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ABSTRACT 
To minimize body motions, floating marine structures are 
often designed with natural frequencies far away from the 
spectrum of ocean waves.  Such design considerations led to 
a class of deep draft caisson vessels (DDCV or spars).  Even 
so, large resonant responses may still be generated by 
excitation from nonlinear interactions of waves with body 
motions.  Past experiments indicated that a DDCV 
experiences large-amplitude heave and pitch resonant 
motions when the incident wave frequency is much larger 
than the heave and pitch natural frequencies.  Such resonant 
motions are not predicted by classical theories without 
considering nonlinear effects.  This nonlinear mechanism has 
received little attention because of the complex nonlinear 
wave-body dynamics involved.  In this work, we investigate 
nonlinear wave-wave and wave-body interaction effects on 
dynamic instability of such marine structures. 
 
We first perform a linear stability analysis of the wave-
frequency body motion.  From the analysis, we find that at 

certain incident wave frequencies the body motion is unstable 
with natural heave and pitch motions growing exponentially 
with time by taking energy from the incident wave through 
nonlinear wave-body interactions.  The condition for the 
occurrence of instability and the key characteristic features of 
unstable natural heave and pitch motions, predicted by the 
analysis, agree well with the experimental measurement and 
our full-nonlinear numerical simulations. As time-domain 
fully nonlinear numerical simulations are computationally 
expensive, we further develop an approximate time-domain 
analytic model, by including the second-order body 
nonlinearity only, for predicting the onset of instability and 
ultimate response of DDCVs in both regular and irregular 
waves.  We use this model to systematically investigate the 
dependence of unstable motions on frequency detuning, 
damping, body geometry, and wave parameters. 
 
1. INTRODUCTION 
In marine engineering, floating vessels and structures are 
designed with minimum responses to the action of ocean 
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waves for the purpose of safe operation.  On the other hand, 
floating wave energy absorbers are designed to operate with 
maximum motions in response to waves for effective energy 
extraction.  Understanding of fundamental mechanisms and 
basic characteristics of resonant responses and instabilities of 
a floating body in surface waves is of critical importance for 
the design and operation of such structures.  
 
In a study of the global motion of a deep draft caisson vessel 
(DDCV), the experiments (conducted in the wave basin of the 
Offshore Technology Research Center by ExxonMobil in 
1998) showed that when the incident (regular) wave period 
approached to ~22 seconds, the DDCV underwent, in 
addition to the wave-frequency motions, large-amplitude 
natural frequency heave (with period ~29 s) and pitch (with 
period ~99 s) motions. The observed resonant heave and 
pitch motions of the DDCV are not predicted by the classical 
linear wave theory.  
 
In an analogy to parametric resonant roll motion of a ship, 
Haslum & Faltinsen [1] attributed such coupled resonant 
heave and pitch motions to the effect of the Mathieu (sub-
harmonic) instability due to hydrostatic coupling of heave 
and pitch motions. In the above experimental observation, 
however, the incident wave frequency, natural heave 
frequency, and natural pitch frequency do not match with the 
condition of Mathieu instability ([2], [3] and [4]).  
 
In this work, we investigate this problem in the context of 
general nonlinear wave-wave and wave-body interactions.  
Linear instability analyses are carried out to understand the 
fundamental mechanism for the occurrence of unstable 
coupled heave-pitch resonant motions of floating structures in 
waves and to study the dependencies of the growth rate of 
unstable motions on physical parameters.  Fully nonlinear 
numerical simulations using a highly efficient high-order 
boundary element method are performed to verify the 
analysis and to understand the roles and importance of 
various nonlinear interactions involved.  Based on the 
nonlinear studies, we develop a simplified analytic model 
with the inclusion of dominant interactions for the prediction 
of the onset and evolution of the unstable motions. The model 
prediction is compared with the experimental data, and is 
then used to investigate the dependencies of unstable motions 

on frequency detuning, wave amplitude, damping of the 
system, and irregular sea states.  
 

