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Abstract

Marine pipelines placed at or near the seabed are exposed to currents and waves. In the
presence of a sedimentary seabed, the interaction between the surrounding water motions
and the pipeline may cause erosion of sediments beneath the pipeline. Due to this erosion
or due to the installation procedure, free spans may occur in sections along the span of the
pipeline. A simplified description of the flow is obtained by approximating the seabed as a
plane and impermeable wall. Most of the previous experimental and numerical studies on
this flow are performed at Reynolds numbers, Re, in the range 103-105 as this range is of
most relevance for offshore engineering purposes. Numerical modeling at such Reynolds
numbers generally involves different kinds of artificial flow modeling.

In this study, the software OpenFOAM is applied for numerical simulations of the
viscous flow around a circular cylinder at Re = 100. At this Reynolds number the flow
around an unconfined circular cylinder is characterized by vortex shedding and yet turbu-
lence is avoided, which provides the possibility of accurate calculations of the flow. The
flow is investigated with reference to visualizations of pressure, velocity and vorticity; and
the flow characteristics are quantified in terms of drag and lift acting on the cylinder and
vortex shedding frequency. Numerical simulations of an unconfined cylinder in uniform
cross-flow constitutes the basis of the present study, and these simulations are included
in an attempt to validate the results and the applied computational method. The results
for this flow are within the scatter of the reported values in the literature.

In this study, the flow around a cylinder near a plane wall is of main interest. Three
different gap ratiosG/D = 0.2; 0.5; 1.0 are applied. The results are generally in accordance
with published data from numerical simulations; best agreement is found at G/D =
0.2 and G/D = 0.5. The results are supportive to the suggestion of vortex shedding
suppression to be caused by the interaction between the lee-side recirculating flow and
the gap flow, which inhibits large-scale vortex roll-up. Further, the results at G/D = 1.0
indicates cancellation of opposite signed vorticity in the near-wall region, in accordance
with suggestions in the literature.

Additionally, the geometry of the wall is altered, introducing a hollow below the cylin-
der. This shape imitates a fully developed scour profile. These simulations are expected
to bring new results to this topic of research. The flow is characterized by evident vortex
shedding. Further, at this gap a distinct mean lift in the direction towards the wall is
observed and both the drag coefficient and the frequency of vortex shedding is reduced
as compared to the flow around a cylinder in uniform cross-flow. The obtained results
exhibits similarity to published experimental data for the flow at Re = 1.104.

Two-dimensional simulations are performed for all of the flow configurations, and a
few three-dimensional simulations are performed for a cylinder in uniform cross-flow and
a cylinder located a distance G/D = 0.5 from a plane wall. Due to the two-dimensional
flow patterns, insignificant differences are found between the two-dimensional and three-
dimensional simulations.

In this study, emphasize is given to the influences on the solution of the following
numerical parameters: time step, domain size, grid geometry, element size and element
spacing. These parameters are thoroughly investigated in terms of convergence studies.

Also included in this thesis is a review of some features of these flows and an overview
of the governing equations, OpenFOAM and the applied solver icoFoam.
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1 Introduction

1.1 Background and motivation

Marine pipelines are widely used for the transport of hydrocarbons. Submarine pipelines
placed at or near the seabed are exposed to currents and waves. In the presence of an
erodible seabed, there may also be erosion of sediments beneath the pipeline. This process
is termed scour.

Due to the installation procedure or due to the development of scour beneath the
pipeline, free spans may occur in sections along the length of the pipeline. Scour and the
development of free spans constitute a threat to the stability and structural integrity of
the pipeline due to the loss of support in sections along the pipeline’s span [2, p. 117].

Generally, the interaction between a cylindrical structure – such as a free spanning
marine pipeline – and a steady transverse flow causes vortex shedding and oscillating
pressure forces on the structure. These forces can excite vortex induced vibrations (VIV),
which are recognized as important contributions to fatigue and reduced lifetime for the
pipeline.

1.1.1 Offshore pipelines on the Norwegian continental shelf

There are approximately 20 000 kilometers of pipelines laid offshore in the North Sea for
the purpose of petroleum transport, of which 5100 km are laid on the Norwegian shelf
[3]. Gassco handles all transport of Norwegian gas for export and manages a network of
about 7800 km of pipelines [4]. Most pipelines on the Norwegian shelf are rigid, only 240
km are flexible pipelines [3].

The dimensions of the pipelines may vary from 8-12 inches (20-30 cm) up to 44 inch
(112 cm) for the largest gas export pipelines [4], [5, p. 15]

According to Jakobsen et. al [3], 1500 km of the pipelines on the Norwegian shelf are
trenched, 2300 km are laid directly on the seabed and 1300 km are in unknown condition
(i.e either buried, trenched or laid directly on the seabed). The total length of known
buried pipelines in the North Sea is limited to only 110 km. The majority of rigid pipelines
with dimensions smaller than 16 inches are trenched or buried.

In 2009, the Norwegian petroleum production totaled 115.45 million Sm3 of oil and
103.47 million Sm3 oil equivalents of gas [6, p. 325]. In addition there were smaller
amounts of natural gas liquids (NGL) and condensate. 93% of the gas produced was
exported for a total value of 186 859 million NOK [6, p. 266]. Hence, reliable operation
and integrity of the pipelines are of great importance.

1.1.2 Characteristics of the flow around a circular cylinder in steady cross-
flow

The flow around a circular cylinder in steady cross-flow is extensively studied and Zdravkovich
[7] presents a thorough review of this work. The fundamentals of this flow configuration
are outlined in the following:

The governing parameter for viscous flows is the Reynolds number, expressing the
ratio of inertia to viscous forces. The Reynolds number is defined as:

Re =
UD

ν
(1.1)

1
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Here U is the free-stream flow velocity, D is the diameter of the cylinder and ν is the
kinematic viscosity. The flow around bluff bodies are characterized by the formation of a
wake at the lee-side of the structure which depends on Re. Figure 1 (a)-(f) depicts the
flow around a circular cylinder in uniform cross-flow for Re in the range 32-161. Generally,
the wake is two-dimensional in this regime [8].

For circular cylinders at Re > 47 [10], the wake is characterized by the alternate
shedding of eddies which are shed at frequency fv. This frequency can be expressed by
the non-dimensional Strouhals number St:

St =
fvD

U
(1.2)

Vortex shedding causes oscillating forces on the cylinder; lift oscillating at the fre-
quency of eddy shedding fv, and drag oscillating at twice this frequency [11, pp. 186].
Lift; FL, is the force component in the stream-normal direction, while drag; FD, is the force
component in the stream-wise direction. These forces can be expressed non-dimensionally
by the lift coefficient; CL, and drag coefficient; CD, respectively:

CL =
2FL

ρU2D
(1.3)

CD =
2FD

ρU2D
(1.4)

For further details on the mechanisms of vortex shedding, reference is given to [9].
Offshore pipelines and risers are often subject to Re = O(104 − 107). Generally,

numerical simulations at these Reynolds numbers involves artificial turbulence modeling
such as Large Eddy Simulations and the k− ε-model in Reynolds-Averaged Navier Stokes
equations. Re = 100 is chosen in the present study in order to avoid turbulence, but still
get vortex shedding. The flow around a circular cylinder in uniform cross-flow at Re = 100
is extensively studied, both in experimental and numerical studies: A collocation of some
results is given in table 1 where ’peak-peak’ denotes the difference between the largest and
smallest values of oscillatory quantities, ’Exp.’ denotes results in experimental studies and
’Num.’ denotes results in numerical studies. All values are exact results, except those by
Norberg [10] which are obtained from empirical functions of Re based on a comprehensive
review for Re in the range of 47-2.105.

Table 1: Reference values for a circular cylinder in uniform cross-flow at Re=100

Study Method CD

√
C ′L

2 CL St

peak-peak
Norberg [10] Exp./num. 0.227 0.164
Tritton [12] Exp. 1.26 0.157 - 0.164
Wieselberger from [13] Exp. 1.43
Hendersson [14] Num. 1.35
Williamson [15] Exp. 1.33 0.70 0.160 - 0.164
Lei (G/D = 3.0) [1] Num 1.46 0.244 0.177
Cao and Wan (3D) [16] Num 1.39 0.67 0.168

2



Knut Inge Engelbreth Viscous Flow Around a Circular Cylinder Near a Plane Wall

Figure 1: The flow around a circular cylinder in a range of Re. Reproduced from [9, p.
4, fig. 1.3]

3
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1.1.3 Transition to turbulence for a circular cylinder in steady cross-flow

The transition to turbulence occurs in various regions around the cylinder dependent on
the Reynolds number, illustrated in figure 2. In the figure, L denotes laminar flow, Tr
denotes transitional flow, T denotes turbulent flow, BL denotes boundary layer and S
denotes separation. The first transition occurs in the wake at Re ' 190, succeeded by
transition in shear layer at 350 < Re < 400 and then later by transition in boundary layer
at 1.105 < Re < 2.105 [7, p. 18].

(a) Transition in the wake; (b) Transition in shear layer; (c), (d) Transition in boundary layer

Figure 2: Transition to turbulence in different regions dependent on Re. Reproduced
from [7, p. 5, fig. 1.2]

In the following, wake transition is outlined based on the presentation by Williamson
[8]: Transition to three-dimensional flow occurs at Re ' 190. However, contaminating end
boundary conditions at the cylinder are known to trigger transition at lower Re. These
contaminations may physically be interpreted as regions of vortex dislocations moving
across the span. The wake transitional regime involves two modes of vortex shedding:
mode A and mode B. These two modes are illustrated by a visualization from a numerical
simulation at Re = 265 by Heggernes [17] in figure 3. Mode A is associated with lower
shedding frequencies and a span-wise wavelength of 3.96D-4.01D. Mode B is associated
with higher shedding frequencies and span-wise wavelength ∼ 1D.

Figure 3: Visualization of mode A and B by an isosurface of the vorticity at Re = 265.
Reproduced from [17, p. 38 fig 4.3]

At transition from two-dimensional to three-dimensional flow, mode A occurs first.
As the Reynolds number increases, a gradual transfer to mode B occurs in the range
Re = 230-260. At the upper end of this range, mode B dominates. In the gradual
transfer between the two modes, mode A and B do not occur simultaneously, but the
vortex shedding intermittently swaps between the two. For further reading on three-
dimensional wake transition and the physical origin of mode A and B, reference is given
to Williamson [8] and to the references herein.
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Recently, Cao and Wan [16] demonstrated the application of the open source code
OpenFOAM to simulate three-dimensional flows past a single circular cylinder and past
two tandem circular cylinders at Reynolds numbers in the range 100-300. The lengths of
the cylinders were 4.1D in these simulations.

1.1.4 Characteristics of the flow around a circular cylinder near a plane
boundary

The flow around a pipeline and forces on it are affected by the proximity of the seabed.
At first, the flow may be illustrated by considering the seabed as a plane and rigid wall.
The flow around a circular cylinder in the proximity of a plane boundary is investigated
by several researchers. This flow configuration is of academic interest and has several
other practical applications for the purpose of engineering: wind past suspension bridges,
flow around heat exchanger tubes near a wall and air-cooling of electronic components
mounted at printed circuit boards [18].

Figure 4: Sketch of the flow geometry for a cylinder near a plane wall

The cylinder and the wall is separated by a gap G and generally, a boundary layer
forms at the wall. A sketch of the flow geometry is given in figure 4. According to the
review by Zdravkovich [19, p. 872] the influence of the wall is primarily dependent on
the following parameters in addition to the Reynolds number Re: gap-to-diameter ratio
G/D, the relative boundary layer thickness δ/D and δ/G, and the flow characteristics of
the boundary layer, i.e. whether the boundary layer is laminar, transitional or turbulent.
Laminar and turbulent boundary layers are associated with small and large values of lift,
respectively [19, p. 874].

Early experiments were performed by Taneda [20] with a towed cylinder at Re = 170
and different gap ratios G/D. Due to the towing of the cylinder, no boundary layer formed
at the wall. At G/D = 0.1 one single row of vortices was observed and at G/D = 0.6
a double row of vortices was observed. To the knowledge of this author, this is the only
published experimental study at such low Re.

Most of the published experimental and numerical work are done at Re in the or-
der of 103-105 with the suppression of vortex shedding observed mainly in the range of
G/D =0.2-0.4 [21, 22, 23, 24, 25] for boundary layer thickness δ/D approximately in the
range 0.1-0.9. However, larger values of the critical gap for vortex shedding suppression
are reported for thicker boundary layers [26, 22]. Grass et al. [22] suggest that this in-
crease in critical gap could be due to the large velocity differential ∆u across the cylinder,

5
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advocating the importance of velocity gradient in the approaching flow. Taniguchi and
Miyakoshi [26] note that the critical values of G/D for vortex shedding suppression cor-
responds to the point where the wall side of the cylinder comes in contact with the outer
part of the turbulent boundary layer forming at the wall. There are also examples where
the critical gap at which vortex shedding is suppressed decreases with the thickness of the
boundary layer [23].

Generally, the drag decreases for decreasing gap ratio [1, 27]. At small gap ratios,
a steady mean lift in the direction away from the wall is observed [21, 24], although
dependent on the boundary layer some incidents of lift in the opposite direction are
reported [24, 27].

At Re in the range 103-104, separation regions are observed both upstream and down-
stream of the cylinder at small gap ratios [21, 22, 28]. The upstream separation region
is reported to form an obstacle to the approaching flow and its presence reduces the flow
velocity through the gap and deflects upstream fluid over the top of the cylinder [22, 28].
The downstream separation region is reported to deflect the jet flow originating from the
gap away from the wall to form a free jet [22].

Taniguchi and Miyakoshi [26] suggest the vortex street to form by concentration of
vorticity by roll-up of separated shear layers originating from both sides of the cylinder;
the free-stream side shear layer containing clockwise vorticity, while the wall side shear
layer containing counterclockwise vorticity. The boundary layer formed at the wall is
containing clockwise vorticity [26]. Grass et al. [22] suggest the free jet inhibits large-
scale vortex roll-up in the wall side wake region. Further, cancellation of opposite signed
vorticity in the wall boundary layer and the wall side shear layer is suggested as the cause
of vortex shedding suppression [1, 26, 22].

