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Preface
This report represents my master thesis at Marin Teknikk, NTNU. It can be seen as a natural
elongation of the pre-project I wrote last semester about wave run-up on circular slender piles
in long-crested and short-crested nonlinear random waves as the wave theory is very much
similar. The choice of research field is based on an personal interest in waves, stochastic
theory of sealoads and the oportunity to make green energy alternatives more suitable for the
marine environment.

The first periode of this semester involved gathering background information and getting
updated on the reseach which forms the baseline. Secondly, I implemented the method in
Matlab and generated the results. Finally, I discussed the results and wrote the report.
The main challenges have been to get understanding of all the aspects of this method as it
turned out to be more complex than first expected. Also, comprehending the mechanisms
of short-crested and long-crested waves has been a challenge. Personally, this have been a
rewarding and informative process. My supervisors, Professor Dag Myrhaug and Post-doc
Muk Chen Ong have been avaliable troughout the whole semester for motivating discussions
and guidance and for that I am very grateful.

Peder Hesten
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Summary
This report presents a stochastic method for predicting scour depth around vertical circular
slender piles, including various cross sections and group arrangements, marine pipelines and
the burial and scour hole geometry around short cylinders due to long-crested (3D) and short-
crested (2D) nonlinear random waves plus current. The waves are assumed to be stationary
narrowbanded and the Forristall (2000) distribution of wave crest heights representing 2D
and 3D random waves is employed including both sum-frequency and difference-frequency
effects. The wave crests are assumed to be responsible for the scour response. The results
for scour and burial around the various structure types are presented graphically versus a
measure of the wave action evaluated at the seabed relative to the characteristic diameter of
the structure and versus a measure of the current velocity relative to the maximum horizontal
fluid particle velocity at the seabed. The ratios between the scour depth predicted by 3D,
2D and linear waves are also investigated. Examples of calculation based on typical field
conditions are provided. Due to the distinctive character of the Forristall distribution, all the
results are specifically given by the seastate and the characteristic structure diameter. There
are several similarities in the ratios of the scour depth for the various structures. Overall, 3D
and 2D waves will produce more scour and burial than linear waves. This is due to higher
fluid particla velocity under the wave crests for 3D and 2D waves compared to linear waves.
In deep water, the scour depth from 2D waves is largest and in finite water depth the scour
depth from 3D waves is largest. This is due to larger sum-frequency effects for 2D waves
compared to 3D waves in deep water and smaller difference-frequency effects for 3D waves
compared to 2D waves in finite water depth.

VII



1 Introduction

Scour is erosion of seabed sediments around a structure due to flow velocities induced by
waves or current, Sumer and Fredsøe (2002). A vertical pile or a horizontal pipeline installed
on the seabed are subjects to the boundary layer of the flow. In deep water, this flow is
likely to be a steady current, whereas in finite water depth the orbital motion from the waves
will propagate down to the seabed leading to combined waves and current situations. The
structures may also be subject to waves alone. The typical design conditions for structures
situated in the North Sea is wave dominated flow with seabed consisting of fine sand. The
complicated flow situation caused by the presence of the structure, the seabed and the incom-
ing flow can cause scour holes around the structure. For a pile this means that even though
it was mounted on a flat seabed, it may after some time be surrounded by a scour hole which
may lead to a decrease in stability. A pipeline carrying oil or gas which initially is resting
on a flat seabed may suffer from free spans or be partially buried during the lifetime. If the
free span is large the risk of experiencing vibrations due to the incoming flow will increase.
Sea mines, or short cylinders, placed on the seabed may be surrounded by scour holes and
buried. Overall, the resulting scour response depends on the geometry of the seabed, the
seabed material, the velocity of the incoming flow and ratio between the orbital fluid particle
displacement and the characteristic dimension of the structure. Further, real life wave crests
are nonlinear and may display a complex three-dimensional random pattern which makes the
situation more complicated.

For regular waves, Sumer and Fredsøe (1990) proposed empirical formulas for the scour
depth around pipelines. The corresponding formulas for vertical piles were presented in Sumer
et al. (1992). By utilizing these formulas and describing the waves as a stationary Gaussian
narrowband process Myrhaug and Rue (2003) presented a method for calculating the scour
depth around pipelines and vertical piles in random waves. For the case of vertical piles, the
influence of cross sectional shape in regular waves was investigated trough laboratory exper-
iments by Sumer et al. (1993) and they stated that their original formula from Sumer et al.
(1992) was applicable provided that the coefficients were given new values based on best fit
to the data. Further, Sumer and Fredsøe (1998) investigated the influence on scour depth
for various group arrangements of piles in regular waves trough experiments. Based on that,
Myrhaug and Rue (2003) found new coefficients to be employed in the original formula from
Sumer et al. (1992).

For irregular waves plus current, Sumer and Fredsøe (1996) presented results of and ex-
perimental study and proposed empirical formulas for the scour depth around pipelines. The
corresponding formulas for vertical piles were presented in Sumer and Fredsøe (2002) based
on experimental data from Sumer and Fredsøe (2001). Myrhaug et al. (2009) employed these
formulas to find the scour depth around pipelines and vertical piles due to second-order ran-
dom waves plus current. They assumed that the wave motion was a stationary Gaussian
narrowbanded process and compared their model to the experimental data from Sumer and
Fredsøe (1996, 2001) for pipelines and piles, respectivly.

Catano-Lopera and Garcia (2006, 2007) studied the burial and scour hole geometry around
a short cylinder resting on the seabed subject to regular waves plus current. By employing
these formulas and assuming the wave motion to be a stationary Gaussian narrowbanded pro-
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cess Myrhaug and Ong (2009) presented a stochastic model for random waves and currents
including effects of second order wave asymmetry.

The purpose of this report is to provide a method for calculating scour depth around
pipelines, vertical piles and the burial and scour hole geometry around short cylinders caused
by short-crested (2D) and long-crested (3D) nonlinear random waves plus current. The wave
motion is assumed to be a stationary narrowband random process and the Forristall (2000)
distribution of wave crests is employed to describe both 2D and 3D random waves. The
empirical formulas for scour depth in irregular waves plus current shall be employed

2 Background

The pressurefield around the structure will change due to the presence of the strucure. In
general there will be an increase in the bed shear stress and in the level of turbulence compared
to areas where the flow is unaffected by the structure. As a consequence of this the sediment
transport rate is higher in the neighbourhood of the structure compared to areas far away
where the structure has no impact on the flow. Scour is defined as erosion of the sediments on
the seabed related to the presence of a structure, Sumer and Fredsøe (2002). The amplification
in the bed shear stress can be described by the amplification factor defined as

α = τ

τ∞
(1)

where τ is the bed shear stress around the structure and τ∞ is the bed shear stress far away
from the structure in the undistrubed flow. The scour prosess will continue until the scour
hole reaches a depth where τ ≈ τ∞. This is called the equilibrium scour depth. At this
condition the sediments may still move around but the depth of the hole does not change.
The time it takes for this amount of scour to develop is called the time scale of the process.
The following definition is taken from Sumer et al. (1992):

St = S(1− exp (− t

T
)) (2)

where T is the time scale of the scour, S is the equilibrium scour depth and St is the instan-
tanious scour depth at the time t. Fig. 1 illustrates a typical development of scour depth.
It appears that after a certain amount of time the depth of the scour hole remains constant.
Both the equilibrium scour depth and the timescale is of great importance for engineering
purposes. The greatest scourdepths often takes place during storms and it is essential to
assess whether the storm lasts longer than the neccesary timescale of the scour.

2.1 Shields parameter in regular waves

Scour can be devided in two types; clear-water scour and live-bed scour. The class is deter-
mined by the Shields parameter, θ, given as, Sumer and Fredsøe (2002)

θ = τ∞
ρg(s− 1)d50

(3)

where s is the ratio between the sediment density, ρs, and the fluid density, ρ. d50 is the
median grain diameter and g is the acceleration of gravity. θcr is the critical value of the
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Figure 1: Typical development of scour with time, taken from Sumer and Fredsøe (2002).

Shields parameter. Sumer and Fredsøe (2002) states that for θ < θcr the shear force is not
large enough to initiate any sediment motion on the seabed far from the structure. This
class is named clear-water scour. When θ ≥ θcr the class of live-bed scour is reached and
the sediments will be transported over the entire seabed. For any changes in θ larger than
the critical value there will be a corresponding change in the motion of the sediments. It
should be noticed that the same formula can utilized to assess the Shields parameter in the
neighbourhood of the structure by using τ instead of τ∞. If a structure is placed on a seabed
where θ < θcr initially, live-bed scour might still occur in the neighbourhood of the structure if
the resulting change in shear stress caused by the structure is sufficiently large. It is common
to assume that θcr ≈ 0.05.

The maximum bottom shear stress under the waves far away from the structure is given
as

τ∞ = 1
2fwU

2
m (4)

where Um is the maximum horizontal fluid particle velocity evaluated at the seabed and fw
is a friction factor given in Myrhaug et al. (2001) as

fw = c(A
z0

)−d (5)

where z0 is the seabed roughness given as d50/12 and A is the amplitude of the orbital
displacement of the water particles near the seabed related to the linear wave height H as

A = H

2 sinh kh (6)

h is the water depth and k is the wave number given by the dispersion relationship

ω2 = kg tanh kh (7)

fw can be applied for waves plus current in seastates dominated by waves. The coefficients
c and d are based on best fit to data and given as
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(c, d) = (18, 1) for 20 . A/z0 . 200 (8)

(c, d) = (1.39, 0.52) for 200 . A/z0 . 11000 (9)

(c, d) = (0.112, 0.25) for 11000 . A/z0 (10)

By utilizing this model to assess the bed shear stress it is possible to find an analytical
expression for the Shields parameter in random waves. More details on this will be given in
Section 6.4

3 Scour around a vertical slender pile

3.1 Mechanisms

Scour around a vertical slender pile placed on the seabed is caused by two main mechanisms,
the horseshoe vortices in front and the lee-wake vortices at the downstream side of the pile.
The rotation, caused by the seabed boundary layer, in the incoming flow causes a downstream
as the flow interacts with the adverse pressure gradient caused by the presence of the pile.
Fig. 2 is a definition sketch of a pile in a flow. At the intersection between the pile and the
seabed the flow rotates away from surface of the pile, creating the horseshoe vortices which is
carried by the flow around the pile. Fig. 3 illustrates a profile of the velocity vector diagram
at y = 0 upstream of the pile. The lee-wake vortices are caused by the separation of the
boundary layer on the surface of the pile. In terms of scour, the most important mechanism
is the horseshoe vortices.
For a pile standing in a steady current the size of the horseshoe vortices depends on the ratio
between the seabed boundary layer thickness the geometry and diameter of the pile and the
pile-based Reynolds number given as ReD = UmD/ν where D is the pile diameter and ν is the
kinematic viscosity of the water. According to Sumer and Fredsøe (2002), if the ratio between
the boundary layer thickness and the pile diameter is high, the room for horseshoe vortices
will increase. A small Reynolds number involves high viscosity and the seabed boundary layer
must overcome more resistance in order to seperate.

