
Iason Filippopoulos

Exploration of energy
efficient memory
organizations exploiting
data variable based
system scenarios

Doctoral thesis
for the degree of philosophiae doctor

October 2015

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Electronics and Telecommunications

Catholic University of Leuven
Department of Electrical Engineering

ii

NTNU

Norwegian University of Science and Technology

Doctoral thesis
for the degree of philosophiae doctor

Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Electronics and Telecommunications

Catholic University of Leuven
Department of Electrical Engineering

c© 2015 Iason Filippopoulos. All rights reserved

ISBN (printed version)
ISBN (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU,

Printed by NTNU-trykk

iii

Abstract

Modern embedded systems are capable of performing a wide range of tasks
and their popularity is increasing in many different application domains.
The recent progress in semiconductor processing technology greatly im-
proves the performance of the embedded systems, due to the increased
number of transistors on a single chip. The continuous performance im-
provement, for example higher clock frequencies and lower supply voltage,
increases the possibilities for new embedded system designs. However, many
embedded systems rely on a battery source, which puts a significant limita-
tion on their lifetime and usage. The management of the energy consump-
tion is a key factor towards increasing the lifetime of an embedded system
relying on a battery source. A typical embedded system includes one or more
processing elements (CPUs, GPUs, embedded processors etc.), a memory
subsystem (cache, scratchpad, flash, etc.) and application specific hardware
(antennas, sensors, etc.). The memory subsystem contributes significantly
to the overall energy consumption as shown in many studies of embedded
system applications and platforms. Especially for applications that are data
intensive, the memory architecture may have the highest energy footprint
of the whole embedded system.

A hardware/software co-design methodology is proposed for the reduc-
tion of the energy consumption in the memory subsystem based on the
system scenario methodology. In general, system scenario methodologies
propose the use of different platform configurations in order to exploit run-
time variations in application needs. The current methodology exploits
variations in memory needs during the lifetime of an application in order
to optimize energy usage. The different resource requirements, that change
dynamically at run-time, are grouped into scenarios to efficiently handle a
very large exploration space. Apart from the development of the method-
ology, an extended memory model is included in this work. The memory
models is based on existing state-of-the-art memories, available from in-
dustry and academia. In addition, the impact of the technology scaling
is studied and the effectiveness of the proposed methodology is analyzed
for the future memory architectures. We also investigate the combination
of the developed methodology with known code transformation techniques,
specifically data interleaving. The proposed design methodology aims at
being compatible with the already available code optimization techniques.
Actual decrease in memory energy consumption for a selection of studied
applications ranges between 30% and 60%.

iv

v

Preface

This doctoral thesis was submitted to the Norwegian University of Science
and Technology (NTNU) in partial fulfillment of the requirements for the
degree philosophiae doctor (PhD). The thesis is a part of a dual PhD pro-
gram between NTNU and the Catholic University of Leuven (K. U. Leuven),
in cooperation with Interuniversity Microelectronics Center (IMEC) in Leu-
ven, Belgium, and Eindhoven, The Netherlands.. The work herein was per-
formed at the Department of Electronics and Telecommunications, NTNU
and the Department of Electrical Engineering, KU Leuven. The work was
performed under the supervision of Professor Per Gunnar Kjeldsberg and
Professor Francky Catthoor.

Acknowledgements

I would like to thank my supervisors Prof. Per Gunnar Kjeldsberg and Prof.
Francky Catthoor for their support and advise through the long process
that eventually became this thesis. I also extend my gratitude to my co-
supervisor Prof. Sverre Hendseth for providing encouragement and positive
attitude all these years.

I would also like to thank Mladen for sharing both his direct and thought-
provoking opinions and office space with me. Furthermore, I thank Elena
and Yahya for our great co-operation and their patience on the evaluation
meetings. I was lucky to meet great co-workers at NTNU and IMEC that
offered their help.

Finally, I would like to thank my family and friends for their support.

Iason Filippopoulos
October 2015

vi

Contents

List of Tables xiii

List of Figures xvii

List of Abbreviations xx

1 Introduction 1

1.1 Embedded Systems and Energy Consumption 1

1.2 Dynamic Data Intensive Applications 2

1.3 Problem Statement . 2

1.4 Current approaches . 3

1.5 Thesis contributions . 4

1.6 Thesis Outline . 5

2 Background 7

2.1 Data and Memory Management Approaches 7

2.2 Data Transfer and Storage Exploration 8

2.3 System Scenarios . 12

2.3.1 Use-Case vs. System Scenarios 15

2.4 Scratch-pad Memory Architectures 16

3 Proposed technology platform and design methodology ap-
proach 19

3.1 Target platform architecture 19

3.1.1 Target memory platform architecture 21

3.1.2 Memory models . 21

3.1.3 Technology scaling . 23

3.2 Data variable based memory-aware system scenario method-
ology . 23

3.2.1 Methodology Overview 23

vii

viii CONTENTS

3.2.2 Design-time profiling based on data variables 25

3.2.3 Design-time system scenario identification based on
data variables . 26

3.2.4 Run-time system scenario detection and switching based
on data variables . 27

3.2.5 Interleaving exploration based on data variables . . . 27

4 Research Results and Contributions 31

4.1 Contribution A: Development of the Memory-Aware System
Scenario Methodology . 31

4.1.1 Energy Impact of Memory-Aware System Scenario
Approach . 32

4.1.2 Exploration of energy efficient memory organizations
for dynamic multimedia applications using system sce-
narios . 32

4.2 Contribution B: Combined Implementation of the System
Scenario Methodology on Memory Subsystem and Processing
Elements . 34

4.3 Contribution C: Integrated Interleaving and Data-to-Memory
Mapping . 35

4.4 Contribution D: Interconnection Cost Modeling and Scaling . 36

5 Conclusions and Future Work 39

5.1 Conclusions . 39

5.2 Future Work . 41

Bibliography 42

A Energy Impact of Memory-Aware
System Scenario Approach 59

Abstract . 61

A.1 Introduction . 63

A.2 Related Work and Contribution Discussion 64

A.3 Extended System Scenario Methodology 64

A.3.1 General description of system scenario methodology . 65

A.3.2 Design-time Profiling 66

A.3.3 Design-time Scenario Identification and Prediction . . 67

A.3.4 Run-time Identification, Detection, and Switching . . 69

A.4 Target Platform . 69

A.5 Application Benchmarks . 71

CONTENTS ix

A.5.1 Epileptic Seizure Predictor 72

A.5.2 Viterbi Algorithm Encoder 73

A.6 Results . 74

A.7 Conclusion . 76

B Exploration of energy efficient memory organizations for dy-
namic multimedia applications using system scenarios 79

Abstract . 81

B.1 Introduction . 83

B.2 Motivational Example . 84

B.3 Related Work and Contribution Discussion 86

B.4 Data Variable Based Memory-Aware System Scenario Method-
ology . 88

B.4.1 Design-time Profiling Based on Data Variables 90

B.4.2 Design-time System Scenario Identification Based on
Data Variables . 91

B.4.3 Run-time System Scenario Detection and Switching
Based on Data Variables 94

B.5 Target Platform and Energy Models 96

B.5.1 Target Memory Platform Architecture 97

B.5.2 Models of Different Memory Types 98

B.5.3 Total Energy Consumption Calculation 101

B.5.4 Memory Architecture Exploration 102

B.6 Application Benchmarks . 104

B.6.1 Benchmark Applications and
Corresponding Input Databases 105

B.6.2 Classification of Applications Based on Dynamic Char-
acteristics . 106

B.7 Results . 108

B.7.1 Classification of the Applications 109

B.7.2 Switching Overhead 111

B.7.3 Comparison with Use Case Scenario 112

B.7.4 Run-Time Overhead 112

B.8 Conclusions . 113

C Systematic Exploration of Power-Aware Scenarios for IEEE
802.11ac WLAN Systems 115

Abstract . 117

C.1 Introduction . 119

C.2 Related Work . 120

x CONTENTS

C.3 System Scenario Principles 122

C.4 System Model . 124

C.4.1 Antennas Signal Power 124

C.4.2 Memory Banks . 128

C.4.3 Combined Model . 130

C.5 Case Study . 130

C.6 Results . 134

C.7 Conclusion . 135

D Integrated Exploration Methodology for Data Interleaving
and Data-to-Memory Mapping on SIMD architectures 139

Abstract . 141

D.1 Introduction . 143

D.2 Motivational Example . 144

D.3 Related work . 149

D.4 Target Architecture and Energy Models 152

D.4.1 Memory Models . 152

D.4.2 Functional Unit Models 155

D.5 System Design Exploration Work-flow 156

D.5.1 Formal Model Representation of Access Patterns . . . 159

D.5.2 Data Interleaving Exploration 159

D.5.3 Data-to-Memory Mapping Exploration 161

D.5.4 One way constraint propagation 162

D.6 Applications and Experimental Evaluation 163

D.6.1 Benchmark Applications 163

D.6.2 Results . 164

D.7 Conclusion . 170

E Technology scaling impact on the interconnection of clus-
tered scratchpad memory architectures 171

Abstract . 173

E.1 Introduction . 175

E.2 Related Work . 177

E.3 Current technology . 178

E.3.1 Generic Work-flow . 178

E.3.2 Example design: synthesis and simulation 180

E.4 Technology Scaling . 183

E.4.1 Memory Banks . 183

E.4.2 Interconnection . 184

E.5 Model Construction and Projection Results 186

CONTENTS xi

E.5.1 Model Construction 186
E.5.2 Results . 189

E.6 Conclusion . 191

xii CONTENTS

List of Tables

A.1 Energy costs per second and access for a reference memory
bank (size: 120 bytes, technology: 90nm) in clustered L1’
memory . 71

A.2 Constraint length for SNR levels on the channel (BER 6 10−5) 74

B.1 Relative dynamic energy for a range of memories with varying
capacity and type . 100

B.2 Relative static power for a range of memories with varying
capacity and type . 100

B.3 Benchmark applications overview 105
B.4 Characterization of benchmark applications (See Tab. B.3 for

index . 107
B.5 Range of energy gains on the memory subsystem 111

C.1 Memory Banks Scenario Overhead 135
C.2 Signal powerChannel 1 Scenario Overhead 136
C.3 Signal powerChannel 2 Scenario Overhead 136

D.1 Relative dynamic energy for a range of memories with varying
capacity and type . 155

D.2 Relative dynamic energy for different FU models 156

E.1 Normalized energy breakdown between the memory banks
and the interconnection . 181

E.2 Comparison between predicted and simulated overhead 189
E.3 Energy gains vs. interconnection overhead 190

xiii

xiv LIST OF TABLES

List of Figures

2.1 DTSE methodology for data transfer and storage exploration.
Source: [89] . 9

2.2 A scenario based design flow for embedded systems. Source:
[33] . 15

3.1 Target platform with focus on memory organization. 20

3.2 System scenario methodology steps. Source: [33] 24

A.1 Profiling results based on application code and input data. . . 67

A.2 Scenario generation based on profiling information and mem-
ory models. 68

A.3 Target platform with focus on memory organisation. 70

A.4 Memory access pattern of epilepsy predictor. Profiling of
data reuse size for 3 samples from a given ([50]) database.
The number of elements accessed is input dependent. Only
those of the 16K elements accessed multiple times should be
saved in L1’. The rest are accessed from L1. 73

A.5 Memory-aware scenario gains - Epileptic seizure predictor . . 75

A.6 Memory-aware scenario gains - Viterbi encoder 76

B.1 Profiling results based on application code and input data . . 89

B.2 Clustering of profiling results into three (a) or five (b) system
scenarios . 91

B.3 Clustering of Pareto curves 93

B.4 Run-time system scenario detection and switching based on
the current input . 96

B.5 Alternative memory platforms with varying number of banks 97

B.6 Energy gain for increasing number of system scenarios - Static
platform corresponds to 0% 110

xv

xvi LIST OF FIGURES

B.7 Bank sizes for the most efficient of the tested organizations
for each benchmark . 110

B.8 Energy gain for use case scenarios and system scenarios . . . 112

C.1 ShannonHartley theorem . 125

C.2 Symbol error probability for 802.11ac Modulation schemes . . 126

C.3 Symbol error probability for 802.11ac Modulation and Cod-
ing schemes . 127

C.4 RTS Characterization . 127

C.5 Data Burst Distribution . 131

C.6 Application Deadline Distribution 131

C.7 Noise Distribution . 132

C.8 Power Gain . 137

D.1 Motivational Example. Representation of the initial set of
data (a) and the interleaved set of data (b). Data-to-memory
mapping for the initial (c) and the interleaved data (d) on a
clustered scratch-pad memory architecture. 147

D.2 Exploration options and system knobs depending on a general
platform architecture . 153

D.3 Methodology steps . 157

D.4 Extraction of access pattern from application code 160

D.5 Example of combination between two arrays and their access
patterns . 161

D.6 Motivational Example . 166

D.7 SOR Benchmark . 167

D.8 FFT Benchmark . 169

D.9 Motion Estimation Benchmark 169

E.1 The alternative clustered memory architectures ranging from
one to five memory banks . 176

E.2 Normalized energy breakdown between the memory banks
and the interconnection. 180

E.3 Normalized area breakdown between the memory banks and
the interconnection . 182

E.4 Impact of technology scaling into gate length 184

E.5 Memory Banks: Normalized dynamic power and technology
scaling . 185

E.6 Interconnection: Impact of technology scaling on the capaci-
tance and the power consumption of the interconnection part 186

LIST OF FIGURES xvii

E.7 Projections of the interconnection cost power overhead for
different numbers of memory banks 189

xviii LIST OF FIGURES

List of Abbreviations

BER bit error rate

CAD computer aided design

CFG control flow graph

CGRA coarse-grain reconfigurable array

DCT discrete cosine transformation

DTSE data transfer and storage exploration

DVFS dynamic voltage and frequency scaling

EEG electroencephalogram

EPIC efficient pyramid image coder

FFT fast Fourier transformation

FU functional unit

GLT global loop transformations

ITRS international technology roadmap for semiconductors

MHLA memory hierarchy layer assignment

MM memory macros

MUX multiplexer

RTL register transfer language

RTS run-time situation

xix

xx LIST OF FIGURES

SCBD storage cycle budget distribution

SCMEM standard cell-based memory

SIMD single instruction multiple data

SNR signal to noise ratio

SOR successive over relaxation

TSMC Taiwan semiconductor manufacturing company

UML unified modeling language

WCET worst case execution time

Chapter 1

Introduction

1.1 Embedded Systems and Energy Consumption

Embedded systems are usually designed to perform one or more specific
tasks and often consist of domain-specific hardware [30]. For example, typ-
ical embedded systems use optimized processing cores to perform signal
processing instead of using general purpose CPUs. Some typical exam-
ples of embedded systems include TV sets, cellular phones, MP3 players,
smart cameras, wireless access points and printers. Health and automo-
tive domains also rely on embedded systems for several different tasks ([54],
[103]). An embedded system is designed with strict requirements regarding
size, performance and power consumption. The market demand is towards
smaller and lighter devices. The ever-progressing semiconductor processing
technique has dramatically increased the number of transistors on a single
chip, which makes today’s hardware increasingly powerful. Embedded sys-
tems often rely on a battery source to deliver the desired performance and
the energy efficiency is a significant design factor. Assuming that the devel-
opment in the battery technology will follow the current trend, embedded
systems should improve their energy efficiency based on the system design.
The slow improvement of the battery technology relative to the growth of
power demand from embedded systems is analyzed in [94].

The memory subsystem of an embedded system has to meet the same
requirements regarding size, performance and power consumption. Many
applications focusing on embedded systems are data intensive and the con-
tribution of the memory to the overall system is significant, e.g. up to 50%
in [108]. This work focus on the exploration of energy efficient memory

1

2 Introduction

organizations suitable for embedded systems. The goal is to contribute to
the development of a systematic way of designing a memory architecture
that is energy efficient and meets performance requirements. The current
work presents a methodology to exploit variations in memory needs during
the lifetime of an application in order to optimize energy usage.

1.2 Dynamic Data Intensive Applications

Data intensive applications perform tasks that involve operations on large
sets of data. Thus, the memory requirements of data intensive applica-
tions are high and the contribution of the memory to the overall energy
consumption significant. The main focus of this thesis is on applications
that are both dynamic and data intensive. The dynamism in this context
refers to the significant changes in the behavior of the application. In more
detail, the studied applications exhibit a dynamic variation in the memory
requirements during their lifetime. The dynamic variation in the memory
requirements can be input driver, which means that there is a wide variation
on the execution of the application based on different inputs. Because of
this behavior, a static study of the application code alone is insufficient since
the targeted applications have non-deterministic behavior that is driven by
input.

1.3 Problem Statement

The general problem is expressed in the following form:

Assume a given dynamic embedded system application with
memory requirements that vary through its lifetime and its range
of inputs. Find the most suitable memory architecture and fully
exploit its features to fulfill the performance requirements and
minimize the energy consumption.

The application is dynamic and the memory requirements vary through
its lifetime, so there are opportunities for system optimization based on es-
timations of the system resources. The system resources include all the dif-
ferent memories available in the system. Different memory platform config-
urations and data-to-memory assignments provide opportunities for system

1.4. Current approaches 3

optimization. In order to provide performance guaranties the estimations
should be pessimistic, and not optimistic, as over-estimates are acceptable,
but under-estimates are generally not. Currently used design approaches
often use worst case estimations, which are obtained by statically analyzing
the application. However, these techniques are not efficient when focusing
on dynamic and input driven applications. Due to the dynamism in target
applications, the ratio of the worst case load versus the average load on the
memory is normally high. Hence, if only the worst case estimations are used
during design, the resulting system would not be able to exploit this gap.

A way to solve this problem is to design the system to meet the worst case
requirements, but add reconfiguration knobs that can exploit the variation
in the memory requirements (e.g., by switching off hardware components,
which decreases the energy consumption). A run-time mechanism that pre-
dicts the current application needs in terms of resources and exploits this
information should also be integrated into the system. To enable this ex-
ploitation, the possible instances in which the application may run, together
with their resource needs, should be known and taken into account during
design. The number of different inputs and the variations in the memory
requirements for each instance provide a huge exploration space that is dif-
ficult to handle, as it is almost impossible to enumerate every possible case.
Even if the explosion problem could be solved, it will be very difficult to
predict at run-time in which instance the application is running and the
platform reconfiguration needed to better exploit it. In addition, the run-
time overhead for switching to a different reconfiguration for every instance
could not be compensated by the improvements in the energy consumption
since the reconfiguration of the platform has an energy penalty.

1.4 Current approaches

The presented problem has been studied before and different ways of tack-
ling it have been proposed. However, there are some aspects that have not
been addressed before that are presented in this thesis.

Most of the current approaches rely on a static analysis of the target
application and several methodologies have been presented to generate a
static application-specific memory hierarchy [10]. Several techniques for
designing energy efficient memory architectures for embedded systems are
presented in [76]. The main limitation on these methodologies is the fact
that they are applicable to applications with very limited dynamism. This

4 Introduction

work extends the state of the art by proposing a more generic approach,
which is also suitable for applications with input driven dynamic behavior.
In addition, the current work differentiates by employing a platform that is
reconfigurable at run-time.

The approach of a reconfigurable memory platform has also been pro-
posed several times and an extensive overview of current approaches is found
in [31]. Most of the proposed solutions are focusing on tackling one specific
case-study application, which is divided in a small number of different cases
based on observations at the user level. However, our work differentiates by
proposing a more generic and application agnostic methodology and anal-
ysis at the system level. Thus, it can efficiently handle a wider range of
dynamic application characteristics.

Another proposed approach to tackle the problem, is to focus on source
code transformations, and especially loop transformations. These methods
try to modify the application code and provide an improved version of the
application with easier memory management. The main drawback of the
code transformation approach is that it is not always possible to achieve
the desired behavior, because the applications can be complex. In any case,
these methods are fully complementary to the methodology presented in
this thesis and should be performed as a prior step to the current work.

More detailed description of previous work can be found in Chapter 2
and in the individual papers presented in the appendixes of this thesis.

1.5 Thesis contributions

In this thesis, we focus on the design and utilization of energy efficient mem-
ory architectures for embedded systems. A hardware/software co-design
methodology is proposed for the reduction of the energy consumption in
the memory subsystem. The methodology exploits variations in memory
needs during the lifetime of an application in order to optimize energy us-
age. The different resource requirements, which change dynamically at run-
time, are organized into groups to efficiently handle a very large exploration
space. Apart from the development of the methodology, an extended mem-
ory model is included in this work. The memory model is based on existing
state-of-the-art memories, available from industry and academia.

In addition, the impact of the technology scaling is studied and the effec-
tiveness of the proposed methodology is analyzed for future memory archi-
tectures. We also investigate the combination of the developed methodology

1.6. Thesis Outline 5

with known code transformation techniques, specifically data interleaving.
The proposed design methodology aims at being compatible with the al-
ready available code optimization techniques. We further extend the evalu-
ation of the memory design methodology using a wireless test-case system.
The proposed reconfigurable memory subsystem is studied in a dynamic
platform with several reconfiguration options that combine the memory and
the processing elements. Reduction in energy consumption in the memory
subsystem ranges from 30% to 60% for different sets of benchmarks.

1.6 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 contains
background information regarding the work performed in the arrays of data
transformations and system scenarios. Chapter 3 describes the research
process and presents the developed methodology. Each paper on which the
thesis is based is described in chapter 4 with a breakdown of the roles of
each author. Chapter 5 concludes the thesis with a summary of contribu-
tions. The appendixes hold each paper in chronological order. These papers
are reproduced faithfully with regard to the published text, but have been
reformatted to increase readability.

6 Introduction

Chapter 2

Background

2.1 Data and Memory Management Approaches

Several techniques have been proposed to optimize the memory manage-
ment and an overview of them is presented in this section. Most techniques
propose transformations on the (a) loop and control-flow, (b) data reorga-
nization and mapping, and (c) memory platform generation, and aim to
tackle the problem of sub-optimal memory organizations. The sub-optimal
memory organization problem has been identified both in compiler theory
[5] and high-level synthesis [117].

The loop and control flow transformations aim at improving the data
access locality and remove any mismatches in production and consumption
ordering of data. They can be applied globally across the full code or within
specific loops. Several research efforts have provided powerful environments
for interactive loop transformations as long as no other transformations
are required. In the parallel compiler domain, interactive environments like
Tiny [120], Omega at U.Maryland [62], SUIF at Stanford [12], the Paradigm
compiler at Univ. of Illinois [4] and the ParaScope Editor [44] at Univ. of
Rice have been presented. These works focus on the code and are platform
independent. The current work studies the code transformations in the
presence of a platform and presents a more complete work-flow.

The data mapping optimizations focus on finding the optimal mapping
of the different arrays into the memory. Energy-aware assignment of data
to memory banks for several task-sets based on the MediaBench suit of
benchmarks is presented in [78]. Design methods with main focus on the
traffic and latencies in the memory architecture are presented in [17], [40],

7

8 Background

[58] and [95]. Improving memory energy efficiency based on a study of
access patterns is discussed in [61]. The main lack in these works is that
the mapping is performed on a static memory architecture.

Another approach to solve the problem is the memory platform gen-
eration. The authors in [10] present a methodology to generate a static
application-specific memory hierarchy. Later, they extend their work in [9]
to a reconfigurable platform with multiple memory banks. Several tech-
niques for designing energy efficient memory architectures for embedded
systems are presented in [76]. In [93] a large number of data and memory
optimization techniques, that could be dependent or independent of a target
platform, are discussed. The authors in [1], [55] and [71] present methodolo-
gies for designing memory hierarchies. Application specific memory design
is a research topic in [105], while memory design for multimedia applications
is presented in [87]. The current thesis differentiates mostly by proposing a
more dynamic memory platform and run-time reconfiguration.

2.2 Data Transfer and Storage Exploration

A generic approach to tackle the memory access and power bottlenecks is
the data transfer and storage exploration methodology (DTSE) presented in
[14]. The methodology presents several optimizations and their exploitation
in a systematic way. The main idea is to achieve a more optimal design
and mapping of data on the memory organization by applying system-level
code transformations to the initial application specification. The price paid
there will be an increased system design complexity, which can be offset
with appropriate design methodology support tools. The global overview of
the DTSE methodology is presented in Fig. 2.1.

Platform independent steps of DTSE reduce the number of array ac-
cesses and enable later platform dependent optimization steps. They are
beneficial for any platform used later in the design-flow and are briefly pre-
sented:

1. Pruning.

This step is necessary to identify and isolate the parts and data struc-
tures in the program which are data-dominant and thus relevant for
DTSE. The pruning step also presents this code in a way which is
optimally suited for transformations. Thus mostly loops with large
bounds and exhibiting good reuse of data and data structures such as

2.2. Data Transfer and Storage Exploration 9

Platform
	
 Independent	
 O

ptim
izations	

Platform
	
 Dependent	
 O

ptim
izations	

System	
 specification	

	

	

	
 	
 	
 	
 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 	
 	
 	
 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Pruning	

Data	
 reuse	

exploration	

Global data-flow
transformations	

Global	
 loop	
 and	

control-­‐flow	

transformations	

Memory	
 Hierarchy	

Layer	
 Assignment	

Memory	
 data	
 layout	

optimization	

Storage Cycle Budget
Distribution	

Memory/bank	

allocation	
 and	
 signal	

assignment	

Figure 2.1: DTSE methodology for data transfer and storage exploration. Source:
[89]

10 Background

array variables are exposed. All the freedom is exposed explicitly, and
the complexity of the exploration is reduced by hiding constructs that
are not relevant. Apart from areas of power oriented gain, the parts
of the program that are bottlenecks for obtaining better performance
need to be identified. These are, for example, data structures that
have very little locality but are accessed heavily.

2. Global data-flow transformations.

The goal of the global data-flow optimization step is to reduce the
number of bottlenecks in the algorithm that prevent optimizing code
restructuring transformations from being applied and to remove access
redundancy in the data-flow. The transformations consist mainly of
advanced variable substitution avoiding unnecessary copies of data,
modifying computation order in associative chains enabling certain
loop transformations, shifting of delay lines through the algorithm to
reduce the storage requirements, and re-computation issues to reduce
the number of transfers and the storage size.

3. Global loop and control-flow transformations.

The goal of the global loop and control-flow optimization step is to
reduce the global lifetimes of the arrays and to increase the locality
and regularity of the data accesses. Locality of data accesses means
that the accesses to the same memory location have to be close in
time while regularity means that the order of consumption should be
the same as the order of production. The transformations remove
system-level buffers introduced due to mismatches in production and
consumption ordering (regularity problems). They allow also the data
to be stored later in the design flow in smaller memories closer to the
data paths.

4. Data reuse exploration.

The goal of the data reuse decisions step is to better exploit a hier-
archical memory organization to benefit from the available temporal
locality in the data accesses. An important consideration here is the
distribution of the data over the hierarchy levels such that frequently
accessed data can be read from smaller and less power consuming
memories. This obviously has a positive effect on the total power con-
sumption of the application because the most frequently accessed data
is then read from less power consuming memories. Also the smaller
memories can then be closer to the data paths thereby reducing the

2.2. Data Transfer and Storage Exploration 11

dissipation in the interconnect, especially if off-chip memory accesses
are replaced by on-chip memory accesses.

Platform dependent steps of DTSE uses the information about the pre-
defined memory organization to perform further optimizations. Some sub-
steps only apply for an (embedded) customizable memory organization
which is becoming available on several platforms by partly powering down
over-dimensioned memory blocks that are not fully needed. The platform
dependent steps are briefly presented:

1. Memory Hierarchy Layer Assignment (MHLA) .

The MHLA step maps the most beneficial candidates from data reuse
copy trees to a virtual memory hierarchy subsystem. During MHLA,
data reuse copy trees resulting from the platform independent data
reuse exploration and the corresponding transfers are partitioned over
several hierarchical memory layers, based on the bandwidth and high-
level memory size estimation. The high-level memory class of each of
the memory layers is determined (e.g., on-chip, off-chip, ROM, SRAM
or DRAM and other RAM flavors).

2. Storage Cycle Budget Distribution (SCBD)

The goal of the SCBD step is to ensure that the (usually stringent)
real-time constraints are met with a minimal cost penalty. The major
substep involves Storage Budget Optimization (SBO) to determine
which data should be made simultaneously accessible in the memory
architecture such that the real-time constraints can be met with min-
imal memory bandwidth related costs. This step mainly determines
the bandwidth/latency requirements and the balancing of the avail-
able cycle budget over the different memory accesses. Additional loop
transformations are performed to meet the real-time constraints, such
as merging of loops without dependencies, software pipelining and
partial loop unrolling.

3. Memory/bank allocation and signal assignment (MAA).

The goal of the memory allocation and assignment step is to deter-
mine an optimal memory architecture for the background data. The
step allocates memory units and ports (including their types) from a
memory library and assigns the data to the best suited memory units,
given the cycle budget and other timing constraints. The combina-
tion of the SCBD and MAA tools allows to derive real Pareto trade-off

12 Background

curves of the background memory related cost (e.g., power) versus the
cycle budget.

4. Memory data layout optimization.

In the memory allocation and data-to-memory assignment step, ar-
rays were assigned to physical memories or to banks within predefined
memories. However, the arrays are still multi-dimensional, while the
memory itself knows only one dimensional addresses. In other words,
the physical address for every array element still has to be determined.
This transformation is the data layout decision. Main memory data-
layout optimization exploits the memory organization data freedom
and thus reduces the conflict misses.

Many steps and techniques of the DTSE methodology are complemen-
tary or partly used in the current work. However, the DTSE methodology
is static while this thesis focuses on dynamic applications. Another main
addition is the dynamic handling of data and the development of a recon-
figurable memory architecture.

2.3 System Scenarios

This section describes the basic concepts behind the system scenario method-
ology and its basic steps. The methodology is applied to a memory specific
context in the rest of this thesis.

The goal of the system scenario methodology is, given an application, to
exploit at design time its possible operation modes from the resource usage
perspective, without getting into an explosion of details. If the environment,
the inputs and the hardware architecture status would always be the same,
then it would be possible to optimally tune the system to that particular
situation. However, since a lot of parameters are changing all the time,
the system must be designed for the worst case situation, if a single static
solution is employed. Still, it is possible to tune the system at run-time
(e.g., change the processor frequency/supply voltage), based on the actual
run-time situations (RTS) . An RTS consists of a running instance of a task
and its corresponding cost (e.g., energy consumption) and one complete
run of the application on the target platform represents a sequence of RTSs
[46]. The fine tuning of the system is beneficial, because the system can
meet the performance requirements in an energy efficient way by better

2.3. System Scenarios 13

utilization of its resources. If both the searching for the best solution and the
tuning of the system has to happen entirely during run-time, the overhead
is most likely too large. So, an optimal set of configurations of the system is
selected up front, at design time. However, if a different configuration would
be stored for every possible operation mode, a huge database is required.
Therefore, the operation modes similar from the resource usage perspective
are clustered together into a single scenario, for which we store a tuned
configuration for the worst case of all operation modes included in it. The
system scenario methodology deals with issues that are common: choosing a
good scenario set, deciding which scenario to switch to (or not to switch) and
using the scenario to change the system knobs. System knobs are system
parameters that are reconfigurable, such as dynamic voltage and frequency
scaling (DVFS) or supply voltage on a memory bank. This leads us to the
different steps of the methodology:

1. Profiling

This step combines static analysis and profiling of the application and
is done at design time. The studied application is tested exploring the
whole range of inputs that is rational for the application. The system
resources and the associated cost are found. The costs are the resource
usage (e.g., number of processor cycles or memory requirements). If
the information about all possible RTSs in which a system may run
is known at design time, and the operation modes are considered in
different steps of the embedded system design, a more efficient and ef-
fective system may be built, as specific and aggressive design decisions
can be made for each operation mode [37].

2. Identification

In this step, the relevant RTSs are selected and clustered into scenar-
ios. This clustering is based on the cost trade-offs of the operation
modes, or an estimate thereof. For example, a cost trade-off between
an application’s execution time and the energy consumption of the
CPU is presented in [46]. The identification step should take as much
as possible into account the overhead costs introduced in the system
by the following steps of the methodology. As this is not easy to
achieve, an alternative solution is to refine (i.e., to further cluster) the
scenario identification during these steps.

3. Detection/Prediction

14 Background

At run-time, a scenario has to be selected from the scenario set based
on actual parameter values [33]. In general, the parameter values
are not known before the operation mode starts. They have to be
predicted to enable detection of the corresponding scenario. Detection
is not a trivial task: both the number of parameters and the number of
scenarios may be considerable, so a simple lookup in a list of scenarios
may not be feasible. The detection incurs a certain run-time overhead,
which depends on the chosen scenario set. Therefore, the scenario
set may be refined based on the detection overhead. The detection
mechanism is developed at design-time [75].

4. Switching

Switching is the act of changing the system from one set of knob posi-
tions to another. This implies some overhead (e.g., time and energy),
which may be large (e.g., when migrating a task from one processor
to another). Therefore, even when a certain scenario (different from
the current one) is predicted, it is not always a good idea to switch to
it, because the overhead may be larger than the gain. The switching
step selects at design time an algorithm, which is used at runtime to
decide whether to switch or not. It also introduces in the application
the way how to change the knob positions, and refines the scenario
set by taking into account switching overhead.

System scenarios have been applied in several cases and for a wide range
of applications [75]. The system scenario approach was presented for the
first time in [123], where it was used to improve the mapping of dynamic
applications onto a multiprocessor platform. In general, previous work on
system scenarios has mostly emphasized on exploiting scenarios, and not
on identifying and predicting them. In [23], the authors propose the us-
age of system scenarios for multimedia applications using a processor that
supports DVFS. The studied applications are split into parts with large
variation in terms of execution time. The proposed approach supplies the
information of the execution time variations in run-time, which enables the
DVFS reconfiguration of the processor. In [104], authors manually identify
system scenarios and define the most energy efficient architecture configura-
tion that meets the timing constraints. Again, a single processor is used and
its supply voltage can be changed. In [22], a system scenario approach is
used in order to choose the lowest supply voltage for which the timing con-
straints of an MPEG decoder are met. In all cases, the energy consumption
is significantly reduced without violation of the execution time deadlines.

2.3. System Scenarios 15

Figure 2.2: A scenario based design flow for embedded systems. Source: [33]

2.3.1 Use-Case vs. System Scenarios

The concept of system scenarios has been presented before in a systematic
way on a wide range of applications [33], [75], [37]. Another type of scenario
that is used in several published works is the use-case scenario. Use-case
scenario approaches generate different scenarios based on a user’s behavior.
These scenarios concretely describe, in an early phase of the development
process, the use of a future system. In case of human-computer interaction,
the scenarios appear like narrative descriptions of envisioned usage episodes,
and in case of object oriented software engineering like a unified modeling
language (UML) use-case diagram which enumerates, from functional and
timing point of view, all possible user actions and the system reactions that
are required to meet a proposed system function. In the embedded systems
domain, use-case scenarios are used in both hardware [52] [97] and software
design [27]. In these cases, the scenarios focus on the applications functional
and timing behaviors and on its interaction with the users and environment,
not on the resources required by a system to meet its constraints. These
scenarios are used as an input during system design for user-centered design
approaches.

