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ABSTRACT 
 
When a body is slowly oscillating in waves, there exists another source 
of added mass and damping, i.e. the so-called wave drift added mass 
and wave drift damping. They are resulted from the nonlinear 
interaction between the slow oscillations and the waves. Different from 
the conventional added mass and wave-radiating damping, they are 
quadratic forces in wave amplitude. The wave drift added mass is 
measured in the present work from a free decay test or a forced slow 
oscillation test. The model is either a circular cylinder or an array of 
four circular cylinders. Experimental parameters are systematically 
changed to examine their effects on the wave drift added mass. A 
calculation based on the potential theory is also carried out. Measured 
wave drift added mass are presented and compared with the calculated 
results in the present work. 
 
KEY WORDS: nonlinear wave loads, drift motion, wave drift 
damping, wave drift added mass. 
 
INTRODUCTION 
 
Ocean structures are usually constrained by mooring systems, which 
supply relatively weak restoring forces in horizontal plane. Under the 
slowly varying drift forces exerted by ocean waves, these structures 
may undergo low-frequency resonant oscillations in the horizontal 
motion modes, i.e. surge, sway and yaw.  
Conventional added mass and damping can be obtained by solving a 
linear radiation problem in which the body of the structures is forced to 
oscillate in the calm water. In the case when the frequency of the 
resonant motion is very small, the wave-radiation damping is negligibly 
small, while the added mass is the same order of the displaced water 
mass. However, with the presence of the incident waves, there exists 
another kind of added mass and damping that is caused by the nonlinear 
interaction between waves and slow oscillations. As part of the 
nonlinear wave loads, their magnitude is proportional to the square of 
the wave amplitude, which is different from the conventional added 
mass and damping, and they are called wave drift added mass and wave 
drift damping respectively. Recently many studies [2~7, 10-~15] have been 
made to evaluate and measure the wave drift damping which is much 
more significant compared with the conventional wave-radiating 

damping and plays a key role in slow drift motions. On the other hand, 
wave drift added mass is considered less important and relatively less 
attention has been paid to it. But it is of the same order in magnitude as 
the wave drift damping. Since it is important to simulate the time series 
accurately for designing a dynamic positioning system. It is worthwhile 
to know more about the wave drift added mass because it might change 
resonant frequency and affect time series of the slow drift motion of the 
floating structures. For example, in one typical free decay test of our 
experiments, it is observed that the resonance frequency is shifted from 
0.553 rad/sec to 0.532 rad/sec due to the effects of the wave drift added 
mass. 
In this study, the wave drift added mass is measured by a series of 
experiments, which consists of two kinds of tests, i.e. a free decay test 
and a forced slow oscillation test made in waves. The model of the 
experiments is either a single circular cylinder or an array of circular 
cylinders. Experiment parameters, such as the draft of the models, wave 
amplitude and length, the frequency of the forced oscillation, are 
systematically changed to examine their effects on the wave drift added 
mass. A method to calculate the wave drift added mass is discussed in 
the present work as well. The calculation is based on the potential 
theory. A coordinate system following the slow oscillation is adopted 
and two time scales are used to describe the wave motions and slow 
oscillations respectively. It is found that higher order potentials in terms 
of slow frequency make contributions to the wave drift added mass 
although it is difficult to solve these potentials. Comparison between the 
experimental and calculated results is made to verify the present theory. 
A description of experiment arrangement and a brief discussion on the 
analysis method of measured data are presented in the next section. It is 
followed by a section to discuss the method of calculation. 
Experimental results are shown and compared with calculated ones in 
the fourth section and concluding remarks are addressed in the last 
section. 
 
EXPERIMENT ARRANGEMENT 
 
Experiments to measure the wave drift added mass are carried out in the 
Ship Maneuvering Research Basin belonging to Tokyo University of 
Mercantile Marine, which is 54 meters long and 10 meters wide with a 
depth of 2 meters. According to our previous experience, sufficient data 
can be measured and recorded in this size of towing tank before the 
sidewall reflection affects the experiment results. 
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Experiment Models  
 
A single circular cylinder and an array of four circular cylinders are 
used as models in the experiments. The radius of cylinder, denoted by a, 
is equal to 0.125 meter and the draft, designated by d, changes from a to 
3a. When the cylinder array is used, the cylinders are located at the 
corners of a rectangular, which is L=10a long and B=5a wide. The 
principle particulars of the models are presented in Table 1 and 
schematic figures of the cylinder array are shown in Fig 1. 
 