For a pile situated in waves, the Keulegan-Capenter number, KC, must also be considered.
It is given as

KC = UmT

D
(11)

where T is the wave periode. Moreover, Um = Aω where ω = 2π/T is the angular wave
frequency. By utilizing this the Keulegan-Carpenter number can be rewritten as

KC = 2πA
D

(12)

It now appears that KC is proportional to the ratio between the orbital displacement of the
water particles, 2A, and the diameter of the pile. For small values of KC the movement of
the water particles is small compared to the diameter of the pile and the horseshoe vortices
may not have time to form. For very large values of KC, e.g. a tidal current, the flow can
be regarded as a steady current within each half periode.

Sarpkaya (1986) states that the boundary layer flow on a cylinder surface will be laminar
for KC ≤ 1. Fig. 4 shows the results of an experimental study by Sumer et al. (1997) of
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Figure 2: Principal sketch of boundary layer flow interacting with vertical pile, taken from
Sumer et al. (1997).

Figure 3: Formation of horseshoe vortices illustrated by vectors for KC = 10.3 and ωt =
90 deg, taken from Sumer et al. (1997).
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horseshoe vortices in waves for different KC numbers and Reynolds number of O(3). For
simplicity it is now assumed that the orbital horizontal fluid velocity at the seabed, U , can
be written as U = Um sinωt. When ωt = 0◦ the velocity at the seabed is zero and obviously
there is no formation of horseshoe vortices for any KC-number. For 90◦ ≤ ωt ≤ 150◦ it
appears that the horseshoe vortices will form at the front of the pile for KC-numbers larger
than about 6. The formation of horseshoe vortices at the back of the pile is more limited in
terms of ωt but the lowest KC-number is still 6. The reason for the asymmetric behaviour in
the graphs is due to nonlinearity in the waves. It appears that for increasing KC-number the
horseshoe vortices occurs for a larger part of the wave phase, both in front and back of the
pile. The flow will separate along the surface of the cylinder for KC > 1 but the horseshoe
vortices do not occur until KC = 6. The reason for this is related to the different adverse
pressure gradients. Sumer and Fredsøe (2002) presents expressions for the pressure gradient
along side surface and in front of the pile. It appears that the maximum value of the pressure
gradient along the pile surface is about 5 times larger than the pressure gradient in front
of the pile, causing separation for smaller orbital displacements of the water particles. The
result of that difference is that the flow in front of the pile separates at KC = 6 and the flow
at the surface of the pile separates for KC = 1.

Figure 4: Formation of horseshoe vortices as function of KC-number and wave phase, o
marks flow visualization experiments, + marks measurements of bed shear stress, Sumer
et al. (1997).

Fig. 5 shows isocurves for α for KC = 6.1 and current alone. The waves propagate
along the positive x-axis. It appears that the largest values of α are found at the sides of
the pile. In addition to the horseshoe vortices, this location gets a large contribution from
contraction of streamlines. For the current alone case, the maximum α ≈ 10 suggesting a
strong contribution from horse shoe vortices. The corresponding value for KC = 6.1 is about
4.5.

3.2 Regular waves

Fig. 6 shows the definition of scour depth for a vertical pile with diameter D. From the
previous discussion it is clear that, within certain limits, an increase KC will lead to a deeper
scour hole. The horseshoe vortices grows stronger and the half period of the orbital wave
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Figure 5: Isocurves for α , Sumer et al. (1997).

Figure 6: Definition of scour depth around vertical pile, taken from Myrhaug et al. (2009).
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motion grows longer, allowing the vortices more time to grow strong, Sumer and Fredsøe
(2002). Through a series laboratory experiments Sumer et al. (1992) obtained the following
empirical formula for the equilibrium scour depth in regular waves for live-bed conditions
provided that the timescale of the scour has been exceeded.

S

D
= C(1− exp [−q(KC − r)]) for KC ≥ r (13)

C, q and r are dimensionless coefficients given by the following values for the case of waves
alone

(C, q, r) = (1.3, 0.03, 6) (14)
r = 6 appears to be consistent with the previous discussion. It should be noted that for
KC →∞, S/D will approach C = 1.3.

3.3 Pile with square cross section

Sumer et al. (1993) presented results of an experimental study on the influence of cross-
sectional shape on scour depth in regular waves with slender vertical piles. Fig. 7 is based
on their experimental data and illustrates S/D versus KC for circular, 90◦ square and 45◦
square pile. It appears that the effect of cross section is largest for the lower values of KC.
Starting from KC = 0 the onset of scour occurs first for the 45◦ square pile, followed by the
circular and the 90◦ square pile. As a consequence, the 45◦ square pile will experience the
largest scour depth. This is related to the dominating vortex shedding at low values of KC.

For high KC & 100, the differences are small. This is due to low influence by the vortex
shedding as the wave motion can be regarded as a steady current.

Figure 7: Equilibrium scour depth for various cross sections, Sumer et al. (1993).

Sumer et al. (1993) found that the empirical formula in Eq. (13) can still be employed
but with the following values for the coefficients C, q and r
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• 90◦ orientation:
(C, q, r) = (2, 0.015, 11) (15)

• 45◦ orientation:
(C, q, r) = (2, 0.019, 3) (16)

It should be noted that the current is not accounted for in this case.

3.4 Group of slender piles

3.4.1 Effect of pile spacing

The supporting structure of marine platforms are often made up of several piles grouped
together. If the gap between the piles, G, is small compared to the diameter of the piles
the interference effects will cause changes in the equilibrium scour depth compared to the
case of the single pile alone, Sumer and Fredsøe (2002). Sumer and Fredsøe (1998) presented
experimental data of scour around groups of vertical piles in regular waves. Fig. 8 illustrates
the two pile arrangements that they investigated. As mentioned, the horseshoe vortex is the

Figure 8: Various group arrangements of piles, taken from Sumer and Fredsøe (1998)

govurning mechanism for single pile scour, but for the case of groups of piles, especially tandem
organized, the lee-wake vortices are also of great importance. If the piles are sufficiently close,
the lee-wake vortices created by the upstream pile will influence the flow behaviour around
the downstream pile, resulting in a change in scour depth. On the other hand, if the gap
between the piles is very large the scour depth around each pile will not be influenced by
the presence of the other pile and may therefore be treated as a single pile case. From Eq.
(13) it appears that the single pile scour depth for live-bed contitions is a function of the
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Keulegan-Carpenter number. For the case of pile groups the non-dimensional pile spacing
G/D will also influence the result, implying that the non-dimensional scour depth can be
written as

S

D
= f(KC, G

D
) (17)

The results from Sumer and Fredsøe (1998) are illustrated in Fig. 9. Here the equilibrium
scour depth for each of the two pile arrangements in Fig. 8 are illustrated as a function of
the non-dimensional pile spacing for live-bed conditions with KC = 13.

Figure 9: Equilibrium scour depth as function of G/D for two-pile arrangements, taken from
Sumer and Fredsøe (1998)

For the side-by-side arrangement, Sumer and Fredsøe (1998) found that the maximum
scour depth was located in the middle of the two piles for 0.1 < G/D < 2. When the gap
is small (G/D < 0.1) the pile pair will act as a single pile and the maximum scour depth
is found at the outside edges of the piles. For G/D > 2, all interference effects between the
piles fade out and each pile can be treated as a single pile standing alone. This is illustrated
in Fig. 9. Moreover, it appears that the non-dimensional scour depth reaches a maximum
value of about 0.83 at G/D ≈ 0.4. For larger gaps it decreases to the single pile value. So, for
decreasing G/D in the interval (0.4, 2) there is an increase in the scour depth. This is partly
due to an increase in the sediment transport rate in the gap flow and partly to the stronger
presence of lee-wake vortices on the outer sides of the pile, Sumer and Fredsøe (2002).
The behaviour for the tandem arrangement is quite opposite of the side-by-side case. For
G/D in the approximate range of 0.2 to 1 there is a dip in the maximum scour depth which is
due to supression of the vortices shed by the upstream pile. If G/D . 0.2 the two piles may be
treated as a single pile and the vortex shedding is re-established. Accordingly, the maximum
scour depth will be equal to the case of the single pile. For G/D > 1 the interference effects
may be neglected and the piles may be regarded as two independent single piles.
The behaviour of the 45◦ staggered arrangement is similar to the side-by-side case except that
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the maximum scour depth is lower and occurs at lower G/D. This is caused by decreased
impact from the gap-flow effect as described in Sumer and Fredsøe (2002).

Figure 10: Equilibrium scour depth as function of G/D for square pile group, Sumer and
Fredsøe (1998)

Fig. 10 illustrates the maximum equilibrium non-dimensional scour depth as a function of
pile spacing for a 4×4 square pile group arrangement for two KC-numbers, KC = 37 and 13.
According to Sumer and Fredsøe (1998), the maximum scour depth is always located around
the corner piles in the first row. For G/D > 2 it appears that the non-dimensional scour
depth approaches the same value as all the two-pile arrangements for the same KC-number,
KC = 13. Moreover, when the gap is zero it is assumed that the group of piles is transformed
into a large 90◦ square pile with a diameter 4D. In order to account for this the square single
piles will have a KC-number of KC = 37/4 = 9.3. For the square cross section pile in Fig.
7 this value of KC corresponds to S/4D ≈ 0.1 or S/D ≈ 0.4. From Fig. 10 it appears that
the corresponding value is 0.6 which is not very different from 0.4. The difference may be
explained by the sharp edges on the solid pile in Fig. 7, the rough, bumpy surface of the
present single body and the possible presence of steady streaming. The latter is caused by
disturbances in the flow caused by large piles, more on details on this subject can be found
in Chapter 6.3 in Sumer and Fredsøe (2002).

