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This study compares the analytically predicted motions of a floating spar buoy platform with the
results of wave tank experiments. Results studied include extreme conditions in both the Gulf of
Mexico and the North Sea. Base-case predictions combine nonlinear diffraction loads and a linear,
multi-degree-of-freedom model of the spar stiffness and damping characteristics. Refined models
add the effect of wave-drift damping, and of viscous forces as well. Consistent choices of damping
and wave input are considered in some detail. These successive model refinements are generally
found to improve agreement with the model test results.
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IntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

This study describes ongoing research into the statistical response behavior and reliability of a
particular deep-water floating structure: a spar buoy. Typically, the spar buoy concept involves a
deep-draft, large-diameter cylindrical floating structure, with slack or taut mooring (e.g., Glanville
et al, 1991). This concept has recently gained increased interest within the offshore community. For
example, Oryx has installed the first production spar (Neptune) in 1996, while Chevron is currently
designing the first spar (Genesis) for both drilling and production. Concurrently, a particular
spar buoy has been designated the “theme structure” of the NSF-sponsored Offshore Technology
Research Center (OTRC), centered at Texas A&M University and at the University of Texas at
Austin.

This study compares analytical predictions of spar surge motions with the results of model tests from
the OTRC wave tank (OTRC, 1995). Comparisons are shown both for summary response statistics
and for complete time histories. Consistent choices of damping and wave input are considered in
some detail. Responses are filtered and compared for three distinct frequency ranges: a relatively
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high-frequency contribution due to first-order wave energy, a low-frequency contribution due to
pitch, and a still lower frequency contribution due to surge. Model tests are studied for extreme
(100-year) conditions in both the Gulf of Mexico and the North Sea.

Results from analytical models are shown here over a range of increasing modelling detail. The base
case includes nonlinear diffraction forces and a linear, multi-degree-of-freedom structural model.
Refinements on this include the addition of wave drift damping, and then of viscous forces as well.
These successively more detailed models are generally found to yield improved agreement with
model test results. The analytical predictions also show the ability to capture another notable
feature of the spar model tests; namely, the apparent “mode-swapping,” between the spar response
in pitch and surge modes, during the hour-long tests.

Spar Buoy Characteristics

Figure 1 shows the prototype dimensions of the spar buoy under study. Note its relatively deep
draft (H=198.2m), particularly with respect to its diameter (D=40.5m). For prediction purposes
the spar buoy hull is assumed rigid, and its mooring lines are modelled as a set of massless, linear
springs. To predict the spar’s motions in the along-wave direction, we adopt a 2DOF model that
includes the surge motion x1(t) and pitch rotation x5(t) at the mean water level* (Figure 2). At an
elevation z above this level, the corresponding along-wave displacement of the rigid spar is predicted
simply as x1(t) + z · x5(t). In particular, we apply this result here with z=54.8m, to compare with
video-recorded surge motions at this elevation during the wave tests (OTRC, 1995).

Mode Shapes and Periods

Assuming small deformations, the 2×2 stiffness and mass matrices can be constructed from geomet-
rical considerations (Jha, 1997). This mass matrix includes added mass terms, reflecting first-order

*Note that we retain the common convention that numbers surge and pitch DOFs as “1” and “5” respectively,
although no other DOFs are included here.
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wave radiation effects. The resulting mode shapes and natural frequencies are

f1 =
1

330
[Hz], φφφφφφ1 = [1 0]T ; f5 =

1

70
[Hz], φφφφφφ5 = [100 1]T (1)

These modal frequencies agree well with the natural periods, T1=330s and T5=67s, estimated from
free-decay tests of the spar (OTRC, 1995). Note that this lower-frequency mode involves a pure
translation, while the higher-frequency mode reflects a pure rotation about an axis located at depth
100m below the MWL. (Equivalently, Eq. 1 implies that a small rotation x5 [rad] is accompanied
by a translation of x1=100x5 [m] at the MWL.) These modes directly reflect the translational and
rotational stiffnesses, respectively, of the spar’s mooring system.

