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Summary

Well intervention operations can inflict large strains on a wellhead. The seabed in the
North Sea is very rigid up to the point where the sea water meets the mud or sand.
This is one of the reasons why wellheads operating on the Norwegian continental shelf
are more exposed to fatigue damage. In search for more oil and the wish to increase
the utilization rate of existing wells the oil companies drill more and more, causing
more and more fatigue life consumption. The oil companies must provide sufficient
documentation that the wellhead always has enough remaining fatigue life to perform
a Plug and Abandon (P&A) operation.

Full scale measurements has been collected for a marine drilling riser connected to a
moored Aker H-3 rig operating on a field with a depth of 325m. The angles at the
bottom of the riser above the lower marine riser package are used to calculate the
consumed cumulative fatigue life using rainflow cycle counting and Miner-Palmgren
summation.

A simulation model has been developed in the computer simulation program RIFLEX,
which is a state of the art simulation program developed especially for slender structures
such as a riser in a marine environment. The model was built with relatively conservative
assumptions. This resulted on fatigue life assessments that gave a shorter operation
life than what was found using the full scale measurements. Using such simulation
is often the only tool available to document fatigue life consumption since full scale
measurement tools are rarely installed and used. It is vital that the simulation yield
reliable and correct results and as close to the true result as possible.

A series of similar simulation models were developed where we looked at the effect of
taking away some of the conservatism in the original model. First we looked at the
difference between a JONSWAP wave spectrum and a Torsethaugen wave spectrum.
The difference lies in the assumption of that a sea state is a superposition of wind
driven waves and swell waves, where the Torsethaugen use empirical data collected
from the North Sea to account for the difference. A Torsethaugen is a double-peaked
spectrum while the JONSWAP spectrum is a single-peaked spectrum. The difference
between the two results gave little or no effect on the motion characteristics and fatigue
life.

Then we introduce a directional wave spectrum, meaning that waves may be short-
crested and spread around a mean wave direction. This reduced the angular motion
in terms of standard deviation significantly. The reduction was between 10% – 15%.
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It also affected the fatigue life positively. In the next model we introduced non-linear
behaviour in the lower flex joint while the waves now were unidirectional. In terms of
standard deviation the reduction was the same as for the model with wave spreading.

In the last comparison model we used both non-linear flex joint behaviour and wave
spreading. The total reduction was again significant. For some of the simulation even
up to 30% compared to the original model. All the standard deviation from the full
scale data has natural variances from data set to data set and most of the computer
simulation fell within this margin of error.

For all simulation models the model was tested with different mean heading direction
of the waves. The mean heading directions were 0◦, 30◦, 60◦ and 90◦ relative to the rig.
While the full scale measurement had little correlation between the measured response
direction and the weather direction, the simulation were very consistent on this matter.

Some simulations with current and support vessel offset was performed to find the effect
on the standard deviation. While the presence of current damped the angular motion,
the standard deviation increased with increasing support vessel offset. A discussion
around the uncertainty of the true characteristics of the non-linear model explains some
of the behaviour.

When comparing fatigue life the calculated fatigue life consumption became closer and
closer to the measured value as we removed the conservatism. However, by a closer
investigation of the angle range spectra which is used in the Miner-Palmgren summation
there was found differences that need more attention. While the angle range spectrum
from the full scale measurement show a close to linear relation between numbers of
cycles exceeding ranges the shape for the simulated models were far from linear. In
terms of the shape parameter in the Weibull distribution it was found through fitting
the curve that the shape model for full scale and RIFLEX simulations were around 1.05
and 1.9, respectively.

It is this difference in shape that demands a closer investigation of the simulation models.
The fact that the fatigue life approached the true fatigue life so closely should so far be
regarded as a coincidence and not a result of good model approximations.

It was also found that the full scale motion for some of the time series are low frequency
dominated, i.e. high energy in oscillating components with a frequency outside the wave
spectrum. Some peak periods reach periods over a minute or even two. This is an effect
that is unaccounted for in the models presented in this thesis.
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Sammendrag

Brønnintervensjoner kan påføre store påkjenninger på et brønnhode. Havbunnen uten-
for Norge er veldig stiv hele veien opp til punktet hvor havbunn møter havvann. Dette
er en av grunnene til at brønnhoder som opererer på den norske kontinentalsokkelen er
mer utsatt for utmattelsesbrudd. I letingen etter mer olje og ønske om å utnytte statig
mer av hver brønn, borer oljeselskapene mer og mer. Oljeselskapet må alltid kunne
dokumentere at brønnhodet har tilfredsstillende nok levetid til å utføre en "plugg og
forlat"-operasjon.

Målinger har blitt samlet inn for fullskala borestigerørsrespons som er koblet til en op-
pankret Aker H-3 rigg som opererer på et felt med en vanndybde på 325m. Vinklene
nederst på stigerøret over den nedre stigerørspakken er brukt for å beregne den akku-
mulerte utmattelsesskaden ved bruk av rainflow telling og Miner-Palmgren-summering.

En simuleringsmodell har blitt utviklet i datasimuleringsverktøyet RIFLEX, som er
et avansert simuleringsprogram spesielt utviklet for slanke strukturer som blant annet
stigerør i et marint miljø. Modellen ble bygd med relativt konservative antagelser. Dette
resulterte i vurderinger av akkumulert utmattelsesskade som var mye høyere enn den
reelle verdien. Slike simuleringer er dessverre ofte det eneste tilgjengelige verktøyet for å
dokumentere gjenværende utmatting siden fullskala stigerør sjelden blir installert med
måleinstrumenter. Det er derfor av stor betydning at slike simuleringer gir et så korrekt
bilde av det reelle resultatet som mulig.

En rekke lignende simuleringsmodeller ble utviklet hvor vi så på effekten av å ta bort
konservativismen fra den opprinnelige modellen. Først så vi på forskjellen i responsen
ved å bruke et JONSWAP bølgespekter og Torsethaugen bølgespekter. Forskjellen lig-
ger i antagelsen om at en sjøtilstand består av to sjøtilstander som opptrer samtidig,
altså vinddrevne bølger og dønninger. Bølgespekterer til Torsethaugen har to topper
istedenfor en enkelt topp. Forskjellen mellom de to simularingene gav liten forskjell i
resultatene.

Så introduserte vi bølgespektre med retningsspredning. Det betyr at bølgene er ko-
rtkammede og har en spredning om en gjennomsnittlig innkommende retning. Dette
reduserte stigerørsresponsen (vinkel) i form av standardavvik betraktelig. Reduksjo-
nen lå på mellom 10% – 15%. Det påvirket også utmattelsesberegningene i positiv
forstand. I den neste modellen introduserte vi ikke-lineær stivhet av den nedre fleksi-
ble leddet, mens bølgespredningen ble satt tilbake til den opprinnelige uten spredning.
I form av standardavvik ble reduksjonen omtrent den samme som for modellen med
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bølgespredning.

I den siste sammenligningsmodellen ble både bølgespredning og ikke-lineær stivhet i
det nedre fleksible leddet brukt. Den totale reduksjonen av responsen var signifikant,
og i noen tilfeller opp til 30% sammenlignet med den opprinnelige RIFLEX-modellen.
Alle standardavvikene fra fullskaladataene varierer naturlig og de aller fleste simulerte
standardavvik falt innenfor disse feilmarginene.

For alle simuleringsmodellene ble modellene testet med forskjellige hovedretninger på
bølgene. Hovedretningene som ble bruk var 0◦, 30◦, 60◦ og 90◦. Fullskala målingene
viste at det var liten sammenheng mellom hovedretningen for vinkelresponsen i forhold
til værretningen. Derimot viste simuleringene stor sammenheng. Det vil si at hovedret-
ningen for responsen hadde samme retning som innkommende bølgeretning.

Så ble noen simuleringer gjort med strøm og noen der riggen var forskjøvet for å finne
påvirkningen disse hendelsene har på standardavviket. Strøm sørget for å dempe vinkel-
responsen, mens standardavviket økte når riggen ble forskjøvet. Påvirkningen av det
ikke-lineære leddet forklarer deler av denne oppførselen.

Når vi sammenligner utmattingen så vil beregnet akkumulert utmattelsesskade komme
nærmere og nærmere den målte verdien etterhvert som vi fjernet de konservative an-
tagelsene. Men etter nærmere etterforskning så vi at vinkelbreddespekteret som blir
brukt i Miner-Palmgren-summeringen var ganske forskjellige. Der vinkelbreddespekteret
for de målte dataene i fullskala gav en nesten lineær sammenheng (i lin-log skala) fikk vi
langt ifra dette for simuleringene. I form av formparameteren i en Weibullfordeling som
ble funnet gjennom tilpasning fant vi formfaktorer for henholdsvis fullskalamålinger og
RIFLEX-simularinger på 1.05 og 1.9.

Det er denne forskjellen i form som gjør at det trengs flere undersøkelser of simuler-
ingsmodellene. Det faktum at utmattelsesskaden nærmet seg den sanne verdien så bra
bør ses på som en tilfeldighet og ikke som et resultat av gode modeller.

Det ble også funnet at måleseriene fra fullskaladataene inneholdt mye lavfrekvente
bevegelser. Det vil si at en stor andel av den totale bevegelsesenergien finnes i frekven-
sområdet utenfor frekvensområdet for bølgene. Enkelte av topperiodene var på flere
minutter. Dette er en effekt som det ikke ble tatt hensyn til da modellene ble laget for
denne oppgaven.
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Chapter 1

Introduction

1.1 Motivation

This report is the result of a Master’s Thesis in Marine Technology at the Norwegian
University of Science and Technology in the spring of 2012. The work of this thesis was
initiated by 4Subsea after the need for a discussion around the problem of comparing
full scale data with computer simulations.

In the process of creating a computer model the user will always be confronted with the
time spent on the model with respect to the accuracy of the model. When presented
to an unknown factor, the user will assume a conservative value to be on the safe side.
This thesis will target the issue between physics in the real world and the conservative
assumptions made in the model. Narrowing the gap between a theoretical model and a
real-world application is of huge interest.

This thesis will specifically take a closer look at the fatigue problem on wellheads during
wellhead intervention operations. The consumed fatigue life during these operations
can be responsible for the majority of its total fatigue life. Being able to document the
remaining life with as accurate assumptions as possible gives a great advantage.

The investments in each and every well are massive. The wellhead is the interface
between the well and the drilling pipe in the sea. When closing a well the operator must
provide the documentation that the wellhead has sufficient life remaining to perform
Plug and Abandon (P&A) operation without failing. To make the most out of each well
the operators seek to utilize more and more of the wellhead. Having the best knowledge
to determine the spent fatigue life on the wellhead is therefore of great importance.
This means that one need to know the complete system setup, how all structural parts
interacts with each other, and how they are excited by the environmental actions.

The important structure parts which this thesis will look closer at are the wellhead,
BOP and its drilling riser. Even though the drilling riser is considered a vertical riser it
isn’t perfectly so. A moving surface vessel such as a drilling rig will be set in motion by
wind, waves and currents. In turn, this will yield a moment at the top of the BOP and
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the wellhead will be exposed to fatigue damage. The wellhead will take more fatigue
damage during the drilling process than it will during the rest of its total lifetime.

For the Norwegian continental shelf the question about wellhead fatigue is drastically
more interesting compared to other oil rich areas, e.g. the Mexico Gulf. The most
obvious reason is that the Mexico Gulf is far more benign than the seas outside Norway.
But the less obvious one is the composition of the sea floor and the sediments. From
the very top the seabed on the Norwegian continental shelf is very stiff yielding very
high stress concentrations near the sea-to-seabed transition. While in other areas the
transition is more smooth, having soft sediments at the top with a gradually increasing
stiffness as you go deeper underground. Because of this, the fatigue life in e.g. the
Mexico Gulf is almost not of interest at all for the drilling operation, or for the oil
extraction process at all.

The increasing demand of increased oil recover increases the wellhead intervention. Each
well increases in complexity and new technology allows for longer horizontal drilling
lengths. All this will give more days of intervention on the wellhead. In the 90’s and
the beginning of the new millennium the average height could be 10m – 12m and
weighing around 250Te, they can now be up to 16m – 18m and weighing 400Te or
even more. This increase in mass will also affect the fatigue life time of the wellhead.
The oil companies also increase their demands of how many drilling days one hole should
endure regardless of the weather.

1.2 Background

Petroleum has been exploited by mankind for thousands of years. One of the earliest
documented uses of petroleum by mankind is more than 4,000 years old. It was used
to make asphalt employed in the construction of walls and towers of Babylon. Oil wells
were first drilled in China in 347 AD. They were up to 240m deep and were drilled
using bits attached to bamboo poles. The oil was then burned to evaporate brine to
produce salt.

The real jump in oil production came with the industrial revolution when it became
an important fuel for combustion engines and for heating. After decades of extracting
oil from below the sea the demand is still increasing. The demand for oil will also be
present in decades to come. An important part of the oil industry is to locate new
sources of hydrocarbons. Drilling rigs are all over the world drilling around the clock in
the search for these valuable substances.

Naturally, the easiest accessible oil field has already been depleted, i.e. within the
acceptable utilization ratio with respect to cost. New field are developed at greater
water depths and in harsher environments such as Arctic areas. In turn, this means
that every well is even more complex and more expensive to develop. To extract more
oil and increase the margin per drill hole is therefore desirable.
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1.3 Approach

Using full scale measurements as a reference blueprint for the motion response we can
compare different simulation models with the data in order to determine any errors
implied by the model assumptions. The riser is equipped with Motion Reference Units
(MRU) in order to measure the translational and rotational accelerations of the riser
response. The accelerations are then integrated to find the displacements. An overview
of the system setup is given in section 2.1. The fatigue life is calculated using the angle
of the riser at the Lower Flex Joint (LFJ) which is positioned directly above the Lower
Marine Riser Package (LMRP).

The models are simulated in RIFLEX which is a computer program developed by Mar-
intek, a sub-division of the research organisation SINTEF. RIFLEX was developed as
a tool for analysis of flexible marine riser systems, but is as well suited for any type
of slender structure, such as mooring lines, umbilicals, and also for steel pipelines and
conventional risers (Marintek, 2010).

The original model will be tested against the full scale measurements. Each model will
then be adjusted with a change in the simulation one by one. This way we can determine
the effect each of them have on the total response and how this affects the total spent
lifetime of the wellhead.

Both statistical methods and direct cycle counting will be explained and utilised to
compare the response and fatigue life calculations.
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1.4 Report Organisation

1. Introduction
Gives an introduction to the problem in this report, the motivation and approach.

2. Marine Riser Setup
An overview over the system that will be analysed in this report. The marine riser
is schematically presented together with the relevant sensors and modelling.

3. Stochastic Theory
A basic introduction to the stochastic theory and concepts that are used to do the
statistical calculations.

4. Fatigue Theory
A short introduction to the fatigue theory. Miner-Palmgren sum and closed form
fatigue equations are presented here.

5. Full Scale Data Analyses
All the analyses and calculations of data from the full scale measurements are
collected in this chapter. This includes analyses of the angle motion of the LFJ,
fatigue calculations, power spectra and angle range spectra.

6. Simulation Models
This chapter gives an explanation to the theoretical approach of the simulation
model. It explains the simplification in the conservatism in the different simulation
models, etc.

7. Simulation Results
All the analyses and calculations of data from the simulation calculations are
collected in this chapter. This includes analyses of the angle motion of the LFJ,
fatigue calculations, power spectra and angle range spectra.

8. Result Comparison and Discussion
An assessment of the full scale and simulation model calculation.

Conclusion
The conclusions of the work in this report.

Recommendations for Further Work
Work and results that demands further investigation. Proposals of better ways to
approach the problem presented in the introduction.
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Chapter 2

Marine Riser Setup

2.1 Overview

2.1.1 Rig and Weather Directions

The rig is an Aker H-3 rig built in 1977. Its heading direction relative to north is 250◦
where positive direction is clockwise. The rig is using anchor lines for station keeping.
The water depth is 325m.

The weather data is provided by the Norwegian Reanalysis (NORA10), which is a series
of wave hindcast developed by the Norwegian Meteorological Institute. It produces
three hourly wave fields at 10 km grid spacing (Øyvind Breivik et al., 2011).

The simulation tool used in this thesis, RIFLEX, uses another definition of positive
angles. As shown in figure 2.1 the counter-clockwise direction is regarded as positive.
The angle in the xy plane, i.e. angles the horizontal plane is relative to the global x
axis.

2.1.2 Marine Riser Setup

System

The marine riser structure overview is shown in figure 2.2.

During the drilling operation the wellhead is connected to the Blowout Preventer (BOP)
which again is connected to the riser through the Lower Marine Riser Package (LMRP)
(see figure 2.4). The wellhead provides the interface for the BOP to connect to during
drilling and for the Christmas tree (XT) during production. The LMRP acts as the
interface between the riser and the BOP. It also consists of a flex joint to remove most
of the concentrated moment stresses.
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Figure 2.1: RIFLEX’ definition of co-ordinate system and corresponding angles (Mar-
intek, 2010)

The direction of the seabed template is arbitrary. The direction of the BOP is restricted
to align with the template and the BOP may have one of 4 different directions relative
to the template. The acceleration sensor is located at the port side of the BOP. The
orientation of the wellhead and BOP is unknown. The further calculations of the riser’s
angle response will be relative to the direction giving the highest response.

The top end of the riser is connected to a heave compensator on the rig. To avoid the
possibility of buckling and in case the rig need to disconnect from the BOP for any
reason the riser is always tensioned. The neutral axis is usually located somewhere on
the BOP, but never above. If part of the LMRP was in compression it would be difficult
to disconnect it in the event of an emergency.

Joints

One can divide the variety of joints into separate categories; flex joints, buoyancy joints,
slick joints, pup joints and the inner/outer barrel (Framnes and Gleditsch, 1994) and
(Wikipedia, 2012).

The flex joints are typically 1 – 2m. The flex joint is much more elastic than the rest
of the riser. It allows the riser to rotate more freely so that moments aren’t transferred
completely. A stiffer flex joint will transfer more moment and may yield a higher
concentration of stresses nearby.

Buoyancy joints makes the riser less heavy. The riser is heavier than sea water and
all the compression forces will gather near the bottom and all the tension near the top
of the marine riser. The buoyancy joints will spread the forces along the riser so that
the effective tension is positive and as smoothly distributed as possible along the whole
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length.