3.4.2 Effect of KC-number

Fig. 11 shows the influence of the KC-number on the non-dimensional scour depth for the
single slender pile, the 4 × 4 square pile group, the two-pile side-by-side arrangement and
the two-pile 45◦ staggered arrangement for a constant pile spacing of G/D = 0.4. Firstly, it
appears that the onset of scour for the two-pile groups occurs for lower KC than the case
of the single pile. According to Sumer and Fredsøe (1998), this is related to the presence of
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Figure 11: Equilibrium scour depth as function of KC for square pile group, Sumer and
Fredsøe (1998)

gap flow at low KC-numbers for two-pile groups. Furthermore, for the lowest values of KC
the scour depth around the two-pile arrangements is much larger compared to the single pile
case. For KC = 7 the scour response around the side-by-side arrangement is magnified by a
factor of about 25 compared to the single pile case. This is mainly caused by gap-flow effects.
The onset of scour for the 4× 4 square pile arrangement occurs at KC ≈ 12 which is about
twice the value compared to that of the single pile case. This is verified in Fig. 10 as the
scour response for KC = 13 is much lower compared to the case for KC = 37 and caused
by a weak gap flow for low values of KC. However, for increasing KC the horseshoe vortices
becomes more dominant and the scour respons becomes more violent compared the other
arrangements. When KC ≈ 300 the difference in scour depth is about a factor of 3 − 4
compared to the single pile case.
Overall, it appears from Fig. 11 that the scour around the groups is basically dominated by
the same mechanisms as the single pile. For low KC numbers the lee-wake vortices are the
governing flow processes but the horseshoe vortices are dominant when KC is increased.
Based on the data presented in Fig 11 and Table 4 in Sumer and Fredsøe (1998), Myrhaug
and Rue (2005) found that Eq. (13) can be employed to calculate the maximum equilibrium
scour depth around groups of vertical piles provided that the coefficients (C, q, r) are given
by the following values

• Two-pile side-by-side arrangement:

(C, q, r) = (1.5, 0.09, 2) (18)

12



• Two-pile 45◦ staggered arrangement:

(C, q, r) = (1.3, 0.037, 3) (19)

• 4× 4 square pile arrangement:

(C, q, r) = (4.5, 0.023, 12) (20)

3.5 Waves plus current

Sumer and Fredsøe (2001) performed experiments with a single vertical pile standing in
irregular waves plus current with KC ranging from 5 to 26. By trial and error they concluded
that their formula for equilibium scour depth in Eq. (13) can be employed for irregular waves
if KC is calculated as KCSF = UrmsTp/D, where Tp is the peak periode of the wave spectrum
and Urms is the root-mean-square, rms, value of Um. Based on these data Sumer and Fredsøe
(2002) porposed a model for calculating the equilibrium scour depth around a vertical pile in
irregular waves plus current. Eq. (13) is still employed but the effect of current is accounted
for in the coefficients q and r as follows

q = 0.03 + 0.75U2.6
cwrms (21)

r = 6 exp(−4.7Ucwrms) (22)

where the dimensionless quantity Ucwrms is given as

Ucwrms = Uc
Uc + Urms

(23)

Uc is the undisturbed current velocity. It should be noted that if the current velocity is zero
then r and q will take the values given in Eq. (14). Further Eqs. (21) and(22) are given for
wave dominated seastates, meaning 0 ≤ Ucwrms ≤ 0.4. For waves plus current the dispersion
relationship becomes ω = kUc + (kg tanh kh)1/2 which can be employed to determine k if Uc,
ω and h are given. However, for wave dominated situations it is assumed that Uc can be
neglected as the influence of Uc on kp is small. C is independent of the presence of current.
By inspection of the experimental data from Sumer and Fredsøe (2001), it was found by e.g.
Myrhaug and Rue (2003) that Tp, used in KCSF , is larger than the mean zero-crossing wave
periode Tz. More accurately, Tp = 1.5Tz which indicates that the spectrum used for the
experiments was not narrowbanded. If the rms value of KC is given as

KCrms = UrmsTz
D

(24)

it follows that

KCSF = 1.5KCrms (25)

For the case of regular waves plus current it is now assumed that Eqs. (13), (21) and (22)
can be employed to calculate the maximum equilibrium scour depth around a circular slender
pile provided that Urms and KCSF are substituted with Um and KC respectivly. In r and q
in Eqs. (21) and (22) the current is now accounted for by replacing Ucwrms with Ucw given as
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Ucw = Uc
Uc + Um

(26)

This procedyre has been employed by Myrhaug and Rue (2005) among others. It should be
noted that the relation Tp = 1.5Tz is only valid when discussing the experimental data by
Sumer and Fredsøe (2001). This is also valid for the case of scour around a pipeline. Further,
for the single piles with square cross-sections and the group arrangements of piles the current
velocity is not accounted for.

4 Scour around a pipeline

4.1 Mechanisms

Marine pipelines are placed on the seabed to provide transportation of gas and oil from the
offshore platforms. They can also serve other purposes like carrying waste from the platforms.
The length of the pipes may be from hundreds to thousands of meters and the diameter can
vary from 20-30 cm to over 1 m. In several ways, the pipelines acts as the blood veins of the
oil and gas industry. Over the last 30 years tens of thousands of kilometers of pipeline have
been installed on the seabed in oil fields across the world, Myrhaug et al. (2009).

4.1.1 Stages of scour

The scour prosess around a pipeline may be devided into four stages; Onset of scour, tunnel
erosion, lee-wake erosion and the equilibrium stage. The presence of the pipeline causes a
pressure difference between the upstream and downstream side of a pipe exposed to a current.
The onset of scour occurs if the pressure difference is sufficiently large to induce a seepage flow
underneath the pipeline in the sand, Sumer and Fredsøe (2002). A critical point is reached
when the current velocity is increased further and the seepage flow develops faster than the
driving pressure difference calls for, causing the bed surface on the downstream of the pipeline
to rise. Eventually a mixture of sand and water breaks through underneath the pipeline. This
phenomenom is called piping, Sumer and Fredsøe (2002). In a steady current the sand is con-
stantly exposed to the pressure gradient. In waves, the pressure gradient produced in the
half wave periode characterized by the trough is not large enough to generate piping and only
the half periode characterized by the crest will contribute to piping, Sumer and Fredsøe (2002).

The next stage is tunnel erosion and is characterized by a small gap underneath the
pipeline, see Fig. 12. A large amount of water is directed through this gap, likely causing
high velocities and large shear stresses on the bed below the pipe. Jensen et al. (1990)
performed experiments with a pipeline in a steady current and measured the amplification
factor α in the gap. They found that α was in the range of 3 to 5 dependent on the current
speed. According to Sumer and Fredsøe (2002) a enhancement factor of 4 in α will result in
a factor of 8 increase in the sediment transport rate, suggesting a violent flow of a mixture
of water and sand underneath the pipeline. The result can be formation of dunes on the
downstream side of the pipe. As the gap grows larger the flow velocity will start to decrease
which represents the closure of tunnel erosion and the beginnning of the stage called lee-wake
erosion. Vortex shedding will begin to occur and the dunes will migrate further downstream.
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The vortices that are shed from the downwards side of the pipeline sweep the downstream
seabed causing an increase in the seabed shear stress.

Figure 12: Tunnel erosion below pipeline, Sumer and Fredsøe (2002).

Figure 13: Lee-wake vortices in steady current (a) and waves (b), Sumer and Fredsøe (1990).

Fig. 13 shows the lee-wake vortices for the case of a steady current and waves. It appears
that the slope of the upstream scour hole for the steady current is much larger compared to
the downstream side. This is due to the lee-wake vortex erosion. For the case of waves, the
scour hole is symmetric due to the orbital motion of the water particles. The equilibrium stage
in the scour process is reached when the scour depth is steady. Now the Shields parameter in
the hole is equal to the undisturbed Shields parameter meaning that the sediment transport
rate is constant over the bed. The amount of sediments that comes into the hole is also carried
out in this stage.

4.2 Regular waves

The vortex shedding mechanism is governed by the Keulegan-Carpenter number, KC, in wave
dominated seastates, Sumer and Fredsøe (2002). For small values of KC the vortex shedding
may not occur. On the other hand, for large values of KC the lee-wake vortices travels over
a larger part of the seabed contributing to the sediment transport. The flow will in this case
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erode more on the side of the scour hole making the slopes less steep. The area below the
pipe will now be less protected against the outer flow, leading to higher velocities and more
sediment transport, Sumer and Fredsøe (2002). If KC →∞ it can be assumed that the flow
in each half periode will behave like a steady current.

For a pipeline with diameter D subject to regular waves the equilibium scour depth, S, is
found based on experimental data from Sumer and Fredsøe (1990) as

S

D
= 0.1

√
KC (27)

for live-bed conditions. The equilibrium scour depth S is defined in Fig. 14. Eq. (27) is
based on data in for 2 ≥ KC ≥ 1000.

Figure 14: Definition sketch of scour depth S under pipeline, Myrhaug et al. (2009).

