 D.
A negative effect is that the fins increase the drag. /r
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Munk moment versus Viscous moment

¢ The Munk moment is a pure torque, it
comes from steady infinite potential

flow with zero force from D’Alembert .
paradox , >

21t does not depend on a reference ”vi

point A

e It is destabilizing, i.e. It tends to

increase the angle of attack S For example, for the ship

we studied in fig. F:6.13

e The viscous moment is a not pure

1t depends on the center of rotation v
« It might be stabilizing or destabilizing /s

depending on the body geometry

Current transverse viscous loads
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Fig. 6.16. Calculated and estimated drag coefficients Cy, for wo-dimensional
cross-flow past eross-sections sfong the ship presented in Fig. 6.15.
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3D current effects on C),

3D induced
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Current loads on offshore slender structures
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Normal drag force F,=F, for oblique flow (Ersdal)

From model tests
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Empirical formulas for F,=F, (Ersdal)
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Drag coefficient of downstream cylinder

Hydrodynamic interaction between two
cylinders in infinite fluid
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Interaction between two cylinders
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Sufficient water exchange inside the nets needed for the
health and growth of a fish
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Vortex Induced Vibrations (VIV)
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Riser data
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3 Theory

m=1306pD>

C85

Experiments

10 12

The theory does not account for the influence of VIV

on the vortex shedding frequency

Forced transverse oscillation tests

y = Asin wt
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th Sarpkaya’s experiments
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VIV experiment, no mechanical damping starting from large amplitude

Red.u.c TIOT}: Steady state:
Positive Cy, C.=0
dh™

. Positive damping

¥ b€

3

~
—

—
I

O T

LA
VVTVTTTTI

I m—
—
| T

Displacement

0 10 20 30 40 50 60

Time C.M.Larsen

08

A/D at Resonance : é

th=b

0 0.65 Ot | 0.15 0.2 0.25 03 B
1D/U=£,D/U=1/U,, U

Results from forced motion tests and free oscillation tests

Oscillation amplitude as function of reduced velocity
Vikestad and Gopalkrishnan with mass ratio 1.664

——+—— Gopalkrishnan (forced motions)
—<&— Vikestad (freely oscillating cylinder)
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Empirical formula for the maximum transverse amplitude
for a generic mode shape y (Sarpkaya 1978)

D

P ——

(F:6.54)

(F:6.55)

Structural damping-to-
critical damping ratio

A =278ty 2’"—D; (F:6.56)
P

A

max

A

max

VIV example. Tow-out of monotower. U=1.3m/s

Hp: Coupled roll and sway. Zero damping.

Setting to zero the excitation loads:
30m —
2 -0} (M+pAd)  ©’pAdBG {772”} o
‘ o, pAdBG —w (1, +4,)+pgVGM T
v 4
8.66m Natural period: Eigenvalues:
T =27 _89.8s n, =M EpAd G 0225n,,
, pAdBG
76m -
Reduced velocity : Displacement: s, =7, =1,z
U, = % =52,ie VIV Eigenmode:
1//(2) = 170.02252(m)
| NBOutr of roll at z=1/0.0225m=44.5m |




VIV example. Tow-out of monotower. U=1.3m/s

[%Z)LX =|w (z)ma{rj;‘/’ 2(2)0’1“2 032

30m
(e | o

30m
I X
v.  [4(z)]=538(1-0.0225z)(m)
—. 866m /VIV increases the towing resistance
0
o [[4)}=z1h
D —1+2- with 4= draught
DO D
a
C 8

| A(T6m)=146m | C

D =1+2£-L]1(1—0.02252)dz=3.3
8.66 76 3,
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Vortex induced vibrations
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Observations: Response amplitudes, frequency

and drag amplification
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Coupling between in-line and cross-flow oscillations

( ) C.M.Larsen

C.M.Larsen

Cross-flow VIV must be avoided.™ In-line VIV cannot be avoided



Helical strakes for
VIM-suppression. on Spar
platforms .

~0.1D-0.2D

T3120 V=1.4m/s Striked riser
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T —

T2120 V=1.4m/s Naked riser
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Lecture Note 11

45. Galloping. Viscous wave loads and damping. Stationkeeping. Thrusters. (F:212-
215,223-225,228-230,238-248,257-258,270-277)

Galloping (F:212-215)

Lock-in (cross-flow VIV): is a resonance phenomenon, connected with f, close to f,, zero

no

damping of the system and self-limiting oscillation amplitudes.

Galloping: is a dynamic-instability phenomenon, implying negative damping of the system.
When galloping occurs the system is unstable and unbounded oscillations can occur when
perturbed. ‘Unbounded’ means that galloping motions are not self-limiting as lock-in
oscillations. At high velocities the oscillation amplitude is proportional to the incident
velocity. Luckily there are limitations on how large the inflow velocity U,, and so the reduced
velocity U, =U, /(f,D), can be. Ug represents an important parameter for galloping.

Let us discuss this phenomenon with an example.
Hp: - A long cylinder with uniform rectangular cross-section in a uniform current with speed
U. 2 We can study the problem as 2D in the (x,y) cross-section plane with x// U,
- The body is symmetric about x axis of the current = No force in y without perturbation
- The fluid forces are quasi-steady, i.e. oscillating vortex-shedding forces are not
important. This is approximately correct for reduced velocity Uz>10.
- The body is attached to linear springs and has natural (giro) frequency @, for y motion.

s, ,
1;.&’ y,n, # ‘;3

@ W
UC
\M_ % X
Uoo di \\“\ %
Q) ¥
<o "
K7

Galloping motion will occur if the hydrodynamic forces cause a sufficiently large negative
damping of the transversal oscillations.

Let us assume that small perturbations cause an oscillatory body motion in y direction, 7,.
The body oscillations result in a time-dependent angle of attack of the incident current in the
body reference frame:

B(t) = —arctg(n, /U,) = —1,/U, (small)

11 <<U,
This results in a transverse current force F), :
1
F,=2pU. AC,(p)
with p the fluid density, 4 the projected area along x, U, the effective incident-flow velocity
and the drag coefficient C, is function of . C,(f=0)=0 because of the body symmetry about
y. For small B, U.”’~ U,” and using a Taylor expansion about =0, we find

F ~lpU *AC (O)+lpU 4 oc, B(t)
Yot 20 0B,
=0

This will be an excitation force for the body motion, i.e. the 1D equation of motion is
(M + A,,)1, + 28 (M + 4,,)o,n, + Cyn, = F,
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with ¢ the non-hydrodynamic damping as a fraction of the critical damping 2(M + 4,,)w, .