The slick joints are sections with exactly the same dimensions as the buoyancy elements,
but there are no buoyancy tanks or elements attached to it.

Pup joints are steel sections of variable lengths to adjust the total riser length so it is
in accordance with the water depth.

The inner and outer barrel, a.k.a. telescope joints allows the vertical motion of the rig.
The inner barrel has the same dimensions as the rest of the riser. It can then stroke
on the inside of the outer barrel which is connected to the heave compensating system.
The fluid inside is prevented from escaping by pressure seals between the pipes.

Blowout Preventer (BOP)

It is required that the hydrostatic pressure of the mud is greater than the inside pressure
to avoid oil and gas into the well. During the drilling operation the drill crown may
encounter gas pockets in the ground of extreme pressures. If this pressure reaches a
critical pressure it will be higher than the mud pressure it may enter the well at a very
high speed. This phenomenon is called a kick. If this kick runs out of control we may
have a blowout (Framnes and Gleditsch, 1994).

The BOP shall control the pressure and flow of the fluid and will act in case of emergency.
The BOP can interact and prevent a blowout different ways. The BOP can be equipped
with a number of different rams to prevent blowouts. A BOP equipped with a variety
of rams is then prepared to cut a variety of drilling pipes and strings and one may not
need to heave the BOP to the surface to re-equip it every time to save downtime. This
makes the BOP larger and heavier. The different BOP ram types are (Wikipedia, 2012):

• Blind ram (a.k.a. sealing ram) - Have no openings for the piping. It can close
the well when there are no drill strings or other tubing present. It will seal off
completely.

• Pipe ram - Will close around the pipe to restrict the flow in annulus between the
drill pipe and well bore. It does not, however, obstruct the flow inside the drill
pipe.

• Shear ram - The hardened steel shears will cut the drill string and casing.

• Blind shear ram - Will shear the bore even when a drill string is present and seal
the well.

Lower Marine Riser Package (LMRP)

The LMRP was developed to make an easy connection between the marine riser and
the BOP. It is equipped with remotely controlled valves which makes it easy to connect.
The LMRP also has a safety purpose. When the rig motion becomes larger than the
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drilling operation is designed for it can disconnect rapidly. It is therefore essential that
the lower end of the LMRP has a net positive tension.

Tensioner System

A ring of cylinders are connected between the rig deck and the marine riser’s outer
barrel. The cylinder is connected to a depressurised accumulator tank keeping the
tension fairly constant as the cylinder strokes to compensate for the motion. This
allows for the marine riser to maintain a constant heave position without following the
rig.
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Figure 2.2: Marine riser model structure
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Figure 2.3: Marine riser overview (Framnes and Gleditsch, 1994)

Figure 2.4: Schematic overview of the connection between the well and the marine riser.
The wellhead is connected to the Blowout Preventer and is then connected
to the marine drilling riser through the lower marine riser package.

Figure 2.5: Blowout Preventer diagram showing different types of rams. (a) blind ram
(b) pipe ram and (c) shear ram. (Wikipedia, 2012)
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2.2 Sensor Setup

There are several Motion Reference Units (MRU) installed on the riser system to con-
stantly measure the motions of the rig, riser and BOP. 4Subsea have developed the Riser
Expert (REX) system. The system was originally meant as a tool for the operator to
monitor the relative motion between the rig and the riser. This allows the operator to
have continuous control over the rig’s alignment with the wellhead, and control over
the angles in positions as the Upper Flex Joint (UFJ) and the Lower Flex Joint (LFJ).
Sometimes the operator needs to send objects through the marine riser. The object
needs to pass the UFJ and if the relative angle of the riser above and below the UFJ,
the object might get stuck or broken.

The following sensors are connected to the rig’s REX system (4Subsea, 2012):

1. MRU in the cabinet, measuring the rig motion.

2. MRU below the UFJ.

3. MRU above the LFJ.

4. MRU on the LMRP.

5. MRU above the LFJ.

6. MRU on the LMRP.

The MRUs 1–4 measures all 3 translational accelerations and the rotation rate about 2
axes. The last two sensors only measures the translational accelerations.

The system is shown schematically on figure 2.6. The sensors 1–4 are connected di-
rectly to the topside cabinet through cables. The last two sensors are battery powered
autonomous and are used as backup sensors. The placement of the sensors below and
above the Lower Flex Joint is shown in figure 2.7.
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Figure 2.6: REX system for the marine riser (4Subsea, 2012).

Figure 2.7: Sensor placement above and below the Lower Flex Joint.
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2.3 Riflex Model Structure

This section will describe the model structure of the marine riser in RIFLEX as used for
the original model. The original model contains simplifications of the true marine riser.
The modifications of the RIFLEX model will be discussed under simulation models in
chapter 6.

2.3.1 Wellhead

The wellhead is the first part. It is modelled as two lines. The sections given are
identical, but are of different lengths. The reason for the division is because of a global
spring placed at the supernode dividing them. This spring acts only in the horizontal
plane and shall represent the stiffness and damping from the seabed. The first node is
at z = −325m. The lengths of the wellhead lines are 1.860m and 1.624m, respectively.

2.3.2 BOP

The BOP is 6.908m tall and lies above the wellhead. The mass of the BOP is 158.65Te.
Since the top is in tension there will be a point within the BOP which is neutrally
tensioned.

2.3.3 Marine Riser

The marine riser itself is naturally divided into separate parts. In the RIFLEX model,
the LMRP is a part of the riser. The LMRP are divided into two segments. The two
segments are separated by a flex joint element providing stiffness to the Lower Flex
Joint (LFJ). This stiffness is lower than the intrinsic stiffness of the LMRP. This will
eliminate much of the concentrated moment forces from the marine riser. In the original
model the stiffness for this flex joint is 37.9× 104 kNm/deg. The true stiffness is not
linear. The effect of implementing a non-linear spring will be discussed later. The total
length of the LMRP is 3.394m and the mass of the LMRP is 70.9Te.

The next section is a slick part containing no buoyancy elements. The segment length
is 15.240m. The buoyancy joints are modelled as three different sections. The total
length of the three sections is 274.320m. Then follows another three sections of pup
joints with a total length of 13.716m. The pup joints have the same cross-section as
the slick joints below the buoyancy part.

Placed in the mean surface level (MSL) is the outer barrel. The length of the outer
barrel is 22.027m. The length of the inner barrel is 10.079m. At the top of the inner
barrel we have the Upper Flex Joint (UFJ). The UFJ is modelled with a linear rotational
stiffness of 5 kN/deg.
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On top of the marine riser we have the diverter and rotary with lengths of 1.792m and
0.500m, respectively. The rotary is connected to dummy beams that shall model the
drill floor’s intrinsic stiffness.

2.3.4 Heave Compensator

The outer barrel is connected to the heave compensator lines modelled as elements with
a constant tension force regardless of the elongation. In RIFLEX this is modelled using
two lines symmetric about the marine riser. Each of the tension legs has a tension force
of 5.316× 105 N

2.3.5 Model Data

The complexity of the complete riser model is too much to include in this text, but in
table 2.1 is a summary that will give an overview of the marine riser composition along
the length.

Component Length Massair Dext Dint EA EI GI
[m] [kg/m] [m] [m] [GPa] [GNm2] [GPa]

Wellhead 3.484 0.476 0.476 39.206 1.7083 1.3140
BOP 6.908 23018.3 1.990 0.476 42.375 1.8984 1.4603
LMRP 3.394 10898.5 1.434 0.476 42.375 1.8984 1.4603
Lower flex joint 10.000 3.798× 10−5

Slick joints 15.240 363.3 N/A 0.520 5.2911 0.1773 0.1364
Buoyancy joints 274.320 606.9 0.993 0.520 5.2911 0.1773 0.1364
Pup joints 12.192 363.3 N/A 0.520 5.2911 0.1773 0.1364
Pup joint 3.778 539.2 0.597 0.520 5.2911 0.1773 0.1364
Outer barrel 20.826 761.5 0.690 0.594 544.25 137.70 105.92
Tension ring 1.200 12426.8 1.533 0.578 544.25 137.70 105.92
Inner barrel 10.079 399.5 0.563 0.502 10−9 0.27634 0.2126
Diverter flex joint 1.768 2319.0 0.847 0.584 6.1351 0.2763 0.2126
Upper flex joint 10.000 5.0× 10−6

Rotary 0.500 324.77 50.398 38.767

Table 2.1: Dimension values for the marine riser.

2.4 Acting Forces

The static forces acting on the wellhead are the mass forces from the BOP and LMRP
below the flex joint. Above the flex joint the forces from the marine riser are the tension
forces, shear forces and a moment.
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When the riser has a non-zero angle the tension force T will have a horizontal component
TH . The shear force Q will also have a horizontal component QH (See figure 2.8 and
2.9).

Figure 2.8: A simplified schematic model of the forces acting on the marine riser, BOP
and the wellhead.

Figure 2.9: The tensile and shear forces at the end of the marine riser can be decomposed
into horizontal of vertical forces.

The horizontal components of the tension force and the shear force can be written as

TH = T sin θ (2.1)

and

QH = Q cos θ (2.2)
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The total horizontal force at the flex joint from the riser is then

FH = TH +QH (2.3)

The flex joint element has a non-linear rotational stiffness. The relative angle between
below the lower flex joint and above the lower flex joint will give a concentrated moment
here, MFJ . A closer description of the non-linear stiffness is given in section 6.6.2. The
stiffness of the spring is changing as the angle changes, i.e. kFJ = kFJ(θ).

MFJ = kFJ(θ)θ (2.4)
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Chapter 3

Stochastic Theory

3.1 Stochastic Process

3.1.1 Definition

A stochastic process or a random process is the opposite of a deterministic process. A
random process has built-in uncertainties and is, in principle, described by an infinite
number of uncertain variables. Even if the initial values of the process is known, e.g.
position, velocity and acceleration the uncertainties of the system motion increases
with time. In a probability analysis one can only determine the statistical or averaged
characteristics of the process (Newland, 1993). An ergodic process, i.e. a stationary
process, will have the same statistical characteristic for all samples. This means that
the same characteristics may yield two different realisations of the process.

Wave elevation is a typical example of such process. One can measure the elevation at a
certain time. Intuitively, we realise that if we want to determine the elevation right after
that measurement we can expect it to not change too much. But as this time difference
increases, the uncertainty increases. One way to describe this is the autocorrelation
function. The autocorrelation function gives the averaged product of the elevation at
time t and t+ τ . This is expressed by

RX(τ) = E [x(t)x(t+ τ)] . (3.1)

The autocorrelation function is a function in the time domain. In order to simulate a
time series on a computer it is desirable to choose frequencies with different amplitudes
and phases that will represent the same characteristics. To transform the autocorrelation
function into the frequency domain we need to perform a Fourier transform of the
function. This is discussed in closer detail in section 3.4.
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3.1.2 Multivariate Normal Distribution

If we assume a narrow band Gaussian process for the angle response it is quite straight-
forward to calculate the fatigue. The standard deviation and frequency are the only
response dependent variables. For a cross-section that is excited to forces from all di-
rections we need to transform the response onto a control plane of which we find the
fatigue damage on (see section 5.3.1). Instead of actually transform the response plane
for every direction we want to calculate the standard deviation we can use the statistical
properties of a bivariate normal distribution.

In a bivariate normal distribution the distance from the mean to the equidensity contour
lines at the standard deviation can in general be described as an ellipse, which is proven
below. By finding the covariance matrix (equation 3.6) once, we can deduce the standard
deviations for all direction using a simple formula.

For a pure multivariate normal distribution of stochastic variables we can describe the
process with a expected mean value µi and a standard deviation σi for each of the
variables. In the case of a bi-planar angle we only have two stochastic variables. In
general, the bivariate normal probability distribution is defined as

fXY (x, y) = 1
2πσXσY

√
(1− ρ2

XY )
exp

[
− 1

2(1− ρ2
XY )

(
(x− µX)2

σ2
X

+ · · ·

(y − µY )2

σ2
Y

− 2ρXY (x− µX)(y − µY )
σXσY

)]
,

(3.2)

where ρXY is the correlation coefficient defined as

ρXY = E [(x− µX)(y − µY )]
σXσY

. (3.3)

If we set equation 3.2 to a constant C and divide both sides of the equation with the
factor before the exponential factor on the left hand side, which also is a constant we
get

exp
[
− 1

2(1− ρ2
XY )

(
(x− µX)2

σ2
X

+ (y − µY )2

σ2
Y

− 2ρXY (x− µX)(y − µY )
σXσY

)]
= C ′. (3.4)

We can now take the natural logarithm on both sides and the divide both sides with
the factor outside the parentheses. All the right hand side constants are collected in the
constant C ′′. The equation now has the form

(x− µX)2

σ2
X

+ (y − µY )2

σ2
Y

− 2ρXY (x− µX)(y − µY )
σXσY

= C ′′, (3.5)
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which is a rotated ellipse with its centre located at (µX , µY ). This means that the
equidensity contours of a bivariate normal distribution is shaped as an ellipse regardless
of mean values, standard deviations and correlation factors.

Figure 3.1: Bivariate normal distribution (Wikimedia Commons) Equidensity contour
lines would be shaped as ellipses. Principal axes and variances are here
marked by the arrows.

The covariance matrix for a data sample is defined as

Σ =

E[(X1 − µ1)(X1 − µ1)] E[(X1 − µ1)(X2 − µ2)]

E[(X2 − µ2)(X1 − µ1)] E[(X2 − µ2)(X2 − µ2)]

 , (3.6)

We can use this matrix to find the principal directions and its corresponding variance
for the sampled data in that direction. The eigenvectors yield the directions and the
eigenvalues yield the variances. We can then utilize the fact that the equidensity contour
lines are ellipses. When this is transformed on a rotated coordinate system the "new"
variances will perfectly follow a sine curve which always is positive (see figure 3.2(c)).
The mean values will not affect the principal directions nor the variances.
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(a) Plot of the angle response (b) Checkerboard plot of the angle response

(c) Standard deviation for each direction

Figure 3.2: Example of statistical description of angle response

3.2 Spectral Density

3.2.1 Definition

The spectral density for a Gaussian distributed process is defined as

Sx(ω) = 1
2π

∞∫
−∞

Rx(τ)e−iωtdτ (3.7)

where Rx(τ) is the autocorrelation function defined in equation 3.1.

Equation 3.7 describes a Fourier transform of the autocorrelation function. We can also
find the autocorrelation function by taking the inverse Fourier transform of the power
spectrum

Rx(τ) =
∞∫
−∞

Sx(ω)eiωtdω. (3.8)

20 Ivar Stange, 2012



Stochastic Theory

It follows that limτ→∞Rx(τ) = µx, where µx is the mean value for the Gaussian process.
The conditions to perform a Fourier transform is

∞∫
−∞

|Rx(τ)| dτ <∞. (3.9)

Having the condition in equation 3.9 combined with equation 3.1 we must modify our
data in order to properly find the spectral density. All the data must be subtracted
with the mean value of the data set.

3.2.2 Spectral Moments

The spectral moments of S(ω) are defined as

mn =
∞∫

0

ωnS(ω)dω, n = 0, 1, 2, . . . (3.10)

We can then find the standard deviation by setting τ = 0 in equation 3.1. We now have
that

σ2
X = RX(0) =

∞∫
−∞

Sx(ω)dω = m0. (3.11)

Hence,

σX = √m0. (3.12)

From the spectral moments we also have that the mean period of the motion is given
by (Myrhaug, 2007)

Tm = m1

m0
, (3.13)

and the mean zero crossing period is given by

Tz =
√
m2

m0
. (3.14)

The peak period of the motion is

TP =
√
m4

m2
. (3.15)
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3.3 Short-Term Statistics

Figure 3.3: Example of a Gaussian process (Myrhaug, 2005). The irregular realisation
of the motion is the superposition of an infinite number of regular sine curves
with varying amplitudes and random uniformly distributed phase angles.

Figure 3.3 shows an example of a stochastic process. The crosses indicated a positive
zero-crossing of the mean position and the circles shows all the local maxima. The
distribution of the local maxima can tell us a lot about the process. A generic broad-
banded process will have both positive and negative local maxima. An infinitely broad-
banded process will in theory have equal amount of negative maxima as positive with
a symmetric distribution. In fact, the distribution will become a Gaussian distribution
and the process is often referred to as Gaussian white noise. The other extreme is a so-
called narrow-banded process. The result is a recognisable signal which is very close to
a sinusoidal signal. All frequencies with significant energy are then concentrated around
one frequency. All maxima are positive for narrow band processes. The distribution of
local maxima can be approximated by the Rayleigh distribution.

For a stationary Gaussian process with a finite broadness the general expression for the
local maxima can be expressed by the Rice distribution (Myrhaug, 2005)

fRice
η (η) = 1√

2π
ε exp

(
−1

2

(
η

ε

)2
)

+
√

1− ε2η exp
(
−η

2

2

)
φ
(
η

ε

√
1− ε2

)
, (3.16)

where η = ζ/σX , ε is the bandwidth parameter given by

ε2 = 1− m2
2

m0m4
(3.17)

and φ is the cumulative Gaussian distribution. Figure 3.4 shows how the Rice dis-
tribution interpolates the Gauss and Rayleigh distributions for different values of the
broadness parameter ε. The area under each curve is always equal to 1.0.

There is another way to determine the broadness. One can look directly at the ratio
between the negative maxima and all maxima. We can then directly count the number
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Figure 3.4: Distribution of maxima for different broadnesses

of negative maxima in the data set. From (Cartwright and Longuet-Higgins, 1956) we
have:

r = 1
2

[
1− m2√

m0m4

]
= 1

2
[
1−
√

1− ε2
]
. (3.18)

Conversely, we have

ε = 1− (1− 2r)2. (3.19)

The ratio, r, can be understood as the area under the Rice distribution for −∞ < η ≤ 0

r =
0∫

−∞

fRice
η (η)dη. (3.20)

3.4 Assumptions

3.4.1 Linear Assumptions

In order to perform a proper stochastic analysis of the sampled data we first need to
make some assumptions. To be able to perform any spectral analysis we assume a linear
system, i.e. we can describe the motion of the angle as sum of 1st order forces:

Iθ̈ + cθ̇ + kθ =
n∑
i=1

yi. (3.21)
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All higher order terms such as non-linear drag force, which is proportional to the velocity
squared (u2), are neglected. We also assume that the wave elevation and wave forces
are Gaussian processes. Since waves are the main driving forces for both the rig and
the marine riser itself, denoted as yi in equation 3.21, then the probability distribution
for the excited motion will also be a Gaussian distribution (Newland, 1993).