4.3 Waves plus current

Sumer and Fredsøe (1996) presented an experimental study of scour below a pipeline in
irregular waves plus current for 5 < KC < 50 and live-bed conditions. They found that
Eq. (27) can be employed for irregular waves as well provided that the Keulegan-Carpenter
number is calculated as KCSF given in Eq. (25). Also, in this case KCSF = UrmsTp/D.
They found that the following empirical expression can be employed to find the equilibrium
scour depth below a pipeline in irregular waves plus current

S

D
= Scur

D
F (28)

where Scur
D = 0.6 is the nondimensional scour depth with a nondimensional standard

deviation of σ/D = 0.2 for the case of current alone, and F is a function of KCSF and
Ucwrms given by

F = 5
3KC

a
SF exp(2.3b) for 0 ≤ Ucwrms ≤ 0.7 (29)

F = 1 for 0.7 ≤ Ucwrms ≤ 1 (30)
where Ucwrms is given in Eq. (23). The coefficients a and b are given as:

1. For 0 ≤ Ucwrms ≤ 0.4:

a = 0.557− 0.912(Ucwrms − 0.25)2 (31)

b = −1.14 + 2.24(Ucwrms − 0.25)2 (32)
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2. For 0.4 ≤ Ucwrms ≤ 0.7:
a = −2.14Ucwrms + 1.46 (33)
b = 3.3Ucwrms − 2.5 (34)

It is noticed that there is a discontinuity in Eqs. (31), (33) and Eqs. (32), (34) at
Ucwrms = 0.4. However, for the wave dominated case this is not an issue since Ucwrms < 0.4.
For the case of waves alone, given as Ucwrms = 0, it appears that Eqs. (28), (29), (31) and
(32) reduce to Eq. (27) if KC is replaced by KCSF . The stochastic method presented here is
based on the assumption that the formulas for irregular waves plus current can be employed
for regular waves plus current as well given that Ucwrms and KCSF is replaced by Ucw in Eq.
(26) and KC, respectively. This assumption is identical to the case of the vertical pile. So,
the dimensionless coeffisient F for regular waves plus current in a wave dominated seastate
becomes

F = 5
3KC

a exp(2.3b) for 0 ≤ Ucw ≤ 0.4 (35)

where the coefficients a and b are given by
a = 0.557− 0.912(Ucw − 0.25)2 (36)
b = −1.14 + 2.24(Ucw − 0.25)2 (37)

5 Burial and scour of short cylinders
Understanding the interaction between a short cylinder and the seabed in waves or combined
flows is of great interest for several applications. Mines at sea are often shaped like short
cylinders and it is important that they are not buried or surrounded by a large scour hole in
order to obtain maximum effect of the explosion. Apart from military use, this field is also of
importance for geophysical and engineering purposes. Similar to the case of the vertical pile
and the pipeline, the burial and scour process is governed by the KC-number.

5.1 Mechanisms

The process of scour around a short cylinder can be devided into the same stages as for the
case of the long pipeline described in Section 4.1.1, namly onset of scour, tunnel erosion, lee
wake erosion and equilibrium stage. In wave dominated seastates the KC-number is still the
crucial parameter in the incoming flow. First, the onset of scour takes place around the ends
of the cylinder due to the local increase in velocity, Catano-Lopera and Garcia (2006). Next,
the tunnel erosion takes over at the ends and the onset of scour moves towards the center
of the cylinder from both sides causing a decrease in the area of the seabed supporting the
body. After a certain amount of time the weight of the body exceeds the bearing capacity
of the seabed and the body sinks until equilibrium is restored. This process continues until
the equilibium state is reached, defined as α = 1 from Eq. (1). Fig. 15 shows how the
suppporting seabed is eroded away by two advancing fronts of scour. The lee-wake vortices
caused by the back and forth motion of the waves will transport seabed sediments away from
the cylinder during each half wave periode, resulting in a scour hole. Even for waves alone,
experiments by Catano-Lopera and Garcia (2007) show that the downstream length of the
scour hole will be longer than the upstream counterpart. This effect is due to nonlinearities
in the seastate.
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Figure 15: Burial Bd at initial stage, (a) and further into the process,(b) , Catano-Lopera
and Garcia (2006).

5.2 Regular waves plus current

5.2.1 Burial

Catano-Lopera and Garcia (2006) presented experimental data from laboratory tests of burial
of short cylinders under combined regular waves and current. For a circular cylinder with
diameter D and length Lc they found that the equilibrium burial depth Bd, defined in Fig.
15, is given by the empirical expression for live-bed conditions

Bd
D

= c1
Um

Um + Uc
(θKC)c2 (38)

where
(c1, c2) = (0.24, 0.4) (39)

The experiments were performed for aspect ratios ar = Lc/D in the range of 2 to 4 and
for Keulegan-Carpenter numbers in the range 2 to 48. Further, Eq. (38) is based on waves
alone (Uc = 0) and two seastates with additional current corresponding to Um/(Um + Uc) =
(1, 0.8, 0.79). In terms of Ucw this corresponds to Ucw = (0, 0.2, 0.21), which is well within the
wave dominant region.

5.2.2 Scour

Catano-Lopera and Garcia (2007) investigated the scour around a short cylinder in regular
waves plus current through laboratory tests and found the following empirical expression for
the equilibrium scour hole length L

L

D
= p1KC

p2 (40)

L can represent the total length of the scour hole Lst or the downstream length of the
scour hole Lsd dependent on p1 and p2. For each representation of L the coefficients are given
as

• L = Lsd gives (p1, p2) = (0.75, 0.56)

• L = Lst gives (p1, p2) = (0.75a3
r , 0.6)

Lst, Lsd and Lsu are defined in Fig. 16. The upstream length of the scour hole can be
calculated as Lsu = Lst−Lsd. The width of the scour hole W was found to be independent of
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KC and ranging from 1.3Lc to 2.5Lc with a mean value of 1.8Lc. It should be noted that Eq.
(40) is valid for live-bed conditions and does not accound for current effects. The equilibrium
length is based on KC in the range of 2 to 71 and the aspect ratio ar in the range of 2 to 4.
Even though Eqs. 40 and 38 are continous for all KC ≥ 0, it should be noted that this may
not be physically correct as the threshold for the scour mechanism may not be exceeded for
the smallest values of KC. However, since the highest waves are responsible for the better
part of the scour response the effect from any lower threshold value in KC is neglected.

Figure 16: Definitions of Lst, Lsd and Lsu for the scour hole geometry around a short cylinder,
Myrhaug and Ong (2009).

6 Scour in nonlinear random waves

6.1 Nonlinear waves

In order to say something about the scour depth the KC-number at the seabed must be
assessed. The maximum free surface elevation in a sea state with stationary narrowband
waves consistent with Stokes second order can be described as, Myrhaug (2006)

ηc = a+ 1
4kpa

2 cosh(kph)
sinh3(kph)

(2 + cosh(2kph)) (41)

where a is linear wave amplitude, kp is the wavenumber corresponding to the peak frequency
ωp given by the dispersion relationship

ω2
p = gkp tanh kph (42)
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For simplicity Eq. (41) is rewritten into

ηc = a+ 1
2kpa

2b(kph) (43)

where
b(kph) = cosh(kph)(2 + cosh(2kph))

2 sinh3(kph)
(44)

The crest height is made dimensionless by evaluating wc = ηc/arms where arms is the rms
value of the linear wave amplitude.

wc = â+ 1
2 â

2kparmsb(kph) (45)

where â = a
arms

. If the terms of second order are assembeld into O(kparms) the following
expression is obtained

wc = â+O(kparms) (46)

where kparms denotes the characteristic wave steepness of the sea state.
The maximum horizontal velocity evaluated at the seabed using Stokes second order theory
is, Myrhaug (2006)

Um = a
ωp

sinh kph
+ 3

4a
2ωpkp

1
sinh4 kph

(47)

By multiplying the right hand side of Eq. (47) with arms/arms and gathering the terms of
second order into O(kparms) the following expression is obtained.

Um = â
ωparms
sinh kph

+O(kparms) (48)

By dividing with the rms value of Um the nondimensional nonlinear maximum horisontal
particle velocity at the seabed is found as Um/Urms

Ûm = Um
Urms

â+O(kparms) (49)

where
Urms = ωparms

sinh kph
(50)

The corresponding rms value of the Keulegan-Carpenter number for a narrowbanded seastate
is given by Urms and Tp

KCrms = UrmsTp
D

(51)

Inverting Eq. (46) gives â = wc − O(kparms) and substituting into Eq. (49) gives Ûm =
wc + O(kparms). Consequently, wc can replace â in the linear part of Ûm because the error
involved is of second order. By neglecting the terms of O(kparms) it appears that Ûm = wc
involving that the same probability density function structure can be utilized. Moreover, the
maximum horizontal water particle velocity evaluated at the seabed is found by replacing
arms with ηc in Eq. (50)

Um = ωpηc
sinh kph

(52)
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Moreover,
Arms = Urms

ωp
= arms

sinh kph
(53)

by using Eq. (50).

6.2 Forristall distribution

For nonlinear waves the orbital velocity near the seabed is larger in the wave progation
direction than in the oposite direction. In terms of scour, this effect was investigated by
Catano-Lopera and Garcia (2007) through experiments. Myrhaug et al. (2009), among others,
presented a stochastic model for predicting scour below second order Stokes waves, including
sum frequency effects only. In this report, the wave crest distribution presented by Forristall
(2000) based on simulations of 2D and 3D waves using second order theory will be employed.
He adapted a two-parameter Weibull distribution where the parameters were obtained by
best fit to data for 2D and 3D waves including both sum-frequency and difference-frequency
effects.
Fig. 17 is taken from Wist (2003) and shows the relative magnitude between sum-frequency
and difference-frequency effects for varying depth and constant sum-frequency of ω1 + ω2 =
1.12 rad/s for 2D waves only. Fig. 18 shows a principal sketch of the total 2D and 3D
waves with corresponding difference-frequency terms in finite and deep water. From Fig. 17
it appears that in large water depths the difference-freqeuncy effects are neglectible for 2D
waves. Forristall (2000) states that the difference-frequency effects can be neglected in deep
water for the case of 3D waves as well and that the sum-frequency effects for 3D waves are
slighty reduced compared to 2D waves, causing the wave crest to become higher for 2D waves
in deep water.

In Fig. 17 it appears that for h ≈ 16m the difference-frequency effects have increased
to the same order of magnitude as the sum-frequency effects, hence the difference-frequency
terms can not be neglected in finite water depth. According to Forristall (2000) this is also the
case for 3D waves. Further, the 3D waves have smaller difference-frequency effects than the
2D waves resulting in lower wave crests and deeper wave troughs for 2D waves. Alternativly;
2D waves have larger set-down effects than 3D waves in finite water depth. This is illustrated
in Fig. 18.