Table 1. Principle particulars of models 
 

Distance between 
cylinders (m) 

Model Radius 
a (m) 

Longitude  Transverse 

Draft  
d (m) 

Total 
weight 
W (kg) 

Single 
cylinder 

   ____    ____ 9.190 

Cylinder 
array 

 
 
0.125 1.250   0.625 

0.125 
0.250 
0.375 62.230

 
Setting-Up Of Models 
 
As shown in Fig 2, the models are hung up by four wires, which have an 
average length of about 4.5 meters. The length of the wires is adjusted 
according to the draft of the models. The weight of the wires is 
negligible when the natural frequency of the whole system is evaluated.  
In order to make a forced oscillation, the models are connected to a 
carriage through soft springs, the spring constant of which is 
0.001~0.0015 kgf/mm in the case of a single cylinder and 0.006 kgf/mm 
for the cylinder array. The springs are used to absorb linear wave forces. 
The carriage is driven to move along a pair of rails by a servomotor so 
that it leads the models to oscillate slowly in surge direction.  
The displacement of the models is measured by an optical position 
sensor system. A pair of cantilever load cells, which connects the soft 
spring and the carriage, is used to measure the forces acting on the 
models. 
 
Experiment Conditions 
 
Two kinds of tests are performed, i.e. a free decay test (denoted as FD) 
and a forced oscillation test (designated as FO). In the FD tests, the 
models are disconnected from the carriage and the forces acting on the 
models are not measured. Only the displacement of the models is 
measured.  
 
Table 2. Range of experimental parameters. 
 

Model  Single cylinder Cylinder array 

Wave amplitude ζa (m) 0.020, 0.030, 0.040, 0.050, 0.060 
Wave frequency ω (rad/sec) 3.96~8.85 
Amplitude of forced oscillation 
ξ (m) 

0.100 

d=3a 0.641, 0.804, 
1.055 

0.691 

d=2a 0.772 0.929 

Frequency of forced 
oscillation 
σ (rad/sec) 

d=a 1.162 1.137, 1.287, 
1.444 

 
When FO tests are performed, the models are connected to the carriage 
through the soft springs and cantilever load cells as mentioned in the 
previous subsection. Both the displacement and the forces are measured. 
The frequency of the forced slow oscillation is set to be a little bit 
higher than the natural frequency of the whole test system. 
Approximate forty FD tests and four hundred FO tests are performed in 

a systematic combination of experimental parameters, i.e., the wave 
amplitude and frequency, amplitude and frequency of the forced 
oscillations. Shown in Table 2 is the range of these parameters 
 
Restoring Force Coefficient 
 
The models are hung up by four wires as mentioned previously. The 
whole experiment system can be treated as a pendulum. Therefore, a 
restoring force will be generated when the model departs from its 
equilibrium position. In order to abstract added mass from the measured 
data accurately, it is necessary to measure this restoring force precisely. 
This is done by pulling the model from and then back to its equilibrium 
position, step by step, through a ring-type load cell. At each step, 
distance x, from the equilibrium position and the restoring force fr are 
measured. It is assumed that the restoring force fr is proportional to the 
distance xs in the range of the forced oscillation amplitude, i.e. 

ξ≤= xCxrf if . The measured data are plotted and a straight line is 
drawn by least square method. The restoring coefficient C is determined 
from the slope of the straight line. The results are shown in Table 3 for 
each draft. The measured restoring coefficient will be used in the 
dynamic analysis later. 
 
