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Assignment 

The work description and scope of work for this master thesis has been the same as for the project 

work in marine machinery carried out in the fall semester 2010, ref. (Fagereng, 2010). Thus the 

assignment below is a direct quote of the assignment for the project work. The entire text can be 

viewed in appendix.  

Work description 

Mathematical models for marine vessel dynamics including environmental loads is frequently used in many 

applications.  Extending these models to include propulsion machinery, deck machinery, large cranes or other 

equipment used for marine operations or in operation simulators  it is important for efficient model 

development to have a clear understanding of how the interfaces have to be designed to facilitate connection of 

models. The bond graph representation or modeling methodology focuses on the model structure and 

properties required for connecting sub-models into large hybrid model and therefore may serve as a language 

for analysis of model structure in such a sense.  

This representation has been used in the Energy Efficient - All Electric Ship project and in a PhD-thesis where a 

model library was developed. The work here is a continuation of these attempts and the objective is to increase 

the number and further develop the models in this library.  

Scope of work: 

1. Review the modeling and models of  Marine Vessel Dynamics. Implement a simplified bond graph template 
model for a surface vessel for crane operations.  
 

2. Review the modeling and models of large marine cranes for marine operations including typical heave 
compensation systems, the hydraulic winches and the control of this equipment. Discuss the structure or 
modular design of these hybrid models and suggest a method or implementation of these model into a 
modular component model library. 
 

3. Combine the crane model developed and the vessel dynamic model into a complete model of a barge with 
a large crane for marine operations. Suggest a specific operation and demonstrate the capabilities of the 
developed model as a software simulator. For demonstration purposes include a Joy-stick for manned 
operation and develop a simplified animation displaying the motions of the barge and crane.  
  

The report shall be written in English and edited as a research report including literature survey, description of 

mathematical models, description of control algorithms, simulations results, discussion and conclusion 

including a proposal for further work. Source code in Matlab/Simulink or equivalent shall be provided on a CD 

with code listing enclosed in appendix. 
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Abstract  

As mathematical models for marine vessel dynamics are frequently used for several different 

purposes there is a need for finding ways of facilitating connection of sub models to extend these 

models to include various equipment of interest which affects the vessel dynamics. The bond graph 

modeling language is a natural platform for this since it can be used to describe several different 

disciplines or energy domains using the same basic system elements. Thus for example electrical 

systems affecting mechanical systems can easily be modeled and connected.  

However the basic bond graph modeling concept has to be extended for use in multi-dimensional 

problems since standard procedures soon become difficult or impossible for larger systems. Using 

rigid body dynamics such systems can easily be created and incorporated with vessel dynamic 

equations. Rigid body bond graph can also be used to develop models of various other equipment. 

But when connecting several such systems together rigidly, causality problems will arise. The solution 

is to use the mathematical equivalent to a stiff spring in between the rigid bodies, thus the 

connection will not be entirely rigid.   

In this thesis the development of such multi-dimensional bond graph has been research. A model for 

a simplified barge has been developed. It is clear that such models has great potential, but as with all 

other mathematical models of marine vessel dynamics accurate simulation results rely on accurate 

hydrodynamic coefficients which can be hard to derive.  

Using the same procedure for multi-dimensional bond graph as for vessel modeling it is possible 

derive a model representing a pendulum. Which with some modification such as actuators represent 

a crane beam. Using three dimensional bond graph joints based on the concept of stiff springs to 

connect several such models a crane model is developed. The model is tested and it is found that the 

stiff springs in the connections may induce high vibrational natural frequencies which can affect 

simulation time. For such problems damping in the joint may be adopted.  

The barge model and the crane model are interfaced using bond graph joints and it is shown that the 

movement of the crane indeed will induce forces on the barge as expected. This proves that 6DOF 

systems (six degrees of freedom) for several different mechanical component can be interfaced and 

facilitate the modeling of marine vessel dynamics and the connection of sub systems.  Thus an 

efficient way of modeling such systems has been achieved.  

To demonstrate the simulation result of the models developed in the thesis animations have been 

generated and is included in the attached CD.  
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1. Introduction  

1.1 Problem and motivation 
The bond graph language is a powerful way of creating models over several different energy domains 

alone or in a combination. With the implementation of modern computer software as 20-sim the 

user has an efficient way of designing and analyzing the dynamic behavior of a bond graph system. 

However for large systems, which include several different sub systems, it is clear that one has to 

have some understanding on how to facilitate connection of models for efficient model 

development. As with most large problems the most efficient way of solving them is dividing the 

problem into several different sub problems. When it is time to solve the large overall problem all 

sub problems has to be developed in such a way that they can easily be interfaced together. This is 

especially true in mathematical models of marine vessel dynamics where a large number sub systems 

as deck machinery, cranes and other equipment is to be considered in the overall model.  

The focus in this thesis has been to research and develop efficient ways of modeling marine crane 

operations using bond graphs. Such problems are complicated in that they have a large number of 

degrees of freedom and a large number of rigidly connected parts; both difficult to handle efficiently 

in mathematical problems. Often such systems may be modeled using equations and matrixes taken 

into account all the degrees of freedom of an overall system, as in (Nielsen, 2007) where the result is 

large matrix systems which do not facilitate implementation of other sub systems at a later stage. In 

basic bond graph modeling only a few degrees of freedom may compromise the ease of model 

development, however by combining rigid body dynamics and multi-dimensional power bonds a 

relatively easy and graphical neat solution for a 6DOF system (six degrees of freedom) presents itself.  

It turns out that also the rigid connection of several such models can be solved, thus opening up 

possibilities for efficiently creating systems with a large number of sub systems attached and a large 

overall number of degrees of freedom.  

1.2 Organization of thesis 
To demonstrate such modeling procedures and in line with the assignment basic models for marine 

vessels and cranes are developed in this report. First the classic ways of modeling multi-dimensional 

systems are presented and the problems with such procedures discussed and demonstrated. Then 

the theory behind rigid body dynamics and the implementation into easy graphical bond graphs will 

be introduced and a step by step process of modeling marine crane vessel follows. Presentations of 

simulations and animations results to confirm the feasibility of the models are done after each sub 

model development. Also presented are discussions on simulation time and the rigid connection 

between models. For some of the more complicated models interpreting the simulation results from 

simulation plots are almost impossible, and the reader is referred to the animations attached on CD.  
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The thesis can be interpreted as a continuation or as an academic exercise following the multibody 

chapters in both (Pedersen & Engja, 2008) and (Karnopp, Margolis, & Rosenberg, 2006) where rigid 

body dynamics are presented and the connection of these briefly discussed but not demonstrated. 

As one advantage of bond graph modeling using computers is the ability to produce mathematical 

models with a minimum usage of code the models developed in this thesis tries to follow this 

concept.   

1.3 Literature 
Material for rigid body bond graphs has mainly been taken from (Pedersen & Engja, 2008) and 

(Karnopp, Margolis, & Rosenberg, 2006). Additional inspiration and understanding of translation and 

rotation of rigid bodies has been found in (Sciavicco & Siciliano, 1999). Material for vessel dynamics 

has been found in (Fossen, 1994) with support from (Pedersen, Bond Graph Modelling of Marine 

Vehicle Dynamics). Material on bond graph joints has been found in (Filippini, Delarmelina, Pagano, 

Alianak, Junco, & Nigro, 2007) and in (Karnopp, Margolis, & Rosenberg, 2006). In addition inspiration 

has been found in (Zied & Chung, 1992), (Gilberto & Padilla, 2010), (Nielsen, 2007) and (Berg, 2007).  
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2. Mechanical Bond graph modeling 

2.1 Bond graphs  
In this thesis the tool for mathematical modeling of marine crane operation is the bond graph 

language or method. The bond graph method can be defined as a unified conceptual and operational 

framework for the study of a very wide variety of system types and thus provides a general paradigm 

for modeling of dynamic systems based upon energy and power flow (Pedersen & Engja, 2008). 

It is assumed that the reader has some basic knowledge of the bond graph concept, still it may be 

useful to list the main advantages which makes this method so useful. As described in (Pedersen & 

Engja, 2008): 

 The same symbolism is used to represent the power interaction in a large selection of 

physical systems. 

 On a graphical form bond graphs display the energetic structure of complex systems with 

several energy domains in a way which is close to what we may call the physics of the 

system.  

 A physical based sign convention can be shown directly on the graph, which is important 

when interpreting numerical results from simulations.  

 The method is equally applicable for linear and non-linear systems.  

 A unique feature of bond graphs is the display of causality on the graph. That is, it indicates 

which variable for an element is the independent variable or input and which variable is 

dependent or output variable.  

 The bond graph method gives an algorithmic procedure for converting the graph into 

mathematical equations 

 It can be directly entered and processed by a computer.  

It follows that bond graphs combined with computer implementation is a very powerful tool for 

modeling and simulation of dynamic systems, especially for modeling of marine related topics where 

so many different engineering subjects are combined to make up a complete system. It be electrical, 

mechanical, hydraulic or even thermodynamic. In the next chapters the focus will be on researching 

and developing the mechanical side of large marine systems. The building blocks for larger 

mechanical 6DOF (six degrees of freedom) systems will be established as the modeling of such 

systems can be quite challenging using basic modeling procedures. The goal is to show how bond 

graphs can be used for modeling marine vessels coupled with different systems affecting the total 

dynamics.   

2.2 Multibody dynamics 
While there in general exists simple procedures to guide one through the modeling of systems in 

several different energy domains, some subjects needs further investigation and development to 

make them applicable to modeling of real world systems. Mechanical systems are one of them. The 

mechanical system often involves a large number of different parts moving relative to one another 

introducing several different efforts, flows, momentums and displacements.  
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This complicates the model, especially if the system operates in a 3D world where each velocity has a 

x, y and z component. We know that even small problems can experience differential causality and 

algebraic loops which can be solved fairly easy. However for large systems these methods are not 

practical and it is often better to avoid the problems in the first place. All in all both complexity and 

general bond graph modeling problems make the standard modeling approach to mechanical 

systems practically impossible to employ.  