The cumulative Forristall distribution is given by

P (wc) = 1− exp
[
−
(
wc√
8α

)β]
for wc ≥ 0 (54)

where α and β are based on the steepness S1 and Ursell number UR defined as

S1 = 2π
g

Hs

T 2
1

(55)

UR = Hsk1
(k1h)3 (56)

Here T1 is the mean spectral periode, HS is the significant wave height and k1 is the wave
number corresponding to T1. In this case the seastate is narrowbanded so it is reasonable to
assume that T1 = TP which implies that k1 = kP . From Fig. 17 it appears that the variations
caused by changing the bandwidth are neglectible which supports this assumption. S1 and
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Figure 17: The quadratic transferfunction is a measure of the magnitude of sum-freqeuncy and
difference-frequency effects. The positive values describes sum-frequency effects and negative
values describes difference-frequency effects. ω1−ω2 describes the bandwidth of the seastate.
Valid for 2D waves. Waterdepths defined as: – deep water; · • ·· = 70 m; · 4 ·· = 42 m;
·� · · = 31 m; ·+ ·· = 16 m. Wist (2003).

Figure 18: Principal sketch of difference-frequency effects and total height of wave crest
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UR describes the level of nonlinearity in the waves. For the case where S1 = 0 and UR = 0
the distribution is forced to match the Rayleigh distribution. For the 2D case the parameters
are given by:

α2D = 0.3536 + 0.2892S1 + 0.1060UR (57)
β2D = 2− 2.1597S1 + 0.0968U2

R (58)
and for the 3D case:

α3D = 0.3536 + 0.2568S1 + 0.0800UR (59)

β3D = 2− 1.7912S1 − 0.5302UR + 0.2484U2
R (60)

It should be noted that the Forristall distribution is based on simulations for UR ≤ 1. In the
following calculations α and β will be employed to describe both the 2D and 3D case.

6.2.1 Truncated Forristall distribution

If wc is defined within a limited interval wc1 < wc < wc2 then this is accounted for by letting
wc follow the truncated Forristall distribution given by

P (wc) =
exp

[
−
(
wc1√

8α

)β]
− exp

[
−
(
wc√
8α

)β]
exp

[
−
(
wc1√

8α

)β]
− exp

[
−
(
wc2√

8α

)β] for wc1 ≤ wc ≤ wc2 (61)

6.3 Expected value of scour

This stochastic approach for finding the scour depth in nonlinear random wave plus current
is based the assumptions that the seastate has lasted longer than the timescale of the scour
and that only the 1/n’th highest waves contribute to scour response. Also, the method
is valid for live-bed conditions. The highest waves are exceeded by a probability of 1/n
and the corresponding value for wc is denoted wc1/n. This quantity is found by solving
1 − P (wc1/n) = 1/n. The expected equilibrium scour depth caused by the 1/n’th highest
wave crests is then given by

E[S(wc)|wc > wc1/n] = n

∫ ∞
wc1/n

S(wc)p(wc)dwc (62)

where p(wc) is the probability density function and S(wc) is the equilibrium scour depth
given by wc which will be elaborated further in the following sections. This method is based
on two main assumptions:

• The free surface elevation is a stationary narrowband random process with an expecta-
tion value of zero

• The formulas for scour depth in regular waves plus current provided in the previous
sections are valid for irregular waves plus current as well

In order to investigate the ratios between expected equilibrium scour depth predicted by
3D, 2D and linear waves it is appropriate to give R1(3D waves) as the ratio between 3D and
linear waves, R1(2D waves) is the ratio between 2D and linear waves and R2 is the ratio
between 3D and 2D waves.
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6.3.1 Ursell criterion

It should be noted that since the Forristall distribution is only given for UR ≤ 1 there are
certain limitations. For a given value of Hs and h the lower limit of kp can be found from Eq.
(56) by solving for kp. The peak frequency ωp is found from the dispersion relationship in Eq.
(42) and the corresponding rms value of the maximum horizontal particle velocity evaluated
at the seabed Urms is found in Eq (50). Recalling the rms value of the Keulegan-Carpenter
number in Eq. (24) it appears that there is an upper limit inKCrms if the diameterD is given.
This must kept in mind, regardless of what type scour that is considered. As an example; if
a structure with diameter D = 1m on the seabed (vertical pile, pipeline or short cylinder)
is exposed to waves with Hs = 3m and waterdepth h = 10m, the resulting upper limit will
be KCrms = 11.59. This example is most suitable for vertical piles or pipelines as the short
cylinders often have smaller diameter. For a sea mine (short cylinder) with D = 0.2m the
corresponding limit is KCrms = 57.95. For future applications this will be refered to as the
Ursell criterion.

6.3.2 Forristall effect due to change of structure diameter

When regarding 2D or 3D waves it is important to be aware of that S1 and UR determines
the shape of p(wc) through α and β. As mentioned S1, UR are measures of the degree of
nonlinearity in the seastate and KCrms contains information about the wave action relative
to the diameter of the structure. A connection between these three quantities will now be
elaborated. By inserting the expression for Urms from Eq. (50) into Eq. (51) and recalling
that ωp = 2π/Tp the new expression becomes

KCrms = 2πarms
D sinh kph

(63)

For a given arms, h and KCrms it appears that any variations in the diameter must be
compensated for by the wave number kp. So far, this is the case for linear waves as well. For
2D or 3D waves the variation in kp will cause changes in the pdf as α and β are indirectly
dependent on kp. This means that if the seastate and the Keulegan-Carpenter number are
given the expected equilibrium scour depth in Eq. (62) will vary with the diameter of the
structure. Fig. 30 in Appendix A illustrates this effect. This is not an issue for linear waves
since S1 = 0 and UR = 0. The common practice in the previously mentioned works is to
present the expected equilibrium scour depth as S/D but here this can be misleading as the
Forristall distribution is employed in this report. In order to avoid confusion the results of
expected scour respons by linear, 2D and 3D waves in the following sections will mainly be
given with dimension in meters along the y-axis and specified characteristic diameter on top.
For future applications this will be referred to as the Forristall effect.

6.4 Shields parameter

The task of finding the Shields parameter in random waves may offer some challenges as it is
not obvious which value of θ that actually corresponds to live-bed scour. Recalling that the
scour depth was determined as the expected scour response from the 1/n’th largest waves, the
Shields parameter must be assessed in a corresponding manner. In the following, a method
for calculating the Shields parameter in 3D, 2D and linear random waves will be described.
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First, the dimensionless Shields parameter θc is given as θc = θm/θrms. From the definition
of θ in Eq. (3) it appears that θc is equal to the non-dimensional maximum bottom shear
stress under the waves crest for individual random waves τc = τm/τrms. θrms is defined as

θrms = τrms
ρg(s− 1)d50

(64)

where τrms is given by

τrms = 1
2c
[
Arms
z0

]−d
U2
rms (65)

θm can by found by replacing τrms with τm in Eq. (64). Myrhaug and Holmedal (2011)
proposed a model for calculating bottom friction beneath 2D and 3D random waves for
different flow regimes. For rough turbulent flow they stated that τc = w2−d

c . Recalling that
τc = θc gives

θc = w2−d
c (66)

Now the expected value of the nondimensional Shields parameter can be found by em-
ploying the incomplete gamma function Γ(:, :) (further described in Myrhaug et al. (2009)).

E[θc(wc)|wc > wc1/n] = n
(√

8α
)2−d

Γ
[
1 + 2− d

β
, lnn

]
(67)

For the case of linear waves α = 1/
√

8 and β = 2.

7 Vertical pile in nonlinear random waves plus current

7.1 Method

Now a stochastic method for finding the equilibrium scour depth around a single vertical
circular pile in nonlinear random waves plus current will be shown. For the case of random
waves, the KC-number in Eq. (11) is found employing Um = wcUrms which gives

KC = wcKCrms (68)

Based on this, Eq. 13 can be rearranged to find the equilibrium scour depth due to
narrowband random waves plus current as

S = DC(1− exp[−q(KCrmswc − r)]) for wc ≥ wcl = r(wc)
KCrms

(69)

where wcl is the lower limit for wc as a consequence of that Eq. (13) is valid for KC ≥ r.
q and r are given by

q = 0.03 + 0.75U2.6
cw (70)

r = 6 exp(−4.7Ucw) (71)

where
Ucw = Ucr

Urmswc + Ucr
(72)
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Thus, P (wc) is the truncated cumulative Forristall distribution described in Eq (61) with
wc1 = wcl and wc2 approaching an infinitly large value.

P (wc) =
exp

[
−
(
wcl√

8α

)β]
− exp

[
−
(
wc√
8α

)β]
exp

[
−
(
wcl√

8α

)β] (73)

The 1/n’th largest values of wc is then given by solving 1− P (wc1/n) = 1/n.

wc1/n =
√

8α
[(

wcl√
8α

)β
+ lnn

]1/β

(74)

The probability density function of wc is found by evaluating p(wc) = dP/dwc

p(wc) =
( 1√

8α

)β
βwβ−1

c exp
[(

wcl√
8α

)β
−
(
wc√
8α

)β]
(75)

The expected value of the scour depth is found by evaluating the integral in Eq. (62).
However, it should be noticed that the lower limit of the integration, wc1/n, is dependent on
the lower limit of the probability density function. In order to ensure correct contribution
from all values of wc in the integration the Heaviside function must be employed. It is defined
as

H(wc − wc1/n) =
{

1 if wc > wc1/n

0 if wc < wc1/n

So, the expected equilibrium scour depth around a single vertical pile caused by the 1/n’th
largest waves based on Eq. (62) is found as

E[S(wc)|wc > wc1/n] = n

∫ ∞
0

S(wc)p(wc)H(wc − wc1/n)dwc (76)

The stochastic method for finding the equilibrium scour depth around single vertical piles
with square cross sections and the group arrangements of piles in nonlinear random waves is
equal to the method presented in this section, except that the coefficients (C, q, r) are given
in Eqs (15)-(16) and Eqs (18)-(20). Due to the fact that the current velocity is not accounted
for in the latter cases (r and q are constants) the stochastic method becomes less complicated.
The lower limit for the truncated Forristall distribution is wcl = r/KCrms and the expected
equilibrium scour depth around a square pile or a group of piles can now be written as

E[S(wc)|wc > wc1/n] = n

∫ ∞
wc1/n

S(wc)p(wc)dwc (77)

where S(wc), wc1/n and p(wc) are given in Eqs. (69), (74) and (75), respectivly.