16 Background

This thesis concentrates on system scenarios, which are derived from the
behavior of the application. These scenarios are used to reduce the system
cost by exploiting information about what can happen at run-time to make
better design decisions. While use-case scenarios classify the application’s
behavior based on the different ways it can be used, application scenarios
classify it from the resource usage perspective, based on the cost trade-off
aspects during the mapping to the platform. Fig. 2.2 depicts a design tra-
jectory using use-case and system scenarios. It starts from a product idea,
for which the product’s functionality is manually defined. These scenarios
characterize the system from a user perspective and are used as an input to
the design of an embedded system that includes both software and hardware
components. In order to optimize the design of the system, the detection
and usage of application scenarios augments this trajectory (the bottom
gray box in the figure). Once the application is coded, its scenarios related
to resource utilization are extracted in an automatic way, and they are con-
sidered for the decisions made during the following phases of the system
design. Hence, the run-time behavior of the application is classified into
several application scenarios, where the cost of the operation modes within
a scenario is always fairly similar. For each individual system scenario, more
specific and aggressive design decisions can be made.

2.4 Scratch-pad Memory Architectures

Scratch-pad memory architectures are employed in several studies with the
objective of improving system performance and energy through means such
as reduced memory access count or reduced cache misses. Scratch-pad mem-
ories provide a good alternative to cache memories due to their higher flex-
ibility. In cache memory systems, the mapping of data elements is done at
run-time, while in scratchpad memory systems this is done by the program-
mer or the compiler [53]. Unlike the cache memory, the scratchpad memory
does not need tag search operations and, as a result, it is more power ef-
ficient than the cache memory if programmers or compilers can optimally
allocate code and data on the scratchpad memory [109]. On the other hand,
caches are used due to the easy integration with the software of the system
[110]. The detection of a cache hit or miss is done automatically. If the
accessed data is currently not available in the cache, the hardware control
automatically copies the data into the cache. Thus, there is no need for the
programmer or the compiler to allocate the data, which would be a time

2.4. Scratch-pad Memory Architectures 17

consuming task for a general purpose system with several applications. In
our case, the application and the memory system are fully analyzed and the
allocation of data to a scratchpad memory can be easily done and offer a
more energy efficient solution.

An example of partitioning of data variables to scratch-pad memory and
DRAM to minimize interference between variables is given in [100]. Several
examples of clustered memory architectures have been proposed. In [59]
an adaptive scratch-pad memory is successfully used in order to handle the
dynamic behavior of multimedia applications. In [119] a clustered memory
architecture is employed and an algorithm is developed, which efficiently
uses the memory banks to achieve the maximum energy saving while satis-
fying the given performance constraint. The current approach differentiates
by presenting a methodology that combines design-time exploration and a
scratchpad memory that is dynamically reconfigurable at run-time.

A network-on-chip approach for a distributed memory system is pre-
sented in [114]. The memory architecture is part of a coarse grain recon-
figurable architecture (CGRA) and the distributed memories provide data
to the processing elements through the network. A network-on-chip is not
employed in the current study as it for our applications would introduce
unnecessary overhead. Authors in [113] present a framework that extends
conventional scratchpad memory to support dynamic application mapping
in CGRAs. The dynamic application mapping leads to addressing prob-
lems in scratchpad memories, because the data are mapped to a scratchpad
memory at compile time. The corresponding addresses are also defined dur-
ing compile time and there is no run-time mechanism that can search and
fetch the data, if there are mapped in a different location on a scratchpad
memory. However, dynamic re-mapping of application’s data can be useful
in some cases. The proposed technique solves the addressing problem and
enables the run-time application mapping. The dynamic re-mapping during
run-time is beyond the scope of the current work and the typical addressing
operation of a scratchpad memory architecture is used.

18 Background

Chapter 3

Proposed technology
platform and design
methodology approach

The proposed solution to the problem expressed in Sec.1.3 is discussed in this
chapter. The solution approach is split into two parts, namely the platform
and the methodology. The first part focuses on the memory architecture in
which dynamic applications are executed. The second part focuses on the
necessary steps to efficiently couple the applications and the platform.

3.1 Target platform architecture

The platform architecture on which an application is executed is a crucial
part of any system scenario methodology. The platform must provide a set
of reconfigurable parameters, known as system knobs, which allow different
configurations of the platform. The different configurations enable the bet-
ter adaptation of the platform to the requirements of the application for the
specific execution. Many system characteristics can be defined as system
knobs and the most common example of such a system knob is the DVFS.
DVFS changes the voltage and the frequency of a processor dynamically. A
lower frequency and voltage is often sufficient to meet the deadline of an
application, while the power consumption of the processor is reduced. An-
other knob is the supply voltage on the memory system or more specifically
the operational mode of a memory bank. A memory bank can have sev-

19

20 Proposed technology platform and design methodology approach

Core - Processing ElementRegisters

Alternative

banksizes

L1 SRAM Scratchpad

Clustered SRAM Scratchpad

L1’ Scratchpad

Figure 3.1: Target platform with focus on memory organization.

eral operational modes with different access time and static/dynamic energy
consumption characteristics.

A generic reconfigurable architecture template, which is suitable for im-
plementing system scenarios, is shown in Fig. 3.1. This dynamic memory
organization consists of two software controlled SRAM scratchpad memo-
ries, L1 and L1’, and a processing element with its registers. For simplicity
it is assumed that all data needed during execution is available in the L1
scratchpad memory without any time penalties even when large background
memories are used. This assumption is reasonable for the kind of applica-
tions that are generally executed in embedded systems and can, e.g., be
achieved through prefetching. Registers are used to save currently used el-
ements, and between the registers and the L1 scratchpad a much smaller
L1’ scratchpad is introduced. This is a clustered memory that consists of a
number of memory banks, which support different operational modes. This
work focuses solely on the exploration of the L1’ scratchpad memory archi-

3.1. Target platform architecture 21

tecture. The registers and the background memory are only presented in
Fig. 3.1 to provide a broader overview of the system architecture.

3.1.1 Target memory platform architecture

A dynamic memory platform is necessary for the memory-aware system
scenario methodology. Each configuration of the memory platform corre-
sponds to a different memory energy consumption and available memory
space. The dynamic memory platform is achieved by organizing the mem-
ory area in a varying number of banks that can be switched between different
energy states. The decision to use memory banks with varying sizes on the
clustered memory organization increases the reconfiguration options and
consequently the potential energy gains. In general, smaller memories are
more energy efficient compared to larger memories [109]. However, in some
cases large memory banks are needed in order to fit the application data
without the need for too many small memories causing complex intercon-
nects. The goal is to use the most energy efficient banks to store the most
frequently used data. In order to do that, the DTSE methodology for the
analysis and transformation of data provides useful techniques.

A clustered memory organization with a varying number of memory
banks of different sizes is explored. In Appendix A such a clustered scratch-
pad memory with four banks is introduced. It is further expanded to explore
memory designs with up to five banks in Appendix B.

3.1.2 Memory models

The memory models that are used to build the clustered memory architec-
ture heavily influence the design decisions. The presented memory model is
based on silicon characterization results undertaken by the low-power digital
design team at IMEC-nl [32]. For this purpose dedicated memory instances
were designed and taped-out in a 40nm low-power process. Measurements
covered 50 parts capturing voltage and temperature dependencies of ac-
tive and passive power as well as limiting operating conditions in terms of
speed and minimal data retention voltage. The memory architecture con-
sists of the memory banks and the interconnection between the memory
banks, which is necessary to connect the memory to the processor. The
most important parameter of the memory models in the current work is the

22 Proposed technology platform and design methodology approach

energy profile of the model, although other parameters are also included.
The following models are used in this thesis:

• Formula-driven memory model presented in [3]. The memory energy
consumption for every access in the clustered scratchpad memory is
calculated using a formula, which takes the size, the number of lines
and the word length as input parameters. The leakage power is cal-
culated in a similar way. The model supports three different states,
namely active, shut-down and retention modes. This model is pre-
sented and employed on the work included in Appendix A.

• Commercially available memory macros. For those models delay, ac-
cess energy and leakage power numbers are derived from a commercial
memory compiler. The model supports four different states, namely
active, shut-down, light-sleep and deep sleep modes. This model is
presented and employed on the work included in Appendix B.

• Experimental standard cell-based memory (SCMEM) [82] . The stan-
dard cell-based memories are synthesized using Cadence RTL com-
piler for TSMC 40nm standard library. Afterwards, place and route
of the design is performed and the final IC layout is extracted, which
contains the necessary information, such as the capacitance of each
component. The layout is used during power simulations, which are
carried out using Synopsys PrimeTime, in order to obtain the energy
numbers. The model supports four different states, namely active,
shut-down, light-sleep and deep sleep modes. This model is presented
and employed in the work included in Appendix B and E.

• Interconnection model based on synthesis results. The interconnection
model is useful in order to estimate the energy consumption in the
peripheral logic, outside the memory banks. This model is developed
and presented in the work included in Appendix E.

There are advantages and disadvantages for each of the used models.
The analytical model is easy to use, has very low computation time and can
calculate energy numbers for any possible size of memory, because the input
parameters can have any value. However, the accuracy of the model is lower
compared to the other models. The MM model provides accurate energy
numbers, but the designer must rely on a library of memory banks. The
SCMEM model has also high accuracy, as the energy numbers are based on
synthesis and simulation. The designer has the freedom to develop any de-
sirable configuration, although the process of writing, testing and simulating

3.2. Data variable based memory-aware system scenario methodology 23

every new memory design is time-consuming. Thus, a library of SCMEM is
made and the exploration is limited within the already synthesized models.
The differences in the results presented in Appendix A and B is mainly due
to the different models and their accuracy. The interconnection model is in
both cases omitted, because the contribution of the interconnection to the
overall energy consumption is low. The model is based on synthesis, so it is
accurate for the specific synthesized design but the generalization to other
designs reduces the accuracy.

3.1.3 Technology scaling

The proposed clustered memory architecture is an energy efficient platform
for dynamic data-intensive applications. The impact of the technology scal-
ing on the energy efficiency is also explored and presented in Appendix E.
The operationally independent memory banks provide an energy efficient
platform, but come with an interconnection overhead due to the connec-
tions between the memory banks. The energy consumption of the memory
banks is reduced due to the scaling that results in smaller memory cells
with lower voltage. On the other hand, the energy consumption on the
wiring follows a slower reduction curve. Thus, the interconnection energy
overhead will increase in the future. A detailed memory and interconnect
energy model is developed that includes the scaling impact. Experimen-
tal results based on the model suggests that the proposed target memory
platform will continue to be energy efficient.

3.2 Data variable based memory-aware system sce-
nario methodology

3.2.1 Methodology Overview

The memory-aware system scenario methodology is based on the observa-
tion that the memory subsystem requirements at run-time vary significantly
due to dynamic variations of memory needs in the application code. Most
existing design methodologies define the memory requirements as that of
the most demanding task and tune the system in order to meet its needs

24 Proposed technology platform and design methodology approach

Profiling Identification

Detection Switching

Design-time
Run-time

Figure 3.2: System scenario methodology steps. Source: [33]

[75]. Obviously, this approach leads to unused memory area for tasks with
lower memory requirements, since those tasks could meet their needs using
fewer resources and consequently consuming less energy.

The implementation of the system scenario methodology deals with two
main problems:

• The extra overhead introduced by the system scenarios. The usage of
system scenarios introduces different types of overheads: from switch-
ing between scenarios, from storing code for a set of scenarios instead
of a single application instance, from predicting the operation mode,
etc.

• The new functionality added to handle the system scenarios at run-
time. The usage of system scenarios requires the implementation of
extra functionality: deciding which scenario to switch to (or not to
switch), using the scenario to change the system configuration, etc.

The decision of what constitutes a scenario has to take into account
all these overheads, which leads to a complicated problem. Therefore, the
system scenario approach is divided into discrete steps presented in Fig.
3.2. The implementation of new functionality has to exploit all the possible
system knobs of the platform. Therefore, a library of reconfigurable memory
models is employed in this work.

Designing with system scenarios is workload adaptive and offers different
configurations of the platform and the freedom of switching to the most
efficient scenario at run-time. A system scenario is a configuration of the
system that combines similar RTSs. The system is configured to meet the
cost requirements of an RTS by choosing the appropriate system scenario,
which is the one that satisfies the requirements using minimal power. The
possible RTSs in which the application may run, together with their resource
needs should be known and taken into account during design.

3.2. Data variable based memory-aware system scenario methodology 25

3.2.2 Design-time profiling based on data variables

Application profiling is the analysis of the memory requirements for the
studied application and is performed at design-time. The analysis focuses
on the allocated memory size during execution for a wide range of inputs.
The profiling stage consists of running the application code with suitable
input data often found in a database, in order to produce profiling results.
The profiling reveals parts of the application code with high memory activity
and with varying memory access intensity, which possibly depends on input
data variables. Because of this behavior, a static study of the application
code alone is insufficient since the target applications for this methodology
have non-deterministic behavior that is driven by input.

The whole set of possible inputs is studied and analyzed, which is timely
possible during design-time. Even a bounded semi-infinite set of input values
can be analyzed based on the application’s code. For example, assuming
that an input value dynamically changes within a range, the corresponding
memory requirements are calculated by taking the minimum and maximum
limits for that range. The minimum and maximum limits can be found
with the help of the application’s code. Thus, the profiling in this case
should not be perceived as a training series but rather as a full analysis
of the whole input space. All possible application inputs that can occur
at run-time belong to the input space analyzed at design-time. There are
several ways that profiling can be performed. Current program monitoring
software cannot offer the needed level of detail. Debuggers and memory
tools, such as Valgrind [86], or direct hard-coded profiling are preferable
methods, because of their higher accuracy.

Profiling results provided to the designer include complete information
about allocated memory size values together with the number of occurrences
and duration for each of these memory size values. Moreover, correlation
between input data variable values and the resulting memory behavior can
possibly be observed. This information is useful for the clustering step that
follows. Profiling also reveals the worst case memory usage for a given set
of inputs. The memory usage is measured using techniques presented in
[66], in which authors compute the minimum amount of memory resources
required to store the elements of an application. Appendix B includes a
detailed presentation of this step. Appendix C gives an example of how the
methodology can be applied to a wireless application.

26 Proposed technology platform and design methodology approach

3.2.3 Design-time system scenario identification based on
data variables

The scenario identification is the process of organizing the profiled memory
sizes into groups with similar characteristics, which are defined as system
scenarios. Grouping or clustering is necessary, because it will be extremely
costly to have a different scenario for every possible size, due to the num-
ber of memories needed. Clustering neighboring RTSs is a rational choice,
because two instances with similar memory needs have similar energy con-
sumption. Independently of the size of the exploration space, i.e. the num-
ber of different inputs and RTSs, the number of scenarios is kept low. This is
achieved by clustering more RTSs into the same scenario when the number
of RTSs is higher. The scenario identification phase always aims at pro-
viding a number of scenarios that can be handled by the run-time manager
without introducing extreme overheads.

The memory size and the frequency of occurrence of each RTS are not
the only two parameters that should be taken into consideration during
the system scenario identification. The memory size of each RTS results
in a different energy cost depending on the way it is mapped into mem-
ory. The impact of the different assignment possibilities is included into
the clustering by introduction of energy as a cost metric. The different
assignments and their characteristics are explored using the principles of
the DTSE methodology. Increasing the number of memory banks results in
lower energy per access since the most accessed elements can be assigned to
smaller and more energy efficient banks. Unused banks can be switched off.
The scenario identification is performed semi-automatically by developing
application specific scripts that explore the grouping possibilities for the
extracted RTSs.

The system scenario identification step includes the selection of the data
variables that determine the active system scenario. This can be achieved
by manual inspection of the application code, combined with the applica-
tion’s data input. The variable selection is done before clustering of RTSs
into scenarios. For the choice of identification variables, there is a trade-off
between the complexity and the accuracy of the scenario detection step. On
one hand, if the identification is done using a group of complex variables
and their correlation, there is a number of calculations needed in order to
predict the active scenario. On the other hand, if the value of a single
variable is monitored for scenario identification, the scenario detection is
straightforward. Obviously, the accuracy of the scenario detection can be

3.2. Data variable based memory-aware system scenario methodology 27

higher in the first case, while the computational needs for scenario detection
are lower in the second case. In other words, the more accurate scenario
detection, the more resources are used by the run-time manager for detec-
tion. In principle, the number of identification variables should be low and
in most of the studied applications only a couple of identification variables
are enough.

Appendix B includes a detailed presentation of this step. Appendix
C gives an example of how the methodology can be applied to a wireless
application.

3.2.4 Run-time system scenario detection and switching based
on data variables

During run-time, all the switching decisions are taken based on the platform
and application information. In this work, we use a simple and straight-
forward switching approach. Memory models provide the necessary infor-
mation for the switching decision, namely the energy and the time penalty
for switching between stages. The switching step consists of all platform
configuration decisions that can be made at run-time, such as the change in
the power mode of memory units. Switching takes place when the switch-
ing cost is lower than the energy gains achieved by switching. The run-time
manager compares the memory energy consumption of executing the next
task in the current active system scenario with the energy consumption of
execution with the optimal system scenario. If the difference is greater than
the switching cost, then scenario switching is performed. Switching costs
are defined by the platform and include all memory energy penalties for run-
time reconfigurations of the platform, e.g., extra energy needed to change
state of a memory unit.

Appendix B includes a detailed presentation of this step. Appendix
C gives an example of how the methodology can be applied to a wireless
application.

3.2.5 Interleaving exploration based on data variables

Interleaving exploration is a complementary technique applied on the appli-
cation that can further improve energy gains. Interleaving is a data layout
transformation for combining the storage of multiple arrays, so that blocks

28 Proposed technology platform and design methodology approach

of data from different arrays are stored contiguously, in order to achieve
spatial locality in memory accesses. By interleaving we are able to group
the data to be accessed and thus reduce the number of memory accesses
for accessing them. The basic principles of the performed interleaving ex-
ploration are presented in [106]. Interleaving improves the spatial locality
and removes redundant data in order to achieve higher utilization of the
hardware resources, especially on single instruction multiple data (SIMD)
architectures.

The impact of the data interleaving exploration on the number of mem-
ory accesses is significant. When the accesses are irregular and the data are
organized in index order, each memory access results in a small amount of
useful data due to the presence of holes. In contrast the re-organization of
the data provides a sequence of useful data without many holes between
them. Thus, a single access to the memory results in a higher number of
useful elements. The overall number of memory accesses is reduced, as each
access has a higher utilization.

The goal of the interleaving exploration is to select the optimal set of
memory banks and to make the optimal decision regarding the mapping of
the data to the different memory banks. The parts of the interleaved data
that consist mostly of useful elements are mapped into memory banks with
low energy per access but at the same time with the necessary access time.
The parts of the interleaved data that consist of access holes and rarely
accessed elements are optimally mapped into memory banks with energy
efficient retention states. In both cases the size of the memory banks should
be adequate to fit the stored data but at the same time as small as possible
to avoid area and energy penalties.

The interleaving decisions influence the data-to-memory mapping deci-
sions and vice versa. Assuming that the mapping is performed first using
the initial data the following interleaving options are reduced. For exam-
ple, the decision to map two arrays on different memory banks removes the
option to interleave them later. Optimizing both the interleaving and the
memory mapping at the same time results in a large and inefficient loop of
constrain propagation between the two exploration phases. The one way of
constraint propagation is from the interleaving exploration to the memory
mapping exploration. In more detail, the best interleaving solution, without
taking into account the distributed memory organization, would lead only to
a local optimum. Applying the local optimum to the memory organization
may results in changes due to platform limitations and move to another
optimum. The other way of constraint propagation is from the memory

3.2. Data variable based memory-aware system scenario methodology 29

mapping exploration to the interleaving exploration. In more detail, the
data-to-memory mapping exploration would lead to an optimal solution for
the specific memory architecture. Applying that solution to the application
data may results in changes due to data dependencies in the application’s
code. In both cases, new iterations on data interleaving and memory map-
ping exploration steps are maybe needed. To solve this problem, all the
platform parameters are up front defined and taken into consideration for
the interleaving exploration, which is performed first. Then, the best data
interleaving options are propagated to the data-to-memory mapping step.

Appendix D presents the full interleaving methodology.

30 Proposed technology platform and design methodology approach

Chapter 4

Research Results and
Contributions

This thesis is a collection of papers that I have authored or coauthored dur-
ing my time as a PhD student. Each paper is presented in the appendixes.
Rather than including the double-column PDF files, I have opted to refor-
mat each paper to increase readability of the graphs and text. However, I
have not altered the text or figures, only the layout and size. The order of
the papers presented here is in rough chronological order and corresponds
to the different research contributions. In practice, some of the research in
these papers have been conducted concurrently.

4.1 Contribution A: Development of the Memory-
Aware System Scenario Methodology

The main contribution of this thesis is the development of the system sce-
nario methodology for dynamic data-intensive applications. The methodol-
ogy provides a systematic way for design-time and run-time handling of the
memory subsystem. The work related to the development of the methodol-
ogy is presented in [29], [28] and [125].

31

32 Research Results and Contributions

4.1.1 Energy Impact of Memory-Aware System Scenario Ap-
proach

Abstract

System scenario methodologies propose the use of different scenarios, e.g.,
different platform configurations, in order to exploit variations in compu-
tational and memory needs during the lifetime of an application. In this
paper several extensions are proposed for a system scenario based method-
ology with a focus on improving memory organization. The conventional
methodology targets mostly execution time while this work aims at includ-
ing memory costs into the exploration. The effectiveness of the proposed
extensions is demonstrated and tested using two real applications, which
are dynamic and suitable for execution on modern embedded systems. Re-
ductions in memory energy consumption of 40 to 70% is shown.

Main Contributions

This work is a case-study of two applications, which strongly motivates the
potential gains from using system scenarios in the memory subsystem. The
fact that the chosen applications are from two different domains, supports
the effectiveness of the methodology across different domains. The main
ideas of the methodology are presented, although the presentation is heavily
coupled with the two case-study examples.

Roles of the Authors

I developed the detailed approach, performed the necessary experiments,
and wrote the paper, partly based on some initial ideas of Kjeldsberg and
Catthoor. Hammari provided one of the applications and Huisken helped
in the development of the energy model. I orally presented the paper in the
conference. The full paper is presented in Appendix A.

4.1.2 Exploration of energy efficient memory organizations
for dynamic multimedia applications using system sce-
narios

Abstract

We propose a memory-aware system scenario approach that exploits vari-
ations in memory needs during the lifetime of an application in order to

4.1. Contribution A: Development of the Memory-Aware System Scenario

Methodology 33

optimize energy usage. Different system scenarios capture the application’s
different resource requirements that change dynamically at run-time. In
addition to computational resources, the many possible memory platform
configurations and data-to-memory assignments are important system sce-
nario parameters. In this work we focus on clustering of different memory
requirements into groups and presenting the system scenario generation in
detail. The clustering is a non-trivial problem due to the many different
memory requirements, which leads to a very large exploration space. An
extended memory model is used as a practical enabler, in order to evalu-
ate the methodology. The memory models include existing state-of-the-art
memories, available from industry and academia, and we show how they
are employed during the system design exploration phase. Both commer-
cial SRAM and standard cell based memory models are explored in this
study. The effectiveness of the proposed methodology is demonstrated and
tested using a large set of multimedia benchmarks published in the Poly-
bench, Mibench and Mediabench suites, representative for the domain of
multimedia applications. Reduction in energy consumption in the memory
subsystem ranges from 35% to 55% for the chosen set of benchmarks.

Main Contributions

This work is a complete and formal presentation of the methodology work-
flow. The theoretical presentation is accompanied with an extensive number
of results for a large set of benchmark applications. The methodology is both
extended and better formulated compared to the previous paper.

Roles of the Authors

This work was first presented at a workshop during Embedded Systems
Week, as an oral and poster submission. Later, it was extended and pub-
lished as an invited journal paper. The main idea is based on the previous
paper. I performed the necessary simulations and wrote the paper, partly
based on suggestions and ideas from Kjeldsberg and Catthoor. The full
paper is presented in Appendix B.

34 Research Results and Contributions

4.2 Contribution B: Combined Implementation of
the System Scenario Methodology on Memory
Subsystem and Processing Elements

The work related to this contribution was published as a conference paper
[125].

Abstract

This work explores the power management options for a transmitting wire-
less system using system scenarios. We exploit the variations in the com-
munication channel and the protocol requirements during the lifetime of
a transmission, in order to optimize energy usage. Both the transmission
signal power and the memory subsystem are taken into consideration. Dif-
ferent system scenarios and the corresponding configurations capture the
different resource requirements, which change dynamically during transmis-
sion. Signal power on the antenna and active memory banks are the two
main platform parameters explored in this study and sufficiently detailed
system models are presented for both. The trade-off between the accuracy
of the generated system scenarios and the switching cost between them is
analyzed. The exploration is performed for an increasing number of system
scenarios, from 1 to 14, and the reported power gains are over 95% and over
25% on the signal power and the memory subsystems respectively.

Main Contributions

This work presents the implementation of the system scenario methodol-
ogy to a wireless system. The memory-aware methodology developed in
this thesis is combined with the general system scenario methodology for
processing elements. The target application is a widely used and recent
benchmark. The exploration includes all the different subsystems and an
interesting analysis of the overhead on the scenario generation is presented.
The use of system scenarios in the whole system improves the overall energy
efficiency.

Roles of the Authors

My contribution to this work is the experimental and the writing part re-
garding the memory subsystem. Zompakis did all the experiments and the
writing regarding the processing subsystem and the wireless application.
The oral presentation was also performed by Zompakis. The rest of the
authors contributed to the initial ideas and the improvement of the text.

4.3. Contribution C: Integrated Interleaving and Data-to-Memory Mapping

35

The full paper is presented in Appendix C.

4.3 Contribution C: Integrated Interleaving and
Data-to-Memory Mapping

The work related to this contribution is submitted as a journal paper and
is currently in its second round of review.

Abstract

This work presents a methodology for efficient exploration of data inter-
leaving and data-to-memory mapping options for SIMD (Single Instruction
Multiple Data) platform architectures. The system architecture consists of
a reconfigurable clustered scratch-pad memory and a SIMD functional unit,
which performs the same operation on multiple input data in parallel. The
memory accesses contribute substantially to the overall energy consumption
of an embedded system executing a data intensive task. The scope of this
work is the reduction of the overall energy consumption by increasing the
utilization of the functional units and decreasing the number of memory
accesses. The presented methodology is tested using a number of bench-
mark applications with irregularities in their access scheme. Potential gains
are calculated based on the energy models both for the processing and the
memory part of the system. The reduction in energy consumption after
efficient interleaving and mapping of data is between 40% and 80% for the
complete system and the studied benchmarks.

Main Contributions

This work is also a combination of the developed methodology and another
complementary approach. The developed methodology is compatible with
code transformation techniques and this work focus on the data interleaving.
The integration of the two required significant modification and integration
work and the final work-flow was tested using a number of benchmarks.
This work shows that the memory-aware system scenario methodology is
complementary to other techniques that improve energy efficiency.

Roles of the Authors

The initial idea for this work is partly based on suggestions by Catthoor.
The necessary experiments were implemented by me with the help of Sharma.
The majority of the paper was written by me and the rest by Sharma, while

36 Research Results and Contributions

all the authors contributed on the further improvement of the text with
their feedback. The full paper is presented in Appendix D.

4.4 Contribution D: Interconnection Cost Model-
ing and Scaling

The work related to this contribution is presented as a technical report.

Abstract

Power consumption is a key limiting factor in modern embedded devices.
The memory architecture contributes significantly to the overall power con-
sumption of the system. Among many proposed techniques, one effective
system design approach to reduce the memory power needs is the design
of a dynamically reconfigurable clustered memory architecture. The oper-
ationally independent memory banks provide an energy efficient platform,
but come with an interconnection overhead due to the connections between
the memory banks. Thus, there is a trade-off between the energy gains by
increasing the number of memory banks and the increase in interconnection
overhead. This work explores the future development of the interconnec-
tion overhead, as the interconnection cost is expected to increase while the
process technology shrinks to 5nm. The current study employs both CAD
tools with simulation results using the current technology and projections
provided by institutions. We use predictive technology models supported
by information from ITRS and IMEC’s interconnect technologists. A model
is developed that provide a sufficiently accurate estimate of the intercon-
nection cost overhead for clustered memory architectures consisting of two
to five memory banks in technologies ranging from 40nm to 5nm. The
model shows that the interconnect overhead is as low as 10.9 % even for
the most aggressive technologies. Hence a dynamically reconfigurable clus-
tered memory architecture is a viable solution also for future designs, even
if the optimal number of memory banks may be reduces as shown in an
experiment with a representative real life application.

Main Contributions

This work investigates the effectiveness of the memory-aware system sce-
nario methodology in the future. A reconfigurable memory architecture is a
requirement for the implementation of the methodology, thus it is important
to study the development of similar architectures in the future.

4.4. Contribution D: Interconnection Cost Modeling and Scaling 37

Roles of the Authors

I performed the necessary development work and wrote the technical re-
port, partly based on suggestions from Kjeldsberg and Catthoor. The full
technical report is presented in Appendix E.

38 Research Results and Contributions

Chapter 5

Conclusions and Future
Work

5.1 Conclusions

The main scope of this dissertation is to develop a system scenario method-
ology that focuses on the memory organization of embedded applications
and platforms. The developed methodology exploits memory requirement
variations and achieves significant reductions in memory energy consump-
tion, which is of great importance in embedded devices. The memory-aware
system scenario methodology is suited for applications that experience dy-
namic behavior with respect to memory organization utilization during their
execution. A wide range of application domains, including multimedia, wire-
less and bio-medical applications, are tested to prove the effectiveness of the
methodology and energy reductions of up to 60% have been demonstrated.

An extensive memory energy model is developed in order to have suffi-
ciently accurate simulations and results. A library is built based on com-
mercial and experimental state-of-the-art memory models. The library is
employed for the construction of reconfigurable memory architectures, which
are suitable for the implementation of system scenarios. Another model is
developed to study the impact of the interconnect on the overall energy.
The model suggests that overhead will be kept low in the short term and
will increase within reasonable levels in the mid-long term. Therefore, the
design of energy efficient clustered memory architecture will continue to be
a good design choice.

The testing of the methodology on two applications from bioengineering

39

40 Conclusions and Future Work

and wireless communications domains justifies its effectiveness in reduc-
tion of memory energy consumption. The memory-aware system scenario
methodology is also tested using a wide range of multimedia applications,
which allow us to draw conclusions about different kinds of dynamic behav-
ior and their effect on the energy gains achieved using the methodology. The
results demonstrate the effectiveness of the methodology reducing the mem-
ory energy consumption with between 35% and 55%. Since memory size re-
quirements are still met in all situations, performance is not reduced. The
presented results show that the memory-aware system scenario methodology
is suited for applications that experience dynamic behaviour with respect
to memory organisation utilization during their execution.

Apart from justifying the effectiveness of the system scenarios method-
ology on the memory, this work explores the compatibility of the methodol-
ogy with other techniques. Firstly, the application of the system scenarios
methodology in the complete system, including the memory and the pro-
cessing subsystem, is studied. The power management options for a wireless
system using system scenarios is explored. The dynamic parameters and the
variations during the transmission for the targeted wireless protocol are an-
alyzed. Based on the analysis and the system models, system scenarios are
generated for the case study, in order to optimize energy usage. Both the
signal power and the memory subsystem are taken into consideration. The
results demonstrate the effectiveness of the methodology and illustrate the
interesting trade-off between the clustering overhead and the switching cost.

Secondly, the proposed methodology is integrated with code and data
transformation techniques. This work presents a methodology for efficient
exploration of data interleaving and data-to-memory mapping options for
SIMD (Single Instruction Multiple Data) platform architectures. The method-
ology focuses on reducing the overall energy consumption by reducing the
number of memory accesses and the energy per access. A wide range of ap-
plications is studied that allow us to draw conclusions about different kinds
of dynamic behavior and their effect on the energy gains achieved using the
methodology. The improvement in the total system energy consumption
after efficient interleaving and mapping of data is between 40% and 80%
for the studied benchmarks having the type of irregularities in their access
scheme that benefit most from the methodology.

The development of an interconnection model for the proposed memory
architecture suggests that the interconnection overhead will be kept low in
the short term and will increase within reasonable levels in the mid-long
term. Therefore, this thesis concludes that the design of energy efficient

5.2. Future Work 41

clustered memory architecture will continue to be a good design choice.

5.2 Future Work

Future research to improve the current work can focus on the system sce-
nario methodology and/or the memory models and architectures.

One improvement is to fully automate the memory-aware system sce-
nario methodology. The optimal implementation should take as an input
the application code and the library of memory models and automatically
generate the most energy efficient memory architecture. In the current work
several scripts were developed to speed up the design space exploration, but
the work-flow is not fully automated. The improvement of the prediction
and the identification phase of the methodology could be another significant
contribution. A multidimensional scenario clustering for the whole system
is an interesting improvement. The N-dimensional exploration space will
include several parameters, such as memory energy, processing element en-
ergy, execution time and reliability, and new methods should be developed
to handle the explosion of the exploration space.

The system scenarios currently focus on analyzing one specific applica-
tion. A future extension would be to study a number of concurrent task
executed on a given embedded systems. In that case the system scenarios
can overlap between applications, i.e. one scenario may group RTSs from
different applications. However, the system requirements of the different
applications should be comparable for the methodology to be applicable.
Another research direction could be the exploration of the effects that an
update version of the studied application has on the system. The system
scenario methodology uses a hardware/software co-design approach, so a
difference in the application code may have a significant impact on the ef-
fectiveness of the designed memory platform. A possible solution could be
the addition of a margin to each system scenario by the designer.

The accuracy of the energy models can be significantly increased. More
detailed models can be developed based on extensive research and simula-
tion. All the possible clustered memory architectures can be synthesized
and tested to get a detailed report on the energy numbers, although it is
a very time consuming task. Especially the interconnect model can be-
come more detailed and accurate by taking delay into consideration. The
synthesis of more memory designs and configurations can also improve the
model. When newer technologies become available in the CAD tools, the

42 Conclusions and Future Work

designs can be re-synthesized and the model can be calibrated. A manu-
ally improved place and route strategy will provide more accurate results
regarding the overhead for clustered memory architectures.

An architecture with point-to-point connections between all or some of
the memory banks could be explored. Such an architecture allows the direct
transfer of data between the memory banks without the intervention of the
processor. The cost of moving data between banks should be modeled in
order to take thisintocaccount as part of the exploration trade-off. The data
transfers between the memory banks may be useful in some cases, although
the interconnection overhead is expected to increase significantly.

Bibliography

[1] Santosh G Abraham and Scott A Mahlke. Automatic and efficient
evaluation of memory hierarchies for embedded systems. In Microar-
chitecture, 1999. MICRO-32. Proceedings. 32nd Annual International
Symposium on, pages 114–125. IEEE, 1999.