In the following chapter the concept of rigid body dynamics will be introduced. This concept enables 

the modeling of larger multidimensional mechanical systems with relative ease. First I will 

demonstrate a standard procedure for modeling multidimensional mechanics presented both in 

(Pedersen & Engja, 2008) and (Karnopp, Margolis, & Rosenberg, 2006).  Then I will introduce the 

Lagrange/Hamilton IC-field modeling concept which offers a potential easier way of achieving 

mechanical models. Then I will introduce the general rigid body equations in 6DOF and show how 

these equations actually can be represented in a modified IC-field.  

2.2.1 A basic procedure 
For the general bond graph the aim is to create first order differential equations representing the 

dynamics of the system. Though it is possible to derive bond graphs for simple mechanical systems 

by inspection or using a basic system construction method, the modeling of more complex and 

realistic systems without a more thorough procedure soon becomes difficult. Skipping the some 

background equations and discussions a basic procedure for development of such mechanical bond 

graph systems follows. To illustrate the procedure it will be presented with a standard mass-spring 

example also presented in (Pedersen & Engja, 2008) and (Karnopp, Margolis, & Rosenberg, 2006). 

The example concerns a mass in one end of a pendulum suspended from a spring.  

 

Figure 1: Mass-spring example 
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Start by defining a set of generalized variables and their derivatives: 

   ,    -  

 ̇  , ̇   ̇- . 

   is called the kinematic displacement vector or generalized coordinate vector. This is a vector 

preferable containing as few coordinate variables as possible to describe the position of the inertia 

elements.  

Define potential energy variables, i.e. variables in the system that changes the potential energy. In 

this case the spring. 

   ,     -
    

 ̇  , ̇ -
    

Define the inertia variables i.e. variables defining the movement of the inertia element. 

   ,   -  ,                 -    

   , ̇  ̇-    

The next step is to establish the transformation relationship between the generalized variables. For 

general    and    the relation is   

      (  )  

 ̇  
    (  )

   
 ̇     (  ) ̇  , 

and the ith relation is 

 ̇   ∑
     

    

 
    ̇    . 

This gives the relation  

   ( )   ( )  , 

 ̇  ( ) ̇  ( ) ̇ , 

and 

    ,   - . 

A similar relation is established between   ,  ̇  and   . Now we define     ̇ , which gives  

    ̇  
    (  )

   
 ̇     (  ) ̇  , 

and the ith relation 

    ∑
     

    

 
    ̇   . 
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Which leads to  

 ̇  ( ) ̇  (     )  ̇ , 

 ̇  ( ) ̇  (      )  ̇ , 

and 

    0
      
       

1 . 

Now that all the variables are stated and the relationships between them have been established, the 

bond graph can be drawn. Write down the 1-junctions corresponding to  ̇ ,  ̇  and   . 

 

Figure 2: Mass-spring 1-junctions 

We now write down the transformations using MTF- elements and 1-junctions. An R-element 

representing friction and an Se- element representing gravity is also added.  

 

Figure 3: Mass-spring bond graph 

 

This concludes the short walkthrough of the standard procedure.  

2.2.2 Lagrange/Hamilton IC-field modeling  
Though the procedure above works for solving multidimensional mechanical problems it offers no 

solution to algebraic loops and differential causality problems which will appear if the problems 

involve more than one rigidly connected inertia. It is left to the engineer to solve these in the 

traditional way.  
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An alternative is to use Lagrange formulation to generate the equations of motions for the coupled 

displacements in the system and then implementing these into the bond graph using an IC-field. 

Since the bond graph method actually is about generating equations of motions the 

Lagrange/Hamilton IC-field procedure can be interpreted as writing down the motion equations for 

the difficult part of the system, i.e. the part generating the causal problems, and then solving them 

with bond graphs.  

As for the general method presented the Lagrange/Hamilton is based on a set of generalized 

coordinates defined in the system. The goal is to express the kinetic energy  ( ̇    ) and the 

potential energy  (  ) of the system. These can be used to write the equation of motion using the 

Lagrange equation  

 

  
(
  

  ̇ 
)  (

  

   
 

  

   
)                                

Where    is the generalized coordinate,  ̇  is the derivative and N is the number of generalized 

coordinates.   

For implementation in bond graphs we define the generalized momentums as 

   
  

  ̇ 
                           

When writing out the generalized momentums it will always take the following general form (matrix 

notation) 

   (   ) ̇   (   )  

Solving for  ̇ gives the expression for the rate of change of generalized displacement. 

 ̇     (   )(   )  

The  (   )term is zero unless we have time varying velocity sources. We can rewrite the Lagrange 

equation with regard to the derivative of the momentum as 

 

  
(
  

  ̇ 
)   ̇  

  

   
 

  

   
                                      

Then define  

    
  

   
 

  

   
   

and we get  

 ̇           

Which in matrix form is written  

 ̇    ( ̇    )      
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Now observe that the rate of change of generalized momentum and displacement is the same 

quantities which we search for when writing state equations from bond graphs, i.e. we have found 

the state equations for the part of the system we wanted to avoid modeling with the standard 

approach.  

For implementation in bond graphs we define the IC element with 2N ports. One power-in port p{i}I 

corresponding to the generalized displacement and one power-out port p{i}C corresponding to the 

generalized momentum. Causality is preferred to be flow out in the I-port and flow in on the C-port. 

The displacements rates are assigned in the IC-field to the flow. In the same way the momentum rate 

are assigned to the effort.  

       ̇  

          

              

As always theory and procedure are best illustrated with an example. The following example was 

originally solved for the project thesis written fall 2010, (Fagereng, 2010).Consider the two-link 

planar arm whit center of mass in the geometrical center of each arm. The two arms rigidly 

connected results in differential causality when the standard modeling approach is used. We want to 

describe the motion of the systems with as few variables as possible and it is convenient to use the 

two angles between the ground and arm one, and between arm one and arm two.  

 

 

Figure 4: Two link planar arm 

 

First we derive the expression for the kinetic and potential energy of the system with respect to 

 ̇ and  ̇ by inspection.   

  
 

 
 ́ ̇ 

  
 

 
  ̇ 
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   ̇ 
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Where 

 ̇           ̇  
 

 
      ̇  , 

 ̇          ̇  
 

 
      ̇  , 

 ́  
 

 
    , 

  
 

  
    . 

We then differentiate the kinetic energy with respect to  ̇ and  ̇ . 

   
  

  ̇ 

 
 

 
  [     ̇        (  )  ̇      (  )    (  )  ̇       (  )  ̇      (  )    (  )  ̇ ] 
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     ̇       (  )    (  )  ̇  

 

 
  ̇  

 

 
 ̇     (  )       (  )    (  )  ̇  

 

 
       (  ) ̇  

Then differentiate both kinetic- and potential- energy with respect to   and   . 

  

   
      ̇ [      (  )    (  )     (  )    (  )  ̇      (  )  ̇    (  )     (  )     (  ) ̇ ] 

  

   
  

 

 
 ̇ [      (  )    (  )   ̇     (  )  ̇    (  )        (  )    (  )   ̇        (  ) ̇     (  )] 

  

   
 

 

 
        (  ) 

  

   
 

 

 
        (  ) 

We can now generate the system matrixes.  

0
   

   

1  [

 

 
  ,         (  )       (  )-

 

 
  ,     (  )    (  )      (  )    (  )-

      (  )    (  )  
 

 
      (  )    (  )

 

  
    

 

 
    (  )  

 

 
       (  )

] [
  ̇ 

 ̇ 

]  0
 
 
1 

Which gives 

[
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 ̇ 

]     0
   

   

1 

and 

[
 ̇  

 ̇  

]  
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   ]
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The system Lagrange/Hamilton equations can then be programmed in an IC field with two sets of in- 

and out- ports from two one-junctions representing each generalized coordinate. The IC-field code 

can be viewed in appendix.  

 

Figure 5: Two variable IC-field 

In this case there are no external forces acting on the two arms. Though such forces can be written in 

to the IC-field, as stated by the above equations, such forces are much easier added to the bond 

graph at a later stage by simply adding them to the one-junctions. Example on such forces may be 

the actuators moving the two arms. The potential energy may also be added on a later stage. It is the 

I-field we want to get rid of, spring forces and resistance can simply be put on their respective one 

junction as C- and R- elements. 

For completing the bond graph and finding the displacements of the crane tip, the IC-field can be 

used to generate the value of    and   . These values can then be sent to MTF-elements with power 

connections to the two one-junctions. The MTF-elements calculate the transformation modulus for 

the power with respect to   and   , giving the power in x- and y direction. The simple bond graph is 

presented in fig. 6.   

 

Figure 6: Two link planar arm bond graph 

 

Though it may seem like an extensive procedure to carry out, the Lagrange/Hamilton equations can 

easily be derived with the help of symbolic mathematical computer software like Maple. The real 

challenge it to derive the correct expressions for kinetic and potential energy.  
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3. Rigid Body and multidimensional 
dynamics 

This chapter is written on the basis of material presented (Pedersen & Engja, 2008), (Fossen, 1994) 

and (Sciavicco & Siciliano, 1999). 

3.1 Rigid body equations 
Consider an idealized body in space, i.e. a body with defined size where all non-linear effects such as 

deformation is neglected. This is called a rigid body, and has a special and important role in 

multidimensional dynamics and the bond graph modeling of such systems.  The fact is that once a 

mechanical problem becomes multidimensional, with velocities in more than two degrees of 

freedom, the bond graph modeling of such systems becomes increasingly difficult in a way that 

compromises the simplicity and ease of use that the bond graph method is known for.   

A rigid body in space is free to move around and thus have one absolute velocity v and one absolute 

angular velocity ω. These velocities are denoted on a local coordinate system with origin O´ and axis 

x´, y´, and z´ attached to the rigid body and are   ,     -  and   ,          -
 . Let another 

coordinate system x, y, and z with origin O be a global coordinate system acting as a system of 

reference or observation. The trick is to use this system to describe the motion of the rigid body.  