Table 3. Restoring coefficient of the model system 
 

Single cylinder Cylinder array  
Draft  
d (m) 

Ballast weight  
W (kg) 

Restoring 
coefficient 
C (N/m) 

Ballast 
weight 
W (kg) 

Restoring 
coefficient 
C (N/m) 

12.0 6.79 
15.0 12.85 

 
0.375 

20.0 23.74 

 
20.0 

 
20.91 

0.250 6.0 7.22 0 30.40 
0.125 0 7.50 0 89.29 

 
Analysis Of Experimental Data 
 
The method to analyze FD (free decay) tests is a routine work now. 
Detail discussion of it will be omitted here. Only the equations to 
evaluate added mass are given below: 

( )bms MMCM s +−= 2σ                     (1a) 

( ) sbmw MMMCM w −+−= 2σ           (1b) 
where Mm and Mb are mass of the model and ballast respectively. C is 
the restoring coefficient mentioned in the previous subsection while σs 
and σw denote the frequency of the free decay tests in still water and in 
waves respectively. In Eqs. 1a and 1b, Ms is the added mass measured in 
still water tests while Mw is the change of added mass due to waves or 
the so-called wave drift added mass that we are looking for. 
To analyze the measured data of FO (forced oscillation) tests, the 
method used by Kinoshita et al. [8][9] is adopted. The equation of forced 
low-frequency oscillations in still water and in waves can be expressed 
as follows respectively, 

( ) sdsbm FCxxxSCxMMM −=++++ &&&& ρ2
1                (2a) 

( ) ( )
( ) ww

ddwsbm

FCxxDuxux

CCSxMMMM

−=++−−

+++++
&&&

&& ∆ρ2
1

                (2b) 

In Eqs. 2a and 2b, x denotes the measured displacement of the 
oscillation while over dot and double over dot represent corresponding 
velocity and acceleration respectively. Fs and Fw are forces measured by 
the cantilever load cells in calm water and in waves. Dw designates the 
wave drift damping and ρ is the density of water. u is the orbital 
velocity of water particle. S represents the frontal area of the cylinder. In 
the case when cylinder array is used as the test model, this area should 
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be multiplied by the number of cylinders.  Cd and ∆Cd denote the drag 
coefficient and the increase of the drag coefficient due to waves 
respectively. According to our previous experience, the contribution 
from the drag is about 2% of total force. Hence, terms associated with 
Cd and ∆Cd are neglected in the present work. Since the other motion 
modes are not significant according to the observation during the tests, 
the effects of coupling motions are not included in the present work. 
Then, the Fourier analysis is applied to the recorded time histories of the 
displacement x and force Fs (or Fw). The low-frequency components are 
filled out and can be expressed as 

( ){ }ti
wswswswsws eiBAtBtAx σσσ −+=+= ,1,1,1,1, Resincos    (3a) 

( ){ }ti
wswswswsws eiBAtBtAF σσσ −+=+= ,2,2,2,2, Resincos    (3b) 

where A1, B1 and A2, B2 are Fourier coefficients of displacement and 
force obtained from the Fourier analysis, respectively while σ denotes 
the frequency of the forced oscillation. The subscript s or w means that 
tests are carried out in still water or in waves respectively.   
Substituting Eqs. 3a and 3b into Eqs. 2a and 2b, the added mass in calm 
water is obtained by 

( ) ( )bm
ss

ssss
s MM

BA
BBAACM +−

+
+

+= 2
1

2
1

2
2121

2 σσ
                 (4a) 

On the other hand, the wave drift added mass is determined by 

( ) ( ) sbm
ww

wwww
w MMM

BA
BBAACM −+−

+
+

+= 2
1

2
1

2
2121

2 σσ
          (4b) 

 
CALCULATION METHOD 
 
The problem considered here is that an assembly of circular cylinders is 
slowly oscillating in a train of regular waves. The frequency of the 
forced slow oscillation is designated by σ  while the wave frequency is 
given by ω. It is assumed that σ is much smaller than ω. The depth of 
the calm water is equal to h. The radius of the cylinders is a and the 
draught is d. The cylinders are restrained from the linear responses to 
the incident waves. A Cartesian coordinate system following the forced 
slow oscillation is adopted to describe the problem. The oxy plane 
coincides with the undisturbed free surface while the z-axis is pointing 
upward. The x-axis is in the direction of the slow oscillation so that the 
slow oscillation is considered as a surge motion. The displacement and 
velocity of it are represented by }Re{)( tieit σξξ −=  and 