7.2 Results

All the plots presented in this section are given with dimension for a spescific pile diameter
of D = 1m. For the linear waves, this involves that the expected equilibrium scour depth
can be understood as S/D and that the results are valid for any other pile diameter within
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(a) KCrms = 2.67 (b) KCrms = 5.33

Figure 19: Expected scour depth for linear, 2D and 3D random waves around a vertical
circular pile versus Ucwrms

the slender pile regime. However, due to the previously mentioned Forristall effect in Section
6.3.2, this is not the case for 3D and 2D waves. The seastate is given by Hs = 3m and
h = 10m and, consequently, the upper limit in KCrms, based on the Ursell criterion is 11,59.
Further, it is assumed that only the 1/10’th largest wave crests will contribute to the scour
respons, hence n = 10. Additional results for piles can be found in Appendix A.

7.2.1 Circular cross section

Myrhaug et al. (2009) compared the predictions from the stochastic model for linear random
waves (α = 1/

√
8, β = 2) and the measured data presented by Sumer and Fredsøe (2001)

for for co-directional waves plus current versus Ucwrms in the range of 0− 0.4 for n = (3, 10)
and with KCrms = (2.67, 5.33, 17.33) in their Fig. 4. Fig. 19 in this report illustrates the
corresponding results for S based on linear, 2D and 3D waves. As expected, it appears that
the nondimensional expected scour depth in Myrhaug et al. (2009) is equal to the expected
scour depth in Fig. 19 given by the linear waves as D = 1m. Due to the Ursell criterion, only
the plots for KCrms = (2.67, 5.33) are of interest.

It appears that the 2D and 3D waves cause more scour compared to the linear waves over
the entire range of current velocity and for both values of KCrms. Also, the scour depth
increases for increasing current velocity. For KCrms = 2.67 the 2D and 3D waves will cause
about the same amount of scour but for KCrms = 5.33 the 3D waves will dominate.

Fig. 20 illustrates the ratios of scour depth as a function of KCrms for Ucwrms = 0.2.
It appears that 2D and 3D waves induce more scour than linear waves for all KCrms. The
reason for the sudden increase in R1 (2D waves) and R1 (3D waves) at KCrms ≈ 2 is due to
low scour response from linear waves. For KCrms & 2 the 3D waves induce more scour than
2D waves whereas for lower KCrms the 2D waves will generate more scour.
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Figure 20: Ratios of scour depth around vertical circular pile versus KCrms.

7.2.2 Square cross section

Fig. 21 illustrates the ratios of scour depth around a 45◦ and 90◦ square pile in random waves
as a function of KCrms for 3D, 2D and linear random waves.

For both the 45◦ and 90◦ square pile it appears that 2D and 3D waves induce more scour
than linear waves for all KCrms. Further, for the lowest values of KCrms the scour response
from 2D waves is largest, but when KCrms & 2 the 3D will cause the largest scour depth.
This effect is more distinguished for the 90◦ square pile.

7.2.3 Groups of piles

Figs. 22 and 23 illustrate the ratios of scour depth around the side-by-side, 45◦ staggered and
the 4× 4 arrangement of piles in random waves for G/D = 0.4 versus KCrms for 3D, 2D and
linear random waves. The two-pile arrangements have similar ratios as the single circular pile
in Fig. 20 whereas the 4 × 4 arrangement has many common features with the 90◦ square
pile in Fig. 21b which seems reasonable due to the square shape of the arrangement.

7.3 Example of calculation of scour

The purpose of this example is to show the application of the stochastic method for a sin-
gle circular vertical pile. The flow conditions are taken from the corresponding example in
Myrhaug et al. (2009) and given by:

• Water depth, h = 10m

• Significant wave height, Hs = 3m

• Spectral peak periode, Tp = 7.9s corresponding to ωp = 0.795 rad/s

• Median grain diameter, d50 = 1mm

• s = 2.65 (quartz sand)
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(a) 45◦ (b) 90◦

Figure 21: Ratios of scour depth for square piles versus KCrms

(a) Side-by-side (b) 45◦ staggered

Figure 22: Ratios of scour depth for two-pile arrangements versus KCrms
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Figure 23: Ratios of scour depth around 4× 4 arrangement of piles versus KCrms.

• Current speed, Uc = 0.2m/s

• n = 10

Table 1 presents the calculated values which are independent of the diameter of the pile
which involves that they are valid for other cases of scour as well. The rms value of the
wave amplitude is calculated as arms = Hs/2

√
2. Further, as the seastate is assumed to be

narrowbanded the values for S1 and UR (see Eqs. (55) and (56), respectivly) are obtained by
substituting T1 and k1 with Tp and kp, respectivly. UR < 1 meaning that the flow condition
is within the validity range of the Forristall distribution. As Ucwrms = 0.196 it follows that
the seastate is wave dominated. Urms/(Urms +Uc) = 0.804 is given as the this flow condition
also will be employed for the short cylinder. Recalling that z0 = d50/12 involves that Arms/z0
exceeds 11,000 and, consequently, the coefficients (c, d) = (0.112, 0.25). θrms exceeds θcr which
results in live-bed conditions. The largest maximum Shields parameter is caused by 3D waves,
followed by 2D and linear waves. So far, calculations are independent of the characteristic
diameter of the structure.

The resulting scour depths S from linear, 2D and 3D waves around a vertical pile with a
diameter of D = 0.3m (taken from corresponding example in Myrhaug et al. (2009)) and C =
1.3 are given in Table 2. Regardless of the presence of current, the nonlinear waves will induce
a larger scour depth than linear waves. The 3D waves causes the largest scour depth closely
followed by 2D waves. This is due to smaller set-down effects for 3D waves than 2D in finite
water depth as discussed in Section 6.2. For waves alone, the ratios Snonlin,3D/Slin = 1.114
and Snonlin,2D/Slin = 1.093. For waves plus current, the ratios become Snonlin,3D/Slin = 1.078
and Snonlin,2D/Slin = 1.066 and it appears that the scour depth will increase compared to
waves alone. Fig. 19 displays similar features.
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Table 1: Example of calculation

arms (m) 1.06
kp (rad/m) Eq. (42) 0.090
S1 Eq. (55) 0.030
UR Eq. (56) 0.370
α2D,β2D Eqs. (57),(58) 0.4018,1.9468
α3D,β3D Eqs. (59),(60) 0.3911,1.7874
Arms (m) Eq. (53) 1.033
Urms (m/s) Eq. (50) 0.821
Ucwrms Eq. (23) 0.196
Urms/(Urms + Uc) 0.804
Arms/z0 12399
c, d Eq. (10) 0.112,0.25
θrms Eqs. (64) and (65) 0.2214

Shields parameter; θm = θcθrms
θclin Eq. (67) 2.832
θmlin 0.627

θcnonlin2D Eq. (67) 3.647
θmnonlin2D 0.807

θcnonlin3D Eq. (67) 3.840
θmnonlin3D 0.850

Table 2: Scour depth around single circular pile with D = 0.3m

KCrms Eq. (51) 21.629

Waves alone:
Slin (m) 0.245
Snonlin,2D (m) 0.268
Snonlin,3D (m) 0.273
Waves plus current:
Slin (m) 0.269
Snonlin,2D (m) 0.287
Snonlin,3D (m) 0.290
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8 Pipeline in nonlinear random waves plus current

8.1 Method

The stochastic method for finding the equilibrium scour depth below a marine pipeline is very
much similar to that of the vertical pile described in Section 7. The seastate is still assumed
to be stationary narrowbanded and the formulas for regular waves plus current are assumed
to be valid for irregular waves plus current as well. By employing Eqs. (68) the dimensional
scour depth can be re-arranged to

S = D
Scur
D

F (78)

where F is given as

F = 5
3(KCrmswc)a exp(2.3b) (79)

The coefficients a and b are then given as

a(wc) = 0.557− 0.912(Ucw − 0.25)2 (80)

b(wc) = −1.14 + 2.24(Ucw − 0.25)2 (81)

where Ucw is given in Eq. (72). Recalling that Eq. (35) is valid for 0 ≤ Ucw ≤ 0.4, corresponds
to the following requirement for wc

wc ≥ wcl = 1.5 Uc
Urms

(82)

Now the cumulative density function P (wc), the value of wc which is exceeded with a
probability 1/n ,wc1/n, and the probability density function p(wc) are identical to those for
the vertical pile and given in Eqs. (73) - (75) respectivly. However, wcl is given in Eq. (82)
for the pipeline.
The expected equilibrium scour depth caused by the 1/n’th largest waves follows from Eq.
(62) as

E[S(wc)|wc > wc1/n] = n

∫ ∞
wc1/n

S(wc)p(wc)dwc (83)

8.2 Results

Myrhaug et al. (2009) compared the predictions from the stochastic model for linear random
waves (α = 1/

√
8, β = 2) and the measured data presented by Sumer and Fredsøe (1996)

for waves plus current versus Ucwrms in the range of 0 − 0.4 for n = (3, 10) and KCrms =
(3.67, 6.67, 12, 26, 34, 7) in their Fig. 3. Fig. 24 in this report illustrates the corresponding
results for S based on linear, 2D and 3D random waves. The seastate is given by Hs = 3m
and h = 10m. As expected, it appears that the nondimensional expected scour depth in
Myrhaug et al. (2009) is equal to the expected scour depth in Fig. 24 given by the linear
waves as D = 1m. Further, this involves that the expected equilibrium scour depth given by
linear waves can be understood as S/D and that the results are valid for any other pipeline
diameter. However, due to the previously mentioned Forristall effect in Section 6.3.2, this is
not the case for 3D and 2D waves. Equivalent to the case of the vertical piles the upper limit in

32



(a) KCrms = 3.67 (b) KCrms = 6.67

Figure 24: Expected scour depth for linear, 2D and 3D random waves around a pipeline
versus Ucwrms

KCrms is 11.59, based on the Ursell criterion. Hence, only the plots for KCrms = (3.67, 6.67)
are of interest.