When we have a narrow band Gaussian process with a Rayleigh distribution of the local
maxima it is quite straightforward to calculate the cumulative damage. The only needed
parameters are the mean number of cycles per unit time and the standard deviation of
the response (DNV, 2010). The Rayleigh distribution is given as

fX(x) =
(
x

σ2

)
exp

(
−x2

2σ2

)
, (3.22)

where x is local maximum and, σ is the standard deviation of the response.

3.4.2 Non-Linear Assumptions

For a more generic case where we do not have linear forces and reaction forces we cannot
use the Rayleigh distribution for local maxima. For a non-linear response the maxima
distribution can often be better described with the Weibull distribution given by

fX(x) = α−ββxβ−1 exp
[
−
(
x

α

)β]
, (3.23)

where α is the scale parameter and β is the shape parameter. The Rayleigh distribution
is in fact a special case of the Weibull distribution, i.e. when α =

√
2σ and β = 2.
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Chapter 4

Fatigue Theory

4.1 Cycles to Failure

4.1.1 Constant Amplitude Loading

For various amplitudes the material in question is tested with an oscillating load with
constant amplitude. The loading is then set to be between a minimum stress, Smin, and
a maximum stress, Smax. After an average of N cycles the material fails to maintain its
structural integrity. When the material is tested for many different stress ranges, i.e.
∆S = Smax − Smin we can construct an S-N curve.

4.1.2 Variable Amplitude Loading

A constant amplitude loading may occur in real life, e.g. a machinery part running with
a constant load. In a marine environment this is rarely the case. The varying nature of
the wind, waves and current will yield a varying amplitude loading on the structure.

The Miner assumption on structural damage is that for every cycle with a stress range
∆S, the structure is damaged as

D = 1
N(∆S) , (4.1)

where D is the damage made on the structure. The failure criterion is

Df ≥ 1 (4.2)

For a stress history, many cycles will fall within the same region of stress range ∆Si±δS.
For each block number i, we have a number of cycles with the same stress range, ni.
The Miner-Palmgren summation rule can be written as
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D =
k∑
i=1

ni
Ni

(4.3)

where k is the total number of blocks. The total number of stress cycles, n0, can be
written as

n0 =
k∑
i=1

ni (4.4)

4.2 θ-N Curve

The term θ-N comes from S-N which is a plot of total number of stress cycles to failure
for a constant amplitude scenario. We will use the angle θ directly to compare the
cumulative damage.

The relation between the angle and the stress on the wellhead is a complex one. The
horizontal component from the tension force is not the only one. There is also a contri-
bution from the flex joint, which is not linear. Also, the damping factor is dependent
on the angular velocity. To make things less complicated a "S-N curve" for the angles
has been developed so that the angular spectrum can be compared directly for fatigue
analyses. The curve should yield an equivalent damage as if the stresses were found.
This makes the calculations less cumbersome. Figure 4.1 shows a log-log scaled version
of the θ-N-curve. Tabulated values are given in appendix B. This θ-N curve is one of
many, but is used throughout in this thesis.

Figure 4.1: Cycles to failure. The curve is bi-linear when it is plotted in a log-log scale.
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4.2.1 Determination of Constants in Two-Slope θ-N Curve

A generic θ-N curve which is linear in a log-log scale is given on the form

N = ā(∆θ)−m, (4.5)

where N is the number of cycles to failure for a constant stress range, θ, and m is the
negative slope of the curve. Equation 4.5 can also be written as

logN︸ ︷︷ ︸
x

= log ā︸ ︷︷ ︸
â

−m̂ log(∆θ)︸ ︷︷ ︸
y

. (4.6)

We can then find the values for â and m̂ by selecting two points for each section in the
θ-N curve by solving the equations

[
x1
x2

]
=
[
1 −y1
1 −y2

] [
â
m̂

]
. (4.7)

The constants for the first (steepest) slope are

[
â1
m̂1

]
=
[
1 −1.47712
1 −0.63827

]−1 [2.91459
5.42603

]
=
[
7.3369
2.9939

]

And for the other slope the values are

[
â2
m̂2

]
=
[
1 −0.39979
1 0.17160

]−1 [6.25648
9.12706

]
=
[
8.2650
5.0238

]

To use this in a closed form solution for the damage we need to identify the knee of the
of the θ-N curve. We now have expressions on the form x = â − m̂y. And we want to
find the value of y where x is the same. The two equations are

x = 7.3369− 2.9939y (4.8a)

x = 8.2650− 5.0238y (4.8b)

By subtracting equation 4.8a with 4.8b, we get

y = 0.4572

I.e. ∆θr = 2.865.
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4.2.2 Closed Form Fatigue Life Equations

For a narrow band Gaussian stress response (or angle response in our case) there is a
very simple relation between the mean frequency, standard deviation and the cumulative
damage. For a simplified case where we have a linear θ-N curve the damage per unit
time can be written as

D = f0

ā

(
2
√

2σ
)m

Γ
(
m

2 + 1
)

(4.9)

where f0 is the mean frequency, m is the inverse slope of the θ-N curve and Γ(φ) is
defined as

Γ(φ) =
∞∫

0

e−ttφ−1dt (4.10)

For a non Gaussian process the distribution of ranges cannot be described with the
Rayleigh distribution, but with the more generic Weibull distribution. The closed form
solution for a Weibull distributed range density can be written as (Almar-Næss et al.,
1985):

D = n0

ā

∆σm0
(lnn0)m/h

Γ
(

1 + m

h

)
, (4.11)

The expression is valid for a θ-N curve which follows equation 4.6, i.e. a single linear
relation. Most offshore steel material does not follow this curve. A more realistic θ-N
curve is a bilinear curve as in figure 4.1. Each line has its own slope and intersection
point on the log n axis. A closed form solution is also found in this situation (DNV,
2010)

D = f0(2α)m1

ā1
G1

{(
1 + m1

β

)
;
(
Ssw
2α

)β}
+f0(2α)m2

ā2
G2

{(
1 + m2

β

)
;
(
Ssw
2α

)β}
, (4.12)

where G1 and G2 are the complementary incomplete Gamma function and incomplete
Gamma function

G1(φ, x) =
x∫

0

e−ttφ−1dt (4.13a)

G2(φ, x) =
∞∫
x

e−ttφ−1dt (4.13b)

The expression implies a two-parameter Weibull distribution of the probability density
function of the angle ranges, where β is the shape factor, α is the scaling factor, Ssw is
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the stress (or angle in our case) describing the knee in the θ-N curve and f0 is the average
number of cycles per time unit. The sum of the two incomplete Gamma functions is
the full Gamma function, i.e. we can use that they are just weighing factors for the two
slopes. We can then write it on the following form:

D = n0

ā1

∆σm1
0

(lnn0)m1/h
G1

{(
1 + m1

β

)
;
(
Ssw
2α

)β}

+ n0

ā2

∆σm2
0

(lnn0)m2/h
G2

{(
1 + m2

β

)
;
(
Ssw
2α

)β}
.

(4.14)

4.2.3 Wide Banded Stress History

The closed form fatigue life equations are based on a narrow band process. Based on
Gaussian narrow band damage, DNB compared with rainflow counting damage, DRFC ,
which is regarded as the true cycle counting approach (DNV, 2010) a correction factor,
κRFC , has been proposed. The corrected damage is expressed as

DRFC = DNBκRFC , (4.15)

where κRFC is expressed as

κRFC(m) = a+ (1− a)(1− ε)b, (4.16)

where

a = 0.926− 0.033m (4.17a)

b = 1.587m− 2.323 (4.17b)

For a completely narrow banded process (ε = 0) the correction factor is 1, and for a
broadness larger than zero the correction factor will become lower than 1. Figure 4.2
shows the effect of the correction factor for two different S-N curve slopes.
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Figure 4.2: Correction factor for broad banded fatigue assessment

4.3 Cycle Counting and Fatigue

The distribution of maxima is a good way to determine the broadness of a spectrum. To
use the time series in a fatigue analysis we need the stress ranges. A discrete distribution
of the stress cycles, i.e. for stress cycles falling within the region [Si, Si + ∆S], will give
us the information needed to perform a fatigue analysis.

Figure 4.3: Example load history

A description of the terminology as given by (Almar-Næss et al., 1985):

• Reversal is the occurrence where the first derivative of the load-time history
changes sign.

• Peak is the occurrence where the first derivative of the load-time history changes
from positive to negative sign.

• Valley is the occurrence where the first derivative of the load-time history changes
from negative to positive sign.

• Range is the algebraic difference between successive valley and peak loads (nega-
tive range, e.g. points 3 to 4, 7 to 8, . . . ) or between successive peak and valley
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loads (positive range, e.g. points 2 to 3, 6 to 7, . . . ).

Counting cycles for a narrow band process is trivial, i.e. all counting methods yield
almost the same answer. However, for a broad banded process, the result will depend
strongly on the method. A common method of choice for a broad banded process is the
rainflow counting method, or RFC.

4.3.1 Weibull Stress Range Distribution

Representing an irregular load history for fatigue analysis is most commonly done in an
exceedance diagram of stress ranges, often called the stress range spectrum. In most
practical cases the stress range spectrum can be approximated by a two-parameter
Weibull distribution, which can be written on the following form (Almar-Næss et al.,
1985):

θr = θr,0

[
1− log10 n

log10 n0

] 1
β

, (4.18)

where Sr,0 is the stress range which is exceeded once out of n0 cycles, n is the number of
stress cycles equal to or exceeding Sr and β is the shape parameter as shown in figure
4.4.

Figure 4.4: Normalised stress spectrum represented by the Weibull distribution with
different shape parameters.

4.3.2 Rainflow Counting

The rainflow counting method was originally proposed as a cycle counting method by T.
Endo and M. Matsuishi in 1968. A revised method was developed in 1974 (Anzai and
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Endo, 1979). A complex time signal can have several reversals between zero-crossings
and different counting methods yields very different results. The rainflow counting
procedure counts cycles and half-cycles of stress-time signals which, in general, are
random finite-banded signals. This makes it difficult to determine the number of cycles
absorbed by the structure (Ariduru, 2004). The counting of ranges can be represented
in a histogram that displays the distribution of the random ranges. The distribution of
stress ranges makes it possible to make the stress spectrum.

Figure 4.5: Stress-strain cycles. The signal is plotted vertically with time. The variation
in strain amplitude makes the rainflow counting method suitable for broad
banded processes.

The name rainflow counting originates from the analogy of the raindrops dripping from
a Japanese Pagoda Roof. The time axis of the signal is then rotated vertically. A water
drop is created on a peak or valley and is released on the next reversal as shown in
figure 4.6.

The rainflow follow the rules as:

1. Raindrops will form on the inside of each peak or valley.

2. The raindrop will drip of the roof when it reaches the successive reversal.

3. When the drop meets a flow from above, the drop stops and a cycle is completed.

4. The drop will also stop is it meets a peak larger than the starting peak, or a valley
more negative than the starting valley.
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Figure 4.6: Creation and release of raindrop.

5. A flow that is part of stopping another flow to form a full cycle is itself only
forming a half-cycle.

Figure 4.7 shows an example where only drops from valleys are shown. It illustrates the
rules as explained above. For a sufficiently long record the valley-generated half-cycles
will match a peak-generated half-cycle to form a whole cycle (Ariduru, 2004).
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Figure 4.7: An example of rainflow for one side only. A raindrop is created inside each
valley and is released on the succeeding peak.
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Chapter 5

Full Scale Data Analyses

5.1 Environmental Parameters

In order to simulate the weather conditions as representative as possible we need detailed
and reliable data from the offshore field or at least very near it. The weather data
collected that will be used here is from NORA10 (NOrwegian ReAnalysis). The grid
point is placed 37 km north and 27 km east for this site, a total distance of 46 km.
We’re going to assume that this is close and representative enough for the entire area,
including the position in question.

The given weather data is very detailed and gives values for the total sea state, wind
sea and swell. The weather data also provides wind speed and direction at different
levels above mean sea level. For the wind sea and swells we can find the significant
wave height, HS, the peak period, TP , and its mean direction.

Two methods in simulating the sea state in RIFLEX may be relevant. The total sea
may be best represented with a Torsethaugen spectrum. The Torsethaugen spectrum
is a double peaked spectrum and its only parameters are HS and TP from the total
sea data. The spectrum is developed based on data from Haltenbanken and Statfjord
(Torsethaugen and Haver, 2004). With this option we cannot control the direction
spreading for wind sea and swells separately. We can, however, use a generic cosine
distribution (Marintek, 2010). The Torsethaugen spectrum is based on the JONSWAP
spectrum. Since we can input more than one irregular sea state data simultaneously we
can use the two datasets for wind sea and swells. We can then control the direction in
some more detail. It is even possible to describe directional spreading on each one of
them.

The long term sea states observations is presented table 5.1. It shows the relation of
the total sea state and does not distinguish between wind and swell sea.
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Table 5.1: Long term sea states observations

Figure 5.1: Sea state directions at Haltenbanken
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5.2 Sampled Data

5.2.1 Data Files

The angle time series are stored in text files. The sampled data are contained in many
separate files. Every file contain about 60min of data with a sampling rate of about
5Hz. The files are organised into 4 columns, the first one being the time since sampling
start. Column two and three are angles in the xz- and yz-planes, respectively. The
fourth column is a dummy column.

The calculated angles are based on numerical integration over time of the angular rate
time series. Numerical integration will in general introduce numerical errors. Such
errors can be drifting and/or false slowly varying effects. The data has been compared
in a period where the data from the two different MRU types installed (same location)
show consistent data. Unphysical effects has been filtered out from the data and time
series with a high probability of error or faulty time series has been removed from the
complete data set (Holden, 2012) and (Pytte, 2012). One can never be certain that all
non-existing effects has been removed or filtered from the data set, but for all purposes
of this thesis we will proceed assuming that the datas represent the correct angle motion
of the marine riser.

5.2.2 Techniques

The data can be analysed in various ways. The best way to find any correlations with
calculated values is using statistical analyses. One can quickly find similarities from the
variance and the covariance.

The program used to perform the actual transformation to find the spectral density is
WAFO. With the WAFO toolbox for Matlab it is possible to generate smoothed spectral
densities that will remove any noise in the graphical output (WAFO-group, 2000).

For each set of data the data ensemble will be connected to the relevant measured sea
state at that time. The relevant connecting parameters are HS and TP for the total
sea. When the data are collected into groups we can develop a statistical picture of the
expected response for the different sea states.

5.2.3 Normal Distribution Probability Paper

In order to verify the assumption of a Gaussian probability distribution of the angles
in the xz- and yz-plane we can construct a probability paper for a normal distribution.
The cumulative distribution function for a normal distribution is

FX(x) = 1
2

[
1 + erf

(
x

σ
√

2

)]
. (5.1)
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We can manipulate and rewrite this equation into

x = σ
√

2︸ ︷︷ ︸
a

erf−1(2FX(x)− 1)︸ ︷︷ ︸
y

, (5.2)

where erf−1 is the inverse error function. By using the equation for empirical cumulative
value F

F̂ = data entry number
# total data entries + 1 (5.3)

we can create a linear set of data point which we can plot according to x = ay. The
more linear the data point line up, the more perfect normal distributed they are. By
using regression analysis we can find the slope, a. From the slope we can also find the
standard deviation σ using

σ = a/
√

2. (5.4)

Figure 5.2 shows an example of how close to a normal distribution the angle distribution
is.

Figure 5.2: Normal distribution probability paper example. For a perfectly normal dis-
tribution the data would form a straight line. The coefficient of determina-
tion yield the "goodness of fit" of the line.

There may exist probability distribution function fXY (x, y) which are not bivariate
normal distributed, but constructed in such a way that the marginal densities are nor-
mal. This can also be true for the case where we have a linear combination of the two
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variables, e.g. X + Y . From (Hamedani and Tata, 1975) we can use that when the
linear combination of the variables and the marginal density are normal distributed,
the vectors [Xk, Yk] are bivariate normal distributed.

The coefficient of determination R2 for the sample hour in figure 5.2 is found to be
0.99729. The closer the value is 1.0, the better, and this seems to be a very good fit.

5.3 Multi-Directional Fatigue

5.3.1 Control Planes

The wellhead is subjected to bending in all directions in the horizontal plane. The riser
angle is described only by the angle in the xz- and yz-planes. To assess the loading in
each direction we need to take a projected snapshot of all possible planes. To do this
for an infinite number of planes require both time and a massive amount of data. We
will restrict us to a limited amount of planes around the z-axis. A sub-division of 8
planes should be sufficient. This gives a 22.5◦ spanning between each plane. Assuming
that fatigue damage for any angle φ and φ + π accumulates the same damage since
their cycle count will be the same but from the opposite signal, only directions between
0◦ and 180◦ will be considered. Hence, two sea states of opposite directions will yield
fatigue in the same plane.

Figure 5.3: Example of angle path and projecting planes

Figure 5.3 illustrates how the planes which will be considered are distributed. Since
bending about the in-plane axis will not contribute to any fatigue on that plane we can
project them to the same plane, neglecting the out-of-plane motion for that particular
angled plane. We can then find the distribution of angles about the plane’s normal axis.
To evaluate the projected plane we need to rotate the signal onto a transformed xyφ
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system, where φ indicates the rotation angle of the transformed coordinate system in
degrees. If any angle vector containing a pair of xz- and yz-angles respectively is

θ = [θxz, θyz], (5.5)

which is a horizontal vector. Then the corresponding transformed vector is

θφ = θ

[
cosφ − sinφ
sinφ cosφ

]
(5.6)

We are only interested in the spectrum to the transformed xzφ-plane, since the yzφ will
always be covered when all planes are evaluated.

Since the out-of-plane motion for all planes are taken away, we need to account all the
motion for all planes for all times and not only the largest one. This way we can for
each sea state disconnect the main direction of motion and fatigue for each plane. From
this we can later construct the distribution of angles with respect to fatigue and not
only the distribution of weather and waves themselves.