Qualitative Results and Consistent Damping EstimatesQualitative Results and Consistent Damping EstimatesQualitative Results and Consistent Damping EstimatesQualitative Results and Consistent Damping EstimatesQualitative Results and Consistent Damping EstimatesQualitative Results and Consistent Damping Estimates

We consider here the spar model tests that reflect extreme, roughly 100-year wave conditions. We
also focus on tests that apply wave loads only, neglecting other tests that include simultaneous
current and/or wind loads. This leaves us with three model tests, each lasting 1 hour (all time and
length units here reflect prototype scale). Two of the three are separate realizations of 100-year
Gulf of Mexico seastates, while the third models 100-year North Sea conditions. We refer here
to these seastates as “GOM1”, “GOM2”, and “NS”. (In OTRC internal reporting, these tests are
respectively denoted “aran3”, “aran4”, and “aran5”. To date, only “aran3” has received systematic
study by OTRC investigators; e.g., Ran et al, 1996, Weggel and Roesset, 1996).

Wave Measurements and Characteristics

A reference, “undisturbed” wave elevation history has been measured during the OTRC tests by
a probe located 125m (prototype scale) from the spar, in a direction perpendicular to the wave
direction. The spectra of these waves are found to be relatively well-fit by JONSWAP spectral
shapes with γ=2; the significant wave height and peak period values are estimated as Hs=14.1m
and Tp=14.1s for the Gulf of Mexico seastates, and Hs=14.8m and Tp=16.1s for the North Sea test
(Jha, 1997). Note however that our response predictions use the observed wave histories from the
tests, and not the simulated input from a theoretical wave spectral model.

Response Measurements and Characteristics

Figure 3 shows the power spectrum of the spar displacement, measured at height z=54.8m above
MWL, during the GOM1 test. Note its two low-frequency modes, at around f1=1/330 and f5=1/70
Hz, reflecting motions induced by surge and pitch resonance. As Figure 3 shows, we use bandpass
filters here to separate the observed surge component (0–.006 Hz), pitch component (.006–.03 Hz),
and remaining wave frequency component (above .03 Hz). This gives rms response contributions
of σsurge=3.4m, σpitch=4.0m, and σwave=2.5m. Thus a linear force model, which predicts energy
only at the wave frequencies, would capture only a small portion of the response rms. It would also
completely fail to predict the mean response, here found to be 4.9m. The other tests offer similar
results. This shows the need for models of nonlinear forces—diffraction, drag or both—to explain
not only the mean offset but also the amplitude of slow-drift oscillations for the spar. The effects
of both nonlinear diffraction and drag loads are considered below.

Figure 4 shows the corresponding time history of the response during the GOM1 test. Both the total
response and its filtered components are shown. Consistent with its power spectrum in Figure 3,
the response indeed displays three distinct time scales. What Figure 3 fails to reveal, however, is
that the relative contribution of the different frequency components does not remain constant over
time. For the GOM1 test, the observed response changes qualitatively at around t=1500s, when
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Figure 3: Spectrum of measured surge displacements at 54.8m elevation above MWL for GOM1
seastate

the surge component begins to contribute significantly. The other tests show somewhat similar
shifts between the energy in surge and pitch modes—although this “mode swapping” is observed
at different times, and for different durations, in different tests. The wave input histories show no
such episodic nature. This reflects a further modelling challenge: can analytical models predict
not only the correct average frequency content (e.g., the spectrum in Figure 3), but also time-
domain behavior consistent with Figure 4? Clearly, this time-domain evolution of surge and pitch
components depends directly on (1) their initial conditions at the beginning of the test recording
and (2) the damping values assigned to these modes. We therefore discuss these issues, particularly
damping estimation, in some detail.

