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Abstract

The amount and distribution of mixing and entrainment that the overflows
across the Greenland-Scotland Ridge encounter influence the ventilation of
the deep North Atlantic. Constituting about 30% of the total overflow
(about 6 Sv) across the Greenland-Scotland Ridge, the continuous, swift
overflow through the deepest passage from the Nordic Seas to the North
Atlantic Ocean, the Faroe Bank Channel, is a major overflow in the region.

The mixing processes of the Faroe Bank Channel overflow are explored
by combining results from observations, including the first direct turbulence
measurements, numerical simulations of the overflow, and an idealized pro-
cess study. The observations show an overflow characterized by strong lat-
eral variability in entrainment and mixing, a transverse circulation actively
diluting the bottom layer, and a pronounced vertical structure composed of
an about 100m thick stratified interface and a comparably thick well-mixed
bottom layer. The turbulent overflow is associated with intense mixing and
enhanced turbulent dissipation rate near the bottom and at the plume-
ambient interface, but with a quiescent core.

Results from numerical simulations of the overflow with second order
turbulence closures are compared to the observations. Turbulent dissipa-
tion rate and eddy diffusivity profiles inferred from the observations are used
in refining the parameters of the turbulence closure. In the bottom-most 50-
60m, where the Richardson number is small and the production of turbulent
kinetic energy is well-resolved, the model reproduces the observed vertical
structure of enhanced dissipation rate and eddy diffusivity exceptionally
well. In the interfacial layer and above the plume-ambient interface, how-
ever, the model does not resolve the mixing. A further investigation of the
observations, addressing the role of the transverse circulation and internal
waves in mixing in the stratified interface, shows that the transverse circu-
lation effectively contributes to mixing of the overflow plume. Dissipation
rates are more than doubled in the interfacial layer due to the transverse
flow. In the ambient above the overflow plume, internal wave breaking is the
dominant mechanism for dissipation of turbulent energy. In the interfacial
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layer the main mechanism of mixing is the shear-instability and entrainment
associated with the swift gravity current, enhanced by the secondary circu-
lation. However, the internal wave continuum is energetic in the interfacial
layer and may contribute to mixing.

To investigate the influence of unresolved small scale topography on the
flow of a stratified fluid, a 2-m resolution, non-hydrostatic, three-dimensional
numerical model is used. The drag and associated mixing on the stratified
flow over real, 1-m resolution, complex topography (interpolated to model
resolution) are studied. The results show that a significant drag can be ex-
erted on the flow of a stratified layer overlaying a well-mixed layer (resem-
bling the bottom and interfacial layer of the Faroe Bank Channel overflow)
over rough topography. A parameterization of the internal wave drag is
developed and implemented, and provides satisfactory results in terms of
the domain integrated turbulent kinetic energy levels.
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1. Outline

This study investigates mixing processes in dense overflows with a special
focus on the Faroe Bank Channel overflow. The study is based on ob-
servations collected during a dedicated survey to the Faroe Bank Channel
overflow region in June 2008, numerical simulations of the overflow, and an
idealized process study. By combining results from observations and nu-
merical simulations, a more complete understanding is achieved since each
method has its limitations and advantages.

The thesis consists of an introduction followed by four papers. In the in-
troduction, the scientific background is presented (Section 2) followed by a
presentation of this study including a summary of the papers (Section 3). A
discussion of the main results and future perspectives are given in Section 4.

The following four papers detail the results of this dissertation:

• Paper I:
Intense mixing of the Faroe Bank Channel overflow
I. Fer, G. Voet, K. S. Seim, B. Rudels and K. Latarius
Geophysical Research Letters, Volume 37, L02604,
doi:10.1029/2009GL041924, 2010

• Paper II:
Regional simulations of the Faroe Bank Channel overflow us-
ing a σ-coordinate ocean model
K. S. Seim, I. Fer, and J. Berntsen
Ocean Modelling, Volume 35, 31-44, doi:10.1016/j.ocemod.2010.06.002,
2010

• Paper III:
Mixing in the stratified interface of the Faroe Bank Channel
overflow: the role of transverse circulation and internal waves
K. S. Seim and I. Fer
Submitted to Journal of Geophysical Research

• Paper IV:
Stratified flow over complex topography
K. S. Seim
Manuscript in preparation for submission to Ocean Modelling
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2 Outline

Paper I presents the first direct turbulence measurements from the Faroe
Bank Channel overflow and the anatomy and mixing processes of the over-
flow. An idealized numerical model of the Faroe Bank Channel overflow
was set up and the results are compared to the observations of Paper I
and previous numerical studies of the overflow. These results are presented
in Paper II. Using the observations and the regional numerical simulations
in concert, we show that the mixing at the stratified interfacial layer and
above is not adequately represented in the model, and identify the processes
that need to be improved. These findings initiated a study of the observed
mixing processes in the interfacial layer presented in Paper III. In Paper
IV the importance of mixing due to unresolved topography is studied by
carrying out numerical simulations of flow over high resolution topography.
A parameterization is suggested to account for internal wave drag exerted
in the water column.

Regarding the authorship and my contributions in these papers, I am the
first author of Papers II, III, and I am the only author of Paper IV.
I was responsible for performing the numerical simulations in Papers II
and IV, and analysis of observations in Paper III, providing the results
and discussions, and writing the papers under supervision of Prof. Ilker
Fer. Prof. Ilker Fer and Prof. Jarle Berntsen contributed with comments
and suggestions of improvement on Paper II. In Paper III Prof. Ilker Fer
contributed with the data set and the part on the role of internal waves. As
a third author of Paper I I participated at the field work, and contributed
with comments and discussion on the results. Paper I is included to intro-
duce the extensive data set from the Faroe Bank Channel overflow and our
initial analyses and discussions of the anatomy and mixing processes of the
overflow.
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2. Scientific background

2.1 The Atlantic Meridional Overturning Circu-
lation

The large scale ocean circulation (Fig. 2.1) can be thought of as a combi-
nation of currents driven by three different mechanisms (Rahmstorf, 2002):
i) directly by winds (mostly confined to the upper several hundred metres
of the sea), ii) by fluxes of heat and freshwater and subsequent interior
mixing of heat and salt (the thermohaline circulation, THC), and iii) by
tides. Because of its relevance for the global climate, the Atlantic merid-
ional overturning circulation (AMOC) has been a major research focus for
many years (Kuhlbrodt et al., 2007). Yet the main driver mechanism of
the AMOC remains in debate. The circulation can, much simplified, be
closed in four main branches: upwelling of abyssal water masses towards
the ocean surface, poleward transport of relatively light water by surface
currents, sinking dense water in deep water formation regions, and deep
currents closing the loop (Kuhlbrodt et al., 2007).

It was first shown by Sandström (1908, 1916) (Sandström’s theorem), by
performing tank experiments and theoretical work, that a deep, thermally
driven, closed, steady circulation in the ocean is only established if heating
takes place at a higher presssure (deeper) than cooling. The ocean is heated
at the tropics at the surface and cooled at high latitudes at the surface.
Hence, deep mixing is a prerequisite for the deep circulation to be closed.
The only possible sources of mechanical energy to drive the interior mixing
are the winds and tides (Munk and Wunsch, 1998). Assuming a uniform
upwelling associated with 25 Sv (1 Sv=106m3 s−1) of deep water formation,
Munk (1966) estimated that a diapycnal mixing coefficient of 10−4m2 s−1

is needed to maintain the abyssal stratification. Subsequent measurements
give a uniform pelagic (away from topography) diffusivity which is one or-
der of magnitude smaller. This led Munk and Wunsch (1998) to reinterpret
their diapycnal mixing coefficient (associated with 30 Sv of deep water for-
mation) as a basin-wide spatial average, with values one order of magnitude
smaller in the ocean interior and much higher values in a small number of
localized mixing regions (sources of buoyancy flux). They estimate the en-
ergy available for mixing from wind and tides to be just what is necessary
to upwell the deep water, with the reservation that such estimates are very
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4 Scientific background

uncertain.
An alternative mechanism to the upwelling-diapycnal diffusion balance,

is an upwelling balanced purely by kinetic energy input from winds. Togg-
weiler and Samuels (1998) show that the AMOC can be closed by upwelling
south of the wind driven Antarctic Circumpolar Current (ACC) due to the
divergence in the Ekman transport, with very little energy input from sur-
face buoyancy forces. In this theory, the southward flow of deep waters
from the North Atlantic is merely the return flow of the northward Ekman
transport from the Southern Ocean. A strong sensitivity of the AMOC to
Southern Ocean wind forcing is not found in all models (Rahmstorf and
England, 1997) and the sensitivity decreases with increasing model resolu-
tion (Hallberg and Gnanadesikan, 2006).

Figure 2.1: A simplified sketch of the global overturning circulation system
(Kuhlbrodt et al., 2007).

The picture that emerges is that of an AMOC driven by both mixing
and wind-driven upwelling (Kuhlbrodt et al., 2007). For the diapycnal mix-
ing mechanism there is just enough energy input from wind and tides to
rise the ocean background diapycnal diffusivity by one order of magnitude,
but it is not obvious that all this energy is available for diapycnal mix-
ing. Accounting for the Southern Ocean upwelling and arguing that only
the vertical mixing of the deep water with North Atlantic origin needs to
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2.2. Dense overflows 5

be considered, Webb and Suginohara (2001) estimate the vertical mixing
coefficient, averaged over the whole ocean, to be less than 3×10−5m2 s−1.
Hughes and Griffiths (2006) argue that the entrainment into the turbulent
dense overflows has been neglected in the vertical advection-diffusion bal-
ance that maintains the deep density stratification. Buoyancy forcing at the
sea surface might be capable of driving a substantial fraction, and perhaps
all, of the overturning circulation if mixing of dense overflows currents is in-
cluded in the balance. Dense overflows and the associated mixing processes
are an important part of the AMOC and play a central role in ”closing the
loop”.

”Any serious attempt to forecast future climate states requires an under-
standing of the present state” (Munk and Wunsch, 1998).

2.2 Dense overflows

According to Sandström’s theorem, surface buoyancy cannot provide the
energy necessary to drive the AMOC. However, it is essential for the for-
mation of deep water. It is the deep water formation process that set the
interhemispheric shape and the strength of the overturning cell (Kuhlbrodt
et al., 2007). The density of the water masses is raised by surface cooling
and ice freezing and brine rejection at high latitude and/or increased salinity
due to evaporation. There are two distinct types of convection (Killworth,
1983). The first is the shelf convection initiated by brine release, as typified
by various locations at Arctic and Antarctic shelves. The freezing of sea ice
and subsequent brine rejection, results in cold, saline, dense water descend-
ing the shelf slope under a balance of Coriolis, gravity and frictional forces.
The second convection process is the open-ocean convection. This process
occurs in localized regions characterized by weak stratification and, in win-
ter, exposed to intense buoyancy loss leading to deep-reaching convection
(Killworth, 1983; Marshall and Schott, 1999). In the present climate, open-
ocean deep convection occurs only in the Atlantic Ocean: the Labrador,
Greenland, and Mediterranean Seas, and occasionally also in the Weddell
Sea (Marshall and Schott, 1999).

On the Southern Hemisphere, the Filchner overflow in the Weddell Sea
(Foldvik et al., 2004) is thought to be the most important overflow site,
but overflows are also observed in the Ross Sea (Gordon et al., 2004) and
other shelf locations around Antarctica (Baines and Condie, 1998). The
dense water of Antarctic origin is fresher but colder and denser than the
dense water formed at high, northern latitudes, and consequently occupies
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Figure 2.2: The exchange of water across the Greenland-Scotland Ridge.
Arrows on the map indicate the main overflow (blue) and compensating
inflow (red) branches. On the schematic section to the right, temperatures
in ◦C and volume transports in Sv are given by approximate values (Hansen
et al., 2004). DS: Denmark Strait; FBC: Faroe Bank Channel. From Hansen
et al. (2004).

the major part of the deep ocean. On the northern Hemisphere, the dense
water formed in the Arctic and in the Nordic seas has to cross the Greenland-
Scotland ridge (Hansen and Østerhus, 2000). The northward flow of warm,
saline Atlantic water is converted to colder water masses in the Arctic and
the Nordic Seas, and returns southward over the ridge as cold fresh surface
flows and dense overflows through deep passages across the ridge (Fig. 2.2).
The overflow across the ridge consists of four distinct regions: the Denmark
Strait, the Iceland-Faroe Ridge, the Faroe Bank Channel (FBC), and the
Wyville Thomson Ridge. Across the Greenland-Scotland ridge a total trans-
port of 6 Sv (Hansen and Østerhus, 2000) is approximately equally divided
between the Denmark Strait, west of Iceland, and the overflow regions east
of Iceland. With a transport of 2.1 Sv (Hansen and Østerhus, 2007) through
the Faroe Bank Channel, 1 Sv across the Iceland-Faroe Ridge (Perkins et al.,
1998), and 0.3 Sv across the Wyville Thomson Ridge (Sherwin et al., 2008),
the Faroe Bank Channel overflow constitutes about 30% of the total over-
flow. The Faroe Bank Channel overflow is the focus of this study.

2.3 Dynamics and mixing of overflows

Dense turbulent overflows occur downstream of many sills and straits which
separate ocean basins (Killworth, 2001). In the following section the dynam-
ics and mixing of dense overflows entering ocean basins along continental
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slopes will be briefly explained.

On basin scales, the Coriolis force will influence all motions. Dense
water moving down a slope under the influence of gravity, is said to be in
geostrophic balance if the gravity, or more accurately the pressure gradient
force, is balanced by the Coriolis force. The along-flow geostrophic balance
may be approximated by

fu = bSy , (2.1)

where u is the along-flow velocity, f the Coriolis parameter,
b = −g(ρ−ρ0)/ρ0 is the buoyancy with respect to the background density ρ0,
and Sy is the bottom slope in the cross-flow direction. In this case the flow
of dense water will be along isobaths and the overflow will not descend the
slope. Since the overflow is a boundary flow it will be influenced by friction,
and the flow may only be assumed to be in near geostrophic balance some
distance away from the boundary. Under the influence of bottom friction
the velocity decreases and veers to the left looking downstream (on the
northern hemisphere) resulting in a down-slope component of the flow. The
integrated transport in the bottom layer, influenced by bottom friction, is
directed 90◦ to the left of the interior flow and is referred to as the Ekman
transport. The down-slope transport results in a widening of the plume as
it flows along the slope.

2.3.1 Entrainment

The flow of dense plumes down a slope is driven by the difference in buoy-
ancy between the dense fluid and its environment. As the plume flows down
the slope, instabilities on the interface between the plume and the more
buoyant fluid above may lead to entrainment of the fluid above. There are
different mechanisms causing entrainment, e.g. shear induced turbulence,
Kelvin-Helmholtz instability (Özgökmen and Chassignet, 2002; Özgökmen
et al., 2004), roll-waves (Cenedese et al., 2004), and hydraulic transitions. In
addition to a vertical buoyancy flux (mixing) associated with entrainment,
the entrained fluid generally has no or less momentum than the dense flow,
and thus entrainment exerts a drag (vertical flux of momentum) on the flow.

The entrainment parameter, E, is commonly defined as E = wE/U (e.g.
Ellison and Turner, 1959), where wE is the entrainment velocity and U is the
flow velocity. Performing laboratory experiments, Ellison and Turner (1959)
defined E as a function of the overall Richardson number of the dense flow
defined as Ri = g′h/U2, where g′ = g(ρ−ρ0)/ρ0 = −b is the reduced gravity.
Parameterizations of E based on the non-rotating laboratory experiments
of Ellison and Turner (1959) and Turner (1986) are widely used. Both
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parameterizations assume no entrainment (E = 0) if Ri is above a critical
value (1 and 0.8 for the two parameterizations, respectively). However, sub-
critical mixing is observed in rotating laboratory experiments (Cenedese
et al., 2004; Adduce and Cenedese, 2008) and a parameterization allowing
for mixing when Ri is above the critical value is proposed by Adduce and
Cenedese (2008).

Similar to the entrainment parameterizations, turbulence closure models
typically predict the collapse of turbulent transport in stratified regions with
negligible shear (i.e. Ri �1), although observations show mixing for sub-
critical Ri. As the local shear production of turbulent kinetic energy (TKE)
is negligible in such a situation, the energy has to come from another source.
Two alternative energy sources have been identified: vertical transport of
TKE from neighboring regions by turbulent motions (Umlauf, 2009), and
TKE generated by internal waves (Baumert and Peters, 2009).

2.3.2 Role of internal waves

Mixing in boundary layers and mean shear flows are commonly represented
in turbulence closure models. These models originate from turbulence the-
ory of neutrally stratified flows and are completely ignorant of internal waves
(Baumert and Peters, 2009). From laboratory experiments, direct numer-
ical simulations and idealized theoretical considerations of stratified, spa-
tially homogeneous shear layers, the following turbulence regimes are found
(Baumert and Peters, 2009):

• Rig ≤ Riag = 0: unstable and neutral stratification, convective and
neutral turbulence, no internal waves.

• Riag < Rig < Ribg = 1/4: neutral and stable stratification, shear-
dominated growing turbulence, coexistence of turbulence and non-
linear internal waves.

• Ribg < Rig < Ricg = 1/2: stable stratification, wave dominated decay-
ing turbulence, coexistence of turbulence and internal waves.

• Ricg < Rig: stable stratification, waves-only regime.

Here the mean-flow gradient Richardson number, Rig = N2/S2, is given as
the ratio of the buoyancy frequency, N =

√
(g/ρ0)∂ρ/∂z and the vertical

shear of the mean velocity, S = ∂U/∂z. The numerical limits, Riag , Ribg, and
Ricg are only valid for the asymptotic case of an infinite Reynolds number,
but turbulence occurs at larger Rig in the ocean due to the presence of
saturated internal waves.
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A possible local generation mechanism of internal waves in dense over-
flows is rough bottom topography. Depending on the intrinsic frequency of
the flow, U/L, given by the flow speed and the length scale of the topogra-
phy, and the buoyancy frequency of the flow, N , evanescent or propagating
waves may be exerted, only the latter resulting in a pressure gradient over
the obstacle and an associated drag force (e.g. Baines, 1995).

2.3.3 Lateral mixing - eddies

Eddies are commonly observed in dense overflows. Bruce (1995) observed
numerous cold cyclonic eddies in satellite IR imagery along the East Green-
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(Foldvik et al., 2004; Darelius and Wåhlin, 2007), the Faroe Bank Channel
overflow (Johnson and Sanford, 1992; Fer et al., 2010), Mediterranean out-
flow (Baringer and Price, 1997), and the Red Sea outflow (Peters et al., 2005;
Peters and Johns, 2005). Channelized overflows are also found in smaller
scale in the Baltic Sea (Arneborg et al., 2007; Umlauf and Arneborg, 2009a)
and in the Wyville Thompson overflow (Sherwin and Turrell, 2005; Sherwin
et al., 2008; Sherwin, 2010).

Figure 2.3: Illustration of the transverse circulation in an along-stream and
cross-stream section. Arrows illustrate geostrophic velocities (Ug along-
stream and Vg cross-stream), Ekman transport (VE), and entrainment ve-
locity (wE). Vertical motions due to overturning and Ekman transport
divergence/convergence are also depicted. From Seim and Fer (2010).

A simple model of the flow through a channel (or along a corrugation)
can be achieved by assuming that the flow along the channel is geostrophi-
cally balanced, and that the speed is adjusted by friction such that the bot-
tom stress balances the interfacial stress along the channel (Wåhlin, 2004;
Darelius, 2008). For a steady flow, this means that the Ekman transport in
the bottom layer has to be balanced by the oppositely directed geostrophic
flow in the cross-channel direction as the flow is laterally constrained within
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overflow (Johnson and Sanford, 1992; Fer et al., 2010), Mediterranean out-
flow (Baringer and Price, 1997), and the Red Sea outflow (Peters et al., 2005;
Peters and Johns, 2005). Channelized overflows are also found in smaller
scale in the Baltic Sea (Arneborg et al., 2007; Umlauf and Arneborg, 2009a)
and in the Wyville Thompson overflow (Sherwin and Turrell, 2005; Sherwin
et al., 2008; Sherwin, 2010).

Figure 2.3: Illustration of the transverse circulation in an along-stream and
cross-stream section. Arrows illustrate geostrophic velocities (Ug along-
stream and Vg cross-stream), Ekman transport (VE), and entrainment ve-
locity (wE). Vertical motions due to overturning and Ekman transport
divergence/convergence are also depicted. From Seim and Fer (2010).

A simple model of the flow through a channel (or along a corrugation)
can be achieved by assuming that the flow along the channel is geostrophi-
cally balanced, and that the speed is adjusted by friction such that the bot-
tom stress balances the interfacial stress along the channel (Wåhlin, 2004;
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the channel. The divergence of the Ekman flow causes the fluid to move
between the Ekman layer and the interior flow (Fig. 2.3). Analysing data
from a channelized gravity current in the western Baltic Sea, Umlauf and
Arneborg (2009b) found a complex transverse circulation modifying the en-
trainment process by i) laterally draining the interface and ii) providing
additional interfacial shear comparable to the down-channel shear. This
shallow gravity current is characterized by Ekman numbers in the order
of unity, but transverse circulation is also found to significantly affect the
dynamics of deeper overflows (Johnson and Sanford, 1992; Fer et al., 2010;
Sherwin, 2010).

2.4 The Faroe Bank Channel overflow

The Faroe Bank Channel (see Fig. 2.4) is the deepest passage across the
Greenland-Scotland Ridge and the deep part of this channel is home to
swift flow of cold, dense water toward the Atlantic (Borenäs and Lund-
berg, 1988; Hansen and Østerhus, 2000, 2007). Since its importance for
the exchange between the North Atlantic and the Nordic Seas was recog-
nized by Cooper (1955), the FBC overflow has been studied extensively:
Overflow ’60 (Harvey, 1965), Overflow ’73 (Dooley and Meincke, 1981),
NANSEN (Borenäs and Lundberg, 1988; Saunders, 1990, 1992), and the
Nordic WOCE and VEINS (Hansen et al., 2001). Recent studies of the
overflow include Duncan et al. (2003); Mauritzen et al. (2005); Prater and
Rossby (2005); Geyer et al. (2006); Fer et al. (2010). The overflow water
is characterised by a vertically stratified plume structure, with a stratified,
interfacial layer, 120m thick on average, and a well-mixed bottom layer of
70m average thickness (Fer et al., 2010). At the FBC sill the cold core
of the overflow is significantly thicker, on average 250m (Mauritzen et al.,
2005), and has a mean velocity of 1m s−1. The volume transport of the
overflow at the sill is 2.1 Sv, inferred from continuous measurements from
1995 to 2005 (Hansen and Østerhus, 2007). Downstream of the sill, the
overflow enters the Iceland-Faroe slope and starts descending the slope un-
der frictional control. Approximately 100 km downstream of the sill, the
plume accelerates as it descends from 800 to 1200m, and the highest veloc-
ities (>1.2m s−2) and buoyancy fluxes are found at this section (Mauritzen
et al., 2005). Quantifying the mixing of the FBC overflow using overturning
length scales (Thorpe, 1977), Mauritzen et al. (2005) find very high diapy-
cnal mixing coefficients (600-1000×10−4m2 s−1), particularly close to the
bottom associated with frictional drag. Although one order of magnitude
smaller (around 100×10−4m2 s−1), enhanced levels of mixing in the inter-
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Figure 2.4: Bathymetry of the channel system around the Faroe islands. Iso-
baths are drawn at 250-m intervals starting with 500 m. FBC: Faroe Bank
Channel; FSC: Faroe Shetland Channel; WTR: Wyville-Thomson Ridge;
and IFR: Iceland-Faroe ridge. From Seim et al. (2010).

face will significantly affect the water masses compared to the maximum
mixing in the bottom layers with fairly homogeneous stratification. Mau-
ritzen et al. (2005) conclude that the hydrographic properties of the FBC
overflow are set within 100-150 km downstream of the sill. The mixing is
found to be enhanced in the Faroese Channels compared to the Denmark
Strait resulting in significantly warmer deep water masses downstream of
the FBC sill although it is deeper than the Denmark Strait.

A regular pattern of strong temperature and velocity oscillations has
been observed in the FBC overflow. In-situ observations downstream of
the FBC sill show large current and temperature fluctuations with a period
of 3.5 days associated with mesoscale eddies (Høyer and Quadfasel, 2001).
A similar variation (∼3.7 days) in near-bottom temperature and velocity
measurements is reported by Geyer et al. (2006), and in highly idealized
numerical simulations of the overflow (Ezer, 2005). Based on numerical
model results Ezer (2006) identifies three flow regimes resembling those
found in the laboratory experiments of Cenedese et al. (2004): a sub-critical
flow upstream of the sill, a ”wave” regime (periods of 3-6 days) from the
sill to 100-200 km downstream where the flow is super-critical with strong
mixing and entrainment, and an ”eddy” regime farther downstream.

The Faroe Bank Channel overflow is a highly variable, both in time
and space, dense overflow associated with intense mixing and entrainment.
Constituting almost 30% of the total overflow of dense water across the
Greenland-Scotland Ridge, understanding the dynamics of the FBC over-
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face will significantly affect the water masses compared to the maximum
mixing in the bottom layers with fairly homogeneous stratification. Mau-
ritzen et al. (2005) conclude that the hydrographic properties of the FBC
overflow are set within 100-150 km downstream of the sill. The mixing is
found to be enhanced in the Faroese Channels compared to the Denmark
Strait resulting in significantly warmer deep water masses downstream of
the FBC sill although it is deeper than the Denmark Strait.

A regular pattern of strong temperature and velocity oscillations has
been observed in the FBC overflow. In-situ observations downstream of
the FBC sill show large current and temperature fluctuations with a period
of 3.5 days associated with mesoscale eddies (Høyer and Quadfasel, 2001).
A similar variation (∼3.7 days) in near-bottom temperature and velocity
measurements is reported by Geyer et al. (2006), and in highly idealized
numerical simulations of the overflow (Ezer, 2005). Based on numerical
model results Ezer (2006) identifies three flow regimes resembling those
found in the laboratory experiments of Cenedese et al. (2004): a sub-critical
flow upstream of the sill, a ”wave” regime (periods of 3-6 days) from the
sill to 100-200 km downstream where the flow is super-critical with strong
mixing and entrainment, and an ”eddy” regime farther downstream.
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3. This study

3.1 Motivation and objectives

The aim of this study is to identify and investigate the processes of im-
portance for the mixing of dense overflows, focussing on the Faroe Bank
Channel overflow. As described in previous sections, the diapycnal mix-
ing, transporting heat from surface to the deep water masses, is crucial for
the maintenance of the present-day overturning circulation. The average
pelagic diffusivity is too small to support the mixing required to maintain
the abyssal stratification. A small number of regions with intense mix-
ing (”hot-spots”), associated typically with variable bottom topography,
are proposed to account for the ”missing mixing”. The enhanced levels of
mixing observed in regions of dense overflows can further reduce this dis-
crepancy to sustain the overturning circulation, and are certainly important
for the formation of the deep water masses. Yet, the processes determining
the mixing of major dense overflows are, to a large degree, unknown.

With this motivation, the following questions are addressed in this study:

i) Which processes are important for the mixing of the Faroe Bank Channel
overflow? How does the observed mesoscale variability affect the descent
and mixing of the overflow plume?

ii) How is the thick, stratified interfacial layer of the overflow plume main-
tained, and which processes dominate the mixing there?

iii) Can numerical models with state-of-the-art turbulence closure models
represent the mixing of the overflow? Is the unresolved topography impor-
tant for the mixing of overflow plumes?

3.2 Methods

This study is a combination of unique observations and numerical modelling,
used in concert to complement each other to achieve a better understand-
ing of mixing processes in dense overflows. All observed data used in this
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study were obtained during the cruise of R.V. H̊akon Mosby to the Faroe
Bank Channel overflow region between 29 May and 8 June 2008 and from
moored instruments deployed in the period from 14 May to 18 July 2008.
The dataset includes vertical properties of hydrography and velocity, turbu-
lence profiles from a microstructure profiler, and time series of hydrography
and velocity from the moored instruments. Horizontal current profiles were
collected by a pair of acoustic Doppler current profilers attached to the
Conductivity-Temperature-Depth (CTD) rosette. The profiles of dissipa-
tion rate (ε) are obtained as 1m averages from shear probes of the tethered
free-fall microstructure profiler. Processing of current profiles, CTD, and
microstructure data is done employing widely-used matured methods. From
the dissipation rate the diapycnal eddy diffusivity was estimated by three
different models following Osborn (1980); Shih et al. (2005) and Peters and
Baumert (2007). Analysis of data involves time series analysis, frequency
domain spectral analysis, as well as inferring integral plume properties over
pre-defined layers and occupied sections.

An idealized regional numerical model of the Faroe Bank Channel overflow
was set up with identical bathymetry and forcing to a recent study of the
overflow using a z-level model (Riemenschneider and Legg, 2007) to be able
to compare our σ-coordinate model (Bergen Ocean Model, BOM) to the
observations and the z-level model. The bathymetry and forcing data were
provided by U. Riemenschneider and S. Legg. The horizontal resolution
of the model is 2 km. In the vertical 32 layers are used, with increasing
resolution toward the bottom resulting in a near-bottom vertical resolution
ranging from about 2m to 22m, depending on the bottom depth. To pa-
rameterize sub-grid-scale processes, three different second order turbulence
closure models were applied in the vertical: the Mellor and Yamada (1982)
2-1/2 scheme implemented in BOM, the k-ε model, or the k-ω model, the
two latter by coupling the General Ocean Turbulence Model (GOTM Um-
lauf et al., 2006) to BOM. The results of the simulations were evaluated by
comparing the volume transports of dense overflow water to observations
and the results of the z-level model. The diffusivity and dissipation rate es-
timated by the model were compared to the microstructure measurements
to assess the performance of the turbulence closure models.

To evaluate the influence of complex topography on stratified flow (specif-
ically in a stratified layer resembling the stratified interface of the Faroe
Bank Channel overflow), another numerical model case was set up using
the non-hydrostatic, parallelized version of BOM. Real, unique topographic
data with a resolution of 1m from a 400m × 400m region was interpolated
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to a grid with horizontal resolution of 2m and a vertical resolution of about
2m. A parameterization of the drag induced by breaking internal waves,
based on linear, two-dimensional, hydrostatic wave solutions, was tested on
the flow over a flat bottom with stratification resembling the Faroe Bank
Channel overflow water. The topography inducing the internal waves is
represented in the parameterization by its statistical properties.

3.3 Summary of papers

This work is presented in Papers I-IV summarized below.

3.3.1 Paper I

Intense mixing of the Faroe Bank Channel overflow
Published in Geophysical Research Letters

In this paper the dynamic properties and mixing of the Faroe Bank Channel
overflow are described using the first direct turbulence measurements and
vertical profiles of hydrography and velocity. The overflow plume is on
average 160±70m thick and, similar to other major overflows (Red Sea,
the Denmark Strait, and the Mediterranean overflow), the presence of a
stratified interfacial layer (IL, 120±60m thick) is observed. The overflow
transport is equally distributed between the IL and the well-mixed layer
below the IL, the well-mixed bottom layer (BL), with average magnitudes
of 0.9±0.1 Sv and 1±0.3 Sv for the two layers, respectively.

Exceptionally high dissipation rates reaching 10−5Wkg−1 are measured in
the IL and BL with a quiescent region in between associated with the ve-
locity maximum. Enhanced mixing at the strongly stratified and sheared
IL can be due to coexisting shear instabilities and internal wave-turbulence
transition and vertical transport of turbulence. The vigorous turbulence
near the bottom is due to the bottom shear stress and weak stratification.

The transverse velocity component has a vertical structure with an Ekman
transport, to the left looking downstream, in the BL and an opposing trans-
port to the right in the IL (a transverse transport due to the downchannel
tilt of the interface). This transverse circulation actively dilutes the BL by
supplying warmer interface water into the Ekman layer.

According to our findings, neither bulk entrainment parameterizations, nor
traditional turbulence closure models will be adequate in representing the
mixing of the dense overflow plume downstream of the Faroe Bank Channel
sill.
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3.3.2 Paper II

Regional simulations of the Faroe Bank Channel overflow using a
σ-coordinate ocean model
Published in Ocean Modelling

This paper presents the results of idealized numerical simulations of the
Faroe Bank Channel overflow using a terrain-following ocean model. The
terrain-following coordinate system eliminates the spurious mixing result-
ing from the step topography in z-coordinate models. Turbulence closure
schemes are introduced in the vertical to account for the unresolved mix-
ing. Turbulent dissipation rate and eddy diffusivity profiles inferred from
the observations (Paper I) are used in refining the parameters of the tur-
bulence closure. The model reproduces the features of the overflow plume
reasonably well. At the sill the transport is within 20% of the observed
transport, which is in better agreement than a recent z-level model study
with identical forcing of the model.

Near the bottom the dissipation rate and eddy diffusivity dictated by the
turbulence closure compare exceptionally well with the direct measurements
reported in Paper I. This is because the production of turbulent kinetic
energy is well resolved. In the interfacial layer, however, the model dissi-
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stratified plume-ambient interface is described.

In the stream-wise direction entrainment stress is found to be negligible,
and the momentum budget is dominated by a balance between the pressure
gradient and bottom friction. In the transverse direction, the velocity is
in near geostrophic balance, and the variability is governed by the tilt of
the isotherms relative to the bottom slope. This cross-stream flow in the
interfacial layer, together with the flow near the bottom (Ekman transport),
effectively contributes to mixing in several ways: i) by diluting the bottom
layer of the plume, ii) by acting as an advective source of buoyancy, iii)
by transporting interfacial layer water to the right of the stream-wise flow,
iv) by reducing the Richardson number in the interfacial layer, and v) by
convection on the upper slope. Dissipation rates are more than doubled in
the interfacial layer due to the transverse flow.

The main mechanism of mixing of the overflow plume is the shear-instability
and entrainment associated with the swift gravity current. However, we
find that the internal wave continuum is energetic in the interfacial layer
and may significantly contribute to mixing. Above the overflow plume,
the main mechanism of dissipating turbulent kinetic energy is breaking of
internal waves.

3.3.4 Paper IV

Stratified flow over complex topography
Manuscript in preparation

This paper describes the flow of stratified water over realistic, complex to-
pography and the associated drag on the fluid exerted by the obstacles.
A non-hydrostatic numerical ocean model is used to simulate the flow of
stratified fluid for cases with linear and hyperbolic tangent density profiles.
The latter is chosen to be representative of the well mixed bottom layer and
the stratified interface of the Faroe Bank Channel overflow to illustrate the
possible interfacial mixing caused by rough bottom topography. The flow is
over real topography, represented by a unique dataset sampled at 1m res-
olution, allowing for realistic flow topography interaction. The simulations
show that the topography leads to wave breaking and significant mixing in
the stratified interface. The drag exerted on the flow reduces the domain
integrated velocity by up to 27%.

A parameterization, based on linear, two-dimensional, hydrostatic wave so-
lutions, of the drag exerted on the flow by unresolved topography is tested.
The parameterization predicts the wave breaking at the correct level and
yields comparable levels of turbulent kinetic energy compared to the sim-
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ulations resolving the topography. However, the parameterization overesti-
mates the drag in the layer where the wave breaking is effective due to a
too shallow momentum flux deposit layer.
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4. Conclusions and outlook

In this section the main results and conclusions of Papers I-IV are presented,
followed by suggestions for future work.

4.1 Main results and conclusions

Mixing of the overflow The Faroe Bank Channel is characterised by
strong lateral variability in entrainment and mixing with a significant ver-
tical structure including an about 100m thick strongly stratified interfacial
layer. Exceptionally large dissipation rates, reaching 10−5Wkg−1, are found
in the bottom layer and in the stratified interface. The Richardson number
is below unity in the stratified interface with a minimum value of 0.6. In
the well-mixed bottom layer Ri<1 in the entire layer with Ri<0.25 in the
bottom-most 25m. The weak stratification in combination with the mean
shear in the bottom boundary layer causes the low Ri, but leads to negligible
water mass transformations as the bottom layer is fairly homogeneous. In
the interfacial layer, the low (but not sub-critical) Ri is due to strong shear
across the strongly stratified interface. The enhanced mixing in the layer is
due to shear instability enhanced by the transverse (secondary) circulation.
The energetic internal wave continuum suggests that internal waves may
contribute to mixing in the stratified interface.

Representation of the overflow in a numerical model A numerical
model was set up for the Faroe Bank Channel overflow region with idealized
forcing (no wind and tide). The results are compared with observations of
hydrography, currents, and turbulence; the model reproduces the features of
the plume reasonably well. The volume transport at the sill is within 20% of
the observed transport. Three different second-order turbulence closures are
applied to account for the unresolved mixing. In the bottom boundary layer
the model resolves the Richardson number; the dissipation rates from the
turbulence closure are in exceptional agreement with the observed values.
In the stratified layer, on the other hand, where Ri is above the critical
threshold, the turbulence models underestimate the dissipation rate.

The model develops low-frequency oscillations with a period of 4-4.5
days between 50 and 100 km downstream of the sill. These mesoscale vari-
ations in the overflow are comparable to both earlier numerical simulations
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and observations from moored instruments. The regular oscillations have a
strong impact on the descent rate and mixing of the plume.

Unresolved topography The breaking of internal waves, and the as-
sociated drag, induced by unresolved topography is generally ignored in
ocean modelling, although the importance of varying topography in the av-
erage ocean diapycnal mixing has been recognized. In this study it is shown
that small scale topography (defined by a restriction on the length scale of
an obstacle, L < U/N , where U and N are the flow speed and buoyancy
frequency, respectively) variation induces a significant drag on a stratified
flow, and it is hypothesized that it may be important in the mixing of dense
overflows. Applying a hyperbolic tangent density profile, resembling the
stratified interfacial layer of the Faroe Bank Channel overflow above a well-
mixed bottom layer, we find that internal waves breaking in the stratified
layer induce a significant drag on the flow, reducing the velocity up to 27%.
A parameterization of the internal wave drag is implemented and tested, re-
sulting in comparable levels of domain integrated turbulent kinetic energy.
The parameterization successfully predicts the level of wave breaking, but
the deposit of momentum flux is too shallow leading to an overestimated
drag in the layer.

4.2 Future work

The work presented in this thesis is a step toward a better understanding of
the mixing processes in dense overflows, illustrated by discussing the Faroe
Bank Channel overflow. The observations presented here show enhanced
levels of mixing of the overflow plume, particularly in the stratified interface.
This is not captured by state-of-the-art turbulence closures, and improved
models are needed. Considerable advances are made in making models with
no finite critical Ri (Canuto et al., 2008; Umlauf, 2009) and mixing due
to internal gravity waves (Baumert and Peters, 2009), and applying such
turbulence closures in dense overflow modelling should be explored.

The parameterization of drag induced by internal gravity waves due to
unresolved topography was only tested in a highly idealized model with
constant velocity and buoyancy forcing. The result of applying the param-
eterization on a larger scale case, like the Faroe Bank Channel overflow
model, is the next step in testing the parameterization.

The observed data set presented here is an extensive and detailed data
set, but has a few shortages. The highly variable overflow requires very

22 Conclusions and outlook

and observations from moored instruments. The regular oscillations have a
strong impact on the descent rate and mixing of the plume.

Unresolved topography The breaking of internal waves, and the as-
sociated drag, induced by unresolved topography is generally ignored in
ocean modelling, although the importance of varying topography in the av-
erage ocean diapycnal mixing has been recognized. In this study it is shown
that small scale topography (defined by a restriction on the length scale of
an obstacle, L < U/N , where U and N are the flow speed and buoyancy
frequency, respectively) variation induces a significant drag on a stratified
flow, and it is hypothesized that it may be important in the mixing of dense
overflows. Applying a hyperbolic tangent density profile, resembling the
stratified interfacial layer of the Faroe Bank Channel overflow above a well-
mixed bottom layer, we find that internal waves breaking in the stratified
layer induce a significant drag on the flow, reducing the velocity up to 27%.
A parameterization of the internal wave drag is implemented and tested, re-
sulting in comparable levels of domain integrated turbulent kinetic energy.
The parameterization successfully predicts the level of wave breaking, but
the deposit of momentum flux is too shallow leading to an overestimated
drag in the layer.

4.2 Future work

The work presented in this thesis is a step toward a better understanding of
the mixing processes in dense overflows, illustrated by discussing the Faroe
Bank Channel overflow. The observations presented here show enhanced
levels of mixing of the overflow plume, particularly in the stratified interface.
This is not captured by state-of-the-art turbulence closures, and improved
models are needed. Considerable advances are made in making models with
no finite critical Ri (Canuto et al., 2008; Umlauf, 2009) and mixing due
to internal gravity waves (Baumert and Peters, 2009), and applying such
turbulence closures in dense overflow modelling should be explored.

The parameterization of drag induced by internal gravity waves due to
unresolved topography was only tested in a highly idealized model with
constant velocity and buoyancy forcing. The result of applying the param-
eterization on a larger scale case, like the Faroe Bank Channel overflow
model, is the next step in testing the parameterization.

The observed data set presented here is an extensive and detailed data
set, but has a few shortages. The highly variable overflow requires very

22 Conclusions and outlook

and observations from moored instruments. The regular oscillations have a
strong impact on the descent rate and mixing of the plume.

Unresolved topography The breaking of internal waves, and the as-
sociated drag, induced by unresolved topography is generally ignored in
ocean modelling, although the importance of varying topography in the av-
erage ocean diapycnal mixing has been recognized. In this study it is shown
that small scale topography (defined by a restriction on the length scale of
an obstacle, L < U/N , where U and N are the flow speed and buoyancy
frequency, respectively) variation induces a significant drag on a stratified
flow, and it is hypothesized that it may be important in the mixing of dense
overflows. Applying a hyperbolic tangent density profile, resembling the
stratified interfacial layer of the Faroe Bank Channel overflow above a well-
mixed bottom layer, we find that internal waves breaking in the stratified
layer induce a significant drag on the flow, reducing the velocity up to 27%.
A parameterization of the internal wave drag is implemented and tested, re-
sulting in comparable levels of domain integrated turbulent kinetic energy.
The parameterization successfully predicts the level of wave breaking, but
the deposit of momentum flux is too shallow leading to an overestimated
drag in the layer.

4.2 Future work

The work presented in this thesis is a step toward a better understanding of
the mixing processes in dense overflows, illustrated by discussing the Faroe
Bank Channel overflow. The observations presented here show enhanced
levels of mixing of the overflow plume, particularly in the stratified interface.
This is not captured by state-of-the-art turbulence closures, and improved
models are needed. Considerable advances are made in making models with
no finite critical Ri (Canuto et al., 2008; Umlauf, 2009) and mixing due
to internal gravity waves (Baumert and Peters, 2009), and applying such
turbulence closures in dense overflow modelling should be explored.

The parameterization of drag induced by internal gravity waves due to
unresolved topography was only tested in a highly idealized model with
constant velocity and buoyancy forcing. The result of applying the param-
eterization on a larger scale case, like the Faroe Bank Channel overflow
model, is the next step in testing the parameterization.

The observed data set presented here is an extensive and detailed data
set, but has a few shortages. The highly variable overflow requires very

22 Conclusions and outlook

and observations from moored instruments. The regular oscillations have a
strong impact on the descent rate and mixing of the plume.

Unresolved topography The breaking of internal waves, and the as-
sociated drag, induced by unresolved topography is generally ignored in
ocean modelling, although the importance of varying topography in the av-
erage ocean diapycnal mixing has been recognized. In this study it is shown
that small scale topography (defined by a restriction on the length scale of
an obstacle, L < U/N , where U and N are the flow speed and buoyancy
frequency, respectively) variation induces a significant drag on a stratified
flow, and it is hypothesized that it may be important in the mixing of dense
overflows. Applying a hyperbolic tangent density profile, resembling the
stratified interfacial layer of the Faroe Bank Channel overflow above a well-
mixed bottom layer, we find that internal waves breaking in the stratified
layer induce a significant drag on the flow, reducing the velocity up to 27%.
A parameterization of the internal wave drag is implemented and tested, re-
sulting in comparable levels of domain integrated turbulent kinetic energy.
The parameterization successfully predicts the level of wave breaking, but
the deposit of momentum flux is too shallow leading to an overestimated
drag in the layer.

4.2 Future work

The work presented in this thesis is a step toward a better understanding of
the mixing processes in dense overflows, illustrated by discussing the Faroe
Bank Channel overflow. The observations presented here show enhanced
levels of mixing of the overflow plume, particularly in the stratified interface.
This is not captured by state-of-the-art turbulence closures, and improved
models are needed. Considerable advances are made in making models with
no finite critical Ri (Canuto et al., 2008; Umlauf, 2009) and mixing due
to internal gravity waves (Baumert and Peters, 2009), and applying such
turbulence closures in dense overflow modelling should be explored.

The parameterization of drag induced by internal gravity waves due to
unresolved topography was only tested in a highly idealized model with
constant velocity and buoyancy forcing. The result of applying the param-
eterization on a larger scale case, like the Faroe Bank Channel overflow
model, is the next step in testing the parameterization.

The observed data set presented here is an extensive and detailed data
set, but has a few shortages. The highly variable overflow requires very
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high spatial and temporal resolution. Long time mooring arrays covering
the whole vertical extent of the plume and designed to capture the trans-
verse circulation and the variability in the interfacial layer, would certainly
improve the understanding of the mixing processes in the Faroe Bank Chan-
nel overflow.
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Darelius, E., Wåhlin, A. K., 2007. Downward flow of dense water leaning
on a submarine ridge. Deep-Sea Res. I 54, 1173–1188.

Dooley, H. D., Meincke, J., 1981. Circulation and water masses in the
Faroese Channels during Overflow ’73. Dt. Hydrogr. Z. 34, 41–45.

Duncan, L. M., Bryden, H. L., Cunningham, S. A., 2003. Friction and
mixing in the Faroe Bank Channel outflow. Oceanol. Acta 26, 473–486.

Ellison, T. H., Turner, J. S., 1959. Turbulent entrainment in stratified flow.
J. Fluid Mech. 6, 423–448.

Ezer, T., 2005. Entrainment, diapycnal mixing and transport in three-
dimensional bottom gravity current simulations using the Mellor-Yamada
turbulence scheme. Ocean Model. 9, 151–168.

Ezer, T., 2006. Topographic influence on overflow dynamics: idealized nu-
merical simulations and the Faroe Bank Channel. J. Geophys. Res. 111,
doi:10.1029/2005JC003195.

Fer, I., Voet, G., Seim, K. S., Rudels, B., Latarius, K., 2010. Intense mixing
of the Faroe Bank Channel overflow. Geophys. Res. Lett. 37, L02604,
doi:10.1029/2009GL041924.

Foldvik, A., Gammelsrød, T., Østerhus, S., Fahrbach, E., Rohardt, G.,
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Wåhlin, A. K., 2004. Downward channeling of dense water in topographic
corrugations. Deep-Sea Res. I 51, 577–590.

Webb, D. J., Suginohara, N., 2001. Vertical mixing in the ocean. Nature
409, 37.

30 Bibliography

Sherwin, T. J., Turrell, W. R., 2005. Mixing and advection of a cold water
cascade over the Wyville Thompson Ridge. Deep-Sea Res. I 52, 1392–
1413.

Shih, L. H., Koseff, J. R., Ivey, G. N., Ferziger, J. H., 2005. Parameterization
of turbulent fluxes and scales using homogeneous sheared stably stratified
turbulence simulations. J. Fluid Mech. 525, 193–214.

Swaters, G. E., 1991. On the baroclinic instability of cold-core coupled den-
sity fronts on a sloping continental-shelf. J. Fluid Mech. 224, 361–382.

Thorpe, S. A., 1977. Turbulence and mixing in a Scottish loch. Philos. T.
R. Soc. A 286, 125–181.

Toggweiler, J. R., Samuels, B., 1998. On the ocean’s large scale circulation
in the limit of no vertical mixing. J. Phys. Oceanogr. 28, 1832–1852.

Turner, J. S., 1986. Turbulent entrainment - the development of the en-
trainment assumption, and its application to geophysical flows. J. Fluid
Mech. 173, 431–471.

Umlauf, L., 2009. The description of mixing in stratified layers without
shear in large-scale ocean models. J. Phys. Oceanogr. 39, 3032–3039.

Umlauf, L., Arneborg, L., 2009a. Dynamics of rotating shallow gravity cur-
rents passing through a channel. Part I: Observation of transverse struc-
ture. J. Phys. Oceanogr. 39, 2385–2401.

Umlauf, L., Arneborg, L., 2009b. Dynamics of rotating shallow gravity cur-
rents passing through a channel. Part II: Analysis. J. Phys. Oceanogr. 39,
2402–2416.

Umlauf, L., Burchard, H., Bolding, K., 2006. GOTM - Sourcecode and Test
Case Documentation. Version 4.0.
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[1] The continuous, swift flow of cold water across the sill of
the Faroe Bank Channel, the deepest passage from the Nordic
Seas to the North Atlantic Ocean, forms a bottom‐attached
dense plume (overflow). The amount and distribution of
entrainment and mixing that the overflow encounters
during its descent influence the ventilation of the deep
North Atlantic, however, remain poorly known due to
lack of direct measurements. Using the first direct turbulence
measurements, we describe the dynamic properties and
mixing of the overflow plume as it descends toward the
Iceland Basin. The vigorously turbulent plume is associated
with intense mixing and enhanced turbulent dissipation
near the bottom and at the plume‐ambient interface,
but with a quiescent core. Our measurements show a
pronounced transverse circulation consistent with rotating
plume dynamics, a strong lateral variability in entrainment
velocity, and a vertical structure composed of order 100 m
thick stratified interface and comparably thick well‐mixed
bottom boundary layer with significant transport and
entrainment. Citation: Fer, I., G. Voet, K. S. Seim, B. Rudels,
and K. Latarius (2010), Intense mixing of the Faroe Bank Channel
overflow, Geophys. Res. Lett., 37, L02604, doi:10.1029/
2009GL041924.

1. Introduction

[2] The export of cold, dense water from the Norwegian
Sea through the Faroe Bank Channel (FBC, Figure 1) into
the sub‐polar North Atlantic accounts for about one third
of the total overflow from the Nordic Seas [Hansen and
Østerhus, 2007]. The FBC overflow, a bottom‐attached
gravity current, descends the sloping topography under the
combined influence of pressure gradient, bottom friction
and the Earth’s rotation, and mixes with overlying water
[Saunders, 2001; Mauritzen et al., 2005]. The latter deter-
mines the end‐product properties associated with the source
water and needs to be properly represented in climate
models for credible climate projections [Legg et al., 2009].
Despite the importance of mixing of the FBC overflow,
no previous measurements of turbulence have been avail-
able. Motivated by this lack of measurements we conducted
such a survey in June 2008.

2. Measurements and Data

[3] The obtained data set includes vertical profiles of
hydrography and velocity from 63 casts with a conductivi-
ty‐temperature‐depth (CTD, SBE911+) package equipped
with down and uplooking lowered acoustic Doppler current
profilers (LADCPs, 300 kHz Workhorse), and of turbulence
profiles from 90 casts with a vertical microstructure profiler
(VMP, Rockland Sci. Int.). The VMP is equipped with
accurate CTD sensors and a pair of microstructure shear
probes used for measuring the dissipation rate of turbulent
kinetic energy ("). Turbulent shear is sampled at 512 Hz at a
profiling speed of 0.6 m s−1. Stations are occupied along the
path of the overflow plume and along six sections starting
from the sill crest (section A) to about 120 km downstream
(section F, Figure 1a).

3. Technical Details

3.1 Currents, Dissipation Rate, and Eddy Diffusivity

[4] The velocity profile is calculated as 4 m vertical
averages using the inverse method [Visbeck, 2002] con-
strained by accurate shipboard navigation and bottom track-
ing by the LADCP, and detided using a barotropic tidal
model [Egbert et al., 1994] for the European Shelf at 1/30°
resolution. Tidal velocity is within 3 to 34% (18% on the
average) of the maximum velocity at a given station.
[5] The profiles of " are produced as 1 m vertical averages

to a noise level of 10−10 W kg−1 [Fer, 2006]. The diapycnal
eddy diffusivity is calculated using three different formula-
tions: First, an upper limit is obtained from Kr = 0.2"N−2

[Osborn, 1980] assuming 17% mixing efficiency. N =
[−g/r(∂r/∂z)]1=2 is the buoyancy frequency, g is the gravita-
tional acceleration, and r is density. Second, we use Kr = 2n
(" / nN2)

1=2 [Shih et al., 2005], suggested for " / nN2 > 100,
valid for our data (n is the viscosity). This formulation, in-
ferred from direct numerical simulation results, has been
supported by field data [Fer and Widell, 2007]. Third, we
use a gradient Richardson number (Ri) dependent mixing
efficiency with the range of parameters validated against
microstructure measurements [Peters and Baumert, 2007].
Ri = N2/S2, where S is the shear. In all calculations, N is
inferred from 4 m vertical gradients of sorted s� (potential
density referenced to nil pressure) profiles. The vertical
scale is chosen to be consistent with shear calculations
and the sorting approximates the background stratification
against which the turbulence works.