}Re{)( tiet σξσξ −=&  respectively. Here, ξ is the amplitude of the slow 
oscillation, which is assumed to be a real number without losing 
generality since the incident wave amplitude ζ0 can be considered 
having a phase lag referring to the moving frame. The coordinates of 
oscillating frame is related to a space-fixed frame, say OXYZ, as 
follows: 

( ) zZyYtxX ==−= ,,ξ                             (5) 
The time derivative in the space-fixed frame can be transferred to the 
moving frame by chain-rule differentiation: 

( ) xttdtd ∂∂−∂∂= ξ&                                   (6) 
The advantage of using a moving frame is that it is not necessary to 
assume the amplitude of the slow oscillation to be small so that the 
model will be closer to the practical slow drift motion of the ocean 
structures.  
The fluid is assumed to be inviscous and the flow to be irrotational. 
Therefore, there exists a velocity potential Φ (x, t). As mentioned before, 
the frequency σ of the slow oscillation is much smaller compared to the 
incident wave frequency ω. It is natural to use two time scales to 
describe these two kinds of motions. Following the approach of 
Newman’s [12], the velocity potential can be expressed by the following 
perturbation expansion up to the quadratic order in wave amplitude ζa: 

( ) ( ) ( ) ( ) ( ){ ( )[
( ) ( )( ) ( ) ( )( ) ( ) ( ) ]}...

...Re,
0

2
)(

1
)(

1

0
0

21

++++

+++=
−−−−+−+

−−

tittSi
j

ttSi

titiS

eee

eet
σ

ξ
σ

ξ
σ

ξ

σ
ξ

φφφ

φξσφφ

xxx

xxxxxxxΦ
(7) 

In Eq. 7, the number in the subscript indicates the order in wave 
amplitude while the letter ξ denotes that the potential is related to the 
slow motion. Superscripts are used if necessary to indicate harmonic 
time dependence on the wave frequency. Here, potentials associated 
with double wave frequency are omitted since they will not contribute 
to the wave-drift added mass and damping. The phase function S(t) is 
defined as 

( ) ( ) βξω cos0ktttS −=                                   (8) 
where k0 is the wave number of the incident waves and β is the incident 
wave angle. This definition comes from the incident wave potential, 
which is the only specified component in the first order potential φ1(x), 
expressed in the moving frame: 

( ) ( ){ }tiS
II et −= 11 Re, φΦ x                                  (9a) 

( ) ( ) ( )]sincosexp[
cosh

cosh
0

0

0
1with ββ

ω
ζφ yxik

hk
hzk

i
ga

I +
+

=x  (9b) 

where g is the gravitational acceleration.   
The potentials of all the orders are governed by the Laplace equation in 
the fluid domain and satisfy an impermeable condition on the sea 
bottom z=-h and the body surface S0. On the free surface, the total 
velocity potential, Φ(x, t), satisfies a nonlinear boundary condition at 
the exact wave elevation z=ζ(x, y, t). It is transformed to the mean free 
surface, z=0 by a Taylor expansion. Substituting the perturbation 
expansion of the velocity potential expressed in Eq. 7 into the free 
surface condition and resorting terms with the same order and time 
dependence, it yields the free surface condition for each order of 
potential on z=0. At the far field, i.e. a large distance from the body, a 
suitable radiation condition of outgoing waves is satisfied by each order 
of potentials except for the incident wave potential. Detail discussion on 
the boundary value problems and their solutions is referred to our 
previous work [1]. 
Once the potentials are solved, the hydrodynamic pressure p can be 
obtained by the Bernoulli equation. The wave loads are evaluated by the 
integration of the hydrodynamic pressure along the instantaneous 
wetted body surface 0

~S , which consists of two parts, i.e. a mean wetted 
body surface S0 under the calm water and a surface wetted by the wave 
elevation ζ along the water line C0 of the body. 