 

Figure 7: Rigid body in space 

Now we want to develop the equation of motion for this rigid body and we start with the simple 

Newton law which states that net force F action on a body induces a change of linear momentum.  

∑   
 

  
 

 

   

   

where  

      . 
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Expressing  v in with respect to the rotating frame i.e. putting the equations together 

∑   
  

  
|
   

      

 

   

   

where  
  

  
|
   

 indicates the rate of change of momentum relative to the moving frame.  

Same procedure can be applied to expressing that the net torque τ acting on a body is the time rate 

of change of the angular momentum L.  

∑     
 

  
  

 

   

   

where  

      . 

I is the diagonal matrix of moment of inertias of the rigid body.  Expressing ω with respect to the 

rotating frame gives  

∑     
   

  
|
   

        

 

   

 

Using the right hand rule it is possible to write down the component equations for the net force and 

torque.  

     ̇              

     ̇              

     ̇              

      ̇                  

      ̇                  

      ̇                  

Now these equations are only valid if the if the origin of the local frame is the same point as the 

center of mass of the rigid body. However it is possible derive more general equations where the 

local origin can be positioned anywhere on the rigid body. By redefining the linear- and angular- 

momentum to include this we get 

       (          ) , 

   * +       . 
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Where    ,      - is the vector between the local origin and the center of mass and * + is 

called the inertia tensor and is defined as 

* +  [

           

           

           

]   

and 

    ∫  (     )                             ∫      
 

 

 
 

 

 

    ∫  (     )                     
 

 

        ∫      
 

 

  

    ∫  (     )                     
 

 

        ∫       
 

 

 

Using the same Newton law as previous the equations for the system can be written in matrix form 

as 

  ̇   (    )     , 
 

 which we recognize as an equation of motion.  M is the mass matrix 
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and C(v) is called the Coriolis-centrifugal matrix 

 ( )  
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 (         )

  (      )

 (      )

 
 
 

  (      )

 (         )

  (      )

 
 
 

  (      )

  (      )

 (         )

 (         )

  (      )

  (      )

 
                 

                  

  (      )

 (         )

  (      )

                  

 
                 

 (      )

  (      )

 (         )

                 

                  

 ]
 
 
 
 
 
 

  

Note that v in this case represents both the linear and rotational velocities, 

  ,                 -
 , and τ is a vector representing the external forces and moments, 

  ,                 -
 .  

We now have the general motion equation for a rigid body in 6DOF. The question now is how we can 

implement this in to bond graphs. It turns out that these equations can be derived from analyzing 

kinetic energy of a body in space and thus be implemented in a vector IC-field.  

The kinetic energy of a body in space can be expressed like  

  
 

 
∭ (     ) (     )     
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where again    ,     -  and   ,          -
 . The velocities are assumed to be the velocities 

of the local or moving reference frame origin and thus 

  
 

 
         (  ∫    )  

 

 
∫ (   )  (   )    

 
 

 
          (     )  

 

 
  * +    

Now that we have the kinetic energy the motion equation can be written using quasi-Lagrange 

equations  

 

  
(
  

  
)    

  

  
      

 

  
(
  

  
)    

  

  
   

  

  
      

From the Lagrange/Hamilton IC-field we know that we can write the equations for the generalized 

momentum using the Lagrange equation. Thus 

   
  

  
   

   
  

  
   

Writing the motion equation in momentum form  

   

  
   

  

  
      

   

  
   

  

  
   

  

  
      

and using the fact that the generalized momentums always takes the same general form we get the 

equation for generalized momentum for a body in space. 

   (   )   (   )  

  ,                 -
    

which can be rewritten to get the rate of change of the generalized displacement 

 ̇     (   )    

We recognize that this equation can be written into the previously derived IC-field approach where 

we in this case use the Coriolis-centrifugal matrix for the e` term. 

    (    )    

Note that the potential energy has been neglected for now. However elements creating potential 

energy can easily be added to the IC-field bond graph at a later stage.  
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Figure 8: Vector IC-field 

Using vector bond graphs the rigid body equations can be programmed in a IC field connected to only 

one one-junction representing the motion in 6DOF, i.e. each bond is carrying six different efforts and 

flows. The constitutive relation for the IC-field is 

         

   ( )   

3.2 The concept of rigid body position and rotation 
Until now we have only discussed rigid body equations and how to implement them in to a bond 

graph system or IC-field. However the bond graph for a rigid body is still missing one key element. 

This is the relation between the local coordinate frame for the rigid body and the global coordinate 

frame from which all motion is observed. As for now the derived bond graph has little or no practical 

meaning.  

3.2.1 Rotational matrixes  
When deriving a complete description of the position of an object in space one generally needs the 

concept of relative distance and orientation. For example if you were to give a description of the 

book on your desk you might say that it lies at an angle to the left and down, and that it is lying 

upside-down. Such a description is given with your position and orientation as a reference. A person 

located on the other side of the room will give a different description. Hence position and orientation 

of an object is only valid in relation to a reference. The same concept applies when describing 

motion.  

 

Figure 9: Rigid Body position and roation 

The position and orientation of a rigid body in space can be described using two coordinate frames. 

One attached to the body called the body-fixed or local coordinate system, and one reference system 

called the earth-fixed coordinate system.  

IC

RigidBody

1
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The position of the local frame is given by the vector o’ between the two frame origins and with 

respect to the earth-fixed system. The vector o’ can be expressed mathematically  

                    

Where x, y and z are the unit vectors of the global frame. In compact form the vector can be written 

   [

   
   
   

]   

Let x’, y’ and z’ be the unit vector of the local coordinate frame of the body. Then the orientation of 

the local frame in relation to the global frame can be denoted 

                  

                  

                  

This can conveniently be written in compact form as a rotation matrix that is valid anywhere in the 

global system 

  ,      -  [

         
         
         

]  [

            

            

            

] 

For now forget the rotation of the body fixed frame and only concentrate rotation of the earth fixed 

system, i.e. rotation around global origin. Consider a rotation of the global frame around its own 

origin. The rotation results in a new frame which origin coincides with the global. The rotation rules 

apply here to. Consider a rotation α of the frame in positive direction (right hand rule) about the z 

axis. The unit vectors of the new frame with respect to the reference frame are   

   [
    
    

 
]       [

     
    

 
]     [

 
 
 
]   

Applying compact notation we get the rotation matrix as described earlier 

  ( )  [
    
    

 

     
    

 

 
 
 
]  

We get similar results for a rotation    about y-axis and   about x-axis.  

  ( )  [
    

 
     

 
 
 

    
 

    
]  

  ( )  [
 
 
 

 
    
    

 
     
    

]  
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These are called elementary rotations. The rotation matrix concept has some valuable properties. 

The R matrix is orthogonal giving  

                                

where   is the 3x3 identity matrix.  

If we consider a case where the origin of a local frame coincides with the origin of the global frame, 

then a point P in space can be described by the global frame as  

  [

  

  

  

]   

The same point P can be described by the local frame as 

   [

   
   
   

]   

This gives that  

                    ,      -     

Thus we get 

     ,                           

Where both p and p’ is a representation of the same point in space. The rotation matrix can also be 

used to describe the rotation of a vector about an arbitrary axis in space i.e. using the same relations 

as just stated. This gives us some useful results.  

Remembering the velocity vector from the rigid body chapter denoted  

  ,     -    

Assuming this is the velocity of the local frame mowing in space the velocity in relation to the global 

frame here denoted v´ is 

        

Integrate with respect to time and we get the position of the local frame in relation to the global.  

Remembering the rotational velocity vector from the rigid body chapter denoted 

  ,          -
    

Assuming this is the velocity of the local frame rotating in space the rotation velocity in relation to 

the global frame here denoted ω´ is 

        

Integrate with respect to time and we get the orientation of the local frame in relation to the global.  
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I.e given a rotation of a local frame about the global the rotation matrix describes the new position of 

the local frame in relation to the global.  Given a rotation of a local frame about its own origin and 

the rotation matrix describes the new orientation of the local frame in relation to the global.  

It turns out that given several rotations of a local frame the new orientation or position can be 

described by multiplying several rotation matrixes together, one for each rotation. Consider a vector 

p going through two rotations. Denote    as the initial condition,    is the vector after one rotation 

and    after two rotations. We denote the rotation matrixes as   
  describing the first rotation and 

  
  describing the second rotation. Then  

     
   

    

This means that by composing elementary rotations given earlier in this chapter we can completely 

describe the position and orientation of a rigid body in space. In fact using only three elementary 

rotations given that no successive rotations are made about parallel axis will be enough. The 

sequence of orientation matrixes is however not to be taken arbitrary i.e.  

     
   

    

3.2.2 Euler Angles  
When generating a set of rotation matrixes for describing position and orientation of a body in space 

there are several sets of three successive rotations possible. In fact there are 12 of them, 

ref.(Sciavicco & Siciliano, 1999). One of the most common ones and the one we are going to use here 

is the XYZ convention.   

 First rotate the reference frame by the angle ψ about the z axis (yaw). The rotation is 

described by the elementary rotation matrix   .  

 Then rotate the reference frame by the angle θ about the new y axis (roll). The rotation is 

described by the elementary rotation matrix   .  

 Finally rotate the reference frame by the angle ϕ about the new x axis (pitch). The rotation is 

described by the elementary rotation matrix   .  

Thus the complete ration  

                    

However this is not useful if we do not know the values of the Euler angles. The relation between the 

body-fixed rotational velocities and the rate of change of the Euler angles gives the solution.  