3.2 Plume Properties and Stress

[6] The density anomaly, r′, is obtained as deviations
from an exponential background s� profile fitted to observa-
tions excluding the plume. Velocity profiles are rotated into
streamwise (u) and transverse (n, positive to the right of u)
components with respect to the direction of the maximum
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[1] The continuous, swift flow of cold water across the sill of
the Faroe Bank Channel, the deepest passage from the Nordic
Seas to the North Atlantic Ocean, forms a bottom‐attached
dense plume (overflow). The amount and distribution of
entrainment and mixing that the overflow encounters
during its descent influence the ventilation of the deep
North Atlantic, however, remain poorly known due to
lack of direct measurements. Using the first direct turbulence
measurements, we describe the dynamic properties and
mixing of the overflow plume as it descends toward the
Iceland Basin. The vigorously turbulent plume is associated
with intense mixing and enhanced turbulent dissipation
near the bottom and at the plume‐ambient interface,
but with a quiescent core. Our measurements show a
pronounced transverse circulation consistent with rotating
plume dynamics, a strong lateral variability in entrainment
velocity, and a vertical structure composed of order 100 m
thick stratified interface and comparably thick well‐mixed
bottom boundary layer with significant transport and
entrainment. Citation: Fer, I., G. Voet, K. S. Seim, B. Rudels,
and K. Latarius (2010), Intense mixing of the Faroe Bank Channel
overflow, Geophys. Res. Lett., 37, L02604, doi:10.1029/
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1. Introduction

[2] The export of cold, dense water from the Norwegian
Sea through the Faroe Bank Channel (FBC, Figure 1) into
the sub‐polar North Atlantic accounts for about one third
of the total overflow from the Nordic Seas [Hansen and
Østerhus, 2007]. The FBC overflow, a bottom‐attached
gravity current, descends the sloping topography under the
combined influence of pressure gradient, bottom friction
and the Earth’s rotation, and mixes with overlying water
[Saunders, 2001; Mauritzen et al., 2005]. The latter deter-
mines the end‐product properties associated with the source
water and needs to be properly represented in climate
models for credible climate projections [Legg et al., 2009].
Despite the importance of mixing of the FBC overflow,
no previous measurements of turbulence have been avail-
able. Motivated by this lack of measurements we conducted
such a survey in June 2008.

2. Measurements and Data

[3] The obtained data set includes vertical profiles of
hydrography and velocity from 63 casts with a conductivi-
ty‐temperature‐depth (CTD, SBE911+) package equipped
with down and uplooking lowered acoustic Doppler current
profilers (LADCPs, 300 kHz Workhorse), and of turbulence
profiles from 90 casts with a vertical microstructure profiler
(VMP, Rockland Sci. Int.). The VMP is equipped with
accurate CTD sensors and a pair of microstructure shear
probes used for measuring the dissipation rate of turbulent
kinetic energy ("). Turbulent shear is sampled at 512 Hz at a
profiling speed of 0.6 m s−1. Stations are occupied along the
path of the overflow plume and along six sections starting
from the sill crest (section A) to about 120 km downstream
(section F, Figure 1a).

3. Technical Details

3.1 Currents, Dissipation Rate, and Eddy Diffusivity

[4] The velocity profile is calculated as 4 m vertical
averages using the inverse method [Visbeck, 2002] con-
strained by accurate shipboard navigation and bottom track-
ing by the LADCP, and detided using a barotropic tidal
model [Egbert et al., 1994] for the European Shelf at 1/30°
resolution. Tidal velocity is within 3 to 34% (18% on the
average) of the maximum velocity at a given station.
[5] The profiles of " are produced as 1 m vertical averages

to a noise level of 10−10 W kg−1 [Fer, 2006]. The diapycnal
eddy diffusivity is calculated using three different formula-
tions: First, an upper limit is obtained from Kr = 0.2"N−2

[Osborn, 1980] assuming 17% mixing efficiency. N =
[−g/r(∂r/∂z)]1=2 is the buoyancy frequency, g is the gravita-
tional acceleration, and r is density. Second, we use Kr = 2n
(" / nN2)

1=2 [Shih et al., 2005], suggested for " / nN2 > 100,
valid for our data (n is the viscosity). This formulation, in-
ferred from direct numerical simulation results, has been
supported by field data [Fer and Widell, 2007]. Third, we
use a gradient Richardson number (Ri) dependent mixing
efficiency with the range of parameters validated against
microstructure measurements [Peters and Baumert, 2007].
Ri = N2/S2, where S is the shear. In all calculations, N is
inferred from 4 m vertical gradients of sorted s� (potential
density referenced to nil pressure) profiles. The vertical
scale is chosen to be consistent with shear calculations
and the sorting approximates the background stratification
against which the turbulence works.

3.2 Plume Properties and Stress

[6] The density anomaly, r′, is obtained as deviations
from an exponential background s� profile fitted to observa-
tions excluding the plume. Velocity profiles are rotated into
streamwise (u) and transverse (n, positive to the right of u)
components with respect to the direction of the maximum
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[1] The continuous, swift flow of cold water across the sill of
the Faroe Bank Channel, the deepest passage from the Nordic
Seas to the North Atlantic Ocean, forms a bottom‐attached
dense plume (overflow). The amount and distribution of
entrainment and mixing that the overflow encounters
during its descent influence the ventilation of the deep
North Atlantic, however, remain poorly known due to
lack of direct measurements. Using the first direct turbulence
measurements, we describe the dynamic properties and
mixing of the overflow plume as it descends toward the
Iceland Basin. The vigorously turbulent plume is associated
with intense mixing and enhanced turbulent dissipation
near the bottom and at the plume‐ambient interface,
but with a quiescent core. Our measurements show a
pronounced transverse circulation consistent with rotating
plume dynamics, a strong lateral variability in entrainment
velocity, and a vertical structure composed of order 100 m
thick stratified interface and comparably thick well‐mixed
bottom boundary layer with significant transport and
entrainment. Citation: Fer, I., G. Voet, K. S. Seim, B. Rudels,
and K. Latarius (2010), Intense mixing of the Faroe Bank Channel
overflow, Geophys. Res. Lett., 37, L02604, doi:10.1029/
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1. Introduction

[2] The export of cold, dense water from the Norwegian
Sea through the Faroe Bank Channel (FBC, Figure 1) into
the sub‐polar North Atlantic accounts for about one third
of the total overflow from the Nordic Seas [Hansen and
Østerhus, 2007]. The FBC overflow, a bottom‐attached
gravity current, descends the sloping topography under the
combined influence of pressure gradient, bottom friction
and the Earth’s rotation, and mixes with overlying water
[Saunders, 2001; Mauritzen et al., 2005]. The latter deter-
mines the end‐product properties associated with the source
water and needs to be properly represented in climate
models for credible climate projections [Legg et al., 2009].
Despite the importance of mixing of the FBC overflow,
no previous measurements of turbulence have been avail-
able. Motivated by this lack of measurements we conducted
such a survey in June 2008.

2. Measurements and Data

[3] The obtained data set includes vertical profiles of
hydrography and velocity from 63 casts with a conductivi-
ty‐temperature‐depth (CTD, SBE911+) package equipped
with down and uplooking lowered acoustic Doppler current
profilers (LADCPs, 300 kHz Workhorse), and of turbulence
profiles from 90 casts with a vertical microstructure profiler
(VMP, Rockland Sci. Int.). The VMP is equipped with
accurate CTD sensors and a pair of microstructure shear
probes used for measuring the dissipation rate of turbulent
kinetic energy ("). Turbulent shear is sampled at 512 Hz at a
profiling speed of 0.6 m s−1. Stations are occupied along the
path of the overflow plume and along six sections starting
from the sill crest (section A) to about 120 km downstream
(section F, Figure 1a).

3. Technical Details

3.1 Currents, Dissipation Rate, and Eddy Diffusivity

[4] The velocity profile is calculated as 4 m vertical
averages using the inverse method [Visbeck, 2002] con-
strained by accurate shipboard navigation and bottom track-
ing by the LADCP, and detided using a barotropic tidal
model [Egbert et al., 1994] for the European Shelf at 1/30°
resolution. Tidal velocity is within 3 to 34% (18% on the
average) of the maximum velocity at a given station.
[5] The profiles of " are produced as 1 m vertical averages

to a noise level of 10−10 W kg−1 [Fer, 2006]. The diapycnal
eddy diffusivity is calculated using three different formula-
tions: First, an upper limit is obtained from Kr = 0.2"N−2

[Osborn, 1980] assuming 17% mixing efficiency. N =
[−g/r(∂r/∂z)]1=2 is the buoyancy frequency, g is the gravita-
tional acceleration, and r is density. Second, we use Kr = 2n
(" / nN2)

1=2 [Shih et al., 2005], suggested for " / nN2 > 100,
valid for our data (n is the viscosity). This formulation, in-
ferred from direct numerical simulation results, has been
supported by field data [Fer and Widell, 2007]. Third, we
use a gradient Richardson number (Ri) dependent mixing
efficiency with the range of parameters validated against
microstructure measurements [Peters and Baumert, 2007].
Ri = N2/S2, where S is the shear. In all calculations, N is
inferred from 4 m vertical gradients of sorted s� (potential
density referenced to nil pressure) profiles. The vertical
scale is chosen to be consistent with shear calculations
and the sorting approximates the background stratification
against which the turbulence works.

3.2 Plume Properties and Stress

[6] The density anomaly, r′, is obtained as deviations
from an exponential background s� profile fitted to observa-
tions excluding the plume. Velocity profiles are rotated into
streamwise (u) and transverse (n, positive to the right of u)
components with respect to the direction of the maximum
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the Faroe Bank Channel, the deepest passage from the Nordic
Seas to the North Atlantic Ocean, forms a bottom‐attached
dense plume (overflow). The amount and distribution of
entrainment and mixing that the overflow encounters
during its descent influence the ventilation of the deep
North Atlantic, however, remain poorly known due to
lack of direct measurements. Using the first direct turbulence
measurements, we describe the dynamic properties and
mixing of the overflow plume as it descends toward the
Iceland Basin. The vigorously turbulent plume is associated
with intense mixing and enhanced turbulent dissipation
near the bottom and at the plume‐ambient interface,
but with a quiescent core. Our measurements show a
pronounced transverse circulation consistent with rotating
plume dynamics, a strong lateral variability in entrainment
velocity, and a vertical structure composed of order 100 m
thick stratified interface and comparably thick well‐mixed
bottom boundary layer with significant transport and
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1. Introduction

[2] The export of cold, dense water from the Norwegian
Sea through the Faroe Bank Channel (FBC, Figure 1) into
the sub‐polar North Atlantic accounts for about one third
of the total overflow from the Nordic Seas [Hansen and
Østerhus, 2007]. The FBC overflow, a bottom‐attached
gravity current, descends the sloping topography under the
combined influence of pressure gradient, bottom friction
and the Earth’s rotation, and mixes with overlying water
[Saunders, 2001; Mauritzen et al., 2005]. The latter deter-
mines the end‐product properties associated with the source
water and needs to be properly represented in climate
models for credible climate projections [Legg et al., 2009].
Despite the importance of mixing of the FBC overflow,
no previous measurements of turbulence have been avail-
able. Motivated by this lack of measurements we conducted
such a survey in June 2008.

2. Measurements and Data

[3] The obtained data set includes vertical profiles of
hydrography and velocity from 63 casts with a conductivi-
ty‐temperature‐depth (CTD, SBE911+) package equipped
with down and uplooking lowered acoustic Doppler current
profilers (LADCPs, 300 kHz Workhorse), and of turbulence
profiles from 90 casts with a vertical microstructure profiler
(VMP, Rockland Sci. Int.). The VMP is equipped with
accurate CTD sensors and a pair of microstructure shear
probes used for measuring the dissipation rate of turbulent
kinetic energy ("). Turbulent shear is sampled at 512 Hz at a
profiling speed of 0.6 m s−1. Stations are occupied along the
path of the overflow plume and along six sections starting
from the sill crest (section A) to about 120 km downstream
(section F, Figure 1a).

3. Technical Details

3.1 Currents, Dissipation Rate, and Eddy Diffusivity

[4] The velocity profile is calculated as 4 m vertical
averages using the inverse method [Visbeck, 2002] con-
strained by accurate shipboard navigation and bottom track-
ing by the LADCP, and detided using a barotropic tidal
model [Egbert et al., 1994] for the European Shelf at 1/30°
resolution. Tidal velocity is within 3 to 34% (18% on the
average) of the maximum velocity at a given station.
[5] The profiles of " are produced as 1 m vertical averages

to a noise level of 10−10 W kg−1 [Fer, 2006]. The diapycnal
eddy diffusivity is calculated using three different formula-
tions: First, an upper limit is obtained from Kr = 0.2"N−2

[Osborn, 1980] assuming 17% mixing efficiency. N =
[−g/r(∂r/∂z)]1=2 is the buoyancy frequency, g is the gravita-
tional acceleration, and r is density. Second, we use Kr = 2n
(" / nN2)

1=2 [Shih et al., 2005], suggested for " / nN2 > 100,
valid for our data (n is the viscosity). This formulation, in-
ferred from direct numerical simulation results, has been
supported by field data [Fer and Widell, 2007]. Third, we
use a gradient Richardson number (Ri) dependent mixing
efficiency with the range of parameters validated against
microstructure measurements [Peters and Baumert, 2007].
Ri = N2/S2, where S is the shear. In all calculations, N is
inferred from 4 m vertical gradients of sorted s� (potential
density referenced to nil pressure) profiles. The vertical
scale is chosen to be consistent with shear calculations
and the sorting approximates the background stratification
against which the turbulence works.

3.2 Plume Properties and Stress

[6] The density anomaly, r′, is obtained as deviations
from an exponential background s� profile fitted to observa-
tions excluding the plume. Velocity profiles are rotated into
streamwise (u) and transverse (n, positive to the right of u)
components with respect to the direction of the maximum
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velocity (unose) in the bottom 200 m. The depth of the plume
interface zi and plume thickness hplume are inferred from the
s� = 27.65 kg m−3 isopycnal [Mauritzen et al., 2005; Girton
et al., 2006]. The well‐mixed bottom layer (BL) thickness
is estimated as the height above bottom (HAB) where the
density difference from the bottommost value exceeds
0.01 kg m−3. The stratified interfacial layer (IL) is defined
as the layer between the top of BL and the depth above
the interface where ∂s�/∂z first drops below 5×10−4 kg
m−4. These thresholds robustly delineate the BL and IL.
The calculation of integral plume properties and density‐
anomaly‐weighted averages follows Girton and Sanford
[2003]. The internal Froude number is calculated in two

ways: from integral plume properties of each section using
Fr = U /

ffiffiffiffiffiffiffiffiffiffi
g0H

p
and using a two‐layer formulation devised

for transverse variations in velocity [Pratt, 2008]. In the for-
mer method g′ is the reduced gravity, H = A/(2W0.5) is the
mean plume thickness for a section with area A and plume
“half‐width” W0.5 [Girton and Sanford, 2003], and U =
Qp/A, using the section‐integrated plume volume transport
Qp.
[7] The bottom shear stress, tb = ru*

2, is estimated using
the friction velocity u* from the slope of a linear fit of u
against the log of HAB, assuming law of the wall (LOW).
A series of fits is made for each profile, starting with 3 data
points (12 m) and increasing to a maximum of BL thickness.
The value with the least error, inferred from goodness of the
fit, is chosen for analysis. The Ekman number Ek = u*

2 /
fuhplume and the drag coefficient CD = u*

2 / unose
2 are obtained.

Stress at the plume‐ambient interface is estimated assuming a
balance between the shear production, the dissipation rate, and
the resulting buoyancy flux (0.2"), as ti = 1.2�"/ (�du=dz),
where overbars denote averaging over the interface thickness.

4. Results and Discussion

[8] The overflow plume descends the channel and the
slope of the Iceland‐Faroe Ridge with a typical speed of
0.5 – 1 m s−1, reaching a maximum velocity of 1.35 m
s−1 at section C (Figure 1b). Plume thickness averaged over
stations is hplume = 160 ± 70 m (± 1 standard deviation, s).
Mean overflow thickness (H) inferred from section‐integrated
properties is between 110m (section E) and 350m (section B).
All sections, however, show significant lateral variability
(Figure 2).
[9] The vertical structure of the overflow is composed of a

70 ± 35 m thick well‐mixed BL, overlaid by a 120 ± 60 m
thick IL. With the caveat that the section‐averaged transports
are not synoptic with respect to variability on tidal and sub‐
tidal scales [Geyer et al., 2006], the overflow is about equally
distributed between the BL (0.9 ± 0.1 Sv, 1 Sv ≡ 106 m3 s−1)
and the IL (1 ± 0.3 Sv). The presence of a thick IL was also
observed at the Red Sea [Peters et al., 2005], the Denmark
Strait [Girton and Sanford, 2003], and the Mediterranean

Figure 1. (a) Bathymetric contours drawn at 100 m intervals
starting with 400 m, together with the thalweg (deepest point
of the channel, white dashed line), sampling stations (CTD‐
LADCP, circles, and VMP, red crosses) and sections A
to F. (b) Overflow velocity (arrows) averaged over hplume

(color). The salient features of the plume velocity and thick-
ness are described in section 4. The inset shows the exper-
iment location (red).

Figure 2. Contours of (a) downchannel velocity, u, (b) stratification, N2 (color), and s� at 0.1 kg m−3 intervals (gray), and
(c) dissipation rate, ", for sections A to C. Locations of the stations (triangles), the Faroe Bank (FB), and the Faroe Plateau
(FP) are indicated. Dashed curves delineate the plume interface (s� = 27.65 kg m−3).
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as the layer between the top of BL and the depth above
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[2003]. The internal Froude number is calculated in two

ways: from integral plume properties of each section using
Fr = U /
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2, is estimated using
the friction velocity u* from the slope of a linear fit of u
against the log of HAB, assuming law of the wall (LOW).
A series of fits is made for each profile, starting with 3 data
points (12 m) and increasing to a maximum of BL thickness.
The value with the least error, inferred from goodness of the
fit, is chosen for analysis. The Ekman number Ek = u*
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fuhplume and the drag coefficient CD = u*
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2 are obtained.

Stress at the plume‐ambient interface is estimated assuming a
balance between the shear production, the dissipation rate, and
the resulting buoyancy flux (0.2"), as ti = 1.2�"/ (�du=dz),
where overbars denote averaging over the interface thickness.

4. Results and Discussion

[8] The overflow plume descends the channel and the
slope of the Iceland‐Faroe Ridge with a typical speed of
0.5 – 1 m s−1, reaching a maximum velocity of 1.35 m
s−1 at section C (Figure 1b). Plume thickness averaged over
stations is hplume = 160 ± 70 m (± 1 standard deviation, s).
Mean overflow thickness (H) inferred from section‐integrated
properties is between 110m (section E) and 350m (section B).
All sections, however, show significant lateral variability
(Figure 2).
[9] The vertical structure of the overflow is composed of a

70 ± 35 m thick well‐mixed BL, overlaid by a 120 ± 60 m
thick IL. With the caveat that the section‐averaged transports
are not synoptic with respect to variability on tidal and sub‐
tidal scales [Geyer et al., 2006], the overflow is about equally
distributed between the BL (0.9 ± 0.1 Sv, 1 Sv ≡ 106 m3 s−1)
and the IL (1 ± 0.3 Sv). The presence of a thick IL was also
observed at the Red Sea [Peters et al., 2005], the Denmark
Strait [Girton and Sanford, 2003], and the Mediterranean

Figure 1. (a) Bathymetric contours drawn at 100 m intervals
starting with 400 m, together with the thalweg (deepest point
of the channel, white dashed line), sampling stations (CTD‐
LADCP, circles, and VMP, red crosses) and sections A
to F. (b) Overflow velocity (arrows) averaged over hplume

(color). The salient features of the plume velocity and thick-
ness are described in section 4. The inset shows the exper-
iment location (red).

Figure 2. Contours of (a) downchannel velocity, u, (b) stratification, N2 (color), and s� at 0.1 kg m−3 intervals (gray), and
(c) dissipation rate, ", for sections A to C. Locations of the stations (triangles), the Faroe Bank (FB), and the Faroe Plateau
(FP) are indicated. Dashed curves delineate the plume interface (s� = 27.65 kg m−3).
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velocity (unose) in the bottom 200 m. The depth of the plume
interface zi and plume thickness hplume are inferred from the
s� = 27.65 kg m−3 isopycnal [Mauritzen et al., 2005; Girton
et al., 2006]. The well‐mixed bottom layer (BL) thickness
is estimated as the height above bottom (HAB) where the
density difference from the bottommost value exceeds
0.01 kg m−3. The stratified interfacial layer (IL) is defined
as the layer between the top of BL and the depth above
the interface where ∂s�/∂z first drops below 5×10−4 kg
m−4. These thresholds robustly delineate the BL and IL.
The calculation of integral plume properties and density‐
anomaly‐weighted averages follows Girton and Sanford
[2003]. The internal Froude number is calculated in two

ways: from integral plume properties of each section using
Fr = U /

ffiffiffiffiffiffiffiffiffiffi
g0H

p
and using a two‐layer formulation devised

for transverse variations in velocity [Pratt, 2008]. In the for-
mer method g′ is the reduced gravity, H = A/(2W0.5) is the
mean plume thickness for a section with area A and plume
“half‐width” W0.5 [Girton and Sanford, 2003], and U =
Qp/A, using the section‐integrated plume volume transport
Qp.
[7] The bottom shear stress, tb = ru*

2, is estimated using
the friction velocity u* from the slope of a linear fit of u
against the log of HAB, assuming law of the wall (LOW).
A series of fits is made for each profile, starting with 3 data
points (12 m) and increasing to a maximum of BL thickness.
The value with the least error, inferred from goodness of the
fit, is chosen for analysis. The Ekman number Ek = u*

2 /
fuhplume and the drag coefficient CD = u*

2 / unose
2 are obtained.

Stress at the plume‐ambient interface is estimated assuming a
balance between the shear production, the dissipation rate, and
the resulting buoyancy flux (0.2"), as ti = 1.2�"/ (�du=dz),
where overbars denote averaging over the interface thickness.

4. Results and Discussion

[8] The overflow plume descends the channel and the
slope of the Iceland‐Faroe Ridge with a typical speed of
0.5 – 1 m s−1, reaching a maximum velocity of 1.35 m
s−1 at section C (Figure 1b). Plume thickness averaged over
stations is hplume = 160 ± 70 m (± 1 standard deviation, s).
Mean overflow thickness (H) inferred from section‐integrated
properties is between 110m (section E) and 350m (section B).
All sections, however, show significant lateral variability
(Figure 2).
[9] The vertical structure of the overflow is composed of a

70 ± 35 m thick well‐mixed BL, overlaid by a 120 ± 60 m
thick IL. With the caveat that the section‐averaged transports
are not synoptic with respect to variability on tidal and sub‐
tidal scales [Geyer et al., 2006], the overflow is about equally
distributed between the BL (0.9 ± 0.1 Sv, 1 Sv ≡ 106 m3 s−1)
and the IL (1 ± 0.3 Sv). The presence of a thick IL was also
observed at the Red Sea [Peters et al., 2005], the Denmark
Strait [Girton and Sanford, 2003], and the Mediterranean
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starting with 400 m, together with the thalweg (deepest point
of the channel, white dashed line), sampling stations (CTD‐
LADCP, circles, and VMP, red crosses) and sections A
to F. (b) Overflow velocity (arrows) averaged over hplume

(color). The salient features of the plume velocity and thick-
ness are described in section 4. The inset shows the exper-
iment location (red).

Figure 2. Contours of (a) downchannel velocity, u, (b) stratification, N2 (color), and s� at 0.1 kg m−3 intervals (gray), and
(c) dissipation rate, ", for sections A to C. Locations of the stations (triangles), the Faroe Bank (FB), and the Faroe Plateau
(FP) are indicated. Dashed curves delineate the plume interface (s� = 27.65 kg m−3).
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velocity (unose) in the bottom 200 m. The depth of the plume
interface zi and plume thickness hplume are inferred from the
s� = 27.65 kg m−3 isopycnal [Mauritzen et al., 2005; Girton
et al., 2006]. The well‐mixed bottom layer (BL) thickness
is estimated as the height above bottom (HAB) where the
density difference from the bottommost value exceeds
0.01 kg m−3. The stratified interfacial layer (IL) is defined
as the layer between the top of BL and the depth above
the interface where ∂s�/∂z first drops below 5×10−4 kg
m−4. These thresholds robustly delineate the BL and IL.
The calculation of integral plume properties and density‐
anomaly‐weighted averages follows Girton and Sanford
[2003]. The internal Froude number is calculated in two

ways: from integral plume properties of each section using
Fr = U /

ffiffiffiffiffiffiffiffiffiffi
g0H

p
and using a two‐layer formulation devised

for transverse variations in velocity [Pratt, 2008]. In the for-
mer method g′ is the reduced gravity, H = A/(2W0.5) is the
mean plume thickness for a section with area A and plume
“half‐width” W0.5 [Girton and Sanford, 2003], and U =
Qp/A, using the section‐integrated plume volume transport
Qp.
[7] The bottom shear stress, tb = ru*

2, is estimated using
the friction velocity u* from the slope of a linear fit of u
against the log of HAB, assuming law of the wall (LOW).
A series of fits is made for each profile, starting with 3 data
points (12 m) and increasing to a maximum of BL thickness.
The value with the least error, inferred from goodness of the
fit, is chosen for analysis. The Ekman number Ek = u*

2 /
fuhplume and the drag coefficient CD = u*

2 / unose
2 are obtained.

Stress at the plume‐ambient interface is estimated assuming a
balance between the shear production, the dissipation rate, and
the resulting buoyancy flux (0.2"), as ti = 1.2�"/ (�du=dz),
where overbars denote averaging over the interface thickness.

4. Results and Discussion

[8] The overflow plume descends the channel and the
slope of the Iceland‐Faroe Ridge with a typical speed of
0.5 – 1 m s−1, reaching a maximum velocity of 1.35 m
s−1 at section C (Figure 1b). Plume thickness averaged over
stations is hplume = 160 ± 70 m (± 1 standard deviation, s).
Mean overflow thickness (H) inferred from section‐integrated
properties is between 110m (section E) and 350m (section B).
All sections, however, show significant lateral variability
(Figure 2).
[9] The vertical structure of the overflow is composed of a

70 ± 35 m thick well‐mixed BL, overlaid by a 120 ± 60 m
thick IL. With the caveat that the section‐averaged transports
are not synoptic with respect to variability on tidal and sub‐
tidal scales [Geyer et al., 2006], the overflow is about equally
distributed between the BL (0.9 ± 0.1 Sv, 1 Sv ≡ 106 m3 s−1)
and the IL (1 ± 0.3 Sv). The presence of a thick IL was also
observed at the Red Sea [Peters et al., 2005], the Denmark
Strait [Girton and Sanford, 2003], and the Mediterranean

Figure 1. (a) Bathymetric contours drawn at 100 m intervals
starting with 400 m, together with the thalweg (deepest point
of the channel, white dashed line), sampling stations (CTD‐
LADCP, circles, and VMP, red crosses) and sections A
to F. (b) Overflow velocity (arrows) averaged over hplume

(color). The salient features of the plume velocity and thick-
ness are described in section 4. The inset shows the exper-
iment location (red).

Figure 2. Contours of (a) downchannel velocity, u, (b) stratification, N2 (color), and s� at 0.1 kg m−3 intervals (gray), and
(c) dissipation rate, ", for sections A to C. Locations of the stations (triangles), the Faroe Bank (FB), and the Faroe Plateau
(FP) are indicated. Dashed curves delineate the plume interface (s� = 27.65 kg m−3).
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[Price et al., 1993] outflow plumes, and suggests that bulk
parameterization of entrainment [Legg et al., 2009] devised
for gravity currents with relatively thin interface may not be
adequate.
[10] The velocity maximum is typically located deeper

than the interface and is associated with weak " as a result
of weak shear production of turbulent kinetic energy (see
the quiescent core at section A, Figure 2). This quiescent
layer is present at all sections. The average thickness of
layer with " < 10−8 W kg−1 below the interface is 40 m
for the core stations and varies between 15 m (section B)
and 60 m (section A). In the BL and the IL " is exceptionally
large, reaching 10−5 W kg−1 (Figure 2c). Typically BL is
20–70 m thicker than the bottom layer with enhanced dissi-
pation. The vigorous turbulence near the bottom is due to
stirring by the bottom shear stress. Enhanced mixing at
the stratified and highly‐sheared IL where Ri < 1 can be
due to coexisting shear instabilities and internal wave‐
turbulence transition [Baumert and Peters, 2009] and verti-
cal transport of turbulence [Umlauf, 2009]. The internal
structure of turbulence in the FBC overflow is reminiscent
of the observations in the Baltic Sea [Umlauf et al., 2007],
particularly the quiescent central region, and the asymmetry
in " at the sill section with enhanced " where the interface
intersects the Faroe Plateau slope (Figure 2b). A wedge‐
shaped interface, related to the secondary flow in the IL,
as discussed byUmlauf and Arneborg [2009], is not resolved
in our data set.
[11] Survey‐averaged profiles are constructed for plume

stations in 10‐m thick bins relative to the interface and rel-
ative to the bottom (Figure 3). Due to variable interface
depth and plume thickness, the average profiles cannot be
combined (i.e., the lower part of Figure 3 (top) will not be
consistent with Figure 3 (bottom) due to averaging). Dissi-
pation rates, exceeding 10−7 W kg−1 in the plume, increase

by one order of magnitude as the bottom is approached, con-
sistent with LOW (thin line in Figure 3c). The mixing effi-
ciency implied by the models of Shih et al. [2005] and Peters
and Baumert [2007] differ significantly, particularly in
weakly stratified layers (Figure 3d). The shear is strong
throughout the IL, but the maximum in " apparent in
Figure 2c near the interface is smoothed out as a result of
averaging. When calculated using the density and velocity
profiles in Figure 3, Ri < 1 between 20 m above and 40 m
below the interface, with a minimum value of 0.6 at 15 m be-
low the interface. Ri < 1 in the entire BL with Ri < 0.25 in the
bottommost 25 m. Low Ri in the BL is due to a combination
of weak stratification and mean shear of the logarithmic ve-
locity profile, whereas that in the IL is due to strong shear
across the strongly stratified interface. Previous observations
from a mooring near the FBC sill show frequent occurrence
of low Ri in the IL, modulated by tidal and inertial flows
[Saunders, 2001].
[12] The transverse velocity, v (Figure 3b), has a vertical

structure consistent with the rotating gravity current dynam-
ics [Umlauf and Arneborg, 2009]. Water in the IL is trans-
ported to the right, looking downstream (a transverse
geostrophic transport due to the downchannel tilt of the
plume interface), and water in the BL is transported to the
left, consistent with an Ekman bottom boundary layer, lead-
ing to a flattening and broadening of the plume. Integrated
across the IL and BL, the transverse flow approximately
balances with 5 m2 s−1 in the IL, −3.3 m2 s−1 in the BL
(−4.5 m2 s−1 if an unresolved 15‐m thick bottom layer with
v = −8 cm s−1, the bottommost average value, is included).
[13] The FBC overflow can be characterized by Fr between

0.5 and 1 and by Ek between 0.05 and 0.2; that is, the plume
is thicker than the frictional boundary layer (Figure 4). In
contrast to the Red Sea outflow [Peters et al., 2005], the
FBC overflow is significantly diluted in the BL. The buoy-

Figure 3. Survey averaged profiles of (a) s� (± 1s, gray shading), (b) downchannel, u (solid line, ±1s, gray shading), and
cross‐channel, v (dashed line, multiplied by 4 for clarity), component of the velocity, (c) dissipation rate, " (95% confidence
limits, gray bars), and (d) eddy diffusivity, Kr, using Osborn [1980] (solid line), Peters and Baumert [2007] (gray), and
Shih et al. [2005] (dashed line). Profiles are averaged in 10‐m vertical bins referenced to (top) the interface depth, zi, and
to (bottom) bottom (HAB). Thin line in Figure 3c (bottom) is fit to LOW (" = u*

3 / 0.4z) in the bottom 55 m yielding u* =
2.2 cm s−1 (tb = 0.5 Pa).
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[Price et al., 1993] outflow plumes, and suggests that bulk
parameterization of entrainment [Legg et al., 2009] devised
for gravity currents with relatively thin interface may not be
adequate.
[10] The velocity maximum is typically located deeper

than the interface and is associated with weak " as a result
of weak shear production of turbulent kinetic energy (see
the quiescent core at section A, Figure 2). This quiescent
layer is present at all sections. The average thickness of
layer with " < 10−8 W kg−1 below the interface is 40 m
for the core stations and varies between 15 m (section B)
and 60 m (section A). In the BL and the IL " is exceptionally
large, reaching 10−5 W kg−1 (Figure 2c). Typically BL is
20–70 m thicker than the bottom layer with enhanced dissi-
pation. The vigorous turbulence near the bottom is due to
stirring by the bottom shear stress. Enhanced mixing at
the stratified and highly‐sheared IL where Ri < 1 can be
due to coexisting shear instabilities and internal wave‐
turbulence transition [Baumert and Peters, 2009] and verti-
cal transport of turbulence [Umlauf, 2009]. The internal
structure of turbulence in the FBC overflow is reminiscent
of the observations in the Baltic Sea [Umlauf et al., 2007],
particularly the quiescent central region, and the asymmetry
in " at the sill section with enhanced " where the interface
intersects the Faroe Plateau slope (Figure 2b). A wedge‐
shaped interface, related to the secondary flow in the IL,
as discussed byUmlauf and Arneborg [2009], is not resolved
in our data set.
[11] Survey‐averaged profiles are constructed for plume

stations in 10‐m thick bins relative to the interface and rel-
ative to the bottom (Figure 3). Due to variable interface
depth and plume thickness, the average profiles cannot be
combined (i.e., the lower part of Figure 3 (top) will not be
consistent with Figure 3 (bottom) due to averaging). Dissi-
pation rates, exceeding 10−7 W kg−1 in the plume, increase

by one order of magnitude as the bottom is approached, con-
sistent with LOW (thin line in Figure 3c). The mixing effi-
ciency implied by the models of Shih et al. [2005] and Peters
and Baumert [2007] differ significantly, particularly in
weakly stratified layers (Figure 3d). The shear is strong
throughout the IL, but the maximum in " apparent in
Figure 2c near the interface is smoothed out as a result of
averaging. When calculated using the density and velocity
profiles in Figure 3, Ri < 1 between 20 m above and 40 m
below the interface, with a minimum value of 0.6 at 15 m be-
low the interface. Ri < 1 in the entire BL with Ri < 0.25 in the
bottommost 25 m. Low Ri in the BL is due to a combination
of weak stratification and mean shear of the logarithmic ve-
locity profile, whereas that in the IL is due to strong shear
across the strongly stratified interface. Previous observations
from a mooring near the FBC sill show frequent occurrence
of low Ri in the IL, modulated by tidal and inertial flows
[Saunders, 2001].
[12] The transverse velocity, v (Figure 3b), has a vertical

structure consistent with the rotating gravity current dynam-
ics [Umlauf and Arneborg, 2009]. Water in the IL is trans-
ported to the right, looking downstream (a transverse
geostrophic transport due to the downchannel tilt of the
plume interface), and water in the BL is transported to the
left, consistent with an Ekman bottom boundary layer, lead-
ing to a flattening and broadening of the plume. Integrated
across the IL and BL, the transverse flow approximately
balances with 5 m2 s−1 in the IL, −3.3 m2 s−1 in the BL
(−4.5 m2 s−1 if an unresolved 15‐m thick bottom layer with
v = −8 cm s−1, the bottommost average value, is included).
[13] The FBC overflow can be characterized by Fr between

0.5 and 1 and by Ek between 0.05 and 0.2; that is, the plume
is thicker than the frictional boundary layer (Figure 4). In
contrast to the Red Sea outflow [Peters et al., 2005], the
FBC overflow is significantly diluted in the BL. The buoy-

Figure 3. Survey averaged profiles of (a) s� (± 1s, gray shading), (b) downchannel, u (solid line, ±1s, gray shading), and
cross‐channel, v (dashed line, multiplied by 4 for clarity), component of the velocity, (c) dissipation rate, " (95% confidence
limits, gray bars), and (d) eddy diffusivity, Kr, using Osborn [1980] (solid line), Peters and Baumert [2007] (gray), and
Shih et al. [2005] (dashed line). Profiles are averaged in 10‐m vertical bins referenced to (top) the interface depth, zi, and
to (bottom) bottom (HAB). Thin line in Figure 3c (bottom) is fit to LOW (" = u*

3 / 0.4z) in the bottom 55 m yielding u* =
2.2 cm s−1 (tb = 0.5 Pa).
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[Price et al., 1993] outflow plumes, and suggests that bulk
parameterization of entrainment [Legg et al., 2009] devised
for gravity currents with relatively thin interface may not be
adequate.
[10] The velocity maximum is typically located deeper

than the interface and is associated with weak " as a result
of weak shear production of turbulent kinetic energy (see
the quiescent core at section A, Figure 2). This quiescent
layer is present at all sections. The average thickness of
layer with " < 10−8 W kg−1 below the interface is 40 m
for the core stations and varies between 15 m (section B)
and 60 m (section A). In the BL and the IL " is exceptionally
large, reaching 10−5 W kg−1 (Figure 2c). Typically BL is
20–70 m thicker than the bottom layer with enhanced dissi-
pation. The vigorous turbulence near the bottom is due to
stirring by the bottom shear stress. Enhanced mixing at
the stratified and highly‐sheared IL where Ri < 1 can be
due to coexisting shear instabilities and internal wave‐
turbulence transition [Baumert and Peters, 2009] and verti-
cal transport of turbulence [Umlauf, 2009]. The internal
structure of turbulence in the FBC overflow is reminiscent
of the observations in the Baltic Sea [Umlauf et al., 2007],
particularly the quiescent central region, and the asymmetry
in " at the sill section with enhanced " where the interface
intersects the Faroe Plateau slope (Figure 2b). A wedge‐
shaped interface, related to the secondary flow in the IL,
as discussed byUmlauf and Arneborg [2009], is not resolved
in our data set.
[11] Survey‐averaged profiles are constructed for plume

stations in 10‐m thick bins relative to the interface and rel-
ative to the bottom (Figure 3). Due to variable interface
depth and plume thickness, the average profiles cannot be
combined (i.e., the lower part of Figure 3 (top) will not be
consistent with Figure 3 (bottom) due to averaging). Dissi-
pation rates, exceeding 10−7 W kg−1 in the plume, increase

by one order of magnitude as the bottom is approached, con-
sistent with LOW (thin line in Figure 3c). The mixing effi-
ciency implied by the models of Shih et al. [2005] and Peters
and Baumert [2007] differ significantly, particularly in
weakly stratified layers (Figure 3d). The shear is strong
throughout the IL, but the maximum in " apparent in
Figure 2c near the interface is smoothed out as a result of
averaging. When calculated using the density and velocity
profiles in Figure 3, Ri < 1 between 20 m above and 40 m
below the interface, with a minimum value of 0.6 at 15 m be-
low the interface. Ri < 1 in the entire BL with Ri < 0.25 in the
bottommost 25 m. Low Ri in the BL is due to a combination
of weak stratification and mean shear of the logarithmic ve-
locity profile, whereas that in the IL is due to strong shear
across the strongly stratified interface. Previous observations
from a mooring near the FBC sill show frequent occurrence
of low Ri in the IL, modulated by tidal and inertial flows
[Saunders, 2001].
[12] The transverse velocity, v (Figure 3b), has a vertical

structure consistent with the rotating gravity current dynam-
ics [Umlauf and Arneborg, 2009]. Water in the IL is trans-
ported to the right, looking downstream (a transverse
geostrophic transport due to the downchannel tilt of the
plume interface), and water in the BL is transported to the
left, consistent with an Ekman bottom boundary layer, lead-
ing to a flattening and broadening of the plume. Integrated
across the IL and BL, the transverse flow approximately
balances with 5 m2 s−1 in the IL, −3.3 m2 s−1 in the BL
(−4.5 m2 s−1 if an unresolved 15‐m thick bottom layer with
v = −8 cm s−1, the bottommost average value, is included).
[13] The FBC overflow can be characterized by Fr between

0.5 and 1 and by Ek between 0.05 and 0.2; that is, the plume
is thicker than the frictional boundary layer (Figure 4). In
contrast to the Red Sea outflow [Peters et al., 2005], the
FBC overflow is significantly diluted in the BL. The buoy-

Figure 3. Survey averaged profiles of (a) s� (± 1s, gray shading), (b) downchannel, u (solid line, ±1s, gray shading), and
cross‐channel, v (dashed line, multiplied by 4 for clarity), component of the velocity, (c) dissipation rate, " (95% confidence
limits, gray bars), and (d) eddy diffusivity, Kr, using Osborn [1980] (solid line), Peters and Baumert [2007] (gray), and
Shih et al. [2005] (dashed line). Profiles are averaged in 10‐m vertical bins referenced to (top) the interface depth, zi, and
to (bottom) bottom (HAB). Thin line in Figure 3c (bottom) is fit to LOW (" = u*

3 / 0.4z) in the bottom 55 m yielding u* =
2.2 cm s−1 (tb = 0.5 Pa).
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[Price et al., 1993] outflow plumes, and suggests that bulk
parameterization of entrainment [Legg et al., 2009] devised
for gravity currents with relatively thin interface may not be
adequate.
[10] The velocity maximum is typically located deeper

than the interface and is associated with weak " as a result
of weak shear production of turbulent kinetic energy (see
the quiescent core at section A, Figure 2). This quiescent
layer is present at all sections. The average thickness of
layer with " < 10−8 W kg−1 below the interface is 40 m
for the core stations and varies between 15 m (section B)
and 60 m (section A). In the BL and the IL " is exceptionally
large, reaching 10−5 W kg−1 (Figure 2c). Typically BL is
20–70 m thicker than the bottom layer with enhanced dissi-
pation. The vigorous turbulence near the bottom is due to
stirring by the bottom shear stress. Enhanced mixing at
the stratified and highly‐sheared IL where Ri < 1 can be
due to coexisting shear instabilities and internal wave‐
turbulence transition [Baumert and Peters, 2009] and verti-
cal transport of turbulence [Umlauf, 2009]. The internal
structure of turbulence in the FBC overflow is reminiscent
of the observations in the Baltic Sea [Umlauf et al., 2007],
particularly the quiescent central region, and the asymmetry
in " at the sill section with enhanced " where the interface
intersects the Faroe Plateau slope (Figure 2b). A wedge‐
shaped interface, related to the secondary flow in the IL,
as discussed byUmlauf and Arneborg [2009], is not resolved
in our data set.
[11] Survey‐averaged profiles are constructed for plume

stations in 10‐m thick bins relative to the interface and rel-
ative to the bottom (Figure 3). Due to variable interface
depth and plume thickness, the average profiles cannot be
combined (i.e., the lower part of Figure 3 (top) will not be
consistent with Figure 3 (bottom) due to averaging). Dissi-
pation rates, exceeding 10−7 W kg−1 in the plume, increase

by one order of magnitude as the bottom is approached, con-
sistent with LOW (thin line in Figure 3c). The mixing effi-
ciency implied by the models of Shih et al. [2005] and Peters
and Baumert [2007] differ significantly, particularly in
weakly stratified layers (Figure 3d). The shear is strong
throughout the IL, but the maximum in " apparent in
Figure 2c near the interface is smoothed out as a result of
averaging. When calculated using the density and velocity
profiles in Figure 3, Ri < 1 between 20 m above and 40 m
below the interface, with a minimum value of 0.6 at 15 m be-
low the interface. Ri < 1 in the entire BL with Ri < 0.25 in the
bottommost 25 m. Low Ri in the BL is due to a combination
of weak stratification and mean shear of the logarithmic ve-
locity profile, whereas that in the IL is due to strong shear
across the strongly stratified interface. Previous observations
from a mooring near the FBC sill show frequent occurrence
of low Ri in the IL, modulated by tidal and inertial flows
[Saunders, 2001].
[12] The transverse velocity, v (Figure 3b), has a vertical

structure consistent with the rotating gravity current dynam-
ics [Umlauf and Arneborg, 2009]. Water in the IL is trans-
ported to the right, looking downstream (a transverse
geostrophic transport due to the downchannel tilt of the
plume interface), and water in the BL is transported to the
left, consistent with an Ekman bottom boundary layer, lead-
ing to a flattening and broadening of the plume. Integrated
across the IL and BL, the transverse flow approximately
balances with 5 m2 s−1 in the IL, −3.3 m2 s−1 in the BL
(−4.5 m2 s−1 if an unresolved 15‐m thick bottom layer with
v = −8 cm s−1, the bottommost average value, is included).
[13] The FBC overflow can be characterized by Fr between

0.5 and 1 and by Ek between 0.05 and 0.2; that is, the plume
is thicker than the frictional boundary layer (Figure 4). In
contrast to the Red Sea outflow [Peters et al., 2005], the
FBC overflow is significantly diluted in the BL. The buoy-

Figure 3. Survey averaged profiles of (a) s� (± 1s, gray shading), (b) downchannel, u (solid line, ±1s, gray shading), and
cross‐channel, v (dashed line, multiplied by 4 for clarity), component of the velocity, (c) dissipation rate, " (95% confidence
limits, gray bars), and (d) eddy diffusivity, Kr, using Osborn [1980] (solid line), Peters and Baumert [2007] (gray), and
Shih et al. [2005] (dashed line). Profiles are averaged in 10‐m vertical bins referenced to (top) the interface depth, zi, and
to (bottom) bottom (HAB). Thin line in Figure 3c (bottom) is fit to LOW (" = u*

3 / 0.4z) in the bottom 55 m yielding u* =
2.2 cm s−1 (tb = 0.5 Pa).
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ancy averaged in BL (IL) increases by 1.4 × 10−3 m s−2 (5 ×
10−4 m s−2) on the first 80 km. This suggests entrainment
into the BL, through, e.g., internal mixing in the plume,
entrainment as a result of the transverse circulation, or lateral
entrainment due to stirring by mesoscale eddies. The vol-
ume transport, however, is nearly constant in the BL (Qb

in Figure 4b), counterintuitive to the expected increase
due to entrainment. Detrainment [Baines, 2005] might
explain the lack of increase in Qb. Nevertheless, interpreted
together with the Red Sea outflow observations which show
a similar vertical density structure but no dilution in BL, we
suggest that the transverse circulation supplying the warmer
interface water into the Ekman layer may cause the dilution
in the BL. Qb remains nearly constant due to the approxi-
mate lateral balance of the transverse circulation; that is,
water entrained in the BL is transported back to the IL.
[14] Section‐averaged Kr varies between (2 – 10) ×
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s−1 in the BL, consistent with heat‐budget considerations
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velocity, wE, calculated from " [Arneborg et al., 2007]
(assuming 17% mixing efficiency) varies by one order of
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Section‐averaged wE increases fivefold from 3 × 10−5 m s−1

at the sill to 1.7 × 10−4 m s−1 at section D (Figure 4f) where
Fr is accordingly at its highest, close to unity. The entrain-
ment parameter, wE/U, increases by one order of magnitude
from 3.8 × 10−5 to 3.3 × 10−4. The largest mixing and
entrainment rates are observed at section D in the vicinity
of the hot‐spot of mixing identified by Mauritzen et al.
[2005]. Detailed analysis of earlier observations suggests
that FBC overflow is hydraulically controlled [Girton et al.,
2006] with the critical section (i.e., Fr = 1) located between
20 – 90 km down sill, comparing well with Fr ≈ 1 at our sec-
tion D. While the overflow volume transport, Qp, increases
downstream of section D (consistent with enhanced entrain-
ment), Qp decreases between sections A and D. The meso-
scale variability of the overflow makes the comparison of
single sections complex.
[15] The overflow plume descends the slope as a result of

bottom friction. The descent rate is relatively small between
sections A‐D and increases farther downstream (Figure 4a),
comparable to that of the Denmark Strait plume [Girton and
Sanford, 2003], but significantly larger than 2.5 m km−1

predicted by Killworth [2001]. The bottom stress tb =
2.1 ± 0.4 Pa, corresponding to a drag coefficient of CD =
(3.7 ± 0.4) × 10−3, is large throughout the channel, and in
the range of previous observations [Mauritzen et al., 2005].
When tides are included, the survey‐mean CD increases by
20%. The average bottom stress inferred from the velocity
profiles is about four times larger than that estimated from
" measurements near the bottom (Figure 3c), similar to
observations from diverse sites and can be attributed to,
e.g., the form drag. The stress at the IL is relatively weak,
ti = 0.05 ± 0.02 Pa. Inferred from the balance of buoyancy,
total drag (due to tb and ti) and Coriolis force acting on
a slab of plume [Girton and Sanford, 2003], the total
stress to account for the observed descent rates is 0.9
(sections A‐D) and 4.9 Pa (D‐F). Recalling that tb ≈ tb +
ti in our data set, Figure 4d does not show this trend, sug-
gesting that the observed descent rates cannot be described
by this simple force balance.