[2] Berkin Akin, Franz Franchetti, and James C Hoe. Data reorganization
in memory using 3d-stacked dram. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture, pages 131–143.
ACM, 2015.

[3] Antonio Artes, Jose L Ayala, Ashoka Visweswara Sathanur, Jos
Huisken, and Francky Catthoor. Run-time self-tuning banked loop
buffer architecture for power optimization of dynamic workload appli-
cations. In VLSI and System-on-Chip (VLSI-SoC), 2011 IEEE/IFIP
19th International Conference on, pages 136–141. IEEE, 2011.

[4] Prithviraj Banerjee, John Chandy, Manish Gupta, EW Hodges,
John G Holm, Antonio Lain, Daniel J Palermo, Shankar Ramaswamy,
Ernesto Su, et al. The paradigm compiler for distributed-memory
multicomputers. Computer, 28(10):37–47, 1995.

[5] Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, David A
Padua, et al. Automatic program parallelization. Proceedings of the
IEEE, 81(2):211–243, 1993.

[6] Gaurav Bansal, Ziaul Hasan, Md Jahangir Hossain, and Vijay K Bhar-
gava. Subcarrier and power adaptation for multiuser ofdm-based cog-
nitive radio systems. In Communications (NCC), 2010 National Con-
ference on, pages 1–5. IEEE, 2010.

[7] Gaurav Bansal, Md Jahangir Hossain, and Vijay K Bhargava. Op-
timal and suboptimal power allocation schemes for ofdm-based cog-

43

44 BIBLIOGRAPHY

nitive radio systems. Wireless Communications, IEEE Transactions
on, 7(11):4710–4718, 2008.

[8] Andrew Bateman. Digital communications: design for the real world.
Addison-Wesley, 1999.

[9] Luca Benini, Alberto Macii, Enrico Macii, and Massimo Poncino. In-
creasing energy efficiency of embedded systems by application-specific
memory hierarchy generation. IEEE Design & Test of Computers,
1(2):74–85, 2000.

[10] Luca Benini, Alberto Macii, and Massimo Poncino. A recursive algo-
rithm for low-power memory partitioning. In Low Power Electronics
and Design, 2000. ISLPED’00. Proceedings of the 2000 International
Symposium on, pages 78–83. IEEE, 2000.

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7,
August 2011.

[12] E Bugnion, Shih-Wei Liao, BR Murphy, SP Amarasinghe, JM An-
derson, MW Hall, and Monica S Lam. Maximizing multiprocessor
performance with the suif compiler. Computer, 4(12):84–85, 1996.

[13] RTL Cadence. Compiler users manual, 2014.

[14] Francky Catthoor, Sven Wuytack, G.E. de Greef, Florin Banica, Lode
Nachtergaele, and Arnout Vandecappelle. Custom Memory Manage-
ment Methodology: Exploration of Memory Organisation for Embed-
ded Multimedia System Design. Springer, 1998.

[15] Nanda Kishore Chavali and Venkata Krishna Reddy Pilli. Adaptive
time synchronization for vht wireless lan. In Proceedings of the In-
ternational Conference on Advances in Computing, Communications
and Informatics, pages 312–317. ACM, 2012.

[16] Shuai Che, Jeremy W Sheaffer, and Kevin Skadron. Dymaxion: opti-
mizing memory access patterns for heterogeneous systems. In Proceed-
ings of 2011 international conference for high performance computing,
networking, storage and analysis, page 13. ACM, 2011.

BIBLIOGRAPHY 45

[17] Fei Chen and Edwin Hsing-Mean Sha. Loop scheduling and partitions
for hiding memory latencies. In Proceedings of the 12th international
symposium on System synthesis, page 64. IEEE Computer Society,
1999.

[18] James Hsueh-Chung Chen, Theodorus E Standaert, Emre Alptekin,
Terry Spooner, Vamsi Paruchuri, et al. Interconnect performance and
scaling strategy at 7 nm node. In Interconnect Technology Confer-
ence/Advanced Metallization Conference (IITC/AMC), 2014 IEEE
International, pages 93–96. IEEE, 2014.

[19] Wei Chen, Pingyi Fan, and Zhigang Cao. Water filling in cellar: the
optimal power allocation policy with channel and buffer state informa-
tion. In Communications, 2005. ICC 2005. 2005 IEEE International
Conference on, volume 1, pages 537–541. IEEE, 2005.

[20] Eric Cheung, Harry Hsieh, and Felice Balarin. Memory subsystem
simulation in software tlm/t models. In Design Automation Confer-
ence, 2009. ASP-DAC 2009. Asia and South Pacific, pages 811–816.
IEEE, 2009.

[21] Doosan Cho, Ilya Issenin, Nikil Dutt, Jonghee W Yoon, and Yunheung
Paek. Software controlled memory layout reorganization for irregular
array access patterns. In Proceedings of the 2007 international confer-
ence on Compilers, architecture, and synthesis for embedded systems,
pages 179–188. ACM, 2007.

[22] Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pe-
dram. Frame-based dynamic voltage and frequency scaling for a mpeg
decoder. In Proceedings of the 2002 IEEE/ACM international confer-
ence on Computer-aided design, pages 732–737. ACM, 2002.

[23] Eui-Young Chung, Giovanni De Micheli, and Luca Benini. Contents
provider-assisted dynamic voltage scaling for low energy multimedia
applications. In Proceedings of the 2002 international symposium on
Low power electronics and design, ISLPED ’02, pages 42–47, 2002.

[24] International Roadmap Committee et al. International
technology roadmap for semiconductors: 2013 edition
executive summary. Semiconductor Industry Associa-
tion, San Francisco, CA, available at: http://www. itrs.
net/Links/2013ITRS/2013Chapters/2013ExecutiveSummary. pdf,
2013.

46 BIBLIOGRAPHY

[25] International Roadmap Committee et al. Process integration, devices,
and structures (pids). Semiconductor Industry Association, San Fran-
cisco, CA, 2013.

[26] Xavier Costa-Pérez, Andreas Festag, Hans-Joerg Kolbe, Juergen
Quittek, Stefan Schmid, Martin Stiemerling, Joerg Swetina, and Hans
Van Der Veen. Latest trends in telecommunication standards. ACM
SIGCOMM Computer Communication Review, 43(2):64–71, 2013.

[27] Bruce Powel Douglass. Real time UML: advances in the UML for
real-time systems. Addison-Wesley Professional, 2004.

[28] Iason Filippopoulos, Francky Catthoor, and Per Gunnar Kjeldsberg.
Exploration of energy efficient memory organisations for dynamic mul-
timedia applications using system scenarios. Design Automation for
Embedded Systems, pages 1–24, 2013.

[29] Iason Filippopoulos, Francky Catthoor, Per Gunnar Kjeldsberg, Elena
Hammari, and Jos Huisken. Memory-aware system scenario approach
energy impact. In NORCHIP, 2012, pages 1 –6, nov. 2012.

[30] Daniel D Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong. Specifi-
cation and design of embedded systems. PTR Prentice Hall Englewood
Cliffs, New Jesey, USA, 1994.

[31] Philip Garcia, Katherine Compton, Michael Schulte, Emily Blem, and
Wenyin Fu. An overview of reconfigurable hardware in embedded
systems. EURASIP J. Embedded Syst., 2006(1):13–13, January 2006.

[32] Tobias Gemmeke, Mohamed M. Sabry, Jan Stuijt, Pieter Schuddinck,
Praveen Raghavan, and Francky Catthoor. Near Threshold Com-
puting: Technology, Methods and Applications, chapter Memories for
NTC, pages 75–100. Springer International Publishing, Cham, 2016.

[33] Stefan Valentin Gheorghita. Dealing with dynamism in embedded sys-
tem design: application scenarios. PhD thesis, Technische Universiteit
Eindhoven, 2007.

[34] Stefan Valentin Gheorghita. Dealing with dynamism in embedded sys-
tem design: application scenarios. PhD thesis, Technische Universiteit
Eindhoven, 2007.

BIBLIOGRAPHY 47

[35] Stefan Valentin Gheorghita, Twan Basten, and Henk Corporaal.
Intra-task scenario-aware voltage scheduling. In Proceedings of the
2005 international conference on Compilers, architectures and syn-
thesis for embedded systems, pages 177–184. ACM, 2005.

[36] Stefan Valentin Gheorghita, Twan Basten, and Henk Corporaal. Ap-
plication scenarios in streaming-oriented embedded system design. In
System-on-Chip, 2006. International Symposium on, pages 1–4. IEEE,
2006.

[37] Stefan Valentin Gheorghita, Martin Palkovic, Juan Hamers, Arnout
Vandecappelle, Stelios Mamagkakis, Twan Basten, Lieven Eeck-
hout, Henk Corporaal, Francky Catthoor, and Frederik Vandeputte.
System-scenario-based design of dynamic embedded systems. ACM
Transactions on Design Automation of Electronic Systems (TO-
DAES), 14(1):3, 2009.

[38] Stefan Valentin Gheorghita, Martin Palkovic, Juan Hamers, Arnout
Vandecappelle, Stelios Mamagkakis, Twan Basten, Lieven Eeckhout,
Henk Corporaal, Francky Catthoor, Frederik Vandeputte, et al.
System-scenario-based design of dynamic embedded systems. ACM
Transactions on Design Automation of Electronic Systems (TO-
DAES), 14(1):3, 2009.

[39] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose
microprocessors. Solid-State Circuits, IEEE Journal of, 31(9):1277
–1284, sep 1996.

[40] Peter Grun, Nikil Dutt, and Alex Nicolau. Mist: An algo-
rithm for memory miss traffic management. In Proceedings of the
2000 IEEE/ACM international conference on Computer-aided design,
pages 431–438. IEEE Press, 2000.

[41] Yibo Guo, Qingfeng Zhuge, Jingtong Hu, Juan Yi, Meikang Qiu, and
Edwin HM Sha. Data placement and duplication for embedded mul-
ticore systems with scratch pad memory. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 32(6):809–
817, 2013.

[42] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown. Mibench: A free, commercially representative em-
bedded benchmark suite. In Workload Characterization, 2001. WWC-
4. 2001 IEEE International Workshop on, pages 3–14. IEEE, 2001.

48 BIBLIOGRAPHY

[43] Javier J Gutierrez, Maria J Escalona, Manuel Mejias, Jesus Torres,
and Arturo H Centeno. A case study for generating test cases from
use cases. In Research Challenges in Information Science, 2008. RCIS
2008. Second International Conference on, pages 209–214. IEEE,
2008.

[44] Mary W Hall, Timothy J Harvey, Ken Kennedy, Nathaniel McIntosh,
Kathryn S McKinley, Jeffrey D Oldham, Michael H Paleczny, and
Gerald Roth. Experiences using the ParaScope Editor: an interactive
parallel programming tool, volume 28. ACM, 1993.

[45] Juan Hamers and Lieven Eeckhout. Scenario-based resource predic-
tion for qos-aware media processing. Computer, (10):56–63, 2010.

[46] E. Hammari, F. Catthoor, J. Huisken, and P G Kjeldsberg. Applica-
tion of medium-grain multiprocessor mapping methodology to epilep-
tic seizure predictor. In NORCHIP, 2010, pages 1 –6, nov. 2010.

[47] Elena Hammari, Francky Catthoor, Per Gunnar Kjeldsberg, Jos
Huisken, K Tsakalis, and L Iasemidis. Identifying data-dependent
system scenarios in a dynamic embedded system. In Proceedings of
the International Conference on Engineering of Reconfigurable Sys-
tems and Algorithms (ERSA), page 1. The Steering Committee of
The World Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp), 2012.

[48] Stefaan Himpe, Francky Catthoor, G De Coninck, and J Van Meerber-
gen. Mtg and grey-box: modeling dynamic multimedia applications
with concurrency and non-determinism. 2002.

[49] J. Hulzink, M. Konijnenburg, M. Ashouei, A. Breeschoten, T. Berset,
J. Huisken, J. Stuyt, H. de Groot, F. Barat, J. David, et al. An ultra
low energy biomedical signal processing system operating at near-
threshold. Biomedical Circuits and Systems, IEEE Transactions on,
5(6):546–554, 2011.

[50] L.D. Iasemidis et al. Long-term prospective on-line real-time seizure
prediction. Clinical Neurophysiology, 116(3):532–544, 2005.

[51] IEEE. Specification frame work for ac: Ieee 802.11-09/0992r21, 2011.

[52] Mugurel Theodor Ionita. Scenario-based system architecting: a sys-
tematic approach to developing future-proof system architectures. PhD
thesis, Technische Universiteit Eindhoven, 2005.

BIBLIOGRAPHY 49

[53] Yuriko Ishitobi, Tohru Ishihara, and Hiroto Yasuura. Code placement
for reducing the energy consumption of embedded processors with
scratchpad and cache memories. In Embedded Systems for Real-Time
Multimedia, 2007. ESTIMedia 2007. IEEE/ACM/IFIP Workshop on,
pages 13–18. IEEE, 2007.

[54] Robert SH Istepanian, Emil Jovanov, and YT Zhang. Guest editorial
introduction to the special section on m-health: Beyond seamless mo-
bility and global wireless health-care connectivity. Information Tech-
nology in Biomedicine, IEEE Transactions on, 8(4):405–414, 2004.

[55] Bruce L Jacob, Peter M Chen, Seth R Silverman, and Trevor N
Mudge. An analytical model for designing memory hierarchies. Com-
puters, IEEE Transactions on, 45(10):1180–1194, 1996.

[56] Jiho Jang and Kwang Bok Lee. Transmit power adaptation for mul-
tiuser ofdm systems. Selected Areas in Communications, IEEE Jour-
nal on, 21(2):171–178, 2003.

[57] Jiho Jang, Kwang Bok Lee, and Yong-Hwan Lee. Frequency-time
domain transmit power adaptation for a multicarrier system in fading
channels. In Personal, Indoor and Mobile Radio Communications,
2001 12th IEEE International Symposium on, volume 1, pages D–100.
IEEE, 2001.

[58] Axel Jantsch, Peeter Ellervee, Ahmed Hemani, Johnny Öberg, and
Hannu Tenhunen. Hardware/software partitioning and minimizing
memory interface traffic. In Proceedings of the conference on Eu-
ropean design automation, pages 226–231. IEEE Computer Society
Press, 1994.

[59] Dah-Jing Jwo, Chien-Hao Tseng, Mu-Yen Chen, and Ta-Shun Cho.
Adaptive and nonlinear kalman filtering for GPS navigation process-
ing. INTECH Open Access Publisher, 2009.

[60] Wang Kai and Xu Zhiwei. Synopsys prime power manual release u-
2003.06-qa, 2003.

[61] Mahmut Kandemir, Ugur Sezer, and Victor Delaluz. Improving mem-
ory energy using access pattern classification. In Proceedings of the
2001 IEEE/ACM international conference on Computer-aided design,
pages 201–206. IEEE Press, 2001.

50 BIBLIOGRAPHY

[62] Mahmut Kandemir, Narayanan Vijaykrishnan, Mary Jane Irwin, and
Wu Ye. Influence of compiler optimizations on system power. In
Proceedings of the 37th Annual Design Automation Conference, pages
304–307. ACM, 2000.

[63] Kyungsu Kang, Luca Benini, and Giovanni De Micheli. A high-
throughput and low-latency interconnection network for multi-core
clusters with 3-d stacked l2 tightly-coupled data memory. In VLSI
and System-on-Chip (VLSI-SoC), 2012 IEEE/IFIP 20th Interna-
tional Conference on, pages 283–286. IEEE, 2012.

[64] Xin Kang, Ying-Chang Liang, Arumugam Nallanathan, Krishna
Garg, and Rui Zhang. Optimal power allocation for fading chan-
nels in cognitive radio networks: Ergodic capacity and outage capac-
ity. Wireless Communications, IEEE Transactions on, 8(2):940–950,
2009.

[65] A Kritikakou, F Catthoor, V Kelefouras, and C Goutis. A scalable
and near-optimal representation for storage size management. ACM
transaction architecture and code optimization, 11(1):1–25, 2014.

[66] Angeliki Kritikakou, Francky Catthoor, and Costas Goutis. Intra-
signal in-place methodology for non-overlapping scenario. In Scalable
and Near-Optimal Design Space Exploration for Embedded Systems,
pages 97–123. Springer, 2014.

[67] Angeliki Stavros Kritikakou. Development of methodologies for mem-
ory management and design space exploration of SW/HW computer
architectures for designing embedded systems. PhD thesis, Depart-
ment of Electrical and Computer Engineering School of Engineering,
University of Patras, 2013.

[68] Rakesh Kumar, Victor Zyuban, and Dean M Tullsen. Interconnec-
tions in multi-core architectures: Understanding mechanisms, over-
heads and scaling. In Computer Architecture, 2005. ISCA’05. Pro-
ceedings. 32nd International Symposium on, pages 408–419. IEEE,
2005.

[69] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. Mediabench: a
tool for evaluating and synthesizing multimedia and communicatons
systems. In Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture, pages 330–335. IEEE Computer So-
ciety, 1997.

BIBLIOGRAPHY 51

[70] Jongeun Lee, Kiyoung Choi, and Nikil D Dutt. Compilation approach
for coarse-grained reconfigurable architectures. 2003.

[71] Yanbing Li and Wayne H Wolf. Hardware/software co-synthesis with
memory hierarchies. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 18(10):1405–1417, 1999.

[72] Chien-Ching Lin, Yen-Hsu Shih, Hsie-Chia Chang, and Chen-Yi
Lee. Design of a power-reduction viterbi decoder for wlan applica-
tions. Circuits and Systems I: Regular Papers, IEEE Transactions
on, 52(6):1148–1156, 2005.

[73] Yuan Lin, Hyunseok Lee, Mark Woh, Yoav Harel, Scott Mahlke,
Trevor Mudge, Chaitali Chakrabarti, and Krisztian Flautner. Soda:
A low-power architecture for software radio. In ACM SIGARCH Com-
puter Architecture News, volume 34, pages 89–101. IEEE Computer
Society, 2006.

[74] Dake Liu and Christer Svensson. Power consumption estimation in
cmos vlsi chips. Solid-State Circuits, IEEE Journal of, 29(6):663–670,
1994.

[75] Zhe Ma, Pol Marchal, Daniele Paolo Scarpazza, Peng Yang, Chun
Wong, José Ignacio Gómez, Stefaan Himpe, Chantal Ykman-
Couvreur, and Francky Catthoor. Systematic methodology for real-
time cost-effective mapping of dynamic concurrent task-based systems
on heterogenous platforms. Springer Science & Business Media, 2007.

[76] A. Macii, L. Benini, and M. Poncino. Memory Design Techniques for
Low-Energy Embedded Systems. Kluwer Academic Publishers, 2002.

[77] Afzal Malik, Bill Moyer, and Dan Cermak. A low power unified
cache architecture providing power and performance flexibility. In
Low Power Electronics and Design, 2000. ISLPED’00. Proceedings of
the 2000 International Symposium on, pages 241–243. IEEE, 2000.

[78] P. Marchal, D. Bruni, J.I. Gomez, L. Benini, L. Pinuel, F. Catthoor,
and H. Corporaal. Sdram-energy-aware memory allocation for dy-
namic multi-media applications on multi-processor platforms. In De-
sign, Automation and Test in Europe Conference and Exhibition,
2003, pages 516–521, 2003.

52 BIBLIOGRAPHY

[79] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man,
and Rudy Lauwereins. Dresc: A retargetable compiler for coarse-
grained reconfigurable architectures. In Field-Programmable Technol-
ogy, 2002.(FPT). Proceedings. 2002 IEEE International Conference
on, pages 166–173. IEEE, 2002.

[80] P Meinerzhagen, C Roth, and A Burg. Towards generic low-power
area-efficient standard cell based memory architectures. In Circuits
and Systems (MWSCAS), 2010 53rd IEEE International Midwest
Symposium on, pages 129–132. IEEE, 2010.

[81] P Meinerzhagen, C Roth, and A Burg. Towards generic low-power
area-efficient standard cell based memory architectures. In Circuits
and Systems (MWSCAS), 2010 53rd IEEE International Midwest
Symposium on, pages 129–132. IEEE, 2010.

[82] Pascal Meinerzhagen, SM Yasser Sherazi, Andreas Burg, and
Joachim Neves Rodrigues. Benchmarking of standard-cell based mem-
ories in the sub-vt domain in 65-nm cmos technology. IEEE Transac-
tions on Emerging and Selected Topics in Circuits and Systems, 1(2),
2011.

[83] Narasinga Rao Miniskar. System Scenario Based Resource Manage-
ment of Processing Elements on MPSoC. PhD thesis, Katholieke Uni-
versiteit Leuven, 2012.

[84] Sparsh Mittal. A survey of architectural techniques for improving
cache power efficiency. Sustainable Computing: Informatics and Sys-
tems, 4(1):33–43, 2014.

[85] Naveen Muralimanohar and Rajeev Balasubramonian. Interconnect
design considerations for large nuca caches. ACM SIGARCH Com-
puter Architecture News, 35(2):369–380, 2007.

[86] Nicholas Nethercote and Julian Seward. How to shadow every byte
of memory used by a program. In Proceedings of the Third Inter-
national ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments, 2007.

[87] Yoichi Oshima, Bing J Sheu, and Steve H Jen. High-speed mem-
ory architectures for multimedia applications. Circuits and Devices
Magazine, IEEE, 13(1):8–13, 1997.

BIBLIOGRAPHY 53

[88] M. Palkovic, H. Corporaal, and F. Catthoor. Heuristics for scenario
creation to enable general loop transformations. In System-on-Chip,
2007 International Symposium on, pages 1 –4, nov. 2007.

[89] Martin Palkovic. Enhanced applicability of loop transformations. Dis-
sertation Abstracts International, 68(04), 2007.

[90] Martin Palkovic, Francky Catthoor, and Henk Corporaal. In Proc. of
the 4th Workshop on Optimizations for DSP and Embedded Systems,
pages 21–30. IEEE and ACM SIGMICRO, 2006.

[91] Martin Palkovic et al. Systematic preprocessing of data dependent
constructs for embedded systems. Journal of Low Power Electronics,
Volume 2, Number 1, 2006.

[92] Chenyun Pan and Azad Naeemi. System-level variation analysis
for interconnection networks. In Interconnect Technology Confer-
ence/Advanced Metallization Conference (IITC/AMC), 2014 IEEE
International, pages 303–306. IEEE, 2014.

[93] Preeti Ranjan Panda, Francky Catthoor, Nikil D Dutt, Koen Danck-
aert, Erik Brockmeyer, Chidamber Kulkarni, A Vandercappelle, and
Per Gunnar Kjeldsberg. Data and memory optimization techniques
for embedded systems. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 6(2):149–206, 2001.

[94] Sung Park, Andreas Savvides, and Mani Srivastava. Battery capacity
measurement and analysis using lithium coin cell battery. In Proceed-
ings of the 2001 international symposium on Low power electronics
and design, pages 382–387. ACM, 2001.

[95] NL Passes, Edwin HM Sha, and Liang-Fang Chao. Multi-dimensional
interleaving for time-and-memory design optimization. In Computer
Design: VLSI in Computers and Processors, 1995. ICCD’95. Proceed-
ings., 1995 IEEE International Conference on, pages 440–445. IEEE,
1995.

[96] D.A. Patterson and J.L. Hennessy. Exploiting Memory Hierarchy in
Computer Organization and Design the HW/SW Intelface. Morgan
Kaufmann, 1994.

[97] JoAnn M Paul, Donald E Thomas, and Alex Bobrek. Scenario-
oriented design for single-chip heterogeneous multiprocessors. Very

54 BIBLIOGRAPHY

Large Scale Integration (VLSI) Systems, IEEE Transactions on,
14(8):868–880, 2006.

[98] A. Portero et al. Dynamic voltage scaling for power efficient mpeg4-
sp implementation. In Application-specific Systems, Architectures and
Processors, 2006. ASAP ’06. International Conference on, pages 257
–260, sept. 2006.

[99] L.N. Pouchet. Polybench: The polyhedral benchmark suite.

[100] John G Proakis. Intersymbol Interference in Digital Communication
Systems. Wiley Online Library, 2001.

[101] Abbas Rahimi, Igor Loi, Mohammad Reza Kakoee, and Luca Benini.
A fully-synthesizable single-cycle interconnection network for shared-
l1 processor clusters. In Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), 2011, pages 1–6. IEEE, 2011.

[102] Herbert John Ryser. Combinatorial mathematics. MAA Washington,
1963.

[103] Alberto Sangiovanni-Vincentelli and Marco Di Natale. Embedded sys-
tem design for automotive applications. Computer, 4(10):42–51, 2007.

[104] Ruchira Sasanka, Christopher J Hughes, and Sarita V Adve. Joint
local and global hardware adaptations for energy. ACM SIGARCH
Computer Architecture News, 30(5):144–155, 2002.

[105] Herman Schmit and Donald E Thomas. Synthesis of application-
specific memory designs. Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on, 5(1):101–111, 1997.

[106] Namita Sharma, TV Aa, Prashant Agrawal, Praveen Raghavan,
Preeti Ranjan Panda, and Francky Catthoor. Data memory opti-
mization in lte downlink. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pages 2610–2614.
IEEE, 2013.

[107] Namita Sharma, Preeti Ranjan Panda, Francky Catthoor, Praveen
Raghavan, and Tom Vander Aa. Array interleaving an energy efficient
data layout transformation. ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), 20(3):44, 2015.

BIBLIOGRAPHY 55

[108] Tajana Šimunić, Luca Benini, and Giovanni De Micheli. Cycle-
accurate simulation of energy consumption in embedded systems. In
Proceedings of the 36th annual ACM/IEEE Design Automation Con-
ference, pages 867–872. ACM, 1999.

[109] Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter Marwedel. As-
signing program and data objects to scratchpad for energy reduction.
In Design, Automation and Test in Europe Conference and Exhibition,
2002. Proceedings, pages 409–415. IEEE, 2002.

[110] Vivy Suhendra, Chandrashekar Raghavan, and Tulika Mitra. Inte-
grated scratchpad memory optimization and task scheduling for mp-
soc architectures. In Proceedings of the 2006 international conference
on Compilers, architecture and synthesis for embedded systems, pages
401–410. ACM, 2006.

[111] I-Jui Sung, Geng Daniel Liu, and Wen-Mei W Hwu. Dl: A data layout
transformation system for heterogeneous computing. In Innovative
Parallel Computing (InPar), 2012, pages 1–11. IEEE, 2012.

[112] Sriram Swaminathan et al. A dynamically reconfigurable adaptive
viterbi decoder. In Proceedings of the 2002 ACM/SIGDA tenth inter-
national symposium on Field-programmable gate arrays, FPGA ’02,
pages 227–236, New York, NY, USA, 2002. ACM.

[113] Muhammad Adeel Tajammul, SMA Jafri, Peeter Ellerve, Ahmed He-
mani, Hannu Tenhunen, and Juha Plosila. Dymep: An infrastructure
to support dynamic memory binding for runtime mapping in cgras. In
VLSI Design (VLSID), 2015 28th International Conference on, pages
547–552. IEEE, 2015.

[114] Muhammad Adeel Tajammul, Muhammad Ali Shami, Ahmed He-
mani, and Sridharan Moorthi. Noc based distributed partitionable
memory system for a coarse grain reconfigurable architecture. In VLSI
Design (VLSI Design), 2011 24th International Conference on, pages
232–237. IEEE, 2011.

[115] Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B
Brockman, and Norman P Jouppi. A comprehensive memory mod-
eling tool and its application to the design and analysis of future
memory hierarchies. In Computer Architecture, 2008. ISCA’08. 35th
International Symposium on, pages 51–62. IEEE, 2008.

56 BIBLIOGRAPHY

[116] Tore Ulversøy. Software defined radio: Challenges and opportunities.
Communications Surveys & Tutorials, IEEE, 12(4):531–550, 2010.

[117] Ingrid Verbauwhede, Francky Catthoor, Joos Vandewalle, and Hugo
De Man. In-place memory management of algebraic algorithms on
application specific ics. Journal of VLSI signal processing systems for
signal, image and video technology, 3(3):193–200, 1991.

[118] A. Viterbi. Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm. Information Theory, IEEE Trans-
actions on, 13(2):260 –269, april 1967.

[119] Zhong Wang and Xiaobo Sharon Hu. Energy-aware variable partition-
ing and instruction scheduling for multibank memory architectures.
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 10(2):369–388, 2005.

[120] Michael Wolfe. Data dependence and program restructuring. The
Journal of Supercomputing, 4(4):321–344, 1991.

[121] Cheong Yui Wong, Roger S Cheng, K Ben Lataief, and Ross D Murch.
Multiuser ofdm with adaptive subcarrier, bit, and power allocation.
Selected Areas in Communications, IEEE Journal on, 17(10):1747–
1758, 1999.

[122] Shyh-Chyi Wong, Gwo-Yann Lee, and Dye-Jyun Ma. Modeling of
interconnect capacitance, delay, and crosstalk in vlsi. Semiconductor
Manufacturing, IEEE Transactions on, 13(1):108–111, 2000.

[123] Peng Yang, Paul Marchal, Chun Wong, Stefaan Himpe, Francky
Catthoor, Patrick David, Johan Vounckx, and Rudy Lauwereins.
Managing dynamic concurrent tasks in embedded real-time multime-
dia systems. In Proceedings of the 15th international symposium on
System Synthesis, pages 112–119. ACM, 2002.

[124] Ch Ykman-Couvreur, Vincent Nollet, Fr Catthoor, and Henk Corpo-
raal. Fast multi-dimension multi-choice knapsack heuristic for mp-soc
run-time management. In System-on-Chip, 2006. International Sym-
posium on, pages 1–4. IEEE, 2006.

[125] Nikolaos Zompakis, Iason Filippopoulos, Per Gunnar Kjeldsberg,
Francky Catthoor, and Dimitrios Soudris. Systematic exploration of

BIBLIOGRAPHY 57

power-aware scenarios for ieee 802.11 ac wlan systems. In Digital Sys-
tem Design (DSD), 2014 17th Euromicro Conference on, pages 28–35.
IEEE, 2014.

[126] Nikolaos Zompakis, Antonis Papanikolaou, Praveen Raghavan, Dim-
itrios Soudris, and Francky Catthoor. Enabling efficient system con-
figurations for dynamic wireless applications using system scenarios.
International journal of wireless information networks, 20(2):140–156,
2013.

58 BIBLIOGRAPHY

Appendix A

Energy Impact of
Memory-Aware
System Scenario Approach

Iason Filippopoulos, Francky Catthoor, Per Gunnar Kjeldsberg,
Elena Hammari and Jos Huisken

Proceedings of IEEE NORCHIP conference
IEEE, 12-13 Nov. 2012

pages 1-6
DOI: 10.1109/NORCHP.2012.6403111

59

http://dx.doi.org/10.1109/NORCHP.2012.6403111

60 Energy Impact of Memory-Aware
System Scenario Approach

61

Abstract

System scenario methodologies propose the use of different scenarios, e.g.,
different platform configurations, in order to exploit variations in compu-
tational and memory needs during the lifetime of an application. In this
paper several extensions are proposed for a system scenario based method-
ology with a focus on improving memory organisation. The conventional
methodology targets mostly execution time while this work aims at includ-
ing memory costs into the exploration. The effectiveness of the proposed
extensions is demonstrated and tested using two real applications, which
are dynamic and suitable for execution on modern embedded systems. Re-
ductions in memory energy consumption of 40 to 70% is shown.

62 Energy Impact of Memory-Aware
System Scenario Approach

A.1. Introduction 63

A.1 Introduction

Modern embedded systems are becoming more and more powerful as the
semiconductor processing technique keep increasing the number of transis-
tors on a single chip. Consequentially, demanding applications, such as
medical signal processing and streaming applications, can be executed on
these devices [83]. On the other hand, the desired performance has to be
delivered with the minimum power consumption due to limited amount of
power offered in mobile devices [75]. System scenario methodologies pro-
pose the use of different platform configurations in order to exploit vari-
ations in computational and memory needs often seen during the lifetime
of such applications [75]. A platform can, e.g., be configured through fre-
quency/voltage scaling or turning certain processing units on or off. In this
work a reconfigurable memory platform is employed in order to study the
effectiveness of a memory-aware system scenario methodology.

As shown in [39] memory contributes around 40% to the overall power
consumption in general purpose systems. Especially for embedded systems,
the memory subsystem accounts for up to 50% of the overall energy con-
sumption [20] and the cycle-accurate simulator presented in [108] estimates
that the energy expenditures in the memory subsystem range from 35% up
to 65% for different architectures. According to [75], conventional allocation
and mapping of data done by regular compilers is suboptimal. Performance
loss is caused by stalls for fetching data and data conflicts for different tasks,
due to the limited size of memory and the competition between tasks. In
addition, modern applications exhibit more and more dynamism. This gives
a strong motivation for study and optimization of memory organisation in
embedded devices with strongly dynamic application behaviour.

This paper is organized as follows. Section A.2 surveys related work on
system level exploration and on system scenario methodologies. Section A.3
presents the chosen methodology and our novel extensions to make it appli-
cable in a memory organisation study. In Section A.4 the target platform is
described while the demonstrator applications are presented in Section A.5.
Results of applying the described methodology to the targeted applications
are shown in Section A.6, while conclusions are drawn in Section A.7. The
main contribution of the current work is the proposal of extensions to the
existing system scenario methodology, in order to take into account memory
costs while performing the design exploration.

64 Energy Impact of Memory-Aware
System Scenario Approach

A.2 Related Work and Contribution Discussion

Many papers have focused on memory related optimisations, also in the
presence of a partitioned and distributed memory organisation with memory
blocks of different sizes (e.g. [10], [9], [76], [93]). However, they do not
incorporate sufficient support for very dynamically behaving application
codes. System scenarios allow to alleviate this bottleneck and to handle such
dynamic behaviour. An overview of work on system scenario methodologies
and their application are presented in [37]. So far memory organisation
is rarely considered and not fully analysed. Furthermore, the majority of
the published work focus on control variables for scenario prediction and
selection. They can take a relatively small set of different values that can
be fully explored. However, the use of data variables [46] is required for
these tasks by many dynamic systems with value ranges that make full
exploration impossible.

Authors in [90] present a technique to optimise memory accesses for in-
put data dependent applications by duplicating and optimising the code for
different execution paths of a control flow graph (CFG) . One path or a group
of paths in a CFG form a scenario and its memory accesses are optimized
using global loop transformations (GLT) . Apart from if-statement eval-
uations that define different execution paths, they extend their technique
to include while loops with variable trip count in [91]. A heuristic to per-
form efficient grouping of execution paths for scenario creation is analysed
in [88]. However, our work extends the existing solutions towards exploit-
ing the presence of a distributed memory organisation with reconfiguration
possibilities.

Reconfigurable hardware for embedded systems, including the memory
architecture, is a topic of active research. An extensive overview of current
approaches is found in [31]. The approach presented in this paper differenti-
ates by focusing on the data-to-memory partitioning aspects in the presence
of a platform with dynamically configurable memory blocks.