Estimating Initial Conditions

In the experiments, spar motions were recorded after about 15 minutes (prototype scale), when the
wave tank conditions were deemed to have achieved steady-state conditions. Thus, the assumption
of at-rest initial conditions would corrupt our predictions, more so in the surge mode which contains
relatively few cycles over the hour-long test. To avoid this, our predictions use initial conditions
consistent with the tests; i.e., for each test we filter the observed motions to estimate surge and
pitch components (e.g., Figure 4). The initial values/velocities of these components are then used
to start our slow-drift motion predictions (Jha, 1997).

Estimating Surge and Pitch Damping

Because the tests include relatively few cycles of lightly damped motion, it is challenging to form
precise damping estimates from them. We focus here on frequency-domain damping estimates, using
response spectra from the various tests (e.g., Figure 3). One may, for example, select dampings
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Figure 4: Total measured horizontal displacement and its filtered surge, pitch and wave-frequency
components for GOM1 seastate
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ζi so that our analytical model predicts the correct area under each of these observed spectral
modes (i.e., the variances σ2surge and σ

2
pitch). A danger in this approach is that it may mask a

force modelling error (e.g., Ude, 1994). For example, if predicted forces are overestimated we
may overestimate damping in an effort to compensate. Thus, we instead seek damping values
to preserve the observed spectral shape—the rms values σsurge and σpitch are reserved to test the
model’s adequacy. One such measure of spectral shape is the half-power bandwidth, at which the
response spectrum decays to half its peak value. By setting this bandwidth to its approximate value
from theory—fHP=±ζifi to either side of the natural frequency fi—one can estimate the damping
ζi from an observed power spectrum. For example, if the spar buoy has damping ζ1=.05 at the
surge frequency f1=1/330, we find fHP=1/6600 Hz. Unfortunately, from a T=1-hour history, our
finest frequency resolution is df=1/T=1/3600 Hz—too coarse to resolve the half-power bandwidth,
even if no frequency-averaging is applied to the observed spectrum.

We are therefore led to consider the average shape of the response spectrum across frequencies, as
measured by the unitless bandwidth measure δ (Vanmarcke, 1972):

δ =
√
1− λ21/(λ0λ2) ; λn =

∫
fnSx(f)df (2)

Note that in general, any parameter of the form δn=[1 − λ2n/(λ0λ2n)]1/2 could be used to reflect
bandwidth: δn → 0 as the bandwidth narrows. Perhaps the most widely used is δ2, e.g, in modelling
peaks of a Gaussian process. We use δ with n=1 here, as its lower spectral moments are less sensitive
to high-frequency spectral content. We apply Eq. 2 twice, over the frequency ranges of surge (0–.006
Hz) and pitch (.006–.03 Hz) components, to find separate δ values that characterize their respective
modal bandwidths.

For a 1DOF system under broad-band loads, δ can be related directly to the damping level (Van-
marcke, 1972, Ude and Winterstein, 1996). To form estimates consistent with our 2DOF model,
however, we select damping ratios ζ1 and ζ5 so that our predicted response shows the same δ val-
ues, in both the surge and pitch frequency ranges, as found from the observed responses. This is
an iterative process, which must be performed for each choice of (1) seastate and (2) predictive
response model. We differentiate here between 2 seastates (GOM1 and GOM2 versus NS), and
among 4 predictive models. These models are described below, together with the 2 × 4 values of
modal dampings that result. In each case, a corresponding damping matrix CCCCCC is inferred from the
mass matrix and the matrix ΦΦΦΦΦΦ of modal shapes: CCCCCC=MMMMMMΦΦΦΦΦΦQQQQQQΦΦΦΦΦΦ−1 in terms of QQQQQQ=diag(4πζifi).