2. STABILITY ANALYSES 
We consider the global motion of a DDCV platform in 
response to the action of uni-directional ocean surface waves.  
For simplicity, we neglect the effect of wave motions in the 
moon-pool and model the DDCV platform as a truncated 
vertical circular cylinder with a closed bottom.  We define a 
right-handed coordinate system o-xyz, which is fixed with 
respect to the mean position of the cylinder with the x-axis 
pointing in the direction of wave propagation and z positive 
upwards.  The origin of the system (o) is in the plane of the 
undisturbed free surface.  Under the action of surface waves, 
the cylinder may experience surge, heave, and pitch motions 
only.  We denote the surge and heave displacements by η1 
and η3, respectively, and the angle of pitch rotation by η5.  
Note that in the present study, we use the center of gravity of 
the cylinder (G) as the center of rotation. For reference, the 
coordinate system and the translational and angular 
displacement conventions are shown in Figure 1.   
 

        
Figure 1. Definition sketch of a floating truncated vertical 
circular cylinder in a regular wave.  
 
Let the base flow to be the one corresponding to an incident 
wave with frequency ω and amplitude A. Clearly, the base 
flow is the superposition of the incident, diffracted, and 
radiated waves.  For simplicity, we use the linear solution of 
the wave-body interaction problem as the base flow solution.  
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Thus the base flow quantities (including body responses) 
have a frequency ω and are linearly proportional to A.  
 
Let the resonant heave and pitch motions be η3n(t) = Re{ζ3n 
exp(iω3nt)} and η5n(t) = Re{ζ5n exp(iω5nt)}, where ω3n (ω5n) is 
the natural heave (pitch) frequency, and ζ3n (ζ5n) the complex 
amplitude of resonant heave (pitch) motion that is assumed to 
be small initially. The objective here is to examine whether 
small resonant heave and pitch motions are stable or not due 
to interactions with the base flow. This can be addressed 
through a standard stability analysis.  
 
By examining the frequency combinations in the interaction 
between the resonant heave/pitch motion with the base flow, 
we find that the system might be unstable under the condition 
of ω = ω3n + ω5n.  Under this condition, we carry out a linear 
stability analysis to obtain the ordinary differential equations 
(ODEs) governing the disturbed resonant heave and pitch 
motions. This is done by superimposing the base flow 
potentials with the disturbance flow potentials and retaining 
all cross products of the respective first order terms in the 
free surface and body boundary conditions as well as that in 
the Bernoulli equation.  The details of the analysis can be 
found in [5] and [6].  These equations can be expressed in the 
following symbolic form:  
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Where m (I55) is the mass (moment of inertia) of the cylinder, 
A33 (A55) heave (pitch) added mass coefficient, B33 (B55) linear 
heave (pitch) damping coefficient, C33 (C55) heave (pitch) 
hydrostatic restoring coefficient, and T3 (T5) represents the 
interaction coefficient between resonant pitch (heave) motion 
with the base flow for the resonant heave (pitch) motion.  The 
above equations indicate that the interaction between the 
resonant pitch motion η5n(t) and the base flow (at frequency 
ω) gives an excitation to the heave motion at the resonant 
heave frequency ω3n.  Similarly, the interaction between the 
resonant heave motion η3n(t) and the base flow gives an 
excitation to the pitch motion at the resonant pitch frequency 
ω5n.  These interactions are represented by the complex 
transfer functions T3 and T5, which are dependent on the wave 
frequency, body motions at the wave frequency, and phases of 

the incident wave and initial disturbed body motions.  
Without loss of generality in illustrating the mechanism of 
instability, the coupling between surge and pitch is neglected 
in (2).   
 
The coupled equations (1) and (2) can be combined to give:  

3
5

3

5533534
5

4

]'')''(2[
dt

dBBi
dt

d n
nn

n ζωωζ
++++ + 

0]')(''''[

)]''2(''

)''2(''[]''