( )

( )( )
( )( )

( ) ( )[ ]dlgtg

dsnt

dsngzt

dspntF

tztC xtt

S ixt

S ixt

S ii

ΦΦΦΦΦξΦΦρ

ΦΦΦξΦρ

ΦΦΦξΦρ

122
0

0

0

0

2
1

~ 2
1

~

−∇⋅∇+−+

∇⋅∇+−−=

+∇⋅∇+−−=

=

∫
∫
∫
∫

&

&

&

 (10) 

where the wave elevation ζ expressed as 
( )[

( )( ) ( ) ] ( )3
0

2
1

11

1

ΦΦΦξΦξΦΦ

ΦΦΦξΦζ

Otgtg

tg

ztzxxztzt

xt

++−−

∇⋅∇+−−=

=
&&

&
        (11) 

has been applied. The subscript i=1, 2, and 6 denotes the force 
component in surge, sway and yaw direction respectively and ρ 
represents the density of the fluid. 
The wave forces are expanded into a perturbation series in the same way 
as the velocity potential with two time scales, i.e. 

( ) ( ) [{
( ) ( ) ( ) ( ) ( ) ]}...

...Re
0

211

0
0

21

++++

+++=
−−−−+−+

−−

ti
i

ti
i

ti
i

ti
ii

ti
ii

eFeFeF

eFFeFtF
σ

ξ
σω

ξ
σω

ξ

σ
ξ

ω σξ
        (12) 

The expansion of the potential shown in Eq. 7 is then substituted into 
Eq. 10. By comparing with Eq. 12, forces of each order can be obtained.  
We are interested in the force components with low frequency 
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associated with slow oscillation in the limiting case of σ being 
asymptotically small. In Eq. 12, F0iξ is the linear force in the i-th 
direction per unit velocity of slow surge oscillation and is related to the 
linear added mass A0iξ and wave-radiating damping B0iξ as below: 

( ) ∫=+−−=
0

0000 S iiii dsniBAiF ξξξξ φσρσ                   (13) 

In the limiting case that σ tends to zero, the linear radiation potential φ0ξ 
of the slow oscillation tends to satisfy a rigid wall condition on the free 
surface. The solution of it is a real function. Hence, as σ tends to zero, 
the linear wave-radiating damping B0iξ vanishes asymptotically while 
the added mass tends to  

∫=
0

00 S ii dsnA ξξ φρ                                      (14) 

When i=1 in Eq. 14, A01ξ is equivalent to Ms in the experimental results.  
On the other hand, )0(

2ijF  is a force component in quadratic order of 
wave amplitude, which can also be separated into two parts, i.e. in 
phase with the acceleration and the velocity of the slow oscillation 
respectively. 

( ) ( )ξξξ σ iii BAiF 22
0

2 +−−=                        (15) 
The real part of it is involved in the calculation of the wave-drift 
damping B2iξ, which is given in Newman’s paper [12]. We are interested 
in the imaginary part of the force component )0(

2ijF , i.e. 
( ) ( ) ( )[{

( ) ] ( ) ( )( )[
( ) ( )

] dlni

ii
g

dsn

iA

iz

Ci

Si

*
11002

1
01

*
1

*
112

1*
1102

1*
111

*
111

2*
11

12
10

20
0

22

)()

()(
2

)

(Im

0

0

φφνφφσνφφφ

φφωφφσφφφφσω

φφφωρφφ

φφφσφρσ

ξξξ

ξξξ

ξξξ

ξξξξ

++∇⋅∇−

∇−∇⋅∇−++

−+∇⋅−

∇+∇⋅∇+−−=

−+

−+−

+

∫

∫

    (16) 

When σ tends to zero, we have 
( ) ( )

( ) ( )
111

011

σψφφ

ψφφ

ξξ

ξξ

=−

=+
−+

−+

                  (17) 

Noticing the solution of ( )0
20 and φφ ξ  to be real, the wave-drift added 

mass A2iξ is evaluated by 
( )[ ]{

( )[
] }dln

i
g

dsniA

i
i

C

S ii

*
1102

*
110

2*
110

*
11

0
22

0

0

2
2

Im

φφφ

φφφνφωψψωρ

φψφρ

ξ

ξ

ξξ

∇⋅∇−

+++

∇⋅∇+−−=

∫

∫
               (18) 

in the limiting case of asymptotically small σ. When i=1 in Eq. 18, A21ξ 
is equivalent to Mw in the experimental results.  
It can be observed that the higher order potentials ψ1 and )0(

2ξφ  make 
contribution to the wave-drift added mass. This contribution is not 
included in the present work since these two potentials remain unsolved. 
 