Predictive Models of Forces and Damping

Our first, base-case model applies diffraction forces only (the “DF” model). Linear diffraction

gives first-order transfer functions F
(1)
1 (ωk) and F

(1)
5 (ωk), the (complex) amplitude of surge force

and pitch moment due to a unit-amplitude wave at frequency ωk. A corresponding second-order
diffraction analysis gives F

(2)
1 (ωk, ωj) and F

(2)
5 (ωk, ωj), the surge and pitch excitation amplitudes

at the difference frequency ωk − ωj due to pairs of incident waves at frequencies ωk and ωj (Kim
and Yue, 1989; Kim and Yue, 1991). These subharmonic excitations drive the surge and pitch
resonant motions, which dominate the spar response (e.g., Figure 3). Note that these diffraction
forces assume as input not the undisturbed total wave elevation/potential but rather its first-order
component. Here we use new methods (Winterstein and Jha, 1997) to identify the underlying
first-order contribution to the observed undisturbed wave.

For this model, the damping matrix CCCCCC gives the major source of damping. For example, Table 1
shows that this DF model requires the damping ratios ζ1=4.5% and ζ5=1.6% to match the spectral
bandwidths estimated from the 2 GOM tests. In this (and other cases) the single NS test suggests
rather lighter damping; indeed, an effectively zero value of pitch damping is not always able to give
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Model Description GOM NS
ζ1 ζ5 ζ1 ζ5

DF Base-case model with diffraction forces 4.5 1.6 1.7 .001
DF/WDD DF model plus wave-drift damping 3.3 0.6 .001 .001
DF/WDD/VF(u) DF/WDD model plus viscous forces from

undisturbed waves
4.0 0.5 2.5 .001

DF/WDD/VF(d) DF/WDD model plus viscous forces from
disturbed waves

6.5 .001 0.1 .001

Table 1: Description of 4 models, and consistent damping ratios ζ1 and ζ5 in surge and pitch.

as narrow a spectral bandwidth as observed. Note, however, that the NS test includes only a single
hour, making narrow bandwidths more difficult to estimate than over the combined, two hours of
GOM tests.

Our second model (DF/WDD) includes both diffraction forces and wave-drift damping. This
damping force is proportional both to the structural velocity and to the square of the wave am-
plitude. The resulting nonlinear damping will tend to offset large slow drift forces, and perhaps
reduce the extreme peaks of the surge response. We may expect that once wave drift damping is
added, we require lower values of the additional modal damping ζi than in the DF model. Table 1
shows that this is indeed the case.

Finally, we also implement two models that include viscous drag forces as well as diffraction effects.
These differ only in their choice of wave input: one uses the undisturbed waves, while the other
uses the disturbed waves near the spar, inferred from its reported heave motions and the air-gap
(structure-to-wave distance) measurements. Both models use the Morison’s drag term with CD=0.6,
and Wheeler stretching (Wheeler, 1970) to integrate effects from the spar bottom to the free surface.
They also both use the absolute fluid velocity; relative velocity effects are assumed reflected through
damping terms.

Numerical ResultsNumerical ResultsNumerical ResultsNumerical ResultsNumerical ResultsNumerical Results

Wave-Frequency Response

We first compare the wave-frequency portions of the predicted and observed spar responses. These
observed portions are found by applying a high-pass filter, with a low-frequency cutoff of .03 Hz.,
to the measured displacement histories. Figure 5 shows that these predictions fairly accurately
predict not only the qualitative response behavior, but also its detailed cycle-by-cycle evolution in
all three tests. This suggests that our models accurately reflect first-order wave forces, and the mass
properties of the spar. (Because slow-drift forces and damping do not affect this wave-frequency
response, all four of our models predict roughly the same histories in Figure 5. Thus, for clarity
Figure 5 shows predictions only for the simplest (DF) model.)

Slow Drift Response

Figure 6 compares the predicted and observed moments of the slow-drift response. Results are
shown for the rms values σ1 and σ5, corresponding to frequency ranges (0–.006 Hz) and (.006–.03
Hz), and for the total mean offset (which cannot be split directly into surge and pitch contributions).
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Figure 6: Predicted response mean and standard deviations vs measured results in the three tests.
Standard deviations are shown for both surge and pitch frequency components.

