NTNU - Trondheim
Norwegian University of

Science and Technology

Procedural generation of multiple stable,
small-scale solar systems using 3D
N-Body simulation.

Joakim Hommeland

Master of Science in Computer Science
Submission date: July 2015

Supervisor: Anne Cathrine Elster, IDI
Co-supervisor: Reiji Suda, University of Tokyo

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

Implement a 3D Galaxy simulator comprised of multiple solar systems us-
ing an appropriate established algorithm(either Barnes-Hut, FMM, Particle
Mesh, P3M etc. or a suitable combination of methods). The amount of
planets per solar system should match what has been currently observed in
our universe (up to nine). A central goal of the simulator is to procedu-
rally generate galaxies that remains as stable as possible (that is, keeping
the amount of colliding planets or runaway planets as low as possible), and
use the implemented N-Body algorithm to test this. Investigate possible so-
lutions to the initial value problem that appear when considering stability
by using well-known methodologies (for example Monte Carlo). The Galaxy
Simulator should feature 3D graphics and an intuitive user interface to show
the results of the simulation, as well as take input from the user. Investigate
and determine the hardware to run the Galaxy Simulator on, and justify this
choice. For example in a multi-GPU environment, investigate the possibility
of dividing workload between multiple GPUs.

Abstract

Owing to mankind’s constant pursuit of knowledge, we have been seeking
to understand the vast universe around us. Thanks to the field of GPU
Computing, we have in the recent decade been able to do simulations on
the universe with an efficiency like never before. This allows us to create
simulation models of the universe, which we can use to learn more about it.
In this thesis, we develop a galaxy generator that generates a small galaxy
with a user-specified number of solar systems and internal bodies. One of the
central goals of the galaxy generator is to generate galaxies that can remain
in equilibrium for as long as possible. We do various tests with the galaxy
generator in order to discover and understand what makes a galaxy stable.
We find that the integration method and the type of N-Body algorithm has
a significant impact on how the simulation is run, and choosing the correct
one for the situation is crucial. We develop an approximate, specialized N-
Body algorithm and integration method for both CPU and GPU that is able
to calculate the movement of the bodies fast by using the center of mass
as an approximation. Results show that the proposed N-Body algorithm is
able to significantly speed up computation over the All-Pairs GPU N-Body
algorithm. We also show that the proposed algorithm is suitable for GPU
execution, as the GPU-based algorithm is several times faster than the CPU-
based one. When analyzing the accuracy of the approximated algorithm, we
found that the error becomes significant over time. We quantify the error and
try to explain the reason for the observed error. Finally, we perform several
tests on the proposed integration method, and find out that it shows promise
as a way to integrate distant forces less frequently than nearby forces.

Sammendrag

Pa grunn av menneskehetens konstante vilje til a leere nye ting, har vi i lang
tid provd a forsta universet rundt oss. Takket veere GPU Beregning feltet,
har vi i de siste ti arene kunnet utfgre universesimulasjoner med hgyere ef-
fektivitet. I denne masteroppgaven, utvikler vi en galakse generator som
genererer sma, bruker-definerte galakser med et gitt antall solsystem og med
et gitt antall interne planeter i solsystemet. Et sentralt mal med genera-
toren er a generere galakser som er stabile sa lenge som mulig. Vi utferer
forskjellige typer tester for a utforske hva som gjor en galakse stabil. Vi ser
at valg av integrasjonsmetode og N-Body algoritme har stor innvirkning pa
hvordan simulasjonen blir utfgrt. Dette gjor det viktig a velge riktig metode
til riktig tid. Vi utvikler en spesialisert N-Body algoritme og integrasjons-
metode for bade CPU og GPU som kan utfgre simulasjonen effektivt med a
beregne massesenteret til et solsystem. Resultater viser at den foreslatte N-
Body algoritmen gir betydelige ytelsesfordeler i sammenligning med All-Pairs
GPU N-Body algoritmen. Vi kom ogsa fram til at den foreslatte algoritmen
er veldig egnet til a bli utfgrt pa en GPU, da den er flere ganger raskere
enn CPU-versjonen. Nar vi analyserer ngyaktigheten til den foreslatte algo-
ritmen, ser vi at den far store ungyaktigheter etter en tid. Vi kvantifiserer
denne ungyaktigheten og prover a forklare denne. Vi utfgrer ogsa noen tester
pa den foreslatte integrasjonsmetoden, og ser at den virker lovende some en
mate a integrere fjerne krefter mindre ofte enn ncere krefter.

i

Acknowledgements

I would like to thank my main advisor Associate Professor Anne C. Elster
at the Norwegian University of Science and Technology for her support and
advise during this thesis. I would also like to extend my heartfelt gratitude
for the help and hospitality shown by Professor Reiji Suda at the University
of Tokyo during my stay there. Finally, I would like to thank the Norwegian
University of Science and Technology and NVIDIA for their support of the
IDI HPC Lab through the GPU Research and Education Center program.

1l

v

List of Figures

2.1

2.2

2.3

24
2.5
2.6
2.7

2.8

3.1

3.2
3.3

3.4

3.5

3.6
3.7

A planet orbiting the Sun in an elliptic orbit. a denotes the
semi-major axis and b denotes the semi-minor axis of the ellipse. 9

An illustration of Kepler’s Second Law. Point 1 is located at

the perihelion, while point 2 is located at the aphelion. 10
A picture showing the direction of the vectors in relation to

eachother 14
An illustrative picture of an N-Body simulation 19
Example Streaming Multiprocessor Diagram 25
High-level GPU Architecture Diagram 28
An illustration of how data can be divided into CUDA blocks

onthe GPU.. 31

An illustration showing the difference between two common
projections. Left: A perspective projection. Right: An ortho-
graphic projectiono 35

An schematic overview of the implemented solution. The ar-
rows shows the direction of the flow of information 40
A picture of the Two Body test rendered using SimpleRenderer 43
The difference between the analytical and the simulated re-

sults for the Sun-Earth two body system 44
A picture of the Solar System test rendered using SimpleRen-
derer 46

The difference between the analytical and the simulated re-
sults in the case of the Sun-Mercury-Venus-Earth-Mars system 47
Galaxy Data Structure Overview 50
A picture of an example galaxy rendered by the Celestial Ren-
derer L 53

LIST OF FIGURES LIST OF FIGURES

4.1 A circular galaxy with ten solar systems each with one star

and one planet. L L 67
4.2 Planetary Stability Results in terms of integration stepsize . . 73
4.3 Accuracy Test 1 (distance = 100 AU) 76
4.4 Accuracy Test 2 (distance = 1000 AU) 77
4.5 Accuracy Test 3 (distance = 10000 AU) 78
4.6 Accuracy Test 4 (distance = 10000 AU) 79
4.7 Accuracy Test 5 (distance = 10000 AU) 80
4.8 Accuracy Test 6 (distance = 10000 AU) 81
4.9 Threshold Test (Threshold = 50 AU, Distance = 100 AU) . . 82
4.10 N-Body Performance Comparison 83
4.11 Large-scale N-Body Performance Comparison 84
4.12 Large-scale Celestial N-Body GPU Performance 85
A.1 Default Values for the Celestial Simulator Application 98

vi

List of Tables

2.1
2.2

4.1
4.2
4.3

4.4

Al
A2
A3
A4
A5

B.1
B.2
B.3

Eccentricity values for planets of the inner solar system.. . . . 9
The Streaming Multiprocessor Memory types (Maxwell GM204) 27

Integration Stability Results 69
Black Hole Mass Stability Results 70
Stability Results when changing black hole mass in relation to

distance 71
Celestial Integration Results 74
Initial Commands for the application 96
Run-time arguments flags for the Celestial Simulator Application 97
Run-time flags for the Celestial Simulator Application 98
Run-time arguments for the Celestial Simulator Application . 99

Keyboard Controls for the Celestial Simulator Application . . 100

Eccentricity values for the planets orbiting the Sun 102
Mass values for the planets in our solar system. 102
Semi-major axis values for the planets orbiting the Sun in

Astronomical Units 103

vil

LIST OF TABLES LIST OF TABLES

viil

Contents

1 Introduction 1
1.1 Main Contributions 3
1.2 Problem Formulation 3

1.2.1 Galaxy Generation 3
1.2.2 N-Body Simulation 5
1.2.3 Integration L. 6
1.3 Outline.o 6

2 Background and Related Works 7

2.1 Celestial Mechanics 7
2.1.1 Kepler’s First Law 8
2.1.2 Kepler’s Second Law 10
2.1.3 Kepler’'s Third Law 11

2.2 Newton’s Universal Law of Gravitation 11

2.3 The Two Body Problem 12

2.4 N-Body Simulation L. 18

2.5 Numerical Integration 21
2.5.1 Explicit Integration 21
2.5.2 Semi-implicit Integration 22

2.6 GPU Computing 23
2.6.1 The Graphics Processing Unit 24
2.6.2 The Streaming Multiprocessor 24
2.6.3 High-Level GPU Architecture 28
2.6.4 The GPU Programming Model 30
2.6.5 Running Code on the GPU 32

2.7 Graphics Rendering 33
2.7.1 OpenGL Pipeline Overview 33
2.7.2 OpenGL and Cuda Interoperability 36

X

CONTENTS CONTENTS

2.8 Other Related Works 37
3 Our Implementation: Celestial Simulator 39
3.1 Implementation Overview 39
3.2 The Two Body System Generator 42
3.2.1 Two Body Problem Test Results 43
3.2.2 Solar System Test Results 45

3.3 The Galaxy Generator 47
3.4 The Celestial System 50
3.5 Celestial Renderer L. 53
3.6 N-body Algorithms 56
3.6.1 N-Body All-Pairs CPU 57
3.6.2 N-Body All-Pairs GPU (GEM3) 58
3.6.3 The Celestial N-Body Algorithm 58

3.7 Integration o 60
3.7.1 Explicit Integration Implementation 60
3.7.2 Symplectic Euler Implementation 61
3.7.3 Celestial Integration Implementation 62

3.8 Implementation Discussion 63
3.8.1 Targeted Hardware Configuration 63

4 Results and Discussion 65
4.1 Testing Overview 65
4.1.1 Simulation Hardware Specification 65
4.1.2 Performance Test Methodology 66

4.2 Galaxy Generator Results 67
4.3 Integration Results 71
4.4 Celestial Integration Results 74
4.5 Celestial N-Body Accuracy Test 76
4.5.1 Celestial N-Body Threshold Testing 80

4.6 N-Body Performance Comparison Test 82
4.7 Further Discussion 84
5 Conclusion and Future Work 87
5.1 Future Worko 88

CONTENTS

A Celestial Simulator Guides
A.1 Installation Guide,
A2 Usage Guide

B Planetary and Simulation values
B.1 Determining the Gravitational Constant G
B.2 Planetary Values

C Code Contributions
C.1 Galaxy Generator
C.2 Celestial N-Body
C.3 Celestial N-Body Grouped
C.4 Celestial Integration,

x1

x1i

CONTENTS

Chapter 1

Introduction

For centuries, mankind has looked up to the sky in wonder and amazement.
The celestial night sky must have been a mysterious and scary sight for the
early humans who walked the earth. However, owing to mankind’s constant
pursuit of knowledge, we nevertheless have been seeking to conquer this scary
abyss. While humans have continued to observe the other bodies in the Milky
Way galaxy for centuries, it has not been until as recent as a couple of hundred
years ago that we finally started to understand some of the intricacies of
the universe. Leading mathematicians such as Johannes Kepler and Isaac
Newton were instrumental in revolutionising the field around the beginning
of the 17th Century. Kepler was the first who was able to explain Solar
System Mechanics when he published his laws of planetary motion. Not long
after this, Newton was able to verify Kepler’s laws when he revolutionised
how we understand the universe by publishing his Law’s of Motion and his
Law of Universal Gravitation.

GPU Computing is a field in Computer Science that has seen a large
growth in recent years. In the beginning, GPUs were mainly used to ren-
der graphics to a display. However, since the beginning of this century,
researchers have found new and exciting ways to use the GPUs for more
general purpose computations. Owing to it’s high level of parallelism, GPUs
can compute certain problems much faster than traditional CPUs.

With the advent of the age of the computer, the field of Computational
Science has grown to be a very important pillar of the scientific community.
Various types of computations and simulations can now be performed on
computers, making it easier than ever to verify previously analytically proven
problems. One type of problem that has been widely implemented is the

2 CHAPTER 1. INTRODUCTION

N-Body algorithm. As the N-Body problem is very suited to run on the
GPU, we will be focusing on implementing it to run on the GPU using
NVIDIA’s CUDA framework. Because of the complexity of the problem, it
is not possible to analytically calculate how the bodies in an N-Body system
will continue to move in relation to eachother.

However, by utilizing Newton’s Law of Universal Gravitation, we are able
to simulate the solution with the help of computational hardware. The N-
body algorithm has been used many times in order to simulate the movement
of bodies in a system. Most approaches focus on high level simulation, with-
out individual planets. In addition to this, previous approaches mainly focus
on simulating a universe in a state of chaos, where the goal of the simulation
is to see how a state of relative equilibrium can be reached.

In this thesis we will be looking at the problem from a slightly different
direction. We will use established theory in the field to generate a simplified
galaxy which has already reached this state of relative equilibrium. However,
even though a system is in equilibrium at a current time ¢, it is not possible
to guarantee that it will remain so in the future. As such, one of the goals
of the thesis is to simulate different types of small galaxy compositions and
measure how stable they remain over time.

We will then analyze the results and try to understand why the generated
test galaxy is able to remain stable. As we are interested in measuring
equilibrium for a group of solar systems, it will also be important to perform
simulations that takes into account individual planets. As such, we will also
be exploring any issues that appear when working with such a fine-grained
galaxy system in terms of simulation. The proposed galaxy generator will
generate separate solar systems, each with a user-defined number of planets
orbiting a star in a state of equilibrium at time ¢ = 0. The solar systems will
be distributed around the centre of a common black hole to form a galaxy.

Finally, we will test the generated galaxy, as well as different simulation
methods, by utilizing various N-Body algorithms and integration methods
running on both the CPU and the GPU. As part of the testing suite, we
will consider the underlying data structure and use this to create a modified
N-body algorithm and integration method that is tailored to the galaxy gen-
erator we have created. The results of the simulation can either be watched
in real time through the use of a renderer, or by looking at test data and
reports after the simulation has concluded.

1.1. MAIN CONTRIBUTIONS 3

1.1 Main Contributions

The following is a list of main contributions.

e We design and develop a galaxy generator that creates small solar sys-
tems that orbits a common black hole. Using the galaxy generator as a
tool, we can analyze different galaxy compositions to determine which
remain stable for the longest period of time.

e We develop a specialized N-Body algorithm that is tailored to the
galaxies generated by the generator component. The algorithm ap-
proximates the total force exertion of distant solar systems using the
center of mass. This allows us to speed up the computation at the cost
of accuracy. We analyze and explain the error, and determine that the
error grows with the number of bodies in the galaxy.

e Finally, we design a custom integration method that utilizes the spe-
cialized N-Body algorithm to integrate bodies in distant solar systems
less frequently than bodies inside the same solar system. When testing
the method, the initial results seem favorable, allowing us to choose a
higher integration stepsize for distant forces.

1.2 Problem Formulation

In this section, we will explain the the problem in more detail and discuss
goals and expectations for this thesis. The actual implementation of the ap-
plication will be detailed in Chapter 3. We have divided the problem into
three parts consisting of galaxy generation, N-Body simulation and integra-
tion.

1.2.1 Galaxy Generation

It is widely believed that the universe, with it’s numerous galaxies, nebulas
and other celestial constructs, is headed towards chaos. While it may seem
like we are living in a state of relative equilibrium here from Earth, there
are constantly millions of collisions going on in our own galaxy. Any one
galaxy in the universe is in a constant state of flux, with millions of bodies
dynamically moving in relation to each other.

4 CHAPTER 1. INTRODUCTION

In this thesis, we will study some of inherent attributes found in most
galaxies. Since galaxies move in a dynamic way, it is inevitable that bodies
collide or gets flung out in space by the sheer force of all the gravitational
interactions. We want to test certain galaxy configurations and see how they
develop over time in terms of stabilitity. We also want to determine what
properties a stable galaxy has, in order to get insight in how these are formed.

With stability we mean that the system of bodies remain in a state that
is close to it’s current state, without diverging unrecoverably. In terms of ce-
lestial mechanics, this essentially means that systems of bodies move about
each other with as few collisions and runaway bodies as possible. Using ce-
lestial mechanics, we want to explore how to achieve this stability in our
simulations. This term is similar to, but not the same as numerical stabil-
ity. With the term numerical stability, we talk about the desired property
that rounding errors and other small numerical errors do not scale up signif-
icantly to create major errors. There are many factors that are at play, and
correctly determine the cause of something can be difficult. It is important to
distinguish between phenomena that happens because of a physical property
and phenomena that happens because of a numerical error. As such, in the
simulation part of the program, it will be crucial to develop clear and easy
to understand tools in order to give the user the necessary information to
determine the validity of the simulation.

A galaxy is comprised of billions of objects with varying mass and density.
Scattered around in the galaxy we can observe massive constructs such as
nebulas and dust clouds. While these galactical constructs are an integral
part of what makes a galaxy, we will not focus on these aspects in this thesis.
We will instead consider a simplied approach which focuses on the interaction
between three important components inherent in most galaxies. According
to recent research, it is widely believed that a supermassive black hole is
present at the core of the galaxy [32]. This massive black hole is one of the
major reasons that the galaxy can remain relatively stable. Orbiting this
black hole are a wide range of other galactical objects. In this thesis, we will
focus on designing and implementing a Galaxy Generator that procedurally
generates a simplified galaxy comprised of a massive black hole in the center,
with several solar systems orbiting it. Current observations suggest that a
solar system can at most have up to nine planets[36]. During simulation, the
solar systems in the generated galaxies should be kept stable such that the
bodies in each solar system remain tightly coupled together for as long as
possible. We plan to achieve this by using Celestial Mechanics in order to

1.2. PROBLEM FORMULATION 5

solve the initial velocity and position problem for all the bodies in the galaxy.
The primary goals of the Galaxy Generator module can be summarized as
follows.

1. Generate a galaxy comprised of a black hole with an abitrary number
of solar systems orbiting it. The bodies in the galaxy should remain
stable as long as possible.

2. After generation, send the necessary galaxy data over to the simulation
module to perform N-Body Simulation.

3. Provide the user with ample feedback about the different properties
about the generated system during simulation.

In the simulator, we will focus on observing how each of the solar systems
continue to move in relation to each other. The general topology of the
galaxy (how the solar systems are distributed around the black hole) will be
simplified to facilitate such testing. In our universe, the Milky Way galaxy
has a spiral topology, while the galaxies we will be generating will have
simplified circular and spherical topologies.

1.2.2 N-Body Simulation

In order to calculate the exertion felt by a body at a time ¢, we need to
employ an N-Body algorithm, which we will explain in more detail in Chapter
2. There are many approaches to the N-Body algorithm, ranging from the
brute force All-Pairs approach to more sophisticated approaches that uses
some form of heuristic to optimize the calculations. In this thesis we will focus
on implementing GPU-based N-Body algorithms. However, for comparisons
reasons we will also implement the CPU equivalent approaches.

An important goal of the Galaxy Simulator is to use various N-Body
algorithms to test how the system remains stable. As each approach to the
N-Body algorithm we will implement will be different, we wish to see if these
changes have any major impact on the simulation itself. The results of the
simulation should be sent to the renderer in order to render the results to
a screen. As such, the information flow between all the component of the
program to be implemented must be efficient.

6 CHAPTER 1. INTRODUCTION

1.2.3 Integration

Choosing the correct integration method and timestep for a given time will
be crucial in order for the system to remain stable. If the timestep is too
big, the simulation will be less accurate, which could potentially make an
otherwise stable system become unstable. It is our goal to investigate this,
and see if we can find a suitable integration method and timestep for a given
situation. While a smaller timestep would always be more accurate, we need
to find the correct trade-off between performance and accuracy.

1.3 Outline

The rest of this thesis is outlined as follows

Chapter 2 This chapter will describe the required background to understand the
contents of this thesis and introduce related works.

Chapter 3 In this chapter, we will present the implemented application and ex-
plain the design decision that went into making it.

Chapter 4 This chapter will detail the results obtained when running the generator
and simulator for various scenarios.

Chapter 5 In this chapter we will conclude on the work done and present ideas for
future work.

Appendix A This appendix details the installation and user guide in order to operate
the implemented application.

Appendix B This appendix presents relevant galactical constants and simulation
variables used in the application.

Appendix C This appendix contains the main code contributions from this thesis.

Chapter 2

Background and Related Works

In this chapter, we will briefly describe the theory that we consider prereq-
uisite knowledge in order to properly understand the contents of this thesis.
We will start off by covering Celestial Mechanics, a field made popular by
Kepler’s astronomic discoveries in the 17th century. We will then take a look
at his successor, Sir Isaac Newton, and how he further improved the theory
established by Kepler. By considering the contributions from both Kepler
and Newton, we are then able to analytically solve the Two Body Problem.
After that, we will talk about the N-body algorithm and how it can be used
to calculate the movement of the bodies in a system and how this is tied
together with Numerical Integration approaches. As GPU Computation is
an important part of this thesis, we will also spent some time going through
the core concepts of this field. The final section will briefly talk about how
to render the output of the simulation to the screen and how to efficiently
share information between the renderer and the simulation component. At
the end of the chapter we will present other related works.

2.1 Celestial Mechanics

Celestial Mechanics is a field in astronomy that describes the motion of ce-
lestial objects, such as planets and stars. Using theory from this field, we
can predict the motion of these bodies over time. When this field started to
emerge in the 17th century, quantitative data obtained by observing the celes-
tial bodies from Earth were analysed in order to create theory that matched
the observations. A key person in advancing the field at that time, was the

7

8 CHAPTER 2. BACKGROUND AND RELATED WORKS

German mathematician Johannes Kepler. Using data obtained by observing
Mars from Earth, he was able to determine that the orbits of the planets
were slightly elliptic and not a perfect circle as was previously assumed.

Johannes Kepler used this discovery and other empiric data available to
him at the time to formulate his Three Laws of Planetary Motion, which he
explains in his two famous publications, Astronomia Nova[17] and Harmon-
ices Mundi[18].

1. Kepler’s First Law: The planets move in ellipsis with the Sun at one
of the two foci.

2. Kepler’s Second Law: The line connecting the planet to the Sun sweeps
out equal areas in equal times as it travels around the ellipse.

3. Kepler’s Third Law: The square of the orbital period of a planet is
proportional to the cube of its semi-major axis.

In the following sections, we will briefly talk about these laws and how
they can be used to create our own solar systems where each planet is in
orbit of a common star.

2.1.1 Kepler’s First Law

Kepler’s First Law states that ”a planet that orbits the sun, will orbit it in an
elliptic path where the Sun is located in one of the foci of the ellipse”[17]. An
ellipse can be described as a flattened circle which has two foci, as opposed
to a circle which has only one. While the Sun is located in one of the foci,
the other is generally empty. At any point along the ellipsis, the sum of the
distances from the point to each of the two foci is constant. This can be used
to define an ellipse in terms of two distances d; and dy from the two foci. If
we know the location of the two foci in addition to the two distances, we can
draw an ellipse.