It appears that the 2D and 3D waves cause more scour compared to the linear waves
over the entire range of current velocity and for both values of KCrms. The variations with
Ucwrms are very small, allthough it appears that the current will reduce the scour depth
slightly compared to waves alone. For KCrms = 3.67 the 2D and 3D waves will cause about
the same amount of scour but for KCrms = 6.67 the 3D waves will dominate.

Figure 25: Ratios of scour depth around pipeline versus KCrms.

Fig. 25 illustrates the ratios of scour depth as a function of KCrms for Ucwrms = 0.2.
It appears that 2D and 3D waves induce more scour than linear waves for all KCrms. The
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reason for the sudden increase in R1 (2D waves) and R1 (3D waves) at KCrms . 2 is due
to low scour response from linear waves. For KCrms & 2 the 3D waves induce more scour
than 2D waves whereas for lower KCrms the 2D waves will generate more scour. Additional
results for pipelines and short cylinders can be found in Appendix B.

8.3 Example of calculation of scour depth under a pipeline

The following example of calculation of the scour depth under a pipeline is presented in order
to demonstrate the application of the method and based on the same flow condition as the
vertical pile described in Table 1

Table 3: Marine pipeline with D = 0.3m and flow conditions given in Table 1

KCrms Eq. (51) 21.629

Waves alone:
Slin (m) 0.187
Snonlin,2D (m) 0.201
Snonlin,3D (m) 0.203
Waves plus current:
Slin (m) 0.174
Snonlin,2D (m) 0.189
Snonlin,3D (m) 0.193

The resulting scour depths S from linear, 2D and 3D waves under a marine pipeline with a
diameter of D = 0.3m (taken from corresponding example in Myrhaug et al. (2009)) are given
in Table 3. Similar to the case of the vertical pile, the nonlinear waves will induce a larger
scour depth than linear waves. The 3D waves causes the largest scour depth closely followed
by 2D waves. This is due to smaller set-down effects for 3D waves than 2D in finite water
depth as discussed in Section 6.2. For waves alone, the ratios Snonlin,3D/Slin = 1.085 and
Snonlin,2D/Slin = 1.074 which is slightly lower than the corresponding values for the vertical
pile. For waves plus current, the ratios become Snonlin,3D/Slin = 1.109 and Snonlin,2D/Slin =
1.086; slightly higher the values for the vertical pile. Moreover, it appears that the current
causes the scour depth to decrease. Fig. 24 displays similar features. The main mechanism
of scour under a pipeline for waves alone is the lee-wake vortex system that occurs on both
sides of the pipe. When the current is added this vortex system will be more violent on the
downstream side of the pipeline compared to the upstream counterpart which results in a
decrease in the scour depth underneath the pipeline. From Table 2 it appears that adding a
current has the oposite effect on the scour depth around the vertical pile. The presence of
a current will cause amplification of the horseshoe votices on the upstream part of the pile,
resulting in a larger scour depth, Sumer and Fredsøe (2002).

9 Short cylinder in nonlinear random waves plus current

The stochastic method for finding the equilibrium burial depth and scour hole geometry is
very much similar to that of the vertical pile and the pipeline described in Section 7 and
Section 8, respectivly. The seastate is still assumed to be stationary narrowbanded and wave
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dominated. Further, the formulas for regular waves plus current are assumed to be valid for
irregular waves plus current as well.

9.1 Burial

By employing Eqs. (68) and (66) and recalling that θ = θm/θrms Eq. (38) can be re-arranged
to

Bd = Dc1
Urmswc

Urmswc + Uc

(
θrmsw

2−d
c KCrmswc

)c2 (84)

where Urmswc = Um. Since KCrms, θrms and Urms are defined by the seastate alone,
regardless of any current, it is convenient to introduce B̂d given as

B̂d(wc) = Bd/D

c1(θrmsKCrms)c2
= wc
wc + Uc/Urms

wc2(3−d)
c (85)

The expected burial depth caused by the 1/n’th largest waves is given from Eq. (62) if S
is replaced by B̂d

E[B̂d(wc)|wc > wc1/n] = n

∫ ∞
wc1/n

B̂d(wc)p(wc)dwc (86)

where p(wc) is the probability density function which can be derived from P (wc) given in
Eq. (54)

p(wc) = dP (wc)
dwc

=
( 1√

8α

)β
βwβ−1

c exp
[
−
(
wc√
8α

)β]
for wc ≥ 0 (87)

The value of wc which exceeded with a probability of 1/n is found by solving 1−P (wc1/n) =
1/n

wc1/n =
√

8α (lnn)1/β (88)

It can be noted that the expressions for p(wc) and wc1/n can be obtained by inserting wcl = 0
in Eqs. (75) and (74), respectivly.

Myrhaug and Ong (2009) presented the expected burial depth B̂d for linear random waves
in combined waves and current where Urms/(Urms + Uc) was in the range of 0.5 to 1 and
with n = (3, 10) in their Fig. 3. In terms of Ucwrms this corresponds to the range of 0 to
0.5 which is a bit beyond wave dominated region. Further, Eq. (38) is strictly valid for
Urms/(Urms+Uc) ≥ 0.8. In order to study the influence of Arms/z0 they calculated the burial
depth for each case of the coefficient d given in Eqs. (8)-(10).

Fig. 26 illustrates the expected equilibrium burial depth B̂d from 3D, 2D and linear waves
for KCrms = (25, 50), d = 1, n = 10 and Urms/(Urms + Uc) in the same range as Myrhaug
and Ong (2009). The seastate is given by Hs = 3m, h = 10m and the diameter is D = 0.5m.
Accordingly, based on the Ursell criterion, the upper limit in KCrms is 23.2. As expected, it
appears that the burial depth for linear waves is equal to the results by Myrhaug and Ong
(2009). By investigating Eq. (85) it appears that θrms and KCrms must be given in order to
determine the dimensional burial depth Bd. For linear waves, this involves that the expected
value of B̂d is independent of θrms and KCrms, but as a consequence the Forristall effect in
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(a) KCrms = 10 (b) KCrms = 20

Figure 26: Expected burial depth for linear, 2D and 3D random waves versus Urms/(Urms+Uc)

Section 6.3.2, the expected value of B̂d for 2D and 3D waves dependent on KCrms. Figs. 26
and 40 (see Appendix B) clearly illustrate this. Accordingly, the expected value of B̂d for
linear waves is independent of the diameter.

Fig 27 illustrates the ratios of burial depth as a function of KCrms for Urms/(Urms+Uc) =
0.8. It appears that 2D and 3D waves induce more scour than linear waves for all KCrms.
The reason for the increase in R1 (2D waves) and R1 (3D waves) for the low range values of
KCrms is due to high burial response from 2D and 3D. For KCrms & 15 the burial for 3D
waves is larger than for 2D waves whereas for lower KCrms the 2D waves will cause larger
burial depth.

Figure 27: Ratios of burial depth versus KCrms.

36



9.2 Scour

By employing Eq. (68), Eq. (40) can be re-arranged to

L̂ = L

D
= p1KC

p2
rmsw

p2
c (89)

The expected scour hole length caused by the 1/n’th largest waves is given from Eq. (62)
by replacing S with L̂

E[L̂(wc)|wc > wc1/n] = n

∫ ∞
wc1/n

L̂(wc)p(wc)dwc (90)

where p(wc) and wc1/n are given in Eqs. (87) and (88), respectivly.
Myrhaug and Ong (2009) presented the expected total length of the scour hole for linear and
Stokes second order random waves with n = (3, 10) and cylinder aspect ratio ar = 4 in their
Fig. 4. Fig. 28 illustrates the expected total length of the scour hole around a short cylinder
where n = 10 versus KCrms. The seastate is given by Hs = 3m, h = 10m and the diameter
of the cylinder is D = 0.5m. Accordingly, based on the Ursell criterion, the upper limit in
KCrms is 23.2. As expected, it appears that the total scour hole length for linear waves is
equal to the results by Myrhaug and Ong (2009). It should be noted that the result from
linear waves is valid for any diameter corresponding to the given validity range in KC of Eq.
(40). However, due to the Forristall effect in Section 6.3.2, the results from 2D and 3D waves
are only valid for D = 0.5m.

Figure 28: Expected total length of scour hole versus KCrms.

Fig. 29 illustrates the ratios of scour hole length as a function of KCrms corresponding
to Fig. 28. It appears that 2D and 3D waves induce more scour than linear waves for all
KCrms. The reason for the sudden increase in R1 (2D waves) and R1 (3D waves) at the low
range values of KCrms is due to low scour respons from linear waves. For KCrms & 6 the 3D
waves induce more scour than 2D waves whereas for lower KCrms the 2D waves will generate
more scour.
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Figure 29: Ratios of total length of scour hole versus KCrms.

9.3 Example of calculation

The following example of calculation of the burial depth and scour hole geometry around a
short cylinder is presented in order to demonstrate the application of the method and based
on the same flow condition as the vertical pile described in Table 1. The results for 3D, 2D
and linear random waves alone are given in Table 4 for a cylinder diameter D = 0.5m and
aspect ratio ar = 4. The burial depth is also given for Urms/(Urms + Uc) = 0.804.

By rearranging Eq. (85) the burial depth can be written as Bd = Dc1(θrmsKCrms)c2B̂d,
where B̂d is presented in Fig. 26 for 3D, 2D and linear waves plus current. The coefficients
(c1, c2) are given in Eq. (39). From Table 4 it appears that the current will reduce the burial
depth, which is consistent with the features of B̂d in Fig. 26. Further, the 3D waves will
cause the largest burial depth followed by 2D and linear waves.