The restoring coefficient C,, is given by the linear springs attached to the body. Substituting
the expression of the transverse current force, we find

. 1 oC, .
(M + 4,17, +| 26, (M + 4,,)o, + IO_UCA_} M, +Cyun, =0

2 P |,
By
Condition for a negative damping , i.e. B, <0, is
8Cy < 46, (M + 4,))o,
op o U,pA

If D is the characteristic length of the cross-section and f, =, / (27), we can rewrite the
condition for galloping in terms of the reduced velocity U ,=U_/ f, D, i.e.
oC, <_87r§S(M+A22)
op o U,pAD
In practice, galloping occurs at large Uk, typically higher than for VIV, e.g. Ur >10.

(F:6.64)

NB: - For a circular cylinder, due to the axial symmetry of the body, &C,/df| s-0=0
—> Galloping can not occur
- Practical examples for which galloping is relevant are riser bundles and ships with a
single-point mooring system or towed.

Challenges connected with currents: Deep and ultra-deep waters. Internal waves.
Currents play an important role in different parts of the World and in some circumstances the
design current velocity in extreme conditions can be larger than 1m/s used for the North Sea,
e.g. in Gulf of Mexico. Currents represent in general an important design parameter in deep
and ultra-deep waters because they can act along the whole column of water while wave
effects go to zero quickly with the depth. Currents in general have a spatial variation. This has
not been accounted for in our examples, i.e. academic uniform currents were examined.
Internal waves, i.e. waves caused in stratified regions of the sea, travel along the interface
between layers of sea with different density and are associated with large periods of
oscillation, and therefore large wavelength. They are not relevant as dynamic excitation but
act mostly as a steady current with features slowly varying in time. Similarly as free-surface
waves, their disturbances may go to zero exponentially going far from the interface. In this
case ‘far’ means far up and far down from the interface. In some cases the internal waves can
be represent the main ‘current’ design parameter. An example is the Lufeng field in South of
China. There, the currents vary typically between 0.2 and 0.4 m/s with maximum values
between 1.0 and 1.2 m/s, the internal waves have period of oscillations of 20 min and behave
as a steady current with a behaviour along the water depth like in the figure below, i.e. with a

change in direction and maximum value much larger than for the true currents.
Depth(m)
0

Return period (year)|

g
0 3
Hor%gremspeed (m/s)




The figure shows the value of the horizontal velocity for different design criteria. Historically
internal waves have been studied in connection with dead waters and with ships travelling
with small forward speed in regions with stratification interface sufficiently close to the sea
surface. Today they may be relevant for marine operations and may affect the acoustic
propagation in the ocean.

Viscous wave loads and damping (F:223-225,228-230,238-248)
Viscous flow phenomena are important in several problems related with wave loads on ships
and offshore structures. Examples are: wave loads on jackets, risers, tethers, pipelines, roll
damping on ships and barges, slow-drift oscillation damping of moored structures in irregular
sea and wind, anchor-line damping, ‘springing’ damping of TLPs.

The main parameters are the same as discussed for the current loads, i.e., Rn, &/D, body form,
free-surface effects, sea-floor effects, nature and direction of ambient flow. In addition we
have:

» Keulegan-Carpenter number KC=U,,T/D, for ambient oscillatory flow with velocity

Uusin(2nt/T+¢), which represents the ratio between the distance covered moving with the
maximum velocity Uy, during an oscillation period and the characteristic body length.
From this, KC-> means steady ambient flow.

If we assume that the oscillatory flow is given by an incident wave with amplitude 4, in
the linear caseU, =wA=27A/T.Then KC can be rewritten as KC=27A/D and

represents a measure of the importance of 4 relative to D. In this case large KC means
high waves relative to the structure characteristic dimension.
« Relative current number=U_ /U,,, when there is a steady current velocity U, parallel to

the oscillatory velocity Uysin(2nt/T+eg). This measures the importance of the current
relative to the oscillatory ambient flow.

Morison’s equation

It is used often to calculate wave loads in circular cylindrical structural members of fixed
offshore structures when viscous forces matter, but it can also be applied for other cross-
section shapes. It is a long-wave approximation, i.e. it assumes A/D>35.

Hp: Incident waves in x direction. A vertical rigid fixed circular cylinder with diameter D.

Morison’s equation provides the horizontal force, i.e. normal to the cylinder axis, along the

wave direction. The contribution dF from the strip dz is z
-4 I

—A— >
7Z_D2 p D X

dF =C,, p adz+—=C,D|u|udz =dF,,  +dF,,  (F:7.1) ]
2 : ¢ @ | B oF

—
=Ay,=added mass
in infinite fluid
S

with a; and u the horizontal incident-wave acceleration and velocity at the midpoint of the
strip. The positive direction is the incident-wave propagation direction. The two force
components are called mass and drag force, respectively.
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What are these forces?

The drag force is the in-line force, i.e. along the incident-wave direction and in the cross-
sectional plane, due to flow separation and shear stresses along the body. The Morison’s
equation does not provide instead the oscillatory forces due to vortex shedding in the lift
direction, i.e. orthogonal to the incident-wave propagation and in the cross-sectional plane.
Concerning the mass force, let us assume negligible viscous effects, in this case the Morison’s
equation gives

dF =dF,,,, +dF,,, = pC, (xD*/4)adz.
—_—

=0
Now, in potential-flow long wave approximation, the elementary excitation force is
dF = pAadz + 4,,a,dz =2p(xD* | 4)a,dz.
%/_/ H_/
dFpy dF),
It means that Cy, =2 and Cp =0. So the Morison’s equation gives the correct inviscid
excitation force on the body in the asymptotic condition of large A/D.

In general, the mass and drag coefficients C,, and C, in equation (F:7.1) must be estimated

empirically and depend on the parameters mentioned above about viscous wave loads. If the
acceleration can be neglected, the Morison’s equation is a good empirical formula for the time
average force. Typical Cp and Cy, values for transcritical flow past a smooth circular cylinder
are 0.7 and 1.8 at KC>~40, i.e. toward steady inflow conditions. A roughness number
k/D=0.02 may increase more than 100% the Cp, implying a greater importance of the
roughness in oscillatory ambient flow than in a steady incident flow.