The eccentricity of an ellipse is a value that describes how flattened the
ellipse is compared to a regular circle. When the eccentricity value is zero, we
have the special case of a circle. For any other values approaching one, the
ellipse will become more and more flattened, as the two foci moves farther and
father away from each other. The ellipse is only defined for eccentricity values
between zero up til one. For an eccentricity value of exactly one, parabolas
are expressed. For values higher than one, the eccentricity describes the

2.1. CELESTIAL MECHANICS 9

Figure 2.1: A planet orbiting the Sun in an elliptic orbit. a denotes the
semi-major axis and b denotes the semi-minor axis of the ellipse.

shape of a hyperbola. While the planets orbiting the Sun all exhibit elliptic
traits, they are not as pronounced as the ones shown in the figures above.
In fact, most of the planets have orbits that have near circle shapes, with an
eccentricity value close to zero. As such, the orbits are only slightly elliptic
in nature. In the inner solar system, Mercury has the highest eccentricity
value of 0,205. In Table 2.1, the eccentricity values of the four planets closest
to the sun is shown. This information has been compiled from the NASA
Planetary Factsheet[38]. The values for the remaining planets can be found
in Appendix B1.

Planet Eccentricity (¢)
Mercury
Venus

Earth

Mars

Table 2.1: Eccentricity values for planets of the inner solar system.

10 CHAPTER 2. BACKGROUND AND RELATED WORKS

Since the ellipse is flattened, the length of the axes are not equal as it is
with a circle. The long axis of an ellipse is called the major axis, while the
short axis is called the minor axis. Equivalently, half of the major axis is
called the semi-major axis (denoted by a) and half of the minor axis is called
the semi-minor axis (denoted by b). In Section 2.3 we will be deriving the
mathematical expression for finding the position of an orbiting body along
an elliptic path, given an angle .

2.1.2 Kepler’s Second Law

~

Figure 2.2: An illustration of Kepler’s Second Law. Point 1 is located at the
perihelion, while point 2 is located at the aphelion.

Kepler’s Second Law states that "the line connecting the planet to the
Sun will sweep out equal areas in an equal amount of time”[17]. The length of
this line represents the distance from the Sun at a given point on the ellipse.
The point along the orbit that is closest to the Sun is commonly referred
to as the perihelion, while the point farthest from the Sun is known as the
aphelion. In Figure 2.2, point 1 is at the perihelion and point 2 is located at
the aphelion. As a consequence of Kepler’s Second Law, we know that the
velocity of a planet in orbit is faster the closer it is to the Sun. Consequently,
the orbiting planet’s velocity is the highest at the perihelion and the slowest
at the aphelion.

2.2. NEWTON’S UNIVERSAL LAW OF GRAVITATION 11

2.1.3 Kepler’s Third Law

Kepler’s Third Law states that ”the square of the orbital period of a planet is
proportional to the cube of its semi-major axis”[18]. It can also be expressed
mathematically with the following formula.

P?/a? (2.1)

Where P is the orbital period and a is the semi-major axis. Using Kepler’s
Third Law, we can see that planets that are farther away from the Sun will
have a longer orbital period than planets that are closer.

2.2 Newton’s Universal Law of Gravitation

Following the discoveries made my Kepler before him, Sir Isaac Newton went
on to prove that a square force law was the origin of all motion in the solar
system in his famous work Principia[29]. Although Kepler had previously
been able to stipulate his famous laws based on observed data, he was unable
to explain why the planets moved as they did. Using the results obtained by
Kepler, Newton was able to come up with his Universal Law of Gravitation
that explained why the planets move liked Kepler had observed. In Principia,
Newton also famously stipulated his laws of motion. These laws detail how
all bodies in the universe move in relation to each other.

1. Newton’s First Law: Bodies will remain in a state of rest or constant
motion in a straight line unless acted upon by a force.

2. Newton’s Second Law: The force experienced by a body is equal to the
rate of change of its momentum. (F' = ma)

3. Newton’s Third Law: To every action there is an equal and opposite
reaction.

The core principle of The Universal Law of Gravitation states that ”"two
bodies in the universe attract each other with a force proportional to the
product of their masses, and inversely proportional to the square of the dis-
tance between them”[29]. What makes Newton’s discoveries so revolutionary
is that he was able to prove that this law is universally true for all objects in

12 CHAPTER 2. BACKGROUND AND RELATED WORKS

the universe. By combining the three laws of motion and the Law of Univer-
sal Gravitation, Newton was able to explain why Kepler’s Laws of Planetary
Motion behaved as they did. Newton’s Law of Universal Gravitation can be
expressed mathematically as

mims

F=G

= (2.2)

where F' denoted the force between the masses m; and my and r is the
distance between them. G denotes the Gravitational Constant, which is a
proportionality constant needed to solve the problem for a specific set of
units. The value of G was experimentally determined in 1798 by Lord Henry
Canvendish to be G = 6.673E~"'N m?/kg?[5], assuming that distance is
expressed in meters and masses are expressed in kilograms. It is also possible
to modify this constant in order to express the force using different units.

Newton’s Laws of motion significantly changed our understanding of the
universe. Using these laws, we can predict the interactive movements of many
objects in the universe with a high degree of accuracy. Although unknown at
the time, Newtons discoveries were not the final solution to the problem. As
it turns out, Einstein’s theory of relativity[8] is able to even more accurately
predict how objects move in relation to each other. However, as Newton’s
laws are a reasonable approximation for most cases, we will not take general
relativity into account in this thesis.

2.3 The Two Body Problem

The Two Body Problem is the problem of determining how two celestial
bodies interact and move with each other. The two bodies will exert a force on
on the other body, causing them to move about each other. Although Kepler
did not understand why the bodies moved like they did, his discoveries made
a significant contribution to how we can analytically solve the movement of
two bodies in relation to each other. The Two Body problem can be solved
analytically, but because of the complexity of the problem, it is not possible
to analytically determine how a general N-Body system will move in relation
to each other. The solution to the Two Body Problem we will focus on is
based on both Kepler’s and Newton’s Laws. The following formulas are based
on their succinct explanation in the book ”Solar System Dynamics” by C.D
Murray and S.F Dermott[28].

2.3. THE TWO BODY PROBLEM 13

We begin by deriving the equations of motion, which follows from New-
ton’s Laws of Universal Gravitation. We consider a two body system with
a smaller body with mass ms orbiting a larger body with mass m;. The
location of each body from the origin is determined by the respective vectors
r1 and r3. In the mathematical formulas in this thesis, we will be using the
vector notation v to distinguish between vectors and scalars. A third vector
rret = T3 — 71 denotes the position of ms in relation to my. It’s direction goes
from the primary body, the Sun, to the orbiting planet.

Using Newton’s formulas, we can find the gravitational force exerted on
one body by the other.

Fi=G 20—y (2.3)
T

Fo= G2 — o (2.4)
T

The above formulas depict the forces that each of the bodies exert on
each other. Since we will be working with vectors, we also need to add
the direction of force by multiplying a unit vector HrL: to Formula 2.2. The
forces are in the opposite direction of each other. djsing Newton’s Second
law F' = ma, we can rewrite the forces as shown above. Variables with one
or multiple dots over them depict the the time derivative. In this case, the
variables represents the double time derivative of the position, which gives
us the acceleration. Essentially, by determining the acceleration of the body,
we can integrate this to the get motion over time.

We assume that m; >> msy such that the force exerted on the Sun by the
planet is so small that the Sun will remain stationary. We can then simplify
the problem since we will only need to find the movement of msy. Since we
know the position of m; at any one time, we can use the the double derivate
of the relative position in order to find the relative acceleration r,.; = r5 — 7.
Combining this formula with (2.3) and (2.4), we get

d*r T

— — =0 2.5

dt? * 73 (2:5)
where p = G(my + ms). This equation gives us the relative motion

between the two bodies. Since we will be working with the movement of
one body in relation to another, the movement of the orbiting body will
be restricted to a 2D orbiting plane. We convert to a 2D plane, where
the Sun is located in the origin of the plane. Instead of using a cartesian

14 CHAPTER 2. BACKGROUND AND RELATED WORKS

coordinate system, we will instead be using a polar coordinate system to
describe the motion of the orbiting body. By defining 7 as the unit vector
for the direction of 7" and gé' as the unit vector for the direction of 7 (also
known as the angular velocity), we can rewrite the position, velocity and
acceleration in polar coordinates.

Figure 2.3: A picture showing the direction of the vectors in relation to each
other

: -, LA - . on o1 .
r=rf, T=rr+reg, T=(F - re?)i+ [;—(TQSO)]SO (2.6)

We can now rewrite the relative motion equation (2.5) as a scalar equation
by combining it with formula (2.6).

P —re?= —7% (2.7)
This gives us a non-linear differential equation, which is hard to solve. In
order to be able to solve this equation, we need to express r as function of ¢
and not as a function of time. We do this by making the substitution u = %
and we eliminate time by introducing the constant h = r2y.
By substituting, we can rewrite the differential equation to

L
We now have a second order linear differential equation which we can
solve:

2.3. THE TWO BODY PROBLEM 15

= %[1 + e cos(p — w)] (2.9)

u
We then substitute back for r and rearrange to get

p

r =
1+ e cos(p —w)

(2.10)

The constant p is called the semilatus rectum, defined by the constant
p = %f. For different values of the eccentricity e, the semilatus rectum
can be rewritten to define different conic sections. In this thesis, we are
interested in elliptical motion, which have an eccentricity value 0 < e < 1.
The corresponding semilatus rectum value is p = a(1 — €?). By inserting this
into the function above, we get the motion of the body on an elliptic path,
where the ellipse is defined by the eccentricity e and the semi-major axis a.
The variable w refers to the longitude of the pericentre, the point which is
closest to the Sun. We set @ = 0 in order to have the orbiting body located

at the pericentre when ¢ = 0. We can thus write the equation as:

a(l —e?)

"7 + e cos(p)
We can now express the movement of the body given an angle ¢. Using
the two variables (r,p), we are able to express the distance from the Sun
and the angle of the current position in the ellipse for the orbiting body.
In this thesis, we will be using this formula in order to place bodies in an
orbit at an arbitrary point along the elliptic path. Since we will be using a
cartesian coordinate system, we first need to convert it back from the polar
coordinate system. If we set the x axis to be direction from the Sun towards

the pericentre, we can express it in the cartesian coordinate system with:

(2.11)

T =T cos and Yy=rsing (2.12)

The next step is to find the velocities for a given angle ¢ such that we
can assign the correct start values for any orbiting body with a start position
along the elliptic path. In order to do this, we need to find an expression for
the orbital period T'. Using Kepler’s Third Law, we can define the equation
for the orbital period T as:

T =21y — 2.13
. (2.13)

16 CHAPTER 2. BACKGROUND AND RELATED WORKS

We know that the angle ¢ will span from 0 to 27 as the body travels
around the ellipse. We can use this to define the mean motion (the average
velocity around the ellipse) as:

2m

We can use the equation for mean motion to derive the equations for
the velocity a body has around the ellipse, given an angle ¢. We combine
equation (2.13) and (2.14) and solve for p to get

p=n’a® (2.15)

We can then use this equation to to rewrite h, defined by the semilatus
rectum p on the previous page.

h = na*v1 — e (2.16)

Next, we differentiate equation (2.11) to get an expression for the velocity
of the body:
ol pesmny (2.17)
1+ecos g
This equation can be rewritten by inserting the value for h found in
equation (2.16) which also equals h = r?p. This gives us the following two
equations:

na
7= ————¢ 8in 2.18
— @ (2.18)
na (1+e cos p) (2.19)

rY=—
4 V1—e?

Finally, we find the x and y components of the velocity by differentiating
equation (2.12) and combining them with equations (2.18) and (2.19).

na

T = ——F——=5in 2.20
Vi (2.20
na (e + cos o) (2.21)

We can now create an arbitrary elliptic orbit and have an object orbit
a Sun at an arbitrary point along the orbit. This solves the initial value

2.3. THE TWO BODY PROBLEM 17

problem for planetary orbits. However, we still need to find a way to express
r as a function of time, and not as a function of ¢. We can do this by
introducing the mean anomaly M:

M =n(t—r1) (2.22)

where 7 is the time when the pericentre was last passed(the angle ¢ is
equal to 0). We can use this variable to find the position of a body given
the current time. Unfortunately, since M assumes that the velocity around
the orbit is constant, it is only valid when the eccentricity is equal to zero.
In order to find the solution for the general case, we need to define a new
variable, the eccentric anomaly E. By using the above formula for M, we are
able to relate a value of M between 0 and 27 for a given time ¢. In order for
us to get the angle at a given time for any eccentricity between 0 and 1, we
need to use Kepler’s Equation[35].

M=FE-esinE (2.23)

As Kepler’s Equation is transcendental, we cannot solve for E algebraically.
Instead, we need to use numerical analysis to approximate the value of
E. There are various ways to do the approximation as detailed in Danby
(1988)[6]. In this thesis we will be using the Newton-Raphson method to
approximate the eccentric anomaly E. The equation is:

f(E;)
()
Where f(E;) = E; — e sin E; — M and f'(E;) =1 — e cos E;.

In order for the approximation to be as accurate as possible, we need to

have a suitable starting value. In his book, Danby suggests the value of Ej
to be:

Ei . =E; — i=0,1,2,.., (2.24)

Ey = M + sign(sin M)ke, 0<k<1 (2.25)

Where the value of k is recommended to be k = 0.85. We can now find
the approximated value of E with respects to time, and use this as the angle
of the body in the elliptic orbit.

The last thing we need to do is find the formulas for the x and y coordi-
nates that the orbiting body has given the eccentric anomaly E, for a given

18 CHAPTER 2. BACKGROUND AND RELATED WORKS

orbit around the Sun. In order to do so, we introduce the mathematical
formula for the ellipse in the cartesian coordinate system.

DRIOS 220

We can express the x dimension of the ellipse in terms of E with the
equation Z = a cos E. Inserting this into equation (2.26), we get y> =
b*sin? E. We can then rewrite this equation in terms of the semi-major axis
a, by using the relation b* = a?(1 — €?), which gives us § = av/1 — €2 sin E.
We can thus find the equations for the coordinates

x = a(cos E —e) and y=avl—e?sin B (2.27)

Given an elliptic anomaly E, we can express the position of the orbiting
body using the above formulas. We have thus solved the Two Body Problem
for the case of a smaller body orbiting a larger one.

The formulas can be generalized to 3D using various methods. In the
implementation chapter, we do this by rotating the XY-plane given by the
above formula to the appropriate angle, and then place the rotated bodies in
space given some offset from the origin.

2.4 N-Body Simulation

The N-Body problem is a classic problem in computational physics[1]. In
a system of N bodies, the objective is to simulate how the celestial bodies
continue to move in relation to each other. The simulation is performed by
calculating the gravitational pull between all the bodies, using Newton’s Law
of Universal Gravitation. In a system with many bodies, this can be compu-
tationally expensive, where the brute-force method would need to perform
N? computations. However, we can take advantage of the underlying struc-
ture of the problem to gain significant speedups by hardware acceleration.
At any given time ¢, each body-to-body (or group of bodies) computation
can be done independent of all the other bodies in the system. In addition,
the ratio between computation and memory access for the N-Body problem
is very high. This makes such a problem ideal for execution on accelerated
hardware such as a Graphics Processing Unit.

In order to calculate the force exerted on a body ¢ by all the other bodies,
we need to apply the formula for Universal Gravitation N-1 times, and sum

2.4. N-BODY SIMULATION 19

™\

N_

Figure 2.4: An illustrative picture of an N-Body simulation

the results

my

Fi=Gm; D)

1<i<N
i#]

This approach is known as the All-pairs N-body algorithm, as each in-
dividual body-body pair is computed in order to get the result. While this
is the most accurate of the N-body algorithm, it is also quite computational
heavy and it does not scale well with a high amount of bodies, especially if
done serially on the CPU.

After calculating the forces, the next step is to use Newton’s Second Law
to find the equivalent acceleration for a body ¢ at time ¢. By using Newton’s
Second Law, we can derive the formula for the acceleration

(2.28)

F, = myaq; (2.29)
F;

= — 2.30

a= (2.30)

Since we will be doing N-Body computations in 3D space, we will need to
do 3D vector computations. We can solve the N-body problem for 3D space

20 CHAPTER 2. BACKGROUND AND RELATED WORKS

by calculating the acceleration in each dimension of the vector independently.
Each vector is three dimensional with axes z, y and z Since we will do
simulations in 3D, we need to include the direction of the vector. As such
we multiply the magnitude of the force with a unit vector of 7;;, which will
give us the acceleration vector.

» m; o T

a; =G § —;TJ (2.31)
1<i<N (|75 Hrij H
i#j

There exists several variations of the N-body algorithm, each aiming to
improve the performance over the standard All-pairs approach. The Barnes-
Hut[3] algorithm is an approximation that divides the bodies into an octree
in three dimensional space. Using the octree, the algorithm is able to treat
near bodies invididually while grouping up bodies that are far away in or-
der to calculate an approximation of their combined force extertion. This
well-known approach is popular in the litterature for being a good trade-
off between performance and accuracy. While the Barnes-Hut approach is
excellent for execution on the CPU, it is not well-suited for an GPU imple-
mentation. There have been successful attempts at tuning the algorithm for
efficient execution on the GPU[4], however it requires a significant amount
of effort to get it to run well.

The All-Pairs GPU N-Body (GEM3) algorithm developed by NVIDIA
and presented in GPU Gems 3[31] is an example of an N-Body algorithm
that has been efficiently and successfully implemented on the GPU. While the
algorithm is O(N?), NVIDIA uses the power of the GPU in order to calculate
the new acceleration of a body in an efficient parallel fashion. Because the
acceleration exerted on a body by the other bodies in the system can be
calculated in parallel, there is a lot of potential that the GPU can take
advantage of. The GEMS3 algorithm defines an NxN grid which represents
the pairwise computation for the N bodies in the system to simulate. This
grid is then divided into sub-tiles where each of the pairwise computations
are calculated in parallel. This allows the GPU to take full advantage of the
problem structure, maximizing efficiency.

2.5. NUMERICAL INTEGRATION 21

2.5 Numerical Integration

By using the N-body algorithm, we are able to calculate the force exerted on
a body by all other bodies in a system. We can then easily convert this to
acceleration, which we can use to determine how the planets move over time.

After we have found the acceleration, we need to find the velocity change
and positional change caused by the acceleration at a time ¢. This can be
done using a numerical integration method|[2] with a given timestep dt. There
exists several numerical integration methods, each with different strengths
and weaknesses. There are several examples in the litterature that suggests
that choosing the correct one for the correct situation is crucial in order to
get both a fast and accuracte answer. Therefore, it is essential also in our
case to choose an integration method that suits the physical simulations we
will be doing in this thesis. We will now take a look at two different methods
and discuss them in order to find the most suitable one.

2.5.1 Explicit Integration

Using an explicit integration method, we are able to find the next state of a
system at time {+1 using only the state information we have about the sys-
tem for the current time £. This is a common numerical integration method
used in many applications. It’s known for it’s simplicity since we only use
information we currently have access to, and do not need to do intermediary
computations or approximations in order to complete the integration step.
In our case, we already know the acceleration at a given time ¢ by running
the N-body algorithm. Using the current acceleration a; and the current
velocity vy, we can calculate the value for the velocity at time ¢+1

Vi1 = Up + azdt (2.32)
We then use the current position z; and the current velocity v; to update
the position of each of the bodies for time t+1

The above equations are also known as the explicit Euler stepping equa-
tions. By inspection, we can see that they uphold the laws of motion as
stipulated by Newton. Unfortunately, by using this method, the energy in
the system will continue to increase steadily. Therefore, it does not uphold

22 CHAPTER 2. BACKGROUND AND RELATED WORKS

the laws of conservation of energy. As the simulations continue, the energy
will continue to build and increase the errors as the simulation goes on. It is
possible to mitigate this by lowering the timestep, however this will increase
the computational cost significantly.

2.5.2 Semi-implicit Integration

The symplectic Euler integration method is likely to be more suitable in
our case. It is commonly used in many types physics computations and
simulation because it can better conserve the energy in the system. Using the
symplectic Euler method, the error caused by energy increasing in the system
will average out to a constant, instead of continuously increasing. Therefore,
the symplectic Euler method is able to conserve energy on average. The
symplectic Euler method uses a semi-implicit integration scheme. It uses a
combination of the implicit and explicit method in order to calculate the new
values for time t+1. We start off by calculating the new velocity as we did
before

Vi1 = U + azdt

However, unlike before, we use the new velocity at time t+1 and the
current position to update the bodies’ position.

.%;H = ‘fz + 'Utildt (234)

The symplectic Euler method is a second order method. As such, by
cutting the timestep in half, the accuracy of the method will go up by four
times. When running the computations, it is imperative to find a timestep
that suitably balances accuracy and computation time.

There are pros and cons for just about any numerical integration method
in existence. When specifying the goals of the project, is it important to think
about several factors when deciding the appropriate integrations scheme to
choose. There does not exist a perfect integration method that guarantees
the best conservation of energy, accuracy and fastest computational time
for all situations. It is therefore an important question to consider when
designing simulation software.

While we cannot find a perfect integration method for all occasions, there
are alternative approaches that utilises multiple integration methods. In
many simulations there is a considerable potential of improvement if we allow

2.6. GPU COMPUTING 23

ourselves to dynamically switch both the integration method itself, but also
the step size in the integration.

In this thesis, we will mainly focus on the Symplectic Euler integration
method. For use with our generated galaxies, this method is relatively simple
to implement both on the CPU and the GPU. In addition, as opposed to
simpler integration methods, the Symplectic Euler method is able to conserve
energy. When doing simulations with individual solar systems, this will be
essential in order to get sufficient accuracy.

2.6 GPU Computing

Ever since the dawn of the age of computing, the Central Processing Unit(CPU
for short) has been regarded as the de facto general purpose processing ele-
ment of a computer. Although CPUs started out as single-core serial com-
puting elements, the demand for energy efficiency and energy dissipations
problems has led the CPU into becoming multi-core. Instead of having large
and complex single-core CPUs which we would struggle to power on fully,
smaller and simpler multi-core architectures have become popular. With the
advent of multi-core architectures, it is the task of the programmers to learn
how to develop and utilise this new architecture properly in applications.

Historically, the Graphics Processing Unit(GPU for short) has been used
to render graphical output to a display. The GPUs were implemented with
specialised rendering hardware in order to render pixels very fast. Taking
inspiration from multi-core CPUs, researchers started to ask themselves if it
were possible to use GPUs for more general purpose applications. This lead
to the field of General Purpose GPU (GPGPU) computations.

At the beginning of the millennium the support for this was limited. The
major manufacturers had not yet caught on to the recent trends and offered
easy programmability for GPUs. Researchers were forced to use graphics
libraries like OpenGL and Direct3D to trick the GPU into thinking it was
working with graphics, when it was actually working with general purpose
computations. The lack of support made programming for the GPU tedious,
limitings its usefulness.

Around 2006, hardware manufacturers such as NVIDIA began to redesign
their systems in order to support the recent GPGPU field. The previous
architectures were redesigned for easier general purpose programmability.
Programming languages like CUDA C were created to make it easier for

24 CHAPTER 2. BACKGROUND AND RELATED WORKS

programmers to utilise the parallel powers of the GPU. These languages
were designed to coincide with the previous graphics libraries, making the
GPU much more programmable for developers. From this, the field of GPU
Computing was born.

2.6.1 The Graphics Processing Unit

The architecture of the GPU changed drastically when the push towards
general purpose computing was made[19]. GPUs were originally made with
a fixed graphics pipeline, designed to quickly rasterise computer graphics. By
issuing commands to the GPU through a graphics API, data from the CPU
were run through the fixed GPU graphics pipeline before being displayed on
screen. However, with the advent of the field of GPU computing, recent GPU
micro architectures has taken a different approach. Instead of having a fixed
pipeline with limited programmability, GPUs have evolved into something
aching to CPUs in terms of programmability. [will focus my efforts in
explaining this new trend of GPU micro architecture.