At gaps smaller than the critical gap for vortex suppression, flow separation of the
wall boundary layer is observed to coincide with the outward deflection of the wall side
shear layer. Observations clearly indicate interaction between the wall side shear layer
and the wall boundary layer: each (counterclockwise) vortex shed from the wall side of
the cylinder is accompanied by a clockwise vortex in the near-wall region. As a result
the wall boundary layer is destabilized and the flow detaches from the wall and ejects
upwards. [25, 29]. Contrary to previous suggestions [1, 22, 26], Price [29] and Sarkar and
Sarkar [18] find that the two shear layers do not cancel each other.

Lin et al. [28] presents a summary of previous experimental studies of a circular
cylinder near a plane boundary and suggests the flow phenomena in the wake can be
roughly classified into three regions due to the influence of the gap: (1) the characteristics
of vortex shedding is similar to that of an isolated cylinder, (2) the plane boundary
influence the vortex shedding and the periodic shedding from the upper shear layer is
evident, (3) periodic vortex shedding is suppressed.

Lei et al. [1] performed 2D numerical simulations in the range Re = 80-1000 and
report the strength of vorticity in the shear layers to decrease and the thickness of the
shear layers to increase with decreasing Re. The consequence is suppression of vortex
shedding at larger gap ratios for lower Re. For high Re, the critical value approaches
G/D ' 0.2. This study by Lei et al. is one of the few published numerical studies of the
flow around a circular cylinder near a plane boundary performed at Re = 100.

1.1.5 Basic features of a circular cylinder exposed to a linear shear flow

For vortex shedding from a cylinder near a wall, Grass et al [22] suggested the importance
of the velocity differential ∆u over the cylinder in the approaching flow. Hence, the

6
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Figure 5: Shear flow. Reproduced from [7, p. 460 fig. 15.1] and modified.

influence of shear in the approaching flow is of interest. Zdravkovich [7, pp. 454] describes
the influence of introducing a linear shear in the inflow for a cylinder in infinite fluid. The
inflow velocity profile u is then expressed in terms of:

u = U0

(
1 + κ

y

D

)
(1.5)

where U0 is the free stream velocity at y = 0 (the cylinder’s axis of symmetry) and κ is
the steepness factor:

κ =
D

U0

du

dy
(1.6)

According to Zdravkovich [7, p. 465], the steepness factor κ replaces the Reynolds
number Re as the governing parameter for the flow around a cylinder subject to a linear
shear flow. At Re = 100, steep shear flows prevent vortex shedding, and incipient eddy
shedding takes place for κ < 0.14 [7, p. 467].

1.1.6 Mechanisms of scour under a marine pipeline

This section outlines the physical description of sediment transport and scour due to a
steady current based on the presentation given by Sumer and Fredsøe [5] and Nielsen
[30]. Attention is given to the onset and development of scour and the influence of key
parameters on scour. Scour due to oscillating currents and waves are omitted.

Most of the natural oceanic seabed is not totally rigid or impermeable, but rather
consists of sediments with a finite size and mass. These sediments are influenced by the
bounding water motions, and specifically the bed shear stress τ . The sediment transport,
qb, is governed by the bed shear stress [31] by the relation qb ∼ τ 3/2 [5, p. 32]. The bed
shear stress in the case of an undisturbed flow (i.e. no structure present) is denoted τ∞.

The presence of a structure (e.g. a pipeline) at, or close to, the seabed will generally
cause a local change in the flow and an appurtenant increase in the bed shear stress which
in turn leads to erosion of sediments. Excessive scour represents a threat to the stability
and structural integrity of the pipeline [2, p. 117].

For non-cohesive granular soil, the limit for sediment transport to occur is determined
by the Shields parameter θ, defined as [5, p. 10]:

θ =
U2
∗

g(s− 1)d
(1.7)
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where U∗ =
√
τ/ρ is the bed shear velocity, ρ is the fluid density, g is acceleration due

to gravity, s is specific gravity of sediment grains and d is the grain size. θ must be
above a critical value θcr in order for sediment transport to occur. θcr is dependent on
the parameter dU∗0/ν which may be termed the grain Reynolds number in which U∗0 is
the undisturbed bed shear velocity with τ = τ∞. Data presented by Sumer and Fredsøe
[5, p. 10] indicates the critical value of the Shields parameter is approximately constant
θcr ≈ 0.05 for dU∗/ν > 500.

The scour process is divided into two categories based on the Shields parameter: Clear-
water scour is the condition where no sediment transport takes place in the undisturbed
flow far from the structure (θ < θcr). Live-bed scour is the opposite condition where
sediment transport takes place over the entire bed (θ > θcr).

Some values for mean grain size d for different types of seabed are given in table 2.
Specific gravity for rock types such as granite, gneiss and quartzite are in the range 2.6 -
3.0 [32].

The development of scour can usually be divided into four stages: onset of scour,
tunnel erosion, lee-wake erosion and the final equilibrium stage. It must be underlined
that scour behaves in a three-dimensional fashion and that scour takes place locally along
the pipeline and then propagates along the length of the pipeline in both directions. Scour
holes will then form at sections along the pipeline and between these sections are the span
shoulders where the weight of the pipe is supported. A two-dimensional description of
scour is outlined in the following.

Onset of scour is the first stage in the scour process. A pipeline placed on a seabed in
a transverse current experiences a pressure difference between the upstream side and the
downstream side. This pressure difference gives rise to a seepage flow in the sediment bed
under the pipeline. At a sufficiently large current velocity, sand and water will eventually
break through beneath the pipeline [5, p. 17]. Increased burial of the pipe is understood
to increase the resistance against the onset of scour.

Tunnel erosion succeeds the onset of scour. In this stage there is a small gap between
the pipe and the seabed, depicted in figure 6. As a result very large flow velocities
occur in the gap, and this is accompanied by very large bed shear stresses just below the
pipeline [5, p. 31]. Violent scour is hence expected under the pipeline immediately after
the onset of scour. Scour propagation along the pipeline is most dominant at this stage
[34]. Attributed to the gap flow is also a strong suction below and behind the pipeline
resulting in a negative lift force and relatively high drag [9, p. 65]. The lift is then negative
throughout the remaining scour process.

Table 2: Mean grain size for different types of seabed. From [33, p. 10]

Seabed d [mm]
Silt and clay 0.0625
Fine sand 0.25
Medium sand 0.5
Coarse sand 1.0
Gravel 4.0
Pebble 25
Cobble 125
Boulder 500
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Figure 6: Tunnel erosion. Reproduced from [5, p. 31 fig 2.11]

Lee-wake erosion follows the tunnel erosion. Due to the rapid tunnel erosion a dune
forms downstream of the pipeline. As time elapse and scour develops, the dune gradually
moves downstream and may eventually disappear as the equilibrium scour profile is at-
tained, as depicted in figure 7. Numbers at scour profiles in the figure denote time [min].
As the gap between the pipe and the seabed increases, vortex shedding starts to occur in
the flow behind the pipeline. Vortices are alternately shed from the free stream side and
the bed side of the pipe. The latter vortices sweep the bed, as they are convected down-
stream. Indications are that these vortices substantially increase the sediment transport
and contributes to lee-side erosion [5, p. 34].

Figure 7: Development of scour. Reproduced from [5, p.33 fig 2.13]

The equilibrium stage is eventually attained when the scour process comes to an end.
This occurs when the bed shear stress at the bed below the pipeline is constant and equal
to the bed shear stress in the undisturbed flow, i.e. τ = τ∞ The equilibrium scour depth
is denoted S, usually expressed non-dimensional by the ratio S/D, and dependent on the
Shields parameter θ. The scour depth is zero for very small values of θ and increases as θ
approaches θcr. Very small variations are observed in the scour depth as θ increases above
the critical value θcr. This led Sumer and Fredsøe [5, p. 41] to suggest a mean value of
S/D = 0.6 with standard deviation of 0.2 for this scour depth.

Sumer and Fredsøe [9] summarizes the results in an experimental study by Jensen
et al. [35] at Re = 103, where a cylinder is located at five different stages of the scour
process and the forces on the cylinder are measured: For the cylinder located above an
equilibrium scour profile, a negative mean lift is observed. Additionally, the results in the
study of Jensen et al. [35] are compared to those of the flow around a circular cylinder
near a plane wall. At a similar gap below the cylinder, CL is negative in the scour case
and positive in the case of a plane wall. Similarly, CD is slightly reduced in the scour case.
The front stagnation point is moved towards the free-stream side and this is suggested as
the cause of the negative lift.

1.1.7 Mathematical modeling of scour under marine pipelines

This section outlines methods for mathematical modeling of scour, which are considered
in order to gain further knowledge of the phenomena and to predict the development of
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local scour and the resulting forces on the pipeline. According to a review by Sumer
[36], there are three categories of mathematical scour models: (1) Potential-flow models,
(2) Numerical models which basically are solving Navier-Stokes equations (3) Integrated
models predicting the entire scour process along the pipeline in terms of time series. It
should be noted that potential-flow models are by virtue not capable of handling lee-wake
erosion [36].

Only a limited number of numerical investigations address the complete Navier-Stokes
equation for the purpose of scour modeling [36]. Brørs [37] applies Reynolds-Averaged
Navier-Stokes equations with a k − ε model and a sediment transport model to predict
flow and scour below a bed mounted circular cylinder. The flow and scour should ide-
ally be calculated simultaneously. However, this is too computationally expensive [38].
Additionally, the time scales of scour and the flow field are quite different; the flow field
changes much faster than the bed change due to scour [38]. The general approach in the
method of Brørs is (1) run the flow simulation a number of time steps (in the order of
hundred), (2) compute the bed change and (3) evaluate the new bed profile and adapt
the grid. Liang et al. [38] apply a similar, yet more refined, method which includes sand
slide on steep slopes. Additionally they investigate several turbulence models for scour
application.

Recently, Yeganeh-Bakhtiary et al [39] suggested a two-phase model to investigate
tunnel erosion beneath a pipeline. The two phases involved are the fluid phase and the
sediment phase which both are simulated by two-dimensional Reynolds-Averaged Navier-
Stokes equations with a k − ε turbulence model.

1.2 Scope of work in the present study

On the basis of the preceding section, it is of interest to study the viscous flow around
a circular cylinder in the proximity of a fixed boundary. The purpose of this study is to
apply the software OpenFOAM for numerical simulations of the viscous flow around a
circular cylinder near a plane wall at Re = 100. The aim is to investigate and to further
illuminate the associated flow phenomena. Three different gap ratios: G/D = 0.2; 0.5; 1.0
are applied. These gap ratios are expected to represent three distinct different gap regimes:
Suppression of vortex shedding is expected at the smallest gap; G/D = 0.2. At this gap
ratio the cylinder is quite close to the wall, yet the choice of this gap simplifies the grid
design compared to the case where the cylinder touches the wall (G/D = 0). Vortex
shedding is expected at G/D = 1.0, and an additional intermediate gap G/D = 0.5 is
investigated.

Further, the geometry of the wall is altered to imitate the shape of a fully developed
scour profile. However, no attempts are made to perform calculations of scour or sediment
transport. These simulations are expected to add new results to this topic of research.

The low Reynolds number in the present study provides the possibility of accurate
calculations avoiding the use of artificial modeling of the flow such as turbulence model-
ing which is necessary at higher Reynolds number in Reynolds-Averaged Navier Stokes
(RANS) equations and Large Eddy Simulations (LES).

The investigations of the flow address the main physical properties: pressure, velocity
and vorticity by different means of visualization. The flow characteristics are quantified in
terms of lift, drag and frequency of vortex shedding, all being expressed non-dimensionally
by the lift and drag coefficient and Strouhals number, respectively. These quantities are
related to the gap ratio in terms of G/D and G/δ. The results are compared to reported
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values in the literature.
In an attempt to validate the results and the applied computational method, the flow

around an unconfined circular cylinder in uniform cross-flow is considered a benchmark.
This flow configuration is extensively studied in the present study and the results are
compared to relevant results in the literature.

The numerical parameters of most importance in the present study are considered to
be the domain size, grid geometry, element size, element spacing and time step. The
influences of these parameters are investigated both for the cylinder in uniform cross-flow
and for the cylinder near a plane wall, except the time step which is only investigated for
the cylinder in uniform cross-flow.

Two-dimensional simulations are performed for all of the above mentioned flow config-
urations. A few three-dimensional simulations are performed for an unconfined cylinder
in uniform cross-flow and a cylinder located at G/D = 0.5 from a plane wall.

1.3 Outline of the present thesis

Chapter 1 gives an introduction advocating the relevance of this flow and presents some
of the basic features of the flow around a circular cylinder in uniform cross-flow, cylinder
near a plane wall and scour under marine pipelines.

Chapter 2 presents the governing equations for the fluid flow problem.

Chapter 3 gives an overview of the computational work; emphasizing the structure of
OpenFOAM and its utilities: the icoFoam-solver and the applied numerics.

Chapter 4 presents the numerical simulation of flow around a circular cylinder in uni-
form cross-flow; starting with a description of the setup and the main results, followed by
a thorough investigation of numerical parameters. The chapter concludes with a discus-
sion of the results.

Chapter 5 presents the simulations of flow around a circular cylinder located at dif-
ferent gaps to a plane wall; starting with a description of the setup, main results and
an investigation of numerical parameters, followed by visualizations of pressure, velocity
and vorticity at different gaps and a discussion of the flow phenomena for these flows.
The chapter concludes with a discussion of the results and a comparison to results in the
literature.

Chapter 6 presents the simulations of flow around a cylinder located above a fixed scour
profile; starting with a description of the setup and the main results, followed by a dis-
cussion of the results and flow phenomena and visualizations of pressure, velocities and
vorticity.

Chapter 7 concludes the present thesis, summarizing the main results and presenting
recommendations for further work.
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2 Governing equations

This section is based on the presentation given by White [40, pp. 59-73] and Issa [41].
The fluid flow is governed by the laws of conservation which applies to a physical system:
(1) The conservation of mass, (2) the conservation of momentum and (3) the conservation
of energy. The fluid itself is assumed to be of homogeneous composition. In the following,
the laws of conservation are adapted for the use in fluid motion. Cartesian tensor notation
is applied in the equations.

The conservation of mass may be expressed in terms of the equation of continuity in
its general form:

∂ρ

∂t
+
∂ (ρui)

∂xi
= 0 (2.1)

where i, j =1, 2, 3. x1 and x2 denotes the stream-wise and stream normal directions in
the 2D plane. x3 denotes the stream normal direction into the third dimension of space,
making the domain three dimensional (3D). u1, u2 and u3 are the corresponding velocity
components, t is time and ρ is the density of the fluid.