The in-plane motion is Gaussian distributed with zero mean value, i.e. after correction
since this is a static value under the stationary assumption. Standard deviation and the
power spectrum are the values of interest here.

5.3.2 Governing Response Angle

The response is elliptic with a certain governing angle in all data series. This angle does
not seem to follow the direction of the incoming waves. The relative direction between
the angle response and the weather’s direction seems random (see figure 5.4). This
angle is not restricted since it varies from −90◦ to 90◦. This gives an important piece
of information that we can use. I.e. the response has no preferred angle with respect to
weather conditions. Since the weather does have a preferred direction this causes the
wellhead to be exposed to less fatigue on each control plane. All the calculated standard
deviations and its effect on the fatigue can be distributed for all angles, which gives the
most non-conservative fatigue calculations. The opposite is when we assume that all
response happens in the same line of direction.

Three cases can now be identified. When the ratio, as described below, is 0 (conserva-
tive), 1 (non-conservative) or between 0 and 1, which is the most realistic case. For any
given sea state we have an expected maximum and an expected minimum standard devi-
ation. The unknown is the governing direction. We have shown that the ellipse-shaped
variance along the angles yields a sine curve on the form

Var[θ] = A+B cos[2(θ − φ)], (5.7)

where A must be larger than or equal to B in order to always have a positive variance
and φ is the time series’ preferred angle. The standard deviation will then become
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(a) Relative angle between weather and re-
sponse

(b) Relative angle distribution

Figure 5.4: Spread and distribution of the relative angle between the weather and riser
response

Figure 5.5: Illustration of response angle relations seen from above

σ(θ, φ) =
√
A+B cos[2(θ − φ)]. (5.8)

Where the ratio, denoted ζ will be

ζ =
√
A−B√
A+B

=
√
A−B
A+B

= σmin
σmax

. (5.9)

Instead of the 8 control planes described in section 5.3.1 we can now, in theory, divide the
planes infinitely. We can do so by combining equation 5.8 and 5.9 and some modification
find

σ(θ, φ) = σmax√
2

√
1 + ζ2 + (1− ζ2) cos[2(θ − φ)]. (5.10)
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The users can now select how fine they want to find the accumulated damage for each
direction by this simple formula.

5.4 Results

5.4.1 Selecting Representative Data

From figure 5.1 we can see that some sea states occur more often than others. Although
data is collected and calculated for most of them only a few of them will be presented.
The selected sea states will be the basis for comparison and limit the necessary simula-
tions in RIFLEX.

It is preferable to select multiple sea states that share either HS or TP that still have
some observations in it. But this is still no guarantee that the data is any "good".
We may still have observations that are incorrectly categorised. Another problem is
that some results yield unphysical results even though "bad data" have been filtered
out after best effort. We expect, for example, that higher HS for the same TP should
yield a larger response. If we can follow a trend that seems reasonable, but there are
observations that diverge from this trend, then we cannot use this data uncritically. An
example of this can be found in figure 5.6. Here we can see that we see an increasing
trend which is expected, but at the largest HS it diverges from the expected behaviour.
Therefore, all sea states have been selected using engineering judgement where the data
are as consistent as possible.

Figure 5.6: Standard deviations for TP = 12m. The blue square indicated the mean
of all sampled standard deviations and the error bars indicates the natural
variances between all the standard deviation from the same sea state.

In figure 5.7 the directional scattering is shown for the different sea states. Due to
symmetry the waves with a heading of ±30◦ should yield the same response for the
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Table 5.2: Sea states with measured data in period

HS 2 2 4 2 4 6
TP 9 10 10 12 12 12

Table 5.3: Selected sea states

rig and marine riser system. The right plot shows the distribution when the symmetry
is accounted for. This will help reduce the number of simulations. We will use this
distribution to get as close weighing when calculating the long term distribution for the
angle spectra later.
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Figure 5.7: Occurences of directions for different sea states within measured period

5.4.2 Standard Deviation and Ratio

Each time series has been compressed to the two variables standard deviation and
its ratio between the maximum and minimum standard deviation. Each time series’
standard deviation is then plotted. Then the means of the standard deviations are
found with its corresponding standard deviation. For the selected sea states the values
are listed in table 5.4 and shown in the figures below.

The standard deviation do not change whether the time series data are low frequency
dominated or wave-frequency dominated. The mean of the standard deviation is close to
the same and so is the spread of them. The ratios are also unaffected by this. If we were
to divide the calculated standard deviation into both low/wave frequency categories and
mean wave heading direction we would be left with very few data points for each state.
All standard deviation are collected into the same category, i.e. for the same HS and
TP .

HS TP Obs. σmean σstd ζmean ζstd

2 9 32 0.350 0.081 0.550 0.073
2 10 42 0.308 0.043 0.611 0.112
4 10 42 0.510 0.095 0.619 0.109
2 12 27 0.297 0.037 0.518 0.241
4 12 72 0.377 0.080 0.774 0.134
6 12 63 0.536 0.128 0.770 0.137

Table 5.4: Standard deviations and ratios for the selected sea states.

In the table, σ denotes the standard variation of the measured time series. There are
measured many standard deviations for each sea state and the mean and standard devi-
ation of those measurements is meant to just illustrate the scattering of the calculated
motion. In the figures below, σmean is marked with a solid line, and σstd, both above and
below the mean are marked with dashed lines. Each data point reflects the standard
deviation of one hour. The same goes for the calculated ratio, ζ, for all time series.
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Figure 5.8: Standard deviation and ratio, HS : 2, TP : 9

Figure 5.9: Standard deviation and ratio, HS : 2, TP : 10
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Figure 5.10: Standard deviation and ratio, HS : 4, TP : 10

Figure 5.11: Standard deviation and ratio, HS : 2, TP : 12
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Figure 5.12: Standard deviation and ratio, HS : 4, TP : 12

Figure 5.13: Standard deviation and ratio, HS : 6, TP : 12
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To see any connections we need to plot them on the same graph. In the case of no
waves, i.e. HS = 0m, then we expect no motion with no standard deviation. If we were
to assume linear theory where the motion is linearly proportional to HS, we should be
able to fit a straight line through the origin along with the measurements. In figure 5.14
we see that this is not the case.

Figure 5.14: Standard deviation for the selected sea states. This illustrates that we
expect the angle response to increase for higher significant wave heights.

One way to explain this would be to look at the driving factors of the motion. First of
all, the motion is driven by the vessel motion. A vertical top tensioned riser will follow
the rig as it is excited by the waves and currents. The second could be motion driven
by eigenfrequencies being excited. It may be possible that the ratio between these two
driving factors change for different HS and/or TP . To investigate this we need to take a
closer look at the power spectra that can be found from the measurements at different
sea states.

5.4.3 Power Spectra

The power spectra are found from the sampled data from the riser angle and are cal-
culated using an algorithm called Fast Fourier Transform, FFT (WAFO-group, 2000)
of the autocorrelation function (eq. 3.1) to find the Discrete Fourier Transform, DFT.
Since the DFT is a non-continuous procedure it may appear very jagged. To make
it more smooth the power spectra are smoothed using a smoothing parameter. The
smoothing parameter that is used by the WAFO tool is selected by a trial and error
approach. All power spectra are cut for all frequencies where ω ≥ 2.0 rad/s since there
is no or little energy above this region in the calculated spectra and are of little interest.

Figure 5.15 shows the difference between the power spectra for the same sea states.
The red dashed lines correspond to eigenfrequencies found in section 6.5. a) and b) are
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(a) Sample hour 1 (b) Sample hour 2

(c) Sample hour 3 (d) Sample hour 4

Figure 5.15: Two and two sample hours within same 3-hour window, HS : 4m, TP : 10 s.
The overall shape is different, but the standard deviation is still the same.

from the same 3-hour period and the same goes for subfigure c) and d). An interesting
observation is that two spectra from the same 3-hour window are very similar which
indicates stability for this time period for the spectra. However, there is a large difference
to the other spectra. The spectra in c) and d) are heavily excited in the low frequencies,
i.e. large periods. The periods may vary from 60 s up to 180 s which corresponds to an
ω between circa 0.03 rad/s to 0.1 rad/s.

This slowly varying motion can be explained by slow drift of the rig. The eigenfrequen-
cies are also far away from this motion and cannot be the main contributor to this.
The eigenfrequencies are in general not very present in any of the spectra. The eigenfre-
quencies of the rig is an important parameter that isn’t considered in the eigenfrequency
calculations.
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5.4.4 Bandwidth of Response Spectra

As discussed in section 3.3 we may have a broad banded stochastic response of the riser
angle. We have seen that the spectra at different times, but for the same sea state, the
shape of the spectra can be completely different. They have all varieties of broadness
and moments. Interestingly, they all fall within a relatively narrow region of standard
deviations. But the fatigue damage must be corrected when the process no longer can
be regarded as a narrow-banded process (DNV, 2010).

From each measured hour the power spectrum for the angle has been approximated
using the WAFO toolbox. From there the moments have been calculated according to
equation 3.10. The broadness parameter ε has then been found using equation 3.17.
The wide range of the broadness is shown in figure 5.16.

(a) All broadnesses (b) Broadness distribution

Figure 5.16: Spread of broadness parameter for all measurements. The majority of the
measured broadnesses are very high.

To show the how the Rice distribution fits the different data collected for the maxima,
a selection of random hours are shown in figure 5.17. The maxima from the data are
shown in the histogram. The blue and red lines display the Rice distribution with ε
found from spectral analysis and direct negative maxima counting, respectively.
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(a) Sample hour 1 (b) Sample hour 2

(c) Sample hour 3 (d) Sample hour 4

(e) Sample hour 5 (f) Sample hour 6

Figure 5.17: Examples of fitted Rice distributions for different ε. The plots show a good
consistency between the two methods of determining the broadness.
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5.4.5 Angle Range and Fatigue

The fatigue accumulates differently around the circumference of the wellhead. A rainflow
counting has been made for each 22.5◦ up to 157.5◦, a total of 8 directions. The next
direction would be 180◦, but accumulates the same fatigue damage as 0◦ as discussed
in section 5.3. Table 5.5 shows the damage on each control plane.

The long term distributions of cycles are calculated using the rainflow counting method
which is implemented in the WAFO toolbox. The angle range spectrum is shown in
figure 5.18. Each block represent a near-constant amplitude block with ni cycles for
block number i. Using the Miner-Palmgren’s rule we find the cumulative damage for
different control planes as defined in section 5.3.1.

Figure 5.18: Angle spectrum from fullscale analysis where all 1180 time series are used.
TheWeibull fit follows the blocks very well. The figure represent the control
plane with the highest accumulated fatigue damage.

The Weibull fit parameters in figure 5.18 are:

• ∆θ0 = 5.99◦

• h = 1.06

• n0 = 723725

Which will give a cumulative damage using equation 4.14 of 0.009278.

The relative angles in the table are relative to a unknown fixed co-ordinate system, i.e.
we don’t know how the localXZ- and Y Z-axes relates to north. Along the circumference
the maximum difference is only 20% between the most and the least damaged point.
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Relative angle Cumulative damage n0 ∆θr,0
θ0 0.007845 662944 6.355
θ22.5 0.007997 723725 5.604
θ45 0.008134 745517 6.545
θ67.5 0.008102 746507 6.758
θ90 0.007564 725564 8.957
θ112.5 0.006754 727274 8.222
θ135 0.006790 736211 6.014
θ157.5 0.007456 710264 6.219

Table 5.5: Cumulative damage for each control plane

However, in order to have a distribution that we can compare with results from RIFLEX
we must choose only those time series which correspond to those sea states that actually
are simulated in RIFLEX.

Figure 5.19: Angle spectrum from fullscale analysis, θ, selected sea states. The figure
represent the control plane with the highest accumulated fatigue damage.

The Weibull fit parameters in figure 5.19 are:

• ∆θ0 = 5.67◦

• h = 1.11

• n0 = 157990

Which will give a cumulative damage using equation 4.14 of 0.003201.

The complete long-term distribution of cycles are found from 1180 hours of data and
the distribution for the selected sea states only have 246 hours of data. Consequently,
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we have fewer cycles, and fewer cycles with high amplitudes.

Relative angle Cumulative damage n0 ∆θr,0
θ0 0.002460 143901 5.580
θ22.5 0.002544 157990 5.617
θ45 0.002377 163033 5.581
θ67.5 0.002086 164295 4.764
θ90 0.001707 160803 4.259
θ112.5 0.001395 162139 4.266
θ135 0.001549 164281 4.989
θ157.5 0.002053 155656 5.362

Table 5.6: Cumulative damage for each control plane for selected sea states

If we plot the cumulative damage for each block in the Miner-Palmgren summation we
get a picture of the most critical ∆θ’s. Even though there are some high peaks their
contributions to the total damage picture is relatively small since they occur rarely.
Figure 5.20 shows this distribution for the full scale data for our selected sea states.

It is interesting to see whether the high peaks should be regarded as important with
respect to the total damage picture. If we find the area between the curve in figure
5.20 and the y-axis up to a certain ∆θ we can compare the damage done by all cycles.
The relative damage is shown in figure 5.21. If we for example neglect all cycles with
∆θ ≤ 4.0 then our damage is only 91% of the total damage. By neglecting the high
peaks we introduce an error of roughly 10%.

Also, from figure 5.21 we can see that cycles with ∆θ ≤ 1 yield very little contribution
to the cumulative damage.

5.4.6 Short-term Angle Range

For some selected time series with HS = 4 and TP = 10 we will compare the short term
distribution of the angle range spectra in order to assess the difference between full scale
measurement and simulations. This will illustrate the variation of the spectra and how
low frequency domination affects them. The samples are now collected in 3 hours long
time series.

Wave Frequency Dominated Motion

For the three hours that were analysed the angle range spectrum is shown in figure 5.23.
Typical for all wave frequency dominated spectra is the convex shape, i.e. if it were to
be fitted on a Weibull distribution, the shape parameter, β, is above 1.
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Figure 5.20: Cumulative damage for each block in Miner-Palmgren summation

Low Frequency Dominated Motion

Another time is then selected where the angle response is low frequency dominated.
Otherwise, the significant wave height and the wave peak period are the same as for the
wave frequency dominated example.

Different in this case relative to the other is the shape of the angle range spectrum.
Where the spectrum for wave frequency dominated response had a smooth shape this
spectrum is a bit more indeterminate with respect to shape. It is both concave and
convex. This shape is actually representative for most time series with a high energy in
the low frequency region.

Two points should be remarked; the standard deviation for both examples are very
close to each other and the total number of cycles are approximately the same for all
sea states with the same HS and TP . It is also worth noting that the maximum range
for the majority of the spectrum with the same sea state parameters fall within the
same region.

Since there are more cycles in the range region between 0.5◦ – 2.5◦ in the wave frequency
dominated angle range spectrum we expect this to yield more cumulative damage.
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Figure 5.21: The share of damage for all cycles when all cycles above ∆θi are neglected

(a) Sample hour 1, σ = 0.38 (b) Sample hour 2, σ = 0.36 (c) Sample hour 3, σ = 0.32

Figure 5.22: Power spectra for the xz angle for three succeeding hours. All three spectra
have most of the energy focused in the wave frequency domain and low
energy for low frequencies. HS : 4, TP :10.
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Figure 5.23: Full scale angle range spectrum for 3-hour time series. The time series are
the same as for the angle spectra shown in figure 5.22

(a) Sample hour 1, σ = 0.34 (b) Sample hour 2, σ = 0.36 (c) Sample hour 3, σ = 0.36

Figure 5.24: Power spectra for the xz angle for three succeeding hours. All three spectra
have most of the energy focused in low frequency domain and low energy
in the wave frequency range. HS : 4, TP :10.
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Figure 5.25: Full scale angle range spectrum for 3-hour time series. The time series are
the same as for the angle spectra shown in figure 5.24
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Chapter 6

Simulation Models

The wave loading can be simulated in many various ways. The base input files for
RIFLEX was originally containing unidirectional single-peaked wave spectra. The lack
of spreading in the waves yield a worst case scenario since all the cumulative damage
from the waves are concentrated at a single point on the wellhead circumference. The
situation is only a theoretical one and would never occur in the real world. This chapter
will find how different wave models will affect the cumulative damage on the wellhead
when directional spreading in the environmental actions are taken into account.

6.1 Literature Review

Several papers has been written regarding the motion of floating offshore structures,
e.g. a semi-submersible or tension leg platforms and many studies have been made for
marine risers on the problem of vortex-induced vibrations.

A paper describes a full scale riser measurement in the Spanish Mediterranean. The
comparison was divided into three basic categories (Connolly and Wybro, 1984):

1. Regular wave time domain analysis.

2. Random wave time domain analysis.

3. Frequency domain analysis.

The study was focus on the calculated errors in the wave-active zone and the values near
the bottom of the riser. They concluded that the wave interaction with the rig itself
played an important role in the response near the top. They compared the bending
stress with and without hull interaction on the fluid kinematics. The difference in the
wave-active zone had the most severe differences for all methods, where the transfer
function method under-predicted by up to 50% in some cases, while the regular wave
analyses tended to both under-predict and over-predict. The regular wave method did
show more correct and consistent results with the full scale analyses with increasing
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storm severity. The random wave showed that it tended to over-predict the bending
stress.

For the lower part of the production riser they did get consistent results between full
scale and the calculations for all three categories. This region is less influenced by the
body-wave interaction at the surface.

Another paper that was focused around the bending moment in the wave zone for a
drilling riser in the North Sea was presented in 1983. The comparison work was based
on the difference in full scale measurements and beam theory assuming that the marine
riser could be described using the differential equation for tensioned beams (Verbeek,
1983):

∂2

∂z2

(
EI

∂2x

∂z2

)
− ∂

∂z

(
T
∂x

∂z

)
+m

∂2x

∂t2
= F, (6.1)

where E is the Young’s modulus, I is the moment of inertia, T is the riser tension, m is
the mass per unit length, z is the axial coordinate along the riser, F is the hydrodynamic
forces on the riser and x is the horizontal deflection of the riser.

A particular concern in this report was the values of the constants in Morison’s equation.
From steady and harmonic flow experiments it is known that the coefficients are cor-
related with Reynolds number and Keulegan-Carpenter number (Verbeek, 1983). The
study covered a sensitivity study using the following combinations:

1. CD = 0.7, CM = 1.4, used for small, smooth columns.

2. CD = 0.6, CM = 2.0, as sometimes used for design of offshore structures.

For these sets of values the response was found to vary significantly.