At the heart of the modern GPU architecture lies the stream processor[33].
A stream processor processes data sets, also called streams, in a limited par-
allel fashion. By employing multiple processing elements, or cores, a stream
processor is able to achieve parallelism. Under execution, several cores receive
the same instruction from the scheduler. Logic specific to each core makes
it possible to uniquely identify them in code. Parallelisation is achieved by
assigning different data elements to each core. This approach to computation
is known as SIMD (Single Instruction, Multiple Data).

Both NVIDIA and AMD has their own stream processor implementation.
AMDs stream processor is named the ”SIMD engine”[9], after the parallel
paradigm it follows. NVIDIA named their implementation the ”Streaming
Multiprocessor”. While both share similarities, there are quite some differ-
ences in the implementations. In this thesis, we will be programming using
NVIDIA’s CUDA programming language, so I will focus on explaining the
microarchitecture of the Streaming Multiprocessor.

2.6.2 The Streaming Multiprocessor

The Streaming Multiprocessor contains and manages all of the GPUs pro-
cessing elements. Each SM is able to schedule and execute instructions on its
cores independently of the other SMs. Compared to a CPU, there are some

2.6. GPU COMPUTING 25

significant differences. Where CPU usually have a small amount of physical
processing elements, a single SM in the GPU can have tenfolds more. A
common number for CPUs in recent years have been 8 cores, which pales in
comparison with the current generation Maxwell SMs, which has 128 cores.
Figure 2.5 shows a simplified diagram of the components commonly found in
a streaming multiprocessor. The figure is a simplication of the GM204 SMM
Diagram found in the GTX 980 Whitepaper[22], published by NVIDIA. Each
core is labeled as a Stream Processor (SP). While the specifications found in
the figure does not match any SM launched by NVIDIA, it serves as a tidy
overview of all the important components of a Streaming Multiprocessor.

Streaming Multiprocessor

Instruction Cache
Warp Scheduler

Stream Processor
Register
o
”v

Shared Memory

Figure 2.5: Example Streaming Multiprocessor Diagram

The SMs Stream Processors are lightweight processing elements. When
the scheduler assign an instruction to the core, it is placed in the Dispatch
Queue. When the SP is ready to process the request, the Operand Collector
separates the operands from the instruction/opcode, and assigns it to an
arithmetic unit. There are two kinds of arithmetic units in NVIDIAs stream
processor, Floating Point Units and Integer Units. Based on the type of the
operands, the corresponding arithmetic unit is chosen for the computation.
When the arithmetic unit is finished, it places the result in the Result Queue
where it can then be stored back to its original location and be used in further
computations.

26 CHAPTER 2. BACKGROUND AND RELATED WORKS

In addition to Stream Processors, the SM is also outfitted with several
other components to help the stream processors. Load/Store(LD/ST) Units
are used to help fetch and store data from the GPUs Global Memory. The
Special Function Unit (SFU) are used to compute more complex mathemat-
ical functions such as reciprocal, square root and transcendental functions
such as sine and cosine.

While the total amount of cores far exceed what is possible on the CPU,
certain consideration need to be in place when working on GPU architecture.
With the abundance of cores, creating an architecture that would allow each
of them to work in a total independent fashion, as is common with CPUs,
would be too complex and too expensive. Thus, the cores in an SM shares
control flow logic between themselves. This essentially means that cores will
have to share instructions in order for the GPU to be efficient. Following the
SIMD paradigm closely, we can consider the streaming multiprocessor as a
SIMT (Single Instruction, Multiple Threads) device.

On NVIDIA devices, SIMT execution is achieved by using a component
called a Warp Scheduler to assign instructions to several Stream Processors
at once. A Warp is a collection of 32 threads belonging to the same thread
block that will all execute the same instruction. The Warp Scheduler fetches
instructions from the Instruction Cache and can assign instructions to all the
threads in the Warp at the same time. When working with SIMT execution,
the programmer needs to be extra cautious when running conditional code.
Since every thread in the warp executes the same instruction, threads with
data that does not satisfy the conditional will simply halt for the duration
of the code within the conditional. Using conditionals in warps causes Warp
Divergency, which limits the parallelism of the application and will in the
worst, case lead to serial computation. Designing algorithms that takes this
into account and avoids unnecessary conditionals is important in order to
run code efficiently on the GPU.

The Streaming Multiprocessor is outfitted with several memory compo-
nents to help with execution. Each core has a set of private registers, collec-
tively situated in the Register File. The local registers is the fastest memory
component available to the cores, and offers temporary storage for the cores
local variables. The next level in the SMs memory hierarchy is the Shared
Memory. Although it is slower than the private registers, Shared Memory
is still considered very fast temporary storage. Data stored in the Shared
Memory is available to all cores in the Streaming Multiprocessor. In order
to create efficient applications, Shared Memory should be used whenever it

2.6. GPU COMPUTING 27

is beneficial. Using Shared Memory, data from Global Memory need only
be loaded once between all the cores in the SM, saving a significant amount
of time. Typically, applications that does a lot of computations on a single
data element will see speedups when using Shared Memory.

The slowest memory option available to the SM is Global Memory. This
memory is located outside of the SM itself, and thus the slowest. Global
Memory is shared among all the SMs on the GPU, which makes it possible
to do inter-SM calculations. In order to speedup consecutive accesses to
Global Memory, each SM has an L1 Cache it can use if necessary. Up until
the Kepler micro architecture, the L1 Cache was combined in hardware with
the Shared Memory Cache. Programmers are able to choose one of several
storage space distribution configurations between Shared Memory and the
L1 Cache, based on application needs.

Texture Memory is a special cache that can be used to load (texture)
data faster from memory. Initially intended to store computer graphics tex-
tures, it is a read-only cache that can be used to store data that is known
to be constant. Physically, the data is stored in Global Memory, however,
special hardware is used to make transfers to and from the Texture Buffers

faster. Table 2.2 summarises the memory options available to each core in a
Streaming Multiprocessor on the Maxwell GM204 SMM]22].

Storage

Registers 16,536 x 32-bit

Shared Memory 96 KB

Global Memory 4096 MB

Table 2.2: The Streaming Multiprocessor Memory types (Maxwell GM204)

28 CHAPTER 2. BACKGROUND AND RELATED WORKS

Besides having hardware components to allow for general purpose cal-
culations, the Streaming Multiprocessor also contains specialised hardware
to allow the GPU to perform its rendering duties. NVIDIA introduced the
PolyMorph Engine in their Fermi architecture. Before that, the rendering
components were located outside of the SM, but with Fermi, NVIDIA went
with a different approach. Each SM has their own PolyMorph Engine, al-
lowing for fast distributed parallel graphics computations. The PolyMorph
Engine contains five hardware components; Vertex Fetch, Tesselator, View-
port Transform, Attribute Setup and Stream Output. These components
together perform the legacy rendering duties of the GPU.

2.6.3 High-Level GPU Architecture

High-Level GPU Architecture

PCIl Express Host Interface

GigaThread Engine

Graphics Processing Cluster Graphics Processing Cluster

Raster Engine Raster Engine

Figure 2.6: High-level GPU Architecture Diagram

In order to help the SM in its execution, there exist important hardware
logic outside of the SM. There is a PCI Express Host Interface, used to

2.6. GPU COMPUTING 29

communicate with the CPU, known as the Host. When the Host wants
to offload computations to the GPU, it sends a set of instructions, known
as a "kernel”, as well as the input data to the GPU. After the Host has
sent the data, it is stored in the GPUs Global Memory for the duration of
the computation. In order for the GPU to access its Global Memory, it
is equipped with several Memory Controllers making it possible for several
SMs to access the memory at the same time. This lets the GPU have a high
memory bandwidth that can be used to quickly compute applications that
are suitable for GPU Computation.

All memory accesses goes through the L2 Cache on this level. The only
way to share data between SMs is to use the Global Memory. The L2 Cache
helps speedup up data accesses to and from the Global Memory, ensuring
that communication time is reduced. Data communication using Load/Store
commands uses the L2 Cache to speedup consecutive lookups of data ele-
ments, similar to how it works on a CPU. Each Memory Controller has a 1.2
Cache associated with it, and all data going through each Memory Controller
will be cached based on some caching policy.

The Streaming Multiprocessors in the GPU can be organised differently,
depending on the main goal when designing the GPU. If the GPU has been
designed to be able to render graphics efficiently, the SMs are grouped into
several GPC(Graphics Processing Clusters). A GPC contains a number of
SMs in addition to a Raster Engine, which is used in the rasterisation process.
The GPCs can then be used to process graphics elements fast as part of the
rendering process. Figure 2.6 shows a high-level architecture diagram where
the SMs are organized into GPCs. The figure is a simplified diagram based on
the GM204 Full-chip block diagram[22]. The GeForce GTX 980 is an example
of a card where the SMs are grouped into GPCs. The GeForce Series GPUs
are designed to deliver high-end graphics performance to gaming enthusiasts,
and thus needs to be able to render graphics efficiently. However, when
designing HPC-class cards the GPC grouping might not be the most efficient
option. The HPC-class cards are designed to be fast at crunching numbers as
a primary goal, and they are often not even connected to a screen. Certain
rendering logic has thus been replaced in favour of more general purpose
components. The total number of SMs in a GPU can vary. Generally, there
are between 2 and 16 SM units. NVIDIA offers Graphics Cards at different
price points, where the amount of SMs is one of the differing factors.

The final components on this level is called the GigaThread Engine, which
is the component that handles scheduling of tasks received from the CPU.

30 CHAPTER 2. BACKGROUND AND RELATED WORKS

This component receives kernel instructions from the CPU and schedules it
onto one or multiple SMs, according to the Kernel Launch Configuration.

2.6.4 The GPU Programming Model

Programming for the GPU can be challenging. It is important for the pro-
grammer to correctly ascertain problems suited for the GPU. Generally,
GPUs are well suited for applications that are computational heavy and have
a high computation-to-communication ratio. The GPU sports a higher mem-
ory bandwidth than what is available on a GPU, which means that problems
which deal with a large quantity of data and have the above-mentioned SIMD
traits, could be suitable for GPU Computing. Matrix Multiplication is an
example of a problem that is suitable for off-loading to the GPU. When multi-
plying matrices, elements needed to calculate a particular part of the matrix
is loaded from memory before calculation starts. Since each data element
loaded is used multiple times before being written back to memory, GPU
Computing is able to efficiently multiply matrices. If Shared Memory is used
to minimise the amount of lookup to Global Memory, computation can be
performed even more efficiently. In addition to having a high computation-
to-communication ratio, the problem also needs to exhibit high Data Par-
allelism, which is inherent in matrix multiplication problems. The GPU is
also suitable for doing large signal processing problems. The Fast Fourier
Transform (FFT) problem requires a large amount of bandwidth, which the
GPU can provide. Conversely, problems that does not possess SIMD traits
might not be suitable for the GPU. For instance, problems that are too un-
predictable with a large amount of conditionals would cause too much Warp
Divergency, which severely limits performance. In addition, problems sizes
that are too small will not be able to benefit from the GPUs strengths, such
as high memory bandwidth and the large amount of processing elements.

NVIDIA has implemented its own programming language extension, called
CUDA for GPU programming. CUDA exists as extensions to languages such
as C and Fortran, and gives developers access to the virtual instructions set
of CUDA compatible GPUs. CUDA offers both the ease of use and the
low-level access needed for developers to fully utilise the GPU. The CUDA
extension gives the programmers a set of new tools needed to properly set
up the GPU, transfer data and perform calculations.

When launching a GPU kernel, the programmer needs to supply a set
of parameters (the Kernel Launch Configuration) which dictates how many

2.6. GPU COMPUTING 31

Streaming Multiprocessors the code is run on. The programming model
in CUDA allows the SMs to be organised as the programmers wants to in
software. This can be used to model which SMs handle what piece of data,
based on the structure of the input data. In the CUDA programming model,
all SIMT threads are organised into blocks, which can be 1D, 2D or 3D,
based on the needs of the application. Blocks are further organised into
grids, which can also be either 1D, 2D or 3D. In the kernel code, each thread
can call CUDA functions which tells the thread its position in the block and
grid. This can be used to calculate the address of the piece of data belonging
to that specific thread. Figure 2.7 shows an example where the blocks are
organised in to a 3D grid. Each block is further organised into a 3D collection
of threads. This particular way of organising the threads is efficient when
doing problems that uses 3D data, such as Matrix Multiplication.

Grid (3,3,3)

Block(0,0,2) Block(1,0,2) Block(2,0,2)
Block(0,0,1) Block(1,0,1) Block(2,0,1)
Block(0,0,0) Block(1,0,0) Block(2,0,0)

Block(0,12) [l Bock(1,1.2) [l Block2,1.2)
Block(0,1,1) Block(1,1,1) Block(2,1,1)
Block(0,1,0) Block(1,1,0) Block(2,1,0)

Block(0,2,2) . Block(1,2,2) Il Block22.2)
Block(0,2,1) Block(1,2,1) Block(2,2,1)
Block(0,2,0) Block(1,2,0) Block(2,2,0)

Figure 2.7: An illustration of how data can be divided into CUDA blocks on
the GPU.

When launching the kernel, the programmer must specify the block size

32 CHAPTER 2. BACKGROUND AND RELATED WORKS

and grid size to be used in the calculation. This information is sent to the
GigaThread Engine to be scheduled on one of the Streaming Multiprocessors.
Each block in the grid can be independently assigned to one of the available
SMs, which allows for a high level of parallelism. One of the tasks of the
GigaThread Engine is to queue up the blocks and assign them to an SM as
it becomes available. When assigned to an SM, all threads within a block is
guaranteed to be run on the same SM. This allows for Shared Memory to be
used when working with threads inside the same block.

When doing computations on the GPU, is is important to choose a block
size and grid size that matches the underlying structure of the input data.
Performance can vary between configurations, and choosing the best one is
often a matter of trial and error.

2.6.5 Running Code on the GPU

This section will explain the steps needed to run code on NVIDIA GPUs using
CUDA. To launch a simple compute kernel, there are five general steps:

1. Allocate Host and Device memory
2. Copy memory from Host to Device

3. Specify appropriate amount of threads-per-block and an appropriate
grid size

4. Launch GPU kernel code

5. Copy memory back from Device to Host

The first step is to allocate the input data on the CPU. This is usually
data taken directly from application input and consequently allocated using
standard C malloc(...). In order to copy the Host data on to the Device, we
first need to allocate the appropriate amount of space on the GPU. This is
done using the special CUDA call cudaMalloc(...). After both of the alloca-
tions have been done, we invoke the cudaMemcpy(...) function to copy data
from Host to Device.

The next step before execution is to determine the launch configuration
of the kernel code. CUDA requires programmers to specify the amount of
threads per block and an appropriate grid size, in addition to any function

2.7. GRAPHICS RENDERING 33

arguments. This is specified when invoking the kernel function, using special
CUDA notation. After calling the kernel function, control is immediately
returned to the CPU in order for the CPU to continue with something else
while waiting for the GPU to finish. Proper synchronisation between the
CPU and GPU is controlled implicitly when calling cudaMemcpy(...), which
is a blocking function.

After the computation has been finished on the GPU side, it will signal
that the data is ready. The CPU will then call cadaMemcpy(..) to retrieve
the data from the GPU. When the transfer is done, the CPU is free to use
the data for further computation.

2.7 Graphics Rendering

In this section, we will detail the rendering technology used to render the
simulation output to the screen. In order to achieve this, we will be using
OpenGL (Open Graphics Library)[27], which has been used for many years
in various scientific applications. OpenGL is a powerful rendering library
which can be used for many purposes. For many of it’s features, it works like
a state machine. Before drawing to the screen, we first need to ’bind’ the
data to the internal OpenGL state machine. As such, when drawing objects
to a screen, several calls need to be made in preparation before the rendering
call itself.

2.7.1 OpenGL Pipeline Overview

OpenGL is a powerful multi-platform rendering API maintained by the Khronos
Group. Through this API, the CPU is able to send data over to the GPU to
be rendered on a computer screen. The modern version of OpenGL has gone
through several changes in recent years. With the recent increase in pro-
grammability on the GPU side, graphics libraries in general have adapted to
a more dynamic approach, diverging from it’s fixed pipeline history. While
the general structure of this pipeline has remained intact, developers have
been given much more freedom as the GPU started becoming more general
purpose.

The goal of the OpenGL’s graphics pipeline is to rasterize a 3D scene
into a 2D imagine on the computer screen. Depending on the rendering
goal, the process can be quite complex. This process is divided into several

34 CHAPTER 2. BACKGROUND AND RELATED WORKS

steps, each performed serially in a pipeline fashion. The data is sent to
the GPU in the form of vertex data. A vertex is a geometric point that
specifies the intersection of geometric shape. As such, the CPU also need
to specify the geometric primitive it wishes to render. In OpenGL there
exists various primitives such as points, triangles, lines etc. After the GPU
receives vertex data from the CPU, the data goes through a transformation
pipeline, where the vertices are transformed. In the transformation process,
it is determined how each object should be placed in relation to each other
during the rendering. After processing all the transformations, the vertex
data is rasterized to the computer screen. In the rasterization process, vertex
data is converted from a 3D scene to a specific pixel on the 2D computer
screen.

In many graphics applications, the transformations are supplied by the
CPU at the time of sending the initial vertex data to the GPU. The GPU
will then apply these matrix transformations to each of the vertex in the
data input. In the programmable graphics pipeline, the programmer is able
to fully program how these transformations are applied through the vertex
shader. A shader is a set of instructions very similar to a CUDA kernel that
instructs the GPU in how to process each of the input vertices. The vertices
are then processed by the GPU in an efficient and parallel fashion.

When doing transformations, there are generally three matrices that we
need to multiply the input vertex data with.

1. Model Matrix
2. View Matrix

3. Projection Matrix

The model matrix transforms the vertex data from model coordinates
(which specifies the geometric structure of the object itself) to world coordi-
nates(where several objects are placed in relation to each other). The product
of this is then multiplied with the view matrix, which puts the objects into
camera coordinates. If we imagine the screen as a camera, this transforma-
tion puts the position of the camera in the origin of OpenGL’s coordinate
system, looking down the negative Z axis. The transformation then places
the vertex data in relation to the camera’s position and orientation around
the origin.

2.7. GRAPHICS RENDERING 35

< X

Figure 2.8: An illustration showing the difference between two common pro-
jections. Left: A perspective projection. Right: An orthographic projection

Finally, we multiply the results with a projection matrix. This final trans-
formation puts the vertex data into clip space. In clip space, each vertex is
evaluated based on its distance to the camera. Based on the projection ma-
trix supplied, this process eliminates vertices which are either too far away or
too close to the camera. Vertices which gets eliminated will not be rendered
to the screen. When defining a 3D scene, programmers have the option of
choosing several different projection matrices. In the picture above, we have
included an example of two of them. With a perspective projection matrix,
each object inside the clipping boundaries will be rendered. However, as the
vertices gets farther and farther away from the camera, the clipping space
in the XY-plane gets larger, causing the vertices to appear smaller on the
screen. Using this approach, it is possible to realistically render a scene with
a proper perspective, where near objects appear larger than far away objects.
With an orthographic projection, the clipping space in the XY-plane remains
the same size for all objects within its boundary. As such, objects rendered
using this projection scheme will not become smaller as they move farther
away from the camera.

By looking at how OpenGL works, it is clear that most of the work of
moving the objects around is done in the vertex shader. However, since our
own simulations are moving the objects around, we simply need to give the
location data of the objects to OpenGL to render, without having do to
more work in the shader. The problem, then, is how should we share the
data between the renderer and the simulation in CUDA? In most cases, the
data is inserted from the host side using commands to OpenGL. However, in
the case of doing simulations on data already on the GPU, we end up with an
unnecessary and costly round-trip. Luckily, NVIDIA has provided developers

36 CHAPTER 2. BACKGROUND AND RELATED WORKS

with a feature that allows us to by-pass this, and fetch the memory directly
where its located in OpenGL’s device-side memory.

2.7.2 OpenGL and Cuda Interoperability

OpenGL and Cuda can interoperate using a set of simple calls, as shown
on NVIDIA Cuda documentation pages[23], and in more detail in various
presentations held by NVIDIA[20][21]. The feature has gone through various
revisions, and finding up to date information has been challenging. However,
by using this interoperability, we are able to significantly speed up the time
it takes to communicate between OpenGL and CUDA. Using CUDA API
calls, we can register an OpenGL buffer to get its location in GPU memory,
and use its data. As such, the data must first be allocated on the CPU side
and sent to the GPU through OpenGL.

The process of registering the data to OpenGL and accessing it through
CUDA is summarized below.

1. Allocate the vertex data to OpenGL in a Vertex Buffer Object using
the glBufferData(...) API call.

2. Register the vertex data with CUDA by calling the cudaGraphics-
GLRegisterBuffer(...) CUDA function.

3. Whenever CUDA wants to access the data it needs to call cudaGraph-
icsMapResources(...) to map it for immediate use with CUDA.

4. In order to get an accessible pointer to the data that CUDA can use,
we call the cudaGraphicsResourceGetMappedPointer(...) function.

5. When CUDA is done working with the data, we must call cudaGraph-
icsUnmapResources(...) to unmap the data and make it ready for ren-
dering again.

It is important to note that OpenGL is unable to access the buffer while
CUDA has mapped the buffer for use in step 4 and 5. This is in order to
prevent errors that would happen if CUDA were to write to the memory
while OpenGL was rendering it. After step 5, OpenGL is again free to access
the buffer data. This access pattern creates a rotation where CUDA has
access to the memory when it’s doing N-body calculations, while OpenGL
has access to the memory during it’s rendering process.

2.8. OTHER RELATED WORKS 37

2.8 Other Related Works

This section will detail Related Works that touches upon topics that are
similar to what we will explore in this thesis. Reading through these papers
has provided valuable insight into the current state of N-Body simulation,
and has provided a source for ideas to explore in this thesis.

In the paper Desell et al.[7], the authors seek to utilize N-Body simula-
tions in order to determine the structure of the Milky Way galaxy’s halo.
This requires a significant amount of computational power, which they get
from using volunteer computing. This paper uses the N-Body simulations
in order to gain insight about how debris is formed around the halo of the
Milky Way galaxy. This is done by using a modified Barnes-Hut algorithm,
that takes advantage of distributed heterogeneous computing platform Milky-
Way@Home. This paper is an example of using the N-Body algorithm to gain
insight how real-world physics apply to a galaxy and see how the structure
of the galaxy changes as the simulation goes on.

In the paper Noriega et al[30], the authors utilize an N-Body algorithm
in order to do molecular dynamics simulations. This is done using GPU
Computing on a CUDA enabled GPU. The results of the simulations are
then rendered to a screen using the OpenGL framework. In order to achieve
this, they design their own force calculations and integration scheme in order
for the simulation to run sufficiently efficient. They also show that the pre-
rendering work is more efficiently done in parallel on the GPU.

In the paper Gharakhani et al[34], the authors want to tailor an N-Body
algorithm faster than O(N?) for execution on the GPU. They do this by
implementing a GPU-accelerated multipole treecode solver that is able to
calculate large and dynamic N-Body problems. The paper details the imple-
mentational details and how to repurpose the algorithm for execution on the
GPU. When running the algorithm on a single GPU, they were ble to get 17
times the performance of an optimized dual-core implementation.