    ̇   ̇    ( )  

    ̇    ( )   ̇    ( )    ( )  

     ̇    ( )   ̇    ( )    ( )  
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Solving these equations with respect to the Euler angles we get  

 ̇     ( )      ( )     

 ̇  
    ( )

    ( )
   

    ( )

    ( )
   

and finally  

 ̇        ( )    ( )      ( )    ( )    

3.2.3 Implementation in vector bond graphs 
We have now derived the necessary equations needed to evaluate the position and orientation of 

our rigid body bond graph system in 6DOF. In such a system, using vector bond graphs, we have the 

flows equal to   ,                 -
  flowing in one direction and the efforts equal to 

  ,                 -
 flowing in the other direction. Using our causality knowledge with the 

orthogonal property of the rotation matrix we get that  

[

  

  

  

]

(      )

     [

  

  

  

]

(     )

   

[
 
 
 

]

(      )

     [
 
 
 

]

(     )

   

[

  
  
  

]

(      )

     
 [

  
  
  

]

(     )

   

[

  

  

  

]

(      )

     
 [

  

  

  

]

(     )

   

Using these relations we can implement these transformations in MTF-elements. There are several 

ways of doing this, but one weary easy-to-understand way is to use one MTF-element for each sub 

transformation (i.e.      ,      and      ) connected in the correct successive order.  

 

Figure 10: Euler angle XYZ transformation 



11 MTF_Z MTF_Y MTF_X COLLECT



20 
 

Here the collect element collects the rotational velocities and sends them to a box containing the 

rate-of-change Euler angles. The solved rate-of-change Euler angles are then integrated to obtain the 

angles and send to their respective transformation element.  

Since the vector power bonds have six flows and efforts (translation and rotation) we extend the 

matrixes in the MTF-elements to account for this. Thus the transformation modulus in the MTF_Z 

element will look like  

     

[
 
 
 
 
 
   ( )
   ( )

 
 
 
 

    ( )
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   ( )

   ( )
 

 
 
 

    ( )

   ( )
 

 
 
 
 
 
 ]
 
 
 
 
 

 

and similar for the other transformation modulus.  

We now have the relation between the local and global coordinates our system. Thus we can 

describe motion and forces in our rigid body system by connecting the whole transformation 

element to our IC-field model. Here all the transformations are collected in one sub-model called 

MTF_to_global. 

 

Figure 11: Rigid Body bond graph 

Fig.11 represents the general rigid body bond graph for motion in six degrees of freedom. This model 

can easily be extended a later stage to include different physical phenomena unique to the 

respective system being modeled. Examples on this will be demonstrated in the next chapters. 
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4 The crane model  

4.1 Rigid body beam  
The basic simple light load crane consists of two crane arms or beams connected together. 

Neglecting deformation and bending each beam can be considered a rigid body. The goal is to build a 

model where for each step in time the location of the crane tip is known. This implies knowing the 

location of each end of the crane arms and the forces and momentums acting in these locations. 

Consider the general rigid body bond graph model where the coordinate transformation enables us 

to locate the position of the rigid body and the forces acting in the chosen center of gravity. Using 

bond graph transformer elements it is possible to transform the forces acting in the center of gravity 

out to the rigid end of the crane beam.  

 

Figure 12: Beam with local coordinate system 

A transformation matrix for the efforts and flows can be derived by inspection. Picture a beam where 

one end is constrained in x- ,y- and z- direction but allowed to rotate around one global axis. Then a 

translational velocity in the opposite end, perpendicular to the beam, will create a rotational velocity 

proportional to the beam length. Also any initial rotational velocities will be the same throughout the 

beam length. Defining the local coordinate system as in the figure, the transformation matrix for 

effort and flow in the local origin to the beam end can be written 

  

[
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
   

  
 
 
 

  

 
   

 
 
 

   
  

 
 
 
 ]

 
 
 
 
 

    

Where [        ]  is the local coordinates of the point of interest. I.e. the end coordinate of the 

beam in the figure would be [L/2, 0, 0] where L is the total length. 

For example positive effort in the x- direction gives 

       , -           , -             , -            , - 

          , -            
, -            

, -          
, -   
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And positive effort in y- direction gives 

       , -          
, -            

, -           
, - 

          , -             , -  (
 

 
)          , -           , -  (

 

 
)          , -   

Using the general rigid body bond graph we want to translate the center fixed effort and flows to 

each end of the crane beam.  

 

 

Figure 13: Crane beam bond graph 

Noticing the causality for the TF- element (effort flowing with power input to local 1-junction) the 

constitutive relation is 

          

         

Here the ports “input” and “input2” represents the connection to the next bond graph element. We 

recognize the Se-element connected to the MTF-element as the gravity forces acting on the body.  
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4.2 Connection of rigid body bond graph models 
 

4.2.1 Causality problem 
In the start of this thesis general procedures for development of mechanical bond graph where 

discussed. It was found that such procedures where not sufficient when dealing with large 

multidimensional systems. Increasing complexity of the mechanical system made the procedures 

time consuming and the kinematic relationships increasingly complex. Such systems are also 

constantly experiencing derivative causality problems which can be practical impossible to solve. The 

Lagrange/Hamilton IC-field modeling procedure was introduced considerable simplifying the system 

modeling and elimination causal problems. It proved possible to use the IC-field formulation for 

general rigid body bond graph modeling.  

The question is now how to connect different rigid body bond graph models. Just as for simpler 

mechanical systems the connecting two rigid bodies together will result in derivative causality 

problems.  

In three dimensions, a rigid body has six degrees of freedom represented by six inertial elements. 

When two bodies are connected rigidly, the tree linear and three angular velocities for the two bodies 

cannot all be independent, meaning that not all the I-elements can have integral causality, ref 

(Karnopp, Margolis, & Rosenberg, 2006).  

In an IC-field all six inertia element are represented in one element, however the same principle 

applies here. Try to connect two IC-fields together and derivative causality appear.  

 

Figure 14: Derivative causality 

One solution is to implement all rigid body equations in to one IC-field. However the size of the rigid 

body matrixes and the vector power bonds are proportional to the total degrees of freedom in the 

system, i.e. a two rigid body system will give 12x12 matrixes and 12 vector power bonds. A three 

body system 18x18 matrixes and 18 vector power bonds and so on. Such a solution would make the 

rigid body bond graph less intuitive to work with, complicate the connection of other elements and 

complicate the process of getting the desired values. We want to make a model which to a certain 

degree is graphical and intuitive, i.e. finding a solution for connecting different rigid body bond 

graphs together with ease. Thus large mechanical systems models can be derived from a library of 

rigid body bond graph models. Since we know that the source of derivative causality in such 

elements is the rigid connection, the clue for developing models is to construct flexible connections.   
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Imagine two rigid bodies connected with an infinite small spring. Thus the gap   between the two 

rigid bodies is close to zero (   ) in equilibrium state. Whenever forces acting on the two bodies 

tries to pull them apart, a proportional large spring force will resist separation provided a large 

enough spring constant. Such imaginary springs can be modeled in every degree of freedom between 

the two bodies, creating a connection which will dynamically behave close to a rigid connection. 

Modeling in bond graphs using a 6 DOF C-element eliminates the derivative causality. Note that the 

C-element automatically gives effort input on power bonds to both rigid body bond graphs.  

 

Figure 15: Complete casaulity 

4.2.2 Joints 
The models in the next part chapter are derived by inspiration from (Filippini, Delarmelina, Pagano, 

Alianak, Junco, & Nigro, 2007). 

Such spring connections are the basis for the modeling of joints. Joints are couplings allowing 

freedom to move in some of the directions in a 6 DOF system, making it possible for two bodies to 

move relative to one another. Such a joints can be found in the typical two link planar arm where 

arm one needs to rotate around a point to the fixed ground and the other arm needs to rotate 

around the first arm. There are three basic representations of joints; spherical, revolute and 

prismatic. They all are modeled after the same principle; spring elements restricting movement in 

some directions and coordinate transformation for translation of the effort and flow in the desired 

direction. Using joint modeling theory it is possible to connect the rigid body bond graphs for the 

vessel and crane beams to get a complete model.  

Spherical joints 

 

Figure 16: Spherical joint 

The spherical joint allows for rotation around all three axes while translation is prohibited making the 

attached body free to rotate around while connected to ground or another body.  
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Figure 17: Spherical joint bond graph 

Shown in fig. 17 is the sub model called “splitterinn”. The sub model separates the angular and linear 

effort and flows in the 6ODF input power bond and sends out two power bonds, the top one 

representing the linear velocities and the bottom one the angular velocities. The linear velocities are 

then constrained with an C-element with a sufficient high spring constant to resemble    . The Se- 

element attached to the angular velocities, which are unconstrained, is a zero- torque element 

meaning the effort value is set to zero representing total freedom to rotate. The “splitterout” sub 

model collects the angular and linear velocities to one power bond. In each end there is a coordinate 

transformation sub model. This element is similar to the one used when transforming between 

global and local coordinates but tuned to only account for the transformations needed in this 

particular case. These are transformation of linear velocities and forces. However in practice the total 

local-to-global transformation derived earlier will produce the same results, with some superfluous 

transformations.  

Revolute joints  

 

 

Figure 18: Revolute joint 

The revolute joint is similar to the spherical joint but only allows rotation in one angular direction, 

meaning that the other two is constrained in addition to the translational degrees of freedom.  
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Figure 19: Revolute Joint bond graph 

Here this is done by splitting up the rational degrees of freedom and constraining two of them. The 

unconstrained power bond has zero effort source imposing no torque. 

Prismatic joints  

 

 

Figure 20: Prismatic joint 

A prismatic joint allows for translation in one direction while the other two translational freedoms as 

well as all three rotational are constrained. Such joints can be used to model elongation of crane 

beams. Thus an actuator imposing force in the unconstrained direction can be added instead of the 

zero effort source for control of the extension.   
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Figure 21: Prismatic joint bond graph 

 

4.3 Constructing a multi rigid body bond graph model 
In the previous chapters the basis for rigid body models and the connection of these has been 

developed. Here the connection between these models will be demonstrated and discussed using 

different modeling cases. The end goal is a model basis for a marine crane operation. But such a 

model procedure also opens up for forming models with a large number of rigid body components. 

However it will be shown that such models also has disadvantages.  

4.3.1 Rigid body beam with revolute joint and rotation around y-axis  
In this case the rigid body has been coupled with the revolute joint, se “One Arm Revolute Y” on 

attached CD. The rigid body is programmed with the general rigid body equations with the center of 

the local coordinate frame located in the center of mass, i.e. the product of the inertias is zero which 

simplifies the matrixes in the dynamic equation  

  ̇   ( )    . 