A.3 Extended System Scenario Methodology

The system scenario methodology is based on the observation that the work-
load of most systems varies significantly during their lifetime due to dynamic
variation of computational and memory needs in the application code. Most

A.3. Extended System Scenario Methodology 65

of the existing design methods define the worst case execution time (WCET)
of the most demanding task and tune the system in order to meet its needs
[75]. Obviously, this approach leads to wasted time and memory area for
tasks with lower execution time and memory requirements, since those tasks
could meet their needs using fewer resources and consequentially consuming
less energy.

In contrast, designing with scenarios is workload adaptive and offers
different configurations of the platform and the freedom of switching to
the most efficient scenario at run-time. In contrast to use case scenario
approaches in which scenarios are generated based on a user’s behaviour, the
system scenario methodology focuses on behaviour of the system to generate
scenarios. A system scenario is a configuration of the system that combines
similar run-time situations (RTSs). An RTS consists of a running instance
of a task and its corresponding cost (e.g. energy consumption) and one
complete run of the application on the target platform represents a sequence
of RTSs [46]. The system is configured to meet the cost requirements of an
RTS by choosing the appropriate scenario, which is the one that satisfies
the requirements using minimal power.

In the following subsections, the different steps of the system scenario
methodology is outlined, with emphasis on the new extensions that make it
possible to take memory into account.

A.3.1 General description of system scenario methodology

The scenario methodology follows a two stage exploration, namely design-
time and run-time stages, as described in [37]. The two stage exploration
is chosen because it reduces run-time overhead while preserving an impor-
tant degree of freedom for run-time configuration [75]. In more detail, the
application is analysed at design-time and different execution paths and
variations in processing and memory demands are identified. This proce-
dure, which is time consuming and as a result can be performed only during
the design phase, will result in a grey-box model representation of the ap-
plication. The grey-box model hides all static and deterministic parts of
the application, by providing only related costs for those, and keeps parts
of the application code that are non-deterministic available to the system
designer [48]. This way, more focus can be given to parts of the application
that have impact on the cost variations so that different execution decisions
can be studied. Those different options are made available to the system

66 Energy Impact of Memory-Aware
System Scenario Approach

designer and each decision could be either fixed at design time or forwarded
for dynamic evaluation at run-time.

A.3.2 Design-time Profiling

Application profiling is performed at design-time and consists of an analysis
of the target application during its lifetime and for a wide range of inputs.
The analysis focuses on execution time for a reference processor in the con-
ventional system scenario methodology, but in our case the cost will be
memory size. This cost metric is chosen, because several applications allo-
cate and deallocate memory space during their execution. Also, data reuse
behavior and decisions made by the system designer about the size of sets
of data to be copied to different units in the memory hierarchy (i.e., copy-
candidates [14]) strongly influences the memory size. Energy consumption
and access time of a memory unit is affected by its size [96]. Together with
access pattern information, the memory size is hence an important metric.

The flow of the profiling stage is depicted in Fig. A.1 and consists of run-
ning the application code with suitable input data often found in a database,
in order to produce profiling results. This reveals parts of the application
code with high memory activity and with varying memory access intensity,
which possibly depends on input data. Because of this behaviour, a static
study of the application code alone is insufficient since the target applica-
tions for this methodology have non-deterministic behaviour that is driven
by input. Choosing an extensive and accurate database is vital and will
heavily influence and steer the designer’s decisions in later steps.

Given code and database as inputs, profiling will show memory usage
during execution time by running the application using the whole database
as an input. Results provided to the designer include complete information
about allocated memory size values together with the number of occurrences
and duration for each of these memory size values. Moreover, correlation
between input data values and the resulting memory behaviour can possibly
be observed. This information is forwarded to the next stage.

There are several ways that profiling can be performed. Current pro-
gram monitoring software cannot offer the needed level of detail. Debuggers
and memory tools, such as Valgrind [86], or direct hard-coded profiling are
preferable methods, because of their higher accuracy.

A.3. Extended System Scenario Methodology 67

Application Code

Profiling

Database

EEG

T ime

A
l
l
o
c
a
t
e
d

m
e
m
o
r
y
s
i
z
e

define
int main
{ Input Data

Figure A.1: Profiling results based on application code and input data.

A.3.3 Design-time Scenario Identification and Prediction

Scenario generation is also performed during design time and is the proce-
dure of clustering profiled information into groups with similar character-
istics. More precisely, cost points are clustered in groups based on their
distance in cost axis and the frequency of their occurrence. Clustering is
necessary, because it will be extremely costly to have a different scenario
for every possible situation. Switching cost, which is the cost of switch-
ing platform to another configuration, for example by turning a memory
to retention state, grows with the number of scenarios, because more sce-
narios result in more frequent switching. In addition, the runtime manager
becomes more complex with an increasing number of scenarios.

As shown in Fig. A.2, using the information available after application
profiling, situations with similar platform needs will be organised in a com-
mon scenario. This is known as clustering of RTSs [37]. This is a rational
choice, because two instances with similar platform needs have similar mem-
ory energy consumption. The energy gain of having two dedicated scenarios
is small and normally outweighed by switching costs if organized in differ-
ent scenarios. In this example, clustering results in three different scenario
areas (Fig. A.2) and the execution scenario sequence is 1(lower), 2(middle),
3(top), 2, 3 and 1. Also, the frequency of occurrence of each instance is an

68 Energy Impact of Memory-Aware
System Scenario Approach

Scenario
Generation

T ime

A
ll
o
c
a
t
e
d

m
e
m
o
r
y
s
iz
eComponents

Library

Size:
WL:
Energy:

Clustering
memory usage
to 3 scenarios

T ime

A
ll
o
c
a
t
e
d

m
e
m
o
r
y
s
iz
e

Figure A.2: Scenario generation based on profiling information and memory
models.

important factor in scenario generation. Instances with higher frequencies
normally have their dedicated scenario, to allow higher optimization, while
less common instances can be clustered together in a less optimal scenario.

In order to generate scenarios that can be implemented in realistic mem-
ory organisations, a detailed library with memory components is needed.
The library should contain a variety of memory models, including different
technologies and sizes, and is used to calculate scenario costs. In this work
the component library is based on memory models published in [3].

The design-time scenario prediction phase consists of determination of
the variables that define the active scenario. This can be achieved by careful
study of the application code, combined with the application’s data input.
In our case the grey-box model reveals only the code parts that will influence
memory usage, so that variables deciding memory space changes can be
identified. An example of this is a non static variable that influences the
number of iterations for a loop that performs one memory allocation at
each iteration. Moreover, the designer should look for a correlation between
input values and the corresponding cost. This information will be useful in
the following steps of the methodology [75].

A.4. Target Platform 69

A.3.4 Run-time Identification, Detection, and Switching

After profiling and scenario generation at design-time, all the necessary
information needed for run-time management is available. The run-time
manager monitors the current values of prediction variables selected in the
previous design time step. Based on this, prediction of the next active
scenario is performed [75].

Switching decisions will be taken at run-time by the run-time manager.
The switching phase consists of all platform configuration decisions that
can be made at run-time, e.g., frequency/voltage scaling, turning on/off a
memory unit, and remapping of data on memory units. Switching takes
place when the switching cost is lower than the energy gains achieved by
switching. In more detail, the run-time manager compares the memory
energy consumption of executing the next task in the current active scenario
with the energy consumption of execution with the optimal scenario. If
the difference is greater than the switching cost, then scenario switching is
performed [75]. Switching costs are defined by the platform and include all
memory energy penalties for run-time reconfigurations of the platform, e.g.,
extra energy needed to change state of a memory unit.

A.4 Target Platform

Selection of target platform is an important aspect of the memory-aware
system scenario methodology. The key feature needed in the platform
architecture is the ability to realize different scenarios generated by the
methodology. Execution of different scenarios then leads to different energy
costs, as each configuration of the platform results in a specific memory en-
ergy consumption. In the conventional system scenario methodology several
platform reconfiguration options have been studied [37] with dynamic volt-
age/frequency scaling (DVFS) most used [98]. By using DVFS techniques,
one can change the frequency of the processing element and its supply volt-
age and energy consumption accordingly. For a memory aware scenario
methodology there are multiple ways that memory reconfiguration can be
performed. E.g., data can be mapped to different memory units according
to size and access frequency, memory units can be turned on or off, or DVFS
can be used to allow exactly the access frequency currently needed.

In this paper we have selected a relatively conventional reconfigurable

70 Energy Impact of Memory-Aware
System Scenario Approach

Core - Processing ElementRegisters

Alternative

banksizes

L1 SRAM Scratchpad

Clustered SRAM Scratchpad

L1’ Scratchpad

Figure A.3: Target platform with focus on memory organisation.

architecture template that is suitable for implementing system scenarios as
shown in Fig. A.3. This dynamic memory organisation is based on memory
prototypes presented in [3], and consists of two software controlled SRAM
scratchpad memories, L1 and L1’, and a processing element with its reg-
isters. For simplicity it is assumed that all data needed during execution
is available in the L1 scratchpad memory without any time penalties even
when large background memories are used. This assumption is reasonable
for the kind of applications that are generally executed in embedded sys-
tems and can, e.g., be achieved through prefetching. The methodology is
in general not restricted to this assumption, however, and can handle more
complex hierarchical memory architectures, also including regular caches.
Registers are used to save currently used elements, and between the reg-

A.5. Application Benchmarks 71

Table A.1: Energy costs per second and access for a reference memory bank (size:
120 bytes, technology: 90nm) in clustered L1’ memory

Modes Leakage [J] Wake up [J] Access [J]

On 351, 86× 10−6 - -

Off 4, 73× 10−6 2, 77× 10−12 -

Retention 97, 33× 10−6 2, 2× 10−12 -

DFF synch - - 0.227× 10−6

DFF asynch - - 2.18× 10−6

Nand2 - - 0.334× 10−6

isters and the L1 scratchpad a much smaller L1’ scratchpad is introduced.
This is a clustered memory that consists of four memory banks that support
three different states (on, off and retention modes) [3].

The memory energy consumption for every access in the clustered scratch-
pad memory is calculated based on the current situation of the platform as
shown in Fig. A.3. The leakage energy estimation is also provided in [3]
and is included in our study. In Tab. A.1 the leakage and wake up costs
for all different operation modes are presented. The leakage in L1’ is small
compared to L1 and constant, thus the effect in the results is minimal.

The memory energy consumption per read access is given by Equation
A.1, which is provided by the memory models in [3].

Read energy = (size of bank)× (DFF sync)+

+
bank lines

log2
×DFF async+ 4× size×Nand2 (A.1)

The cost of accessing the clustered scratchpad organisation is a function of
the overall size of the cluster and the size of the specific bank being accessed.
In addition, there is a contribution in energy consumption per access added
by the flip-flops and the gates needed for the correct operation of the L1’
memory organisation.

A.5 Application Benchmarks

The extended methodology will be tested on two representative real life
applications that differentiate significantly from each other and cover dif-
ferent domains of applications. The first one is a computational intensive

72 Energy Impact of Memory-Aware
System Scenario Approach

application, in which the code is dominated by loops with dynamic bounds
determined by results calculated inside the loop. The second has a more
static execution path, but its memory footprint is dynamically defined by the
input data. Ideal applications, that can most benefit from memory-aware
system scenario methodology, are applications that have dynamic behaviour
in memory organisation utilization during their execution. That required
dynamism could be produced by several code characteristics, covering a
wide range of potential application domains for the proposed methodology.

A.5.1 Epileptic Seizure Predictor

An epileptic seizure predictor algorithm developed at Arizona State Uni-
versity (ASU) [50] is chosen as a benchmark, along with a database with
measurements performed on real patients, also provided by ASU. Up to
now the algorithm has only been used in clinical environments using PCs,
although it would be very helpful for patients as an embedded device, as
part of outpatient care. Dynamic input data dependent behaviour is iden-
tified in the algorithm and memory traces for execution of three different
input samples are presented in Fig. A.4. For each data sample a loop is
iterated 168 times. Depending on the input data sample, different memory
elements are accessed in each iteration. Note that even though the element
accessing for all three samples are drawn together in the figure, only one
set of memory elements are accessed for each data sample and only one
data sample is processed at a time. Because of the nature of the EEG sig-
nal used for the epileptic seizure prediction the benchmark has variables
with a very wide range of potential values. The memory usage is heavily
influenced by these input values. For demonstration purposes our study
focuses on the parts of the prediction algorithm that is most dynamic. In
[46] the algorithm is split in thread nodes and dynamic behaviour affecting
execution time is identified. The data reuse size for each sample in Fig. A.4
contains all the elements with data reuse factor greater than 1, i.e., are read
more than once. They should be saved in L1’. For example, elements in
index range from roughly 3300 to 7200 for sample 1 form an approximately
3900×(element size bytes) L1’ memory size requirement. These elements
are read for the first time between loop iteration 0 and 50 and are also re-
read later during the sample’s lifetime between loop iteration 120 and 170.
In Fig. A.4 these memory elements are included in the red rectangle. The
exact L1’ sizes needed for processing of sample 1, 2, and 3 are 3899, 2646,

A.5. Application Benchmarks 73

0 20 40 60 80 100 120 140 160 180
2000

4000

6000

8000

10000

12000

14000

16000

loop iteration number

In
d
e
x
 o

f
a
c
c
e
s
s
e
d
 m

e
m

o
ry

 e
le

m
e
n
t

Sample 1

Sample 2

Sample 3

Data reuse size
of Sample 3

Data reuse size
of Sample 2

Data reuse size
of Sample 1

Figure A.4: Memory access pattern of epilepsy predictor. Profiling of data reuse
size for 3 samples from a given ([50]) database. The number of elements accessed
is input dependent. Only those of the 16K elements accessed multiple times should
be saved in L1’. The rest are accessed from L1.

and 3780, respectively.

Based on profiling results, scenario generation can be performed. Two
possible clustering solutions are used in this paper, both of them consisting
of five scenarios. In the first clustering, the range of memory indexes is split
in equally sized partitions. In the second clustering, the range is split based
on occurrence frequency, so that each scenario has almost equal number of
occurrences. The reconfigurable memory platform is instantiated accord-
ingly in our target template outlined in Section A.4. It contains four equal
memory banks of size 975 in the first case and four banks of increasing size
(195, 585, 1170, and 1950) in the second case, since smaller sizes are used
more often.

A.5.2 Viterbi Algorithm Encoder

The Viterbi algorithm [118] is widely used, both in the industry and academia,
as an encoding/decoding algorithm for convolutional codes. As part of the
encoding of the transmitted signal, redundant bits are added, which are
later used by the decoder for correction of transmission errors. The output

74 Energy Impact of Memory-Aware
System Scenario Approach

Table A.2: Constraint length for SNR levels on the channel (BER 6 10−5)

SNR (dB) K L1’ size (B) SNR (dB) K L1’ size (B)

6,5 - 6,1 5 40 3,9 - 3,1 9 72

6,1 - 5,5 6 48 3,1 - 2,8 12 96

5,5 - 3,9 8 64 2,8 - 2,5 14 112

of an encoder is a function of current input bit(s) and K earlier inputs,
where K is the constraint length of the algorithm. Profiling shows that the
constraint length dominates the memory cost. In Tab. A.2 [112] constraint
length values to achieve 10−5 BER are presented for different noise levels
in the channel. Due to its limited range of values, the constraint length is
classified as a control variable. The scenario generation is based on profiling
and aims at achieving a consistent bit error rate with the minimum memory
usage. If SNR decreases, another memory bank is activated while reduction
in channel noise leads to the opposite effect. The L1’ sizes can be found
in Tab. A.2. Clustering has been performed for K-values 5 and 6, with a
resulting L1’ size of 48B, and between K-values 8 and 9, with a resulting
L1’ size of 72B

A.6 Results

The memory aware system scenario methodology is applied to both of our
benchmark applications to study its effectiveness. Memory energy con-
sumption is calculated based on [3] and is the sum of (energy per access) ×
(number of accesses) and energy costs for all transitions between memory
modes. The energy for each access is defined by the type and the size of
the accessed memory. Based on profiling and scenario generation results,
four different memory organizations are compared for the epileptic seizure
predictor. The first one is a scenario strategy without memory awareness
and use a single memory bank large enough to satisfy the most demanding
sample. That approach is the worst case for the memory size and statically
allocates the highest value of the memory space demanded during the life-
time of the application, i.e., 3900. However, the number of accesses to the
memory will be determined by each sample and no worst case assumption
is made for number of accesses.

The second approach assumes that L1’ has four banks of the same size
(975) that can be turned on and off. The third one assumes an L1’ with

A.6. Results 75

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy consumption for four configurations

Input samples

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

Static execution

4 size scenarios

4 size and frequency scenarios

Ideal scenario

Figure A.5: Memory-aware scenario gains - Epileptic seizure predictor

four banks with different sizes (195, 585, 1170, and 1950), in order to bet-
ter exploit RTSs with small memory footprints. Finally, a theoretical lower
bound assumes an unlimited number of memory banks in all sizes to opti-
mally exploit every situation. Comparison results are shown in Fig. A.5 and
memory energy gains up to 40% are achieved with the scenario methodology
for dynamic input samples. The high quality of our results is substantiated
by the fact that our energy consumption is very close to the theoretical
lower bound, even though the latter is impossible due to limited area in
embedded devices.

Even higher gains are found for the Viterbi encoder (Fig. A.6) compared
to a worst-case assumption of the constraint length being equal to 14. That
value of length is used to achieve acceptable BER over very noisy chan-
nels. Using the extended system scenario methodology, L1’ is split into four
smaller banks that can be turned off when the noise of the channel is re-
duced. Again, the theoretical lower bound assumes a memory organisation
with bank sizes optimized for each SNR level. Its hardware implementation
would need 24 memory banks instead of 4 in our case, which leads to an

76 Energy Impact of Memory-Aware
System Scenario Approach

2.5 − 2.8 2.8 − 3.1 3.1 − 3.9 3.9 − 5.5 5.5 − 6.1 6.1 − 6.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Energy consumption for different SNR

SNR on the channel

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

76% gain compared
to worst case

Figure A.6: Memory-aware scenario gains - Viterbi encoder

unacceptable overhead. The proposed reconfigurable memory organisation
can lead to more than 70% reduction in memory energy consumption in
situations with low noise, compared to a static architecture that is tuned to
handle SNR levels down to 2.5 dB.

A.7 Conclusion

The scope of this work is to extend the existing system scenario techniques
to better take memory into account. The memory-aware system scenario
methodology has been described and tested on two real applications from
bioengineering and wireless communications domains. Results justify the
effectiveness of the methodology in reduction of memory energy consump-
tion, which is of great importance in embedded devices. Since memory
size requirements are still met in all situations, performance is not reduced.
The memory-aware system scenario methodology is suited for applications

A.7. Conclusion 77

that experience dynamic behaviour with respect to memory organisation
utilization during their execution.

78 Energy Impact of Memory-Aware
System Scenario Approach

Appendix B

Exploration of energy
efficient memory
organizations for dynamic
multimedia applications
using system scenarios

Iason Filippopoulos, Francky Catthoor and Per Gunnar Kjeldsberg
Design Automation for Embedded Systems

Springer, 2013
Volume 17, Issue 3-4 , pages 669-692

DOI: 10.1007/s10617-014-9145-6

79

http://dx.doi.org/10.1007/s10617-014-9145-6

80 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

81

Abstract

We propose a memory-aware system scenario approach that exploits vari-
ations in memory needs during the lifetime of an application in order to
optimize energy usage. Different system scenarios capture the application’s
different resource requirements that change dynamically at run-time. In
addition to computational resources, the many possible memory platform
configurations and data-to-memory assignments are important system sce-
nario parameters. In this work we focus on clustering of different memory
requirements into groups and presenting the system scenario generation in
detail. The clustering is a non-trivial problem due to the many different
memory requirements, which leads to a very large exploration space. An
extended memory model is used as a practical enabler, in order to evalu-
ate the methodology. The memory models include existing state-of-the-art
memories, available from industry and academia, and we show how they
are employed during the system design exploration phase. Both commer-
cial SRAM and standard cell based memory models are explored in this
study. The effectiveness of the proposed methodology is demonstrated and
tested using a large set of multimedia benchmarks published in the Poly-
bench, Mibench and Mediabench suites, representative for the domain of
multimedia applications. Reduction in energy consumption in the memory
subsystem ranges from 35% to 55% for the chosen set of benchmarks.

82 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

B.1. Introduction 83

B.1 Introduction

Modern embedded systems are becoming more and more powerful as the
semiconductor processing techniques keep increasing the number of tran-
sistors on a single chip. Consequently, demanding applications, e.g., in the
signal processing and multimedia domains, can be executed on these devices
[83]. On the other hand, the desired performance has to be delivered with
minimum power consumption due to the limited energy available in mobile
devices [75]. System scenario methodologies propose the use of different
platform configurations in order to exploit run-time variations in computa-
tional and memory needs often seen in such applications [75].

Platform reconfiguration is performed through tuning of different sys-
tem parameters, also called system knobs. For the memory-aware system
scenario methodology, a platform can be reconfigured through a number
of potential knobs, each resulting in different performance and power con-
sumption in the memory subsystem. Foremost, modern memories support
different energy states, e.g., through power gating techniques and by switch-
ing to lower power modes when not accessed. The second platform knob
is the assignment of data to the available memory banks. The data as-
signment decisions affect both the energy per access for the mapped data,
the data conflicts as a result of suboptimal assignment, and the number of
active banks. In this work a reconfigurable memory platform is constructed
using detailed memory models. This is followed by experiments with dy-
namic multimedia applications in order to study the effectiveness of the
methodology.

The main contribution of the current work is the development of data
variable [47] based system scenarios. Previous control variable based system
scenarios [37] are unable to handle the fine-grain behavior of the studied
multimedia applications due to their significant variation under different
execution situations. Furthermore, compared with use case scenario ap-
proaches in which scenarios are generated based on a user’s behavior [43],
the system scenario methodology focuses on the behavior of the system to
generate scenarios and can, therefore, fully exploit the detailed platform
mapping information. Compared with previous work on system scenarios
that has focused on the processing cores, the current work analyses the use
of system scenarios on the memory organization. More specifically, this
work focuses on the system scenario identification phase of the methodol-
ogy. The wide range of memory requirements, the amount of different cases,
and the different frequency in which each case occurs, results in a very large

84 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

exploration space. Therefore, there is a need for developing an algorithmic
approach that can efficiently tackle this problem.

Another significant contribution is the extensive number of benchmark
applications on which the methodology is applied. The chosen set is rep-
resentative for the domain of multimedia applications. Furthermore, we
present a categorisation of applications based on their dynamic characteris-
tics, also applicable to the entire multimedia domain. For the experimental
needs of this work we present for the purpose sufficiently detailed and ac-
curate memory models, which are used for the system design exploration.
For the multimedia domain, the current work presents a comprehensive
methodology for optimising energy consumption in the memory subsystem.

This article is organized as follows. Section B.2 motivates the study
of optimization of the memory organization. Section B.3 surveys related
work on system level memory exploration and on system scenario method-
ologies and compares it with the current work. Section B.4 presents the
chosen methodology with main focus on the memory organization study.
In Section B.5 the target platform is described accompanied by a detailed
description of the employed memory models, while the multimedia bench-
marks and their characteristics are analysed in Section B.6. Results of
applying the described methodology to the targeted applications are shown
in Section B.7, while conclusions are drawn in Section B.8.

B.2 Motivational Example

A large number of papers have demonstrated the importance of the mem-
ory organization to the overall system energy consumption. As shown in
[39] memory contributes around 40% to the overall power consumption in
general purpose systems. Especially for embedded systems, the memory
subsystem accounts for up to 50% of the overall energy consumption [20]
and the cycle-accurate simulator presented in [108] estimates that the en-
ergy expenditures in the memory subsystem range from 35% up to 65% for
different architectures. The breakdown of power consumption for a recently
implemented embedded system presented in [49] shows that the memory
subsystem consumes more than 40% of the leakage power on the platform.
According to [75], conventional allocation and assignment of data done by
regular compilers is suboptimal. Performance loss is caused by stalls for
fetching data and data conflicts for different tasks, due to the limited size
of memory and the competition between tasks.

B.2. Motivational Example 85

Algorithm 1 Motivational example of dynamic memory usage

1: while image 6= EndOfDatabase do
2: height← height(image)
3: width← width(image)
4: store(image[height][width])
5: for i = 0→ height do
6: for j = 0→ width do
7: array[i][j]← func1(image[i][j])
8: end for
9: end for

10: image← func2(array)
11: end while

In addition, modern applications exhibit more and more dynamic behav-
ior, which is reflected also in fluctuating memory requirements [75]. Tech-
niques have been developed in order to estimate the memory size require-
ments of applications in a systematic way [65]. The significant contribution
that the memory subsystem has to the overall energy consumption of a
system and the dynamic nature of many applications offer a strong motiva-
tion for the study and optimization of the memory organization in modern
embedded devices.

To illustrate the sub-optimal conventional allocation and assignment of
data, the simple example of Alg. 1 is used. The kernel code of an image
processing application continuously reads a sequence of images, saves each
image in memory and performs function func1 on each pixel of the image.
Arrays are typically used for storing the intermediate calculations in image
processing applications, exemplified with the array variable in the motiva-
tion example. The memory size used for the storage of each initial image
and the computed array are determined by the dimensions of the input
image and can be different for a series of input images. In a conventional
assignment the highest values of height and width are identified and a static
compiling results in allocation of the worst-case area for the array variable.
However, only a part of the allocated space is accessed during processing of
smaller images.

Assume for instance that we have two different image sizes, ImgA with
L=H=1 and ImgB with L=H=2. That is, the size of ImgB is 4 × ImgA.
Each pixel in each image is accessed once giving rise to N accesses to each
ImgA and 4 × N accesses to each ImgB. Furthermore, in the input stream
of images there are four times as many ImgA as ImgB. In our pool of

86 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

alternative memories we have three memories with Size1 = ImgA, Size2 =
3 × ImgA, and Size 3 = 4 × ImgA (i.e., the size of ImgB). The energy
cost of accessing a Size1 memory is 1E, while the average leakage energy
in the time between the start of two accesses is 0.3E. The corresponding
access/leakage numbers for Size2 and Size3 memories are 1.3E/0.9E and
1.5E/1.2E, respectively. The numbers reflects the fact that as a first order
approximation access energy increases sub linearly with increased memory
size, while leakage increases linearly with memory size. The total energy
(access + leakage) during computations on four ImgA and one ImgB using
only one memory of Size3 is:

4×N × 1.5E + 4×N × 1.5E + 8×N × 1.2E = 21.6NE

The same calculation using one memory of Size1 and one of Size2, in total
the size of ImgB, is:

4×N × 1.0E + 1×N × 1.0E + 3×N × 1.3E

+ 4×N × 0.3E + 4×N × (0.3E + 0.9E) = 14.9NE

giving a reduction in energy consumption of 31%. These calculations are
done with simplified assumptions regarding input data and memory models.
The results in Section B.7 show even larger gain with realistic dynamic
applications, memory models and data.

B.3 Related Work and Contribution Discussion

The memory allocation problem has been studied before. However, we
extend state of the art by proposing a more generic approach, which is
also suitable for applications with input driven dynamic behavior. The au-
thors in [10] present a methodology to generate a static application-specific
memory hierarchy. Later, they extend their work in [9] to a reconfigurable
platform with multiple memory banks. However, our work differentiates by
proposing a more generic and application agnostic methodology and em-
ploying the use of system scenarios, in order to efficiently handle a wider
range of dynamic application characteristics.

Several techniques for designing energy efficient memory architectures
for embedded systems are presented in [76]. The current work differenti-
ates by employing a platform that is reconfigurable at run-time. In [93]
a large number of data and memory optimisation techniques, that could

B.3. Related Work and Contribution Discussion 87

be dependent or independent of a target platform, are discussed. Again,
reconfigurable platforms are not considered.

Energy-aware assignment of data to memory banks for several task-sets
based on the MediaBench suit of benchmarks is presented in [78]. Low
energy multimedia applications are discussed also in [23] with focus on pro-
cessing rather than the memory platform. Furthermore, both [78] and [23]
base their analysis on use case situations and do not incorporate sufficient
support for very dynamically behaving application codes. System scenarios
alleviate this bottleneck and enable handling of such dynamic behavior. In
addition, the current work explores the assignment of data to the mem-
ory and the effect of different assignment decisions on the overall energy
consumption.

The authors in [1], [55] and [71] present methodologies for designing
memory hierarchies. Design methods with main focus on the traffic and
latencies in the memory architecture are presented in [17], [40], [58] and [95].
Improving memory energy efficiency based on a study of access patterns is
discussed in [61]. Application specific memory design is a research topic
in [105], while memory design for multimedia applications is presented in
[87]. The current work differentiates by introducing the concept of system
scenarios that supports the dynamic handling of application’s requirements,
although the data mapping is static inside each scenario.

An overview of work on system scenario methodologies and their ap-
plication are presented in [37]. In [29] extensions towards a memory-aware
system scenario methodology are presented and demonstrated using theoret-
ical memory models and two target applications. This work is an extension
both in complexity and accuracy of the considered memory library and on
the number of target applications.

Furthermore, the majority of the published work focus on control vari-
ables for system scenario prediction and selection. Control variables can
take a relatively small set of different values and thus can be fully explored.
However, the use of data variables [46] is required by many dynamic systems
including the majority of multimedia applications. The range of possible
values for data variables is wider and makes full exploration impossible.

Authors in [90] present a technique to optimise memory accesses for in-
put data dependent applications by duplicating and optimising the code for
different execution paths of a control flow graph (CFG). One path or a group
of paths in a CFG form a scenario and its memory accesses are optimised
using global loop transformations (GLT). Apart from if-statement evalua-
tions that define different execution paths, they extend their technique to

88 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

include while loops with variable trip count in [91]. A heuristic to perform
efficient grouping of execution paths for scenario creation is analysed in [88].
Our work extends the existing solutions towards exploiting the presence of
a distributed memory organization with reconfiguration possibilities.

Reconfigurable hardware for embedded systems, including the memory
architecture, is a topic of active research. An extensive overview of current
approaches is found in [31]. The approach presented in this paper differenti-
ates by focusing on the data-to-memory assignment aspects in the presence
of a platform with dynamically configurable memory blocks. Moreover,
many methods for source code transformations, and especially loop trans-
formations, have been proposed in the memory management context. These
methods are fully complementary to our focus on data-to-memory assign-
ment and should be performed prior to our step.

B.4 Data Variable Based Memory-Aware System
Scenario Methodology

The memory-aware system scenario methodology is based on the observa-
tion that the memory subsystem requirements at run-time vary significantly
due to dynamic variations of memory needs in the application code. Most
existing design methodologies define the memory requirements as that of
the most demanding task and tune the system in order to meet its needs
[75]. Obviously, this approach leads to unused memory area for tasks with
lower memory requirements, since those tasks could meet their needs using
fewer resources and consequently consuming less energy. Another source
of energy waste in the memory system is caused by data conflicts due to
misplaced data. Replacement of old data and fetching of new data is both
time and energy consuming and should therefore be avoided. Handling of
data conflicts is also part of a memory-aware system scenario methodology.

Designing with system scenarios is workload adaptive and offers different
configurations of the platform and the freedom of switching to the most
efficient scenario at run-time. A system scenario is a configuration of the
system that combines similar run-time situations (RTSs). An RTS consists
of a running instance of a task and its corresponding cost (e.g., energy
consumption) and one complete run of the application on the target platform
represents a sequence of RTSs [46]. The system is configured to meet the
cost requirements of an RTS by choosing the appropriate system scenario,

B.4. Data Variable Based Memory-Aware System Scenario Methodology 89

INPUT DATABASE

(512 x 512) (256 x 256) (64 x 64)

Efficient Pyramid Image Coder (EPIC)

APPLICATION

M
e
m

o
ry

s
iz

e

Dynamic input variable (i.e. Image size)

APPLICATION
Efficient Pyramid Image Coder (EPIC)

while image.next != EndOfDatabase do
if size < image.size then
Allocate (image.size− size)

else if size > image.size then
Deallocate (size− image.size)

end if
size = image.size
EPIC Image processing . . .

end while

Figure B.1: Profiling results based on application code and input data

which is the one that satisfies the requirements using minimal power. In
the following subsections, the different steps of the memory-aware system
scenario methodology are outlined.

The system scenario methodology follows a two stage exploration, namely
design-time and run-time stages, as described in [37]. This splitting is also
employed in the memory-aware extension of the methodology. The two
stage exploration is chosen because it reduces run-time overhead while pre-
serving an important degree of freedom for run-time configuration [75]. The
application is analysed at design-time and different execution paths causing
variations in memory demands are identified. This procedure, which is time
consuming and as a result can be performed only during the design phase,
will result in a grey-box model representation of the application. The grey-
box model hides all static and deterministic parts of the application, instead
only providing their related memory costs to the system designer. Parts of
the application code that are non-deterministic in terms of memory usage
are directly available to the system designer [48].

90 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

B.4.1 Design-time Profiling Based on Data Variables

Application profiling is performed at design-time for a wide range of inputs.
The analysis focuses on the allocated memory size during execution and
on access pattern variations. Techniques described in [66] are, e.g., used
in order to extract the access scheme through analysis of array iteration
spaces.

The profiling stage is depicted in Fig. B.1 and consists of running the
application code with suitable input data often found in a database, in order
to produce profiling results. The results shown here are limited for demon-
strational purposes. A real application would have thousands or millions of
profiling samples. The profiling reveals parts of the application code with
high memory activity and with varying memory access intensity, which pos-
sibly depends on input data variables. Because of this behavior, a static
study of the application code alone is insufficient since the target applica-
tions for this methodology have non-deterministic behavior that is driven
by input.

Profiling results provided to the designer include complete information
about allocated memory size values together with the number of occurrences
and duration for each of these memory size values. Moreover, correlation
between input data variable values and the resulting memory behavior can
possibly be observed. This information is useful for the clustering step that
follows. Profiling also reveals the worst case memory usage for a given set
of inputs. The memory usage is measured using techniques presented in
[66], in which authors compute the minimum amount of memory resources
required to store the elements of an application.

In Fig. B.1 the profiled applications are two image related multimedia
benchmarks and the input database should consist of a variety of images.
The memory requirements in each case are driven by the current input
image size, which is classified as a data variable due to the wide range of its
possible values. Depending on the application the whole image or a region of
interest is processed. Other applications have other input variables deciding
the memory requirement dynamism, e.g., the channel SNR level in the case
of an encoding/decoding application.

The input data used for profiling are generated based on realistic as-
sumptions for each of the chosen benchmarks. Each application is studied
and based on its functionality, a range of rational inputs are developed. In
addition, example inputs are available for most of the studied benchmark
applications. The choice of common and open-source benchmarks provides

B.4. Data Variable Based Memory-Aware System Scenario Methodology 91

Figure B.2: Clustering of profiling results into three (a) or five (b) system sce-
narios

us the opportunity to find inputs publicly available. Based on the col-
lected information, we define the range of realistic inputs and we generate
a random set on inputs within these limits. For example, the bibliography
provides information for the real SNR levels and the constraint length of
the Viterbi encoder for each level, in order to achieve a successful commu-
nication. For profiling, we generate randomly a set of SNR levels that cover
this whole range. Similar technique is used for the applications that use an
image as an input. First, we explore the sizes of images commonly used to
define the minimum and the maximum size and then we randomly generate
a set of image sizes within the size limits. For the random generation of
inputs, we assume the same probability for each situation, because there is
no information available regarding the frequency of each input. As a result
the frequency of each input is random.