In each case the predicted values from all 4 models are plotted against the observed value from that
test. Because there are 3 tests, this results in 4 × 3=12 data points per plot. A 45-degree line
implying perfect agreement is also shown.

Focusing first on the diffraction-only (DF) model, we find it underpredicts both the mean and rms
in all but one of the 9 observed values. (We return below to the anomalous case, which involves the
pitch rms σ5 in the NS test.) Adding wave drift damping (DF/WDD) will not change the mean,
and only weakly affects the rms predictions (again excluding the NS pitch case). This suggests the
need for viscous forces, which contribute both an extra mean force (due to the asymmetric effect
of wave stretching) and a slowly-varying drift force. As Figure 6 shows, the VF(u) and VF(d)
models—which include viscous forces—generally give better predictions of both the mean and rms
levels. Results with the disturbed wave (VF(d)) generally give slightly higher responses—both in
mean and rms—than those using the undisturbed wave (VF(u)). Neither the VF(u) nor VF(d)
model seems systematically closer to the observations; however, both appear superior to models
that exclude viscous forces altogether.

Returning to the anamolous pitch response in the NS test, note from Table 1 that our damping
calibration effectively fails in this case. Although each of the 4 models was assigned only minimal
pitch damping (ζ5=.001), all of these predict wider spectral bandwidths than that observed in the
NS test. Thus the predictive models here are not “damping–tuned” to the tests as in the other
cases—and the pattern of the 4 model predictions for σ5 in the NS case is somewhat arbitrary. As
to why the bandwidth mismatch may occur, recall the increased effect of limited data in the NS
case: here the bandwidth estimation uses only the 1 hour test, as opposed to the 2 pooled hours
used to form the predictive model for both GOM seastates.

Total Response Histories

Finally, we compare the observed and predicted 1-hour histories of the total spar displacement.
Figures 7–9 show these histories for the 3 1-hour tests. All figures show the observed displacement
history at the top, while 3 of the 4 corresponding predictions are shown beneath (the DF/WDD
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model is omitted for clarity). Recall that our particular interest lies in predicting not only overall
response statistics, but also the response evolution and potential mode-swapping (e.g., Figure 4 for
the GOM1 case). Figure 7 repeats that case, and it is notable that all 3 predicted responses show
a similar trend, toward greater surge response, in the second half of the GOM1 test. Note also
that for extreme response events (e.g., observed response above 20m), all of the predictions show
fairly good agreement. The greatest deviations, between the test and predictions, seem to occur
over periods of relatively low response amplitude (e.g., times t=0–1000s, 1500–2300s).

Figure 8 shows similar tendencies for the GOM2 test. Again there is good qualitative agreement:
both the tests and the predictions show a period of relatively little surge (at around t=700–2000s),
followed by a marked surge increase through the rest of the hour. Large observed responses tend
to coincide with high predicted values. The magnitude of these large responses is not as well pre-
dicted, however; predictions generally underestimate the response in the critical high-surge portion
(t=2300–3600s). In contrast, the same predictions often overestimate response in the earlier, low-
surge segment (t=700–2000s). (This potential for mode swapping and compensating errors suggests
the need here to compare observations and predictions through time history behavior, not merely
through summary statistics in the time or frequency domain.)

Finally, Figure 9 shows NS test results. Again there is a transition, near the end of the test, which
produces the largest amplitude responses (indeed, the largest offsets among the 3 tests). It is caused
here, however, by an increase in the pitch as well as the surge component. Note that despite the
potential damping mismatch in this case, the models follow this critical portion of high-amplitude
pitch fairly well (from about t=2700s on). As in the GOM1 case, greater deviations between models
and observations occur at earlier portions of the history, involving lower amplitude responses.

