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Abstract

Dynamic Positioning (DP) systems are increasingly replacing traditional position-
keeping methods—such as jack-up barges and anchoring systems—on board ships
operating in ever deeper waters. During these operations, the combined effect of
heavy sea states and high propeller loadings have caused a number of damages
on azimuth and tunnel thrusters, causing service downtime and requiring costly
repairs. Damages in rough seas were reported also during transit operations.
These damages can be caused by dynamic loads on the propeller due to intermittent
ventilation. Ventilation occurs on thrusters operating at high loadings and low
submergence, experiencing continuous cycles in- and out-of water. This leads to
sudden thrust losses and violent impact loads.
The present work aims at modeling the dynamic loads during propeller ven-

tilation, in order to predict the corresponding losses. Model tests and numerical
simulations were performed in order to better understand the mechanisms of dy-
namic forces due to ventilation. Furthermore, numerical simulations carry on the
challenge of applying a Volume of Fluid (VOF) method to this type of problem.
The performed model tests have shown two main ventilation mechanisms, de-

pending on the propeller submergence, loading and advance ratio: (i) at deeper
submergence through a free-surface vortex and (ii) at moderate submergences
through the blade itself piercing the free surface. These two mechanisms can exist
separately or at the same time, identifying three distinctive ventilation regimes.
The performed numerical simulations are able to reproduce the main features

observed during the experiments: air is drawn from the free-surface and trans-
ported along the propeller rotation, for both the ventilation types previously iden-
tified. The dynamic loads computed with the numerical model are in satisfactory
agreement with the experimental data at the upright position where the blade is
piercing the free-surface, whereas thrust is over-estimated at all the other angular
positions. Unlike ventilation of surface-piercing propellers with super-cavitating
profile, it was found that the tip-vortex has a dominant role in the type of ventila-
tion object of this study.
The tip-vortex was also identified as the most likely factor responsible for the over-
estimation found in the numerical simulations of the thrust for the angular positions
where the blade is deeply submerged. Other causes for the deviation between nu-
merical simulations and experiments are further discussed.
A qualitative model of the dynamic loads occurring during one propeller revolu-
tion was derived, based on the impact of the blade with the air entrained by the tip
vortex, leading to two main thrust losses: (i) an absolute minimum loss about the
angular position of π/4 and (ii) a local minimum loss about 3/2 π.
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Chapter 1

Introduction

1.1 Motivation and background

In the last 40 years—since the extraction of oil and natural gas from reserves lo-
cated in the sea had started—Norway has seen an increasing number of offshore
platforms along its coast-lines. A rapidly improving technology has allowed for
drilling in ever deeper waters, located offshore, characterized by heavy sea states.
As an indication, the probability of the significant wave height H1/3 being larger
than 2 m in the North Sea is 0.59 (Faltinsen, 1990).
As a consequence, ship operations offshore (Figure 1.1) have also increased, and
traditional position-keeping methods such as jack-up barges and anchoring sys-
tems became inadequate for those depths, leaving room to Dynamic Positioning
(DP) systems.

Figure 1.1: Supply vessel operating in heavy sea, where the emersion of the tunnel
thrusters on the bow can be observed. Courtesy of Rolls-Royce Marine (RRM).
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2 Introduction

Propellers might be required to operate at very high loadings by the DP sys-
tem in order to maintain a vessel’s position and heading in heavy sea states, where
thrusters can experience continuous cycles of water- exit and re-entry. In these con-
ditions, a number of accidents with damages to the lower bevel gear and propeller
shaft bearings of azimuth and tunnel thrusters (Figure 1.2) have been reported,
causing service downtime and requiring costly repairs. Damages caused by transit
operations in extremely rough seas have also been reported.

(a) Ulstein Aquamaster azimuth thruster. (b) Ulstein KaMeWa tunnel thruster.

Figure 1.2: An example of azimuth and tunnel thrusters from RRM.

Based on the analysis of damaged gear wheels, damages are identified as a
Tooth Interior Fatigue Fracture (TIFF, Figure 1.3), which is a failure mode believed
to be initiated as a fatigue crack in the interior of the tooth of a gear (MackAldener
and Olsson, 2000, 2002). The mechanical driving forces for the crack are twofold:
(i) a constant residual tensile stress in the interior of the tooth due to case hard-
ening and (ii) alternating stresses due to the idler usage (gears with teeth loaded
on both its flanks during each revolution). The crack will continue to propagate
towards the flank until it reaches the case-hardening layer where it deflects. When
the ultimate failure appears the crack will continue to the surface. Although marine
propellers are not subject to idler usage (ii), alternating stresses can arise from ex-
cessive torsional vibrations, causing meshing gears to loose contact and re-engage
with considerable energy-impact (gear hammering). Large torques and sudden
variations of the load conditions can be caused by intermittent ventilation, which
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1.1. Motivation and background 3

occurs on thrusters experiencing continuous cycles of water- exit and re-entry dur-
ing severe wave-vessel interactions. This leads to sudden thrust losses (Figure 1.4)
and violent impact loads. Ventilation has been observed on fully submerged pro-
pellers operating at low advance speed and high loadings, thus the propeller does
not necessarily require to be surface-piercing for ventilation to occur.

(a) Typical fracture surface (b) A schematic cross-section

Figure 1.3: TIFF (MackAldener and Olsson, 2000).

(a) Blade cycle.
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(b) Corresponding load.

Figure 1.4: Dynamic loads on a surface-piercing propeller (Olofsson, 1996).
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4 Introduction

Traditionally, ships and propulsion units have been optimized for operations in
calm water. Operations in heavy seas have only been accounted for using crude
safety factors. While the average thrust loss and loss of efficiency can be estimated
using semi-empirical methods, there is little knowledge on how to calculate the dy-
namic loads. There is also a need for more knowledge of the physics and dynamics
of the ventilating propeller in order to identify proper operational strategies and ac-
tive control systems to reduce the damaging load variations on the propellers.
A better knowledge of the mechanisms leading to ventilation inception can help the
design of more efficient motor controller able to prevent, or reduce, the occurrence
of ventilation.

Another aspect is the state-of-the-art of the development of propeller theory
and computation tools. As it is illustrated in Figure 1.5, the advances in propeller
computational tools have now become mature enough for a proper modeling of
dynamics due to waves and ship motions and related effects.

Figure 1.5: Development of propeller theory and computational tools. Courtesy of
Kjell Olav Holden.

1.2 Propeller ventilation

Propeller ventilation has been historically related to surface-piercing, partially sub-
merged propellers, which were first employed on shallow draught ships, and in a
second stage for high-speed craft, with supercavitating-type profile. It is only re-
cently that ventilation of conventional thrusters has gained much attention, due to
the increasing demand of offshore vessels and the new challenges encountered.

Shiba (1953) has carried out a comprehensive experimental study of propeller
ventilation, including sections with different profiles and analyzing the various
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1.2. Propeller ventilation 5

parameters affecting the phenomenon.
Later, during the 1970s, propulsion in a seaway, and the related average loss

of thrust and efficiency was studied quite extensively in Germany (Gutsche, 1967;
Fleischer, 1973) and in Norway (Faltinsen et al., 1981; Minsaas et al., 1983, 1987).
The effort made in understanding and modeling ventilation led to modeling the
time-average thrust loss β = KT/KT0

as a function of the submergence-to-radius
ratio h/R (Figure 1.6), by means of the loss of disc area (Gutsche, 1967) and
further including the losses due to the Wagner effect (Minsaas et al., 1983).
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Figure 1.6: Thrust losses according to Eq. 2.20 (Gutsche, 1967) and Eq. 2.23 (Min-
saas et al., 1983).

More recently, Koushan performed experiments and measured the dynamic
loads of a ventilated propeller in open water (Koushan, 2006b) and with the pres-
ence of a duct (Koushan, 2006a), taking into account the influence of factors
normally encountered in a seaway, such as waves and thruster azimuthing angle
(Koushan, 2006c, 2007b,a), in addition to those commonly used (submergence
and advance ratio).
Due to its nature being inherently non-linear and time dependent, the numerical

modeling of ventilation is a difficult task. The presence of air cavities, spray and
waves makes the mathematical formulation of the phenomenon a real challenge.
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6 Introduction

Since the beginning of the 1960s, modeling of thrust losses due to ventilation
has been attempted modifying ad hoc existing methods, such as blade element
method, lifting-line and lifting-surface theory.

More recently, a three-dimensional boundary element method was extended by
Young and Kinnas (2004) to predict the unsteady performance of surface-piercing
propellers during ventilation. This method accounts for the exact cavity detach-
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Chapter 2 Ventilation theory
It contains a review of the available literature, which was used to describe the

theory behind propeller ventilation and as starting point for the following research.
Furthermore, this review study allowed identifying analogies between propeller
ventilation started by a free-surface vortex with other phenomena seen in fields
different from marine applications, such as the inlet vortex in pump sumps and
the ground vortex at the inlet of aircraft engines—for which an extensive literature
exists. The mature experience gained through many years of research in these
fields not pertaining to marine technology could be transferred to the present work
in marine applications, where research studies started more recently.

Chapter 3 Verification studies
This chapter deals with numerical simulations aiming to validate and verify

the solver in connection with the most challenging numerical features encountered
in propeller ventilation, such as (i) presence of the free-surface and (ii) rotating
lifting surfaces. It is divided in two parts, as follows:

• Submerged hydrofoil
The present analysis focuses on the validation and verification of the solver
adopted in the case of a two-dimensional hydrofoil close to the free surface
(Califano, 2008b, 2009). Two cases are studied here, chosen among those
tested by Duncan (1983), corresponding to a non-breaking and a breaking
wave condition, with submergence ratios h/c of 1.286 and 0.911, respec-
tively. These studies show that for such a problem, where viscosity is not
dominant, the diffusion introduced by the solver affects significantly the ac-
curacy of the results and care must be taken in treating the near wall region
for a correct solution. The forces exerted by the foil are the key mechanism
driving the deformation of the free-surface.

• Propeller in open water
A sensitivity analysis was performed on a propeller in open water condi-
tions, and its results and validated against the available experiments, for a
wide range of operating advance ratios (Califano and Steen, 2009). The re-
sults of this study show a good agreement for the thrust coefficient, whereas
a systematic error affects the torque coefficient, which is under-estimated us-
ing Fluent code and over-estimated using OpenFOAM code. It was found
that this deviation in the torque is mainly due to different values for the wall
shear stresses, probably resulting from different implementation of the tur-
bulence modeling at the wall: Fluent computes too low shear stresses,
while OpenFOAM presents an over-estimation.
Furthermore, the implementation of a Sliding Mesh (SM) model for the
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8 Introduction

propeller rotation proved to be more accurate than the Multiple Reference
Frame (MRF) model.

Chapter 4 Model tests
Model tests were performed on a ventilating propeller, having the propeller

submergence, loading and advance ratio as main parameters. The analysis of the
results shows that the combination of these parameters determines the nature of
the ventilation mechanism:
(i) at deeper submergences

through a free-surface vortex (Figure 1.7a);

(ii) at moderate submergences
through the blade itself piercing the free surface (Figure 1.7b).
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(a) By formation of a free-surface vortex. (b) Surface-piercing.

Figure 1.7: Sketch of different types of propeller ventilation.

Using the experimental thrust envelopes (Figure 1.8), three different ventila-
tion regimes could be identified, depending on the influence of the above men-
tioned mechanisms.
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1. Free-surface vortex
characterized by severe
and discontinuous thrust
losses occurring when the
vortex reaches the blade
wall; the amplitude during a
ventilation event can deviate
significantly from the mean
value, which is slightly
lower than the nominal one.

2. Surface-piercing
characterized by uniform
thrust losses during the
complete revolution; the
thrust encompasses a narrow
amplitude range around the
mean value, which is in turn
significantly lower than the
nominal one.

3. Intermediate
where both mechanisms (i)
and (ii) act alternately dur-
ing the same test case;
the thrust encompasses a
broad and uniform ampli-
tude range and the mean
value is somewhere in be-
tween those found in the pre-
vious two regimes.

(a) h/R = 1.88.

(b) h/R = 1.56.

(c) h/R = 1.64

Figure 1.8: Thrust ratio during each revolution [n = 16 Hz].

The high-speed video recordings synchronized with the measurements allowed
establishing a relation between dynamic forces and ventilation. This was achieved
both for the ventilation through a free-surface vortex and for the recurring loads
occurring during a cycle of full ventilation.
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10 Introduction

Chapter 5 Numerical simulations
This chapter describes all the results obtained from the numerical simulations

of a ventilating propeller, performed with the commercial RANS solver Fluent.
Two cases are object of the present investigation, at submergence ratios h/R of 1.4
and 1.72, corresponding to the two ventilation types previously identified. After
starting from rest, ventilation is rapidly occurring and about 15 propeller revolu-
tions were simulated.
The analysis of the first time instants, before a quasi-steady oscillatory solution is
achieved, allows a deeper insight into two distinctive types of ventilation inception
(Figure 1.9):

(a) Surface-piercing at moderate submergence
(h/R = 1.4): Blades become surface-piercing
after the deformation of the free surface.

(b) By free-surface vortex formation at deeper
submergence (h/R = 1.72): Vortical structures
forming on the free surface reach the propeller tip.

Figure 1.9: Two types of ventilation inception, from numerical simulations.

Chapter 6 Discussion
This chapter presents a summary of the mechanisms underpinning propeller

ventilation and an analysis of the deviation of the numerical simulations from the
experimental data.
Unlike ventilation of surface-piercing propellers with supercavitating profile, it
was found that the tip vortex has a dominant role in the type of ventilation object
of this study. A qualitative model was derived based on the analysis of the dynamic
loads occurring during ventilation. The complexity of the ventilation phenomenon
itself leads to unstable numerical simulations, very sensitive to the used numerical
parameters, somehow reflecting the large deviation found in the experiment.

10 Introduction

Chapter 5 Numerical simulations
This chapter describes all the results obtained from the numerical simulations

of a ventilating propeller, performed with the commercial RANS solver Fluent.
Two cases are object of the present investigation, at submergence ratios h/R of 1.4
and 1.72, corresponding to the two ventilation types previously identified. After
starting from rest, ventilation is rapidly occurring and about 15 propeller revolu-
tions were simulated.
The analysis of the first time instants, before a quasi-steady oscillatory solution is
achieved, allows a deeper insight into two distinctive types of ventilation inception
(Figure 1.9):

(a) Surface-piercing at moderate submergence
(h/R = 1.4): Blades become surface-piercing
after the deformation of the free surface.

(b) By free-surface vortex formation at deeper
submergence (h/R = 1.72): Vortical structures
forming on the free surface reach the propeller tip.

Figure 1.9: Two types of ventilation inception, from numerical simulations.

Chapter 6 Discussion
This chapter presents a summary of the mechanisms underpinning propeller

ventilation and an analysis of the deviation of the numerical simulations from the
experimental data.
Unlike ventilation of surface-piercing propellers with supercavitating profile, it
was found that the tip vortex has a dominant role in the type of ventilation object
of this study. A qualitative model was derived based on the analysis of the dynamic
loads occurring during ventilation. The complexity of the ventilation phenomenon
itself leads to unstable numerical simulations, very sensitive to the used numerical
parameters, somehow reflecting the large deviation found in the experiment.

10 Introduction

Chapter 5 Numerical simulations
This chapter describes all the results obtained from the numerical simulations

of a ventilating propeller, performed with the commercial RANS solver Fluent.
Two cases are object of the present investigation, at submergence ratios h/R of 1.4
and 1.72, corresponding to the two ventilation types previously identified. After
starting from rest, ventilation is rapidly occurring and about 15 propeller revolu-
tions were simulated.
The analysis of the first time instants, before a quasi-steady oscillatory solution is
achieved, allows a deeper insight into two distinctive types of ventilation inception
(Figure 1.9):

(a) Surface-piercing at moderate submergence
(h/R = 1.4): Blades become surface-piercing
after the deformation of the free surface.

(b) By free-surface vortex formation at deeper
submergence (h/R = 1.72): Vortical structures
forming on the free surface reach the propeller tip.

Figure 1.9: Two types of ventilation inception, from numerical simulations.

Chapter 6 Discussion
This chapter presents a summary of the mechanisms underpinning propeller

ventilation and an analysis of the deviation of the numerical simulations from the
experimental data.
Unlike ventilation of surface-piercing propellers with supercavitating profile, it
was found that the tip vortex has a dominant role in the type of ventilation object
of this study. A qualitative model was derived based on the analysis of the dynamic
loads occurring during ventilation. The complexity of the ventilation phenomenon
itself leads to unstable numerical simulations, very sensitive to the used numerical
parameters, somehow reflecting the large deviation found in the experiment.

10 Introduction

Chapter 5 Numerical simulations
This chapter describes all the results obtained from the numerical simulations

of a ventilating propeller, performed with the commercial RANS solver Fluent.
Two cases are object of the present investigation, at submergence ratios h/R of 1.4
and 1.72, corresponding to the two ventilation types previously identified. After
starting from rest, ventilation is rapidly occurring and about 15 propeller revolu-
tions were simulated.
The analysis of the first time instants, before a quasi-steady oscillatory solution is
achieved, allows a deeper insight into two distinctive types of ventilation inception
(Figure 1.9):

(a) Surface-piercing at moderate submergence
(h/R = 1.4): Blades become surface-piercing
after the deformation of the free surface.

(b) By free-surface vortex formation at deeper
submergence (h/R = 1.72): Vortical structures
forming on the free surface reach the propeller tip.

Figure 1.9: Two types of ventilation inception, from numerical simulations.

Chapter 6 Discussion
This chapter presents a summary of the mechanisms underpinning propeller

ventilation and an analysis of the deviation of the numerical simulations from the
experimental data.
Unlike ventilation of surface-piercing propellers with supercavitating profile, it
was found that the tip vortex has a dominant role in the type of ventilation object
of this study. A qualitative model was derived based on the analysis of the dynamic
loads occurring during ventilation. The complexity of the ventilation phenomenon
itself leads to unstable numerical simulations, very sensitive to the used numerical
parameters, somehow reflecting the large deviation found in the experiment.



Chapter 2

Ventilation theory

Ventilation is the phenomenon of air-drawing seen on structures working below the
free-surface, such as hydrofoils, rudders and propellers. Ventilation can be forced,
which involves supply of air into the cavity by auxiliary means such as a pump.
Otherwise, the most common type of ventilation is natural, when air is supplied to
the ventilated cavity by pressure created by the flow itself.
Natural ventilation occurs when the pressure on the body falls below the atmo-
spheric pressure p0. In this sense, ventilation is similar to cavitation, which is
instead started when the pressure falls below the vapor pressure pv. Since pv is
much smaller than p0, one would expect ventilation to occur always before cavita-
tion, but there is another criterion necessary for ventilation: a continuous channel
with pressure p < p0 must exist between the body and the free-surface.
Ventilation on submerged hydrofoils (Nishiyama, 1961) or surface-piercing

rudders (Wadlin, 1958) occurs at high angle of attack, starting in the wake region
of stagnating flow. The pressure in this region downstream the ventilated object
(”dead water region”) was investigated by Shiba (1953), who concluded that ven-
tilation occurs when pressure in this region falls below the atmospheric pressure
p < p0.
For a finite span hydrofoil, ventilation can also occur through the trailing vortex
released from the wing tip (Wadlin et al. (1955) and Ramsen (1957)).
An extensive review of ventilation occurring on submerged hydrofoils is given by
Acosta (1973), within the framework of hydrofoil craft.
Because of its rotation, propeller ventilation has aspects different from those

of bodies which are simply translating. Being the object of this study, a detailed
description of the theory and of the historical background will be given in this
chapter.
Ventilation may occur when a propeller is operating in the proximity of the

free-surface. At low advance ratios J , if the propeller loading CT is sufficiently
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12 Ventilation theory

high, the pressure on the propeller blades may become low enough to draw air
from the free-surface.

A phenomenological description of propeller ventilation has been given by
Shiba (1953):

”Air-drawing of a marine propeller signifies the penetration of atmo-
sphere through an air hole or along the blade surface in contact with
atmosphere into the dead water region or sub-atmospheric region on
the upper surface of propeller blades.”

This definition contains already the main features of the propeller ventilation mech-
anism, which occurs in presence of the atmosphere, and can reach the propeller
through an ”air hole” or ”along the blade surface in contact with atmosphere”.
Air-drawing may occur through a funnel created on the free-surface, or by the
propeller itself piercing the free-surface. Once ventilation has started, air cavities
spread on the propeller blades, reducing profile’s lift and drag, and consequently
the thrust and torque of the whole propeller. A fully ventilated propeller may lose
as much as 70-80% of its nominal thrust and torque. These high thrust losses occur
when the suction side—responsible for about 2/3 of the total thrust—is completely
covered with air with a pressure close to the atmospheric, thus giving almost zero
thrust. For this reason, thrust losses due to ventilation are much higher than those
experienced by a cavitating propeller, where the vapor pressure reached on the
blade walls still gives a contribution to the thrust.

2.1 Dimensionless parameters

In order to extrapolate the results from model tests to full scale, similarity must
be ensured on the boundary and working conditions. A dimensional analysis of
the governing fluid dynamic equations (Shiba, 1953) leads to the non-dimensional
parameters relevant to the ventilated propeller flow.

These parameters will be defined using a velocity proportional to the tangential
velocity nD (being n the shaft frequency and D the propeller diameter) of the
blade-tip as reference value, instead of the free-stream velocity U (commonly used
in marine applications). This assumption better complies with the characteristic
flow around a propeller, where the velocity of advance U is much smaller than
the blade’s tangential velocity, especially at the high propeller loadings considered
during this dissertation.

Advance ratio
J =

U

nD
(2.1)
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2.1. Dimensionless parameters 13

Submergence ratio

I =
h

R
(2.2)

where h is the propeller shaft submergence and R the propeller radius.

Froude number, based on diameter D and submergence h

Fr =
nD√
gD

(2.3a)

Frh =
nD√
gh

(2.3b)

Cavitation and ventilation number

σcav =
p0 + ρgh − pv

1/2ρ(2πnr)2
(2.4a)

σvent =
p0 + ρgh − p0

1/2ρ(2πnr)2
=

2gh

(2πnr)2
=

2/π2

Fr2
h

(2.4b)

Reynolds number

Re =
nD2

ν
(2.5)

where ν is the kinematic viscosity ν = μ/ρ.

A local Re will sometimes be used:
Reynolds number at 0.7 radius

Re0.7 =
0.7πnD · c0.7

ν
(2.6)

where c0.7 is the chord length at 0.7 radius.

Weber number

We = nD

√
D

ρ

σ
(2.7)

where σ is the surface tension.

Geometrical similarity between model and full scale with respect to ventilation
implies the same submergence ratio h/R. The same advance number J will ensure
a similar moving path for the blade, thus similar working conditions. The Froude
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14 Ventilation theory

Fr and Reynolds Re numbers must be the same in order to satisfy the law of
similarity between model and full scale. The Froude number may be defined as
the ratio of inertial to gravitational forces and its equality between model and full
scale will ensure the same force due to wave making. The Reynolds number may
be defined as the ratio of inertial to viscous forces and is used to ensure the same
viscous forces between model and full scale.

Shiba (1953) has correlated the occurrence of ventilation with the pressure in
the wake flow behind a submerged body, sometimes called ”dead water region” by
the author, and represented in Figure 2.1 for a surface-piercing cylinder.

Figure 2.1: Separated flow downstream a surface-piercing cylinder (Shiba, 1953).

He has shown that the characteristics of the wake region of a fully-ventilated
propeller depends on Fr up to values around 3. Most marine propellers present
Fr smaller than 3, a fact that underlines the importance of satisfying the similar-
ity for this parameter when ventilation has already occurred. Similarity of Frh is
automatically achieved after satisfying Fr and submergence ratio I .
For scaled models towed in water similarity in bothRe and Fr can not be achieved.
Similarity in Re requires too high velocities to be achieved in practice. In most
cases, the differences in Re will introduce negligible scale effect as long as tur-
bulent flow is attained in model scale. The minimum Re above which its effect
can be neglected was estimated by Kempf (1934) to be O(105). Brandt (1973)
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2.1. Dimensionless parameters 15

uses the local Reynolds number Re0.7 to assess flow-independence from Reynolds
number. His conclusion is that for Re0.7 > 5×105 laminar boundary layer separa-
tion ceases to occur, and the effect of Re on the propeller characteristics vanishes,
regardless of flow regime and propeller immersion.
The expression for σvent shows that it is proportional to Fr−2

h , thus similarity
is automatically satisfied after Fr and I .
The propeller model object of this investigation was especially designed for ven-
tilation studies, and is cavitation-free in model scale when fully submerged. Sim-
ilarity in terms of cavitation is hard to achieve, unless atmospheric pressure in the
tunnel can be reduced to match the same σcav as in full scale1. However, the ef-
fect of cavitation is believed to be important only for a partially ventilated regime,
where a link might exist between ventilation and cavitation.
Similarity of Weber numberWemust be fulfilled to take into account the effect

of surface tension σ.
Including surface tension, the fluid pressure will be discontinuous at the surface of
separation where a curvature with radius r exists (Lamb, 1932):

p0 − p =
σ

r
(2.8)

Surface tension has the effect to prevent air from being sucked down, adding a
pressure equal to the ratio between surface-tension and radius-of-curvature. The
condition for ventilation to occur can thus be rewritten:

p +
σ

r
< p0 (2.9)

Substituting the radius of curvature with half the breadth b of the dead water region
(see Figure 2.1), the condition for ventilation inception can be rearranged as:

(p0 − p) b > 2σ (2.10)

We can argue from Equation 2.10 that ventilation is more likely to occur where
the pressure is low (i.e. on the suction side) and for increasing breadth of the dead
water region.
At the instant before ventilation inception, surface tension is dominating rel-

ative to the forces due to gravity. The critical advance constant is shown experi-
mentally to depend on We up to 180 (Shiba, 1953). Although ordinary full-scale
marine propellers work in a range much higher than 180, care should be taken in
model tests to exceed this value in order to ensure similarity.

1However, the corresponding full scale propeller might cavitate, due to the higher velocities and
thus smaller cavitation number.
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16 Ventilation theory

Propeller performance characteristics are commonly presented in non-dimensional
form, in terms of thrust KT , torque KQ and efficiency η.

KT =
T

ρn2D4
(2.11a)

KQ =
Q

ρn2D5
(2.11b)

η =
J

2π

KT

KQ
(2.11c)

Thrust can sometimes be presented in terms of another coefficient, the propeller
loading CT , obtained dividing the thrust by the dynamic pressure pdyn and the
propeller disc area A0.