The conservation of momentum may be expressed by the Navier-Stokes equation in
its general form:

ρ

[
∂ui
∂t

+ uj
∂ui
∂xj

]
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂ui

)
+ δijλ

∂ui
∂xi

]
+ fi (2.2)

where p is the pressure, ν is the dynamic viscosity of the fluid. δij is the Kronecker delta
function: δij = 1 if i = j and δij = 0 if i 6= j. λ is the coefficient of bulk viscosity and
is related to volume expansion only. fi represents external body forces, e.g. gravitational
and electromagnetic fields.

The speed of sound in water is approximately a = 1490 m/s [42, p. 608] and the
free-stream velocity is unity. Hence, the Mach number in the present study is of the order
10−3:

Ma =
u

a
(2.3)

The fluid is assumed to be incompressible, which is a valid assumption as the Mach
number, Ma, is well below the limit Ma < 0.3. External body forces such as gravity are
neglected. Further, constant viscosity is assumed. The equations (2.1) and (2.2) then
simplify to (2.4) and (2.5), respectively.

∂ui
∂xi

= 0 (2.4)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂ui

)
(2.5)

The law of conservation of energy may be expressed by the equation of energy:

ρ
Dh

Dt
=
Dp

Dt
+

∂

∂xj

(
c
∂T

∂xj

)
+ µ

(
∂ui
∂xj

+
∂uj
∂ui

)
∂ui
∂xj

(2.6)

where h is the enthalpy, c is the thermal conductivity and T is the temperature.
With the preceding assumptions of constant density and viscosity, the equations for

continuity (2.4) and momentum (2.5) are entirely uncoupled from temperature and may
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be solved to obtain velocities and pressure for a given flow problem. Temperature may
then subsequently be solved from the energy equation (2.6). However, temperature and
heat transfer are omitted in the present study and the energy equation (2.6) is thus
superfluous.mited in the present study and the energy equation (2.6) is thus superfluous.

The equations for continuity (2.4) and momentum (2.5) are non-linear and coupled
due to the presence of ui and p. As a matter of fact, there exists no general analytical
solution to this system of equations [40, p. 96]. Hence, numerical methods should be
pursued in order to solve the equations.
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3 Computational work

The present study utilizes the software Open Source Field Operation and Manipulation
(OpenFOAM) which is an open source code software for computational fluid dynamics
(CFD). The software is released by OpenCFD Ltd. and is available for free download
from the Internet address www.openfoam.com for Linux operating systems.

OpenFOAM can be executed at a regular laptop in a Linux-operating environment,
and it also supports parallelization: allowing the simulations to run on multiple proces-
sors in parallel. In the present study, simulations are performed in parallel at the high
performance computer cluster Njord as part of the NOTUR program.

3.1 The structure of an OpenFOAM case

OpenFOAM is constituted by a set of C++ modules and has limited graphical user
interface: The built-in utility paraFoam provides possibilities of visualizing the grid and
the obtained results. Anyhow, it is advantageous for the user to have some knowledge
of C++ programming in order to utilize this software efficiently. The software is open
source, and hence the user has full access to the source code of any solver, utility and
library. OpenFOAM also provides the user with numerous possibilities and accompanying
demands to make choices. The file structure of an OpenFOAM case is shown figure 8 and
outlined in the following based on the description in the OpenFOAM User Guide [43, sec.
4.1].

The case directory contains three main directories named constant, system and ’time’.
The full name of any ’time’ directory is constituted by the actual time for that directory,
e.g. for the initial time t = 0, the time directory is named 0. The time directories
contain field data such as pressure and velocity. The data can either be initial values and
boundary conditions prescribed by the user, or results from OpenFOAM written to file.

The constant directory contains files which specify the physical properties involved.
In the present study the directory contains one such file named transportProperties

which contains the value of ν = 1.10−2 m2/s. As both the structural dimension and
the undisturbed flow velocity have the dimension of unity, the value of ν determines
the Reynolds number: Re = 100. The constant directory contains a second directory,
polymesh, which contains all the information about the mesh for the specific case.

The system directory contains files associated with the solution procedure: controlDict,
fvSchemes, fvSolution and decomposeParDict. The parameters in the file controlDict
determines run control such as start/end time and time step. In addition there is the
possibility to set parameters for data output. In the present study the controlDict is
modified to include calculation of forces and force coefficients at each time step in addi-
tion to sampling of instantaneous values of pressure and velocity at a given point in the
fluid domain. An example of a typical OpenFOAM controlDict is given in Appendix A.
fvSchemes determines the discretization schemes used in the solution, while fvSolution

determines the solvers and parameters for algorithm control. decomposeParDict deter-
mines the parameters for decomposing the mesh into separate domains in order to run
the case in parallel on multiple processors.

3.2 Pre-processing

Prior to the execution of the numerical simulation itself, pre-processing is performed. This
includes the definition of the fluid domain and the subsequent division of the fluid domain
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Figure 8: The file structure of an OpenFOAM case. Reproduced from [43, fig. 4.1, sec.
4.1] and modified.

into a grid of discrete three-dimensional (3D) elements of finite volume. In the present
study the computational grid is created by the use of NTNU/SINTEF in-house software
Mega. The mesh is created in the file format .msh and then converted to OpenFOAM
format by the OpenFOAM utility gmshToFoam. Further, the pre-processing involves the
specification of relevant fluid properties and the appropriate boundary conditions.

3.3 icoFoam - an OpenFOAM solver

OpenFOAM uses a finite volume method for space discretization [44]. Other numerical
methods of space discretization are the finite difference method and the finite element
method. In the following, a brief outline of the finite volume method is given based on
the presentation by Versteeg and Malalasekera [45, pp. 2-5]. In the finite volume method,
the governing equations are integrated over all the finite volumes of every element of the
computational domain. This ensures the fulfillment of the physical laws of conservation of
the fluid properties for each element with reference to section 2. Further, the integrated
equations are converted to a system of algebraic equations. This is done by substituting
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the terms in the integrated equations by formulations similar to finite difference formula-
tions. These equations may then be solved by means of iterative methods.

OpenFOAM has a wide range of standard solvers designed for specific applications in
different categories of continuum mechanics. For the present study, the solver icoFoam is
expected to be appropriate as it is a transient solver for laminar flow of an incompressible
Newtonian fluid [43, sec. 3.5].

The Pressure-Implicit with Splitting of Operators (PISO) algorithm by Issa [41] is
one of the methods available to resolve the pressure-velocity coupling of the governing
equations. Issa originally presented a finite difference formulation of the PISO algorithm,
while icoFoam applies a finite volume formulation of the PISO algorithm. Finite volume
formulations of the PISO algorithm are outlined by Jasak [46] and Rusche [47]. In the
following, the finite difference formulation of Issa [41] is presented alongside the finite
volume formulation in the OpenFOAM source code of icofoam.c [48]. For details on the
finite difference formulation, reference is given to [41].

n and n + 1 denote successive time steps. The governing equations for continuity (2.4)
and momentum (2.5) may then be expressed in finite difference form for each mesh point
[41]:

∆iu
n+1
i = 0 (3.1)

ρ

δt

(
un+1
i − uni

)
= H(un+1

i )−∆ip
n+1 + Si (3.2)

where ∆i is the finite difference representation of ∂/∂xi, δt is the length of the time step,
the operator H is the finite difference representation of the convective and diffusive terms.
In general, H takes the form H(ui) = Amui,m where m identifies the grid nodes and A is
a coefficient. Si is a source term which was omitted in equation (2.5) although present in
equation (2.2).

An equation for pressure may be derived from equations (3.1) and (3.2) [41]:

∆2
i p

n+1 = ∆iH(un+1
i ) + ∆iSi +

ρ

δt
∆iu

n
i (3.3)

In the continuation, the latter equation replaces equation. (3.1). The PISO algorithm
consists of several steps where equations (3.2) and (3.3) are used to determine velocity
and pressure fields, respectively. Then *, ** and *** denote intermediate values during
the calculation from time step n to n+ 1.

The main steps of the PISO algorithm are as follows:
(1) The predictor step:

- Make an initial guess of the pressure pn

(In the present study, use the value from the previous time step)
- Use the initial value of pressure pn to solve the discretized momentum

equation for a new velocity u∗i .
(2) The corrector steps

- Use the new velocity u∗i to solve the pressure equation for p∗.
- Use the new pressure p∗ and velocity u∗i to solve the momentum

equation for a new velocity u∗∗i

The corrector steps are repeated, taking the last calculated velocity and pressure as input.
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3.3.1 The predictor step

The pressure field pn obtained at the previous time step t = n is used in the solution of
the implicit momentum equation (3.2) which are solved for an intermediate velocity field
u∗i :

ρ

δt
(u∗i − uni ) = H(u∗i )−∆ip

n + Si (3.4)

In icoFoam.c, the equivalent finite volume representation is:

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

where the finite volume representations are as follows, ddt denotes ∂/∂t, div() denotes
O.(), laplacian() denotes O2(), U denotes ui, nu denotes ν, phi refers to the flux φ = ρui
[43, sec. 4.4.5]. fvm and fvc indicate that the term is to be solved by the finite volume
method (i.e implicitly) or by finite volume calculation (i.e explicitly), respectively.

3.3.2 The corrector steps

The predictor step is followed by a set of corrector steps in a so-called PISO-loop. The
first corrector step starts with a modification of the equations for momentum (3.2) and
pressure (3.3). The diagonal elements of H are extracted from H and moved to the left
hand side of the corrector step equations. The remaining part of H is preserved on the
right hand side. Thus, the diagonal elements on the left hand side are treated implicitly,
while the remaining elements on the right hand side are treated explicitly. This is done
to ensure a more stable, yet accurate solution [41]. The diagonal elements of H may be
expressed as A0ui, giving rise to a definition of H ′(ui) [41]:

H ′(ui) = H(ui)− A0ui (3.5)

A new pressure equation may then be derived for the first corrector step [41]:

∆i

[( ρ
δt
− A0

)−1
∆i

]
(p∗ − pn) = ∆iu

∗
i (3.6)

Using the solution for u∗i obtained in the predictor step, the pressure equation (3.6) may
be solved for the pressure field (p∗ − pn). Correspondingly, a new momentum equation
may be derived [41]: ( ρ

δt
− A0

)
(u∗∗i − u∗i ) = −∆i (p∗ − pn) (3.7)

which may be solved for u∗∗i once (p∗ − pn) is known.
In icoFoam.c, the corrector step starts with the modification of H and the momentum

equation, followed by calculation of phi from the obtained values of U from the predictor
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step:

volScalarField rUA = 1.0/UEqn.A();

U = rUA*UEqn.H();

phi = (fvc::interpolate(U) & mesh.Sf())

+ fvc::ddtPhiCorr(rUA, U, phi);

adjustPhi(phi, U, p);

Then, in icoFoam.c, the pressure equation is defined and solved. The new pressure
field is subsequently used to obtain new corrected velocities by the momentum equation:

fvScalarMatrix pEqn

(

fvm::laplacian(rUA, p) == fvc::div(phi)

);

pEqn.setReference(pRefCell, pRefValue);

pEqn.solve();

U -= rUA*fvc::grad(p);

U.correctBoundaryConditions();

The corrector step may then be repeated, replacing the velocities and pressures of
the intermediate steps by its subsequent steps in equations (3.6) and (3.7): Thus replace
u∗i by u∗∗i , u∗∗i by u∗∗∗i , pni by p∗i and p∗i by p∗∗i . The corrector step should at least be
performed twice, but typically not more than four times according to the OpenFOAM
User Guide [43, sec. 4.5.3]. Two corrector steps provide sufficient accuracy for most
practical applications according to Issa [41]. On this basis 2 corrector steps are applied in
the present study. This is determined by the value of the PISO-parameter nCorrectors

in the file fvSolution in the system directory of the relevant case.

3.3.3 Solving the equations for velocity (U) and pressure (p)

The following is based on the OpenFOAM User Guide [43, sec. 4.5]. The equations for
p and U are linear, and their solvers are prescribed in the file fvSolution in the sys-
tem directory. The default settings are chosen for these solvers in the present study.
The solver for p is preconditioned conjugate gradient (PCG) with a Diagonal incomplete-
Cholesky (DIC) preconditioner. This set of solver and preconditioner is applicable to
symmetric matrices. The purpose of the preconditioner is to increase the rate of conver-
gence of the preconditioned system compared to the original system. The solver for U are
a Preconditioned conjugate gradient (PBiCG) with a Diagonal incomplete-LU (DILU)
preconditioner. This is the asymmetric equivalent of PCG and DIC.

The solvers for the p and U equations are iterative and based on reducing the residual.
The initial residual is obtained from the current value of the field. The residual is then
evaluated after each iteration. The solver stops the iteration process if the residual falls
below the prescribed solver tolerance. The solver tolerance of p and U are 10−6 and 10−5,
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Table 3: Numerical schemes applied in OpenFOAM in the present study

Terms and operators Numerical scheme
Interpolation Linear
Gradient Gauss linear
Surface normal gradient corrected
Time derivative Euler
Divergence Gauss linear
Laplacian Gauss linear corrected

respectively. OpenFOAM also provides the possibility of prescribing a relative solver
tolerance between the initial residual and the final residual. In order to force the solution
to converge to the solver tolerance, the relative tolerance is set to 0.

3.3.4 Numerical schemes

OpenFOAM offers a wide range of numerical treatment of different terms in the equations.
This section presents the numerics applied in the present study and is based on the
description given in the OpenFOAM User Guide [43, sec. 4.4]. A summary of the applied
numerical schemes is given in table 3. The numerical schemes are prescribed in the file
fvSchemes in the system folder. For details on the different schemes available, reference
is given to the OpenFOAM User Guide [48, sec. 4.4].

Values are typically interpolated from cell centers to face centers and a linear inter-
polation scheme is applied in the present study. A standard second order finite volume
discretization of Gaussian integration scheme, Gauss linear, is applied for the gradient
terms, e.g. grad(p). This scheme requires interpolation of values from cell centers to
cell faces, hence an interpolation scheme must be specified. In this case a linear inter-
polation scheme is applied. Surface normal gradients are evaluated at cell faces. A cell
face connects two cells and now the gradient is taken of the values at centers of these two
cells. The surface normal gradient is then the gradient component which is normal to the
cell face. In the present study an explicit non-orthogonal correction scheme is specified
by the keyword corrected. The implicit, first order Euler scheme is applied for the
time derivative ddt. The Gauss scheme is the only available option for the divergence
term, div(phi, U). Again, this requires the specification of an interpolation scheme being
linear in the present study. The Gauss scheme is the only available option for the lapla-
cian term, laplacian(nu, U) This requires the specification of an interpolation scheme
for nu and a surface normal gradient scheme. The applied schemes in the present study
are linear and corrected, respectively.