5. Concluding Remarks

[16] Our observations reveal the anatomy and mixing pro-
cesses of the FBC overflow plume and add to our under-
standing of a highly sheared and stratified gravity current
in a rotating system. The overflow plume is characterized
by strong lateral variability in entrainment and mixing with
a significant vertical structure including an about 100 m
thick strongly‐stratified interfacial layer. A transverse circu-
lation actively dilutes the bottom layer of the plume. Neither
the bulk entrainment parameterizations, mainly devised for
non‐rotating, two‐layer gravity current plume dynamics,
nor the traditional turbulence closure models will be ade-
quate in representing mixing of the dense overflow plume
downstream of the FBC sill.
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entrainment due to stirring by mesoscale eddies. The vol-
ume transport, however, is nearly constant in the BL (Qb

in Figure 4b), counterintuitive to the expected increase
due to entrainment. Detrainment [Baines, 2005] might
explain the lack of increase in Qb. Nevertheless, interpreted
together with the Red Sea outflow observations which show
a similar vertical density structure but no dilution in BL, we
suggest that the transverse circulation supplying the warmer
interface water into the Ekman layer may cause the dilution
in the BL. Qb remains nearly constant due to the approxi-
mate lateral balance of the transverse circulation; that is,
water entrained in the BL is transported back to the IL.
[14] Section‐averaged Kr varies between (2 – 10) ×
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(assuming 17% mixing efficiency) varies by one order of
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Section‐averaged wE increases fivefold from 3 × 10−5 m s−1
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Fr is accordingly at its highest, close to unity. The entrain-
ment parameter, wE/U, increases by one order of magnitude
from 3.8 × 10−5 to 3.3 × 10−4. The largest mixing and
entrainment rates are observed at section D in the vicinity
of the hot‐spot of mixing identified by Mauritzen et al.
[2005]. Detailed analysis of earlier observations suggests
that FBC overflow is hydraulically controlled [Girton et al.,
2006] with the critical section (i.e., Fr = 1) located between
20 – 90 km down sill, comparing well with Fr ≈ 1 at our sec-
tion D. While the overflow volume transport, Qp, increases
downstream of section D (consistent with enhanced entrain-
ment), Qp decreases between sections A and D. The meso-
scale variability of the overflow makes the comparison of
single sections complex.
[15] The overflow plume descends the slope as a result of

bottom friction. The descent rate is relatively small between
sections A‐D and increases farther downstream (Figure 4a),
comparable to that of the Denmark Strait plume [Girton and
Sanford, 2003], but significantly larger than 2.5 m km−1

predicted by Killworth [2001]. The bottom stress tb =
2.1 ± 0.4 Pa, corresponding to a drag coefficient of CD =
(3.7 ± 0.4) × 10−3, is large throughout the channel, and in
the range of previous observations [Mauritzen et al., 2005].
When tides are included, the survey‐mean CD increases by
20%. The average bottom stress inferred from the velocity
profiles is about four times larger than that estimated from
" measurements near the bottom (Figure 3c), similar to
observations from diverse sites and can be attributed to,
e.g., the form drag. The stress at the IL is relatively weak,
ti = 0.05 ± 0.02 Pa. Inferred from the balance of buoyancy,
total drag (due to tb and ti) and Coriolis force acting on
a slab of plume [Girton and Sanford, 2003], the total
stress to account for the observed descent rates is 0.9
(sections A‐D) and 4.9 Pa (D‐F). Recalling that tb ≈ tb +
ti in our data set, Figure 4d does not show this trend, sug-
gesting that the observed descent rates cannot be described
by this simple force balance.
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into the BL, through, e.g., internal mixing in the plume,
entrainment as a result of the transverse circulation, or lateral
entrainment due to stirring by mesoscale eddies. The vol-
ume transport, however, is nearly constant in the BL (Qb

in Figure 4b), counterintuitive to the expected increase
due to entrainment. Detrainment [Baines, 2005] might
explain the lack of increase in Qb. Nevertheless, interpreted
together with the Red Sea outflow observations which show
a similar vertical density structure but no dilution in BL, we
suggest that the transverse circulation supplying the warmer
interface water into the Ekman layer may cause the dilution
in the BL. Qb remains nearly constant due to the approxi-
mate lateral balance of the transverse circulation; that is,
water entrained in the BL is transported back to the IL.
[14] Section‐averaged Kr varies between (2 – 10) ×

10−4 m2 s−1 in the IL and between (10 – 320) × 10−4 m2

s−1 in the BL, consistent with heat‐budget considerations
[Saunders, 1990; Duncan et al., 2003]. The entrainment

velocity, wE, calculated from " [Arneborg et al., 2007]
(assuming 17% mixing efficiency) varies by one order of
magnitude laterally in each section (except section F).
Section‐averaged wE increases fivefold from 3 × 10−5 m s−1

at the sill to 1.7 × 10−4 m s−1 at section D (Figure 4f) where
Fr is accordingly at its highest, close to unity. The entrain-
ment parameter, wE/U, increases by one order of magnitude
from 3.8 × 10−5 to 3.3 × 10−4. The largest mixing and
entrainment rates are observed at section D in the vicinity
of the hot‐spot of mixing identified by Mauritzen et al.
[2005]. Detailed analysis of earlier observations suggests
that FBC overflow is hydraulically controlled [Girton et al.,
2006] with the critical section (i.e., Fr = 1) located between
20 – 90 km down sill, comparing well with Fr ≈ 1 at our sec-
tion D. While the overflow volume transport, Qp, increases
downstream of section D (consistent with enhanced entrain-
ment), Qp decreases between sections A and D. The meso-
scale variability of the overflow makes the comparison of
single sections complex.
[15] The overflow plume descends the slope as a result of

bottom friction. The descent rate is relatively small between
sections A‐D and increases farther downstream (Figure 4a),
comparable to that of the Denmark Strait plume [Girton and
Sanford, 2003], but significantly larger than 2.5 m km−1

predicted by Killworth [2001]. The bottom stress tb =
2.1 ± 0.4 Pa, corresponding to a drag coefficient of CD =
(3.7 ± 0.4) × 10−3, is large throughout the channel, and in
the range of previous observations [Mauritzen et al., 2005].
When tides are included, the survey‐mean CD increases by
20%. The average bottom stress inferred from the velocity
profiles is about four times larger than that estimated from
" measurements near the bottom (Figure 3c), similar to
observations from diverse sites and can be attributed to,
e.g., the form drag. The stress at the IL is relatively weak,
ti = 0.05 ± 0.02 Pa. Inferred from the balance of buoyancy,
total drag (due to tb and ti) and Coriolis force acting on
a slab of plume [Girton and Sanford, 2003], the total
stress to account for the observed descent rates is 0.9
(sections A‐D) and 4.9 Pa (D‐F). Recalling that tb ≈ tb +
ti in our data set, Figure 4d does not show this trend, sug-
gesting that the observed descent rates cannot be described
by this simple force balance.
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thick strongly‐stratified interfacial layer. A transverse circu-
lation actively dilutes the bottom layer of the plume. Neither
the bulk entrainment parameterizations, mainly devised for
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into the BL, through, e.g., internal mixing in the plume,
entrainment as a result of the transverse circulation, or lateral
entrainment due to stirring by mesoscale eddies. The vol-
ume transport, however, is nearly constant in the BL (Qb

in Figure 4b), counterintuitive to the expected increase
due to entrainment. Detrainment [Baines, 2005] might
explain the lack of increase in Qb. Nevertheless, interpreted
together with the Red Sea outflow observations which show
a similar vertical density structure but no dilution in BL, we
suggest that the transverse circulation supplying the warmer
interface water into the Ekman layer may cause the dilution
in the BL. Qb remains nearly constant due to the approxi-
mate lateral balance of the transverse circulation; that is,
water entrained in the BL is transported back to the IL.
[14] Section‐averaged Kr varies between (2 – 10) ×

10−4 m2 s−1 in the IL and between (10 – 320) × 10−4 m2

s−1 in the BL, consistent with heat‐budget considerations
[Saunders, 1990; Duncan et al., 2003]. The entrainment

velocity, wE, calculated from " [Arneborg et al., 2007]
(assuming 17% mixing efficiency) varies by one order of
magnitude laterally in each section (except section F).
Section‐averaged wE increases fivefold from 3 × 10−5 m s−1

at the sill to 1.7 × 10−4 m s−1 at section D (Figure 4f) where
Fr is accordingly at its highest, close to unity. The entrain-
ment parameter, wE/U, increases by one order of magnitude
from 3.8 × 10−5 to 3.3 × 10−4. The largest mixing and
entrainment rates are observed at section D in the vicinity
of the hot‐spot of mixing identified by Mauritzen et al.
[2005]. Detailed analysis of earlier observations suggests
that FBC overflow is hydraulically controlled [Girton et al.,
2006] with the critical section (i.e., Fr = 1) located between
20 – 90 km down sill, comparing well with Fr ≈ 1 at our sec-
tion D. While the overflow volume transport, Qp, increases
downstream of section D (consistent with enhanced entrain-
ment), Qp decreases between sections A and D. The meso-
scale variability of the overflow makes the comparison of
single sections complex.
[15] The overflow plume descends the slope as a result of

bottom friction. The descent rate is relatively small between
sections A‐D and increases farther downstream (Figure 4a),
comparable to that of the Denmark Strait plume [Girton and
Sanford, 2003], but significantly larger than 2.5 m km−1

predicted by Killworth [2001]. The bottom stress tb =
2.1 ± 0.4 Pa, corresponding to a drag coefficient of CD =
(3.7 ± 0.4) × 10−3, is large throughout the channel, and in
the range of previous observations [Mauritzen et al., 2005].
When tides are included, the survey‐mean CD increases by
20%. The average bottom stress inferred from the velocity
profiles is about four times larger than that estimated from
" measurements near the bottom (Figure 3c), similar to
observations from diverse sites and can be attributed to,
e.g., the form drag. The stress at the IL is relatively weak,
ti = 0.05 ± 0.02 Pa. Inferred from the balance of buoyancy,
total drag (due to tb and ti) and Coriolis force acting on
a slab of plume [Girton and Sanford, 2003], the total
stress to account for the observed descent rates is 0.9
(sections A‐D) and 4.9 Pa (D‐F). Recalling that tb ≈ tb +
ti in our data set, Figure 4d does not show this trend, sug-
gesting that the observed descent rates cannot be described
by this simple force balance.
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a b s t r a c t

Gravity-driven overflow of cold, deep and intermediate water from the Norwegian Sea through the Faroe
Bank Channel carries significant volume flux and contributes to the ventilation of the deep North Atlantic
Ocean. Here we present results from regional simulations of the Faroe Bank Channel overflow using a ter-
rain-following (r-coordinate) ocean model with fine resolution near the sea bed. The model results are
compared with observations of hydrography, currents and turbulence conducted in 2008. Turbulent dis-
sipation rate and eddy diffusivity profiles inferred from the observations are used in refining the param-
eters of the turbulence closure. The model reproduces the observed vertical structure of the enhanced
dissipation and diffusivity in the bottommost 50–60 m exceptionally well. In this region, shear-induced
mixing dominates and is found to be well-represented by the applied second order turbulence closure
models. Farther away from the boundary, however, in the 100-m thick interfacial layer and above the
plume-ambient interface, the model does not resolve the observed mixing. The contribution of turbu-
lence from breaking internal waves is one of the processes not represented in the model with significant
consequences for observed entrainment and mixing. Regular sub-inertial oscillations (eddies) at 4–
4.5 day period develop downstream of the sill, consistent with the observations. When averaged over
several eddy events, the evolution of section-averaged plume properties over the oscillation period shows
that the eddies significantly affect mixing and the descent rate of the plume. At a section 60 km down-
stream of the sill, eddies lead to periodic and abrupt cross-isobath descent of the overflow plume and
an increase in dissipation rate by one order of magnitude.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Intermediate and deep water masses of the Greenland, Iceland
and Norwegian Seas (collectively referred to as the Nordic Seas)
flow through topographic constrictions and over shallow sills
(termed ‘overflow’) across the Greenland–Scotland Ridge (GSR).
The equatorward flow of this heavy water feeds the upper limb
of the Atlantic meridional overturning circulation (MOC). While
the overflow between Greenland and Iceland is through the Den-
mark Strait, east of Iceland, GSR consists of three distinct overflow
regions (Fig. 1): the Iceland–Faroe Ridge (IFR), the Faroe Bank
Channel (FBC), and the Wyville–Thomson Ridge (WTR) (Hansen
and Østerhus, 2000). With a sill depth of 840 m, FBC is the deepest
connection between the North Atlantic Ocean and the Nordic Seas.
According to observations, the transport of overflow water across

the GSR is about 6 Sv (1 Sv = 1 � 106 m3 s�1) (Hansen and Østerhus,
2000). The passages east of Iceland account for approximately half
of the volume transport with 2.1 Sv across the FBC (Hansen and
Østerhus, 2007), 1 Sv across the IFR (Perkins et al., 1998), and
0.3 Sv across the WTR (Sherwin et al., 2008). Hence, the FBC over-
flow constitutes about 30% of the total overflow.

The FBC overflow of dense, cold intermediate water from the
Norwegian Sea forms a bottom-attached turbulent gravity current,
mixing intensively as it descends across the Iceland–Faroe slope
(Mauritzen et al., 2005; Fer et al., 2010). The mixing and entrain-
ment associated with the plume set the hydrographic properties
downstream of the sill, eventually contributing to the North Atlan-
tic DeepWater production and the ventilation of the North Atlantic
Ocean (Dickson and Brown, 1994). Since the importance of the FBC
overflow for the exchange between the North Atlantic and the
Nordic Seas was recognized by Cooper (1955), extensive studies
of the FBC overflow were performed during NANSEN (Borenäs
and Lundberg, 1988; Saunders, 1990, 1992) and the Nordic WOCE
and VEINS (Hansen et al., 2001) programmes. Recent studies using
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Bank Channel carries significant volume flux and contributes to the ventilation of the deep North Atlantic
Ocean. Here we present results from regional simulations of the Faroe Bank Channel overflow using a ter-
rain-following (r-coordinate) ocean model with fine resolution near the sea bed. The model results are
compared with observations of hydrography, currents and turbulence conducted in 2008. Turbulent dis-
sipation rate and eddy diffusivity profiles inferred from the observations are used in refining the param-
eters of the turbulence closure. The model reproduces the observed vertical structure of the enhanced
dissipation and diffusivity in the bottommost 50–60 m exceptionally well. In this region, shear-induced
mixing dominates and is found to be well-represented by the applied second order turbulence closure
models. Farther away from the boundary, however, in the 100-m thick interfacial layer and above the
plume-ambient interface, the model does not resolve the observed mixing. The contribution of turbu-
lence from breaking internal waves is one of the processes not represented in the model with significant
consequences for observed entrainment and mixing. Regular sub-inertial oscillations (eddies) at 4–
4.5 day period develop downstream of the sill, consistent with the observations. When averaged over
several eddy events, the evolution of section-averaged plume properties over the oscillation period shows
that the eddies significantly affect mixing and the descent rate of the plume. At a section 60 km down-
stream of the sill, eddies lead to periodic and abrupt cross-isobath descent of the overflow plume and
an increase in dissipation rate by one order of magnitude.
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Channel (FBC), and the Wyville–Thomson Ridge (WTR) (Hansen
and Østerhus, 2000). With a sill depth of 840 m, FBC is the deepest
connection between the North Atlantic Ocean and the Nordic Seas.
According to observations, the transport of overflow water across
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connection between the North Atlantic Ocean and the Nordic Seas.
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of the volume transport with 2.1 Sv across the FBC (Hansen and
Østerhus, 2007), 1 Sv across the IFR (Perkins et al., 1998), and
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flow constitutes about 30% of the total overflow.

The FBC overflow of dense, cold intermediate water from the
Norwegian Sea forms a bottom-attached turbulent gravity current,
mixing intensively as it descends across the Iceland–Faroe slope
(Mauritzen et al., 2005; Fer et al., 2010). The mixing and entrain-
ment associated with the plume set the hydrographic properties
downstream of the sill, eventually contributing to the North Atlan-
tic DeepWater production and the ventilation of the North Atlantic
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measurements from the FBC include Duncan et al. (2003), Maurit-
zen et al. (2005), Prater and Rossby (2005), Geyer et al. (2006), and
Fer et al. (2010). The overflow water at the FBC sill can be charac-
terized by a vertical temperature distribution composed of an
about 100 m thick interface separating, on average, a 250 m thick
deep cold (T < 0�C) layer from the overlying Atlantic Water. At its
core, the mean overflow velocity is about 1 m s�1. The volume
transport of the overflow at the sill, inferred from continuous mea-
surements from 1995 to 2005, is 2.1 Sv (Hansen and Østerhus,
2007). The volume transport inferred from cruise-duration obser-
vations is consistent, but highly variable (Duncan et al., 2003; Mau-
ritzen et al., 2005). As the channel widens downstream of the sill,
the overflow plume feels the steeper slope and descends under the
influence of friction. Mauritzen et al. (2005) observe the highest
velocities and levels of mixing approximately 100 km downstream
of the sill and conclude that the hydrographic properties of the
overflow are set within 100–150 km of the sill. The first direct tur-
bulence measurements in FBC conducted in 2008, using a loosely
tethered vertical microstructure profiler, show exceptionally large
dissipation rates, reaching 10�5 W kg�1 near the bottom and at the
interface of the overflow plume (Fer et al., 2010). The largest mix-
ing and entrainment rates are observed in the vicinity of the hot
spot of mixing identified by Mauritzen et al. (2005). Several
threads of evidence from detailed analysis of observations suggest
that the exchange at the sill, to the first order, is hydraulically con-
trolled with a critical section between 20 and 90 km of the sill crest
(Girton et al., 2006). This region is also associated with a widening
of the plume, also apparent in Riemenschneider and Legg’s (2007)
model results. The widening of the plume is suggested to be asso-
ciated with a transverse hydraulic jump (Pratt et al., 2007), how-
ever, conclusive observations are needed.

The FBC overflow is affected by regular sub-tidal variability. In
situ observations downstream of the FBC sill show large tempera-
ture and current fluctuations of the overflow with a dominating
period of 3.5 days (Høyer and Quadfasel, 2001). These fluctuations
are associated with mesoscale eddies and have an impact on sea
surface height. Geyer et al. (2006) report near-bottom velocity
and temperature oscillations with a period of �3.7 days observed
between 75 and 140 km distance from the sill. A similar oscillation
is reported by Ezer (2006) using highly idealized numerical simu-
lations of the FBC overflow with a parabolic channel cross-section.
Ezer (2006) identifies three different flow regimes resembling
those found in the laboratory experiments of Cenedese et al.
(2004): a sub-critical flow regime upstream of the FBC sill, a super-
critical flow with strong mixing and entrainment from the sill to
100–200 km downstream (‘‘wave” regime, reminiscent of the
observations of roll-waves in Lake Geneva (Fer et al., 2001,
2002)), and the ‘‘eddy” regime farther downstream. Eddies appar-

ent in observations, numerical simulations, and laboratory experi-
ments might be due to the change in the channel curvature with
downstream distance. For a zero-potential-vorticity flow in a par-
abolic channel with smooth topography, Pratt et al. (2008) show
that the maximum growth rates and density of unstable wave-
numbers increase for dynamically wider channels (decreasing cur-
vature), and eddy generation downstream of the sill can occur
solely by reducing the curvature in the downstream region.

In this study, we conduct regional simulations of the FBC over-
flow with an eddy-permitting r-coordinate ocean model using dif-
ferent turbulence closures. New observations of hydrography,
currents, and microstructure conducted in summer 2008 are com-
pared with the model results. Turbulent dissipation rate and eddy
diffusivity profiles inferred from the observations are used in refin-
ing the parameters of the turbulence closure. We adopt the domain
and forcing applied in a recent study conducted with a z-level
model (Riemenschneider and Legg, 2007, RL07, hereafter). This al-
lows us to compare two inherently different models, particularly
with respect to vertical mixing.

The aim of the study is, by using the model results and the
observations in concert, to identify and improve the weaknesses
of the model in representing the FBC overflow dynamics, mixing
and entrainment, and to quantify the influence of oscillations on
the plume descent rate and mixing. The numerical model, the tur-
bulence closure, and the forcing are described in Section 2. The
observational data set is summarized in Section 3. Subsequently,
a comparison of the turbulence closures is given in Section 4, fol-
lowed by a detailed comparison with observations in Section 5.
The downstream evolution of the overflow volume transport, the
plume path and its dynamics are presented. Low-frequency (4–
4.5 days) oscillations seen in the model are supported by fre-
quency-domain analysis of time series recorded by moored instru-
ments and discussed using stability analysis. Further discussion
(Section 6) include the model performance and the role of the
mesoscale variability in enhanced descent rate and mixing of the
overflow plume.

2. The numerical model

2.1. Bergen ocean model

In this study, we use the Bergen ocean model (BOM, Berntsen,
2000). BOM is a r-coordinate (terrain-following) ocean model with
non-hydrostatic capability. Considering the relatively low resolu-
tion applied here, the hydrostatic version of the model was chosen.
The governing equations are the same as for the Princeton Ocean
Model (POM) (Blumberg and Mellor, 1987; Mellor, 1996), but the
numerical methods are different. For advection of momentum
and density a TVD-scheme with a superbee limiter described in
Yang and Przekwas (1992) is applied. The model is mode split with
a method similar to the splitting described in Berntsen et al. (1981)
and Kowalik and Murty (1993). The solution is propagated in time
using single time step methods. For the depth-integrated momen-
tum and continuity equations a predictor–corrector method is
applied.

In r-coordinate models the calculation of the internal pressure
can introduce large errors near steep topography (Haney, 1991;
Berntsen, 2002; Berntsen and Furnes, 2005). Mellor et al. (1994)
showed, by studying the discretization error for the second-order
internal pressure method used in POM, that the error will decrease
with increasing the vertical and horizontal resolution. In Berntsen
and Thiem (2007) and Berntsen and Oey (2009) it is shown that the
internal pressure gradient errors may be further reduced by using
the fourth order method suggested in McCalpin (1994). This fourth
order method is applied in the present study. Running the model
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zen et al. (2005), Prater and Rossby (2005), Geyer et al. (2006), and
Fer et al. (2010). The overflow water at the FBC sill can be charac-
terized by a vertical temperature distribution composed of an
about 100 m thick interface separating, on average, a 250 m thick
deep cold (T < 0�C) layer from the overlying Atlantic Water. At its
core, the mean overflow velocity is about 1 m s�1. The volume
transport of the overflow at the sill, inferred from continuous mea-
surements from 1995 to 2005, is 2.1 Sv (Hansen and Østerhus,
2007). The volume transport inferred from cruise-duration obser-
vations is consistent, but highly variable (Duncan et al., 2003; Mau-
ritzen et al., 2005). As the channel widens downstream of the sill,
the overflow plume feels the steeper slope and descends under the
influence of friction. Mauritzen et al. (2005) observe the highest
velocities and levels of mixing approximately 100 km downstream
of the sill and conclude that the hydrographic properties of the
overflow are set within 100–150 km of the sill. The first direct tur-
bulence measurements in FBC conducted in 2008, using a loosely
tethered vertical microstructure profiler, show exceptionally large
dissipation rates, reaching 10�5 W kg�1 near the bottom and at the
interface of the overflow plume (Fer et al., 2010). The largest mix-
ing and entrainment rates are observed in the vicinity of the hot
spot of mixing identified by Mauritzen et al. (2005). Several
threads of evidence from detailed analysis of observations suggest
that the exchange at the sill, to the first order, is hydraulically con-
trolled with a critical section between 20 and 90 km of the sill crest
(Girton et al., 2006). This region is also associated with a widening
of the plume, also apparent in Riemenschneider and Legg’s (2007)
model results. The widening of the plume is suggested to be asso-
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In this study, we use the Bergen ocean model (BOM, Berntsen,
2000). BOM is a r-coordinate (terrain-following) ocean model with
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terized by a vertical temperature distribution composed of an
about 100 m thick interface separating, on average, a 250 m thick
deep cold (T < 0�C) layer from the overlying Atlantic Water. At its
core, the mean overflow velocity is about 1 m s�1. The volume
transport of the overflow at the sill, inferred from continuous mea-
surements from 1995 to 2005, is 2.1 Sv (Hansen and Østerhus,
2007). The volume transport inferred from cruise-duration obser-
vations is consistent, but highly variable (Duncan et al., 2003; Mau-
ritzen et al., 2005). As the channel widens downstream of the sill,
the overflow plume feels the steeper slope and descends under the
influence of friction. Mauritzen et al. (2005) observe the highest
velocities and levels of mixing approximately 100 km downstream
of the sill and conclude that the hydrographic properties of the
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threads of evidence from detailed analysis of observations suggest
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trolled with a critical section between 20 and 90 km of the sill crest
(Girton et al., 2006). This region is also associated with a widening
of the plume, also apparent in Riemenschneider and Legg’s (2007)
model results. The widening of the plume is suggested to be asso-
ciated with a transverse hydraulic jump (Pratt et al., 2007), how-
ever, conclusive observations are needed.
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ture and current fluctuations of the overflow with a dominating
period of 3.5 days (Høyer and Quadfasel, 2001). These fluctuations
are associated with mesoscale eddies and have an impact on sea
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is reported by Ezer (2006) using highly idealized numerical simu-
lations of the FBC overflow with a parabolic channel cross-section.
Ezer (2006) identifies three different flow regimes resembling
those found in the laboratory experiments of Cenedese et al.
(2004): a sub-critical flow regime upstream of the FBC sill, a super-
critical flow with strong mixing and entrainment from the sill to
100–200 km downstream (‘‘wave” regime, reminiscent of the
observations of roll-waves in Lake Geneva (Fer et al., 2001,
2002)), and the ‘‘eddy” regime farther downstream. Eddies appar-
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downstream distance. For a zero-potential-vorticity flow in a par-
abolic channel with smooth topography, Pratt et al. (2008) show
that the maximum growth rates and density of unstable wave-
numbers increase for dynamically wider channels (decreasing cur-
vature), and eddy generation downstream of the sill can occur
solely by reducing the curvature in the downstream region.

In this study, we conduct regional simulations of the FBC over-
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ing the parameters of the turbulence closure. We adopt the domain
and forcing applied in a recent study conducted with a z-level
model (Riemenschneider and Legg, 2007, RL07, hereafter). This al-
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a comparison of the turbulence closures is given in Section 4, fol-
lowed by a detailed comparison with observations in Section 5.
The downstream evolution of the overflow volume transport, the
plume path and its dynamics are presented. Low-frequency (4–
4.5 days) oscillations seen in the model are supported by fre-
quency-domain analysis of time series recorded by moored instru-
ments and discussed using stability analysis. Further discussion
(Section 6) include the model performance and the role of the
mesoscale variability in enhanced descent rate and mixing of the
overflow plume.

2. The numerical model

2.1. Bergen ocean model

In this study, we use the Bergen ocean model (BOM, Berntsen,
2000). BOM is a r-coordinate (terrain-following) ocean model with
non-hydrostatic capability. Considering the relatively low resolu-
tion applied here, the hydrostatic version of the model was chosen.
The governing equations are the same as for the Princeton Ocean
Model (POM) (Blumberg and Mellor, 1987; Mellor, 1996), but the
numerical methods are different. For advection of momentum
and density a TVD-scheme with a superbee limiter described in
Yang and Przekwas (1992) is applied. The model is mode split with
a method similar to the splitting described in Berntsen et al. (1981)
and Kowalik and Murty (1993). The solution is propagated in time
using single time step methods. For the depth-integrated momen-
tum and continuity equations a predictor–corrector method is
applied.

In r-coordinate models the calculation of the internal pressure
can introduce large errors near steep topography (Haney, 1991;
Berntsen, 2002; Berntsen and Furnes, 2005). Mellor et al. (1994)
showed, by studying the discretization error for the second-order
internal pressure method used in POM, that the error will decrease
with increasing the vertical and horizontal resolution. In Berntsen
and Thiem (2007) and Berntsen and Oey (2009) it is shown that the
internal pressure gradient errors may be further reduced by using
the fourth order method suggested in McCalpin (1994). This fourth
order method is applied in the present study. Running the model
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measurements from the FBC include Duncan et al. (2003), Maurit-
zen et al. (2005), Prater and Rossby (2005), Geyer et al. (2006), and
Fer et al. (2010). The overflow water at the FBC sill can be charac-
terized by a vertical temperature distribution composed of an
about 100 m thick interface separating, on average, a 250 m thick
deep cold (T < 0�C) layer from the overlying Atlantic Water. At its
core, the mean overflow velocity is about 1 m s�1. The volume
transport of the overflow at the sill, inferred from continuous mea-
surements from 1995 to 2005, is 2.1 Sv (Hansen and Østerhus,
2007). The volume transport inferred from cruise-duration obser-
vations is consistent, but highly variable (Duncan et al., 2003; Mau-
ritzen et al., 2005). As the channel widens downstream of the sill,
the overflow plume feels the steeper slope and descends under the
influence of friction. Mauritzen et al. (2005) observe the highest
velocities and levels of mixing approximately 100 km downstream
of the sill and conclude that the hydrographic properties of the
overflow are set within 100–150 km of the sill. The first direct tur-
bulence measurements in FBC conducted in 2008, using a loosely
tethered vertical microstructure profiler, show exceptionally large
dissipation rates, reaching 10�5 W kg�1 near the bottom and at the
interface of the overflow plume (Fer et al., 2010). The largest mix-
ing and entrainment rates are observed in the vicinity of the hot
spot of mixing identified by Mauritzen et al. (2005). Several
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that the exchange at the sill, to the first order, is hydraulically con-
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those found in the laboratory experiments of Cenedese et al.
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critical flow with strong mixing and entrainment from the sill to
100–200 km downstream (‘‘wave” regime, reminiscent of the
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ent in observations, numerical simulations, and laboratory experi-
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ments and discussed using stability analysis. Further discussion
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In this study, we use the Bergen ocean model (BOM, Berntsen,
2000). BOM is a r-coordinate (terrain-following) ocean model with
non-hydrostatic capability. Considering the relatively low resolu-
tion applied here, the hydrostatic version of the model was chosen.
The governing equations are the same as for the Princeton Ocean
Model (POM) (Blumberg and Mellor, 1987; Mellor, 1996), but the
numerical methods are different. For advection of momentum
and density a TVD-scheme with a superbee limiter described in
Yang and Przekwas (1992) is applied. The model is mode split with
a method similar to the splitting described in Berntsen et al. (1981)
and Kowalik and Murty (1993). The solution is propagated in time
using single time step methods. For the depth-integrated momen-
tum and continuity equations a predictor–corrector method is
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can introduce large errors near steep topography (Haney, 1991;
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showed, by studying the discretization error for the second-order
internal pressure method used in POM, that the error will decrease
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internal pressure gradient errors may be further reduced by using
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with the FBC set-up used in this study without external forcing (in-
flow of dense water), the internal pressure is estimated to induce a
flow over the sill of less than 1% of the mean forced overflow.

2.2. Turbulence model

Spurious mixing resulting from the step topography in z-coordi-
nate models is eliminated by applying terrain-following coordi-
nates. This makes it possible to introduce turbulence closure
schemes in the vertical as opposed to RL07, who applied only
numerical mixing in the vertical for the density and tracer, and a
constant viscosity for the momentum. RL07 applied the Leith
scheme (Leith, 1968, 1996) for the horizontal viscosity. For the
present study the Smagorinsky scheme (Smagorinsky, 1963) has
been applied. The Leith scheme has also been implemented, but
no considerable difference was found between the two schemes.
In the vertical, the Mellor and Yamada (1982) 2-1/2 level scheme
(MY2.5), or alternatively the General Ocean Turbulence Model
(GOTM, Umlauf et al., 2006), is applied to parameterize the sub-
grid-scale processes. In GOTM, a generic two-equation model for
different turbulence closures (Umlauf and Burchard, 2003), has
been implemented. The following equations are solved for the tur-

bulent kinetic energy, k, and a generic variable, w ¼ c0l
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where tensor notation is used. By changing the exponents p, m, and
n, the different turbulence closure schemes are reproduced. w is
used to calculate the turbulent length scale, l, using the coefficient
c0l based on experimental data for unstratified channel flow with
a log-layer solution (Warner et al., 2005). The coefficients c1 and
c2 are selected consistent with von Karman’s constant and with
experimental observations for decaying homogeneous, isotropic
turbulence (Wilcox, 2006). The parameter c3 changes magnitude
and sign: negative c�3

� �
and positive cþ3

� �
for stable and unstable

stratification, respectively. rk and rw are the turbulent Schmidt
numbers for k and w, respectively. The shear and buoyancy produc-
tion, P and G, can be expressed according to
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where u and v are the mean horizontal velocity components and u0,
v0, w0 and q0 are the turbulent fluctuations of the velocity and den-
sity components, g is the gravitational acceleration, q0 is a reference
density and
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are the squared shear and the squared buoyancy frequency. With w
from Eq. (2), the turbulent dissipation rate per unit mass, e, can be
computed according to

e ¼ c0l
� �3þp=n

k3=2þm=nw�1=n: ð6Þ

Choosing appropriate values of p, m and n, a number of closure
models can be recovered (e.g., k–e, k–x and MY2.5 (k � l), Warner
et al., 2005). In this study, GOTM is set up for the k–e and the k–
x turbulence closure models, and the MY2.5 scheme implemented
in BOM is used. The eddy viscosity, Km, and eddy diffusivity, Kh, are
then computed as

Km ¼ clk
1=2l; Kh ¼ c0lk

1=2l; ð7Þ

where cl and c0l are stability functions describing the effects of
shear and stratification. A number of stability functions have been
suggested. Here we use the Canuto-A (Canuto et al., 2001), for the
k–e and k–x turbulence closures and Galperin et al. (1988) stability
functions for the MY2.5 closure. Experimenting with different clo-
sures using different stability functions, Ilicak et al. (2008) find no
discernible differences between k–e and k–x models with Can-
uto-A or Canuto-B stability functions when evaluated against the
Red Sea outflow observations. The MY2.5 scheme with the Galperin
stability function, however, produced too large eddy diffusivities.

2.3. Model set-up

The domain covers the Faroe Bank Channel system (the
Faroe–Shetland Channel, the Wyville–Thomson Basin and the Far-
oe Bank Channel), the Iceland–Faroe Ridge, and the Iceland Basin
(see Figs. 1 and 2). The domain, bathymetry and forcing are identi-
cal to RL07 for comparison with their simulations of the FBC over-
flow using the z-level model MITgcm. In this idealized simulation,
the Coriolis parameter is constant and atmospheric forcing and
tides are neglected. The bathymetry is a smoothed and gridded
version of Smith and Sandwell (1997), kindly provided by S. Legg
(personal communication, 2009). The topography is rotated 45�
counterclockwise with respect to true north. In the vertical, there
are 32 layers with increasing resolution toward the bottom, result-
ing in a vertical resolution averaged over the deepest five cells, of
2.2 m, 8.7 m and 21.8 m at 200 m, 800 m (comparable to the sill
depth), and 2000 m, respectively. This allows for a better represen-
tation of the overflow at the expense of the surface layers. In the
horizontal, the resolution is 2 km. All boundaries are closed except
the northern entrance to the Faroe–Shetland Channel. Here, the
dense water is introduced with a constant speed below a depth
of 600 m using a flow relaxation scheme (FRS, Martinsen and Enge-
dahl, 1987) such that the transport just outside the FRS-zone
(across Section S1, Fig. 2) is between 2.5 and 2.7 Sv, consistent with
RL07 who prescribed 2.6 Sv at the northern entrance. This inflow is
counteracted by an outflow above a depth of 300 m. The density of
the dense inflow is rh = 28.07 kg m�3, marked with a passive tra-
cer, s, of unit concentration. Initially, the channel is filled with
dense water (rh = 28.07 kg m�3) below a depth of 825 m. The back-
ground stratification is identical to that in RL07 which is deter-
mined from observations of Mauritzen et al. (2005). This profile
is based on a linear fit to the waters between the surface mixed
layer and the bottom plume from a measured density profile re-
ported in Mauritzen et al. (2005). When averaged between 200
and 1000 m depth, this linear background profile is 0.01 kg m�3

denser than the exponential background density profile obtained
from our 2008 survey (Section 3) used in Fer et al. (2010). This dif-
ference is negligible and, to be consistent with RL07, we adopt their
background profile. Our observations at Section A show an over-
flow plume density of 28.06 kg m�3. Using the linear background
density profile, the density anomaly at 800 m depth is approxi-
mately 0.6 kg m�3. Hence the difference between our observations
and the prescribed inflow forcing constitutes less than 2% of the
density anomaly and is negligible. Again, to be consistent with
RL07, we adopt their forcing of 28.07 kg m�3.

The data are stored for further analysis at Sections A–F (Fig. 2,
identical to the observational sections) at 2 h intervals and at Sec-
tions S1–S4 at 9 min intervals. In total, four different runs have
been executed using different turbulence closures summarized in
Table 1. The first simulation, run0, is conducted with constant eddy
viscosity of 2.0 � 10�4 m2 s�1 and zero eddy diffusivity, identical to
RL07’s control run. The other three runs, run1 to run3, employ sec-
ond order turbulence closures.
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are the squared shear and the squared buoyancy frequency. With w
from Eq. (2), the turbulent dissipation rate per unit mass, e, can be
computed according to

e ¼ c0l
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k3=2þm=nw�1=n: ð6Þ

Choosing appropriate values of p, m and n, a number of closure
models can be recovered (e.g., k–e, k–x and MY2.5 (k � l), Warner
et al., 2005). In this study, GOTM is set up for the k–e and the k–
x turbulence closure models, and the MY2.5 scheme implemented
in BOM is used. The eddy viscosity, Km, and eddy diffusivity, Kh, are
then computed as
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where cl and c0l are stability functions describing the effects of
shear and stratification. A number of stability functions have been
suggested. Here we use the Canuto-A (Canuto et al., 2001), for the
k–e and k–x turbulence closures and Galperin et al. (1988) stability
functions for the MY2.5 closure. Experimenting with different clo-
sures using different stability functions, Ilicak et al. (2008) find no
discernible differences between k–e and k–x models with Can-
uto-A or Canuto-B stability functions when evaluated against the
Red Sea outflow observations. The MY2.5 scheme with the Galperin
stability function, however, produced too large eddy diffusivities.

2.3. Model set-up

The domain covers the Faroe Bank Channel system (the
Faroe–Shetland Channel, the Wyville–Thomson Basin and the Far-
oe Bank Channel), the Iceland–Faroe Ridge, and the Iceland Basin
(see Figs. 1 and 2). The domain, bathymetry and forcing are identi-
cal to RL07 for comparison with their simulations of the FBC over-
flow using the z-level model MITgcm. In this idealized simulation,
the Coriolis parameter is constant and atmospheric forcing and
tides are neglected. The bathymetry is a smoothed and gridded
version of Smith and Sandwell (1997), kindly provided by S. Legg
(personal communication, 2009). The topography is rotated 45�
counterclockwise with respect to true north. In the vertical, there
are 32 layers with increasing resolution toward the bottom, result-
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dense water is introduced with a constant speed below a depth
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are the squared shear and the squared buoyancy frequency. With w
from Eq. (2), the turbulent dissipation rate per unit mass, e, can be
computed according to
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Choosing appropriate values of p, m and n, a number of closure
models can be recovered (e.g., k–e, k–x and MY2.5 (k � l), Warner
et al., 2005). In this study, GOTM is set up for the k–e and the k–
x turbulence closure models, and the MY2.5 scheme implemented
in BOM is used. The eddy viscosity, Km, and eddy diffusivity, Kh, are
then computed as
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Red Sea outflow observations. The MY2.5 scheme with the Galperin
stability function, however, produced too large eddy diffusivities.

2.3. Model set-up

The domain covers the Faroe Bank Channel system (the
Faroe–Shetland Channel, the Wyville–Thomson Basin and the Far-
oe Bank Channel), the Iceland–Faroe Ridge, and the Iceland Basin
(see Figs. 1 and 2). The domain, bathymetry and forcing are identi-
cal to RL07 for comparison with their simulations of the FBC over-
flow using the z-level model MITgcm. In this idealized simulation,
the Coriolis parameter is constant and atmospheric forcing and
tides are neglected. The bathymetry is a smoothed and gridded
version of Smith and Sandwell (1997), kindly provided by S. Legg
(personal communication, 2009). The topography is rotated 45�
counterclockwise with respect to true north. In the vertical, there
are 32 layers with increasing resolution toward the bottom, result-
ing in a vertical resolution averaged over the deepest five cells, of
2.2 m, 8.7 m and 21.8 m at 200 m, 800 m (comparable to the sill
depth), and 2000 m, respectively. This allows for a better represen-
tation of the overflow at the expense of the surface layers. In the
horizontal, the resolution is 2 km. All boundaries are closed except
the northern entrance to the Faroe–Shetland Channel. Here, the
dense water is introduced with a constant speed below a depth
of 600 m using a flow relaxation scheme (FRS, Martinsen and Enge-
dahl, 1987) such that the transport just outside the FRS-zone
(across Section S1, Fig. 2) is between 2.5 and 2.7 Sv, consistent with
RL07 who prescribed 2.6 Sv at the northern entrance. This inflow is
counteracted by an outflow above a depth of 300 m. The density of
the dense inflow is rh = 28.07 kg m�3, marked with a passive tra-
cer, s, of unit concentration. Initially, the channel is filled with
dense water (rh = 28.07 kg m�3) below a depth of 825 m. The back-
ground stratification is identical to that in RL07 which is deter-
mined from observations of Mauritzen et al. (2005). This profile
is based on a linear fit to the waters between the surface mixed
layer and the bottom plume from a measured density profile re-
ported in Mauritzen et al. (2005). When averaged between 200
and 1000 m depth, this linear background profile is 0.01 kg m�3

denser than the exponential background density profile obtained
from our 2008 survey (Section 3) used in Fer et al. (2010). This dif-
ference is negligible and, to be consistent with RL07, we adopt their
background profile. Our observations at Section A show an over-
flow plume density of 28.06 kg m�3. Using the linear background
density profile, the density anomaly at 800 m depth is approxi-
mately 0.6 kg m�3. Hence the difference between our observations
and the prescribed inflow forcing constitutes less than 2% of the
density anomaly and is negligible. Again, to be consistent with
RL07, we adopt their forcing of 28.07 kg m�3.

The data are stored for further analysis at Sections A–F (Fig. 2,
identical to the observational sections) at 2 h intervals and at Sec-
tions S1–S4 at 9 min intervals. In total, four different runs have
been executed using different turbulence closures summarized in
Table 1. The first simulation, run0, is conducted with constant eddy
viscosity of 2.0 � 10�4 m2 s�1 and zero eddy diffusivity, identical to
RL07’s control run. The other three runs, run1 to run3, employ sec-
ond order turbulence closures.
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where tensor notation is used. By changing the exponents p, m, and
n, the different turbulence closure schemes are reproduced. w is
used to calculate the turbulent length scale, l, using the coefficient
c0l based on experimental data for unstratified channel flow with
a log-layer solution (Warner et al., 2005). The coefficients c1 and
c2 are selected consistent with von Karman’s constant and with
experimental observations for decaying homogeneous, isotropic
turbulence (Wilcox, 2006). The parameter c3 changes magnitude
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� �
and positive cþ3

� �
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stratification, respectively. rk and rw are the turbulent Schmidt
numbers for k and w, respectively. The shear and buoyancy produc-
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where u and v are the mean horizontal velocity components and u0,
v0, w0 and q0 are the turbulent fluctuations of the velocity and den-
sity components, g is the gravitational acceleration, q0 is a reference
density and
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are the squared shear and the squared buoyancy frequency. With w
from Eq. (2), the turbulent dissipation rate per unit mass, e, can be
computed according to

e ¼ c0l
� �3þp=n

k3=2þm=nw�1=n: ð6Þ

Choosing appropriate values of p, m and n, a number of closure
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where cl and c0l are stability functions describing the effects of
shear and stratification. A number of stability functions have been
suggested. Here we use the Canuto-A (Canuto et al., 2001), for the
k–e and k–x turbulence closures and Galperin et al. (1988) stability
functions for the MY2.5 closure. Experimenting with different clo-
sures using different stability functions, Ilicak et al. (2008) find no
discernible differences between k–e and k–x models with Can-
uto-A or Canuto-B stability functions when evaluated against the
Red Sea outflow observations. The MY2.5 scheme with the Galperin
stability function, however, produced too large eddy diffusivities.

2.3. Model set-up

The domain covers the Faroe Bank Channel system (the
Faroe–Shetland Channel, the Wyville–Thomson Basin and the Far-
oe Bank Channel), the Iceland–Faroe Ridge, and the Iceland Basin
(see Figs. 1 and 2). The domain, bathymetry and forcing are identi-
cal to RL07 for comparison with their simulations of the FBC over-
flow using the z-level model MITgcm. In this idealized simulation,
the Coriolis parameter is constant and atmospheric forcing and
tides are neglected. The bathymetry is a smoothed and gridded
version of Smith and Sandwell (1997), kindly provided by S. Legg
(personal communication, 2009). The topography is rotated 45�
counterclockwise with respect to true north. In the vertical, there
are 32 layers with increasing resolution toward the bottom, result-
ing in a vertical resolution averaged over the deepest five cells, of
2.2 m, 8.7 m and 21.8 m at 200 m, 800 m (comparable to the sill
depth), and 2000 m, respectively. This allows for a better represen-
tation of the overflow at the expense of the surface layers. In the
horizontal, the resolution is 2 km. All boundaries are closed except
the northern entrance to the Faroe–Shetland Channel. Here, the
dense water is introduced with a constant speed below a depth
of 600 m using a flow relaxation scheme (FRS, Martinsen and Enge-
dahl, 1987) such that the transport just outside the FRS-zone
(across Section S1, Fig. 2) is between 2.5 and 2.7 Sv, consistent with
RL07 who prescribed 2.6 Sv at the northern entrance. This inflow is
counteracted by an outflow above a depth of 300 m. The density of
the dense inflow is rh = 28.07 kg m�3, marked with a passive tra-
cer, s, of unit concentration. Initially, the channel is filled with
dense water (rh = 28.07 kg m�3) below a depth of 825 m. The back-
ground stratification is identical to that in RL07 which is deter-
mined from observations of Mauritzen et al. (2005). This profile
is based on a linear fit to the waters between the surface mixed
layer and the bottom plume from a measured density profile re-
ported in Mauritzen et al. (2005). When averaged between 200
and 1000 m depth, this linear background profile is 0.01 kg m�3

denser than the exponential background density profile obtained
from our 2008 survey (Section 3) used in Fer et al. (2010). This dif-
ference is negligible and, to be consistent with RL07, we adopt their
background profile. Our observations at Section A show an over-
flow plume density of 28.06 kg m�3. Using the linear background
density profile, the density anomaly at 800 m depth is approxi-
mately 0.6 kg m�3. Hence the difference between our observations
and the prescribed inflow forcing constitutes less than 2% of the
density anomaly and is negligible. Again, to be consistent with
RL07, we adopt their forcing of 28.07 kg m�3.

The data are stored for further analysis at Sections A–F (Fig. 2,
identical to the observational sections) at 2 h intervals and at Sec-
tions S1–S4 at 9 min intervals. In total, four different runs have
been executed using different turbulence closures summarized in
Table 1. The first simulation, run0, is conducted with constant eddy
viscosity of 2.0 � 10�4 m2 s�1 and zero eddy diffusivity, identical to
RL07’s control run. The other three runs, run1 to run3, employ sec-
ond order turbulence closures.
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3. Observational data

Observations were made during a cruise of RV Håkon Mosby in
early June 2008. Profiles of hydrography and currents were col-
lected along six sections (marked A–F in Fig. 2). Additionally, tur-
bulence in the water column was sampled using a loosely
tethered vertical microstructure profiler (VMP2000, Rockland Sci-
entific International). Details of the sampling and the instrumenta-
tion used are given in Fer et al. (2010). The data set includes 4 m
vertical resolution horizontal velocity profiles and 1 m vertical res-
olution profiles of hydrography, dissipation rate of turbulent ki-
netic energy, and the eddy diffusivity. Observations from the ship
are supplemented by time series of horizontal currents from
moored instruments in the period from 14 May to 18 July 2008
covering the cruise period in 2008. Horizontal currents are sam-
pled by Aanderaa Rotor Current Meters and RD-Instruments
300 kHz workhorse acoustic Doppler current profilers.

4. Comparison of turbulence closures

4.1. Transport

Following RL07, the boundary of the plume is prescribed by a
cutoff concentration, s = 0.1, of the passive tracer. The volume
transport of water with s > 0.1 through sections across the sill
(S3), approximately 100 km downstream (S4) and across the
WTR (S2) is calculated for each run (sections are marked by dashed
lines in Fig. 2). The corresponding time series for each run is shown
in Fig. 3. Additionally along plume transport is calculated by inte-
grating the plume transport in the direction of the mean plume

velocity through y-planes. Fig. 4 shows the along plume transport
for all runs together with one standard deviation envelope for
run2. The mean values at the sill and at 100 km downstream of

Table 1
List of parameter settings for different numerical runs. The volume transport, Q, is
given for Section S1. Km and Kh are the eddy viscosity and diffusivity, respectively.

Run Q (Sv) Km (m2 s�1) Kh (m2 s�1)

run0 2.7 2.0 � 10�4 0
run1 2.5 MY2.5 MY2.5
run2 2.5 k–e k–e
run3 2.5 k–x k–x
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Fig. 3. Time series of volume transport through (a) Section S2 (across WTR), (b) the
FBC sill section (S3), and (c) Section S4 approximately 100 km downstream of the
sill for all runs.
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3. Observational data

Observations were made during a cruise of RV Håkon Mosby in
early June 2008. Profiles of hydrography and currents were col-
lected along six sections (marked A–F in Fig. 2). Additionally, tur-
bulence in the water column was sampled using a loosely
tethered vertical microstructure profiler (VMP2000, Rockland Sci-
entific International). Details of the sampling and the instrumenta-
tion used are given in Fer et al. (2010). The data set includes 4 m
vertical resolution horizontal velocity profiles and 1 m vertical res-
olution profiles of hydrography, dissipation rate of turbulent ki-
netic energy, and the eddy diffusivity. Observations from the ship
are supplemented by time series of horizontal currents from
moored instruments in the period from 14 May to 18 July 2008
covering the cruise period in 2008. Horizontal currents are sam-
pled by Aanderaa Rotor Current Meters and RD-Instruments
300 kHz workhorse acoustic Doppler current profilers.

4. Comparison of turbulence closures

4.1. Transport

Following RL07, the boundary of the plume is prescribed by a
cutoff concentration, s = 0.1, of the passive tracer. The volume
transport of water with s > 0.1 through sections across the sill
(S3), approximately 100 km downstream (S4) and across the
WTR (S2) is calculated for each run (sections are marked by dashed
lines in Fig. 2). The corresponding time series for each run is shown
in Fig. 3. Additionally along plume transport is calculated by inte-
grating the plume transport in the direction of the mean plume

velocity through y-planes. Fig. 4 shows the along plume transport
for all runs together with one standard deviation envelope for
run2. The mean values at the sill and at 100 km downstream of

Table 1
List of parameter settings for different numerical runs. The volume transport, Q, is
given for Section S1. Km and Kh are the eddy viscosity and diffusivity, respectively.

Run Q (Sv) Km (m2 s�1) Kh (m2 s�1)
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Fig. 3. Time series of volume transport through (a) Section S2 (across WTR), (b) the
FBC sill section (S3), and (c) Section S4 approximately 100 km downstream of the
sill for all runs.
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3. Observational data

Observations were made during a cruise of RV Håkon Mosby in
early June 2008. Profiles of hydrography and currents were col-
lected along six sections (marked A–F in Fig. 2). Additionally, tur-
bulence in the water column was sampled using a loosely
tethered vertical microstructure profiler (VMP2000, Rockland Sci-
entific International). Details of the sampling and the instrumenta-
tion used are given in Fer et al. (2010). The data set includes 4 m
vertical resolution horizontal velocity profiles and 1 m vertical res-
olution profiles of hydrography, dissipation rate of turbulent ki-
netic energy, and the eddy diffusivity. Observations from the ship
are supplemented by time series of horizontal currents from
moored instruments in the period from 14 May to 18 July 2008
covering the cruise period in 2008. Horizontal currents are sam-
pled by Aanderaa Rotor Current Meters and RD-Instruments
300 kHz workhorse acoustic Doppler current profilers.

4. Comparison of turbulence closures

4.1. Transport

Following RL07, the boundary of the plume is prescribed by a
cutoff concentration, s = 0.1, of the passive tracer. The volume
transport of water with s > 0.1 through sections across the sill
(S3), approximately 100 km downstream (S4) and across the
WTR (S2) is calculated for each run (sections are marked by dashed
lines in Fig. 2). The corresponding time series for each run is shown
in Fig. 3. Additionally along plume transport is calculated by inte-
grating the plume transport in the direction of the mean plume

velocity through y-planes. Fig. 4 shows the along plume transport
for all runs together with one standard deviation envelope for
run2. The mean values at the sill and at 100 km downstream of
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List of parameter settings for different numerical runs. The volume transport, Q, is
given for Section S1. Km and Kh are the eddy viscosity and diffusivity, respectively.
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Fig. 3. Time series of volume transport through (a) Section S2 (across WTR), (b) the
FBC sill section (S3), and (c) Section S4 approximately 100 km downstream of the
sill for all runs.
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3. Observational data

Observations were made during a cruise of RV Håkon Mosby in
early June 2008. Profiles of hydrography and currents were col-
lected along six sections (marked A–F in Fig. 2). Additionally, tur-
bulence in the water column was sampled using a loosely
tethered vertical microstructure profiler (VMP2000, Rockland Sci-
entific International). Details of the sampling and the instrumenta-
tion used are given in Fer et al. (2010). The data set includes 4 m
vertical resolution horizontal velocity profiles and 1 m vertical res-
olution profiles of hydrography, dissipation rate of turbulent ki-
netic energy, and the eddy diffusivity. Observations from the ship
are supplemented by time series of horizontal currents from
moored instruments in the period from 14 May to 18 July 2008
covering the cruise period in 2008. Horizontal currents are sam-
pled by Aanderaa Rotor Current Meters and RD-Instruments
300 kHz workhorse acoustic Doppler current profilers.

4. Comparison of turbulence closures

4.1. Transport

Following RL07, the boundary of the plume is prescribed by a
cutoff concentration, s = 0.1, of the passive tracer. The volume
transport of water with s > 0.1 through sections across the sill
(S3), approximately 100 km downstream (S4) and across the
WTR (S2) is calculated for each run (sections are marked by dashed
lines in Fig. 2). The corresponding time series for each run is shown
in Fig. 3. Additionally along plume transport is calculated by inte-
grating the plume transport in the direction of the mean plume

velocity through y-planes. Fig. 4 shows the along plume transport
for all runs together with one standard deviation envelope for
run2. The mean values at the sill and at 100 km downstream of

Table 1
List of parameter settings for different numerical runs. The volume transport, Q, is
given for Section S1. Km and Kh are the eddy viscosity and diffusivity, respectively.