CT =
T

1
2ρ(nD)2A0

=
ΔpA0

1
2ρ(nD)2A0

=
Δp

1
2ρ(nD)2

(2.12)

where Δp is the pressure jump imposed at the propeller plane.
In order to investigate local features of the flow, the pressure coefficient is also
introduced:

Cp =
p − p∞

1
2ρ(nD)2

(2.13)

2.1.1 Scale effects

The fluid pressure in the low-pressure region will in full-scale (subscript s) be
lower than in the corresponding location in model scale (subscript m): ps < pm.
The same applies for the pressure difference:

p0 − ps > p0 − pm (2.14)

Assuming a laminar boundary layer profile for the dimensionless breadth of the
dead water region b/x (Shiba, 1953) inversely proportional to

√
Re through the

constant k:
b

x
=

k√
Re

(2.15)

the breadth of the dead water region in full scale will be larger than in model scale:

bs

bm
=

Ls√
UsLs

√
UmLm

Lm
=

√
Um

Us

√
Lm

Ls

Ls

Lm
= λ− 1

4 λ− 1
2 λ = λ

1
4

λ =
Ls

Lm
> 1

(2.16)
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where λ is the scale factor of the lengths in full and model scale, therefore larger
than unity.
Combining Equation 2.14 and Equation 2.16, the following relationship can be
obtained:

(p0 − ps) bs > (p0 − pm) bm (2.17)

Recalling Equation 2.10, for similar conditions in Froude number Fr and sub-
mergence ratio I (and thus for the same ventilation number σvent), Equation 2.17
shows that ventilation can occur in full scale without occurring in model scale.
The same conclusion had been reached by Kempf (1934):

”. . . experience showed that in certain cases the diminution of thrust of
the ship’s propeller was greater than that of the model propeller . . . ”

This difference was ascribed by Kempf (1934) to the effect of viscosity, and he
suggested in his comments that also capillarity (surface tension) might play a sig-
nificant role. The importance of surface tension in terms of scaling effects was
indeed explained with the previous considerations based on Shiba (1953).

2.2 Historical background

Propeller ventilation has been historically related to surface piercing, or partially
submerged propellers, which were first employed in shallow waters, and in a sec-
ond stage for high-speed craft.
It is only recently that ventilation of conventional thrusters has gained much at-
tention. With the increasing demand of offshore vessels able to work in heavy sea
states at high propeller loadings—as for Dynamic Positioning (DP) operations—a
number of cases of damages to the lower bevel gear and propeller shaft bearings
on azimuth and tunnel thrusters have been reported. Based on their analysis, dam-
ages are believed to be caused by large torque and sudden variation of the load
conditions.
Studies related to surface-piercing propellers can be dated back to the mid-

19th century, when the screw propeller had been the dominant form of marine
propulsion, replacing the paddle wheel. The first known patent on surface-piercing
propellers was obtained by David Napier in 1841 (Napier, 1912):

Patent No. 8893, 1841. Improvements in Propelling Vessels.
”One part of this invention consisted in placing two wheels or pro-
pellers of equal diameter at the stern of the vessel, the axles of both
above the level of the water, and one wheel further aft than the other,
to permit the blades or float-boards of one wheel working nearly up to
the axle of the other. These wheels, on patent drawing, had each eight
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18 Ventilation theory

oblique blades, radiating from a central disc. A further arrangement
in this patent applied to side wheels. The floats, in this case, were
connected at their lower edges to a heavy metallic frame, the weight
of which kept the floats, all round, in a nearly vertical position.”

In order to achieve shallow-draft propulsion in sheltered waters, where the ”con-
ventional” paddle wheel was performing better with respect to the ”unconven-
tional” screw propeller, much research effort has gone into improving the perfor-
mance of the propeller working in partially submerged conditions.

The technological achievements in the design of partially submerged propellers—
obtained without the benefit of model or ”scientific” investigations—had to face
from the very beginning the problem of air-drawing. The first known study on the
effect of air-drawing was performed by Reynolds (1874). Based on simple model
tests performed at various submergences, he observed three fundamental regimes:
start-up, intermittent and fully-developed ventilation.

Since then, the results of a number of investigations have been published.
Kempf (1934) was a pioneer of the study of ventilation effects on propellers. He
found that thrust and torque diminished in a higher degree than should be expected
from the immersed area of the propeller only. He tested three and four-bladed
propellers at different revolutions and immersion ratios, and showed the negative
effects of ventilation on thrust and torque.

Shiba (1953) has studied the ventilation mechanism in details, performing
experiments on simpler geometries, such as surface-piercing cylinders and hy-
drofoils, and extensively analyzing the parameters affecting propeller ventilation.
Ventilation was studied on average thrust and torque, taking into account the ef-
fect of different propeller design parameters as well as the rate of revolutions and
speed.
As mentioned in the previous section, his conclusion is that ventilation occurs
when pressure in the ”dead water region” downstream the ventilated object falls
below the atmospheric pressure, with the pressure due to surface tension subtracted
p < p0 − σ/r.
Most of the blade sections tested were of airfoil type, but he did also include a
circular arc section with a flat pressure face and sharp leading edge and noted the
difference in the performance curve.

Gutsche (1967) presented results of tests of partially submerged propellers and
suggested a procedure for calculating the out-of-water effect on average thrust.

With the growing interest in high-speed craft with high-performance propul-
sion, partially submerged propeller were seen as a valid propulsion alternative to
the fully submerged supercavitating propellers. Their high efficiency is primarily
attributed to the reduction of appendage drag, because most of the propeller assem-
bly (e.g., shafts, struts, hub, etc.) is elevated above the water. Other advantages
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over conventional submerged propellers include (i) larger propeller size, since it is
not limited by minimum blade tip clearance from the hull or the maximum vessel
draft, and (ii) avoidance of cavitation damage, because the propeller usually oper-
ates at ventilated conditions by drawing air from the surface.
Within this framework, Hadler and Hecker (1968) further investigated the possibil-
ity to use propellers with supercavitating-type sections—circular arc section with
flat faces and sharp leading edge— in partially submerged conditions.
An extensive test campaign was carried out in order to compare the performance
between partially submerged, fully wetted, and supercavitating operation.
As guidance to the understanding of propeller test results, the flow regime around a
supercavitating-type section under ventilated flow conditions is shown Figure 2.2.

D
ra
g
co
ef
fic
ie
nt

Figure 2.2: Lift and drag coefficients of wedges in various flow regimes (Hadler
and Hecker, 1968).

Three main flow regions can be observed:

• Base-Vented. The cavity springs from the blunt trailing edge and springs aft.
The foil develops its highest lift-to-drag ratio.
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20 Ventilation theory

• Partially Cavitating, between base- and fully-vented. A vapor cavity is con-
fined on the suction side. Forces and moments are unsteady, and oscillations
becomes violent (”buffeting”) before transition to the fully vented region.

• Fully Vented. The cavity of atmospheric pressure cover the suction side,
extending from the leading edge for more than one chord-length. The lift
experiences a sudden drop.

The propeller experiences the same abrupt drop in thrust and torque when passing
from the base-vented to the fully vented operation.

Fleischer (1973) presented average thrust and torque measurements that demon-
strated interactions between propeller and hull when the propeller is partly sub-
merged. He also studied the effect of the rate of revolutions on ventilation.

Huse (1973) has studied the dynamic loads on a blade of a ducted propeller
due to forced and natural ventilation. His study presents the first discussion about
the formation of a free-surface vortex leading to ventilation.

The effect of ventilation on time-average thrust and torque of propellers oper-
ating in waves is discussed by Faltinsen et al. (1981); Minsaas et al. (1983, 1987),
leading to a general expression for the reduced thrust β as function of the submer-
gence ratio h/R (Equation 2.23).

Olofsson (1996) conducted a very thorough series of experiments giving a deep
insight into the dynamic performance of a surface-piercing propeller. Experiments
were conducted at the KaMeWa free surface cavitation tunnel in Sweden. A five-
component dynamometer was used to measure the unsteady blade forces. In the
experiment, the cavitation number and Froude number scaling were simultane-
ously satisfied. The influence of Froude and cavitation number at different advance
speeds was systematically examined. Tests with different shaft yaw and inclination
angles were also performed.

More recently, Koushan performed experiments and measured the dynamic
loads of a ventilated propeller in open water (Koushan, 2006b) and with the pres-
ence of a duct (Koushan, 2006a), taking into account the influence of factors
normally encountered in a seaway, such as waves and thruster azimuthing angle
(Koushan, 2006c, 2007b,a), in addition to those commonly used (submergence
and advance ratio).

The occurrence of ventilation in the recent years has become a serious problem
during Dynamic Positioning (DP) operations. Several authors have studied new
control systems able to detect ventilation inception and control the motor in order
to reduce the associated thrust losses (Smogeli, 2006; Ruth, 2008).

Paik et al. (2008) have measured the deformation of the free-surface due to the
proximity of a propeller under different submergence ratios. Their results showed
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that at larger immersion depths, the propeller inflow begins to accelerate from up-
stream and the rate of acceleration increases gradually with approaching the pro-
peller plane. Moving the propeller close to the free surface caused a decrease in the
acceleration of the inflow velocity and greatly influenced the inflow region above
the blade tip position. Reducing the propeller submergence, the axial velocity was
reduced, both upstream and downstream. This condition would help the formation
of a stagnation point, and the subsequent vortex formation. They also found that
the vortex structure of the tip vortices and their trajectories depended on both the
immersion depth and propeller loading.

2.2.1 Numerical methods

Due to its nature being inherently non-linear and time-dependent, the numerical
modeling of ventilation is a difficult task. The presence of air cavities, spray and
waves make the mathematical formulation of the phenomenon a real challenge.
Olofsson (1996) presents a detailed review of the numerical methods applied

to surface-piercing propellers. A shorter review, by no means fully comprehensive,
will be given in this section, aiming at underlying the characteristics of the previous
methods and the differences with respect to the present study. More details are
given in Olofsson (1996), and for a deeper understanding the reader should review
the original articles.
Yegorov and Sadovnikov (1961) applied a blade element method based on two-

dimensional hydrofoil theory, but ignored the effect of adjacent blades, cavities,
and wake vortex sheets.
Oberembt (1968) extended a lifting-line theory including the effect of immer-

sion. This was achieved assuming the propeller to be lightly loaded, such that no
natural ventilation occurred, and approximating the free-surface with a horizontal
plane with the method of the images.
Later, Wang (1977, 1979) applied a linear theory to study the vertical and

oblique water entry and exit of a fully ventilated foil, which is assumed to be fully
ventilated during the passage of the water layer.
This method, combined with the supercavitating propeller theory of Cox (1966),
was then extended by Furuya (1985) to include the effect of propeller ventilation.
An unsteady lifting surface method was developed by Wang et al. (1992) for

the analysis of a fully ventilated surface-piercing propellers, assuming, similar to
Furuya (1985), the flow to separate from both the leading edge and trailing edge
of the blade, forming on the suction side a cavity that vents to the atmosphere.
More recently, Young and Kinnas (2004) have extended a three-dimensional

boundary element method to predict the unsteady performance of surface-piercing
propellers in the partially ventilated, transition, and fully ventilated flow regimes.
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22 Ventilation theory

This method accounts for the exact cavity detachment location on the suction side
by means of an implemented search algorithm.

Although progresses were achieved towards the modeling of propellers pierc-
ing the free-surface, all methods present several shortcomings related to the as-
sumptions they are based on, limiting their validity to the global forces or the
particular propeller object of the study. It can be seen that a more general purpose
model is needed to predict the dynamic loads occurring during ventilation, in all
possible flow regimes.

The first known work attempting the modeling of surface-piercing propellers
using RANS was performed by Caponnetto (2003). He carried out numerical sim-
ulations of a surface-piercing propeller, obtaining a good agreement with the ex-
periments of Olofsson (1996), in terms of blade forces during a rotation cycle. Not
many details are given about the employed numerical method.

Recently, Califano and Steen (2009) have performed simulations using RANS
on a fully submerged ventilating propeller, obtaining a good agreement with the
experimental results of the most severe thrust losses. It should be mentioned here
that three main differences exist between the present study and those previously
described in this section: (i) the propeller is fully submerged (h/R = 1.4 > 1)
and becomes surface-piercing only when ventilation occurs, (ii) the blade sections
are not of the super-cavitating type (sharp leading edge and thick abrupt trailing
edge), but designed with a conventional lifting foil profile (blunt leading edge and
sharp trailing edge), and (iii) very high propeller loadings were simulated. As a
consequence, the present study will present characteristics which will distinguish
it from surface-piercing propellers of supercavitating-type: (i) ventilation must be
triggered by some event (ventilation inception), (ii) the blunt leading edge will not
work as a sharp interface between the gaseous and liquid phase, and (iii) the tip
region will be characterized by high non-linearities.

2.3 Thrust loss

A propeller on a vessel in a seaway may experience large vertical motions relative
to the free-surface. This can result in abrupt thrust losses which can be fairly large,
up to the 70-80% of the nominal thrust. The total losses can be thought of to consist
of three main contributions: (i) loss of effective propeller disc area, (ii) ventilation,
and (iii) a lift hysteresis effect. The term ventilation is commonly referred to the
total losses.

The total reduced thrust can then be estimated multiplying the different com-
ponents which will be described in the following sections.

β = β0βvβH (2.18)
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being β the ratio between the ventilating and non-ventilating thrust (or torque).
Thrust and torque losses are closely related, such that the reduced torque factor
βQ should always be larger than βT in order to have an efficiency not increasing
with the thrust losses. Faltinsen et al. (1981) and Minsaas et al. (1983) sug-
gested a simple relationship based on previous experimental results (Kempf, 1934;
Gutsche, 1967):

βQ = βm
T , 0 < m < 1 (2.19)

where typical values for m are between 0.8 and 0.85 for an open propeller. The
empirical relationship between reduced thrust and torque was confirmed by Ko-
zlowska et al. (2009) based on recent experimental results.

2.3.1 Loss of effective disc area

During the water-exit phase, the propeller is experiencing a thrust loss due to loss
of effective disc area (Gutsche, 1967; Fleischer, 1973). The corresponding reduced
thrust β0 can be geometrically found as the ratio between the immersed disc area
A1 and the propeller area A0:

β0 =
A1

A0
= �

[
1 − arccos(h/R)

π
+

h/R

π

√
1 − (h/R)2

]
(2.20)

An alternative representation, where also the propeller hub diameter is accounted
for, is given by Koushan (2004), where rh the radius of the hub. This loss model
is assumed to be valid for any propeller loading.

β0 =

[
0.5 − arcsin(h/R)

π
+

h/R

π

√
1 − (h/R)2

]
[
1 − |h + rh| − (h + rh)

2(R − rh)

]
(2.21)

2.3.2 Hysteresis effect

During the in- and out-of-water movement of the propeller in waves hysteresis in
the production of thrust generally occurs, leading to a reduced thrust βH . The
thrust build-up when the propeller stops ventilating is then slower than the thrust
loss when the propeller starts ventilating. According to Koushan (2004), a typical
propeller must travel about 4 revolutions at full submergence to re-gain its full
thrust.
The hysteresis can be related to the delay in building-up the steady-state lift

of an airfoil accelerating instantaneously from rest to a constant velocity U , a
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24 Ventilation theory

phenomenon referred to as the Wagner effect (Wagner, 1925). This effect will be
analyzed in more detail in § 3.1.2.2, within the study of a submerged 2D foil.

Faltinsen et al. (1981) have proposed an expression taking into account this
effect.

β = β0β1x (2.22)
where β1 is due to the steady wave motion created by the propeller and x is due to
the Wagner effect. An alternative representation is given in Minsaas et al. (1983):

β =

{
1 − 0.675 (1 − 0.769h/R)1.258 for h/R < 1.3
1 for h/R ≥ 1.3

(2.23)

The obtained reduced thrust factors are compared in Figure 2.3 with the reduced
thrust β0 only due to loss of effective disc area.
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Figure 2.3: Thrust losses according to Gutsche (1967) and Minsaas et al. (1983).

2.3.3 Ventilation losses

During ventilation, the propeller experiences a thrust loss not only due to the re-
duced disk area and Wagner effect previously accounted for. Air is able to ”pene-
trate” the free-surface and invest the blade surface, especially on the suction side,
leading to a sudden increase of pressure, and a subsequent thrust loss.
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An expression of the reduced thrust solely due to ventilation has been found
by Minsaas et al. (1983) assuming that the suction side is fully ventilated—it is
subject to atmospheric pressure—and the pressure on the pressure side is static:

βv =
1.5EAR

KT0

[
CL(σv=0)

+ σv

]
(r/R=0.7÷0.75)

(2.24)

Equation 2.24 establishes a direct connection between the reduced thrust and the
lift coefficient of an ”equivalent section” of the propeller, where h/R = 0.7÷0.75.
The lift coefficient is given by the contribution of the pressure side (p = pstatic ⇒
σv = 0) and the suction side (p = p0 ⇒ CL = σv).
Using a linearized two-dimensional theory, Tulin and Burkart (1955) have es-

tablished the equivalence between the lift coefficient CL of a super-cavitating hy-
drofoil and the moment coefficient C̃M of the corresponding airfoil. This equiva-
lence has been then expounded in Tulin (1956) and summarized in Tulin (1964):

CL(σc=0)
= C̃M =

π

2
α (2.25)

In analogy with the cavitating case, Kozlowska et al. (2009) have used Equa-
tion 2.25 to express the lift coefficient obtained on the pressure side of a venti-
lating foil, which substituted in Equation 2.24 gives a modified expression for the
reduced thrust due to ventilation:

βv =
1.5EAR

KT0

[π

2
α + σv(r/R=0.7÷0.75)

]
(2.26)

2.4 Regimes

Experiments performed on submerged propellers with varying geometry and load-
ing characteristics show distinctive features identifying only a small number of
ventilation regimes. Within each of these regimes, propellers with different ge-
ometry and loading characteristics present the same ventilation patterns, either in
terms of applied loads or type of air-drawing.
A first classification of ventilation regimes was given by Nishikawa and Uchida

(1989). They observed experimentally that at a given advance ratio J thrust and
torque would decrease following the reduction of the immersion depth. The first
thrust losses occurred without any visible ventilation. This thrust loss can be as-
cribed to the free-surface proximity effect. It has been shown (Hough and Moran,
1969; Faltinsen, 2005) that the lift of a submerged hydrofoil decreases when the
Froude number based on the submergence Frh is decreased2. All the profiles

2This finding does not apply for Frh → 0, when the free-surface acts like a rigid wall, causing
the lift to increase.
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Experiments performed on submerged propellers with varying geometry and load-
ing characteristics show distinctive features identifying only a small number of
ventilation regimes. Within each of these regimes, propellers with different ge-
ometry and loading characteristics present the same ventilation patterns, either in
terms of applied loads or type of air-drawing.
A first classification of ventilation regimes was given by Nishikawa and Uchida

(1989). They observed experimentally that at a given advance ratio J thrust and
torque would decrease following the reduction of the immersion depth. The first
thrust losses occurred without any visible ventilation. This thrust loss can be as-
cribed to the free-surface proximity effect. It has been shown (Hough and Moran,
1969; Faltinsen, 2005) that the lift of a submerged hydrofoil decreases when the
Froude number based on the submergence Frh is decreased2. All the profiles

2This finding does not apply for Frh → 0, when the free-surface acts like a rigid wall, causing
the lift to increase.
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composing the propeller blade would then exert a lower lift—with respect to the
infinite fluid case—which would in turn reduce the total thrust produced by the
blade.

After the initial thrust loss, ventilation starts abruptly with a further reduction
of the submergence. The propeller is subject to a violent decrease in thrust—and
torque—with rapid and large fluctuations of the forces. This partially ventilating
regime is characterized by an unstable air cavity over the propeller blade. This
mode persists until the decrease of thrust slows down and ceases to be violently
unstable, where a fully ventilating mode takes place. This further regime is char-
acterized by a glassy sheet cavity over the whole propeller blade, leading to a
considerably low thrust, but rather stable in time.

Figure 2.4: Ventilation flow regimes (Olofsson, 1996).

The validity range of the regimes previously described has been plotted in
Figure 2.4—adapted from Olofsson (1996)—in terms of the advance number and
the submergence ratio.

Another type of classification can be done based on the inception mechanism:

• by vortex-formation
at deep submergence, where ventilation starts from a free-surface vortex,
responsible of further feeding of air to the propeller;

• surface-piercing
at moderate submergence, where the free-surface is deformed by the rotation
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of the propeller until the blades become surface-piercing and air is continu-
ously sucked from the blades crossing the free-surface.

• intermediate stage
where both phenomena can lead to ventilation, being difficult to assess which
one is responsible for its inception. Once the propeller has started ventilat-
ing, the surface-piercing-type mechanism is generally dominating.

With the term surface-piercing, one is generally referring to propellers designed to
operate always in partially-submerged conditions, already at rest.
The term surface-piercing is here extended to a more general case of a fully sub-
merged propeller, which becomes surface-piercing after ventilation occurs, as sketched
in Figure 4.41b.
Ventilation has been until now treated neglecting the presence of cavitation.

This was done in order to focus just on ventilation, but one should bear in mind
that cavities filled with water vapor might coexist with those filled with air at at-
mospheric pressure. Although the combined study of ventilation and cavitation is
out of the scope of this dissertation, a classification based on the mutual action of
the two phenomena will be done, based on the work of Brandt (1973). As shown
in Figure 2.5, two main regimes can be identified, of fully cavitating or ventilating
flow and partially cavitating or ventilating flow.
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Figure 2.5: Flow regimes of partially submerged propellers (Brandt, 1973).

Within these two main categories, Brandt identified 6 flow sub-regimes:
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28 Ventilation theory

1. Pressure side cavitation or ventilation;

2. Lightly loaded, partially submerged propeller with partial cavities;

3. Transition regime characterized by unstable flow with partial or full cavities,
filled with water vapor or air;

4. Fully ventilating regime, with growing sprays;

5. Spray flow is thrown upstream and the pressure side which is out of water is
contributing to the thrust being fully wetted;

6. Propeller fully wetted, also out of the water; both full ventilation and cavi-
tation can coexist.

2.5 Momentum theory

The actuator disk theory is a simplification of the flow through the propeller which
does not take into account the finite number of blades and the phenomena con-
nected to it. Although simple, this theory alone is able to capture the modifications
of the flow-field around the propeller until non-linearities occur, and can explain
the deformation of the free-surface leading to surface-piercing ventilation.

The presence of the propeller modifies the undisturbed inflow accelerating the
flow through the propeller in the axial direction and superimposing an induced ra-
dial velocity which is pulling the surrounding flow towards the propeller, as shown
in the diagrams of axial and radial induced velocities computed by Hough and
Ordway (1965) with an actuator disk theory (Figure 2.6).
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Figure 2.6: Axial and radial velocity profiles (Hough and Ordway, 1965).
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2.6. Inlet Vortex 29

In the vicinity of the free surface, these induced velocities are able to deform
the interface between the two phases, pulling it towards the propeller, as seen in
the experiments performed by Paik et al. (2008).
Based on previous works of Wu (1962) and Hough and Ordway (1965), Green-

berg (1972) developed a non-linear actuator disk theory which was used to com-
pute the flow-field around a heavily-loaded actuator disk. Figures 2.7a shows the
complexity of the stream-tubes around the tip. Above the tip location a stream-
line (marked with DS, i.e. Dividing Streamline) is dividing the flow having the
same direction of the free-stream from the one in the opposite direction. The non-
linearities around the tip can be better observed in Figures 2.7b, showing the radial
distribution of the axial induced velocities through the disc for different propeller
loadings.

(a) Stream-tubes for a heavy loaded propeller disc. (b) Radial distribution of the axial in-
duced velocities through the disc for dif-
ferent propeller loadings.

Figure 2.7: Greenberg (1972).

2.6 Inlet Vortex

Ventilation by vortex formation has analogies with other phenomena seen in fields
different from marine applications, such as the inlet vortex in pump sumps and
the ground vortex at the inlet of aircraft engines. The mature experience gained
through many years of research in these latter fields—not pertaining to marine
technology—can be applied to the present work in marine applications, where
research studies are very recent. Based on these similarities, the description of
the mechanisms of ventilation of a marine propeller by vortex formation will be
attempted.
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30 Ventilation theory

2.6.1 Pump sumps

The formation of an inlet vortex in pump sumps has been observed and described
in literature (Denny, 1956; Markland and Pope, 1956; Swainston, 1974, 1976; Ra-
jendran et al., 1998, 1999; Constantinescu and Patel, 2000). The importance of
sump design is given from the fact that air entering the suction inlet through a
vortex can seriously reduce both output and efficiency of the pump.

The formation of an air-entraining vortex is sketched in Figure 2.8, according
to the description of Denny (1956) for a pump sump:

”. . . the vortex appeared first as a small dimple in the free sur-
face (a), which gradually deepened to form a cone-shaped hole (b);
air bubbles broke away from time to time (c) . . . At high velocities the
air-core lengthened to reach the suction-inlet and allowed continuous
passage of air (d) . . .
When the mouth of the pipe was less deeply submerged the vortex
formed much closer to the pipe and tended to be less stable . . .
With very small submergences the vortex frequently became concen-
tric with the pipe . . . Air entrainment of this type was always accom-
panied by considerable noise.”
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Figure 2.8: Stages in development of an air-entraining vortex. Adapted from
Denny (1956) to the present geometry.

The submergence required to prevent air-entrainment was shown to depend largely
on the velocity in the suction pipe (Denny, 1956). Using these two parameters
(inlet-submergence and pipe-velocity), a borderline between the vortex-free and
vortex-forming conditions could be drawn. Several other parameters were tested,
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Figure 2.8: Stages in development of an air-entraining vortex. Adapted from
Denny (1956) to the present geometry.

The submergence required to prevent air-entrainment was shown to depend largely
on the velocity in the suction pipe (Denny, 1956). Using these two parameters
(inlet-submergence and pipe-velocity), a borderline between the vortex-free and
vortex-forming conditions could be drawn. Several other parameters were tested,
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in order to assess their influence to vortex-formation. Among those, only the pres-
ence of swirl was relevant for the present work, and it showed to favor the forma-
tion of an air-entraining vortex.