3.4 Boundary conditions and initial values

In this section is outlined the general boundary conditions relevant for this study. The
assigned boundary conditions are presented alongside a definition sketch for each case in
the succeeding sections. This section is based on the OpenFOAM User Guide [43, sec. 5.2].
The boundary conditions and initial values must be set in the p and U files in the first time
directory (e.g. 0 ) of the case. OpenFOAM provides a range of different built-in boundary
conditions. As OpenFOAM is an open source software, the user has the opportunity to
create other boundary conditions such a parabolic velocity profile at the inlet (imitating
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a developed boundary layer). In this study no effort is made to investigate different
boundary conditions and only simple boundary conditions are applied. The boundary
conditions can then be divided into the following main types: patch, empty, cyclic,

symmetryPlane and wall.

The type patch provides the possibility to declare a constant value, fixedValue, of
the field variable (p, U) or a normal gradient fixedGradient (or zeroGradient) of the
field. Another option is calculated which enables p to be determined from U or vice
versa.

Due to the three-dimensionality of the OpenFOAM discretization, the type empty is
assigned to the front and back faces of the mesh to enforce two-dimensional simulation.
The type cyclic is suitable for 3D simulations: If it is applied to the front and back faces,
it enables these faces to be treated as if they were physically connected. In this manner the
geometry is repeated along the span. However, by the use of the pre-processing software
in this study, it is a little complicated to apply this boundary condition on any mesh
geometry being more than trivial.

The type symmetryPlane introduces a symmetry plane and is less intervening than a
fixed value when applied to the stream-normal boundaries. The symmetry planes should
be separated some distance to avoid artificial influence on the solution. symmetryPlane

is assigned to the front and back faces in the three-dimensional simulations in the present
study.

The type wall is particularly relevant for turbulent flows where the wall boundary is
treated with special wall modeling (wall functions). In the present study, the desired wall
boundary conditions can be obtained with the specification of a patch; zeroGradient for
pressure and fixedValue of zero velocity.

In the present study, some common boundary conditions are applied in all cases: The
inlet condition is a uniform velocity at the inlet and a zero normal pressure gradient. The
cylinder is considered a rigid and impermeable wall and hence the no-slip velocity and
a zero normal pressure gradient are appropriate. Along the downstream outlet a zero
normal velocity gradient and an absolute pressure of zero are prescribed. The pressure
condition will influence the solution a certain distance upstream, wiping out pressure
differences in the stream-normal direction and influencing the wake if the outlet is located
too close to the cylinder. A proper location of this boundary is ensured by investigation
of domain size.

For a cylinder in infinite fluid the boundary conditions applied to the lateral sides are
symmetry planes. Hence, these boundaries should be located sufficiently distant from the
cylinder. This is ensured by the investigation of domain size.

The PISO algorithm also requires initial values for the internal fields of p and U.
In the first simulations these values are set to 0 and the simulations are successful at
first. Later, numerical errors and difficulties are encountered. A solution to this is to
change the initial value of the internal fields to quite a small number different from zero:
1.10−12. These numerical errors related to the internal field are presumed to be due to
either three-dimensional simulations or to the parallel computing on decomposed cases in
general.

3.5 Post-processing and data analysis

Post-processing is the step of visualizing and interpreting the results obtained in the
simulation. The OpenFOAM utility paraFoam is used for post-processing. This utility
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uses the open source visualization application ParaView [43, sec. 6.1]. Paraview provides
numerous visualization possibilities. For further details, reference is given to [43, sec. 6.1].

After the simulations, vorticity fields may be calculated by the utility vorticity and
velocity gradients at walls may be calculated by the utility wallGradU. Values of mean and
root-mean-square of drag and lift coefficients are obtained by simple time series analyses
in Microsoft Excel.

The lift acting on the cylinder oscillates at the frequency of vortex shedding. Thus,
the vortex shedding frequency may be obtained from time series of the lift coefficient.
However, lift is a quantity obtained by integration over the surface of the cylinder. A
more direct indication of vortex shedding is the oscillatory pressure in the near wake close
to the cylinder surface. Hence, the vortex shedding frequency may be obtained from time
series of the pressure. For every time step in the simulations, the pressure and velocity
components are obtained at a fixed location (x=0.6, y=0.2, z=0 in a Cartesian coordinate
system with origin at the cylinder center) in the near wake of the cylinder. The point is
illustrated in figure 9.

Figure 9: Probe location in the near wake of the cylinder

The frequency of CL and p may be calculated straight forward as number of cycles
divided by elapsed time. The frequency may also be calculated from spectral analysis
by Fast Fourier Transform (FFT) of the time series. These analyses are performed in
Matlab. The script for FFT is written based on the description of the built-in function
fft in Matlab Help [49] and attached in Appendix B.

3.6 Numerical stability, convergence and accuracy

To ensure numerical stability in the solutions of explicit methods where diffusion is neg-
ligible the following criterion; the CFL-condition, must be fulfilled [50, pp. 136]:

UMt
Mx

< 1 (3.8)

The expression on the left hand side is termed the Courant number where Mt is the time
step, Mx is the element length and U is the velocity. For further reading on numerical
methods, reference is given to [50, 45].

The following criterion for convergence is suggested: the value of any parameter should
not differ by more than 1-3% between two subsequent time steps, between two subsequent
element sizes or between two subsequent grids. Convergence is assessed in terms of the
mean drag coefficient, the root-mean-square lift coefficient and the Strouhals number.
The criteria are adapted from Ong [2] applying a similar, though less rigorous, criterion
of 5% change between consecutive grids. Convergence of the grid is assessed by refining
the mesh in terms of applying successively smaller elements. The grid is considered to
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be sufficiently fine when the parameters do not differ by more than 1-3% between two
succeeding grids.

For a cylinder in infinite fluid and uniform inflow the true value of the mean lift
coefficient is zero. Thus, if the value of lift coefficient is close to zero, small changes
in the lift coefficient may cause large relative changes. Hence, the mean lift coefficient
is unsuitable in order to assess convergence for this case. On this basis the root-mean-
square of the lift coefficient is considered to be a more appropriate value in order to assess
convergence. For the cylinder in uniform inflow, the following acceptance criterion is
suggested for the mean lift coefficient: the absolute value should be smaller than or equal
to 0.05.
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4 Flow around a circular cylinder in uniform cross-

flow

4.1 Two-dimensional (2D)flow

4.1.1 Simulation setup

A circular cylinder in infinite fluid and uniform incident cross-flow constitutes the basic
case and forms the foundation for the succeeding work. The flow is at first simplified to
a two dimensional (2D) case. The problem definition sketch is given in figure 10 with
the assigned boundary conditions. The simulations are performed at Re = 100 with a
cylinder diameter of D = 1 m, uniform inflow of U = 1 m/s and ν = 0.01 m2/s.

Figure 10: Problem definition for 2D cylinder in uniform cross-flow.

The influence of domain size, element size, element distribution and time step are
investigated on two different grids: A and B. The grid is schematically depicted in figure
11 where D is the cylinder diameter. The number of elements are varied along the segments
denoted K, L, M, N and O in figure 11. L extends along the complete circumferential of
the cylinder cross section. Grid A and B are identical with the exception for the value of
L. The length of segment M is 0.5D and most effort is put on grid refinement in this region
close to the cylinder in order to capture the dynamics in the boundary layer. According
to Sumer and Fredsøe [9, p. 3], the boundary layer thickness is δ = O(0.1D) in this case:

δ

D
= O

(
1√
Re

)
(4.1)

Different domain sizes are obtained by varying the value of a in figure 11: a= {5, 10,
15 } D. The values are given for every mesh in table 4 where ∆r denotes the characteristic
element length in the radial direction for the elements closest to the cylinder surface and
∆s denotes the characteristic element length along the cylinder surface for the elements
closest to the cylinder surface. Grid A2b and B2 are depicted in figure 12 and 13, respec-
tively. All simulations start at time t = 0 and must overcome an initial transient phase
ending at about t = 120-140 sec. Hence, the simulations are run to t = 200 sec to ensure
the solution to overcome the transient phase.
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4.1.2 Results overview

The results, in terms of Strouhals number and drag and lift coefficients, are given in table
5. As described in section 3.5, the Strouhals number is obtained from time series of lift
coefficient and time series of pressure. In table 5, this is denoted by St (CL) and St (p),
respectively. The frequency of CL and p may be calculated straight forward as number
of cycles divided by elapsed time. If not stated otherwise, this is the applied method to
obtain the values of St given in table 5. The Strouhals number may also be calculated
from spectral analysis by Fast Fourier Transform (FFT) of the time series, indicated by
a in the table. Visualizations of the flow are given in Appendix C.

Figure 11: Sketch of grid geometry for a cylinder in uniform cross-flow.

Table 4: Grid properties for a cylinder in uniform cross-flow

Grid Domain Tot number K L M N O ∆s ∆r
size a of elements elem elem elem elem elem

A1 10 13 000 50 200 10 50 20 0.0157 0.0500
A2a 5 26 000 100 200 20 50 40 0.0157 0.0250
A2b 10 26 000 100 200 20 50 40 0.0157 0.0250
A2c 15 26 000 100 200 20 50 40 0.0157 0.0250
A3 10 30 000 100 200 40 50 40 0.0157 0.0125
A4 10 34 000 100 200 60 50 40 0.0157 0.0083
B1 10 26 000 50 400 10 100 20 0.0079 0.0500
B2 10 52 000 100 400 20 100 40 0.0079 0.0250
B3a 5 60 000 100 400 40 100 40 0.0079 0.0125
B3b 10 60 000 100 400 40 100 40 0.0079 0.0125
B3c 15 60 000 100 400 40 100 40 0.0079 0.0125
B4 10 68 000 100 400 60 100 40 0.0079 0.0083
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Figure 12: Grid A2b

Figure 13: Grid B2
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Table 5: Results for varying time step, domain size and element size for a 2D cylinder in
uniform cross-flow

Time step CD CD CL CL

√
C ′L

2 St (CL) St (p)

Mt sec peak-peak peak-peak
Grid A1
0.01 1.404 0.03 -0.0076 0.74 0.166
0.005 1.405 0.07 -0.0130 0.74 0.167
0.0025 1.405 0.02 -0.0093 0.74 0.167
0.00125 1.406 0.02 -0.0085 0.74 0.168
0.0005 1.405 0.02 0.0100 0.74 0.168
Grid A2a
0.001 1.492 0.02 -0.0097 0.73 0.253 0.171a 0.183a

Grid A2b
0.005 1.377 0.02 -0.0006 0.69 0.166
0.0025 1.377 0.02 -0.0140 0.69 0.166
0.00125 1.376 0.02 -0.0140 0.69 0.166
0.001 1.390 0.02 0.0095 0.69 0.245 0.171a 0.168a

Grid A2c
0.001 1.364 0.02 -0.0006 0.68 0.240 0.171a 0.168a

Grid A3
0.001 1.385 0.02 0.0026 0.68 0.240 0.171a 0.168a

Grid A4
0.001 1.385 0.02 -0.0020 0.67 0.239 0.171a 0.168a

Grid B1
0.005 1.409 0.03 -0.0012 0.75 0.168
0.0025 1.409 0.03 -0.0012 0.75 0.168
0.00125 1.409 0.02 0.0002 0.75 0.169
0.0005 1.409 0.02 0.0078 0.75 0.169
Grid B2
0.005 1.379 0.02 -0.0003 0.69 0.167
0.0025 1.380 0.02 -0.0130 0.70 0.167
0.001 1.394 0.02 -0.0004 0.70 0.246 0.171a 0.168a

Grid B3a
0.001 1.491 0.02 -0.0073 0.72 0.254 0.183a 0.176a

Grid B3b
0.001 1.389 0.02 -0.0004 0.69 0.242 0.171a 0.168a

Grid B3c
0.001 1.363 0.02 -0.0013 0.67 0.236 0.171a 0.168a

Grid B4
0.001 1.389 0.02 -0.0054 0.68 0.243 0.171a 0.168a

a denotes analysis by Fast Fourier Transform.
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4.1.3 Investigation of time step

The influence of the choice of time step is investigated for grid A1, A2, B1 and B2 on a
domain with a=10. The time steps are chosen with due respect to the CFL-condition in
section 3.6. The repeating time steps are 0.005 sec, 0.0025 sec, 0.00125 sec and 0.0005
sec.

With reference to table 5, observations for every separate grid indicate independence
of the choice of time step on the values of Strouhals number St, averaged drag coefficient
CD, peak-to-peak of drag coefficient CD and peak-to-peak of lift coefficient CL. However,
exceptions are CD for ∆t = 0.001 sec on grids A2 and B2 and the peak-to-peak values of
drag coefficient CD for the two largest time steps, 0.01 sec and 0.005 sec, for Grid A1.

Convergence is assessed on the basis of CD, CL and St with a convergence criterion
of 3%. The differences is 1% in CD related to grids A2 and B2. Hence, these results are
within the limits of the convergence criterion. Additionally, the Strouhal number differs
based on the method of calculation: Calculations by FFT or number of cycles divided by
elapsed time from time series of either lift coefficient or pressure. However, the differences
are in the order of 1-3% and hence within the desired convergence criterion. The results
obtained within one method of calculation display negligible variations with changing
time step and different grids. The results for averaged lift coefficient CL are well within
an absolute value of 0.05. However, if applying the more rigorously criterion of 0.01 some
simulations with the intermediate time steps on the grids A1, A2 and B2 will not pass
this criterion.

This investigation suffers from the use of one domain only. Despite this fact, the choice
of time step is concluded to be of less importance as long as the CFL condition is fulfilled.
On this basis a time step of 0.001 sec are chosen for the subsequent simulations.

4.1.4 Investigation of domain size

Various domains are investigated for grid A2 and B3 with a time step ∆t = 0.001 sec.
The domains are varied while keeping the total number of elements constant. Further, the
element distribution is constant within a distance of 0.5D from the cylinder. The element
distribution is then somewhat changed in remote areas between subsequent domains in
order to obtain smooth transition in element size across the domain. The percentage
difference in the results between the subsequent domain sizes are given in table 6.