In the paper Hamada et al[13], the authors design and implement two
hierarchical N-Body simulations for execution on a cluster with 256 GPUs.
The first algorithm is a modified version of the Barnes-Hut treecode, which
is used simulate a gravitational N-Body problem. The second algorithm is
a periodic Fast Multipole Method, which they use to perform vortex parti-
cle calculations to simulate homogeneous isotropic turbulence. Using their
implemented approaches, they gain better performance than previous imple-
mentations. The N-Body simulation was able to perform 42.15 TFlops con-

38 CHAPTER 2. BACKGROUND AND RELATED WORKS

sistently, while the vortex particle simulation had a consitent performance of
20.2 TFlops.

In the paper Hall[12], the author analyses how different integration meth-
ods perform in different scenarios. In order to meet performance and accuracy
demands, he argues that it might be necessary to switch integration step size,
as well as integration method whenever the previous methods become unsuit-
able. The paper shows and compares the error from two integration methods,
the finite difference method and the Runge-Kutta method when used to inte-
grate the movements of a body in orbit. In the paper, he shows an example
of an instance where the finite difference method performs catastrophically,
while the Runge-Kutta method remains accurate. Following these results,
the author suggests and develops an integration scheme where one integra-
tion method is switched out when it approaches a state where it is deemed
inaccurate.

Chapter 3

Our Implementation: Celestial
Simulator

In this chapter we will take a detailed look at the implemented application,
the Celestial Simulator. This application encompasses the three main com-
ponents we outlined in Chapter 1.2. This application includes the galaxy
generator, the N-Body simulator and the integration component. These
component are highly dependant upon each other, which is why we opted
for designing a larger application where each of the components can work
efficienty together. The first section of this chapter will provide a general
overview of the application. After this, each section will introduce each of
the main components of the Celestial Simulator.

3.1 Implementation Overview

The implemented application has been named the The Celestial Simulator.
It encompasses a galaxy generator, a renderer, as well as a simulator used
to simulate the generated galaxy. The program was written in CUDA C++
targeting the newly released CUDA 7.0 runtime, running on a Ubuntu 14.04
operating system. A useful new feature in the latest CUDA version is the
support for the new C+-+11 standard, giving us more flexible tools when
writing software applications[15]. The Celestial Simulator has several main
components which encompasses the functionality needed to create a galaxy
generator, a renderer and a simulator using one of the N-body algorithms.
The program has been implemented as a command line tool which takes

39

40 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

User Input Integration Simulator

Galaxy Generator Celestial System Two Body Problem

| l

Celestial Constants Celestial Renderer

Simple Renderer

Figure 3.1: An schematic overview of the implemented solution. The arrows
shows the direction of the flow of information

several arguments from the user at run-time. In the event the user requests
the simulation to be rendered, a window will open to display the real-time
simulation results. In addition to this, there are also several test cases and
comparisons tests that can be run in order to compare the different N-body
algorithms, which will produce various types of result reports after concluding
the simulation.

The main components are:

e Input Serves as an input module for the Galaxy Generator. It com-
bines User Input with the defined Celestial Constants in order to create
a galaxy.

e Galaxy Generator Processes the input and uses celestial mechanics
theory in order to generate the initial position and velocity for each
body in the galaxy.

e Celestial System An object class that keeps track of all the data

3.1. IMPLEMENTATION OVERVIEW 41

needed for the simulation and rendering. All rendering and simulation
calls go through this module.

e Integration Takes input from the user in order to decide the integra-
tion method and N-body algorithm to use. As the integration is closely
tied to the N-body simulation itself, this module has the responsibility
to also call the N-body module when needed.

e Simulator Takes in body information as input, and performs computa-
tions on it using an N-Body algorithm. As there are several algorithms,
the one to use is determined by User Input at the time of program ex-
ecution.

e Celestial Renderer Receives the simulated data from the Celestial
System module and renders it to the screen based on simulation run-
time input.

In any execution of the program, the first component that is invoked is
the Input Module. This module analyses the command line arguments that
were supplied and sets the desired values to the specified global variables,
for use with the other components of the program. The second part of the
Input Module defines the constants of various variables that are needed when
creating solar systems and the galaxy. This class contains various information
about the bodies in our solar system such as mass and distance from the Sun.
These are used by the Galaxy Generator to create solar systems that mimics
our own for use by the simulator.

In addition to the main components, there are also two modules that were
used during development as experimentation tools

e The Two Body System Generator Used during development as a
first implementation of the galaxy generator. This module generates
two body systems as well as solar systems and tests how close the
N-body simulation is to the analytical result of a two body system.

e Simple Renderer Used in conjuction with the initial Two Body Sys-
tem module to show the results of the comparison. Also works as an
initial implementation of the Celestial Renderer.

Figure 3.1 shows all components of the implemented program and how
they relate to each other. The flow of information through the program is

42 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

shown by the directional arrows. As we can see, the Celestial System class
is at the core of the program. It gets instantiated with the proper values
through the galaxy generator and input module. After intialization, it stores
the information and continously share it with the integration module when
moving the bodies, and shares the values with the renderer if it is enabled.
A full installation guide and user guide is available in Appendix A.

3.2 The Two Body System (Generator

The Two Body System Generator is an experimental component used to
test how the results from the N-body simulation differ from the analytical
solution. The code is based on the laws of both Kepler and Newton as
detailed in Chapter 2 and very succintly explained in the book ”Solar System
Dynamics” by C.D Murray and S.F Dermott[28].

By using Kepler’s Equation[35] to calculate the eccentric anomaly E from
the mean anomaly M, it is possible to analytically calculate the movement
of an orbiting body with respects to time. From equation (2.11), (2.20) and
(2.21) derived in Chapter 2, it is possible to calculate the start position and
start velocity that the body needs in order to move in a given orbit defined
by the eccentricity e and the length of the semi-major axis a of the orbit’s
ellipse. This principle is used in order to solve the initial value problem for
each of the bodies in the solar system. We then run the simulation with the
generated start values and compare it to the analytical version, calculated
from equation (2.27).

We can also build an entire solar system using this method. By creating
multiple two body systems for each star-planet pair, we can approximate the
orbit which the planets will have around the Sun. It is important to note
that due to the complexity of all the forces working together in a system, that
there does not exist an analytical solution for an N-body problem. When we
create a solar system consisting of N bodies by chaining together multiple
two body problem pairs, each orbit is only an approximation of it’s actual
value. While the Sun will exert the most amount of force on its orbiting
planets, each individual planet will also exert a force on the other planets.
This secondary force is known as a perturbation, which is a smaller force
that affects the orbit only slightly compared to the primary force. In order
to test the effect of this perturbation, we have designed a second test where
we compare how the orbits of the planets of the inner solar systems behave

3.2. THE TWO BODY SYSTEM GENERATOR 43

differently when there are multiple planets in the system. Once again, we
compare the simulated values to the analytically calculated values

3.2.1 Two Body Problem Test Results

Figure 3.2: A picture of the Two Body test rendered using SimpleRenderer

In this section, we will present the results when comparing the analytical
and simulated values of a system of two bodies. In Figure 3.2 we can see a
screenshot of the simulation being run. We will be testing the Sun-Earth two
body system, showing how the Earth will move about the Sun. The values
used to specify the orbit such as the semi-major axis a and the eccentricity
of the orbit’s ellipse can be confirmed in Appendix B. The values for mass
and distance have been normalized to Earth’s values. The unit for mass is
expressed in Earth Masses and the unit for distance is expressed in Astro-
nomical Units (AU), which is the average distance from the Earth to the Sun.
When doing simulation, we express the timestep in Earth days. A timestep
of dt = 1.0 thus means that one day on Earth passes for each timestep. The
gravitational constant G we use with the above units can be confirmed in
Appendix B.

44 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

The brown orbiting planet is being moved by the analytical two body
method, while the red body is moved using a CPU N-Body All-Pairs al-
gorithm. For simplicity, the Sun is being kept in place. By observing the
bodies over time, we can see that they move very close to each other. As
such, the N-Body algorithm does a good job of simulating results similar to
the analytical method. However, if we observe the simulation over several
orbits, it slowly starts to move away from the analytical method. It appears
that the simulated body moves slightly faster than the analytically calculated
body. Despise this, the simulated body still moves without diverging from
the elliptic orbit. While me might lose some accuracy over time, by using
the N-Body algorithm with initial values generated by solving the two body
problem, we are able to create a stable orbit for a single planet.

042 Two Body Test Case Results

o o
o a
@ o

Y axis: The absolute distance difference in AU
o
o
(2]

0 10 20 30 40 50 60 70 80 90
X axis: Number of orbits dt = 1.000000 days

Figure 3.3: The difference between the analytical and the simulated results
for the Sun-Earth two body system

By running the simulation, we see that the orbit time of the Earth is about
one year. We run the simulation for about 80 orbits, where the absolute
value of the error is found to be ¢ = 0.105 AU. If we compare this to the
total distance travelled by the Earth during that time, we get

3.2. THE TWO BODY SYSTEM GENERATOR 45

€ ~0.105 AU
80 Orbits x 6.3 AU 504 AU

Eretative = =2.08x 107'AU (3.1)
Even though the error is continously rising, the error rate is incredibly
small compared to the distance traveled. This small difference will create
small inaccuracies, and could propagate to larger errors over a significant
amount of time, but it will not affect the stability of the orbit itself.

The reason for the difference between the two methods is most likely re-
lated to the timestep chosen for the test. When doing numerical integration,
a small error relating to the size of the step size is introduced. In this test,
we utilized the Symplectic Euler integration method introduced in Chapter
2 with a timestep of dt = 1.0 days. This integration method is of the second
order, which means that by halving the timestep, the accuracy will increase
four times. Thus, by reducing the timestep, the error we see in the simulation
will decrease.

3.2.2 Solar System Test Results

We expand on the previous case by testing the planets of the inner solar
system. The planets are as follows starting with the planet closest to the
Sun; Mercury, Venus, Earth and Mars. The values used to generate the
orbits can be confirmed in Appendix B. Just like the previous test, the Sun
is kept in place while the brown orbiting bodies are moved by using the
analytical method and the red bodies are moved using the CPU N-body
All-Pairs algorithm. In this system, each planet will have a force exerted
on it by not only the Sun, but the other planets as well. As such, the
solution we are able calculate using two body problem analytics will only
be an approximation. In this test, we wish to measure how accurate this
approximation will be.

We again observe the bodies over time, and can see that the results are
similar to the first test case. The N-Body simulation is able to closely simu-
late the analytical solution, however as time progresses small errors propagate
and the results start to diverge little by little. However, Mercury has a sig-
nificant amount of error, as high as ¢ = 0.8AU at around 70 orbits. This is
most likely not because of additional pull from the other planets, but rather
the constant speed changes in highly eccentric orbits. As explained in Chap-
ter 2, the body will speed up as it gets closer to the Sun and slow down

46 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

SimpleRenderer

e T

"
R

Figure 3.4: A picture of the Solar System test rendered using SimpleRenderer

as it gets farther away. For the other planets in the system, the velocity
will not change as much because of their low eccentricity value. Combined
with the fact that the distance is closer to the Sun, the orbit of Mercury is
much more prone to rapid velocity changes. In order to simulate Mercury’s
orbit with an acceptable accuracy, we need to lower the timestep. This will
allow the simulation to update it’s velocity more frequently, thus matching
the analytical solution much closer. These two examples goes to show the
importance of choosing the correct integration method and timestep for the
situation. It is also likely that the error observed for the other planets are
related to the step size, thus lowering it would increase the accuracy of the
simulation. However, in a real-time simulation environment we need to find
a suitable trade-off between performance and accuracy. We will explore the
timestep issue further in the Results chapter.

Overall, we see that a small error continue to accumulate during the
simulation due to the integration step. The error can be made smaller by
decreasing the timestep, but it is important to chose a suitable trade-off
between performance and accuracy. In the case of errors caused by small

3.3. THE GALAXY GENERATOR 47

Solar System Test Case Results

0.8
— Mars

2 07| — Earth
c — Venus
8 osl Mercury
o
2
hel
o 05[
o
C
&
B
T 04
o
3
S
2 L
2 0.3
[}
=
=
@2 021
3
>-

01

0-0 — 1 1 1 1

0 20 40 60 80 100

X axis: Number of orbits dt = 1.000000 days

Figure 3.5: The difference between the analytical and the simulated results
in the case of the Sun-Mercury-Venus-Earth-Mars system

perturbations by other planets, we can see from the result of Earth’s orbit
that it is affected very little by the other planets. This is expected, as the
Sun is several thousand times more massive than the other planets, which
means that the force contribution from the other planets are almost negli-
gible compared to the Sun. However, very tiny perturbations could become
significant over a very large period of time. As such, it is not possible to
guarantee that the solar system will remain in the same stable orbit for eter-
nity. However, using the method introduced in this section to create stable
solar systems appear promising. In the next section, we will take a look at
the second iteration of the generator, which expands on this implementation
to enable us to generate whole galaxies.

3.3 The Galaxy Generator

The Galaxy Generator is tasked with the generation of a galaxy comprised
of several solar systems with a fixed size. It is built upon the implementation
featured in the previous section.

48 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

The Galaxy Generator is called by the Celestial System during initializa-
tion using the function createGalaxy(...). This function takes as input two
integers specifying the number and size of the solar systems to generate. In
the current implementation, every solar systems is fixed to the same size.
However, by redesigning the generator to take in an array of different solar
system sizes, it is possible to support different sized solar system. Note that
the Celestial N-Body algorithm introduced later in the chapter must also be
updated in order for the simulator to support dynamic sizing.

The createGalaxy(...) method does the following steps in order to gener-
ate the galaxy.

1. Generate a black hole in the origin of the galaxy with a given mass.
2. For each solar system,

(a) Place the star in relation to the black hole based on a given incli-
nation angle.

(b) Find the star’s initial velocity by calculating it’s orbit velocity
around the black hole.

(c) Rotate each planet to the correct inclination angle, and place each
planet in the star’s orbit based on desired orbit values.

(d) Find the combined initial velocities of the planets by adding to-
gether the star’s orbiting velocity around the black hole and the
planet’s orbiting velocity around the star.

The values needed to determine the mass of the black hole, as well as
the overall structure of the galaxy are read from the User Input module at
run-time. In order to find the start position we make use of equation (2.11),
which we derived in Chapter 2. Solar systems are distributed around the
black hole in circular planes. Each plane has an inclination angle which
determines how the plane is orientated with regards to the black hole, and
each plane shares the same origin, located at the black hole. The azimuth
angle determines the location of the solar system in the plane. Each plane
has a corresponding distance r from the black hole associated with it. In
order to avoid collisions at intersection between the planes, this distance will
vary with each plane. At run-time, the user can specify the total number
of solar systems, as well as how many planes the solar systems should be

O © 00 O Uk W~

[t

12

13
14

15
16
17
18
19
20
21
22

3.3. THE GALAXY GENERATOR 49

distributed on. To avoid too much clutter in the generated galaxies, we will
limit the number of planes to a maximum of two.

We find the start position of the individual planets by once again utilizing
equation (2.11). The positions will be spread around in a two dimensional
plane. The next step is to use the inclination angle to rotate the plane to
its correct start position and then use the location of planet’s nearby star to
offset it from the origin.

Similarly, the start velocity is calculated by first finding the orbital period
and then use this to find the mean motion using equation (2.13) and (2.14).
We then use the results of this to calculate the start velocity of the orbiting
body in the orbiting plane using equation (2.20) and (2.21). After finding
velocity values for the two dimensional plane, we once again rotate it to the
correct position using the inclination angle, before adding the velocity of
the planet’s nearby star. This will create a plane of multiple solar systems
orbiting a black hole at a given inclination angle. The simplified pseudo code
used to generate the galaxy is shown below

for (int plane.i = 0; plane_i < planes; plane_i++) {

float azimuth = plane_i * azimuth_d + startAngle;
for (int solar_i = 0; solar_i < solarPerPlane; solar_i++) {

float inclination = solar_i % inclination_d;
mass [starIndex] = starMass;

positions [starIndex] = findSolarStartPosition (distance
inclination , azimuth);

findStartVelocity (0, starIndex, 0, distance, inclination
, azimuth);

setSolarSystemValues (starIndex , starIndex + solarBodies,
azimuth) ;

starIndex += solarBodies;

}

distance += planes_distance;

50 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

The values are stored in three float3 arrays specifying the current ac-
celeration, velocity and position for each dimension. The mass values are
stored in a single float array. The generated values are stored consecutively
in memory in each array as shown in Figure 3.6.

B S1|P1[P2[Ps[Sz[P1 P2 [P -

Figure 3.6: Galaxy Data Structure Overview

In the figure, B is the location of the values for the black hole, .S; is the
location of the values for the star of solar system i, and the following P;
values are the values for the planets orbiting star .5;.

After successfully generating the values, the body information is made
available to the Celestial System for use in simulation and rendering. If the
simulation is to be run on the GPU, the generator will transfer the memory
to the GPU before returning a pointer to the Celestial System. The full
Galaxy Generator code is available in Appendix C.1.

3.4 The Celestial System

As the centerpiece of the implemented application, the Celestial System mod-
ule is tasked with keeping track of the body information, as well as the current
simulation and rendering state. It continously stores the acceleration, veloc-
ity and position for the currrent time. During initialization, the Celestial
System takes as input the desired amount of solar systems and the num-
ber of bodies within a solar system from the user. These variables are used
with The Galaxy Generator to create a galaxy as specified by the user. As
we will be working with both CPU -and GPU-based algorithms, the mod-
ule also takes as input a boolean value specifying if the computations are
to be run on CPU or the GPU. Based on this boolean value, the generated
body information data is either allocated on the CPU or the GPU using
either the standard C++ malloc(...) command or the CUDA equivalent cu-
daMalloc(...). At initialization, the Celestial System is thus associated with
either the CPU or the GPU and will remain so for it’s lifetime. As such, the

—_ =

= O © 00 ~JO Ok Wik —

3.4. THE CELESTIAL SYSTEM o1

way a host-allocated Celestial System will interact with the renderer is quite
different to a device-allocated one.

void CelestialSystem :: drawBodies () {

if (renderingEnabled) {
updateBufferCPU () ;
glBindVertexArray (systemVAO) ;
glVertexAttribPointer (0, 3, GLFLOAT, GLFALSE, 0, 0);
glDrawArrays (GL_POINTS, 0, getN());
glBindVertexArray (0) ;

The drawBodies() function is called every frame by the Celestial Ren-
derer. The drawing itself is done by issuing four important calls to OpenGL.
The first call, glBindVertexArray(...) locates and binds the array which con-
tains the vertex information for all the bodies in the system. By binding
it, we tell OpenGL that we want to use this buffer when issuing the final
rendering call glDrawArrays(...). The second glVertexAttribPointer(...) call
specifies how the information is stored in the buffer and tells OpenGL how
to interpret it. In this case, we specify to OpenGL that the data is bundled
into groups of 3 single-presicion floating point variables. The final call un-
binds the vertex buffer array that we just used, which is common practice in
order to minimize any bugs associated with drawing from the wrong buffer.
Now, in the case of running the simulation on the GPU using CUDA, the
vertex buffer will continously be in GPU memory for both the drawing and
the simulation. This allows us to quickly render and simulate without any
memory transfer overhead. However, when running the simulation on the
CPU, the most up-to-date memory will be located in the CPU during the
simulation stage. This means that every time the CPU updates the positions
of the bodies, the buffer located in the GPU will need to be updated. As this
happens every frame, the memory transfer overhead is significant. Unfortu-
nately, since the renderer must have the data in GPU memory in order to
render, this overhead is unavoidable. The vertex buffer located on the GPU
is updated using the glBufferData(...) call, which will initiate the transfer
from CPU to GPU memory. The call takes as input the size of the data to
be transfered and it’s location in CPU memory. We can also specify a hint to
OpenGL on how the data will be used. This will potentially allow OpenGL
to make significant optimization on how it accesses the data. In our case, we

52 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

will only draw the data one time before it gets outdated. As such, we issue
the GL.STREAM_DRAW hint to tell this to OpenGL. The following code
defines the updateBufferCPU() function used to update the buffer.

Uk W N~

© 00 ~J D

void CelestialSystem :: updateBufferCPU () {
if (renderingEnabled && !useGPU) {
glBindBuffer (GLLARRAY BUFFER, systemVBO) ;
glBufferData (GLARRAY BUFFER, 3 % sizeof(float) * getN(),
position ,
GLSTREAM DRAW) ;
}
}

The other important method defined in the Celestial System class is the
moveBodies(...) function. As the name implies, it calls the simulation module
in order to move the bodies a timestep dt forward.

= O © 00 O Ui Wwih K-

—_

void CelestialSystem :: moveBodies(float dt) {
mapResourcesCuda () ;
performIntegration (dt);
unmapResourcesCuda () ;

updateCurrentTime (dt) ;

Before moving the bodies, in the case of the GPU, we need to map the re-
sources for exclusive use by CUDA, as explained in Chapter 2. The methods
mapResourceCUDA() and unmapResourcesCUDA() implements the func-
tions needed to map the resource before execution, and unmap the resources
after we are done moving the bodies. When running the simulation on the
CPU, these methods simply do nothing.

The simulation itself is done by calling the performIntegration(...) func-
tion with the desired timestep di. We will be using various different integra-
tion schemes, each which may use the current or past acceleration in different
ways. As such, it is the duty of the integration module to call the N-Body
system as appropriate, either before or after integrating the acceleration to
get the velocity and position information.

3.5. CELESTIAL RENDERER 93

The remaining functions defined in the Celestial System are used in order
to retrieve data, debug the body information, or properly set up and tear
down the system when running the simulation with a renderer. For instance,
the setupForRendering() function prepares the system for rendering. If the
user specifies that the simulation should be rendered, this function will be
called in order to create the needed vertex buffer and update it with the
body information. In addition, if the simulation is to be run using CUDA,
we do the initial registration needed in order for OpenGL to communicate

with CUDA here.

3.5 Celestial Renderer

® = CelestialRenderer

Figure 3.7: A picture of an example galaxy rendered by the Celestial Ren-
derer

As speed of computation is an important factor in the application, we
will focus on creating a renderer that is able to convey the state of galaxy
using simple graphical elements in order to minimize rendering overhead.

© 00 O Ui W N+

54 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

The renderer was developed by carefully reading through the OpenGL 3.3
Reference Pages[26], and choosing the functions and features best suiting our
needs.

While the fixed rendering pipeline is very simple and has been used many
times in scientific applications, it’s features are very old and close to being
deprecated on many systems. As such, even though it adds a bit of complex-
ity to the implementation, we have opted to use the programmable pipeline
offered in OpenGL 3.3.

Before we can create an OpenGL context to render graphical objects to,
we need to create a window from the operating system. As this is highly
OS dependent, we will be using a cross platform development library called
Simple DirectMedia Layer 2 (SDL2)[24]. Using SDL2 we are able to request a
window from the operation system, which we can then use to render OpenGL
elements through the use of an OpenGL context. In addition, using SDL2,
we are also able to take run-time keyboard inputs from the user.

In our renderer, we will be using the OpenGL graphics primitive GL_POINTS.

This primitive will render a single fixed-size point in 3D space for every ver-
tex we supply the rendering function. As it is just a single point, it will be
quick to render, ensuring that the renderer is as fast as possible.