'')''2)(''2[(

5
2

555333

5
555333

3335552
5

2

555

333555333

=+

−+

+++

++++

nnn

n
nn

nn
n

n

nnn

TkABB
dt

dBiBi

BiBi
dt

dBi

BiBiBi

ζωω

ζωω

ωωζω

ωωω

        (3) 

where ω′3n= ω3n/ω, ω′5n= ω5n/ω, B′33= B33/(m+A33)ω, B′55= 
B55/(I55+A55)ω,  and T′ = T3T5/[(m+A33)(I55+A55)ω4]. Note 
that similar equation can be obtained for the resonant heave 
motion ζ3n.  The fourth-order ODE, (3), can be solved with 
the solution expressed in the general form: 
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where the coefficients γi, i=1,2,3,4 are the solutions of the 
resulting fourth-order polynomial equation.  In general, these 
coefficients are functions of ω′3n, ω′5n, B′33, B′55, kA, and T′.  
Clearly, if the real part of any of γi, i=1, 2, 3, 4 is positive, the 
resonant motions are unstable with their amplitudes, ζ3n and 
ζ5n, growing with time exponentially.  The value of real[γi] is 
the growth rate of the i-th mode.  In general, the coefficients 
αi, i=1, 2, 3, 4 are determined by the initial conditions of the 
problem.   
 
For illustration, we take the measurement of a 1:70 scaled 
DDCV model in regular wave experiment as an example.  
The prototype cylinder has a diameter of D = 37 m, a draft of 
H = 198 m, and a radius of pitch gyration R = 75 m. The 
center of gravity of the cylinder is located at a distance h = 95 
m from the keel of the cylinder.  For this cylinder, we have 
ω3n = 0.217 rad/s (with the period T3n ≅ 29 s) and ω5n = 0.063 
rad/s (with the period T5n ≅ 99 s).  From the condition ω = ω3n 

+ ω5n, we consider the incident wave with ω = 0.28 rad/s 
(with period T ≅ 22 s).  We note that for such a structure with 
deep draft and relatively low natural heave and pitch 
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frequencies, the linear wave damping is negligibly small.  For 
this cylinder, we find that in general there are two values of γ 
that are positive for any values of kA and T′. This indicates 
that the cylinder’s response to the action of an incident wave 
of ω = 0.28 rad/s is unstable and small disturbances will grow 
at natural heave and pitch frequencies.   
 
In Figure 2, we show a contour of the maximum growth rate 
real[γ] as a function of real and imaginary parts of the 
parameter (kA)2T′.  The growth rate is positive and increases 
with the magnitude of (kA)2T′.   
 

 
Figure 2. Contour of the maximum growth rate, real[γ], as a 
function of (kA)2T′.  
 
In Figure 3, we plot the four growth rates as a function of the 
incident wave steepness kA for a fixed |T’| = 10 with a phase 
of 45o.  Two of them are positive and the other two are 
negative.  The growth rate is not a linear function of kA as 
would be expected from (1) or (2).  It has a nonlinear 
dependence on kA due to nonlinear coupling between heave 
and pitch motions.   
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Figure 3. Growth rates real[γi], i = 1, 2, 3, 4 as a function of 
incident wave steepness kA for a fixed |T’| = 10 with a 45o 
phase.  
 
The dependence of the growth rates on other variables such 
as the phase of the incident wave and initial disturbances, 
natural heave and pitch frequencies, body geometry, and 
damping of the system can also be obtained similarly.  More 
results can be found in [6]. 
 

3. FULLY NONLINEAR SIMULATIONS  
In this section, we apply direct numerical simulations to 
investigate the instability identified in the above.  Fully 
nonlinear numerical simulations are performed using the 
efficient PFFT-QBEM method, which is described in [7].  
The same cylinder geometry is considered. The incident wave 
has a wave steepness kA = 0.02 and a frequency ω = 0.28 
rad/s.  In practice, the small disturbances in resonant heave 
and pitch motion are always there due to the presence of 
small amplitude long waves in the wave spectrum or 
nonlinear wave-wave and wave-body interactions.  We 
perform a long-time simulation of fully nonlinear interactions 
of the floating cylinder with the incident wave field including 
nonlinear coupling of different modes of the body motion.  
 
Figure 4a plots the normalized time history of the heave 
motion obtained by the fully nonlinear simulation. The 
normalized harmonic amplitudes of the heave motion are 
plotted as a function of time in figure 4b.  The results show 
that the heave motion is unstable with the amplitude at the 
resonant frequency growing exponentially with time. The 
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heave motion at the incident wave frequency is relatively 
small and does not grow with time.  The similar results for 
the pitch motion are shown in Figure 5.  The pitch motion is 
also unstable with the amplitude of the resonant pitch motion 
growing with time exponentially.  After the unstable heave 
and pitch motions are developed to certain amplitudes, they 
stop growing as fully nonlinear interactions among the 
incident, radiated and diffracted wave fields and different 
modes of the body motions balance the instability effect.   
 