Table 6: Difference in results due to increasing domain size

Grids M CD M CD M CL M
√
C ′L

2 ∆ St (p)

% % peak-peak % peak-peak % %
A2a �A2b -6.8 0 -5.5 -3.2 -8.1
A2b �A2c -1.9 0 -1.4 -2.0 0
B3a �B3b -6.8 0 -4.2 -4.7 -4.5
B3b �B3c -1.9 0 -2.9 -2.5 0

In the present study, a convergence criterion of 3% is applied for the domain size. By
increasing the grid from domain b to domain c, the results for drag and lift coefficient
and Strouhals number differ by less then 3%. On this basis, a domain size with a=10D is
chosen for the subsequent simulations. However, if applying a more rigorous criterion like
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1%, the larger domain should be applied and even larger domains should be investigated
for convergence.

This investigation is performed with the small and coarse grid A2 and the larger fine
scaled grid B3 and the obtained results in the present analysis are strikingly similar for
both grids. However, the investigation suffers from the use of one time step only.

4.1.5 Investigation of element size and distribution

As stated previously, the results indicate independence of the choice of time step as long
as the CFL-condition is fulfilled. In order to investigate the influence of element size, a
time step 0.001 sec is applied together with a domain where a=10. The results obtained
with a time step 0.00125 sec are utilized for grid A1, A2 and B1. Grids A and B have 200
and 400 elements, respectively, along the cylinder circumferential. Grid 1,2 3, and 4 have
increasing number of elements in the radial direction. The values of M are 10, 20, 40 and
60, respectively. Thus, from grid 1 to grid 2, and from grid 2 to grid 3, the number of
elements increase by a factor of 2 in the radial direction in the near region of the cylinder
(0.5D).

(a) Mean drag coefficient (b) Root-mean-square lift coefficient

Figure 14: Calculated force coefficients for a cylinder in uniform cross-flow on grids with
different number of elements

First, the influence of increasing the number of element in radial direction is investi-
gated on grid A and B separately. The subsequent results are compared from A1 through
A2 and A3 to A4. Similarly the results from B1 through B2 and B3 to B4 are investigated.
The results of the investigation is given in table 7. According to section 3.6, convergence
should be based on the mean drag coefficient, the root-mean-square of the lift coefficient
and Strouhals number. With reference to table 5, the Strouhals number is evidently iden-
tical for the changing grids and a time step of 0.001 sec. Hence, a further investigation of
the Strouhal number is omitted in the succeeding discussion of grid convergence.

With reference to table 7 and figure 14, the changes between consecutive element
refinement (1�2, 2�3 and 3�4) are strikingly similar for grid A and B.

The value of CD evidently converges for both grid A and B. The convergence is slower

for

√
C ′L

2. CD does not change from grid A3 to A4, or from B3 to B4, and the accom-
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panying change in root-mean-square of the lift coefficient is 0.4% for both. Applying a
convergence criterion of 1%, a further grid improvement from A3 to A4, or from B3 to
B4, provides negligible improvement of the accuracy in the simulation. For a less rigorous
criterion of e.g. 3%, grid A2 and B2 may be considered satisfactory based on a similar
consideration.

Table 7: Differences in results due increasing number of elements in the radial direction

Grids M CD M CD M CL M
√
C ′L

2

% % peak-peak % peak-peak %
A1 �A2 -1.1 0 -6.8
A2 �A3 -0.4 0 -1.5 -2.0
A3 �A4 0 0 -1.5 -0.4
B1 �B2 -1.1 0 -6.8
B2 �B3 -0.4 0 -1.4 -1.6
B3 �B4 0 0 -1.5 0.4

Second, the number of elements in radial direction is kept constant, while investigating
the influence of increasing the number along the circumference. Hence, the investigation
consists of comparing the results from A1 and B1, A2 and B2, A3 and B3, and A4 and
B4. The results of this investigation are given in table 8. Again applying a convergence
criterion of 1%, the change of CD is well within the criterion for every grid, except for

grid 1. The change of

√
C ′L

2 is within the criterion for grid 2 and 3, although it fails for
grid 4.

Combining the results from the investigations of element size, the radial spacing of grid
3 and circumferential spacing of grid A satisfy the convergence criterion of maximum 1%
change. Thus, grid A3 is expected to give satisfactory results.

Table 8: Differences in results due to increasing number of elements in the circumferential
direction

Grids M CD M CD M CL M
√
C ′L

2

% % peak-peak % peak-peak %
A1 �B1 -1.1 0 6.8
A2 �B2 0.3 0 1.5 0.4
A3 �B3 0.3 0 1.5 0.8
A4 �B4 0.3 0 1.5 1.77

It is assumed that the aspect ratio Λ, i.e. the ratio between the length and height,
of the elements is of some importance in the sense that the elements should not be to
compressed or pancake shaped. The aspect ratio Λ is here evaluated for the elements
closest to the cylinder surface in terms of the ratio ∆r : ∆s. Square elements are expected
to yield the best results and hence an aspect ratio of 1 is ideal. The aspect ratio decreases
subsequently from grid A1 where Λ ≈ 3.2 to Λ ≈ 0.5 at A4. At grid A3, Λ ≈ 0.8. On
grid B the aspect ratio decrease subsequently from Λ ≈ 6.3 at grid B1 to Λ ≈ 1.1 at
B4. The aspect ratio at grid B1 is considered to be somewhat large, while the remaining
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values are considered to be within reasonable bounds. Additionally, the aspect ratio may
be considered in the more distant fluid domain with reference to figures 12 and 13. The
aspect ratio is observed to be close to 1 on grid A2 and close to 2 on grid B2.

4.2 Three dimensional (3D) flow

4.2.1 Simulation setup

In the preceding section on 2D flow, the influence of domain size, element size and time
step have been investigated in detail. On this basis grid A3 with time step ∆t = 0.001 sec
is applied for a three dimensional (3D) simulation. In order to create a three dimensional
mesh, the two dimensional mesh is extruded in the direction of the cylinder span. The
depth of the mesh is 6D along the cylinder span. The boundary conditions are as for the
2D case, with exception for the front and back faces which now are symmetry planes. 60
elements are distributed evenly along the span, with the corresponding span-wise element
length ∆z = 0.1D. The aspect ratios Λ for the elements closest to the cylinder surface
are then expressed by ∆z : ∆x and ∆z : ∆y. With 60 elements along the span; Λ ≈ 6; 8.
These values are somewhat large, still the grid is expected to yield satisfactory results.
For comparison, Lei et al. [51] successfully applied grids where Λ = 20 in simulations at
Re = 1000.

Recalling from section 1.1.2, the larger three-dimensional flow structures (mode A)
have a characteristic length of 3.96D-4.1D along the cylinder span at low Reynolds num-
bers [8]. Hence, the cylinder span should be longer than ≈ 4D in order to successfully
reproduce the three-dimensional flow features. However, three-dimensional effects are ex-
pected to be negligible for the flow around a circular cylinder in uniform cross-flow at
Re = 100 as the flow is mainly 2D [8]. For consistency, the same span is applied in all the
3D simulations in the present study. On this basis a span-wise length of 6D is chosen.

For comparison, Cao and Wan [16] applied a span of length 4.1D with a constant
span-wise element length ∆z = 0.1D for numerical studies at Re = 100 − 300, Lei et al
[51] applied a constant span-wise element length ∆z = 0.1D on spans of length 1 − 6D
at Re = 1000 and Heggernes [17] applied a span of maximum 3.288D with a span-wise
element length ∆z ≈ 0.06D at Re = 265. Despite the relatively short cylinder in the
simulations by Heggernes, both modes of vortex shedding, mode A and mode B, were
present in the calculations. Lei et al concluded that 2D simulations and 3D simulations
with span lengths less than 2D were insufficient to achieve reliable results. Further, they
suggested that spans of length ≥ 4 could match the real span-wise wavelength of the
three-dimensional flow features.

4.2.2 Results overview

The results are given in table 9 in terms of Strouhal number and drag and lift coefficients.
The results for two-dimensional simulations on grid A3 with an equal time step ∆t =
0.001 are repeated for the purpose of comparison. Visualizations of the flow are given in
Appendix C.
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Table 9: Cross-sectional results for 2D and 3D simulations of a cylinder in uniform cross-
flow

Grids CD CD CL CL

√
C ′L

2 St(CL)

% peak-peak % peak-peak
A3 (2D) 1.385 0.02 0.0026 0.68 0.240 0.171
A3 (3D) 1.385 0.02 -0.0018 0.68 0.239 0.171

4.3 Discussion

According to the present investigations, time step and domain size satisfy convergence for
a criterion of maximum 3% change between two subsequent time steps and domain sizes,
respectively. The convergence for element size is satisfied within a criterion of 1%.

The final results in terms of CD, root-mean-square CL and St obtained in the present
study may be extracted from table 5: CD = 1.39, root-mean-square CL = 0.24 and
St=0.168. It is considered more accurate to calculate St based on the pressure as a direct
measure of vortex shedding rather than the lift coefficient being an integrated quantity.
These results may be compared to the reference values in table 1. The resulting value
of mean drag coefficient is within the scatter 1.26-1.43 in the reference values obtained
from experiments. However, the deviation is about 5% compared to the value 1.33 in
the experimental study by Williamson [15]. The resulting value of root-mean-square lift
coefficient is within the scatter 0.227-0.244 in the reference values. However, the deviation
is about 6% compared to the empirical correlation value of 0.227 by Norberg [10]. The
resulting value of St is within the scatter of the reference values. However, the deviation
is about 2% when comparing to the value 0.164 by Norberg [10] and Williamson [15]. To
summarize, the results in the present study are within the scatter of the reported values
in the literature. The results differ by 2-6% to the standard benchmark values. However,
these differences are limited to the second decimal for the force coefficient and the third
decimal for the Strouhals number. On this basis, the results of the simulations in the
present study are satisfactory.

Only minor differences are observed in 2D and 3D simulations. This is presumably
due to the attributed two-dimensional pattern of the flow around a circular cylinder at
this Reynolds number.
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5 Flow around a circular cylinder near a plane wall

5.1 Two-dimensional (2D) flow

5.1.1 Simulation setup

A plane wall is introduced in the proximity of the cylinder and the flow is simulated with
the cylinder positioned at various gaps: G/D = 0.2; 0.5; 1.0. The 2D case constitutes
the starting point for the investigation of this case. The simulations are performed at
Re = 100 with a cylinder diameter of D = 1 m, uniform inflow of U = 1 m/s and
ν = 0.01 m2/s. The problem definition sketch is given in figure 15 with the assigned
boundary conditions.

Figure 15: Problem definition for 2D cylinder near a plane wall

The preceding investigation (sec. 4.1.3) indicates independence of choice of time step
to the extent the CFL-condition is fulfilled. The investigation of time step is therefore
omitted for the present flow configuration. Three different approaches for grid design are
pursued to resolve the flow field of the current case: Grid C, D and E. First, the influence
of domain size is investigated for G/D = 0.2 on grid C. Next, various element sizes and
element distributions are investigated for G/D = 0.2 on the three different types of grids:
C, D and E. Grids of type E are applied for G/D = 0.5 and grids of type C and E are
applied for G/D = 1.0.

Grid D1 is depicted in figure 16, while the two other approaches for grid design, C2
and E1, are depicted in Appendix D.

Table 10 lists the main properties for the grids applied for G/D = 0.2; 0.5; 1.0. ∆r
denotes the characteristic element length in the radial direction for the elements closest
to the cylinder surface, ∆s denotes the characteristic element length along the cylinder
surface for the elements closest to the cylinder surface, ∆x denotes the element length
along the wall for the elements far upstream and downstream of the cylinder, ∆y denotes
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the element length in the wall-normal direction for the element closest to the wall far
upstream and downstream of the cylinder. Different domain sizes are obtained by varying
the length of b and c in figure 15: b={40, 45, 50 }D; c={15, 20 }D. By varying b, only
the upstream distance is changed. The downstream end of the domain is fixed at 30D
from the center of the cylinder. All simulations start at time t = 0 and are run long
enough for the solution to overcome the initial transient phase. The transient phase is
due to the numerics and does not represent the true physics of the flow. The flows at
G/D = 0.2 and G/D = 0.5 are observed to reach a time independent steady state. In
order to attain this state, the simulations should run to at least t = 600 sec. The flow at
G/D = 1.0 does not reach a steady state, but the artificial transient phase is overcome
at t ≈ 250 sec. The simulations are then run an additional 150 sec to t = 400 sec.

Figure 16: Close-up view of grid D1

Table 10: Grid properties for a cylinder near a plane wall at various gap ratios

Grid b c Tot number ∆r ∆s ∆x ∆y
of elements radial circumfer. along plate perp. plate

G/D = 0.2
C1 40 15.7 55 000 0.011 0.016 0.200 0.028
C2 45 15.7 58 750 0.011 0.016 0.200 0.028
C3 50 15.7 62 500 0.011 0.016 0.200 0.028
D1 45 20.7 96 242 0.020 0.016 0.100 0.047
D2 45 20.7 100 542 0.011 0.011 0.100 0.047
E1 45 20.7 114 625 0.016 0.009 0.075 0.027
G/D = 0.5
E2 45 21 36 800 0.033 0.045 0.169 0.176
E3 45 21 49 493 0.016 0.016 0.071 0.052
E4 45 21 53 777 0.010 0.016 0.050 0.052
G/D = 1.0
C5 45 21.5 66 945 0.040 0.030 0.085 0.050
E5 45 21.5 53 017 0.018 0.016 0.070 0.030
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5.1.2 Assessing the boundary layer at the wall

A uniform horizontal velocity is prescribed at the upstream inlet. The no-slip condition
is imposed on the wall. Hence, a boundary layer forms at the wall. The boundary layer
thickness is expected to increase with the distance along the wall. It is also of interest
to investigate the boundary layer thickness at the cylinder’s position with the cylinder
removed. On this basis a 2D simulation is performed on a grid of 290 Ö150 elements
with element clustering near the wall and uniform element distribution, ∆x = 0.15, in
the streamwise direction. The minimum element height is ∆y = 0.015 (perpendicular to
the wall). The inlet is placed 15D upstream of the cylinder location and the boundary
conditions are as stated above in figure 15.

Figure 17 presents the velocity profiles in terms of horizontal velocity u/U0 and vertical
distance from the wall y/D at different positions x/D along the wall. x = 0 denotes the
cylinder’s position.