In short all lines in the equation containing a term from the    vector goes to zero as    

,        -  ,     -. Thus the mass matrix simplifies to  
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with terms only on the diagonal. The same thing happen to the coriolis centrifugal matrix, all terms 

related to    goes to zero.  
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The rigid body representing a crane beam has a mass of 150 [kg] and an inertia of 120 ,    - and a 

length of 3 [m]. The arm is constrained with spring elements in one end for translation in global x-, y- 

and z- direction in addition to rotation around global x and z, leaving it free to rotate around global y. 

Note that there are no energy dissipation in this model.  

To get the model to simulate the right coordinates for the arm the initials conditions have to be 

given. This means setting the q- sensor on the constrained side of the arm to -1.5 [m] in the x- 

direction, which is the axis going along the length of the arm. Same applies for the q- sensor in the 

unconstrained end of the arm, setting it to 1.5 [m] in the x direction giving the total length of the arm 

(3 [m]). Connected to the 1- junction representing the local coordinate system and center of mass is 

a coordinate transformer and a Se- element giving a gravity force in the global negative Z- direction.  

 

Figure 22: Pendulum bond graph 
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Running a simulation for 10 second reviles the following results for the q- sensor in the constrained 

end of the arm:  

 

Simulation plot 1: : Pendulum, constrained end 

The plot displays displacement in global coordinates where index c indicates constrained and x, y, z, 

wx, wy, wz translation and rotation in- and around respective coordinate axis.  

For rotation around global y one would expect forces in x and z in magnitude depending on the 

stiffness of the spring elements constraining the arm. In this case the spring constants are set high 

resulting in high natural vibrational frequencies. Note that the forces in x oscillate around the initial 

condition -1.5 [m] as expected.  The plot displays no rotation around x- and z- axis. Also the 

oscillations around y is in phase with the small displacement in x and z.  

The next plots show the same type of displacements, but now for the unconstrained end of the arm.  

 

Simulation plot 2: Pendulum, unconstrained end 
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The plot shows the same result as the constrained end for rotation around the axis which is correct 

as the angle would not change along the length of the arm. The displacement in the x and z direction 

also seems ok, though it can be hard to determine this from a plot. A simple animation of the arm 

based on the same values as the plot verifies the motions. The animation can be viewed on the 

attached CD. 

 

Figure 23: Pendulum animation 
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4.3.2 Rigid body beam with spherical joint 

 

Figure 24: Beam with spherical joint 

In this case the rigid body beam model is connected with the spherical joint. The beam data are the 

same as in the last case. First we put on a gravity force in the global negative z-direction.  

 

Simulation plot 3: Beam with spherical joint, constrained end 
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Simulation plot 4: Beam with spherical joint, unconstrained end 

As expected the model behaves as in the revolute joint case. In the next trial a force of 50 [N] is put 

in the global positive y direction.  

 

Simulation plot 5: Beam with spherical joint and force in two directions, constained end 
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Simulation plot 6: Beam with spherical joint and force in two directions, unconstained end 

Again the plot is difficult to interpret and the reader is referred to the animation on CD (One Arm 

Spherical). The results and animation confirms the performance of the joint allowing for rotation 

around the constrained end.  

 

Figure 25: Animation of beam with spherical joint and force in two directions 

Note that there are no energy dissipation elements in this model either resulting in continuous 

oscillation around the global force vector made up of the gravity force and the applied force in the y 

direction.  
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4.3.3 Two link planar arm 
Serving as the basis for a simple crane is the two link planar arm. This is the same type of arm which 

was used in the Lagrange equation example for a 2D rigid body. Here the model is built up of the 

6DOF rigid body elements. The two link planar arm is assembled using two revolute joints and two 

rigid body beams. All elements are programmed to rotate around global y. Both beams share the 

same data as the beams in the previous examples.  

 

 

Figure 26: Two link planar arm bond graph 
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Simulation plot 7: Two link planar arm, arm one, constrained end 

The first plot shows the displacement values of the constrained end of beam one. As for the single 

beam we have rotation about y and high frequency small displacement in the global x- and z- 

direction.  

 

Simulation plot 8: Two link planar arm, arm one, unconstrained end 

model

-1.54

-1.5

-1.46

c_x

-0.4

0

0.4

c_y

-0.04

0

0.04

c_z

-0.4

0

0.4

c_wx

1

3
c_wy

0 1 2 3 4 5 6 7 8 9 10

time {s}

-0.4

0

0.4

c_wz

model

-3

0

3
uc_x

-0.4

0

0.4
uc_y

-3

-1

1
uc_z

-0.4

0

0.4
uc_wx

1

3
uc_wy

0 1 2 3 4 5 6 7 8 9 10

time {s}

-0.4

0

0.4
uc_wz



36 
 

 

Simulation plot 9: Two link planar arm, arm two, constrained end 

The two next two plots shows the ends of the beams which are constrained together. The plot shows 

the same displacement in the global x- and z- direction which confirms the joint ability to create a 

close to rigid coupling. For demonstration of the movement se animation on CD (Two link planar 

arm). 

 

 

 

 

 

Figure 27: Animation two link planar arm 
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4.4 The realistic crane beam 
Till now we have developed the rigid body crane beam and we have connected two of these to form 

the two link planar arm. However such models are of no further use without some form of control. 

They also lack realism since there is no form for damping in the models, thus they only portray free 

undamped motion. In this chapter these issues will be discussed and some solutions presented.  

4.4.1 Control and actuators  
Actuators are sources of force which can move around and manipulate and object such as a crane. 

Typical actuators are electric motors and hydraulic cylinders as often the case with cranes. Here only 

the connection of such actuators will be discussed and the actual actuator force will be represented 

by effort sources for simplicity. However as always in the bond graph method the interfacing of more 

realistic sources of effort such as hydraulics are easily done. The 20sim software also offers the 

possibility for implementing joystick control, thus making is possible to control the actuator effort 

live.  

Consider the single beam arm. In the previous case presented the arm oscillated around the global 

gravity force in the negative z-direction. There are several ways of controlling this motion. The first 

one resembling a hydraulic actuator solution is to apply a counter force with center of attack 

somewhere along the beam. The second one resembling an electric motor solution is to apply a 

counter torque in the constrained end of the beam.  

 

Figure 28: Actuators on crane beam 

Applying a counter torque actually requires almost no modification to the bond graph model. One 

can simply apply effort value in the joint Se-element which before represented zero torque. The 

gravity force acts on the joint with the positive torque     .
 

 
/               

        [Nm]. By applying the same negative torque in the Se-element the beam will hold still. By 

applying a more negative torque the beam will rotate in the opposite direction. See animation 

“Single beam torque ex” in CD. Note that the beam will continue accelerate due to the fact that the 

torque arm of the gravity force is reduced during the arm elevation while the joint torque is constant.   
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Figure 29: Joint actuator bond graph 

 

Figure 30: Animation of joint actuator 

Linear actuator forces acting on the beam can be added in several different ways. In all cases there is 

the possibility to use TF-elements to change the point of attach on the beam. Here only forces on the 

local origin will be considered for simplicity.  
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 Adding a Se- element in the local one junction representing a perpendicular force one the 

crane beam. Such a solution will not be not physical correct since the force will always be in 

the local z direction.  

 Using the existing Se (gravity)- element or add a new Se- element to the global one-junction 

representing a force in the positive global z direction.  This solution is closer to representing 

the physical actuator since the torque arm in the global x direction will decrease as the beam 

is elevated, thus the torque will decrease. This is more equivalent to what an actual hydraulic 

actuator will experience.  

 A combination. Using an MTF- element connected to the local one-junction programmed 

with the geometry of the actuator with respect to the angle of the beam. Such a solution 

gives a realistic view on how the actuator forces affect the beam, but deriving the 

geometrical relations can be time consuming.  

 

 

 

  

Figure 31: Perpendicular actuator bond graph 

 

Figure 32: Global actuator bond graph 
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Figure 33: Real actuator bond graph 

4.4.2 Energy dissipation 
In every mechanical system there is energy dissipation present. This can be friction in joints or 

friction in actuator among other things. Such energy dissipation represented by R- elements and can 

be added to the bond graph just as the Se- elements.  

 

Figure 34: Energy dissipation in joint bond graph 
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Figure 35: Energy dissipation in actuator bond graph 

4.4.3 Actuators and energy dissipation in the two link planar arm 
In this example energy dissipation and actuator effort have been applied to the two link planar arm 

to demonstrate the functionality. The model is tuned for elevation of both arms, however the values 

for energy dissipation and actuator force are taken arbitrary and may not be realistic. The code in the 

MTF-elements representing the geometric relation between the beams, actuators and ground are 

taken from the 2D crane model (Pedersen, ICexampleW3, 2010) The animation “Two link planar arm 

with actuators” is attached on CD.  

 

Figure 36: Two link planar arm with actuator and energy dissipation 
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4.5 Discussion of high vibrational natural frequencies 
Though the spring c-element offers a solution to the derivative causality problem when connecting 

rigid bodies, it is far from an optimal solution.  The approach requires a high spring constant to 

realistically model the interaction between the bodies, which in most cases should be as stiff as 

possible. For example in the joints connecting two crane arms the connection is to be considered 

close to rigid, or at least have a very high stiffness if the models is to be so realistic that it takes into 

account the bearing stiffness in the connection. The problem is however that such high spring 

constants in mathematical terms means creating high vibrational natural frequencies in the system.  

4.5.1 Simulation time and model behavior 
One place this can be shown is in the constrained end of the single beam model which has been 

discussed in short earlier.  

 

Simulation plot 10: High vibrational natural frequencies 

 

Simulation plot 11: High vibrational natural frequencies zoomed in 
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Zooming in on the displacement of in the global x- and z- direction these high frequencies is clearly 

shown. Though in itself not a problem, such high frequencies pose a problem for the effectiveness of 

the coupling between the rigid bodies. To calculate these frequencies high time step in the 

simulation is needed, meaning longer simulation times. As more rigid bodies as connected the 

simulation time increases. 