The theory calculations were made by analytic approaches and numerical random time
simulations and it was concluded that the theoretical predictions proved to be fairly
successful compared to full scale measurements. The comparison was based on the
characteristic properties of the riser in the wave-active zone; standard deviations of
bending stress were in-line with theoretical predictions and probability distributions
are non-Gaussian which was predicted by the theoretical models assuming Morison’s
equation as description for the hydrodynamic force (Verbeek, 1983).

To investigate the discrepancies between measured and calculated riser response for a
flexible riser a paper looked for explanations using non-linear material properties (Sødahl
et al., 1992). The riser had a steep wave configuration as shown in figure 6.1.

The investigation was focused on the riser curvature in the hog bend. They used the
computer program RIFLEX and the comparison was based on the standard deviation
of the curvature as a function of the significant wave height. By running different cases
with varying stiffness models and damping models they found that a hysteretic model
combined with a rather low Rayleigh damping gave good agreements with the full scale
data.
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Figure 6.1: Steep wave riser configuration

6.2 Wave Spectra

The definition of the spectral density is described in section 3.2. This chapter will
describe how the spectral density is used in practice by computer programs to simulate
a realisation of the sea state.

6.2.1 Unidirectional Spactra (Long-Crested Waves)

The unidirectional single-peaked waves or infinitely long-crested waves are described
by a three-parameter JONSWAP spectrum. The input parameters are HS, TP and γ,
where γ is found given by default from (Marintek, 2010):

γ = exp
(

5.75− 1.15 TP√
HS

)
. (6.2)

It is tempting to believe that unidirectional incoming waves will induce a response in the
same plane as the wave direction. As figure 6.2 shows this is only partly true. When
the structure is symmetric from the wave direction there is no coupling between the
in line motion and perpendicular motions including rotation d.o.f’s, e.g. yaw, at least
in a pure mathematical sense. When the waves attack from an angle they will induce
motions in many d.o.f’s which are coupled. Figure 6.2(a) shows a response when the
wave direction is exactly the same as the vessel’s local x-axis. The response lies in one
plane only. Figure 6.2(b) shows that this is not true for all situations.

As we want to find the standard deviation of the response in all planes, and not only in
the xz- and yz-planes, which can be plotted. We can find a sinusoidal pattern for the
variance and the resulting standard deviation will be the square root of a sine function.
From this we can then find the main direction and the lowest corresponding to the
major and minor axes in an ellipse. The ratio between them gives the ’thickness’ of the
ellipse. A ratio of 1 is a perfect circle and a ratio of 0 corresponds a perfect 1-directional
response. In the data representation, use of the term ratio will not be used as the ratio
between the major and minor axis, but as the ratio between the highest and lowest
standard deviation the ellipse yields.

Under the assumption of a bivariate normal distribution we can find the covariance
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(a) 0◦ heading waves (b) 30◦ heading waves

(c) 0◦ heading waves (d) 30◦ heading waves

Figure 6.2: Riser response for two different heading directions

matrix which is defined in equation 3.6, where X1 and X2 are rotation about the x-
and y-axes, respectively. The principal axes to the ellipsoid, i.e. equidensity contours of
the bivariate normal distribution, can be found from the eigenvectors of the covariance
matrix, Σ. The corresponding eigenvalues of the matrix yield the variance of those axes.

Torsethaugen Spectrum

The Torsethaugen spectrum model was developed by fitting two JONSWAP spectra.
A double peaked spectra representing both wind and swell sea states was established
to be used for design purposes on the Norwegian continental shelf (Torsethaugen and
Haver, 2004). The Torsethaugen spectrum can be modelled in RIFLEX with only two
input parameters, HS and TP (Marintek, 2010).
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Wave Realisation

The energy per area in a linear wave is given by

En = 1
2ρgζ

2
An, (6.3)

for wave component n and ζAn is the wave amplitude for the same component (Myrhaug,
2007). We then have that the total energy for all wave components are given by

E

ρg
=

N∑
n=1

1
2ζ

2
An(ωn). (6.4)

By introducing that the energy for a wave component should equal the energy for all
wave component produced by the spectrum within a small region we get

1
2ζ

2
An(ωn) = S(ωn)∆ω. (6.5)

When we combine equation 6.4 and 6.5 the total energy is

E

ρg
=

N∑
n=1

S(ωn)∆ω. (6.6)

If we now let N →∞ and ω → 0, we can rewrite the total energy into (Myrhaug, 2007)

E

ρg
=
∞∫

0

S(ω)dω, (6.7)

which is equal to the first spectral moment m0 or σ2 (equation 3.11). From equation
6.5 we have that

ζAn =
√

2S(ωn)∆ω. (6.8)

When a linear wave is assumed with a uniformly random distributed phase angle εn the
total wave elevation is given by

ζ(x, t) =
N∑
n=1

√
2S(ωn)∆ω cos(ωnt− kx+ εn), (6.9)

where k is the wave number. The dispersion relation gives the connection between the
wave frequency and the wave number for a finite water depth as
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ω2

g
= k tanh(kh). (6.10)

For water depths where h→∞, equation 6.10 can be written as

ω2

g
= k. (6.11)

We see that from realisation to realisation, everything is constant. The only parameter
that may change is the phase angle εn. The phase angle is unaffected by the spectrum.
This is in accordance with the statement that two different realisation with the same
characteristics yields the same power spectrum.

6.2.2 Multi-Directional Spectra (Short-Crested Waves)

In real life there will almost always be a presence of waves from different directions. This
makes the surface look more chaotic and complex. We may now have different wave
component with the same frequency, but with different direction. To account for this
each wave component are now divided into both frequency and directional dependence.

(a) Lines for constant ω or θ (b) Example of measured directional spec-
trum - direction according to maximum
spectral density

Figure 6.3: Illustration of directional spectra (Myrhaug, 2007)

The amplitude of each wave component are now modified to be

1
2ζ

2
Anm = S(ωn, θm)∆ω∆θ. (6.12)

By using the same procedure as for the unidirectional spectra we get the wave elevation
at any point at any time as
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ζ(x, y, t) =
N∑
n=1

M∑
m=1

√
2S(ωn, θm)∆ω∆θ cos(ωnt− knx cos θm − kny sin θm + εnm) (6.13)

In general, the directional spectrum is given by

S(ω, θ) = S(ω)D(θ, ω). (6.14)

Here, the directional spreading function, D(θ, ω), is not necessarily independent of the
frequency. To simplify the problem we may make it independent of the frequency so
that we may write the complete spectrum as

S(ω, θ) = S(ω)D(θ). (6.15)

The most common shape of the directional spreading function is on the form

D(θ) =
{
Kn cosn θ for− π

2 < θ < π
2

0 elsewhere , (6.16)

where

Kn = 2n−1

π

Γ
(
n
2

)
Γ
(
n
2 + 1

)
Γ(n) . (6.17)

Kn is defined in order to ensure that (Myrhaug, 2007)

2π∫
0

D(θ, ω)dθ = 1. (6.18)

This is also the only way to define a spreading function in RIFLEX (Marintek, 2010).

Finding a suitable n-value for the spreading parameter is not straightforward. Many
measurements have been made to find the one best fitting. It varies from position to
position and is also dependent on the significant wave height. A common trend is that
the waves become more long-crested for higher waves (Kvitrud, 1996).

According to (NORSOK, 2007), in the absence of documentation, the exponent n is
taken to the most unfavourable value between 2 and 10. The values can be used in
moderate sea states, i.e. HS < ~10m. The chosen significant wave heights are 2m,
4m and 6m. Since the tendency is that the waves are more long-crested in higher seas,
we simply approximate; n = HS. For higher n-values the energy is more concentrated
along the mean wave direction. This will also reduce the massive amount of simulations
to be performed in order to find the worst case.
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6.3 Sea States

The system will be subjected to different direction of loading from the waves. As figure
5.1 shows, there are some directions more interesting to this particular case. For the
directions where few or none observations are made it is not necessary to run any
simulations since this will not yield any new information.

The system will be simulated with waves from 4 different directions. The rig’s heading
direction will always be kept constant. Each direction increment is 30◦. For each
direction it will be subject to waves from a JONSWAP spectrum where HS and TP are
changed. γ is changed according to equation 6.2. For each direction there will be a total
of 6 sea states according to table 5.3.

For the same mean heading directions and sea states with the same HS and TP the
other simulations will be run with a Torsethaugen wave spectrum, which use empirical
data to account for both wind sea and swell sea waves.

6.4 Simulation Time

As RIFLEX seemingly simulates each sea state randomly there is a certain consistency
between two simulations between each run time. This can be avoided with a so-called
pseudo-random seed number. A sea state can have infinite different realisations. For a
given seed number we will have the same realisation.

We are interested in the standard deviation of a motion. We can compare the standard
deviation for a series of test runs with different "randomly" chosen seed numbers to
simulate different realisations of the same sea state. For every realisation we take the
standard deviation of the motion for different time steps. In theory, the standard
deviation should for a continuous and non-discrete sea state should converge toward a
certain value as the time goes to infinity.

To find the appropriate time of simulation to run a series of 31 realisations have been
simulated in RIFLEX. The standard deviations have been extracted to show the trend
over time in figure 6.4. In the first minutes of the simulation the scattering is widely
spread, but is fairly converged after 60 minutes. The convergence continues beyond this
point but is satisfactory for the purpose of our analyses.

The dotted lines follow the standard deviation for each realisation and the red lines
are envelope curves. The red dashed line is the mean value of all standard deviations.
Based on this graph we need to run each sea state only one time, i.e. one realisation for
60 minutes to reach an acceptable error.

66 Ivar Stange, 2012



Simulation Models

Figure 6.4: Stability of standard deviation and convergence

6.5 Eigenfrequencies

The eigenmodes and eigenfrequencies of the marine riser can be found in RIFLEX. RI-
FLEX uses the Lanczos’ method to find a solution of the eigenvalue problem (Marintek,
2010). The first six modes are listed in table 6.1. We can use these frequencies to
identify any secondary peaks in the power spectra. All six eigenmodes’ shape follows
the classic n-th mode sine shape. Figure 6.5 shows the 4th eigenmode.

Eigenvalue no Eigenvalue Circular freq. [rad/s] Natural period [s]
1 0.0305 0.1747 35.97
2 0.1327 0.3643 17.25
3 0.3385 0.5818 10.80
4 0.7003 0.8368 7.51
5 1.2874 1.135 5.54
6 2.1787 1.476 4.26

Table 6.1: Calculated eigenfrequencies from RIFLEX

Ivar Stange, 2012 67



Simulation Models

Figure 6.5: The fourth eigenmode from static RIFLEX calculations. As for most slender
one-dimensional structures it nearly follows a perfect sine curve.

6.6 Non-Linear Effects

Non-linear forces and perturbation of the system can have a large variety of effects
regarding the behaviour of the structure. We can account for the amplitude of the
waves and the heave and pitch motion of the vessel affecting the wetted surface of the
rig’s column and pontoons. It also changes the wetted surface of the marine riser itself.
We can also have material non-linearities or non-linearities in boundary conditions such
as non-linear stiffness in a spring. Another example is the velocity term in Bernoulli’s
equation.

6.6.1 Bernoulli’s Velocity Term

The pressure in an incompressible, irrotational and inviscid fluid changes with the ve-
locity squared

p+ ρ
∂φ

∂t
− ρ

2V
2 + ρgz = C (6.19)

The velocity term isolated is then

− ρ

2(V 2
i + V 2

j + V 2
k ) = −ρ2 |∇φ|

2. (6.20)

The second-order velocity term can also be found in the Morison’s equation

dF = ρπ
D2

4 CMa1 + ρ

2CDD|u|u, (6.21)

where CM is the added mass corrected constant, CD is the drag coefficient, a1 is the
transverse fluid acceleration and u is the relative fluid velocity. Morison’s equation yields
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the unit hydrodynamic force on a slender structure, e.g. a marine riser, submerged in
a fluid. u is is the relative fluid motion meaning that this is the sum of all velocity
components and subtracted the structure velocity and is decomposed as

u = uwaves + ucurrent − ustructure (6.22)

In an idealised situation where we have a sea state composed of two waves with different
frequency and amplitude we can approximate the velocity as

V = A1 cos(ω1t+ ε1) + A2 cos(ω2t+ ε2). (6.23)

When equation 6.23 is inserted into equation 6.20 and the terms are expanded we get

−ρ2V
2 =− ρ

2

[
A2

1
2 + A2

2
2 + A2

1
2 cos(2ω1t+ 2ε1)

+ A2
2

2 cos(2ω2t+ 2ε2)

+ A1A2 cos [(ω1 − ω2)t+ ε1 − ε2]

+ A1A2 cos [(ω1 + ω2)t+ ε1 + ε2]
]

(6.24)

The first thing to notice when the second-order terms are accounted for we have terms
oscillating with the frequencies (ω1 − ω2) and (ω1 + ω2). Often, the critical term is
the difference term. This term can produce slowly varying excitation forces which may
cause resonance in the slow d.o.f.’s such as surge, sway and yaw. A moored structure
such as a rig may have eigenperiods in these d.o.f.’s because of the relatively low stiffness
to mass ratio. Typical resonance periods are 1-2 minutes (Faltinsen, 1990). This can
be a possible explanation for the peaks in the low frequency region in figure 5.15. The
high frequencies may be connected to the higher eigenmodes of the marine riser itself
with natural periods for the 5th and 6th mode at 5.54 s and 4.26 s, respectively.

The transverse external loads on the marine riser are calculated according to Morison’s
equation in RIFLEX, i.e. the velocity squared terms are not neglected (Marintek, 2011).

Current Interaction on Velocity Term

When a current is present we have an additional constant term in the velocity. The
current may still vary along the z axis having a decaying profile from the surface to the
sea floor. Assume a regular sea state with a constant current where the velocity at a
point is formally written as

u = uc + uw cos(ωt+ ε) (6.25)
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Then the second-order velocity term in Morison’s equation becomes

u|u| = uc + uw cos(ωt+ ε)|uc + uw cos(ωt+ ε)|. (6.26)

It is obvious that the presence of the current will give a constant time-averaged drag
force proportional to ~u2

c . If uc = 0 then the time average becomes 0. Let us express
the relative velocity between the current component and the wave component like this

uc = λuw. (6.27)

If we now set uw to unity we can find how the time averaged force relates for varying
λ. We now write the time average of equation 6.26 into

Fd = 1
2π

2π∫
0

(λ+ cos(ωt+ ε)) |λ+ cos(ωt+ ε)| . (6.28)

We can now plot how the two components will affect the total drag force. Subfigure
6.6(a) shows how the total drag increases for increasing current relative to wave velocity.
Subfigure 6.6(b) shows the strength of the drag force produced by the wave in relation
to the current produced drag force.

(a) Average drag force (b) Wave force relative to current force

Figure 6.6: The average drag force and relative component contribution. The mean
force from the wave alone is always zero, and for the current alone should
give a 1-to-1 relation. The combined effect increases the average drag force.

For small λ the governing force comes from the waves. When this is the case the time
average drag force goes to 0. For large values of λ we see that the u2

c normalised plot
goes to 1, meaning that the current yields the main driving drag force.
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6.6.2 Boundary Conditions

At the bottom on the LMRP the flex joint is modelled as a rotational spring. The
original model implemented this spring as a linear spring with the rotational spring
stiffness 37.98 kNm/◦. A linearisation of the spring stiffness can be a good approximation
if the choice of the secant point is a good one and that it within the angle domain
of interest represent the physical spring with small errors. Another common way to
linearise is to use the initial tangent of the non-linear force. Figure 6.7 shows the
difference between the two characteristics.

Figure 6.7: Characteristics between the linear and non-linear spring. This shows the
static stiffness relation. The true stiffness in a dynamic context is different
than this figure.

For the first degrees it is easy to see that the used linear approximation is not a good
one. Very large degrees are not of interest in our case. Since the measured angle is very
close to the spring it is expected that this correction will yield very measurable results
in our analyses.

Many of the measured data shows that the angles are in the region 1◦ – 2◦. If the secant
were placed at 1.5 degree, the linearised stiffness should be 78.6 kNm/◦.

Figure 6.7 only shows the reaction moment of the flex joint in a static case. The true
behaviour is even more complex. The non-linear flex joint also have a damping term
that should not be neglected and the true tangential stiffness in a dynamic context is
different from the tangential stiffness in a static context. In general, the total stiffness
in a dynamic case is stiffer than that of a static case (Holden, 2012).
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6.7 Support Vessel Offset

The rig shall be placed, after best effort, as aligned with the wellhead as possible. With
a DP system this is easier, but for an anchored system there will always be an offset
in calm sea. And we also get an offset when there is a current present. The mooring
system is essentially a spring and the current will move the rig into another equilibrium
point.

Figure 6.8 shows a sketch of the offset situation. Let x be the offset from the align
point and d be the distance from the top of the LMRP and the UFJ. The chord is then
the hypotenuse and will consequently be longer than the initial length, d, and must be
compensated by the heave compensating system. The figure also shows the LFJ angle
in relation to the other lines. This angle is in general not the same as the chord angle.
It is also possible that this angle may be lower than the chord angle due to the net
positive buoyancy for large lengths of the riser.

Figure 6.8: Support vessel offset

A typical critical value for stopping the drilling operation (with DP) is 4◦ for manual
shut down and 5◦ for start of a automated shut down procedure (Framnes and Gled-
itsch, 1994). In a dynamic situation the largest angle will always be higher than the
static angle. For this reason we set the maximum critical value for the static offset to
correspond an angle of 3◦. To find the actual offset in distance that will yield this angle
an Excel sheet provided by (Sparks, 2007) that will calculate the riser’s displacement,
curvature and angle based on the riser’s characteristics (see Appendix A). The rig’s
offset is found to be 27.4m to yield a 3◦ angle at the LFJ. This value is found based
on a free rotation of the LFJ which is not true in a real case. The chord angle for this
offset is tan−1(27.4/335) = 4.68.