Run Q (Sv) Km (m2 s�1) Kh (m2 s�1)

run0 2.7 2.0 � 10�4 0
run1 2.5 MY2.5 MY2.5
run2 2.5 k–e k–e
run3 2.5 k–x k–x
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Fig. 3. Time series of volume transport through (a) Section S2 (across WTR), (b) the
FBC sill section (S3), and (c) Section S4 approximately 100 km downstream of the
sill for all runs.
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the sill are tabulated in Table 2. The transport out of S4 is 0.6–
0.8 Sv smaller than the along plume transport at x = �100 km, pos-
sibly due to positioning of the section where the bifurcation in the
topography at Section S4 may cause the plume to diverge at this
position.

The average dense water transport across the WTR section,
approximately 0.3 Sv, is similar for all runs but run0 shows signif-
icantly less variability (Table 2). The transport over the FBC sill
crest is one order of magnitude larger. The mean transport over
the sill crest is approximately 2 Sv for all runs but the variability
in the second-order closure runs, comparable to each other, is
twice as large as in run0. From the sill to 100 km downstream
the plume transport increases by 44–52% due to entrainment,
with no discernible difference between the constant viscosity case
(run0) and the second-order turbulence closures. However, the
similarity between run0 and the other runs is only seen in the
first 50 km and at �100 and �200 km which both coincides with
local maxima in the constant viscosity case transport (Fig. 4). For
the majority of the downstream part, the run0 transport is signif-
icantly lower compared with the other runs. In general the results
from the second-order closures are similar; the difference be-
tween individual runs is insignificant compared with the
variability.

4.2. Plume path

The influence of turbulence closures on the path of the overflow
plume is examined by comparing the tracer-weighted plume path

yðxÞ ¼
R
ysðx; y; zÞdydzR
sðx; y; zÞdydz ; ð8Þ

time-averaged from day 50 to 70. Fig. 5 shows the plume path for
different closure models, plotted over the topography. The plume
paths are in general robust to the choice of second-order turbulence
closure. The path from run0, however, clearly separates from the
corresponding paths for the other runs at approximately 50–
100 km downstream of the sill which stands out as an important
section for the mixing of the overflow with the ambient water. Far-
ther downstream, the path for run0 is shallower and higher up on
the slope. In run0 the constant vertical viscosity is weak and results
in a reduced Ekman layer thickness and consequently less down-
slope transport of dense water.

4.3. Turbulence and mixing

The mean values and the variability of the eddy diffusivity, Kh,
and the dissipation rate, e, for runs 1–3 are tabulated in Table 3
for the interface region (within ±50 m of the overflow plume inter-
face) and for the bottommost 90 m. The largest difference is seen in
Kh in the vicinity of the interface where the diffusivity varies within
a factor of three between the runs. The variability is largest in run1,
however, in all runs the variability greatly exceeds the mean value,
emphasizing the intermittent nature of mixing in the interface. The
latter is also true for e. In the interface, the mean and standard
deviation of e vary within a factor of two between the runs, less
than that in Kh. Remarkably, in the bottommost 90 m e is identical
between runs. The results are found to be not very sensitive to the
choice of the turbulence closure, in agreement with Ilicak et al.
(2008). Also consistent with Ilicak et al. (2008) the MY2.5 scheme
(run1) leads to larger Kh, particularly for the stratified interface
region.

As a result of the similarities in diffusivity, dilution of the time-
averaged and tracer-weighted plume density is comparable for
runs 1–3 (Fig. 6). Tracer-weighted density is calculated according
to

Table 2
Observed volume transport with uncertainties and modelled volume transport with
variability (1 std) of the overflow water at the sill crest, approximately 100 km
downstream of the sill and at the Wyville–Thomson Ridge. The uncertainty
(observations) and one standard deviation (models) are given when available.

Sill 100 km WTR

Observations
Duncan et al. (2003)a 1.9 1.9 –
Mauritzen et al. (2005) 2.4 ± 0.2 3.6 ± 0.2 –
Hansen and Østerhus (2007) 2.1 ± 0.2 – –
Fer et al. (2010) 2.4 2.2 –
Sherwin et al. (2008) – – 0.3

Models
RL07 1.50 ± 0.27 2.38 ± 1.06 0.27 ± 0.16
run0 2.00 ± 0.18 2.92 ± 0.95 0.27 ± 0.05
run1 1.95 ± 0.43 2.88 ± 1.00 0.25 ± 0.14
run2 1.95 ± 0.44 2.97 ± 1.11 0.28 ± 0.12
run3 1.91 ± 0.42 2.75 ± 0.66 0.31 ± 0.11

a Volume transport of water with T < 7 �C. Downstream section is at about 81 km.
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the sill are tabulated in Table 2. The transport out of S4 is 0.6–
0.8 Sv smaller than the along plume transport at x = �100 km, pos-
sibly due to positioning of the section where the bifurcation in the
topography at Section S4 may cause the plume to diverge at this
position.

The average dense water transport across the WTR section,
approximately 0.3 Sv, is similar for all runs but run0 shows signif-
icantly less variability (Table 2). The transport over the FBC sill
crest is one order of magnitude larger. The mean transport over
the sill crest is approximately 2 Sv for all runs but the variability
in the second-order closure runs, comparable to each other, is
twice as large as in run0. From the sill to 100 km downstream
the plume transport increases by 44–52% due to entrainment,
with no discernible difference between the constant viscosity case
(run0) and the second-order turbulence closures. However, the
similarity between run0 and the other runs is only seen in the
first 50 km and at �100 and �200 km which both coincides with
local maxima in the constant viscosity case transport (Fig. 4). For
the majority of the downstream part, the run0 transport is signif-
icantly lower compared with the other runs. In general the results
from the second-order closures are similar; the difference be-
tween individual runs is insignificant compared with the
variability.

4.2. Plume path

The influence of turbulence closures on the path of the overflow
plume is examined by comparing the tracer-weighted plume path

yðxÞ ¼
R
ysðx; y; zÞdydzR
sðx; y; zÞdydz ; ð8Þ

time-averaged from day 50 to 70. Fig. 5 shows the plume path for
different closure models, plotted over the topography. The plume
paths are in general robust to the choice of second-order turbulence
closure. The path from run0, however, clearly separates from the
corresponding paths for the other runs at approximately 50–
100 km downstream of the sill which stands out as an important
section for the mixing of the overflow with the ambient water. Far-
ther downstream, the path for run0 is shallower and higher up on
the slope. In run0 the constant vertical viscosity is weak and results
in a reduced Ekman layer thickness and consequently less down-
slope transport of dense water.

4.3. Turbulence and mixing

The mean values and the variability of the eddy diffusivity, Kh,
and the dissipation rate, e, for runs 1–3 are tabulated in Table 3
for the interface region (within ±50 m of the overflow plume inter-
face) and for the bottommost 90 m. The largest difference is seen in
Kh in the vicinity of the interface where the diffusivity varies within
a factor of three between the runs. The variability is largest in run1,
however, in all runs the variability greatly exceeds the mean value,
emphasizing the intermittent nature of mixing in the interface. The
latter is also true for e. In the interface, the mean and standard
deviation of e vary within a factor of two between the runs, less
than that in Kh. Remarkably, in the bottommost 90 m e is identical
between runs. The results are found to be not very sensitive to the
choice of the turbulence closure, in agreement with Ilicak et al.
(2008). Also consistent with Ilicak et al. (2008) the MY2.5 scheme
(run1) leads to larger Kh, particularly for the stratified interface
region.

As a result of the similarities in diffusivity, dilution of the time-
averaged and tracer-weighted plume density is comparable for
runs 1–3 (Fig. 6). Tracer-weighted density is calculated according
to

Table 2
Observed volume transport with uncertainties and modelled volume transport with
variability (1 std) of the overflow water at the sill crest, approximately 100 km
downstream of the sill and at the Wyville–Thomson Ridge. The uncertainty
(observations) and one standard deviation (models) are given when available.

Sill 100 km WTR

Observations
Duncan et al. (2003)a 1.9 1.9 –
Mauritzen et al. (2005) 2.4 ± 0.2 3.6 ± 0.2 –
Hansen and Østerhus (2007) 2.1 ± 0.2 – –
Fer et al. (2010) 2.4 2.2 –
Sherwin et al. (2008) – – 0.3

Models
RL07 1.50 ± 0.27 2.38 ± 1.06 0.27 ± 0.16
run0 2.00 ± 0.18 2.92 ± 0.95 0.27 ± 0.05
run1 1.95 ± 0.43 2.88 ± 1.00 0.25 ± 0.14
run2 1.95 ± 0.44 2.97 ± 1.11 0.28 ± 0.12
run3 1.91 ± 0.42 2.75 ± 0.66 0.31 ± 0.11

a Volume transport of water with T < 7 �C. Downstream section is at about 81 km.
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the sill are tabulated in Table 2. The transport out of S4 is 0.6–
0.8 Sv smaller than the along plume transport at x = �100 km, pos-
sibly due to positioning of the section where the bifurcation in the
topography at Section S4 may cause the plume to diverge at this
position.

The average dense water transport across the WTR section,
approximately 0.3 Sv, is similar for all runs but run0 shows signif-
icantly less variability (Table 2). The transport over the FBC sill
crest is one order of magnitude larger. The mean transport over
the sill crest is approximately 2 Sv for all runs but the variability
in the second-order closure runs, comparable to each other, is
twice as large as in run0. From the sill to 100 km downstream
the plume transport increases by 44–52% due to entrainment,
with no discernible difference between the constant viscosity case
(run0) and the second-order turbulence closures. However, the
similarity between run0 and the other runs is only seen in the
first 50 km and at �100 and �200 km which both coincides with
local maxima in the constant viscosity case transport (Fig. 4). For
the majority of the downstream part, the run0 transport is signif-
icantly lower compared with the other runs. In general the results
from the second-order closures are similar; the difference be-
tween individual runs is insignificant compared with the
variability.

4.2. Plume path

The influence of turbulence closures on the path of the overflow
plume is examined by comparing the tracer-weighted plume path

yðxÞ ¼
R
ysðx; y; zÞdydzR
sðx; y; zÞdydz ; ð8Þ

time-averaged from day 50 to 70. Fig. 5 shows the plume path for
different closure models, plotted over the topography. The plume
paths are in general robust to the choice of second-order turbulence
closure. The path from run0, however, clearly separates from the
corresponding paths for the other runs at approximately 50–
100 km downstream of the sill which stands out as an important
section for the mixing of the overflow with the ambient water. Far-
ther downstream, the path for run0 is shallower and higher up on
the slope. In run0 the constant vertical viscosity is weak and results
in a reduced Ekman layer thickness and consequently less down-
slope transport of dense water.

4.3. Turbulence and mixing

The mean values and the variability of the eddy diffusivity, Kh,
and the dissipation rate, e, for runs 1–3 are tabulated in Table 3
for the interface region (within ±50 m of the overflow plume inter-
face) and for the bottommost 90 m. The largest difference is seen in
Kh in the vicinity of the interface where the diffusivity varies within
a factor of three between the runs. The variability is largest in run1,
however, in all runs the variability greatly exceeds the mean value,
emphasizing the intermittent nature of mixing in the interface. The
latter is also true for e. In the interface, the mean and standard
deviation of e vary within a factor of two between the runs, less
than that in Kh. Remarkably, in the bottommost 90 m e is identical
between runs. The results are found to be not very sensitive to the
choice of the turbulence closure, in agreement with Ilicak et al.
(2008). Also consistent with Ilicak et al. (2008) the MY2.5 scheme
(run1) leads to larger Kh, particularly for the stratified interface
region.

As a result of the similarities in diffusivity, dilution of the time-
averaged and tracer-weighted plume density is comparable for
runs 1–3 (Fig. 6). Tracer-weighted density is calculated according
to

Table 2
Observed volume transport with uncertainties and modelled volume transport with
variability (1 std) of the overflow water at the sill crest, approximately 100 km
downstream of the sill and at the Wyville–Thomson Ridge. The uncertainty
(observations) and one standard deviation (models) are given when available.

Sill 100 km WTR

Observations
Duncan et al. (2003)a 1.9 1.9 –
Mauritzen et al. (2005) 2.4 ± 0.2 3.6 ± 0.2 –
Hansen and Østerhus (2007) 2.1 ± 0.2 – –
Fer et al. (2010) 2.4 2.2 –
Sherwin et al. (2008) – – 0.3

Models
RL07 1.50 ± 0.27 2.38 ± 1.06 0.27 ± 0.16
run0 2.00 ± 0.18 2.92 ± 0.95 0.27 ± 0.05
run1 1.95 ± 0.43 2.88 ± 1.00 0.25 ± 0.14
run2 1.95 ± 0.44 2.97 ± 1.11 0.28 ± 0.12
run3 1.91 ± 0.42 2.75 ± 0.66 0.31 ± 0.11

a Volume transport of water with T < 7 �C. Downstream section is at about 81 km.
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the sill are tabulated in Table 2. The transport out of S4 is 0.6–
0.8 Sv smaller than the along plume transport at x = �100 km, pos-
sibly due to positioning of the section where the bifurcation in the
topography at Section S4 may cause the plume to diverge at this
position.

The average dense water transport across the WTR section,
approximately 0.3 Sv, is similar for all runs but run0 shows signif-
icantly less variability (Table 2). The transport over the FBC sill
crest is one order of magnitude larger. The mean transport over
the sill crest is approximately 2 Sv for all runs but the variability
in the second-order closure runs, comparable to each other, is
twice as large as in run0. From the sill to 100 km downstream
the plume transport increases by 44–52% due to entrainment,
with no discernible difference between the constant viscosity case
(run0) and the second-order turbulence closures. However, the
similarity between run0 and the other runs is only seen in the
first 50 km and at �100 and �200 km which both coincides with
local maxima in the constant viscosity case transport (Fig. 4). For
the majority of the downstream part, the run0 transport is signif-
icantly lower compared with the other runs. In general the results
from the second-order closures are similar; the difference be-
tween individual runs is insignificant compared with the
variability.

4.2. Plume path

The influence of turbulence closures on the path of the overflow
plume is examined by comparing the tracer-weighted plume path

yðxÞ ¼
R
ysðx; y; zÞdydzR
sðx; y; zÞdydz ; ð8Þ

time-averaged from day 50 to 70. Fig. 5 shows the plume path for
different closure models, plotted over the topography. The plume
paths are in general robust to the choice of second-order turbulence
closure. The path from run0, however, clearly separates from the
corresponding paths for the other runs at approximately 50–
100 km downstream of the sill which stands out as an important
section for the mixing of the overflow with the ambient water. Far-
ther downstream, the path for run0 is shallower and higher up on
the slope. In run0 the constant vertical viscosity is weak and results
in a reduced Ekman layer thickness and consequently less down-
slope transport of dense water.

4.3. Turbulence and mixing

The mean values and the variability of the eddy diffusivity, Kh,
and the dissipation rate, e, for runs 1–3 are tabulated in Table 3
for the interface region (within ±50 m of the overflow plume inter-
face) and for the bottommost 90 m. The largest difference is seen in
Kh in the vicinity of the interface where the diffusivity varies within
a factor of three between the runs. The variability is largest in run1,
however, in all runs the variability greatly exceeds the mean value,
emphasizing the intermittent nature of mixing in the interface. The
latter is also true for e. In the interface, the mean and standard
deviation of e vary within a factor of two between the runs, less
than that in Kh. Remarkably, in the bottommost 90 m e is identical
between runs. The results are found to be not very sensitive to the
choice of the turbulence closure, in agreement with Ilicak et al.
(2008). Also consistent with Ilicak et al. (2008) the MY2.5 scheme
(run1) leads to larger Kh, particularly for the stratified interface
region.

As a result of the similarities in diffusivity, dilution of the time-
averaged and tracer-weighted plume density is comparable for
runs 1–3 (Fig. 6). Tracer-weighted density is calculated according
to

Table 2
Observed volume transport with uncertainties and modelled volume transport with
variability (1 std) of the overflow water at the sill crest, approximately 100 km
downstream of the sill and at the Wyville–Thomson Ridge. The uncertainty
(observations) and one standard deviation (models) are given when available.

Sill 100 km WTR

Observations
Duncan et al. (2003)a 1.9 1.9 –
Mauritzen et al. (2005) 2.4 ± 0.2 3.6 ± 0.2 –
Hansen and Østerhus (2007) 2.1 ± 0.2 – –
Fer et al. (2010) 2.4 2.2 –
Sherwin et al. (2008) – – 0.3

Models
RL07 1.50 ± 0.27 2.38 ± 1.06 0.27 ± 0.16
run0 2.00 ± 0.18 2.92 ± 0.95 0.27 ± 0.05
run1 1.95 ± 0.43 2.88 ± 1.00 0.25 ± 0.14
run2 1.95 ± 0.44 2.97 ± 1.11 0.28 ± 0.12
run3 1.91 ± 0.42 2.75 ± 0.66 0.31 ± 0.11

a Volume transport of water with T < 7 �C. Downstream section is at about 81 km.
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and then averaged in time (from day 50 to 70). In run0 the plume
dilutes relatively less downstream of 50 km than the plumes pro-

duced in other runs. The plume densities in the last three experi-
ments are consistent. Having established that second-order
closures behave similarly, we compare the density fields at selected
sections between run0 and run3. These sections correspond to the
observational sections to facilitate the comparison with Section
5.2 (Fig. 8). The density in Fig. 7 is averaged over the period from
day 50 to 70. The mean and variability (one standard deviation over
the 20 days) of the position of the rh = 27.65 kg m�3 surface is also
shown (see Section 5.2). After crossing the sill in the Faroe Bank
Channel, the overflow is confined by the steep topography in the
channel (Sections A and B), and about 50 km downstream of the sill,
the plume descends the Faroe–Iceland slope (Sections C and F).
Downstream of the sill, run3 gives a thicker plume interface and
higher variability compared with run0, while at the sill the constant
vertical viscosity in run0 leads to a diffusive interface.

5. Comparison with observations

In the following, we use the results from run2 to compare with
the observational data.

5.1. Transport

Compared with observations, the modelled transport at the sill
is within 20% of the observed transports (Table 2). The increase in
transport between the sill and the section downstream at 100 km
is approximately 50%, comparable to Mauritzen et al. (2005).
Observations of both Duncan et al. (2003) and Fer et al. (2010)
are undersampled with respect to the low-frequency variability
and comparison of volume transport between individual sections
is not representative of the entrainment and mixing. Overall obser-
vations reveal large variability of about 1 Sv from one occupation
of the section to the next (see Mauritzen et al. (2005)). Like the
oscillations downstream of the sill, the oscillations with a period
of 4–4.5 days in the transport at the sill, clearly visible in Fig. 3,
is also supported by observations (Saunders, 1990; Hansen and
Østerhus, 2007) reporting variation with a period of 3–6 days.

Table 3
Mean and standard deviation of the vertical eddy diffusivity and the dissipation rate
of TKE within ± 50 m of the overflow plume interface and in the bottommost 90 m
derived for the three runs using different second order closures. Observed values with
uncertainties are also given.

Kh (m2 s�1) e (W kg�1)

Mean SD Mean SD

zi ± 50 m
Observed 8.7 � 10�4 4.0 � 10�4 1.0 � 10�7 0.7 � 10�7

run1 2.9 � 10�4 13.5 � 10�4 0.9 � 10�8 2.6 � 10�8

run2 1.7 � 10�4 5.9 � 10�4 1.4 � 10�8 5.5 � 10�8

run3 0.7 � 10�4 2.4 � 10�4 0.7 � 10�8 2.5 � 10�8

0–90 m HAB
Observed (0.6 ± 0.5) � 10�1 (7.0 ± 3.0) � 10�7

run1 1.1 � 10�1 0.8 � 10�1 1.3 � 10�6 1.1 � 10�6

run2 0.8 � 10�1 0.5 � 10�1 1.3 � 10�6 1.0 � 10�6

run3 0.9 � 10�1 0.7 � 10�1 1.3 � 10�6 1.0 � 10�6
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and then averaged in time (from day 50 to 70). In run0 the plume
dilutes relatively less downstream of 50 km than the plumes pro-

duced in other runs. The plume densities in the last three experi-
ments are consistent. Having established that second-order
closures behave similarly, we compare the density fields at selected
sections between run0 and run3. These sections correspond to the
observational sections to facilitate the comparison with Section
5.2 (Fig. 8). The density in Fig. 7 is averaged over the period from
day 50 to 70. The mean and variability (one standard deviation over
the 20 days) of the position of the rh = 27.65 kg m�3 surface is also
shown (see Section 5.2). After crossing the sill in the Faroe Bank
Channel, the overflow is confined by the steep topography in the
channel (Sections A and B), and about 50 km downstream of the sill,
the plume descends the Faroe–Iceland slope (Sections C and F).
Downstream of the sill, run3 gives a thicker plume interface and
higher variability compared with run0, while at the sill the constant
vertical viscosity in run0 leads to a diffusive interface.

5. Comparison with observations

In the following, we use the results from run2 to compare with
the observational data.

5.1. Transport

Compared with observations, the modelled transport at the sill
is within 20% of the observed transports (Table 2). The increase in
transport between the sill and the section downstream at 100 km
is approximately 50%, comparable to Mauritzen et al. (2005).
Observations of both Duncan et al. (2003) and Fer et al. (2010)
are undersampled with respect to the low-frequency variability
and comparison of volume transport between individual sections
is not representative of the entrainment and mixing. Overall obser-
vations reveal large variability of about 1 Sv from one occupation
of the section to the next (see Mauritzen et al. (2005)). Like the
oscillations downstream of the sill, the oscillations with a period
of 4–4.5 days in the transport at the sill, clearly visible in Fig. 3,
is also supported by observations (Saunders, 1990; Hansen and
Østerhus, 2007) reporting variation with a period of 3–6 days.

Table 3
Mean and standard deviation of the vertical eddy diffusivity and the dissipation rate
of TKE within ± 50 m of the overflow plume interface and in the bottommost 90 m
derived for the three runs using different second order closures. Observed values with
uncertainties are also given.

Kh (m2 s�1) e (W kg�1)

Mean SD Mean SD

zi ± 50 m
Observed 8.7 � 10�4 4.0 � 10�4 1.0 � 10�7 0.7 � 10�7

run1 2.9 � 10�4 13.5 � 10�4 0.9 � 10�8 2.6 � 10�8

run2 1.7 � 10�4 5.9 � 10�4 1.4 � 10�8 5.5 � 10�8

run3 0.7 � 10�4 2.4 � 10�4 0.7 � 10�8 2.5 � 10�8

0–90 m HAB
Observed (0.6 ± 0.5) � 10�1 (7.0 ± 3.0) � 10�7

run1 1.1 � 10�1 0.8 � 10�1 1.3 � 10�6 1.1 � 10�6

run2 0.8 � 10�1 0.5 � 10�1 1.3 � 10�6 1.0 � 10�6
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and then averaged in time (from day 50 to 70). In run0 the plume
dilutes relatively less downstream of 50 km than the plumes pro-

duced in other runs. The plume densities in the last three experi-
ments are consistent. Having established that second-order
closures behave similarly, we compare the density fields at selected
sections between run0 and run3. These sections correspond to the
observational sections to facilitate the comparison with Section
5.2 (Fig. 8). The density in Fig. 7 is averaged over the period from
day 50 to 70. The mean and variability (one standard deviation over
the 20 days) of the position of the rh = 27.65 kg m�3 surface is also
shown (see Section 5.2). After crossing the sill in the Faroe Bank
Channel, the overflow is confined by the steep topography in the
channel (Sections A and B), and about 50 km downstream of the sill,
the plume descends the Faroe–Iceland slope (Sections C and F).
Downstream of the sill, run3 gives a thicker plume interface and
higher variability compared with run0, while at the sill the constant
vertical viscosity in run0 leads to a diffusive interface.

5. Comparison with observations

In the following, we use the results from run2 to compare with
the observational data.

5.1. Transport

Compared with observations, the modelled transport at the sill
is within 20% of the observed transports (Table 2). The increase in
transport between the sill and the section downstream at 100 km
is approximately 50%, comparable to Mauritzen et al. (2005).
Observations of both Duncan et al. (2003) and Fer et al. (2010)
are undersampled with respect to the low-frequency variability
and comparison of volume transport between individual sections
is not representative of the entrainment and mixing. Overall obser-
vations reveal large variability of about 1 Sv from one occupation
of the section to the next (see Mauritzen et al. (2005)). Like the
oscillations downstream of the sill, the oscillations with a period
of 4–4.5 days in the transport at the sill, clearly visible in Fig. 3,
is also supported by observations (Saunders, 1990; Hansen and
Østerhus, 2007) reporting variation with a period of 3–6 days.

Table 3
Mean and standard deviation of the vertical eddy diffusivity and the dissipation rate
of TKE within ± 50 m of the overflow plume interface and in the bottommost 90 m
derived for the three runs using different second order closures. Observed values with
uncertainties are also given.

Kh (m2 s�1) e (W kg�1)

Mean SD Mean SD

zi ± 50 m
Observed 8.7 � 10�4 4.0 � 10�4 1.0 � 10�7 0.7 � 10�7

run1 2.9 � 10�4 13.5 � 10�4 0.9 � 10�8 2.6 � 10�8
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-400 -300 -200 -100 0
27.6

27.7

27.8

27.9

28

x (km)

σ θ
(k

gm
-3

)

run1
run2
run3

run0
RL07
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qðxÞ ¼
R
qsðx; y; zÞdydzR
sðx; y; zÞdydz ; ð9Þ
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5.2 (Fig. 8). The density in Fig. 7 is averaged over the period from
day 50 to 70. The mean and variability (one standard deviation over
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higher variability compared with run0, while at the sill the constant
vertical viscosity in run0 leads to a diffusive interface.

5. Comparison with observations

In the following, we use the results from run2 to compare with
the observational data.

5.1. Transport

Compared with observations, the modelled transport at the sill
is within 20% of the observed transports (Table 2). The increase in
transport between the sill and the section downstream at 100 km
is approximately 50%, comparable to Mauritzen et al. (2005).
Observations of both Duncan et al. (2003) and Fer et al. (2010)
are undersampled with respect to the low-frequency variability
and comparison of volume transport between individual sections
is not representative of the entrainment and mixing. Overall obser-
vations reveal large variability of about 1 Sv from one occupation
of the section to the next (see Mauritzen et al. (2005)). Like the
oscillations downstream of the sill, the oscillations with a period
of 4–4.5 days in the transport at the sill, clearly visible in Fig. 3,
is also supported by observations (Saunders, 1990; Hansen and
Østerhus, 2007) reporting variation with a period of 3–6 days.
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of TKE within ± 50 m of the overflow plume interface and in the bottommost 90 m
derived for the three runs using different second order closures. Observed values with
uncertainties are also given.
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5.2. Density sections

Observed distribution of density is compared with density from
the model run2 at the corresponding sections averaged over day
50-70 (Fig. 8). The daily averaged sections of the modelled plume
have a core comparable to the observations, but with a relatively
thin interface layer between the relatively well-mixed bottom
layer and the ambient (not shown). Because of the inherent vari-
ability in the overflow plume, instantaneous observation-model
section comparison is not conclusive (there are times when the
agreement is excellent or poor). We therefore compare the model
sections that are averaged over 20 days and illustrate the mean
and variability (one standard deviation over the 20 days) of the po-
sition of the rh = 27.65 kg m�3 surface (Fig. 8). In this representa-
tion, the interface thickness is large as a result of averaging, not
representative of the daily averages or snapshots. With increasing
downstream distance, the observations show an increasingly di-
luted interface. This dilution is not captured by the model and, to-
gether with direct comparisons in Section 5.3, shows the lack of
sufficient mixing at the interfacial layer in the r-coordinate model.

5.3. Turbulence and mixing

The survey-averaged vertical profiles of observed density, along
plume velocity, dissipation rate and the diapycnal eddy diffusivity
reported in Fer et al. (2010) are compared with the model results
(Fig. 9). The averaging is done for plume stations (with
rh > 27.65 kg m�3), relative to the plume interface and relative to
the bottom (height above bottom, HAB). Vertical averaging length
relative to the interface is 10 m for the observations and 25 m for
the model data. Relative to the bottom, the model has sufficient
vertical resolution, and the averaging bin length is set to 10 m
for both the observations and the model. In general, the model
reproduces the observed vertical structure reasonably well. The
discrepancies, especially in density and velocity near the bottom,
are likely partly due to the averaging in time, but they are also af-
fected by the undersampling in observations. The relatively slow
flow of light and thin plume higher on the slope extending for tens

of kilometers (see, e.g., Section F in Fig. 8) bias the model HAB-
average profiles.

In the bottommost 60 m the turbulent closure performs excep-
tionally well (lower panels in Fig. 9c and d). However, in the inte-
rior of the plume, the model overestimates the dissipation rate and
the eddy diffusivity by up to one order of magnitude. Above the
interface, both the dissipation rate and the vertical eddy diffusivity
drop rapidly to levels well below the observations. This is due to
the unresolved processes in the interfacial layer and discussed in
Section 6.

The diffusivity and dissipation for different runs can be com-
pared with the observed values (all listed in Table 3). The observed
values are significantly larger than the model values in the inter-
face region (zi ± 50 m). Unfortunately the measurements cannot
be used to evaluate the performance of different closures because
the uncertainty in e is a factor of two and that in Kq can be as large
as a factor of 4, greater than the differences between the closures.
Furthermore, bottom averages in observations do not cover the
bottommost 10 m where enhanced e is expected.

5.4. Hydraulic control

Results from direct measurements of turbulence (Fer et al.,
2010) and mixing inferred from overturning length scales Maurit-
zen et al. (2005) conclude that the largest mixing and entrainment
rates are observed in the hot spot between 60 and 100 km from the
sill. A detailed analysis of observations suggest that the exchange
at the sill, to the first order, is hydraulically controlled with a crit-
ical section between 20 and 90 km of the sill crest (Girton et al.,
2006). The Froude number can be used to judge hydraulic critical-
ity. Following RL07, the local Froude number of the flow is defined
as

Fr ¼ Uffiffiffiffiffiffiffi
g0d

p ; ð10Þ

where d is the thickness of the plume, U is the vertically averaged
plume velocity and g0 is the reduced gravity defined as
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solid line is the rh = 27.65 kg m�3 isopycnal, used to identify the plume in observations. For the model results, one standard deviation of the interface position over the
averaging period is marked by the broken lines.
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5.2. Density sections

Observed distribution of density is compared with density from
the model run2 at the corresponding sections averaged over day
50-70 (Fig. 8). The daily averaged sections of the modelled plume
have a core comparable to the observations, but with a relatively
thin interface layer between the relatively well-mixed bottom
layer and the ambient (not shown). Because of the inherent vari-
ability in the overflow plume, instantaneous observation-model
section comparison is not conclusive (there are times when the
agreement is excellent or poor). We therefore compare the model
sections that are averaged over 20 days and illustrate the mean
and variability (one standard deviation over the 20 days) of the po-
sition of the rh = 27.65 kg m�3 surface (Fig. 8). In this representa-
tion, the interface thickness is large as a result of averaging, not
representative of the daily averages or snapshots. With increasing
downstream distance, the observations show an increasingly di-
luted interface. This dilution is not captured by the model and, to-
gether with direct comparisons in Section 5.3, shows the lack of
sufficient mixing at the interfacial layer in the r-coordinate model.

5.3. Turbulence and mixing

The survey-averaged vertical profiles of observed density, along
plume velocity, dissipation rate and the diapycnal eddy diffusivity
reported in Fer et al. (2010) are compared with the model results
(Fig. 9). The averaging is done for plume stations (with
rh > 27.65 kg m�3), relative to the plume interface and relative to
the bottom (height above bottom, HAB). Vertical averaging length
relative to the interface is 10 m for the observations and 25 m for
the model data. Relative to the bottom, the model has sufficient
vertical resolution, and the averaging bin length is set to 10 m
for both the observations and the model. In general, the model
reproduces the observed vertical structure reasonably well. The
discrepancies, especially in density and velocity near the bottom,
are likely partly due to the averaging in time, but they are also af-
fected by the undersampling in observations. The relatively slow
flow of light and thin plume higher on the slope extending for tens

of kilometers (see, e.g., Section F in Fig. 8) bias the model HAB-
average profiles.

In the bottommost 60 m the turbulent closure performs excep-
tionally well (lower panels in Fig. 9c and d). However, in the inte-
rior of the plume, the model overestimates the dissipation rate and
the eddy diffusivity by up to one order of magnitude. Above the
interface, both the dissipation rate and the vertical eddy diffusivity
drop rapidly to levels well below the observations. This is due to
the unresolved processes in the interfacial layer and discussed in
Section 6.

The diffusivity and dissipation for different runs can be com-
pared with the observed values (all listed in Table 3). The observed
values are significantly larger than the model values in the inter-
face region (zi ± 50 m). Unfortunately the measurements cannot
be used to evaluate the performance of different closures because
the uncertainty in e is a factor of two and that in Kq can be as large
as a factor of 4, greater than the differences between the closures.
Furthermore, bottom averages in observations do not cover the
bottommost 10 m where enhanced e is expected.

5.4. Hydraulic control

Results from direct measurements of turbulence (Fer et al.,
2010) and mixing inferred from overturning length scales Maurit-
zen et al. (2005) conclude that the largest mixing and entrainment
rates are observed in the hot spot between 60 and 100 km from the
sill. A detailed analysis of observations suggest that the exchange
at the sill, to the first order, is hydraulically controlled with a crit-
ical section between 20 and 90 km of the sill crest (Girton et al.,
2006). The Froude number can be used to judge hydraulic critical-
ity. Following RL07, the local Froude number of the flow is defined
as

Fr ¼ Uffiffiffiffiffiffiffi
g0d

p ; ð10Þ

where d is the thickness of the plume, U is the vertically averaged
plume velocity and g0 is the reduced gravity defined as
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5.2. Density sections

Observed distribution of density is compared with density from
the model run2 at the corresponding sections averaged over day
50-70 (Fig. 8). The daily averaged sections of the modelled plume
have a core comparable to the observations, but with a relatively
thin interface layer between the relatively well-mixed bottom
layer and the ambient (not shown). Because of the inherent vari-
ability in the overflow plume, instantaneous observation-model
section comparison is not conclusive (there are times when the
agreement is excellent or poor). We therefore compare the model
sections that are averaged over 20 days and illustrate the mean
and variability (one standard deviation over the 20 days) of the po-
sition of the rh = 27.65 kg m�3 surface (Fig. 8). In this representa-
tion, the interface thickness is large as a result of averaging, not
representative of the daily averages or snapshots. With increasing
downstream distance, the observations show an increasingly di-
luted interface. This dilution is not captured by the model and, to-
gether with direct comparisons in Section 5.3, shows the lack of
sufficient mixing at the interfacial layer in the r-coordinate model.

5.3. Turbulence and mixing

The survey-averaged vertical profiles of observed density, along
plume velocity, dissipation rate and the diapycnal eddy diffusivity
reported in Fer et al. (2010) are compared with the model results
(Fig. 9). The averaging is done for plume stations (with
rh > 27.65 kg m�3), relative to the plume interface and relative to
the bottom (height above bottom, HAB). Vertical averaging length
relative to the interface is 10 m for the observations and 25 m for
the model data. Relative to the bottom, the model has sufficient
vertical resolution, and the averaging bin length is set to 10 m
for both the observations and the model. In general, the model
reproduces the observed vertical structure reasonably well. The
discrepancies, especially in density and velocity near the bottom,
are likely partly due to the averaging in time, but they are also af-
fected by the undersampling in observations. The relatively slow
flow of light and thin plume higher on the slope extending for tens

of kilometers (see, e.g., Section F in Fig. 8) bias the model HAB-
average profiles.

In the bottommost 60 m the turbulent closure performs excep-
tionally well (lower panels in Fig. 9c and d). However, in the inte-
rior of the plume, the model overestimates the dissipation rate and
the eddy diffusivity by up to one order of magnitude. Above the
interface, both the dissipation rate and the vertical eddy diffusivity
drop rapidly to levels well below the observations. This is due to
the unresolved processes in the interfacial layer and discussed in
Section 6.

The diffusivity and dissipation for different runs can be com-
pared with the observed values (all listed in Table 3). The observed
values are significantly larger than the model values in the inter-
face region (zi ± 50 m). Unfortunately the measurements cannot
be used to evaluate the performance of different closures because
the uncertainty in e is a factor of two and that in Kq can be as large
as a factor of 4, greater than the differences between the closures.
Furthermore, bottom averages in observations do not cover the
bottommost 10 m where enhanced e is expected.

5.4. Hydraulic control

Results from direct measurements of turbulence (Fer et al.,
2010) and mixing inferred from overturning length scales Maurit-
zen et al. (2005) conclude that the largest mixing and entrainment
rates are observed in the hot spot between 60 and 100 km from the
sill. A detailed analysis of observations suggest that the exchange
at the sill, to the first order, is hydraulically controlled with a crit-
ical section between 20 and 90 km of the sill crest (Girton et al.,
2006). The Froude number can be used to judge hydraulic critical-
ity. Following RL07, the local Froude number of the flow is defined
as

Fr ¼ Uffiffiffiffiffiffiffi
g0d

p ; ð10Þ

where d is the thickness of the plume, U is the vertically averaged
plume velocity and g0 is the reduced gravity defined as
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5.2. Density sections

Observed distribution of density is compared with density from
the model run2 at the corresponding sections averaged over day
50-70 (Fig. 8). The daily averaged sections of the modelled plume
have a core comparable to the observations, but with a relatively
thin interface layer between the relatively well-mixed bottom
layer and the ambient (not shown). Because of the inherent vari-
ability in the overflow plume, instantaneous observation-model
section comparison is not conclusive (there are times when the
agreement is excellent or poor). We therefore compare the model
sections that are averaged over 20 days and illustrate the mean
and variability (one standard deviation over the 20 days) of the po-
sition of the rh = 27.65 kg m�3 surface (Fig. 8). In this representa-
tion, the interface thickness is large as a result of averaging, not
representative of the daily averages or snapshots. With increasing
downstream distance, the observations show an increasingly di-
luted interface. This dilution is not captured by the model and, to-
gether with direct comparisons in Section 5.3, shows the lack of
sufficient mixing at the interfacial layer in the r-coordinate model.

5.3. Turbulence and mixing

The survey-averaged vertical profiles of observed density, along
plume velocity, dissipation rate and the diapycnal eddy diffusivity
reported in Fer et al. (2010) are compared with the model results
(Fig. 9). The averaging is done for plume stations (with
rh > 27.65 kg m�3), relative to the plume interface and relative to
the bottom (height above bottom, HAB). Vertical averaging length
relative to the interface is 10 m for the observations and 25 m for
the model data. Relative to the bottom, the model has sufficient
vertical resolution, and the averaging bin length is set to 10 m
for both the observations and the model. In general, the model
reproduces the observed vertical structure reasonably well. The
discrepancies, especially in density and velocity near the bottom,
are likely partly due to the averaging in time, but they are also af-
fected by the undersampling in observations. The relatively slow
flow of light and thin plume higher on the slope extending for tens

of kilometers (see, e.g., Section F in Fig. 8) bias the model HAB-
average profiles.

In the bottommost 60 m the turbulent closure performs excep-
tionally well (lower panels in Fig. 9c and d). However, in the inte-
rior of the plume, the model overestimates the dissipation rate and
the eddy diffusivity by up to one order of magnitude. Above the
interface, both the dissipation rate and the vertical eddy diffusivity
drop rapidly to levels well below the observations. This is due to
the unresolved processes in the interfacial layer and discussed in
Section 6.

The diffusivity and dissipation for different runs can be com-
pared with the observed values (all listed in Table 3). The observed
values are significantly larger than the model values in the inter-
face region (zi ± 50 m). Unfortunately the measurements cannot
be used to evaluate the performance of different closures because
the uncertainty in e is a factor of two and that in Kq can be as large
as a factor of 4, greater than the differences between the closures.
Furthermore, bottom averages in observations do not cover the
bottommost 10 m where enhanced e is expected.

5.4. Hydraulic control

Results from direct measurements of turbulence (Fer et al.,
2010) and mixing inferred from overturning length scales Maurit-
zen et al. (2005) conclude that the largest mixing and entrainment
rates are observed in the hot spot between 60 and 100 km from the
sill. A detailed analysis of observations suggest that the exchange
at the sill, to the first order, is hydraulically controlled with a crit-
ical section between 20 and 90 km of the sill crest (Girton et al.,
2006). The Froude number can be used to judge hydraulic critical-
ity. Following RL07, the local Froude number of the flow is defined
as

Fr ¼ Uffiffiffiffiffiffiffi
g0d

p ; ð10Þ

where d is the thickness of the plume, U is the vertically averaged
plume velocity and g0 is the reduced gravity defined as
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g0 ¼ g
1
d

R d
0 ðqðzÞ � qambÞdz

q0
ð11Þ

where qamb and q0 are the ambient density (in the layer above the
boundary of the plume) and a reference density. The Froude num-
ber is then averaged in the y-direction, weighted by the area of
the plume cross-section at location y at time t

Frðx; tÞ ¼
R
Frðx; y; tÞdðy; tÞdyR

dðy; tÞdy ; ð12Þ

where d(y,t) is the depth of the plume. In Fig. 10a, the Froude num-
ber along the plume, averaged in the y-direction is shown for run2.
Another measure of the Froude number is the composite, two-layer
Froude number, Gw (Pratt, 2008) defined by

G2
w ¼ 1

1
wI

Rw
0

g0D1
V2
1
dx

þ 1
1
wI

R xR
xL

g0D2
V2
2
dx

; ð13Þ

where wI is the width xR � xL of the interface between the two lay-
ers and w is the width at top of the upper layer (see Fig. 1 of Pratt
(2008)). Here D1,2 and V1,2 are the thickness and the velocity of the
two layers. The condition for the hydraulic criticality of a two layer
flow with transverse variations in both layer velocities and thick-
ness is given by G2

w ¼ 1. We calculate G2
w from 30 km upstream of

the sill to 90 km downstream (Fig. 10b). Frequent occurrence of
G2

w P 1 at about 80 km downstream of the sill crest suggests that
the flow is hydraulically controlled by a critical section there, in
agreement with Girton et al. (2006). This location is also in remark-
able agreement with Fer et al. (2010) who obtain G2

w � 1 at Section
D with significant entrainment velocity and increase in the descent
rate of the plume.

5.5. Oscillations

Highly regular sub-inertial oscillations have been previously
observed in the near-bottom current meter records downstream
of the FBC sill crest (Geyer et al., 2006). Both earlier numerical sim-
ulations (Ezer, 2006; Riemenschneider and Legg, 2007) and our
transport time series at different sections (Fig. 3) show similar
oscillations. The data from moored instruments (Section 3) are
used to present frequency domain descriptions from Sections C
and E with three moorings each, located close to, upslope, and
downslope of the core, respectively. We note that the observations
reported by Geyer et al. (2006) are within 5–30 m from the bottom
whereas our measurements show, for the first time, the presence
of the oscillations up to 200 m HAB (the height of the mooring).
The frequency spectra (Fig. 11) for the along slope velocity compo-
nent calculated at different heights above the bottom from current
measurements at moorings MC1–MC3 (Section C) and ME1–ME3
(Section E) show elevated energy levels at frequencies correspond-
ing to periods between 80 and 114 h (3.3–4.8 days). The energy
typically increases from the upslope side of the overflow to the
downslope side in both sections. This is in accordance with the
model results showing the largest variability at the downslope side
of the overflow. While the MC array of moorings have oscillations
dominating at about 114 h period, the ME array contains more var-
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where qamb and q0 are the ambient density (in the layer above the
boundary of the plume) and a reference density. The Froude num-
ber is then averaged in the y-direction, weighted by the area of
the plume cross-section at location y at time t
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where d(y,t) is the depth of the plume. In Fig. 10a, the Froude num-
ber along the plume, averaged in the y-direction is shown for run2.
Another measure of the Froude number is the composite, two-layer
Froude number, Gw (Pratt, 2008) defined by
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where wI is the width xR � xL of the interface between the two lay-
ers and w is the width at top of the upper layer (see Fig. 1 of Pratt
(2008)). Here D1,2 and V1,2 are the thickness and the velocity of the
two layers. The condition for the hydraulic criticality of a two layer
flow with transverse variations in both layer velocities and thick-
ness is given by G2

w ¼ 1. We calculate G2
w from 30 km upstream of

the sill to 90 km downstream (Fig. 10b). Frequent occurrence of
G2

w P 1 at about 80 km downstream of the sill crest suggests that
the flow is hydraulically controlled by a critical section there, in
agreement with Girton et al. (2006). This location is also in remark-
able agreement with Fer et al. (2010) who obtain G2

w � 1 at Section
D with significant entrainment velocity and increase in the descent
rate of the plume.

5.5. Oscillations

Highly regular sub-inertial oscillations have been previously
observed in the near-bottom current meter records downstream
of the FBC sill crest (Geyer et al., 2006). Both earlier numerical sim-
ulations (Ezer, 2006; Riemenschneider and Legg, 2007) and our
transport time series at different sections (Fig. 3) show similar
oscillations. The data from moored instruments (Section 3) are
used to present frequency domain descriptions from Sections C
and E with three moorings each, located close to, upslope, and
downslope of the core, respectively. We note that the observations
reported by Geyer et al. (2006) are within 5–30 m from the bottom
whereas our measurements show, for the first time, the presence
of the oscillations up to 200 m HAB (the height of the mooring).
The frequency spectra (Fig. 11) for the along slope velocity compo-
nent calculated at different heights above the bottom from current
measurements at moorings MC1–MC3 (Section C) and ME1–ME3
(Section E) show elevated energy levels at frequencies correspond-
ing to periods between 80 and 114 h (3.3–4.8 days). The energy
typically increases from the upslope side of the overflow to the
downslope side in both sections. This is in accordance with the
model results showing the largest variability at the downslope side
of the overflow. While the MC array of moorings have oscillations
dominating at about 114 h period, the ME array contains more var-
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and E with three moorings each, located close to, upslope, and
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whereas our measurements show, for the first time, the presence
of the oscillations up to 200 m HAB (the height of the mooring).
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used to present frequency domain descriptions from Sections C
and E with three moorings each, located close to, upslope, and
downslope of the core, respectively. We note that the observations
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whereas our measurements show, for the first time, the presence
of the oscillations up to 200 m HAB (the height of the mooring).
The frequency spectra (Fig. 11) for the along slope velocity compo-
nent calculated at different heights above the bottom from current
measurements at moorings MC1–MC3 (Section C) and ME1–ME3
(Section E) show elevated energy levels at frequencies correspond-
ing to periods between 80 and 114 h (3.3–4.8 days). The energy
typically increases from the upslope side of the overflow to the
downslope side in both sections. This is in accordance with the
model results showing the largest variability at the downslope side
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iance at shorter periods. For moorings 1 and 2 of each array, the en-
ergy is generally increasing with height above bottom, but in MC3
the highest energy levels, both at the mooring location and for the
whole section, are found at the bottommost current meter. For
ME3, data are available only 20 m above bottom. Although not
encountering the highest levels of the ME array, the energy level
inferred from this current meter is significantly higher compared
with the other bottom current meters at this mooring array and
is close to the maximum levels. The variance enhanced in the high-
lighted frequency bands typically vanishes in the bottommost cur-
rent meter records, likely as a consequence of the frictional
boundary layer.

The oscillation period in the model is about 4–4.5 days (run2),
comparable to the observations. In Fig. 12 the time versus along-
path evolution of the overflow density at the plume interface is
shown. The period of 4–4.5 days is apparent and most prominent

between approximately 50 and 100 km downstream of the sill.
This corresponds to the area where the overflow exits the channel
and enters the Faroe–Island slope (50 km downstream), and a
bifurcation in the topography approximately 100 km downstream
resulting in a more complex flow structure. From the sill and
50 km downstream, the overflow is confined within the Faroe Bank
Channel constituting a different flow regime compared with the
flow on the slope. In Fig. 13 this is illustrated by plotting the mean
height of the plume (averaged from day 50 to 70) and its variation
over one oscillation period at positions 28, 60, and 80 km down-
stream of the sill.

6. Discussion

6.1. Model performance

The overflow of dense water through the Faroe Bank Channel
and onto the Faroe–Iceland slope is studied using the r-coordinate
ocean model, BOM. Despite the unresolved topography and bottom
roughness, which influences the mixing and entrainment in a
dense overflow (Özgökmen and Fischer, 2008), the mixing in the
bottom boundary layer is found to be in remarkable agreement
with direct measurements of turbulence. However, compared with
the observations, the level of turbulence and mixing is too low in
the interfacial layer and in the stratified layer above the overflow
(Section 5.3). In the vicinity of the plume-ambient interface, the
model diffusivity decreases rapidly from enhanced values in the
bottom layer by up to three orders of magnitude (Fig. 9). Initial test
runs, not reported in this paper, resulted in significantly less mix-
ing in the interface and above. Guided by the observed profiles, we
prescribed a minimum TKE level of 5 � 10�7 m2 s�2 to compensate
for the unresolved processes, and constrained the turbulent length
scale (Galperin et al., 1988). Without this limitation on the length
scale and the TKE, the dissipation rate and the vertical eddy viscos-
ity drop to minimum levels immediately above the overflow. This
may be due to unresolved processes in the interfacial layer and the
lack of tides in the model. The second order turbulence closure
models employed here compute the turbulent diffusivity as a func-
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iance at shorter periods. For moorings 1 and 2 of each array, the en-
ergy is generally increasing with height above bottom, but in MC3
the highest energy levels, both at the mooring location and for the
whole section, are found at the bottommost current meter. For
ME3, data are available only 20 m above bottom. Although not
encountering the highest levels of the ME array, the energy level
inferred from this current meter is significantly higher compared
with the other bottom current meters at this mooring array and
is close to the maximum levels. The variance enhanced in the high-
lighted frequency bands typically vanishes in the bottommost cur-
rent meter records, likely as a consequence of the frictional
boundary layer.

The oscillation period in the model is about 4–4.5 days (run2),
comparable to the observations. In Fig. 12 the time versus along-
path evolution of the overflow density at the plume interface is
shown. The period of 4–4.5 days is apparent and most prominent

between approximately 50 and 100 km downstream of the sill.
This corresponds to the area where the overflow exits the channel
and enters the Faroe–Island slope (50 km downstream), and a
bifurcation in the topography approximately 100 km downstream
resulting in a more complex flow structure. From the sill and
50 km downstream, the overflow is confined within the Faroe Bank
Channel constituting a different flow regime compared with the
flow on the slope. In Fig. 13 this is illustrated by plotting the mean
height of the plume (averaged from day 50 to 70) and its variation
over one oscillation period at positions 28, 60, and 80 km down-
stream of the sill.
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6.1. Model performance

The overflow of dense water through the Faroe Bank Channel
and onto the Faroe–Iceland slope is studied using the r-coordinate
ocean model, BOM. Despite the unresolved topography and bottom
roughness, which influences the mixing and entrainment in a
dense overflow (Özgökmen and Fischer, 2008), the mixing in the
bottom boundary layer is found to be in remarkable agreement
with direct measurements of turbulence. However, compared with
the observations, the level of turbulence and mixing is too low in
the interfacial layer and in the stratified layer above the overflow
(Section 5.3). In the vicinity of the plume-ambient interface, the
model diffusivity decreases rapidly from enhanced values in the
bottom layer by up to three orders of magnitude (Fig. 9). Initial test
runs, not reported in this paper, resulted in significantly less mix-
ing in the interface and above. Guided by the observed profiles, we
prescribed a minimum TKE level of 5 � 10�7 m2 s�2 to compensate
for the unresolved processes, and constrained the turbulent length
scale (Galperin et al., 1988). Without this limitation on the length
scale and the TKE, the dissipation rate and the vertical eddy viscos-
ity drop to minimum levels immediately above the overflow. This
may be due to unresolved processes in the interfacial layer and the
lack of tides in the model. The second order turbulence closure
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iance at shorter periods. For moorings 1 and 2 of each array, the en-
ergy is generally increasing with height above bottom, but in MC3
the highest energy levels, both at the mooring location and for the
whole section, are found at the bottommost current meter. For
ME3, data are available only 20 m above bottom. Although not
encountering the highest levels of the ME array, the energy level
inferred from this current meter is significantly higher compared
with the other bottom current meters at this mooring array and
is close to the maximum levels. The variance enhanced in the high-
lighted frequency bands typically vanishes in the bottommost cur-
rent meter records, likely as a consequence of the frictional
boundary layer.

The oscillation period in the model is about 4–4.5 days (run2),
comparable to the observations. In Fig. 12 the time versus along-
path evolution of the overflow density at the plume interface is
shown. The period of 4–4.5 days is apparent and most prominent

between approximately 50 and 100 km downstream of the sill.
This corresponds to the area where the overflow exits the channel
and enters the Faroe–Island slope (50 km downstream), and a
bifurcation in the topography approximately 100 km downstream
resulting in a more complex flow structure. From the sill and
50 km downstream, the overflow is confined within the Faroe Bank
Channel constituting a different flow regime compared with the
flow on the slope. In Fig. 13 this is illustrated by plotting the mean
height of the plume (averaged from day 50 to 70) and its variation
over one oscillation period at positions 28, 60, and 80 km down-
stream of the sill.