As explained in Chapter 2, the positions of the points in relation to each
other will be calculated by the simulation. Because of this, the only matrix
transformation we need to apply is the perspective transformation, in order to
transform the points into proper 3D space. However, since the GL_POINTS
are defined with a fixed size, they will not be affected by a projection trans-
form. For our purpose, it is better to use an orthographic transform, which
will ignore perspective size differences for object that are farther away from
the camera. By using this renderer approach, we will be able to easily con-
vey the state of the bodies in the galaxy and how they move in relation to
each other. The keyboard inputs to operate the Celestial Renderer has been
included in Appendix A.

void CelestialRenderer :: runRenderingLoop () {
while (!shouldQuit) {
handleInput () ;
prepareToRender () ;

renderBodies () ;

10
11
12
13
14
15
16
17
18
19
20
21
22
23

3.5. CELESTIAL RENDERER 95

moveBodies () ;
SDL_GL_SwapWindow (window) ;
}
SDL_GL_DeleteContext (glContext) ;
SDL _DestroyWindow (window) ;

SDL_Quit () ;

The renderer class is also responsible for keeping the application running
and updating based on simulation calculation and user input. This is done
through the main rendering loop, as seen above. For every iteration of the
main loop, the renderer has several calls to perform. The first call is han-
dleInput(), which will query the keyboard and check if the user is currently
pressing any buttons. Based on what the user is pressing, the function will
adjust the appropriate variables to their new value. In the event that the
user wants to quit the application, the handleInput() method detects this,
and sets the shouldQuit flag to true. After exiting the loop, we delete the
context and the window and call SDL_Quit(), which performs the necessary
cleanup for the SDL2 framework. The next function to be called, prepare-
ToRender() prepares the renderer for the next draw call to be made. During
this process, it cleares the necessary buffers and resets the screen in order
to render a new frame to it. In addition, it will prepare to send the current
transformation matrix to the vertex shader. This needs to be done before
every draw call in the event that the user has moved the camera position
during the last frame. The drawing itself is done in renderBodies() by call-
ing the drawBodies function for the associated Celestial System. Finally, in
the moveBodies() function, the bodies are moved one timestep by calling the
Celestial System’s moveBodies() function with a given timestep dt. The last
call is a SDL2 function which swaps the current framebuffer with the one we
just drew to. This will present the new frame to the screen.

—_

O UL = W N

10
11
12
13
14

15
16
17
18
19
20
21
22

56 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

3.6 N-body Algorithms

Simulation is done by utilizing one of the implemented N-Body algorithms to
calculate the acceleration exerted on a body by the other bodies in a system.
We have implemented several different N-Body algorithms, both for the CPU
and the GPU. The N-Body All-Pairs GPU algorithm used in this thesis
is based on NVIDIA’s GEM3 N-Body algorithm, as mentioned in Chapter
2. We have also implemented our own N-Body algorithm, The Celestial
N-Body algorithm, which takes a different approach from GEM3. While
GEMS is a general algorithm that can compute any N-Body system with
O(N?) complexity, our approach is a specialized algorithm that is designed
to work with the generated galaxies specifically. In the next sections, we will
describe each of the N-Body algorithms in more detail.

float3 computeBodyBody(float3 i_pos, float i_mass, float3 j_pos,
float j_mass, float3 i_acc) {

float3 distanceVector = calculateDistanceVector (i_-pos, j-pos);
if (distancelsZero(distanceVector)) return i_acc;

float absoluteDistance = calculateAbsoluteDistance (
distanceVector);

float absoluteDistanceCubed = absoluteDistance x
absoluteDistance * absoluteDistance;

float3 dA = calculateAccelerationChange (j_mass ,
absoluteDistanceCubed , distanceVector);

i_acc = sumAccelerationChange (i_acc, dA);

return i_acc;

}

float3 calculateAccelerationChange (float j.mass, float
absoluteDistanceCubed ,
float3 distanceVector) {

float3 dA;
dA.x = G x j_mass / absoluteDistanceCubed x distanceVector.x;
dA.y = G % j_mass / absoluteDistanceCubed % distanceVector.y;
dA.z = G % j_mass / absoluteDistanceCubed x distanceVector.z;
return dA;

—_

0 ~J O U i W N

11
12
13

14
15
16
17
18
19

3.6. N-BODY ALGORITHMS o7

A core part of the N-Body algorithm is how the pairwise body compu-
tations are done. The code above showns the simplfied psuedo code for the
implementation of the pairwise body computations. It implements equation
(2.31), discussed in Chapter 2. This piece of code will be used in all the
N-Body algorithms which we will implement. While a lot of the code will
remain the same, the different N-Body algorithm implementations will not
call this function the same number of times. For instance, the Celestial N-
Body algorithm will use a center of mass approximation in order to reduce
the number of times this function is called. This allows us to speed up the
overall computation time.

3.6.1 N-Body All-Pairs CPU

The CPU N-Body All-Pairs algorithm is a simple serial algorithm with a
computational complexity of N2. While this method is very simple to imple-
ment, it is a simple brute-force method which scales badly as the number of
bodies increases.

void nbody._allpairs_cpu(float3 =xacceleration, float3 sxposition ,
float *mass, int N) {

for (int i = 0; i < N; i++) {

float3 i_pos = position[i];

float i_mass = mass[i];

float3 i_acc = make_float3 (0,0,0);
for (int j = 0; j < N; j++) {

if (i = j) continue;
float3 j_pos = position[j];
float j.mass = mass|[j];
i_acc = computeBodyBody (i_pos, i_mass, j_pos, j_mass,
i_acc);

}

acceleration[i] = i_acc;

As this method computes the values with no optimizations, it is also
expected to be the most accurate. Other approaches that are not All-Pairs

58 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

will use some kind of heuristic in order to approximate the extertion felt by
a given body. When comparing the results of the other algorithms, we will
be using the CPU All-Pairs results as a base of comparison.

3.6.2 N-Body All-Pairs GPU (GEM3)

The GPU All-Pairs algorithm we will be using was first detailed in NVIDIA’s
GPU Gems 3[31], released in 2007. The book features an All-pairs N-Body
algorithm that while still has a complexity of O(N?), uses the power of the
GPU to efficiently calculate the pairwise forces in parallel. It does so by
defining tiles of bodies to calculate and assign this tile to different Streaming
Multiprocessor for quick parallel execution. This allows us to significantly
reduce the computational time when running the N-Body problem. However,
in order to maximize the occupancy we need to choose a suitable block size.
The optimal size is dependent upon the GPU being used, however, NVIDIA
recommends that the block size shoule be a multiple of 32 to coincide with
the current warp size. The block size to use when running the GPU N-Body
All-Pairs algorithm can be decided by the user at application run-time.

Since this method is also doing All-Pairs computation, we can expect
the results to be close to the CPU All-Pairs algorithm. However, due to
differences in how floating points operations are done on the GPU, the results
may differ somewhat[37]. As each computation is based on the previous one,
small errors can continously propagate to create much larger errors. This
can become a significant problem, which is something that must be taken
into account when comparing the algorithms

3.6.3 The Celestial N-Body Algorithm

By considering how the values from the Galaxy Generator are stored, we can
create a specialized algorithm that takes advantage of this in order to speed
up computations. We know from Figure 3.6 how each of the bodies inside
a solar system are located in memory. At the time of generation, we also
know that these bodies are grouped together in a solar system. The Celestial
N-Body algorithm assumes that each of the bodies inside one solar system
will continue to move together during the simulation. Since we know that
the bodies inside a solar system are close to each other, we can approximate
their combined exertion on a body outside the solar system given that the
solar systems remain far apart from each other.

w —

Ut

© 00 ~J O

3.6. N-BODY ALGORITHMS 99

bool CelestialNbody :: celestialNbody (float3 xacceleration, float3
xposition , float xmass, int solarSystems, int solarBodies) {

float4 xmassCenters = calculatelnternalAcceleration (
acceleration , position, mass, solarSystems, solarBodies);
bool thresholdReached = calculateExternalAcceleration (
acceleration , position , mass, massCenters, solarSystems,
solarBodies);
return thresholdReached;
}

The Celestial N-Body algorithm is divided into two functions that work
together in order to approximate the total acceleration exerted on a body 7 by
the other bodies in the galaxy. These functions are summarized in the code
above. In order for us to accurately simulate the orbits of the planets within
each solar system, we need to carefully calculate the body interactions among
each member of a solar system. Therefore, when calculating the internal solar
system accelerations of a body, we perform O(NZz) computations, where
N2p is the number of bodies (one star and several planets) inside the solar
systems.

We will be working with galaxies generated with a realistic number of
solar system bodies. Current observations suggest that the highest number
of planets inside one solar system is nine[36]. Because of the small number,
we do not divide the computations into tiles, like in GEM3. Instead, we
have implemented two versions of the internal acceleration algorithm that
calculates the internal acceleration felt by a body slightly differently. In
the standard version, we set the GPU Block Size equal to N25. This will
allow each solar system to be calculated independently in parallel on separate
CUDA cores. However, for small solar system sizes, the blocks will become
very small, which does not utilize the GPU very efficiently. The Celestial
N-Body Grouped algorithm fixes this by grouping together as many solar
systems as possible into one block, where the block size is specified by the
user. This approach will make the algorithm efficient even for small solar
systems.

The acceleration felt by a body because of the external solar systems
are calculated by using the center of mass of the external solar system. We

60 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

compute the center of mass of each of the solar systems in the internal accel-
eration and use the computed mass centers to approximate the acceleration
felt by distant bodies. This allows us to speed up computation significantly.
The black hole is treated as a special case and computed directly. If we define
the number of solar systems as Ngg and the total number of bodies as N,
we can express the complexity of the algorithm with O(NgsNZ5 + N Ngs).
The full code for the Celestial N-Body algorithm is available in Appendix
C.2, while the code for the Celestial N-Body Grouped algorithm is available
in Appendix C.3.

In order for the external approximation to be accurate, we need to as-
sume two things. The first assumption is that each of the bodies inside a
solar system remains tightly coupled together in orbit around a common
star. The second assumption is that the solar systems are far away from
each other. Since the Celestial N-Body algorithm require these assumptions
to be valid, the approximation will create large errors if the assumptions
were to become invalid. If this happpens, we need to switch the algorithm
over to a more general one (for example the All-Pairs algorithm) in order to
maintain the accuracy of the simulation. This is done by checking the dis-
tance between each of the solar systems and notifying the calling function if
the solar systems are too close to each other, determined by some threshold.
The threshold is checked and a boolean value is returned when calling the
calculateExternalAcceleration(...) function.

3.7 Integration

Choosing an appropriate integration method will be crucial in order to ensure
the accuracy of the simulator. Several types of different integration schemes
have been implemented in order to compare which ones are the most suitable
for our simulator. This section will detail the implementation of the two inte-
gration methods explained in Chapter 2 and introduce a custom integration
scheme.

3.7.1 Explicit Integration Implementation

1|For (i = 1; i < Nj; i++) {
2
3| wvelocity_next = velocity[i] 4+ acceleration[i] * dt

© 00 3 O Ut

© 00 ~J O U W N+

3.7. INTEGRATION 61

position_next = position[i] + velocity[i] * dt
velocity [i] = velocity_next
position[i] = position_next

}

This integration method implements the integration formulas (2.32) and
(2.33) explained in Chapter 2. The code above shows the pseudo code for
the calculation steps. For all bodies except the black hole, which we will
keep in place, we perform the above operations. Since we are working with
vectors, in the code above, we calculate the results of the formula for each
dimension independently. The code above shows the pseudo code for the
CPU version. The GPU version computes the same calculations, but instead
launches several blocks of threads in order to go through all N-1 elements in
parallel.

3.7.2 Symplectic Euler Implementation

For (i = 1; i < N; i++) {
velocity _next = velocity [i] + acceleration[i] x dt
position_next = position[i] + velocity_next[i] = dt
velocity [i] = velocity_next
position[i] = position_next

}

The pseudo code above implements the integration formulas (2.32) and
(2.34) which we discussed in Chapter 2. The calculations are very similar to
the previous approach, however this time we use the next velocity at time
t+1 to calculate the next position. This implements a symplectic integration
method where one variable is calculated using the current value at time ¢
and the other is calculated using the updated value for time ¢ + 1. Since we
already know the acceleration at time ¢, we know how to compute both the
Symplectic and Explicit Euler integration method without doing expensive
intermediary computations.

DO

O © 00 ~J O Ot

11
12
13

14
15
16
17

62 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

3.7.3 Celestial Integration Implementation

In addition to the two integration methods mentioned above, we have also
implemented a custom integration scheme, called Celestial Integration. This
is a custom approach specialized to the type of simulation we are doing in
this project. It has been built to support the Celestial N-Body algorithm
and as such can only be utilized together with either the grouped or stan-
dard Celestial N-Body algorithm. The integration scheme itself is used in
conjuction with one of the two integration methods detailed above, which
can be decided at application run-time.

The Celestial Integration scheme was implemented with both precision
and performance in mind. By considering the fact that the acceleration
exerted by distant forces on a body will change much less frequently than
bodies within the solar system, we can implement an integration scheme that
takes advantage of this.

performCelestiallntegration (int steps, float dt) {

float4* massCenters = calculateMassCenterForSolarSystemsGPU (
position , mass);
float3* acceleration_ext = calculateExternalAccelerationGPU (
acceleration_ext , position, mass, massCenters);
float internal_dt = dt / steps;
for (int i =0 ; i < steps ; i++) {
calculateInternalAccelerationGPU (acceleration , position
mass) ;
//Explicit or Symplectic Integration possible
symplecticIntegrationKernel (acceleration , acceleration_ext ,
velocity , position, internal_dt);
¥
}

The first step of the algorithm is to calculate the center of masses of
each of the solar systems in the galaxy. We then use this to compute the
acceleration exerted on a body 7 by all the external bodies. The assumption
we rely on in this integration method is that the external acceleration felt
by a body will not change very much over a small period of time. For

3.8. IMPLEMENTATION DISCUSSION 63

each timestep dt, we calculate the external acceleration once and use this to
calculate the internal acceleration steps amount of times with a timestep of
st‘i';s for some user defined value of steps. With this integration scheme, we
recognize that the internal force needs to be calculated several times more
often than the external forces and use this to approximate the external forces
for a small period of time. In the Results section we will investigate how this

integration methods performs over the other approaches.

3.8 Implementation Discussion

In this section we will discuss some of the design choices we did with regards
to the implemented application.

3.8.1 Targeted Hardware Configuration

The current version of the program has been designed to be run in a hardware
environment with one available GPU. As such, it does not currently support
a dual-GPU configuration. While it may be possible to add such support, I
believe there will not be much to gain by doing so at the moment.

When considering developing for a multi-GPU environment, it is impor-
tant to pay careful attention to the origin and the flow of information. There
are two use cases worth discussing where it might be useful to use multiple
GPUs in the Celestial Simulator application. In the first use case, one GPU
is delegated to doing computations related to the simulation, such as integra-
tion and running the N-Body algorithm while the other GPU performs the
rendering. Another potential use case is to perform the N-Body algorithm
on one GPU, while delegating the integration and rendering to the second
GPU. This approach has the advantage of evenly distributing computations
among GPUs. Since the N-Body is the most computationally expensive al-
gorithm, having one GPU only focus on that, while the other takes care of
the leftover work could potentially be an efficient setup. Despite this, the
reason for not pursuing the multi-GPU approach is because of the significant
overhead of transferring between GPUs. For every timestep, we would have
to transfer acceleration, velocity and positional information between GPUs.
After integration, we would also have to send back the updated velocity and
posotional information, which leads to an expensive data transfer round-trip.
As transfers are currently done using the PCI bus, this will be very expensive.

64 CHAPTER 3. OUR IMPLEMENTATION: CELESTIAL SIMULATOR

In 2016, NVIDIA is scheduled to launch their new line of GPU’s utiliz-
ing their new Pascal microarchitecture[10]. Together with Pascal, NVIDIA
will introduce their new NVLink technology[11], which can be used to send
data from GPU to GPU much faster than current approaches. In the above
use cases, there is potential for a form of pipelining parallelism, where each
component continously receives data and sends it to the next stage in the
pipeline. This scheme would allow us to do calculations at the same time as
we are transferring data between GPUs. By utilizing the increased speed of
data transfer using NVLink, such a multi-GPU approach could be interesting.

Another important design choice that I faced when designing the appli-
cation was to decide whether to focus on single or double precision floating
point operations. Disregarding the few high-end HPC-class GPU’s, most
NVIDIA GPU’s currently have a small number of double precision float-
ing point arithmetic units. As such, double precision computations can be
very slow for many applications[16]. As real-time rendering is an important
feature of the application, a decision was made to focus on single-precision
floats, which has ample hardware support on NVIDIA’s GPUs.

Chapter 4

Results and Discussion

In this chapter, we will present the result achieved during testing of the
implemented application. As there are infinitely many possible test cases,
we will focus on a select few to test the capabilities of the application as a
whole. In the first few sections, we will briefly overview the test goals, test
methodology and the hardware we will be running the simulation on.

4.1 Testing Overview

During testing, we will for the most part focus on measuring the performance
and accuracy of each component of the application. As this can be difficult
for simulation systems, we will be utilizing the analytical two-body solution
whenever possible. When testing the the accuracy of the approximated Ce-
lestial N-Body algorithm, we will compare it to the All-Pairs N-Body CPU
algorithm. In section 5.6, we will perform various performance tests to de-
termine the performance of each of the algorithms. In these tests, we will
test both the CPU and GPU version of the proposed Celestial N-Body algo-
rithm, and compare the results to previous CUDA implementations, such as
the All-Pairs N-Body GPU algorithm (GEM3), developed by NVIDIA[31].

4.1.1 Simulation Hardware Specification

The tests done in this chapter were performed on a machine running Ubuntu
14.04 and CUDA 7.0 with the following specifications:

65

Uk W N~

~N

O ~J O UL W N+~

10
11
12
13
14
15
16
17
18
19
20

66 CHAPTER 4. RESULTS AND DISCUSSION

1. HPC-Lab24 4x Intel Core i5-3470 CPU @ 3.20GHz with 16GB of
Main Memory and a NVIDIA GeForce GTX 980 GPU

4.1.2 Performance Test Methodology

In the last section of this chapter, we will do performance comparison tests to
measure the time taken to move the galaxy one timestep, for both the CPU
and GPU-based algorithms. On the CPU, we will measure performance by
using the gettimeofday(...) function to get the time in milliseconds.

double Utilities ::get_wtime () {

struct timeval t;

gettimeofday (&t , NULL);

double time_in_mill = (t.tv_sec) * 1000 + (t.tv_usec) /
1000.0:

return time_in_mill;

The GPU performance will be measured in milliseconds by utilizing avail-
able API calls from the CUDA framework. The code used to measure GPU
performance is presented below:

void CudaTimer :: cudaTimerStart () {

cudaEventCreate(&timerStart) ;
cudaEventCreate(&timerStop) ;

cudaEventRecord (timerStart , 0);
}
float CudaTimer:: cudaTimerStop () {
float elapsedTime;

cudaEventRecord (timerStop, 0);
cudaEventSynchronize (timerStop) ;

cudaEventElapsedTime(&elapsedTime , timerStart, timerStop);

cudaEventDestroy (timerStart) ;
cudaEventDestroy (timerStop) ;

21
22
23

4.2. GALAXY GENERATOR RESULTS 67

return elapsedTime;

24}

Using these functions we are able to record a cudaEvent timestamp in
our code, and use this to compare the timestamps before and after executing
the specific code we want to measure. By calling the cudaEventSynchro-
nize(cudaEvent) method, the CPU will block until the specified event has
been recorded. The output measurement value has a resolution of about one
half microsecond as detailed by NVIDIA[14].

4.2 Galaxy Generator Results

Figure 4.1: A circular galaxy with ten solar systems each with one star and
one planet.

In this section, we will perform simulations tests on the galaxies created
by the generator component. The current version of the galaxy generator
is able to create simplified circular galaxies divided on one or two "planes”,

68 CHAPTER 4. RESULTS AND DISCUSSION

as detailed in the previous chapter. We opted to create small and simplistic
galaxies with a few solar systems in order to be able to more easily observe
how the galaxy is affected when changing different parameters such as the
mass of the black hole.

We start off by determining a suitable timestep dt on the galactic scale.
In our initial test, we will also confirm our assumption that the Symplectic
Euler integration method is more suitable than the Explicit Euler integration
method when doing simulation. We will run the simulation with a small
circular galaxy where each of the solar systems are at the same distance
r = 100 AU from the black hole. The mass of the black hole is ten times
the mass of the stars in the solar systems. The galaxy will contain ten solar
systems, each with one Earth-like planet orbiting a star with the same mass
as the Sun. Figure 4.1 shows the test galaxy observed from an angle.

For each of the two integration methods, we will be testing different
timesteps starting at dt = 10 days, and incrementing by 10 days for each
test. As it can be difficult to analytically determine when the solar system no
longer remain tightly coupled and become unstable, we will be empirically
observing this by utilizing the Celestial Renderer. In order to ensure the
error remains as low as possible, we will perform the test using the All-Pairs
CPU N-Body algorithm.

During the simulation, the solar systems will orbit the black hole while
each of the planets in the solar system will orbit it’s star. As each of the
stars start to pull on each other, they start to move closer and closer to the
black hole. After reaching a point closer to the black hole, the solar systems
start to move apart again. This pattern is repeated twice, before the solar
systems gain too much momentum and escapes the black hole’s orbit. This
particular pattern can be observed because of the relative small mass of the
black hole. As it is just ten times more massive than the stars, it is not able
to keep the solar systems in orbit for a long period of time. This can be
mitigated by increasing the mass of the black hole.

For all simulations performed in this test, the general movement of the
stars remain unchanged. However, the movement of the orbiting planets
greatly change between each test case. These results are presented in Table
4.1. We can see from the table that when using the Symplectic Euler integra-
tion method that timesteps up to 40 days is sufficient in order to keep both
the star and its orbiting planet in a stable orbit around the black hole. At a
timestep of 50 days, the timestep is simply too big and inaccurate, causing
the planet to go out of orbit after 25 years. When using the Explicit Euler

4.2. GALAXY GENERATOR RESULTS 69

Time to instability Time to instability

Timestep (in days) (Explicit Euler) (Symplectic Euler)

dt=10 ~27 years ~330 years

dt=20 ~8 years ~330 years
~5 years ~330 years
0 years ~330 years
0 years ~30 years

Table 4.1: Integration Stability Results

integration method, none of the timesteps tested are small enough for the
planets to remain in orbit. This is most likely because of the fact that the
Explicit Euler method is not able to converse energy very well. While it is
possible to mask this error by choosing a very small step size, we can see
that it is much more viable to use the Symplectic Euler method instead.
We can expand on this galaxy generator test by analyzing how changing
different parameters changes the stability of the system. We set the timestep
at 40 days, which from the previous result is a decent trade-off between
performance and accuracy. We can generate different types of galaxies by
changing parameters such as distance and mass. By changing these parame-
ters, the stability of the system will also change. The previous test remained
stable for a time, but after about 350 years, the combined force of the other
solar systems caused the galaxy to become unstable. By increasing the mass
of the black hole, the dynamics of the galaxy will change significantly.
Table 4.2 shows the result when changing the mass of the black hole. The
parameter sbhr defines the ratio between the mass of the black hole and the
mass of the stars in the galaxy (the default value is sbhr = 10). Finally, Table
4.3 shows additional results when increasing the mass when the distance is

70 CHAPTER 4. RESULTS AND DISCUSSION

Time to instability
(Symplectic Euler)

Sun-Black Hole Ratio (-sbhr)

~190 years

~330 years

~330 years

~780 years

~12 years

Table 4.2: Black Hole Mass Stability Results

set to 7 = 1000 AU. The results show various situations where the stability
of the galaxy behaves differently. We can see that by increasing the distance
and the mass of the black hole, the stability is maintained for a longer period
of time. This is not surprising, as changing these parameters makes the black
hole the dominant force in the galaxy. In the previous test case, the mass of
the black hole was only 10 times bigger than a star. In addition, the distances
between the solar systems were also much smaller. This causes each of the
individual solar system to make a significant perturbation on the orbit of
the other solar systems around the black hole, eventually making the system
unstable. However, as we increase either of the two parameters above, the
other forces in the system diminish in comparison to the black hole. This
causes the system to be stable. While the results appear correct with regards
to the inverse square law and Newton’s Law of Universal Gravitation, they
are also well-known. As such, we will be focusing our energy in utilizing
the galaxy generator to test the capabilities of the simulator part of the
application, starting with the integration.