B.4.2 Design-time System Scenario Identification Based on
Data Variables

The next step is the clustering of the profiled memory sizes into groups with
similar characteristics. This is referred to as system scenario identification.
Clustering is necessary, because it will be extremely costly to have a different

92 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

scenario for every possible size, due to the number of memories needed.
Clustering neighbouring RTSs is a rational choice, because two instances
with similar memory needs have similar energy consumption.

In Fig. B.2 the clustering of the previously profiled information is pre-
sented. The clustering of RTSs is based both on their distance on the
memory size axis and the frequency of their occurrence. Consequently, the
memory size is split unevenly with more frequent RTSs having a shorter
memory size range. In the case of a clustering to three system scenarios
the space is divided in the three differently coloured hashed areas depicted
in Fig. B.2(a). Due to the higher frequency of RTSs in the yellow hashed
area, that system scenario has a shorter range compared with its neighbour-
ing scenarios. Such clustering is better than an even splitting because the
energy cost of each system scenario is defined by the upper size limit, as
each scenario should support all RTSs within its range. Consequently the
overhead for the RTSs in the yellow area is lower compared to the overhead
in the two other areas.

The same principle applies also when the number of system scenarios
is increased to five, as depicted in Fig. B.2(b). The frequency sensitive
clustering results in two short system scenarios that contain four RTSs each
and three wider system scenarios with lower numbers of RTSs. The number
of system scenarios should be limited mainly due to two factors. First,
implementation of a high number of system scenarios in a memory platform
is more difficult and complex. Second, the switching between the different
scenarios involves an energy penalty that could become significant when the
switching takes place frequently.

The memory size and the frequency of each RTS are not the only two
parameters that should be taken into consideration during the system sce-
nario identification. The memory size of each RTS results in a different
energy cost depending on the way it is mapped into memory. The impact
of the different assignment possibilities is included into the clustering by
introduction of energy as a cost metric. The energy cost for each RTS is
calculated using a reference platform with one to N memory banks. Increas-
ing the number of memory banks results in lower energy per access since the
most accessed elements can be assigned to smaller and more energy efficient
banks. Unused banks can be switched off.

In the system scenario methodology, Pareto curves are used to capture
alternative system configurations within a scenario [75]. In our work, a
Pareto space is used for clustering that also includes the energy cost metric.
For each RTS all different assignment options on alternative platform config-

B.4. Data Variable Based Memory-Aware System Scenario Methodology 93

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

Figure B.3: Clustering of Pareto curves

urations are studied. Memory platform knobs are different sets of memory
banks that are turned on and off. A Pareto curve is constructed for each
RTS that contains the optimal assignment for each platform configuration.
Hence, suboptimal assignments and assignments that result in conflicts are
not included in the Pareto curve. In Fig. B.3 four Pareto curves, each cor-
responding to a different RTS, are shown together with energy cost levels
corresponding to different platform configuration and data-to-memory as-
signment decisions. Three non-optimal mappings are also shown in Fig. B.3
for illustration. They are not part of the Pareto curve and consequently
not included in the generation of scenarios. Pareto curves are clustered
into three different system scenarios based again both on their memory size
differences and frequency of occurrence. Clustering of RTSs using Pareto
curves is more accurate compared to the clustering depicted in Fig. B.2, as
it includes data-to-memory assignment options in the exploration.

The system scenario identification step includes the selection of the data
variables that determine the active system scenario. This can be achieved
by careful study of the application code, combined with the application’s
data input. The variable selection is done before clustering of RTSs into
scenarios. For the choice of identification variables, there is a trade-off be-
tween the complexity and the accuracy of the scenario detection step. On
one hand, if the identification is done using a group of complex variables
and their correlation, there is a number of calculations needed in order to

94 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

predict the active scenario. On the other hand, if the value of a single
variable is monitored for scenario identification, the scenario detection is
straightforward. Obviously, the accuracy of the scenario detection is higher
on the first case, while the computational needs for scenario detection are
lower on the second case. In other words, the more accurate scenario detec-
tion, the more resources are used by the run-time manager for detection. In
our case the grey-box model reveals only the code parts that will influence
memory usage, so that data variables deciding memory space changes can
be identified. An example of this is a non static variable that influences
the number of iterations for a loop that performs one memory allocation
at each iteration. In the depicted example the system scenario detection
data variable is the input image height and width values. Moreover, the
designer should look for a correlation between input values and the corre-
sponding cost. This information will be useful in the following steps of the
methodology [75].

B.4.3 Run-time System Scenario Detection and Switching
Based on Data Variables

Switching decisions are taken at run-time by the run-time manager. In this
work, we use a simple and straightforward switching approach. Memory
models provide the necessary information for the switching decision, namely
the energy and the time penalty for switching between stages. The switching
step consists of all platform configuration decisions that can be made at run-
time, e.g., frequency/voltage scaling, changing the power mode of memory
units, including turning them off, and reassignment of data to memory units.
Switching takes place when the switching cost is lower than the energy gains
achieved by switching.

In more detail, the switching mechanism implemented by the run-time
manager includes the following actions:

1. Calculation of the energy consumption by processing the next input
on the currently active scenario (E1).

2. Calculation of the energy consumption by processing the next input
on its most energy efficient scenario (E2).

3. Calculation of the energy penalty for switching the needed memory
banks to the configuration of the most efficient scenario (E3).

B.4. Data Variable Based Memory-Aware System Scenario Methodology 95

4. Evaluation of the expression: E1 >E2 + E3. If the energy cost of
the current configuration (E1) is greater than the combined cost of
the new configuration and the required switching (E2 + E3), then the
decision is to switch. Otherwise, the switching decision is negative
and the system stays on the currently running configuration

5. Switching of the platform to its new configuration. The memory banks
switch to the appropriate state, which is defined by the chosen sce-
nario.

Switching costs are defined by the platform and include all memory energy
penalties for run-time reconfigurations of the platform, e.g., extra energy
needed to change state of a memory unit.

The run-time manager is minimal, resulting in a very small overhead,
and is complementary to an operating system (OS), if such is available
on the platform. In the presence of an embedded OS, the OS needs to
start the runtime manager and grant it access to system reconfiguration
calls. In both cases, when the run-time manager is active, it performs a few
simple steps with minimal system performance overhead. In more detail, the
run-time manages checks the current state of the monitored identification
variable(s), determine the next scenario based on this value and decides
whether switching should be performed. The corresponding scenario for a
given value of the identification variable is a simple look-up, because all the
analysis has been performed at design-time. The hardware configuration for
the active scenario is also explored at design-time and the run-time manager
is aware of the required changes. In our approach no need is present for
modifications of the application code. Instead, we add the above mentioned
changes in the middleware layer. That has the additional advantage that the
run-time manager is reusable across several tasks/processes running at the
application layer on top of this shared middleware. The application data are
stored and accessed the same way at the application level. The difference
with the proposed approach is the size and the state of the memory bank
that the data are stored in. The application is unaware of the exact way the
data is stored and accessed and the methodology ensures that the accessed
addresses in the application code always corresponds to an active bank.

In Fig. B.4 an example of the run-time phase of the methodology is
depicted. The run-time manager identifies the size of the image that will
be processed and reconfigures the memory subsystem on the platform, if
needed, by increasing or decreasing the available memory size. The recon-
figuration options are effected by platform hardware limitations. The image

96 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

RUNTIME
MANAGER

APPLICATION INPUT

Dynamic
Variables:
-width
-height

PE

PLATFORM MEMORY

S
c
e

n
a

ri
o

1

S
c
e

n
a

ri
o

5

S
c
e

n
a

ri
o

4

S
c
e

n
a

ri
o

3

S
c
e

n
a

ri
o

2

Scenario Prediction

S
c
e

n
a

ri
o

 S
w

it
c
h

in
g

Figure B.4: Run-time system scenario detection and switching based on the
current input

size is in this case the data variable monitored in order to detect the system
scenario and the need for switching.

B.5 Target Platform and Energy Models

Selection of target platform is an important aspect of the memory-aware
system scenario methodology. The key feature needed in the platform ar-
chitecture is the ability to efficiently support different memory sizes that
correspond to the system scenarios generated by the methodology. Execu-
tion of different system scenarios then leads to different energy costs, as each
configuration of the platform results in a specific memory energy consump-
tion. The dynamic memory platform is achieved by organising the memory
area in a varying number of banks that can be switched between different
energy states.

B.5. Target Platform and Energy Models 97

Processing
Element Memory

••• Processing
Element

M
e
m

o
ry

1

Memory 345

M
e
m

o
ry

2

Alternative 1 Alternative 5

Figure B.5: Alternative memory platforms with varying number of banks

B.5.1 Target Memory Platform Architecture

In this work, a clustered memory organization with up to five memory banks
of varying sizes is explored. The limitation in the number of memory banks
is necessary in order to keep the interconnection cost between the processing
element (PE) and the memories constant through exploration of different
architectures.

For more complex architectures the interconnection cost should be con-
sidered and analysed separately for accurate results. Although power gating
can be applied to the bus when only a part of a longer bus is needed, an ac-
curate model of the memory wrapper and interconnection must developed,
which is beyond the scope of the current work.

Some examples of alternative memory platforms that can be used for
exploration is shown in Fig. B.5. Point-to-point connections with negligible
interconnect costs between elements are assumed for up to five memory
banks. The decision to use memory banks with varying sizes on the clustered
memory organization increases the reconfiguration options and consequently
the potential energy gains. In general, smaller memories are more energy
efficient compared to larger memories banks. However, in some cases large
memory banks are needed in order to fit the application data without the
need for too many small memories causing complex interconnects. The goal
is to use the most energy efficient banks to store the most frequently used
data. The calculations needed for enabling the minimum number of banks
is simple, given the application requirements for the current input and the
sizes of the five memory banks.

98 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

B.5.2 Models of Different Memory Types

The dynamic memory organization is constructed using commercially avail-
able SRAM memory models (MM) . For those models delay and energy
numbers are derived from a commercial memory compiler. In addition, ex-
perimental standard cell-based memories (SCMEM) [82] are considered for
smaller memories due to their energy and area efficiency for reasonably small
storage capacities, as argued in [80]. The standard cell-based memories are
synthesized using Cadence RTL compiler for TSMC 40nm standard library.
Subsequently, power simulations on the synthesized design are carried out
using Synopsys PrimeTime, in order to obtain energy numbers. Both MMs
and SCMEMs can operate under a wide range of supply voltages, thus sup-
port different operating modes that provide an important exploration space.

• Active mode: The normal operation mode, in which the memory can
be accessed at the maximum supported speed. The supply voltage
is 1.1V. The dynamic and leakage power are higher compared to the
other modes. Only on active mode the data are accessible without
time penalties, in contrast to light and deep sleep modes. In this work
all the memory accesses are performed in active mode.

• Light sleep mode: The supply voltage in this mode is lower than
active with values around 0.7V. The access time of the memory is
significantly higher than the access time in active mode. Switching to
active mode can be performed with a negligible energy penalty and
a small time penalty of a few clock cycles (less than 10). Data is
retained.

• Deep sleep mode: The supply voltage is set to the lowest possible
value that can be used without loss of data. This voltage threshold
is expected to be lower for SCMEMs than MM models and can be
as low as 0.3V. The number of clock cycles needed for switching to
active mode is higher compared to sleep mode, typically in the range
of 20 to 50 clock cycles depending on the clock speed. Consequently,
the speed of the PE and the real-time constrains of the applications
has to be taken into consideration when choosing light or deep sleep
mode at a specific time.

• Shut down mode: Power-gating techniques are used to achieve near
zero leakage power. Stored data is lost. The switch to active mode

B.5. Target Platform and Energy Models 99

requires substantially more energy and time. However, switching un-
used memories to this mode, providing that their data are not needed
in the future, results in substantial energy savings.

The exploration includes memories with 4 energy modes in contrast to
a more conservative approach that assumes only on and off states. This is
in line with is modern energy efficient memories that tend to support an
increasing number of energy modes as a feature. The methodology is still
applicable to a memory organization that supports only two modes, but the
intention of this work is to explore the state of the art memory technologies.
The policy for switching between the modes depends on the reuse of the
stored data, which depends on the nature of the target application. The
switching policy is determined by examining the following condition for the
stored data in a memory bank:

• If the data is currently under processing, then the only acceptable
mode is the active mode.

• If the data is not accessed, but will be needed in the near future, then
the light or deep sleep mode should be chosen.

• If the processing of the data is completed and the application is not
accessing them again, the shut-down mode is the optimal solution.

Applications that perform calculations on a set of input data to produce
a result and never re-access the initial data, normally only use two modes.
The need for more energy modes arises from the fact that many applications
re-access the initial data or some intermediate results. Thus, the runtime
manager chooses a sleep mode that reduces the leakage power, but retains
the data for future use.

The necessary energy/power information is available to the system de-
signer and relative values for a subset of the used sizes in the current work
are presented in Tab. B.1 and in Tab. B.2. It shows that the choice of mem-
ory units has an important impact on the energy consumption. Moreover,
different decisions have to be made based on the dominance of dynamic
or leakage energy in a specific application. In the current work memory
architectures with 1 to 5 memory units of different sizes are explored and
the optimal configuration is chosen. The methodology is in general not
restricted to specific memory types or benchmarks and can handle more
complex hierarchical memory architectures and applications. However, in
this study the chosen applications have a relatively small memory space re-
quirement limited to around 100KB, which is the case for many applications
run on modern embedded systems.

100 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

Table B.1: Relative dynamic energy for a range of memories with varying capacity
and type

Type
Lines x Dynamic Energy [J] Switching to Active from

wordlength Read Write Deep[uJ] Light[uJ]

MM 32 x 8 4.18× 10−8 3.24× 10−8 0.223 0.031

MM 32 x 16 6.79× 10−8 5.89× 10−8 0.223 0.031

MM 32 x 128 4.33× 10−7 4.31× 10−7 1.42 0.168

MM 256 x 128 4.48× 10−7 4.60× 10−7 1.70 0.171

MM 1024 x 128 5.11× 10−7 5.75× 10−7 2.81 0.179

MM 4096 x 128 9.60× 10−7 4.57× 10−7 9.01 0.457

SCMEM 128 x 128 2.5× 10−7 0.8× 10−8 1.51 0.045

SCMEM 1024 x 8 1.7× 10−8 0.6× 10−8 0.325 0.021

Table B.2: Relative static power for a range of memories with varying capacity
and type

Type
Lines x Static Leakage Power per Mode[W]

wordlength Active Light-sleep Deep-sleep Shut-down

MM 32 x 8 0.132 0.125 0.063 0.0016

MM 32 x 16 0.134 0.127 0.064 0.0022

MM 32 x 128 0.171 0.160 0.083 0.0112

MM 256 x 128 0.207 0.184 0.104 0.0293

MM 1024 x 128 0.349 0.283 0.189 0.102

MM 4096 x 128 0.95 0.708 0.544 0.396

SCMEM 128 x 128 0.083 0.057 0.027 0.0022

SCMEM 1024 x 8 0.042 0.028 0.014 0.0011

B.5. Target Platform and Energy Models 101

B.5.3 Total Energy Consumption Calculation

Both the dynamic and the static energy consumed in the memory subsystem
is included in the calculations. The overall energy consumption for each
configuration is calculated using a detailed formula, as can be seen in Eq.B.1.
All the important transactions on the platform that contribute to the overall
energy are included, in order to achieve as accurate results as possible. In
particular:

• Nrd is the number of read accesses

• ERead is the energy per read

• Nwr is the number of write accesses

• EWrite is the energy per write

• T is the execution time of the application

• TLightSleep, TDeepSleep and TShutDown are the times spent in light sleep,
deep sleep and shut down states respectively

• PleakActive
is the leakage power in active mode

• PleakLightSleep
, PleakDeepSleep

and PleakShutdown
are the leakage power val-

ues in light sleep, deep sleep and shut down modes with different values
corresponding to each mode

• NSWLight, NSWDeep and NSWShutDown are the number of transitions
from each retention state to active state

• ELightSleep to Active, EDeepSleep to Active and EShutDown to Active are the
energy penalties for each transition respectively.

102 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

E =
all∑

memories

(Nrd × ERead

+Nwr × EWrite

+(T − TLightSleep − TDeepSleep − TShutDown)× PleakActive

+TLightSleep × PleakLightSleep

+TDeepSleep × PleakDeepSleep

+TShutDown × PleakShutDown

+NSWLight × ELightSleep to Active

+NSWDeep × EDeepSleep to Active

+NSWShutDown × EShutDown to Active)

(B.1)

The overall energy consumption is given after calculating the energy for
each memory bank. The execution time of the application is needed to
calculate the leakage time. It can be found by executing the application on
a reference embedded processor. The simulator described in [11] is chosen
to calculate execution time for the chosen applications in this work. The
processor is assumed to be running continuously, accepting new input data
as soon as computations on the previous data set has been finished. Memory
sleep times are hence only caused by data dependent dynamic behavior.

B.5.4 Memory Architecture Exploration

The exploration of alternative memory platforms is performed using the
steps described in Alg. 2. The exploration is performed at system scenario
identification phase, after the profiling of RTSs. All potentially energy ef-
ficient configurations are tested for a given number of scenarios and the
sequence of RTSs of the application. First, a database with all the memory
models that are available to the system designer is imported. The memory
database can afterwards be pruned to reduce the complexity of the explo-
ration, as explained in the following paragraph. After the optional pruning,
all possible configurations for a given number of memory banks are con-
structed. The only requirement in order to keep a configuration for further
investigation is that the combined size of all banks should satisfy the stor-
age requirements of the most demanding RTS. Then, each configuration is
tested for the sequence of RTSs and the one that minimizes Eq.B.1 is cho-

B.5. Target Platform and Energy Models 103

sen as the most energy efficient for this number of scenarios (i.e., number
of banks).

Algorithm 2 Memory organization exploration steps

1: RTSset← storage requirement for each RTS
2: Database← extensive memory database
3: //Database pruning:
4: for all relevant memory sizes do
5: pick memory models from Database according to application charac-

teristics
6: end for
7: m← number of memory models in pruned Database
8: N ← number of scenarios (up to 5 in this work)
9: //Exploration of memory organizations:

10: for n = 1→ N do
11: k ← combination of n banks out of a set of m memories
12: for all generated k combinations do
13: if

∑n
1 size(bank) ≥ size(max(RTS)) then

14: //Select configuration that minimizes Eq.B.1
15: Ecurrent← Energy given by Eq.B.1 for current combination
16: if Eminimum > Ecurrent then
17: Eminimum← Ecurrent
18: end if
19: end if
20: end for
21: end for

The exploration for the most energy efficient memory organization is a
computational intensive task and can only be performed at design-time. At
run-time the search for the optimal configuration is very simple, because the
set of the few possible configurations is available. The exhaustive search for
the most energy efficient configuration for up to five banks is performed in
a reasonable time at design-time. The number of possible configurations is
given by the number of the memory banks and the number of memories in
the database, as shown in Alg. 2. In general, if n is the number of banks and
m is the number of memory models, there are mn possible combinations.

Assuming a range of sizes from 1KB to 64KB, there are 7 different sizes
(1KB, 2KB, 4KB, 8KB, 16KB, 32KB, 64KB). In every size, there is at most
one memory model with the minimum energy per read access, one with
the minimum energy per write access and one with the minimum leakage

104 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

power. Depending on the worst-case memory size given by application pro-
filing, only a number of combinations between the 7 memory sizes fulfils the
requirements. For example, 5 memory banks of 1KB are not sufficient for
any of the studied applications. The code of the application may reveal if
there is dominance of read/write accesses for an array or it is not accessed
frequently so that leakage will dominate. This way some of the memory
models can be eliminated for each size. Let us assume an application with
a worst case memory requirement of 100KB that is dominated by sequences
of read accesses. In this case, we have only 21 possible combinations (all
combinations of 5 out of a set of 7 with repetitions and unimportant order
[102]). Then, we have to explore only the combinations that are greater
than 100KB using bank models with the minimum energy per read.

More formally, at design-time we generate all the combinations with
repetitions from a database of m memory models taken out n at a time. We
are looking for sets with repetitions, which means that we can choose the
same memory model more than once. This is important, in order to also
include more homogeneous organizations into the exploration. However, the
order of memories has no effect on our exploration. This means that the
combination of memories S1 = (8KB, 8KB, 16KB, 32KB) is equivalent with
S2 = (8KB, 16KB, 8KB, 32KB) and only one of them is included in our
exploration. The number of possible configurations is given by the following
general formula:

k =
(
m
n

)
= m(m−1)...(m−n+1)

n(n−1)...1

In our case, the typical values for m and n are 15 and 5 respectively.
The complexity of the exploration algorithm is O(k), where k is the number
of possible memory combinations. Therefore, the whole exploration for up
to 5 memory banks can be performed during the design phase. At run-time
the system can chose the appropriate configuration, without the need for
exploration.

B.6 Application Benchmarks

The applications that benefit most from the memory-aware system scenario
methodology are characterised by having dynamic utilization of the memory
organization during their execution. Multimedia applications often exhibit
such a dynamic variation in memory requirements during their lifetime and
consequently are suitable candidates for the presented methodology. The

B.6. Application Benchmarks 105

Table B.3: Benchmark applications overview

Name Source Scenario detection variable

Epic image compression MediaBench Image size

Motion Estimation MediaBench Image size

Blowfish decoder MiBench Input file size

Jacobi 1D Decomposition Polybench Number of steps

Mesa 3D MediaBench Loop bound

JPEG DCT MediaBench Block size

PGP encryption MediaBench Encryption length

Viterbi encoder Open Constraint length

effectiveness is demonstrated and tested using a variety of open multimedia
benchmarks, which can be found in the Polybench [99], Mibench [42] and
Mediabench [69] benchmark suites. The broad set of multimedia bench-
marks under exploration is representative for the entire domain of multime-
dia applications.

B.6.1 Benchmark Applications and
Corresponding Input Databases

An overview of the benchmark applications that were tested is presented in
Tab. B.3.

Two key parameters under consideration are the dynamic data variable
of each application and the variation in the memory requirement it causes.
The dynamic data variable is the variable that results in different system
scenarios due to its range of values. Examples of such a variable are an
input image of varying size or data dependent loop bound values. For
each application an appropriate set of realistic RTS cases is constructed.
The memory size limits are defined as the minimum and maximum storage
requirement occurring during the profiling of an application.

EPIC (Efficient Pyramid Image Coder) image compression can compress
all possible sizes of images. The size of the input image has an effect on
memory requirements during compression and several images were given as
inputs. Motion estimation is another media application in which image size
is the dynamic data variable. In this case the image defines the area that
has to be explored to determine the motion vectors and different images are
tested. The set of input data is constructed using publicly available images

106 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

commonly used for testing this algorithm.

The dynamism in the blowfish decoder benchmark is a result of variations
in the input file that is decoded. Again, the methodology explores the
behavior for several input files in order to identify system scenarios. The
Jacobi 1D decomposition algorithm can be executed using a varying number
of steps with a direct effect on memory usage and is hence another suitable
benchmark for the system scenario methodology. The number of steps is
increased on every next iteration, in order to generate a set of different
memory requirements. The set of input data is a random sequence of input
signals and each of them corresponds to a different number of steps. Mesa
3D is an open graphics library with a dynamic loop bound in its kernel that
provides the desired dynamic behavior.

The discrete cosine transformation (DCT) block used in the JPEG com-
pression algorithm has a memory footprint that is heavily influenced by the
block size. The input database consists of an ascending size sequence of
blocks. For the PGP encryption algorithm the encryption length parame-
ter has an important impact on memory size, which can be exploited using
system scenarios. Thus, we create a database starting from the lowest en-
cryption length value of 384 and gradually increasing it up to 2048. The
effect of the channel SNR level on the constraint length value of the Viterbi
encoder algorithm is discussed in [29]. Increasing noise on the channel de-
mands a more complex encoding in order to maintain a constant bit error
rate (BER), which consequently increases the memory requirements during
execution. The memory size variation is given for execution under different
SNR levels.

B.6.2 Classification of Applications Based on Dynamic Char-
acteristics

The required dynamism for applying the memory-aware system scenario
methodology can be produced by several code characteristics, covering a
wide range of potential applications, as discussed in the previous subsec-
tion. In this subsection dynamic characteristics are outlined that can assist
the system designer in the employment of the methodology and reveal the
expected behavior prior to experimentation with an application. The dy-
namic characteristics that are used to categorize the applications are the
dynamism in the memory size bounds and the variance of cases within the
memory size limits. The characterization of the benchmark applications

B.6. Application Benchmarks 107

Table B.4: Characterization of benchmark applications (See Tab. B.3 for index

Name
Dynamic Characteristics

Memory Variation(B) Shape of histogram

Epic image compression 4257 - 34609 Right skewed

Motion Estimation 4800 - 52800 Gaussian-like

Blowfish decoder 256 - 5120 Left skewed

Jacobi 1D Decomposition 502 - 32002 Right skewed

Mesa 3D 5 - 50000 Gaussian-like

JPEG DCT 10239 - 61439 Gaussian-like

PGP encryption 3073 - 49153 Gaussian-like

Viterbi encoder 5121 - 14337 Right skewed

based on those key parameters is presented in Tab. B.4.

The profiling information can be organised into a histogram in order to
be easily comprehensive. The horizontal axis depicts the memory require-
ments for the RTSs and the vertical axis the number of occurrences for
its RTS. In this way the system designer can quickly identify the expected
gains of the system scenario methodology by identifying the width and the
shape of the histogram. The width of the histogram gives an overview of
the memory size bounds, while the shape reveals the variation of the RTSs
for the studied application.

The memory size bounds correspond to the minimum and maximum
memory size values profiled over all possible cases. In general, larger dis-
tances between upper and lower bounds increase the possibilities for energy
gains. This is a result of using larger and more energy hungry memories
in order to support the memory requirements for the worst case even when
only small memories are required. Large energy gain is expected when large
parts of the memory subsystem can be switched into retention for a long
time. For several of the benchmarks the difference between maximum and
minimum memory size is close to 50KB. This includes JPEG, motion esti-
mator, mesa 3D, and PGP, where large gains can be expected. On the other
hand, the system designer should expect lower energy gains for applications
that show a relatively less dynamic behavior with regard to their memory
size limits. Examples here are the blowfish and viterbi algorithms.

The variation takes into consideration both the number of different cases
that are present within the memory requirement limits and the distribution
of those cases between minimum and maximum memory size. This variation
corresponds to the shape of the histogram of the application. Applications

108 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

with a limited number of different cases are expected to have most of its
possible gain obtained with a few platform supported system scenarios and
much smaller energy gains from additional system scenarios. After this point
most of the cases are already fitting one of the platform configurations and
adding new configurations have a minimal impact. The opposite is seen for
applications that feature a wide range of well distributed cases.

Based on the analysis above, applications can be classified into four main
categories. The first category has a histogram with a wide range of RTS
memory sizes and most RTSs placed to the left. This category is defined
as a right skewed distribution, according to the direction of the tail. In
this category the RTSs corresponding to large memories are rarely used, so
high gains are expected by applying the methodology. The second case is
when there is a close to Gaussian RTS distribution in the histogram. The
expected gains are here lower than for the first category. The opposite of
the first category is when the histogram is left skewed, meaning that the
RTSs with the higher memory requirements are dominant. In this category,
system designer should expect the smallest gains. The forth case is when all
the RTSs have the same memory requirements and there is no distribution
on the histogram, which results in no energy gains for the methodology.

B.7 Results

The memory aware system scenario methodology is applied to all the pre-
sented benchmark applications to study its effectiveness. The profiling phase
is based on different input for the data variables shown in Tab. B.3 and is
followed by the clustering phase. Different stimuli are used for the profil-
ing phase and the run-time calculations. The two different sets of input
are generated using the same random distribution function. The two in-
put sets have different sequences of inputs and the occurrence of each RTS
is random. The probability of each RTS is kept the same in the two input
sets. The execution and sleep times needed in Eq.B.1 are found through the
profiling but are also reflected by the dynamic characteristics in Tab. B.4.
Data variables are the variables used by the run-time manager in order
to predict the next active scenario. The clustering is performed with one
to five system scenarios. All potentially energy efficient configurations are
tested for a given number of scenarios using the steps described in Alg. 2.
For example, in the case of 2 scenarios all possible memory platforms with
2 memory banks that fulfil the memory size requirement of the worst case

B.7. Results 109

are generated and tested. The same procedure is performed for 3, 4 and 5
scenarios. The exploration includes memories of different sizes, technologies
and varying word lengths.

The proposed methodology provides the same performance on the mem-
ory subsystem and only reduces energy, if possible. The access time is the
same both in the static and the dynamic memory architecture. The goal of
the methodology is to always meet the memory requirements of the appli-
cations, using the minimum amount of active memory banks. A worst case
scenario is activated any time that the input is outside of the range of in-
puts. The worst case configuration activates all the available memory banks.
In this case the system achieves its highest capability, but the energy con-
sumption is the highest. The active scenario always provides enough space
to fit the active data for an input within the profiled range of inputs. The
energy gains are a result of switching unnecessary banks to a low-power
mode when it is possible. The active banks have the same performance and
are independent of any inactive banks on the clustered architecture.

The energy gain percentages are presented in Fig. B.6. Energy gains
are compared to the case of a fixed non-re-configurable platform, i.e., a
static platform configuration with only 1 scenario. This corresponds to zero
percentage gain in Fig. B.6. The most efficient of the tested organizations
for each benchmark are presented in Fig. B.7, where each memory bank
is depicted with a different colour and each length is proportional to the
memory bank size. The blowfish decoder is the only benchmark that has
only 3 banks in its most efficient memory organization. In Tab. B.5 the
minimum and maximum energy gains for each benchmark application are
shown.

B.7.1 Classification of the Applications

The introduction of a second system scenario results in energy gains be-
tween 15% and 40% for the tested applications. Depending on the appli-
cation’s dynamism the maximum reported energy gains range from around
35% to 55%. As expected according to the categorisation presented in sub-
section B.6.2, higher energy gains are achieved for applications with more
dynamic memory requirements, i.e., bigger difference between the minimum
and maximum allocated size. The maximum gains for JPEG, motion es-
timator, mesa 3D and PGP are around 50% while blowfish, jacobi, and
Viterbi decoders are around 40%.

110 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

Epic Motion Blowfish Jacobi Mesa3D JPEG PGP Viterbi
0

10

20

30

40

50

60

Applications

P
e
rc

e
n
ta

g
e
 g

a
in

 c
o
m

p
a
re

d
 t
o
 a

 s
ta

ti
c
 p

la
tf
o
rm

Gain for different number of scenarios − 8 benchmark applications

2 scenarios

3 scenarios

4 scenarios

5 scenarios

Figure B.6: Energy gain for increasing number of system scenarios - Static plat-
form corresponds to 0%

Figure B.7: Bank sizes for the most efficient of the tested organizations for each
benchmark

B.7. Results 111

Table B.5: Range of energy gains on the memory subsystem

EPIC Motion Blowfish Jacobi
Min Max Min Max Min Max Min Max

40.6% 55.1% 31.2% 50.1% 23.5% 42.0% 19.8% 35.9%

Mesa3D JPEG PGP Viterbi
Min Max Min Max Min Max Min Max

31.3% 49.2% 31.1% 48.9% 30.6% 51.2% 12.5% 42.4%

As the number of system scenarios that are implemented on the memory
subsystem increases, the energy gains improve since variations in memory
requirements can be better exploited with more configurations. However,
the improvement with increasing numbers of system scenarios differ depend-
ing on the kind of dynamism present in each application. The application
with the highest variation in distribution of memory requirements is the
Viterbi encoder/decoder and gains around 10% is seen for every new mem-
ory bank added, even for a platform growing from four to five banks. In
contrast, the application with the lowest number of different cases, blowfish,
cannot further exploit a platform with more than three banks. Another case
in which smaller energy gains are achieved, after a certain number of plat-
form supported system scenarios have been reached, is the PGP encryption
algorithm. In this benchmark the introduction of more scenarios has an
energy impact of less than 5% after the limit of three system scenarios has
been reached.

B.7.2 Switching Overhead

The switching cost increases for an increasing number of system scenarios
due to the increasing frequency of platform reconfiguration. This overhead
reduces the achieved gain, but for up to 5 scenarios we still see improvements
for all but one of our benchmarks. The switching cost is below 2% even for
a platform with 5 memory banks in all cases. Apart from the number of
scenarios, the switching cost depends on the sensitivity of the variable used
for scenario identification. A change of value on the identification variable
indicates potentially a new scenario. For an increasing frequency of changes,
the switching cost increases.

112 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

Epic Motion Blowfish Jacobi Mesa3D JPEG PGP Viterbi
0

10

20

30

40

50

60

Applications

G
a

in
s
 c

o
m

p
a

re
d

 t
o

 a
 s

ta
ti
c
 p

la
tf

o
rm

Gain for use case scenarios and system scenarios − 8 benchmark applications

Use case scenarios

Optimal system scenario

Figure B.8: Energy gain for use case scenarios and system scenarios

B.7.3 Comparison with Use Case Scenario

Comparative results from applying a use case scenario approach as a ref-
erence are presented in Fig. B.8. Reported energy gains for both use case
scenarios and the most efficient case of the system scenarios are given as-
suming a static platform as a base (0%). Use case scenarios are generated
based on a higher abstraction level that is visible as a user’s behavior. For
example, use case scenarios for image processing applications generate three
scenarios, if large, medium and small are the image sizes identified by the
user. Similarly, use case scenarios for JPEG compression identify only low
and high compression as options and motion estimation is performed on
I, P and B video frames, without exploring fine grain differences inside a
frame. In general, use case scenario identification can be seen as more coarse
compared to identification on the detailed system implementation level. As
seen in Fig. B.8 the use case gains are superior only to a static platform.

B.7.4 Run-Time Overhead

The reported energy gains are for the memory subsystem. As motivated in
Section B.2 this has previously been shown to be a major contributor to the

B.8. Conclusions 113

total energy consumption. An additional energy overhead from the system
scenario approach can be found in the processor performing the run-time
system scenario detection and switching. This overhead is partly incorpo-
rated in ESleepActive, in particular if traditional system scenarios are already
implemented so that the only overhead is the addition of memory-awareness.
The run-time overhead is kept low, because the run-time manager is active
for less than 1% of the time needed for the execution of the application.

B.8 Conclusions

The scope of this work is to apply the memory-aware system scenario
methodology to a wide range of multimedia application and test its ef-
fectiveness based on an extensive memory energy model. A wide range of
applications is studied that allow us to draw conclusions about different
kinds of dynamic behavior and their effect on the energy gains achieved
using the methodology. The results demonstrate the effectiveness of the
methodology reducing the memory energy consumption with between 35%
and 55%. Since memory size requirements are still met in all situations, per-
formance is not reduced. The memory-aware system scenario methodology
is suited for applications that experience dynamic behavior with respect to
memory organization utilization during their execution.