2.6.2 Ground vortex

Vortex formation has been widely observed on ground, at the inlet of airplane
engines. The ground based engine inlet vortex has aroused the interest of the
engine designer because of the severe damage caused by solid particles which the
vortex sucks up into the engine. In addition, it can also create flow distortions
at the engine face that adversely affect the aerodynamic stability of the engine
compression system. This phenomenon has been a common object of study in the
last 5 decades, thus an extensive literature is available.
The first investigations into this problem (Rodert and Garrett, 1955) identified

a vortex developing between the ground and the air inlet as the primary source of
the forces which are necessary to lift objects and suck them through the inlet. Air
flowing into an engine produces a region on the ground surface under the engine
in which there is no flow and which is known as a stagnation region (Figure 2.9).

Figure 2.9: Stagnation region under inlet (Rodert and Garrett, 1955).

There will be one streamline extending from the stagnation region on the
ground to the inlet, while all other streamlines terminate in the ambient atmo-
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sphere. Since the circulation around a vortex line is constant (Helmholtz vortex
law), a vortex line can not terminate in a fluid. This implies that a vortex must
terminate on a surface, thus the only streamline along which a vortex may form is
the one which terminates at the stagnation region.

Later experiments (Bissinger and Braun, 1974) gave a deeper understanding
of the underlying physics in the inlet vortex formation. A preliminary survey per-
formed with bubble generators revealed that an inlet vortex never comes alone
but rather is an individual of a vortex system consisting of two inlet vortices (the
ground based and the trailing one), secondary vortices, and ground vortices.
Most of the following discussion about the ground vortex is based on these authors
(Bissinger and Braun, 1974).

2.6.2.1 Stagnation points

The inlet vortex can only form when there is a stagnation point on the ground.
The stagnation points and the flow field are calculated by means of potential flow
calculations where the inlet in ground effect is replaced by a sink and an image
sink in a uniform flow. These calculations show that one or more stagnation points
can be formed on the vertical plane, in number and location(s) depending on the
sink strength m.

Figure 2.10 shows the catching surface separating the fluid caught by the inlet
from the fluid not caught by the inlet.

Figure 2.10: Deformation of free stream vorticity (Bissinger and Braun, 1974).
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The stagnation point A is the point where the trailing vortex penetrates the
catching surface. The flow inside the catching surface approaches A from all sides
to be ejected into two directions, upstream towards the sink and downstream into
the free stream. It is this flow field around the stagnation points A and B which
is responsible for the formation of the inlet vortex system. All particles which
pass the line F*G* in Figure 2.10 are collected at stagnation point B. If these
particles carry vorticity, it is accumulated at B. Because the flow out of B is in z
direction, vorticity parallel to the z-axis is stretched. When the accumulation and
the stretching are strong enough to overcome the dissipation of vorticity due to
viscosity, a ground based inlet vortex will form between the stagnation point B
and the sink. Vorticity of particles passing the arc F*H*G* on the catching surface
is collected at the stagnation point A. From A the flow continues on streamlines
normal to the catching surface. Therefore, the vorticity component parallel to the
normal is stretched and a trailing inlet vortex may be formed.

2.6.2.2 Ambient vorticity and amplification

An inlet vortex can form only if ambient vorticity exists in the fluid drawn into
the inlet, created at a far-upstream location where the existence of the vorticity is
independent of the presence of the inlet.
The flow around a stagnation point with radial inflow and axial outflow in-

creases the vorticity component parallel to the outflow direction. This means that
this type of stagnation point flow can produce a vortex, if suitable vorticity is trans-
ported into the stagnation point. This statement is a modification of analytical and
experimental findings by Sadeh et al. (1970a,b). This amplification effect was also
found by Rott (1958), who derived an exact solution of the Navier-Stokes equa-
tions for the linearized flow. The analytical derivation for the vortex amplification,
as it occurs on the ground based inlet vortex, was given in Bissinger’s thesis:

ωz =
C2

r2Re + 1
(2.27)

C2 is an integration constant and r the distance from the stagnation point.
Equation 2.27 shows that the vorticity component perpendicular to the ground
plane is amplified when it approaches the stagnation point (r → 0). The amplifi-
cation increases when Re is increased, i.e. when the vortex strength m increases,
and when the ground distance is reduced.
Vorticity around the stagnation point is then intensified by vortex stretching. Kelvin’s
theorem states that the circulation around a material loop is constant with time.
This implies that axial stretching of vorticity lines increases their vorticity (Fig-
ure 2.11).
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Ω1 Ω2 > Ω1

Figure 2.11: Vorticity amplification after stretching (Green, 1995).

The investigations into a deeper physical understanding on the inlet vortex
phenomenon was continued by De Siervi et al. (1982) and Shin et al. (1986a,b).
Their works confirm that an inlet vortex can develop when vertical vorticity lines
are sucked into the air inlet and are both superimposed on each other and amplified
by stretching (Figure 2.12).

Figure 2.12: Ingestion of a vortex line into an inlet (De Siervi et al., 1982).

It was shown by the same authors that there is another mechanism of inlet-
vortex formation, which does not require the presence of ambient vorticity. An
inlet vortex can arise in an (upstream) irrotational flow, for an inlet in cross wind.
In this situation, the vortex is accompanied by a variation in circulation along the
length of the inlet.
The ratio of inlet velocity to upstream velocity Ui/U∞ is an important parameter in
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determining the appearance of an inlet vortex, controlling the stretching incurred
by a vertical vortex line and hence the vorticity amplification.
Shin et al. (1986a) have shown that the inlet vortex and the trailing vortex have

essentially equal and opposite circulation. In addition, the production of vorticity,
due to vortex stretching, is the mechanism by which both of these are maintained.
A parametric study was conducted to define the correlation between the Capture
Ratio (CR) and the type and position of the inlet vortex.

2.6.2.3 Ground boundary layer

The ground boundary layer is not necessary for the appearance of a ground based
inlet vortex. Tests were performed with a flow plane of symmetry, showing the
appearance of inlet vortices in spite of the absence of a ground boundary layer.

2.6.2.4 Unsteadiness

The inlet vortex is unsteady (and unstable). It is not only moving along an irregular
path on the ground plane, it also appears and disappears irregularly. Also the sense
of rotation of the ground based inlet vortex and the trailing inlet vortex can be un-
predictable, exchanging sometimes their position and role without test parameter
change.
More recent experimental and numerical studies (Karlsson and Fuchs, 2000;

Moroianu et al., 2004; Secareanu et al., 2005) have shown the complex vortical
system arising at an engine intake, contributing to the physical understanding of
the unsteady and/or oscillatory phenomena connected to the problem. Karlsson
and Fuchs (2000) depict a rather complex vortex system using instantaneous con-
tours of negative λ2

3 , as a result of Large Eddy Simulations (LES). This vortex
system is characterized by two vortices between the ground plane and the air inlet,
accompanied by traces of horse-shoe vortices at the foot-points of the inlet vor-
tices, and by several trailing vortices pointing downstream.
Secareanu et al. (2005) validated the numerical results of Karlsson and Fuchs
(2000) using Particle Image Velocimetry (PIV) and Laser Doppler Anemometry
(LDA) measurements and obtained data on the ingestion of particles by a vortex-
inlet system.

3λ2 is the second eigenvalue of the tensor S2 + Ω2. Its negative value identifies vortex cores, as
shown by Jeong and Hussain (1995). S and Ω are the symmetric and antisymmetric components of
the velocity gradient tensor, respectively.
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36 Ventilation theory

2.6.2.5 Occurrence and direction of vortex

A correlation of the experimental data allows to define a threshold for the for-
mation of the inlet vortex, having as parameters the inlet to free-stream velocity
ratio Ui/U∞ and the submergence ratio h/Di based on the inlet diameter Di. The
boundary between the vortex forming and non-vortex forming flow regimes seems
to follow a straight line, as shown in Figure 2.13 (Jermy and Ho, 2008).

Figure 2.13: Boundary between the vortex forming and non-vortex forming flow
regimes (Jermy and Ho, 2008).

In order to take into account the free-stream velocity gradient W = ∇−→
U ,

which can be thought of as a ”background vorticity”, the Rossby number is intro-
duced:

Ro =
Ui

WD
(2.28)

Motycka et al. (1973) observed that a decrease inRossby number, i.e. in presence
of high velocity gradients, increases the range of conditions at which vortices form.

The results of Nakayama and Jones (1996) indicate that the method based on
the potential-flow stagnation point underestimates the occurrence of the vortex,
due to the fact that there is a large contraction of the streamlines away from the
wall.

The vortex system consists in principle of a vortex pair of two counter-rotating
inlet-vortices. The rotation direction changes from high (Figure 2.14a) to low
(Figure 2.14b) velocity ratio Ui/U∞ (Brix et al., 2000). Between these two sta-
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ble regions, there is an unstable transition phase, in which both vortex pairs are
existent.

(a) High Ui/U∞. (b) Low Ui/U∞.

Figure 2.14: Vortex pairs with different rotation direction at high and low velocity
ratio Ui/U∞ (Brix et al., 2000).

In presence of vertical vortex lines, the vortex with the same rotation direction
as the ambient vortex lines will increase in size and strength, prevailing on the
opposite vortex—which is weakened until it can no longer be detected.

2.6.3 Marine propellers

Shiba (1953) has observed the occurrence of vortices during his ventilation experi-
ments and their continuous feeding of air to the propeller. He describes three kinds
of air holes produced on the free-surface when the propeller is fully submerged.
One which is not rotating while the other two are rotating in opposite directions.
Among these last two, the vortex aligned with the blade trailing vortex occurs more
frequently and is more stable.
Huse (1973) describes intermittent noise and vibration experienced by fishing

vessels in heavy head seas and low speeds, occurring even when the propeller was
not piercing the free-surface, but completely submerged.
For ventilation of completely submerged propellers air is drawn from the water
surface down to the propeller, where the pressure is locally below atmospheric.
This air is transported through an intermediate region where the pressure is gener-
ally above atmospheric.
He identifies a second type of ventilation for submerged propellers, characterized
by air bubbles. In this case the propeller is ventilated by the air bubbles gener-
ated in the boundary layer of part of the hull close the free-surface. This type of
ventilation only occurs at relatively high model speeds. Although of great interest
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on a real configuration, this type of ventilation will not be further analyzed in the
remaining of the present work, which is mainly devoted to ventilation generated
by the propeller itself, without the presence of the hull.

Nishiyama (1986) has extended the results of Huse (1973) introducing the in-
fluence of cavitation on a vortex stretching between the propeller and the hull.
Through a series of experiments carried out in a cavitation tunnel, Nishiyama
(1986) showed that cavitation can occur on the tail of the vortex impinging the
propeller and then move toward the hull. This is explained assuming the vortex is
of Rankine type, where the pressure at its lower and narrow core rapidly decreases
until cavitation will occur.

2.6.3.1 Ventilation inception by vortex formation

Ventilation inception is defined as the condition at which air is drawn into the low
pressure region in a non-cavitating flow, from an external source—as at the free-
surface of a liquid.

Following the work of Nakayama and Jones (1996), Brix et al. (2000) and
Jermy and Ho (2008), a boundary between the vortex forming and non-vortex
forming flow regimes can be drawn. Given a propeller with N blades, each with
a radial circulation Γ(r), rotating with angular velocity n, Hough and Ordway
(1965) have derived a general expression for the corresponding induced velocity
field by means of a Fourier transform in terms of the Legendre functions. Follow-
ing their analytical derivation, Hough and Ordway (1965) achieved a simplified
expression for the steady component of the induced velocity UA in the free-stream
direction on the propeller plane:

UA =
NnΓ(r)

4πU
(2.29)

The ratio between the induced and free-stream velocity can then be simplified to:

UA

U
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N

4π

Γ(r)
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nR

V
=

N

4π

Γ̃(r)

J
(2.30)

where Γ̃(r) = Γ(r)/UR is the dimensionless blade circulation distribution.
The inlet to free-stream velocity ratio is then expressed by 1 + UA/U .
Having Figure 2.13 in mind, equation 2.30 shows that vortices are formed at

high propeller loadings, i.e. at lower advance ratios J , and for these conditions
ventilation by vortex formation is more likely to occur.

The vortex system consists in principle of a vortex pair of two counter-rotating
inlet-vortices. The discussion of Brix et al. (2000) about the rotation direction in
case of a ground inlet-vortex are applicable also to the case of a marine propeller
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below the free-surface. Asymmetry in the vertical vortex lines is introduced in
this case by the presence of the propeller, which will modify the ambient vortic-
ity through the vortices trailing from the blade tips. Depending on the rotation
direction of the propeller, one direction will prevail on the other, and so will the
corresponding free-surface vortices.

2.7 Dynamic loads

An attempt to understand the dynamic loads a propeller is subject to during ventila-
tion will be performed describing the single mechanisms underlying this complex
phenomenon.
During ventilation, the loads on each propeller blade fluctuate in time as the

blade goes through four phases: in-air, blade-entry, in-water, and blade-exit, as
shown in Figure 2.15. These fluctuating forces introduce structural loads on the
propeller blades.

(a) Blade cycle.
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(b) Corresponding load.

Figure 2.15: Dynamic loads on a surface-piercing propeller (Olofsson, 1996).

The water-entry phase of a rigid body can be further divided into three phases,
(i) shock, (ii) flow-forming and (iii) open-cavity. There is less knowledge on the
water-exit phase. It is known that the amount of entrained water is a fraction of the
body volume, a fact that tends to reduce the vertical force on the propeller. The
water-exit flow is also the source of much of the spray generated by the propeller
when operating in the base-vented regime.
During the base-vented regime the vertical force is directed upward, implying

that water-entry impact forces are significant.
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tion will be performed describing the single mechanisms underlying this complex
phenomenon.
During ventilation, the loads on each propeller blade fluctuate in time as the

blade goes through four phases: in-air, blade-entry, in-water, and blade-exit, as
shown in Figure 2.15. These fluctuating forces introduce structural loads on the
propeller blades.

(a) Blade cycle.
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(b) Corresponding load.

Figure 2.15: Dynamic loads on a surface-piercing propeller (Olofsson, 1996).

The water-entry phase of a rigid body can be further divided into three phases,
(i) shock, (ii) flow-forming and (iii) open-cavity. There is less knowledge on the
water-exit phase. It is known that the amount of entrained water is a fraction of the
body volume, a fact that tends to reduce the vertical force on the propeller. The
water-exit flow is also the source of much of the spray generated by the propeller
when operating in the base-vented regime.
During the base-vented regime the vertical force is directed upward, implying

that water-entry impact forces are significant.



40 Ventilation theory

During the fully vented condition the net vertical force is downward, implying that
the water-exit spray force is greater than than the water-entry impact force.

Huse (1973) was among the first to observe the force oscillations the blade of a
ducted propeller is subject to during an event of ventilation through a free-surface
vortex.
In a similar manner, Nishikawa and Uchida (1989) have investigated the vibra-
tory shaft force induced by ventilation. As expected, the shaft force arises when
ventilation occurs and increases rapidly with growing up of partial ventilation. At
lower submergence the shaft force decreases, until full ventilation occurs, where it
reaches a small value. With a further decrease of the submergence, the shaft force
increases, due to impact and spray loads during water-entry and exit.
Their conclusions are that the significant vibratory shaft force is induced by par-
tial ventilation, and are characterized by the shaft frequency n, as the dominant
frequency. This last feature makes the phenomenon quite unique with respect to
cavitation, where the blade frequency component 4n is dominant. An explanation
of this characteristic is given by the authors, based on visual observations: dur-
ing partial ventilation, some of the blades show a full sheet cavity, typical of the
full ventilation pattern occurring in shallow submergence, whereas the remaining
blades do not form any cavity as they were fully submerged.

Olofsson (1996) points out that the high frequency dynamic loads during ven-
tilation are important, especially when considering mechanical wear and tear. He
observed that large high-frequency dynamic loads occur especially in the transition
to-and-from ventilation, i.e. the unstable, partially ventilated regime.

Recent results for the blade loading of a ventilated thruster at low advance
velocity can be found in Koushan (2004, 2006). These results confirm that the
high-frequency dynamic loading can be significant. The standard deviation of the
shaft frequency propeller blade force fluctuations was found to be almost 100% of
the average force when the propeller was partially submerged. Large fluctuations
were found also for the fully submerged, ventilated condition.

Other types of loads normally occur during operation of surface-piercing pro-
pellers, and blade strength, fatigue, and resonant vibration issues must be con-
sidered during their design and analysis. Hydro-elastic effects become important
at high advance coefficients, due to bending and/or torsional oscillations. Reso-
nant blade vibration may also occur due to the cyclic loading and unloading of the
blades associated with the blades entry to and exit from the free surface. During
resonance, the vibrations are amplified, and the resulting dynamic load is a combi-
nation of hydrodynamic and inertial loads due to fluid-structure interaction. These
loads can cause serious problems, since large stress transients may develop, result-
ing in peak stresses exceeding the yield strength of the blade material and hence
causing structural fatigue.
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Chapter 3

Verification studies

Verification studies were performed in order to test the capabilities of the solver
towards the most challenging numerical features one has to cope with while deal-
ing with a ventilating propeller, such as (i) presence of the free-surface and (ii)
rotating lifting surfaces.

3.1 Submerged hydrofoil

The present analysis focuses on the validation and verification of the solver adopted
in the case of a two-dimensional hydrofoil close to the free surface.
This problem has caught much attention after the experiments carried out by Dun-
can (1983), who observed breaking and non-breaking waves over a hydrofoil model
and measured the free-surface profile. Several authors have attempted to reproduce
Duncan’s experiments using different numerical approaches. Among them, the in-
viscid BEMs by Landrini et al. (1999) and Faltinsen and Semenov (2008) have
reproduced accurately the experimental results until breaking occurs. The follow-
ing flow evolution can not be handled by potential flow solvers. RANS simulations
capture the correct form of the wave and are intrinsically able to handle breaking
waves, but tend to under-predict the wave amplitude. Some authors have better
captured spilling breakers (Rhee and Stern, 2002; Muscari and Di Mascio, 2003)
implementing a breaking-wave model based on empirical data (Cointe and Tulin,
1994).
As depicted in Figure 3.1, a NACA0012 foil at incidence of 5 deg with a chord

length c = 0.203 m is fixed in water, subject to an incident current U = 0.8 m/s.
Two cases are studied here, chosen among those tested by Duncan (1983), corre-
sponding to a non-breaking and a breaking wave condition, with submergence h
of 0.261 m and 0.185 m, respectively. The bottom of the tank is located 0.175 m
below the foil, as in the experiments.
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42 Verification studies

Figure 3.1: Numerical domain and definition of main parameters.

The Froude number based on submergence Frh is equal to 0.50 and 0.27 for
h/c equal to 0.261 and 0.911 respectively, computed according to:

Frh =
U√
g h

(3.1)

In the approximation of Frh → 0 the foil is exerting for different values of submer-
gence higher forces with respect to the infinite fluid case, as shown in Figure 3.2
(Hough and Moran, 1969).

Figure 3.2: Lift ratio as a function of Frh and h/c (Hough and Moran, 1969).

For these low submergences, the free surface acts like a rigid wall, and the
problem becomes similar to a lifting wing close to the ground, experiencing an
increase in lift with decreasing distance from the ground. This was shown by
Faltinsen (2005, § 6.8.1) using Weissinger’s theory (1947) based on the quarter-
three-quarter-chord approximation. For this range of Frh, an analytical formula
taking into account the free-surface effect is derived (Faltinsen, 2005, eq. 6.143)
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for the lift coefficient:
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3.1.1 Numerical method

The described problem is solved assuming a viscous, incompressible, two-phase
(air and water) flow. Computations were performed using the commercial RANS
code Fluent (2006) and the open source code OpenFOAM (2009).
In order to capture possible unsteadiness of the flow, a time-dependent approach is
chosen using a first order implicit scheme.
A short description of the employed numerical methods will be given in the follow-
ing sections. Further details about the solvers can be found in the Fluent manual
(Fluent, 2006) and the OpenFOAM user guide (OpenFOAM, 2009).

Fluent Themomentum equation and those for the turbulence closure are solved
with a second order upwind scheme. The Body Force Weighted discretization al-
gorithm is used to interpolate the node values of the pressure from the cell values,
as required by the solver. The pressure-velocity coupling is achieved using a Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.
The free surface evolution is handled using an implicit formulation of the Vol-
ume Of Fluid (VOF) method with a modified High Resolution Interface Capturing
(HRIC) scheme.

OpenFOAM The Navier-Stokes equations over a finite volume are solved using
the following schemes, all based on the 2nd order Gaussian integration, summa-
rized in Table 3.1. φ and φrb are respectively the total and surface-normal velocity
flux, while γ is the phase fraction.

Term Discretization

Gradient ∇ linear

Convection {∇ · (ρφU) limited linearV 1
∇ · (φγ) vanLeer
∇ · (φrbγ) interfaceCompression

Laplacian ∇2 linear corrected

Table 3.1: Numerical schemes used in OpenFOAM.
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The pressure-velocity coupling is achieved using a Pressure Implicit with Split-
ting of Operators (PISO) algorithm. The free-surface location is computed using
the Multidimensional Universal Limiter for Explicit Solution (MULES) method,
based on a VOF method.

Boundary conditions At the inlet, the undisturbed free surface elevation and
the free stream velocity are assigned, whereas a zero normal derivative for the
pressure is specified. A constant dynamic pressure is assigned at the outlet, where
the velocity satisfies a zero normal derivative.
A zero flux of all quantities is enforced across the bottom boundary. The same
zero flux condition is assigned in Fluent at the top boundary, whereas a constant
total pressure and a blended zero-gradient and fixed-value condition is specified in
OpenFOAM.
Unless otherwise specified, a no-slip condition on the hydrofoil is set.

Grid The domain is divided in blocks allowing refinements in the near wall re-
gion, around the wake and across the free surface, as depicted in Figure 3.3a. A
close up of the near wall mesh region is shown in Figure 3.3b.

(a) Multiblock domain. (b) Near wall mesh.

Figure 3.3: Multiblock domain and near wall mesh.

A convergence analysis has been carried out in three manners, refining the grid
(i) in the whole domain but in the near wall region, (ii) locally near the free surface
and (iii) in the near wall region of the hydrofoil shown in Figure 3.3b.
Two levels of refinement of the whole domain (i) with respect to the default grid,
leading to about 1.5 million cells, did not produce any significant change in the
amplitude of the free surface waves. A very fine mesh size near the free-surface
(ii), with values of half mm did not produce either significant changes.
Only the results obtained refining the near wall region (iii) highlighted an effect
on the solution, as discussed in Section 3.1.2. For this last case, four levels of grid
refinement were used, as given in Table 3.2.
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grid y/c ·104 y+

coarse 141.4 50
fine 5.8 4
2fine 2.7 0.75
3fine 1.4 0.35

Table 3.2: Near wall region grid refinement.

The first wall cell of the coarse grid lies within the log layer of the boundary
layer, whereas all the three fine meshes are within the sub-viscous layer. The height
of the cells located in the free-surface region is 0.0005 m, corresponding to 0.0025
chord lengths.

Flow features The near-wall region is modeled with Standard Wall Function
(SWF) for the coarse grid, whereas for the three fine grids the viscosity-affected
region is resolved with a mesh all the way to the wall, including the viscous sub-
layer. Five types of flows were considered, summarized in Table 3.3.

# Viscosity Type

1. inviscid
2.

viscous { laminar { slip
3. no-slip
4. turbulent { SST k-ω
5. Realizable k-ε

Table 3.3: Flow features.

Two models have been employed for the turbulence closure, the realizable k-ε
(Shih et al., 1995) and the Shear Stress Transport (SST) k-ω (Menter, 1994) model.
The k-ε model is robust and widely used in different kinds of fluid flows. The SST
k-ω model is a variation of the standard k-ω model (Wilcox, 1998) incorporating
modifications for low-Reynolds-number effects, compressibility, and shear flow
spreading. It is widely used in lifting surfaces such as foils and propellers.
In order to check the influence of the wall boundary condition, additional sim-

ulations were performed using free-slip condition on the wall for the viscous cases.
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3.1.2 Results

The results of the 2D-foil validation and verification studies are discussed in the
following sections, first for the submergence ratio h/c = 1.286 (obtained using
both solvers) and for h/c = 0.911 (obtained using Fluent).

3.1.2.1 Fluent

Figure 3.4a shows the free-surface deformation along the free-stream direction, as
predicted by Fluent with a SST k-ω turbulence model. The wave behavior is
captured already by the coarse mesh, but the wave amplitude is underestimated.
The under-predicted wave amplitude was widely found in other RANS simulations
(Mori and Shin, 1988; Hino, 1997; Rhee and Stern, 2002; Muscari and Di Mascio,
2003) and could be attributed to the under-prediction of the suction side pressure.
Using a finer near wall mesh improves the accuracy up to the 2finemesh, for which
a mesh independent solution is achieved. Figure 3.4b shows the comparison be-
tween the converged results and the experiments by Duncan (1983). The solutions
of the BEM by Landrini et al. (1999) and the RANS solver by Rhee and Stern
(2002) are also reported, the latter being performed using a SST k-ω turbulence
model. The improvement of the present solution in terms of wave-height with re-
spect to the RANS simulation by Rhee and Stern (2002) could be ascribed to a
greater refinement in the near wall region, but not sufficient details are given in
Rhee and Stern to assess it. Among the three numerical solvers, the BEM by Lan-
drini et al. (1999) gives the best results and reproduces correctly the experiments.
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Figure 3.4: Free-surface deformation [h/c = 1.286, Fluent SST k-ω]

Figure 3.5 gives the same variable, but present results have been obtained with
the realizable k-ε turbulence model. Figure 3.5b shows a larger under-prediction
of the wave amplitude, which suggests that the k-εmodel is more diffusive than the
k-ω model. From Figure 3.5a, using a fine near wall mesh improves the accuracy,
but further refinements confirm a mesh independent solution.
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Figure 3.5: Free-surface deformation [h/c = 1.286, Fluent realizable k-ε]

Tzabiras (1997) has simulated an experiment by Duncan (1983) with submer-
gence h = 0.193 m using a standard k-ε model with wall functions. The corre-
sponding prediction of the free-surface characteristics are in satisfactory agreement
with the measured data; the tested ranges of y+, from 20 to 40, did not affect the
results significantly. The present analysis highlights an effect of the near wall mesh
size when resolving the boundary layer directly.
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Figure 3.6 gives the results of the inviscid solution and the SST k-ω simulation
using a free-slip condition on the wall. Removing the no-slip condition from the
turbulent flow improves the accuracy with respect to the corresponding simulation
with no-slip condition. The free-slip laminar solution coincides with the free-slip
SST k-ω, and thus has not be plotted. The inviscid solution is the closest to the
BEM results, which in turn match the corresponding experiments.