4.3. INTEGRATION RESULTS 71

Sun-Black Hole Distance to Black Parameter Time to instability
Ratio (-sbhr) Hole (-cd) Ratio (Symplectic Euler)

100 100 11 ~350 years
1000 1000 11 >5000 years
10000 1000 10:1 >5000 years
100000 1000 100:1 >5000 years
1000000 1000 1000:1 ~1000 years

10000000 1000 10000:1 ~30 years

Table 4.3: Stability Results when changing black hole mass in relation to
distance

4.3 Integration Results

In this section we will take a closer look at how the choice of integration step
size and integration method affects the overall simulation. In the previous
test, we determined that a timestep of 40 days was a reasonable trade-off
because it was able to keep the entire galaxy stable for as long as physi-
cally possible. Lowering the timestep below 40 did not change how long the
galaxy was stable, which suggests that the instability is because of a phys-
ical property of the galaxy and not that of an integration error. While the
galaxy appear stable on a galactic level, we still need to confirm how well
this timestep performs in terms of accuracy inside the invidual solar system.
We will test this by once again running the Two Body Test component in-
troduced in the implementation chapter. Since the analytical solution is not
affected by the integration, we can compare the simulated version to this in
order to get an idea how much error is introduced with a given timestep.
We run the Sun-Earth Two Body system for 50 orbits with a varying

72 CHAPTER 4. RESULTS AND DISCUSSION

timestep of 1, 10, 20, 30 and 40. The results are compiled in Figure 4.2. The
graphs shows the result of the comparison given the timestep with the lowest
timestep 1 at the top and the largest timestep 40 at the bottom right. The
first graph shows the results when running the comparison with a timestep of
1. This is the same test that we did in the implementation chapter. We can
see that the difference is steadily increasing, however very slowly. As such,
with a timestep of 1, the comparison remain very close for atleast 50 years(50
Earth orbits). As we increase the timestep, this changes significantly. At a
timestep of 10, we see that the the error is as high as 2 AU after about 25
Orbits. This suggests that the simulated body is at the opposite side of the
Earth orbit, which is a signficant error. After peaking at 25 orbits, the error
keeps falling until it is almost negligible again. This test suggests that the
simulated body moves much faster than the analytical body. At an interval
of about 50 years, the simulated body catches up to the analytical body by
an extra orbit, causing the error to sink as they get close, and rise again
afterwards. This same pattern can also be observed for higher timesteps as
the velocity difference between the two methods are increases about 4 times
every 10 days increase in timestep. Additionally, if we take a look at the
renderer when comparing for higher timesteps, we can see that the simulated
body moves so fast that it does not manage to keep the same elliptic orbit as
the analytical body. As we increase the timesteps, the errors in the elliptic
path also significantly increases.

4.3. INTEGRATION RESULTS 73

N

Figure 4.2: Planetary Stability Results in terms of integration stepsize

74 CHAPTER 4. RESULTS AND DISCUSSION

4.4 Celestial Integration Results

Integration
Ratio
(-cir)

Timestep
(-dt)

Internal Time to
timestep instability

dt =40 ~330 years

40 dt=2 ~330 years
40 dt=3 ~330 years
40 dt=4 ~330 years

Table 4.4: Celestial Integration Results

It becomes clear that a timestep that is suitable on a galactic scale, can
cause significant errors when utilized on solar systems. Inside each solar sys-
tems, bodies are much closer to each other, requiring much smaller timesteps
to accurately simulate their force interactions. In order to fix this, we will
utilize the Celestial Symplectic Integration method, which calculates distant
forces less frequently than the forces that are closer. In order to achieve
this, the integration method relies on using one of the implemented Celestial
N-Body algorithms to calculate the external and internal forces exerted on
each solar system.

In this next test, we run several simulations with the same galaxy compo-
sition as before. For each test case, we set a different time step and Celestial
Integration Ratio, and observe the simulation. The results are summarized
in Table 4.4. The tests were first run on the GPU and then compared to the
equivalent Celestial N-Body CPU algorithm to ensure that they produce the
same results. The comparison was done using the comparison component of
the application, with the following terminal call

1| ./ CelestialSimulator —compare —ss 10 —sb 2 —set_nbody
celestial_cpu celestial_gpu —set_integration

4.4. CELESTIAL INTEGRATION RESULTS 5

celestialSymplectic celestialSymplectic —dt dt —cir cir —
totalTime 120450 —log

with varying timestep dt and integration ratio cir. The comparison is run
for 120450 days, which is almost 330 years.

We can see from the results that the Celestial Integration approach allows
us to select a much higher integration stepsize as we can adjust the integration
ratio such that the internal forces are integrated often enough to keep the
solar system sufficiently accurate as well. As we have seen before, as long as
the internal timestep of the solar system remains under 40 days, the system
will remain stable. However, as this causes very inaccurate planetary orbits,
it is much better to choose a timestep around 1 day. The Celestial Integration
method allows us to do this without wasting a lot of computational power
on recalculating external forces that does not change as often as the internal
forces.

Using the Celestial Integration in conjunction with the Celestial N-Body
algorithm, we are able to speedup the simulation by approximating the exter-
nal forces for a number of steps determined by the integration ratio. When
choosing the timestep and integration ratio we need to be cautious of two
potential integration errors. The first error is caused by choosing a timestep
that is high enough to cause significant integration errors even on a galactical
scale. The second error is choosing an integration ratio that is too big. As the
integration ratio increases, the reuse of the external acceleration causes the
approximation to become less accurate. The upper threshold for both these
values are highly dependent upon the galaxy composition. For any galacti-
cal composition, the first error can be determined experimentally by testing
various timesteps and analyze the results. By assuming that lower timesteps
are more accurate, we can determine the point where the error starts getting
too high, based on how accurate we want the simulation to be. However,
determining the second error is much more complicated. Since the Celestial
Integration method is built upon the Celestial N-Body method, which is in
itself an approximation, it is hard to analyze which errors are because of the
N-Body approximation and which errors are because of the integration ap-
proximation. In order to better understand this, the two components needs
to be decoupled such that they can be analyzed independently. This is out
of the scope for this thesis, and we present it as future work in Chapter 5.

76 CHAPTER 4. RESULTS AND DISCUSSION

4.5 Celestial N-Body Accuracy Test

In this section, we will compare the implemented Celestial N-Body algorithm
with the All-Pairs N-Body algorithm. We want to measure how good of an
approximation the Celestial N-Body is. The test will be run on the same
system as before. We assume that the Celestial N-Body algorithm will be
able to give a good approximation as long as the galaxy remains stable.
The approximation will not be sufficient after this point, as solar systems
will start to collide with each other. We first compare the two N-Body
algorithms using the Symplectic Euler Integration method. The comparison
is done by running the two algorithms on two instances of the same galaxy.
We run the simulation for 400 years, and for each timestep we compare the
two galaxies by calculating and summing the absolute distance value for each
of the corresponding bodies in the galaxies. This gives us the total absolute
distance between the two galaxies for the 400 years time-span, which we
graph using Python.

. N-Body All-Pairs CPU and Celestial N-body GPU comparison(10,2)

Y axis: The total absolute distance difference in AU (Logarithmic)

—8 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

X axis: time in years (dt = 1.000000 days)

Figure 4.3: Accuracy Test 1 (distance = 100 AU)

4.5. CELESTIAL N-BODY ACCURACY TEST 77

The results of the comparison between the two N-body algorithms are
a bit surprising. For the current test galaxy, we are simulating using real-
life values for the solar systems. As the sun is around 300000 times more
massive than the Earth, the force contribution from the single planet in the
solar system should be negligible. As such, the center of mass for each solar
system should be located very close to the star, and the Celestial N-Body
algorithm should provide a good approximation. However, as we can see
from Figure 4.3, The exponent of the total absolute difference is continously
increasing before flatting out at around 1. We see another increase from
around 330 years, however this is expected as beyond this point the system
is no longer stable and the Celestial N-Body algorithm is no longer a viable
approximation.

N-Body All-Pairs CPU and Celestial N-body GPU comparison(10,2)

-2 0

Y axis: The total absolute distance difference in AU (Logarithmic)

—8 L L L L L L L
0 50 100 150 200 250 300 350 400

X axis: time in years (dt = 1.000000 days)

Figure 4.4: Accuracy Test 2 (distance = 1000 AU)

We investigate the source of the error further by increasing the distance
from the black hole. Increasing this distance will increase the circumference
of the circle the solar systems are located on, thus increasing the distance

78 CHAPTER 4. RESULTS AND DISCUSSION

) N-Body All-Pairs CPU and Celestial N-body GPU comparison(10,2)

Y axis: The total absolute distance difference in AU (Logarithmic)

_7 L L L L L L L
0 50 100 150 200 250 300 350 400

X axis: time in years (dt = 1.000000 days)

Figure 4.5: Accuracy Test 3 (distance = 10000 AU)

between the solar systems as well. This test will show if the solar systems
were too close to each other in the previous tests. We perform two new tests
with a new distance of 1000 AU and 10000 AU, respectively. The results can
be seen in Figure 4.4 and 4.5. By looking at the figures, we can see that
the problem still persists for larger distances. For both tests the exponent of
the total absolute error flats out at around 1. These results suggest that the
distance between the solar systems is not the source of the error.

In the next series of tests, we will increase the number of bodies in the
galaxy, to see how this affects the error. In the first test, we will significantly
increase the number of solar systems to 100, at a distance of 10000 AU. In the
second test, we will increase the number of bodies within each solar system
to 8 at the same distance of 10000 AU. The results are presented in Figure
4.6 and 4.7. We can see from the results that the error still flats out as the
simulation goes on. However, as we have increased the number of bodies, the
magnitude of the exponent has flattened out to a higher value of around 2,

4.5. CELESTIAL N-BODY ACCURACY TEST 79

4 N-Body All-Pairs CPU and Celestial N-body GPU comparison(100,2)

Y axis: The total absolute distance difference in AU (Logarithmic)

—8 L L L L L L L
0 50 100 150 200 250 300 350 400

X axis: time in years (dt = 1.000000 days)

Figure 4.6: Accuracy Test 4 (distance = 10000 AU)

which is a significantly higher error than before. We can thus surmise that
the error is related to the number of bodies within the galaxy. Considering
this, the error is most likely caused by a numerical error when computing the
center of mass. When approximating the external forces, the center of mass
calculation causes tiny rounding errors which propagates to create larger er-
rors. While the error increases both when increasing the number of solar
systems and the number of solar bodies, the error increases more rapidly in
the latter case. This is reasonable, as the number of computations when
calculating each center of mass increases, thus increasing the error. When
increasing the number of solar systems, the approximated center of mass is
used more in order to approximate distant forces. Using this approximated
value does also generate some error, although in smaller quantities. Increas-
ing the number of solar systems by 10 times, increased the exponent from 1
to 2. However, increasing the number of solar bodies by four times, increases
the error to around 2,2, which is a higher error even though there are fewer

80 CHAPTER 4. RESULTS AND DISCUSSION

. N-Body All-Pairs CPU and Celestial N-body GPU comparison(10,8)

Y axis: The total absolute distance difference in AU (Logarithmic)

—8 L L L L L L L
0 50 100 150 200 250 300 350 400

X axis: time in years (dt = 1.000000 days)

Figure 4.7: Accuracy Test 5 (distance = 10000 AU)

bodies overall in the galaxy.

In the last test, we set the solar systems to 100 and the solar bodies to 8,
for a total of 801 bodies. The result is displayed in Figure 4.8. We can see
that with this galaxy composition, the exponent of the total error is about
3,2. Overall, the error generated by using the center of mass as a means of
approximation is surprisingly high. However, it is possible to explain it when
considering that approximations with small errors are used in many further
computations, which can cascade and end up with causing very large errors
overall in the simulation.

4.5.1 Celestial N-Body Threshold Testing

In this section, we wish to test the threshold switching capabilities of the
Celestial N-Body algorithm, as described in the implementation chapter.
We run several tests with a galaxy consisting of ten solar systems with two

4.5. CELESTIAL N-BODY ACCURACY TEST 81

. N-Body All-Pairs CPU and Celestial N-body GPU comparison(100,8)

Y axis: The total absolute distance difference in AU (Logarithmic)

—8 L L L L L L L
0 50 100 150 200 250 300 350 400

X axis: time in years (dt = 1.000000 days)

Figure 4.8: Accuracy Test 6 (distance = 10000 AU)

bodies each. Figure 4.9 presents one of these test cases, where the threshold
is set at 50 AU. This threshold is reached after about 61 years. We compare
Figure 4.9 with Figure 4.3, which is the same test run without the threshold.

When comparing the two figures, we can see that the results are very
similar. While there are minute changes, the threshold switching does not
reduce the error as was intended. The goal was for the threshold switching to
prevent large-scale errors when systems start to collide with each other. How-
ever, since the switch occurs after several computations of the approximated
algorithm, the state of the two comparison systems are slightly different.
After switching, the same algorithm is used on both systems, but the differ-
ent state of the systems will cause bodies to collide with each other slightly
differently, which can propagate to large errors.

82 CHAPTER 4. RESULTS AND DISCUSSION

4 N-Body All-Pairs CPU and Celestial N-body GPU comparison(10,2)

Y axis: The total absolute distance difference in AU (Logarithmic)

—8 L L L L L L L
0 50 100 150 200 250 300 350 400

X axis: time in years (dt = 1.000000 days)

Figure 4.9: Threshold Test (Threshold = 50 AU, Distance = 100 AU)

4.6 N-Body Performance Comparison Test

In this last section, we will perform a series of performance tests to mea-
sure the performance between the implemented N-Body algorithms. In these
tests, we will keep the number of bodies constant at 8, while increasing the
number of solar systems between each test. The results are presented in Fig-
ure 4.10 and 4.11 and 4.12. In Figure 4.10, we have tested several small-scale
galaxies with solar systems ranging from 100 to 500. In figure 4.11, we test
larger scale galaxies with a solar system count ranging from 1000 to 5000. In
the second test, we have excluded the All-Pairs algorithm, as it becomes too
slow for these large cases. In Figure 4.12, we present how the execution time
increases as the number of solar systems increases for the Celestial N-Body
GPU algorithm.

We can see from the results in Figure 4.10, that the Celestial N-Body
algorithms perform significantly better than the All-Pairs CPU approach,
which is not surprising. Even for relative small numbers of solar systems,

4.6. N-BODY PERFORMANCE COMPARISON TEST 83

All-Pairs CPU Celestial CPU Celestial GPU
Time (ms) N-Body Performance Comparison .
Solar bodies = 8
1600 .
D0 [e i
BOO |
400
0
100 200 300 400 500

Solar Systems

Figure 4.10: N-Body Performance Comparison

the Celestial N-Body algorithms are several times faster than the All-Pairs
CPU algorithm. For smaller values, the Celestial N-Body CPU and GPU
algorithms perform very similarly, however when approaching larger solar
system numbers, the GPU-based algorithm is faster. At 5000 solar systems,
the elapsed time of the GPU-based algorithm is just 6% the time compared
to the CPU-based algorithm. Based on these results, we can see that the
implemented algorithm gains significant performance benefits when utilizing
GPU hardware. When comparing the Celestial N-Body GPU algorithm with
the All-Pairs GPU(GEM3) algorithm (with a block size of 32) we see that
it consistently performs better. By looking at Figure 4.11, we can see that
the execution time is around 90% faster than the All-Pairs GPU N-Body
algorithm when the number of solar systems is set to 5000 for a total of
40000 bodies.

84 CHAPTER 4. RESULTS AND DISCUSSION

> Celestial CPU Celestial GPU O All-Pairs GPU
Time (ms) Large-Scale N-Body Performance Comparison
Solar bodies = 8
30000
O ‘
ABO00 |+
1 ——
N ‘0/07 |

1000 2000 3000 4000 5000
Solar Systems

Figure 4.11: Large-scale N-Body Performance Comparison

4.7 Further Discussion

By looking at the results of the performance test we see that the the current
version of the Celestial N-Body algorithm is very fast. The GPU is able
to efficiently calculate the center of mass in parallel and apply that to the
external solar systems. Using the center of mass as an approximation is very
viable in terms of computational speed. However, by looking at the accuracy
tests we see that the Celestial N-Body algorithms lose accuracy very fast as
the number of bodies rises. As such, the current version of the algorithm
is suitable when we want to do fast simulations that does not require pin-
point accuracy. If the goal of the simulation is purely accuracy, the Celestial
N-Body simulation algorithm will not be sufficient. From the performance
test, we can see that the Celestial N-Body algorithm is significantly faster
than the All-Pairs GPU algorithm featured in NVIDIA’s GPU Gems 3 book.

4.7. FURTHER DISCUSSION 85

Celestial GPU

Time (ms) Large-Scale Celestial N-Body Performance

Solar bodies = 8
3000 |

Ll

TG00 |

7EO |

0
1000 2000 3000 4000 5000 6000 7000 8000

Solar Systems

Figure 4.12: Large-scale Celestial N-Body GPU Performance

However, NVIDIA’s approach is much more general than our algorithm, as
the Celestial N-Body algorithm currently requires certain assumptions to be
met in order to be useful.

86

CHAPTER 4. RESULTS AND DISCUSSION

Chapter 5

Conclusion and Future Work

In this thesis we have looked at a couple of topics relating to galaxy generation
and simulation. In the original thesis draft, the plan was to focus more on
the generator component of the implemented application. However, as work
progressed it became clear that while such an application is able to fulfill
the expected goals, the results obtained by running the simulator on the
generated galaxies are already widely explored and well-known. Because of
this, the simulation component of the application was expanded in order
to implement a specialized N-Body algorithm and a specialized integration
method.

The galaxy generator is currently able to generate simplified galaxies
divided into one or two planes. Stability in the galaxy is achieved by letting
the smaller bodies orbit the larger, more massive bodies. With the correct
mass values and distance between the solar systems, the system will remain
stable for quite some time. It is important for the primary bodies(such as the
black hole and the stars), to be the dominant force for it’s secondary orbiting
bodies. If the mass ratio between the primary body and the orbiting body is
too small, the galaxy created will have multiple bodies which can signicantly
affect smaller bodies. This creates large perturbations which will affect the
stability of the system aversely. It becomes clear that these factors are the
most important to ensure the stability of our generated galaxies.

Tests performed on the simulator component of the application, show
that the specialized Celestial N-Body algorithm runs much faster than the
All-Pairs approach, both on the CPU and the GPU. In addition, the GPU
implementation is able to perform significantly better than the CPU version,
especially for a large number of bodies. When we ran a test with 5000 solar

87

88 CHAPTER 5. CONCLUSION AND FUTURE WORK

systems with 8 solar bodies each (for a total of 40000 bodies, excluding the
black hole), the execution time was over 90% faster. This shows that the
Celestial Algorithm gains much from GPU execution. Accuracy testing on
the specialized N-Body algorithm shows that there are currently significant
errors in the approximation, which is most likely caused by numerical errors
when calculating the center of mass. This error grows as the number of
bodies in the galaxy increases. The current version of the Celestial N-Body
algorithm works well for doing fast simulations that does not require pin-
point accuracy. However, it is not suited for simulation work that needs to
guarantee the highest possible accuracy.

In any physical simulation, the integration of the acceleration into veloc-
ity and positional values is very important. In this thesis, we have explored a
couple of integration methods for use with the simulator component. For in-
stance, we were able to determine that the Explicit Euler integration method
is not suitable for use when integrating planets orbiting a star in a solar sys-
tem, as the energy of the system is not conserved very well. We have instead
opted to use the Symplectic Euler integration method, which was able to
integrate the values without any issues.

Adding to this, we have implemented and briefly tested a specialized
integration method, which utilizes the Celestial N-Body algorithm in order
to approximate the external forces for a period of time. This essentially
allows us to calculate the internal forces with a lower timestep than the
external forces. The initial results look promising, however more research
must be done in order to determine the error when using this approximated
integration method.

5.1 Future Work

In this section we will briefly talk about ideas for future work. The fol-
lowing ideas were things that came to mind during the development of the
application that I believe could be interesting to look at.

e The Celestial Simulator is a tool capable of creating galaxies and sim-
ulating their movement in time. By expanding the type of galaxies the
generator is able to create, there might be interesting things to learn
from analyzing the simulation results.

e The current version of the Celestial N-Body algorithm shows promise

5.1.

FUTURE WORK 89

because of it’s speed of computation. However, accuracy still leaves
something to be desired. We have determined that the source of this
inaccuracy most likely is in the computation of the center of mass. It
would be interesting to look at other ways to approximate the exter-
nal exertion besides the center of mass, and see if this improves the
accuracy.

As mentioned in Chapter 3.8, the current version of the Celestial Sim-
ulator is designed to be run on a single GPU, due to the significant
amount of data that needs to be transfered in a multi-GPU environ-
ment. As NVIDIA’s new NVLink is set to launch together with Pascal
in 2016, this transfer protocol could make a multi-GPU approach much
more viable.Implementing a multi-GPU approach using NVLink and
comparing it to the current version would be an interesting case study.

The communication capabilities between CUDA and OpenGL is crucial
in order to ensure the efficiency of the application. It would be interest-
ing to evaluate how the CUDA and OpenGL interoperability measure
up to other approaches. In particular, OpenGL offers the OpenGL
Compute Shader[25] that allows us to do general purpose computa-
tions using the glsl shader language. Not unlike CUDA, this allows
us to do various types of general purpose computations on the GPU
kernels. Using the OpenGL compute shader in conjunction with the
OpenGL renderer might lead to performance improvements, as both
features are part of the same OpenGL framework.

In Chapter 4.4, we tested the Celestial Integration algorithm, and saw
some promising results with regards to having dynamic integration
timesteps. However, as this method is an approximation and is also
based on the approximate Celestial N-Body algorithm, doing mean-
ingful analysis of this method can be challenging. By finding a way
to decouple the integration method from the N-Body algorithm, there
might be a way to better analyse the error of this approximate integra-
tion method.

90

CHAPTER 5. CONCLUSION AND FUTURE WORK

Bibliography

1]

2]

3]

[4]

[5]

Sverre J. Aarseth. Gravitational n-body simulations, tools and algo-
rithms. Cambridge University Press, 2003, 2003.

Kendall A. Atkinson. An introduction to numerical analysis, 2nd edition.
New York, John Wiley and Sons, 1989.

J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algo-
rithm. Nature, 324:446-449, December 1986.

Martin Burtscher and Keshav Pingali. Chapter 6 an efficient cuda im-
plementation of the tree-based barnes hut n-body algorithm.

Henry Cavendish. Experiments to determine the density of the earth.
Philosophical Transactions of the Royal Society of London, Vol. 88
(1798), 469-526, 1798.

John M. A. Danby. Fundamentals of celestial mechanics, 2nd revised
and enlarged edition, September 1988.

Travis Desell, Malik Magdon-ismail, Boleslaw Szymanski, Carlos A.
Varela, Benjamin A. Willett, Matthew Arsenault, and Heidi Newberg.
Evolving n-body simulations to determine the origin and structure of
the milky way galaxy’s halo using volunteer computing. 2011 IEEE
International Parallel and Distributed Processing Symposium, 2011.