          

Number of 
arms 

Simulation 
time 

Model 
calculations 

Output 
points 

Avarage step per 
second 

1 0,555 14260 5732 25693 

2 5,207 88835 12155 17060 

3 7,395 86541 11710 11702 

4 11,73 105421 11960 8987 

5 14,899 109280 11859 7334 

Table 1: Sumulation data for increasing number of beams 

 

Figure 37: Simulation time vs. beams connected 

The table shows the difference between simulations when attaching an increasing number of arms 

after one another. The simulation was done under the same computer conditions, i.e. the same 

processor power was available. All spring constants where the same values. The data shows a linear 

relation between the simulation time and number of rigid bodies connected. However in this 

simulation the beam displacements where not evaluated. The fact is for each rigid body the beam 

motion has to be evaluated and the spring constants tuned for realistic behavior. For some cases this 

will revile the need for modifying spring constants to compensate for the higher forces which may 

arise when connecting more rigid bodies.  In such cases the simulation curve may very well be 

exponential. This can be tested in a simple experiment with the two link planar arm. First we set both 

the spring constants constraining beam one to ground and the constants constraining the beams 

together to a relatively low value (   ). We plot the displacement in x- and z- direction for the 

constrained end and the rotational displacement on both sides of the two ends constrained together.  
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Simulation plot 12: Two link planar arm and spring constant     

We observe large displacements where beam one is constrained to ground (c_x and c_z), which is 

unwanted considering a rigid connection. The rotational displacements are experiencing inconsistent 

behavior.  The animation “10^4” shows the poor model behavior. The model is acting like the joints 

are springs and not a rigid coupling, which is not surprising considering the low spring constants. The 

next plot shows the spring constants increased with     for each time.  

 

Simulation plot 13: Two link planar arm and spring constant      
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Simulation plot 14: Two link planar arm and spring constant      

 

Simulation plot 15: Two link planar arm and spring constant      
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Simulation plot 16: Two link planar arm and spring constant      

 

Simulation plot 17: Two link planar arm and spring constant      

The plot shows that for high spring constants the vibrational frequencies for the displacement in x- 

and z- direction get higher. There is also a buildup of amplitude which may cause problems for longer 

simulations. At the same time the rational displacements become more consistent. This can also be 

seen in the animation if the highest spring constant where the model behaves nicely. An unexpected 

result for the two highest spring constants are that the high frequencies for the linear displacement 

seem to disappear, only a small hint of the in the beginning of the simulation remains. This is 

consistent with the simulation time suddenly dropping at for higher values of  , which until       

displays the expected exponential curve.  
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Spring 
konstant 

Simulation 
time 

Model 
calculations 

Output 
points 

Avarage step per 
second 

10^4 4,119 35432 4597 8602 

10^5 6,786 88835 12155 13090 

10^6 19,609 263186 35281 13421 

10^7 49,125 486600 89801 9905 

10^8 42,931 437490 71503 10190 

10^9 29,593 294697 52582 9958 

Table 2: Simulation data for increasing spring constant 

 

Figure 38: Simulation time vs. spring constant 

 

Figure 39: Time step vs. spring constant 
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Inspecting the data for the model calculations and the number of output points they display the 

same type of curve as the simulation time. Inspecting the data for the average time step per second 

it drops between       and       which is consistent with more data being processed at 

     . However it does not go up for       where there are a lot less calculations being done, 

but this could maybe be a consequence of computer power being allocated to other tasks at that 

time. Finding an answer for why it is easier to do time simulations of the system with wary high 

values for   is more difficult. We know that the amplitude of the natural frequency of a vibrating 

system decreases with a higher value, i.e. as            amplitude goes to zero. However what is 

to be considered infinite here is unknown. The numerical integration method (default: Backward 

differentiation formula) is off course also one possible answer. However it is clear that forming a 

definite conclusion on the basis of so few tests cannot be done. It is stressed that simulation data are 

dependent on the computer used and may be different for other computers. The general trend 

should however be the same.  

4.5.2 Experimentation on damping in joint 
In both (Karnopp, Margolis, & Rosenberg, 2006) and (Zied & Chung, 1992) it is suggested to use 

damping elements in joints. Such a solution makes sense since the damping parameter should reduce 

high frequencies and thus shorten the simulation time. The following simulations is dine with the 

same setup as previous and with       as the start spring constant which reviled poor results 

without damping. Here a damping- element is added in each joint to the rotational power bonds. The 

damping parameter value is set to        in all simulations.  

 

Figure 40: Two link planar arm with damping in joints  
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Simulation plot 18: Two link planar arm and spring constant      and damping 

 

Simulation plot 19: Two link planar arm and spring constant      and damping 
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Simulation plot 20: Two link planar arm and spring constant      and damping 

 

Simulation plot 21: Two link planar arm and spring constant      and damping 
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Simulation plot 22: Two link planar arm and spring constant      and damping 

 

Simulation plot 23: Two link planar arm and spring constant      and damping 

         

Spring 
konstant 

Simulation 
time 

Model 
calculations 

Output 
points 

Avarage step per 
second 

10^4 1,374 9009 1386 6556 

10^5 1,616 18083 3242 11189 

10^6 10,722 79212 9064 7387 

10^7 21,879 172949 17732 7904 

10^8 13,472 169166 17490 12556 

10^9 20,728 154792 21066 7467 

Table 3: Simulation data with damping in joint 
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Figure 41: Simulation time vs. spring constant (damping in joint) 

It is clear that damping greatly reduces simulation time. Also the models experiences steady results 

already at      . Studying the graphs and the animation on the CD we see that acceptable results 

are achieved somewhere between       and      .  

The results above shows a general trend, however there can be many error sources to the data 

presented; such as available data power at time of simulation and the numerical integration 

procedure used. Still it is clear that simulation time can be an issue when connecting several rigid 

body models. Introducing a damping element in the joints will help reduce the simulation time. 

However there will always be a need for tuning of both   and   for each individual case and for each 

individual joint in the particular case to achieve acceptable results in a shortest amount of time. 

  

0

5

10

15

20

25

10^4 10^5 10^6 10^7 10^8 10^9

Sumulation 
Time [s] 

Spring constants 



53 
 

5 Vessel model  

The following chapter is written on the basis of material presented in (Fossen, 1994) and (Pedersen, 

Bond Graph Modelling of Marine Vehicle Dynamics).  

5.1     Motion equation 
A general rigid body bond graph model has already been developed in this paper. This chapter will 

focus on extending that model to include the marine vehicle- or vessel- specific characteristics of 

such a bond graph model. Such specific characteristic may include radiation-induced forces (added 

mass, hydrodynamic damping and restoring forces), environmental forces (ocean currents, wind and 

waves) and propulsion forces (propeller/thruster forces and control surface/rudder forces). The 

general motion equation can be extended to include all of the characteristics above.  

,      - ̇  ,   ( )    ( )-   ( )   ( )         

Where 

     ̇ is the rigid body forces and moments 

    ̇ is the hydrodynamic added mass forces and moments. 

    ( )   is the rigid body coriolis and centripetal forces and moments 

   ( )  is the hydrodynamic coriolis and centripetal forces and moments 

  ( )  is the combined expression for the hydrodynamic forces and moments which can be 

denoted further to include radiation-induced potential damping, linear skin friction damping, 

wave drift damping and vortex shedding damping.  ( )     ( )    ( )    ( )  

  ( ) respective 

  ( ) is the restoring forces and moments 

   is the propulsion forces and moments  

    is the environmental forces and moments 

However in this chapter the goal is to develop a simplified model, i.e. a model which will only give an 

idea of the possibilities of such a model. Therefore the main focus will be the extension of the 6DOF 

rigid body bond graph to include simplified radiation- induced forces. Environmental- and propulsion 

forces will in short be discussed, but merely on a superficial level.  

Note that the hydrodynamic coefficients in this chapter use the SNAME notation. Also the general 

notation for marine vehicle motion is worth listing.  
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DOF   Forces and 
moments 

Linear and angular 
vel. 

Euler 
angles 

1 motion i x direction (surge) X u x 

2 motion i y direction (sway) Y v y 

3 motion i z direction (heave) Z w z 

4 rotation about x-axis (roll) K p φ 

5 rotation about y-axis (pitch) M q θ 

6 rotation about x-axis (yaw) N r ψ 

Table 4: Vessel notation 

5.2 Added mass and inertia 
The added mass phenomena should according to (Fossen, 1994) be interpreted ass pressure-induced 

forces and moments due to a forced harmonic motion of the body which are proportional to the 

acceleration of the body. The result is that the body feels “heavier” then it really is when trying to 

move it while it is partly or fully submerged in water, thus the name added- or virtual- mass.  

The expression for the added mass can be derived using the expression for fluid kinetic energy 

   
 

 
        

where    ,                 -
 , i.e the linear and angular velocities of the body.    is the added 

mass matrix and is defined as  
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The hydrodynamic coriolis and centripetal term can be written as 

  ( )  [
      (         )

  (         )  (         )
] 

where S means that that the matrix is skew-symmetrical,   ,     - and   ,          -
 .  

Implementing this into the rigid body IC-model is done by super positioning the added mass and 

inertia terms with the rigid body terms. 
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Giving the constitutive relation in the IC-field 

      
       

      ( )    

5.3 Hydrodynamic damping  
As mentioned the hydrodynamic damping forces consist of a number of different physical 

phenomena and it is logical to assume that the damping matrix would be a     matrix like the 

other terms in the motion equation. However giving expressions for most of the terms is difficult. 

Thus for most applications only values for the diagonal are used. Hens the damping coefficients can 

be denoted 

 ( )       {                 }   

The damping matrix is understood as  power dissipation, hens in bond graph terms it should be 

implemented in a classic R-element with the constitutive relation 

    ( )     

The flow input in this element is the angular- and rotational- velocities of the rigid body or vessel 

meaning it is to be connected to the 1-juction representing the body fixed coordinate system.  