Assuming deep-water linear incident wave solution in equation (F:7.1), we find that the mass
and drag force per unit length are largest near the free surface and decrease with z,

respectively, as € and e’ So the drag force is the most concentrated near the free surface.
The application of Morison’s equation near the free surface requires accurate estimate of the
undisturbed velocity distribution under a wave crest because using the linear solution involves
an error near the free surface. In this case the largest force per unit length is predicted at the
free surface while in reality the force per unit length must go to zero as we approach the free

surface because one must recover the fact that the pressure is atmospheric (see figure below).
Force per unit length

* From Morison’s eq. (using linear waves)
© More physical behaviour

Tz

The vertical position of the maximum absolute value of the force is below the free surface and
must to be found experimentally. As a rough estimate, it could be at z distant the 25% of the
incident-wave amplitude from the free surface.

The force on the 3D cylinder can be obtained integrating equation (F:7.1) along the cylinder
wetted surface. Because Fs and Fp,,e on the structure are out of phase of 90 degrees, if the
cylinder corresponds to a wave node the force is only given by the mass force which is also
maximum, and if it corresponds to a wave crest the force is only given by the drag force
which is also maximum (see figure below).

MAXIMUM MAXIMUM
MASSFORGE DRAGFORCE

— 26— —



NB: As we have already mentioned for the Froude-Kriloff force, one must integrate along
the correct wetted surface of the body. This is critical at the junctions of structural elements,
e.g. at the junction between a pontoon and a column of a semisubmersible.

Morison’s equation can be modified to account for the horizontal motion 7; of the body in x
direction.
Hp: Incident waves in x direction. A vertical rigid circular cylinder with diameter D and surge

motion 77;. )

The Morison’s equation states that the horizontal hydrodynamic force N
dF on the strip dz , in the body-fixed coordinate system, is p| h*
dF=§CDD|u—ﬁ1\(u—771)dz -\~ ¥
D . (F:7.2)
+pTCMa1dZ—p 4 (Cy —Dijdz

From the formula, the drag-force contribution is connected with the relative velocity between
incident waves and body while there is not a pure dependence on the relative acceleration for
the remaining force contribution. This can be understood if we consider that in potential-flow
theory the Froude-Kriloff force depends only on the incident-wave acceleration, i.e. not on the
rigid-body acceleration.

NB: C,, and C,, in equation (F:7.2) can be different than for a fixed cylinder.

The Morison’s equation can also be applied to inclined cylinders assuming that only the
velocity and acceleration components normal to the cylinder axis will contribute to the force.
The force direction will be normal to the cylinder axis. In the potential flow case this is the
correct expression. In the viscous case it means that we use the ‘cross-flow’ principle. The
method can also be generalized to the case when the cylinder axis is not in the incident-wave
propagation plane. For example if the cylinder is horizontal and the waves propagate along x
normally to the cylinder axis, a modified version of the Morison’s equation provides the wave
forces along x and z. In case of wave-current environment, the Morison’s equation is usually
applied by setting the velocity term in the equation as the vector addition of the wave and
current velocities.

Flow separation

Oscillatory inflow reduces the possibility of flow separation in blunt bodies with no sharp
corners because the incident velocity changes direction in time, so the flow can remain
attached more easily to the body. In this case it is more difficult to set a criterion for flow
separation. The criterion in steady ambient flow, which is zero shear stress on the body

surface, i.e. in 2D: g ou / 6y|y:0 =0, is not generally accepted as criterion for flow separation

in unsteady ambient flow. If this condition occurs one talks about ‘detachment point’
(Telionis 1981).

Let us assume a blunt-shaped marine structure without sharp corners.

» The flow does not separate in oscillatory ambient flow at very small KC numbers, which
means when the inflow oscillation periods (or the wave amplitudes) are very small. As an
indication we could say for KC<~2 though flow separation has been reported for KC smaller
than 2 (Sarpkaya 1986 for a circular cylinder).

* The flow separates always in a steady current.
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* In the case of combined steady current and oscillatory inflow (in the same direction), the
existence of a threshold KC number, say KCj,, for flow separation depends on the relative
current number U_/U,, . Roughly speaking the flow may be able to not separate if the

ambient flow velocity in the current direction changes sign in time. Flow separation always
occurs if U, /U,,>1 (see figure below) because in this case the flow does not return in time

toward the body.

Relative current number: U./U,>1

m

Example: flow separation around a hemisphere in waves and current.

The figure below gives experimental results for flow-separation occurrence. It confirms that
for sufficiently small relative current number and small KC number, flow separation can be
avoided. As the current velocity U, increases relative to the amplitude of the oscillatory
velocity Uy, then flow separation occurs even for very small KC numbers.

10 4

u()

t

KC

Flow
separation

05 / \
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NB: There results are relevant also for large volume structures. Typically for them we neglect
flow separation and assume potential flow theory. Now we see that flow separation can occur
depending on KC and U, /U,,. In this case, it is important to quantify how extended flow

separation is, i.e. if it is very localized then the consequences can be limited in terms of loads.

Separated flow at small KC-numbers

Oscillatory inflows with small KC-numbers, are relevant for damping of slow-drift motions of
moored structures and roll damping of ships and barges.

Using Berman’s (1985) work for a circular cylinder in waves and without current, roughly
speaking when flow separation occurs at KC<7 the flow is symmetric. This means zero lift
force.

Graham (1980) found that at small KC-numbers the Cp is strongly dependent on the local
flow at the separation point. His analysis considers only the effect of flow separation on the
pressure along the body, i.e. viscous shear forces are not included. He assumed fixed
separation point and found this empirical behaviour for the drag coefficient:

C, < KC",n =(25—7z)/(37r—25) (1)

with d'the body internal angle at the separation point. The larger is o the smaller is the vortex-
shedding intensity and then Cp. In particular we have

Flat plate: 5=0— C,=8.0KC"
Square section: o =7x/2— 1=0,i.e. no influence of KC (F:7.24)
Circular cylinder: 6 =0 — C, = 0%3




For instance for the eddy making slow-drift damping: Graham’s results for a rectangular
cross-section indicate that the damping does not depend on KC; those for a flat plate can be
used to find the damping connected with bilge keels and show a great influence of KC on the
damping. The eddy-making slow-drift damping is important for slow-drift motions of moored
structures. An exception is surge motion of a ship for which flow separation does not play a
role. In this case the viscous damping is given by shear stresses (frictional forces) along the
body.