114 Exploration of energy efficient memory organizations for dynamic
multimedia applications using system scenarios

Appendix C

Systematic Exploration of
Power-Aware Scenarios for
IEEE 802.11ac WLAN
Systems

Nikolaos Zompakis, Iason Filippopoulos, Per Gunnar Kjeldsberg, Francky
Catthoor and Dimitrios Soudris

17th Euromicro Conference on Digital System Design (DSD)
IEEE, 27-29 Aug. 2014

pages 28 - 35
DOI: 10.1109/DSD.2014.76

115

http://dx.doi.org/10.1109/DSD.2014.76

116 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

117

Abstract

This work explores the power management options for a transmitting wire-
less system using system scenarios. We exploit the variations in the com-
munication channel and the protocol requirements during the lifetime of
a transmission, in order to optimize energy usage. Both the transmission
signal power and the memory subsystem are taken into consideration. Dif-
ferent system scenarios and the corresponding configurations capture the
different resource requirements, which change dynamically during transmis-
sion. Signal power on the antenna and active memory banks are the two
main platform parameters explored in this study and sufficiently detailed
system models are presented for both. The trade-off between the accuracy
of the generated system scenarios and the switching cost between them is
analyzed. The exploration is performed for an increasing number of system
scenarios, from 1 to 14, and the reported power gains are over 95% and over
25% on the signal power and the memory subsystems respectively.

118 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

C.1. Introduction 119

C.1 Introduction

Modern wireless technology [26] has opened new horizons in the means and
ways that users communicate. Radio devices exist in a multitude of items
such as cell phones, tablet computers and digital TVs. The different types of
applications demand different types of communication standards. Modern
4G networks provide high quality of services (QoS) exploiting new inno-
vative techniques, which combine smart transceivers and high performance
receivers. This trend creates new challenges that the conventional radio
equipment cannot cope with. Promising technologies, like Software De-
fined Radio (SDR) [116], attempt to integrate the rapidly changing wireless
networks, merging existing and new communication standards into one plat-
form. In this context, IEEE 802.11 wireless local area networks (WLANs)
play an important role in fourth-generation wireless mobile communication
systems [15]. The development of WLANs has primarily been guided by
legacy IEEE 802.11a/b/g devices. With the recent emergence of the IEEE
802.11n and the upcoming 802.11ac standards, WLANs are given the option
to operate over wider channels that achieve higher transmission rates. IEEE
802.11ac supports very high bandwidth communication with a targeted data
rate greater than 1 Gbps in the band below 6 GHz [51].

Meanwhile, wireless applications become more and more resource de-
manding, intending to provide better QoS. However, the majority of these
applications are operating under the limitations of the mobile handsets.
Thus, the design challenges include both the high performance require-
ments and the low power consumption constraints. New techniques that
can efficiently exploit the energy resources are undoubtedly an imperative
need, in order to extend the battery life. In this direction, the signal power
and the memory system represent the main sources of power consumption
on a mobile device. Signal power account at least for 50% of the power
consumption when a mobile device is on a standby mode, and even more
during calls. The memory subsystem has also an important contribution
due to the data intensive nature of the wireless applications. Both the
transmit power requirements on the antennas and the data requirements on
the memory change dynamically. Smart antennas optimize automatically
their transmission and their reception pattern responding to the changes of
the external environment. Flexible OFDM systems exploit the channel state
information adjusting the transmit power and increasing the achieved data
rate [57][56]. At the same time the chosen coding and modulation scheme
for data transmission affects the memory requirements.

120 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

The dynamic behavior outlined above results in unnecessarily high en-
ergy consumption if the system is statically designed to accommodate the
worst-case behavior. This is avoided if a system scenario methodology is
applied [38]. At design time a number of cost-optimized scenarios are se-
lected so that the system can be reconfigured at run-time according to the
current dynamic situation. In the current study, we consider a wireless sys-
tem where the transmit power and the activity of the memory is adapted to
the running situation based on application constraints and channel condi-
tions. The scope is to classify from a cost perspective the functionality of a
transmission process exploiting the system scenario methodology. The first
main contribution is the specification of the energy optimal configurations
of a potential wireless system focusing on the energy consumption of both
transmission signals and memories. The second key contribution is that we
examine the trade-off between the accuracy of the extracted scenarios and
their switching overhead, which is correlated with the system configuration
cost. For our purpose, a state of the art communication protocol (802.11ac)
is chosen with a large fluctuation on the supported communication charac-
teristics.

This paper is organized as follows. Section II surveys related work and
differentiation of the current work. Section III presents an overview of the
system scenario principles. In Section IV the system models for the signal
power and the memory are described, while the case study of this work is
analyzed in Section V. Results for the case study are shown in Section VI.
Finally, conclusions are drawn in Section VII.

C.2 Related Work

Transmission signal power adaptation is a key issue for energy-aware wire-
less devices. Several algorithms have been proposed for dynamic power
management of the antenna signal. The critical point in all cases is the in-
terference of the neighbor users. In a wireless system, the power allocation
problem can be efficiently addressed by the water-filling algorithm [100].
The scope of this algorithm is to manage, in an optimal way, the antenna
signal transmission power of every user in a wireless system network. The
target is to maximize the available capacity of the transmission channel. The
main drawback of this approach is that the provided QoS is not taken into
consideration. QoS has been successfully considered in a number of other
studies. In [121] authors attempt to minimize the whole system transmis-

C.2. Related Work 121

sion power under fixed performance requirements for a given sets of user
data rates. In [19] an extension of the traditional water-filling technique,
considering users queue-length constraints, is presented. In the context of a
cognitive radio OFDM system, authors in [7] propose optimal power load-
ing schemes for a single user and extend their proposal for multiple users in
[6]. In [64] optimal power control policies are presented focusing on fading
channel at cognitive radio networks. These policies pay special attention to
the interference influence. All the above solutions have the drawback that
they presuppose a centralized control, which implies significant changes to
the network infrastructure. A second important drawback is that they are
characterized by high implementation complexity.

In the context of the current study we work towards overcoming these
drawbacks. Regarding the first, we propose a distributed power adjustment
approach, which can be applied at client-platform level. This approach
exploits the signal power scaling range between the minimum required SNR
(Signal to Noise Ratio) (based on the noise conditions and the required
data rate) and the permissible signal power radiation (EMC, FCC Rules
Dictate Antenna Use). The main contribution is focused on the second
design obstacle, which is related with the implementation complexity cost.
In respect to that we apply a scenario-based methodology which provides
the required flexibility to cluster and classify the multi-operation conditions
into system scenarios which are effectively detected and exploited at run-
time. The key issue is that we examine the trade-offs between the switching
and clustering overhead. A somewhat similar trade-off was presented in
[124], but this is the first time that it is applied in a systematic way for a
wireless application and especially for the specific characteristics of WLAN
IEEE 802.11ac systems.

A comprehensive study on a low-power architecture specifically designed
for software radio is presented in [73]. The target wireless protocols explored
are W-CDMA and 802.11a and the power consumption breakdown is ana-
lyzed for the whole system. In both cases the memory architecture are an
important contributor to the overall energy consumption, exceeding 30%
for the worst case. In [72] a power saving mechanism for high speed WLAN
applications is presented. The authors propose a hierarchical memory de-
sign to reduce memory access operations and report a 30 to 40% power
dissipation reduction. This method is complementary to ours, because it
reduces the number of memory accesses while we focus on optimizing the
energy per access. Again, the main differentiation with the current work
is the scenario exploration, which is viable by employing a platform that is

122 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

reconfigurable during run-time.

The system scenario methodology has been described in [34] and is pre-
sented in Section III. The system scenario concept was also outlined in
[35], where the tasks are written using a combination of a hierarchical fi-
nite state machine (FSM) and a synchronous dataflow model (SDF). The
disadvantage of this method is that the applications must be written using
a limited model, which is a time consuming and error-prone operation. In
[45] authors propose a scenario-based framework for managing processor re-
sources while achieving QoS on contemporary multi-core processors running
media-streaming applications. In [126] the efficiency of system scenarios for
dynamic wireless applications is shown. The usage of system scenarios on
the memory is presented in [29]. In this study, the main focus is on the dy-
namic management of both the signal power and the memory activity. Apart
from the application of the system scenario methodology on an emerging
wireless protocol, we perform a design exploration trade-off analysis. To be
more specific, we examine the main tradeoff between clustering overhead,
which is correlated with how representative are the scenarios, and switching
overhead, which represents the tuning cost of the platform.

C.3 System Scenario Principles

The system scenario methodology is a design approach for handling the
complexity analysis of applications with multi-dimensional costs and strict
constraints. The main challenges are the optimal application mapping on
the platform and the efficient management of the platform resources. In
particular, by classifying and clustering the possible system executions into
system scenarios, a run-time resource manager can substantially reduce the
average cost resulting from this execution compared to the conventional
worst-case bounding approach, while still meeting all constraints.

The aim of system scenarios is to capture the data dependent dynamic
behavior inside a thread in order to better schedule a multi-thread applica-
tion on a heterogeneous multi-processor architecture. [36] presents a design
methodology that provides a systematic way of detecting and exploiting
system scenarios for streaming applications. A scenario is defined as the
application behavior for a specific type of input data, i.e. a group of execu-
tion paths for that particular group of input data.

An important term in the scenario methodology is the Run-Time Situ-
ation (RTS). An RTS is a deterministic thread execution path with specific

C.3. System Scenario Principles 123

and fixed cost dimensions. RTSs are treated as execution units. The system
scenario methodology comprises 5 individual steps as defined by [38]:

1. Identification. The first step is to identify all possible RTSs. To
achieve this, we identify and classify all RTS parameters. As a param-
eter, we can assume every variable affecting the state of the system
from a functionality point of view.

2. Characterization. Each RTS can be characterized by a number of
cost factors obtained from profiling the application on a platform or
by using high-level cost estimators. The placement of the possible
cost points of each RTS on the cost space leads to a Pareto curve.
The Pareto curve contains all the potential exploitation points in the
multi-dimensional exploration space.

3. Clustering. It defines the grouping of the individual execution sit-
uations into system scenarios. The clustering process introduces in-
evitably an overestimation, caused by the deviation between the real
cost of the RTS and the estimated cost which is the representative
cost for the system scenario of the RTS. An efficient clustering is very
important and the aim is to keep run-time overhead low without high
overestimation.

4. Detection. This step implements the mechanism, which detects in
which of the several system scenarios the current RTS belongs. System
scenario detection can be performed by monitoring the changes of the
application parameters.

5. Switching. Switching includes both the switching decision, which
is whether a system reconfiguration will be applied or not, and the
switching mechanism, which apply the chosen system reconfiguration
to the platform. A scenario switch is performed if the gain of switching
is greater than the switching cost.

More details about the methodology steps can be found in [38]. An aim
of this study is to exploit the system scenario classification decreasing the
design complexity, as the high number of RTSs is grouped in a small number
of scenarios.

124 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

C.4 System Model

C.4.1 Antennas Signal Power

We consider an uplink Wireless transmission channel of a MIMO-OFDM
system based on the IEEE 802.11ac communication protocol [51]. The
transmission data rate, for which we can achieve a successful transmission, is
defined by the bandwidth, the capacity and the noise on the channel. A fun-
damental trade-off exist between Bit-Error-Rate (BER), which is correlated
with the provided QoS, and antenna signal power. A potential run-time
reconfiguration manager can adjust the signal power and the memory sub-
system to the running situation. The scheduler selects the energy optimal
configuration scheme (number of spatial streams, bandwidth, modulation
and coding (MC) schemes) which respect the running constrains, based
on the targeted communication standard (WLAN 802.11ac) characteriza-
tion [51]. More precisely, the scheduler chooses the communication scheme,
which requires the minimum SNR for the current data rate requirements
under given conditions of external distortion. This presupposes that the
scheduler has perfect updated knowledge of the channel condition and the
application deadlines. The antenna signal power is adjusted to give the
required data rate.

The aforementioned fundamental bound between signal power and data
rate under specific noise conditions is mathematically expressed by the Shan-
nonHartley theorem [8]:

C = B × log2(1 + S/N) (C.1)

C is the channel capacity in bits per second; B is the bandwidth of the
channel in hertz; S is the average received signal power over the bandwidth,
measured in Watt; N is the average noise or interference power over the
bandwidth, measured in Watt; and S/N is the signal-to-noise ratio (SNR).

This equation shows that a theoretical minimum SNR exists for achiev-
ing a target capacity with specific available channel bandwidth. The mini-
mum SNR for a specific level of noise defines the minimum required signal
power for an error-free transmission. For example, if the available band-
width is Bw the theoretical minimum SNR for a transmission with bit-rate
Cb without errors is:

SNR ≤ 2Cb/Bw − 1 (C.2)

C.4. System Model 125

Figure C.1: ShannonHartley theorem

The average signal power, S, can be written as S=EbC, where Eb is the
average energy per bit. The average noise power, N, can also be redefined
as, N=N0B, where N0 is the noise power (Watts/Hz). The ShannonHartley
theorem [8] can be written in the form:

C

B
= log2(1 +

EbC

N0B
) (C.3)

The ratio C/B represents the bandwidth efficiency of the system in
bits/second/Hz. The graphical representation of the ShannonHartley theo-
rem presented in Fig.C.1 shows that bandwidth efficiency can be traded for
power efficiency and vice-versa. The light gray area represents the area free
from errors. Knowing the SNR levels, we can characterize the total signal
power efficiency of every configuration (minimum Signal Power) to achieve
the targeted capacity. If the configuration supports multiple antennas (mul-
tiple spatial streams) the total signal power is estimated as the sum of the
signal of each antenna.

The graphical representation of the ShannonHartley theorem, see Fig.C.1,
clearly shows that throughput can be traded for power efficiency, and vice-
versa. The light gray area represents the area free from errors. The theoret-
ical minimum SNR for an error-free transmission is impossible to reach in

126 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

Figure C.2: Symbol error probability for 802.11ac Modulation schemes

practice. The modulation schemes define how close to this theoretical SNR-
min the transmission can be. Every modulation scheme is characterized by
a minimum SNR that allows the demodulation of the transmitted symbols
without errors. Knowing the minimum SNR for every modulation scheme
(MS), we can define the minimum Signal Power for every MS for specific
levels of noise. The equation that defines the symbol error probability (Ps)
for every MS, with respect to SNR is the following [100]:

Ps,M−ary = (
M − 1

M
)× erfc(

√
3

M2 − 1
× ESaver

N0
) (C.4)

M is the number of symbols used, Es the average received signal power,
N0 the average noise signal power and erfc is the complementary error func-
tion. The graphical expression of this equation for the modulation schemes
of the 802.11ac is presented in Fig.C.2. Channel coding improves the SNR
by a factor R [8]. So the curves can be normalized for equal energy per
information bit (pre-coding) bearing in mind that the energy per transmit-
ted bit is less than the energy per information bit by a factor equal to the
code rate R. The graphical expression of the symbol error probability for
the modulation and coding (MC) schemes of the 802.11ac can be found in
Fig.C.3.

In this context, every system scenario RTS is characterized by a two-
dimensional cost 1) the total signal power and 2) the bit error rate (BER).
The signal power is inversely proportional to the symbol error probability
and correspondingly to bit error probability as shown in Fig.C.2 and Fig.C.3.

C.4. System Model 127

Figure C.3: Symbol error probability for 802.11ac Modulation and Coding
schemes

Figure C.4: RTS Characterization

Each RTS is characterized by a curve in the two-dimensional space of total
signal power. This curve is derived by the respective curve at Fig.C.3 that
corresponds at the MCs of the RTS. Based on the bits-per-symbol of MCs
(BPSK: 1bps, QPSK: 2bps, etc.), the short guard interval (SGI) and the
noise level of the RTS, the Ps (symbol error probability) to SNR curve can
be transformed to BER to Signal Power curve. In Fig.C.4, due to limited
space, we present 3 representative examples of these RTS curves. For a
given BER, the minimum signal power to achieve successful communication
is chosen and this point represents the system configuration for this RTS.

Besides the above-mentioned technical analysis the most unstable pa-
rameter for a transmission is the user profile, e.g., the distance between

128 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

receiver and transmitter, the existence of other communication channels or
others sources of distortion. These are factors that influence the channel
transmission and are directly influenced by the user behavior. For example,
if the user moves in a saturated spectrum area or in a noisy environment
high communication channel interference is expected. Correspondingly, if
the user changes position very rapidly, (for example, driving a car) this
has impact on the normal demodulation of the transmitted signal (Doppler
Effect).

C.4.2 Memory Banks

The SNR level and the changing environment on the wireless channel also
affects the memory requirements. In more detail, the conditions of the
channel determine the coding and modulation scheme needed for a success-
ful communication and, consequently the required data rate. The coding
phase transforms an m-bit data string into an n-bit string in order to be
encoded, when the given coding rate is m/n. The modulation phase conveys
a varying number of bit streams together, based on the chosen modulation.
The data rate constraint defines the storage and transmission requirements
for the data. As a result, the memory footprint depends on the data rate of
the channel and is dynamic for a changing environment. Energy consump-
tion on the memory subsystem depends on the number of accesses and the
energy per access, which are different based on the size and the type of
memory. The observation that the memory requirements at run-time vary
significantly due to dynamic variations on the transmission channel and the
protocol, is exploited through use of system scenarios. Instead of defining
the memory requirements for the worst-case data rate and tuning the sys-
tem according to this, system scenarios are generated for different situations.
The combination of the coding and the modulation parameters define the
data rate for each RTS. The data rate is the identification variable and the
cost factor is its memory footprint. Based on the cost factor, the different
memory footprints are clustered into scenarios. The clustering of RTSs is
based both on their distance on the memory size axis and the frequency of
their occurrence.

The key feature needed in the platform architecture is the ability to effi-
ciently support different memory sizes that correspond to the system scenar-
ios generated by the methodology. Execution of different system scenarios
then leads to different energy costs, as each configuration of the platform

C.4. System Model 129

results in a specific memory energy consumption. The dynamic memory
platform is achieved by organizing the memory area in a varying number of
banks that can be switched between different energy states.

In this work, a clustered memory organization with up to five memory
banks of varying sizes is explored. The dynamic memory organization is
constructed using commercially available SRAM memory models (MM).
For those models delay and energy numbers are derived from a commercial
memory compiler. In addition, experimental standard cell-based memories
(SCMEM) [81] are considered for smaller memories due to their energy and
area efficiency for reasonably small storage capacities. The standard cell-
based memories are synthesized using Cadence RTL compiler for TSMC
40nm standard library.

Both MMs and SCMEMs can operate under a wide range of supply
voltages, thus support different operating modes that provide an important
exploration space.

• Active mode: The normal operation mode, in which the memory can
be accessed at the maximum supported speed. The supply voltage
is 1.1V. The dynamic and leakage power are higher compared to the
other modes. In this work all the memory accesses are performed on
the active mode.

• Light/Deep sleep mode: The supply voltage in this mode is lower than
active with values around 0.7V and 0.3V respectively. The access time
of the memory is significantly higher than the access time in active
mode. Switching to active mode can be performed with an energy
penalty (switching cost) and a small time penalty of a few clock cycles.
Data is retained.

• Shut down mode: Power-gating techniques are used to achieve near
zero leakage power. Stored data is lost. The switch to active mode re-
quires substantially more energy and time. However, switching unused
memories to this mode results in substantial energy savings.

The goal is to design a suitable clustered scratchpad memory architec-
ture that can serve the generated scenarios. When the maximum data rate
is required by the protocol, all the memory banks should be active and ac-
cessed. When the needed data rate is lower, the size and the rate required
by the memory system are lower and one or more memory banks can be
switched off. As a result, the amount of energy consumed during a system
scenario with lower requirements is reduced.

130 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

C.4.3 Combined Model

The optimal energy configuration both on the signal power and the memory
subsystem takes into consideration six parameters, namely (a) the number of
spatial streams (streams), (b) the MC schemes, (c) the channel bandwidth,
(d) the SGI, (e) the data rate, and (f) the noise level. Based on their values
the run-time manager choses the active scenario for the signal power and the
memory subsystem and performs the appropriate reconfigurations. The key
point is that this decision is not taken independently. For the first time in the
context of a wireless system, two system scenario sets adjusted to achieve an
overall optimization. This represents a new methodology extension because
the clustering step has to take into consideration not only the overhead
impact at the targeted subsystem, but also the interaction with the other
subsystem scenario sets. Thus, it is provided an optimal configuration for
the whole system and not sub-optimal for individual parts.

C.5 Case Study

In the context of the current case study, we examine the potential power
gain exploiting two scenario-based schedulers. The first adjusts dynami-
cally the antenna signal power and the second manages the memory banks
activation. For the needs of our study, we consider an artificial application
that generates data bursts that have to be transmitted within specific dead-
lines. The distribution of the generated data bursts is presented at Fig.C.5.
For every data burst there is a corresponding transmission time deadline,
which defines a minimum data rate. The distribution of the time deadlines
is presented at Fig.C.6.

Every combination of six parameters discussed in Section IV.C repre-
sents a different communication scheme. The memory adaptation schedul-
ing takes into consideration only the data rate. The first four parameters
(streams, MCs, BW, SGI) is defined by the targeted protocol (802.11ac)
[51] creating an exploration space of 240 RTSs. Given values for these four
parameters, the maximum value for the fifth parameter, data rate, can be
calculated. Thus, data rate does not contribute to the exploration space,
but it is used as an identification variable of the suitable communication
scheme. More precisely, the desired data rate is extracted dynamically by
the running application requirements (Data Bursts size and Deadline) and

C.5. Case Study 131

Figure C.5: Data Burst Distribution

Figure C.6: Application Deadline Distribution

132 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

Figure C.7: Noise Distribution

the scheduler identifies which communication schemes can satisfy this data
rate. The last and the most important variable is the external noise. In
order to be more representative, we take noise distributions and not dis-
crete values of noise. For the needs of our measurements we consider two
channels with different Gaussian noise distributions as shown in Fig.C.7
having different average values (µ) and standard deviations (σ) (channel1 :
µ = 100mWatt, σ = 20mWatt, channel2 : µ = 140mWatt, σ = 10mWatt).
The second channel represents a noisier and more rapidly changing environ-
ment compared to the first. The noise distribution defines the appearance
probability of the running situations (RTSs). A different noise distribution
creates a different probability density for the RTSs. For example in our case
the probability density of the RTSs, with noise range (µ, µ+ σ) and (µ and
µ−σ), is 34.13% (because of the Gaussian distribution). Similarly, the RTSs
probability for (µ, µ±2σ), (µ, µ±3σ), (µ, µ±4σ) and (µ, µ±5σ) are calcu-
lated. Thus, for a Gaussian distribution, we have in total 10 bounding levels
of noise, which in combination with the values of the previous parameters
creates an exploration space of (240× 10) 2400 RTSs. The clustering of the
RTSs into system scenarios varies based on the noise distributions. Thus,
for every distribution we have a different optimal set of system scenarios.

The scheduling decision about the suitable communication scheme fol-
lows three main priorities: 1) the required data rate, 2) the noise tolerance
and 3) the power saving. The first criterion fulfills the current application
deadlines while the second ensures the signal power for an acceptable BER.

C.5. Case Study 133

Thus, the signal power scheduler first finds the communication schemes that
respect the running time constrain, and in a second stage chooses these, that
permit the lowest signal power. The final decision is based on the overall
system power saving.

In our case study, we have in total three different sets of system scenarios;
two for the signal power scaling (one for each of the two channels presented
in Fig.C.7) and a third set for the memory banks power management (based
on the data size distribution presented in Fig.C.5). To minimize memory
bank power, the memory scheduler at run-time activates a suitable number
of scratch pad memory banks based on the selected coding scheme. Data
are transferred to the memories as part of the transmission chain during the
modulation phase.

For the extraction of the system scenarios, we take into consideration the
trade-off between the run-time implementation overhead and the accuracy
of the extracted scenarios. The first is related to the switching overhead
while the second is related to the number of the scenarios and the clus-
tering overhead. In comparison with the approach presented in the second
case study of publication [126] (related to signal power adaptation), the
presented study has the following differentiations. Except from the differ-
ent characteristics of protocol 802.11ac (compared with 802.11n), in our
case the proposed scheduler both adjusts signal power and selects the opti-
mal power communication scheme (MCs, streams, BW etc.) based on the
current noise conditions and data rate constrains. This increases the de-
sign space complexity from 80 RTSs [126] to 2400 RTSs. Additionally, the
current approach takes into consideration two channel noise distributions
(one for every channel) which differentiates the RTS appearance frequency,
changing dramatically the clustering of RTSs into system scenarios (as the
RTS frequency affects significantly the clustering overhead [126]). Further-
more, in the context of the current study we differentiate by presenting the
trade-offs between switching and clustering overhead for different numbers
of extracted system scenarios and by including memory into exploration.
In respect with the last, we insert a new methodology extension adjusting
the clustering of two system scenario sets (Signal Power and memory) to
achieve an overall optimization.

134 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

C.6 Results

Tab.C.1, Tab.C.2 and Tab.C.3 present the variation of the clustering and
switching overhead. The first column (number of scenarios) gives the num-
ber of system scenarios for each row. The second column (clustering over-
head compared to WCE) and third column (clustering overhead compared
to previous step) presents normalized the percentage variation of the cluster-
ing overhead compared with the worst case (monolithic approach) and that
of the previous row, respectively. When RTSs are clustered into scenarios,
the cost for the most energy demanding RTS is used as the representa-
tive cost for all the RTSs within the scenario. The system is configured to
serve the most demanding RTS of the scenario and consequently all the less
demanding RTSs, which belong to the scenario. The clustering overhead
represents the difference between the RTSs within a scenario. As the num-
ber of scenarios increases the percentage approaches 100%, which would
be the value if there was a dedicated scenario for each RTS. Similarly, the
fourth column (switching overhead) and fifth column (switching var) repre-
sents the switching overhead expressed as the scenario switching probability
and the percentage change of the switching overhead compared with that
of the previous row, respectively.

In Tab.C.1, for example, for a set of 8 system scenarios we have a cluster-
ing overhead of 7% and a decrease in clustering overhead compared with the
previous row (7 system scenarios) of 19%. The switching overhead is 85%
and it is increased by 4% compared with the previous row. For an increasing
number of scenarios, the clustering overhead is reduced, because the differ-
ence between the RTSs within the scenarios decreases. Respectively, the
switching overhead is increased, because there are more scenarios to choose
from and thus the system switches between scenarios more often. Depend-
ing on the design objectives, it is possible to choose an optimized number
of scenarios. A larger number of scenarios increases the implementation
overhead (more switching overhead) but it reduces the clustering overhead
and vice versa.

The power gain percentages for each of the channels and the memory
are presented in Fig.C.8. Results are given for 10 executions of the case
study with the noise distribution given in Fig.C.7. The baseline is a system
designed based on the worst-case requirements. The system is assumed
monolithic without any reconfiguration based on the noise level and the
MC scheme. The gain for the first antenna is around 97% for all the cases,
while for the second antenna it is a little lower. The worst case has a noise

C.7. Conclusion 135

Table C.1: Memory Banks Scenario Overhead

level of 180 mWatt, MC scheme 5/6 256QAM, SGI and 4 MIMO, while best
case has a noise level of 20 mWatt, MC scheme 1/2 BPSK, no SGI and 1
MIMO. The reported gains for the memory are in the range from 27.8% to
29%. The power savings are significantly higher on the antennas due to two
main reasons. Firstly, the variation between the best and the worst case
on the antennas is wider and thus offers a greater opportunity for energy
savings. Secondly, the reconfiguration option for the antennas offer more
flexibility and all possible signal power levels can be exploited. The memory
architecture has a physical limitation in the number of memories that can
be used and only a range of sizes is supported by the system models.

C.7 Conclusion

The scope of this work is to explore the power management options for a
transmitting wireless system using system scenarios. The dynamic param-
eters and the variations during the transmission for the targeted wireless
protocol are analyzed. Based on the analysis and the system models, sys-
tem scenarios are generated for the case study, in order to optimize energy
usage. Both the signal power and the memory subsystem are taken into
consideration. The results demonstrate the effectiveness of the methodol-
ogy and illustrate the interesting trade-off between the clustering overhead

136 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

Table C.2: Signal powerChannel 1 Scenario Overhead

Table C.3: Signal powerChannel 2 Scenario Overhead

C.7. Conclusion 137

Figure C.8: Power Gain

and the switching cost.

138 Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac
WLAN Systems

Appendix D

Integrated Exploration
Methodology for Data
Interleaving and
Data-to-Memory Mapping
on SIMD architectures

Iason Filippopoulos, Namita Sharma, Francky Catthoor,
Per Gunnar Kjeldsberg and Preeti Ranjan Panda

ACM Transactions on Embedded Computing Systems
Submitted in 2015

(currently under second round of review)

139

140 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

141

Abstract

This work presents a methodology for efficient exploration of data inter-
leaving and data-to-memory mapping options for SIMD (Single Instruction
Multiple Data) platform architectures. The system architecture consists of
a reconfigurable clustered scratch-pad memory and a SIMD functional unit,
which performs the same operation on multiple input data in parallel. The
memory accesses contribute substantially to the overall energy consumption
of an embedded system executing a data intensive task. The scope of this
work is the reduction of the overall energy consumption by increasing the
utilization of the functional units and decreasing the number of memory
accesses. The presented methodology is tested using a number of bench-
mark applications with irregularities in their access scheme. Potential gains
are calculated based on the energy models both for the processing and the
memory part of the system. The reduction in energy consumption after
efficient interleaving and mapping of data is between 40% and 80% for the
complete system and the studied benchmarks.

142 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

D.1. Introduction 143

D.1 Introduction

Energy is an important limiting factor for modern embedded systems. New
novel hardware solutions have been proposed to reduce the energy consump-
tion. On the processing side, SIMD architectures offer new possibilities for
potential improvements on the performance and the energy consumption.
On the memory side, modern memory architectures provide different energy
modes and clustered scratch-pad memory banks that can operate indepen-
dently, offering more options for reducing energy consumption. Dynamic
and data intensive algorithms are implemented on embedded systems. Data
intensive applications have often holes in their memory accesses, meaning
that the data in memory are not always accessed in order. The lack of spa-
tial locality and the presence of redundant data results in lower utilization
of the hardware resources, given that a conventional approach is employed
for the handling of data. This problem motivates the development of a
methodology to improve the management of the data.

In order to tackle this problem we propose an interleaving exploration
that aims to increase spatial locality and reduce the memory accesses on
redundant data. The goal of this work is to improve the energy consump-
tion for data intensive applications without any loss on the application’s
performance. We focus on single instruction multiple data (SIMD) archi-
tectures and explore applications that have irregularities in their access
scheme. SIMD architectures can potentially increase the performance of an
application, providing that the utilization of them is high. However, appli-
cations with irregular access patterns do not provide compact sequences of
data that are suitable for high utilization. Hence the performance is lower
than expected and the number of memory accesses is high due to the access-
ing of redundant data. In order to reduce the number of memory accesses
and achieve higher utilization of the system architecture a systematic explo-
ration of the interleaving options and memory mapping for an application’s
data is needed.

A large number of papers have demonstrated the importance of the
memory organization to the overall system energy consumption. As shown
in [39] memory contributes around 40% to the overall power consumption
in general purpose systems. Especially for embedded systems, the memory
subsystem accounts for up to 50% of the overall energy consumption [20]
and the cycle-accurate simulator presented in [108] estimates that the en-
ergy expenditures in the memory subsystem range from 35% up to 65% for
different architectures. The breakdown of power consumption for a recently

144 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

implemented embedded system presented in [49] shows that the memory
subsystem consumes more than 40% of the leakage power on the platform.
According to [75], conventional allocation and assignment of data done by
regular compilers is suboptimal. Performance loss is caused by stalls for
fetching data and data conflicts for different tasks, due to the limited size
of memory and the competition between tasks.

The energy consumption can be divided into two parts, namely the pro-
cessing and the memory subsystem consumption. The energy needed for
processing depends mainly on the utilization of the FUs and any potential
stalls, if the memory cannot provide data at the needed rate. The inter-
leaving exploration can increase the utilization of the processing subsystem
and reduce time penalties for data loading. The energy consumption in the
memory subsystem is affected by the number of memory accesses and the
energy per access. Again, the memory architecture and the data-to-memory
mapping decisions have great impact on both the number of accesses and
the energy per access.

This article is organized as follows. Section D.2 motivates the study of
developing a methodology for optimization of the data interleaving explo-
ration and the data-to-memory mapping. Section D.3 surveys related work
on both the interleaving and memory mapping exploration. Section D.5
presents the general work-flow and the sequence of the methodology steps.
In Section D.4 the target platform is described accompanied by a detailed
description of the employed SIMD architecture and the memory models.
The set of benchmarks is analyzed in Section D.6 and results of applying
the described exploration methodology to the targeted applications is also
presented there. Finally, conclusions are drawn in Section D.7.

D.2 Motivational Example

Many different techniques have been proposed already to deal with the
memory accesses and the potential memory bottlenecks. Authors in [77]
propose a low power cache memory for embedded systems that can optimize
memory accesses based on application’s requirements. The goal in [41] is to
effectively utilize the scratch-pad memory of an embedded system in order to
improve the memory accesses. A recent survey of the developed techniques
for improving cache power efficiency is presented in [84]. Reconfigurable
hardware for embedded systems, including the memory architecture, is a
topic of active research. An extensive overview of current approaches is

D.2. Motivational Example 145

found in [31]. The current work is complementary to the existing ones and
focuses on the areas that has not been explored in detail as discussed in
D.3.

The approach presented in this paper differentiates by exploring both
the data transformations and data-to-memory assignment aspects in the
presence of a platform with dynamically configurable memory blocks and
bus widths. Moreover, many methods for source code transformations, and
especially loop transformations, have been proposed in the memory man-
agement context. These methods are fully complementary to our focus
on data-to-memory assignment and should be performed prior to our step.
The contribution of the proposed work is the presentation of a combined
approach that investigates the interleaving and memory mapping options
for a reconfigurable SIMD architecture.

To illustrate the sub-optimal utilization of SIMD architectures using con-
ventional allocation and assignment of data, the simple example of Alg. 3 is
used. In this example, we assume that the desired result is always the sum
of 4 elements from arrays A, B, C and D. The access pattern shows an irreg-
ularity, as a result of the iteration index. For every group of four sequential
array elements, there is only one used for the calculation of the result and
the other three are skipped. An intuitive interleaving optimization is the
interleaving of the arrays A, B, C and D, in order to generate sequences
of elements that are all useful on the calculation of the result variable. A
full interleaving exploration could reveal several options to produce larger
sequences of array elements that are needed during the execution of Alg. 3.
For example, the interleaving within the combined array (A|B|C|D) can
result in a sequence of 8 accessed elements. The sequence of 8 elements is
achieved by combining every forth line of the combined array, i.e. line 0
and line 4 are placed next to each other resulting in a sequence of 8 useful
elements.