The pressure coefficient obtained with the 2fine mesh has been plotted in Fig-
ure 3.7a for different viscosity models. Viscosity has no effect in the laminar
solution, which is overlapping the inviscid one. The addition of turbulent viscosity
reduces the force on the suction side, where a local pressure increase can be no-
ticed around one third of the chord-line for the SST k − ω turbulence model. In
order to investigate this behavior, a simulation in infinite fluid conditions has been
performed, and the results compared to the solution obtained by Tzabiras (1997)
(Figure 3.7b). The local pressure increase occurs only for a finer mesh and seems
not to be related to the presence of the free-surface, but rather to a special treatment
of the body walls. Further details able to explain this behavior of the SST k − w
turbulence model could not be found in the Fluent’s user guide.
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Figure 3.7: Comparison of the pressure coefficient along the chord line.

Table 3.4 summarizes the present results obtained for the first trough ampli-
tude (Table 3.4a) and the lift coefficient (Table 3.4b), in terms of relative error
with respect to the experiments and the BEM solution by Landrini et al. (1999),
respectively. An increasing lift coefficient corresponds to a more accurate rep-
resentation of the free surface. Adopting a turbulent formulation for the present
problem, where the influence of the viscosity is negligible, affects significantly
the accuracy of the results, by introducing diffusion terms. The advantages of us-
ing a SST k-ω turbulence model with a fine grid and the effect of different wall
conditions are confirmed.
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k-ε k-ω k-ω slip inviscid

coarse -25.7% -38.1%
fine -12.7% -11.4%
2fine -12.0% -4.5%
3fine -11.7% -2.3% 2.3% 5.6%

(b) Lift coefficient

Table 3.4: Relative error of the present solution obtained using Fluent with re-
spect to the experiments (a) and the BEM solution (b)

3.1.2.2 OpenFOAM

The build-up of the pressure on the hydrofoil and the corresponding free-surface
deformation is shown in Figure 3.8. A steady solution for the forces is rapidly
achieved, with the pressure coefficients reaching a steady-state behavior already
after 8 chord lengths (Figures 3.8b, 3.8d and 3.8f). The corresponding free-surface
needs more time to develop and to reach its final steady state. The first trough is
developed during the first 4 chord lengths, while the following crest starts forming,
as shown in Figure 3.8a. Between 4 and 8 chord lengths (Figure 3.8c) the second
trough and crest start emerging from the undisturbed free-surface location, while
the formation of the downstream wave pattern occurs afterwards (Figure 3.8e).
Both the forces on the foil and the free-surface experience several oscillation cycles
before reaching a steady state.
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Figure 3.8: Free-surface (left) and pressure coefficient (right) after traveling 12
chord lengths (Curves are plotted with an interval of 0.8 chord lengths). [h/c =
1.286, 2fine mesh, OpenFOAM laminar flow with free-slip walls]

The delay in building-up the steady-state lift of an airfoil accelerating instan-
taneously from rest to a constant velocity U is referred to as the Wagner effect
(Wagner, 1925). This effect can be described by a function, plotted in Figure 3.9
together with the present results. It is observed that for the infinite fluid case only
half of the steady-state lift is assumed at once, and 90% is developed after trav-
eling about 8 chord lengths. The same trend is found for the present submerged
case, but the curve presents a uniform offset towards higher lift values, such that
lift is higher from the very first time instants. The simulation of the flow field fol-
lowing an impulsive start is a difficult task and requires very small simulation time
steps. In light of this consideration, the difference between the two curves could
be caused by a poor time resolution of the impulsive start, although the presence
of the free surface might also have an influence on the proposed solution.
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Figure 3.9: Lift ratio for an impulsive flow start.

Refinement of the mesh did not produce significant changes of the free-surface.
A comparison of the free-surface deformation obtained with different flows and
near-wall treatments is performed in Figure 3.10a. All simulations are in good
agreement with the experimental data, but the wave amplitude is underestimated.
This under-prediction was already found in the results obtained with Fluent and
discussed in that context.

The influence of different wall treatments becomes more evident looking at the
pressure coefficients along the walls of the hydrofoil, plotted in Figure 3.10b. Both
solutions implementing a free-slip condition on the walls (inviscid and laminar-
slip) show pressure distributions higher with respect to the solutions with no-slip
conditions. The under-pressure exerted from the suction side is giving the major
contribution to the increase of lift with respect to the solutions obtained with no-
slip conditions on the walls.
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Figure 3.10: Comparison [h/c = 1.286, 2fine mesh, OpenFOAM].

The solution obtained using a laminar flow presents a wide recirculation area
on the aft region of the suction side. Therefore, the mean solution has been plot-
ted together with error bars encompassing the minimum and maximum values.
Enforcing a laminar flow weaken the boundary layer which is no longer able to
counteract the adverse pressure gradients acting on the suction side, leading to
separation.
The corresponding turbulent flow obtained using a SST k-ω model presents the
same average solution but with the boundary layer fully attached. A local pres-
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sure increase as found in Fluent (Figure 3.7) could not be observed in this case.
This difference could be ascribed to a different implementation of the SST k-ω
turbulence model (Menter, 1994) within the two solvers.

The best viscous solution (laminar flow with free-slip walls) obtained with
Openfoam is compared in Figure 3.11 with the corresponding Fluent solution.
The choice of testing laminar and inviscid flows is also dictated by the final goal
of the present work, which is the numerical study of propeller ventilation. When
ventilation occurs, viscosity plays a minor role with respect to the other quantities
involved, and an inviscid solution is already capable to capture the main flow fea-
tures.
The experimental results and the BEM solution are also plotted as reference val-
ues (Figure 3.11a). The solution obtained with the two RANS solvers are in sat-
isfactory agreement with the available benchmark data, almost overlapping, but
Fluent better approaches the first trough detected during experiments. The same
results were obtained for the inviscid solution, thus the results were not plotted.

Figure 3.11b shows a comparison of the pressure coefficient obtained with
Fluent and the infinite fluid case, also reporting the corresponding lift coeffi-
cients. Both RANS solvers predict the same distribution, showing the increase
of pressure due to the presence of the free-surface, especially on the suction side,
leading to higher forces exerted by the submerged hydrofoil with respect to the
infinite fluid case.
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Figure 3.11: Comparison [2fine mesh, laminar flow with free-slip walls]

The same figure shows the pressure coefficient for a case with shallower sub-
mergence, h = 0.185 m, corresponding to a submergence ratio h/c = 0.911.
The converged pressure distribution for this further case is used to confirm that
the wave system generated above the hydrofoil requires higher energy in order to
attain the same flow speed (Tzabiras, 1997).

The ratio between CL and its infinite fluid value is 1.18 and 1.24, respectively
for h/c equal to 1.286 and 0.911. The corresponding values obtained using Equa-
tion 3.2 are 1.04 and 1.08. Weissinger’s theory shows the correct trend for the lift,
which increases at low submergences, but present values are underestimated.This
approximation is not valid for the surface-piercing case h/c → 0, where CL → ∞,
and is thus less accurate for intermediate cases.

Table 3.5 summarizes the present results obtained for the dimensionless first
trough amplitude η/c and the lift coefficient CL, in terms of relative error with
respect to the experiments (Duncan, 1983) and the BEM solution by Landrini et al.
(1999), respectively. An increasing lift coefficient corresponds to a more accurate
representation of the free surface; the effect of different near wall conditions is
also confirmed.
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CL η/c

SST k-ω
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M -19.3% -19.4%

inviscid 1.0% -7.8%

laminar { no-slip -16.4% -17.8%

slip { 1.0% -7.8%
Fluent 2.1% -1.4%

Table 3.5: Relative error of the present solution with respect to the experiments
(Duncan, 1983) and the BEM solution (Landrini et al., 1999) [h/c = 1.286, 2fine
mesh]

The same table compares the results for the laminar flow using free-slip con-
ditions for the two RANS solvers. While both lift coefficients approach satisfac-
torily the BEM solution, OpenFOAM presents a larger deviation in the first trough
amplitude, as already pointed out in Figure 3.11a. This large percent deviation
corresponds to only 2 grid cells, and the difference among the solvers could be
ascribed to the different schemes used to interpolate the interface between air and
water.

3.1.2.3 h/c = 0.911

For this shallower submergence the experiments by Duncan (1983) show a clear
spilling breaking-wave condition. Here it is not attempted to capture the fine de-
tails of spilling breakers described by Duncan (2001) and investigated by some
authors (Muscari and Di Mascio, 2003; Rhee and Stern, 2002) also including an
empirical breaking wave model. No breaking-wave model is adopted, while this
more complex case is used to further test the adopted solver as it is.
Only Fluent was used for this submergence. The present converged un-

steady simulation for the 2fine mesh shows small oscillations of the forces on the
hydrofoil and of the free surface, more pronounced around the breaking region,
with a period 3.8T , where T is the period of a linear wave having the same phase
speed as the breaker. A more accurate explicit simulation in time was performed in
Fluent obtaining the same oscillating behavior, whose maximum double ampli-
tude could be quantified to 9% for the lift coefficient and 18% for the first trough
amplitude, with respect to their corresponding mean values.
No oscillatory behavior is mentioned by Duncan (1983) in the case object of

this study. However, Duncan (1981) observed small oscillations in the length of
the breaking region while testing the same configuration, but with a free-stream
velocity slightly different, U = 0.82 m/s. The experiments showed an oscillation
period of 3.9T and Duncan (1981) argued that the oscillations are due to wave
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components generated when the foil is started from rest. Qualitative observations
showed that the amplitude of the oscillation decreased as the wave progressed.
The small amplitude of the oscillation recorded numerically in the present study
is deemed as not affecting the speculation on the near wall treatment, but the per-
formed analysis is not sufficient to state whether the oscillation detected by the
code is physical or numerical, despite the consistency with observations by Dun-
can (1981).

Two extremes of these oscillations are shown in Figure 3.12, as representa-
tive of the minimum and maximum wave height detected. The present solution is
compared with the experiments by Duncan (1983) and the RANS simulations by
Muscari and Di Mascio (2003) and by Rhee and Stern (2002), the last two taken
without the inclusion of a breaking wave modeling.
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Figure 3.12: Free-surface deformation [h/c = 0.911, Fluent SST k-ω]

The present results compute a wavy pattern on the first crest, where wave
breaking is observed during experiments.
All numerical results show a large deviation from the experimental data with re-
spect to the non-breaking wave case, both in terms of wave amplitude and phase.
The present study captures more accurately the first trough amplitude above the
hydrofoil, embracing the corresponding experimental value between its two ex-
tremes. Despite this apparent improvement, the following wave-train is under-
predicted, and a thorough sensitivity analysis would be required to assess the in-
fluence of the main numerical parameters.
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3.1.3 Summary

The results obtained with the two RANS solvers shows a satisfactory agreement
with the experimental results (Duncan, 1983) and the potential flow solution (Lan-
drini et al., 1999), both in terms of free surface deformation and lift coefficient, for
the non-breaking wave case (h/c = 1.286).
A sensitivity analysis shows that for such a problem, where viscosity is not domi-
nant, the diffusion introduced by the solver affects significantly the accuracy of the
results and care must be taken in treating the near wall region for a correct solution.
The forces exerted by the foil are the key mechanism driving the deformation of
the free-surface. The detection of the correct wave amplitudes is improved intro-
ducing a free-slip condition on the walls.
The two RANS solvers show an overall good agreement. The same pressure dis-
tribution is predicted along the hydrofoil, and the differences found in the free-
surface deformation could be ascribed to the different schemes the solvers use in
order to interpolate the interface between air and water.
A more complex case corresponding to a breaking-wave condition was used

to further test the adopted solver, as it is, without implementing a breaking-wave
model. While the first trough amplitude is well captured for this shallower sub-
mergence, the breaking wave and the following wave-train are under-predicted.
This study confirms the results obtained for the non-breaking case in terms of first
trough amplitude, whereas a correct evaluation of the following waves would re-
quire an accurate modeling of the breaker.

3.2 Propeller in open water

A sensitivity analysis was performed on a propeller in open water conditions, and
its results validated against the available experiments, for a wide range of operating
advance ratios.

3.2.1 Propeller model

The propeller geometry used in open water is later used for ventilation simula-
tions. This model has been extensively used for various kinds of ventilation tests,
with and without the presence of a duct. The model has thus a generic design,
representing a typical propeller which can be used in different regimes. The pro-
peller tested in open water is mounted on a shaft extending downstream, while
a rounded nose is placed upstream. Numerical simulations are performed on the
propeller alone, while the hub is extended both upstream and downstream until
the domain’s boundaries. The thruster is right-handed, with a diameter D of 0.25
m and a hub diameter Dhub of 0.06 m. Global design pitch ratio P/D is 1.1 and
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A more complex case corresponding to a breaking-wave condition was used

to further test the adopted solver, as it is, without implementing a breaking-wave
model. While the first trough amplitude is well captured for this shallower sub-
mergence, the breaking wave and the following wave-train are under-predicted.
This study confirms the results obtained for the non-breaking case in terms of first
trough amplitude, whereas a correct evaluation of the following waves would re-
quire an accurate modeling of the breaker.

3.2 Propeller in open water

A sensitivity analysis was performed on a propeller in open water conditions, and
its results validated against the available experiments, for a wide range of operating
advance ratios.

3.2.1 Propeller model

The propeller geometry used in open water is later used for ventilation simula-
tions. This model has been extensively used for various kinds of ventilation tests,
with and without the presence of a duct. The model has thus a generic design,
representing a typical propeller which can be used in different regimes. The pro-
peller tested in open water is mounted on a shaft extending downstream, while
a rounded nose is placed upstream. Numerical simulations are performed on the
propeller alone, while the hub is extended both upstream and downstream until
the domain’s boundaries. The thruster is right-handed, with a diameter D of 0.25
m and a hub diameter Dhub of 0.06 m. Global design pitch ratio P/D is 1.1 and
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blade area ratio EAR 0.595. A propeller drawing is presented in Figure 3.13 and
the section characteristics in Table 3.6, where c/D, t/D, s/D, P/D and f/D are,
respectively, the chord, maximum thickness, skew, pitch and maximum camber for
each section, made dimensionless with the propeller diameter. The rake is zero for
all the sections.

Figure 3.13: Propeller drawing.

r/R c/D t/D s/D P/D f/D

0.24 0.13 0.038 0.000 1.08 0.001
0.26 0.15 0.037 0.003 1.08 0.004
0.30 0.18 0.035 0.011 1.08 0.007
0.37 0.23 0.031 0.023 1.09 0.009
0.46 0.29 0.026 0.037 1.09 0.012
0.57 0.34 0.022 0.045 1.10 0.013
0.67 0.38 0.017 0.040 1.10 0.014
0.78 0.40 0.013 0.014 1.09 0.012
0.87 0.38 0.010 -0.030 1.06 0.010
0.94 0.32 0.008 -0.082 1.00 0.006
0.98 0.21 0.006 -0.125 0.95 0.003
1.00 0.03 0.006 -0.141 0.94 0.000

Table 3.6: Section characteristics.

3.2.2 Numerical method

The commercial RANS code Fluent has been used to solve the viscous, incom-
pressible flow.

The momentum equation is solved with a second order upwind scheme. The
Body Force Weighted discretization algorithm is used to interpolate the node val-
ues of the pressure from the cell values, as required by the solver. The pressure-
velocity coupling is achieved using a SIMPLE algorithm. The SST k − ω model
(Menter, 1994) is used for the turbulence closure.

A constant free-stream velocity is assigned at the inlet, and a constant dynamic
pressure at the outlet. A zero flux of all quantities is enforced across the remaining
boundaries. A no-slip condition is set on the propeller surfaces.

The grid is fully unstructured in the rotating domain, with a superimposed
prismatic layer close to the walls, in order to better capture the boundary layer
(Rhee and Joshi, 2006). Prisms are extruded upstream and downstream the rotating
domain. An ensemble view of the numerical domain is shown in Figure 3.14a. A
close up of the mesh topology on the blade is given in Figure 3.14b.
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(a) Global domain. (b) Mesh topology on the blade wall.

Figure 3.14: Numerical domain.

Propeller rotation The propeller geometry is embedded in a cylindrical domain,
as shown in Figure 3.15.

The rotation of this domain was achieved
both with a Multiple Reference Frame
(MRF) model and using Sliding Mesh (SM).
In the MRF model the propeller is fixed,
while its rotation is taken into account us-
ing a local reference frame rotating at the
desired propeller rate. The corresponding
equations of motion are modified to incorpo-
rate the additional acceleration terms arising
from the use of a rotating reference frame.
This approach is most suitable when the
interaction between stationary and moving
parts are quasi-steady.

Figure 3.15: Rotating domain

When the unsteadiness of the aforementioned interaction becomes important,
a Sliding Mesh model has to be adopted, accounting for the relative motion of
stationary and rotating components. The increased accuracy is achieved at the
expense of a higher computational time.
The flow around the propeller shows a periodicity of 2π/N rad where N is

the number of blades. Using this finding, one can solve the flow only around one
blade, or within the passage between two blades. The first approach was chosen,
introducing two periodic boundaries (boundary planes in Figure 3.14a) in the do-
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main, such that the flow through one periodic boundary is computed using the flow
conditions at the fluid cell adjacent to the opposite periodic boundary.

3.2.3 Results

Figure 3.16 shows the results in terms of non-dimensional characteristics KT ,KQ

and η, defined in Chapter 2, and rewritten here for sake of clarity.

KT =
T

ρ n2D4
, KQ =

T

ρ n2D5
, η =

J

2π

KT

KQ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

KQ

J

KT

η

KT

KQ

η

RANS
BEM

experiment

Figure 3.16: Dimensionless thrust, torque and efficiency in open water: compari-
son between experiments (—), RANS (–•–) and BEM (–�–)

Present results are compared with the available experiments and Boundary El-
ement Method (BEM) computations. Experiments were carried out in the large
cavitation tunnel at the Marine Technology Center in Trondheim, Norway. The test
section diameter is 1.2 m and the precision error of the test results is found to be
smaller than 1% using a 95% confidence interval. The code AK-Propulsor Anal-
ysis (AKPA) was used for BEM computations. AKPA is a velocity based source
BEM with modified trailing edge (Achkinadze and Krasilnikov, 2001) in use at the
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Norwegian Marine Technology Research Institute (MARINTEK) for the analysis
of marine propulsors.
The corresponding numerical values are reported in Tables 3.7a and 3.7b for

the thrust and torque coefficients, respectively, both including the relative error
with respect to the experiments.

J exp RANS Δ% BEM Δ%

0.1 0.592 0.586 1.0% 0.555 6.2%
0.3 0.494 0.490 0.7% 0.465 5.8%
0.5 0.394 0.382 3.2% 0.372 5.7%
0.7 0.293 0.283 3.3% 0.274 6.5%
0.9 0.193 0.185 4.2% 0.172 11.0%
1.1 0.081 0.075 7.3% 0.064 20.8%
1.2 0.014 0.008 44.2% 0.008 41.7%

(a) Thrust coefficient.

exp RANS Δ% BEM Δ%

0.089 0.086 2.7% 0.084 4.9%
0.077 0.074 3.2% 0.074 4.2%
0.065 0.061 6.3% 0.062 4.5%
0.052 0.049 6.6% 0.049 5.7%
0.039 0.035 8.9% 0.035 9.4%
0.023 0.019 15.8% 0.020 15.3%
0.014 0.009 31.1% 0.010 27.2%

(b) Torque coefficient.

Table 3.7: Comparison of RANS and BEM results with experiments, including the
relative error.

The thrust coefficient computed with RANS is in satisfactory agreement with
the available experiments for the whole range of advance ratios. The large relative
error obtained for J = 1.2 is due to the fact that nominal values are very small,
and division by 0 amplifies the error difference. For high propeller loadings, i.e.
for low advance ratios, the deviation is within the precision limit, about 1% for
J = 0.1, the case which has been further investigated including the free surface in
Chapter 5.

3.2.3.1 Under-estimation of the torque

The torque coefficient shows a systematic under-estimation of the experimental
data, which is also seen in the BEM. An error in the torque coefficient has been
widely documented in other RANS simulations (Bulten and Oprea, 2005; Rhee
and Joshi, 2006; Berchiche and Janson, 2008), where an over-prediction was en-
countered instead.
The prediction of thrust and torque is related to lift and drag predictions of a

2D profile. Using standard two-equation turbulence models, such as k-ε and k-
ω, lift is well predicted, whereas the drag shows a sensible deviation. Bulten and
Oprea (2005) attribute this trend to an error in the evaluation of the stagnation point
pressure, while for Rhee and Joshi (2006) this can be associated to the lack of a
proper laminar-to-turbulent transition model. The correct location of the turbulent
transition point along the chord-line can not be predicted by fully turbulent models,
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error obtained for J = 1.2 is due to the fact that nominal values are very small,
and division by 0 amplifies the error difference. For high propeller loadings, i.e.
for low advance ratios, the deviation is within the precision limit, about 1% for
J = 0.1, the case which has been further investigated including the free surface in
Chapter 5.

3.2.3.1 Under-estimation of the torque

The torque coefficient shows a systematic under-estimation of the experimental
data, which is also seen in the BEM. An error in the torque coefficient has been
widely documented in other RANS simulations (Bulten and Oprea, 2005; Rhee
and Joshi, 2006; Berchiche and Janson, 2008), where an over-prediction was en-
countered instead.
The prediction of thrust and torque is related to lift and drag predictions of a

2D profile. Using standard two-equation turbulence models, such as k-ε and k-
ω, lift is well predicted, whereas the drag shows a sensible deviation. Bulten and
Oprea (2005) attribute this trend to an error in the evaluation of the stagnation point
pressure, while for Rhee and Joshi (2006) this can be associated to the lack of a
proper laminar-to-turbulent transition model. The correct location of the turbulent
transition point along the chord-line can not be predicted by fully turbulent models,
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and this uncertainty leads to an error when evaluating the drag for a 2D profile and
therefore the torque for a propeller.

Experimental measurements on a flat plate of length  show that the drag co-
efficient CF due to skin friction coefficient Cf may vary significantly between
laminar and turbulent flow (Figure 3.17). The skin friction coefficient is defined
as the ratio between the wall shear τw and the dynamic pressure pdyn = 0.5ρU2,
while CF is given by the integral of Cf along the length of the plate.

Cf =
τw

1
2ρU2

(3.3a)

CF =
1



∫ �

0
Cf dx (3.3b)

Its evaluation is especially difficult in the transition region, where the solution
lies between the laminar and turbulent curves and the exact location depends on
many parameters, such as free-stream turbulence and roughness.
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Figure 3.17: Drag coefficient due to skin friction for a flat plate as function of the
Reynolds number Re� based on the plate length .

The Reynolds number computed at 70% of the radius Re0.7 is 1.2 × 105. Ac-
cording to Figure 3.17 the corresponding skin friction coefficient may vary signifi-
cantly, depending on whether the flow is (i) laminar, (ii) turbulent or (iii) transition
occurs along the chord-line, being the latter case the most common. From his in-
vestigation, Brandt (1973) found that laminar boundary layer separation ceases to
occur for Re0.7 > 5 × 105. Above this number the effect of Re on the propeller

64 Verification studies

and this uncertainty leads to an error when evaluating the drag for a 2D profile and
therefore the torque for a propeller.

Experimental measurements on a flat plate of length  show that the drag co-
efficient CF due to skin friction coefficient Cf may vary significantly between
laminar and turbulent flow (Figure 3.17). The skin friction coefficient is defined
as the ratio between the wall shear τw and the dynamic pressure pdyn = 0.5ρU2,
while CF is given by the integral of Cf along the length of the plate.

Cf =
τw

1
2ρU2

(3.3a)

CF =
1



∫ �

0
Cf dx (3.3b)

Its evaluation is especially difficult in the transition region, where the solution
lies between the laminar and turbulent curves and the exact location depends on
many parameters, such as free-stream turbulence and roughness.

0.0001

0.001

0.01

0.1

104 105 106 107 108 109

Re�

Laminar

Turbulent

1.328√
Re�

0.074
Re0.2

�

0.455
(log10Re�)2.58

0.455(log10Re� )2.58 − 1700Re�

CF

Figure 3.17: Drag coefficient due to skin friction for a flat plate as function of the
Reynolds number Re� based on the plate length .

The Reynolds number computed at 70% of the radius Re0.7 is 1.2 × 105. Ac-
cording to Figure 3.17 the corresponding skin friction coefficient may vary signifi-
cantly, depending on whether the flow is (i) laminar, (ii) turbulent or (iii) transition
occurs along the chord-line, being the latter case the most common. From his in-
vestigation, Brandt (1973) found that laminar boundary layer separation ceases to
occur for Re0.7 > 5 × 105. Above this number the effect of Re on the propeller

64 Verification studies

and this uncertainty leads to an error when evaluating the drag for a 2D profile and
therefore the torque for a propeller.

Experimental measurements on a flat plate of length  show that the drag co-
efficient CF due to skin friction coefficient Cf may vary significantly between
laminar and turbulent flow (Figure 3.17). The skin friction coefficient is defined
as the ratio between the wall shear τw and the dynamic pressure pdyn = 0.5ρU2,
while CF is given by the integral of Cf along the length of the plate.

Cf =
τw

1
2ρU2

(3.3a)

CF =
1



∫ �

0
Cf dx (3.3b)

Its evaluation is especially difficult in the transition region, where the solution
lies between the laminar and turbulent curves and the exact location depends on
many parameters, such as free-stream turbulence and roughness.

0.0001

0.001

0.01

0.1

104 105 106 107 108 109

Re�

Laminar

Turbulent

1.328√
Re�

0.074
Re0.2

�

0.455
(log10Re�)2.58

0.455(log10Re� )2.58 − 1700Re�

CF

Figure 3.17: Drag coefficient due to skin friction for a flat plate as function of the
Reynolds number Re� based on the plate length .

The Reynolds number computed at 70% of the radius Re0.7 is 1.2 × 105. Ac-
cording to Figure 3.17 the corresponding skin friction coefficient may vary signifi-
cantly, depending on whether the flow is (i) laminar, (ii) turbulent or (iii) transition
occurs along the chord-line, being the latter case the most common. From his in-
vestigation, Brandt (1973) found that laminar boundary layer separation ceases to
occur for Re0.7 > 5 × 105. Above this number the effect of Re on the propeller

64 Verification studies

and this uncertainty leads to an error when evaluating the drag for a 2D profile and
therefore the torque for a propeller.