6. Discussion

6.1. Model performance

The overflow of dense water through the Faroe Bank Channel
and onto the Faroe–Iceland slope is studied using the r-coordinate
ocean model, BOM. Despite the unresolved topography and bottom
roughness, which influences the mixing and entrainment in a
dense overflow (Özgökmen and Fischer, 2008), the mixing in the
bottom boundary layer is found to be in remarkable agreement
with direct measurements of turbulence. However, compared with
the observations, the level of turbulence and mixing is too low in
the interfacial layer and in the stratified layer above the overflow
(Section 5.3). In the vicinity of the plume-ambient interface, the
model diffusivity decreases rapidly from enhanced values in the
bottom layer by up to three orders of magnitude (Fig. 9). Initial test
runs, not reported in this paper, resulted in significantly less mix-
ing in the interface and above. Guided by the observed profiles, we
prescribed a minimum TKE level of 5 � 10�7 m2 s�2 to compensate
for the unresolved processes, and constrained the turbulent length
scale (Galperin et al., 1988). Without this limitation on the length
scale and the TKE, the dissipation rate and the vertical eddy viscos-
ity drop to minimum levels immediately above the overflow. This
may be due to unresolved processes in the interfacial layer and the
lack of tides in the model. The second order turbulence closure
models employed here compute the turbulent diffusivity as a func-
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iance at shorter periods. For moorings 1 and 2 of each array, the en-
ergy is generally increasing with height above bottom, but in MC3
the highest energy levels, both at the mooring location and for the
whole section, are found at the bottommost current meter. For
ME3, data are available only 20 m above bottom. Although not
encountering the highest levels of the ME array, the energy level
inferred from this current meter is significantly higher compared
with the other bottom current meters at this mooring array and
is close to the maximum levels. The variance enhanced in the high-
lighted frequency bands typically vanishes in the bottommost cur-
rent meter records, likely as a consequence of the frictional
boundary layer.

The oscillation period in the model is about 4–4.5 days (run2),
comparable to the observations. In Fig. 12 the time versus along-
path evolution of the overflow density at the plume interface is
shown. The period of 4–4.5 days is apparent and most prominent

between approximately 50 and 100 km downstream of the sill.
This corresponds to the area where the overflow exits the channel
and enters the Faroe–Island slope (50 km downstream), and a
bifurcation in the topography approximately 100 km downstream
resulting in a more complex flow structure. From the sill and
50 km downstream, the overflow is confined within the Faroe Bank
Channel constituting a different flow regime compared with the
flow on the slope. In Fig. 13 this is illustrated by plotting the mean
height of the plume (averaged from day 50 to 70) and its variation
over one oscillation period at positions 28, 60, and 80 km down-
stream of the sill.

6. Discussion

6.1. Model performance

The overflow of dense water through the Faroe Bank Channel
and onto the Faroe–Iceland slope is studied using the r-coordinate
ocean model, BOM. Despite the unresolved topography and bottom
roughness, which influences the mixing and entrainment in a
dense overflow (Özgökmen and Fischer, 2008), the mixing in the
bottom boundary layer is found to be in remarkable agreement
with direct measurements of turbulence. However, compared with
the observations, the level of turbulence and mixing is too low in
the interfacial layer and in the stratified layer above the overflow
(Section 5.3). In the vicinity of the plume-ambient interface, the
model diffusivity decreases rapidly from enhanced values in the
bottom layer by up to three orders of magnitude (Fig. 9). Initial test
runs, not reported in this paper, resulted in significantly less mix-
ing in the interface and above. Guided by the observed profiles, we
prescribed a minimum TKE level of 5 � 10�7 m2 s�2 to compensate
for the unresolved processes, and constrained the turbulent length
scale (Galperin et al., 1988). Without this limitation on the length
scale and the TKE, the dissipation rate and the vertical eddy viscos-
ity drop to minimum levels immediately above the overflow. This
may be due to unresolved processes in the interfacial layer and the
lack of tides in the model. The second order turbulence closure
models employed here compute the turbulent diffusivity as a func-
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tion of the gradient Richardson number, Ri = N2/M2, where the
buoyancy frequency, N, and shear, M, are defined in Eq. (5). Mixing
will collapse for Ri greater than a finite critical threshold, typically
less than unity. Data from various sources (see Canuto et al., 2008,
and references cited therein) including our own measurements
point toward significant mixing for Ri > 1, and considerable ad-
vances are made in developing models with no finite critical Ri
(Canuto et al., 2008; Umlauf, 2009). The shear production of TKE
in layers with large Ri can be, for example, due to the vertical trans-
port of TKE from neighboring regions by turbulent motions (Um-
lauf, 2009) or due to the presence of internal waves (Baumert
and Peters, 2009). According to Baumert and Peters (2009), for
0.25 > Ri > 0.5, both shear instability and internal wave-turbulence
transition will coexist and contribute to mixing. The lack of sources
of mixing for large Ri is clearly a deficiency of the model.

The grid size, especially in the horizontal, used in the present
set of studies is too coarse to capture the transports of TKE, to rep-
resent internal waves, and the mixing due to these processes
(Bergh and Berntsen, 2009; Berntsen et al., 2009). One should also
bear in mind that in exercises like the present, the small scale (sub-
grid scale) topography is not captured, and the associated form
drag, wave drag, and mixing are not parameterized (see for in-
stance Lott and Miller (1997)). Using the observed average vertical
profiles of density and velocity given in Fig. 9, Fer et al. (2010) infer
Ri between 0.6 and 1 in the entire interfacial layer and less than
unity in the entire bottom boundary layer (with Ri < 0.25 in the
bottommost 25 m), at scales comparable to the vertical resolution
of the model. Observations also show a pattern with enhanced e in
the interface where the stratification is also enhanced (Fer et al.,
2010), indicating possible influence of internal wave induced mix-
ing. It is noteworthy that the model profiles of dissipation and dif-
fusivity in the bottommost 25 m, where observations suggest
Ri < 0.25, capture the observations, hence the turbulence closures
perform satisfactorily when the TKE generation mechanism is
resolved.

6.2. Comparison with RL07

A shortcoming of ocean circulation models is their representa-
tion of dense overflows from polar and marginal seas and the asso-
ciated entrainment and mixing processes. Particularly z-level
models at coarse resolution excessively mix the hydrographic
properties of the overflows as a result of the step topography. In
a regional simulation study of the FBC overflow, RL07 has shown
that a traditional z-level ocean model can simulate the FBC over-
flow reasonably well when zero vertical diffusivity and a constant
vertical viscosity are prescribed. They found, however, the amount
of mixing to be very sensitive to the grid resolution and to the ver-
tical viscosity. Due to the advection scheme, numerical diffusion
mixes the advected tracer field to preserve smoothness. This leads,

fortuitously, to mixing in places that coincide with large shear and
Froude numbers. In our r-coordinate model, the small scale noise
due to the steps in the topography for the z-level model is reduced
and state-of-the-art turbulence closures are implemented. In our
simulations mixing in the interface between the plume and the
ambient is weaker, for all runs, compared with both the results
from the z-level model and with the observations. This is likely
due to unresolved processes at the interface (Bergh and Berntsen,
2009; Berntsen et al., 2009, see Section 6.1) and may be improved
by increased horizontal resolution or parameterization of these
processes.

Average transport is contrasted to model results of RL07 in Ta-
ble 2. The transport at the sill is within 20% of the observed trans-
ports, in better agreement than the z-level set-up that
underestimates the transport at the sill by up to 40%. The increase
in along plume transport from the sill crest to 100 km downstream
is about 10% lower than that in RL07, demonstrating the lower
mixing in our simulations. This is also evident in the average tra-
cer-weighted density reduction downstream of the sill, clearly
lower, by about 50% from the sill to x = �350 km, in our simula-
tions compared with RL07’s results.

The along-path evolution of the Froude number is comparable
to that inferred from the level model. Both models show similarly
elevated Fr within approximately 100 km downstream from the
sill, particularly between 50 and 80 km where the time mean value
reaches 0.76 for run2 and 0.50 for run0 (same set up as RL07’s con-
trol run). Downstream of 200 km, the Froude numbers produced
with the present r-coordinate model are smaller than those in
RL07, and they lack the corresponding trend.

6.3. Does the mesoscale variability affect the descent rate and mixing?

To illustrate how the low-frequency variability of the overflow
affects the dynamics and mixing of the plume, an ensemble aver-
age over oscillation events during the period from day 50 to 70 is
calculated at two selected sections, 28 and 60 km downstream of
the sill, in the channel and on the slope, respectively (see Fig. 13
for sections showing the topography). For the averaging, data are
extracted in 6-day windows centered at times of local transport
maximum events. The average and the variability over ensembles
of the plume thickness, the bottom depth at the tracer weighted
position of the overflow and the section-averaged dissipation rate
are displayed in Fig. 14. The amplitude of the bottom depth oscil-
lations of the plume core position (i.e., the tracer weighted posi-
tion) is about 50 m at the section closest to the sill and by more
than 100 m at the section farthest downstream. In the channel
(x = �28 km), the plume covers the deepest part of the section at
all times (see Fig. 13), hence the tracer-weighted bottom depth
does not vary significantly. On the slope, on the other hand, eddies
lead to periodic cross-isobath descent of the dense water deeper on
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tion of the gradient Richardson number, Ri = N2/M2, where the
buoyancy frequency, N, and shear, M, are defined in Eq. (5). Mixing
will collapse for Ri greater than a finite critical threshold, typically
less than unity. Data from various sources (see Canuto et al., 2008,
and references cited therein) including our own measurements
point toward significant mixing for Ri > 1, and considerable ad-
vances are made in developing models with no finite critical Ri
(Canuto et al., 2008; Umlauf, 2009). The shear production of TKE
in layers with large Ri can be, for example, due to the vertical trans-
port of TKE from neighboring regions by turbulent motions (Um-
lauf, 2009) or due to the presence of internal waves (Baumert
and Peters, 2009). According to Baumert and Peters (2009), for
0.25 > Ri > 0.5, both shear instability and internal wave-turbulence
transition will coexist and contribute to mixing. The lack of sources
of mixing for large Ri is clearly a deficiency of the model.

The grid size, especially in the horizontal, used in the present
set of studies is too coarse to capture the transports of TKE, to rep-
resent internal waves, and the mixing due to these processes
(Bergh and Berntsen, 2009; Berntsen et al., 2009). One should also
bear in mind that in exercises like the present, the small scale (sub-
grid scale) topography is not captured, and the associated form
drag, wave drag, and mixing are not parameterized (see for in-
stance Lott and Miller (1997)). Using the observed average vertical
profiles of density and velocity given in Fig. 9, Fer et al. (2010) infer
Ri between 0.6 and 1 in the entire interfacial layer and less than
unity in the entire bottom boundary layer (with Ri < 0.25 in the
bottommost 25 m), at scales comparable to the vertical resolution
of the model. Observations also show a pattern with enhanced e in
the interface where the stratification is also enhanced (Fer et al.,
2010), indicating possible influence of internal wave induced mix-
ing. It is noteworthy that the model profiles of dissipation and dif-
fusivity in the bottommost 25 m, where observations suggest
Ri < 0.25, capture the observations, hence the turbulence closures
perform satisfactorily when the TKE generation mechanism is
resolved.

6.2. Comparison with RL07

A shortcoming of ocean circulation models is their representa-
tion of dense overflows from polar and marginal seas and the asso-
ciated entrainment and mixing processes. Particularly z-level
models at coarse resolution excessively mix the hydrographic
properties of the overflows as a result of the step topography. In
a regional simulation study of the FBC overflow, RL07 has shown
that a traditional z-level ocean model can simulate the FBC over-
flow reasonably well when zero vertical diffusivity and a constant
vertical viscosity are prescribed. They found, however, the amount
of mixing to be very sensitive to the grid resolution and to the ver-
tical viscosity. Due to the advection scheme, numerical diffusion
mixes the advected tracer field to preserve smoothness. This leads,

fortuitously, to mixing in places that coincide with large shear and
Froude numbers. In our r-coordinate model, the small scale noise
due to the steps in the topography for the z-level model is reduced
and state-of-the-art turbulence closures are implemented. In our
simulations mixing in the interface between the plume and the
ambient is weaker, for all runs, compared with both the results
from the z-level model and with the observations. This is likely
due to unresolved processes at the interface (Bergh and Berntsen,
2009; Berntsen et al., 2009, see Section 6.1) and may be improved
by increased horizontal resolution or parameterization of these
processes.

Average transport is contrasted to model results of RL07 in Ta-
ble 2. The transport at the sill is within 20% of the observed trans-
ports, in better agreement than the z-level set-up that
underestimates the transport at the sill by up to 40%. The increase
in along plume transport from the sill crest to 100 km downstream
is about 10% lower than that in RL07, demonstrating the lower
mixing in our simulations. This is also evident in the average tra-
cer-weighted density reduction downstream of the sill, clearly
lower, by about 50% from the sill to x = �350 km, in our simula-
tions compared with RL07’s results.

The along-path evolution of the Froude number is comparable
to that inferred from the level model. Both models show similarly
elevated Fr within approximately 100 km downstream from the
sill, particularly between 50 and 80 km where the time mean value
reaches 0.76 for run2 and 0.50 for run0 (same set up as RL07’s con-
trol run). Downstream of 200 km, the Froude numbers produced
with the present r-coordinate model are smaller than those in
RL07, and they lack the corresponding trend.

6.3. Does the mesoscale variability affect the descent rate and mixing?

To illustrate how the low-frequency variability of the overflow
affects the dynamics and mixing of the plume, an ensemble aver-
age over oscillation events during the period from day 50 to 70 is
calculated at two selected sections, 28 and 60 km downstream of
the sill, in the channel and on the slope, respectively (see Fig. 13
for sections showing the topography). For the averaging, data are
extracted in 6-day windows centered at times of local transport
maximum events. The average and the variability over ensembles
of the plume thickness, the bottom depth at the tracer weighted
position of the overflow and the section-averaged dissipation rate
are displayed in Fig. 14. The amplitude of the bottom depth oscil-
lations of the plume core position (i.e., the tracer weighted posi-
tion) is about 50 m at the section closest to the sill and by more
than 100 m at the section farthest downstream. In the channel
(x = �28 km), the plume covers the deepest part of the section at
all times (see Fig. 13), hence the tracer-weighted bottom depth
does not vary significantly. On the slope, on the other hand, eddies
lead to periodic cross-isobath descent of the dense water deeper on
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tion of the gradient Richardson number, Ri = N2/M2, where the
buoyancy frequency, N, and shear, M, are defined in Eq. (5). Mixing
will collapse for Ri greater than a finite critical threshold, typically
less than unity. Data from various sources (see Canuto et al., 2008,
and references cited therein) including our own measurements
point toward significant mixing for Ri > 1, and considerable ad-
vances are made in developing models with no finite critical Ri
(Canuto et al., 2008; Umlauf, 2009). The shear production of TKE
in layers with large Ri can be, for example, due to the vertical trans-
port of TKE from neighboring regions by turbulent motions (Um-
lauf, 2009) or due to the presence of internal waves (Baumert
and Peters, 2009). According to Baumert and Peters (2009), for
0.25 > Ri > 0.5, both shear instability and internal wave-turbulence
transition will coexist and contribute to mixing. The lack of sources
of mixing for large Ri is clearly a deficiency of the model.

The grid size, especially in the horizontal, used in the present
set of studies is too coarse to capture the transports of TKE, to rep-
resent internal waves, and the mixing due to these processes
(Bergh and Berntsen, 2009; Berntsen et al., 2009). One should also
bear in mind that in exercises like the present, the small scale (sub-
grid scale) topography is not captured, and the associated form
drag, wave drag, and mixing are not parameterized (see for in-
stance Lott and Miller (1997)). Using the observed average vertical
profiles of density and velocity given in Fig. 9, Fer et al. (2010) infer
Ri between 0.6 and 1 in the entire interfacial layer and less than
unity in the entire bottom boundary layer (with Ri < 0.25 in the
bottommost 25 m), at scales comparable to the vertical resolution
of the model. Observations also show a pattern with enhanced e in
the interface where the stratification is also enhanced (Fer et al.,
2010), indicating possible influence of internal wave induced mix-
ing. It is noteworthy that the model profiles of dissipation and dif-
fusivity in the bottommost 25 m, where observations suggest
Ri < 0.25, capture the observations, hence the turbulence closures
perform satisfactorily when the TKE generation mechanism is
resolved.

6.2. Comparison with RL07

A shortcoming of ocean circulation models is their representa-
tion of dense overflows from polar and marginal seas and the asso-
ciated entrainment and mixing processes. Particularly z-level
models at coarse resolution excessively mix the hydrographic
properties of the overflows as a result of the step topography. In
a regional simulation study of the FBC overflow, RL07 has shown
that a traditional z-level ocean model can simulate the FBC over-
flow reasonably well when zero vertical diffusivity and a constant
vertical viscosity are prescribed. They found, however, the amount
of mixing to be very sensitive to the grid resolution and to the ver-
tical viscosity. Due to the advection scheme, numerical diffusion
mixes the advected tracer field to preserve smoothness. This leads,

fortuitously, to mixing in places that coincide with large shear and
Froude numbers. In our r-coordinate model, the small scale noise
due to the steps in the topography for the z-level model is reduced
and state-of-the-art turbulence closures are implemented. In our
simulations mixing in the interface between the plume and the
ambient is weaker, for all runs, compared with both the results
from the z-level model and with the observations. This is likely
due to unresolved processes at the interface (Bergh and Berntsen,
2009; Berntsen et al., 2009, see Section 6.1) and may be improved
by increased horizontal resolution or parameterization of these
processes.

Average transport is contrasted to model results of RL07 in Ta-
ble 2. The transport at the sill is within 20% of the observed trans-
ports, in better agreement than the z-level set-up that
underestimates the transport at the sill by up to 40%. The increase
in along plume transport from the sill crest to 100 km downstream
is about 10% lower than that in RL07, demonstrating the lower
mixing in our simulations. This is also evident in the average tra-
cer-weighted density reduction downstream of the sill, clearly
lower, by about 50% from the sill to x = �350 km, in our simula-
tions compared with RL07’s results.

The along-path evolution of the Froude number is comparable
to that inferred from the level model. Both models show similarly
elevated Fr within approximately 100 km downstream from the
sill, particularly between 50 and 80 km where the time mean value
reaches 0.76 for run2 and 0.50 for run0 (same set up as RL07’s con-
trol run). Downstream of 200 km, the Froude numbers produced
with the present r-coordinate model are smaller than those in
RL07, and they lack the corresponding trend.

6.3. Does the mesoscale variability affect the descent rate and mixing?

To illustrate how the low-frequency variability of the overflow
affects the dynamics and mixing of the plume, an ensemble aver-
age over oscillation events during the period from day 50 to 70 is
calculated at two selected sections, 28 and 60 km downstream of
the sill, in the channel and on the slope, respectively (see Fig. 13
for sections showing the topography). For the averaging, data are
extracted in 6-day windows centered at times of local transport
maximum events. The average and the variability over ensembles
of the plume thickness, the bottom depth at the tracer weighted
position of the overflow and the section-averaged dissipation rate
are displayed in Fig. 14. The amplitude of the bottom depth oscil-
lations of the plume core position (i.e., the tracer weighted posi-
tion) is about 50 m at the section closest to the sill and by more
than 100 m at the section farthest downstream. In the channel
(x = �28 km), the plume covers the deepest part of the section at
all times (see Fig. 13), hence the tracer-weighted bottom depth
does not vary significantly. On the slope, on the other hand, eddies
lead to periodic cross-isobath descent of the dense water deeper on
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tion of the gradient Richardson number, Ri = N2/M2, where the
buoyancy frequency, N, and shear, M, are defined in Eq. (5). Mixing
will collapse for Ri greater than a finite critical threshold, typically
less than unity. Data from various sources (see Canuto et al., 2008,
and references cited therein) including our own measurements
point toward significant mixing for Ri > 1, and considerable ad-
vances are made in developing models with no finite critical Ri
(Canuto et al., 2008; Umlauf, 2009). The shear production of TKE
in layers with large Ri can be, for example, due to the vertical trans-
port of TKE from neighboring regions by turbulent motions (Um-
lauf, 2009) or due to the presence of internal waves (Baumert
and Peters, 2009). According to Baumert and Peters (2009), for
0.25 > Ri > 0.5, both shear instability and internal wave-turbulence
transition will coexist and contribute to mixing. The lack of sources
of mixing for large Ri is clearly a deficiency of the model.

The grid size, especially in the horizontal, used in the present
set of studies is too coarse to capture the transports of TKE, to rep-
resent internal waves, and the mixing due to these processes
(Bergh and Berntsen, 2009; Berntsen et al., 2009). One should also
bear in mind that in exercises like the present, the small scale (sub-
grid scale) topography is not captured, and the associated form
drag, wave drag, and mixing are not parameterized (see for in-
stance Lott and Miller (1997)). Using the observed average vertical
profiles of density and velocity given in Fig. 9, Fer et al. (2010) infer
Ri between 0.6 and 1 in the entire interfacial layer and less than
unity in the entire bottom boundary layer (with Ri < 0.25 in the
bottommost 25 m), at scales comparable to the vertical resolution
of the model. Observations also show a pattern with enhanced e in
the interface where the stratification is also enhanced (Fer et al.,
2010), indicating possible influence of internal wave induced mix-
ing. It is noteworthy that the model profiles of dissipation and dif-
fusivity in the bottommost 25 m, where observations suggest
Ri < 0.25, capture the observations, hence the turbulence closures
perform satisfactorily when the TKE generation mechanism is
resolved.

6.2. Comparison with RL07

A shortcoming of ocean circulation models is their representa-
tion of dense overflows from polar and marginal seas and the asso-
ciated entrainment and mixing processes. Particularly z-level
models at coarse resolution excessively mix the hydrographic
properties of the overflows as a result of the step topography. In
a regional simulation study of the FBC overflow, RL07 has shown
that a traditional z-level ocean model can simulate the FBC over-
flow reasonably well when zero vertical diffusivity and a constant
vertical viscosity are prescribed. They found, however, the amount
of mixing to be very sensitive to the grid resolution and to the ver-
tical viscosity. Due to the advection scheme, numerical diffusion
mixes the advected tracer field to preserve smoothness. This leads,

fortuitously, to mixing in places that coincide with large shear and
Froude numbers. In our r-coordinate model, the small scale noise
due to the steps in the topography for the z-level model is reduced
and state-of-the-art turbulence closures are implemented. In our
simulations mixing in the interface between the plume and the
ambient is weaker, for all runs, compared with both the results
from the z-level model and with the observations. This is likely
due to unresolved processes at the interface (Bergh and Berntsen,
2009; Berntsen et al., 2009, see Section 6.1) and may be improved
by increased horizontal resolution or parameterization of these
processes.

Average transport is contrasted to model results of RL07 in Ta-
ble 2. The transport at the sill is within 20% of the observed trans-
ports, in better agreement than the z-level set-up that
underestimates the transport at the sill by up to 40%. The increase
in along plume transport from the sill crest to 100 km downstream
is about 10% lower than that in RL07, demonstrating the lower
mixing in our simulations. This is also evident in the average tra-
cer-weighted density reduction downstream of the sill, clearly
lower, by about 50% from the sill to x = �350 km, in our simula-
tions compared with RL07’s results.

The along-path evolution of the Froude number is comparable
to that inferred from the level model. Both models show similarly
elevated Fr within approximately 100 km downstream from the
sill, particularly between 50 and 80 km where the time mean value
reaches 0.76 for run2 and 0.50 for run0 (same set up as RL07’s con-
trol run). Downstream of 200 km, the Froude numbers produced
with the present r-coordinate model are smaller than those in
RL07, and they lack the corresponding trend.

6.3. Does the mesoscale variability affect the descent rate and mixing?

To illustrate how the low-frequency variability of the overflow
affects the dynamics and mixing of the plume, an ensemble aver-
age over oscillation events during the period from day 50 to 70 is
calculated at two selected sections, 28 and 60 km downstream of
the sill, in the channel and on the slope, respectively (see Fig. 13
for sections showing the topography). For the averaging, data are
extracted in 6-day windows centered at times of local transport
maximum events. The average and the variability over ensembles
of the plume thickness, the bottom depth at the tracer weighted
position of the overflow and the section-averaged dissipation rate
are displayed in Fig. 14. The amplitude of the bottom depth oscil-
lations of the plume core position (i.e., the tracer weighted posi-
tion) is about 50 m at the section closest to the sill and by more
than 100 m at the section farthest downstream. In the channel
(x = �28 km), the plume covers the deepest part of the section at
all times (see Fig. 13), hence the tracer-weighted bottom depth
does not vary significantly. On the slope, on the other hand, eddies
lead to periodic cross-isobath descent of the dense water deeper on

200

400

600

800

1000

1200

x=-28km

D
ep

th
 (m

)

x=-60km x=-80km

20km

Fig. 13. The extent of the plume defined by s = 0.1 at sections 28, 60 and 80 km downstream of the sill crest. The solid black line is the mean plume thickness from day 50 to
70 and the dashed lines are the maxima and minima over one oscillation period. The solid grey line is the bottom.

40 K.S. Seim et al. / Ocean Modelling 35 (2010) 31–44



the slope. Overall, this leads to a descent rate (see Fig. 15) which
cannot simply be explained by the balance of buoyancy, drag and
the Coriolis force acting on a slab of plume as discussed in Fer
et al. (2010). The dissipation rate is also clearly affected by the
oscillations changing by more than a factor of 2 and 10 for the sec-
tion at 28 and 60 km downstream of the sill, respectively.

The regular oscillations are a prominent feature of the FBC
overflow and are very important for the mixing of the overflow.
The regularity of the oscillations decreases as the overflow leaves
the FBC and enters the Iceland–Faroe slope. Similar oscillations
are observed elsewhere, e.g., in the Filchner overflow, Antarctica
(Darelius et al., 2009), the Denmark Strait overflow (Käse et al.,
2003). It is difficult to pinpoint a single mechanism causing the
oscillations. Pratt et al. (2008) have shown that the change in
curvature of a hydraulically controlled channel flow alone can
lead to such variability. Results from a detailed stability analysis
(Appendix A) are not conclusive, but indicate that downstream of
the sill the most unstable mode has a typical wavelength greater
than 40 km. The growth rate increases with decreasing curvature

of the channel with an indication of increased periods at approx-
imately 70 km downstream of the sill.

7. Summary

Regional simulations of the dense overflow through the Faroe
Bank Channel and along the Faroe–Island slope are conducted
using the r-coordinate Bergen ocean model with idealized forcing
in the absence of wind and tides. Results are compared with obser-
vations of hydrography, currents and turbulence conducted in
2008 (Fer et al., 2010). The observations comprise shipboard data
(profiles of horizontal velocity, hydrography, dissipation rate of
turbulent kinetic energy, and eddy diffusivity), and 2-month long
time series of horizontal currents from moored instruments. The
simulations comprise four runs including one with constant eddy
viscosity and followed by three experiments with second-order
closure models (MY2.5, k–e and k–x). The terrain-following coor-
dinate system is suitable for overflow modelling. It eliminates
the numerical mixing problem induced by the step topography of
z-level models, and allows for introducing state-of-the-art turbu-
lence closure models. Barring the constant eddy viscosity run, the
results are found to be robust to the choice of the turbulence
model.

In general, the model reproduces the salient features of the
overflow plume reasonably well. The transport at the sill is within
20% of the observed transports (Hansen and Østerhus, 2007), in
better agreement than a recent z-level model study (Riemenschne-
ider and Legg, 2007) that underestimates the transport at the sill
by up to 40%. The dissipation rate and eddy diffusivity dictated
by the turbulent closure in the bottommost 60 m compare excep-
tionally well with the direct turbulence measurements. In this
range, the gradient Richardson number is small and the production
of turbulent kinetic energy is well resolved. In the interior of the
plume, the model overestimates the dissipation rate and the eddy
diffusivity by up to one order of magnitude. Turbulence then drops
rapidly in the interfacial layer to levels well below the observa-
tions. This is due to the unresolved processes in the interfacial
layer where the Richardson number is around unity. Entrainment,
judged from the increase in volume transport from the sill region
to 100 km downstream is weaker for all runs when compared with
the observations and the results from the z-level model. The lack of
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the slope. Overall, this leads to a descent rate (see Fig. 15) which
cannot simply be explained by the balance of buoyancy, drag and
the Coriolis force acting on a slab of plume as discussed in Fer
et al. (2010). The dissipation rate is also clearly affected by the
oscillations changing by more than a factor of 2 and 10 for the sec-
tion at 28 and 60 km downstream of the sill, respectively.

The regular oscillations are a prominent feature of the FBC
overflow and are very important for the mixing of the overflow.
The regularity of the oscillations decreases as the overflow leaves
the FBC and enters the Iceland–Faroe slope. Similar oscillations
are observed elsewhere, e.g., in the Filchner overflow, Antarctica
(Darelius et al., 2009), the Denmark Strait overflow (Käse et al.,
2003). It is difficult to pinpoint a single mechanism causing the
oscillations. Pratt et al. (2008) have shown that the change in
curvature of a hydraulically controlled channel flow alone can
lead to such variability. Results from a detailed stability analysis
(Appendix A) are not conclusive, but indicate that downstream of
the sill the most unstable mode has a typical wavelength greater
than 40 km. The growth rate increases with decreasing curvature

of the channel with an indication of increased periods at approx-
imately 70 km downstream of the sill.

7. Summary

Regional simulations of the dense overflow through the Faroe
Bank Channel and along the Faroe–Island slope are conducted
using the r-coordinate Bergen ocean model with idealized forcing
in the absence of wind and tides. Results are compared with obser-
vations of hydrography, currents and turbulence conducted in
2008 (Fer et al., 2010). The observations comprise shipboard data
(profiles of horizontal velocity, hydrography, dissipation rate of
turbulent kinetic energy, and eddy diffusivity), and 2-month long
time series of horizontal currents from moored instruments. The
simulations comprise four runs including one with constant eddy
viscosity and followed by three experiments with second-order
closure models (MY2.5, k–e and k–x). The terrain-following coor-
dinate system is suitable for overflow modelling. It eliminates
the numerical mixing problem induced by the step topography of
z-level models, and allows for introducing state-of-the-art turbu-
lence closure models. Barring the constant eddy viscosity run, the
results are found to be robust to the choice of the turbulence
model.

In general, the model reproduces the salient features of the
overflow plume reasonably well. The transport at the sill is within
20% of the observed transports (Hansen and Østerhus, 2007), in
better agreement than a recent z-level model study (Riemenschne-
ider and Legg, 2007) that underestimates the transport at the sill
by up to 40%. The dissipation rate and eddy diffusivity dictated
by the turbulent closure in the bottommost 60 m compare excep-
tionally well with the direct turbulence measurements. In this
range, the gradient Richardson number is small and the production
of turbulent kinetic energy is well resolved. In the interior of the
plume, the model overestimates the dissipation rate and the eddy
diffusivity by up to one order of magnitude. Turbulence then drops
rapidly in the interfacial layer to levels well below the observa-
tions. This is due to the unresolved processes in the interfacial
layer where the Richardson number is around unity. Entrainment,
judged from the increase in volume transport from the sill region
to 100 km downstream is weaker for all runs when compared with
the observations and the results from the z-level model. The lack of
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the slope. Overall, this leads to a descent rate (see Fig. 15) which
cannot simply be explained by the balance of buoyancy, drag and
the Coriolis force acting on a slab of plume as discussed in Fer
et al. (2010). The dissipation rate is also clearly affected by the
oscillations changing by more than a factor of 2 and 10 for the sec-
tion at 28 and 60 km downstream of the sill, respectively.

The regular oscillations are a prominent feature of the FBC
overflow and are very important for the mixing of the overflow.
The regularity of the oscillations decreases as the overflow leaves
the FBC and enters the Iceland–Faroe slope. Similar oscillations
are observed elsewhere, e.g., in the Filchner overflow, Antarctica
(Darelius et al., 2009), the Denmark Strait overflow (Käse et al.,
2003). It is difficult to pinpoint a single mechanism causing the
oscillations. Pratt et al. (2008) have shown that the change in
curvature of a hydraulically controlled channel flow alone can
lead to such variability. Results from a detailed stability analysis
(Appendix A) are not conclusive, but indicate that downstream of
the sill the most unstable mode has a typical wavelength greater
than 40 km. The growth rate increases with decreasing curvature

of the channel with an indication of increased periods at approx-
imately 70 km downstream of the sill.

7. Summary

Regional simulations of the dense overflow through the Faroe
Bank Channel and along the Faroe–Island slope are conducted
using the r-coordinate Bergen ocean model with idealized forcing
in the absence of wind and tides. Results are compared with obser-
vations of hydrography, currents and turbulence conducted in
2008 (Fer et al., 2010). The observations comprise shipboard data
(profiles of horizontal velocity, hydrography, dissipation rate of
turbulent kinetic energy, and eddy diffusivity), and 2-month long
time series of horizontal currents from moored instruments. The
simulations comprise four runs including one with constant eddy
viscosity and followed by three experiments with second-order
closure models (MY2.5, k–e and k–x). The terrain-following coor-
dinate system is suitable for overflow modelling. It eliminates
the numerical mixing problem induced by the step topography of
z-level models, and allows for introducing state-of-the-art turbu-
lence closure models. Barring the constant eddy viscosity run, the
results are found to be robust to the choice of the turbulence
model.

In general, the model reproduces the salient features of the
overflow plume reasonably well. The transport at the sill is within
20% of the observed transports (Hansen and Østerhus, 2007), in
better agreement than a recent z-level model study (Riemenschne-
ider and Legg, 2007) that underestimates the transport at the sill
by up to 40%. The dissipation rate and eddy diffusivity dictated
by the turbulent closure in the bottommost 60 m compare excep-
tionally well with the direct turbulence measurements. In this
range, the gradient Richardson number is small and the production
of turbulent kinetic energy is well resolved. In the interior of the
plume, the model overestimates the dissipation rate and the eddy
diffusivity by up to one order of magnitude. Turbulence then drops
rapidly in the interfacial layer to levels well below the observa-
tions. This is due to the unresolved processes in the interfacial
layer where the Richardson number is around unity. Entrainment,
judged from the increase in volume transport from the sill region
to 100 km downstream is weaker for all runs when compared with
the observations and the results from the z-level model. The lack of
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the slope. Overall, this leads to a descent rate (see Fig. 15) which
cannot simply be explained by the balance of buoyancy, drag and
the Coriolis force acting on a slab of plume as discussed in Fer
et al. (2010). The dissipation rate is also clearly affected by the
oscillations changing by more than a factor of 2 and 10 for the sec-
tion at 28 and 60 km downstream of the sill, respectively.

The regular oscillations are a prominent feature of the FBC
overflow and are very important for the mixing of the overflow.
The regularity of the oscillations decreases as the overflow leaves
the FBC and enters the Iceland–Faroe slope. Similar oscillations
are observed elsewhere, e.g., in the Filchner overflow, Antarctica
(Darelius et al., 2009), the Denmark Strait overflow (Käse et al.,
2003). It is difficult to pinpoint a single mechanism causing the
oscillations. Pratt et al. (2008) have shown that the change in
curvature of a hydraulically controlled channel flow alone can
lead to such variability. Results from a detailed stability analysis
(Appendix A) are not conclusive, but indicate that downstream of
the sill the most unstable mode has a typical wavelength greater
than 40 km. The growth rate increases with decreasing curvature

of the channel with an indication of increased periods at approx-
imately 70 km downstream of the sill.

7. Summary

Regional simulations of the dense overflow through the Faroe
Bank Channel and along the Faroe–Island slope are conducted
using the r-coordinate Bergen ocean model with idealized forcing
in the absence of wind and tides. Results are compared with obser-
vations of hydrography, currents and turbulence conducted in
2008 (Fer et al., 2010). The observations comprise shipboard data
(profiles of horizontal velocity, hydrography, dissipation rate of
turbulent kinetic energy, and eddy diffusivity), and 2-month long
time series of horizontal currents from moored instruments. The
simulations comprise four runs including one with constant eddy
viscosity and followed by three experiments with second-order
closure models (MY2.5, k–e and k–x). The terrain-following coor-
dinate system is suitable for overflow modelling. It eliminates
the numerical mixing problem induced by the step topography of
z-level models, and allows for introducing state-of-the-art turbu-
lence closure models. Barring the constant eddy viscosity run, the
results are found to be robust to the choice of the turbulence
model.

In general, the model reproduces the salient features of the
overflow plume reasonably well. The transport at the sill is within
20% of the observed transports (Hansen and Østerhus, 2007), in
better agreement than a recent z-level model study (Riemenschne-
ider and Legg, 2007) that underestimates the transport at the sill
by up to 40%. The dissipation rate and eddy diffusivity dictated
by the turbulent closure in the bottommost 60 m compare excep-
tionally well with the direct turbulence measurements. In this
range, the gradient Richardson number is small and the production
of turbulent kinetic energy is well resolved. In the interior of the
plume, the model overestimates the dissipation rate and the eddy
diffusivity by up to one order of magnitude. Turbulence then drops
rapidly in the interfacial layer to levels well below the observa-
tions. This is due to the unresolved processes in the interfacial
layer where the Richardson number is around unity. Entrainment,
judged from the increase in volume transport from the sill region
to 100 km downstream is weaker for all runs when compared with
the observations and the results from the z-level model. The lack of
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entrainment emphasizes the importance of unresolved mixing in
the interface.

The region between 50 and 100 km downstream of the sill crest
is found to be important for the mixing and entrainment of the
overflow water with the adjacent water masses. Here, the two-
layer composite Froude number (Pratt, 2008) frequently exceeds
unity, suggesting a critical section for hydraulic control of the flow,
in agreement with Girton et al. (2006). This location is also identi-
fied as a hot-spot for mixing and entrainment both from turbulent
overturn analysis (Mauritzen et al., 2005) and from direct turbu-
lence measurements (Fer et al., 2010).

The model develops low-frequency oscillations between 50 and
100 km downstream of the sill, where the overflow exits the chan-
nel and enters the Faroe–Island slope. The oscillations have a per-
iod of about 4–4.5 day. These eddies are also seen in the
simulations of Riemenschneider and Legg (2007) and Ezer (2006)
and are comparable to the observations from moored instruments
reported here, covering up to 200 m from the bottom. The period is
slightly longer than the 3.7 day observed in the near bottom (with-
in 20 m from the bottom) current records (Geyer et al., 2006). The
regular oscillations have a strong impact on the mixing and the
descent rate. They are associated with periodic rapid cross-isobath
descent of the plume and with enhanced levels of dissipation rate
that will lead to strong mixing with ambient water masses as the
plume enters the Faroe–Island slope. Similarly enhanced mixing
and rapid descent can be expected in other major overflows which
manifest comparable mesoscale eddies and low frequency fluctua-
tions (e.g., Filchner outflow, Antarctica, Darelius et al., 2009 and
Denmark Strait overflow, Käse et al., 2003).
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Appendix A. Stability analysis

The shallow water equations for a vertically integrated dense
overflow plume are:
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where the Cartesian coordinate system (x,y) is oriented with the x-
axis along the direction of the along plume flow and the y-axis
across the overflow plume. u and v are current components along
the x- and y-directions, respectively, d is the overflow plume depth,
b = b(y) is the undisturbed bottom elevation, f is the Coriolis param-
eter, and g0 the reduced gravity, g0 = g(Dq/q0), where g is the accel-
eration of gravity, Dq the difference in density of the overflow and
the ambient water, and q0 a reference density.

To investigate the stability, perturbations are introduced to the
steady flow:

u ¼ �uþ u0;

v ¼ v 0;

d ¼ �dþ d0
;

where �u and �d are the initial velocity and plume depth, respec-
tively. We assume a steady, geostrophically balanced along channel
flow, �u ¼ �uðyÞ, and a locally negligible along channel variation of the
mean plume depth, i.e., �d ¼ �dðyÞ. Substitution into the shallow
water Eqs. (14) and linearization gives:
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entrainment emphasizes the importance of unresolved mixing in
the interface.

The region between 50 and 100 km downstream of the sill crest
is found to be important for the mixing and entrainment of the
overflow water with the adjacent water masses. Here, the two-
layer composite Froude number (Pratt, 2008) frequently exceeds
unity, suggesting a critical section for hydraulic control of the flow,
in agreement with Girton et al. (2006). This location is also identi-
fied as a hot-spot for mixing and entrainment both from turbulent
overturn analysis (Mauritzen et al., 2005) and from direct turbu-
lence measurements (Fer et al., 2010).

The model develops low-frequency oscillations between 50 and
100 km downstream of the sill, where the overflow exits the chan-
nel and enters the Faroe–Island slope. The oscillations have a per-
iod of about 4–4.5 day. These eddies are also seen in the
simulations of Riemenschneider and Legg (2007) and Ezer (2006)
and are comparable to the observations from moored instruments
reported here, covering up to 200 m from the bottom. The period is
slightly longer than the 3.7 day observed in the near bottom (with-
in 20 m from the bottom) current records (Geyer et al., 2006). The
regular oscillations have a strong impact on the mixing and the
descent rate. They are associated with periodic rapid cross-isobath
descent of the plume and with enhanced levels of dissipation rate
that will lead to strong mixing with ambient water masses as the
plume enters the Faroe–Island slope. Similarly enhanced mixing
and rapid descent can be expected in other major overflows which
manifest comparable mesoscale eddies and low frequency fluctua-
tions (e.g., Filchner outflow, Antarctica, Darelius et al., 2009 and
Denmark Strait overflow, Käse et al., 2003).
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where the Cartesian coordinate system (x,y) is oriented with the x-
axis along the direction of the along plume flow and the y-axis
across the overflow plume. u and v are current components along
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eter, and g0 the reduced gravity, g0 = g(Dq/q0), where g is the accel-
eration of gravity, Dq the difference in density of the overflow and
the ambient water, and q0 a reference density.

To investigate the stability, perturbations are introduced to the
steady flow:

u ¼ �uþ u0;

v ¼ v 0;

d ¼ �dþ d0
;

where �u and �d are the initial velocity and plume depth, respec-
tively. We assume a steady, geostrophically balanced along channel
flow, �u ¼ �uðyÞ, and a locally negligible along channel variation of the
mean plume depth, i.e., �d ¼ �dðyÞ. Substitution into the shallow
water Eqs. (14) and linearization gives:

ou0

ot
þ �u

ou0

ox
þ v 0 d�u

dy
� fv 0 ¼ �g0 od

0

ox
;

ov 0

ot
þ �u

ov 0

ox
þ fu0 ¼ �g0 od

0

oy
;

od0

ot
þ �u

od0

ox
þ �d

ou0

ox
þ v 0 d

�d
dy

þ �d
ov 0

oy
¼ 0:

ð15Þ

20

60

100

T 
(h

ou
rs

)

0

0.1

0.2

ω
i (1

/d
ay

s)

50

100

λ 
(k

m
)

−100 −80 −60 −40 −20 0 20
0

1

2

Distance from sill (km)

κ

a

b

c

d

Fig. 16. Downstream evolution of (a) period, (b) growth rate, (c) the wave length of the most unstable modes from stability analysis, and (d) the non-dimensional cross-
channel curvature from parabolic fit to the topography.

42 K.S. Seim et al. / Ocean Modelling 35 (2010) 31–44

entrainment emphasizes the importance of unresolved mixing in
the interface.

The region between 50 and 100 km downstream of the sill crest
is found to be important for the mixing and entrainment of the
overflow water with the adjacent water masses. Here, the two-
layer composite Froude number (Pratt, 2008) frequently exceeds
unity, suggesting a critical section for hydraulic control of the flow,
in agreement with Girton et al. (2006). This location is also identi-
fied as a hot-spot for mixing and entrainment both from turbulent
overturn analysis (Mauritzen et al., 2005) and from direct turbu-
lence measurements (Fer et al., 2010).

The model develops low-frequency oscillations between 50 and
100 km downstream of the sill, where the overflow exits the chan-
nel and enters the Faroe–Island slope. The oscillations have a per-
iod of about 4–4.5 day. These eddies are also seen in the
simulations of Riemenschneider and Legg (2007) and Ezer (2006)
and are comparable to the observations from moored instruments
reported here, covering up to 200 m from the bottom. The period is
slightly longer than the 3.7 day observed in the near bottom (with-
in 20 m from the bottom) current records (Geyer et al., 2006). The
regular oscillations have a strong impact on the mixing and the
descent rate. They are associated with periodic rapid cross-isobath
descent of the plume and with enhanced levels of dissipation rate
that will lead to strong mixing with ambient water masses as the
plume enters the Faroe–Island slope. Similarly enhanced mixing
and rapid descent can be expected in other major overflows which
manifest comparable mesoscale eddies and low frequency fluctua-
tions (e.g., Filchner outflow, Antarctica, Darelius et al., 2009 and
Denmark Strait overflow, Käse et al., 2003).
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where the Cartesian coordinate system (x,y) is oriented with the x-
axis along the direction of the along plume flow and the y-axis
across the overflow plume. u and v are current components along
the x- and y-directions, respectively, d is the overflow plume depth,
b = b(y) is the undisturbed bottom elevation, f is the Coriolis param-
eter, and g0 the reduced gravity, g0 = g(Dq/q0), where g is the accel-
eration of gravity, Dq the difference in density of the overflow and
the ambient water, and q0 a reference density.

To investigate the stability, perturbations are introduced to the
steady flow:
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entrainment emphasizes the importance of unresolved mixing in
the interface.

The region between 50 and 100 km downstream of the sill crest
is found to be important for the mixing and entrainment of the
overflow water with the adjacent water masses. Here, the two-
layer composite Froude number (Pratt, 2008) frequently exceeds
unity, suggesting a critical section for hydraulic control of the flow,
in agreement with Girton et al. (2006). This location is also identi-
fied as a hot-spot for mixing and entrainment both from turbulent
overturn analysis (Mauritzen et al., 2005) and from direct turbu-
lence measurements (Fer et al., 2010).

The model develops low-frequency oscillations between 50 and
100 km downstream of the sill, where the overflow exits the chan-
nel and enters the Faroe–Island slope. The oscillations have a per-
iod of about 4–4.5 day. These eddies are also seen in the
simulations of Riemenschneider and Legg (2007) and Ezer (2006)
and are comparable to the observations from moored instruments
reported here, covering up to 200 m from the bottom. The period is
slightly longer than the 3.7 day observed in the near bottom (with-
in 20 m from the bottom) current records (Geyer et al., 2006). The
regular oscillations have a strong impact on the mixing and the
descent rate. They are associated with periodic rapid cross-isobath
descent of the plume and with enhanced levels of dissipation rate
that will lead to strong mixing with ambient water masses as the
plume enters the Faroe–Island slope. Similarly enhanced mixing
and rapid descent can be expected in other major overflows which
manifest comparable mesoscale eddies and low frequency fluctua-
tions (e.g., Filchner outflow, Antarctica, Darelius et al., 2009 and
Denmark Strait overflow, Käse et al., 2003).
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where the Cartesian coordinate system (x,y) is oriented with the x-
axis along the direction of the along plume flow and the y-axis
across the overflow plume. u and v are current components along
the x- and y-directions, respectively, d is the overflow plume depth,
b = b(y) is the undisturbed bottom elevation, f is the Coriolis param-
eter, and g0 the reduced gravity, g0 = g(Dq/q0), where g is the accel-
eration of gravity, Dq the difference in density of the overflow and
the ambient water, and q0 a reference density.
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flow, �u ¼ �uðyÞ, and a locally negligible along channel variation of the
mean plume depth, i.e., �d ¼ �dðyÞ. Substitution into the shallow
water Eqs. (14) and linearization gives:

ou0

ot
þ �u

ou0

ox
þ v 0 d�u

dy
� fv 0 ¼ �g0 od

0

ox
;

ov 0

ot
þ �u

ov 0

ox
þ fu0 ¼ �g0 od

0

oy
;

od0

ot
þ �u

od0

ox
þ �d

ou0

ox
þ v 0 d

�d
dy

þ �d
ov 0

oy
¼ 0:

ð15Þ

20

60

100

T 
(h

ou
rs

)

0

0.1

0.2

ω
i (1

/d
ay

s)

50

100

λ 
(k

m
)

−100 −80 −60 −40 −20 0 20
0

1

2

Distance from sill (km)

κ

a

b

c

d

Fig. 16. Downstream evolution of (a) period, (b) growth rate, (c) the wave length of the most unstable modes from stability analysis, and (d) the non-dimensional cross-
channel curvature from parabolic fit to the topography.

42 K.S. Seim et al. / Ocean Modelling 35 (2010) 31–44



We are interested in the stability and thus search for normal modes
of the form

u0 ¼ ûðyÞ cosðkx�xtÞ;
v 0 ¼ v̂ðyÞ sinðkx�xtÞ;
d0 ¼ d̂ðyÞ cosðkx�xtÞ;

ð16Þ

where k is a real wave number, x the angular velocity, and the
phase speed is given by c =x/k, the wave length k = 2p/k, and the
period T = 2p/x. Substitution into the linearized equations for the
perturbations gives:
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This represent an eigenvalue problem for x given a wavenumber k
and the steady, geostrophically balanced (assumed) velocity field, �u,
and thickness, �d, of the overflow. The problem (Eq. (17)) is solved
for x by discretizing in the y-direction with central differences on
a space staggered grid.

Fig. 16 shows the period, growth rate and wavelength of the
most unstable mode. The lower panel in Fig. 16 shows a non-
dimensional measure of the cross-channel curvature (Pratt et al.,
2008), j = 2ag0/f2, where a is the coefficient of a parabolic fit to
the channel geometry. At approximately 30 km downstream of
the sill the channel widens and the parabolic fit gradually fails,
thus the curvature is only calculated until 40 km downstream of
the sill. In 21 out of 71 sections a mode with higher growth rate
at short wavelengths appeared which we exclude by setting a low-
er limit on the wavelengths of 40 km (indicated in Fig. 16 by a
wavelength of 40 km, but no growth rate or period). As the plume
flows along the slope, the complex flow structure is associated
with increasing variability including occasional reversal or nearly
stagnant plume on the deep side of the slope. Due to this irregular
flow, the numerically solved stability analysis which requires fairly
smooth plume thickness and velocity structure becomes more
uncertain.
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We are interested in the stability and thus search for normal modes
of the form

u0 ¼ ûðyÞ cosðkx�xtÞ;
v 0 ¼ v̂ðyÞ sinðkx�xtÞ;
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where k is a real wave number, x the angular velocity, and the
phase speed is given by c =x/k, the wave length k = 2p/k, and the
period T = 2p/x. Substitution into the linearized equations for the
perturbations gives:

g0k �uk f � d�u
dy

g0 d
dy f �uk

�uk �dk � d
dy
�d

0
BB@

1
CCA

û
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This represent an eigenvalue problem for x given a wavenumber k
and the steady, geostrophically balanced (assumed) velocity field, �u,
and thickness, �d, of the overflow. The problem (Eq. (17)) is solved
for x by discretizing in the y-direction with central differences on
a space staggered grid.

Fig. 16 shows the period, growth rate and wavelength of the
most unstable mode. The lower panel in Fig. 16 shows a non-
dimensional measure of the cross-channel curvature (Pratt et al.,
2008), j = 2ag0/f2, where a is the coefficient of a parabolic fit to
the channel geometry. At approximately 30 km downstream of
the sill the channel widens and the parabolic fit gradually fails,
thus the curvature is only calculated until 40 km downstream of
the sill. In 21 out of 71 sections a mode with higher growth rate
at short wavelengths appeared which we exclude by setting a low-
er limit on the wavelengths of 40 km (indicated in Fig. 16 by a
wavelength of 40 km, but no growth rate or period). As the plume
flows along the slope, the complex flow structure is associated
with increasing variability including occasional reversal or nearly
stagnant plume on the deep side of the slope. Due to this irregular
flow, the numerically solved stability analysis which requires fairly
smooth plume thickness and velocity structure becomes more
uncertain.
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We are interested in the stability and thus search for normal modes
of the form

u0 ¼ ûðyÞ cosðkx�xtÞ;
v 0 ¼ v̂ðyÞ sinðkx�xtÞ;
d0 ¼ d̂ðyÞ cosðkx�xtÞ;

ð16Þ

where k is a real wave number, x the angular velocity, and the
phase speed is given by c =x/k, the wave length k = 2p/k, and the
period T = 2p/x. Substitution into the linearized equations for the
perturbations gives:
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This represent an eigenvalue problem for x given a wavenumber k
and the steady, geostrophically balanced (assumed) velocity field, �u,
and thickness, �d, of the overflow. The problem (Eq. (17)) is solved
for x by discretizing in the y-direction with central differences on
a space staggered grid.