Figure F:7.8 shows the experimental results of Cp for a circular cylinder in subcritical
conditions at small KC numbers. When the laminar boundary layer is without flow separation,
i.e. KC<~1, the measurements show a decrease of Cp as KC increases and agree with the
viscous formula by Wang (1968)

3 -1/2 -1 -3/2
c, = 3z 7 Rn N 7 Rn +l 7 Rn (F7.21)
2KC |\ KC KC 4\ KC
With flow separation the measurements show an increase of Cp as KC increases and agree
with the formula by Graham. The latter is true up to KC about 10.
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Fig. F:7.8

Separated flow at high KC-numbers

Flow separation at high KC-numbers is relevant for predicting wave loads on jackets and
risers in extreme weather conditions. At KC>10, the oscillatory ambient flow is like a quasi-
steady current that changes direction in large time. In a steady current we learned that the
vortices released by the body induce in the wake locally a velocity against the inflow current.
When the quasi-steady current changes sign the vortex induced velocity increases the inflow
velocity, say of an average quantity u (at the center of the cylinder), and so the Cp. One talks
about ‘returning vortices’ because the wake is like it was upstream of the body. This effect
reduces as KC>x, i.e. as we approach steady inflow conditions. It means that the increase of
the drag coefficient with respect to steady conditions is formally given by

Cp~Cply, @+U,) 1U,> (F:7.32a)
and modelling the vortical structures as discrete vortices we find
C, ~ (1+0.58¢ %) (F:7.32b)

Parameter dependence of Cp

The drag coefficient in oscillatory ambient flow, and so the eddy-making damping, depends in
general on, for instance: the free-surface effects, beam-to-draught ratio B/D, bilge keel
dimensions, bilge radius r, current, Reynolds number Rn, roughness ratio &/D and Keulegan-
Carpenter number KC. The free surface is relevant in waves as for in steady current and
reduces Cp. An exception is for small KC because in this case, both with and without the free
surface, i.e. double body in real infinite fluid, the vortex shedding is symmetric. B/D has a
small effect but for small B/D especially at KC<~10 (in this case B/D must be <x1). r is
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important and reduces Cp. Bilge keels are important especially at small KC and increase Cp.
At high KC, Cp is not very sensitive to the bilge-keel breadth, i.e. as in steady current, while
at small KC it increases enlarging the breadth. Concerning Rn, scale effects are small when
flow separation occurs at sharp corners like bilge keels. Without sharp corners, scale effects
are not severe for small KC and their relevance is also reduced when bilge radius is small, i.e.
it becomes close to a sharp corner. Otherwise scale effects matter.

NB: Cross-flow VIV can also occur in ambient harmonic oscillatory flow for KC>7 (which
means an asymmetric vortex shedding), as well as with combination of waves and current. In
this case for vertical structures lock-in can not occur along the whole structure at the same
time because wave effect attenuates with depth.

Waves can also mitigate the occurrence of VIV. An example is deep-draught floaters.This
needs long and high waves—> the current velocity is smaller than wave velocity and the waves
can work against the lock-in excitation by changing in time the direction of the inflow and
may avoid VIV.

Stationkeeping (F:257-258)

Thrusters and mooring systems are used to ensure precise position and motion control of ships
and floating structures. They must be designed properly to counteract the mean loads due to
waves, current and wind. They also provide a damping and lead to a restoring for the motions
in the horizontal plane, i.e. surge, sway and yaw motions, which do not have any restoring due
to gravity.

Mooring systems provide a static positioning, while the thrusters give a dynamic positioning.
The former are easier to design and realize, the latter are more flexible, both in terms of water
depth and manoeuvring. Mooring lines and thrusters can be used separately or in combination.
In the latter case one talks about thruster assisted position mooring (POSMOOR).

Here we briefly mention about the mooring systems and discuss more in detail about the
thrusters.

Mooring systems

Mooring systems are made of sets of cables connecting the vessel to the sea floor (either
laying or attached to the sea floor). An initial tension (or pre-tension) is used to keep the lines
in place. System motion consequent to the environmental conditions modifies the lines
geometry and so their tension. Thus the mooring cables have an effective stiffness, partially
elastic and partially geometric. We have discussed the restoring force due to the anchor-lines
in the case of surge motion, i.e.C, 7, =(dT, /dx)n,. They also contribute in terms of slow-

drift damping to the system, which is a viscous damping, e.g. in surge: B,,7, | 7, |.

Thrusters/dynamic positioning (F:270-277)
Thrusters can be used in set both on vessels and offshore structures. On vessels, bow and
azimuth (can be rotated) thrusters are combined with the main (stern) thruster.

bow azinTmth main g 2
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Thrusters are combined to provide restoring and damping through proper phasing of the
forces (thrust) that they produce. The damping in this case is much larger than for mooring
lines, as a rough estimate it can be about the 60% of the critical damping.

NB: The phasing of the thrusters forces is very important for the damping provided, both in
terms of absolute level and sign (positive or negative) of damping.

To design the thrusters, for example to fix the propeller disk area 4, and the number of
revolutions per second n at which they should work, open-water tests are considered, i.e. the
propeller is studied as isolated and in infinite fluid. This provides the thruster characteristics
in terms of thrust 7" and torque Q. Corrections must then be considered to account for thrust
losses connected with:

interaction with other thrusters

interaction with the hull/structure

work near the free surface

work in wave-current-wind environment

These factors can modify the inflow to the propeller and/or its jet flow. Let us discuss some of
them.

Interaction with the hull/structure:

If there is a portion of the structure in the wake of the thruster, the slip stream of the thruster is
attracted by the structure. This is known as Coanda effect.

To understand this let us first approximate the slip stream as a circular jet emerging from a
circular opening and merging with the surrounding fluid at rest:

B . T e Position of half
Velocity profile | of maximum jet
in the jet velocity

Flow toward the jet center
-> jetbehaves as a sink

The jet is characterized by high speed and brings on its motion also part of the surrounding
fluid. This means that the jet attracts the surrounding fluid, acting as a line of ‘sinks’ along its
axis. As a result, the jet spreads outwards moving downstream and the cross-sectional area
increases, 1.e. A,>A;.

NB: An estimate of the jet widening is that the point with velocity half of the maximum
sectional speed is deviated outwards of 5 degrees.

Moving downstream, as the jet spreads outwards, the velocity in the center of the jet

(maximum velocity) reduces, i.e. (V]2 )max < ( Vi )max .

Let us approximate then the jet as a line of sink points along its axis and examine what
happen if this distribution of sinks meets a wall parallel to its axis. Let us neglect the wall
boundary layer for simplicity. image

wallz‘7
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physical
sinks




The wall is an obstruction to the flux toward the inner jet because it is impermeable, i.e. the
normal velocity is zero there. It means that its presence is like to have another distribution of
sink points symmetric about the wall.

The two sink lines attract each other = the wall attracts the jet and deviates the jet axis.

If the portion of the wall is sufficiently long, the jet may reach it, this leads to frictional forces
and so to thrust losses. For a thin jet released at distance 4 from an infinitely long wall, it
takes about 6/ to reach the wall.