This will impact the result in several ways. First, the offset itself will affect the char-
acteristics of the mooring system. Secondly, it will have an initial angle at the LFJ,
in turn having different stiffness due to the non-linear behaviour of the flex joint as
described in section 6.6.2. This should affect the response much in the same way as a
current. Unfortunately, we cannot do so much about the first effect.
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Simulation Results

This chapter will present all the results from the RIFLEX simulations. There are a
total of 7 different simulation models where 5 of them will be compared in chapter 8.
The 5 models will be presented in the following order:

• Section 7.1: Unidirectional JONSWAP waves.

• Section 7.2: Unidirectional Torsethaugen waves.

• Section 7.3: Unidirectional Torsethaugen waves with introduction of non-linear
modelling of the Lower Flex Joint (LFJ).

• Section 7.4: Torsethaugen waves with cosine distributed wave spreading.

• Section 7.5: Torsethaugen waves with cosine distributed wave spreading and in-
troduction of non-linear modelling of the Lower Flex Joint (LFJ).

For those 5 simulation models the standard deviation of the angle motion and the thick-
ness ratio of the motion ellipse (see section 5.3.2), spectrum and spectrum broadness
parameter ε, fatigue results using both Miner-Palmgren summation and closed form
fatigue using Weibull fitted curves will be compared. There will also be a comparison
of the short-term angle spectra which also includes the current and offset simulations.
All simulations are collected in table 7.1 to show how the effects are implemented for
the different calculations.

The last two simulations are not similar to the first five since they all have the same
sea state, i.e. constant HS and TP , but with varying parameters of current in section
7.6 and vessel offset in section 7.7. The purpose is to show how the angle motion will
be affected by the introduction of these aspects.
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Section Wave Wave Non-linear Current Offset Varying mean
spectrum spreading flex joint wave direction

7.1 JONSWAP 7 7 7 7 X
7.2 Torsethaugen 7 7 7 7 X
7.3 Torsethaugen 7 X 7 7 X
7.4 Torsethaugen X 7 7 7 X
7.5 Torsethaugen X X 7 7 X
7.6 Torsethaugen 7 7 X 7 7

7.7 Torsethaugen 7 X 7 X 7

Table 7.1: Overview over the effects that are used in the simulation for each category.

7.1 Unidirectional Single-Peaked Waves

7.1.1 Standard Deviation

There are a total of 24 sea states to be simulated in RIFLEX. All of which yield massive
information about the riser response and behaviour.

Sea state Mean wave heading
0 30 60 90

HS TP σ ζ σ ζ σ ζ σ ζ
2 9 0.365 0.001 0.340 0.120 0.368 0.096 0.438 0.015
2 10 0.356 0.001 0.339 0.115 0.366 0.095 0.423 0.020
4 10 0.561 0.001 0.538 0.118 0.575 0.102 0.656 0.021
2 12 0.324 0.001 0.314 0.119 0.339 0.107 0.384 0.046
4 12 0.515 0.001 0.502 0.117 0.538 0.105 0.599 0.046
6 12 0.661 0.001 0.649 0.115 0.690 0.110 0.757 0.047

Table 7.2: Standard deviation and ratios for unidirectional single-peaked waves with
different heading. σ is the standard deviation of the angle motion and ζ is
the ratio between the minimum and maximum standard deviation (see section
5.3.2).

The strongest dependence is the wave height dependence. We can also see an increasing
trend for the standard deviation as expected. This is not necessarily linear, but other-
wise as predicted. We can also see a small dependence on the heading direction. From
table 7.2 we can also see that the ratio is small for the headings 0◦ and 90◦. The ratio
are, however, never larger than 0.12. This is much lower than ratios found from the full
scale measurements.

Another important observation can be found in figure 7.2. The riser angle response dies
out for ω less than about 0.5 rad/s. Compared to figure 5.15 this can differ much for
very low frequencies. Otherwise, there are similarities for the mid-range in the spectrum.
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(a) Standard deviation with varying Hs, Tp: 12 s (b) Standard deviation with varying Tp, Hs: 2m

Figure 7.1: The effect of Tp and Hs on the standard deviation

As the frequency increases above about 1.2 rad/s, both the full scale spectra and the
spectrum from the RIFLEX simulations die out.

When we take a closer look at the eigenfrequencies in table 6.1 we can identify the peaks
close to 0.58 rad/s and 0.84 rad/s for the 3rd and 4th mode, respectively. The relevant
wave peak frequency for the spectra is 0.63 rad/s (10 s). This observation can also be
made for all other spectra other than the example shown here.

7.1.2 Spectrum and Broadness

Figure 7.2: Spectra for global xz- and yz-planes. The spectra is from a simulation with
HS = 4 m and TP = 10 s. A peak near ω = 0.8 is clearly visible, which is
close to the eigenfrequency in the 4th mode.

Figure 7.3 show the distribution of the broadness of the processes with the current
spectra. Regardless of incoming direction, HS or TP , the broadness does not seem
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to follow a trend. Therefore, all ε’s are collected into one plot. All the broadness
parameters are calculated from the spectra.

Sea state Mean wave heading
HS TP 0 30 60 90
2 9 0.72 0.86 0.81 0.57
2 10 0.79 0.92 0.88 0.84
4 10 0.83 0.93 0.90 0.87
2 12 0.83 0.87 0.85 0.82
4 12 0.84 0.85 0.83 0.83
6 12 0.81 0.79 0.78 0.80

Table 7.3: Average broadness for unidirectional single-peaked spectra

Figure 7.3: The scattering of ε for unidirectional single-peaked waves

7.1.3 Fatigue

Figure 7.4(a) and 7.4(b) shows the long term angle spectra for constant heading and
varying heading, respectively. A Weibull curve has been fitted to the data computed
by RIFLEX. The total fatigue has been found using the block method and the Miner-
Palmgren formula.

The mean response direction (see figure 5.5) is very consistent relative to the mean
wave direction when calculated in RIFLEX. When taking into account the different
mean wave directions and accumulated fatigue, the wellhead will take most damage in
the direction that line up with rig’s main direction, i.e. 0◦.
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(a) Angle spectrum, constant heading (b) Angle spectrum, varying heading

Figure 7.4: Angle spectra for unidirectional single-peaked waves with different heading

No. of mean Miner-Palmgren sum Weibull fit
wave directions θr,0 n0 D θr,0 n0 β D

1 3.403 128432 0.011059 4.34 118744 2.33 0.011287
4 3.403 239735 0.005817 4.23 104172 2.32 0.008821

Table 7.4: Cumulative damage and values for both block method and closed form solu-
tion in unidirectional single-peaked waves.

7.1.4 Short-Term Angle Spectra

The short-term angle range spectrum in figure 7.5 is from 3 hours of simulation with
similar sea state conditions as for the full scale measurements, i.e. HS = 4m and TP
= 10 s. The spectrum has the same convex shape as the full scale spectrum for wave
frequency dominated angle motion.

Figure 7.5: Short-term angle range spectrum for unidirectional JONSWAP waves
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7.2 Unidirectional Torsethaugen Waves

7.2.1 Standard Deviation

There are a total of 24 sea states to be simulated in RIFLEX. All of which yield massive
information about the riser response and behaviour.

Sea state Mean wave heading
0 30 60 90

HS TP σ ζ σ ζ σ ζ σ ζ
2 9 0.356 0.001 0.332 0.116 0.360 0.100 0.426 0.016
2 10 0.347 0.001 0.334 0.110 0.359 0.098 0.409 0.021
4 10 0.561 0.001 0.540 0.116 0.577 0.104 0.652 0.022
2 12 0.320 0.001 0.309 0.127 0.334 0.110 0.381 0.040
4 12 0.510 0.001 0.499 0.122 0.535 0.111 0.592 0.047
6 12 0.667 0.001 0.656 0.118 0.698 0.111 0.762 0.049

Table 7.5: Standard deviation and ratios for unidirectional Torsethaugen waves with
different heading. σ is the standard deviation of the angle motion and ζ is
the ratio between the minimum and maximum standard deviation (see section
5.3.2).

(a) Standard deviation with varying Hs, Tp: 12 s (b) Standard deviation with varying Tp, Hs: 2m

Figure 7.6: The effect of Tp and Hs on the standard deviation (Torsethaugen spectrum)

The trends are also the same as for the JONSWAP spectra. The ratios are still extremely
low, but having a unidirectional wave spectrum this is still expected. The standard de-
viations have not changed much. The change between the standard deviations between
a pure JONSWAP wave spectrum and a Torsethaugen wave spectrum vary from -3 %
to +3 % and does not follow any system regarding significant wave height or the peak
period. On an average it becomes very small, i.e. below 1 %.
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7.2.2 Spectrum and Broadness

Figure 7.7: Spectra for global xz- and yz-planes for unidirectional Torsethaugen waves.
The spectra is from a simulation with HS = 4 m and TP = 10 s. Two
peaks near ω = 0.6 and ω = 0.8 are clearly visible, which is close to the
eigenfrequency in the 3rd and 4th mode.

The spectrum now has two more distinct peaks. Figure 7.8 show the distribution of the
broadness of the processes with the current spectra. From table 7.6 it now seems that
we have a small reduction of ε at TP = 12 s, which is true for all directions and HS.
From the other variables, it still seems random with no clear trend.

Sea state Mean wave heading
HS TP 0 30 60 90
2 9 0.92 0.97 0.96 0.88
2 10 0.87 0.86 0.84 0.88
4 10 0.93 0.94 0.92 0.93
2 12 0.67 0.83 0.69 0.70
4 12 0.67 0.63 0.70 0.56
6 12 0.75 0.73 0.83 0.69

Table 7.6: Average broadness for unidirectional Torsethaugen spectra
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Figure 7.8: The scattering of ε for unidirectional Torsethaugen waves

7.2.3 Fatigue

(a) Angle spectrum, constant heading (b) Angle spectrum, varying heading

Figure 7.9: Angle spectra for unidirectional Torsethaugen waves with different heading

Figure 7.9(a) and 7.9(b) shows the long term angle spectra for constant heading and
varying heading, respectively. A Weibull curve has been fitted to the data computed
by RIFLEX. The total fatigue has been found using the block method and the Miner-
Palmgren formula.

The mean response direction (see figure 5.5) is very consistent relative to the mean
wave direction when calculated in RIFLEX. When taking into account the different
mean wave directions and accumulated fatigue, the wellhead will take most damage in
the direction that line up with rig’s main direction, i.e. 0◦.
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No. of mean Miner-Palmgren sum Weibull fit
wave directions θr,0 n0 D θr,0 n0 β D

1 3.599 140129 0.011518 4.44 124365 2.22 0.011195
4 3.599 244302 0.006047 4.28 107666 2.00 0.005880

Table 7.7: Cumulative damage and values for both block method and closed form solu-
tion in unidirectional Torsethaugen waves.

7.2.4 Short-Term Angle Spectra

The short-term angle range spectrum in figure 7.10 is from 3 hours of simulation with
similar sea state conditions as for the full scale measurements, i.e. HS = 4m and TP
= 10 s. The spectrum has the same convex shape as the full scale spectrum for wave
frequency dominated angle motion.

Figure 7.10: Short-term angle range spectrum for unidirectional Torsethaugen waves

7.3 Unidirectional Torsethaugen Waves with Non-
Linear Boundary Conditions

7.3.1 Standard Deviation

When there is a change in the boundary conditions this close to the point of interest we
would expect some degree of influence on the results. The initial stiffness is much higher
and does not reach the same tangential stiffness until ~3◦, which is rarely reached (see
section 6.6.2.

As for the two other unidirectional simulations the ratios are relatively small. It is
still unchanged and behaves in a consistent manner. Now that the non-linear spring is
introduced instead of the linear one the standard deviations are reduced. On average
they have been reduced with 13.6%. The reduction is fairly consistent for all cases.
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Sea state Mean wave heading
0 30 60 90

HS TP σ ζ σ ζ σ ζ σ ζ
2 9 0.313 0.001 0.291 0.116 0.316 0.102 0.377 0.016
2 10 0.306 0.001 0.293 0.112 0.316 0.102 0.361 0.020
4 10 0.498 0.001 0.477 0.116 0.511 0.105 0.583 0.021
2 12 0.280 0.001 0.267 0.127 0.290 0.113 0.334 0.037
4 12 0.448 0.001 0.436 0.122 0.469 0.111 0.524 0.044
6 12 0.592 0.001 0.579 0.116 0.617 0.110 0.681 0.045

Table 7.8: Standard deviation and ratios for unidirectional Torsethaugen waves with
different heading and implemented non-linear boundary condition. σ is the
standard deviation of the angle motion and ζ is the ratio between the mini-
mum and maximum standard deviation (see section 5.3.2).

(a) Standard deviation with varying Hs, Tp: 12 s (b) Standard deviation with varying Tp, Hs: 2m

Figure 7.11: The effect of Tp and Hs on the standard deviation (Torsethaugen spectrum,
non-linear boundary condition)

7.3.2 Spectrum and Broadness

With the exact same sea state but with different boundary conditions, the sea states
with TP = 12 s yields a lower ε of the spectra.
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Figure 7.12: Spectra for global xz- and yz-planes for Torsethaugen waves with non-
linear boundary conditions. The spectra is from a simulation with
HS = 4 m and TP = 10 s. Two peaks near ω = 0.6 and ω = 0.8 are clearly
visible, which is close to the eigenfrequency in the 3rd and 4th mode.

Sea state Mean wave heading
HS TP 0 30 60 90
2 9 0.90 0.96 0.95 0.83
2 10 0.88 0.91 0.88 0.89
4 10 0.92 0.94 0.92 0.92
2 12 0.66 0.79 0.67 0.60
4 12 0.71 0.67 0.71 0.61
6 12 0.75 0.65 0.78 0.69

Table 7.9: Average broadness for unidirectional Torsethaugen spectra and non-linear
boundary condition

Ivar Stange, 2012 83



Simulation Results

Figure 7.13: The scattering of ε for unidirectional Torsethaugen waves and non-linear
boundary condition
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7.3.3 Fatigue

(a) Angle spectrum, constant heading (b) Angle spectrum, varying heading

Figure 7.14: Angle spectra for unidirectional Torsethaugen waves with different heading
and non-linear boundary conditions

Figure 7.14(a) and 7.14(b) shows the long term angle spectra for constant heading and
varying heading, respectively. A Weibull curve has been fitted to the data computed
by RIFLEX. The total fatigue has been found using the block method and the Miner-
Palmgren formula.

The mean response direction (see figure 5.5) is very consistent relative to the mean
wave direction when calculated in RIFLEX. When taking into account the different
mean wave directions and accumulated fatigue, the wellhead will take most damage in
the direction that line up with rig’s main direction, i.e. 0◦.

No. of mean Miner-Palmgren sum Weibull fit
wave directions θr,0 n0 D θr,0 n0 β D

1 3.324 148329 0.007131 4.12 127519 2.13 0.006919
4 3.324 263829 0.003713 3.92 109983 1.96 0.003651

Table 7.10: Cumulative damage and values for both block method and closed form so-
lution in unidirectional Torsethaugen waves and non-linear boundary con-
ditions.

7.3.4 Short-Term Angle Spectra

The short-term angle range spectrum in figure 7.15 is from 3 hours of simulation with
similar sea state conditions as for the full scale measurements, i.e. HS = 4m and TP
= 10 s. The spectrum has the same convex shape as the full scale spectrum for wave
frequency dominated angle motion.
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Figure 7.15: Short-term angle range spectrum for unidirectional Torsethaugen waves
with non-linear flex joint

7.4 Torsethaugen Waves with Wave Spreading

7.4.1 Standard Deviation

When the wave energy is spread around a mean wave direction some of the energy will
consequently be used to excite the other d.o.f.’s of the structure. Though it is not a
similar structure it shows that we can expect a reduction.

Sea state Mean wave heading
0 30 60 90

HS TP σ ζ σ ζ σ ζ σ ζ
2 9 0.313 0.566 0.286 0.742 0.317 0.561 0.335 0.447
2 10 0.304 0.594 0.285 0.734 0.313 0.573 0.330 0.471
4 10 0.506 0.502 0.478 0.612 0.525 0.478 0.556 0.379
2 12 0.279 0.619 0.263 0.742 0.291 0.572 0.307 0.472
4 12 0.457 0.529 0.442 0.600 0.484 0.471 0.510 0.392
6 12 0.609 0.471 0.592 0.528 0.642 0.417 0.676 0.348

Table 7.11: Standard deviation and ratios for Torsethaugen waves with spreading. σ is
the standard deviation of the angle motion and ζ is the ratio between the
minimum and maximum standard deviation (see section 5.3.2).

The standard deviations have become lower and the ratios have reached more realistic
values. The biggest reduction can be found for the lowest HS where the reduction
relative to a unidirectional Torsethaugen spectrum on average is about 17%. For the
tallest waves where the waves are more concentrated along the mean direction the
reduction is only at about 10%.
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(a) Standard deviation with varying Hs, Tp: 12 s (b) Standard deviation with varying Tp, Hs: 2m

Figure 7.16: The effect of Tp and Hs on the standard deviation (Torsethaugen spectrum
with wave spreading)
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7.4.2 Spectrum and Broadness

Figure 7.17: Spectra for global xz- and yz-planes for Torsethaugen waves with direc-
tional spreading. The spectra is from a simulation with HS = 4 m and
TP = 10 s. Two peaks near ω = 0.6 and ω = 0.8 are clearly visible, which
is close to the eigenfrequency in the 3rd and 4th mode.

Sea state Mean wave heading
HS TP 0 30 60 90
2 9 0.80 0.96 0.98 0.98
2 10 0.96 0.95 0.94 0.75
4 10 0.92 0.94 0.92 0.84
2 12 0.92 0.88 0.83 0.64
4 12 0.93 0.88 0.80 0.64
6 12 0.93 0.89 0.80 0.70

Table 7.12: Average broadness for unidirectional Torsethaugen spectra with wave
spreading
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Figure 7.18: The scattering of ε for unidirectional Torsethaugen waves with wave spread-
ing

7.4.3 Fatigue

(a) Angle spectrum, constant heading (b) Angle spectrum, varying heading

Figure 7.19: Angle spectra for unidirectional Torsethaugen waves with different heading
and wave spreading

Figure 7.19(a) and 7.19(b) shows the long term angle spectra for constant heading and
varying heading, respectively. A Weibull curve has been fitted to the data computed
by RIFLEX. The total fatigue has been found using the block method and the Miner-
Palmgren formula.