By rearranging Eq. (90) the totale length of the scour hole can be written as Lst =
Dp1(KCrmswc)p2 = DL̂st where L̂st is presented in Fig. 28. The coefficients p1 = 0.75a0.3

r =
1.14 as ar = 4 and p2 = 0.6. It should be noted that, similar to the case of burial, the 3D
waves will cause the largest scour hole, followed by 2D and linear waves. This is caused by
smaller set-down effects for 3D waves in finite water depth compared to 2D waves.

10 Conclusion

For all the various cases of scour and burial it appears that the ratios R1 (3D waves), R1
(2D waves) and R2 in Figs. 20, 21, 22, 23, 25, 27 and 29 display similar features. Similar
tendencies are also detected in the examples of calculation. Overall, it can be noted that the
nonlinear 2D and 3D waves will cause more scour and burial than linear waves although the
ratios varies with the presence of current and the KC-number.

Moreover, it appears that scour from 2D waves is larger than the 3D counterpart for the
lowest values of KCrms whereas the scour depth from 3D waves will dominate for higher
KCrms. Recalling that KCrms will increase as the water depth decreases this behaviour in
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Table 4: Short cylinder with D = 0.5m and flow conditions given in Table 1

KCrms Eq. (51) 12.98

Burial:
Waves alone:
Bd,lin (m) 0.348
Bd,nonlin,2D (m) 0.409
Bd,nonlin,3D (m) 0.422
Waves plus current:
Bd,lin (m) 0.307
Bd,nonlin,2D (m) 0.366
Bd,nonlin,3D (m) 0.378

Total length of scour hole:
Waves alone:
Lst,lin (m) 3.766
Lst,nonlin,2D (m) 4.105
Lst,nonlin,3D (m) 4.173

R2 is due to the larger wave setdown effects for 2D waves than for 3D waves in shallow water.
However, in deep water the difference frequency effects disappears and the 2D waves will
dominate due higher sum frequency effects compared to 3D waves.

Even though the stochastic method presented in this report is simple, it may be usefull
as an engineering tool for estimating the scour depth beneath 2D and 3D nonlinear random
waves plus current for vertical piles, pipelines and short cylinders. More experimental data
is necessary in order to discuss the validity of this method.
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Glossary

Symbol Description
α Shear stress amplification factor
τ Shear stress
τ∞ Undisturbed shear stress
S Equilibrium scour depth
St Instantanious scour depth
t Time
T Time scale of scour
θ Shields parameter
ρ Density of water
g Acceleration of gravity
ρs Sediment density
s Ratio between ρs and ρ
d50 Median grain diameter
θcr Critical value of Shields parameter
fw Friction factor
Um Maximum horizontal fluid velocity at the seabed
A Orbital displacement of water particles at the seabed
z0 Bed roughness
(c, d) Coefficients for calculating the friction factor
H Linear wave height
h Water depth
k Wave number
ω Angular wave frequency
KC Keulegan-Carpenter number
D Charateristic diameter
T Wave period
(C, q, r) Coefficients for calculating pile scour
G Gap between vertical piles
Urms Root-mean-square value of Um
Tp Peak periode of the wave spectrum
Tz Mean zero crossing wave periode
KCSF KC based on Tp in experimental data from Sumer and Fredsøe (1996, 2001)
Uc Current velocity
Ucwrms Coefficient based on Uc and Urms
Ucw Coefficient based on Uc and Um
Scur Scour depth for pipeline in current alone
F Non-dimensional parameter utilized for pipeline scour
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Symbol Description
(a, b) Coeffcients for calculating pipeline scour
Bd Burial depth
Lc Length of short cylinder
(c1, c2) Coefficients for calculating burial
ar Aspect ratio
L Representation of scour hole length
(p1, p2) Coefficients for calculating scour hole geometry
Lst Total length of scour hole
Lsd Downstream length of scour hole
Lsu Upstream length of scour hole
W Width of scour hole around short cylinder
ηc Crest height
a Amplitude of first harmonic wave component
ωp Peak frequency
kp Wave number corresponding to ωp
wc Dimensionless crest height
arms Root-mean-square value of crest height
â Dimensionless crest height
Ûm Dimensionless maximum horizontal fluid velocity at the seabed
KCrms Root-mean-square value of the Keulegan-Carpenter number
P (wc) Cumulative distribution function
α2D, β2D Dimensionless coefficients in Forristall distribution for long-crested waves
β3D, β3D Dimensionless coefficients in Forristall distribution for short-crested waves
S1 Wave steepness
UR Ursell number
T1 Mean spectral periode
k1 Wavenumber corresponding to T1
HS Significant wave height
wc1 Lower limit of wc
wc2 Upper limit of wc
wc1/n Value of wc exceeded with a probability of 1/n
R1(3D waves) Ratio between 3D and linear waves
R1(2D waves) Ratio between 2D and linear waves
R2 Ratio between 3D and 2D waves
θc Dimensionless Shields parameter
θm Maximum Shields parameter
θrms Root-mean-square value of Shields parameter
Arms Root-mean-square value of the orbital displacement at the seabed
τc Dimensionless seabed shear stress
p(wc) Probability density function
H(x− x0) Heaviside function
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(a) D = 1m (b) D = 0.5m

Figure 30: Nondimensional scour depth for circular pile versus Ucwrms

A Vertical Piles

This appendix is a gathering of the results of the expected equilibrium scour depth for the
various pile arrangements presented in Section 7, both single and multiple piles. The results
are based on Hs = 3m, h = 10m and the diameter is specified in each case.

A.1 Circular cross section

Fig. 30 illustrates the nondimensional scour depth S/D versus Ucwrms exemplified forKCrms =
10, n = 10 and two different diameters. As mentioned, the nondimensional scour depth for
linear waves is equal in the two cases, whereas this is not the case for 2D and 3D waves due to
the Forristall effect in Section 6.3.2. It appears that D = 0.5m will cause less nondimensional
scour than D = 1m for both 2D and 3D waves. Fig. 31 illustrates the ratios between the
expected equilibrium scour depths presented in Fig. 19. For KCrms = 2.67, both R1 (3D
waves) and R1 (2D waves) are higher than for KCrms = 5.33 for any given Ucwrms. Further,
R2 is lowest when KCrms = 2.67. The ratios are highest for zero current velocity and when
the current velocity is increased it appears that the ratios decrease.

Fig. 32 illustrates the expected equilibrium scour depth around a circular pile versus
KCrms for Ucwrms = 0 and 0.4. Fig. 33 illustrates the ratios of expected equilibrium scour
depth around a circular pile versus KCrms for Ucwrms = 0 and 0.4 corresponding to Fig 32.

A.2 Square cross section

Fig. 34 illustrates the expected equilibrium scour depth for the 45◦ and 90◦ square pile versus
KCrms based on the ratios in Fig. 21. It appears that the 45◦ square pile will experience the
highest amount of scour regardless of KCrms. Fig. 7 displays the same characteristics.
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(a) Ratios for KCrms = 2.67 (b) Ratios for KCrms = 5.33

Figure 31: Ratios of scour depth around circular cylinder versus Ucwrms

(a) Ucwrms = 0.0 (b) Ucwrms = 0.4

Figure 32: Scour depth for circular pile versus KCcwrms
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(a) Ucwrms = 0.0 (b) Ucwrms = 0.4

Figure 33: Ratios of scour depth for circular pile versus KCcwrms

(a) 45◦ (b) 90◦

Figure 34: Scour depth for square pile versus KCcwrms
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(a) Side-by-side (b) 45◦ staggered

Figure 35: Scour depth for two-pile groups versus KCrms

A.3 Group arrangements

Figs. 35 and 36 illustrate the maximum expected equilibrium scour depth for the side-by-
side, 45◦ staggered and 4 × 4 group arrangements. It appears that for the maximum values
of KCrms the 4 × 4 arrangement will be subject to the largest amount of scour whereas the
45◦ staggered arrangement will cause the smallest amount. For mid-range values of KCrms
the side-by-side arrangement will experience the most scour. Fig. 11 displays the same
characteristics.

Figure 36: Scour depth around 4× 4 group of piles versus KCrms.
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(a) Ucwrms = 0.0 (b) Ucwrms = 0.4

Figure 37: Scour depth for pipeline versus KCcwrms

B Pipelines and short cylinders
This appendix is a gathering of the supplementary results of the expected equilibrium scour
depth for pipelines and short cylinders presented in Section 8 and 9. The results are based
on Hs = 3m, h = 10m and the diameter is specified in each case.

B.1 Pipelines

Fig. 37 illustrates the expected equilibrium scour depth around a pipeline versus KCrms for
Ucwrms = 0 and 0.4. Fig. 38 illustrates the ratios of expected equilibrium scour depth around
a pipeline versus KCrms for Ucwrms = 0 and 0.4 where the former corresponds to waves alone.

Fig 39 illustrates the ratios between the expected equilibrium scour depths presented in
Fig. 24. For both cases of KCrms it appears that in the lower half of the current velocity
range there is an increase in R1 (2D waves) and R1 (3D waves) after which the ratios decrease.
R2 appears to increase at a constant rate with Ucwrms. The variations with KCrms in this
range are small but it seems that all the ratios have increased for KCrms = 6.67 where the
largest growth in R1 (3D waves) is found.

B.2 Burial of short cylinder

Fig. 40 illustrates the burial depth for Urms/(Urms + Uc) = 0.8 and 1 where the latter
corresponds to waves alone.

Fig. 41 illustrates the ratios of expected burial depth corresponding to Fig. 26. The
reason why R1 (2D waves) and R1 (3D waves) are higher for KCrms = 20 is due to larger
burial depths for 2D and 3D waves as the linear burial depth is constant.
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(a) Ucwrms = 0.0 (b) Ucwrms = 0.4

Figure 38: Ratios of scour depth for pipeline versus KCcwrms

(a) Ratios for KCrms = 3.67 (b) Ratios for KCrms = 6.67

Figure 39: Ratios of scour depth around a pipeline versus KCrms
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(a) Urms/(Urms + Uc) = 0.8 (b) Urms/(Urms + Uc) = 1

Figure 40: Burial depth for short cylinder versus KCcwrms

(a) KCrms = 10 (b) KCrms = 25

Figure 41: Ratios of expected burial depth for linear, 2D and 3D random waves versus
Urms/(Urms + Uc)

VII