Various fully nonlinear simulations are performed to study 
the dependence of the instability on incident wave steepness, 
initial phases of the disturbances, frequency detuning as well 
as body geometry effects.  These results are discussed in 
detail in [6]. 
 

     

                                                (a)                                       

 
                                               (b)                                              
Figure 4. Time histories of the (a) heave motion, and (b) 
harmonic motion amplitudes of the cylinder in waves, 
obtained by the fully-nonlinear simulation.  

 

 
                                               (a)                                             

                
(b) 

Figure 5. Time histories of the (a) pitch motion, and (b) 
harmonic motion amplitudes of the cylinder in waves, 
obtained by the fully-nonlinear simulation.  
 

4. APPROXIMATE MODEL  
While fully nonlinear simulations can account for full 
interactions between the base flow and the disturbances in 
resonant heave and pitch motions, they are computationally 
expensive especially when the growth rate is relatively weak.  
Thus, it is necessary and useful to develop a simplified model 
that can capture the key interactions for the study of the basic 
characteristics of the instability with a range of physical 
parameters and for the prediction of the cylinder motion 
including such instability effect under various ocean 
environmental conditions.   
 



 6

Since the natural heave and pitch frequencies of the DDCV 
are relatively low and the incident wave frequency for the 
occurrence of the instability is also quite low, we thus apply 
long-wave approximations to obtain the base flow solution 
and the hydrodynamic coefficients of the body at resonant 
heave and pitch frequencies.  The equation of motion for 
heave is the same as (1). The equation of motion for pitch is 
similar to (2), with the coupling terms with the surge motion 
included.  Since at such low frequencies, the linear wave 
damping is negligibly small, viscous damping is of 
importance in practice. We use a simple model based on 
Morison’s formula to include the viscous damping effect in 
the simplified model.  The key is to obtain the heave and 
pitch excitations due to interactions between the base flow 
and the resonant heave and pitch motions.  Since the resonant 
heave and resonant pitch frequencies are low, the radiated 
waves due to such motions are relatively small. We thus 
neglect the effect of the interaction between the base flow and 
the radiated waves on the free surface at these frequencies.  
All other interactions between the base flow and the resonant 
heave/pitch motions (in particular on the body surface) are 
included. The excitations due to such interactions can be 
obtained in a relatively simple form, which can be found in 
[6]. Once the formula for the excitations is obtained, the 
coupled equations of motion for heave and pitch can be 
solved easily using any time integration scheme such as the 
fourth-order Runge-Kutta (RK4) approach.   
 
Figure 6 shows the comparison between the simulation result 
by the simplified model and the experimental measurement of 
ExxonMobil for the time history of heave and pitch motions 
of the cylinder in regular waves.  In addition to the wave-
frequency oscillation, the heave response of the cylinder 
contains a component at the natural frequency.  Both the 
prediction and experiment show that in the initial stage of the 
wave-cylinder interaction (t < 200 s), the wave frequency 
oscillation is dominant over the natural frequency motion. As 
the interaction continues, the natural frequency motion 
increases rapidly while the wave frequency oscillation 
remains almost unchanged in magnitude.   
 
Similarly to the heave motion, the pitch motion also consists 
of the wave frequency and natural frequency oscillations.  
The natural period of the pitch motion in the simulation result 

is slightly smaller than that in the experiment (88s versus 99s).  
This is due to the fact that in the simulation, we consider the 
pitch motion with respect to the center of gravity of the 
platform while in the experiment the center of pitch rotation 
might be lower than the center of gravity. The added moment 
of inertia is thus smaller in the simulation than in the 
experiment, which leads to smaller natural period in the 
simulation. Overall comparisons indicate that the simulation 
results (with the chosen damping parameters) in heave and 
pitch motions properly reflect the instability effect and gives 
a satisfactory prediction of the growth of the unstable 
resonant heave and pitch motions.    