Fig. 16 shows the period, growth rate and wavelength of the
most unstable mode. The lower panel in Fig. 16 shows a non-
dimensional measure of the cross-channel curvature (Pratt et al.,
2008), j = 2ag0/f2, where a is the coefficient of a parabolic fit to
the channel geometry. At approximately 30 km downstream of
the sill the channel widens and the parabolic fit gradually fails,
thus the curvature is only calculated until 40 km downstream of
the sill. In 21 out of 71 sections a mode with higher growth rate
at short wavelengths appeared which we exclude by setting a low-
er limit on the wavelengths of 40 km (indicated in Fig. 16 by a
wavelength of 40 km, but no growth rate or period). As the plume
flows along the slope, the complex flow structure is associated
with increasing variability including occasional reversal or nearly
stagnant plume on the deep side of the slope. Due to this irregular
flow, the numerically solved stability analysis which requires fairly
smooth plume thickness and velocity structure becomes more
uncertain.
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We are interested in the stability and thus search for normal modes
of the form

u0 ¼ ûðyÞ cosðkx�xtÞ;
v 0 ¼ v̂ðyÞ sinðkx�xtÞ;
d0 ¼ d̂ðyÞ cosðkx�xtÞ;
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where k is a real wave number, x the angular velocity, and the
phase speed is given by c =x/k, the wave length k = 2p/k, and the
period T = 2p/x. Substitution into the linearized equations for the
perturbations gives:
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û

v̂
d̂

0
B@

1
CA: ð17Þ

This represent an eigenvalue problem for x given a wavenumber k
and the steady, geostrophically balanced (assumed) velocity field, �u,
and thickness, �d, of the overflow. The problem (Eq. (17)) is solved
for x by discretizing in the y-direction with central differences on
a space staggered grid.

Fig. 16 shows the period, growth rate and wavelength of the
most unstable mode. The lower panel in Fig. 16 shows a non-
dimensional measure of the cross-channel curvature (Pratt et al.,
2008), j = 2ag0/f2, where a is the coefficient of a parabolic fit to
the channel geometry. At approximately 30 km downstream of
the sill the channel widens and the parabolic fit gradually fails,
thus the curvature is only calculated until 40 km downstream of
the sill. In 21 out of 71 sections a mode with higher growth rate
at short wavelengths appeared which we exclude by setting a low-
er limit on the wavelengths of 40 km (indicated in Fig. 16 by a
wavelength of 40 km, but no growth rate or period). As the plume
flows along the slope, the complex flow structure is associated
with increasing variability including occasional reversal or nearly
stagnant plume on the deep side of the slope. Due to this irregular
flow, the numerically solved stability analysis which requires fairly
smooth plume thickness and velocity structure becomes more
uncertain.
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Abstract. The overflow of cold water across the Faroe Bank Channel sill

is a significant volume flux of dense water to the North Atlantic Ocean. Us-

ing observations of hydrography, current and microstructure from a one-week

cruise and 2-month long time series from moored instruments, we address

the role of transverse circulation and internal waves in mixing in the strat-

ified typically 100m thick plume-ambient interface. The streamwise momen-

tum budget is dominated by a balance between the pressure gradient and

bottom friction, i.e., entrainment stress is negligible. The transverse momen-

tum budget is in geostrophic balance, and the transverse velocity variabil-

ity is governed by the isotherms (”internal” streamwise pressure gradient)

relative to the bottom slope (”external” streamwise pressure gradient). The

ageostrophic component of the transverse velocity at the interfacial layer,

due to entrainment stress, nearly balances the ”external” pressure gradient.

The transverse geostrophic flow in the interfacial layer is opposed by the bot-

tom Ekman transport in the frictional boundary layer. The shear associated

with the interfacial jet contributes in reducing the gradient Richardson num-

ber and hence enhances dissipation rates in the interfacial layer. Convective

overturning events observed on the upslope side suggest a link between the

transverse circulation and the vertical mixing on the upper part of the slope.

Several independent threads of evidence support the secondary circulation

as an important mixing mechanism for the overflow plume. The amount of

internal wave dissipation in the ambient above the plume and also in the in-

terfacial layer is estimated. In the ambient, dissipation rates inferred from
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fine-scale shear and density profile measurements are in good agreement with

direct measurements, supporting internal wave breaking as a dominant mech-

anism for dissipation of turbulent energy. In the interfacial layer, spectral

distribution of internal wave field inferred from the mooring data is energetic.

In addition to shear-induced mixing and entrainment in the interfacial layer,

we find that internal wave breaking is likely to be important for the dissi-

pation of turbulent energy and should not be ignored.
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1. Introduction

The southward export of cold, dense water from the Nordic Seas to the North Atlantic

across the Greenland-Scotland ridge and the associated water mass transformation are an

important part of the Atlantic Meridional Overturning Circulation. About one third of

this export is through the Faroe Bank Channel (FBC, Fig. 1), the deepest passage from

the Nordic Seas, in form of a bottom-attached dense plume (overflow hereafter)[Hansen

and Østerhus , 2007]. Under the influence of pressure gradient, bottom friction, and the

Earth’s rotation, the overflow descends the Iceland-Faroe slope and mixes with overlaying

water [Saunders , 2001; Mauritzen et al., 2005; Fer et al., 2010b]. The FBC region is one

of the most studied overflow regions and has been the main focus of several projects and

field studies, see Borenäs and Lundberg [1988]; Hansen and Østerhus [2000]; Saunders

[2001]; Borenäs and Lundberg [2004]; Hansen and Østerhus [2007] for detailed reviews of

the FBC overflow. Since 1995, the overflow has been monitored by moorings at the sill

crest [Hansen and Østerhus , 2007]. Here we concentrate on one prominent feature that

influences the dynamics and mixing of the overflow plume: the thick stratified interfacial

layer.

Using recent observations which form a subset of the data presented in this paper, Fer

et al. [2010b] report the following salient features of the plume, including its vertical and

turbulence structure: i) the overflow plume has a typical speed of 0.5 - 1m s−1, reaching a

maximum of 1.35m s−1 as it exits the FBC and enters the Iceland-Faroe Slope; ii) in the

vertical a well-mixed, 70±35m thick, bottom layer (BL) is separated from the overlaying

water by a 120±60m thick interfacial layer (IL), and iii) the dissipation rate of turbulent
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kinetic energy, ε, is enhanced in BL and IL, but is significantly less in the core of the plume.

Here we hypothesize that the presence of a thick IL has significant consequences for the

dynamics of the overflow, particularly for the mixing with the overlaying water. Thick

and stratified interfacial layers have previously been observed in other major overflows

[Peters and Johns , 2005; Girton and Sanford , 2003; Price et al., 1993].

Seim et al. [2010], comparing results from a regional simulation of the FBC overflow

with the observations of Fer et al. [2010b], have pointed at the inadequacy of state-

of-the-art turbulence closures in representing the mixing in the IL; model dissipation

rates were up to 2 orders of magnitude less than the observations. The authors link the

underestimated mixing in the IL to unresolved processes, such as transport of turbulent

kinetic energy, TKE, [Umlauf , 2009], mixing due to breaking internal waves [Baumert

and Peters , 2009], and the lack of sources of mixing for Richardson numbers (Ri) above

a finite threshold set in turbulence closures. In most overflows intense mixing occurs at

localized regions where low gradient Richardson numbers and large bulk Froude numbers

(Fr) are co-located, suggesting that the turbulent kinetic energy source for vertical mixing

is the kinetic energy of the mean flow [Baringer and Price, 1997]. In the case of the FBC

overflow this happens between 50 and 100 km downstream of the sill; turbulence, however,

is energetic along the path of the plume despite low Fr and Ri in the order of unity. Data

from various sources (see e.g. Canuto et al. [2008]) including our own measurements show

evidence for significant mixing, although Ri > 0.25. According to Baumert and Peters

[2009], the internal wave-turbulence transition will co-exist with the shear instability and

contribute to mixing for 0.25 < Ri < 0.5. Recent models are developed which do not
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and Peters , 2009], and the lack of sources of mixing for Richardson numbers (Ri) above

a finite threshold set in turbulence closures. In most overflows intense mixing occurs at
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(Fr) are co-located, suggesting that the turbulent kinetic energy source for vertical mixing

is the kinetic energy of the mean flow [Baringer and Price, 1997]. In the case of the FBC

overflow this happens between 50 and 100 km downstream of the sill; turbulence, however,

is energetic along the path of the plume despite low Fr and Ri in the order of unity. Data

from various sources (see e.g. Canuto et al. [2008]) including our own measurements show

evidence for significant mixing, although Ri > 0.25. According to Baumert and Peters

[2009], the internal wave-turbulence transition will co-exist with the shear instability and
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impose a finite critical Ri [Canuto et al., 2008; Umlauf , 2009]. In this paper we attempt

to estimate the contribution of internal-wave induced mixing in the stratified IL.

Sections of density distribution of the FBC overflow show pinching of the isopycnals

at the Faroe Bank side (southwest wall) and their spread toward the northeast wall of

the channel [Borenäs and Lundberg , 1988; Saunders , 1990; Borenäs and Lundberg , 2004].

This is proposed to be explained by a secondary cross-channel circulation, first observed

in expendable current profiler drops at the FBC sill [Johnson and Sanford , 1992]. The

large stress at the bottom causes a significant southwest, cross-stream Ekman flow in

the frictional bottom boundary layer (BBL, note that this is different than and can be

shallower than the well-mixed BL) opposed by a northeast flow of similar magnitude

in the IL. This secondary circulation with opposite flows at the top and bottom of the

overflow suggests a spiral character in the overflow leading to considerable mixing and

warming [Johnson and Sanford , 1992]. The spiral character of a dense overflow confined

in a channel has later been confirmed in laboratory experiments [Darelius , 2008], and

the importance of the bottom friction for the downward steering of dense water has been

emphasized in theoretical work on rotating bottom gravity currents [W̊ahlin, 2002, 2004;

Darelius and W̊ahlin, 2007; Umlauf and Arneborg , 2009b]. Similar dynamics has been

observed in the well-mixed BL of the North Atlantic deep western boundary current

[Stahr and Sanford , 1999]. Analysing data from a channelized, shallow rotating gravity

current in the western Baltic Sea, Umlauf and Arneborg [2009a, b] find the mechanism of

”frictional control” [W̊ahlin, 2002, 2004], to be supported by their measurements. A nearly

geostrophically-balanced jet in the interface, transporting interfacial fluid to the right

of the down-channel flow, is found to have important implications for the development
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of the density field and the entrainment process. Further investigation of this shallow

gravity current with a series of idealized numerical experiments show that the secondary

circulation laterally advects the entrained ambient water and ultimately mixes in the

bottom layer on the opposite side of the channel [Umlauf et al., 2010]. This shallow gravity

current is characterized by Ekman numbers in the order of unity and subcritical Froude

numbers, fundamentally different from the deep FBC overflow with Ekman numbers one

order of magnitude smaller. Similar dynamics, however, has been observed in the FBC

overflow [Fer et al., 2010b], where the secondary circulation is suggested to enhance the

mixing of the plume. In this paper, we describe the secondary circulation in the FBC

overflow and discuss its role in mixing.

In this study we use a data set from a survey of the FBC overflow conducted in June

2008, including hydrography, current and turbulence measurements, and two-months long

time series from moored instruments to study the processes at the thick IL, with focus

on the secondary circulation and role of internal waves in mixing of the plume. The

measurements, sampling and processing details are described in Section 2. We present

and discuss the dynamics of the secondary circulation, its cross-slope structure and its role

in mixing in Section 3. Subsequently, the internal wave energy in the interfacial layer and

the wave dissipation in the ambient and in the interfacial layer are discussed (Section 4).

Conclusions are drawn at Section 5.

2. Measurements

2.1. Sampling

Measurements were made during the cruise of R.V. H̊akon Mosby between 29 May

and 8 June 2008, and as time series from moored instruments deployed in the period 14
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May to 18 July 2008. The data set obtained during the cruise includes vertical prop-

erties of hydrography and velocity from 63 casts with a conductivity-temperature-depth

(CTD, Sea-Bird Electronics SBE911+) package equipped with a pair of down and up-

looking lowered acoustic Doppler current profilers (LADCP’s, RD-Instruments 300 kHz

Workhorse), and of turbulence profiles from 90 casts with a vertical microstructure pro-

filer (VMP, Rockland Scientific Instruments). The VMP can profile down to 2000m and

is equipped with accurate pumped SBE-CTD sensors, a pair of airfoil shear probes used

for measuring the dissipation rate of turbulent kinetic energy (ε), and fast response tem-

perature and conductivity sensors. The turbulence and slow sensors sampled at 512Hz

and 64Hz, respectively, at a nominal profiling speed of 0.6m s−1. Stations are taken at six

cross-sections along the path of the overflow plume starting from the sill crest (Sec. A) to

about 120 km downstream of the sill (Sec. F, Fig. 1), and at two stations, about 12-h long

each, with repeated VMP/CTD/LADCP co-located with the moorings. Two moorings,

CM and EM, are positioned approximately in the center of Sec. C and Sec. E respectively,

about 60 km and 100 km downstream of the sill, recording for 2 months duration. The

instrument details of the moorings are given in Table 1. The CM mooring was equipped

with two Aanderaa RCM7 currentmeters at 20 and 100m height above bottom (HAB),

one downward looking ADCP (RDI 300 kHz Workhorse) at 200m HAB and a number of

temperature (SBE39 and RBR TR-1050) and CTD (SBE37 MicroCAT) loggers at differ-

ent levels. The EM mooring had a similar set-up, but with an upward looking ADCP

(RDI 300 kHz Workhorse) at 50m HAB and RCM7 currentmeters at 20 and 160m HAB

(see Table 1). The sampling rate was 1min for SBE and RBR, 5min for ADCPs and
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10min for RCM7s. The ADCPs averaged ensembles of 50 profiles every 6 s, and profiled

at 2m vertical depth bins.

2.2. Processing details and layer definitions

The velocity profiles from the LADCP are calculated as 4m vertical averages using

the inverse method [Visbeck , 2002] constrained by accurate shipboard navigation and

bottom tracking by the LADCP. In order to obtain as synoptic as possible section property

distributions, velocity profiles are detided using a barotropic tidal model [Egbert et al.,

1994] for the European Shelf at 1/30◦ resolution. Tidal velocity is within 3 to 34% (18%

on the average) of the maximum velocity at a given station [Fer et al., 2010b]. Neither the

estimates of stress nor the shear vertical wavenumber spectra shown later are influenced

by detiding. The profiles of ε are obtained from the shear probes of VMP as 1m vertical

averages, by integrating the vertical wavenumber spectrum of shear and assuming isotropy.
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as the layer between the top of BL and the depth above the interface where ∂σθ/∂z first

drops below 5×10−4 kgm−4 [Fer et al., 2010b, see Fig. 2].

2.3. Mooring motion

Due to strong and highly variable currents, the moored instruments are regularly

displaced from their target depth with maximum vertical displacements of about 20m

(Fig. 3a). In Fig. 3 the co-variability of the vertical displacement with passage of cold

pulses of overflow is illustrated by showing the vertical displacement together with the

temperature measured at 150m HAB at the CM mooring. The instrument is knocked

down into the BL from its nominal position in the IL when strong negative displacement

occurs. The periodicity of the signal suggests that the low temperature incidents (and

negative displacement due to strong currents) are due to thickening of the overflow plume

associated with the mesoscale variability apparent in both measurements [Seim et al.,

2010; Mauritzen et al., 2005; Geyer et al., 2006] and numerical simulations [Seim et al.,

2010; Riemenschneider and Legg , 2007; Ezer , 2006]. The influence of mooring motion on

vertical displacement calculations are discussed in Sec. 4.2. The mesoscale variability ap-

parent in the present data set is the topic for an ongoing study and will not be addressed

here.

3. Secondary circulation

3.1. Dynamics

Johnson and Sanford [1992] attributed the pinching of the isotherms in the FBC over-

flow to a transverse, secondary circulation in the overflow. The large bottom stress exerted

on the overflow gives rise to a cross-flow transport of about 1/16 of the overflow transport
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in the bottom layer and a transport of similar magnitude in the opposite direction in the

interfacial layer associated with strong shear and mixing [Johnson and Sanford , 1992].

Later studies of dense water flow in channels link the cross-channel flow in the interfacial

layer to the along-channel tilt of isopycnals [W̊ahlin, 2004; Umlauf and Arneborg , 2009b]

resulting in a transverse geostrophic flow. Such an idealized geostrophically-balanced

dense water flow and its structure are illustrated in Fig. 4. In these simplified models

the flow is stationary and the interfacial slope coincide with the bottom slope (in cross-

channel direction in W̊ahlin [2004] and in along-channel direction in Umlauf and Arneborg

[2009b]). Downstream of the FBC sill crest, the dense plume flows along the Iceland-Faroe

slope and is no longer a channel flow; we use streamwise and transverse directions in anal-

ogy with down-channel and cross-channel directions. Following Umlauf and Arneborg

[2009b] we assume stationary flow, negligible horizontal mixing and negligible advection

except for advection of the streamwise momentum to obtain the shallow-water equations:

∂u2

∂x
+

∂uw

∂z
− fv =

∫ ∞

z

∂b

∂x
dẑ − 1

ρ0

∂τx
∂z

, (1a)

fu =
∫ ∞

z

∂b

∂y
dẑ − 1

ρ0

∂τy
∂z

, (1b)

where f is the Coriolis parameter, τx and τy denote the horizontal components of the

vertical flux of momentum, and b is the buoyancy with respect to the background density,

ρ0:

b = −g
ρ− ρ0
ρ0

.

Here ρ and g denote the density and the acceleration of gravity. Different from Umlauf

and Arneborg [2009b] who assumed identical streamwise slope of bottom and interface, we
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retain variable streamwise interface slope, i.e., Umlauf and Arneborg [2009b] approximate

the pressure gradient in Eq. (1a) by −bSx, where Sx is the along-channel bottom slope.

The mean profiles of streamwise and transverse velocity components, temperature, T ,

and buoyancy frequency, N , inferred from mooring data are shown in Fig. 5. Also shown

are the profiles of T and N averaged over 7 CTD casts within 8 km of the mooring position,

collected during the June 2008 cruise. The comparison suggests that, although limited by

the short duration of the cruise, survey-mean profiles (see Fig. 10) will be representative

of time-mean properties averaged over the mesoscale variability not resolved by the cruise

data. The velocity profiles from CM (Fig. 5a) clearly show the signature of the secondary

circulation: a weak flow of about 100 m thick, stratified IL to the right of streamwise

velocity opposed by a return current at 20 m HAB, consistent with the Ekman flow in

the frictional boundary layer. The results presented here, however, also show that the

assumptions of stationarity and identical bottom/interfacial slopes will fail in the case of

the FBC overflow. In Fig. 6, the time evolution of the streamwise slope of the interfacial

layer, estimated from the mean slope of the 3 and 6 ◦C isotherms between moorings CM

and EM, is shown together with the transverse velocity averaged in the layer between the

two isotherms. The slope of IL, and correspondingly the transverse geostrophic velocity,

is highly variable in time, and the magnitude of this variability is comparable to the

streamwise bottom slope. In this region, the temperature-salinity relation is tight, and

isotherms are representative of isopycnals (density inferred from a third degree polynomial

fitted to temperature is accurate to within an r.m.s. error of 0.01 kgm−3). Within this

layer, using density from T , we compute the geostrophic transverse velocity by integrating
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the thermal wind shear:

vg =
1

f

∫ z

ziso3

∂b

∂x
dẑ , (2)

where vg is referenced to the measured transverse velocity at z = ziso3 and b is the 48-hour

low-pass filtered buoyancy. The resulting geostrophic velocity has two contributions: due

to the tilt of the isotherms parallel to the streamwise bottom slope (the assumption made

by W̊ahlin [2004] and Umlauf and Arneborg [2009b]) with little variation in time, and a

highly variable component due to the ”internal” pressure gradient (tilt of the isotherms

deviating from the bottom slope) (Fig. 7). The measured transverse velocity oscillates

with the tilt of the isotherms with peak values exceeding 30 cm s−1 to the right (and

20 cm s−1 to the left) of the streamwise flow. The mean transverse velocity is 3.8 cm s−1

directed to the right of the streamwise velocity. The geostrophic velocity in the layer,

vg, is significantly larger than the observed transverse velocity. On the average vg =

16.3 cm s−1, with a contribution from the bottom slope (”external” pressure gradient) of

2 cm s−1. This difference between the measured transverse velocity and vg indicates that

the velocity is reduced by the entrainment stress in the interfacial layer resulting in a

transverse Ekman transport due to the streamwise flow. This ageostrophic transport in

the interface opposes vg. The reduction in the transverse velocity due to interfacial stress

approximately balances the transverse flow due to the tilt of the isotherms parallel to the

streamwise bottom slope. The transverse velocity variability is thus governed by the tilt

of the isotherms deviating from the bottom slope (i.e. ”internal” pressure gradient).
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3.2. Cross-slope structure

Stahr and Sanford [1999] present a 2-D conceptual model of flow within the BBL and

BL to explain their observations of the deep western boundary current at the Blake Outer

Ridge. They observed a cross-slope asymmetry in the structure of the boundary layers and

the along-slope velocity, the latter causing a cross-slope divergence of the bottom Ekman

layer transport advecting light water down-slope. This process, possibly also together with

convection, leads to a thickening of the BL. The mean upwelling from the convergence

drives a weak up-slope return flow of the Ekman transport, which keeps density uniform

throughout the BL. The cross-slope dynamical structure presented by Stahr and Sanford

[1999] seems to offer a plausible explanation of the cross-stream structure of the secondary

circulation of the FBC overflow (Fig. 8). In Fig. 8b LADCP/CTD observations along

Sec. C show that the downslope (to the left of the streamwise flow) transverse velocity in

the BL is opposed by a transverse flow in the IL. The maximum BL transverse velocity

along the section is also associated with the maximum in the streamwise velocity. A

successive convergence in the transverse velocity is expected together with a thickening

of the well-mixed layer (BL, congruent to the bottom mixed layer in Stahr and Sanford

[1999]). Here the location of thickening of the BL coincides with the velocity maximum but

is not downslope of the maximum as anticipated from the conceptual model. We attribute

this discrepancy to the mesoscale variability of the overflow; occupation of the section,

about 10 hours, will be influenced by this variability. The core of the dense overflow

plume, associated with the largest buoyancy anomaly (Fig. 8d), is located in the vicinity

of the velocity maximum. The largest negative buoyancy anomaly is farther downslope.

As the secondary circulation transports this dense water upslope along isopycnals in the
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IL, it stratifies the interface and suppresses the vertical movement and thus thickening of

the plume. Farther upslope, convective mixing, induced by relatively light interface water

brought under the plume by bottom Ekman transport, will tend to thicken the plume.

While this is not observed at the upslope stations at Sec. C (Fig. 8a), the mooring

data reveal the presence of convective overturning and well-mixed layers on the slope

(Section 3.4).

3.3. Bottom versus entrainment stress

By integrating Eq. (1a) and assuming that the buoyancy varies linearly inside the

interface of thickness di, Umlauf and Arneborg [2009b] express the interfacial transverse

transport, qi, in nondimensional form as

qi
Udi

≈ −Ek

(
1

2
− rE

rd

)
, (3)

where U is the vertically-integrated streamwise plume velocity, Ek is the Ekman number

and rE and rd are the ratios of the entrainment stress to the total down-channel stress and

of interface thickness to total overflow thickness, respectively. The former ratio is given by

rE = E/(Cd+E), where E is the entrainment parameter and Cd is the drag coefficient for

a quadratic bottom friction law. According to Eq. (3) qi has a geostrophically balanced

contribution and an oppositely directed contribution due to entrainment. The transverse

transport obeys a purely geostrophic balance if rE/rd � 1. For thick interfaces rd = O(1)

the requirement is that the entrainment has to be weak compared to bottom friction

(rE � 1). Applying the drag coefficient, Cd = 3.7 × 10−3, and the entrainment velocity,

wE = 5.8×10−5ms−1, reported by Fer et al. [2010b], a conservative estimate for the ratio

of entrainment stress to total stress is rE = 0.03, assuming rd ∼ 1. Thus, according to the
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CTD/LADCP measurements, the Ekman transport due to entrainment has a negligible

effect on the total transport and the transverse interfacial transport is in geostrophic

balance. In our observations, the geostrophically balanced component explains 80% of

the variability in the measured transverse velocity. The streamwise momentum budget is

dominated by a balance between the pressure gradient and bottom friction, whereas the

transverse momentum budget is in geostrophic balance.

To investigate the influence of the time variability on the streamwise stress, we estimate

the streamwise, vertically-integrated pressure gradient according to

Px =
∫ ziso6

zb

∂p

∂x
dz =

∫ ziso6

zb

(
ρ0

∫ ziso6

z

∂b

∂x
dẑ

)
dz . (4)

The pressure gradient varies with the inherent 3-4 day mesoscale oscillations (Fig. 9).

On the average Px=2.8Pa and the pressure gradient is nearly balanced by the survey-

averaged bottom stress τb = 2.1 ± 0.4Pa [Fer et al., 2010b]. In the mean, steady state,

i.e., the imbalance is not used for accelerating the flow, the entrainment stress is thus of

negligible importance.

3.4. Role in mixing

In the vicinity of each of the two moorings, CM and EM, two VMP time series sta-

tions were occupied during the 2008 survey. The secondary circulation structure is clearly

visible in the average velocity profiles (Fig. 10b). Time series are too short to capture

the mesoscale variation, but the contrast in profiles illustrates the strong influence of the

streamwise flow on the transverse circulation. While the EM station experiences high

streamwise velocity (Fig. 10b) as the overflow thins (Fig. 10a) subsequent of a maximum

in plume thickness, the CM station shows lower velocities as the plume thickens. The evo-
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lution in plume thickness and the flow strength are also confirmed with the mooring time

series (not shown). The high streamwise velocity is associated with enhanced transverse

circulation, particularly in the interface layer.

The average gradient Richardson number, Ri= N2/S2 where N2 = −g/ρ(dρ/dz) is the

buoyancy frequency-squared, and S2 = u2
z + v2z is the shear-squared. The average 4-m Ri

calculated at 4-m vertical separation from CTD/ADCP profiled (Ri4m, Fig. 10c) and the

dissipation rate (Fig. 10d) from the VMP measurements show that dissipation level is

enhanced at EM where Ri4m is less than unity and frequently less than 0.25, the threshold

when shear instabilities occur in stratified flows. Shear is enhanced in the stratified IL at

both stations. At EM, the sheared-transverse jet in the IL further reduces Ri4m, favoring

shear-induced mixing and large dissipation rates in the IL. Average Ri4m between 70-160

m HAB at EM (the range in IL where the shear is strong both in u and v) is 0.4. When

calculated using the shear from the streamwise component of the velocity alone (S2 = u2
z),

average Ri4m increases to 0.7, by about 75%. Secondary circulation enhances the shear

and contributes to reducing Ri.

In addition to enhancing shear-induced mixing, the secondary circulation favors con-

vective mixing in the upslope edge of the plume. Approximately 10 km upslope from CM,

at 686m water depth, an additional mooring sampled temperature at 1 min intervals at 8

levels between 25-110m HAB. Using the temperature difference between the uppermost

and bottommost sensors (ΔT ) we identify periods of well-mixed layers (|ΔT | < 0.01K)

and convective conditions (ΔT < -0.01K). Well-mixed and convective conditions on the

slope correspond to periods when the transverse velocity in IL is directed onslope (posi-

tive), suggesting a link between transverse circulation and vertical mixing on the upper
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part of the slope. In total 39 periods were detected with a total duration of 7.3 day (out

of a total record of 63.8 day, i.e. 9%) when the deepest 110m on the slope was well-mixed

in temperature. While 8 of these periods were of duration longer than 10 h (14 ± 4 h),

the remaining lasted for 2 ± 1.8 h. For the mixed conditions, depth average temperature

was less than 1.5 ◦C at all times and was colder than zero for 54% of the total duration.

During the well-mixed periods 42 convective events were detected, with 6 lasting longer

than 4 h (6.3 ± 2.9 h), however, typical duration of the convective events were about

2 h. The mean separation between the convective periods was approximately 3.5 day,

correlating with the mesoscale variability.

4. Internal waves

4.1. Wave energy in the interfacial layer

Internal waves can exist in the thick, stratified IL and can contribute to the mixing of the

FBC overflow. In Fig. 11, the spectral distribution of the mean total baroclinic velocity

of the layer between the 3 and 6◦C isotherms is shown at CM, inferred from the ADCP.

This instrument, installed in a spherical buoy, experienced tilt (from vertical) less than 5◦

at all times, returning high-quality data. The baroclinic velocities are approximated by

removing the vertically-averaged velocity (including velocity measurements at all levels).

The mean spectra of total velocity (i.e. spectrum of twice the HKE density) are then

formed by averaging the spectra from all ADCP bins within the 3-6◦C layer. This range

is well-resolved by the ADCP but is only about half the total extent of IL (see Fig. 2).

Spectra are computed for the north and east component of velocity using 2048 point (7.1

day) half-overlapping Hanning segments giving 18 degrees of freedom. The total spectrum

is then formed by adding the two components, ΦV = Φu + Φv. The average spectrum
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in the layer (18 ADCP levels) has 324 degrees of freedom for the calculation of the 95%

confidence interval. The average spectrum at EM is also calculated, however, the ADCP

installed in an in-line frame experienced significant tilt (> 15◦ for 60% of the record).

The average spectrum at EM (not shown) calculated using the portion of the time series

with good data (times when both pitch and roll < 15◦) is similar, both in magnitude

and in shape, to that of CM. For reference, the Garrett-Munk (GM) [Garrett and Munk ,

1972] internal wave spectrum is also shown in Fig. 11, calculated using the local f and N .

For all frequencies above the semi-diurnal frequency the velocity variance distribution at

both moorings is more energetic than the GM internal wave spectrum and decreases with

frequency at a fairly constant rate in agreement with the GM slope. As the buoyancy

frequency is approached, both spectra flatten to white noise.

Based on the current measurements from both RDI-ADCP and RCM7, the kinetic

energy associated with the two selected frequency bands, the ”inertial/semi-diurnal tide”

band and the ”internal wave” band (marked in Fig. 11), is calculated by integrating the

total velocity spectra over the corresponding band. A vertical profile of the baroclinic

kinetic energy for the CM mooring is presented in Fig. 12. The upper part of the

interfacial layer (150-190m, see Figs. 2 and 5a) clearly stands out as highly energetic in

the internal wave frequency band, both with respect to the corresponding GM energy and

relative to that in the near-inertial band.

4.2. Influence of mooring motion

The total velocity spectra and the inferred energy levels are expected to be influenced

by the mooring motion in response to mesoscale oscillations. Using spectra from three

independent data sets at CM, we estimate the spectral signature and energy level associ-
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ated with the mooring motion. The measurements used are the pressure and temperature

recorded by the microcat at 150 m HAB and the vertical velocity from the 2-m thick

ADCP bin centered at 150m HAB. In Fig. 13a the vertical displacement spectra, Φζ ,

are shown for the displacement, ζ, calculated from the pressure measurement and from

the temperature measurement using the mean vertical temperature gradient (from the

mean T -profile shown in Fig. 5). At the level where the spectra are calculated, the mean

temperature gradient is dT/dz = 4.4× 10−2 ◦Cm−1 and the buoyancy frequency is N =

3.2 cycles per hour (cph, 1 cph = (2π/3600) s−1). The variance of the T -derived vertical

displacement is significantly larger compared to the actual mooring displacement (from

pressure) for all frequencies. We conclude that despite occasional significant motion of

the mooring the isotherm displacement spectra are not corrupted.

Another independent comparison is the spectrum of the vertical velocity measured by

the RDI-ADCP and that inferred from the vertical displacement recorded by the microcat

pressure sensor (Fig. 13b). Supporting the conclusion from the isotherm vertical displace-

ment spectrum, the variance of the vertical velocity is significantly larger compared to the

vertical velocity spectrum associated with mooring motion, estimated from pressure. Fol-

lowing Levine et al. [1997], error in displacement variance due to mooring motion can be

quantified as e = 〈d′2〉+[Terr/〈dT/dz〉]2 where Terr is a typical temperature measurement

error (here set to 0.01 ◦C). A signal-to-noise ratio, SNR, defined as the displacement vari-

ance inferred from T divided by e, using 12-hour high-passed data, calculated over 3-h

segments, show that 6% of the data has SNR < 5, and on average SNR is about 250.
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the mooring the isotherm displacement spectra are not corrupted.

Another independent comparison is the spectrum of the vertical velocity measured by

the RDI-ADCP and that inferred from the vertical displacement recorded by the microcat

pressure sensor (Fig. 13b). Supporting the conclusion from the isotherm vertical displace-

ment spectrum, the variance of the vertical velocity is significantly larger compared to the

vertical velocity spectrum associated with mooring motion, estimated from pressure. Fol-

lowing Levine et al. [1997], error in displacement variance due to mooring motion can be

quantified as e = 〈d′2〉+[Terr/〈dT/dz〉]2 where Terr is a typical temperature measurement

error (here set to 0.01 ◦C). A signal-to-noise ratio, SNR, defined as the displacement vari-

ance inferred from T divided by e, using 12-hour high-passed data, calculated over 3-h

segments, show that 6% of the data has SNR < 5, and on average SNR is about 250.
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4.3. Wave energy dissipation in the ambient

We hypothesize that a dominant mechanism for dissipating turbulent energy in the

stratified ambient, above the overflow plume, is internal wave breaking. In a slowly vary-

ing internal wave field, the rate of energy dissipation due to wave breaking approximately

equals the net energy transfer toward smaller scales [e.g., Gregg , 1989]. Using vertical

profiles of velocity and density resolved at fine scales (order of meters), the viscous dissi-

pation rate of TKE (ε) can be inferred. In essence this is done by comparing and scaling

the observed levels of shear and strain, the vertical derivative of isopycnal displacements

ζz, to the GM levels. The most recent form of the finescale parameterization can be

expressed as [Gregg et al., 2003]:

εIW = ε0

(
N

N0

)2 (0.1
kc

)2
(
1 + 1/Rω

4/3

)(
2

Rω − 1

)1/2

L(f,N) , (5)

where ε0 = 6.7× 10−10Wkg−1 is the background dissipation level for GM conditions, and

L contains the latitude dependence:

L(f,N) =
f arccosh(N/f)

f30 arccosh(N0/f30)
.

N is the local buoyancy frequency, f is the local inertial frequency, N0 = 5.2 × 10−3 s−1

(≡ 3 cph) is the reference stratification and f30 is the inertial frequency at 30◦ latitude. In

Eq. (5), the term with Rω corrects for the variation in the ratio of N -normalized shear

variance to strain variance (shear-strain ratio)

Rω =
〈V 2

z 〉
N2〈ζ2z 〉

.
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Here and in the following the variance of x is denoted by 〈x2〉. For the GM model Rω = 3,

N = N0, f = f30 and kc =0.1 cpm, and all correction and scaling terms cancel out leading

to ε = ε0, i.e., very weak dissipation. The significant figure in ε0 is not representative of

the accuracy of this parameterization, which is approximately a factor of two. The cutoff

vertical wavenumber, kc, is the wavenumber up to which the integrated shear variance is

approximately 0.7N2. Consequently, the ratio of average observed and GM spectral levels

at wavenumbers less than kc is 0.1/kc. The higher this elevation above GM the higher the

dissipation.

At the repeat stations co-located with EM and CM, in addition to the microstructure

profiles, we collected 2 and 4, respectively, CTD/LADCP casts. The two casts at EM

were taken only 6 h apart and did not resolve the semidiurnal cycle, whereas the station

duration at CM was about 15 h. Above the plume and below the upper 100 m (in the

ambient and below the surface layer), we calculate the vertical wavenumber (kz) shear

spectra from LADCP and strain spectra from CTD profiles between 100 and 610 m depth

(i.e. 128 data points for 4-m sampled LADCP and 512 data points for 1-m sampled CTD).

We obtain spectra of shear Φshear = (2πkz)
2 ΦV , and strain Φstrain = (2πkz)

2 Φζ , from the

spectra of total velocity (ΦV ) and vertical displacement (Φζ) calculated as averages over

half-overlapping 64 and 256 point (256 m) long segments. This gives 12 and 24 degrees

of freedom, respectively, for EM and CM. Vertical displacement profiles are calculated

relative to the station mean density profile. The shear spectra are normalized by the

average N2 in the corresponding segment. Resulting spectra are shown in Fig. 14 together

with the GM spectra. The GM spectra are white (constant with kz) and decay with -1

slope after kc = 0.1 cpm. This roll-off moves to lower wavenumbers as the energy increases
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[Polzin et al., 1995], shown for the observed shear level by the dashed lines in Fig. 14.

The average shear spectra from both stations are consistent with the roll-off until the

instrumental noise begins to contaminate the spectra at about 1/kz = 50m. All spectra

suggest whitening at low wavenumbers. While the shape of shear and strain spectra are

consistent at EM, the strain spectrum at CM is white out to higher wavenumber compared

to the shear spectrum.

In application of Eq. (5) we infer kc as the first wave number where the integrated

N -normalized shear spectrum reaches 0.7. For both stations, this is reached at kz =

0.0078 cpm, corresponding to a wavelength of 128m. Variance of shear and strain are

then calculated by integrating the corresponding spectrum to kc, to obtain Rω. At

EM, shear and strain are comparable (Rω = 1.7), whereas at CM shear is signifi-

cantly more energetic (Rω = 6.9). Note, however, EM sampling is of 6 hour duration

and is biased. Because the variances are obtained by integrating to 128 m wavelength,

the noise contamination is negligible. Finescale parameterization leads to dissipation

rates of 2.8×10−8Wkg−1 and 5.4×10−9Wkg−1 for EM and CM, respectively. Dissipa-

tion rate measured by the microstructure profiler, averaged in the same depth range, is

4.4×10−9Wkg−1 and 2.4×10−9Wkg−1, with 95% confidence limits of the maximum likeli-

hood estimator from a lognormal distribution [4. 4.8]×10−9Wkg−1 [2.3 2.6]×10−9Wkg−1.

The agreement between the observed dissipation and that inferred from Eq. (5) is within

50% at CM. At EM, on the other hand, εIW is about 6 times the observed value. This

can partly be attributed to the lack of sampling throughout the semidiurnal cycle. Fur-

thermore N -normalized shear variance can be dominated by noise in weak stratification
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[Kunze et al., 2006; Fer et al., 2010a]. At EM the mean stratification is weak with N =

0.0012 s−1 (0.69 cph), close to noise level. At CM, N ∼1.2 cph.

The finescale parameterization assumes that energy is transferred from large to small

scales through nonlinear wave-wave interactions. In the ambient above the plume this

assumption might hold, but will fail near the sloping bottom boundary layer where other

processes dominate the scale transformation [Polzin, 2004], close to internal wave gener-

ation sites, and for internal hydraulic phenomena such as internal hydraulic jumps and

direct breaking of internal tides.

4.4. Wave energy dissipation in the interfacial layer

Keeping in mind that the energy transfer through the wave spectrum spectral domain

in IL can be dominated by different processes due to non-GM shear (e.g. entrainment

and mixing at the plume-ambient interface, influence of secondary circulation, mesoscale

subinertial shear etc.), we naively apply the wave dissipation model of Henyey et al. [1986]

to the CM mooring data. This is encouraged by the GM-like shape of the total velocity

frequency spectrum (Fig. 11) in IL (or more accurately, between 3-6 ◦C isotherms). The

motivation here is not to evaluate or test the parameterization, but to get an estimate of

the amount of dissipation rate that can be attributed to internal wave-induced mixing.

We follow Wijesekera et al. [1993] in applying the model, and the reader is referred to

their paper for a detailed review of the wave dissipation models. In terms of dimensional

energy, E = b2NN0EGM , the dissipation rate induced by the GM wave field is

εHWF =
[
1.67

π

]
b−2N−2

0 f arccosh

[
N

f

]
j2� E

2, (6)
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The finescale parameterization assumes that energy is transferred from large to small

scales through nonlinear wave-wave interactions. In the ambient above the plume this

assumption might hold, but will fail near the sloping bottom boundary layer where other

processes dominate the scale transformation [Polzin, 2004], close to internal wave gener-

ation sites, and for internal hydraulic phenomena such as internal hydraulic jumps and

direct breaking of internal tides.

4.4. Wave energy dissipation in the interfacial layer

Keeping in mind that the energy transfer through the wave spectrum spectral domain

in IL can be dominated by different processes due to non-GM shear (e.g. entrainment

and mixing at the plume-ambient interface, influence of secondary circulation, mesoscale

subinertial shear etc.), we naively apply the wave dissipation model of Henyey et al. [1986]

to the CM mooring data. This is encouraged by the GM-like shape of the total velocity

frequency spectrum (Fig. 11) in IL (or more accurately, between 3-6 ◦C isotherms). The

motivation here is not to evaluate or test the parameterization, but to get an estimate of

the amount of dissipation rate that can be attributed to internal wave-induced mixing.

We follow Wijesekera et al. [1993] in applying the model, and the reader is referred to

their paper for a detailed review of the wave dissipation models. In terms of dimensional

energy, E = b2NN0EGM , the dissipation rate induced by the GM wave field is
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where EGM = 6.3 × 10−5 is the non-dimensional GM energy level, b = 1300m is the

thermocline depth scale, and j� = 3 is the vertical wavenumber bandwidth parameter.

An estimate of dissipation due to observed energy level in IL is made by replacing E in

Eq. (6) with Emeas, where the measured energy level is

Emeas =
1

2

[
〈ζ2〉N2 + 〈u2〉+ 〈v2〉+ 〈w2〉

]
. (7)

The total baroclinic energy in Eq.(7) is the sum of the potential energy, PE, the hori-

zontal kinetic energy, HKE, and that due to the vertical velocity. Each term is obtained

by integrating the layer-averaged frequency spectra between f and N . The baroclinic

horizontal velocity is approximated by removing the depth-average over the measurement

range. The barotropic contribution to ζ is estimated from a linear fit (with zero intercept)

of displacement against depth obtained from T -measurements at 200, 150, 100 and 20 m

HAB. The integrated variance of horizontal velocity is about 14 times that of w, HKE =

3.1×10−3 m2 s−2, and the ratio of HKE to PE is about 2.2. Resulting estimate of dissi-

pation rate due to internal waves in IL is εHWF = 1.5 ×10−9Wkg−1. Averaged between

3-6 ◦C isotherms, the measured dissipation rate at CM (see Fig. 10d) is ε = 1.4 ± 0.6 ×

10−8Wkg−1 (± one standard deviation). The wave model accounts for about 10% of the

observed dissipation rate. Note, however, that Eq. (6) is sensitive to j�, which can vary

from site to site, and is not matched to our obsevations. At Yermak Plateau region north

of Svalbard, Wijesekera et al. [1993] infer j� between 3 and 12. In the southern part of

the Plateau Fer et al. [2010a] infer j� between 6 and 17. Increasing j� from 3 to 9 will

completely account for observed dissipation rate. Given the uncertainties involved in the

application of this model, both in theory and in the parameters involved, we cannot draw
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a firm conclusion on the amount of dissipation rate in IL due to internal waves, however

we conclude that internal-wave induced mixing in IL can be significant and should not be

ignored.

5. Concluding remarks

Observations of hydrography, currents and turbulence from the FBC overflow, con-

ducted in 2008, have been analysed with emphasis on mixing in the stratified interface,

addressing the role of transverse circulation and internal waves. The observations com-

prise profiles of velocity, hydrography, microstructure temperature and shear, and 2-month

long time series of current, temperature and salinity from moored instruments. Strong

temporal and spatial variability characterise the FBC overflow, and the assumption of

stationarity is considered to be crude. Mesoscale oscillations have a prominent signature

in the overflow strength and structure, in general, and affect the transverse circulation,

in particular. The cross-stream flow near the bottom (Ekman transport) and in the in-

terfacial layer (geostrophic transport) effectively contributes to mixing in several ways:

by diluting the bottom layer of the plume, by acting as an advective source of buoyancy,

by transporting IL water to the right of the streamwise flow, by reducing the Richardson

number in IL, and by convection on the upper slope. Dissipation rates are more than

doubled in the interfacial layer due to the transverse flow. The transverse velocity in the

interfacial layer deviates slightly from a purely geostrophic flow, but a streamwise pres-

sure gradient nearly balanced by the bottom stress, suggests that the overflow is under

”frictional control” (nearly geostrophic transverse flow in the interfacial layer opposed by

the Ekman transport in the bottom layer).
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Above the overflow plume, in the ambient waters, the main mechanism of dissipating

turbulent energy is breaking of internal waves, and can be inferred from the fine-scale

parameterization of Gregg et al. [2003]. In the interfacial layer main mechanism of mixing

is the shear-instability and entrainment associated with the swift gravity current, en-

hanced by the secondary circulation. However, we find that the internal wave continuum

is energetic in the interfacial layer and may significantly contribute to mixing.
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Wåhlin, A. K., Topographic steering of dense currents with application to submarine

canyons, Deep-Sea Res. I, 49, 305–320, 2002.
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Table 1. Details for the moorings CM and EM. The instrument sensor positions are given as

height above bottom (HAB).

CM EM

Lon/Lat 9 ◦11′W / 61 ◦41′N 9 ◦50′W / 61 ◦45′N
Depth 804m 990m
in/out 14.05 / 18.07.2008 14.05 / 17.07.2008
P 210, 150m 100, 70, 50m

T
210, 201m 160, 100m

200-140, 10m interval 98, 70m
148, 101, 20m 60, 50, 20m

C 201, 150, 101, 20m 100, 70, 60m

u/v
210-110, 2m interval (ADCP) 150-50, 2m interval (ADCP)

100, 20m (RCM7) 160, 20m (RCM7)
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Figure 1. Map of all stations (circles) occupied during the June 2008 survey. The position of

the two moorings used in this study (CM and EM) are marked with triangles.
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Figure 2. Survey-averaged profiles of (a) temperature, T , (b) potential density anomaly, σθ,

and (c) streamwise velocity, −u, for all stations sampling the overflow. The solid lines mark the

top of the interfacial layer (IL) and top of the well-mixed bottom layer (BL), the dashed lines

are the 3 ◦C and 6 ◦C isotherms, and the dotted line is the plume interface zi. Vertical axis is

depth relative to zi. Individual profiles are averaged in bins of z− zi = 10m. Grey envelopes are

±1 standard deviation.
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Figure 3. Variability of (a) vertical displacement of the microcat at 150m HAB at mooring CM

calculated from the measured pressure and (b) temperature recorded by the same instrument.
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Figure 4. Illustration of the FBC overflow plume structure and the secondary circulation.
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Figure 5. Mean profiles of (a) streamwise velocity, −u, and transverse velocity, v, multiplied

by 5 for clarity, (b) temperature, and (c) buoyancy frequency, N inferred from CM mooring data.

In panels b and c the profiles averaged using 7 nearby CTD casts are also shown (black). Circles

mark the nominal levels (time mean positions) where measurements are available.
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Figure 6. Time evolution of (a) the mean streamwise slope of the 3 and 6 ◦C isotherms between

moorings CM and EM, (b) mean transverse velocity (over both moorings) averaged between 3

and 6 ◦C isotherms (black) and from the 3 ◦C isotherm to the upper extent of the ADCP range

(grey). Vertical lines in a) mark the start time of time series stations at EM and CM.
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Figure 7. Time evolution of (a) vertical distribution of the geostrophically-balanced transverse

velocity vg (color) together with the streamwise velocity −u (black) averaged over the layer

between 3 and 6 ◦C isotherms, and (b) vertical mean of vg calculated from the slope of isotherms

between moorings CM and EM (black), the measured average transverse velocity, v (grey) and

vg with the contribution from the bottom slope removed (dotted).
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Figure 8. Distribution of (a) top of BL (thin), plume interface (grey), and top of IL (thick

black), (b) average transverse velocity, v, and (c) average streamwise velocity, −u, in BL (thin)

and IL (thick), and (d) buoyancy, b, averaged over the plume thickness (defined by the plume

interface, grey) and over IL (black) along Section C. Distance is relative to the deepest station

on the Faroe-Island Slope; no plume water was detected in the first two stations. Faroe Bank is

on the left and Faroe Plateau is on the right.
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interface, grey) and over IL (black) along Section C. Distance is relative to the deepest station

on the Faroe-Island Slope; no plume water was detected in the first two stations. Faroe Bank is

on the left and Faroe Plateau is on the right.
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Figure 9. Vertically-integrated streamwise pressure gradient, Px, calculated according to

Eq. (4), between moorings CM and EM. Horizontal grey lines show the survey-averaged bottom

stress τb (solid) with uncertainty (dashed) inferred from the May 2008 cruise.
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Figure 10. Average profiles of (a) temperature, (b) streamwise (−u) and transverse (v, dashed,

multiplied by two for clarity) components of the velocity, (c) 4-m gradient Richardson number,

and (d) the dissipation rate, ε, collected at the EM (black) and CM (grey) time series stations.

All casts are averaged with respect to height above bottom (HAB) in 4-m vertical bins. Ri

calculations are only shown when measured buoyancy frequency and velocity are greater than

imposed error thresholds of 0.5 cph and 1 cm s−1, respectively. Vertical lines in (c) mark the

critical Ric = 0.25, and Ri = 1.
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Figure 11. Horizontal baroclinic velocity spectra (ΦV = Φu + Φv), averaged over the layer

between the 3 ◦C and 6 ◦C isotherms, calculated from the ADCP data at CM. Baroclinic velocity

is estimated by removing the depth-mean velocity (from full mooring coverage) at each time.

The GM velocity spectrum with a -2 slope is included for reference. The pale and dark grey

shaded areas depict the frequency bands used for estimating the kinetic energy. Error bar shows

the 95% condidence interval.
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Figure 12. Kinetic energy calculated by integrating the horizontal energy spectra from the

CM mooring over the near-inertial (semi-diurnal) band (grey) and the higher frequency internal

wave band (black) (see Fig. 11a). Dots are from ADCP data while the stars are data from the

RCM at 100 m HAB. The dashed and dotted lines are the corresponding kinetic energy for GM

spectrum using local f and N .
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Figure 13. CM mooring (a) vertical displacement spectra calculated from temperature (black)

using the mean vertical temperature gradient, and from pressure measurement (grey), (b) ver-

tical velocity spectrum measured by RDI-ADCP (black) and inferred from pressure (grey). All

measurements are approximately the same level (about 150 m HAB). The dashed lines are the

GM displacement and vertical velocity spectra using local f and N .
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Figure 13. CM mooring (a) vertical displacement spectra calculated from temperature (black)

using the mean vertical temperature gradient, and from pressure measurement (grey), (b) ver-

tical velocity spectrum measured by RDI-ADCP (black) and inferred from pressure (grey). All

measurements are approximately the same level (about 150 m HAB). The dashed lines are the

GM displacement and vertical velocity spectra using local f and N .
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Figure 14. Spectra of shear (black) and strain (grey) obtained from the spectra of total

velocity and vertical displacement respectively, using LADCP/CTD data collected during the

June 2008 cruise near a) EM and b) CM. The canonical GM spectra are shown for reference,

together with the GM spectra adjusted to the observed shear level and roll-off extended to kc.