Velocities higher than in o
the other side of the jet ~6h Frictional losses

Jet flow

thruster

NB: For a ship, thrust losses due to Coanda effect can be up to 30%-40%. For a
semisubmersible, if a thruster is aligned to a pontoon the loss of power could be 10-15%.

Loss of efficiency due to current/forward speed:

The forces generated by a tunnel thruster are affected by the flow of a current past the
entrance and exit of the tunnel. For example, a current not in-lined with the thruster slip
stream can reduce the thrust furnished by the thruster because can deviate the jet direction. In
the case of a bow thruster on an advancing ship, thrust losses are partially due to the
interaction with the hull and partially due to the deviation caused by the ‘ ahead current’
effect. Fig. F:8.11 shows experimental results and documents large trust reduction.

Thrust
*Thrust in stili water

ool

“Uship, =Y D ol

oz~ |

Vessel speed
Thruster jet speed

Fig. 8.11. Bow thruster performance. Effect of ahead current/vessel speed.
(Chuslett & Bjgrheden, 1966.)
. . ) .
Example: If we assume a ship speed Uy;;,=1m/s, a thruster disk area 4y=3.5m” and a design
thrust 75,~130kN, the jet speed is

f T
2 SW_ ~ ~
st_pAOLj :>Pj_ —_—677’l/Sal'ld Uship/pj _—.17

Then from fig. F:8.11 we find that the thrust is 80% of the thrust in still water T,.

The thrust losses due to current, depend obviously on the current direction. This is examined
in the figure below in terms of thrust-to-thrust in still water ratio for a bow thruster in a
current with velocity equal to 0.2 times the thruster jet velocity.
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Current direction

/ Thrust

180"

Influence of free-surface effects on thruster characteristics:

Wave-induced motion affects the thruster behaviour when the thruster is sufficiently close to
the free surface.
Minsaas et al. (1986) studied wave effects using model tests in calm water. This approach is
reasonable because the wave frequencies of practical interest are much smaller than propeller
rotation frequencies =>quasi-steady approximation can be applied.
The parameters studied in the tests by Minsaas et al. (1986) are:

submergence of the propeller axis, 4

propeller radius, R=D/2

number of revolutions/sec, n

/\Q\Ih j:
U

Loss of propeller
disk area

=

The experimental information can be transferred to the case with the waves, e.g. waves
generated by ship motion, by interpreting 4 as the instantaneous submergence of the propeller
axis /(t) under local wave surface (see Fig. F:8.12). This is possible on the basis of the quasi-
steady assumption. Results are reported in figure F:8.12 in terms of the ratio between actual
thrust and thrust in open-water conditions (i.e. with the propeller fully immersed),

B, =K, (h/R)/ K, with K, =T/ pn*D*, as a function of #/R.
& Ke/Ko

109 Loss oF
PROPEL
DISK

055 OF
Patll%tum DISK AREA nit)
+
STEADY WAVE
G EHERATIGN

+
UNSTEADY LIFT

-
T 3 ot

ns T
Fig: F:8.12

Figure F:8.13 documents an important effect on S, of

loss of effective propeller-disk area S, = 4,/ 4,,

number of revolutions/sec n
For W/R>=1.5, ,=1. For h/R<1.5, the loss of disk area leads to a reduction of thrust ratio.
This effect becomes less important as » is sufficiently high because another stronger effect
becomes visible in terms of a sudden drop of f,. This is the ventilation effect. Higher n
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means higher blade loading - higher suction pressure, i.e. higher dynamic pressure = lower
static pressure. Thus, sufficiently close to the free surface, i.e. when the hydrostatic pressure is
small, a large n can lead locally to pressure lower than the atmospheric pressure in the suction
side of the blades. In this case, air can move toward the blades leading to propeller ventilation.

o ffiy N30 revs 5!

xfp n=i25revs §
—B, =41
Ag

-0.5
Loss of thrust due to reduced immersion of a bow thruster in calm
water. Model scale, ( pr = thrust divided b)-‘ihrust for deeply
submerged propeller. B, (see equation (8.39)), n = number of

Fig. 8.13.

per second, h = propeller axis submergence

ller revolutions e :
D e & face, R = propeller radius.) (Minsaas o al.,

relative 1o the free sw
1986.)

The consequences of ventilation are:

air is attracted and brought into the water during the blades rotation

entrapped air means a reduction in the blade loading and thrust reduction
The amount of air on a blade will reduce as the blade moves at higher immersion because of
the higher hydrostatic pressure. The result is a variation in time of the thrust reduction. It
means that, in the case of ventilation, the calm-water tests are not reliable to describe the
wave-induced effects, because the quasi-steady assumption in not valid.

Minsaas et al. (1986) tried to apply their experiments in regular waves for bow thrusters and
ducted propellers to different ships and sea states. They found an influence of: n, 4, R,

propeller pitch and hull form and great reduction of £, in rough sea states.

Thruster performance and dynamic positioning:

We want to determine the loads that thrusters in a dynamic positioning (DP) system must
provide to ensure proper control in waves, current and wind. We can express the total thruster
loads as

_ 6
F, =F -8, n,+C,""n,) k=16 (F:8.40)
j=1

For a dynamically positioned ship we are interested to surge, sway and yaw (k=1,2,6).
The mean loads F, must balance the mean wave, current and wind loads. The motions 7 ; are
the slowly-varying motions of the structure obtained by filtering the high-frequency motions
due to waves because these can not be controlled by a DP, i.e. they are too fast for the system
to react effectively and the related loads are too high to be counteracted.
We have discussed the mean loads connected with waves (higher-order effects) and current
(for wind they are similar to current). Let’s see the procedure to estimate the damping and
restoring that must be provided to a ship by a DP system:

1) As first step approximation the coupling can be neglected, i.e.

BijP :O,ijDP =0ifk#j
2) CkkDP,k =1,2,6, are chosen on the basis of the natural period that we want for our
DP-+ship system, for example in the range 7, =100—200s in surge, sway and yaw.