 

(a) 

 

(b) 
Figure 6. Comparisons between the simplified model 
prediction (⎯) and the experimental measurement (– − –) for 
the time histories of (a) heave η3(t), and (b) pitch η5(t) 
motions of the cylinder.  In the simulation, B33 = 4% critical 
damping and B55 = 5% critical damping are used for heave 
and pitch motions and quadratic damping with CD = 1.0 is 
used for surge motion. (Regular incident wave amplitude A = 
6.1 m and period T = 22 s)  
 
To investigate the effect of the incident wave period upon the 
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resonant heave and pitch responses, we perform computations 
with a fixed incident wave amplitude A = 6.1 m and varying 
the wave period T.  Figure 7 compares the results obtained 
with T = 21 s and T = 22 s.  Clearly, as T is away from the 22 
s, the growth of the unstable resonant heave and pitch 
responses with time becomes slower due to detuning effect so 
that longer time is required to obtain the steady state.   
 

 

(a) 

 

(b) 
Figure 7. Time history of the (a) heave η3(t) and (b) pitch η5(t) 
motions of the cylinder obtained using the simplified model 
with the incident wave period T = 22 s (⎯) and 21 s (– − –).   
In the simulation, B33 = 4% critical damping and B55 = 5% 
critical damping for heave and pitch motions, quadratic 
damping with CD = 1.0 for surge motion, and the incident 
wave amplitude A = 6.1 m are used.  

 

 

(a) 

 

(b) 
Figure 8. Time history of the (a) heave η3(t) and (b) pitch η5(t) 
motions of the cylinder in irregular waves Tp = 18.0 s and 
H1/3 = 12.5 m obtained using the simplified model. The 
plotted are the linear solution (⎯) and the nonlinear solution 
(– − –).  In the simulation, quadratic dampings with CDv = 2.0 
and CDh = 0.5 are used.  
 
To study the unstable coupled heave-pitch response of the 
cylinder in irregular waves, as an example, we consider a uni-
directional random sea state given by the modified Pierson-
Moskowitz spectrum.  We assume a 100-year sea state with a 
significant wave height H1/3 = 12.5 m and a peak wave period 
Tp = 18 s.  Figure 8 plots the time history of the heave and 
pitch motions of the cylinder.  For comparison, the linear 
solution without the inclusion of nonlinear heave-pitch 
coupling effects is also shown. Resonant pitch response is 
obtained with the maximum value of |η5| near 8o at the steady 
state. For the heave motion, the unstable resonant heave 



 8

motion due to nonlinear instability effect is not apparent in 
this sea state.  As H1/3 increases, such as design storms in 
Celtic Sea (H1/3 = 16.8 m, Tp = 18.7 s) and Shetland Sea (H1/3 
= 18.0 m, Tp = 18.2 s), stronger unstable resonant heave and 
pitch motions are obtained.  In the Golf of Mexico (H1/3 = 
12.5 m, Tp = 14.6 s) however, unstable motions were not 
observed in both laboratory measurements and computations 
since the wave energy in the neighborhood of the critical 
period T = 22 s is negligibly small. 
 

5. CONCLUSIONS 
Through stability analyses and fully nonlinear simulations, 
we identify that the coupled heave-pitch resonant motions of 
the DDCV in waves are resulted from the second-order 
difference-frequency interactions between surface waves and 
body motions.  We believe that the Mathieu instability is not 
the cause for the occurrence of the coupled heave-pitch 
resonant responses of the platform.  The amplitudes of the 
resonant responses of the platform and the frequency 
bandwidth for the occurrence of such resonance depend 
critically on the incident wave amplitude and the (viscous) 
damping of the system. In general, larger wave amplitude 
and/or smaller damping lead to larger resonant responses and 
wider (resonance) frequency bandwidth.  The coupled heave-
pitch resonance of the DDCV may also occur in irregular 
waves depending on the peak wave period, the significant 
wave height of the spectrum and the natural heave and pitch 
periods. The identified resonance mechanism is general and 
can also be applied to other types of platforms such as 
FPSO's and TLP's with lightly damped modes of global 
motions. 
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