Comparing Responses to Simulated and Observed WavesComparing Responses to Simulated and Observed WavesComparing Responses to Simulated and Observed WavesComparing Responses to Simulated and Observed WavesComparing Responses to Simulated and Observed WavesComparing Responses to Simulated and Observed Waves

The foregoing results show how well various models can predict the spar response in the OTRC
tests, based on the corresponding observed wave input. Finally, we study briefly an associated
question: are the observed response properties, such as mode swapping, also consistent with the
response of the spar to idealized, Gaussian simulations of (first-order) random waves? If not, these
observed properties may perhaps reflect special aspects of the wave input in the wave tank; e.g.,
the effect of its finite dimensions.

As earlier noted, both surge and pitch rms components of the observed spar motions vary notably
over periods of roughly 20–30 minutes. We quantify this rms variation by (1) splitting the response
into 20-minute segments; (2) calculating the rms values, σ1...σn, in each of the n segments; and (3)
forming the sample mean σ=

∑
i σi/n and variance s2σ=

∑
i(σi − σ)2/(n − 1). We focus here on the

two GOM tests, yielding 2 hours and hence n=6 20-minute segments with associated rms values
σ1...σ6. The resulting sσ values are found to be

sσ = 1.22m (surge) ; sσ = 0.50m (pitch) (3)

For comparison we simulate† multiple 2-hour spar histories, and process each as we did the 2-hour
test to find a corresponding sσ estimate. These sσ estimates from our simulations yield the following

†These simulations use the DF/WDD/VF(u) model, and first-order Gaussian waves are simulated from a JON-
SWAP spectrum withHs=14m, Tp=14s, and γ=2. The diffraction analysis internally applies second-order corrections
to the (assumed) first-order wave input; hence the Gaussian model is consistent here. Drag forces for this model
use the total undisturbed wave; for simplicity we use the Gaussian waves here as well. Alternatively, one may add
second-order wave contributions to better approximate the total undisturbed wave.
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mean E[sσ] and standard deviation D[sσ]:

E[sσ] = 1.26m (surge) ; E[sσ] = 0.95m (pitch) (4)

D[sσ] = 0.47m (surge) ; D[sσ] = 0.45m (pitch) (5)

Thus, while the observed modal rms values may seem highly variable, our simulations show similar
or still greater variability (especially in pitch). Note also that the D(.) values here reflect variability
in sσ estimates from different T=2 hour segments. (If T increases, D(.) should decay like T−1/2.)
Because Eq. 3 uses 1 T=2 hour segment, these D(.) values suggest the following mean ±1-sigma
intervals on the test estimates: sσ=1.22± 0.47 in surge and sσ=0.50± 0.45 in pitch. As even these
relatively narrow, 1-sigma confidence intervals include the average simulation results (Eq. 4), it is
difficult to find statistically significant differences between the tests and the simulations.

ConclusionsConclusionsConclusionsConclusionsConclusionsConclusions

Four models have been established to predict the along-wave motions of a spar buoy in random seas.
These have been implemented and compared with wave tank measurements of the spar displacement,
at a reference elevation z=54.8m above the mean water level. Results are shown across 3 1-hour
tests of 100-year extreme wave conditions. Specific methods and results include the following:

• In all of the tests, the main rms contribution comes from the resonant response in surge and
pitch modes, at periods of roughly 330s and 70s respectively (e.g., Figure 3). This shows the need
for models of nonlinear forces—diffraction, drag or both—to explain not only the mean offset but
also the amplitude of slow-drift oscillations of the spar.

• The significant low-frequency resonant response also implies the need for accurate estimates of
damping, in both the surge and pitch modes of the spar. We show how these modal dampings can
be estimated from response spectral moments. The resulting dampings are “consistent” with the
other features of the model; for example, the explicit addition of wave drift damping (WDD) is
accompanied by lower levels of the remaining damping in the model (Table 1).