Albert Einstein. Relativity: The special and general theory (translation
1920). H. Holt and Company, 1920.

Mark Fowler. ATI Radeon HD5000 Series: An Inside View - Un-
leashing the Power of Parallel Compute! High Performance Graph-
ics 2010 http://www.highperformancegraphics.org/previous/www_

91

92

[11]

[12]

[13]

[17]
[18]

BIBLIOGRAPHY

2010/media/Hot3D/HPG2010_Hot3D_AMD.pdf, 2010. [Online; accessed
30-June-2015].

Sumit Gupta. NVIDIA Updates GPU Roadmap; An-
nounces Pascal. http://blogs.nvidia.com/blog/2014/03/25/
gpu-roadmap-pascal/, March 2014. [Online; accessed 05-January-
2015].

Sumit Gupta. What is NVLink? And How Will It Make the
World’s Fastest Computers Possible? http://blogs.nvidia.com/
blog/2014/11/14/what-is-nvlink/, November 2014. [Online; ac-
cessed 05-January-2015].

J.C Hall. A multipropagator approach to real-time orbit simulation.
Aerospace Conference Proceedings, 2002. IEEE (Volume:7), 2002.

Tsuyoshi Hamada, Tetsu Narumi, Rio Yokota, Kenji Yasuoka, Keigo Ni-
tadori, and Makoto Taiji. 42 tflops hierarchical n-body simulations on
gpus with applications in both astrophysics and turbulence. In Proceed-
ings of the Conference on High Performance Computing Networking,
Storage and Analysis, SC ’09, pages 62:1-62:12, New York, NY, USA,
2009. ACM.

Mark Harris. How to Implement Performance Metrics in CUDA
C/C++. NVIDIA Developer Zone http://devblogs.nvidia.com/
parallelforall/how-implement-performance-metrics-cuda-cc/,
November 2012. [Online; accessed 30-June-2015].

Mark Harris. The Power of C++11 in CUDA 7. NVIDIA De-
veloper Zone http://devblogs.nvidia.com/parallelforall/
power-cppll-cuda-7/, March 2015. [Online; accessed 30-June-2015].

Joakim Hommeland. A Qualitative Performance Comparison of Kepler
and Maxwell GPUs through Benchmarking, January 2015. Pre-Master
Project at the Norwegian University of Science and Technology. Advisor:
Anne C. Elster.

Johannes Kepler. Astronomia nova, 1609.

Johannes Kepler. Harmonices mundi, 1619.

BIBLIOGRAPHY 93

[19]

[20]

[21]

22]

23]

[27]

28]
[29]

NVIDIA Corporation. Technical Brief: NVIDIA GeForce 8800
GPU Architecture Overview. www.nvidia.com/object/I0_37100.
html, November 2006. [Online; accessed 30-June-2015].

NVIDIA Corporation. What Every CUDA Programmer Should Know
About OpenGL. GPU Technology Conference http://www.nvidia.
com/content/gtc/documents/1055_gtc09.pdf, October 2009. [On-
line; accessed 30-June-2015].

NVIDIA Corporation. Optimizing CUDA - Part II. GPU Technology
Conference http://on-demand.gputechconf .com/gtc-express/
2011/presentations/NVIDIA_GPU_Computing_Webinars_Further_
CUDA_Optimization.pdf, 2011. [Online; accessed 30-June-2015].

NVIDIA Corporation. NVIDIA GeForce GTX 980 Whitepaper.
http://international.download.nvidia.com/geforce-com/
international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF,
2014. [Online; accessed 05-January-2015].

NVIDIA Corporation. OpenGL Interoperability. The CUDA
Toolkit v7.0 Documentation http://docs.nvidia.com/cuda/
cuda-runtime-api/group__CUDART__OPENGL.html#group__CUDART_
_OPENGL, March 2015. [Online; accessed 30-June-2015].

SDL Community. Simple Directmedia Layer. SDL2 Website https:
//www.libsdl.org/index.php. [Online; accessed 30-June-2015].

The Khronos Group. Compute Shader. OpenGL Website https://wuw.
opengl.org/wiki/Compute_Shader. [Online; accessed 30-June-2015].

The Khronos Group. OpenGL 3.3 Reference Pages. OpenGL Web-
site https://www.opengl.org/sdk/docs/man3/. [Online; accessed 30-
June-2015].

The Khronos Group. OpenGL Overview. OpenGL Website https:
//www .opengl.org/about/. [Online; accessed 30-June-2015].

C. D. Murray and Dermott S. F. Solar System Dynamics, 1999.

Isaac Newton. Philosophie Naturalis Principia Mathematica. The Royal
Society, 1687.

94

[30]

[39]

[40]

BIBLIOGRAPHY

Edgar Josafat Martinez Noriega and Tetsu Narumi. High performance
n-body simulation and visualization through cuda architecture. Bulletin
of The University of Electro-Communications 24-1, pp. 59-64, 2012.

M. Nyland, L. Harris and Prins J. Fast N-Body Simulation with CUDA.
GPU Gems 3 Chapter 31, 2007.

Dennis Overbye. Black hole hunters. The New York
Times http://www.nytimes.com/2015/06/09/science/
black-hole-event-horizon-telescope.html, June 2015. [On-

line; accessed 30-June-2015].

Ashu Rege. An Introduction to Modern GPU Architecture. ftp:
//download.nvidia.com/developer/cuda/seminar/TDCI_Arch.pdf,
2012. [Online; accessed 30-June-2015].

Mark J. Stock and Adrin Gharakhani. Toward efficient gpu-accelerated
n-body simulation. 46th AIAA Aerospace Sciences Meeting and Exhibit,
January 2008.

N.M Swerdlow. Notes: Kepler’s iterative solution to kepler’s equation.
Journal for the History of Astronomy, p.339, September 2000.

Mikko Tuomi. Evidence for 9 planets in the hd 10180 system. Astronomy
and Astrophysics Volume 543, July 2012.

Nathan Whitehead and Alex Fit-Florea. Precision and Performance:
Floating Point and IEEE 754 Compliance for NVIDIA GPUs, 2011.

Dr. David R. Williams. Planetary fact sheet - metric. http://nssdc.
gsfc.nasa.gov/planetary/factsheet/, 2014. [Online; accessed 30-
June-2015].

Dr. David R. Williams. Planetary fact sheet. http://nssdc.gsfc.
nasa.gov/planetary/planetfact.html, 2015. [Online; accessed 30-
June-2015].

Dr. David R. Williams. Planetary fact sheet - ratio to earth val-
ues. http://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_
table_ratio.html, 2015. [Online; accessed 30-June-2015].

Appendix A

Celestial Simulator Guides

This appendix details the installation and user guide needed to use the im-
plemented application.

A.1 Installation Guide

The Following instructions were tested on an Ubuntu 14.04 64-bit machine.

1. Before compiling the application the following dependencies must be
installed.

(a) NVIDIA CUDA Toolkit 7.0 (Install from NVIDIA’s CUDA down-
load page)
(b) OpenGL Mesa (Install the libgles2-mesa package using apt-get)
(¢) GLEW (Install the libglew-dev package using apt-get)
(d) SDL2 (Install the libsdl2-dev package using apt-get)
)

(e) In order to graph the results, Python 2.7 must be installed, along
with the necessary libraries (Install python-dev, python-numpy,
python-scipy and python-matplotlib using apt-get)

2. After all of the dependencies have been resolved, compile the applica-
tion by running the make command in the install folder.

3. The application is terminal-based. After installation, run the applica-
tion in the terminal with the desired arguments. The arguments the
application takes as input can be confirmed in the next section.

95

96 APPENDIX A. CELESTIAL SIMULATOR GUIDES

4. In the case the renderer is used, commands for the renderer can be
confirmed in Usage Guide.

A.2 Usage Guide

Initial Argument Function

-h or -help Show Command Line Help

Launches the TwoBody

-twoBody 1 [or] 2 Component

Launches the Comparison
-compare Component to Compare
Algorithms

-performance Launches The Performance

P Component

Launches Simulation Using
Celestial Renderer

No Argument [Default]

Table A.1: Initial Commands for the application

The application is launched from the terminal using run-time arguments
based on the simulation/test the user wants to do. There are four main
modes that can be executed, depending on the first argument when launching
the application. In addition, to this depending on each mode, there are
several optional arguments that can be specified to change the simulation.
The available commands can be confirmed in the table below. Integration
method and N-Body algorithm can be set using the ”Set Integration” and
”Set N-Body” arguments. For the default component using the simulation,
these arguments takes in one additional parameter specifying the algorithm
and the integration method. However, pelase note that for the comparison
component, these arguments expect two parameters. This is used to compare

A.2. USAGE GUIDE 97

the difference between various algorithm and integration method pairs. In
the event that Celestial Integration is chosen as the integration method,
as it exclusively utilize the Celestial N-Body algorithm, the ”Set N-Body”
argument will not be used. However the N-Body algorithm set will determine
if the Celestial Integration will be performed on the CPU or the GPU. Also,
in the event that threshold switching is enabled, the set N-Body algorithm
will be used as the fallback algorithm. Most of the default values for the
application can be confirmed in Figure A.1. The default values for the GPU
block sizes have all been set to 32.

Switch Function
-log Enable Output Log

-showReport Show Report of the Comparison
-set_nbody [algorithm] Set the N-Body Algorithm to use

allpairs_cpu Set All-Pairs N-Body CPU

allpairs_gpu Set All-Pairs N-Body GPU

celestial_cpu Set Celestial N-Body CPU

celestial_gpu Set Celestial N-Body GPU
celestialGrouped_gpu Set Celestial N-Body Grouped GPU

-set_integration [method] Set the Integration Method to use
symplecticEuler Set the Symplectic Euler Integration Method
explicitEuler Set the Explicit Euler Integration Method
celestialSymplectic Set the Celestial Symplectic Integration Method

celestialExplicit Set the Celestial Explicit Integration Method

Table A.2: Run-time arguments flags for the Celestial Simulator Application

98

APPENDIX A. CELESTIAL SIMULATOR GUIDES

Solar Systems: 8 (-ss) Solar Bodies: 8 (-sb)
Timestep 40.00 (-dt)
N-Body Algorithm: N-Body All-Pairs CPU (-set_nbody)

Integration Method: Symplectic Euler Integration (-set_integration)

Galaxy Planes: 1 (-gp)

Galaxy Planes Distance: 30.00 AU (-gpd)

Threshold Switching Enabled: @ Threshold Distance: 0.00 AU (-threshold)
Black Hole Mass: 3329460.00 Earth Masses (10.00 Sun Masses) (-sbhr sun_ratio)
Black Hole Closest Distance: 100.00 AU (-cd)

Figure A.1: Default Values for the Celestial Simulator Application

Switch Function
-log Enable Output Log

-showReport Show Report of the Comparison
-set_nbody [algorithm] Set the N-Body Algorithm to use

allpairs_cpu Set All-Pairs N-Body CPU

allpairs_gpu Set All-Pairs N-Body GPU

celestial_cpu Set Celestial N-Body CPU

celestial_gpu Set Celestial N-Body GPU
celestialGrouped_gpu Set Celestial N-Body Grouped GPU

-set_integration [method] Set the Integration Method to use
symplecticEuler Set the Symplectic Euler Integration Method
explicitEuler Set the Explicit Euler Integration Method
celestialSymplectic Set the Celestial Symplectic Integration Method

celestialExplicit Set the Celestial Explicit Integration Method

Table A.3: Run-time flags for the Celestial Simulator Application

A.2. USAGE GUIDE 99

Usage Function
-ss [Integer] Number of Solar Systems
-sb [Integer] Number of Solar Bodies
-ibs [Integer] Integration GPU Block Size

-cbs [Integer] Celestial N-Body Block Size

-abs [Integer] All-Pairs GPU Block Size

-cir [Integer] Celestial Integration Ratio

-cd [float] Set Distance to Black Hole

-sbhr [float] Set Star-Black Hole Mass Ratio

Set Timestep in Days

-dt [float]
-gp 1 [or] 2 Set Number of Galaxy Planes
-gpd -gpd [float] Set Distance between Planes
-threshold -threshold [float] Set Threshold For Celestial N-body

Table A.4: Run-time arguments for the Celestial Simulator Application

100 APPENDIX A. CELESTIAL SIMULATOR GUIDES

Keyboard Input Function
Esc Close the window and quit the application
Directional Key Up Zoom In (Decrease FOV)
Directional Key Down Zoom Out (Increase FOV)
Directional Key Left Rotate Left
Directional Key Right Rotate Right
Space Start/Pause Simulation
R Reset Camera
TAB Invert Camera
F Reset FOV
Turn Celestial Integration On/Off
Turn V-Sync On/Off

Print Current Timestep to Console
Turn Logging On/Off
Turn Performance Measure On/Off

Table A.5: Keyboard Controls for the Celestial Simulator Application

Appendix B

Planetary and Simulation
values

This appendix shows an overview of the values used when generating galaxies
and during simulation.

B.1 Determining the Gravitational Constant

G

We want to determine the gravitational constant G based on the fact that our
mass values are expressed in earth masses and distance is expressed using the
astronomical unit (AU). We want the timestep to be expressed in days. We
can thus convert the gravitational constant G found by Henry Canvendish
to

8.883E " Days > Mg AU® (B.1)

B.2 Planetary Values

On the following pages are an overview of the different planetary values we
have used when creating the orbits in this thesis. The following information
has been compiled from the NASA planetary factsheet[39][38][40] and con-
verted to the appropriate unit based on the Gravitational Constant derived
in the previous section.

101

102 APPENDIX B. PLANETARY AND SIMULATION VALUES

Planet Eccentricity (¢)
Mercury 0,205
Venus 0,007
Earth 0,017
Mars 0,055
Jupiter 0,049
Saturn 0,057

Uranus 0,046

Neptune 0,011

Table B.1: Eccentricity values for the planets orbiting the Sun

Planet Mass Unit
Sun 332946 Me
Mercury 0,0553 Me
Venus 0,815 Me
Earth 1.0 Me
[ETE] 0,107 Me
Jupiter 317,8 Mae
Saturn 95,2 Me

Uranus 14,5 Me

Neptune 171 Me

Table B.2: Mass values for the planets in our solar system.

B.2. PLANETARY VALUES

Planet

Mercury

Venus
Earth
Mars

Jupiter

Saturn

Uranus

Neptune

103

Semi-Major axis a in AU
0,387
0,723
1,0
1,624
5,204
9,582
19,201

30,047

Table B.3: Semi-major axis values for the planets orbiting the Sun in Astro-

nomical Units

104 APPENDIX B. PLANETARY AND SIMULATION VALUES

0 3O Ui WK

N}

10

12

13
14
15
16
17
18
19

Appendix C

Code Contributions

The following appendix include the important code contributions from this
thesis. Please note that the code in this appendix has been design as part of
a larger application. For the full code, please take a look at the source code
accompanying this thesis.

C.1 Galaxy Generator

#include ” GalaxyGenerator.h”

#include ”math.h”

#include ”../input/CelestialConstants.h”
#include <stdio.h>

#include 7 ../ utility /RandomNumberGenerator.h”
#include 7 ../ utility /CudaErrorCheck.h”
#include ”../input/UserInput.h”

#define ToRadian(x) ((x) * M_PI / 180.0f)
#define ToDegree(x) ((x) * 180.0f / M_PI)

void GalaxyGenerator:: createGalaxy (int solarSystems , int
solarBodies) { //Currently only supports 2 planes (the angle
is wrong)

float blackHoleMass = Userlnput:: blackHoleMass;
float starMass = CelestialConstants ::sun_mass;
float startAngle = ToRadian (45);

//Set Galazy Center properties
velocities [0] = make_float3 (0, 0, 0);

105

106 APPENDIX C. CODE CONTRIBUTIONS

20| positions [0] = make_float3 (0, 0, 0);
21| mass[0] = blackHoleMass;

22

23 float distance = Userlnput:: blackHoleClosestDistance;

24 float planes_distance = Userlnput:: galaxyPlanesDistance;
25

26 int planes = Userlnput:: galaxyPlanes;

27

28 int solarPerPlane = solarSystems / planes;

29 float inclination.d = 2«xM_PI / solarPerPlane;

30| float azimuth.d = M_PI / planes;

31

32 int starIndex = 1;
33] for (int plane_i = 0; plane_.i < planes; plane_i++) {
34

35 float azimuth = plane_i % azimuth_.d + startAngle;

36 for (int solar_i = 0; solar_i < solarPerPlane; solar_i++) {

37

38 float inclination = solar_i % inclination_d;

39

40 //Set mass of the sun

41 mass [starIndex] = starMass;

42

43 //Step 1: Find the Star’s start position in relation to
the Black Hole

44 positions [starIndex] = findSolarStartPosition (distance,
inclination , azimuth);

45

46 //Step 2: Find the Star’s star wvelocity needed in order to
orbit the Black Hole

47 findStartVelocity (0, starIndex, 0, distance, inclination ,
azimuth) ;

48

49 //Step 3: Find Solar System bodies start position and
velocity in relation to star

50 setSolarSystemValues (starIndex , starIndex 4 solarBodies,
azimuth) ;

51

52 starIndex += solarBodies;

53

54 }

55

56 distance += planes_distance;

57

58])

59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76

7
78
79
80
81
82
83
84
85
86
87

88
89

90
91
92
93

94
95
96
97

C.1. GALAXY GENERATOR 107

}

void GalaxyGenerator ::setSolarSystemValues (int startIndex , int
endIndex, float azimuth) {

float planetMass = CelestialConstants::earth_mass;
float e = CelestialConstants:: earth_e;
float a = CelestialConstants::earth_a;

for (int i = startIndex + 1; i < endIndex; i++) {

//Set mass of the planet
mass[i] = planetMass;

float theta = RandomNumberGenerator:: getRand (0, 2+«M_PI);

//Find Start Position
findPlanetStartPosition (startIndex, i, e, a, theta, azimuth)

)

//Find Start Velocity
findStartVelocity (startIndex, i, e, a, theta, azimuth);

a += CelestialConstants :: earth_a;

}

float3 GalaxyGenerator:: findSolarStartPosition (float r, float
inclination , float azimuth) {

return make_float3 (r * sin(inclination) * cos(azimuth), r =
sin (inclination) * sin(azimuth), r % cos(inclination));

}

void GalaxyGenerator:: findPlanetStartPosition (int primaryIndex,
int secondarylndex, float e, float a, float theta, float
azimuth) {

float3 primaryPosition = positions|[primarylndex];
float3 blackholePosition = positions [0];

98

99
100
101
102
103

104
105
106
107

108

109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

108

float3 ss_vec = make_float3 (blackholePosition.x —
primaryPosition .x,
blackholePosition.z — primaryPosition.z);

//Find position
float r = a x (1 —e xe) / (1 + e *x cos(theta));

float3 positionZY = make_float3 (0, r x sin(theta), r * cos(

theta));

//Rotate to match the current plane

float3 position;

position.x = positionZY .x * cos(2 % M_PI — azimuth) —
positionZY .y x sin (2xM_PI — azimuth);

position.y = positionZY .x % sin(2 * M_PI — azimuth) +
positionZY .y x cos(2«M_PI — azimuth);

APPENDIX C. CODE CONTRIBUTIONS

blackholePosition.y — primaryPosition.y,

position.z =
position.x —= ss_vec.X;
position.y —= ss_vec.y;
position.z —= ss_vec.z;

positions |[secondaryIndex]

}

void GalaxyGenerator :: findS
secondaryIndex , float e,

float primaryMass mass |

positionZY .z;

)

position;

tartVelocity2D (int primaryIndex, int
float a, float theta) {

primaryIndex |;

float secondaryMass = mass[secondaryIndex];

//Find phi

float phi = G % (primaryMass + secondaryMass) ;

//Find Orbital Period
float T = sqrt ((4 * M_PI

//Find Mean Motion
float n = 2 « M.PI / T;

//Find start wvelocity
float startX (=1) % (n
float startY (n * a /s

x* M_PI / phi) * a *x a x a);

x a / sqrt(l — e % e)) x sin(theta);
qrt (1 — e *x e)) *x (e + cos(theta));

138
139
140
141

142
143
144
145
146
147

148
149
150
151

152
153

154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

C.1. GALAXY GENERATOR 109

float3 startVelocity = make_float3 (startX , startY, 0);
velocities [secondaryIndex| = make_float3 (startVelocity .x +
velocities [primaryIndex].x,
startVelocity .y + velocities [primaryIndex].y,
startVelocity .z 4+ velocities [primaryIndex].z);
}
void GalaxyGenerator:: findStartPosition2D (int primaryIndex, int

secondaryIndex , float e, float a, float theta) {

//Find position

float r = a *x (1 — e x e) / (1 + e x cos(theta));

float3 startPos = make_float3(r * cos(theta), r x sin(theta),
0);

positions [secondaryIndex] = make_float3 (startPos.x + positions
[primaryIndex].x,
startPos.y + positions [primaryIndex].y,
startPos.z + positions[primarylndex].z);

}

void GalaxyGenerator:: findStartVelocity (int primaryIndex, int
secondaryIndex ,
float e, float a, float theta, float azimuth) {

float primaryMass = mass[primaryIndex |;
float secondaryMass = mass[secondaryIndex |;

//Find phi
float phi = G x (primaryMass + secondaryMass);

//Find Orbital Period
float T = sqrt((4 « M_PI « M_PI / phi) * a * a % a);

//Find Mean Motion
float n = 2 « M.PI / T;

//Find start wvelocity

float startX = (—1) * (n * a / sqrt(l — e * e)) * sin(theta);
float startY = (n %« a / sqrt(l — e * e)) * (e + cos(theta));
float3 velocityZY = make_float3 (0, startY , startX);

178
179
180
181

182

183
184
185
186
187
188
189
190
191
192
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

110 APPENDIX C. CODE CONTRIBUTIONS

}

//Rotate it to match the plane

float3 velocity;

velocity .x = velocityZY .x x cos(2 * M_PI — azimuth) —
velocityZY .y x sin(2 % M_PI — azimuth);

velocity .y = velocityZY .x * sin(2 * M_PI — azimuth) +
velocityZY .y % cos(2 x M_PI — azimuth);

velocity .z = velocityZY .z;

velocity .x += velocities [primarylndex].x;

velocity .y 4= velocities [primarylndex].y;

velocity .z 4= velocities [primaryIndex].z

)

velocities [secondaryIndex]| = velocity;

GalaxyGenerator :: GalaxyGenerator (int solarSystems , int

}

solarBodies) {
this—>solarSystems = solarSystems;
this—>solarBodies = solarBodies;
this—>N = 1 + solarSystems * solarBodies;

allocateVariables (N);

createGalaxy (solarSystems, solarBodies);

void GalaxyGenerator:: allocateVariables (int N) {

}

positions = (float3x*) calloc (N, sizeof(float3));
accelerations = (float3*) calloc (N, sizeof(float3));
velocities = (float3*) calloc (N, sizeof(float3));
mass = (floatx) calloc (N, sizeof(float));

//Set acceleration to zero
for (int i=0;i<N;i++) {
accelerations[i] = make_float3(0,0,0);