Algorithm 3 Motivational Example Algorithm

1: N ← 100
2: for i = 0→ N do
3: result(i)← A(i) +B(i) + C(i) +D(i)
4: i← i+ 4
5: end for

The initial data representation for the arrays A, B, C and D is shown in
Fig.D.1(a). The array elements that are accessed during the execution of the
motivational example are marked with colors, in contrast to the elements

146 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

that are not accessed. The array elements are drawn in 25 lines with 4
elements on each line only for a better visual representation. At this point
there is no mapping to the memory architecture and no constraint regarding
the number of lines or their width in the memory design. The interleaving
of the arrays A, B, C and D is shown in Fig.D.1(c). Each line of the
new interleaved array contains one elements from the initials arrays. For
example, the first line consists of the elements A(0), B(0), C(0) and D(0).
The result of the interleaving is the construction of blocks consisting of 4
colored elements followed by blocks with 12 redundant elements.

Let us now consider possible data-to-memory mappings for the initial
and interleaved array elements. We assume here that he memory architec-
ture either consists of one single memory large enough to fit all four arrays
or of four memory banks with a combined memory size large enough to
fit the four arrays. The conventional approach with the initial set of data
maps each array after each other in the single memory or maps each array
in a separate bank. A possible data-to-memory mapping for the initial set
of data using four banks is presented in Fig. D.1(b). The data-to-memory
mapping for the constructed interleaved array is presented in Fig. D.1(d).
The array is split into four parts and stored in the four different banks using
the same memory architecture. Each of the lines of the interleaved array is
stored in the bank corresponding to modulo 4 of the array line. For exam-
ple, line x is stored in bank x mod 4. As a result only one forth of array A
can be found in the first bank in contrast to the non-interleaving case, in
which the whole array A is mapped in the first bank.

A quick estimation for the difference in the number of memory accesses
between the two approaches presented in Fig. D.1 can be made. The tar-
get architecture for the current work consists of a reconfigurable clustered
memory architecture, a processing element that supports SIMD FUs and a
wide bus between them. The architecture is presented in detail in Sec. D.4.
The motivational example uses a system architecture with an SIMD ADD
FU that performs operations over 4 array elements at a time and a memory
to processor path that has a width of 4 elements. Each array element is
assumed to have the size of one word. The register file at the processor
level can only store the iteration variable i and 5 elements, which are the
variables result, A, B, C and D. Without interleaving of data the number
of memory accesses for each loop iteration is 4, because the elements A(i),
B(i), C(i) and D(i) are stored in different lines and different memory banks

D.2. Motivational Example 147

0 4

0

1

25

Array A

0 4

0

1

25

Array C

0 4

0

1

25

Array D

0 4

Interleaved

A/B/C/D

1

2

3

0

4

96

97

98

99

Bank 1

0 4

0

1

25

Array A

0 4

0

1

25

Array B

0 4

0

1

25

Array B

0 4

0

1

25

Array C

0 4

0

1

25

Array D

Bank 2

Bank 3 Bank 4

Bank 1 Bank 2

Bank 3 Bank 4

Clustered Memory Architecture

0

4

96

1

5

97

2

6

98

3

7

99

Clustered Memory Architecture

(a) (c)

(b) (d)

Figure D.1: Motivational Example. Representation of the initial set of data (a)
and the interleaved set of data (b). Data-to-memory mapping for the initial (c)
and the interleaved data (d) on a clustered scratch-pad memory architecture.

148 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

or one larger bank. The overall number of memory accesses is:

25 loop iterations × 4 accesses per iterations = 100 memory accesses.
(D.1)

After performing the data interleaving exploration there is only one memory
access for each loop iteration, because the elements A(i), B(i), C(i) and
D(i) are stored in one memory line in the same bank. The overall number
of memory accesses is:

25 loop iterations × 1 accesses per iteration = 25 memory accesses.
(D.2)

A quick estimation for the difference in the energy consumption between
the approaches presented in Fig. D.1 can be calculated using a simple energy
model for the memory banks. We assume that the energy cost of accessing
a memory bank the size of one array is 1E, while the average leakage energy
in the time needed for the execution of one loop iteration is 0.3E. The
corresponding access and leakage numbers for a four times larger memory
that can fit all the data together is 3E and 1.2E, respectively. The numbers
reflects the fact that as a first order approximation access energy increases
sub-linearly with increased memory size, while leakage increases linearly
with memory size. The energy consumption for a large memory with non-
interleaved data is:

100 × 3E + 100× 1.2E = 420E. (D.3)

In this case there is a performance loss and an increased leakage energy,
because all the accesses has to be done sequentially on the same memory.
The energy consumption for a four bank memory architecture with non-
interleaved data is:

100 × 1E + 4× 100× 0.3E = 220E. (D.4)

The energy consumption for a large memory with interleaved data is:

25 × 3E + 25× 1.2E = 105E. (D.5)

Finally, the energy consumption for a four bank memory architecture with
interleaved data is:

25 × 1E + 1× 25× 0.3E = 32.5E. (D.6)

It should be noted that the leakage energy in the last case is considered
only for the one bank that is always accesses. The memory banks that

D.3. Related work 149

store redundant data are assumed switched to retention mode to minimize
leakage. The simple estimations presented in equations (1)-(6) shows that
a pure interleaving optimization results in a 75% reduction in the number
of accesses. A memory optimization based on an energy efficient four bank
clustered memory architecture can also give an important energy reduction.
The energy gains are even greater when interleaved data are mapped to
an efficient memory architecture. The observations for this simple example
motivates the further exploration of the data interleaving and the data-to-
memory mapping for applications with irregularities in their accesses.

D.3 Related work

Many studies have been published in the area of data layout transforma-
tions and memory management. This work differentiates by presenting an
integrated approach that combines the two areas. The combination is per-
formed in a systematic way and the final result is better than the sum of
the two individual optimizations. The data transformations on the applica-
tion level are studied in combination with the data-to-memory mapping on
the hardware level. An overview of the related work on those two areas is
presented.

Data layout optimizations aim to arrange data in memory with the ob-
jective of improving system performance and energy through means such
as reduced memory access count or reduced cache misses. Several generic
data layout techniques have been explored by researchers at various levels
in the memory hierarchy. In [51], cache partitioning, a layout technique
for arrays, maps each array to different cache partitions to reduce conflicts.
In [57] authors address the problem for cache miss reduction by evaluat-
ing the tiling size for arrays and merging the arrays appropriately for each
loop nest. Memory Hierarchy Layer Assignment (MHLA), an optimization
methodology for data memory hierarchy presented in [56], determines for
each data set an appropriate layer in the hierarchy and type of memory
(single/dual port) taking data re-use into account. The strategy in [100]
partitions the variables to scratch-pad memory and DRAM to minimize in-
terference between variables. The cache-oriented techniques proposed ear-
lier by researchers in [121] do not find a straightforward application in our
context, where the target system hardware consists of a scratch-pad mem-
ory and a SIMD functional unit. The current work explores the assignment
of data to the memory and the effect of different interleaving decisions on

150 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

the overall energy consumption.

Several techniques for designing energy efficient memory architectures
for embedded systems are presented in [76]. The current work differenti-
ates by employing a platform that is reconfigurable at run-time. In [93]
a large number of data and memory optimisation techniques, that could
be dependent or independent of a target platform, are discussed. Again,
reconfigurable platforms are not considered. The authors in [10] present
a methodology to generate a static application-specific memory hierarchy.
Later, they extend their work in [9] to a reconfigurable platform with mul-
tiple memory banks.

In [16] the authors tackle the problem of sub-optimal data structure
layouts in GPUs with a large number of parallel cores, especially for pro-
grams that are designed with a CPU memory interface in mind. An API
is presented, that allows programmers to improve CUDA programs by op-
timizing memory mappings in order to increase the efficiency of memory
accesses. The main differences of the current work are the platform and
the types of code transformations. We focus on an SIMD CPU and a dy-
namic clustered scratchpad memory compared to multicore GPUs and a
static memory. We differentiate by focusing on interleaving as the preferred
code transformation, being suitable for the target applications. Another
work that discusses memory layout for GPUs is presented in [111]. The
authors focus on off-chip DRAM memory optimization using a number of
data layout transformations. We differentiate by focusing on the memory
closest to the CPU. We also study data interleaving while the main focus
in [111] is the transformations that increase data parallelism, which is more
important for their multicore GPU architecture. In [2] a number of common
data reorganization operations such as shuffle, pack/unpack, swap, trans-
pose, and layout transformations are presented. The goal is to study the
cost of applying these operations in the memory at run-time. The target
memory is 3D-stacked DRAM and additional hardware is employed in or-
der to efficiently perform the reorganization operations with a low overhead.
Apart from the different type of platform, the current work differentiates in
the type of data reorganizations and the mapping of the reorganized data
to the scratchpad memory at compilation time.

The authors in [1], [55] and [71] present methodologies for designing
memory hierarchies. Design methods with main focus on the traffic and
latencies in the memory architecture are presented in [17], [40], [58] and [95].
Improving memory energy efficiency based on a study of access patterns is
discussed in [61]. Application specific memory design is a research topic

D.3. Related work 151

in [105], while memory design for multimedia applications is presented in
[87]. The current work differentiates by presenting both a reconfigurable
platform and the necessary data interleaving to better exploit the platform.
The discussed related work is not designed to handle dynamic variations
on memory requirements due to employment of a static memory platform.
Thus, it is expected to provide poor results when applied to the dynamic
applications targeted in the current work.

The current work combines and expands in a non-trivial way, the in-
terleaving exploration presented in [106] and the data to memory mapping
methodology presented in [28]. In [106] a memory dominant application is
chosen, which normally suffers from data memory organization bottlenecks
while implemented on conventional architectures. A data interleaving ap-
proach is employed in order to improve memory energy by reducing memory
accesses. Significant reduction in data memory energy consumption can be
achieved if array data are interleaved, with no performance overhead. In [28]
a memory-aware system scenario methodology is presented. The variations
in memory needs during the lifetime of an application are studied in order to
optimize energy usage. Different system scenarios capture the application’s
different resource requirements that change dynamically at run-time. Many
possible memory platform configurations and data-to-memory assignments
are studied as system scenario parameters, which lead to a large exploration
space.

The contribution of the proposed work is the development of a combined
approach that investigates the interleaving and memory mapping options
for a reconfigurable SIMD architecture. The current work combines and
expands in a non-trivial way, the interleaving exploration presented in [106]
and the data to memory mapping methodology presented in [28]. The cur-
rent work is more than a simple application of the two approaches, one after
the other. Such an approach cannot always guarantee a viable solution. The
reason is that for each different interleaving solution, there are a number of
constraints on the placement of the data into the memory due to hardware
limitations. If the constraints are not propagated into the data-to-memory
mapping step, the final solution suffers from data conflicts. Different inter-
leaving solutions introduce different constraints. Therefore, there is a need
to develop an integrated methodology to achieve the improvements of both
the approaches.

152 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

D.4 Target Architecture and Energy Models

Selection of target platform is an important aspect of the exploration. The
motivational example in the previous section shows that the available choices
on the memory models have a great impact on the overall energy consump-
tion. The key feature needed in the platform architecture is the ability to
efficiently support different memory sizes that are suitable for different data
structures. A generic architecture is presented in Fig.D.2. The scratch-pad
memory consists of up to four memory banks. For more complex architec-
tures the interconnection cost should be considered and analyzed separately
for accurate results. Although power gating can be applied to the bus when
only a part of a longer bus is needed, an accurate model of the memory
wrapper and interconnection must be developed, which is beyond the scope
of the current work. The SIMD vector FU is assumed to perform instruc-
tions on multiple data.

Improving temporal locality of data accesses in cache is indeed impor-
tant. The proposed architecture uses scratch-pad memories, however, and
no cache memory is included in the current study. Software controlled allo-
cation is a significant feature for the current methodology, as the allocation
of data can be fully determined by the designer at design-time. The basic
principles of the methodology are still applicable for hardware controlled
caches, but some modifications would be needed to deal with the automatic
resolution of hits and misses. Temporal locality and data reuse are taken
into consideration during the interleaving exploration.

The methodology explores different interleaving and data to memory
mapping options for the reconfigurable architecture. The optimal sizes are
found based on the sizes of the data after the interleaving exploration. The
memory banks can operate independently and have different sizes. The
explored data lengths for the vector FU and the connections are 4, 8 and
16 elements. The exploration is based on the available system models and
results in the final system architecture. Thus, the accuracy of the models
influence the decisions taken during the design phase.

D.4.1 Memory Models

The dynamic memory organization is constructed using commercially avail-
able SRAM memory models (MM). For those models delay and energy num-

D.4. Target Architecture and Energy Models 153

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

Vector FU

4, 8 or 16

words

Register File

Bank 1
B

a
n

k
 2

B
a

n
k
 3

4

5

Scratchpad Memory

E
x
p

lo
ra

ti
o

n
 o

f
d

a
ta

-

to
-m

e
m

o
ry

 m
a

p
p

in
g

E
x
p

lo
ra

ti
o

n
 o

f

d
a

ta
 i
n

te
rl
e

a
v
in

g

Figure D.2: Exploration options and system knobs depending on a general plat-
form architecture

154 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

bers are derived from a commercial memory compiler. The commercial
memory compiler is part of DesignWare Memory Compilers provided by
Synopsys. The logic libraries support a wide range of foundries and process
technologies from 250nm to 28nm. The memories are optimized for low
power, high performance and high density. A 40nm library was chosen for
the current work. Of confidentiality reasons we are not allowed to reveal
details of the compiler or process and the presented numbers are relative.
In addition, experimental standard cell-based memories (SCMEM) [82] are
considered for smaller memories due to their energy and area efficiency for
reasonably small storage capacities, as argued in [80]. The standard cell-
based memories are synthesized using Cadence RTL compiler for TSMC
40nm standard library. Afterwards, power simulations on the synthesized
design are carried out using Synopsys PrimeTime, in order to obtain en-
ergy numbers. Both MMs and SCMEMs can operate under a wide range
of supply voltages, thus support different operating modes that provide an
important exploration space.

• Active mode: The normal operation mode, in which the memory can
be accessed at the maximum supported speed. The supply voltage
is 1.1V. The dynamic and leakage power are higher compared to the
other modes. Only in active mode the data are accessible without
time penalties, in contrast to light and deep sleep modes. In this work
all the memory accesses are performed in active mode.

• Light sleep mode: The supply voltage in this mode is lower than
active with values around 0.7V. The access time of the memory is
significantly higher than the access time in active mode. Switching to
active mode can be performed with a negligible energy penalty and
a small time penalty of a few clock cycles (less than 10). Data is
retained.

• Deep sleep mode: The supply voltage is set to the lowest possible
value that can be used without loss of data. This voltage threshold
is expected to be lower for SCMEMs than MM models and can be as
low as 0.3V. The number of clock cycles needed for switching to active
mode is higher compared to light sleep mode, typically in the range
of 20 to 50 clock cycles depending on the clock speed. Consequently,
the speed of the PE and the real-time constraints of the applications
have to be taken into consideration when choosing light or deep sleep
mode at a specific time.

D.4. Target Architecture and Energy Models 155

Table D.1: Relative dynamic energy for a range of memories with varying capacity
and type

Type
Lines x Dynamic Energy Active from

wordlength Read[nJ] Write[nJ] Deep[uJ] Light[uJ]

MM 32 x 8 41.8 32.4 0.223 0.031

MM 32 x 16 67.9 58.9 0.223 0.031

MM 32 x 128 433 431 1.42 0.168

MM 256 x 128 448 460 1.70 0.171

MM 1024 x 128 511 575 2.81 0.179

MM 4096 x 128 960 457 9.01 0.457

SCMEM 128 x 128 250 8 1.51 0.045

SCMEM 1024 x 8 17 6 0.325 0.021

• Shut down mode: Power-gating techniques are used to achieve near
zero leakage power. Stored data is lost. The switch to active mode
requires substantially more energy and time. However, switching un-
used memories to this mode, providing that their data are not needed
in the future, results in substantial energy savings.

The necessary energy and power information is available for the memory
models. Relative values for a subset of them is presented in Table D.1. It
is clearly shown that the choice of memory units has an important impact
on the energy consumption.

D.4.2 Functional Unit Models

The processing of the interleaved data is performed in the part of the ar-
chitecture consisting of the SIMD FU and the central vector register file, as
shown in Fig.D.2. The bus between the memory part and the processing
part is 256 bit wide. The wide bus allows testing for word length of 4, 8
and 16 elements, assuming that each array element is 16 bit wide. The dif-
ferent word lengths provide different design options for the vector FU. This
processor belongs to the class of coarse-grain reconfigurable array (CGRA)
processors and is described in more detail in [70]. The HDL model of the
processor is synthesized using Cadence RTL compiler [13] and the energy
numbers are extracted using Synopsys Primepower [60].

For efficient utilization of the vector FU, the register file has a wide

156 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

Table D.2: Relative dynamic energy for different FU models

Type of FU instruction Width Dynamic Energy [J]

ADD 1 5.70E-08

ADD 4 2.28E-07

MULT 1 2.48E-07

MULT complex 1 5.33E-07

MULT 4 1.03E-06

MULT complex 4 1.95E-06

interface with the clustered scratch-pad memory. Since the target architec-
ture is a configurable processor that can be customized in various ways, the
standard evaluation and execution mechanism is to run the programs on a
processor simulator. An XML based language is used to describe the archi-
tecture, and a cycle-accurate simulator of the processor is used to simulate
the generated code on the architecture. The XML provides a structural
way of describing the architecture presented in Fig. 2 including the differ-
ent components, the parameters of each component, and the relationship
between them. The XML description generates a graphical representation
of the architecture and is the input for the simulator as presented in [79].
The chosen simulator is developed for coarse-grained reconfigurable archi-
tectures and is suitable in our case, because of the dynamic parameters of
our architecture.

The energy consumption information for different types of instructions
and different widths is available for the FU models. The width of the FU
corresponds to the number of pairs of array elements on which the specific
instruction is performed. Relative values for a subset of them is presented in
Table D.2. It is clearly shown that the wider FUs have a significantly higher
energy consumption compared to FUs that operate on only two element.
Thus, it is important to achieve high utilization of wider FUs to achieve
both performance and energy gains.

D.5 System Design Exploration Work-flow

As motivated in the previous sections a systematic exploration of the inter-
leaving options and the data-to-memory mapping possibilities is necessary.
The input to the work-flow is the application code and the output of the

D.5. System Design Exploration Work-flow 157

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

Analysis of the application

code with irregular

memory accesses

Extraction of the memory
access pattern for the

application data

Array A 2A 2H

2H1AP
a

tt
e

rn
 R

e
p

e
ti
ti
o

n

Exploration of interleaving

options for varying SIMD

architectures

Vector FU

4, 8 or 16
words

A B C

?

Exploration of data-to-

memory mapping options

for a clustered SPM

architecture

Memory for
interleaved
A, B and C

Bank 1

?

B
a

n
k
 2

B
a

n
k
 3

Step 1:

Step 2:

Step 3:

Step 4:

Figure D.3: Methodology steps

158 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

exploration is an efficient solution for the interleaving of the data and a map-
ping to a reconfigurable system architecture based on the available models
presented in Sec.D.4. The exploration space consists of the potential combi-
nations between the different arrays and the different scratch-pad memory
architectures, which combine memories of different types and sizes.

The overall work-flow is presented in Fig.D.3. The first step of the
methodology is the analysis of the application code. The methodology is
applicable to any application. However the applications that can benefit
more from the proposed methodology are the ones with holes in their ac-
cess patterns. The second step is the extraction of the access pattern for
each data structure present on the application code. The third step is the
interleaving exploration, which explores all the different options for the re-
arrangement of the data. The aim of this step is the construction of compact
sets of data by using defined operations between the available access pat-
terns. The goal is to better utilize the different width of the vector FUs.
The result of the interleaving is a set of data with a reduced number of holes.
The forth step is the mapping of the interleaved data set to the clustered
memory architecture.

Some significant changes are needed in order to combine the different
techniques in a functional work-flow. The interleaving and the data-to-
memory mapping exploration steps have to be modified and a simple con-
catenation is not sufficient. The results of the interleaving exploration are
given as constraints to the mapping exploration. The constraints stir the
exploration in a potentially different solution compared to the result of the
data-to-memory mapping exploration without the interleaving constraints.
The interleaving exploration finds solutions for the different bus widths and
then all the different solutions are propagated to the mapping exploration.
The mapping exploration takes all the interleaving constraints into consid-
eration. Thus, the data-to-memory mapping solutions using the constraints
are in general different from the solutions provided in a conventional ap-
proach. The propagation of the constraints is explained in more detail
later.

The application is fully analyzed at design-time, because of the time
consuming nature of the task. The access patterns are extracted in soft-
ware and the possible interleaving options are explored. The mapping to
the specific target architecture is also fully decided at design-time. The
data-to-memory mapping exploration takes into consideration the platform
and code limitation and proposes a mapping without data and bank con-
flicts. The employment of a scratchpad memory architecture is crucial for

D.5. System Design Exploration Work-flow 159

this. In contrast to cache memory systems, in which the mapping of data
elements is done at run-time, in scratchpad memory systems the mapping
is performed by the programmer or the compiler [53]. The address mapping
follows the principles presented in [21] and [107]. Unlike the cache memory,
the scratchpad memory does not need tag search operations and it is the re-
sponsibility of the programmers or compilers to correctly allocate code and
data on the scratchpad memory [109]. This is possible for small embedded
systems designed to run one or a limited set of specific applications. For
other types of systems and applications, a cache memory can be the pre-
ferred solution as the detection of a cache hit or miss is done automatically
and any conflicts can also be resolved by the platform at run-time. In our
case, the application and the memory system are fully analyzed and the
allocation of data to a scratchpad memory can be easily done and offers an
energy efficient solution.

D.5.1 Formal Model Representation of Access Patterns

A representation model for the memory access patterns is employed in order
to formally present each step of the methodology. The model presented in
[65] is a generic model suitable for irregular iteration spaces on arrays. The
irregularities are created by the application code access statements in a
conditional loop structure.

When an array element is accessed during the code execution, it is rep-
resented with an A(Access). Otherwise, there is a hole in the access pattern
represented with an H(Hole) as shown in Fig.D.4. The sequence of accesses
and holes is usually repeated periodically, because normally the loop con-
ditions are not totally random. Thus we can define the frequency of each
access pattern. The analysis of the application code results in the access
patterns and their corresponding frequencies, which is the necessary input
for the next step in the work-flow.

D.5.2 Data Interleaving Exploration

Interleaving is a data layout transformation for combining the storage of
multiple arrays, so that blocks of data from different arrays are stored con-
tiguously, in order to achieve spatial locality in memory accesses. By inter-
leaving we are able to group the data to be accessed and thus reduce the

160 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

Array A []
0 15

A (access)

H (hole)

1A - 3H

repeated N/4 times

Example Code:

for (i = 0; i < N ; i + 4) do

result(i) = A(i) + B(i) + C(i) + D(i);

end

Figure D.4: Extraction of access pattern from application code

number of memory accesses for accessing them. The basic principles of the
performed interleaving exploration are presented in [106].

The employed model of access pattern representation is accompanied
with a suitable algebra presented in [67]. The operations defined help the
designer explore different interleaving options. The goal of the process is
to rearrange the data in an efficient way to increase the number of sequen-
tial accesses. A simple example is presented in Fig.D.5. Arrays A and B
are interleaved by interchangeably storing an element of each array in the
new array. The access patterns of arrays A and B are combined in a new
access pattern, which has two accessed elements placed consecutively. The
use of access patterns and the theory for calculating the access patterns of
different combinations enables an extensive exploration of the possible data
interleaving options.

The impact of the data interleaving exploration on the number of mem-
ory accesses is significant. When there are holes in the access pattern and
the data are organized in index order, each memory access results in a
small amount of useful data due to the presence of holes. In contrast the
re-organization of the data provides a sequence of useful data without many
holes between them. Thus, a single access to the memory results in a higher
number of useful elements. The overall number of memory accesses is re-
duced, as each access has a higher utilization.

This idea is illustrated in Fig.D.5. The number of memory accesses for
each case can be calculated by assuming that each memory access loads four
array elements, i.e. the word length for the memory and bus architecture is
four elements. Each time an element from the array A or B is needed, the
memory access returns four elements, from which one is the useful and the
other three are not used by the running code. In the case of the interleaved
array, each memory access returns four elements, from which two are useful
and two redundant. Thus, the overall number of memory access in the

D.5. System Design Exploration Work-flow 161

Array A []
0 15

A (access)

H (hole)

1A - 3H

repeated N/4 times

Array B[]
0 15

A (access)

H (hole)

1A - 3H

repeated N/4 times

Pattern combnation

operation

Interleaved AB []
0 15

2A

repeated N/8 times

6H

Figure D.5: Example of combination between two arrays and their access patterns

second case is reduced by half compared to the first case.

D.5.3 Data-to-Memory Mapping Exploration

Given the input from the previous step, we explore the mapping of the inter-
leaved data to the memory architecture. A clustered memory organisation
with up to five memory banks of varying sizes is explored. The limitation in
the number of memory banks is necessary in order to keep the interconnec-
tion cost between the processing element (PE) and the memories constant
through exploration of different architectures. There are two main reasons
for exploring architectures up to five memory banks. Firstly, the energy
gains achieved by increasing the number of memory banks in the memory
architecture are nearly saturated even for five banks. In [28] a group of
different applications were studied with regard to their energy consumption
on a clustered memory architecture consisting of up to five memory banks.
The results show that depending on the application, the energy gains start
to saturate after adding a third or a fourth bank and become insignificant
when adding a fifth bank. Thus, for most applications a memory architec-
ture with five memory banks already provides the necessary reconfiguration

162 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

options. Secondly, the overhead increases exponentially with the number of
memory banks, due to the increased complexity of the memory architecture.
Therefore, memory architectures with six or more banks are typically not
efficient options due to the high overhead and the low energy gain.

The decision to use memory banks with varying sizes on the clustered
memory organization increases the reconfiguration options and consequently
the potential energy gains. In general, smaller memories are more energy
efficient compared to larger memories banks. However, in some cases large
memory banks are needed in order to fit the application data without the
need for too many small memories causing complex interconnects. The goal
is to use the most energy efficient banks to store the interleaved data.

The exploration space consists of different sizes and types of memory
banks. The goal is to select the optimal set of memory banks and to make
the optimal decision regarding the mapping of the data to the different
memory banks. The parts of the interleaved data that consist mostly of
useful elements are mapped into memory banks with low energy per access
but at the same time with the necessary access time. The parts of the
interleaved data that consist of access holes and rarely accessed elements
are optimally mapped into memory banks with energy efficient retention
states. In both cases the size of the memory banks should be adequate to
fit the stored data but at the same time as small as possible to avoid area
and energy penalties.

D.5.4 One way constraint propagation

The interleaving decisions influence the data-to-memory mapping decisions
and vice versa. For example, the decision to interleave two arrays A and B
have an impact on the freedom of mapping the interleaved array A|B on the
memory banks, because of the difference in size and structure. The data-
to-memory mapping decisions affect the interleaving decisions in a similar
way. Assuming that the mapping is performed first using the initial data
the following interleaving options are reduced. For example, the decision to
map two arrays on different memory banks removes the option to interleave
them later. Optimizing both the interleaving and the memory mapping at
the same time results in a large and inefficient loop of constrain propagations
between the two exploration phases.

We choose to perform the interleaving exploration step first and then
propagate the most efficient interleaving options to the data-to-memory

D.6. Applications and Experimental Evaluation 163

mapping step. The code and data transformations should be performed
earlier to avoid omitting possible solutions as justified in [14]. Thus, the
interleaving decisions are propagated as constraints on the mapping explo-
ration phase. The constrains consist of the arrays that are interleaved, the
new access pattern and the width of SIMD architecture for which the spe-
cific interleaving solution is optimal. The mapping step is performed based
on these constrains.

D.6 Applications and Experimental Evaluation

D.6.1 Benchmark Applications

Array Interleaving is a data layout transformation for combining the storage
of multiple arrays, so that blocks of data from different arrays are stored
contiguously, with the objective of reducing the number of memory accesses
through better spatial locality. [107]. The target applications on the cur-
rent work benefit most from the proposed methodology, because they are
characterized by having access patterns with holes. Interleaving is a widely
used technique that fits the goal of generating more compact sets of data.
An important contribution of the work is the combination of the inter-
leaving optimization with data to memory mapping. Another important
advantage of interleaving transformations is the low addressing overhead.
In more detail, interleaving results in a more regular global access by reduc-
ing the number of holes without increasing significantly the addressing for
accessing the individual arrays afterwards. Although more complex data
layout transformations may reduce the holes in the access patterns even
more, they have a negative impact on the complexity of addressing and
access overhead. Having shown the benefits of this, future work can in-
clude extending the methodology to be compatible with additional layout
optimization techniques.

Applications with holes in their access pattern can be found on several
application domains. The current study includes representative candidates
from three different domains, namely the multimedia, the wireless and the
equation solver domains. Suitable applications can also be found on other
areas. An overview of the tested benchmark applications is presented below:

1. Motivational example is the very simple example presented in Sec. D.2.
It uses four arrays that all have holes in their access pattern, namely

164 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

1A-3H. One element from each array is used to calculate an intermedi-
ate result on every loop iteration. The interleaving is easy because the
four arrays have the same pattern. Further interleaving within the ar-
ray can result in even longer sequences of useful elements. The access
pattern is repeated for every four elements (1A-3H), so the scaling for
the different word lengths (4, 8 and 16) is expected to be good.

2. Successive Over Relaxation (SOR) is a method for evaluating partial
differential equations or solving a linear system of equations. The
SOR benchmark has an access pattern with more holes and different
distribution of them. The interleaving exploration provides sequences
of three or six sequential useful elements. Thus, the utilization on
the SIMD architecture is expected to be lower. This application is a
representative example from the equation solver domain.

3. FFT benchmark has holes in the access pattern during the access of
the pilot matrices. The interleaving exploration for FFT is presented
in [106]. The number of matrices is higher and more interleaving
options are present. However, the interleaving cannot provide an ac-
ceptable solution for 16 sequential useful elements. This application
is an representative example from the wireless domain, because FFT
is widely used on wireless applications.

4. Motion estimation benchmark is a dynamic algorithm that results
in different access patterns based on the identification of the mov-
ing objects. The static parts are not accessed resulting in holes in
the accesses and the interleaving aims to minimize those parts. The
interleaving exploration provides alternatives for all the tested word
lengths. This application is an representative example from the mul-
timedia domain.

D.6.2 Results

The design exploration is applied to the chosen application benchmarks
and energy numbers are derived based on the described target platform.
The energy numbers are calculated both for the memory and the SIMD
architecture presented in Sec.D.4. Four approaches are explored and the
corresponding energy consumption for each of them is calculated.

D.6. Applications and Experimental Evaluation 165

• No optimization. In this case there is no interleaving exploration and
the memory architecture consists of one large memory bank. All the
data are mapped on the memory bank without any optimization.

• Memory Size Optimization. In this case there is no interleaving ex-
ploration and the memory architecture consists of five memory banks.
The optimal size for the memory banks and the optimal mapping of
the non-interleaved data on them is explored. The number of memory
accesses is the same as in the previous approach. However, the data
is mapped on an efficient clustered memory architecture.

• Interleaving optimization. In this case the interleaving exploration
step is performed and the memory architecture consists of one large
memory bank. The optimal interleaving decision is found and applied
to the data, so the locality of useful data is increased. However, all the
data are mapped on one large memory bank. The number of accesses
is significantly reduced by the interleaving step, but the energy per
access is kept high due to lack of data mapping to an efficient clustered
architecture.

• Integrated co-exploration. In this case the co-exploration of both the
interleaving and the data-to-memory mapping optimizations is per-
formed. Both he number of memory accesses and the energy per
access are reduced.

Motivational Example

The normalized energy consumption for the motivational example is pre-
sented in Fig.D.6. The four different approaches are normalized using the
monolithic approach without any optimization. Energy results for this
benchmark are presented for a bus width of 4, 8 and 16 elements, which
means that every memory access loads/stores 4,8 or 16 elements. The in-
terleaving exploration proposes three different solutions for an SIMD archi-
tecture width of 4, 8 and 16 elements respectively. The data access patterns
of the three interleaving decisions are propagated as a set of constrains to
the mapping step. The mapping step explores all the different data-to-
memory mapping options and proposes the most energy efficient memory
organization for each of the three interleaved data solutions.

The application code is perfectly suited for interleaving as discussed in
Sec.D.2. Thus the interleaving exploration has a greater impact than the
memory size optimization. However, the integrated approach optimizes the
energy consumption even further. The application is suitable for higher

166 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

W=4 W=8 W=16
0

0.2

0.4

0.6

0.8

1

Number of elements in one memory/processor word

E
n
e
rg

y
 c

o
n
s
u

m
p
ti
o

n
 p

e
r

o
p

ti
m

iz
a
ti
o
n

Motivational Example

No optimization
Memory Size Optimization

Interleaving Optimization
Combined

Figure D.6: Motivational Example

bus widths and there are important gains while moving from 4 to 8 and
16. The increase in the architecture width result in significant gains even
without any optimization. The gains are approximately 50 and 70% for
a width of 8 and 16 compared to a width of 4. This is explained by the
fact that the accessed array elements are close enough even without data
transformations and the existence of holes in the access pattern. By fetching
8 and 16 elements from the memory, the number of useful elements is two
and four times more. Studying the motivational example in Fig.D.6(a) for
a width of 16, each access results in 4 lines with one colored element each.

The interleaving optimization results in greater improvements compared
to the memory optimization. This is explained by the nature of the applica-
tion that offers good interleaving options for larger words, i.e. higher values
of bus width. The memory optimization is around 20% lower than the
monolithic approach for any width. The interleaving optimization results
in more than 70% lower energy for a width of 4 and more than 80% for a
width of 8 and 16. The interleaving of the arrays provides perfectly compact
sets of data as shown in Fig.D.6 and the interleaving cannot improve more
for higher values of width. The great impact of the combined approach is
better illustrated for a width of 16. In this case the two optimizations alone
report an energy gain around 20% and 35% compared to the non optimized

D.6. Applications and Experimental Evaluation 167

W=3 W=6
0

0.2

0.4

0.6

0.8

1

Number of elements in one memory/processor word

E
n
e
rg

y
 c

o
n
s
u

m
p
ti
o

n
 p

e
r

o
p

ti
m

iz
a
ti
o
n

SOR Benchmark

No optimization
Memory Size Optimization

Interleaving Optimization
Combined

Figure D.7: SOR Benchmark

case for width of 16. The combined approach results in an energy gain of
84% on the same case.