Experimental measurements on a flat plate of length  show that the drag co-
efficient CF due to skin friction coefficient Cf may vary significantly between
laminar and turbulent flow (Figure 3.17). The skin friction coefficient is defined
as the ratio between the wall shear τw and the dynamic pressure pdyn = 0.5ρU2,
while CF is given by the integral of Cf along the length of the plate.

Cf =
τw

1
2ρU2

(3.3a)

CF =
1



∫ �

0
Cf dx (3.3b)

Its evaluation is especially difficult in the transition region, where the solution
lies between the laminar and turbulent curves and the exact location depends on
many parameters, such as free-stream turbulence and roughness.

0.0001

0.001

0.01

0.1

104 105 106 107 108 109

Re�

Laminar

Turbulent

1.328√
Re�

0.074
Re0.2

�

0.455
(log10Re�)2.58

0.455(log10Re� )2.58 − 1700Re�

CF

Figure 3.17: Drag coefficient due to skin friction for a flat plate as function of the
Reynolds number Re� based on the plate length .

The Reynolds number computed at 70% of the radius Re0.7 is 1.2 × 105. Ac-
cording to Figure 3.17 the corresponding skin friction coefficient may vary signifi-
cantly, depending on whether the flow is (i) laminar, (ii) turbulent or (iii) transition
occurs along the chord-line, being the latter case the most common. From his in-
vestigation, Brandt (1973) found that laminar boundary layer separation ceases to
occur for Re0.7 > 5 × 105. Above this number the effect of Re on the propeller



3.2. Propeller in open water 65

characteristics is not so strong, regardless of flow regime and propeller immersion.
The fact that the Re0.7 obtained for the present propeller is lower than the critical
one found by Brandt (1973) will not ensure independence of the results from the
Re and adds an uncertainty on separation and turbulence transition. The under-
estimation of the torque coefficient could then be explained by the fact that the
solver, even for a turbulent incoming flow, considers the flow on the walls as lam-
inar below a certain Re, having a lower skin friction coefficient and thus leading
to a lower profile-drag and lower propeller-torque. No evidence for this theory is
given in the user guide (Fluent, 2006) and the impossibility to access the source
code makes its demonstration a hard task.

3.2.3.2 Sensitivity analysis

In order to assess the influence of the used numerical parameters on the obtained
solution, a sensitivity analysis was performed changing the grid refinement and the
turbulence model.
Three levels of grid refinement in the external domain—obtained from the total

domain subtracting the prismatic boundary layer—and one level in the boundary
layer were applied without producing significant changes in the global forces and
moments. The pressure contours for the three levels of refinement obtained for
J = 0.1 are plotted in Figures 3.18 and 3.19 for the suction and pressure side, re-
spectively. A sharper capture of the pressure difference can be observed decreasing
the mesh size. This sharper contours are particularly visible on the leading edge
and on the suction side, where a finer grid better captures the strong gradients
existing at the leading edge and in tip-vortex region.

(a) Coarse (0.6 M cells) (b) Base-line (1.5 M cells) (c) Fine (3 M cells)

Figure 3.18: Pressure contours on the suction side for three levels of refinement
[J = 0.1].
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(a) Coarse (0.6 M cells) (b) Base-line (1.5 M cells) (c) Fine (3 M cells)

Figure 3.19: Pressure contours on the pressure side for three levels of refinement
[J = 0.1].

As explained in the previous section, turbulence plays an important role in
computing the drag of a lifting surface and might therefore be the key mechanism
explaining the differences in the torque coefficient with respect to the experiments.
In addition to the SST k − ω, the standard k − ω and the k − ε (standard and real-
izable) turbulence models were also tested without finding significant differences
with respect to the presented results.
The turbulence intensity at the inlet is set to 1%, value which is rather low, but
reproduces the undisturbed flow conditions of the cavitation tunnel. Simulations
were also performed increasing the turbulence intensity up to 10% and removing
turbulence (viscosity is only accounted for with its laminar component), obtaining,
also in these cases, no significant changes.

Periodic boundaries are generally a good assumption when the flow is rather
steady and uniform, and recirculating regions are mainly directed as the propeller
rotation. For unsteady, strongly recirculating flow, the existence of a periodic flow
can no longer be justified. Unsteadiness and non uniformity occur especially in
off-design conditions for a propeller at low advance ratios, close to bollard-pull
conditions—where the blade is at high angles of attack with respect to the result-
ing incoming velocity.
A numerical domain encompassing all the 4 blades was generated and tested with a
Multiple Reference Frame (MRF) model at the lowest advance ratio J = 0.1, con-
dition which will be used for the following simulations with ventilation, described
in Chapter 5. For this entire domain, a simulation using Sliding Mesh (SM) was
also performed. The results obtained with the MRF model on the entire domain do
not differ significantly from the corresponding domain around a single blade. The
SM model seems to better capture the inherent unsteadiness of the flow, improving
slightly the global characteristics, reported in Table 3.8.
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Figure 3.19: Pressure contours on the pressure side for three levels of refinement
[J = 0.1].
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Figure 3.19: Pressure contours on the pressure side for three levels of refinement
[J = 0.1].
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rotation KT Δ% KQ Δ%

MRF 0.586 1.0% 0.086 2.7%
SM 0.595 0.6% 0.088 1.0%

Table 3.8: Comparison between the MRF and SM model, including the relative
error with respect to the experiments [J = 0.1].

3.2.3.3 OpenFOAM

The same grid generated for a single blade with periodic boundary conditions was
used for a simulation using OpenFOAM. The Navier-Stokes equations are solved
using the following schemes, all based on the 2nd order Gaussian integration, sum-
marized in Table 3.9:

Term Discretization

Gradient ∇ linear

Convection {∇ · (φU) limited linearV 1
∇ · (φk) limited linear 1
∇ · (φω) limited linear 1

Laplacian ∇2 linear corrected

Table 3.9: Numerical schemes used in OpenFOAM.

The results obtained in terms of propeller characteristics are shown in Fig-
ure 3.20, and compared with the corresponding experiments and Fluent simu-
lations. A stable solution for the lowest advance ratio could not be achieved in
OpenFOAMwith the adopted scheme.
The differences between the two solvers in terms of the thrust coefficient are
barely visible, whereas the torque coefficient changes significantly, presenting with
OpenFOAM an over-estimation of the experimental data, instead of the under-
estimation found in Fluent. As explained earlier, an over-estimation of the
torque can arise when the laminar-to-turbulent flow transition is not taken into
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Figure 3.20: Dimensionless thrust, torque and efficiency in open water: compari-
son between Fluent (–◦–), OpenFOAM (–�–) and experiments (—).

Table 3.10 shows the pressure and viscous components of the torque coefficient
obtained with Fluent and OpenFOAM. The component due to skin friction is
fairly constant for different advance ratios, but is very different between the two
solvers. The under- and over- estimation of the torque due to skin friction can
explain the total error with respect to the experiments of the tested solvers.

J pressure viscous viscous
total %

0.3 0.0735 0.0008 1.03%
0.5 0.0600 0.0009 1.41%
0.7 0.0478 0.0009 1.93%
0.9 0.0343 0.0009 2.58%

(a) Fluent.

pressure viscous viscous
total %

0.0739 0.0039 5.06%
0.0618 0.0040 6.08%
0.0503 0.0040 7.39%
0.0371 0.0045 10.87%

(b) OpenFOAM.

Table 3.10: Pressure and viscous components of the torque coefficient.

The following Figures 3.21 and 3.22 show the pressure coefficient contours
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obtained close to design conditions (J = 0.9) with the two solvers for the suction
and the pressure side, respectively. Although not identical, the contours computed
by the two solvers follow the same trend. The contours shown by OpenFOAM are
less smoothed, but this difference is deemed to be due to the lower order of cell-
to-node interpolation used by the corresponding post-processor.
The pressure coefficient at three different radial stations, 0.5, 0.7 and 0.9 of the
propeller radius, is compared in Figure 3.23. The profiles obtained with the two
solvers are almost overlapping, with small differences especially close to the lead-
ing edge.

(a) OpenFOAM (b) Fluent

Figure 3.21: Contours of the pressure coefficient on the suction side [J = 0.9].

(a) OpenFOAM (b) Fluent

Figure 3.22: Contours of the pressure coefficient on the pressure side [J = 0.9].
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Figure 3.23: Comparison of the pressure coefficients obtained with Fluent and
OpenFOAM at various radial stations [J = 0.9].
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The following Figures 3.24 and 3.25 show the skin friction coefficient contours
obtained at J = 0.9, close to design conditions (J = 0.86), with the two solvers
for the suction side and the pressure side, respectively. The global difference found
in Table 3.10 can now be observed locally on the blade. The wall shear stress com-
puted with OpenFOAM is much larger than the one computed with Fluent. This
difference could be ascribed to a different treatment of the fluid quantities close
to the wall. It should be kept in mind that the present results were obtained using
Standard Wall Functions (SWF) in OpenFOAM, while Fluent is using an En-
hanced Wall Treatment (EWT) approach close to the boundaries. SWF and other
available wall treatments were also tested in Fluentwithout obtaining significant
changes in results.

(a) OpenFOAM (b) Fluent

Figure 3.24: Contours of the skin friction coefficient on the suction side [J = 0.9].

(a) OpenFOAM (b) Fluent

Figure 3.25: Contours of the skin friction coefficient on the pressure side [J =
0.9].
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3.2.4 Summary

A validation and verification analysis of the propeller in open water has been car-
ried out using Fluent showing for all range of advance ratio a good agreement
for the thrust coefficient, and an under-estimation of the torque coefficient.

A sensitivity analysis was performed in order to assess the influence of the
used numerical parameters. A grid independent solution was obtained and the
choice of the turbulence model did not show to affect the obtained results. The
implementation of a Sliding Mesh (SM) model for the propeller rotation proved to
be more accurate than the Multiple Reference Frame (MRF) model.

Part of the range of advance ratio was computed also with OpenFOAM. The
two RANS solvers show an overall good agreement, but OpenFOAM presents in-
stead an over-estimation of the torque coefficient.

The differences found in the torque are mainly due to different values for the
wall shear stresses; Fluent computes too low shear stresses, while OpenFOAM
presents an over-estimation.
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Chapter 4

Model tests

Three different test campaigns are analyzed in the present study, referred to with
the corresponding acronym.

Investigator(s) Year Acronym

Koushan 2005 Kou05
Califano & Kozlowska 2009 Cal09
Kozlowska 2010 Koz10

Table 4.1: Test campaigns.

Results from Kou05 were published in Koushan (2006b); Kozlowska et al.
(2009) and used for validation by Califano and Steen (2009). The majority of
the results presented were obtained during the test campaign Cal09, which will
generally be addressed to without the acronym. Some cases from the other two
test campaigns (Kou05 and Koz10) will be used for comparison or to investigate
missing cases relevant to this study, and the test they belong to will always be
referenced to by its corresponding acronym.

4.1 Test matrix

Tests Cal09 were conducted at submergence ratios h/R ranging between 2.97
(identified as infinite fluid case) and 1 (where the blade tip is touching the free-
surface).
For all the above water depths, the carriage speed U and the propeller shaft fre-
quency nwere combined in order to obtain advance ratios J around 0.1, according
to the following test matrix.
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missing cases relevant to this study, and the test they belong to will always be
referenced to by its corresponding acronym.

4.1 Test matrix

Tests Cal09 were conducted at submergence ratios h/R ranging between 2.97
(identified as infinite fluid case) and 1 (where the blade tip is touching the free-
surface).
For all the above water depths, the carriage speed U and the propeller shaft fre-
quency nwere combined in order to obtain advance ratios J around 0.1, according
to the following test matrix.
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n [1/s]
12 14 16

U
[m
/s
] 0.30 0.100 0.086 0.075

0.35 0.117 0.100 0.088
0.40 0.133 0.114 0.100

Table 4.2: Advance ratio J = U/n D, in terms of free-stream velocity U and pro-
peller shaft frequency n.

Each test was performed starting the propeller rotation after reaching a constant
carriage speed. The desired propeller shaft frequency was reached with a linear
acceleration of 208.7 rad/s2.
In order to observe the effect of the acceleration on the inception of ventilation,
the default value was reduced by a factor of 2, 4 and 8, only for the submergence
ratio of 1.4.

Further details about the test conditions are given in Appendix A, together with
all the obtained results.

4.2 Experimental set-up

Tests were performed in the Marine Cybernetics Laboratory (MCLab) at the Nor-
wegian University of Science and Technology (NTNU), having dimensions (length
× breadth × depth) of 40 m × 6.45 m × 1.5 m. Figure 4.1 shows a sketch of
the experimental set-up used to carry out the present experiments. A general pur-
pose Personal Computer (PC) is controlling the acquisition system, which receives
all the measured data. The propeller rotation is achieved with an electrical motor,
where both the desired rotational speed and the linear ramp used to achieve it can
be adjusted. During measurements, images are acquired with an high-speed cam-
era at a sampling frequency ranging between 60 and 480 Hz, depending on the test
conditions. This camera is controlled by a dedicated computer providing trigger
pulses at each acquired frame. This information is then fed to the acquisition sys-
tem in order to extract the time where pictures were taken. The entire test set-up is
mounted on a carriage, which is translating along the channel and thus giving the
velocity of advance. All measurements and images are then saved on an external
storage system.

A cartesian reference system is centered in the center of the propeller, having
the x-axis aligned along the propeller axis, the z-axis pointing upward towards the
free-surface, and the y-axis following a right-handed system, pointing on the port
side (Figure 4.2).
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Figure 4.1: Sketch of the experimental set-up.

Figure 4.2: Reference system.

Figure 4.3 shows the propeller hosted by a thruster case, with a front and lat-
eral view. The blade dynamo-meter is housed in the root of Blade1, where the
projection of its axis has been drawn on the suction side for visual inspection of
the angular position.
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(a) Front view. (b) Lateral view.

Figure 4.3: Thruster.

The necessary light for the camera acquisition is provided by two underwater
lamps. Their configuration and light range is sketched in Figure 4.4. Different
views of the used configuration are shown in Figure 4.5.

Figure 4.4: Configuration of lights and camera around the propeller.
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(a) Front view. (b) Lateral view.

(c) Rear view. (d) Isometric view.

Figure 4.5: Lights and cameras.

The test set-up is equipped with the following instruments:

• a 5-components blade dynamo-meter (x and y forces, x, y and spindle mo-
ments);

• a 6-component dynamo-meter for the whole thruster (x, y and z forces and
moments);

• a device measuring the blade angular position;

All this information is given to the acquisition system, together with the carriage
and shaft speed. Pictures of the used instrumentation are shown in Figure 4.6.
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(a) Lateral view. (b) Top view.

(c) Front view. (d) View of of the six-component dynamometer for
the whole thruster.

(e) Thruster assembly prior to mounting on
the carriage.

Figure 4.6: Instrumentation.
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The PC controller is provided with the Data Acquisition (DAQ) software catman R©,
using the DAQ system MGCplus, from Hottinger Baldwin Messtechnik (HBM).
The signals were acquired at a sampling frequency of 1200 Hz using a 100 Hz 4th
order Butterworth filter.

4.2.1 Test procedure

Tests were performed following a prescribed procedure aiming at reducing the
influence of the human factor in the obtained results:

1. start of data acquisition;

2. start of the carriage;

3. start of the propeller motor after steady-state carriage velocity was reached;

4. start of image acquisition after steady-state shaft frequency was reached;
acquisition stops after available camera memory is full;

5. end of test:

• stop data acquisition;
• stop propeller motor;
• stop carriage and start moving it back to the initial position;

6. wait until water is calm (at least 5 min);

7. start a new test.

4.3 Data analysis

The obtained results are presented in terms of the blade thrust, scaled with respect
to the corresponding deepest submergence value (h/R = 2.97) that could be ob-
tained in the towing tank with the given set-up. At this submergence, the presence
of the free-surface will affect the loads on the blade passing in the up-right posi-
tion, but its effect is much smaller than the losses due to ventilation, as it will be
shown when presenting the obtained results. In the remaining of this chapter, when
referring to the present experimental results, the term deep water (h/R = ∞) will
always be used instead of deepest submergence (h/R = 2.97).
The transducers measuring the torque were found to be affected by a calibra-

tion error, that was not possible to correct in a post-processing phase. Nevertheless,
the torque losses due to ventilation show the same behavior of the thrust (Faltinsen
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et al., 1981; Minsaas et al., 1983; Kozlowska et al., 2009), such that the conclu-
sions that will be drawn for the thrust apply also to the torque.

Three steps were taken to post-process the acquired data:

• data filtering;

• correction for the propeller angular position;

• computation of mean and standard deviation for each angular position.

The first two steps require a further description.

4.3.1 Filtering

Measured data are affected by an electronic noise at frequencies of 50, 150, 250 Hz
and so on, every 100 Hz. These peaks were removed during post-processing apply-
ing a low-pass filter with a cutoff frequency of 149 Hz and a notch filter between
49 and 51 Hz. The single-side amplitude spectrum of the blade thrust is plotted in
Figure 4.7, where the peaks due to the propeller loads and those due to noise can be
noticed. Figure 4.7b shows that the noise peak at 50 Hz lies very close to the third
and fourth harmonics of the shaft frequency n, but is fortunately narrow-banded,
and could thus be remove without affecting the measured data. The corresponding
raw and filtered data in the time domain can be seen in Figure 4.8.
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(a) Whole frequency range.
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Measured data are affected by an electronic noise at frequencies of 50, 150, 250 Hz
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49 and 51 Hz. The single-side amplitude spectrum of the blade thrust is plotted in
Figure 4.7, where the peaks due to the propeller loads and those due to noise can be
noticed. Figure 4.7b shows that the noise peak at 50 Hz lies very close to the third
and fourth harmonics of the shaft frequency n, but is fortunately narrow-banded,
and could thus be remove without affecting the measured data. The corresponding
raw and filtered data in the time domain can be seen in Figure 4.8.
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Figure 4.7: Single-sided amplitude spectrum of the blade thrust for the raw and
filtered data, where n is the shaft frequency [h/R = 1.4; J = 0.1].

0.00

0.20

0.40

0.60

0.80

1.00

5 10 15 20 25 30 35 40 45 50 55 60 65

KT

KT0

time [s]

KT−Blade1 raw
KT−Blade1 filtered

(a) Long time range.

0.20

0.30

0.40

0.50

0.60

35 35.1 35.2 35.3 35.4 35.5

KT

KT0

time [s]

KT−Blade1 raw
KT−Blade1 filtered

(b) Short time range.

Figure 4.8: Blade thrust coefficient for the raw and filtered data [h/R=1.4; J=0.1].
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4.3.2 Angle correction

The instrument measuring the angular position of the blade has shown during post-
processing a drift of the null position. An estimation of this deviation was com-
puted comparing the image recordings with the measured values, and is plotted in
Figure 4.9 for each experiment performed with the label ”computed drift angle”.
Data have an uncertainty of about ± 5 deg, obtained by the visual identification of
the null position and the interpolation between two measurements. For those cases
where measurements were taken when the propeller was at rest another estimation
of the drift angle could be determined, which was plotted in Figure 4.9 with the
label ”real drift angle”. Four straight lines have also been plotted in order to guide
the eyes through sub-blocks of the measurements data.
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Figure 4.9: Drift angle for each experiment performed.

In the remaining of this chapter data are presented with an angle correction
different from the computed drift angle. The used correction angle is the one that
moves the thrust peak around π rad. This choice is based on the fact that around
π rad the blade is farthest from the free-surface and is thus expected to experience
the minimum thrust loss.
Experiments show that the angular position of the minimum and maximum thrust
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is changing from revolution to revolution, but averaged values show a distinctive
pattern. The choice of correcting the angle is only taken with the purpose of mak-
ing different experiments more comparable, and better focus on those differences
relevant to ventilation.
The values used to correct the angle can be found among the test specifications

in Appendix A.

4.4 Main results

Figure 4.10 shows the thrust coefficient of the propeller in non-ventilating, deep-
water conditions (h/R=2.97, deepest-water case available). Data were computed
multiplying the thrust of a single blade KT by the number of blades N and are
compared with the corresponding open water tests performed in the cavitation tun-
nel at atmospheric pressure, displayed with a ±1% error bar. The comparison is
satisfactory, although present experiments show larger deviations and a different
slope with respect to the open water tests. The additional presence of the thruster
in the present investigation seems not to affect the results significantly.
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Figure 4.10: Thrust coefficient in non-ventilating conditions for the present exper-
iments (◦) and cavitation tunnel tests (—).
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In the remaining of this section data will be presented as a function of the blade
angular position, having as parameters the advance ratio J and a propeller loading
presented in terms of percent of pressure jump across the propeller disc divided by
the atmospheric pressure, according to the following relationship:

Δp

p0
% =

T/A0

p0
(4.1)

This propeller loading differs from the one previously defined (CT = Δp/0.5ρ(nD)2)
by the reference pressure (p0 in Equation 4.1 and pdyn in Equation 2.12) used to
scale the pressure jump. In this manner, the dependency of the pressure jump from
the propeller velocity is removed.

Results are grouped for each submergence, and up to 9 curves will be presented
in the same plot, according to the test matrix described in Table 4.2.

In order to help distinguishing among different curves, a common notation has
been introduced, summarized in Table 4.3.

Variable Notation
Name Value Specifications Type

A
dv
an
ce
ra
tio

0.075 blue
C
ol
or

0.086 red0.088
0.100 black
0.114 green0.117
0.133 purple

Shaft frequency
12 Hz · · · � · · ·

Symbol14 Hz ———–
16 Hz - - -◦- - -

Table 4.3: General notation.
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Deep water (h/R = 2.97)

Figure 4.11 shows the thrust coefficient in non-ventilating conditions (h/R =
2.97) as function of the blade angular position. The coefficient was computed
multiplying the number of blades N by the thrust coefficientKT of the blade were
measurements were taken.
The effect of the free-surface is visible by a thrust loss around 0 deg, in proximity
of the free-surface.
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Figure 4.11: Thrust coefficient N ·KT in non-ventilating conditions, averaged for
each blade angular position [h/R = 2.97; - -◦- - n = 16, — n = 14, · · ·� · · ·
n = 12 Hz].

The results presented in Figure 4.11 are averaged for each angular position.
The measured thrust coefficient during each revolution have been overlapped in
Figure 4.12 as function of the blade angular position, normalized with respect to
the non-ventilating value. In the same figure the mean curve (as in Figure 4.11)
and the curves obtained adding and subtracting two standard deviations 2σ have
also been plotted, giving an idea of the upper and lower envelope of the measured
data. The thrust coefficient measured during each revolution follows rather well
the average trend and is in between the curves at +2σ and −2σ.
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Figure 4.12: Thrust ratio in non-ventilating conditions during each revolution
[h/R = 2.97, n = 14 Hz].

h/R = 2.04

The first rare ventilation events are visible at a submergence of 2.04 (Figure 4.13).

Figure 4.13: Thrust ratio during each revolution [h/R = 2.04, n = 16 Hz].
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From the envelopes of the thrust ratio during each revolution, curves below the
−2σ can be observed, with thrust losses up to 25% of the nominal thrust. These
correspond to events where the propeller is drawing air through a free-surface vor-
tex. Details about the mechanism behind this type of ventilation will be given in
§ 4.5.2, whereas only global characteristics will be covered in this section.
The thrust ratio averaged for each blade angular position is plotted in Figure 4.14,
where the higher thrust loss occurring at J = 0.075 can be observed.
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Figure 4.14: Thrust ratio averaged for each blade angular position [h/R = 2.04,
n = 16 Hz].

h/R = 1.96

The results for this submergence are similar to h/R = 2.04, presenting rare ven-
tilation events occurring only at higher propeller loadings. This leads to higher
thrust losses only at n=16 Hz, as shown in Figure 4.15, where the thrust ratio av-
eraged for each blade angular position has been plotted.
The corresponding envelope of the thrust ratio is shown in Figure 4.16, where
more frequent ventilation events can be observed, with respect to the the case at
h/R = 2.04.
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h/R = 1.88

At this submergence ventilation occurs also at n=14 Hz.
Figure 4.17 shows the thrust ratio averaged for each blade angular position. As
expected, lower advance ratios lead to higher thrust loss, but this applies only
when the propeller loadings are the same. Figure 4.17 shows similar results be-
tween curves with the same propeller loading and different advance ratio. This
is the case for J=0.1 and J=0.086 at n=14 Hz, and for J=0.1 and J=0.088 at
n=16 Hz. n=16 Hz has smaller deviation between maximum and minimum val-
ues with respect to n=14 Hz, indicating that for this latter case at lower propeller
loading—n=14 Hz—ventilation occurs only around the top most position, whereas
for higher propeller loading—n=16 Hz—ventilation is more uniform during the
entire rotation.
These considerations become more evident looking at the corresponding envelopes
of the thrust coefficients plotted in Figure 4.18. The most severe case—J=0.088
and n=16 Hz—shows thrust losses up to 40% of the nominal thrust over the entire
revolution.
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Figure 4.17: Thrust ratio averaged for each blade angular position [h/R = 1.88; -
-◦- - n = 16, — n = 14 Hz].
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(a) J = 0.086, n = 14 Hz. (b) J = 0.087, n = 16 Hz.

(c) J = 0.1, n = 14 Hz. (d) J = 0.1, n = 16 Hz.

Figure 4.18: Thrust ratio during each revolution [h/R = 1.88].

h/R = 1.8

At this submergence ventilation occurs for all the tested shaft frequencies, in the
form of rare events started from a free-surface vortex. Figure 4.19 shows the thrust
ratio averaged for each blade angular position.
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Figure 4.19: Thrust ratio averaged for each blade angular position [h/R = 1.80; -
-◦- - n = 16, — n = 14, · · · � · · · n = 12 Hz].

Lower propeller loadings—n=12 and n=14 Hz—show good similarity in the
advance ratio; this can be argued comparing the two curves at J=0.1 and the curve-
pair J=0.114-and-J=0.117. J=0.1 at n=16 Hz is not aligned with the other J=0.1-
curves, but presents analogies with the other experiments at the same propeller
loading, J=0.086 and J=0.075.
Thrust losses generally increase with the propeller loading. The only exception is
for J = 0.114 and Δp/p0 = 2.4%, whose results are aligned with the case with
similar advance ratio J = 0.117 but lower loading Δp/p0 = 1.7%.

The effect of the propeller loading can be better understood looking at Fig-
ure 4.20, showing the envelope of thrust ratio for the three experiments having
J=0.1, but different loadings. The averaged thrust ratio is not able to give a com-
plete picture of the occurrence of ventilation. The results for the two cases at
n=12 and 14 Hz with J=0.1 are almost overlapping in Figure 4.19, but the case at
n=14 Hz shows in Figure 4.20b a more severe and frequent ventilation compared
to n=12 Hz (Figure 4.20c).
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92 Model tests

(a) n = 16 Hz. (b) n = 14 Hz.