5.4 Restoring forces 
The restoring forces and momentum for a surface vessel is related to the metacentric stability and 

buoyancy and can be interpreted as spring forces in a classic mass-damper-spring-system, i.e. forces 

acting on the body which resist deviation from static equilibrium. There are off course restoring 

forces associated with directional stability and maneuvering and so on, but here we will only consider 

the stability forces in heave, pitch and yaw keeping the vessel floating and in an upright position.    

The restoring force coefficient matrix in heave, pitch and yaw can be given as  

 ( )   

[
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where 
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      (     )    ∬   
 

   

         
̅̅ ̅̅ ̅̅  

      (     )    ∬   
 

   

         
̅̅ ̅̅ ̅̅  

 

ρ  = water desity [kg/  ] 

   =  z-coordinate center of gravity [m] 

   =  z-coordinate center of buoyancy [m] 

  = displaced volume of water [  ] 

    = water plane area [  ] 

   
̅̅ ̅̅ ̅̅  = transverse metacentric height [m] 

   
̅̅ ̅̅ ̅̅  = longitudinal metacentric height [m] 

 

Figure 42: Vessel stability (Fossen, 1994) 

The K and M restoring forces are actually a function of the sine function to the respective angle but 

this can be neglected due to the normal assumption of small angles in conventional initial stability 

theory.   

The restoring forces are implemented in to bond graphs as a C-element following the constitutive 

relation  

    ( )   
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5.5 Implementation in general rigid body bond graph model  
In the actual modeling for this thesis I have chosen to simplify the hydrodynamic added mass matrix 

and the coriolis and centripetal matrix. This because in practice deriving the values of added mass 

and inertia coefficients can be an extensive process. The terms are vehicle specific, i.e. they are a 

function of the vessels characteristics where hull form may be one of the most important 

parameters. The most accurate results are derived using model test and scaling. But even here some 

non-linear coupling terms may be ignored because they are difficult to measure. Theoretically 

determined coefficients are also possible, and can produce sufficient accurate results. Simple static 

results for the diagonal non-coupled terms can be derived from added mass tables modeling the 

vehicle as simple geometric shape.  

For this reason the vessel model developed I have chosen a simplification where the added mass 

matrix only has diagonal terms and the terms in the coriolis matrix are simplified to only one 

parameter for each slot in the matrix. This can be justified by the fact that the off diagonal terms in the 

added mass matrix tend to be much smaller than the diagonal, thus less impact on the model behavior. 

The simplifications are actually valid assuming small velocities and that the vehicle has tree planes of 

symmetry and is according to (Fossen, 1994) a good approximation for many applications.  

        {  ̇   ̇    ̇    ̇   ̇    ̇}   
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Connecting the hydrodynamic extensions to the 1-junction representing the body fixed coordinate 

system in the general rigid body bond graph system gives the almost finished vessel model. To fully 

complete the model an effort source or Se-element is connected to the 1-junction for the earth fixed 

coordinate system representing gravity. Also there is an effort source connected to the local 1-junction, 

this can be used to simulate local forces one the vessel, however only for test purposes. There is also 

added a port for attaching equipment. This is for attaching the crane at a later stage. 

 

Figure 43: Vessel bond graph 
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5.6 Simulation demonstration with rigid body vessel model  
As with the crane model the center of origin for the local frame is defined in the local mass center, 

thus the rigid body mass and coriolis centrifugal matrix simplifies to  
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For simplification we want to avoid as many off diagonal terms as possible and use the 

approximation that the vessel has three planes of symmetry and is moving at low speed. This can be 

justified by the vessel modeled as a square barge and operating as a crane vessel, thus moving with 

low speed. The hydrodynamic equations will then be as presented earlier. The following barge data is 

derived from decisions on main dimensions and calculation of simplified parameters for these. The 

data is only for demonstration and may not be realistic for any barge in existence, but all parameters 

are tuned in relation to each other.  

Barge 
data 

    

L 7 [m] 

B 5 [m] 

H 3 [m] 

T 2,2 [m] 

Δ 80000 [kg] 

Vd 78 [m^3] 

Awd 35 [m^2] 

GMt 0,55 [m] 

GMl 1,45 [m] 

Ixx 226667 [kg*m^2] 

Iyy 386667 [kg*m^2] 

Izz 493333 [kg*m^2] 

Xud 30390 [kg] 

Yvd 27371 [kg] 

Zwd 56409 [kg] 

Kpd 29434 [kg*m^2] 

Mqd 96644 [kg*m^2] 

Nrd 18868 [kg*m^2] 

Table 5: Vessel data 
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The barge data is programmed into the vessel parameters and a simulation is run. Note that the 

damping parameters are unknown and thus chosen arbitrary.  

 

Simulation plot 24: Barge motion 

The plot shows the simulation with the initial heave value equal to zero and the barge eventually 

coming to rest at equilibrium state between gravity- and restoring- force.  

 

Comment on vessel model  

The implementation of vessel characteristics into rigid body bond graph models has proven to be a 

continuous challenge throughout the work in this thesis. Though the simplified motion equation is 

relatively straight forward some unexpected result may appear. This is mostly to do with the off 

diagonal coupled forces in the coriolis centrifugal matrix in relation to the restoring forces. Restoring 

forces are in the real world the forces which keep a vessel floating with the right side up, but in the 

modeling world they are in fact spring forces. They are the forces constraining the model in a specific 

place under the influence of external forces. Inspecting the restoring force matrix note that there are 

no coefficients in surge, sway and yaw, consistent with the matrix proposed by (Fossen, 1994). This is 

logical since a vessel should be free to float around at the surface, thus should not be constrained in 

any other way than the resistance created by water. However in the simplified equations there are 

off diagonal coupled terms in the coriolis centrifugal matrix which will cause forces in surge, sway 

and yaw if the model experiences angular forces. For example a bending moment around local x-axis 

will induce a translational force in sway. The physical interpretation of this is difficult to explain, most 

people would agree that torque induced on a vessel for example a heavy deck load on the port side 

would not produce energy and cause the vessel to sway to port. Some of the phenomena may be 

corrected by not assuming a diagonal inertia tensor, however I find it most convenient to increase 

the hydrodynamic damping value for the degrees of freedom it concerns. Since the damping value is 

unknown but probably large, this seems as a ok solution. It is clear that in mathematical modeling of 

physical phenomena some modifications outside the derived equations may be needed to produce 

real results.   
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The next two plots shows the model behavior with an        Nm torque around local x- axis for 

two cases, one with high damping values and one with excessive low damping values. Example 

movies can be viewed on CD (“Barge high damping” and “Barge low damping”). 

 

Simulation plot 25: Barge motion with torque and low hydrodynamic damping 

 

Simulation plot 26: Barge motion with torque and high hydrodynamic damping 
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Figure 44: Barge animation 
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6 Barge with two link planar arm, a 
complete model 

We have developed a vessel model and a two link planar arm with passive control. Now the two 

models are to be connected to get a complete model of and barge with a crane. The connection is 

done with relatively ease since the crane model already has a revolute joint in the constrained end. 

Note the TF- element between the vessel model and the crane sub model. This element denotes the 

position of the crane one the barge deck, i.e. it transfers the right forces and moments to the barge 

dependent on the position. The element is similar to the ones used in the crane beam models for 

transfer of forces and moments from the center of gravity to the arm tip.  

 

 

Figure 45: Complete crane barge bond graph 

The two link planar arm with passive control is the same one as presented earlier with only one small 

modification. Since rapid motions of the barge will cause rapid change of position of the two crane 

arms in the existing model, a global spring and damper has been added to arm one. The goal is to 

modify the model behavior such that it is possible to get a sense of the crane reaction if it where 

controlled by hydraulic actuators with internal inertia and resistance of hydraulic fluid. Thus the 

spring holds the crane arm in place during motions of the barge and the damping element is added 

to eliminate the oscillating motion created by the spring element.  
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Figure 46: Complete crane barge bond graph 

 

Simulation plot 27: Barge motion under influece of crane 

The plot shows the motion of the barge after being dropped from initial condition to equilibrium 

condition. The plot shows the crane having an effect on the barge crating a pitching motion which 

also induces small motion in other direction due to the off diagonal matrix effects discussed earlier.  

The motion of the crane arm is best demonstrated in the animation “Barge crane demonstration”.  
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Figure 47: Barge animation under influece of crane 

 By applying extra force from the global gravity Se-element we can get a sense of the reaction if a 

heavy load where attached to the crane (se animation “Barge crane with heavy load”). Here the 

actuators have to be tuned for the extra load. If we however tune the actuator force low, the crane 

will extend far and the load will create a strong torque and pitching motion (se animation “Barge 

crane heavy lift heavy pitching”). In this case the animation shows the crane dipping in to the vessel 

which cannot happen in real life, still it demonstrates the capabilities of the model to simulate load 

lift and vessel reaction.  

 

Simulation plot 28: Barge motion under influece of crane and load 

 

 

model

0.05
surge

-0.2

0
sway

-2

0
heave

0

0.04

0.08
roll

-0.05

0.05 pitch

0 1 2 3 4 5 6 7 8 9 10

time {s}

-0.01

0.01

0.03
yaw



66 
 

  



67 
 

7 Conclusion and further work 

7.1 conclusion 
In this report the development of bond graph models for use in larger 6DOF mechanical systems has 

been research with the aim of utilizing such models for mathematical modeling of vessel dynamics. 

As often with model development the complexity and ways-of-doing-it for establishing the desired 

result is diverse. Therefore the focus in this report has been to present tools for the development of 

highly graphical and easy to understand sub models which can be integrated into larger systems. This 

has been done with the use of the rigid body bond graph models presented in (Pedersen & Engja, 

2008) and with the bond graph joint theory presented in (Filippini, Delarmelina, Pagano, Alianak, 

Junco, & Nigro, 2007). The rigid body bond graph with the joint bond graph serves as the foundation 

for larger systems in which the possibilities are large. However the accuracy of the background 

material and the simplifications made must always be considered when evaluating all types of 

models. For rigid body bond graph models there are simplifications in the rigid body equations. For 

example a crane beam may be quite flexible under heavy load, which may cause dynamic behavior 

far from the one possible to predict with rigid body assumptions.  