• The wave-frequency response has been found to be fairly well predicted across all 3 tests (Fig-
ure 5). This reflects the modelling adequacy of linear diffraction forces and the spar’s mass proper-
ties. Regarding slow-drift response, models that include only diffraction forces generally underesti-
mate both the mean and rms response levels (Figure 6). To address this, we introduce additional
models that include viscous forces, based on either the undisturbed (far-field) wave or the actual
disturbed wave in the presence of the spar. While it is difficult to conclude which of these is generally
more accurate, both appear superior to models that exclude viscous forces altogether.

• The observed responses display considerable “mode-swapping” between surge and pitch modes
(e.g., Figure 4). Figures 7–9 show that our predictive models, which use the observed wave and
its underlying first-order components, can produce qualitatively similar behavior. They generally
follow the observed trend, in all three tests, toward larger amplitude responses near the end of the
hour. This trend manifests itself in the Gulf of Mexico tests by a late increase in surge-induced
response (Figures 7–8), and in the North Sea test by enhanced pitch response as well (Figure 9).

• While the modal rms values in the tests appear rather variable, long simulations with Gaussian
(first-order) waves show similar or still greater variability (Eqs. 3–5). From the limited 2-hour
duration of GOM tests, it is difficult to find statistically significant differences between these tests
and the simulations.

343



Acknowledgements

Support for this work has been provided by the National Science Foundation, through a grant from
its Offshore Technology Research Center. We gratefully acknowledge the OTRC for their ongoing
technical and financial support.

ReferencesReferencesReferencesReferencesReferencesReferences

Glanville, R.S., J.R. Pauling, J.E. Halkyard, and T.J. Lehtinen (1991). Analysis of the spar floating
drilling production and storage. Proc., Offshore Tech. Conf., Houston, Paper OTC–6701, 57–68.

Jha, A.K. (1997). Nonlinear stochastic models for ocean wave loads and responses of offshore struc-
tures and vessels, Ph.D. thesis, Civil Eng. Dept., Stanford University.

Kim, M.H. and D.K.P. Yue (1989). The complete second-order diffraction solution for an axisym-
metric body. Part 1: Monochromatic incident waves. Journal of Fluid Mech., 200, 235–264.

OTRC, Vol. I. (1995). Spar model test: joint industry project, Final Report, Offshore Technology
Research Center.

Ran, Z., M.H. Kim, J.M. Niedzwecki, and R.P. Johnson (1996). Responses of a spar platform in
random waves and currents (experiment vs. theory). Int. Journal of Offshore and Polar Eng.,
6(1), 27–34.

Ude, T.C. (1994). Second-order load and response models for floating structures: probabilistic anal-
ysis and system identification, Ph.D. thesis, Civil Eng. Dept., Stanford University.

Ude, T.C. and S.R. Winterstein (1996). Calibration of slow-drift motions using statistical moments
of observed data. Proc., 6th Int. Conf. Offshore & Polar Eng., Los Angeles.

Vanmarcke, E. (1972). Properties of spectral moments with applications to random vibration. J.
Engrg. Mech., ASCE, 98, .

Weggel, D.C. and J.M. Roesset (1996). Second-order dynamic response of a large spar platform:
numerical predictions versus experimental results. Proc., 15th Int. Conf. Offshore Mech. & Arctic
Eng., Florence.

Wheeler, J.D. (1970). Method for calculating forces produced by irregular waves. Journal of Petroleum
Tech.,, 359–367.

Winterstein, S.R. and A.K. Jha (1997). Random nonlinear ocean waves: a method to identify first-
and second-order effects. J. Engrg. Mech., ASCE, Submitted for possible publication.

344



-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500

O
bs

. T
ot

al
 (

G
O

M
1)

Time (sec)

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500

D
F

Time (sec)

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500

D
F

/W
D

D
/V

F
(u

)

Time (sec)

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500

D
F

/W
D

D
/V

F
(d

)

Time (sec)

Figure 7: Combined (total) surge response time history for GOM1: prediction vs. measurement.
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Figure 8: Combined (total) surge response time history for GOM2: prediction vs. measurement.
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Figure 9: Combined (total) surge response time history for NS: prediction vs. measurement.
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