The mean response direction (see figure 5.5) is very consistent relative to the mean
wave direction when calculated in RIFLEX. When taking into account the different
mean wave directions and accumulated fatigue, the wellhead will take most damage in
the direction that line up with rig’s main direction, i.e. 0◦.
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No. of mean Miner-Palmgren sum Weibull fit
wave directions θr,0 n0 D θr,0 n0 β D

1 3.258 148505 0.007779 4.36 124981 2.04 0.007748
4 3.258 152904 0.004495 4.14 120604 1.89 0.004502

Table 7.13: Cumulative damage and values for both block method and closed form so-
lution in unidirectional Torsethaugen waves and wave spreading.

7.4.4 Short-Term Angle Spectra

The short-term angle range spectrum in figure 7.20 is from 3 hours of simulation with
similar sea state conditions as for the full scale measurements, i.e. HS = 4m and TP
= 10 s. The spectrum has the same convex shape as the full scale spectrum for wave
frequency dominated angle motion.

Figure 7.20: Short-term angle range spectrum for Torsethaugen waves with wave spread-
ing

7.5 Torsethaugen Waves with Non-Linear Bound-
ary Conditions and Wave Spreading

7.5.1 Standard Deviation

We now have a situation where we have distributed the energy from different direction
through wave spreading and a non-linear spring. We have shown that these factors will
both reduce the response of the angle. Combined, they will contribute to an even larger
reduction of the standard deviation.
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Sea state Mean wave heading
0 30 60 90

HS TP σ ζ σ ζ σ ζ σ ζ
2 9 0.276 0.565 0.251 0.752 0.279 0.567 0.294 0.450
2 10 0.268 0.595 0.250 0.743 0.276 0.578 0.291 0.475
4 10 0.449 0.499 0.423 0.614 0.465 0.477 0.494 0.377
2 12 0.245 0.605 0.228 0.744 0.253 0.571 0.268 0.465
4 12 0.402 0.519 0.386 0.599 0.424 0.468 0.448 0.384
6 12 0.540 0.463 0.522 0.524 0.569 0.413 0.601 0.341

Table 7.14: Standard deviation and ratios for unidirectional Torsethaugen waves with
wave spreading and implemented non-linear boundary condition. σ is the
standard deviation of the angle motion and ζ is the ratio between the min-
imum and maximum standard deviation (see section 5.3.2).

(a) Standard deviation with varying Hs, Tp: 12 s (b) Standard deviation with varying Tp, Hs: 2m

Figure 7.21: The effect of Tp and Hs on the standard deviation (Torsethaugen spectrum
with wave spreading and non-linear boundary condition)
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7.5.2 Spectrum and Broadness

Figure 7.22: Spectra for global xz- and yz-planes for Torsethaugen waves with direc-
tional spreading and non-linear flex joint. The spectra is from a simulation
with HS = 4 m and TP = 10 s. Two peaks near ω = 0.6 and ω = 0.8
are clearly visible, which is close to the eigenfrequency in the 3rd and 4th

mode.

Sea state Mean wave heading
HS TP 0 30 60 90
2 9 0.84 0.96 0.98 0.98
2 10 0.96 0.93 0.89 0.67
4 10 0.92 0.93 0.89 0.72
2 12 0.85 0.70 0.69 0.84
4 12 0.85 0.69 0.69 0.77
6 12 0.85 0.67 0.61 0.63

Table 7.15: Average broadness for Torsethaugen spectra with wave spreading and non-
linear boundary condition
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Figure 7.23: The scattering of ε for Torsethaugen waves and non-linear boundary con-
dition

7.5.3 Fatigue

(a) Angle spectrum, constant heading (b) Angle spectrum, varying heading

Figure 7.24: Angle spectra for unidirectional Torsethaugen waves with different heading,
wave spreading and non-linear boundary conditions

Figure 7.24(a) and 7.24(b) shows the long term angle spectra for constant heading and
varying heading, respectively. A Weibull curve has been fitted to the data computed
by RIFLEX. The total fatigue has been found using the block method and the Miner-
Palmgren formula.

The mean response direction (see figure 5.5) is very consistent relative to the mean
wave direction when calculated in RIFLEX. When taking into account the different
mean wave directions and accumulated fatigue, the wellhead will take most damage in
the direction that line up with rig’s main direction, i.e. 0◦.
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No. of mean Miner-Palmgren sum Weibull fit
wave directions θr,0 n0 D θr,0 n0 β D

1 2.994 157377 0.004778 4.06 127527 1.96 0.004859
4 2.994 162279 0.002719 3.88 123459 1.79 0.002770

Table 7.16: Cumulative damage and values for both block method and closed form so-
lution in unidirectional Torsethaugen waves, wave spreading and non-linear
boundary conditions.

7.5.4 Short-Term Angle Spectra

The short-term angle range spectrum in figure 7.25 is from 3 hours of simulation with
similar sea state conditions as for the full scale measurements, i.e. HS = 4m and TP
= 10 s. The spectrum has the same convex shape as the full scale spectrum for wave
frequency dominated angle motion.

Figure 7.25: Short-term angle range spectrum for Torsethaugen waves with non-linear
flex joint and wave spreading

7.6 Unidirectional Torsethaugen Waves with Cur-
rent

7.6.1 Standard Deviation

This simulation was run to find any influence the presence of a current has on the
standard deviation. The results are listed in table 7.17. The current dependency is
very strong and is visible also for low current velocities. The mean wave direction in all
simulations are 0◦.

In a steady current the total structure will have a static configuration if we neglect the
effects of vortex shedding. The rig is moored by anchors and will consequently have a
static offset position. A support vessel is only described with a linear transfer function
in RIFLEX. The amplitude and phase relative to the excitation force is given for all 6
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Current Heading
0◦ 90◦

V [m/s] σ ζ σ ζ
0 0.561 0.001 0.561 0.001

0.14 0.536 0.001 0.546 0.077
0.28 0.461 0.001 0.506 0.106
0.42 0.357 0.001 0.458 0.115
0.56 0.262 0.001 0.406 0.114
0.70 0.194 0.002 0.356 0.109
0.84 0.148 0.002 0.311 0.102

Table 7.17: Standard deviation and ratios for unidirectional Torsethaugen waves with
current, Hs 4m Tp 10 s. σ is the standard deviation of the angle motion and
ζ is the ratio between the minimum and maximum standard deviation (see
section 5.3.2).

d.o.f.’s for the support vessel. Figure 7.27(a) and 7.27(b) shows the static configuration
of the marine riser and how the support vessel is unaffected by it.

Without the values for the drag forces of the support vessel in different directions and
the characteristics of the mooring system it is impossible to determine how much the
offset would be. However, one could argue that it would affect the static angle of the
riser at the bottom even more than the forces acting on the riser alone does. According
to figure 6.7 this would yield a lower tangential stiffness on the spring simulating the
flex joint which in turn would increase the motion and the standard deviation of the
angular motion.

The rig’s transfer function are also affected. They are based on the tangential stiffness
from the mooring system. An offset of the equilibrium position will increase the mooring
system’s tangential stiffness. Without the characteristics it is, again, impossible to
determine the importance of this effect.

Regardless of the two mentioned issues above the presence of a current will affect the
outcome of the standard deviation and should be accounted for.

7.6.2 Spectrum and Broadness

The spectrum is very different from the previous simulation spectra. Instead of two
very distinct peaks, the spectrum in figure 7.28 has one wide peak distributed over a
wide range of frequencies. It also has some energy in the low frequency range, though
it is very low.

For the very first case, where there is no current present, we get the same value for
the broadness. Once any current is present it changes a little, but stays at a relatively
constant value for all current strengths in both directions.
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Figure 7.26: Effect of current on standard deviation. The current heading is relative to
the rig’s local x axis. A current from the side of the rig yields less damping
of the angle response.

Current Heading
V [m/s] 0 90

0 0.93 0.93
0.14 0.88 0.86
0.28 0.87 0.87
0.42 0.88 0.88
0.56 0.88 0.89
0.70 0.87 0.89
0.84 0.86 0.89

Table 7.18: Average broadness for unidirectional Torsethaugen spectra with current

(a) Static global xz configuration (b) Static global yz configuration

Figure 7.27: Static configuration of marine riser in current velocity of 0.56m/s. The
current is headed in the rig’s local x direction, and the plot is plotted with
respect to global xz and yz planes.
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Figure 7.28: Spectra for global xz- and yz-planes for unidirectional Torsethaugen waves
with non-linear boundary conditions. The spectra is from a simulation
with HS = 4 m and TP = 10 s.

Figure 7.29: The scattering of ε for unidirectional Torsethaugen waves with current
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7.6.3 Short-Term Angle Spectra

The results in figure 7.30 shows how the current affects the characteristics of the angle
range spectrum. For low current velocities the maximum range ∆θ0 is higher than
for current velocities that are higher. In section 7.6.1 we found that the current will
reduce the standard deviation of the angle motion. The effect is also positive when we
look at the shape. The shape becomes similar to the full scale measurements which
may indicate that the current is a very important parameter. There are practically no
change in total number of cycles which means that the higher amplitudes are reduced
significantly.

(a) Low current, ~0.2–0.3 m/s (b) Medium current, ~0.4–0.5
m/s

(c) High current, ~0.6–0.7 m/s

Figure 7.30: Current effect on the short-term angle range spectra. For increasing cur-
rents the spectrum becomes more similar to the shape of the full scale angle
spectrum.

7.7 Unidirectional Torsethaugen Waves with Non-
Linear Boundary Conditions and Rig Offset

7.7.1 Standard Deviation

Instead of a decrease in the standard deviation of the response there is an increase.
Since the mean angle is at an angle which is not zero we get a tangential stiffness that
is lower. Figure 7.32 shows how the response is affected for different offset values both
when the offset is in-line with the incoming waves and when it is perpendicular.

Figure 7.31 shows the difference between the calculated LFJ angle when it was found
with the Excel sheet (Appendix A) and the angles found by RIFLEX. The blue line
indicates the LFJ angle for the relevant offset and is unaffected to direction, i.e. x- and
y-offset yields the same angle at them bottom. It is close to linear, but has a slight
non-linear dependency. A few effects play a role here. The flex joint is non-linear with
a smaller tangential stiffness for higher angles. The offset of the rig will give a offset
vertical force which in a global free body diagram will give a moment in the opposite
direction. This will in counteract the non-linearities of the flex joint.

98 Ivar Stange, 2012



Simulation Results

Figure 7.31: Angles for LFJ for vessel offset. The blue line is the average angle position
of the riser. The red point is the static angle found from the calculations
from the Excel sheet (See appendix A).

All the simulations were made in the same sea state with HS = 4m and TP = 10 s and
the standard deviations are listed in table 7.19. Near the zero offset point the standard
deviation decreases a bit faster. This may be a result of shifting eigenfrequencies in the
system due to the change in tangential stiffness.

Offset [m] σ
x y

0 0.498
3 0.505 0.502
6 0.522 0.510
9 0.537 0.518
12 0.546 0.524
15 0.552 0.529
18 0.559 0.533
21 0.568 0.537
24 0.581 0.542
27 0.596 0.547

Table 7.19: Standard deviation for unidirectional Torsethaugen waves and non-linear
boundary condition and support vessel offset, HS = 4 and TP = 10. σ is
the standard deviation of the angle motion.
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Figure 7.32: Standard deviation for support vessel offset. The local x axis is in the same
heading direction as the rig.

7.7.2 Spectrum and Broadness

Figure 7.33: Spectra for global xz- and yz-planes for unidirectional Torsethaugen waves
with support vessel offset. The spectra is from a simulation with HS = 4 m,
TP = 10 s and an offset of 18 m in the vessel local x axis.
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Offset [m] ε
x y

0 0.92
3 0.94 0.92
6 0.93 0.92
9 0.93 0.92
12 0.89 0.93
15 0.77 0.93
18 0.68 0.93
21 0.70 0.93
24 0.60 0.93
27 0.69 0.93

Table 7.20: Average broadness for unidirectional Torsethaugen spectra with offset

Figure 7.34: The scattering of ε for unidirectional Torsethaugen waves with offset

7.7.3 Short-Term Angle Spectra

When the rig is out of the equilibrium position with its mooring system the marine riser
will have a mean angle different that 0. The slope of the angle range spectrum in figure
7.35 near n = n0 is very steep. This means that there are very few number of cycles
with low ranges.

The maximum range ∆θ0 in subfigure 7.35(b) is also higher than in subfigure 7.35(a)
which is in accordance with the increasing standard deviation for increasing offset of
the rig.
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(a) Support vessel offset: ~6–9 m (b) Support vessel offset: ~15–18 m

Figure 7.35: Support vessel offset effect on the angle range spectrum.
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Chapter 8

Result Comparison and Discussion

8.1 Response Comparison

As mentioned in section 3.1.2 we can find the cumulative fatigue damage if we assume
a narrow band Gaussian process with the standard deviation of the angular motion and
its frequency. For a broad band process we must use a correction factor which is based
on the broadness parameter ε.

In this part of the comparison we will not compare the result with respect to fatigue, but
by comparing the standard deviations directly. The full scale calculations have shown
that there is little or no correlation between the mean wave direction and the mean (or
principal) response direction. The results from RIFLEX were more consistent regarding
the mean wave direction and response direction and will be presented accordingly.

In the complete data set of the angle response there was a total of 1180 hours of data.
After selecting the sea states that should be compared with RIFLEX simulations we
were left with only 264 hours of data. The remaining hours of data were selected based
on hindcast calculations from the Norwegian Reanalysis project (NORA10) and not
based on actual weather readouts on-site.

8.1.1 Standard Deviation Comparison

All the standard deviations were found using the statistical technique described in sec-
tion 5.3 based on the principal axes found using the covariance method described in
section 3.1.2.

The difference in the angle response by changing the wave spectra from JONSWAP to
Torsethaugen spectra did not affect the results very much. When we introduced non-
linear behaviour in the lower flex joint we see a clear reduction of the response for all
cases and the reduction is consistent for all wave heading directions. For the case when
the waves were short-crested we also see a clear reduction. The difference is when the
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waves have a 90◦ heading. The reduction compared to the case for a non-linear flex
joint is larger.

Since most of the sea states have an heading of ±30◦ and we should put most effort
to narrow the gap in difference in this region. For the sea state in figure 8.1(a) all
the simulations yield on average lower response than the full scale measurements show.
This sea state is also the one with the highest degree of uncertainty. The spread in
standard deviations spans from 0.27 to 0.43 and may be a result of other environmental
actions such as current and wind, i.e. the waves become less dominating. For higher HS

the situation is opposite. The simulations show a trend of overestimate the standard
deviations a bit.

As shown in figure 5.15 we have some sea states where the dominating frequencies are
the low frequencies. This is actually the case for many of the measured hours. But
even for this extreme change in shape of the spectra the area below them are still not
that different. The spread in standard deviation as shown in section 5.4.2 is relatively
low. This will introduce an error if we use the standard deviation in finding the total
cumulative damage. The simulations from RIFLEX never show these low frequencies.
And the mean frequency will affect the damage in equation 4.9, accordingly.
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(a) HS 2, TP 9 (b) HS 2, TP 10

(c) HS 4, TP 10 (d) HS 2, TP 12

(e) HS 4, TP 12 (f) HS 6, TP 12

Figure 8.1: Comparison of standard deviation from RIFLEX and full scale data. The
horizontal solid black line is the averaged standard deviations from the full
scale data and the dashed black lines are the statistical spreading of the
standard deviation.
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8.1.2 Miner-Palmgren Summation Comparison

By comparing the blocks in the Miner-Palmgren summation method we get a picture
of the distribution of the number of cycles for each ∆θi. Ideally, the full scale measure-
ments and the simulations from RIFLEX would have the same shape. The full scale
distribution in a linear-log scale is very close to linear, i.e. a Weibull shape parameter,
h close to 1.0. The results from RIFLEX have a higher shape parameter, but a lower
maximum ∆θ. The shapes from RIFLEX are close to the same for all simulations and
the implementation of non-linear flex joint and wave spreading is not enough to change
the shape drastically. We can see that the maximum ∆θ is reduced for the models with
wave spreading and non-linear flex joint which is in accordance with the comparison of
the standard deviations where we can see a reduction in the angle response.

Model Cumulative Errordamage
Full scale 0.002544 0%
Unidirectional JONSWAP waves 0.005817 129%
Unidirectional Torsethaugen waves 0.006047 138%
Unidirectional Torsethaugen waves with non-linear spring 0.003713 46%
Torsethaugen waves with spreading 0.004495 77%
Torsethaugen waves with spreading and non-linear spring 0.002719 7%

Table 8.1: Cumulative damage for each simulation model compared to full scale damage
using Miner-Palmgren summation

Figure 8.2 show how the different simulation compares to the full scale data directly.
The data points for 4-directions shows the distribution when we take into account that
the mean wave heading direction changes over time. The 1-direction points shows the
distribution when we don’t take into account the change in wave heading direction. We
can clearly see a shift of the point between these two situations. When using RIFLEX
to calculate the cumulative damage it is conservative to assume no change in weather
direction since the main response direction is nearly the same as the incoming wave
direction (see figure 5.5) which will give more damage at the same point regardless of
the true response direction. In the full scale analyses we found that there is little to
no relation between the response main direction and the weather direction. This comes
from the fact that the ratio between the maximum standard deviation and the minimum
standard deviation is very high, often close to 1.0.

Even though there are some differences in the angle spectra they are all very close when
it comes to the total number of cycles, n0. For some RIFLEX analyses there are some
small amplitude cycles which appears under the rainflow counting, e.g. the high total
number of cycles for 4-directions in figure 8.2(a). The relevance is very small since the
total cumulative damage contribution is completely negligible for those cycles, i.e. that
block in the Miner-Palmgren sum is as low as 10−45 in some cases.