The vertical lines are the 95% confidence intervals, valid for both shear and strain spectra, using

12 (EM) and 24 (CM) degrees of freedom.
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Stratified flow over complex topography
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Otto Nielsens vei 10, NO-7491 Trondheim, Norway

Abstract

The flow of stratified fluid over complex topography may lead to a signif-

icant drag on the fluid, exerted by the bottom obstacles. Using a 2-m

resolution, three-dimensional, non-hydrostatic numerical ocean model, the

drag and associated mixing on a stratified flow over real, 1-m resolution

topography (interpolated to model resolution) is studied. With a typical

mountain height of 12m in 174m water and buoyancy frequencies ranging

from 0.6×10−2 s−1 to 1.2×10−2 s−1, resolving the topographic features leads

to extensive drag exerted on the flow manifested through three different pro-

cesses: i) gravity wave drag, ii) aerodynamic or blocked flow drag, and iii)

hydraulic drag. A parameterization of the internal wave drag based on linear,

two-dimensional, hydrostatic wave solutions provides satisfactory results in

terms of the turbulent kinetic energy levels. The depth of the layer where the

vertical momentum flux is deposited, however, is underestimated, leading to

an overestimated gravity wave drag in the layer.
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to extensive drag exerted on the flow manifested through three different pro-

cesses: i) gravity wave drag, ii) aerodynamic or blocked flow drag, and iii)

hydraulic drag. A parameterization of the internal wave drag based on linear,

two-dimensional, hydrostatic wave solutions provides satisfactory results in

terms of the turbulent kinetic energy levels. The depth of the layer where the

vertical momentum flux is deposited, however, is underestimated, leading to

an overestimated gravity wave drag in the layer.
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1. Introduction

Understanding the boundary layer processes in the ocean is essential for

an accurate representation of the vertical buoyancy flux in ocean general cir-

culation models (OGCMs). In order to close the overturning circulation, the

dense water masses sinking to abyssal depths across all major ocean basins

have to be balanced by a buoyancy gain and an upward vertical motion. In

the interior of the ocean, diapycnal mixing is the only mechanism that can

increase the buoyancy of a water parcel (Thurnherr, 2006). Observations in-

dicate a strong association between diapycnal mixing in the abyss and rough

topography (Polzin et al., 1997; Ledwell et al., 2000), and that the abyssal

circulations have complex spatial structures that are linked to the under-

lying bathymetry. Dense overflows, another important piece in the global

overturning circulation, are bottom-attached flows, influenced by complex

topography. Understanding and parameterizing their mixing is of crucial

importance.

It has been recognized that overflows are not necessarily homogeneous,

but may have a vertical density structure, typically consisting of a dense bot-

tom layer and a so-called interfacial layer (Peters and Johns, 2005; Fer et al.,

2010; Seim et al., 2010), in which internal waves can contribute to mixing

(Seim and Fer, 2010). Internal wave breaking is suggested to be the dominat-

ing mechanism for dissipation of turbulent energy in the ambient above the

Faroe Bank Channel overflow plume and should not be ignored in the interfa-

cial layer (Seim and Fer, 2010). This mechanism is typically neither resolved

nor parameterized in numerical model studies of such overflows. The models

only account for bottom roughness through simple drag laws. Parameteri-
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zations of mountain wave drag based on linear internal wave solutions have

significantly improved the atmospheric general circulation models (Kim and

Arakawa, 1995). In most ocean models, on the other hand, due to the lack

of high resolution topographic data and limited knowledge of the interaction

between topographic features and the bottom boundary layer, the effect of

subgrid-scale topographic features is not parameterized.

The aim of this study is, by applying a high resolution (comparable to the

typical length scale of turbulent overturns), non-hydrostatic numerical ocean

model, to describe the flow of a stratified fluid past resolved complex topog-

raphy, and to parameterize the wave drag exerted by unresolved topography

on the flow. The background theory is given in Section 2 for homogeneous

and stratified flow over topography. The numerical model and the model set-

up are described in Section 3, followed by the results presented and discussed

in Section 5. Conclusions are drawn at Section 6.

2. Background

2.1. Homogeneous fluid flow

The first step in studying flow over topography is to consider the flow of

a homogeneous layer past isolated topography (Baines, 1995, Chap. 2). Such

single layer flows are characterized by the Froude number of the undisturbed

flow defined by F0 = U/
√
gd0, where U is the velocity, g is the gravitational

acceleration, and d0 is the undisturbed flow depth. In sub-critical flows (F0 <

1), linear waves may propagate both upstream and downstream, whereas

in super-critical flows (F0 > 1) the upstream propagation is not possible.

For the one-dimensional flow there is only an associated drag force on the
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obstacle in the resonant case when F0 = 1 (critical flow), and the upstream

propagating wave remains stationary relative to the obstacle. In the two-

dimensional case, there is no drag force on the obstacle for F0 < 1, but a

discontinuously increasing drag as F0 increases above unity (Baines, 1995).

In this hydraulic flow theory it is assumed that the flow is hydrostatic, which

is a good approximation for obstacles with a long horizontal scale compared

to the fluid depth such that d0/L � 1, where L is the obstacle width, or

kd0 � 1, where k is the wave-number. For the values of kd0 � 1, the

flow generates dispersive, non-hydrostatic waves that propagate energy away

from the obstacle. In general, this condition is not atypical in the ocean,

particularly when considering regional scale flows such as the flow of dense

overflow water over rough topography or through channel systems.

2.2. Stratified flow

Hydraulic theory is no longer applicable when the flow is stratified (due

to propagating internal waves). Assuming a stable, undisturbed flow, any

small disturbance may extract energy from the kinetic energy of the mean

flow, generating a spectrum of internal wave modes when topography is in-

troduced. If the width of the obstacle is sufficiently small, overturning lee

waves leading to increased mixing are expected. In a flow limited with depth

d0, two significant dimensionless quantities are the mode number,

K =
Nd0
πU

, (1)

and the dimensionless obstacle height,

hn =
Nh

U
, (2)
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where

N =

√
− g

ρ0

∂ρ

∂z
, (3)

is the buoyancy frequency, h is the height of the obstacle, ρ is the density

and ρ0 is a constant reference density. The dimensional obstacle height is

the ratio of the vertical scale of the obstacle to the approximate vertical

length scale of the waves, U/N , and is thus a measure of the non-linearity

of the disturbed flow. As hn increases, the flow is more likely to generate

overturning internal waves. The critical limit of the dimensional obstacle

height, hnc, depends on the shape of the obstacle. Studying obstacles of

general semi-elliptical shape over the whole range of aspect ratios γ = hm/a,

where hm is the maximum obstacle height and a is the half-width of the

obstacle, Huppert and Miles (1969) found hnc to range from 0.67 (γ = 0;

flat semi-ellipse) to 1.73 (γ = ∞; vertical barrier). Long (1955) derived a

non-linear stream-function equation for a uniform infinite-depth flow over

a bump and predicted hnc = 1.27 for a semi-circle (γ = 1). In a more

recent numerical study, Lamb (1994) found that hnc (for 1 < K < 2) was

considerably smaller than that predicted by Long’s model. For depth-limited

flow the additional length-scale d0 is introduced through K, which is the

inverse Froude number with respect to the fastest internal wave mode with

phase speed c1 = Nd0/π relative to the fluid. When K < 1 (supercritical

flow) linear theory gives a reasonably accurate description of the flow, in

good agreement with observations (Baines, 1979). In this case the obstacle

exerts no significant drag on the flow. For flows withK > 1 (subcritical flow),

observations and numerical studies have concentrated in the range where only

the first lee wave mode is present, i.e. 1 < K < 2. The linear theory describes
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the lee wave field reasonably well as long as hn � 1, and K is not close to an

integer (ifK = j for a positive integer j, the mean flow is critical with respect

to the jth mode in the long wave length limit, see Baines (1995)). For steady

flows with K �= j, the pressure distribution over the obstacle is symmetric

and the drag vanishes, while for K = j the upstream propagating part and

the steady part of the jth internal wave are in resonance, and the drag is

non-zero as in the homogeneous layer case. Performing three-dimensional

large-eddy simulations of a stratified oceanic flow over a ”witch of Agnesi”

profile with mode numbers (K) ranging from 0.89 to 2.24, Skyllingstad and

Wijesekera (2004) obtained qualitatively similar results to the analytical and

laboratory results of Long (1955) and Baines (1979). The strong dependence

on both the mode number and the relative obstacle height was strong when

free-slip condition on the lower boundary are applied. Introducing a bottom

frictional drag decreased the role of lee waves and the accompanying wave

drag in some cases, especially for large velocities (small K). Their results

were also in agreement with Lamb (1994) in showing that obstacle height

thresholds for wave breaking based on Long’s equation were too high. They

conclude that bottom features can have a major effect on the momentum

budget of the coastal ocean without requiring significant turbulence fluxes,

and that pressure drag can effectively reduce the average velocity through

internal wave propagation with wave dissipation possibly occurring some

distance from the source region.

2.3. Stratified flow over complex terrain

Proceeding to the more general case of three-dimensional topography,

the distinction between finite and infinite depth is less significant as the
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free-slip condition on the lower boundary are applied. Introducing a bottom

frictional drag decreased the role of lee waves and the accompanying wave
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disturbances caused by a topographic feature spread out laterally as well as

vertically so that the presence of an upper boundary has a minor effect locally

(unless it is at a low level) (Baines, 1995). If the obstacles in a complex region

all have comparable heights with Nh/U < 1, the disturbance field of each

obstacle is approximately linear and the interaction is minimal. In this case

the drag is transmitted in the form of internal gravity waves. The reference-

level drag, τ0, and the drag above the reference level, τ , may be expressed as

(Palmer et al., 1986; Kim and Arakawa, 1995)

τ0 = κρ0N0U0h
2 , (4)

τ = κρNUδh2 , (5)

where κ is a tunable constant dependent on the statistical properties of the

topography, h is a height proportional to the standard deviation of the to-

pography, δh is displacement wave amplitude, and ρ0, N0 and U0 are the

low-level density, buoyancy frequency, and the velocity component in the

direction of the reference drag, all typically evaluated between the blocking

height zb ≈ h−U/N and the typical obstacle height h. If, on the other hand,

Nh/U > 1 so that flow splitting and lee wave overturning occur, the interac-

tion may be significant, and the drag by the obstacle is spread amongst three

different processes; gravity wave drag (Eq. 4 and 5), hydraulic drag, associ-

ated with hydraulic flow over the topography, and aerodynamic or blocked

flow drag. Linear theory may, however, still be applied if the obstacles are

relatively isolated and spread out, by the linear superposition of the net

effects of each obstacle and its wake (Baines, 1995).
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3. The numerical model and set-up

The numerical model used in this study is the Bergen Ocean Model

(BOM, Berntsen, 2000). BOM is a σ-coordinate (terrain-following) ocean

model with non-hydrostatic capability. The governing equations are the same

as those for the Princeton Ocean Model (POM, Blumberg and Mellor, 1987;

Mellor, 1996), but the numerical methods are different. For advection of

momentum and density a TVD-scheme with a superbee limiter described in

Yang and Przekwas (1992) is applied. The model is mode split with a method

similar to the splitting described in Berntsen et al. (1981) and Kowalik and

Murty (1993). The solution is propagated in time using single time step

methods. For the depth-integrated momentum and continuity equation a

predictor-corrector method is applied.

3.1. Model set-up

The domain (Fig. 1) covers a 400m × 400m subregion of the Storegga

slide region, on the continental slope west of mid-Norway. This region is

selected due to its rough topography and the available high resolution (1m)

topography data collected in connection with the development of the Ormen

Lange gas field. The model has a horizontal resolution of 2m. In the vertical

there are 81 layers, in 174m water depth, resulting in a resolution of approx-

imately 2m (1.96-2.30m). The boundaries at y = 0m and y = 400m are

closed, while at both the inflow (x = 0m) and outflow (x = 400m) boundary,

a flow relaxation scheme (FRS, Martinsen and Engedahl, 1987) is used. The

FRS zone extends for 30 grid cells. To assure proper flux conservation in the

domain, the topography is flattened towards the boundaries with the first 5
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cells set to the mean depth and a region of 25 cells where the topography is

weighted by a hyperbolic tangent function.

Initially the fluid is at rest. Two forms of stratification are studied: a

linear density profile or a hyperbolic tangent density profile resembling the

Faroe Bank Channel overflow (Fer et al., 2010; Seim et al., 2010) with a

well mixed bottom layer and an interfacial layer of comparable thickness

(Fig. 2). At the inflow boundary the velocity in the x-direction, u, is ramped

up towards the background velocity u0, over approximately twice the time

a parcel needs to travel over the length of the the domain, Lx, at the back-

ground velocity. The density profile of the inflow water is set to the initial

density profile. The surface elevation at the inflow boundary is relaxed to-

wards an average of the elevation in 30 grid cells (60m) outside the FRS

zone. At the outflow boundary, density is relaxed towards the average of 30

cells outside the FRS zone, while the velocity is relaxed towards the average

over the domain omitting the FRS zones. The surface elevation is relaxed

towards zero elevation at the outflow boundary. Given the relatively high

resolution, constant, weak diffusivity and viscosity is applied. The horizon-

tal and vertical diffusivity is set to 1.0× 10−6m2 s−1, the horizontal viscosity

is 1.0× 10−4m2 s−1 and in the vertical the viscosity is 1.0× 10−5m2 s−1.

3.2. Model runs

The results presented in this study comprise of four different cases sim-

ulating flow over resolved complex terrain with varying stratification, and

a fifth simulation in which the topography and drag are parameterized. In

the last run, the domain represents one grid point region (GPR) with flat

bottom, and the wave drag exerted on the flow is parameterized using the
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statistical properties of the resolved topography and the linear wave theory.

The different simulation runs are listed in Table 1, and the high resolution

topography is shown in Fig. 1. Initially the density is linear (run1 and run2)

or a hyperbolic tangent profile (run3-5). The density profile and the corre-

sponding buoyancy frequency profile are shown in Fig. 2 together with the

spin-up of the velocity identical for all cases. For the two linear density pro-

file cases, the buoyancy frequency is 5.7×10−3 s−1 (run1) and 1.0×10−2 s−1

(run2).

4. Representation of topography

Considering our domain resembling one grid point in a coarse model with

a depth given by the mean value of the 1m resolution topography, d̄, the sub-

grid-scale topography of that GPR may be represented by four parameters:

the variance μ2 (μ is the standard deviation), the (an)isotropy parameter γ,

the mean-squared slope σ, and θ giving the direction of most rapid variation.

Analysing the Ormen Lange topography, Hove (2003) suggested a method of

estimating these parameters which is adopted in this study. The vector field

m(x) as a finite difference approximation to �d(x) is given by

m(x) =

(
d(x+Δx)− d(x)

Δx
,
d(x+Δy)− d(x)

Δy

)
. (6)

We then define the vector sum as

M =
1

n

∑
x

m(x)

|m(x)| , (7)
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where n is the number of grid points. Then the sub-grid-scale topography

parameters are given by

μ2 =
1

A

∫ ∫ (
d− d̄

)2
dA , (8a)

γ =
√
1− |M| , (8b)

σ =
1

n

∑
x

|m(x)| , (8c)

θ = arctan

(
My

Mx

)
. (8d)

In Eq. 8d Mx and My denote the x- and y-component, respectively, of the

vector sum M. For the domain in this study, the following parameter values

are obtained: μ = 5.80m, σ = 0.56, γ = 0.94 and θ = 1.35 radian. Using

μ, σ, γ and θ, an obstacle representative of the entire GPR topography can

be obtained with height 2μ and known shape and orientation. The actual
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(2010):

Ek =
∫
V

Ek dx dy dz , (9a)

Ep =
∫
V

Ep dx dy dz , (9b)

Eps =
∫
V

Eps dx dy dz , (9c)

Eap =
∫
V

Eap dx dy dz , (9d)

where the energy densities are defined as

Ek =
1

2

(
u2 + v2 + w2

)
, (10a)

Ep = zb , (10b)

Eps = zb̄s , (10c)

Eaps =

(
bs − b̄2s

)
2δz b̄s

, (10d)

Eap = Ep − Eps + Eaps . (10e)

Here b = g(1 − ρ/ρ0) is the buoyancy field proportional to the density ρ

and bs is a buoyancy field resulting from sorting the density field following a

technique proposed by Winters et al. (1995). A sorting algorithm is applied

assigning the densest fluid to the grid boxes with the lowest vertical coordi-

nate. Following Molemaker and McWilliams (2010), the available potential

energy of the sorted buoyancy field is added in the calculation of Eap to

correct for the deviation of the available potential energy of the sorted field

(dependent on the grid) from a horizontally uniform profile. The overbar de-

notes a horizontal average. The model was run for 14 hours until the energy

stabilizes with time so that the dynamics is not dominated by the external
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forcing of the model. The kinetic energy and the available potential energy

stabilize within 3 hours after the spin-up of the velocity, while the potential

energy needs longer time to stabilize due to the different outflow boundary

condition on the density field. The results from a 2-hour period between 8.5

and 10.5 hours is selected for further investigation.

The time average of the perturbation velocity along a section at y=200m,

calculated by subtracting the average velocity in the y-direction along the

section (see Eq. 11), is shown for run1 to run3 in Fig. 4, together with the

density fields. In all the cases the potential density surfaces and the horizon-

tal velocity field are significantly affected by the topography. The maximum

velocities are 0.20m s−1, 0.15m s−1, and 0.17m s−1 for run1, run2, and run3,

respectively, and the minimum velocities are -0.05m s−1, -0.05m s−1, and -

0.07m s−1. The only difference between the three cases is the stratification

which has a major impact on the wave/non-wave regime of the flow, and

affects the velocity maxima and the drag exerted in the water column. Dif-

ferent from run2 and 3, the constant buoyancy frequency in run1 is such

that the non-dimensional height is less than unity (Table 1), and the flow

is expected to be linear, with no overturning internal waves. To generate

propagating waves, according to linear theory of two-dimensional waves, the

intrinsic frequency of the waves (U/L) must be smaller than the buoyancy

frequency. This leads to a limit on the horizontal length scale of the topogra-

phy, L > 2πN/U , approximately 110m for run1 and 60m and 50m for run2

and run3, respectively, using the background velocity u0. This calculation

supports the difference as seen particularly between run1 and run2 in that the

latter supports propagating waves, while the former will generate evanescent
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wave solutions as oscillations at frequencies above the buoyancy frequency

are not supported. Although the mode number, K, for run1 is sub-critical

for the lowest mode (K>1) and the non-dimensional mountain height is sub-

critical with respect to the typical mountain height of the domain, locally

hn exceeds the critical limit. The flow is then non-linear and goes through

a ”hydraulic transition” which is the case in run1 (Fig. 4a). In run1 the

flow is partially blocked only behind the obstacles where the critical limit

is exceeded (Fig. 4a) (i.e., no discernible perturbations are seen in transects

away from the ”critical” obstacles). In run2 and run3, on the other hand,

propagating non-linear waves are seen and the drag on the flow is distributed

throughout the entire domain (not confined to a few topographic features).

Nevertheless, the drag exerted on the flow by the topography in run1 is sig-

nificant and comparable in magnitude to run2 and run3. This is illustrated

by showing the percentage change of the horizontally averaged velocity with

respect to the background velocity u0 (Fig. 5). In run1 significant drag oc-

curs near the depth corresponding to Nz/u0 = π, and the average velocity is

reduced by more than 20%. The largest decrease in relative velocity is due

to flow blockage in run1, whereas bottom drag is largest in the bottom-most

layer in run2 and run3. Internal wave drag acts at run2, decreasing continu-

ously with increasing height above bottom. For the more realistic N -profile

of run3, drag is concentrated at the pycnocline centered at a ∼20m thick

layer between π < Nz/u0 < 2π.

A proxy is calculated for the turbulent kinetic energy (TKE) by assum-

ing that cross-stream averages describe both the mean current and velocities

associated with internal waves (Skyllingstad and Wijesekera, 2004). Com-
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puting the perturbations u, v, and w by (for the u-component)

u′ = u− 1

ny

∑
y

u(x, y, z) , (11)

where ny is the number of grid points in the cross-stream direction, an esti-

mate of the turbulent kinetic energy is expressed by

TKE = 1/2(u′2 + v′2 + w′2). The fields of TKE for run1, run2 , and run3

are shown in Fig. 6, and support the inferences from percent-change velocity

profiles (Fig. 5). The maximum reduction of the background flow due to

drag induced by the gravity waves observed in run3 (Fig. 5c) is restricted

to the stratified zone where the buoyancy frequency is large enough for the

waves to break. This is also evident in the cross-stream averaged TKE from

run3 (Fig. 6b) compared to run2 where high levels of TKE is present in most

of the domain. In run1, TKE is elevated closer to the bottom in the vicin-

ity of large obstacles (not seen in the average topography). TKE integrated

over the domain is 1.27×105m5 s−2, 2.80×105m5 s−2, and 0.71×105m5 s−2

for run1, run2, and run3, respectively, confirming run2 as the most turbu-

lent. With the highest vertical mode number and non-dimensional obstacle

heights well above the critical for the major topographic features, blocked

flow drag at low levels and several vertical wave components are expected,

both clearly visible in Fig. 4b and Fig. 5b. The maximum reduction in the

velocity close to the topography is a combination of the blocked flow drag

and the first of the three vertical wave components.

5.2. Mixing

Given the open boundaries, the rate of change in the domain-integrated

background potential energy cannot be used as a proxy for mixing. To di-
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run3 (Fig. 6b) compared to run2 where high levels of TKE is present in most

of the domain. In run1, TKE is elevated closer to the bottom in the vicin-

ity of large obstacles (not seen in the average topography). TKE integrated

over the domain is 1.27×105m5 s−2, 2.80×105m5 s−2, and 0.71×105m5 s−2

for run1, run2, and run3, respectively, confirming run2 as the most turbu-

lent. With the highest vertical mode number and non-dimensional obstacle

heights well above the critical for the major topographic features, blocked

flow drag at low levels and several vertical wave components are expected,

both clearly visible in Fig. 4b and Fig. 5b. The maximum reduction in the

velocity close to the topography is a combination of the blocked flow drag

and the first of the three vertical wave components.

5.2. Mixing

Given the open boundaries, the rate of change in the domain-integrated
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agnose the bulk measure for mixing a method suggested by Burchard and

Rennau (2008) is adopted. For a conservative tracer without any internal

sources or sinks, a conservation equation for the square of the mean tracer is

developed assuming that the turbulent fluxes can be parameterized as down-

gradient fluxes with different diffusivities in the horizontal and in the vertical

direction:

∂t
(
s2
)
+ (vj∂j)

(
s2
)− ∂x

(
kh∂x

(
s2
))− ∂y

(
kh∂y
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))

(12)

= −2kh (∂xs)
2 − 2kh (∂ys)

2 − 2kz (∂zs)
2 ≡ −Dphys

(
s2
)
,

where s is a tracer (in our case density), kh and kz the horizontal and ver-

tical turbulent diffusivities, and the spatial partial derivative is defined as

∂i = ∂/∂xi
with indices i, j = 1, 2, 3 defining the spatial coordinates xi

(x1 = x, x2 = y and x3 = z). The terms on r.h.s of Eq. 12 denote the

turbulent mean tracer variance decay, Dphys, shown to be a suitable measure

for mixing. Burchard and Rennau (2008) also present a method for quanti-

fying the numerical mixing (due to the advection scheme) in ocean models

by calculating the numerically induced tracer variance decay:
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=
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, (13)

where A is the advection operator of the numerical model and Δt is the

model time step. Dnum is quantified by diagnostically applying the advection

operator on the square of the tracer field and subtract the square of the

advected tracer field for each time step. The resulting Dphys and Dnum

after applying these two methods on our results are presented in Fig. 7a-d.

Strong tracer gradients and increased velocities associated with the internal
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waves induce numerical mixing orders of magnitude greater than the physical

mixing in some locations (compare Fig. 4 with Fig. 7). This is consistent with

the results of Rennau and Burchard (2009) for the Arkona Sea. The patches

of high variance decay are always associated with negative (anti-diffusive)

variance decay of the same magnitude. The former is an effect of the TVD

scheme limiter ensuring monotonicity, and the latter is an effect of the non-

monotone, higher-order (2nd order accurate) scheme. Similar behaviour is

found by Burchard and Rennau (2008). The volume-integrated variance

decay is -0.3×10−3 kg2m−3 s−1 and -5.9×10−3 kg2m−3 s−1 for run1 and run3,

respectively. The negative values are due to the anti-diffusive properties

of the superbee-limited (TVD) advection scheme. The volume-integrated

physical mixing is 1.2×10−6 kg2m−3 s−1 and 3.4×10−6 kg2m−3 s−1.

The vertical diffusivity associated with the numerical mixing can be esti-

mated by νnum
z = Dnum/2(∂zs)

2. As a result of anti-diffusive Dnum, vertical

numerical diffusivity has both negative and positive contribution presented

separately in Fig. 7e-h, averaged in the cross-stream section along x. Hori-

zontally averaged profiles are then presented for run1 and run3 (Fig. 8). The

depth of the maximum vertical diffusivity is not necessarily co-located with

the maximum variance decay due to the inverse dependence on the vertical

tracer gradient. Particularly for run1, the maximum vertical diffusivity is

associated with small ∂zs, while the variance decay has maxima and minima

where the velocity and gradients are large. Run3 has slightly higher numer-

ical diffusivities compared to run1 (Fig. 7e-h and Fig. 9) and is also more

strongly dominated by negative contribution. The distribution of positive

and negative contributions to νnum
z is obtained by counting the number of
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occurrences in bins of νnum
z (Fig. 9). While the opposing contributions are

evenly distributed in run1, run3 shows more frequent occurrences of nega-

tive diffusion, particularly in the range 10−3 < νnum
z <10−2, which densely

populates the domain.

5.3. Parameterization of topographic drag

Generally the drag exerted by the topography on the flow can be described

by two conceptual models, whose relevance depends on the non-dimensional

mountain height (Lott and Miller, 1997). At small hn the flow is forced over

the mountain and the vertical motion of the fluid forces gravity waves. The

surface stress due to these gravity waves has a magnitude given by Eq. (4)

or similar expressions (Palmer et al., 1986; Kim and Arakawa, 1995; Lott

and Miller, 1997). At large hn, the vertical motion of the fluid is limited

and the low level flow has to flow around the mountains, effectively reducing

h in Eq. (4) and introducing a drag on the flow due to the blocked flow at

low levels. Following Lott and Miller (1997) the depth of the blocked layer

can be expressed as zb/h = max[0, (hn − hnc)/hn], where hnc is a critical

non-dimensional mountain height of order unity. In this study hn < 1 at low

levels for all cases except run2, and the blocked flow drag has an insignificant

contribution to the total drag on the flow, especially for the cases with a

hyperbolic tangent density profile.

We have also tested an additional case with drag due to the blocked flow

parameterized following Lott and Miller (1997) and using the linear density

profile of run2 such that hn > 1 (results not shown). This results in a

blocked flow layer depth of approximately half the typical mountain height

(6-7m), and shows increased drag at the bottom and a well mixed layer with

18
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a thickness in the order of zb. Above the blocked layer, the magnitude of the

gravity wave drag can be estimated from the vertical wave momentum flux,

assuming linear, hydrostatic waves

τ = −ρ0u′w′ =
1

2
ρkUNδh2 , (14)

where the vertical wavenumberm is replaced byN/U (the hydrostatic disper-

sion relation is m = N/U when k2 � m2, k being the horizontal wavenum-

ber). Depending on the horizontal wavenumber, evanescent (k > N/U) or

propagating (k < N/U) wave solutions may be expected, but only the latter

results in a pressure gradient over the topography and an associated drag

force. Adding the wave drag Eq. (14) of all mountains within a GPR leads

to Eq. (5). For hydrostatic waves, their impact on the local static stability

and shear may be combined to form a minimum local Richardson number

representing the smallest Ri achieved under the influence of internal gravity

waves

Rim = Ri
1− N

U
δh(

1 +Ri1/2N
U
δh
)2 . (15)

The presence of the waves may lead to local instability in a stable back-

ground flow either by a convective overturning mechanism (numerator of

Eq. (15) becomes small) or by a billow instability mechanism (denomina-

tor of Eq. (15) becomes large) (Palmer et al., 1986). By defining a critical

Ri (typically Ric = 0.25) and employing a saturation hypothesis (Lindzen,

1981), the vertical distribution of the gravity wave drag is estimated. When

Rim < Ric, instability results in turbulent dissipation of the wave such that

its amplitude is reduced until it regains stability. Below this critical level

τ = τs, from the Eliassen-Palm theorem, for vertically propagating waves in
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the absence of transience and dissipation. If N is constant, the wave am-

plitude must increase with height as the density is reduced, until the wave

becomes unstable. In the case with a hyperbolic tangent profile, N ≈ 0 at

low levels; the minimum Richardson number formulation fails in the nearly

neutral stratification at low levels. Consequently a simpler scheme is applied

where the wave amplitude is assumed to be equal to the typical mountain

height, δh = h = 2μ, at low levels as N ≈ ∂ρ/∂z ≈ 0, and wave breaking

is assumed to commence at the level where δh equals the saturation wave

amplitude given by δhsat = U/N . From Eq. (15) this corresponds to the

purely convective instability limit and is a strict requirement, but due to

the low buoyancy frequency at low levels, attenuation of the wave ampli-

tude with height (evanescent modes) may be expected, and δh is probably

overestimated.

We conduct two runs (run4 and run5) to test the topographic drag pa-

rameterization, each with hyperbolic tangent density profile and the Mellor

and Yamada (1982) 2-1/2 level turbulence closure scheme (MY2.5). The only

difference is that run4 employs the resolved topography, whereas run5 has flat

bottom but includes the wave drag parameterization. Velocity and density

distributions at y=200m are contrasted in Fig. 10. As the Ri drops below the

critical level (and even becomes negative by wave overturning, see Fig. 4c),

the turbulence closure prohibits the overturning waves by increasing the ver-

tical diffusivity. This results in well-mixed neutrally stratified patches visible

in Fig. 10a. Otherwise the results from run4 are qualitatively similar to run3

in both velocity and density distribution (compare Fig. 4c and 10a), and the

cross-stream averaged TKE (compare Fig. 6c and 11a). The only difference
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between run3 and run4 is that the MY2.5 closure applied in run4 is absent in

run3. When applying the gravity wave parameterization (run5), the turbu-

lence closure is retained as it smooths the strong velocity gradients imposed

by the parameterization of the wave drag. Because the domain resembles

one GPR, a horizontally constant drag was applied throughout the domain,

resulting in the smoother velocity (Fig. 10b) and TKE shown in Fig. 11b,

where the latter is approximately two orders of magnitude smaller compared

to run4 and run5. Due to the constant wave drag, the estimation of the TKE

by subtracting the cross-stream averaged velocity is not applicable in the case

of run5. With no significant wave activity in run5 (due to the constant drag

and lack of topography), the TKE may be estimated by removing the back-

ground velocity resulting in a domain integrated TKE of 0.65×105m5 s−2 in

better agreement with the resolved topography results (0.71×105m5 s−2 for

run3 and 0.76×105m5 s−2 for run4). The similarity between run3 and run4 is

confirmed by the percentage change of the horizontally domain-averaged and

time-averaged velocity relative to the background velocity (Fig. 12). In run5,

although remarkably similar in the domain average TKE, the wave drag is

deposited over a too shallow layer resulting in an overestimated drag and

consequently a larger reduction of the velocity in the layer where the wave

parameterization predicts wave breaking (Fig. 11c).

The volume-integrated variance decay of run4 and run5 is

-4.3×10−3 kg2m−3 s−1 and -1.63×10−3 kg2m−3 s−1, respectively. This is the

same order of magnitude as run3, but somewhat smaller due to the smoother

density fields in run4 and run5. In Fig. 13 the vertical profile of the diffusivity

estimated from Dnum is shown together with the vertical diffusivity from the
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turbulence closure. In contrast to the runs with constant diffusivities, the

volume averaged Dphys is 1.4×10−2 kg2m−4 s−1 for run4, several orders of

magnitude larger, and approximately one order of magnitude larger compared

to the numerical diffusivity. The zero numerical diffusivity near the bottom

and towards the surface in run4 (and run3) is due to the vanishing vertical

density gradient.

6. Concluding remarks

Numerical simulations of stratified flow over complex topography have

been performed using a high-resolution, non-hydrostatic ocean model, to

study the drag exerted on the flow by bottom obstacles. Several runs with

various stratification but with realistic topography are discussed. A final

simulation is made over flat bottom using a parameterization for the internal

gravity wave drag which represents the combined effect of the real topogra-

phy in terms of its statistical properties. Depending on the stratification, the

drag on the flow is described by three different processes, acting separately or

in combination; internal wave drag, blocked flow drag, and hydraulic drag.

Three cases with a hyperbolic tangent density profile, resembling the well

mixed bottom layer and the stratified interface of the Faroe Bank Channel

overflow, were performed to illustrate the possible interfacial mixing caused

by rough bottom topography. The simulations show that the complex bottom

topography leads to wave overturning and significant mixing in the strati-

fied interface. The drag exerted on the flow as internal waves break reduces

the horizontally domain averaged velocity by up to 27% in the stratified

interface, imposing a strong shear on the flow. The internal wave drag pa-
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rameterization, tested on the hyperbolic tangent case, yields reasonable levels

of turbulent kinetic energy and predicts wave breaking at the correct level

compared to the simulation with resolved topography. The depth of the layer

where the wave breaking is effective, however, is underestimated, leading to

an overestimated wave drag in the layer.
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Table 1: Parameters for different experiments.

Run Dens. prof. u0(ms−1) N(s−1) hn K

run1 linear 0.1 5.7×10−3 0.7 3.2

run2 linear 0.1 1.0×10−3 1.2 5.8

run3 tanh 0.1 1.2×10−2 e 1.2a 5.4 (3.1b)

run4c tanh 0.1 1.2×10−2 e 1.2 5.4 (3.1)

run5d tanh 0.1 1.2×10−2 e 1.2 5.4 (3.1)

a hn is calculated where N is non-zero (50 to 100m).

b If d0 is taken to be the depth of the dense water (below 75m).

c With turbulence closure.

d With turbulence closure and gravity wave drag parameterization.

e Maximum buoyancy frequency.
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potential energy (Eap) and (c) potential energy (Ep) relative to the initial background

potential energy (E0
ps), for run1 (dashed) and run2 (solid). In (c) background potential

energy (Eps) relative to E0
ps is also shown (run1, dotted; run3, dash-dot).
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Figure 4: Vertical cross section of potential density and the horizontal velocity, u, nor-

malized by u0 for (a) run1, (b) run2, and (c) run3, at y=200m averaged over the period

from approximately 8.5 to 10.5 hours. For (a) and (b), with N=constant, the vertical

axis on the right is the vertical phase of a linear wave solution with vertical wave num-

ber k = N/u0. The profile of Nz/u0 is shown for (c). Density contours are drawn with

0.05 kgm−3 intervals.
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Figure 6: Cross-stream average of potential density and TKE averaged in time between

8.5 and 10.5 hours for (a) run1, (b) run2, and (c) run3.
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Figure 7: Physical mixing calculated according to Eq. 12 from (a) run1 (1011 × Dphys)

and (b) run3 (1010 × Dphys), numerical mixing calculated according to Eq. 13 from (c)

run1 (107×Dnum) and (d) run3 (106×Dnum), (e-f) positive and (g-h) negative numerical

viscosity from run1, and run3, respectively. In (b) 1010 × Dphys < 0.1 is marked with

white colour for clarity.
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Figure 9: Distribution of the cross-stream averaged numerical diffusivity by the number

of grid cells, n, with positive diffusivity (black bars) and negative diffusivity (grey bars)

relative to the total number of cells with non-zero diffusivity, Nn, for (a) run1 and (b)

run3. The number of cells for each diffusivity level is denoted over each bar and Nn in the

lower right corner.
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Figure 10: Vertical cross section of potential density and the horizontal velocity normalized

by u0 for (a) run4 and (b) run5 at y=200m averaged over the period from approximately

8.5 to 10.5 hours. Density contours are drawn at 0.05 kgm−3 intervals.
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Figure 11: Cross-stream average of potential density and TKE averaged in time between

8.5 and 10.5 hours for (a) run4 and (b) run5.

39

T
K

E
×1

03  (
m

2 s−
2 )

0

0.5

1

1.5

2

2.5

D
ep

th
 (

m
)

−160

−140

−120

−100

−80

−60

−40

−20

T
K

E
×1

05  (
m

2 s−
2 )

0

0.5

1

1.5

2

2.5

x (m)

D
ep

th
 (

m
)

100 150 200 250 300

−160

−140

−120

−100

−80

−60

−40

−20

a)

b)

Figure 11: Cross-stream average of potential density and TKE averaged in time between

8.5 and 10.5 hours for (a) run4 and (b) run5.

39

T
K

E
×1

03  (
m

2 s−
2 )

0

0.5

1

1.5

2

2.5

D
ep

th
 (

m
)

−160

−140

−120

−100

−80

−60

−40

−20

T
K

E
×1

05  (
m

2 s−
2 )

0

0.5

1

1.5

2

2.5

x (m)

D
ep

th
 (

m
)

100 150 200 250 300

−160

−140

−120

−100

−80

−60

−40

−20

a)

b)

Figure 11: Cross-stream average of potential density and TKE averaged in time between

8.5 and 10.5 hours for (a) run4 and (b) run5.

39

T
K

E
×1

03  (
m

2 s−
2 )

0

0.5

1

1.5

2

2.5

D
ep

th
 (

m
)

−160

−140

−120

−100

−80

−60

−40

−20

T
K

E
×1

05  (
m

2 s−
2 )

0

0.5

1

1.5

2

2.5

x (m)

D
ep

th
 (

m
)

100 150 200 250 300

−160

−140

−120

−100

−80

−60

−40

−20

a)

b)

Figure 11: Cross-stream average of potential density and TKE averaged in time between

8.5 and 10.5 hours for (a) run4 and (b) run5.

39



−40 −20 0 20

−160

−140

−120

−100

−80

−60

−40

−20

0

Percent change

D
ep

th
 (

m
)

−40 −20 0 20
Percent change

−40 −20 0 20
Percent change

a) b) c)

Figure 12: Vertical profile of the percent change of the horizontally domain averaged and

time averaged (8.5 to 10.5 hours) u component of velocity relative to the background

velocity u0 for (a) run3, (b) run4, and (c) run5.

40

−40 −20 0 20

−160

−140

−120

−100

−80

−60

−40

−20

0

Percent change

D
ep

th
 (

m
)

−40 −20 0 20
Percent change

−40 −20 0 20
Percent change

a) b) c)

Figure 12: Vertical profile of the percent change of the horizontally domain averaged and

time averaged (8.5 to 10.5 hours) u component of velocity relative to the background

velocity u0 for (a) run3, (b) run4, and (c) run5.

40

−40 −20 0 20

−160

−140

−120

−100

−80

−60

−40

−20

0

Percent change

D
ep

th
 (

m
)

−40 −20 0 20
Percent change

−40 −20 0 20
Percent change

a) b) c)

Figure 12: Vertical profile of the percent change of the horizontally domain averaged and

time averaged (8.5 to 10.5 hours) u component of velocity relative to the background

velocity u0 for (a) run3, (b) run4, and (c) run5.

40

−40 −20 0 20

−160

−140

−120

−100

−80

−60

−40

−20

0

Percent change

D
ep

th
 (

m
)

−40 −20 0 20
Percent change

−40 −20 0 20
Percent change

a) b) c)

Figure 12: Vertical profile of the percent change of the horizontally domain averaged and

time averaged (8.5 to 10.5 hours) u component of velocity relative to the background

velocity u0 for (a) run3, (b) run4, and (c) run5.

40



10
−4

10
−3

10
−2

10
−1

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

ν
z
 (m2s−1)

D
ep

th
 (

m
)

 

 
ν

z
+

ν
z
−

ν
z
phys

Figure 13: Vertical profile of the vertical diffusivity from run4 calculated from a horizon-

tally averaged Dnum time averaged over the period from 8.5 to 10.5 hours and the vertical

diffusivity from the turbulence closure (grey).

41

10
−4

10
−3

10
−2

10
−1

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

ν
z
 (m2s−1)

D
ep

th
 (

m
)

 

 
ν

z
+

ν
z
−

ν
z
phys

Figure 13: Vertical profile of the vertical diffusivity from run4 calculated from a horizon-

tally averaged Dnum time averaged over the period from 8.5 to 10.5 hours and the vertical

diffusivity from the turbulence closure (grey).

41

10
−4

10
−3

10
−2

10
−1

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

ν
z
 (m2s−1)

D
ep

th
 (

m
)

 

 
ν

z
+

ν
z
−

ν
z
phys

Figure 13: Vertical profile of the vertical diffusivity from run4 calculated from a horizon-

tally averaged Dnum time averaged over the period from 8.5 to 10.5 hours and the vertical

diffusivity from the turbulence closure (grey).

41

10
−4

10
−3

10
−2

10
−1

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

ν
z
 (m2s−1)

D
ep

th
 (

m
)

 

 
ν

z
+

ν
z
−

ν
z
phys

Figure 13: Vertical profile of the vertical diffusivity from run4 calculated from a horizon-

tally averaged Dnum time averaged over the period from 8.5 to 10.5 hours and the vertical

diffusivity from the turbulence closure (grey).

41





 
R A P P O R T E R 

UTGITT VED 
INSTITUTT FOR MARIN TEKNIKK 

(tidligere: FAKULTET FOR MARIN TEKNIKK) 
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET 

 
Report 
No. 

Author Title 

 Kavlie, Dag Optimization of Plane Elastic Grillages, 1967 

 Hansen, Hans R. Man-Machine Communication and Data-Storage 
Methods in Ship Structural Design, 1971 

 Gisvold, Kaare M. A Method for non-linear mixed -integer 
programming and its Application to Design 
Problems, 1971 

 Lund, Sverre Tanker Frame Optimalization by means of SUMT-
Transformation and Behaviour Models, 1971 

 Vinje, Tor On Vibration of Spherical Shells Interacting with 
Fluid, 1972 

 Lorentz, Jan D. Tank Arrangement for Crude Oil Carriers in 
Accordance with the new Anti-Pollution 
Regulations, 1975 

 Carlsen, Carl A. Computer-Aided Design of Tanker Structures, 1975 

 Larsen, Carl M. Static and Dynamic Analysis of Offshore Pipelines 
during Installation, 1976 

UR-79-01 Brigt Hatlestad, MK The finite element method used in a fatigue 
evaluation of fixed offshore platforms. (Dr.Ing. 
Thesis) 

UR-79-02 Erik Pettersen, MK Analysis and design of cellular structures. (Dr.Ing. 
Thesis) 

UR-79-03 Sverre Valsgård, MK Finite difference and finite element methods applied 
to nonlinear analysis of plated structures. (Dr.Ing. 
Thesis) 

UR-79-04 Nils T. Nordsve, MK Finite element collapse analysis of structural 
members considering imperfections and stresses due 
to fabrication. (Dr.Ing. Thesis) 

UR-79-05 Ivar J. Fylling, MK Analysis of towline forces in ocean towing systems. 
(Dr.Ing. Thesis) 

UR-80-06 Nils Sandsmark, MM Analysis of Stationary and Transient Heat 
Conduction by the Use of the Finite Element 
Method. (Dr.Ing. Thesis) 

UR-80-09 Sverre Haver, MK Analysis of uncertainties related to the stochastic 
modeling of ocean waves. (Dr.Ing. Thesis) 

UR-81-15 Odland, Jonas On the Strength of welded Ring stiffened cylindrical 
Shells primarily subjected to axial Compression 

 
R A P P O R T E R 

UTGITT VED 
INSTITUTT FOR MARIN TEKNIKK 

(tidligere: FAKULTET FOR MARIN TEKNIKK) 
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET 

 
Report 
No. 

Author Title 

 Kavlie, Dag Optimization of Plane Elastic Grillages, 1967 

 Hansen, Hans R. Man-Machine Communication and Data-Storage 
Methods in Ship Structural Design, 1971 

 Gisvold, Kaare M. A Method for non-linear mixed -integer 
programming and its Application to Design 
Problems, 1971 

 Lund, Sverre Tanker Frame Optimalization by means of SUMT-
Transformation and Behaviour Models, 1971 

 Vinje, Tor On Vibration of Spherical Shells Interacting with 
Fluid, 1972 

 Lorentz, Jan D. Tank Arrangement for Crude Oil Carriers in 
Accordance with the new Anti-Pollution 
Regulations, 1975 

 Carlsen, Carl A. Computer-Aided Design of Tanker Structures, 1975 

 Larsen, Carl M. Static and Dynamic Analysis of Offshore Pipelines 
during Installation, 1976 

UR-79-01 Brigt Hatlestad, MK The finite element method used in a fatigue 
evaluation of fixed offshore platforms. (Dr.Ing. 
Thesis) 

UR-79-02 Erik Pettersen, MK Analysis and design of cellular structures. (Dr.Ing. 
Thesis) 

UR-79-03 Sverre Valsgård, MK Finite difference and finite element methods applied 
to nonlinear analysis of plated structures. (Dr.Ing. 
Thesis) 

UR-79-04 Nils T. Nordsve, MK Finite element collapse analysis of structural 
members considering imperfections and stresses due 
to fabrication. (Dr.Ing. Thesis) 

UR-79-05 Ivar J. Fylling, MK Analysis of towline forces in ocean towing systems. 
(Dr.Ing. Thesis) 

UR-80-06 Nils Sandsmark, MM Analysis of Stationary and Transient Heat 
Conduction by the Use of the Finite Element 
Method. (Dr.Ing. Thesis) 

UR-80-09 Sverre Haver, MK Analysis of uncertainties related to the stochastic 
modeling of ocean waves. (Dr.Ing. Thesis) 

UR-81-15 Odland, Jonas On the Strength of welded Ring stiffened cylindrical 
Shells primarily subjected to axial Compression 

 
R A P P O R T E R 

UTGITT VED 
INSTITUTT FOR MARIN TEKNIKK 

(tidligere: FAKULTET FOR MARIN TEKNIKK) 
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET 

 
Report 
No. 

Author Title 

 Kavlie, Dag Optimization of Plane Elastic Grillages, 1967 

 Hansen, Hans R. Man-Machine Communication and Data-Storage 
Methods in Ship Structural Design, 1971 

 Gisvold, Kaare M. A Method for non-linear mixed -integer 
programming and its Application to Design 
Problems, 1971 

 Lund, Sverre Tanker Frame Optimalization by means of SUMT-
Transformation and Behaviour Models, 1971 

 Vinje, Tor On Vibration of Spherical Shells Interacting with 
Fluid, 1972 

 Lorentz, Jan D. Tank Arrangement for Crude Oil Carriers in 
Accordance with the new Anti-Pollution 
Regulations, 1975 

 Carlsen, Carl A. Computer-Aided Design of Tanker Structures, 1975 

 Larsen, Carl M. Static and Dynamic Analysis of Offshore Pipelines 
during Installation, 1976 

UR-79-01 Brigt Hatlestad, MK The finite element method used in a fatigue 
evaluation of fixed offshore platforms. (Dr.Ing. 
Thesis) 

UR-79-02 Erik Pettersen, MK Analysis and design of cellular structures. (Dr.Ing. 
Thesis) 

UR-79-03 Sverre Valsgård, MK Finite difference and finite element methods applied 
to nonlinear analysis of plated structures. (Dr.Ing. 
Thesis) 

UR-79-04 Nils T. Nordsve, MK Finite element collapse analysis of structural 
members considering imperfections and stresses due 
to fabrication. (Dr.Ing. Thesis) 

UR-79-05 Ivar J. Fylling, MK Analysis of towline forces in ocean towing systems. 
(Dr.Ing. Thesis) 

UR-80-06 Nils Sandsmark, MM Analysis of Stationary and Transient Heat 
Conduction by the Use of the Finite Element 
Method. (Dr.Ing. Thesis) 

UR-80-09 Sverre Haver, MK Analysis of uncertainties related to the stochastic 
modeling of ocean waves. (Dr.Ing. Thesis) 

UR-81-15 Odland, Jonas On the Strength of welded Ring stiffened cylindrical 
Shells primarily subjected to axial Compression 

 
R A P P O R T E R 

UTGITT VED 
INSTITUTT FOR MARIN TEKNIKK 

(tidligere: FAKULTET FOR MARIN TEKNIKK) 
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET 

 
Report 
No. 