SOR Benchmark

Algorithm 4 Code snippet from the SOR benchmark

1: for j = 0→ N do
2: ...
3: resid← ...+c(i)(j)×u(i)(j−1)+d(i)(j)×u(i)(j)+e(i)(j)×u(i)(j+

1) + ...
4: ...
5: j ← j + 2
6: end for

The normalized energy consumption for the SOR benchmark is pre-
sented in Fig.D.7. The four different approaches are normalized using the
energy consumption of a system without any optimization as the base. En-
ergy results for this benchmark are presented for a bus width of 3 and 6,
although the architecture supports bus widths of the power of 2. This means
that every memory access loads or stores 4 or 8 elements, but only up to
3 or 6 array elements are used in the algorithm. This limitation is due to

168 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

the nature of the application code that adds elements from 3 arrays to 3
sequential elements of another array. Alg. 4 is a code snippet that demon-
strates the considered data structures. The arrays c, d and e are potential
candidates for the interleaving exploration. The interleaving exploration on
the application code concludes that it is only possible to make sequential
sets of 3 and 6 elements by interleaving the arrays c, d and e. The elements
that are multiplied with them are already sequential.

The interleaving exploration has a small impact on the reduction of
energy consumption for a bus width of 3 elements. This is due to the
addition of a redundant element, in order to have a width of four that
is supported by the architecture. The results are even worse for a bus
width of 6 elements, because there is a need for two redundant elements
to comply with a set width of eight. The mapping of the initial data to a
clustered memory results in a reduction of around 20%, which is slightly
better than the interleaving optimization. The reason is that the mapping
of the initial data demands all the memory banks active and the memory
is heavily accessed during the execution of the benchmark. The integrated
approach exploit on a better way the few interleaving options and provides
a better mapping of the interleaved data to the memory architecture. The
final gain for a width of three is 47%, compared to 17% and 20% for the
interleaving and the memory optimization respectively.

FFT Benchmark

The normalized energy consumption for the FFT benchmark is presented in
Fig.D.8. The four different approaches are normalized using the monolithic
approach without any optimization. Energy results for this benchmark are
presented for a bus width of 4 and 8 elements, which are the two viable
options provided by the interleaving exploration. Again, the integrated ap-
proach results in the lower energy consumption. The energy gains for a bus
width of 8 are significant, because blocks of 8 elements can be constructed
by interleaving of application’s arrays.

Motion Estimation Benchmark

The normalized energy consumption for the motion estimation benchmark
is presented in Fig.D.9. The four different approaches are normalized using
the monolithic approach without any optimization. Energy results for this
benchmark are presented for a bus width of 4, 8 and 16 elements. The ap-
plication code provides good possibilities for interleaving and consequently
the interleaving exploration has a greater impact than the memory size
optimization. However, the integrated approach optimizes the energy con-

D.6. Applications and Experimental Evaluation 169

W=4 W=8
0

0.2

0.4

0.6

0.8

1

Number of elements in one memory/processor word

E
n
e
rg

y
 c

o
n
s
u

m
p
ti
o
n
 p

e
r

o
p
ti
m

iz
a

ti
o

n

FFT Benchmark

No optimization
Memory Size Optimization

Interleaving Optimization
Combined

Figure D.8: FFT Benchmark

W=4 W=8 W=16
0

0.2

0.4

0.6

0.8

1

Number of elements in one memory/processor word

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 p

e
r

o
p
ti
m

iz
a
ti
o
n

Motion Estimation Benchmark

No optimization
Memory Size Optimization

Interleaving Optimization
Combined

Figure D.9: Motion Estimation Benchmark

170 Integrated Exploration Methodology for Data Interleaving and
Data-to-Memory Mapping on SIMD architectures

sumption even further. In this case the energy gains for increasing size of
bus width are minimal when only one optimization is applied. This is ex-
plained by the nature of the application, which has large parts of redundant
data spread out through the memory. Thus, the whole memory is active
when the mapping is not performed on the compact interleaved data. The
combined approach offers significant energy gains even for the highest bus
width.

D.7 Conclusion

The scope of this work is to presents a methodology for efficient exploration
of data interleaving and data-to-memory mapping options for SIMD (Single
Instruction Multiple Data) platform architectures. Detailed energy mod-
els are presented for the studied architecture. The methodology focuses on
reducing the overall energy consumption by reducing the number of mem-
ory accesses and the energy per access. The number of memory accesses is
reduced by interleaving the application data to construct compact sets of
sequential data. The energy per memory access is reduced by employing
a reconfigurable scratch-pad memory architecture with multiple banks that
can operate independently. A systematic way is presented in order to ex-
plore the different options that lead to the interleaving and data-to-memory
mapping decisions. A wide range of applications is studied that allow us to
draw conclusions about different kinds of dynamic behavior and their effect
on the energy gains achieved using the methodology. The improvement in
the total system energy consumption after efficient interleaving and map-
ping of data is between 40% and 80% for the studied benchmarks having the
type of holes in their access scheme that benefit most from the methodology.

Appendix E

Technology scaling impact
on the interconnection of
clustered scratchpad
memory architectures

Iason Filippopoulos, Francky Catthoor, Per Gunnar Kjeldsberg
Technical report

2015

171

172 Technology scaling impact on the interconnection of clustered
scratchpad memory architectures

173

Abstract

Power consumption is a key limiting factor in modern embedded devices.
The memory architecture contributes significantly to the overall power con-
sumption of the system. Among many proposed techniques, one effective
system design approach to reduce the memory power needs is the design
of a dynamically reconfigurable clustered memory architecture. The oper-
ationally independent memory banks provide an energy efficient platform,
but come with an interconnection overhead due to the connections between
the memory banks. Thus, there is a trade-off between the energy gains by
increasing the number of memory banks and the increase in interconnection
overhead. This work explores the future development of the interconnec-
tion overhead, as the interconnection cost is expected to increase while the
process technology shrinks to 5nm. The current study employs both CAD
tools with simulation results using the current technology and projections
provided by institutions. We use predictive technology models supported
by information from ITRS and IMEC’s interconnect technologists. A model
is developed that provide a sufficiently accurate estimate of the intercon-
nection cost overhead for clustered memory architectures consisting of two
to five memory banks in technologies ranging from 40nm to 5nm. The
model shows that the interconnect overhead is as low as 10.9 % even for
the most aggressive technologies. Hence a dynamically reconfigurable clus-
tered memory architecture is a viable solution also for future designs, even
if the optimal number of memory banks may be reduces as shown in an
experiment with a representative real life application.

174 Technology scaling impact on the interconnection of clustered
scratchpad memory architectures

E.1. Introduction 175

E.1 Introduction

Embedded systems normally rely on battery and their lifetime between
charging is limited and dependent on the energy usage of the system. The
power consumption can be divided between the processing elements and
the memory subsystem. One efficient way to reduce the power consumed in
the memory, when executing an application with dynamic memory needs,
is to design a clustered memory architecture. A study of the efficiency
and the potential gains of this approach is presented in [28]. In Fig. E.1
the two different approaches are presented. Alternative 1 to the left has a
large static memory while Alternative 5 to the right has five smaller mem-
ory banks. The designer can choose other alternatives in between. The
different memory banks can operate independently and adjust to the ap-
plication requirements. When the memory requirements of the application
are small, unused memory banks can be switched off to reduce the energy
consumption, while the application still runs successfully on the system.

The main drawback of the clustered memory architecture approach is the
need for extra interconnection circuitry. Unfortunately, it is expected that
the interconnection networks will take up an increasingly significant portion
of system power in the future. Thus, there is a need to obtain a detailed
memory and interconnect energy model including the scaling impact. That
will allow us to accurately incorporate the interconnection cost overhead in
our studies to decide whether and when the power gains justify the use of a
clustered memory architecture instead of a monolithic one. It especially also
allows to identify the best trade-off working points between using more or
less memory banks within the clustered approach. Without this, an overly
optimistic distribution across too many banks would seem to provide the
best energy for a given application requirement.

The scope of this work is to explore the future development of the in-
terconnection overhead and develop a model that can provide a sufficiently
accurate estimate of that overhead. System designers could use such a model
to find the preferred memory architecture and the number of banks given the
nature of the executed application and the target technology. The model is
based on the current technology and available projections about the future
technology. The current technology is available as libraries in CAD tools.
The synthesis and the simulation of memory architectures similar to the
one in Fig. E.1 provide useful results. The study of the future technology
is based on the reports released by the International Technology Roadmap
for Semiconductors (ITRS) [24] . The goal of the developed model is to

176 Technology scaling impact on the interconnection of clustered
scratchpad memory architectures

Processing
Element Memory

••• Processing
Element

M
e

m
o

ry
1

Memory 345

M
e

m
o

ry
2

Alternative 1 Alternative 5

Figure E.1: The alternative clustered memory architectures ranging from one to
five memory banks

provide a sufficiently accurate estimate of the interconnection cost overhead
for clustered memory architectures consisting of two to five memory banks
and a range of technologies from 40nm to 5nm.

The studied memory architecture is targeted to applications that signif-
icantly increase their energy efficiency when they are mapped on clustered
memory architectures. These applications are characterized by having dy-
namic utilization of the memory organization during their execution. Suit-
able dynamic applications are available on several different domains. For
example, a set of multimedia applications, which exhibit such a dynamic
variation in memory requirements during their lifetime, is presented in [28].
A similar clustered architecture is employed in [29] for a bio-medical appli-
cation as a suitable example. In general, smaller memories are more energy
efficient compared to larger memory banks [109]. The distribution of data
into the memory banks should allocate the most frequently accessed data to
the most energy efficient memory banks, in order to maximize the potential
gains.

The paper is organized as follows. Section E.2 surveys related work on
on-chip interconnection with a focus on energy consumption and presents
research work on technology scaling. Section E.3 presents the chosen syn-
thesis work-flow and results for the target architecture using the current
technology. In Section E.4 the scaling projections for the different parts of
the target architecture are presented. The development of a model that can
provide a sufficiently accurate estimate of the power overhead for the inter-
connection in clustered memory architectures is presented in Section E.5.
Finally, conclusions are drawn in Section E.6.

E.2. Related Work 177

E.2 Related Work

A comprehensive view of a class of interconnect architectures is presented in
[68]. The authors examine the area, power, performance, and design issues
for the on-chip interconnects. The main finding is that the interconnect
should not be independently optimized but co-designed with the other com-
ponents, i.e., memories and cores, in order to arrive to the best platform
design. In [101] authors propose an interconnection network with high-
performance for the communication between processors and memories in a
cluster of processors. Another approach that focuses on the interconnection
network between the memory and the processing cores is presented in [63].
The majority of the published work focuses on the interconnection between
the processing cores in a system-on-chip. The current work differentiates
by focusing on the interconnection between the memory banks.

Several examples of clustered memory architectures have been proposed.
In [59] an adaptive scratch-pad memory is successfully used in order to han-
dle the dynamic behavior of multimedia applications. In [119] a clustered
memory architecture is employed and an algorithm is developed, which ef-
ficiently uses the memory banks to achieve the maximum energy saving
while satisfying the given performance constraint. Our approach explores
the effectiveness of similar architectures into the future, which is not studied
before to the best of our knowledge.

A comprehensive memory modeling tool and its application to the design
and analysis of future memory hierarchies is developed in [115]. This tool
uses the CACTI model and targets large general purpose DRAM and SRAM
memory designs. However, the current work focuses on small scratch-pad
memory designs, which cannot be successfully covered by the CACTI model.
A circuit level analysis of the interconnect delay from the 10 nm node to the
7 nm node is presented in [92]. The authors in [18] analyzes the impact of
interconnect variation at the system-level in terms of clock frequency based
on a fast and efficient system-level design methodology. The current work
differentiates by focusing on the energy impact and providing a high-level
prediction model.

178 Technology scaling impact on the interconnection of clustered
scratchpad memory architectures

E.3 Current technology

E.3.1 Generic Work-flow

The current technology is studied as a first step towards the development of
an interconnection cost model. CAD tools allow the design of the described
clustered memory architectures. The synthesis and the simulation provide
reliable data for the area and the power consumption of the different parts
of the memory architecture. The goal is to synthesize a clustered memory
architecture and extract power data for the memory banks and the inter-
connection logic separately. The work-flow is divided in several sub-steps:

• A number of memory banks is chosen from a library, which contains
several state-of-the-art designs.

• An RTL description for connecting the memory banks into a full mem-
ory architecture design is written.

• A simulation is performed to verify the correct functionality of the
memory architecture.

• A target technology is chosen and the logic synthesis of the memory
architecture is performed.

• Floor-planning and the place & rout of the memory design is per-
formed.

• Dynamic timing and the power simulation are performed and results
are provided.

The memory models applied in the first step are presented in [28]. They
are part of a library of standard cell-based memories (SCMEM) designed at
IMEC. As shown in [82] such memories are power efficient when the size re-
quirements are small. The SCMEM used in the current work are developed
in IMEC and have similar characteristics with the ones described in [82].
The energy numbers for SCMEM are derived from synthesis and simula-
tion results. The presented work-flow is a typical procedure followed by an
industry designer except for the usage of SCMEM instead of commercially
available memory macros. SCMEM are preferred for their characteristics,
especially their energy and area efficiency for reasonably small storage ca-
pacities, as argued in [80]. Thus, the choice of using SCMEM is mostly

E.3. Current technology 179

related to the heavily distributed memory organization, which we target.
The sizes of the memory banks in the target memory organization are too
small to motivate a solution based on macro memory blocks, mainly because
macro memories are dominated by the periphery. Another factor for this de-
cision is that a rectangular cell array is not necessarily the optimal solution
in terms of energy consumption. The usage of the custom memories pro-
vides the freedom to explore different memory organizations by combining
banks of different sizes and structures.

For the second step, the RTL description connects the memories using
MUX , signals, and other components into a functional clustered memory
architecture. In the third step, verification is performed through simulation
where a flash-write followed by a read on the whole memory architecture
is performed. The read and write test-bench is representative for the types
of data-intensive applications that benefit the most from clustered mem-
ory architecture. The target technology depends on the available libraries.
In this work, a TSMC 45 nm library is used. Place and route can either
be performed automatically through the CAD tool or manually by the de-
signer. In our case, the layout is automatically generated to reduce the
needed time and effort. However, the automatically generated layout is not
ideal and a manual layout can be more efficient. The performance of the
layout generation deteriorates for larger memory designs, so in the current
work the clustered memory architectures are based on small memory banks.
Although the layout could be improved further manually by the designer,
all the designs are generated in the same way and the comparison between
them, which is the main focus of this work, can give reliable results.

The final step includes extraction of parasitic, static timing analysis, and
annotation of the timing to the netlist. Afterwards, power simulations on
the synthesized design are carried out using Synopsys PrimeTime, in order
to obtain energy numbers. The access pattern for the simulation consists of
one full write of the memory architecture, followed by one full read and the
comparison of the written and read data to verify that the memory operates
correctly. Although both the dynamic and static power are reported, the
focus of this work is on the dynamic part. The memory architecture is heav-
ily accessed for the studied data-intensive applications, thus the dynamic
power is dominant. The leakage is higher inside the memory banks than the
interconnection, but in both cases significantly lower than the corresponding
dynamic part.

180 Technology scaling impact on the interconnection of clustered
scratchpad memory architectures

1 x 1KB 2 x 1KB 1 x 2KB 3 x 1KB 4 x 1KB 1 x 4KB 5 x 1KB
0

1

2

3

4

5

6

Number of memory banks

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Breakdown of energy

Clustered Memory
Interconnection
Monolithic Memory

Note: The small interconnection overhead is not easily visible in the figure with-
out zooming in the top of the bars.

Figure E.2: Normalized energy breakdown between the memory banks and the
interconnection.

E.3.2 Example design: synthesis and simulation

A group of clustered memory architectures is designed and synthesized fol-
lowing the presented work-flow. The simulation provides results for the cur-
rent technology and the contribution of the interconnection to the overall
energy consumption. The study includes clustered memories with an in-
creasing number of memory banks, beginning with only one memory bank
and having five memory banks as the maximum. There are two main rea-
sons for exploring architectures up to five memory banks. The energy gains
achieved by increasing the number of memory banks in the memory archi-
tecture are nearly saturated even for five banks. In [28] a group of different
applications were studied with regard to their energy consumption on a
clustered memory architecture consisting of up to five memory banks. The
results shows that depending on the application, the energy gains start to
saturate after adding a third or a fourth bank and become far smaller when
adding a fifth bank. Thus, for most applications a memory architecture
with five memory banks already provides more than necessary reconfigura-

E.3. Current technology 181

Table E.1: Normalized energy breakdown between the memory banks and the
interconnection

Memory
Configuration

Energy on
Memory
Banks

Energy on In-
terconnection

Interconnection
Overhead

1 x 1KB 1 - 0%

2 x 1KB 2 0.03 1.26%

1 x 2KB 2.07 - 0%

3 x 1KB 3 0.04 1.37%

4 x 1KB 4 0.07 1.77%

1 x 4KB 4.14 - 0%

5 x 1KB 5 0.15 3.01%

The energy is normalized to a memory bank of 1KB

tion options. Secondly, the interconnect overhead increases exponentially
with the number of memory banks, due to the increased complexity of the
memory architecture. The significant increase in the overhead is indicated
by the synthesis results, especially while comparing the overhead between
four and five memory banks. Therefore, a memory architecture with six
banks seems to be a less efficient option due to the high overhead and the
very low energy gain. However, further investigation is proposed as future
work to provide accurate numbers for architectures with six memory banks.

The breakdown of energy consumption in the memory architecture is
split into two parts. The first part is the energy consumption internally in
each memory bank, which includes the memory cells and the necessary logic
to connect the cells. The second part is the interconnection cost between
the different memory banks, which includes the necessary logic to locate and
transfer the data outside of the banks. In other words, the interconnection
outside the memory banks is given separately. The interconnection between
the different memory cells inside one bank is included in the energy of the
memory bank.

The example design is built using memory banks of 1KB and a bus width
of 32bits. Each bank has one read and one write port and can operate in-
dependently. The memory banks are not directly connected to each other,
but connect to a multiplexer that can read and write data to the appropri-
ate bank based on the data address. The energy breakdown between the
first part of the memory banks and the second part of the interconnection
(part2) is presented in Fig. E.2. The energy cost of the interconnection

182 Technology scaling impact on the interconnection of clustered
scratchpad memory architectures

1 x 1KB 2 x 1KB 1 x 2KB 3 x 1KB 4 x 1KB 1 x 4KB 5 x 1KB
0

1

2

3

4

5

6

Number of memory banks

A
re

a
Breakdown of area

Memory Banks
Interconnection

Figure E.3: Normalized area breakdown between the memory banks and the
interconnection

logic is very small compared to the energy cost for the write and read op-
erations on the memory banks. Tab. E.1 contains the exact percentages
of the energy overhead of the interconnection. Energy consumption for a
monolithic design with only one large 4KB memory is included in Fig. E.2.
The comparison shows that the energy consumption for this design is higher
than in a clustered solution with four 1KB memories, although there is no
need for interconnection logic. This is due to the fact that the energy con-
sumption for each access operation increases with the size of the memory
[109].

The changes in memory area for the designs are presented in Fig. E.3.
The area used for the placement of the memory banks is separated from
the area occupied by the interconnection. The overhead calculation for ad-
ditional banks takes into consideration the increase in the interconnect and
the increase in address decoding and all other necessary design modifica-
tions. The last column corresponds to the area footprint for a monolithic
4KB memory. The area footprint for placing 4 banks of 1KB is larger than
the area for one bank of 4KB. The higher area is needed for the interconnect.
Furthermore, the layout is easier and more compact when there is only one
bank of 4KB. A manual layout can potentially reduce the area overhead for
the clustered memory, but this is beyond the scope of this work.

E.4. Technology Scaling 183

In addition, the synthesis and simulation of the memory designs provide
useful information about the dimensions of the memory banks, the length
and the capacitance of the wires. Several interesting observations are pos-
sible based on the study of the current technology. The energy overhead
caused by the interconnection of the banks grows when there are more mem-
ory banks connected, as expected. However, the overhead is only slightly
over 3% even for a clustered memory with five banks. The area overhead
is significantly higher and grows exponentially for an increasing number of
memory banks. The maximum area overhead is still below 10%. This is ex-
plained by the need for extra wiring to connect the different memory banks.
Again, it should be noted that the results are for the dynamic power. Static
power is omitted due its low contribution in the interconnection and the
data intensive behavior of the target applications.

E.4 Technology Scaling

The technology scaling projections are based on the reports released by the
International Technology Roadmap for Semiconductors (ITRS) [24]. The
clustered memory architecture can be divided into two parts, the memory
banks and the interconnection.

E.4.1 Memory Banks

The memory banks consist of the memory cells, which in our case are built
using gates. Thus, the predictions about the future behavior of the memory
banks are based on the ITRS reports for logic. The reports for logic are
chosen, because the clustered memory architectures that are studied in this
work are synthesized using standard cells. Different predictions and reports
are provided by ITRS for other types of memories, such as DRAM. However,
the proposed scratchpad memory architectures are the preferred choice for
our scope. Typically the memories used in embedded systems are smaller
and more energy efficient than DRAM.

In the coming years, the transistor gate length is expected to be reduced
as shown in Fig. E.4 generated from data found in [25]. The values are ap-
proaching 5nm around 2028, which is potentially the limit using the current
manufacturing process. The reduction in gate lengths leads to a reduced size

184 Technology scaling impact on the interconnection of clustered
scratchpad memory architectures

2012 2014 2016 2018 2020 2022 2024 2026 2028
5

10

15

20

25

30

35

40

Year

S
em

ic
on

du
ct

or
 m

an
uf

ac
tu

rin
g

pr
oc

es
s

Gate length scaling in the future

Figure E.4: Impact of technology scaling into gate length

of the memory cell and consequently smaller memory banks. The smaller
memory banks affect both the area of the design and the power consump-
tion. The projections provided by ITRS regarding the power are presented
in Fig. E.5 generated from data found in [25]. There is a significant reduc-
tion in power consumption in the short term and slighter reduction towards
the end of the projections.

E.4.2 Interconnection

The interconnection cost is based on the projections about wiring, which are
different from the projections for logic gates. The current study is restricted
to the reports about the lower and intermediate metal layers, because these
are the ones that are relevant for the interconnection of our memory orga-
nizations. The reports about the global interconnection scaling is not our
focus, as it is used for the power and clock routing and between computing
clusters on large SoC platforms. However, the changes in size of the memory
banks affects the length of the needed wires. The most important parame-
ters for the current study are the capacitance and the power consumption
of the interconnection. Curves for these two parameters are presented in

E.4. Technology Scaling 185

2012 2014 2016 2018 2020 2022 2024 2026 2028
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Year

N
or

m
al

iz
ed

 d
yn

am
ic

 p
ow

er

Power scaling of standard cell−based memory

Figure E.5: Memory Banks: Normalized dynamic power and technology scaling

Fig. E.6 generated from data provided by ITRS [25]. The capacitance is
expected to be reduced in the following year. Although the capacitance is
reduced, the rate of this reduction is lower compared to the expected re-
duction for the memory cells. The power values are per length unit and
they are expected to rise due to several challenges that the interconnection
technology will face in the future.

The significant parameter in this work is the capacitance. Resistance
is also generally studied in the interconnection because of its important
impact, especially for signal delay. The current work focus on energy rather
than delay and this is a rational choice for embedded systems. In general,
the clock speeds are relatively low for a typical embedded system in contrast
to high performance computing. In our target domain, a system architecture
includes several processing cores that can be of different types to fulfill
different application requirements. When higher performance is needed in
an embedded system, it is usually achieved by adding another processing
core or a special hardware unit rather than having an extremely high clock
speed. Thus, it is expected that the critical path delay is not the main
worry for a system designer. If the aim is high-performance designs, the
current work has to be extended in the future. A different approach where
delay-energy trade-offs are incorporated from the start should be developed
in such a case. The interconnect resistance would then be important in

186 Technology scaling impact on the interconnection of clustered
scratchpad memory architectures

2012 2014 2016 2018 2020 2022 2024 2026 2028
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Year

N
or

m
al

iz
ed

 C
ap

ac
ita

nc
e

an
d

P
ow

er
 In

de
x

Normalized capacitance and power of the interconnection wiring

Capacitance
Power

Figure E.6: Interconnection: Impact of technology scaling on the capacitance
and the power consumption of the interconnection part

addition to the capacitance.

E.5 Model Construction and Projection Results

E.5.1 Model Construction

The scope is to develop a model that can provide a sufficiently accurate
estimate of the power overhead for the interconnection in clustered memory
architectures. The model is based on synthesis results of feasible designs in
current technologies and study of the projections provided by ITRS. The
model focuses on the dynamic power, which is the dominant factor for data
intensive applications. Although leakage power is increasing for smaller
technology nodes, the effect on the proposed clustered architecture is low.
The main reason is that the part of the memory that is active at a given
time is heavily accessed for the target applications, thus the static power is
negligible compared to the static power. The part of the memory that is not
accessed at a given time is normally switched off, thus the static power is

E.5. Model Construction and Projection Results 187

heavily reduced. The study of the dynamic power is hence sufficient within
our scope. The interconnect static power is generally low compared to the
memory banks as discussed in [74].

The input for the model is the process technology and the configura-
tion of the clustered memory architecture. The process technology leads
to different points in Fig. E.5 and Fig. E.6 for the memory banks and
the interconnection respectively. For the ITRS predicted year of a given
technology on the x-axis chosen, the corresponding normalized values for
dynamic memory power, interconnect capacitance and power can be found.
The configuration of the architecture reveals the number of memory banks
and all widths and lengths of the memory configuration. The power con-
sumed by the memory banks is calculated using the total number of memory
cells:

Bankspower ∝
forall∑
Banks

W × L× Cellpower

where W and L is the width and the length of each memory bank measured
in memory cells. The power per cell is extracted using Fig. E.5. Each
technology node year on the x-axis, leads to the corresponding cell power
on the y-axis.

The prediction of the power consumption on the interconnection logic
is based in Fig. E.6 in a similar way. Based on the technology and the
number of memory banks, the length of the wires is calculated, which again
gives the power and the capacitance. The general formula for the power
consumption on a wire is:

Power =
1

2
× f × C × V 2

where f is the activity factor, C the capacitance and V the supply volt-
age. However, the simulation results and the projections provided by ITRS
suggest that a more detailed model is needed. The basic principle for the
model is that the overall interconnection power is proportional to the power
of the wires and their capacitance, as explained in the model presented in
[122] and justified on the interconnection study in [85]. Thus, the general
formula for the interconnection power is:

Interconnectionpower ∝ Area(W,L)×Wirepower × Capacitance

188 Technology scaling impact on the interconnection of clustered
scratchpad memory architectures

where Area is calculated based on the total width and length of the memory
banks according to the selected configuration. In more detail, the different
memory banks are placed in a structure similarly to the configuration pre-
sented in Fig. E.1. The library of memory banks provides all the necessary
information regarding their sizes. The simulation results for the synthesized
configurations provide a sufficiently accurate estimate of the area needed for
the interconnection, given the number and the sizes of the memory banks.
The model for the interconnection power cost overhead for a given target
technology t is given by the Bankspower and the Interconnectionpower:

Overhead =
Area(W,L)×Wirepower(t)× Capacitance(t)∑forall

BanksW × L× Cellpower(t)

where

• Wirepower(t) is the wiring efficiency factor based on the power curve
in Fig. E.6

• Capacitance(t) is the capacitance of the interconnection wires for the
given technology and the length of wiring based on the area, which is
calculated for the different number of banks

• Cellpower is the power consumption of a memory bank for the given
technology

The model is an approximation of the interconnection overhead and the goal
is to produce results for relative comparison.

The development of the interconnection cost overhead using the pro-
posed model is presented in Fig. E.7. The interconnection overhead is kept
below 10% for most of the cases. It exceeds this limit in designs with 5
memory banks around a decade from now. As expected, the overhead in-
creases as we move from 2 towards 5 memory banks. However, the increase
is much higher between a design of 4 and 5 memory banks compared to the
smaller configurations. As motivated before, a memory architecture with
six banks is not presented due to the expected high overhead that cannot be
justified with the reconfiguration energy gains. The interconnection over-
head predicted by the model is compared with the synthesis results for the
current technology. In Tab. E.2 the first column is the overhead percent-
age presented in Tab. E.1 and the second column the predicted overhead
percentage presented in Fig. E.7. The agreement between the two suggests
that the model is sufficiently accurate for the current technology.

E.5. Model Construction and Projection Results 189

Table E.2: Comparison between predicted and simulated overhead

Number of Banks Simulated Overhead Predicted Overhead

2 1.26% 1.16%

3 1.37% 1.26%

4 1.77% 1.63%

5 3.0% 2.78%

2012 2014 2016 2018 2020 2022 2024 2026 2028
0

2

4

6

8

10

12

Year

In
te

rc
on

ne
ct

io
n

O
ve

rh
ea

d
in

 P
er

ce
nt

Scaling of the interconnection overhead power consumption in the future

2 Banks
3 Banks
4 Banks
5 Banks

Figure E.7: Projections of the interconnection cost power overhead for different
numbers of memory banks

E.5.2 Results

The model is useful during exploration of efficient clustered memory organi-
zation for a given application and technology. Based on Fig. E.7 it is likely
that the optimum memory organization for a 45 nm design will include more
memory banks compared to a 5 nm design. The overall results also indi-
cates that since the overhead is small, the design approach using clustered
memory architectures will be relevant in the future. The model provides

190 Technology scaling impact on the interconnection of clustered
scratchpad memory architectures

Table E.3: Energy gains vs. interconnection overhead

Banks Sizes [kB] Gains Overhead(45nm) Overhead(5nm)

2 8/32 40.1% 0.8% 4.6%

3 8/8/16 47.6% 0.9% 4.9%

4 8/8/8/8 51.7% 1.2% 6.4%

5 2/8/8/8/8 54.4% 2.0% 10.9%

necessary information to the system designer and steers the decision about
the number of banks in the memory architecture for a given technology.
The improvement in the designer’s decision is a strong motivation for the
development of the model.

To better illustrate the change in the optimum memory architecture for
future technologies, an example application is chosen. The EPIC (Efficient
Pyramid Image Coder) is an image compression algorithm and its behavior
on a clustered image architecture is presented in [28]. The energy gains
for the most energy efficient memory organizations are presented in Tab.
E.3. In these numbers the cost of the added interconnect is not included.
The energy gain percentage is constant and independent of the technology,
because the comparison is always between a monolithic and a clustered
memory architecture of the same technology. The sizes of the memory banks
for each configuration are used to calculate the interconnection overhead
for synthesizing in 45nm and 5nm. The percentage of the energy overhead
due to the interconnection cost is also presented in Tab. E.3 both for the
current and the most advanced technology. Based on the improvements and
the overheads the most energy efficient design for a specific technology can
be defined for the EPIC benchmark application. For the 45nm technology,
a clustered memory architecture with five memory banks is the optimum,
while for the 5nm technology four memory banks give the optimal solution.
The addition of a fifth bank reduces the energy consumption by 2.7%, as
a result of the lower energy consumption inside the memory banks, but at
the same time increases the energy consumption by 4.5%, as a result of the
higher energy consumption on the interconnection between the banks.

E.6. Conclusion 191

E.6 Conclusion

We have proposed a model that can provide estimates of the interconnec-
tion overhead in a clustered memory architecture in future technology nodes.
The model suggests that overhead will be kept low in the short term and
will increase within reasonable levels in the mid-long term. Therefore, the
design of energy efficient clustered memory architecture will continue to be a
good design choice. The estimations for the future can be useful for system
designers that try to design power efficient architectures for applications
with dynamic memory requirements throughout their lifetime. Another
contribution of the model is that it provides an early indication about the
optimal number of banks for a given technology and design. This infor-
mation reduces the design space exploration and the design time. When
newer technologies become available in the CAD tools, the designs can be
re-synthesized and the model can be calibrated.

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Embedded Systems and Energy Consumption
	Dynamic Data Intensive Applications
	Problem Statement
	Current approaches
	Thesis contributions
	Thesis Outline

	Background
	Data and Memory Management Approaches
	Data Transfer and Storage Exploration
	System Scenarios
	Use-Case vs. System Scenarios

	Scratch-pad Memory Architectures

	Proposed technology platform and design methodology approach
	Target platform architecture
	Target memory platform architecture
	Memory models
	Technology scaling

	Data variable based memory-aware system scenario methodology
	Methodology Overview
	Design-time profiling based on data variables
	Design-time system scenario identification based on data variables
	Run-time system scenario detection and switching based on data variables
	Interleaving exploration based on data variables

	Research Results and Contributions
	Contribution A: Development of the Memory-Aware System Scenario Methodology
	Energy Impact of Memory-Aware System Scenario Approach
	Exploration of energy efficient memory organizations for dynamic multimedia applications using system scenarios

	Contribution B: Combined Implementation of the System Scenario Methodology on Memory Subsystem and Processing Elements
	Contribution C: Integrated Interleaving and Data-to-Memory Mapping
	Contribution D: Interconnection Cost Modeling and Scaling

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Energy Impact of Memory-Aware System Scenario Approach
	Abstract
	Introduction
	Related Work and Contribution Discussion
	Extended System Scenario Methodology
	General description of system scenario methodology
	Design-time Profiling
	Design-time Scenario Identification and Prediction
	Run-time Identification, Detection, and Switching

	Target Platform
	Application Benchmarks
	Epileptic Seizure Predictor
	Viterbi Algorithm Encoder

	Results
	Conclusion

	Exploration of energy efficient memory organizations for dynamic multimedia applications using system scenarios
	Abstract
	Introduction
	Motivational Example
	Related Work and Contribution Discussion
	Data Variable Based Memory-Aware System Scenario Methodology
	Design-time Profiling Based on Data Variables
	Design-time System Scenario Identification Based on Data Variables
	Run-time System Scenario Detection and Switching Based on Data Variables

	Target Platform and Energy Models
	Target Memory Platform Architecture
	Models of Different Memory Types
	Total Energy Consumption Calculation
	Memory Architecture Exploration

	Application Benchmarks
	Benchmark Applications and Corresponding Input Databases
	Classification of Applications Based on Dynamic Characteristics

	Results
	Classification of the Applications
	Switching Overhead
	Comparison with Use Case Scenario
	Run-Time Overhead

	Conclusions

	Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac WLAN Systems
	Abstract
	Introduction
	Related Work
	System Scenario Principles
	System Model
	Antennas Signal Power
	Memory Banks
	Combined Model

	Case Study
	Results
	Conclusion

	Integrated Exploration Methodology for Data Interleaving and Data-to-Memory Mapping on SIMD architectures
	Abstract
	Introduction
	Motivational Example
	Related work
	Target Architecture and Energy Models
	Memory Models
	Functional Unit Models

	System Design Exploration Work-flow
	Formal Model Representation of Access Patterns
	Data Interleaving Exploration
	Data-to-Memory Mapping Exploration
	One way constraint propagation

	Applications and Experimental Evaluation
	Benchmark Applications
	Results

	Conclusion

	Technology scaling impact on the interconnection of clustered scratchpad memory architectures
	Abstract
	Introduction
	Related Work
	Current technology
	Generic Work-flow
	Example design: synthesis and simulation

	Technology Scaling
	Memory Banks
	Interconnection

	Model Construction and Projection Results
	Model Construction
	Results

	Conclusion