(c) n = 12 Hz.

Figure 4.20: Thrust ratio during each revolution [h/R = 1.8, J=0.1].

Figure 4.21 compares case-pairs with the same advance ratios but different
propeller loadings.
At higher advance ratios (Figure 4.21c and Figure 4.21d) different propeller load-
ings show the same tendency, where higher loading gives more ventilation, but less
pronounced than at lower J (see also average curves in Figure 4.19).
At lower advance ratios (Figure 4.21a and Figure 4.21b), ventilation at n=16 Hz is
more severe than at n=14 Hz.
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(a) J = 0.086, n = 14 Hz. (b) J = 0.087, n = 16 Hz.

(c) J = 0.117, n = 12 Hz. (d) J = 0.114, n = 14 Hz.

Figure 4.21: Thrust ratio during each revolution [h/R = 1.8].

h/R = 1.72

Figure 4.22 shows the thrust ratio averaged for each blade angular position at a sub-
mergence of 1.72. Ventilation started from a free-surface vortex leads to moderate
thrust losses, distributed over the whole rotation. Both the effect of the propeller
loading and of the advance ratio can be observed, as described in the previous
paragraph, for a submergence of 1.8.
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Figure 4.22: Thrust ratio averaged for each blade angular position [h/R = 1.72; -
-◦- - n = 16, — n = 14, · · ·� · · · n = 12 Hz].

This case was also tested during two other test campaigns, Kou05 and Koz10,
and the obtained average curves are compared in Figure 4.23a. The three curves
show a very similar trend, and the main difference is found in the magnitude of
the thrust losses. These differences are emphasized in the thrust ratio during each
revolution for the three test campaigns (Figure 4.23). Ventilation events in Kou05
are barely visible, Koz10 presents a broad and uniform ventilation, whereas Cal09
shows a broad ventilation with more severe thrust losses up to 60% of the nominal
thrust.

The reason for these differences can be found in the inherent nature of the ven-
tilation phenomenon by vortex formation, which was described in Chapter 2 as
intrinsically random and very sensible to small flow disturbances.
On the other hand, differences in the set-up between the three test campaigns might
also play a role. Kou05 and Cal09 are using the same water channel but a slightly
different thruster body (a bit bigger in the case of Kou05). Tests Koz10 are per-
formed in a towing tank having dimensions (length × breadth × depth) of 260 m
× 10.5 m × 5.6 m, thus bigger for all dimensions than the one used for the other
two test campaigns. The thruster body is the same as Cal09. It is worth mentioning
that during the tests Koz10 an oil-spill from the hydraulically operated wave maker
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had occurred. Although the leakage was promptly cleaned, a very thin layer of oil
could have persisted on the free-surface even after its removal, with the effect of
changing the surface tension, a parameter which might play an important role in
the vortex formation and its further development.
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Figure 4.23: Thrust ratio during each revolution for different test campaigns
[h/R = 1.72; J = 0.1, Δp/p0 = 2.4%].

Differences in the test procedure might also play a role. While experiments
Cal09 and Koz10 were performed according to the procedure described in § 4.2.1,
waiting (at least 5 min) for the water to be calm before performing a new test,
a shorter time was waited between different tests during the experiments Kou05,
sometimes performing several test cases during the same run. Residual circulation
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in the water might have thus reduced the pressure jump and increased the real ad-
vance ratio, avoiding the formation of free-surface vortices.
As a last remark, different blade dynamo-meters were used in all three experi-
ments.

h/R = 1.64

The average curves computed at a submergence of 1.64 seem to be grouped by the
propeller loading, while the advance ratio plays a minor role (Figure 4.24).
This submergence represents an intermediate phase where both ventilation by vor-
tex formation and surface-piercing coexist. The free-surface vortex responsible
for the inception of ventilation becomes stronger while the propeller is approach-
ing the free-surface. At higher propeller loadings the propeller becomes partially
surface piercing, experiencing severe and uniform thrust losses.
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Figure 4.24: Thrust ratio averaged for each blade angular position [h/R = 1.64; -
-◦- - n = 16, — n = 14, · · ·� · · · n = 12 Hz].

The envelopes of the thrust coefficient for the most severe case (Figure 4.25)
show the broad range of thrust achieved, which decreases to 30% of its nominal
value.
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Figure 4.25: Thrust ratio during each revolution [h/R=1.64, J=0.075].

h/R = 1.56

At this submergence the first event of ventilation characterized only by surface-
piercing propeller occurs. The change of pattern can be observed comparing the
present submergence (Figure 4.27), where the thrust range is between 30% and
70%, with the corresponding envelope for h/R=1.64 (Figure 4.25), where the
whole range between 30% and 100% is embraced.
The reduced spreading in the present case shows that ventilation is no longer fed by
a randomly-appearing free-surface vortex, but by the air sucked by the blade itself
piercing the free-surface at each revolution, leading to higher and more uniform
thrust losses.

Figure 4.26 shows the thrust ratio averaged for each blade angular position.
The average curves at higher propeller loadings have moved farther from the oth-
ers, indicating the different ventilation mechanisms occurring in this case.
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Figure 4.26: Thrust ratio for each blade angular position [h/R = 1.56; - -◦- -
n = 16, — n = 14, · · · � · · · n = 12 Hz].

Figure 4.27: Thrust ratio during each revolution [h/R=1.56, J=0.075].
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h/R = 1.48

Figure 4.28 shows the thrust ratio averaged for each blade angular position. The
average curves at n=14 Hz are approaching the higher propeller loadings, indicat-
ing that the surface-piercing ventilation is occuring also in this case.
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h/R = 1.4

Figure 4.29 shows the thrust ratio averaged for each blade angular position. At
this submergence average curves are still grouped by the propeller loading, but the
distance between the three groups has decreased. Surface-piercing ventilation is
the dominating mechanism for all the cases.
As for h/R=1.72, this submergence was also tested in two other test cam-

paigns, Kou05 and Koz10, and the comparison of the average curves is shown in
Figure 4.30a. The three curves show a very similar trend, and the main difference
is found in the magnitude of the thrust losses, smaller for Koz10. The curves for
Kou05 and Cal09 are almost overlapping.
The complete envelopes of the thrust coefficient depicted in Figure 4.30 show a

good agreement between the three test campaigns, indicating that the same surface-
piercing ventilation occurs. As described in Chapter 2, this type of ventilation is
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100 Model tests

rather stable and depends strongly on the propeller characteristics. Therefore, the
differences in set-up between the three test campaigns are not deemed to affect sig-
nificantly the ongoing ventilation. The difference in magnitude could be ascribed
to the different blade dynamometer and calibration used. The residual presence of
oil on the free-surface could also be the cause of the increased thrust for Koz10,
changing the local surface tension.
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(c) Kou05 (d) Koz10

Figure 4.30: Thrust ratio for different test campaigns [h/R = 1.4; J = 0.1,
Δp/p0 = 2.4%].

h/R = 1.32

Figure 4.31 shows the thrust ratio averaged for each blade angular position. A
further reduction of the propeller submergence leads to increased thrust losses for
all the tested configurations.
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h/R = 1.24 and h/R = 1

Figure 4.32a shows the thrust ratio averaged for each blade angular position, where
the thrust has further decreased (h/R = 1.24). Curves with the same propeller
loading are perfectly overlapping. This is the result of a reduced deviation during
different revolutions, since the surface-piercing ventilation mechanism is now the
only source of thrust-loss.

A further decrease of thrust occurs when the propeller tip is first touching the
free-surface at rest (h/R = 1), as shown for the thrust ratio averaged for each
blade angular position in Figure 4.32b.
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h/R = 0.24 Koz10

At this submergence the propeller is surface-piercing already at rest, only the hub
remains fully submerged. Figure 4.33 shows the envelop of the thrust ratio dur-
ing each revolution, obtained during the test campaign Koz10. While piercing the
free-surface, around 0 deg, the blade is completely out of water and is thus giving
zero thrust, while at 180 deg the maximum thrust does not reach 50% of its nomi-
nal value. The lower propeller loading at n=12 Hz shows an interesting difference
around 180 deg with respect to the higher propeller loading n=14 Hz. After an
initial slight decrease before the mid-low position, the thrust is increasing again,
before decreasing to zero towards the mid-top position. This difference could be
ascribed to the fact that the air-bucket created around the mid-top position is span-
ning at lower velocity (n=12 Hz) a smaller sector with respect to n=14 Hz.

(a) n = 14 Hz; Δp/p0 = 2.4%

(b) n = 12 Hz; Δp/p0 = 1.8%

Figure 4.33: Thrust ratio during each revolution [h/R = 0.24; J = 0.1; Koz10].
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h/R = 0 Kou05

The case where the propeller axis is on the free-surface presents characteristics
similar to the previous one. The thrust envelopes obtained during the test cam-
paign Kou05 show a rather broad range of the thrust amplitude (Figure 4.34).
The plotted curves show a pattern more regular than the results previously pre-
sented. This regular pattern is the result of low-pass filtering of the raw data with a
cutoff frequency below the blade frequency. This treatment was necessary to cor-
rect for a measurement error during the test campaign Kou05 (Califano, 2008a).

Figure 4.34: Thrust ratio during each revolution [h/R = 0; J = 0.1; Δp/p0 =
2.4%; n = 14 Hz; Kou05].

4.4.1 Effect of submergence

The presented results have been summarized in Figure 4.35, where the mean thust
ratio has been plotted as a function of the submergence ratio, having the advance
ratio and propeller loading as parameters.

h/R > 2: at deep submergence all curves are overlapped and thrust losses
occur only due to the proximity of the free surface.

h/R < 1.5: at low submergence curves are grouped solely by the propeller
loading. The chosen range for the advance ratio is very small (around 0.1, between
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0.075 and 0.133), and its influence on the thrust losses can not be observed1. In
this region, tip vortex is the dominating ventilation mechanism, leading to very
high thrust losses. Further reducing the submergence (h/R < 1), thrust would
continue to fall following the reduction of the submerged disc area.

1.5 < h/R < 2: At intermediate submergence curves are still grouped by
the propeller loading, but the spreading is larger, due to the inherently unstable
and random nature of the free-surface vortex affecting ventilation in this range of
submergences.
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Figure 4.35: Mean thrust ratio as a function of the submergence ratio, having the
advance ratio and propeller loading as parameters.

The average thrust ratio as a function of the blade angular position for the case
at J = 0.1 and n = 14 Hz is shown in Figure 4.36, having the submergence
ratio as parameter. The complete envelopes of the averaged curves can be found
in Appendix A.3. The intermediate regime at h/R = 1.56 has been identified in
this case as the overlapping region where both types of ventilation coexist, one
dominated by free-surface vortex, and the other by the tip vortex. In this latter
case blades become surface-piercing after deformation of the free surface. From
this intermediate stage, further reducing the submergence leads to an abrupt thrust
loss, where ventilation is fed only through the tip vortex.

1Differences would have been noticed for higher advance ratios (up to design conditions), where
ventilation has less tendency to occur.
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Figure 4.36: Thrust ratio as a function of the blade angular position, having the
submergence ratio as parameter [J = 0.1, n = 14 Hz].

4.5 Ventilation inception

4.5.1 Surface-piercing

Figure 4.37 shows the ventilation inception in terms of the thrust ratio of Blade1

and of the whole thruster for the case with h/R = 1.4, J = 0.133, ṅ = 208.7
rad/s2. The angular position of Blade1 and the angular velocity are plotted in
the same figure. t = 0 corresponds to the time where the shaft frequency n has
reached its desired value n0.
The blade thrust ratio averaged among the four bladesKT−Blade is the thrust force
measured for the whole thruster—thus including hub, pod and strut—normalized
using the corresponding non-ventilating value. This approximation is valid assum-
ing that the contribution of the hub, the strut and the pod is negligible with respect
to the forces exerted by the propeller during ventilation.
The average thrust increases in a quasi-linear manner with time following the lin-
ear increase of the propeller angular velocity n. This increasing trend is interrupted
around -0.14 s where the propeller hits the free-surface for the first time, as shown
in Figure 4.38a, where a breaking wave is visible downstream Blade3.
For this configuration, ventilation is started after the deformation of the free sur-
face due to the induced velocity field imposed by the propeller, and the subsequent
sucking of air through the low-pressure region of the trailing vortex. The drop of
the free surface at the propeller tip with respect to the undisturbed level (visible on
the strut) can also be observed (Figure 4.38a).
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Figure 4.37: Time evolution of the thrust ratio of Blade1 (− − −) and the whole
propeller Blade (—) [h/R = 1.4, J = 0.133, Δp/p0 = 1.7%, ṅ = 208.7 rad/s2].

The increase of thrust of Blade1 is interrupted around -0.1 s, when the blade
hits for the first time the free surface, as shown in Figure 4.38b, where the vortex
system around the tip of the Blade1 and Blade2 is also visualized by air suc-
tion. During its rotation, Blade1 continues losing its thrust reaching a minimum
value around -0.08 s, few degrees after the top vertical position, represented in
Figure 4.38c. Starting from this time instant, the thrust of the propeller oscillates
around a value which is about half of the non-ventilated one.

(a) First impact of the propeller on
the free-surface, t = -0.1388 s.

(b) First impact of Blade1 on the
free-surface, t = -0.0972 s.

(c) Minimum blade thrust, t = -
0.0805 s.

Figure 4.38: Impact of the propeller on the free-surface [h/R = 1.4, J = 0.133,
Δp/p0 = 1.7%, ṅ = 208.7 rad/s2].
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the free-surface, t = -0.1388 s.

(b) First impact of Blade1 on the
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(c) Minimum blade thrust, t = -
0.0805 s.

Figure 4.38: Impact of the propeller on the free-surface [h/R = 1.4, J = 0.133,
Δp/p0 = 1.7%, ṅ = 208.7 rad/s2].
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The increase of thrust of Blade1 is interrupted around -0.1 s, when the blade
hits for the first time the free surface, as shown in Figure 4.38b, where the vortex
system around the tip of the Blade1 and Blade2 is also visualized by air suc-
tion. During its rotation, Blade1 continues losing its thrust reaching a minimum
value around -0.08 s, few degrees after the top vertical position, represented in
Figure 4.38c. Starting from this time instant, the thrust of the propeller oscillates
around a value which is about half of the non-ventilated one.
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Δp/p0 = 1.7%, ṅ = 208.7 rad/s2].



108 Model tests

Figure 4.39 compares the propeller thrust for h/R = 1.4 with the infinite
fluid case (h/R = 2.97). After ventilation occurs around t = −0.1 s, thrust for
h/R = 1.4 stops abruptly around 50% of its nominal value, while for h/R = 2.97
it keeps increasing towards its non-ventilating value, which is reached when the
shaft frequency reaches its nominal value n0.
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Figure 4.39: Comparison of the thrust ratio of the whole propeller between h/R =
1.4 and h/R = 2.97 [J = 0.133, Δp/p0 = 1.7%, ṅ = 208.7 rad/s2].

The interaction of the tip vortex with the free surface during the first time in-
stants is visualized in Figure 4.40. The tip vortex generated from Blade2 becomes
visible on the port side when it crosses the free surface for the first time, around
-0.115 s, as shown in Figure 4.40a. This vortex system becomes visible also star-
board after Blade2 has entrapped more air above the free-surface and transported
it in the direction of rotation. This is shown in Figure 4.40b, where the propagation
of the tip vortex both port and starboard can be observed.
Figure 4.40c shows the extension of the vortex system all around the propeller, as
a continuous vortex tube interrupted only by the free surface. This point represents
also a local minimum for the thrust of the thruster. Each blade crossing the free
surface entraps more air which is transported around the propeller. In Figure 4.40d
Blade1 has reached on the port side the air sucked through the tip vortex trailing
from Blade2, leading to a local minimum for its thrust (Figure 4.37).
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(a) Tip vortex of Blade2, t = -0.1138 s. (b) Tip vortex: port and starboard, t = -0.1055 s.

(c) Tip vortex system all around the propeller, t =
-0.0305 s.

(d) Local minimum thrust for Blade1 that reaches
the tip-vortex trailing from Blade2, t = -0.0221 s.

Figure 4.40: Visualization of the tip vortices [h/R = 1.4, J = 0.133, Δp/p0 =
1.7%, ṅ = 208.7 rad/s2].

Part of the air vortex generated starboard is leaving the propeller before com-
pleting half revolution, transported downstream by the induced axial velocity and
the free stream and upward by its buoyancy. The air vortex generated on the port
side is propagating in direction opposite to the rotation; a small part of it joins
the other tip vortex around 3π/2 rad, but most part of the air is transported down-
stream.
When fully ventilating, air is rapidly mixed with water and the resulting mixture is
covering the entire propeller, blurring the visualizations of the air-water interface
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110 Model tests

(Figure 4.41a). However, a vortex ring around the propeller tip can still be ob-
served. This vortex is able to stay attached to the propeller tip—rather than being
completely convected downstream—because of the resulting velocity field on the
tip of a propeller working at high loadings, characterized by strong recirculation,
resulting in an almost zero induced axial velocity (Greenberg, 1972).
A sketch of this type of ventilation is drawn in Figure 4.41b.

(a) h/R = 1.4, J = 0.133, Δp/p0 = 1.7%. (b) Sketch of surface-piercing ventilation.

Figure 4.41: Fully ventilating propeller in surface-piercing regime.

4.5.1.1 Effect of acceleration

Besides the tests performed at the nominal shaft frequencies, additional tests were
performed changing the slope of the linear ramp used to reach the desired value.
This was done in order to verify the effect of the acceleration on the loads due
to ventilation obtained at the inception, and were thus performed only on a case
of surface-piercing ventilation, with h/R = 1.4. Being the default acceleration
ṅ∗ = 208.7 rad/s2, tests were performed using ṅ/ṅ∗ = 1/2, 1/4, 1/8. The complete
test specifications are given in Appendix A.2.

Figure 4.42 compares the thrust ratio at J = 0.1 for different accelerations and
final velocities, while the results obtained at the lower (Figure 4.43a) and higher
(Figure 4.43b) advance ratios are also shown.
Results are presented as function of time divided by the time tramp needed to reach
the desired rotation rate n0. In this manner loads on the same x-axis have the same
shaft frequency, but different absolute time.
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(a) n = 12 Hz.
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(b) n = 14 Hz.
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(c) n = 16 Hz.

Figure 4.42: Thrust ratio as function of time divided by the time tramp needed to
reach constant rotation rate n0 [h/R = 1.4; J = 0.1].
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Figure 4.42: Thrust ratio as function of time divided by the time tramp needed to
reach constant rotation rate n0 [h/R = 1.4; J = 0.1].
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(c) n = 16 Hz.

Figure 4.42: Thrust ratio as function of time divided by the time tramp needed to
reach constant rotation rate n0 [h/R = 1.4; J = 0.1].
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Figure 4.42: Thrust ratio as function of time divided by the time tramp needed to
reach constant rotation rate n0 [h/R = 1.4; J = 0.1].
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The results obtained at ṅ = ṅ∗ show thrust losses higher than all the other
accelerations right after the desired shaft frequency has been reached. After this
initial phase, the thrust rapidly increases following the other curves. This differ-
ence could be ascribed to the higher loads achieved at higher accelerations. Higher
thrust losses are achieved only at the most severe case performed, indicating that a
value of the acceleration exists below which its effect is negligible.
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As described in Chapter 2, ventilation by vortex formation is a phenomenon intrin-
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4.5. Ventilation inception 113

• For very deep water depths, the z+ vortex tends to be located on the port
side, while the z− vortex starboard.

• At intermediate submergences the formation of the z− vortex is no longer
observed, while the z+ vortex moves towards the mid y-plane and becomes
stronger.

• As a general trend, the z+ vortex occurs more often, with stronger intensity,
longer duration and higher air content.

(a) Formation of the z+ vortex on the port side, t =
4.8137 s.
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(b) Formation of the z− vortex on the starboard side, t =
5.0971 s.

Figure 4.44: Free-surface vortex formation [h/R = 2.04, J = 0.075, Δp/p0 =
3.2%].
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114 Model tests

The formation of the z+ vortex on the port side can be observed in Figure 4.44a,
while its further growth and the formation of a counter-rotating z− vortex starboard
is depicted in Figure 4.44b. They form together a vortex-pair, with an axial velocity
between them in the direction of the propeller motion (opposite to the free-stream
velocity). This is in agreement with the results obtained by Brix et al. (2000) for
the formation of a ground vortex-pair at low velocity ratio Ui/U∞ (axial velocity
at the propeller plane divided by free-stream velocity).

Instantaneous pictures of the impact of the free-surface vortex on the propeller
blades are depicted in Figure 4.45, for the z+ vortex (Figure 4.45a), the z− vortex
(Figure 4.45b) and the contemporary action of both (Figure 4.45c). The vortex
system shown in the last picture resembles a horse-shoe type vortex, similar to the
instantaneous flow field obtained by Secareanu et al. (2005) simulating the ground
vortex of an air-intake using LES.

(a) Impact of the z+ vortex on the
blade, t = 5.497 s.

(b) Impact of the z− vortex on the
blade, t = 10.307 s.

(c) Impact of both vortices on the
blade, t = 10.649 s.

Figure 4.45: Impact of the free-surface vortex [h/R = 2.04, J = 0.075, Δp/p0 =
3.2%].

The time evolution of the thrust ratio is shown in Figure 4.46, for the blade
and the entire thruster. At a submergence greater than the propeller diameter—
thus with a propeller-tip clearance greater than the propeller radius—, during a 10
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4.5. Ventilation inception 115

s period the propeller is experiencing several ventilation events where the thrust
drops down to 70% of its nominal value (Figure 4.46a).
The thrust loss occurring around 10.65 s is enlarged in Figure 4.46b, where the
time instant corresponding to Figure 4.45c (impact of a horse-shoe vortex) is also
displayed. The blade thrust oscillates with the shaft frequency, being subject to
thrust losses at each passage around 0 deg. It is interesting to notice that the thrust
of the propeller oscillates for a limited time period with the same shaft frequency.
Following oscillations are as expected at the blade frequency, where the effect of
the free-surface vortex is felt by the propeller at the passage of each blade.
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Figure 4.46: Time evolution of the thrust ratio of Blade1 and the whole propeller
[h/R = 2.04, J = 0.075, Δp/p0 = 3.2%].
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116 Model tests

It was explained in Chapter 2 that ground (and analogous free-surface) vor-
tices are created from the amplification of the local ambient vorticity due to vortex
stretching. The preponderance of the z+ vortex could be ascribed to the higher
+z-vorticity content on the free surface. This could be generated by the presence
of the tip vortices, whose intensity is maximum at the blade and is then dissipated
while traveling downstream. The blade passing starboard would then create on the
free surface stronger +z-vorticity with respect to the−z-vorticity generated by the
blade passing the port side.

4.6 Summary

The presented results have shown that ventilation depends on the propeller submer-
gence, loading and advance ratio. The combination of these parameters determines
the nature of the ventilation mechanism, (i) at deeper submergences through a free-
surface vortex and (ii) at moderate submergences through the blade itself piercing
the free-surface.
Using the thrust envelopes, three different ventilation regimes could be identified,
depending on the influence of the above mentioned mechanisms.

• Free-surface vortex
characterized by severe and discontinous thrust losses occurring when the
vortex reaches the blade wall; the amplitude during a ventilation event can
deviate significantly from the mean value, which is slightly lower than the
nominal one.

• Surface-piercing
characterized by uniform thrust losses during the complete revolution; the
thrust encompasses a narrow amplitude range around the mean value, which
is in turn significantly lower than the nominal one.

• Intermediate
where both mechanisms (i) and (ii) act alternately during the same test case;
the thrust encompasses a broad and uniform amplitude range and the mean
value is somewhere in between those found in the previous two regimes.
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Chapter 5

Numerical simulations

5.1 Numerical method

5.1.1 Solver

The commercial RANS code Fluent has been used to solve the viscous, incom-
pressible, two-phase (air and water) flow. This solver is one of the most used in
CFD for a wide variety of applications, for which validation cases are documented
(Fluent, 2006).
The choice of this solver is also given by the fact that is used within the Rolls-
Royce (RR) University Technology Centre (UTC), to which the present research
is connected. Within this framework, the present work aims at testing the ca-
pabilities of the solver to resolve the complex flow features around a ventilating
propeller.

5.1.2 Grid

The grid is fully unstructured in the rotating domain, with a superimposed pris-
matic layer close to the walls, in order to better capture the boundary layer (Rhee
and Joshi, 2006). Prisms are extruded upstream and downstream the rotating do-
main, whereas the remaining cells are fully structured. A total of about 2.35 mil-
lion cells was used, most of them located around the propeller and across the inter-
face between the two phases. A typical size for the cell at the free surface is 5 mm,
2% of the propeller diameter (Figure5.1b). An ensemble view of the grid used on
the domain’s boundaries is shown in Figure 5.1a.
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is connected. Within this framework, the present work aims at testing the ca-
pabilities of the solver to resolve the complex flow features around a ventilating
propeller.

5.1.2 Grid

The grid is fully unstructured in the rotating domain, with a superimposed pris-
matic layer close to the walls, in order to better capture the boundary layer (Rhee
and Joshi, 2006). Prisms are extruded upstream and downstream the rotating do-
main, whereas the remaining cells are fully structured. A total of about 2.35 mil-
lion cells was used, most of them located around the propeller and across the inter-
face between the two phases. A typical size for the cell at the free surface is 5 mm,
2% of the propeller diameter (Figure5.1b). An ensemble view of the grid used on
the domain’s boundaries is shown in Figure 5.1a.
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(a) Ensemble view (b) Close up around the free surface

Figure 5.1: Numerical domain.

A closer view of the mesh topology on the blade can be seen in the previously
shown Figure 3.14b.

5.1.3 Boundary conditions

The undisturbed free-surface elevation is assigned both at the inlet and outlet
boundaries. At the inlet the free-stream velocity is also specified. A zero flux of all
quantities is enforced across the top and bottom boundaries. A no-slip condition is
set on the walls.