Author Title 

 Kavlie, Dag Optimization of Plane Elastic Grillages, 1967 

 Hansen, Hans R. Man-Machine Communication and Data-Storage 
Methods in Ship Structural Design, 1971 

 Gisvold, Kaare M. A Method for non-linear mixed -integer 
programming and its Application to Design 
Problems, 1971 

 Lund, Sverre Tanker Frame Optimalization by means of SUMT-
Transformation and Behaviour Models, 1971 

 Vinje, Tor On Vibration of Spherical Shells Interacting with 
Fluid, 1972 

 Lorentz, Jan D. Tank Arrangement for Crude Oil Carriers in 
Accordance with the new Anti-Pollution 
Regulations, 1975 

 Carlsen, Carl A. Computer-Aided Design of Tanker Structures, 1975 

 Larsen, Carl M. Static and Dynamic Analysis of Offshore Pipelines 
during Installation, 1976 

UR-79-01 Brigt Hatlestad, MK The finite element method used in a fatigue 
evaluation of fixed offshore platforms. (Dr.Ing. 
Thesis) 

UR-79-02 Erik Pettersen, MK Analysis and design of cellular structures. (Dr.Ing. 
Thesis) 

UR-79-03 Sverre Valsgård, MK Finite difference and finite element methods applied 
to nonlinear analysis of plated structures. (Dr.Ing. 
Thesis) 

UR-79-04 Nils T. Nordsve, MK Finite element collapse analysis of structural 
members considering imperfections and stresses due 
to fabrication. (Dr.Ing. Thesis) 

UR-79-05 Ivar J. Fylling, MK Analysis of towline forces in ocean towing systems. 
(Dr.Ing. Thesis) 

UR-80-06 Nils Sandsmark, MM Analysis of Stationary and Transient Heat 
Conduction by the Use of the Finite Element 
Method. (Dr.Ing. Thesis) 

UR-80-09 Sverre Haver, MK Analysis of uncertainties related to the stochastic 
modeling of ocean waves. (Dr.Ing. Thesis) 

UR-81-15 Odland, Jonas On the Strength of welded Ring stiffened cylindrical 
Shells primarily subjected to axial Compression 



UR-82-17 Engesvik, Knut Analysis of Uncertainties in the fatigue Capacity of 
Welded Joints 

UR-82-18 Rye, Henrik Ocean wave groups 

UR-83-30 Eide, Oddvar Inge On Cumulative Fatigue Damage in Steel Welded 
Joints 

UR-83-33 Mo, Olav Stochastic Time Domain Analysis of Slender 
Offshore Structures 

UR-83-34 Amdahl, Jørgen Energy absorption in Ship-platform impacts 

UR-84-37 Mørch, Morten Motions and mooring forces of semi submersibles as 
determined by full-scale measurements and 
theoretical analysis 

UR-84-38 Soares, C. Guedes Probabilistic models for load effects in ship 
structures 

UR-84-39 Aarsnes, Jan V. Current forces on ships 

UR-84-40 Czujko, Jerzy Collapse Analysis of Plates subjected to Biaxial 
Compression and Lateral Load 

UR-85-46 Alf G. Engseth, MK Finite element collapse analysis of tubular steel 
offshore structures. (Dr.Ing. Thesis) 

UR-86-47 Dengody Sheshappa, MP A Computer Design Model for Optimizing Fishing 
Vessel Designs Based on Techno-Economic 
Analysis. (Dr.Ing. Thesis) 

UR-86-48 Vidar Aanesland, MH A Theoretical and Numerical Study of Ship Wave 
Resistance. (Dr.Ing. Thesis) 

UR-86-49 Heinz-Joachim Wessel, MK Fracture Mechanics Analysis of Crack Growth in 
Plate Girders. (Dr.Ing. Thesis) 

UR-86-50 Jon Taby, MK Ultimate and Post-ultimate Strength of Dented 
Tubular Members. (Dr.Ing. Thesis) 

UR-86-51 Walter Lian, MH A Numerical Study of Two-Dimensional Separated 
Flow Past Bluff Bodies at Moderate KC-Numbers. 
(Dr.Ing. Thesis) 

UR-86-52 Bjørn Sortland, MH Force Measurements in Oscillating Flow on Ship 
Sections and Circular Cylinders in a U-Tube Water 
Tank. (Dr.Ing. Thesis) 

UR-86-53 Kurt Strand, MM A System Dynamic Approach to One-dimensional 
Fluid Flow. (Dr.Ing. Thesis) 

UR-86-54 Arne Edvin Løken, MH Three Dimensional Second Order Hydrodynamic 
Effects on Ocean Structures in Waves. (Dr.Ing. 
Thesis) 

UR-86-55 Sigurd Falch, MH A Numerical Study of Slamming of Two-
Dimensional Bodies. (Dr.Ing. Thesis) 

UR-87-56 Arne Braathen, MH Application of a Vortex Tracking Method to the 
Prediction of Roll Damping of a Two-Dimension 

UR-82-17 Engesvik, Knut Analysis of Uncertainties in the fatigue Capacity of 
Welded Joints 

UR-82-18 Rye, Henrik Ocean wave groups 

UR-83-30 Eide, Oddvar Inge On Cumulative Fatigue Damage in Steel Welded 
Joints 

UR-83-33 Mo, Olav Stochastic Time Domain Analysis of Slender 
Offshore Structures 

UR-83-34 Amdahl, Jørgen Energy absorption in Ship-platform impacts 

UR-84-37 Mørch, Morten Motions and mooring forces of semi submersibles as 
determined by full-scale measurements and 
theoretical analysis 

UR-84-38 Soares, C. Guedes Probabilistic models for load effects in ship 
structures 

UR-84-39 Aarsnes, Jan V. Current forces on ships 

UR-84-40 Czujko, Jerzy Collapse Analysis of Plates subjected to Biaxial 
Compression and Lateral Load 

UR-85-46 Alf G. Engseth, MK Finite element collapse analysis of tubular steel 
offshore structures. (Dr.Ing. Thesis) 

UR-86-47 Dengody Sheshappa, MP A Computer Design Model for Optimizing Fishing 
Vessel Designs Based on Techno-Economic 
Analysis. (Dr.Ing. Thesis) 

UR-86-48 Vidar Aanesland, MH A Theoretical and Numerical Study of Ship Wave 
Resistance. (Dr.Ing. Thesis) 

UR-86-49 Heinz-Joachim Wessel, MK Fracture Mechanics Analysis of Crack Growth in 
Plate Girders. (Dr.Ing. Thesis) 

UR-86-50 Jon Taby, MK Ultimate and Post-ultimate Strength of Dented 
Tubular Members. (Dr.Ing. Thesis) 

UR-86-51 Walter Lian, MH A Numerical Study of Two-Dimensional Separated 
Flow Past Bluff Bodies at Moderate KC-Numbers. 
(Dr.Ing. Thesis) 

UR-86-52 Bjørn Sortland, MH Force Measurements in Oscillating Flow on Ship 
Sections and Circular Cylinders in a U-Tube Water 
Tank. (Dr.Ing. Thesis) 

UR-86-53 Kurt Strand, MM A System Dynamic Approach to One-dimensional 
Fluid Flow. (Dr.Ing. Thesis) 

UR-86-54 Arne Edvin Løken, MH Three Dimensional Second Order Hydrodynamic 
Effects on Ocean Structures in Waves. (Dr.Ing. 
Thesis) 

UR-86-55 Sigurd Falch, MH A Numerical Study of Slamming of Two-
Dimensional Bodies. (Dr.Ing. Thesis) 

UR-87-56 Arne Braathen, MH Application of a Vortex Tracking Method to the 
Prediction of Roll Damping of a Two-Dimension 

UR-82-17 Engesvik, Knut Analysis of Uncertainties in the fatigue Capacity of 
Welded Joints 

UR-82-18 Rye, Henrik Ocean wave groups 

UR-83-30 Eide, Oddvar Inge On Cumulative Fatigue Damage in Steel Welded 
Joints 

UR-83-33 Mo, Olav Stochastic Time Domain Analysis of Slender 
Offshore Structures 

UR-83-34 Amdahl, Jørgen Energy absorption in Ship-platform impacts 

UR-84-37 Mørch, Morten Motions and mooring forces of semi submersibles as 
determined by full-scale measurements and 
theoretical analysis 

UR-84-38 Soares, C. Guedes Probabilistic models for load effects in ship 
structures 

UR-84-39 Aarsnes, Jan V. Current forces on ships 

UR-84-40 Czujko, Jerzy Collapse Analysis of Plates subjected to Biaxial 
Compression and Lateral Load 

UR-85-46 Alf G. Engseth, MK Finite element collapse analysis of tubular steel 
offshore structures. (Dr.Ing. Thesis) 

UR-86-47 Dengody Sheshappa, MP A Computer Design Model for Optimizing Fishing 
Vessel Designs Based on Techno-Economic 
Analysis. (Dr.Ing. Thesis) 

UR-86-48 Vidar Aanesland, MH A Theoretical and Numerical Study of Ship Wave 
Resistance. (Dr.Ing. Thesis) 

UR-86-49 Heinz-Joachim Wessel, MK Fracture Mechanics Analysis of Crack Growth in 
Plate Girders. (Dr.Ing. Thesis) 

UR-86-50 Jon Taby, MK Ultimate and Post-ultimate Strength of Dented 
Tubular Members. (Dr.Ing. Thesis) 

UR-86-51 Walter Lian, MH A Numerical Study of Two-Dimensional Separated 
Flow Past Bluff Bodies at Moderate KC-Numbers. 
(Dr.Ing. Thesis) 

UR-86-52 Bjørn Sortland, MH Force Measurements in Oscillating Flow on Ship 
Sections and Circular Cylinders in a U-Tube Water 
Tank. (Dr.Ing. Thesis) 

UR-86-53 Kurt Strand, MM A System Dynamic Approach to One-dimensional 
Fluid Flow. (Dr.Ing. Thesis) 

UR-86-54 Arne Edvin Løken, MH Three Dimensional Second Order Hydrodynamic 
Effects on Ocean Structures in Waves. (Dr.Ing. 
Thesis) 

UR-86-55 Sigurd Falch, MH A Numerical Study of Slamming of Two-
Dimensional Bodies. (Dr.Ing. Thesis) 

UR-87-56 Arne Braathen, MH Application of a Vortex Tracking Method to the 
Prediction of Roll Damping of a Two-Dimension 

UR-82-17 Engesvik, Knut Analysis of Uncertainties in the fatigue Capacity of 
Welded Joints 

UR-82-18 Rye, Henrik Ocean wave groups 

UR-83-30 Eide, Oddvar Inge On Cumulative Fatigue Damage in Steel Welded 
Joints 

UR-83-33 Mo, Olav Stochastic Time Domain Analysis of Slender 
Offshore Structures 

UR-83-34 Amdahl, Jørgen Energy absorption in Ship-platform impacts 

UR-84-37 Mørch, Morten Motions and mooring forces of semi submersibles as 
determined by full-scale measurements and 
theoretical analysis 

UR-84-38 Soares, C. Guedes Probabilistic models for load effects in ship 
structures 

UR-84-39 Aarsnes, Jan V. Current forces on ships 

UR-84-40 Czujko, Jerzy Collapse Analysis of Plates subjected to Biaxial 
Compression and Lateral Load 

UR-85-46 Alf G. Engseth, MK Finite element collapse analysis of tubular steel 
offshore structures. (Dr.Ing. Thesis) 

UR-86-47 Dengody Sheshappa, MP A Computer Design Model for Optimizing Fishing 
Vessel Designs Based on Techno-Economic 
Analysis. (Dr.Ing. Thesis) 

UR-86-48 Vidar Aanesland, MH A Theoretical and Numerical Study of Ship Wave 
Resistance. (Dr.Ing. Thesis) 

UR-86-49 Heinz-Joachim Wessel, MK Fracture Mechanics Analysis of Crack Growth in 
Plate Girders. (Dr.Ing. Thesis) 

UR-86-50 Jon Taby, MK Ultimate and Post-ultimate Strength of Dented 
Tubular Members. (Dr.Ing. Thesis) 

UR-86-51 Walter Lian, MH A Numerical Study of Two-Dimensional Separated 
Flow Past Bluff Bodies at Moderate KC-Numbers. 
(Dr.Ing. Thesis) 

UR-86-52 Bjørn Sortland, MH Force Measurements in Oscillating Flow on Ship 
Sections and Circular Cylinders in a U-Tube Water 
Tank. (Dr.Ing. Thesis) 

UR-86-53 Kurt Strand, MM A System Dynamic Approach to One-dimensional 
Fluid Flow. (Dr.Ing. Thesis) 

UR-86-54 Arne Edvin Løken, MH Three Dimensional Second Order Hydrodynamic 
Effects on Ocean Structures in Waves. (Dr.Ing. 
Thesis) 

UR-86-55 Sigurd Falch, MH A Numerical Study of Slamming of Two-
Dimensional Bodies. (Dr.Ing. Thesis) 

UR-87-56 Arne Braathen, MH Application of a Vortex Tracking Method to the 
Prediction of Roll Damping of a Two-Dimension 



Floating Body. (Dr.Ing. Thesis) 

UR-87-57 Bernt Leira, MK Gaussian Vector Processes for Reliability Analysis 
involving Wave-Induced Load Effects. (Dr.Ing. 
Thesis) 

UR-87-58 Magnus Småvik, MM Thermal Load and Process Characteristics in a Two-
Stroke Diesel Engine with Thermal Barriers (in 
Norwegian). (Dr.Ing. Thesis) 

MTA-88-
59 

Bernt Arild Bremdal, MP An Investigation of Marine Installation Processes – 
A Knowledge - Based Planning Approach. (Dr.Ing. 
Thesis) 

MTA-88-
60 

Xu Jun, MK Non-linear Dynamic Analysis of Space-framed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
61 

Gang Miao, MH Hydrodynamic Forces and Dynamic Responses of 
Circular Cylinders in Wave Zones. (Dr.Ing. Thesis) 

MTA-89-
62 

Martin Greenhow, MH Linear and Non-Linear Studies of Waves and 
Floating Bodies. Part I and Part II. (Dr.Techn. 
Thesis) 

MTA-89-
63 

Chang Li, MH Force Coefficients of Spheres and Cubes in 
Oscillatory Flow with and without Current. (Dr.Ing. 
Thesis 

MTA-89-
64 

Hu Ying, MP A Study of Marketing and Design in Development 
of Marine Transport Systems. (Dr.Ing. Thesis) 

MTA-89-
65 

Arild Jæger, MH Seakeeping, Dynamic Stability and Performance of 
a Wedge Shaped Planing Hull. (Dr.Ing. Thesis) 

MTA-89-
66 

Chan Siu Hung, MM The dynamic characteristics of tilting-pad bearings 

MTA-89-
67 

Kim Wikstrøm, MP Analysis av projekteringen for ett offshore projekt. 
(Licenciat-avhandling) 

MTA-89-
68 

Jiao Guoyang, MK Reliability Analysis of Crack Growth under 
Random Loading, considering Model Updating. 
(Dr.Ing. Thesis) 

MTA-89-
69 

Arnt Olufsen, MK Uncertainty and Reliability Analysis of Fixed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
70 

Wu Yu-Lin, MR System Reliability Analyses of Offshore Structures 
using improved Truss and Beam Models. (Dr.Ing. 
Thesis) 

MTA-90-
71 

Jan Roger Hoff, MH Three-dimensional Green function of a vessel with 
forward speed in waves. (Dr.Ing. Thesis) 

MTA-90-
72 

Rong Zhao, MH Slow-Drift Motions of a Moored Two-Dimensional 
Body in Irregular Waves. (Dr.Ing. Thesis) 

MTA-90-
73 

Atle Minsaas, MP Economical Risk Analysis. (Dr.Ing. Thesis) 

MTA-90-
74 

Knut-Aril Farnes, MK Long-term Statistics of Response in Non-linear 
Marine Structures. (Dr.Ing. Thesis) 

MTA-90- Torbjørn Sotberg, MK Application of Reliability Methods for Safety 

Floating Body. (Dr.Ing. Thesis) 

UR-87-57 Bernt Leira, MK Gaussian Vector Processes for Reliability Analysis 
involving Wave-Induced Load Effects. (Dr.Ing. 
Thesis) 

UR-87-58 Magnus Småvik, MM Thermal Load and Process Characteristics in a Two-
Stroke Diesel Engine with Thermal Barriers (in 
Norwegian). (Dr.Ing. Thesis) 

MTA-88-
59 

Bernt Arild Bremdal, MP An Investigation of Marine Installation Processes – 
A Knowledge - Based Planning Approach. (Dr.Ing. 
Thesis) 

MTA-88-
60 

Xu Jun, MK Non-linear Dynamic Analysis of Space-framed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
61 

Gang Miao, MH Hydrodynamic Forces and Dynamic Responses of 
Circular Cylinders in Wave Zones. (Dr.Ing. Thesis) 

MTA-89-
62 

Martin Greenhow, MH Linear and Non-Linear Studies of Waves and 
Floating Bodies. Part I and Part II. (Dr.Techn. 
Thesis) 

MTA-89-
63 

Chang Li, MH Force Coefficients of Spheres and Cubes in 
Oscillatory Flow with and without Current. (Dr.Ing. 
Thesis 

MTA-89-
64 

Hu Ying, MP A Study of Marketing and Design in Development 
of Marine Transport Systems. (Dr.Ing. Thesis) 

MTA-89-
65 

Arild Jæger, MH Seakeeping, Dynamic Stability and Performance of 
a Wedge Shaped Planing Hull. (Dr.Ing. Thesis) 

MTA-89-
66 

Chan Siu Hung, MM The dynamic characteristics of tilting-pad bearings 

MTA-89-
67 

Kim Wikstrøm, MP Analysis av projekteringen for ett offshore projekt. 
(Licenciat-avhandling) 

MTA-89-
68 

Jiao Guoyang, MK Reliability Analysis of Crack Growth under 
Random Loading, considering Model Updating. 
(Dr.Ing. Thesis) 

MTA-89-
69 

Arnt Olufsen, MK Uncertainty and Reliability Analysis of Fixed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
70 

Wu Yu-Lin, MR System Reliability Analyses of Offshore Structures 
using improved Truss and Beam Models. (Dr.Ing. 
Thesis) 

MTA-90-
71 

Jan Roger Hoff, MH Three-dimensional Green function of a vessel with 
forward speed in waves. (Dr.Ing. Thesis) 

MTA-90-
72 

Rong Zhao, MH Slow-Drift Motions of a Moored Two-Dimensional 
Body in Irregular Waves. (Dr.Ing. Thesis) 

MTA-90-
73 

Atle Minsaas, MP Economical Risk Analysis. (Dr.Ing. Thesis) 

MTA-90-
74 

Knut-Aril Farnes, MK Long-term Statistics of Response in Non-linear 
Marine Structures. (Dr.Ing. Thesis) 

MTA-90- Torbjørn Sotberg, MK Application of Reliability Methods for Safety 

Floating Body. (Dr.Ing. Thesis) 

UR-87-57 Bernt Leira, MK Gaussian Vector Processes for Reliability Analysis 
involving Wave-Induced Load Effects. (Dr.Ing. 
Thesis) 

UR-87-58 Magnus Småvik, MM Thermal Load and Process Characteristics in a Two-
Stroke Diesel Engine with Thermal Barriers (in 
Norwegian). (Dr.Ing. Thesis) 

MTA-88-
59 

Bernt Arild Bremdal, MP An Investigation of Marine Installation Processes – 
A Knowledge - Based Planning Approach. (Dr.Ing. 
Thesis) 

MTA-88-
60 

Xu Jun, MK Non-linear Dynamic Analysis of Space-framed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
61 

Gang Miao, MH Hydrodynamic Forces and Dynamic Responses of 
Circular Cylinders in Wave Zones. (Dr.Ing. Thesis) 

MTA-89-
62 

Martin Greenhow, MH Linear and Non-Linear Studies of Waves and 
Floating Bodies. Part I and Part II. (Dr.Techn. 
Thesis) 

MTA-89-
63 

Chang Li, MH Force Coefficients of Spheres and Cubes in 
Oscillatory Flow with and without Current. (Dr.Ing. 
Thesis 

MTA-89-
64 

Hu Ying, MP A Study of Marketing and Design in Development 
of Marine Transport Systems. (Dr.Ing. Thesis) 

MTA-89-
65 

Arild Jæger, MH Seakeeping, Dynamic Stability and Performance of 
a Wedge Shaped Planing Hull. (Dr.Ing. Thesis) 

MTA-89-
66 

Chan Siu Hung, MM The dynamic characteristics of tilting-pad bearings 

MTA-89-
67 

Kim Wikstrøm, MP Analysis av projekteringen for ett offshore projekt. 
(Licenciat-avhandling) 

MTA-89-
68 

Jiao Guoyang, MK Reliability Analysis of Crack Growth under 
Random Loading, considering Model Updating. 
(Dr.Ing. Thesis) 

MTA-89-
69 

Arnt Olufsen, MK Uncertainty and Reliability Analysis of Fixed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
70 

Wu Yu-Lin, MR System Reliability Analyses of Offshore Structures 
using improved Truss and Beam Models. (Dr.Ing. 
Thesis) 

MTA-90-
71 

Jan Roger Hoff, MH Three-dimensional Green function of a vessel with 
forward speed in waves. (Dr.Ing. Thesis) 

MTA-90-
72 

Rong Zhao, MH Slow-Drift Motions of a Moored Two-Dimensional 
Body in Irregular Waves. (Dr.Ing. Thesis) 

MTA-90-
73 

Atle Minsaas, MP Economical Risk Analysis. (Dr.Ing. Thesis) 

MTA-90-
74 

Knut-Aril Farnes, MK Long-term Statistics of Response in Non-linear 
Marine Structures. (Dr.Ing. Thesis) 

MTA-90- Torbjørn Sotberg, MK Application of Reliability Methods for Safety 

Floating Body. (Dr.Ing. Thesis) 

UR-87-57 Bernt Leira, MK Gaussian Vector Processes for Reliability Analysis 
involving Wave-Induced Load Effects. (Dr.Ing. 
Thesis) 

UR-87-58 Magnus Småvik, MM Thermal Load and Process Characteristics in a Two-
Stroke Diesel Engine with Thermal Barriers (in 
Norwegian). (Dr.Ing. Thesis) 

MTA-88-
59 

Bernt Arild Bremdal, MP An Investigation of Marine Installation Processes – 
A Knowledge - Based Planning Approach. (Dr.Ing. 
Thesis) 

MTA-88-
60 

Xu Jun, MK Non-linear Dynamic Analysis of Space-framed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
61 

Gang Miao, MH Hydrodynamic Forces and Dynamic Responses of 
Circular Cylinders in Wave Zones. (Dr.Ing. Thesis) 

MTA-89-
62 

Martin Greenhow, MH Linear and Non-Linear Studies of Waves and 
Floating Bodies. Part I and Part II. (Dr.Techn. 
Thesis) 

MTA-89-
63 

Chang Li, MH Force Coefficients of Spheres and Cubes in 
Oscillatory Flow with and without Current. (Dr.Ing. 
Thesis 

MTA-89-
64 

Hu Ying, MP A Study of Marketing and Design in Development 
of Marine Transport Systems. (Dr.Ing. Thesis) 

MTA-89-
65 

Arild Jæger, MH Seakeeping, Dynamic Stability and Performance of 
a Wedge Shaped Planing Hull. (Dr.Ing. Thesis) 

MTA-89-
66 

Chan Siu Hung, MM The dynamic characteristics of tilting-pad bearings 

MTA-89-
67 

Kim Wikstrøm, MP Analysis av projekteringen for ett offshore projekt. 
(Licenciat-avhandling) 

MTA-89-
68 

Jiao Guoyang, MK Reliability Analysis of Crack Growth under 
Random Loading, considering Model Updating. 
(Dr.Ing. Thesis) 

MTA-89-
69 

Arnt Olufsen, MK Uncertainty and Reliability Analysis of Fixed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
70 

Wu Yu-Lin, MR System Reliability Analyses of Offshore Structures 
using improved Truss and Beam Models. (Dr.Ing. 
Thesis) 

MTA-90-
71 

Jan Roger Hoff, MH Three-dimensional Green function of a vessel with 
forward speed in waves. (Dr.Ing. Thesis) 

MTA-90-
72 

Rong Zhao, MH Slow-Drift Motions of a Moored Two-Dimensional 
Body in Irregular Waves. (Dr.Ing. Thesis) 

MTA-90-
73 

Atle Minsaas, MP Economical Risk Analysis. (Dr.Ing. Thesis) 

MTA-90-
74 

Knut-Aril Farnes, MK Long-term Statistics of Response in Non-linear 
Marine Structures. (Dr.Ing. Thesis) 

MTA-90- Torbjørn Sotberg, MK Application of Reliability Methods for Safety 



75 Assessment of Submarine Pipelines. (Dr.Ing. 
Thesis) 

MTA-90-
76 

Zeuthen, Steffen, MP SEAMAID. A computational model of the design 
process in a constraint-based logic programming 
environment. An example from the offshore 
domain. (Dr.Ing. Thesis) 

MTA-91-
77 

Haagensen, Sven, MM Fuel Dependant Cyclic Variability in a Spark 
Ignition Engine - An Optical Approach. (Dr.Ing. 
Thesis) 

MTA-91-
78 

Løland, Geir, MH Current forces on and flow through fish farms. 
(Dr.Ing. Thesis) 

MTA-91-
79 

Hoen, Christopher, MK System Identification of Structures Excited by 
Stochastic Load Processes. (Dr.Ing. Thesis) 

MTA-91-
80 

Haugen, Stein, MK Probabilistic Evaluation of Frequency of Collision 
between Ships and Offshore Platforms. (Dr.Ing. 
Thesis) 

MTA-91-
81 

Sødahl, Nils, MK Methods for Design and Analysis of Flexible Risers. 
(Dr.Ing. Thesis) 

MTA-91-
82 

Ormberg, Harald, MK Non-linear Response Analysis of Floating Fish 
Farm Systems. (Dr.Ing. Thesis) 

MTA-91-
83 

Marley, Mark J., MK Time Variant Reliability under Fatigue Degradation. 
(Dr.Ing. Thesis) 

MTA-91-
84 

Krokstad, Jørgen R., MH Second-order Loads in Multidirectional Seas. 
(Dr.Ing. Thesis) 

MTA-91-
85 

Molteberg, Gunnar A., MM The Application of System Identification 
Techniques to Performance Monitoring of Four 
Stroke Turbocharged Diesel Engines. (Dr.Ing. 
Thesis) 

MTA-92-
86 

Mørch, Hans Jørgen Bjelke, MH Aspects of Hydrofoil Design: with Emphasis on 
Hydrofoil Interaction in Calm Water. (Dr.Ing. 
Thesis) 

MTA-92-
87 

Chan Siu Hung, MM Nonlinear Analysis of Rotordynamic Instabilities in 
Highspeed Turbomachinery. (Dr.Ing. Thesis) 

MTA-92-
88 

Bessason, Bjarni, MK Assessment of Earthquake Loading and Response of 
Seismically Isolated Bridges. (Dr.Ing. Thesis) 

MTA-92-
89 

Langli, Geir, MP Improving Operational Safety through exploitation 
of Design Knowledge - an investigation of offshore 
platform safety. (Dr.Ing. Thesis) 

MTA-92-
90 

Sævik, Svein, MK On Stresses and Fatigue in Flexible Pipes. (Dr.Ing. 
Thesis) 

MTA-92-
91 

Ask, Tor Ø., MM Ignition and Flame Growth in Lean Gas-Air 
Mixtures. An Experimental Study with a Schlieren 
System. (Dr.Ing. Thesis) 

MTA-86-
92 

Hessen, Gunnar, MK Fracture Mechanics Analysis of Stiffened Tubular 

75 Assessment of Submarine Pipelines. (Dr.Ing. 
Thesis) 

MTA-90-
76 

Zeuthen, Steffen, MP SEAMAID. A computational model of the design 
process in a constraint-based logic programming 
environment. An example from the offshore 
domain. (Dr.Ing. Thesis) 

MTA-91-
77 

Haagensen, Sven, MM Fuel Dependant Cyclic Variability in a Spark 
Ignition Engine - An Optical Approach. (Dr.Ing. 
Thesis) 

MTA-91-
78 

Løland, Geir, MH Current forces on and flow through fish farms. 
(Dr.Ing. Thesis) 

MTA-91-
79 

Hoen, Christopher, MK System Identification of Structures Excited by 
Stochastic Load Processes. (Dr.Ing. Thesis) 

MTA-91-
80 

Haugen, Stein, MK Probabilistic Evaluation of Frequency of Collision 
between Ships and Offshore Platforms. (Dr.Ing. 
Thesis) 

MTA-91-
81 

Sødahl, Nils, MK Methods for Design and Analysis of Flexible Risers. 
(Dr.Ing. Thesis) 

MTA-91-
82 

Ormberg, Harald, MK Non-linear Response Analysis of Floating Fish 
Farm Systems. (Dr.Ing. Thesis) 

MTA-91-
83 

Marley, Mark J., MK Time Variant Reliability under Fatigue Degradation. 
(Dr.Ing. Thesis) 

MTA-91-
84 

Krokstad, Jørgen R., MH Second-order Loads in Multidirectional Seas. 
(Dr.Ing. Thesis) 

MTA-91-
85 

Molteberg, Gunnar A., MM The Application of System Identification 
Techniques to Performance Monitoring of Four 
Stroke Turbocharged Diesel Engines. (Dr.Ing. 
Thesis) 

MTA-92-
86 

Mørch, Hans Jørgen Bjelke, MH Aspects of Hydrofoil Design: with Emphasis on 
Hydrofoil Interaction in Calm Water. (Dr.Ing. 
Thesis) 

MTA-92-
87 

Chan Siu Hung, MM Nonlinear Analysis of Rotordynamic Instabilities in 
Highspeed Turbomachinery. (Dr.Ing. Thesis) 

MTA-92-
88 

Bessason, Bjarni, MK Assessment of Earthquake Loading and Response of 
Seismically Isolated Bridges. (Dr.Ing. Thesis) 

MTA-92-
89 

Langli, Geir, MP Improving Operational Safety through exploitation 
of Design Knowledge - an investigation of offshore 
platform safety. (Dr.Ing. Thesis) 

MTA-92-
90 

Sævik, Svein, MK On Stresses and Fatigue in Flexible Pipes. (Dr.Ing. 
Thesis) 

MTA-92-
91 

Ask, Tor Ø., MM Ignition and Flame Growth in Lean Gas-Air 
Mixtures. An Experimental Study with a Schlieren 
System. (Dr.Ing. Thesis) 

MTA-86-
92 

Hessen, Gunnar, MK Fracture Mechanics Analysis of Stiffened Tubular 

75 Assessment of Submarine Pipelines. (Dr.Ing. 
Thesis) 

MTA-90-
76 

Zeuthen, Steffen, MP SEAMAID. A computational model of the design 
process in a constraint-based logic programming 
environment. An example from the offshore 
domain. (Dr.Ing. Thesis) 

MTA-91-
77 

Haagensen, Sven, MM Fuel Dependant Cyclic Variability in a Spark 
Ignition Engine - An Optical Approach. (Dr.Ing. 
Thesis) 

MTA-91-
78 

Løland, Geir, MH Current forces on and flow through fish farms. 
(Dr.Ing. Thesis) 

MTA-91-
79 

Hoen, Christopher, MK System Identification of Structures Excited by 
Stochastic Load Processes. (Dr.Ing. Thesis) 

MTA-91-
80 

Haugen, Stein, MK Probabilistic Evaluation of Frequency of Collision 
between Ships and Offshore Platforms. (Dr.Ing. 
Thesis) 

MTA-91-
81 

Sødahl, Nils, MK Methods for Design and Analysis of Flexible Risers. 
(Dr.Ing. Thesis) 

MTA-91-
82 

Ormberg, Harald, MK Non-linear Response Analysis of Floating Fish 
Farm Systems. (Dr.Ing. Thesis) 

MTA-91-
83 

Marley, Mark J., MK Time Variant Reliability under Fatigue Degradation. 
(Dr.Ing. Thesis) 

MTA-91-
84 

Krokstad, Jørgen R., MH Second-order Loads in Multidirectional Seas. 
(Dr.Ing. Thesis) 

MTA-91-
85 

Molteberg, Gunnar A., MM The Application of System Identification 
Techniques to Performance Monitoring of Four 
Stroke Turbocharged Diesel Engines. (Dr.Ing. 
Thesis) 

MTA-92-
86 

Mørch, Hans Jørgen Bjelke, MH Aspects of Hydrofoil Design: with Emphasis on 
Hydrofoil Interaction in Calm Water. (Dr.Ing. 
Thesis) 

MTA-92-
87 

Chan Siu Hung, MM Nonlinear Analysis of Rotordynamic Instabilities in 
Highspeed Turbomachinery. (Dr.Ing. Thesis) 

MTA-92-
88 

Bessason, Bjarni, MK Assessment of Earthquake Loading and Response of 
Seismically Isolated Bridges. (Dr.Ing. Thesis) 

MTA-92-
89 

Langli, Geir, MP Improving Operational Safety through exploitation 
of Design Knowledge - an investigation of offshore 
platform safety. (Dr.Ing. Thesis) 

MTA-92-
90 

Sævik, Svein, MK On Stresses and Fatigue in Flexible Pipes. (Dr.Ing. 
Thesis) 

MTA-92-
91 

Ask, Tor Ø., MM Ignition and Flame Growth in Lean Gas-Air 
Mixtures. An Experimental Study with a Schlieren 
System. (Dr.Ing. Thesis) 

MTA-86-
92 

Hessen, Gunnar, MK Fracture Mechanics Analysis of Stiffened Tubular 

75 Assessment of Submarine Pipelines. (Dr.Ing. 
Thesis) 

MTA-90-
76 

Zeuthen, Steffen, MP SEAMAID. A computational model of the design 
process in a constraint-based logic programming 
environment. An example from the offshore 
domain. (Dr.Ing. Thesis) 

MTA-91-
77 

Haagensen, Sven, MM Fuel Dependant Cyclic Variability in a Spark 
Ignition Engine - An Optical Approach. (Dr.Ing. 
Thesis) 

MTA-91-
78 

Løland, Geir, MH Current forces on and flow through fish farms. 
(Dr.Ing. Thesis) 

MTA-91-
79 

Hoen, Christopher, MK System Identification of Structures Excited by 
Stochastic Load Processes. (Dr.Ing. Thesis) 

MTA-91-
80 

Haugen, Stein, MK Probabilistic Evaluation of Frequency of Collision 
between Ships and Offshore Platforms. (Dr.Ing. 
Thesis) 

MTA-91-
81 

Sødahl, Nils, MK Methods for Design and Analysis of Flexible Risers. 
(Dr.Ing. Thesis) 

MTA-91-
82 

Ormberg, Harald, MK Non-linear Response Analysis of Floating Fish 
Farm Systems. (Dr.Ing. Thesis) 

MTA-91-
83 

Marley, Mark J., MK Time Variant Reliability under Fatigue Degradation. 
(Dr.Ing. Thesis) 

MTA-91-
84 

Krokstad, Jørgen R., MH Second-order Loads in Multidirectional Seas. 
(Dr.Ing. Thesis) 

MTA-91-
85 

Molteberg, Gunnar A., MM The Application of System Identification 
Techniques to Performance Monitoring of Four 
Stroke Turbocharged Diesel Engines. (Dr.Ing. 
Thesis) 

MTA-92-
86 

Mørch, Hans Jørgen Bjelke, MH Aspects of Hydrofoil Design: with Emphasis on 
Hydrofoil Interaction in Calm Water. (Dr.Ing. 
Thesis) 

MTA-92-
87 

Chan Siu Hung, MM Nonlinear Analysis of Rotordynamic Instabilities in 
Highspeed Turbomachinery. (Dr.Ing. Thesis) 

MTA-92-
88 

Bessason, Bjarni, MK Assessment of Earthquake Loading and Response of 
Seismically Isolated Bridges. (Dr.Ing. Thesis) 

MTA-92-
89 

Langli, Geir, MP Improving Operational Safety through exploitation 
of Design Knowledge - an investigation of offshore 
platform safety. (Dr.Ing. Thesis) 

MTA-92-
90 

Sævik, Svein, MK On Stresses and Fatigue in Flexible Pipes. (Dr.Ing. 
Thesis) 

MTA-92-
91 

Ask, Tor Ø., MM Ignition and Flame Growth in Lean Gas-Air 
Mixtures. An Experimental Study with a Schlieren 
System. (Dr.Ing. Thesis) 

MTA-86-
92 

Hessen, Gunnar, MK Fracture Mechanics Analysis of Stiffened Tubular 



Members. (Dr.Ing. Thesis) 

MTA-93-
93 

Steinebach, Christian, MM Knowledge Based Systems for Diagnosis of 
Rotating Machinery. (Dr.Ing. Thesis) 

MTA-93-
94 

Dalane, Jan Inge, MK System Reliability in Design and Maintenance of 
Fixed Offshore Structures. (Dr.Ing. Thesis) 

MTA-93-
95 

Steen, Sverre, MH Cobblestone Effect on SES. (Dr.Ing. Thesis) 

MTA-93-
96 

Karunakaran, Daniel, MK Nonlinear Dynamic Response and Reliability 
Analysis of Drag-dominated Offshore Platforms. 
(Dr.Ing. Thesis) 

MTA-93-
97 

Hagen, Arnulf, MP The Framework of a Design Process Language. 
(Dr.Ing. Thesis) 

MTA-93-
98 

Nordrik, Rune, MM Investigation of Spark Ignition and Autoignition in 
Methane and Air Using Computational Fluid 
Dynamics and Chemical Reaction Kinetics. A 
Numerical Study of Ignition Processes in Internal 
Combustion Engines. (Dr.Ing. Thesis) 

MTA-94-
99 

Passano, Elizabeth, MK Efficient Analysis of Nonlinear Slender Marine 
Structures. (Dr.Ing. Thesis) 

MTA-94-
100 

Kvålsvold, Jan, MH Hydroelastic Modelling of Wetdeck Slamming on 
Multihull Vessels. (Dr.Ing. Thesis) 

MTA-94-
102 

Bech, Sidsel M., MK Experimental and Numerical Determination of 
Stiffness and Strength of GRP/PVC Sandwich 
Structures. (Dr.Ing. Thesis) 

MTA-95-
103 

Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 
Schlieren Method and Digital Image Processing. 
(Dr.Ing. Thesis) 

MTA-95-
104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 
Structural Systems, Considering the Effect of 
Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-
105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 
Emphasis on Load Combination and Ultimate 
Strength. (Dr.Ing. Thesis) 

MTA-95-
106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 
Cobblestone Oscillations of an SES. (Dr.Ing. 
Thesis) 

MTA-95-
107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 
Tanks. (Dr.Ing. Thesis) 

MTA-95-
108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 
Ultimate Limit State Design and Reassessment of 
Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-
109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic Analysis 
of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 
Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 

Members. (Dr.Ing. Thesis) 

MTA-93-
93 

Steinebach, Christian, MM Knowledge Based Systems for Diagnosis of 
Rotating Machinery. (Dr.Ing. Thesis) 

MTA-93-
94 

Dalane, Jan Inge, MK System Reliability in Design and Maintenance of 
Fixed Offshore Structures. (Dr.Ing. Thesis) 

MTA-93-
95 

Steen, Sverre, MH Cobblestone Effect on SES. (Dr.Ing. Thesis) 

MTA-93-
96 

Karunakaran, Daniel, MK Nonlinear Dynamic Response and Reliability 
Analysis of Drag-dominated Offshore Platforms. 
(Dr.Ing. Thesis) 

MTA-93-
97 

Hagen, Arnulf, MP The Framework of a Design Process Language. 
(Dr.Ing. Thesis) 

MTA-93-
98 

Nordrik, Rune, MM Investigation of Spark Ignition and Autoignition in 
Methane and Air Using Computational Fluid 
Dynamics and Chemical Reaction Kinetics. A 
Numerical Study of Ignition Processes in Internal 
Combustion Engines. (Dr.Ing. Thesis) 

MTA-94-
99 

Passano, Elizabeth, MK Efficient Analysis of Nonlinear Slender Marine 
Structures. (Dr.Ing. Thesis) 

MTA-94-
100 

Kvålsvold, Jan, MH Hydroelastic Modelling of Wetdeck Slamming on 
Multihull Vessels. (Dr.Ing. Thesis) 

MTA-94-
102 

Bech, Sidsel M., MK Experimental and Numerical Determination of 
Stiffness and Strength of GRP/PVC Sandwich 
Structures. (Dr.Ing. Thesis) 

MTA-95-
103 

Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 
Schlieren Method and Digital Image Processing. 
(Dr.Ing. Thesis) 

MTA-95-
104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 
Structural Systems, Considering the Effect of 
Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-
105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 
Emphasis on Load Combination and Ultimate 
Strength. (Dr.Ing. Thesis) 

MTA-95-
106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 
Cobblestone Oscillations of an SES. (Dr.Ing. 
Thesis) 

MTA-95-
107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 
Tanks. (Dr.Ing. Thesis) 

MTA-95-
108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 
Ultimate Limit State Design and Reassessment of 
Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-
109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic Analysis 
of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 
Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 

Members. (Dr.Ing. Thesis) 

MTA-93-
93 

Steinebach, Christian, MM Knowledge Based Systems for Diagnosis of 
Rotating Machinery. (Dr.Ing. Thesis) 

MTA-93-
94 

Dalane, Jan Inge, MK System Reliability in Design and Maintenance of 
Fixed Offshore Structures. (Dr.Ing. Thesis) 

MTA-93-
95 

Steen, Sverre, MH Cobblestone Effect on SES. (Dr.Ing. Thesis) 

MTA-93-
96 

Karunakaran, Daniel, MK Nonlinear Dynamic Response and Reliability 
Analysis of Drag-dominated Offshore Platforms. 
(Dr.Ing. Thesis) 

MTA-93-
97 

Hagen, Arnulf, MP The Framework of a Design Process Language. 
(Dr.Ing. Thesis) 

MTA-93-
98 

Nordrik, Rune, MM Investigation of Spark Ignition and Autoignition in 
Methane and Air Using Computational Fluid 
Dynamics and Chemical Reaction Kinetics. A 
Numerical Study of Ignition Processes in Internal 
Combustion Engines. (Dr.Ing. Thesis) 

MTA-94-
99 

Passano, Elizabeth, MK Efficient Analysis of Nonlinear Slender Marine 
Structures. (Dr.Ing. Thesis) 

MTA-94-
100 

Kvålsvold, Jan, MH Hydroelastic Modelling of Wetdeck Slamming on 
Multihull Vessels. (Dr.Ing. Thesis) 

MTA-94-
102 

Bech, Sidsel M., MK Experimental and Numerical Determination of 
Stiffness and Strength of GRP/PVC Sandwich 
Structures. (Dr.Ing. Thesis) 

MTA-95-
103 

Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 
Schlieren Method and Digital Image Processing. 
(Dr.Ing. Thesis) 

MTA-95-
104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 
Structural Systems, Considering the Effect of 
Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-
105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 
Emphasis on Load Combination and Ultimate 
Strength. (Dr.Ing. Thesis) 

MTA-95-
106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 
Cobblestone Oscillations of an SES. (Dr.Ing. 
Thesis) 

MTA-95-
107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 
Tanks. (Dr.Ing. Thesis) 

MTA-95-
108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 
Ultimate Limit State Design and Reassessment of 
Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-
109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic Analysis 
of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 
Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 

Members. (Dr.Ing. Thesis) 

MTA-93-
93 

Steinebach, Christian, MM Knowledge Based Systems for Diagnosis of 
Rotating Machinery. (Dr.Ing. Thesis) 

MTA-93-
94 

Dalane, Jan Inge, MK System Reliability in Design and Maintenance of 
Fixed Offshore Structures. (Dr.Ing. Thesis) 

MTA-93-
95 

Steen, Sverre, MH Cobblestone Effect on SES. (Dr.Ing. Thesis) 

MTA-93-
96 

Karunakaran, Daniel, MK Nonlinear Dynamic Response and Reliability 
Analysis of Drag-dominated Offshore Platforms. 
(Dr.Ing. Thesis) 

MTA-93-
97 

Hagen, Arnulf, MP The Framework of a Design Process Language. 
(Dr.Ing. Thesis) 

MTA-93-
98 

Nordrik, Rune, MM Investigation of Spark Ignition and Autoignition in 
Methane and Air Using Computational Fluid 
Dynamics and Chemical Reaction Kinetics. A 
Numerical Study of Ignition Processes in Internal 
Combustion Engines. (Dr.Ing. Thesis) 

MTA-94-
99 

Passano, Elizabeth, MK Efficient Analysis of Nonlinear Slender Marine 
Structures. (Dr.Ing. Thesis) 

MTA-94-
100 

Kvålsvold, Jan, MH Hydroelastic Modelling of Wetdeck Slamming on 
Multihull Vessels. (Dr.Ing. Thesis) 

MTA-94-
102 

Bech, Sidsel M., MK Experimental and Numerical Determination of 
Stiffness and Strength of GRP/PVC Sandwich 
Structures. (Dr.Ing. Thesis) 

MTA-95-
103 

Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 
Schlieren Method and Digital Image Processing. 
(Dr.Ing. Thesis) 

MTA-95-
104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 
Structural Systems, Considering the Effect of 
Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-
105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 
Emphasis on Load Combination and Ultimate 
Strength. (Dr.Ing. Thesis) 

MTA-95-
106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 
Cobblestone Oscillations of an SES. (Dr.Ing. 
Thesis) 

MTA-95-
107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 
Tanks. (Dr.Ing. Thesis) 

MTA-95-
108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 
Ultimate Limit State Design and Reassessment of 
Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-
109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic Analysis 
of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 
Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 



MTA-96-
111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 
Combination of the Finite Element Method and 
Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-
112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 
Direct Injection Natural Gas Engine. (Dr.Ing. 
Thesis) 

MTA-96-
113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions on 
Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 
Design. (Dr.Ing. Thesis) 

MTA-96-
115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 
Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-
116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems Using 
Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 
Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 
Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 
Thesis) 

MTA-98-
120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder Subjected 
to Vortex Shedding and Support Motions. (Dr.Ing. 
Thesis) 

MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in Design 
of Aluminium Structures Exposed to Fire. (Dr.Ing. 

MTA-96-
111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 
Combination of the Finite Element Method and 
Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-
112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 
Direct Injection Natural Gas Engine. (Dr.Ing. 
Thesis) 

MTA-96-
113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions on 
Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 
Design. (Dr.Ing. Thesis) 

MTA-96-
115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 
Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-
116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems Using 
Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 
Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 
Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 
Thesis) 

MTA-98-
120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder Subjected 
to Vortex Shedding and Support Motions. (Dr.Ing. 
Thesis) 

MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in Design 
of Aluminium Structures Exposed to Fire. (Dr.Ing. 

MTA-96-
111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 
Combination of the Finite Element Method and 
Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-
112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 
Direct Injection Natural Gas Engine. (Dr.Ing. 
Thesis) 

MTA-96-
113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions on 
Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 
Design. (Dr.Ing. Thesis) 

MTA-96-
115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 
Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-
116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems Using 
Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 
Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 
Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 
Thesis) 

MTA-98-
120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder Subjected 
to Vortex Shedding and Support Motions. (Dr.Ing. 
Thesis) 

MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in Design 
of Aluminium Structures Exposed to Fire. (Dr.Ing. 

MTA-96-
111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 
Combination of the Finite Element Method and 
Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-
112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 
Direct Injection Natural Gas Engine. (Dr.Ing. 
Thesis) 

MTA-96-
113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions on 
Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 
Design. (Dr.Ing. Thesis) 

MTA-96-
115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 
Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-
116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems Using 
Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 
Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 
Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 
Thesis) 

MTA-98-
120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder Subjected 
to Vortex Shedding and Support Motions. (Dr.Ing. 
Thesis) 

MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in Design 
of Aluminium Structures Exposed to Fire. (Dr.Ing. 



Thesis) 

MTA-99-
129 

Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
(Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. (Dr.Ing. 
Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. The 
Supplier Management of Norne. (Dr.Ing. Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance of 
liquid annular seals in centrifugal pumps. (Dr.Ing. 
Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. (Dr.Ing. 
Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net structures 
like fishing gear based on the finite element method. 
(Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and Stressor 
Interaction on Static Mechanical Equipment 
Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 

Thesis) 

MTA-99-
129 

Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
(Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. (Dr.Ing. 
Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. The 
Supplier Management of Norne. (Dr.Ing. Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance of 
liquid annular seals in centrifugal pumps. (Dr.Ing. 
Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. (Dr.Ing. 
Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net structures 
like fishing gear based on the finite element method. 
(Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and Stressor 
Interaction on Static Mechanical Equipment 
Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 

Thesis) 

MTA-99-
129 

Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
(Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. (Dr.Ing. 
Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. The 
Supplier Management of Norne. (Dr.Ing. Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance of 
liquid annular seals in centrifugal pumps. (Dr.Ing. 
Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. (Dr.Ing. 
Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net structures 
like fishing gear based on the finite element method. 
(Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and Stressor 
Interaction on Static Mechanical Equipment 
Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 

Thesis) 

MTA-99-
129 

Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
(Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. (Dr.Ing. 
Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. The 
Supplier Management of Norne. (Dr.Ing. Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance of 
liquid annular seals in centrifugal pumps. (Dr.Ing. 
Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. (Dr.Ing. 
Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net structures 
like fishing gear based on the finite element method. 
(Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and Stressor 
Interaction on Static Mechanical Equipment 
Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 



MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 
Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing on 
Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 
deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due to 
Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations of 
Circular Cylinders by Radial Water Jets. (Dr.Ing. 
Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 
Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

IMT-
2003-6 

Wist, Hanne Therese Statistical Properties of Successive Ocean Wave 

MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 
Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing on 
Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 
deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due to 
Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations of 
Circular Cylinders by Radial Water Jets. (Dr.Ing. 
Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 
Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

IMT-
2003-6 

Wist, Hanne Therese Statistical Properties of Successive Ocean Wave 

MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 
Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing on 
Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 
deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due to 
Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations of 
Circular Cylinders by Radial Water Jets. (Dr.Ing. 
Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 
Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

IMT-
2003-6 

Wist, Hanne Therese Statistical Properties of Successive Ocean Wave 

MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 
Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing on 
Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 
deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due to 
Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations of 
Circular Cylinders by Radial Water Jets. (Dr.Ing. 
Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 
Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

IMT-
2003-6 

Wist, Hanne Therese Statistical Properties of Successive Ocean Wave 



Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 
(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 
Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue Loading 
of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 
(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. (PhD 

Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 
(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 
Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue Loading 
of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 
(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. (PhD 

Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 
(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 
Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue Loading 
of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 
(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. (PhD 

Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 
(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 
Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue Loading 
of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 
(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. (PhD 



Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes (PhD 
Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-30 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-31 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-32 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-33 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of Two-
dimensional Nonlinear Sloshing in Rectangular 
Tanks. (Dr.ing.thesis, IMT) 

IMT-
2007-34 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-35 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-36 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-37 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-38 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-39 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading and 
Load Effects in Membrane LNG Tanks Subjected to 
Random Excitation. (PhD-thesis, CeSOS) 

IMT-
2008-40 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
thesis, CeSOS) 

IMT-
2008-41 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes (PhD 
Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-30 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-31 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-32 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-33 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of Two-
dimensional Nonlinear Sloshing in Rectangular 
Tanks. (Dr.ing.thesis, IMT) 

IMT-
2007-34 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-35 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-36 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-37 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-38 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-39 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading and 
Load Effects in Membrane LNG Tanks Subjected to 
Random Excitation. (PhD-thesis, CeSOS) 

IMT-
2008-40 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
thesis, CeSOS) 

IMT-
2008-41 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes (PhD 
Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-30 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-31 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-32 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-33 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of Two-
dimensional Nonlinear Sloshing in Rectangular 
Tanks. (Dr.ing.thesis, IMT) 

IMT-
2007-34 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-35 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-36 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-37 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-38 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-39 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading and 
Load Effects in Membrane LNG Tanks Subjected to 
Random Excitation. (PhD-thesis, CeSOS) 

IMT-
2008-40 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
thesis, CeSOS) 

IMT-
2008-41 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes (PhD 
Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-30 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-31 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-32 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-33 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of Two-
dimensional Nonlinear Sloshing in Rectangular 
Tanks. (Dr.ing.thesis, IMT) 

IMT-
2007-34 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-35 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-36 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-37 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-38 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-39 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading and 
Load Effects in Membrane LNG Tanks Subjected to 
Random Excitation. (PhD-thesis, CeSOS) 

IMT-
2008-40 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
thesis, CeSOS) 

IMT-
2008-41 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 



IMT-
2008-42 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-43 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-43 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-44 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-45 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-46 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-47 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-48 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-49 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and Scheduling. 
PhD-thesis, IMT 

IMT-
2009-50 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-51 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-52 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-53 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-54 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating Ship-
shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-55 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam Sea 
Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-56 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-57 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

       IMT               Hals, Jørgen        Modelling and Phase Control of Wave-Energy Converters 
          2010-58        Ph.d.thesis, CeSOS. 
 
 

IMT-
2008-42 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-43 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-43 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-44 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-45 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-46 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-47 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-48 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-49 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and Scheduling. 
PhD-thesis, IMT 

IMT-
2009-50 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-51 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-52 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-53 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-54 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating Ship-
shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-55 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam Sea 
Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-56 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-57 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

       IMT               Hals, Jørgen        Modelling and Phase Control of Wave-Energy Converters 
          2010-58        Ph.d.thesis, CeSOS. 
 
 

IMT-
2008-42 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-43 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-43 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-44 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-45 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-46 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-47 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-48 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-49 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and Scheduling. 
PhD-thesis, IMT 

IMT-
2009-50 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-51 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-52 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-53 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-54 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating Ship-
shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-55 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam Sea 
Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-56 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-57 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

       IMT               Hals, Jørgen        Modelling and Phase Control of Wave-Energy Converters 
          2010-58        Ph.d.thesis, CeSOS. 
 
 

IMT-
2008-42 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-43 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-43 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-44 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-45 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-46 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-47 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-48 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-49 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and Scheduling. 
PhD-thesis, IMT 

IMT-
2009-50 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-51 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-52 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-53 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-54 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating Ship-
shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-55 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam Sea 
Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-56 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-57 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

       IMT               Hals, Jørgen        Modelling and Phase Control of Wave-Energy Converters 
          2010-58        Ph.d.thesis, CeSOS. 
 
 



  
IMT Shu, Zhi  Uncertainty Assesment of Wave Loads and Ultimate Strength of Tankers and Bulk 
2010-59   Carriers in a Reliability Framework, Ph.d.-thesis, IMT. 
 
IMT    Jakobsen, Ken-Robert G.   Turbulence Modeling of Transverse Flow on Ship Hulls in Shallow Water. 
2010-60    Ph.d.thesis, IMT. 

 
 IMT Shao, Yanlin Numerical Potential-Flow Studies on Weakly-Nonlinear Wave-Body 
 2010-61  Interactions with/without Small Forward Speed, Ph.d.thesis, IMT. 
 

IMT Califano, Andrea Dynamic Loads on Marine Propellers due to Intermittent Ventilation. 
2010-62  Ph.d.thesis, IMT. 

 
 

 
 

  
IMT Shu, Zhi  Uncertainty Assesment of Wave Loads and Ultimate Strength of Tankers and Bulk 
2010-59   Carriers in a Reliability Framework, Ph.d.-thesis, IMT. 
 
IMT    Jakobsen, Ken-Robert G.   Turbulence Modeling of Transverse Flow on Ship Hulls in Shallow Water. 
2010-60    Ph.d.thesis, IMT. 

 
 IMT Shao, Yanlin Numerical Potential-Flow Studies on Weakly-Nonlinear Wave-Body 
 2010-61  Interactions with/without Small Forward Speed, Ph.d.thesis, IMT. 
 

IMT Califano, Andrea Dynamic Loads on Marine Propellers due to Intermittent Ventilation. 
2010-62  Ph.d.thesis, IMT. 

 
 

 
 

  
IMT Shu, Zhi  Uncertainty Assesment of Wave Loads and Ultimate Strength of Tankers and Bulk 
2010-59   Carriers in a Reliability Framework, Ph.d.-thesis, IMT. 
 
IMT    Jakobsen, Ken-Robert G.   Turbulence Modeling of Transverse Flow on Ship Hulls in Shallow Water. 
2010-60    Ph.d.thesis, IMT. 

 
 IMT Shao, Yanlin Numerical Potential-Flow Studies on Weakly-Nonlinear Wave-Body 
 2010-61  Interactions with/without Small Forward Speed, Ph.d.thesis, IMT. 
 

IMT Califano, Andrea Dynamic Loads on Marine Propellers due to Intermittent Ventilation. 
2010-62  Ph.d.thesis, IMT. 

 
 

 
 

  
IMT Shu, Zhi  Uncertainty Assesment of Wave Loads and Ultimate Strength of Tankers and Bulk 
2010-59   Carriers in a Reliability Framework, Ph.d.-thesis, IMT. 
 
IMT    Jakobsen, Ken-Robert G.   Turbulence Modeling of Transverse Flow on Ship Hulls in Shallow Water. 
2010-60    Ph.d.thesis, IMT. 

 
 IMT Shao, Yanlin Numerical Potential-Flow Studies on Weakly-Nonlinear Wave-Body 
 2010-61  Interactions with/without Small Forward Speed, Ph.d.thesis, IMT. 
 

IMT Califano, Andrea Dynamic Loads on Marine Propellers due to Intermittent Ventilation. 
2010-62  Ph.d.thesis, IMT. 

 
 

 
 