Figure 17: Velocity profiles in the boundary layer along the wall - with the cylinder
removed

At x/D = −10 (red line), a peak is observed in the velocity profile and the boundary
layer is evidently not fully developed. This peak is still evident at the cylinder’s location
x/D = 0 (black line). Far downstream at x/D = +25 (green line) the boundary layer
exhibits the look of a fully developed profile. From the simulation, the boundary layer
thickness is found to be approximately δ/D = 1.7 at the cylinder’s position. It should be
emphasized that the boundary layer is not fully developed at the position of the cylinder.
For comparison, the boundary layer thickness at the cylinder’s position is δ/D = 1.94
when obtained from the exact flat plate solution of Blasius [40, pp. 221-233]:

δ99% =
5.0x√
Rex

(5.1)

where δ99% denotes the boundary layer thickness in terms of the vertical distance from
the wall where u/U0 = 0.99. In the expression by Blasius, the distance x is measured
from the upstream end of the plate.
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Figure 18: Velocity gradient du/dy along the wall - with the cylinder removed

5.1.3 Results overview

The obtained results in terms of lift and drag coefficient and Strouhals number, are given
in table 11.

Table 11: Results for a cylinder near a plane wall at various gap ratios

Grid ∆t CD CL

√
C ′L

2 St (CL) St (p)

[sec]
G/D = 0.2
C1 0.001 0.896 0.468 - -
C2 0.001 0.726 0.377 - -
C3 0.001 0.583 0.303 - -
D1 0.001 0.727 0.375 - -
D2 0.001 0.726 0.376 - -
E1 0.0005 0.728 0.376 - -
G/D = 0.5
E2 0.001 0.954 0.050 - -
E3 0.001 0.965 0.052 - -
E4 0.001 0.961 0.055 - -
G/D = 1.0
C5 0.001 1.342 0.0099 0.129 0.169a 0.169a

E5 0.001 1.336 -0.0001 0.122 0.171a 0.168a

a denotes analysis by FFT.
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5.1.4 Investigation of domain size

A high local pressure is observed at the intersection of the inlet and the wall in figure 19.
This is assumed to be due to the prescribed velocity of 1 m/s over the entire inlet and the
no-slip condition at the wall. Hence, an accompanying large velocity gradient is observed
in this region, figure 18. The large velocity gradient propagates along the wall. However,
the velocity gradient is heavily reduced 10D downstream of the inlet. On this basis, the
inlet is positioned 15D upstream of the cylinder.

For the subsequent grids C1, C2 and C3, the cylinder is positioned successively further
downstream of the inlet. As the boundary layer develops along the wall, this migration
of the cylinder causes a deeper submersion of the cylinder in the boundary layer. On this
basis the differences in the results between grid C1, C2 and C3 are believed to be mainly
due to the development of the boundary layer along the wall with accompanying lower
local velocities near the cylinder which cause decreasing drag and lift coefficients.

The location of the lateral boundary of the domain is discussed with reference to the
grids at G/D = 0.2 where the inlet is positioned 15D upstream of the cylinder (b=45):
C2, D1 D2, and E1. By increasing the lateral width from c=15.7 to c=20.7 the differences
in CD and CL are at most 0.28% and 0.53 %, respectively. This is within a convergence
criterion of 1%. On this basis, a lateral domain with c=15.7 is accepted. However, in the
present study the largest domain (c=20.7) is applied.

Lei et al. [1] performed numerical simulations of the flow around a circular cylinder
near a plane boundary at Re = 80 − 1000. The inlet was located 16D upstream of the
cylinder center and the outlet at 20D downstream of the cylinder. No differences were
found when increasing the domain downstream of the cylinder by locating the outlet 40D
downstream. The top lateral boundary was located 10D away from the cylinder center in
their simulations, noting that the position of the lateral boundaries had no significance
when they were positioned at least a distance 8D from the cylinder center. With reference
to the domain of Lei et al, the domain in the present study is considered to be sufficient.

As a conclusive remark, the inlet and outlet are considered to be located sufficiently far
upstream and downstream of the cylinder, respectively. The lateral width of the domain
of minimum 20.7D is quite conservative and according to the present investigation the
width is larger than necessary.

Figure 19: Local pressure peak at the intersection between wall and inlet (steady state)
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5.1.5 Investigation of element size and distribution

By inspection of the results in table 11 for a cylinder at G/D = 0.2 positioned 15D
downstream of the inlet, the spread in the results are at most 0.27% and 0.53% for CD

and CL, respectively.
Between the most coarse (E1) and the finest (E4) grid at G/D = 0.5, the results

differ by 0.7% and 10% for CD and CL, respectively. As the flow reach a steady state,
root-mean-square C ′L is not an available alternative for the investigation of convergence.
However, the change in CL is limited to 0.005.

The results for G/D = 1.0 differ by 0.4%, 5.4% and 1.2% for CD, root-mean-square
C ′L and St(CL), respectively. CD and St fulfill a convergence criterion of 1% and 3%,
respectively. However, the convergence criterion is not met for root-mean-square C ′L in
the simulations of the flow at this gap. This is a drawback to the validation of the present
results.

Applying a convergence criterion of 1%, all the investigated grids are found to give
satisfactory results with exception for CL at G/D = 0.5 and root-mean-square C ′L at
G/D = 1.0. However, at G/D = 0.5 the difference is at most 0.005. On this basis, the
final results at G/D = 0.2 and G/D = 0.5 are considered to be sufficiently validated.
Additional simulations at G/D = 1.0 are desirable in order to assess convergence.

The pressure contours should exhibit a smooth look, and not any abrupt breaks. In
the simulations at G/D = 0.5, the contour lines of the pressure reveal a region of local
spurious pressure in the downstream part of the gap region. This is indicated in figure
20. This shortcoming in the simulation is evident for all the different approaches of grid
design applied in the present study at this gap ratio. No remedy is found to counteract
this drawback. However, the pressure defect is very local in space; in a region near the
intersecting grid lines in the figure. As the pressure defect is limited it is not expected
to severely contaminate the solution. However, no reliable conclusion can be drawn with
reference to the influence of this error in the pressure distribution.

The influence of varying the total number of elements is illustrated for CD and CL at
G/D = 0.2; 0.5; 1.0 in figures 21 and 22.

Figure 20: Pressure defect at G/D = 0.5
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Figure 21: Drag coefficient for different gap ratios on 2D grids with different number of
elements

Figure 22: Lift coefficient for different gap ratios on 2D grids with different number of
elements

5.2 Three-dimensional (3D) flow

5.2.1 Simulation setup

A 3D simulation is performed for a cylinder located at G/D = 0.5 utilizing the 2D grid
E3. The 2D grid is extruded a distance 6D in the direction along the span in order to
create a three dimensional grid. The grid has 60 elements evenly distributed along the
span with a span-wise element length ∆z = 0.1D. This is similar to the 3D simulation
of the flow around a circular cylinder in uniform cross-flow. The boundary conditions are

38



Knut Inge Engelbreth Viscous Flow Around a Circular Cylinder Near a Plane Wall

equal to the 2D case, with exception for the front and back (2D) faces which now are
symmetry planes. The applied time step is ∆t = 0.001 sec.

5.2.2 Results overview

Unfortunately this 3D simulation is only allowed to run to time t = 129 sec due to the
limited time span of this work and the late execution of this simulation. Accordingly, the
simulation does not overcome the initial transient phase to obtain the expected steady
state. The results are given in table 12 in terms of Strouhal number and drag and lift
coefficients. The results for the corresponding two-dimensional simulation with an equal
time step ∆t = 0.001 are repeated here for the purpose of comparison. The sectional
CD and CL for 2D and 3D show remarkably good agreement, depicted by coinciding time
series in Appendix E. Although the simulation does not attain the final state, it can still
be concluded that there are insignificant differences between 2D and 3D simulations for
the flow at this gap ratio.

Table 12: Cross-sectional results for 2D and 3D simulations of a cylinder near a plane
wall at G/D = 0.5

Grid t CD CL

√
C ′L

2 St (CL)

[sec]
E3 (2D) t=600 0.965 0.052 - -
E3 (2D) t=129 0.978 0.055 - -
E3 (3D) t=129 0.978 0.056 - -

5.3 Results and discussion

At both G/D = 0.2 and G/D = 0.5 the flow obtain a steady state where vortex shedding
is suppressed. As the cylinder is moved further away from the wall, vortex shedding is
observed at G/D = 1.0. Time series of the drag and lift coefficient at G/D = 0.2 and
G/D = 1.0 are given in figures 23 and 24, respectively.

Figure 23: Time series of drag coeffecient at G/D = 0.2 and G/D = 1.0
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Figure 24: Time series of lift coeffecient at G/D = 0.2 and G/D = 1.0

5.3.1 Pressure distribution

The pressure distribution at G/D = 0.2 is illustrated in figure 25. A distinct persistent
negative pressure is observed at the free-stream side of the cylinder and a less pronounced
negative pressure is observed at the wall-side of the cylinder. From the figure, the location
of the front stagnation point is estimated to be approximately at the cylinder’s center line.
Consequently, a lift in the direction away from the wall is experienced: CL = 0.376.

The pressure distribution at G/D = 0.5 is illustrated in figure 26. The front stagnation
point is now quite evident and moved slightly away from the wall towards the free-stream
side. This is expected to direct the lift towards the wall. However, the negative pressure
at the free-stream side is still more distinct than the negative pressure at the wall-side of
the cylinder. The result is a weak lift in the direction away from the wall: CL = 0.05

The pressure distribution at G/D = 1.0 is illustrated in figures 27 - 28 by time series
over one period of vortex shedding. As vortex shedding occurs at this gap ratio, oscillatory
pressure is observed in the vicinity of the cylinder. The mean lift is approximately zero
at this gap ratio. However, from figures 27 and 28, the pressure is still more distinct at
the free-stream side, and it persist for a longer time in the wake. A row of alternating
high and low pressure regions originating at the free-stream side of the cylinder is clearly
visible far downstream of the cylinder. A similar row is not visible at the wall-side of the
wake, in particular the positive regions are less visible.
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Figure 25: Pressure distribution at G/D = 0.2, t = 600 sec (steady state)

Figure 26: Pressure distribution at G/D = 0.5, t = 600 sec (steady state)
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Figure 27: Pressure distribution at G/D = 1.0 (Part 1 of 2)
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Figure 28: Pressure distribution at G/D = 1.0 (Part 2 of 2)
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5.3.2 Velocity field

At the smallest gap, G/D = 0.2, a weak gap flow is observed in figure 29. Keeping in mind
the relative thick boundary layer at the cylinder’s position, there are then associated low
velocities near the wall in the approaching flow and the weak gap flow is then expected.
The cylinder forms an obstacle to the approaching flow and most of the fluid seems to
be directed over the top of the cylinder. A recirculation region forms downstream of the
cylinder as seen in figure 30. As seen from figure 29, this recirculating flow interacts with
the gap flow and the resulting flow in the near wake is directed in the stream normal
direction with respect to the free-stream. A reverse flow is observed along the cylinder
surface near the free-stream side.

As the gap is increased to G/D = 0.5, the gap flow increases both in terms of ve-
locity and mass flow rate and forms a free jet as seen in figure 31. As seen in figure 32,
the downstream recirculation region is still present, though it has migrated downstream,
possibly due to the stronger gap flow. The near wake of the cylinder is directed away
from the wall, possibly due to the interaction between the gap flow and the downstream
recirculation region. The near wake is now noticeable more complex.

At the largest gap, G/D = 1.0, a violent gap flow and a jet is evident in figures 33 and
34. The downstream recirculation region has now disappeared and regular vortex shedding
occurs. It is now of interest to investigate the interaction between the vortex shedding
and the wall boundary layer. This may be assessed in terms of comparing visualizations
of the velocity field in figures 33 and 34 to plots in Appendix F of the stream normal
gradient of the horizontal velocity component evaluated at the wall: du

dy
(y = 0). Negative

gradients reveal regions of separating and possibly recirculating flow. At this stage it
might be appropriate recalling the importance of the velocity gradient with reference to
scour application. At all gaps a persistent dominating positive velocity gradient at the
wall occurs in the gap immediately below the cylinder. The maximum values are 5, 7 and
5 at G/D = 0.2, G/D = 0.5 and G/D = 1.0, respectively. The increase in du/dy from
G/D = 0.2 to G/D = 0.5 is assumed to be due to the increasing velocities in the gap
flow: The velocities increase by a factor of 4, while the gap only increase by a factor of
2.5. As the gap is further increased to G/D = 1.0, the effect of the gap apparently has a
slightly lower influence on the velocity gradient.

The plots in Appendix F are taken at intervals of 1 sec and correspond to one period
of vortex shedding from t=381 sec to 387 sec. The corresponding visualizations of the
velocity field in the near wake are taken at the same time instances figures 33 - 34. With
reference to Appendix F, the plots to the left are along the entire wall: x = 0 at horizontal
axis denotes the upstream boundary (the inlet), the cylinder is located at x = 15 and
the downstream boundary (the outlet) is located at x = 45. The plots to the right are
enlarged views of the indicated region in the near wake around x = 20. With reference to
figures 33 - 34, the red lines along the wall indicate regions of negative velocity gradients.

At G/D = 1.0, the plot of the velocity gradient exhibits a wavy behavior downstream
of the cylinder with the occurrence of positive and negative gradients. In the following is
given a short description of the velocities in the wake, wall jet and near backflow region
along the wall over one period of vortex shedding from time t=381 sec to t=387 sec. The
maximum velocity gradient in the backflow region is well below an absolute value of 1
at all times and hence of minor importance compared to the distinct positive velocity
gradient below the cylinder.
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Figure 29: Velocity vectors in the near wake of the cylinder at G/D = 0.2, t = 600 sec
(steady state)

Figure 30: Magnitude of the velocity (scalar) and indicative streamlines at G/D = 0.2,
t = 600 sec (steady state)

At t=381 sec, a negative velocity gradient is evident at the wall in the range 19 <
x < 21.5 and a backflow is visible near the wall. The near wake of the cylinder is
slightly deflected away from the wall. The cylinder wake then extends further downstream,
deflecting the wall jet towards the wall. In turn, the deflected wall jet moves along the
wall and counteract the backflow near the wall. The backflow region is now narrowed and
moved downstream to 21 < x < 22.5 (t=382 sec). At t=383 sec, the cylinder wake is
again compressed, allowing the wall jet to direct outwards. Two narrow backflow regions
are now evident around x = 18 and x = 22, respectively.
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Figure 31: Velocity vectors in the near wake of the cylinder at G/D = 0.5, t = 600 sec
(steady state)

Figure 32: Magnitude of the velocity (scalar) and indicative stream lines at G/D = 0.5,
t = 600 sec (steady state)

Then again the cylinder wake extends further downstream and entraps some of the
wall jet. The backflow region around x = 38 increases and moves slightly downstream,
while the backflow region at x = 23 is reduced. The cylinder wake extends even further
downstream and the wall jet is further drawn outwards. The near backflow region is now
located at 18 < x < 20. At t=386, the cylinder wake contracts and moves towards the
wall, deflecting the wall jet and in turn forcing the backflow downstream to the region
18.5 < x < 21. At t=387, the cylinder wake extends further downstream and the backflow
is forced downstream to 19 < x < 21.5 which is similar to the initial condition at t=381
sec.
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Figure 33: Velocity vectors in the near wake of the cylinder at G/D = 1.0 (Part 1 of 2)
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Figure 34: Velocity vectors in the near wake of the cylinder at G/D = 1.0 (Part 2 of 2)
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5.3.3 Vorticity

The magnitude (without respect to sign) of the vorticity at G/D = 0.2 is visualized
by a contour plot in figure 35. The largest values of vorticity are concentrated around
the upstream part of the free-stream side of the cylinder and in the gap region on both
the cylinder and the wall. The free-stream side vorticity is stretched downstream due
to the free-stream while the vorticity in the gap region spreads equally upstream and
downstream.