3) Bkk’DP,k =1,2,6, can be set equal to the ~60% of the critical damping in mode £, i.e.
0.6[2(M ,, + A,)27/T, ]
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Example: surge motion of a ship.
The equation for the slow-drift surge motion can be written as:

(M + 4, )ify + (B, + B, ")y +C 7y = B+ ™ (Fi8.41)
In eq. (F:8.41): M=ship mass, 4;,=surge added mass, B;;=hydrodynamic surge damping,
B,” = 1.2\/ (M + 4,))C,,”" assuming 60% of the critical damping, C,,”" = (27 /T,)*(M + 4,,)
from the resonance condition (7,; could be for instance 100s ), F,°"=slowly-varying wave

wind.

excitation force (with zero mean value), F;""“=slowly-varying gust excitation force (with
zero mean value). In this case we have not included the viscous hull damping. If the ship has

also a mooring system then an additional restoring term, say C,,"7;,, must be added. The

mooring lines will also provide damping, say B,,"7, |7, |, but this is small compared to the

damping given by the thrusters system.
An important parameter is the variance of the slow-drift motion. As we learned, this can be
obtained as

< S
O'm2 =J.[ A% du  aseq. (F:5.47)
0

C\"" (M + A4 +[(B,, +B," )

which gives a measure on how wide is the motion spectral density for a given force spectrum.
Another important parameter is the variance for the total thruster surge force given by eq.
(F:8.40). Here we discussed the total thruster forces, they must be distributed among the
single thrusters of the DP system.

An example of dynamic positioning (DP) system is given in the figure below:

1. Measurements are made for position (with satellites, hydroacoustics, etc.), heading
(with gyrocompass, GPS) and motions (accelerometers) of the vessel and for the wind
(anemometers), typically by redundant methods, and processed (signal processing)

2. High-frequency components (also those connected with waves) are filtered out and
variables of interest not measured are predicted (vessel observer)

3. Damping and restoring loads needed from thrusters are estimated on the basis of the
desired control conditions and their thrust quantified (controller/power management
system/thrust allocation)

4. The control model could need to be modified if the weather changes greatly (adaptive
law), or if required by an operator or by a specific additional control criterion
(reference model)

Dynamic Positioning Control Architecture

THRUSTER

MEASUREMENTS
SETPOINTS

L — SIGNAL

THRUST Process Plant PROCESSING

ALLOCATION
rover _7——I ! »
MANAGEMENT |
SYSTEM POWER ADAPTIVE VESSEL
LIMITS LAW OBSERVER
= - 7
=B- = s CONTROLLER
COMMANDED VESSEL MOTIONS
THRUST E I 4 i

= |
pe— . OPTIMAL
= | SETIOINT REFERENCE | e i
CHASING eIzt k .
OPERATOR

A. Serensen
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Additional remarks:
* There are circumstances when vertical motions must also be considered by the DP. An
example is given by semisubmersibles for which vertical motions have large resonant periods
(>20 s) which could be excited by the DP through the coupling between horizontal and
vertical motions. This should be taken into account by the DP so that a proper damping for the
vertical motions is provided.

* In extreme sea states the wave-frequency motion is not filtered out by the DP in the aim to
behave as good as possible in such circumstances. In these conditions it is more appropriate to
enforce a constant torque than a constant pitch/rpm (rotation per minutes) because the
provided power is smoother (see figure below). Power with sharp changes could lead to the
break up of the system. A constant torque can only be provided by electrically driven
propellers.

PITCH or RPM CONTROL

POWER

TORQUE CONTROL

{ PO\NER
VARIABLE
TORQUE

CONSTANT
TORQUE

| Summary: Current and wind loads. Viscous wave loads and damping. Stationkeeping.
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Scale effects: Issue for VIV

D Strouhal number St for a circular cylinder
St = T
U1
0% = \ Smooth —
k '
T Z=7510" /]
u b ~/ [ -
03 I: H )
13 ! N
: ~- \5"
1 e st e e m - ke o
1 ::\w:w- =] .' j T
0.2 k_ 3.10°
D
" e "
0 2 5 1° 2 5 1w 2 5 W

Galloping (Dynamic instability)

Uc

%ﬂ' y 772’ F‘y

Velocity seen in the
body reference frame

U

0

| Effective inflow velocity |

R

Riser bundle in a current (Overvik’s model tests)

Pipe bundle

Galloping




Stability of Single-Point Mooring System (Whichers 1988)

Stability criterion

s(m)
V,,=60kn 4
120 —\
A
T Unstable
U,s=1m/s
S 80 +

40% Thrust
shi bow
P Stable
40 -
Propeller is used to
provide thrust for | B » T
stern stabilizing the system
o i 124
o° 45° 20"

Stability of Single-Point Mooring System (Whichers 1988)

Stability criterion

s(m)
V,,=60kn 4+
120 1Unstable
o
U=1mt 70%
=1m/s
c 80 1 Thrust
Stable
40 -
Propeller is used to
provide thrust for | E » T
stern stabilizing the system
o i O
o° 45° 20°

Stability of Single-Point Mooring System (Liapis 1979)

Configurations with better stability behavior

|
C lr ship
{a




Currents are
relevant for
deep water

development

Oil and gas production in deep and ultra-deep water
Challenges

Wave effect: Current effect: Length effect: Temp effect: Pressure effect:
x [ w [T 1A « T =\
N ol - g ]
E 5 I 5
g | 2 | : g
l I3 | b
|
{35 1 1 ! [ A I )
Wave effect Velocity m/s Temperature Pressure
Current acting through Increase weights and Low ambient Increased external
the whole water loads on sub systems temperature, below pressure — collapse of
column — increased : 0° C may occur. risers and pipelines.
importance May need buoyancy :
elements (increased Increased risk of - \yater intrusion in

Strong and complex
current profiles (x,t)

drag) hydrate formation.

electrical and hydraulic
systems.

Complex installation &
Internal waves retrieval operations. Depressurisation

access limited.
Increase importance

of current loads &
loads effects (VIV).

The loop current in the Gulf of Mexico
[ ol p -’-.! £ /;f’.
v’




Loop current rings in the Gulf of ;
Mexico on the Na Kika field =

*  Water depth 1770-2300 m
» Typical background current velocities is
in the order of 0.2-0.5 m/s

Condition Free surface At 500 m depth At 750 m depth
100 year winter 0.46 m/s (0.9 kts) 0 0

storm

100 year hurricane || 1.75 m/s (3.4 kts) 0 0

100 year loop 1.95 m/s (3.8 kts) 0.5 m/s (1.0 kts) 0.3 m/s (0.6 kts)
current ring event*

*The loop current ring extends down to about 1000 m

Internal waves
Internal waves may form if the water is stratified, i.e. contains layers with different density
We may see the internal waves on the free surface :

Strait of Gibraltar. Internal waves
(wavelength 2 km) Artificially colored

Act as a strong
localized current with
large loads on a typical
riser or mooring system

Difficult to monitor and
forecast

Photo: ESA

Examples of Present Challenges

* Internal waves may cause problems for
marine operations

« Affect acoustic propagation in the ocean

Lufeng in the South China Sea

Internal waves are governing in design

Water

] depth at
Drilling vessel loading

n buoy:
~vessel anchor lines L] —— —= ~300m

“—APL loading buoy

buoy anchor lines



Lufeng — Internal waves
Depth(m)
0

» Characteristic time scale of Return period (year)

internal waves in the South China e g0
Sea is 20 minutes )

* Act as a static current

The typical ambient current velocity on the
Lufeng field is in the order of 0.2-0.4 m/s,
with maximum values up to 1.0-1.2 m/s.