5.1.4 Turbulence

While a SST k − ω model (Menter, 1994) was used in open water conditions, tur-
bulence was removed when simulating the free-surface flow. Performing a laminar
computation helped reducing the computational time, and such an approximation
is deemed as of minor importance for the present study, where pressure drop is
the dominating mechanism leading to ventilation. However, the effect of turbu-
lence can be important after ventilation inception, in the formation/destruction of
air bubbles, and in the adhesion of the entrained air to the walls. A simulation in-
cluding turbulence was thus performed in order to analyze its effect, that will later
be presented among the other results.
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5.1.5 Solution of the Navier-Stokes equations

If the density of a fluid element does not change in time as it moves through space
the flow is said to be incompressible. As a consequence, there is no equation of
state for pressure, which must be consistent with a velocity field satisfying the
zero-divergence condition (continuity equation).

∇ · −→U = 0 (5.1)

The momentum equation in the Navier-Stokes (N-S) equations can be expressed
in the form:

∂
−→
U

∂t
+

(−→
U · ∇

)−→
U = −1

ρ
∇p + ν∇2−→U (5.2)

The momentum equation is solved with a second order upwind scheme. The
Body Force Weighted (BFW) discretization algorithm is used to interpolate the
node values of the pressure from the cell values, as required by the solver. The
pressure-velocity coupling is achieved using a Semi-Implicit Method for Pressure-
Linked Equations (SIMPLE) algorithm. A first order implicit scheme is used to
follow the time evolution.
The free surface evolution is handled using an implicit formulation of the Vol-
ume Of Fluid (VOF) method with a modified High Resolution Interface Capturing
(HRIC) scheme. Surface tension is neglected, but its effect will be verified later in
this section.
Further details about the solver can be found in the Fluent manual (Fluent, 2006).

5.1.5.1 Pressure-velocity coupling

The pressure-velocity coupling in the discretized form of the N-S equations is
solved with a SIMPLE scheme. A complete derivation of the method can be found
inMcDonough (2007), whereas only the aspects relevant to the present dissertation
will be described here.
The basic assumption employed in constructing the SIMPLE algorithm is that

at any given time step the generic flow variable φ can be expressed as φ = φ∗+φ′,
where ” ∗ ” denotes an initial estimate, and ” ′ ” represents a correction. Formally,
all parts of these decompositions are functions of both space and time. Substituting
the decomposed variables into the N-S equations and after some manipulation, a
solution for the momentum equations can be found using pressure at the current
time level k. However, this solution will not lead to mass conservation at time
level k + 1, and a Pressure Poisson Equation (PPE) for the correction pressure is
developed in order to obtain a divergence-free velocity field.

Δp′ =
∇ · −→U∗

Δt
(5.3)
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Once p′ has been calculated the pressure and velocity components can be updated.

pk+1 = pk + p′ (5.4a)

uk+1
� = u∗

� −
∂p′

∂x�
Δt ≡ u∗

� + u′
� ( = 1, 2, 3) (5.4b)

The analysis carried out with the continuous equations does not translate into the
discrete numerical algorithm SIMPLE in a completely direct way. Carrying out
the derivation in terms of discrete equations can produce results that are rather
different from those obtained by merely discretizing the continuous Partial Differ-
ential Equations (PDEs). The discrete momentum equations are consistent with
the continuous N-S equations up to possible errors in the pressure correction term,
which is not necessarily the true physical pressure. A divergence-free velocity
field is usually achieved only when steady-state is reached. Assuming the solution
to be steady-state within the same time-step, a large number of iterations would
in practice lead to the physical solution. Among other difficulties, the pressure
corrections at each iteration do not satisfy the boundary conditions for physical
pressure.
These characteristics make the SIMPLE scheme different from typical projection
methods (Bell et al., 1989; Gresho, 1990), where at each time-step the divergence-
free condition is satisfied by the only iteration performed to solve the PPE.

The updates needed to proceed from one iteration to the next during a (pseudo)
time step can be rewritten in 2D in the discrete form:

pk+1
i,j = pk

i,j + αpp
′
i,j (5.5a)

uk+1
i,j = u∗

i,j + αu
Δt

Au
i,jΔx

(p′i,j − p′i+1,j) (5.5b)

vk+1
i,j = v∗i,j + αv

Δt

Av
i,jΔx

(p′i,j − p′i,j+1) (5.5c)

where Au�

i,j are nontrivial additional factors due to the discretization process,
contributing to the numerical performance of SIMPLE being rather different from
that of typical projection methods. In 2D, for the u and v velocities , Au

i,j and Av
i,j

can be expressed as:

Au
i,j = 1 + 4

νΔt

Δx
+

Δt

2Δx

(
ũk

i,j − ũk
i−1,j + ṽk

i,j+1 − ṽk
i,j

)
(5.6a)

Av
i,j = 1 + 4

νΔt

Δx
+

Δt

2Δx

(
ūk

i,j − ūk
i−1,j + v̄k

i,j+1 − v̄k
i,j

)
(5.6b)

where ”¯” and ”˜” correspond to horizontal (along index i) and vertical (along
index j) averages.
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ũk

i,j − ũk
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The coefficients αs are Under-Relaxation Factors (URF) with values in the range
0 < α ≤ 1. There is no theoretical underpinning to suggest specific values to be
assigned, but values between 0.5 and 0.8 usually work and are thus widely used.
Smaller values are sometimes needed in order to achieve a stable solution.
An optimum relation between the URFs for velocity and pressures was derived

by Raithby (1979) and Ferziger and Perić (2002), based on the assumption that a
steady solution is found iterating for an infinite time step.

αp = 1 − αu�
( = 1, 2, 3) (5.7)

The presence of the URFs shows that a single iteration can not produce a divergence-
free velocity field, because they do not appear in the discrete Laplacian being
solved for p′, unless αu�

are equal to unity, But this does not usually lead to con-
vergence of the overall SIMPLE algorithm, so it is necessary to reduce the values
of the URFs.
Barron and Neyshabouri (2003) have investigated the effects of changing under-

relaxation factors for different variables, convective schemes and grid sizes on tur-
bulent flow simulations. Their work concludes with the definition of a safe range
of URFs—such to obtain a non-divergent solution—and a recommended range for
fast convergence.
There is another aspect associated with the form of convergence test employed,

which reflects the pseudo-time nature of the algorithm. During each pseudo-time
step it is not effective to perform iterations until divergence is reduced to a small
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by Raithby (1979) and Ferziger and Perić (2002), based on the assumption that a
steady solution is found iterating for an infinite time step.

αp = 1 − αu�
( = 1, 2, 3) (5.7)

The presence of the URFs shows that a single iteration can not produce a divergence-
free velocity field, because they do not appear in the discrete Laplacian being
solved for p′, unless αu�

are equal to unity, But this does not usually lead to con-
vergence of the overall SIMPLE algorithm, so it is necessary to reduce the values
of the URFs.
Barron and Neyshabouri (2003) have investigated the effects of changing under-

relaxation factors for different variables, convective schemes and grid sizes on tur-
bulent flow simulations. Their work concludes with the definition of a safe range
of URFs—such to obtain a non-divergent solution—and a recommended range for
fast convergence.
There is another aspect associated with the form of convergence test employed,

which reflects the pseudo-time nature of the algorithm. During each pseudo-time
step it is not effective to perform iterations until divergence is reduced to a small
absolute value. Rather, a relative convergence criterion is used within individual
pseudo-time steps, along with a smaller overall tolerance. But even this smaller
tolerance is in practice often fairly large—say, O(10−3) or larger.
The Pressure-Implicit with Splitting of Operators (PISO) pressure-velocity

coupling scheme is based on the SIMPLE algorithm, but performs two additional
corrections to improve the efficiency of this calculation: neighbor correction and
skewness correction. As a common practice, SIMPLE is used for steady-state cal-
culations, while PISO for transient problems.
Barton (1998) has compared SIMPLE- and PISO-type algorithms for transient
flows. Overall the PISO scheme was found to predict accurate results and was
robust. However, for small time step values, alternative schemes based on SIM-
PLE can predict accurate results for approximately half the computational cost.

5.2 Fully-ventilating propeller

The experimental results presented in Chapter 4 have shown a large deviation
among different revolutions within the same test case, even for a fully-ventilating



122 Numerical simulations

propeller. Although the ventilation phenomenon is strongly unstable and time-
dependent, some recurring characteristics could be observed.

Numerical simulations were thus attempted with the aim to investigate these
characteristics, aiming at explaining qualitatively the dynamic loads occurring dur-
ing ventilation.

5.2.1 Multiple Reference Frame

The free-surface deformation obtained using the Multiple Reference Frame (MRF)
model is shown in Figure 5.2, where the blade walls are colored with air-volume
fraction. The MRF model converges to a steady solution. Although the phe-
nomenon is inherently unsteady, the main features observed during the experi-
ments are captured by this model; air is sucked down from the free-surface and
transported through the propeller rotation for more than a half revolution.

Figure 5.2: Free-surface deformation, blades colored with air-volume-fraction
[h/R = 1.4; MRF model].

The air-volume-fraction contours on the propeller surfaces are shown in Fig-
ures 5.3 (a) and (b), for the suction and pressure side, respectively. Air is sucked
from the free surface, covering with air the suction side of the blade tip at π/4. Due
to the low axial velocities existing on the tip at this high propeller loading, air is
unable to escape downstream and is transported from the propeller along its rota-
tion. Residuals of air are visible on the following blades, at 3/4 π and 5/4 π, both
on the suction and pressure side. The last blade at 7/4 π seems not to be invested
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by the entrained air, differently from what it was observed during the experiments,
where air was present all around the propeller disc.
The corresponding contours of the pressure coefficient, computed as p−p∞

0.5ρ(nD)2
, are

shown in Figure 5.4. The pressure on the suction side is higher—with respect to
open water conditions—during the first half revolution, due to the presence of air.
Differences in pressure between blades at different angular positions are barely
visible on the pressure side.

(a) Suction side (b) Pressure side

Figure 5.3: Air-volume-fraction contours during ventilation [h/R = 1.4; MRF].

(a) Suction side (b) Pressure side

Figure 5.4: Pressure coefficients contours during ventilation [h/R = 1.4; MRF].

The resulting thrust coefficient N ·KT is written in Table 5.1, where the losses
due to ventilation can be read. These are generally smaller than those found in the
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experiments, where thrust losses up to 60% of the infinite fluid case are obtained.

Ang. position Pressure
Δ%

Suction
Δ% Propeller Δ%

[rad] Side Side

1/4 π 0.15 -26.7% 0.26 -32.0% 0.41 -30.2%
3/4 π 0.13 -35.2% 0.31 -21.3% 0.43 -26.0%
5/4 π 0.17 -13.9% 0.37 -5.8% 0.54 -8.5%
7/4 π 0.19 -5.7% 0.38 -1.9% 0.57 -3.2%

Table 5.1: Thrust coefficientN ·KT and relative deviation with respect to the open
water results KT0 [h/R = 1.4, MRF model].

5.2.2 Sliding Mesh

The MRF model has shown a good representation of the ventilation phenomenon,
although losses are underestimated. In order to handle the unsteady nature of the
phenomenon, a Sliding Mesh (SM) model was adopted. The results presented in
the remainder of this section were obtained using only the SM model. After the
deformation of the free surface, the simulation becomes soon unstable, showing
an increase of the residual error for the solved equations. This behavior would in
most cases lead to divergence of the numerical solution, which could be stabilized
only by reducing the URFs for the solved equations.
A stable solution was reached using αp = 0.1, αu�

= 0.2, αγ = 0.2 and the thrust
ratio obtained during several revolutions is shown in Figure 5.5, for the single
blade (a) and the whole propeller (b).
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Figure 5.5: Thrust ratio averaged for each angular position [h/R = 1.4; αp = 0.1,
αu�
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Results from the corresponding experiments are shown by means of the aver-
age curves and those at ±2σ. As for αp and αu�

, αγ is the URF for the update of
the volume-fraction γ.
The propeller thrust losses due to ventilation are under-estimated by about 50%
with respect to the experimental data, but the unsteady approach applied with the
SM model slightly improved the results obtained with the MRF model, shown in
the same figure.
The blade thrust is over-estimated at all angles, except around its upright position,
where the agreement with the experimental results is satisfactory. The improve-
ment obtained with respect to the MRF model can also be observed around 0 rad.
The pressure coefficients on the suction side of the blade are shown in Fig-

ure 5.6, in steps of π/4 rad, and compared with the open water results (Figure 5.6e).
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Figure 5.6: Pressure coefficient on the suction side at various angular positions,
comparison with open water [h/R = 1.4; αp = 0.1, αu�

= 0.2, αγ = 0.2].
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where the agreement with the experimental results is satisfactory. The improve-
ment obtained with respect to the MRF model can also be observed around 0 rad.
The pressure coefficients on the suction side of the blade are shown in Fig-

ure 5.6, in steps of π/4 rad, and compared with the open water results (Figure 5.6e).

(a) 1
4
π (b) 0 (c) 7

4
π

(d) 1
2
π (e) Open water. (f) 3

2
π

(g) 3
4
π (h) π (i) 5

4
π

Figure 5.6: Pressure coefficient on the suction side at various angular positions,
comparison with open water [h/R = 1.4; αp = 0.1, αu�

= 0.2, αγ = 0.2].

5.2. Fully-ventilating propeller 125

Results from the corresponding experiments are shown by means of the aver-
age curves and those at ±2σ. As for αp and αu�

, αγ is the URF for the update of
the volume-fraction γ.
The propeller thrust losses due to ventilation are under-estimated by about 50%
with respect to the experimental data, but the unsteady approach applied with the
SM model slightly improved the results obtained with the MRF model, shown in
the same figure.
The blade thrust is over-estimated at all angles, except around its upright position,
where the agreement with the experimental results is satisfactory. The improve-
ment obtained with respect to the MRF model can also be observed around 0 rad.
The pressure coefficients on the suction side of the blade are shown in Fig-

ure 5.6, in steps of π/4 rad, and compared with the open water results (Figure 5.6e).

(a) 1
4
π (b) 0 (c) 7

4
π

(d) 1
2
π (e) Open water. (f) 3

2
π

(g) 3
4
π (h) π (i) 5

4
π

Figure 5.6: Pressure coefficient on the suction side at various angular positions,
comparison with open water [h/R = 1.4; αp = 0.1, αu�

= 0.2, αγ = 0.2].



126 Numerical simulations

Air above the free-surface on the propeller plane is visible in the three up-most
pictures (Sub-figures (a), (b) and (c)).
The effect of the free-surface is visible only at 0 and π/4 rad, where the tip region
of the blade shows higher contours of pressure. The lowest levels are achieved at
π/4 rad, confirming the results obtained in Figure 5.5a.

The corresponding pressure coefficients on the pressure side are shown in Fig-
ure 5.7, where the blade tip at 0 and π/4 rad show lower contours of pressure.
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Figure 5.7: Pressure coefficient on the pressure side at various angular positions,
comparison with open water [h/R = 1.4; αp = 0.1, αu�

= 0.2, αγ = 0.2].

Figure 5.8 shows the pressure coefficient along the chord-line on three radial
stations—0.5, 0.7 and 0.9 of the radius represented respectively in Sub-figures (a),
(b), and (c)—and along the radius on the blade axis line (Figure 5.9).
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Figure 5.8: Pressure coefficients at various stations and angular positions [h/R =
1.4; αp = 0.05, αu�

= 0.1, αγ = 0.1].
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Figure 5.9: Pressure coefficients along the blade axis [h/R = 1.4; αp = 0.05,
αu�

= 0.1, αγ = 0.1].

The plotted lines are spline interpolations between the given points. All the
stations present a general reduction (in absolute value) of the pressure with respect
to open water, but only for the blades at 0 and π/4 (red and green lines in Fig-
ures 5.8 and 5.9) this behavior appears remarkable. This reduction is stronger on
the suction side and most localized around the tip region, above 50% of the radius.
At 90% of the radius (Figure 5.8c) the blade at 0 is subject to a pressure drop ex-
tending from the leading edge to the mid-chord line, whereas at π/4 pressure has
dropped along the entire chord-line.

Figure 5.10 presents the contours of air-volume-fraction for the present case.

(a) Suction side (b) Pressure side

Figure 5.10: Air-volume-fractions contours during ventilation [h/R = 1.4; αp =
0.1, αu�

= 0.2, αγ = 0.2].

128 Numerical simulations

-3
-2
-1
0
1
2
3
4
5
6
7
8
9

Hub 0.5 0.7 0.9 Tip

−Cp

r/R

0
1/4 π
1/2 π
3/4 π

π
5/4 π
3/2 π
7/4 π

open water

Figure 5.9: Pressure coefficients along the blade axis [h/R = 1.4; αp = 0.05,
αu�

= 0.1, αγ = 0.1].

The plotted lines are spline interpolations between the given points. All the
stations present a general reduction (in absolute value) of the pressure with respect
to open water, but only for the blades at 0 and π/4 (red and green lines in Fig-
ures 5.8 and 5.9) this behavior appears remarkable. This reduction is stronger on
the suction side and most localized around the tip region, above 50% of the radius.
At 90% of the radius (Figure 5.8c) the blade at 0 is subject to a pressure drop ex-
tending from the leading edge to the mid-chord line, whereas at π/4 pressure has
dropped along the entire chord-line.

Figure 5.10 presents the contours of air-volume-fraction for the present case.

(a) Suction side (b) Pressure side

Figure 5.10: Air-volume-fractions contours during ventilation [h/R = 1.4; αp =
0.1, αu�

= 0.2, αγ = 0.2].

128 Numerical simulations

-3
-2
-1
0
1
2
3
4
5
6
7
8
9

Hub 0.5 0.7 0.9 Tip

−Cp

r/R

0
1/4 π
1/2 π
3/4 π

π
5/4 π
3/2 π
7/4 π

open water

Figure 5.9: Pressure coefficients along the blade axis [h/R = 1.4; αp = 0.05,
αu�

= 0.1, αγ = 0.1].

The plotted lines are spline interpolations between the given points. All the
stations present a general reduction (in absolute value) of the pressure with respect
to open water, but only for the blades at 0 and π/4 (red and green lines in Fig-
ures 5.8 and 5.9) this behavior appears remarkable. This reduction is stronger on
the suction side and most localized around the tip region, above 50% of the radius.
At 90% of the radius (Figure 5.8c) the blade at 0 is subject to a pressure drop ex-
tending from the leading edge to the mid-chord line, whereas at π/4 pressure has
dropped along the entire chord-line.

Figure 5.10 presents the contours of air-volume-fraction for the present case.

(a) Suction side (b) Pressure side

Figure 5.10: Air-volume-fractions contours during ventilation [h/R = 1.4; αp =
0.1, αu�

= 0.2, αγ = 0.2].

128 Numerical simulations

-3
-2
-1
0
1
2
3
4
5
6
7
8
9

Hub 0.5 0.7 0.9 Tip

−Cp

r/R

0
1/4 π
1/2 π
3/4 π

π
5/4 π
3/2 π
7/4 π

open water

Figure 5.9: Pressure coefficients along the blade axis [h/R = 1.4; αp = 0.05,
αu�

= 0.1, αγ = 0.1].

The plotted lines are spline interpolations between the given points. All the
stations present a general reduction (in absolute value) of the pressure with respect
to open water, but only for the blades at 0 and π/4 (red and green lines in Fig-
ures 5.8 and 5.9) this behavior appears remarkable. This reduction is stronger on
the suction side and most localized around the tip region, above 50% of the radius.
At 90% of the radius (Figure 5.8c) the blade at 0 is subject to a pressure drop ex-
tending from the leading edge to the mid-chord line, whereas at π/4 pressure has
dropped along the entire chord-line.

Figure 5.10 presents the contours of air-volume-fraction for the present case.

(a) Suction side (b) Pressure side

Figure 5.10: Air-volume-fractions contours during ventilation [h/R = 1.4; αp =
0.1, αu�

= 0.2, αγ = 0.2].



5.2. Fully-ventilating propeller 129

Recalling Figure 5.3 obtained with the MRF model, the SM model presents
much lower air-contents on the propeller walls. This difference could be ascribed
to the fact that the SM model studies the problem as unsteady and a longer sim-
ulation time could be necessary for the air to adhere to the propeller walls with
respect to the computational time examined (about 15 revolutions).
On the other hand, thrust losses obtained with SM are larger.
The details of the air-volume-fraction around the tip region and the leading

edge are shown in Figure 5.11, only for the blade during the first half revolution.
The plotted lines are spline interpolations between the given points.
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Figure 5.11: Air volume fraction at various stations and angular positions [h/R =
1.4; αp = 0.05, αu�

= 0.1, αγ = 0.1].
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130 Numerical simulations

Figure 5.12 shows the contours of z-vorticity on the free-surface. The tip vor-
tex of the blade piercing the free-surface at π/4 is imposing starboard a vorticity
along +z (red levels in Subfigure (a)), whereas the corresponding vorticity is di-
rected along −z on the port side (blue levels in Subfigure (b)).

(a) Front view of the starboard side (1/4 π) (b) Side view of the port side (7/4 π)

Figure 5.12: Vorticity contours along z on the free-surface [h/R = 1.4; αp = 0.1,
αu�

= 0.2, αγ = 0.2].

5.2.3 Turbulence

The effect of turbulence was taken into account introducing a SST-k−ω turbulence
model. Adding turbulence to the given set of equations had the effect to make
the simulation unstable, leading often to the divergence of the numerical solution.
The thrust coefficient is compared in Figure 5.13 with the corresponding results
obtained neglecting the turbulence terms. The solution including turbulence shows
a single revolution which was obtained further reducing the URFs in order to help
improve convergence. The effect of changing the URFs will be extensively covered
in a later section. With the obtained results, turbulence does not seem to affect the
global loads the propeller is subject to. However, results including turbulence have
not reached a stable oscillatory solution, thus a more consistent comparison should
be made having available several revolutions including turbulence.
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5.2.4 Surface tension

The contribution to the pressure due to surface tension is proportional to the cur-
vature of the free-surface location and thus implies the computation of a 2nd order
derivative. This operation performed on a tetrahedral mesh can lead to inaccuracy,
and eventually solution instability. Figure 5.14 shows a comparison of the thrust
coefficient obtained with and without surface tension, where differences in terms
of global loads between the two simulations are very small.
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Its presence seems not to modify the obtained loads during ventilation, but
it should be mentioned that simulations including surface tension are more un-
stable and tend promptly to diverge. Its effect can be important in the forma-
tion/destruction mechanism of bubbles from the air-sheet sucked from the pro-
peller and in the formation of the free-surface vortex.

5.2.5 Grid refinement

A systematic verification of the grid used to perform the computations could not be
performed, due to very long computational time. Each mesh refinement requires
a subsequent reduction of the time-step for the stability of the solution, increasing
the CPU time of a simulation to several weeks—between 4 and 12—, using a node
with 16 processors. The grid size was then chosen according to the results ob-
tained in open water, which obviously do not take into account the presence of the
free-surface. In order to assess the effect of the grid size on the free-surface, the
grid was refined once only in that part of the domain where the free-surface was
expected to be located, as shown in Figure 5.15. With respect to a dynamic grid-
refinement, this approach was deemed as more robust and less computationally
expensive in this case, where the presence of the free-surface around the propeller
is rather constant in space. The choice of a dynamic grid-refinement would have
reduced the number of cells to refine, but certainly increased the operation of re-
finement and coarsening at each time step.
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Figure 5.15: Refined region.
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Figure 5.16 examines the influence of the described local grid-refinement,
comparing the obtained thrust coefficient with the default mesh. The solution ob-
tained with the refined grid presents a larger spreading, better approaching the ex-
perimental results. The improvements can be observed especially for the propeller
thrust, indicating that the refined grid is able to better capture ventilation occuring
on the deeper submerged blades. However, overall improvements are modest, and
not such to fill the gap between the numerics and the experimental results.
Due to the numerical difficulties connected to a simulation with a refined grid,
in terms of computational resources and tuning of the numerical parameters, this
mesh sensitivity study is not fully comprehensive, and the independence of the
obtained solution can not be ensured.
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Figure 5.16: Thrust ratio averaged for each angular position, effect of local refine-
ment [h/R = 1.4; αp = 0.1, αu�

= 0.2, αγ = 0.2].

5.2.6 Integration time-step

The choice of the integration time-step can change the computational time drasti-
cally, thus care was taken to use the highest value leading to a converged solution.
The differences obtained changing the time step for the default, not-refined grid at
a submergence ratio of 1.4 are plotted in Figure 5.17, and a time-step of 1 × 10−4

s was chosen, corresponding to about half degree of rotation for n = 14 Hz.
The differences between the curves withΔt = 1× 10−4 and 5× 10−5 s are barely
visible and the first time instants computed further reducing the time step seem also
to follow the same trend. The results for those lower time steps—Δt = 2 × 10−5

and 1 × 10−6 s—are available for a shorter time interval due to the divergence of
the numerical solution.
For the chosen time step, there are only 5 cells exceeding the cell Courant number
of 40 required by the solver for a stable calculation (Fluent, 2006). The Courant
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number is the ratio of the time stepΔt to the characteristic convection time (Δx/u
in 1D) which is required for a disturbance to be convected a distance Δx.
For a generic 3D domain, the local cell Courant number is defined by:

Co = Δt
Uc

LC
(5.8)

where Uc is the magnitude of the cell velocity and Lc the minimum cell edge
length.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

KT

KT0

time [s]

Δt = 1 · 10−4s
Δt = 5 · 10−5s
Δt = 2 · 10−5s

explicit, Δtmin = 1 · 10−6s

Figure 5.17: Effect of the chosen time-step on the blade thrust ratio [h/R = 1.4].

Simulations have shown different converged solutions when varying the time-
step size, requiring a further understanding of the obtained results.
The effect of the time-step size will be explained showing the results obtained
while assessing its influence after refining the grid at h/R = 1.72 (Figure 5.18).
At this deeper submergence the blade at π rad, farther from the free surface, is
completely wet, and should thus have a thrust very close to the open-water value
KT0 , except for the Wagner effect, which was described in Chapter 2, and consist-
ing in a delay of the thrust build-up. Decreasing the time-step size by a factor of
10 has the effect of increasing the thrust by a factor of 2.
The values of maximum, i.e. non-ventilating, thrust coefficientN ·KT on the pres-
sure and suction side are reported in Table 5.2, with the relative error with respect
to the open water results. Thrust is underestimated especially on the pressure side,
which is still 20% below the open water value for the smallest time-step.
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Figure 5.18: Comparison of the propeller thrust coefficient obtained using different
integration time steps with the open water result KT0 [h/R = 1.72, refined grid].
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Table 5.2: Thrust coefficient N · KT obtained varying the time step and relative
error with respect to the open water results KT0 [h/R = 1.72, refined grid].