RESULTS AND COMPARISON 
 
Experimental results are presented and compared with calculated results 
in this section. 
First, the effects of the wave amplitude are examined. The ratio of wave 
drift added mass to the added mass in still waver, i.e. Mw/ Ms, is plotted 
against nondimensional wave amplitude ζa/a in Fig 3 for the cylinder 
array. The frequency σ of the forced oscillation is 0.929 rad/sec 
corresponding to the draft d=2a or 1.162 rad/sec for draft d=a 
respectively. The normalized wave number k0L= 5.0 in Fig 3a and k0L= 
6.0 in Fig 3b. In these figures, parabolic curves (dashed or dotted lines) 
of b(ζa/a)2 have been drawn to the corresponding experimental data. 

The coefficient b is determined by the least square method. It is 
observed that the ratio is generally proportional to the square of the 
wave amplitude. This confirms that the wave drift added mass is a 
quadratic quantity of the wave amplitude since the added mass in calm 
water is only linearly related to the forced oscillations and not relevant 
to the incident waves. 
Next, the effects of the wave number are considered. The wave drift 
added mass Mw normalized by Nρπaζa

2 is plotted against wave number 
k0 in Fig 4. Here N is the total number of cylinders. The wave number is 
nondimensionalized by the radius of cylinder for the case of single 
cylinder (Fig 4a) while normalized by the longitudinal distance L 
between cylinders for the cylinder array (Fig 4b). In the case of single 
cylinder, the draft of the cylinder d is 3a and the frequency of the forced 
oscillation σ is 0.641 or 0.804 rad/sec. In the case of cylinder array, σ 
=0.929 rad/sec when d =2a and σ =1.137 rad/sec when d =a. Results of 
FD tests are also presented in this figure. The agreement between FD 
and FO tests is good. Calculated results, represented by lines, are 
presented in these figures to compare with experimental ones. It can be 
seen that they agree fairly well with each other in general tendency 
especially in the case of cylinder array although departure between these 
two results can also be observed. Since the linear response of the 
models to the incident waves and the contribution of higher order 
potentials are not included in the calculation as mentioned in the 
previous section, the difference between these two results is expectable.  
Last, the effects caused by the frequency of the forced oscillation are 
considered. Shown in Fig. 5 is the wave drift added mass of the cylinder 
array, normalized in the same way as above, against the nondimensional 
frequency gLσ  of the forced oscillation. The draft of the cylinders 

is a. The wave amplitude ζa=0.02 or 0.03 meters while the normalized 
wave number k0L=5.0. It can be observed that the wave drift added 
mass decreases with the increase of the forced oscillation frequency. 
Hence, the wave drift added mass is not a constant value at any 
frequency of slow oscillation. It is a complicated phenomenon relating 
to slow oscillation and incident waves. Further study is necessary to 
make a full understand of it. 
 
CONCLUDING REMARKS 
 
Systematic experiments are performed to measure the wave drift added 
mass and results are presented in the present work. The experiments 
consist of FD tests and FO tests. The results of these two kinds of tests 
agree well with each other. It can be observed that the wave drift added 
mass is proportional to the square of the wave amplitude, which 
indicates that it is a quadratic quantity of the wave amplitude. The value 
of the wave drift added mass is not simply a constant when the 
frequency of the slow oscillation is changed. This implies that it is a 
complicated phenomenon involving the interaction of slow oscillations 
and the wave motions. More effort is needed to make a full understand 
of it. Comparison with the calculated results shows that the calculation 
method should be further developed to include the effects of the linear 
response of the body to the incident waves and higher order potentials 
in terms of slow frequency. 
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Fig 1. Schematic figures of a cylinder array used in the experiment. 
 
 

 

 
 
Fig 2. Setting-up of the experiment equipments. 
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Fig 3. The effects of wave amplitude on the wave drift added mass of 
the cylinder array. (a) k0L= 5.0; (b) k0L= 6.0. 
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(b) 
 

Fig 4. Effects of wave number on the wave drift added mass. (a) Results 
of a single cylinder; (b) results of the cylinder array. 
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Fig 5. Effects of slow oscillation frequency on the wave drift added 
mass of the cylinder array. 
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