}

float3 xGalaxyGenerator :: getPositionsGPU () {

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

257
258
259
260
261
262
263

C.1. GALAXY GENERATOR

}

float3 *xpositions_d;
CudaSafeCall (cudaMalloc(&positions_d , sizeof(float3) % N));
CudaSafeCall (
cudaMemcpy (positions_d , positions, sizeof(float3) * N,
cudaMemcpyHostToDevice)) ;

free (positions);

return positions_d;

float3 xGalaxyGenerator:: getVelocitiesGPU () {

}

float3 *xvelocities_d;
CudaSafeCall (cudaMalloc(&velocities_d , sizeof(float3) % N));
CudaSafeCall (
cudaMemcpy (velocities_d , velocities , sizeof(float3) * N,
cudaMemcpyHostToDevice)) ;

free(velocities);

return velocities_d;

float3 xGalaxyGenerator:: getAccelerationsGPU () {

float3x accelerations_d;

111

CudaSafeCall (cudaMalloc(&accelerations_d , sizeof(float3) % N))

)

CudaSafeCall (
cudaMemcpy (accelerations_d , accelerations
sizeof(float3) x N, cudaMemcpyHostToDevice)) ;

free (accelerations);

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

112 APPENDIX C. CODE CONTRIBUTIONS

return accelerations_d;

}

float xGalaxyGenerator :: getMassesGPU () {
float s*masses_d;
CudaSafeCall (cudaMalloc(&masses_d , sizeof(float) % N));
CudaSafeCall (

cudaMemcpy (masses_d , mass, sizeof(float) * N,
cudaMemcpyHostToDevice)) ;

free (mass) ;
return masses_d;

}

float3 * GalaxyGenerator:: getPositions () {
return positions;

}

float3+ GalaxyGenerator:: getVelocities () {
return velocities;

}

float3 xGalaxyGenerator:: getAccelerations () {
return accelerations;

}

float xGalaxyGenerator :: getMasses () {
return mass;

}

int GalaxyGenerator::getN () {

309
310
311
312
313
314
315
316
317
318
319
320
321
322

C.1. GALAXY GENERATOR

return N;
}
int GalaxyGenerator:: getSolarSystems () {

return solarSystems;

}

int GalaxyGenerator:: getSolarBodies () {

return solarBodies;

113

CO ~J O UL i W N+~

10
11

12
13
14

15

16
17
18
19
20
21
22
23

24
25

26
27
28
29
30
31
32
33
34

114 APPENDIX C. CODE CONTRIBUTIONS

C.2 Celestial N-Body

#include ” CelestialNbody .h”

#include ”"NbodylInteractions.h”
#include 7 ../ utility /CudaErrorCheck.h”
#include 7 ../input/UserInput.h”
#include <stdio.h>

//CPU

bool CelestialNbody :: celestialNbodyCPU (float3 xacceleration ,
float3 xposition, float xmass, int solarSystems, int
solarBodies , bool enableThresholdSwitching) {

if (UserInput::logSimulation) {
printf(” [Log| Simulation Algorithm: Celestial N-Body CPU
Algorithm\n”) ;
}

float4 xmassCenters = calculateInternalAccelerationCPU (
acceleration , position, mass, solarSystems, solarBodies);

bool thresholdReached = calculateExternalAccelerationCPU (
acceleration , position, mass, massCenters, solarSystems,
solarBodies , true, UserInput::distanceThreshold);

free (massCenters) ;

return enableThresholdSwitching && thresholdReached;

}

float4 xCelestialNbody :: calculateInternalAccelerationCPU (float3
xacceleration , float3 xposition, float xmass, int
solarSystems , int solarBodies) {

float4 xmassCenters = (float4dx) calloc (solarSystems, sizeof(
floatd));

for (int solarIndex=0;solarIndex<solarSystems;solarIndex++) {

int start = (solarIndex x solarBodies) + 1;
int end = start + solarBodies;

float totalMass = 0.0;
float xSum = 0.0;
float ySum = 0.0;

C.2. CELESTIAL N-BODY 115

35 float zSum = 0.0;

36

37 for (int i=start;i<end;i++) {

38

39 float3 i_acc = make_float3(0,0,0);

40

41 for (int j=start;j<end;j++) {

42

43 if (i =j) {

44 continue;

45 }

46

47 i_acc = computeBodyBody (position[i], mass[i], position[j
], mass[j], i-acc);

48

49 }

50

51 acceleration[i] = i_acc;

52

53 totalMass += mass[i];

54 xSum += mass|[i] * position[i].x;

55 ySum += mass[i] * position[i].y;

56 zSum += mass[i] * position[i].z;

57 }

58

59 //Calculate Center of mass

60 massCenters [solarIndex] = make_float4 (xSum / totalMass, ySum

/ totalMass, zSum / totalMass, totalMass);

61

62| }

63

64 return massCenters;

65

66| 1

67

68| bool CelestialNbody :: calculateExternalAccelerationCPU (float3 =x
acceleration , float3 xposition, float xmass, floatd x

massCenters ,
69 int solarSystems, int solarBodies, bool sumAcc, float
distanceThreshold) {
70
71 int N =1 + solarBodies x solarSystems;
72

73 bool thresholdReached = false;
74

75
76
7
78
79
80
81
82
83
84
85
86

87
88
89
90

91
92
93
94

95
96

97
98
99

100
101

102

103
104
105
106
107
108
109
110
111
112

116

APPENDIX C. CODE CONTRIBUTIONS

for (int i=1;i<N;i++) {

int solarIndex = (i — 1) / solarBodies;

float3 i_acc;
if (sumAcc) {
i_acc = acceleration[i];
} else {
i_acc = make_float3 (0,0,0);

}

i_acc = computeBodyBody (position|[i], mass[i], position[0],
mass [0] , i_acc);

for (int j=0;j<solarSystems;j++) {

float3 j_pos = make_float3 (massCenters[j].x, massCenters]|]
].y, massCenters|[j].z);
float j.mass = massCenters[]j].w;
if (j !'= solarIndex) {
i_acc = computeBodyBody (position[i], mass[i], j-pos,

j-mass, i-acc);

if (distanceThreshold > 0) { //This can be optimized by
putting this code in a separate loop.

float3 i_com = make_float3 (massCenters[solarIndex].x,
massCenters[solarIndex].y, massCenters|[solarIndex

l.2);

float3 distanceVector = calculateDistanceVector (i_com,
j-pos);
float absoluteDistance = calculateAbsoluteDistance (

distanceVector);

if (absoluteDistance <= distanceThreshold) {
thresholdReached = true;

}

113
114
115
116
117
118
119
120
121

122
123
124

125
126
127
128
129
130
131

132
133
134
135

136
137
138

139
140
141

142
143
144
145
146

147
148

C.2. CELESTIAL N-BODY 117

}

acceleration[i] = i_acc;

}

return thresholdReached;

bool CelestialNbody ::launchCelestialNbodyKernel (float3 x

acceleration_d , float3 =xposition_d, float xmass_.d, int
solarSystems , int solarBodies, bool enableThresholdSwitching)

{

if (UserInput::logSimulation) {
printf(” [Log] Simulation Algorithm: Celestial N-Body GPU
Algorithm\n”) ;

¥
int N =1 4 solarBodies * solarSystems;

int block_size = solarBodies;

int num_blocks = solarSystems;

int sharedMemSize = block_size * sizeof(float3) + block_size x
sizeof (float);

//Allocate memory in cuda kernel

float4 sxmassCenters;

CudaSafeCall(cudaMalloc(&massCenters, sizeof(float) x 4 x
solarSystems));

bool xthresholdReachedGPU;
CudaSafeCall (cudaMalloc(&thresholdReachedGPU, sizeof(bool)))

)

//Step 1: Calculate Internal Accelerations
calculateInternalAccelerationGP U <<<num_blocks, block_size
sharedMemSize>>>(

acceleration_d , position_.d, mass.d, massCenters, N);
CudaCheckError () ;

)

int ext_blockSize = Userlnput:: allPairsBlockSize;
int ext_numBlocks = (N-—1) / ext_blockSize + (((N-=1) %
ext_blockSize = 0) 7 0 : 1);

//Step 2: Calculate Exzternal Accelerations

118 APPENDIX C. CODE CONTRIBUTIONS

149 calculateExternalAccelerationGP U <<<ext_numBlocks ,
ext_blockSize >>>(acceleration_d , position_d, mass_d,

150 massCenters, solarSystems, solarBodies, true, Userlnput ::
distanceThreshold , thresholdReachedGPU) ;

151| CudaCheckError () ;

152
153 bool thresholdReached_output = false;
154| if (enableThresholdSwitching) {

155 bool xthresholdReached = (boolx) malloc(sizeof(bool));

156 CudaSafeCall(

157 cudaMemcpy (thresholdReached , thresholdReachedGPU, sizeof
(bool) ,

158 cudaMemcpyDeviceToHost)) ;

159 thresholdReached_output = *xthresholdReached;

160| }

161

162| //Free Memory

163| CudaSafeCall(cudaFree(massCenters));

164| CudaSafeCall(cudaFree(thresholdReachedGPU));
165
166 return thresholdReached_output;
167
168 }
169
170| //GPU Kernels
171
172| __global__ void calculatelnternalAccelerationGPU (float3 =x
acceleration_d , float3 xposition_d, float xmass_.d, floatd =
output_com, int N) {

173
174\ //Find the index of this planet in the array

175 int planetIndex = blockldx.x * blockDim.x 4+ threadldx.x + 1;
176 int solarGloballndex = blockldx.x;

177 int solarBodies = blockDim.x;

178
179 //Define shared memory

180| extern __shared__. float sharedMemory [];
181
182| //Divide into float3 position and float mass

183 float s*massShared = sharedMemory;

184 float3 xpositionShared = (float3) &massShared[solarBodies];
185
186 float i_mass;
187 float3 i_pos;
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223
224
225
226
227
228
229
230
231
232

C.2. CELESTIAL N-BODY

if (planetIndex < N) {

//Load position wvalues for body i
i_pos = position_d[planetIndex];

//Load mass value for body i
i_mass = mass_d[planetIndex |;

//Load data into the block’s shared memory

positionShared [threadldx.x] = position_d [planetIndex];
massShared [threadldx.x] = mass_d[planetIndex|;

}

__syncthreads () ;

float3 i_acc = make_float3(0,0,0);
if (planetIndex < N) {

float3 j_pos;
float j_mass;

float totalMass = 0.0;

float xSum = 0.0;
float ySum = 0.0;
float zSum = 0.0;

)

for (int j = 0; j < solarBodies; j++) {
j_pos = positionShared[j];
j-mass = massShared[]];

i_acc = computeBodyBody(i_pos, i_mass, j_-pos, j_-mass,
i_acc);

if (output_com) {
totalMass += j_mass;
XSum += j_mass * j_pos.X;
ySum += j_mass * j_pos.y;
zSum += j_mass * j_pos.z;

119

233
234

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271
272

120 APPENDIX C. CODE CONTRIBUTIONS

if (threadldx.x = 0 && output_com) {
output_com [solarGloballndex]| = make_float4 (xSum /
totalMass , ySum / totalMass, zSum / totalMass,
totalMass) ;
}
}
__syncthreads () ;
if (planetIndex < N) {
acceleration_d [planetIndex] = i_acc;
}

}

__global__ void calculateExternalAccelerationGPU (float3 =x
acceleration_d , float3 xposition_.d, float xmass_.d, floatd =
massCenters
int solarSystems, int solarBodies, bool sumAcc, float

distanceThreshold , bool xthresholdReached) {
int globallndex = blockldx.x % blockDim.x + threadldx.x + 1;
int N =1 + solarSystems * solarBodies;
int solarGloballndex = (globallndex — 1) / solarBodies;
float3 i_acc; //returned wvalue
if (globallndex < N) {
float3 i_-pos = position_d[globallndex |;
float i_mass = mass_.d[globallndex |;
if (sumAcc) {
i_acc = acceleration_d[globallndex];
} else {
i_acc = make_float3 (0,0,0);
}
//The acceleration from the black hole
i_acc = computeBodyBody(i_pos, i_mass, position_d[0], mass_d
[0], i-acc);
//The acceleration from each distant solar system

C.2. CELESTIAL N-BODY 121

273 float3 j_pos;
274 float j_mass;
275
276
277 if (distanceThreshold > 0 && globallndex = 1) {
278 xthresholdReached = false;

279 }

280
281 for (int j = 0; j < solarSystems; j++) {
282
283 if (j != solarGloballndex) {

284 j-pos = make_float3 (massCenters|[j].x, massCenters[j].y,
massCenters[j].z);

285 j-mass = massCenters[j].w;

286
287 i_acc = computeBodyBody (i_-pos, i_mass, j-pos, j-mass,
i_acc);

288
289 if (distanceThreshold > 0 && globallndex =— 1) {
290
291 float3 i_com = make_float3 (massCenters |
solarGloballndex].x,

292 massCenters [solarGloballndex].y, massCenters|
solarGloballndex].z);

293
294 float3 distanceVector = calculateDistanceVector (i_com,
j-pos);

295 float absoluteDistance = calculateAbsoluteDistance (
distanceVector);

296
297 if (absoluteDistance <= distanceThreshold) {
298 *thresholdReached = true;

299 }

300
301 }
302
303 }
304
305 }
306
307}
308
309] __syncthreads();
310
311 if (globallndex < N) {

122 APPENDIX C. CODE CONTRIBUTIONS

312 acceleration_d [globallndex] = i_acc;
313))

314

315/

N O U W N~

11
12
13
14
15
16

17
18

19
20
21
22

23
24
25

26
27
28

29
30

31
32

C.3. CELESTIAL N-BODY GROUPED 123

C.3 Celestial N-Body Grouped

#include 7 CelestialNbodyGrouped.h”
#include ” NbodylInteractions.h”
#include ” ../ utility /CudaErrorCheck.h”
#include 7 ../input/UserInput.h”

//Kernel Launcher

bool CelestialNbodyGrouped :: launchCelestialNbodyKernel (float3 =
acceleration_d , float3 =xposition_d, float xmass_.d, int
solarSystems , int solarBodies, bool enableThresholdSwitching)

{

if (UserInput::logSimulation) {
printf(” [Log] Simulation Algorithm: Celestial N-Body GPU
Grouped Algorithm\n”);

}

int N =1 4 solarBodies * solarSystems;

int block_size = UserInput::celestialNbodyBlockSize;
int num_blocks (N - 1) / block.size + (((N — 1) % block_size

= 0) 70 : 1);
int systems_per_block = block_size / solarBodies;
int sharedMemSize = systems_per_block * solarBodies * sizeof(

float3) + solarBodies % systems_per_block x sizeof(float);

//Allocate memory in cuda kernel

float4 xmassCenters;

CudaSafeCall(cudaMalloc(&massCenters, sizeof(float) x 4 x
solarSystems));

bool xthresholdReachedGPU;
CudaSafeCall(cudaMalloc(&thresholdReachedGPU, sizeof(bool)))

)

//Step 1: Calculate Internal Accelerations
calculateInternalAccelerationGrouped GPU<<<num_blocks ,
block_size , sharedMemSize>>>(
acceleration_d , position_d, mass_.d, massCenters,
solarSystems , solarBodies, systems_per_block);
CudaCheckError () ;

int ext_blockSize = Userlnput:: allPairsBlockSize;

33

34
35
36

37

38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
o4
95
56
57

58
59
60
61
62
63
64
65
66

67

124 APPENDIX C. CODE CONTRIBUTIONS

int ext_numBlocks = (N-1) / ext_blockSize + (((N-1) %
ext_blockSize = 0) ? 0 : 1);

//Step 2: Calculate Ezternal Accelerations
calculateExternalAccelerationGP U <<<ext_numBlocks ,
ext_blockSize >>>(acceleration_d , position_d
mass_d, massCenters, solarSystems, solarBodies, true,
UserInput :: distanceThreshold , thresholdReachedGPU);
CudaCheckError () ;

bool thresholdReached_output = false;
if (enableThresholdSwitching) {
bool xthresholdReached = (boolx) malloc(sizeof(bool));
CudaSafeCall(
cudaMemcpy (thresholdReached ; thresholdReachedGPU, sizeof
(bool) ,
cudaMemcpyDeviceToHost)) ;
thresholdReached_output = xthresholdReached;

}

//Free Memory
CudaSafeCall(cudaFree(massCenters));
CudaSafeCall(cudaFree(thresholdReachedGPU));

return thresholdReached_output;

}

__global__ void calculateInternalAccelerationGroupedGPU (float3 =x
acceleration_d , float3 *xposition_d, float xmass_.d, floatd =
output_com, int solarSystems, int solarBodies, int
SystemsPerBlock) {

7

//Total Size of array
int N =1 + solarSystems % solarBodies;

//Group size

int groupSize = SystemsPerBlock x solarBodies;

//Find Indices

int globallndex = blockldx.x % blockDim.x + threadldx.x + 1;
//Global Index in array from 1 to N—1I1

int locallndex = threadldx.x; //Index within group of solar
systems from 0 to systemsPerBlock * solarBodies — 1

68

69

70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

C.3. CELESTIAL N-BODY GROUPED 125

int solarGloballndex = (globallndex — 1) / solarBodies; //
Index within solar systems from 0 to solarSystems—1

int solarLocallndex = locallndex / solarBodies; //Solar system
indexr within current block

//Define shared memory
extern __shared__ float sharedMemory [];

//Divide into float3 position and float mass
float *massShared = sharedMemory;
float3 xpositionShared (float3 *) &massShared[groupSize |;

float
float3

i_mass;
i_pos;

if (locallndex < groupSize && globallndex < N) {

//Load position values for body i
i_pos position_d[globallndex |;

//Load mass value for body i
i_mass = mass_d[globallndex |;

//Load data into the block’s shared memory
positionShared [threadldx.x] = position_d [globallndex |;
massShared [threadldx .x] = mass_d[globallndex |;

}

__syncthreads () ;

float3 i_acc = make_float3 (0,0,0);

if (locallndex < groupSize && globallndex < N) {

float3 j_pos;
float j_mass;
float =
float
float
float

totalMass
xSum 0.
ySum
zSum

0.0;

)

0
0;
0

0.
= 0.

Y

110

111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143

126 APPENDIX C. CODE CONTRIBUTIONS

int j_start = solarLocallndex * solarBodies; //Shared Memory
Index
int j_end = j_start + solarBodies;

for (int j = j_start; j < j-end; j++) {

j-pos = positionShared[j];
j-mass = massShared[j];

i_acc = computeBodyBody(i_pos, i_mass, j_pos, j_mass,
i_acc);

//Calculate components for Center of mass
if (output_com) {

totalMass += j_mass;

xSum += j_mass * j_pos.X;

ySum += j_mass * j_pos.y;

zSum += j_mass % j_pos.z;

}
}
if (threadldx.x % solarBodies = 0 && output_com) {
output_com [solarGloballndex] = make_float4 (xSum /
totalMass , ySum / totalMass, zSum / totalMass,
totalMass) ;
}

}

__syncthreads () ;

if (locallndex < groupSize && globallndex < N) {
acceleration_d[globallndex] = i_acc;

}

—_

21

22

23
24
25
26
27

28

29
30
31
32
33
34

C.4. CELESTIAL INTEGRATION 127

C.4 Celestial Integration

bool SymplecticEuler:: performCelestiallntegrationCPU (
CelestialSystems* system, float dt) {

if (UserInput::logSimulation) {
printf(” [Log] Celestial Integration CPU will be performed!
Ratio: %f\n”, UserInput:: celestiallntegrationRatio);

}

float3 xvelocity = system—>getVelocities ();

float3 xacceleration = system—>getAccelerations () ;
float3 xposition = system—>getPositions ();

float xmass = system—>getMasses () ;

int N = system—>getN () ;

int solarSystems = system—>getSolarSystems () ;

int solarBodies = system—>getSolarBodies () ;

float internal_steps = Userlnput:: celestiallntegrationRatio;
float external_dt = dt;

float internal_dt = external_dt / internal_steps;

float4 xmassCenters = calculateMassCenterForSolarSystemsCPU (
position , mass, solarSystems, solarBodies);
float3 xacceleration_ext = (float3x) calloc (N, sizeof(float3))

bool thresholdReached = CelestialNbody ::
calculateExternalAccelerationCPU (acceleration_ext , position
, mass, massCenters,
solarSystems , solarBodies, false, Userlnput ::
distanceThreshold);
free (massCenters) ;

for (int i=0;i<(int)internal_steps;i++) {
CelestialNbody :: calculateInternalAccelerationCPU (
acceleration , position, mass, solarSystems, solarBodies);

SymplecticEuler :: performSymplecticIntegrationCPU (system ,
acceleration_ext , internal_dt);

}

free(acceleration_ext);

return thresholdReached;

128 APPENDIX C. CODE CONTRIBUTIONS

35
36|}
37
38
39| bool SymplecticEuler:: performCelestiallntegrationGPU (
CelestialSystemx system, float dt) {

40

41) if (UserInput::logSimulation) {

42 printf(” [Log] Celestial Integration GPU will be performed!
Ratio: %f\n”, UserInput::celestiallntegrationRatio);

43] }

44

45| float3 =xvelocity = system—>getVelocities ();

46| float3 =xacceleration = system—>getAccelerations () ;

47 float3 *position = system—>getPositions () ;

48 float xmass = system—>getMasses() ;

49| int N = system—>getN () ;

50 int solarSystems = system—>getSolarSystems();
51| int solarBodies = system—>getSolarBodies () ;

52

53 int ibs = UserInput::integrationBlockSize;

54| int inb =N / ibs + ((N % ibs = 0) 7 0 : 1);
55

56 int cbs = solarBodies;

57 int cnb = solarSystems;

58| int sharedMemSize = ibs * sizeof(float3) + ibs * sizeof(float)
59
60 float internal_steps = Userlnput:: celestiallntegrationRatio;
61 float external_dt = dt;

62 float internal_dt = external_dt / internal_steps;

63
64 float4x massCenters;

65| CudaSafeCall(cudaMalloc(&massCenters, sizeof(float) * 4 =
solarSystems));

66 calculateMassCenterForSolarSystems <<<solarSystems , solarBodies
>>>(position , mass, massCenters);

67| CudaCheckError () ;

68
69 bool xthresholdReachedGPU;

70| CudaSafeCall(cudaMalloc(&thresholdReachedGPU, sizeof(bool)))

71| CudaCheckError () ;
72
73| //Save acceleration for external systems

C.4. CELESTIAL INTEGRATION 129

74 float3x acceleration_ext;

75| CudaSafeCall(cudaMalloc(&acceleration_ext , sizeof(float) x 3
* N) s

76| calculateExternalAccelerationGPU<<<inb, ibs>>>(
acceleration_ext , position, mass, massCenters,

7 solarSystems , solarBodies, false, Userlnput::
distanceThreshold , thresholdReachedGPU);

78
79| //Perform Internal calculation internal_steps—1 times
80| for (int i=0;i<(int)internal_steps;i++) {

81

82 calculatelnternalAccelerationGPU<<<cnb, cbs, sharedMemSize
>>>(acceleration , position, mass, 0, N);

83 CudaCheckError () ;

84

85 symplecticIntegrationKernel<<<inb, ibs>>>(acceleration ,
acceleration_ext , velocity , position, N, internal_dt);

86 CudaCheckError () ;

87

88 }

89

90| bool thresholdReached_output = system—>thresholdIsReached () ;
91| if (system—>thresholdSwitchingIsEnabled()) {

92 bool xthresholdReached = (boolx) malloc(sizeof(bool));

93 CudaSafeCall (

94 cudaMemcpy (thresholdReached , thresholdReachedGPU, sizeof
(bool) ,

95 cudaMemcpyDeviceToHost)) ;

96 thresholdReached_output = *thresholdReached;

97| }

98

99| CudaSafeCall(cudaFree(massCenters));

100 CudaSafeCall(cudaFree(thresholdReachedGPU));
101| CudaSafeCall(cudaFree(acceleration_ext));
102
103 return thresholdReached_output;
104
105| }