A similar contour plot for G/D = 0.5 is given in figure 36. At this gap, the vorticity
distribution is more symmetric over the horizontal center line of the cylinder. The wall-
side vorticity on the cylinder is increased and the region of concentrated vorticity is moved
upstream. The vorticity in the gap region is now more stretched downstream, although
not to the same extend as on the free-stream side. This is presumably due to the increasing
gap flow.

Vortex shedding occurs at G/D = 1.0 and this is also evident in terms of visualization
of time series of vorticity contours of ωz in figures 37-38. In these figures contour lines
are given in the range ωz = −3.5 - +3.5 to emphasize the vortical dynamics in the
wake. Although not shown in the figure, the magnitude of vorticity is still at the same
level in the upstream regions at the cylinder surface as at G/D = 0.2 and G/D = 0.5.
Positive vorticity (indicated by green in the figures) originates at the free-stream side
of the cylinder and at the wall. Negative vorticity (indicated by red) originates at the
wall-side of the cylinder. These three distinct regions of vorticity are evident in figure
37-38. The two sheets of vorticity originating at the cylinder interact and curls up in
an alternating manner to form eddies in the wake. The vorticity originating at the wall
is observed to interact with the wall-side vorticity from the cylinder. The extent and
stretching of these two regions of vorticity are coinciding in time.

The dynamics over the course of one period of vortex shedding is described in the
following. At t = 381 sec the wall vorticity is stretched into two fingers C1 and C2, C2
being attracted to the wall-side vorticity (A) originating at the cylinder. Both regions of
vorticity originating at the cylinder are growing in the near wake of the cylinder. The
positive vortex A curls up and interacts with the region of negative vorticity at the free-
stream side. This cause the vortex B to be cut off from the region at the free-stream side
at t = 382 sec. At this time instant all three regions of vorticity have grown further and
now the free-stream region bends towards the wall and trigger the shedding of a positive
vortex A1. This weak vortex is short lived and at t = 383 sec it is only visible as part
of a stretched vortex sheet. The wall vorticity C1 is stretched further and at t = 383 a
small vortex D is shed. The shed vortex B is persistent and convected downstream as
time elapses. All three regions of vorticity continues to grow until t = 386 sec which is
similar to the condition to t = 381 sec and which is succeeded by the shedding of a new
vortex from the free-stream side. At t = 384 a new finger C3 starts to form in the wall
region of vorticity. Region C2 curls up alongside region A2. From t = 384 sec to t = 386
sec, the wall vorticity moves in two directions: the most downstream part C2 following
the positive finger A2 and the most upstream part C3 curls up attracted by the region of
positive vorticity A3. At t = 386 sec region A2 has disappeared and region C2 forms a
narrow intestine.

The suppression of vortex shedding at G/D ≤ 0.5 is higher than the results of G/D =
0.2 − 0.4 for Re = 1.103 − 1.105 reported in the literature. However, the results are in
accordance with the results of Lei et al [1] who found vortex shedding to be suppressed
for G/D < 0.9 at Re = 100. According to Lei et al, the strength of vorticity in the three
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regions decreases and the thickness of the regions of vorticity increases with decreasing
Re. The consequence is suppression of vortex shedding at larger gap ratios for lower Re.

The results are supportive to the suggestion [1, 26, 22] of cancellation of opposite
signed vorticity in the near-wall region, illustrated at G/D = 1.0. The visualizations of
velocity vectors (figures 29, 31, 33 and 34) in the near wake of the cylinder in the present
study are in favor of the suggestion by Grass et al. [22]: Vortex shedding suppression
is caused by the interaction between the lee-side recirculation region and the gap flow,
which inhibits large-scale vortex roll-up.

Figure 35: Vorticity contours at G/D = 0.2, t = 600 sec (steady state)

Figure 36: Vorticity contours at G/D = 0.5, t = 600 sec (steady state)
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Figure 37: Vorticity contours (ωz) at G/D = 1.0 (Part 1 of 2)
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Figure 38: Vorticity contours (ωz) at G/D = 1.0 (Part 2 of 2)
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5.3.4 Hydrodynamic quantities for engineering purposes

The variations of Strouhals number and lift and drag coefficient may be expressed with
reference to the non-dimensional gap ratio G/D or alternatively G/δ. The latter value
may be obtained by the following relation:

G/δ = G/D.D/δ (5.2)

The obtained results, table 13, for the hydrodynamic quantities CD, CL root-mean-
square C ′L and St are now extracted from table 11 and compared with the results of Lei
et al. [1] obtained by 2D numerical simulations at Re = 100 with δ/D = 1.20. In the
present study, δ/D ≈ 1.7. The comparisons are presented in figures 39, 40, 41 and 42. The
results from the present study obtained for a cylinder in uniform cross-flow are included
at G/D = ∞. The exact numbers from the study of Lei et al are acquired by personal
communication with Lei [52].

Table 13: Hydrodynamic quantities for a cylinder near a plane wall at various gap ratios
(present study)

G/D G/δ CD CL

√
C ′L

2 St (p)

0.2 0.12 0.73 0.38 - -
0.5 0.29 0.96 0.05 - -
1.0 0.59 1.34 0 0.12 0.168
∞ ∞ 1.39 0 0.24 0.168

As the cylinder is moved sequentially away from the wall, the cylinder gradually en-
counters larger velocities. Hence, the stagnation pressure and CD are expected to increase
with increasing gap ratio. This is confirmed by the observations in the present study. At
G/D = 1.0, although the cylinder is still inside the boundary layer, CD attains a value
close to that of the unconfined cylinder in uniform cross-flow. The monotonic increase
and almost linear relation for G/D ≤ 1.0 is in accordance with the results of Lei et al.
However, the increase is more rapid in the present study than in the results of Lei et al.
Hence, the values of CD for a given value of G/D are larger in the present study, most
pronounced for G/D = 1.0. The same trend is observed with respect to G/δ and the
deviations are actually amplified on this scale.

The value of CD for the cylinder in unrestricted fluid and uniform cross-flow is lower
than the results by Lei et al at G/D = 2.5 and G/D = 3.0. However, the value from
the present study is higher than the reference value of Williamson [15]. Additional gaps
G/D > 1.0 should be investigated in order to assess if there exists a peak in the drag
curve or if the larger values of drag are associated with systematic errors.

CL increases with decreasing G/D and the lift is approximately zero at G/D = 1.0.
The lift dependence on gap ratio is explained in the preceding section 5.3.1 on pressure
field. Negative lift is not observed at any gap in the present study. The results for
G/D = 0.2 and G/D = 0.5 are in good agreement with the results of Lei et al. However,
CL at a given value of G/D in the present study is slightly higher than the results of Lei.
et al. With reference to G/δ, the results are perhaps in even better agreement with the
results of Lei et al as the values are scattered around the curve of Lei et al.

Additional gaps 0.5 < G/D < 1.0 and G/D > 1.0 should be investigated in order to
assess the exact shape of the lift curve in this region and specifically to investigate the
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occurrence of a negative mean lift. If negative values occurs along the CL curve, the plot
with reference to G/δ indicated that these values occurs for G/D > 1.0.

The root-mean-square (RMS) C ′L decreases with decreasing gap and the results are in
qualitatively good agreement with the results of Lei et al. However, the value at G/D =
1.0 is significantly larger than the corresponding value of Lei et al. This discrepancy is
even more evident with reference to G/δ. No subsequent increase in RMS C ′L is observed
at very small gaps in the present study. Smaller gaps G/D < 0.2 should be investigated
in order to clarify the development in the immediate proximity of the wall. The value for
the unconfined cylinder in uniform cross-flow is in excellent agreement with the results of
Lei et al at G/D = 2.5 and G/D = 3.0.

Vortex shedding at G/D = 1.0 and vortex shedding suppression at G/D = 0.5 and
G/D = 0.2 are in accordance with the results of Lei et al. where the smallest gap of vortex
shedding was G/D = 0.9. In both studies, St exhibits small variation with different gap
ratios. As G/D = 1.0 is the only gap with vortex shedding in the present study, the basis
is sparse for comparison of St to Lei et al. The value of St at G/D = 1.0 in the present
study is equal to the value for the unconfined cylinder in uniform cross-flow. The latter
value is significantly lower than the value at G/D = 3.0 of Lei et al, although the value
of St for the unconfined cylinder in the present study is larger than the reference values
by Norberg [10] and Williamson [15]. With reference to G/δ, vortex shedding takes place
at a value below that of Lei et al. Lei et al. observed a small peak at G/D = 2.5 and a
subsequent monotonic reduction of St for decreasing gap until vortex shedding suppression
for G/D < 0.9.

Due to the different boundary layers in the two studies, differences are expected when
comparing with reference to G/D. Better agreement might be expected when comparing
with respect to G/δ. However, contrary to these considerations, the agreement is more
convincing with reference to G/D. Nonetheless, previous studies at higher Re have found
G/D to be a more dominant parameter than G/δ.

Based on the preceding description, G/D is suggested to be a more appropriate scale
than G/δ in order to assess the variations in CD, CL, root-mean-square C ′L and St. The
results are qualitatively in good agreement with the results of Lei et al, with respect to
G/D. However, the resulting values in the present study are generally somewhat larger
than those by Lei et al.

The discrepancies are most evident at G/D = 1.0. The boundary layers in both
studies have an almost linear variation over most of the boundary layer thickness. By
rough measurements of the velocity profiles, the slope is found to be approximately 1 in
both studies [1, fig. 2]. However, the shapes of the velocity profiles in the undisturbed
boundary layers differ. A fully developed boundary layer is applied in the study of Lei
et al. and the velocity profile has a smooth curved transition starting near y/D = 0.9
and reaching the uniform free-stream velocity at y/D ≈ δ/D = 1.2. In the present
study the boundary layer develops along the wall and a peak (or nose) is evident in
the velocity profile. The peak is located at y/D ≈ δ/D = 1.7 with a peak velocity of
approximately 1.1 m/s. Outwards from the peak, the velocity profile decreases slightly.
The linear region of the velocity profile is located inside y/D < 1.0. Hence, when taking
this into consideration the free-stream velocity experienced by the cylinder is close to 1.1
m/s and the corresponding Reynolds number increases to about Re = 110 in the present
study. Strong dependence on Re was found for root-mean-square C ′L and St in the study
by Lei et al with Re = 80; 100; 200: The Strouhal number and root-mean-square C ′L
increased with increasing Re, and for increasing Re, the critical gap for vortex shedding
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decreased and correspondingly the RMS C ′L-curve was shifted to lower values of G/D.
This apparent increase in Re could explain the discrepancies in St and the offset of RMS
C ′L at G/D = 1.0 in the present study. The larger free-stream velocity also contributes
to explain the larger drag experienced at G/D = 1.0. However, the absence of a negative
lift at G/D = 1.0 is difficult to explain in other ways then by the flow’s similarity to the
unconfined condition.

Vortex shedding suppression may be related to the steepness factor κ of the velocity
profile in the boundary layer. The velocity profile is approximately linear with du/dy = 1
at y > 1.0. With reference to figures 5 and 17, U0 = 0.7 at G/D = 0.2 and U0 = 1.0 at
G/D = 0.5. Then the shear parameter κ may be obtained from equation (1.6): κ = 1.42
at G/D = 0.2 and κ = 1 at G/D = 0.5. According to Zdravkovich, the limit for vortex
shedding suppression is κ > 0.14 [7, p. 467]. Hence, the vortex shedding suppression
observed at G/D = 0.2 and G/D = 0.5 in the present study is in accordance with the
limit reported by Zdravkovich. At G/D = 1.0, the cylinder is no longer exposed to
a linear shear flow and this approach is not valid to assess vortex shedding. However,
vortex shedding occurs in the absence of a linear shear as expected.
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Figure 39: Mean drag coefficient for different gap ratios
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Figure 40: Mean lift coefficient for different gap ratios
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Figure 41: Root-mean-square lift coefficient for different gap ratios
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Figure 42: Strouhals number for different gap ratios
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6 Flow around a circular cylinder above a fully de-

veloped scour profile

6.1 Simulation setup

The geometry of the boundary is now altered by introducing a depression below the
pipeline. The geometry attempts to imitate the scour hole forming under a marine pipeline
in the process of lee-wake erosion and is inspired by the scour profile in figure 7. The
figure is taken from an experimental study performed at Re = O (104) where maximum
scour depth S/D ≈ 1. However, in order to ensure vortex shedding (which is the nature
of this process), the depth is increased to S/D = 2 in the present study. In order to
obtain similar slopes, the upstream and downstream extent of the scour trench is twice of
that in the figure in terms of x/D. The scour profile is ’frozen’ in the present study and
no attempt is made to include sediment transport or to model the scour development.

2D simulations are performed at a Re = 100 with a cylinder diameter of D = 1 m,
uniform inflow of U = 1 m/s and ν = 0.01 m2/s. The geometry of the flow configuration is
sketched in figure 43 with the assigned boundary conditions. The bottom of the cylinder
is in line with the horizontal parts of the wall. The parameters determining the geometry
is given in table 14 and the grid parameters are given in table 15. The simulations are
run from t = 0 to t = 600 sec. The 3D simulation is performed with 60 elements evenly
distributed along a cylinder span of 6D, so that ∆z = 0.1D.