-300¢

-2 0 3

Horizontal current speed (m/s)

Morison’s equation

4z
Incident waves —_—
ol
D X
dz I y /_.. dF
SIS s

Force per unit length

e From Morison’s eq. (using linear waves)

e More physical behaviour
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Time instants of maximum mass and drag force

MAXIMUM MAXIMUM
MASSFORCE DRAGFORCE

Intersection between two structural members

* Froude-Kriloff loads: One must integrate on the correct wetted surface

* The Froude-Kriloff force in Morison’s equation can be associated with cancellations
of large Froude-Kriloff pressures

Morison’s equation for moving body

Incident waves
B —

= )

m

NEE

dzI —- dr
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Other applications/generalizations of Morison’s equation

Inclined cylinders Cylinders with axis not in the
plane of wave propagation

Incident waves Incident waveS/\
_ _—
dF;

dF

N @%,

Inflow velocity & acceleration
components along N are used
in the Morison equation

Relative current number
U

u/u,>1

m

In this case, the flow will never return towards the body

0

Always flow separation

Flow separation around hemisphere: in current and waves

10 -
KC

Flow

aby ® K [ [ < .
separation
05 / \
4 8888 x ae @ a a

as 10 s U /U,
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Small KC-number separated flow

Graham: o : CD oc KC" = 25—_”

separation point 372- - 25
body
Flat plate Rectangle Circle
> | S=0 > o=r/2 <—>O5=7z
n=-1/3 n=0 n=1
C,=8.0KC™" C,=02KC
P (Subcritical, Ii‘C <KC<10)

KC limit for flow separation

Drag coefficient of circular cylinder with subcritical flow:

in waves
2.4 0 Flow separation
2.2
>0 \ .
A L
18 ™
>
16+ . H
1.4- xx
x
1.2 * L x \
104 (,‘,) 1‘rom‘lmcar . o C,=0.2KC
| viscous force . =¥
32 1 *
. _ 37 (2R )" (zRnY"' 1(zRn)" V.
G ’21«'“ KC) +[\ I\'('] "alke ‘ J e
06+ % .
| : e
04 - —— \ 71— KC
0z 04 0QO® 0810 20 30 40 60 80700

Oscillatory flow past a cylinder at high KC number
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Oscillatory flow past a cylinder at high KC number

The returning vortices increase the
effective inflow velocity

U.(1)

u

Vortex-induced average velocity
at the cylinder center

KC-dependence at high KC
Assuming discrete vortices

o 2
S [“:jﬂ} 4 [1+0.58exp(~0.064KC) |

Experiments
© (IRCULAR CYLINDER

o DIAMOND CYLINDER

15 + FLAT PLATE
1 e
051
G T T L
10 20 30 40 50 KC

Wave and current loads on risers

Fluid accelerations and
velocities influenced by the
platform

Slow-drift velocities comparable
to current velocities

Pierce STP System



Current and waves are relevant for
Marine Seismic Survey Systems

Pump tower in ENG membrane tank

. » ‘,;M er

Vortex shedding frequency f, must be
in the vicinity of a structural natural
frequency

Both cross-flow and in-line VIV
must be considered

n<a a |

Which factors influence
the C,; and C, coefficients
in Morison’s equation?

1. Side wall effects

2. Interaction between
structural members

Does VIV matter in
the oscillatory flow of
sloshing waves?

St=fD/U,_

0. (
.

oo looc
0.2 -

Rn

B T T T
02 5 0 2 5 02 5 10

Example when waves can avoid lock-in: deep-draft floater

4

Anchor line

y\co nnection

T\ (Sway) =176 sec

Hp: no incident waves

Strouhal number=0.13 for two
cylinders in tandem (S/D=3.0)

|

T,=154 sec when U=1 m/s

Cross-flow VIV dangerous
for mooring-line safety

Long and high waves can avoid VIV because their velocities
can be larger than current velocity and avoid lock-in excitation
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Thrusters

m on ships

(e F
g |

bow azimuth main

----------- on offshore structures

Free-surface and wave effects on propeller performance

I

(o)
U,

Number of propeller
revolutions per second

Propeller disk area

Thrusters: slip stream as a circular jet

u=0 /\
\ ______ —\— —‘ \ > Position of half

- ') Velocity profile | of maximum jet
______ in the jet velocity

V2272227,
S !
T
S '
N 1

1

1

’l

1

1

1

1
Q

Flow toward the jet center
-> jet behaves as a sink
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Thrusters: slip stream as a circular jet

\\\\\\\\\\\\\\\\§

Line of sinks

v,
7/////////2

Thrusters: jet-wall interaction

image

inks

wallé

0000000000000
physical @
sinks

Thrusters: Coanda effect

Velocities higher than in
the other side of the jet

~6h Frictional losses
N SN N
”
h -
thrust _--" -
I - Jet flow
thruster
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Bow Thrusters: thrust losses due to ahead current/ship speed

hrust
B'Ml n ST Wi

Lol ol

Hp: U,

=1m/s, disc area A;=3.5 m?,
thrust in still water 7;,= 130KN

T.
T, =pAV> =V = | =6m/s
! ! P4, i

hip

/v,

Fig. 8.11. Bow thruster performance. Effect of ahead current/vessel speed.
(Chislett & Bigrheden, 1966.)