7.2 Crane model  
Perhaps one of the most beneficial uses for a mathematical vessel models is studying ship dynamics 

under the influence forces caused by “rigidly” connected equipment such as cranes, winches and 

other. In this thesis it is shown how the rigid body bond graph concept can be used to model a crane 

beam and be connected to other beams. The functionality of such a crane with two beams has been 

demonstrated and the control of these discussed. It is clear that such connections of rigid bodies with 

joints can be done in almost an infinite number of times. However simulation time which is 

dependent on the computing power and the tuning of the constraining parameters may be a 

problem, especially if the model is to be used in a simulator controlled live where information needs 

to be instant.  

7.3 Vessel model 
It is shown that using the mathematical models presented in (Fossen, 1994) can indeed produce a 

vessel bond graph using IC-field for rigid body equations, R-elements for hydrodynamic resistance 

and C-elements for the restoring forces. The model implemented in this thesis was a simplification 

and the practical use of such a simple model limited. However it is not hard to imagine modifications 

of such a model to a more realistic level. This may be taking onto account more off diagonal terms in 

matrixes and adding environmental forces to the model. The 20Sim software actually offers solutions 

for crating sinusoidal signals, thus it should be possible to model wave force patterns. However the 

biggest problem for all mathematical vessel models is deriving the hydrodynamic coefficients. In 

many cases most of them are unknown or approximations which in itself compromises the accuracy 

of the model.  
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7.4 The Crane Barge  
The model of the crane and barge was fused together to demonstrate the abilities of such models. It 

was shown that the moment of the crane indeed induced forces and torque on the vessel as in real 

life. Further extensions as utilizing the prismatic joint on one of the crane beams and a revolute joint 

to allow the crane to swivel to the side where omitted due to time issues. However both response of 

the vessel due to the crane and the use of joints were demonstrated, thus these extensions may not 

have added much value to the findings in this thesis.  

7.5 Further work  
This thesis has focused on the development of rigid body bond graph models for vessel dynamics and 

crane operations. The primary building blocks for such models have been developed and the 

feasibility for modeling larger more accurate real life systems and the integration of other models 

demonstrated. Such models can be used both for finding dynamic response and force in an operation 

or maybe be used as a real simulator with live input. However for such applications the level of 

accuracy in the model has to be raised, models of actuators developed and models of other 

necessary equipment connected such for example actuators and propulsion. Models of 

environmental forces may also be desired.  
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Appendix A 

Contents of attached CD 
 

 Animations  

 Actuator animations 

 Barge animations  

 Beam animations 

 Spring constant animations 

 

 

 Demonstration models 

 Actuator demonstrations 

 Barge 

 Barge with two link planar arm 

 One arm revolute y  

 One arm spherical 

 Simulation time models 

 Two link planar arm 

 

 

 Model component library 

 Example vessel with one crane arm 

 Prismatic joint 

 Revolute joint y 

 Rigid body arm 

 Spherical joint 

 Vessel model 
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Appendix B 

20-sim code 
 

Lagrange/Hamilton IC-field 
parameters 

real global m, l; 

real global c1; 

real global c2; 

real global c3; 

real global c4; 

real global J; 

variables 

   real p[2], q[2], f[2], M[2,2];  

   real p_th1, q_th1, p_th2, q_th2;  

   real th1, th2, th1d, th2d; 

equations 

"Relating the angular velocities to the efforts" 

p_th1 = int(pI1.e); 

q_th1 = int(pC1.f); 

p_th2 = int(pI2.e); 

q_th2 = int(pC2.f); 

p = [p_th1;p_th2];  

q = [q_th1;q_th2]; 

"Flows / Setting upp M matrix" 

th1=q_th1; 

th2=q_th2; 

M=[ (0.33)*l^2*(4*m-3*m*(cos(th1))^2+6*(cos(th1))^2), (0.33)*l^2*(-
3*sin(th1)*sin(th2)+3*cos(th1)*cos(th2)); -l^2*sin(th1)*sin(th2)+l^2*cos(th1)*cos(th2), (0.083)*m*l+(0.5)-
(0.5)*(cos(th2))^2+(0.5)*l^2*(cos(th2))^2]; 

f = inverse(M)*p; 

"Programming the efforts" 
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th1d=f[1]; 

th2d=f[2]; 

pC1.e=(-0.5*l*(-
2*l*th1d^2*m*sin(th1)*cos(th1)+2*l*th1d*cos(th1)*sin(th2)*th2d+4*l*th1d^2*cos(th1)*sin(th1)+2*l*th1d*si
n(th1)*cos(th2)*th2d+3*m*g_n*cos(th1))); 

pC2.e=(-l^2*sin(th1)*cos(th2)*th1d*th2d+0.5*sin(th2)*th2d^2*cos(th2)-l^2*cos(th1)*sin(th2)*th1d*th2d-
0.5*l^2*cos(th2)*th2d^2*sin(th2)-0.5*m*g_n*cos(th2)); 

"Assigning efforts and flows" 

pI1.f=f[1]; 

pI2.f=f[2]; 

"signals" 

state1=th1; 

state2=th2; 

 

Vector IC-field 
parameters 

   real global m=150;  

 real I=120; 

variables 

   real M[6,6], Minv[6,6], C[6,6]; 

   real u, v, w, p, q, r; 

   initialequations 

"Setting opp the Mrb (Rigit body inertia matrix)"  

  M=[ m, 0, 0, 0, 0, 0; 

       0, m, 0, 0, 0, 0; 

       0, 0, m, 0, 0, 0; 

       0, 0, 0, I, 0, 0; 

       0, 0, 0, 0, I, 0; 

       0, 0, 0, 0, 0, I]; 

"Inverting" 

Minv=inverse(M); 

Equations 
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pI.f = Minv*int(pI.e); 

"Setting up the restoring forces " 

u=pI.f[1];                   

v=pI.f[2]; 

w=pI.f[3]; 

p=pI.f[4]; //wx 

q=pI.f[5]; //wy 

r=pI.f[6]; //wz 

C=[ 0   , 0   , 0   , 0   , m*w , m*v ; 

    0   , 0   , 0   ,-m*w , 0   , m*u ; 

    0   , 0   , 0   , m*v ,-m*u , 0   ; 

    0   ,-m*w , m*v , 0   ,-I*r ,-I*q ; 

    m*w,  0   ,-m*u ,-I*r , 0   , I*p ; 

    m*v , m*u , 0   , I*q ,-I*p , 0   ]; 

pC.e =C*(pI.f); 

 

Transformer element  
parameters 

   real m[6,6]; 

   real Zg=-1.5;//Half lenght of arm/beam. 

   real Xg=0; 

   real Yg=0; 

initialequations 

m = [ 1.0    ,   0.0  ,   0.0   ,      0.0     ,      Zg    ,      -Yg      ; 

      0.0    ,   1.0  ,   0.0   ,      -Zg     ,     0.0    ,       Xg      ; 

      0.0    ,   0.0  ,   1.0   ,       Yg     ,     -Xg    ,      0.0      ; 

      0.0    ,   0.0  ,   0.0   ,      1.0     ,     0.0    ,      0.0      ; 

      0.0    ,   0.0  ,   0.0   ,      0.0     ,     1.0    ,      0.0      ; 

      0.0    ,   0.0  ,   0.0   ,      0.0     ,     0.0    ,      1.0      ]; 
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equations      

 p2.e=  transpose (m) * p1.e; 

p1.f=  (m) * p2.f; 
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Appendix C 

Added mass coefficients, DNV-RP-H103, April 2009 
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Appendix D 

Project assignment fall 2010 
 

PROJECT WORK IN MARINE MACHINERY 
FALL 2010 

FOR 
STUD.TECHN. CHRISTIAN FAGERENG 
MATHEMATICAL  MODELLING FOR 

MARINE CRANE OPERATIONS 
 

Work description 
Mathematical models for marine vessel dynamics including environmental loads is frequently used in many 

applications.  Extending these models to include propulsion machinery, deck machinery, large cranes or other 

equipment used for marine operations or in operation simulators  it is important for efficient model 

development to have a clear understanding of how the interfaces have to be designed to facilitate connection of 

models.The bond graph representation or modelling methodology focuses on the model structure and 

properties required for connecting sub-models into large hybrid model and therefore may serve as a language 

for analysis of model structure in such a sense.  

This representation has been used in the Energy Efficient - All Electric Ship project and in a PhD-thesis where a 

model library was developed. The work here is a continuation of these attempts and the objective is to increase 

the number and further develop the models in this library.  

Scope of work: 
4. Review the modelling and models of  Marine Vessel Dynamics. Implement a simplified bond graph 

template model for a surface vessel for crane operations.  
 

5. Review the modelling and models of large marine cranes for marine operations including typical heave  
compensation systems, the hydraulic winches and the control of this equipment. Discuss the structure or 
modular design of these hybrid models and suggest a method or implementation of these model into a 
modular  component model library. 
 

6. Combine the crane model developed and the vessel dynamic model into a complete model of a barge with 
a large crane for marine operations. Suggest a specific operation and demonstrate the capabilities of the 
developed model as a software simulator. For demonstration purposes include a Joy-stick for manned 
operation and develop a simplified animation displaying the motions of the barge and crane.  
  

 

The report shall be written in English and edited as a research report including literature survey, description of 

mathematical models, description of control algorithms, simulations results, discussion and conclusion 

including a proposal for further work. Source code in Matlab/Simulink or equivalent  shall be provided on a CD 

with code listing enclosed in appendix. 
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It is supposed that Department of Marine Technology, NTNU, can use the results freely in its research work by 

referring to the students work. 

The thesis should be submitted in three copies within _____ 

Trondheim September 21, 2010 

 

Eilif Pedersen  

Associate Professor      
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