Figure 43: Problem definition for a cylinder over a scour profile
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Table 14: Parameters for the geometry of a cylinder over a scour profile

A B C D E S
9 6 12 18 20.5 2

Table 15: Grid properties for a cylinder over a scour profile

Grid Tot number ∆r ∆s ∆x ∆y
of elements radial circumfer. along plate perp. plate

Scour1 (2D) 56 325 0.055 0.013 0.090 0.050
Scour2 (2D) 86 000 0.035 0.011 0.090 0.035

6.2 Results and discussion

The results in terms of lift and drag coefficient and Strouhals number is given in table 16.

Table 16: Results for a cylinder over a scour profile

Grid time step CD CL

√
C ′L

2 St (CL) St (p)

Mt sec
Scour1 (2D) 0.001 0.787 -0.2177 0.215 0.116 0.114
Scour2 (2D) 0.001 0.791 -0.2156 0.220 0.113 0.114

The present flow configuration is characterized by periodic vortex shedding from the
cylinder. The resulting values of the engineering quantities are: CD = 0.79, CL = −0.22,
root-mean-square C ′L = 0.22 and Strouhals number St=0.114. In this case the gap ratio is
G/D = 0 with reference to the horizontal part of the wall and the scour depth S/D = 2.0
below the cylinder. The results may be compared to those obtained for a cylinder located
at different gap ratios above a plane wall. The value of drag in the scour case is between
the values at G/D = 0.2; CD = 0.727 and at G/D = 0.5; CD = 0.96. The negative lift is
unique in the present study, and by far greater than the negative lift reported by Lei et
al [1] for a cylinder near a plane wall; CL = O(0.05), in the range 0.8 < G/D < 2.5. The
vortex shedding frequency in terms of St is reduced by 32% compared to the unconfined
cylinder. Visualizations of the results from grid Scour2 are presented in the following.

6.2.1 Investigating grid and element properties

The influence of domain size and time step is carefully investigated in preceding sections.
Hence, the applied domain and time step are assumed to be satisfactory in the present
case.

Between the subsequent grids, the differences in the hydrodynamic quantities are: M

CD = 0.5%, M CL = 1.0%, M
√
C ′L

2 = 2.3% and no variation in St (p). Hence, the
simulations fulfull the convergence criterion of maximum 3% change between subsequent
grids.

Although the simulations fulfill convergence, a pressure defect is observed near the
wall downstream of the cylinder. This is indicated on grid Scour2 in figure 44 where the
cylinder is visible in the top right corner. The pressure defect is evident by the abrupt
changes along the pressure contour. This pressure defect is located at the intersecting
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grid line where the elements have different orientations across this line. Additionally,
there is another intersecting grid line to the right of the pressure defect. Suggestions are
that these intersecting grid lines and accompanying different element orientations are the
cause of this spurious pressure. Two different approaches are applied in the present case.
However, no remedy is found to avoid the pressure defect. The pressure defect is very local
and although it contaminates the solution, it is considered to be of minor importance.

A similar, yet more pronounced, defect is observed in the vorticity contour lines in
Appendix G.4. It is suggested to have the same origin as the pressure defect.

Figure 44: Pressure defect on the grid for a cylinder above a scour profile

6.2.2 Pressure distribution

The pressure distribution over one period of vortex shedding is depicted in Appendix G.1.
The main characteristics of the pressure distribution over the cylinder surface persist over
the entire period: the stagnation point is displaced towards the free-stream side, the
region of low pressure at the free-stream side is moved downstream and the region of low
pressure at the wall-side is moved upstream. Hence, the entire pressure distribution is
rotated a small angle clockwise compared to the pressure distribution for an unconfined
cylinder in uniform cross-flow. The altered pressure distribution and the displacement of
the stagnation point contribute to a negative lift on the cylinder. Additionally, the drag
is reduced due to the redistribution of total force to the lift component.

The pressure visualizations indicate two sided vortex shedding. Downstream of the
cylinder a row of alternately high and low pressure regions originating from the free-stream
side of the cylinder is visible. The alternating pressure regions originating from the wall-
side of the cylinder are less distinct. This behavior in particular is similar to the cylinder
positioned at G/D = 1.0 above a plane wall in the preceding section. A local pressure
peak is observed at all times in the through of the scour trench. The visualizations of the
pressure indicate alternating vortex shedding from both sides of the cylinder. However,
the eddies originating at the free-stream side seems to be stronger.

With reference to Jensen et al. [35], the results for the cylinder located above an
equilibrium scour profile in the present study at Re = 100 exhibits some similar features
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as the flow at Re = 104. In particular, the stagnation point at the cylinder is moved away
from the wall and distint negative mean lift are observed in both studies. Additionally,
the drag is reduced as compared to the cylinder located at a similar gap above a plane
boundary.

6.2.3 Velocity field

Visualizations of the velocity field with reference to magnitude of velocity (scalar) is
presented in figures 45 and 46 by time series over one period of vortex shedding. The
near wake of the cylinder exhibits a periodic wavy shape and the figures indicate one
sided periodic vortex shedding. Persistent high velocity is observed in a small region
in the close proximity of the cylinder’s underside at all times. A dominant gap flow of
0.6-0.8 m/s is observed below the cylinder. A distinct region of low velocity is located
near the wall upstream of and below the cylinder. Vector plots (Appendix G.2) of the
velocities are utilized to further investigate this region, revealing a region of separating
flow at the upstream shoulder accompanied by a region of recirculating flow. This is an
expected behavior as the sudden declining wall acts similar to a classic backward facing
step. Periodicity in the velocity field is evident along the inclined wall downstream of
the cylinder. This region clearly interacts with the cylinder wake: sheets of low velocity
are shed from the wake (t = 581; 582.5 sec), convected downstream (t = 584 sec) and
entrapped in the wall region (t = 585.5; 587; 588.5 sec).

The dynamics of the wake is further investigated utilizing vector plots (Appendix
G.3) of the velocities in this region. At the instant t = 581 sec two vortices are present
in the near wake: one large vortex at the wall-side and one smaller at the free-stream
side. Onwards from t = 581 sec the wake expands downstream as the vortex near the
free-stream side unfolds. At t = 588.5 a vortex is shed from the free-stream side.

6.2.4 Vorticity

Vorticity contours are presented in Appendix G.4 over one period of vortex shedding. At
t = 581 sec, the previous vortex shed at the freeestream side is still evident downstream.
Two regions of vorticity are originating at the cylinder and three narrow regions are
evident at the wall in the scour trench. As time elapses, a new vortex is shed from
the free-stream side of the cylinder. Simultaneously the wall-side region of vorticity is
stretched, but no vortex shedding is evident in this region. The figures also indicate some
interaction between the shed vortex and the vorticity along the wall: As the shed vortex is
convected downstream the regions of vorticity at the wall migrates downstream, although
at a slower pace. The illustrations of periodic vorticity suggest only one sided vortex
shedding, originating at the free-stream side of the cylinder.
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Figure 45: Magnitude of velocity (scalar) near a cylinder over a scour profile (Part 1 of
2)
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Figure 46: Magnitude of velocity (scalar) near a cylinder over a scour profile (Part 2 of
2)
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7 Concluding remarks

7.1 Conclusion

Numerical simulations are performed with the software OpenFOAM for the purpose of
investigating the viscous flow around a circular cylinder near a plane wall at Re = 100.
Three different gap ratios: G/D = 0.2; 0.5; 1.0 are applied. Additional simulations are
performed for a cylinder located above a fully developed scour profile.

Vortex shedding is suppressed for G/D = 0.2 and G/D = 0.5. This is in accordance
with the results reported by Lei et al [1] and with Zdravkovich reporting the suppression
of vortex shedding in steep linear shear flows which in the present study is found in the
boundary layer developing at the wall.

The results are supportive to the suggestion by Grass et al. [22] that suppression of
vortex shedding is caused by the interaction between the lee-side recirculating flow and the
gap flow, which inhibits large-scale vortex roll-up. Additionally, the results at G/D = 1.0
are in accordance with suggestions in the literature [1, 26, 22], indicating cancellation of
opposite signed vorticity in the near-wall region.

The main results are: CD decreases with decreasing gap, CL increases with decreasing
gap and a distinct mean lift, CL, is observed in the direction away from the wall at
G/D = 0.5 and G/D = 0.2. No change in St is observed as long as vortex shedding
occurs. The results are supportive to Lei et al [1] suggesting root-mean-square C ′L as an
indicator for vortex shedding suppression. Generally, the obtained values at G/D = 0.2
and G/D = 0.5 display good agreement with the results of Lei et al [1]. However, the
results at G/D = 1.0 differs somewhat from their results.

The introduction of a fully developed scour profile below the cylinder significantly
alters the flow and periodic vortex shedding occurs. Time series of the pressure indicate
two-sided vortex shedding, while time series of velocity and vorticity indicate one-sided
vortex shedding originating at the free-stream side of the cylinder. These seemingly
contradictory results suggest that further investigations should be performed. The main
results are CD = 0.79, a substantial mean lift, CL = −0.22, in the direction towards the
wall and St = 0.114 which is 32% lower than for the unconfined cylinder. Similarity is
observed between the present results and experimental data at Re = 1000. The results
from these simulations are the main contributions of the present study.

The resulting values for 2D simulations of an unconfined cylinder in uniform cross-flow
are CD = 1.39, root-mean-square CL = 0.24 and St = 0.168. These results are within the
scatter of the reported values in the literature. However, they differ by 2-6% from the
standard benchmark values.

The influences on the 2D simulations are investigated in terms of convergence studies

of CD, CL,

√
C ′L

2 and St for the key numerical parameters: domain size, grid geometry,
element size, element spacing and time step.

The influence of time step is thoroughly investigated for the unconfined cylinder and
the results indicate independence of time step as long as the CFL-condition is fulfilled.
However, this investigation suffers from the use of only one domain size.

The influence of domain size is investigated for the unconfined cylinder and the cylinder
at distance G/D = 0.2 from a plane wall. The applied domains are satisfactory with
reference to these investigations. However, a drawback to this investigation is the use of
only one time step.
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The element size and element spacing is investigated for the unconfined cylinder, for
the cylinder at every gap ratio near the plane wall and for the cylinder over a scour

profile. The investigations are satisfactory, except for the value of

√
C ′L

2 at G/D = 1.0.
Hence, additional simulations are desirable at this gap ratio. Additionally, a local defect
is observed in the pressure for the cylinder at G/D = 0.5 and for the cylinder above the
scour profile, these defects are attributed to a shortcoming in the grid design. Further
investigations should be performed to assess the influence of these defects and to remedy
this behavior.

Further, 3D simulations are performed for the unconfined cylinder and the cylinder
at a distance G/D = 0.5 from a plane wall. Insignificant differences in the results were
found between 2D and 3D simulations. This is presumably due to the two-dimensional
behavior of the flow at this Reynolds number.

7.2 Recommendations for further work

This study investigates 2D simulations of an unconfined cylinder and a cylinder at different
gap ratios to a plane wall. Further, 3D simulations of a cylinder near a plane wall are
demonstrated as well as 2D simulations of a cylinder over a fully developed scour profile.

Additional 2D and 3D simulations should be performed in order to verify the results
of Lei et al. [1] and the present results; particularly at G/D = 1.0. Specifically it is of
interest to investigate the occurrence of a negative mean lift and the critical gap ratio
for vortex shedding suppression as reported by Lei et al. Additionally, it is of interest
to further investigate the shape of the mean drag curve and the possible existence of a
peak at larger gap ratios G/D > 1.0 and the development of the root-mean-square lift
coefficient at very small gaps G/D < 0.2.

The grid should be further improved for a cylinder above a scour profile to avoid any
defects in the pressure distribution. Additional simulations, both 2D and 3D, should
be performed at different stages in the scour process and with the cylinder at different
positions relative to the scour profile. Further, the model should be improved by taking
into account the calculation of sediment transport and the development of scour.
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Fil: /home/knutinge/OpenFOAM/prosjekt/case/system/controlDict Side 1 av 2

/*--------------------------------*- C++ -*----------------------------------*\
| =========                 |                                                 |
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
|  \\    /   O peration     | Version:  1.7.1                                 |
|   \\  /    A nd           | Web:      www.OpenFOAM.com                      |
|    \\/     M anipulation  |                                                 |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    location    "system";
    object      controlDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application     icoFoam;

startFrom       startTime;

startTime       0;

stopAt          endTime;

endTime         600;

deltaT          0.001;

writeControl    timeStep;

writeInterval   100;

purgeWrite      0;

writeFormat     ascii;

writePrecision  6;

writeCompression compressed;

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

functions
(probes
   {
       type            probes;
       functionObjectLibs ("libsampling.so");
       enabled         true;
       outputControl   timeStep;
       outputInterval  1;
       probeLocations
       (
               (0.6 0.2 0)
       );

       fields
       (
           p U
       );
   }

forces
{
type forces;
functionObjectLibs ("libforces.so"); 
patches (cylinder);



Fil: /home/knutinge/OpenFOAM/prosjekt/case/system/controlDict Side 2 av 2

rhoName rhoInf;
rhoInf 1;
CofR (0 0 0); 
outputControl timeStep;
outputInterval 10;
}

forceCoeffs
{
type forceCoeffs;
functionObjectLibs ("libforces.so");
patches (cylinder); 
rhoName rhoInf;  
rhoInf 1;
CofR (0 0 0);
liftDir (0 1 0);
dragDir (1 0 0);
pitchAxis (0 0 0);
magUInf 1;
lRef 1;
Aref 0.1;
outputControl timeStep;
outputInterval 10;
}

 );
// ************************************************************************* //
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Matlab script for Fast Fourier Transform (FFT)
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09.06.11 03:19 C:\Matlab\FourierSt.m 1 of 1

A=importdata('forceCoeffs.txt');     % ('p.txt')

time=A(:,1);

cD=A(:,2);                           % p=A(:,2); 

cL=A(:,3);                              

 

duration=length(tid);

 

tmp=0;

 

for i=1:duration

    

    if time(i)>=150                  %Start time for analysis

        tmp=tmp+1;

    end

    

    

end

 

lift=zeros(tmp,1);

 

for j=1:tmp

    lift(j)=cL(j+duration-tmp);      % Change: cL / cD / p

end

    

%%% Fourier transform: spectral analysis %%%

% Based on example in Matlab Help

fs=100;                          % Dependent on delta t. Pressure: fs=1000 

m=length(lift);

n=2^nextpow2(m);

y=fft(lift,n);

f=(0:(n-1))*(fs/n);

power=log(y.*conj(y)/n);

plot(f,power)

xlabel('Frequency (Hz)')

ylabel('Power')

title('{\bf Periodogram}')
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