We found in section 5.4.5 that the main contribution to the cumulative damage is from
∆θ ranges between ~1 – 4 degrees. Compared to full scale fatigue using Miner-Palmgren
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summation we have managed to narrow the gap. Table 8.1 shows the cumulative dam-
age for the simulation models compared to full scale cumulative damage where the
cumulative full scale damage is for the direction most damaged.
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(a) Unidirectional JONSWAP waves (b) Unidirectional Torsethaugen waves

(c) Unidirectional Torsethaugen waves with
non-linear flex joint

(d) Torsethaugen waves with spreading

(e) Torsethaugen waves with spreading and non-
linear flex joint

Figure 8.2: Comparison between the Miner-Palmgren summation blocks from RIFLEX
and full scale analyses

108 Ivar Stange, 2012



Result Comparison and Discussion

8.1.3 Weibull Fit Damage Comparison

For all simulations and the full scale data we fitted a Weibull distribution to the angle
range spectra. The full scale data had a shape parameter close to 1.0, whereas the
simulations had much higher shape parameters, i.e. around 2.0.

Model Cumulative Errordamage
Full scale 0.003201 0%
Unidirectional JONSWAP waves 0.008821 176%
Unidirectional Torsethaugen waves 0.005880 83%
Unidirectional Torsethaugen waves with non-linear spring 0.003651 14%
Torsethaugen waves with spreading 0.004502 41%
Torsethaugen waves with spreading and non-linear spring 0.002770 −16%

Table 8.2: Cumulative damage for each simulation model compared to full scale damage
using closed form Weibull solution

Compared to using the Miner-Palmgren summation method we now get larger errors
compared to the full scale measurements. The shape of the Weibull fit seems good, but
it does not account for the cut-off of the peaks that is not represented by the RIFLEX
simulations. And the fact that the largest peak ∆θ0 in the RIFLEX analyses are all
lower than the full scale analyses introduce another problem. We want to reduce the
damage from the RIFLEX analyses, but the main contribution to the damage is not in
the peak region of the spectra. The share of the cumulative damage comes from the
region where the RIFLEX Weibull fit overestimates the cycle counts which is in the
region between 0◦ and 3◦.

If we compare the Weibull fit damage values to the Miner-Palmgren sum we get very
close results. The results are to a large degree very comparable. This results are very
close for the last four cases.

Cumulative damage

Model Miner-Palmgren Weibull
summation fit

Full scale 0.002544 0.003201
Unidirectional JONSWAP waves 0.005817 0.008821
Unidirectional Torsethaugen waves 0.006047 0.005880
Unidirectional Torsethaugen waves with non-linear spring 0.003713 0.003651
Torsethaugen waves with spreading 0.004495 0.004502
Torsethaugen waves with spreading and non-linear spring 0.002719 0.002770

Table 8.3: Comparison of Miner-Palmgren sum damage and Weibull fit closed form so-
lution damage.
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8.1.4 Short-term Angle Spectrum Comparison

From the full scale measurement we found that the angle range spectrum changes when
the angle motion is dominated by low frequencies outside the wave frequency range.
The simulations from RIFLEX do not contain information about the rig’s low frequency
motion or characteristics. If this was implemented into the model it would be easier
to compare the full scale measurements and computer simulations directly. By finding
time series that have low energy in the low frequency region we can determine if this is
a factor that should be considered more closely.

110 Ivar Stange, 2012



Result Comparison and Discussion

(a) Unidirectional JONSWAP
waves

(b) Unidirectional Torsethaugen
waves

(c) Unidirectional Torsethaugen
waves with non-linear flex joint

(d) Torsethaugen waves with
spreading

(e) Torsethaugen waves with
spreading and non-linear flex joint

(f) Torsethaugen waves with cur-
rent

(g) Torsethaugen waves with rig
offset

Figure 8.3: Comparison between short-term angle range spectra between full scale and
computer simulations. The simulation time is 3 hours and all time series
have the same sea state parameters. HS = 4 m, TP = 10 s.
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8.1.5 Spectrum and Spectrum Broadness

The broadness parameter for a power spectrum ε gives a picture of the variety of fre-
quencies represented in the realisation of the angle motion. The broadness parameter
can be used to find a reduction factor for the cumulative damage if we find the damage
assuming a narrow band process. The correction factor will then correct the actual
damage by taking into account for the facts that the process isn’t narrow banded.

From full scale analyses we found that the broadness is very high. The distribution is
shown in figure 5.16(b) and spans from 0.5 to almost 1.0. Depending on the slope in
the θ-N curve we can assume a completely broad process if the broadness is over ~0.5
where the inverse slope m is 5 and over ~0.7 where the inverse slope m is 3 (see figure
4.2). This mean that we can assume for almost all measured sea states in full scale can
be assumed to have full broadness.

From the RIFLEX analyses we have found that the broadness parameter almost never
reaches below 0.6. The broadness for most cases are, in fact, very close to 1.0. Using
the same logic explained above we can use the same assumption for the broadness for
our RIFLEX analyses, i.e. when calculating fatigue from narrow band process theory
we can correct the fatigue with a correction factor where ε = 1.0.

When comparing the power spectra for the angle response we do see some differences.
The peak period for the full scale analyses are in many cases very high. Sometimes the
peak period can be on the order of minutes.

8.2 Result Assessment

8.2.1 Modification of the Model

We have seen that the introduction of wave spreading and non-linear effects on the
Lower Flex Joint will reduce the response and the cumulative damage. However, there
are some differences that cannot go unnoticed. The reduction of fatigue is a result of
the generic trend of reducing the standard deviation of the motion. The fatigue result
was only 7% above the full scale fatigue analyses. Due to the large difference in the
shape of the Weibull fit this should be regarded as a coincidence. By taking into account
the spreading of waves and different incoming heading directions we take away much of
the conservatism of the environmental actions. Also introducing non-linear effects with
higher tangential stiffness for small angles also takes away much of the conservatism.

8.2.2 Long-Term Angle Range Spectrum Differences

The shape of the angle range spectrum is very different between the full scale analyses
and the simulations of the system. There is an over-representation of cycles in the
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small-range region and an under-representation of cycles in the large-range region. This
is an indication of a model that doesn’t represent the true full scale situation.

The total number of cycles n0 are at least on the same order of magnitude, but the
number of cycles exceeding range above ~1◦ is too high. We showed in figure 5.20 that
this is the most vulnerable region for the full scale damage, and this is even higher for
the simulations. From figure 8.2 the difference is largest for the original model without
modification than for the model with non-linear flex joint and wave spreading.

8.2.3 Short-term Angle Range Spectrum Differences

To isolate time series which can be compared directly to full scale measurements we
found time series which were not dominated by low frequencies in the power spectrum.
In most cases the computer simulation over-estimated the number of cycles for each ∆θ
except in the highest region where the full scale measurements had some higher peaks.
Especially in the current simulation we can detect very large dependencies of the angle
range spectra’s shape on the current strength. Higher current velocities "flattened" the
shape making it similar to the full scale spectrum where the low frequency energy was
low.

8.2.4 Support Vessel Motion

The transfer function for the support vessel is linear, i.e. the motion of the support
vessel is proportional to the amplitude of the excitation force. For a semi-submersible
rig one may get higher order effects in different ways. The wave elevation will give
pressure forces on the structure above the mean sea water line on a wave crest, and
no pressure forces below on a wave trough. Another effect is the frequency difference
effect due to Bernoulli’s velocity term explained in section 6.6.1. Mean drift forces and
slowly oscillating motions can be important for moored structures where the horizontal
eigenfrequencies may be on the order of minutes. We have shown from the spectral
analyses for the angle at the bottom of the riser that low frequencies can be governing.
This effect may be a direct result of the motion of the support vessel. Full scale mea-
surements from the semi-submersible "Uncle John" have shown that the motion of the
rig often is dominated by low frequencies outside the wave frequency domain (Jackson
and Wilson, 1988).

RIFLEX is able to use low frequency motion spectra when simulating the full motion
of the support vessel. While the direct wave frequency motion has a certain phase with
respect to the incoming waves the low frequency motion is random (Marintek, 2010).
One can also import direct full scale measurement of the support vessel motion into
RIFLEX, but without the exact wave realisation the simulation must be run without
waves. This would still give an important understanding of the angle response of the
riser, but the combined effect would still be missing. However, such low frequency data
or rig response is not used in our analyses.
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8.2.5 True Non-Linear Flex Joint

The true characteristics of the flex joint in a dynamic context are far more complex than
what is shown in figure 6.7. Representing the non-linearities in a good way requires
more investigation of the true characteristics. Dynamic stiffness and damping can be
represented by a combination of parallel and serial coupled springs and dashpots.

The stiffness can differ from the static stiffness and in many cases the stiffness is higher.
The results from our support vessel offset analyses showed an increasing tendency of the
angular motion (see section 7.7). This is a result of the change in tangential stiffness
for angles different than zero. If the true tangential (or equivalent) stiffness is higher,
then those results can give a wrong picture of the true behaviour.

8.2.6 Wave Spreading

Spreading the energy of the incoming waves to a wider range of directions will give
a reduction of the response. There is a generic tendency of higher directional energy
concentration for high sea states, i.e. a higher exponent in the cosine wave spreading
formula, equation 6.16. There are large uncertainties involved in this exponent. It
changes from field to field and from day to day. Using an exponent proportional to
the significant wave height HS was used to mimic the concentration effect. For sea
states with low HS the waves can be either wind sea or swell sea and sometimes a
combination. But the uncertainty of the exponent spreading parameter is also linked to
the type of waves. From the full scale data we have seen that the angle motion is larger
than expected for calm sea states. This may be an explanation to why the calculated
standard deviations from the simulations are underestimated. The true motion may be
dominated by slowly varying oscillations which isn’t included in the models.

8.2.7 Current

The presence of current will reduce the motion of the system. The coupling of the terms
in the velocity in Morison’s equation will give a dominant static force, i.e. from the
current contribution of the total force. From the results we have shown that the current
introduce a significant damping to the angular motion both when the current has the
same direction as the incoming waves and when the current direction is perpendicular
to the wave direction. We could also take the Coriolis spiral into account to find the
effect of that as well.

In all our analyses where we took a closer look at the damage we didn’t have any
simulations with current. Current could have a positive damping effect which in turn
could "reshape" the angle range spectrum into our favour.
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8.2.8 Heave Compensator behaviour

The heave compensator has been modelled with a constant stiffness. Natural variation
in the tension forces will occur. The system may be slow, meaning that it need time
to enter equilibrium. In a dynamic case this may cause lag in the tension forces. The
tension force is an important part of the forces acting on the wellhead.
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Conclusion

The target has been to compare the response of the marine riser between measured full
scale response and computer simulated models using the simulation software RIFLEX.
The measured angular response data has been coupled to weather hindcast data from
the Norwegian Reanalysis (NORA10) data. The comparison was made by comparing
the standard deviation of the response and by comparing the angle range spectra in
order to find the cumulative damage.

The scattering of standard deviation from the full scale data was fairly small compared
to the differences in the angular power spectra. The energy of the motion which is
directly linked to the area under the power spectra curve was in other words similar
in almost all full scale measurements whether the motion was low frequency dominated
or dominated by frequencies in the wave-domain. The simulations showed that the
standard deviations were within natural variations of the measured standard deviations.
There was a tendency of under-estimation of the standard deviation for the sea states
with the smallest significant wave heights. For sea states with lowerHS we observed that
the uncertainty of the standard deviations were higher than for sea states with higher
HS. A possible explanation is that the low frequency oscillation of the rig may be even
more dominant for those sea states than for the higher sea states. Since the exponent
may also be linked to whether the sea state is swell dominated or wind dominated we
introduce another uncertainty since we didn’t take this into account when performing
the analyses.

After modelling with spreading of the waves and a non-linear flex joint we have managed
to reduce the response of the angle. This is as expected, but the characteristics of the
motion and the shape of the angle range spectra are far from comparable to the full
scale distribution.

By taking away some of the conservatism in our model the calculated cumulative damage
using the Miner-Palmgren summation method we are closer to the measured damage.
However, the shape of the angle range spectra affects each block in the summation to
a very large degree. Narrowing of the gap between full scale damage and simulation
damage should be considered to be a coincidence and not necessarily a result of "correct"
simulations.

For the angle range spectrum for full scale measurements we found that the Weibull
parameter h is very close to 1.0, which is typical for long term, environmentally loaded
offshore structures. For the angle range spectra from the RIFLEX simulation the shape
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parameter varied from 1.79 to 2.0 when we assume changes in mean heading direction
of the incoming waves. The lowest value correspond to the case where both non-linear
flex joint and wave spreading were present and the highest correspond to the case where
those effects aren’t present.

For the standard deviations alone there are very little discrepancies compared to the
full scale data. The calculated values are within the natural variances of the full scale
data. This is also found in the literature when they compare the standard deviation of
an arbitrary motion and the match becomes better for motion measured away from the
wave-active zone.

Before using these calculation methods to document any fatigue life time on wellheads
it is recommended that the gap in the angle range spectra are closed. It is clear that the
current effect and the low frequency motion of the rig can affect the results significantly.
Further analyses should be made to identify effects that yet are unaccounted for.
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In this thesis we have found some discrepancies between measured and calculated re-
sponse for the angle of the riser at the lower flex joint. The results are comparable
when investigating the standard deviation of the motion and the fatigue life there are
some aspects that need further investigations before we can use this kind of computer
simulations to assess the fatigue life time of the wellhead.

The angle range spectrums that we used to find the cumulative damage with the Miner-
Palmgren summation method are very different in the real world and in the simulations.
In this thesis we only looked at removing conservatism using wave spreading instead of
unidirectional waves and introducing a non-linear flex joint behaviour.

For further work it is recommended that a more realistic model of the non-linearities are
taken into the RIFLEX model, i.e. stiffness and damping hysteresis data so that both
static and dynamic effects are properly modelled. We have already shown that changing
the properties will introduce significant changes in the results and more realistic models
would help getting better results.

As one of the discussed papers pointed out there may be some effects from the values
in Morison’s equation that may vary due to change in Reynolds number and Keulegan-
Carpenter number along the length of the riser. The changes in drag coefficient and
mass coefficient could alter the results significantly. These effects are also coupled to
the damping effect when a current is present.

The slowly varying oscillation of the support vessel is also an important factor to in-
vestigate. We’ve shown that a large portion of the full scale spectra are low frequency
dominated. This was also pointed out in one of the papers in the literature review which
also was based on a semi-submersible rig. Allowing the rig to slowly drift away from its
equilibrium point with its mooring can give some larger peaks in the spectra which we
miss in our analyses.

Also, we have assumed no current at all in our analyses which may be a severely bad
assumption. The current will reduce the response of the angle, but the effect it has on
the angle range spectrum is still unknown.
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Appendix A

Marine Riser Static Displacement



Data

 Top end offset, yt (m) 27,38 -364

 Top tension, Tt (kN) 950 1 314

-2,61

 Moment top end (kN-m) 0 1 337

 Moment btm end (kN-m) -193,87 834

0,8

Stiffness Diam. Current Mid-pt.
Data per segment EI f velocity load

(kN/m) (m) (kN-m²) (m) (m/s) (kN/m)

    Segment 1 (top end) 1,418 10,079 177 310 0,563 0,00 0,000

    Segment 2 3,706 1,200 137 700 1,533 0,00 0,000

    Segment 3 3,706 20,826 267 670 0,69 0,00 0,000

    Segment 4 1,494 13,716 177 310 0,512 0,00 0,000

    Segment 5 -1,836 274,320 177 310 0,993 0,00 0,000

    Segment 6 (bottom end) 1,494 15,240 177 310 0,512 0,00 0,000

Total: 335 0,00

  

Riser Cable

(numerical) (analytical)

 Top end angles 5,38° 5,15°

 Bottom end angles 3,00° 3,72°

 Maximum sag (m) 1,84 1,78

 Height of maximum sag x/L 0,503 0,520

 Top end setdown (m) 1,143 1,142

 Top end reaction Ht (kN) -85,92 -85,42

 Bottom end reaction Hb (kN) 85,92 85,42

 Tt / SwL

 Deduced values

 App.wt

Global results

 Btm end tension (kN)

 Total app. weight (kN)

 Max. tension (kN)

 Min. tension (kN)

Attention: LOW Tension, Tt/wL <1.2

 Drag coeff. Cd

Length

 Bottom end current : 

 Segmented Riser

Curvature and Displacements
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Appendix B

Tabulated θ-N Curve Values

Ivar Stange, 2012 V



Δθ N Δθ N Δθ N

30 821 4,041576 333044 1,959552 6175332

6,062364 98006 3,98034 348888 1,898316 7247208

6,001128 101027 3,919104 365749 1,83708 8549891

5,939892 104174 3,857868 383709 1,775844 10142629

5,878656 107452 3,796632 402861 1,714608 12104411

5,81742 110870 3,735396 423303 1,653372 14538843

5,756184 114434 3,67416 445147 1,592136 17584095

5,694948 118153 3,612924 468423 1,5309 21426430

5,633712 122035 3,551688 493343 1,469664 26319875

5,572476 126089 3,490452 520058 1,408428 32615227

5,51124 130325 3,429216 548731 1,347192 40803530

5,450004 134776 3,36798 579545 1,285956 51582356

5,388768 139432 3,306744 612704 1,22472 65958773

5,327532 144305 3,245508 648434 1,163484 85404043

5,266296 149407 3,184272 686988 1,102248 112137746

5,20506 154753 3,123036 728652 1,041012 149550296

5,143824 160357 3,0618 773744 0,979776 202957520

5,082588 166235 3,000564 842999 0,91854 280921365

5,021352 172403 2,939328 920610 0,857304 397656783

4,960116 178880 2,878092 1007232 0,796068 577592346

4,89888 185685 2,816856 1104138 0,734832 864404157

4,837644 192907 2,75562 1212813 0,673596 1,33985E+09

4,776408 200508 2,694384 1334999 0,61236 2,16546E+09

4,715172 208514 2,633148 1472740 0,551124 3,68153E+09

4,653936 216949 2,571912 1628452 0,489888 6,66319E+09

4,5927 225845 2,510676 1804994 0,428652 1,30552E+10

4,531464 235232 2,44944 2005766 0,367416 2,83788E+10

4,470228 245145 2,388204 2277937 0,30618 7,10929E+10

4,408992 255622 2,326968 2596643 0,244944 2,18755E+11

4,347756 266702 2,265732 2970295 0,183708 9,31688E+11

4,28652 278430 2,204496 3410254 0,122472 7,18183E+12

4,225284 290895 2,14326 3930646 0,061236 2,35783E+14

4,164048 304114 2,082024 4549137 5,17366E-09 1,00000E+50

4,102812 318142 2,020788 5287970
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