(23
3 .
TR speed ship

|
i 0 o8 2
=>U,,/V; =017 @ vessel -U
Thruster 5

Effect of current velocity on thruster capacity

Current velocity=0.2Thruster jet velocity

Thruster
and thrust | | Current direction

~.
{ Thrust
¥ ; Thruststill water
% i
]
\ t 80*
I

S

1807

Free-surface and wave effects on propeller performance

4
[10

\45\// 7
L
Loss of propeller
disk area

e
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Free-surface and wave effects on propeller performance

Thrust ‘ Minsaas et al. (1986) ‘
JLLL |
Thrustopen water
LOS5 OF
PROPELLE

msx Lass OF

PROPELLER [N5K AREA
s

STEADY 'WAVE
GEMERATION

+
UNSTEADY LIFT

Thrusters: Thrust losses due to free-surface effects

| Minsaas et al. (1986) ‘

o fB..n=50revs/s Thrust

® ﬂl ,n=125revs/s ﬂT - ThruStopenwater
= ﬂo - Al / AU

-0.5 ] [ l!.') {5 2.-'3 h/R

propeller ventilation

Propeller Ventilation
(Califano & Kozlowska, 2009)




Surge equation of dynamically positioned ship

(M+AH)7'7'1 +(B11 +BlD1P)771 + Py = B (t)+EWind (t)

2
CPP = [?—”J (M+4,) I:> T,=100s, for example

n

BSP _ 1.2\/(M i A“)Cﬁp :> i.e. 60% of critical

damping, for example

Dynamic Positioning Control Architecture

THRUSTER

SETPOINTS MEASUREMENTS

SIGNAL
THRUST Process Plant PROCESSING
ALLOCATION
POWER A | 4] .
MANAGEMENT
SYSTEM POWER ADAPTIVE VESSEL
LIMITS LAW OBSERVER
el 7/ | v e
= CONTROLLER |«
COMMANDED VESSEL MOTIONS
. THRUST 7
5 - OPTIMAL 4
Em_n;l SETPOINT |_> REFERENCE — y
CHASING MODEL L
OPERATOR
A. Sgrensen

Dynamic positioning of ships and
floating structures in extreme conditions
= PITCH or RPM CONTROL

l POWER
i< TORQUE CONTROL
-

Nonlinear robust
controllers for Extreme
Sea Conditions

N

VARIABLE
TORQUE

"

CONSTANT

286 TORQUE
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Position and motion control

« Station keeping models
» Marine operation models

« Slender structures

» Multibody operations
(thrusters are used)

« Manoeuvring models

* Linearized about some U,

« Sea keeping

* Motion damping
(rudders are used)

_J

Y
High speed tracking/Transit

» Low speed tracking

> Marked pos|

> Station keeping
| |

ition

Speed [knots]

I |
0 1 2

A. Serensen

Summary

Current and wind loads. Viscous wave loads and damping.
Stationkeeping.

Viscous loads

Relevant Parameters

[ Rn=UD/v ]
k/D
Current & wind loads Body form

steady incident flow

- Free surface

Sea floor
Inflow nature & direction

_UR:U/.an
KC=U,T/D

Relative current n.=U, /U, |

Viscous wave loads
oscillatory incident flow
(also combined with current)

Practical relevance: ’slender’ marine structures

platforms,
bridges, ships,....

Risers, cables, jackets, pipelines, columns and
pontoons of semisubmersibles and TLP, spar
submerged

deep draft floaters,
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Steady uniform inflow past a blunt body

Boundary layer (BL): »v
Body
surface

Criterion for flow separation:
082u/ayz| . >0:>5p/8x|y0 >0
V= -

Sl

Turbulent flow leads to

Larger fluid momentum exchange
*Larger 0

*Largerou/oy|

Spatial delay in flow separation

Laminar vs turbulent flow:

Flow regimes: subcritical, critical, supercritical, transcritical

Steady uniform inflow past a blunt body

AB = separation points

Through the separation points ( ) .-

vorticity i i i ' » )
y is sheq tror_n the body in NS n

the form of vortices, i.e. wake i

~ ~ » 11
From Von Karman: only staggered P 4 L4 é
. . — h Stable solution if ///=0.28
vortex shedding is stable
p) b >
— Strouhal number S¢=£,D/U e I

Wake interaction effects: fishes, fish farms, pipe clusters, etc.

Steady uniform inflow past a blunt body

F,(t)=F,+|F, |cosQRn f.t + )
F,(t)=F,+ A, cos(4xft+ )

Mean forces Oscillatory forces
Drag force F), :
« friction force (shear stresses)
* pressure force (flow separation)

* o and /J change along the 3D body
->Small correlation length

-> Cancellation effects for the total 3D
Lift force F, : loads

Zero for a single body simmetric .
bout infl direction. in infinit * They can cause resonance problems:
about inflow direction in infinite VIM & VIV

fluid, e.g. circular cylinder

Force coefficients to be found empirically
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Mean Current loads on ships and offshore structures

To find the loads, it is usually assumed that:
*The longitudinal current component causes shear forces
->Drag force
*The transversal current component causes flow separation
> Transverse loads, from cross-flow principle

Ships Offshore structures

\

Long.: £ = f(C,(Rn,k/ D), p,U,S, B, k) F, = f(C,,p.U*,D)
Transv.: £y, F,, = £(Co(x), p.U.2. D(x), )
(Current causes also

Munk moment)

Parameter analysis for Cp, C;

Vortex induced vibrations (VIV)

General features Lock-in’s consequences:
* Resonance phenomenon caused by * Greater correlation length
oscillatory forces due to vortex shedding * Greater vortex strength

* f,locks onto f, : VIV changes f, and
in water also f,,
« Relevant parameters: * The greater 4 the wider lock-in region
St=f,D/U, U,=U, /I £,.D * Oscillations are self-limiting
* Greater in-line (drag force)

* Nonlinearities. Hydroelasticity.

VIV types

0SS~ VIV TV 1 >
Cross-flow VIV studies
U,

. Y, .
. %»7 In-line VIV * VIV practical relevance

» How to estimate VIV
Roughly: (scale effects issue)

Cross-flow VIV: £, close to f, * How to suppress VIV
In-line VIV:  2f, close to f,

Cross-flow VIV is associated with larger
oscillation amplitudes 4 and larger Uj,
than in-line VIV. They can couple.

Galloping

* Dynamic-instability phenomenon - negative damping

« It occurs when forces are quasi-steady, i.e. oscillatory forces small (Uz>10)
* Oscillations are not self-limiting

* Relevant parameter: Uy

Oscillatory incident flow
Morison’s equation Boundary layer
* Flow separation less easy than in a current
* No separation at very small KC
» Symmetric vortex shedding for KC<7
* Separated flow at small and large KC
* C,, parameter analysis

« It involves a mass and a drag force
* Applicability

Wave and current environment

» Examples of when they are relevant
* VIV can be caused
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Stationkeeping
« For position and motion control of ships and offshore structures
* Aimed to counteract mean wave-current-wind loads
* Provides damping and leads to restoring in the horizontal plane

Mooring systems  vs Thrusters
(static positioning) (dynamic positioning)
» Easier to realize * More flexibles

* Provide larger damping

Parameter analysis of performances
How does a DP work
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