For the solution obtained using this refined grid, a time-step of 5 × 10−5 s
was chosen, mainly dictated by the computer’s capacity. Values of the time step
above 5 × 10−5 s seem inadequate to capture the characteristic convection time.
About 200 cells located above the tip region of the blade exceed Co = 40 for
Δt = 20 × 10−5. Only 3 cells for Δt = 10 × 10−5 exceed Co = 40, but the
number of cells with 20 < Co < 40 is much larger with respect to the not-refined
grid using the same time-step size.
Different levels of the pressure coefficient can be observed on the suction (Fig-
ure 5.19) and pressure side (Figure 5.20) varying the time step, and the pattern
obtained for the fully submerged blade with the chosen time-step size is similar to
the one obtained in open water (Figures 5.6e and 5.7e).

5.2. Fully-ventilating propeller 135

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.9 0.95 1 1.05 1.1 1.15 1.2

KT

time [s]

KT0

Δt = 20 · 10−5

Δt = 10 · 10−5

Δt = 5 · 10−5

Δt = 2 · 10−5

Figure 5.18: Comparison of the propeller thrust coefficient obtained using different
integration time steps with the open water result KT0 [h/R = 1.72, refined grid].

Δt · 105 Pressure
Δ%

Suction
Δ% Propeller Δ%

[s] Side Side

20 -0.03 -117.2% 0.34 -11.9% 0.31 -47.4%
10 0.10 -50.2% 0.35 -9.5% 0.45 -23.2%
5 0.14 -27.0% 0.38 -2.6% 0.52 -10.9%
2 0.16 -19.5% 0.39 0.2% 0.55 -6.4%

Table 5.2: Thrust coefficient N · KT obtained varying the time step and relative
error with respect to the open water results KT0 [h/R = 1.72, refined grid].

For the solution obtained using this refined grid, a time-step of 5 × 10−5 s
was chosen, mainly dictated by the computer’s capacity. Values of the time step
above 5 × 10−5 s seem inadequate to capture the characteristic convection time.
About 200 cells located above the tip region of the blade exceed Co = 40 for
Δt = 20 × 10−5. Only 3 cells for Δt = 10 × 10−5 exceed Co = 40, but the
number of cells with 20 < Co < 40 is much larger with respect to the not-refined
grid using the same time-step size.
Different levels of the pressure coefficient can be observed on the suction (Fig-
ure 5.19) and pressure side (Figure 5.20) varying the time step, and the pattern
obtained for the fully submerged blade with the chosen time-step size is similar to
the one obtained in open water (Figures 5.6e and 5.7e).

5.2. Fully-ventilating propeller 135

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.9 0.95 1 1.05 1.1 1.15 1.2

KT

time [s]

KT0

Δt = 20 · 10−5

Δt = 10 · 10−5

Δt = 5 · 10−5

Δt = 2 · 10−5

Figure 5.18: Comparison of the propeller thrust coefficient obtained using different
integration time steps with the open water result KT0 [h/R = 1.72, refined grid].

Δt · 105 Pressure
Δ%

Suction
Δ% Propeller Δ%

[s] Side Side

20 -0.03 -117.2% 0.34 -11.9% 0.31 -47.4%
10 0.10 -50.2% 0.35 -9.5% 0.45 -23.2%
5 0.14 -27.0% 0.38 -2.6% 0.52 -10.9%
2 0.16 -19.5% 0.39 0.2% 0.55 -6.4%

Table 5.2: Thrust coefficient N · KT obtained varying the time step and relative
error with respect to the open water results KT0 [h/R = 1.72, refined grid].

For the solution obtained using this refined grid, a time-step of 5 × 10−5 s
was chosen, mainly dictated by the computer’s capacity. Values of the time step
above 5 × 10−5 s seem inadequate to capture the characteristic convection time.
About 200 cells located above the tip region of the blade exceed Co = 40 for
Δt = 20 × 10−5. Only 3 cells for Δt = 10 × 10−5 exceed Co = 40, but the
number of cells with 20 < Co < 40 is much larger with respect to the not-refined
grid using the same time-step size.
Different levels of the pressure coefficient can be observed on the suction (Fig-
ure 5.19) and pressure side (Figure 5.20) varying the time step, and the pattern
obtained for the fully submerged blade with the chosen time-step size is similar to
the one obtained in open water (Figures 5.6e and 5.7e).

5.2. Fully-ventilating propeller 135

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.9 0.95 1 1.05 1.1 1.15 1.2

KT

time [s]

KT0

Δt = 20 · 10−5

Δt = 10 · 10−5

Δt = 5 · 10−5

Δt = 2 · 10−5

Figure 5.18: Comparison of the propeller thrust coefficient obtained using different
integration time steps with the open water result KT0 [h/R = 1.72, refined grid].

Δt · 105 Pressure
Δ%

Suction
Δ% Propeller Δ%

[s] Side Side

20 -0.03 -117.2% 0.34 -11.9% 0.31 -47.4%
10 0.10 -50.2% 0.35 -9.5% 0.45 -23.2%
5 0.14 -27.0% 0.38 -2.6% 0.52 -10.9%
2 0.16 -19.5% 0.39 0.2% 0.55 -6.4%

Table 5.2: Thrust coefficient N · KT obtained varying the time step and relative
error with respect to the open water results KT0 [h/R = 1.72, refined grid].

For the solution obtained using this refined grid, a time-step of 5 × 10−5 s
was chosen, mainly dictated by the computer’s capacity. Values of the time step
above 5 × 10−5 s seem inadequate to capture the characteristic convection time.
About 200 cells located above the tip region of the blade exceed Co = 40 for
Δt = 20 × 10−5. Only 3 cells for Δt = 10 × 10−5 exceed Co = 40, but the
number of cells with 20 < Co < 40 is much larger with respect to the not-refined
grid using the same time-step size.
Different levels of the pressure coefficient can be observed on the suction (Fig-
ure 5.19) and pressure side (Figure 5.20) varying the time step, and the pattern
obtained for the fully submerged blade with the chosen time-step size is similar to
the one obtained in open water (Figures 5.6e and 5.7e).



136 Numerical simulations

(a)Δt = 20 · 10−5 (b)Δt = 10 · 10−5

(c)Δt = 5 · 10
−5 (d)Δt = 2 · 10

−5

Figure 5.19: Comparison of the pressure coefficient on the suction side obtained
using different integration time steps [h/R = 1.72, refined grid].
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(c)Δt = 5 · 10−5 (d)Δt = 2 · 10−5

Figure 5.20: Comparison of the pressure coefficient on the pressure side obtained
using different integration time steps KT0 [h/R = 1.72, refined grid].

5.2.7 Under-relaxation factors

The default Under-Relaxation Factors (URF)s suggested by the solver were re-
duced in order to stabilize the performed simulations (Figure 5.21).
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The results of the new simulations are obtained reducing:

• (i) all the URFs to αp = 0.05, αu�
= 0.1, αγ = 0.1,

• (ii) only the momentum equation URFs to αu�
= 0.1,

• (iii) only the volume-fraction equation URF to αγ = 0.1.

Differences in terms of thrust losses among different simulations are barely visible
(Figure 5.21).

A further analysis has shown that under-relaxing the governing equations af-
ter a quasi-steady oscillatory solution at the default values was obtained leads to
different solutions.
The thrust ratio obtained halving the URFs (αp = 0.05, αu�

= 0.1, αγ = 0.1)
is shown in Figure 5.22a and 5.22b. The blade thrust (Figure 5.22a) decreases
over all angular positions while the blade is submerged, better capturing the ex-
perimental results. The corresponding propeller thrust coefficient (Figure 5.22b)
is also reduced.
Another reduction of the URFs (αp = 0.02, αu�

= 0.05, αγ = 0.05) has the ef-
fect to further reduce the thrust ratio. Both the blade (Figures 5.22c) and propeller
(Figures 5.22d) thrust ratio are now lying below the experimental data.
A further reduction of the URFs (αp = 0.01, αu�

= 0.02, αγ = 0.02) leads to
an increase of the thrust ratio, which is over-estimated with respect to the experi-
ments, for the blade (Figures 5.22e) and the whole propeller (Figures 5.22f).
A summary of the values of maximum, i.e. non-ventilating, thrust coefficient
N · KT on the pressure and suction side are reported in Table 5.3, with the rel-
ative error with respect to the open water results. A reduction of the URFs leads
to an increased error for the non-ventilating blade, especially on the pressure side,
exerting for αp = 0.02, αu�

= 0.05, αγ = 0.05 a resistance—a negative thrust—
of the same magnitude of the thrust normally encountered. This error does not
seem to have a linear relation with the URFs.

URF Press.
Δ%

Suct.
Δ% Propeller Δ%

αp αu�
αγ Side Side

0.1 0.2 0.2 0.15 -22.6% 0.39 0.2% 0.54 -7.5%
0.05 0.1 0.1 0.06 -69.3% 0.34 -11.7% 0.40 -31.1%
0.02 0.05 0.05 -0.14 -168.8% 0.37 -4.8% 0.23 -60.1%
0.01 0.02 0.02 0.12 -37.4% 0.39 0.6% 0.52 -12.2%

Table 5.3: Thrust coefficient N ·KT obtained varying the URFs and relative error
with respect to the open water results KT0 [h/R = 1.4].
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Figure 5.22: Thrust ratio averaged for each angular position for the blade (left) and
the propeller (right) obtained varying the URFs [h/R = 1.4].
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Figure 5.22: Thrust ratio averaged for each angular position for the blade (left) and
the propeller (right) obtained varying the URFs [h/R = 1.4].
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Figure 5.22: Thrust ratio averaged for each angular position for the blade (left) and
the propeller (right) obtained varying the URFs [h/R = 1.4].
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The corresponding pressure contours are shown in Figure 5.23 and Figure 5.24,
for the suction and pressure side, respectively. The non-ventilating blades of Fig-
ures 5.23a and 5.24a obtained for αp = 0.1, αu�

= 0.2, αγ = 0.2 show a contour
very similar to the open water tests, while the pattern radically changes for the
other sets of URFs. The pressure drop obtained for αp = 0.02, αu�

= 0.05,
αγ = 0.05 on the leading edge of the pressure side (Figure 5.24c) is clearly vis-
ible. Although the blade loads are closer to the experimental values, the blade’s
pressures obtained reducing the URFs reach values deemed as not physical, far
from both the open water and ventilated case.
The air-volume-fraction on the suction side obtained using different URFs is shown
in Figure 5.25, where the free-surface location is also depicted. Decreasing the
URFs, the air covering the blade is moving from the tip to the leading edge. At the
same time, more air is visible all around the propeller disc. The higher air content
at lower URFs can be better observed on the propeller mid-plane (Figure 5.26).
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(c) αp = 0.02, αu�
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Figure 5.23: Pressure coefficient on the suction side using different URFs [h/R = 1.4].
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Figure 5.24: Pressure coefficient on the pressure side using different URFs [h/R = 1.4].
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Figure 5.25: Air-volume-fraction on the suction side using different URFs [h/R = 1.4].
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Figure 5.26: Air-volume-fraction on the mid x-plane using different URFs [h/R = 1.4].
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The reduction of the URFs, although improving the stability of the solution
limiting the influence of the correction term, slows down the convergence of the
solver. In view of this consideration, the results obtained decreasing the URFs
after a quasi-steady oscillatory solution is obtained, can be thought of as a ”stable”
transient solution. This transient solution would eventually evolve towards the
quasi-steady oscillatory solution which is obtained starting from time 0, but this is
not achieved during the simulated time.
Both the URFs and the integration time-step have shown to affect strongly

the obtained solution. Their effect can be analyzed within the discrete form of
the variable updates of the SIMPLE scheme (Equation 5.5). The update for the
u-momentum equation is rewritten below:

uk+1
i,j = u∗

i,j + αu
Δt

Au
i,jΔx

(p′i,j − p′i+1,j)

where Au
i,j will also depend on Δx and Δt (Equation 5.6).

The combination of the URFs, the time-step and the grid size will determine in a
non-trivial manner how the term with the pressure correction will contribute to the
new velocity field.
There is a strong similarity between the algebraic equations resulting from the use
of under-relaxation when solving steady problems and those resulting from im-
plicit Euler scheme applied to unsteady equations. The following relation between
the under-relaxation factor α and time stepΔt can be derived by requiring that the
contributions be same in both cases (Ferziger and Perić, 2002):

Δt ∝ α

1 − α

V

ΣcFf
(5.9)

where Ff is the volumetric flow rate through the face f and the sum is taken over
all the faces of the cell c with volume V . The use of a constant under-relaxation
factor is equivalent to applying a different time step to each control volume.

5.3 Surface-piercing propeller

The simulations performed on a submerged propeller have shown a general over-
estimation of the thrust in the angular positions different from 0, and a strong
dependency on the simulation parameters. The simulation of a surface-piercing
propeller was attempted in order to test the capabilities of the solver on a different
type of ventilation, where blades are surface-piercing already from rest.
Figure 5.27 shows the blade thrust ratio obtained for h/R = 0 and h/R = 0.24.
The corresponding contours of air-volume-fraction and pressure coefficient are
visualized in Figure 5.28 and 5.29.

5.3. Surface-piercing propeller 143

The reduction of the URFs, although improving the stability of the solution
limiting the influence of the correction term, slows down the convergence of the
solver. In view of this consideration, the results obtained decreasing the URFs
after a quasi-steady oscillatory solution is obtained, can be thought of as a ”stable”
transient solution. This transient solution would eventually evolve towards the
quasi-steady oscillatory solution which is obtained starting from time 0, but this is
not achieved during the simulated time.
Both the URFs and the integration time-step have shown to affect strongly

the obtained solution. Their effect can be analyzed within the discrete form of
the variable updates of the SIMPLE scheme (Equation 5.5). The update for the
u-momentum equation is rewritten below:

uk+1
i,j = u∗

i,j + αu
Δt

Au
i,jΔx

(p′i,j − p′i+1,j)

where Au
i,j will also depend on Δx and Δt (Equation 5.6).

The combination of the URFs, the time-step and the grid size will determine in a
non-trivial manner how the term with the pressure correction will contribute to the
new velocity field.
There is a strong similarity between the algebraic equations resulting from the use
of under-relaxation when solving steady problems and those resulting from im-
plicit Euler scheme applied to unsteady equations. The following relation between
the under-relaxation factor α and time stepΔt can be derived by requiring that the
contributions be same in both cases (Ferziger and Perić, 2002):
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Figure 5.27: Thrust ratio [αp = 0.1, αu�
= 0.2, αγ = 0.2].

The experimental results were obtained during two different test campaigns,
Kou05 (h/R = 0) and Koz10. The differences among these two test campaigns
were underlined in Chapter 4, and they could explain the differences between the
two experimental results which were performed in the same ventilation regime, at
similar submergences.

Although the numerical results better approach the experimental trend, thrust
is still over-estimated for the angular positions were the blade is submerged.
RANS simulations of a surface-piercing propeller with a supercavitating profile
were performed by Caponnetto (2003), showing a good agreement with the exper-
imental results. This type of propellers has a sharp leading edge—being able to
separate the two phases after the impact with water—and are especially designed
to work with an air cavity extending over the entire suction side, whereas the pres-
sure side is giving the thrust while submerged. Starting from rest with the shaft
axis lying on the free surface, the cavity is rapidly formed on the suction side and
seems continously connected to the external air (see illustrations from the experi-
ments of Olofsson, 1996).

The propeller used in the present study is of ”conventional” type, with a blunt
leading edge and a sharp trailing edge. Contours of air-volume-fraction in Fig-
ure 5.28 do not show a clear separation between the two phases among the pres-
sure and suction side of the submerged blades.
Differences in the working conditions should also be mentioned; the present pro-
peller is working at high propeller loadings characterized by strongly non-linear
flow leading to low induced axial velocities on the tip. Air drawn from the free-
surface would then stick to the tip region after ventilation inception.

Contours of the pressure coefficient (Figure 5.29) show values different from
zero only on the submerged part of the propeller.
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(c) Suction side; h/R = 0.24 (d) Pressure side; h/R = 0.24

Figure 5.29: Pressure coefficient contours [αp = 0.1, αu�
= 0.2, αγ = 0.2]; the

plotted red line is the projection of the free surface on the mid x-plane.

5.4 Ventilation inception

This section will focus of the very first time instants where ventilation starts, be-
fore a quasi-steady oscillatory solution is obtained. Both inception due to surface-
piercing propeller at moderate submergence (h/R = 1.4) and by free-surface vor-
tex formation at deeper submergence (h/R = 1.72) will be described.

5.4.1 Surface-piercing

For moderate submergence ratios (h/R = 1.4), the deformation of the free sur-
face is such that the blades become surface-piercing. Figure 5.30 shows the time
evolution of the thrust ratio for the whole propeller and for each blade for a shaft
acceleration ṅ = 208.7 rad/s2. The initial thrust increase following the linear ac-
celeration of the shaft can be observed, while the quasi-steady oscillatory value is
lower than unity due to air-drawing. The volume of air contained in the cylinder
embedding the propeller is monitored in order to follow the ventilation mecha-
nism; its value is shown in the same figure in terms of percent ratio of the volume
embedding the propeller. Air is rapidly drawn during the acceleration phase, and
starts decreasing after is transported downstream by the axial free-stream and in-
duced velocity. The air content would eventually reach a quasi-steady oscillatory
value where the same amount of air drawn from the free-surface is transported
downstream.
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Figure 5.30: Time evolution of the thrust ratio for the whole propeller and for each
blade [h/R = 1.4, ṅ = 208.7 rad/s2].

The time evolution of the thrust ratio for the whole propeller and for Blade1

is plotted in Figure 5.31, where the shaft acceleration and the angular position of
Blade1 are also represented. The blade thrust interrupts its linear increase before
the shaft frequency reaches its nominal value n0 around t = 0.42 s. After this time
instant, large thrust losses are visible around 0 rad.
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After starting the rotation, the free-surface is rapidly pulled towards the pro-
peller and ventilation starts after the first blade-crossing of the free-surface (around
t = 0.06 s, Figure 5.32). From this time on, air is continuously drawn from the
free-surface down to the propeller disc.

(a) t = 0.060 s. (b) t = 0.062 s. (c) t = 0.064 s.

Figure 5.32: Ventilation inception [h/R = 1.4, ṅ = 208.7 rad/s2]. Air-volume-
fraction on the propeller plane (x = 0).

Besides this main pattern leading to ventilation, other events can be observed:
• The free-surface ”breaks” for the first time (around t = 0.04 s, Figure 5.33) in
correspondence to a vortical structure forming downstream the propeller, allowing
air to be entrapped in the surrounding water.
• The formation and subsequent collapse of a wave right-above the propeller (Fig-
ure 5.34).
• The formation of a vortical structure (around t = 0.05 s) on the free-surface
upstream the propeller: while approaching one blade, it rapidly vanishes (around
t = 0.07 s) after the violent ventilation occurring on the following blade (Fig-
ure 5.35).

(a) t = 0.038 s. (b) t = 0.040 s. (c) t = 0.042 s.

Figure 5.33: First opening on the free-surface [h/R = 1.4, ṅ = 208.7 rad/s2].
Contours of z-vorticity [m/s2] on the free surface (bottom view).
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fraction on the propeller plane (x = 0).

Besides this main pattern leading to ventilation, other events can be observed:
• The free-surface ”breaks” for the first time (around t = 0.04 s, Figure 5.33) in
correspondence to a vortical structure forming downstream the propeller, allowing
air to be entrapped in the surrounding water.
• The formation and subsequent collapse of a wave right-above the propeller (Fig-
ure 5.34).
• The formation of a vortical structure (around t = 0.05 s) on the free-surface
upstream the propeller: while approaching one blade, it rapidly vanishes (around
t = 0.07 s) after the violent ventilation occurring on the following blade (Fig-
ure 5.35).

(a) t = 0.038 s. (b) t = 0.040 s. (c) t = 0.042 s.

Figure 5.33: First opening on the free-surface [h/R = 1.4, ṅ = 208.7 rad/s2].
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• The formation and subsequent collapse of a wave right-above the propeller (Fig-
ure 5.34).
• The formation of a vortical structure (around t = 0.05 s) on the free-surface
upstream the propeller: while approaching one blade, it rapidly vanishes (around
t = 0.07 s) after the violent ventilation occurring on the following blade (Fig-
ure 5.35).

(a) t = 0.038 s. (b) t = 0.040 s. (c) t = 0.042 s.

Figure 5.33: First opening on the free-surface [h/R = 1.4, ṅ = 208.7 rad/s2].
Contours of z-vorticity [m/s2] on the free surface (bottom view).
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(a) t = 0.040 s. (b) t = 0.050 s. (c) t = 0.060 s.

Figure 5.34: Formation and collapse of a wave above the propeller [h/R = 1.4,
ṅ = 208.7 rad/s2]. Contours of air-volume-fraction on the longitudinal vertical
mid-plane (y = 0).

(a) t = 0.050 s. (b) t = 0.060 s. (c) t = 0.070 s.

Figure 5.35: Evolution of a free-surface vortex approaching the propeller [h/R =
1.4, ṅ = 208.7 rad/s2]. Contours of z-vorticity [m/s2] on the free surface (side
view).

5.4.2 Vortex formation

At deeper submergences the induced velocities exerted by the propeller are not
strong enough to pull the free-surface down to the propeller disc. However, vortical
structures will now form on the free-surface and possibly attach to the propeller tip
leading to a different type of ventilation, where air is continuously drawn through
the free-surface vortex. A typical example of the thrust losses obtained during
such a ventilation event is depicted in Figure 5.36. The behavior is less repeatable,
depending on the location of the impact of the free-surface vortex, and not only
to the proximity to the undisturbed free-surface. Eventually, full ventilation by
surface-piercing propeller can occur also at this deeper submergence.
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Figure 5.36: Thrust ratio averaged for each angular position [h/R = 1.72; αp =
0.1, αu�

= 0.2, αγ = 0.2].

Figure 5.37 shows the time evolution of the thrust ratio for the whole propeller
and for each blade for a shaft acceleration ṅ = 208.7 rad/s2. Only the thrust ratio
of Blade1 is plotted in Figure 5.38, where the shaft acceleration and the angular
position of Blade1 are also represented.

Three main phases can be observed before full-ventilation by surface-piercing
propeller starts:

• from start to t = 0.13 s:
Low variations with respect to average propeller thrust, only due to proxim-
ity to the free-surface.

• t = 0.13 s:
Ventilation inception by vortex formation.

• from t = 0.13 s to t = 0.49 s:
Ventilation through a free-surface vortex.

After t = 0.49 a fully ventilating event by surface-piercing propeller occurs, lead-
ing to rapid sucking of air and sudden thrust loss. In these conditions the blade
thrust presents large variations with respect to the average propeller thrust.
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Figure 5.37: Time evolution of the thrust ratio for the whole propeller and for each
blade [h/R = 1.72, ṅ = 208.7 rad/s2].
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Figure 5.38: Thrust coefficient and angular position of Blade1 as a function of
time; comparison with the whole propeller [h/R = 1.72, ṅ = 208.7 rad/s2].
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152 Numerical simulations

The vortex induced by the blade tip passing starboard attracts the free-surface,
leading to the first ”break” of the free-surface and forming a tube through which air
can freely flow down to the propeller (Figure 5.39). Note the positive sign of the
vorticity along z-direction and the simultaneous appearance of a counter-rotating
vortex on the port side (respectively, z+ and z− in Figure 5.39c).

(a) t = 0.124 s. (b) t = 0.130 s.

z+ z−

(c) t = 0.136 s.

Figure 5.39: Ventilation inception by the free-surface vortex [h/R = 1.72, ṅ =
208.7 rad/s2]. Contours of z-vorticity [m/s2] on the free surface (front view).

Figure 5.40 shows the evolution of a second vortex on the port side, counter-
rotating with respect to the first vortex, and impacting the following blade (respec-
tively, z+ and z− in Figure 5.40c).

(a) t = 0.138 s. (b) t = 0.140 s.

z+ z−

(c) t = 0.142 s.

Figure 5.40: Formation of a second vortex on the port side [h/R = 1.72, ṅ =
208.7 rad/s2]. Contours of z-vorticity [m/s2] (front view).

The counter-rotating vortex located on the port side rapidly vanishes after each
blade’s crossing. On the other hand, the pressure overturn on the blade tip feeds
with vorticity the starboard vortex, detaching from the previous blade and reattach-
ing on the following one, as shown in Figure 5.41.
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(a) t = 0.15 s. (b) t = 0.194 s.

(c) t = 0.23 s. (d) t = 0.26 s.

Figure 5.41: Impingement of the starboard vortex on the blades [h/R = 1.72, ṅ =
208.7 rad/s2]. Contours of z-vorticity [m/s2] (front view).

(a) t = 0.36 s. (b) t = 0.38 s.
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(c) t = 0.4 s.

Figure 5.42: Ventilation through a free-surface vortex [h/R = 1.72, ṅ = 208.7
rad/s2]. Contours of z-vorticity [m/s2] on the free surface (bottom view).
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(c) t = 0.4 s.

Figure 5.42: Ventilation through a free-surface vortex [h/R = 1.72, ṅ = 208.7
rad/s2]. Contours of z-vorticity [m/s2] on the free surface (bottom view).
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(c) t = 0.4 s.

Figure 5.42: Ventilation through a free-surface vortex [h/R = 1.72, ṅ = 208.7
rad/s2]. Contours of z-vorticity [m/s2] on the free surface (bottom view).



154 Numerical simulations

The irregular vortex seen in Figure 5.41 can leave space temporarly to a more
regular vortical structure, as shown in Figure 5.42, forming a vertical tube feeding
air to the propeller. A weaker counter-rotating structure can simultaneously be
observed on the port side.

The rupture of a larger vortical structure can lead to a temporary fully-ventilating
event. Its inception is shown in Figure 5.43.

(a) Contours of vorticity [m/s2]
along z-direction (front view).

(b) Contours of vorticity [m/s2]
along z-direction (side view).

(c) Contours of air volume fraction
on the propeller plane (x=0).

Figure 5.43: Start of a fully ventilating event [h/R = 1.72, ṅ = 208.7 rad/s2, t =
0.49 s].

5.4.3 Comparison

A comparison between the two analyzed submergences is shown in Figure 5.44.
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The irregular vortex seen in Figure 5.41 can leave space temporarly to a more
regular vortical structure, as shown in Figure 5.42, forming a vertical tube feeding
air to the propeller. A weaker counter-rotating structure can simultaneously be
observed on the port side.

The rupture of a larger vortical structure can lead to a temporary fully-ventilating
event. Its inception is shown in Figure 5.43.

(a) Contours of vorticity [m/s2]
along z-direction (front view).

(b) Contours of vorticity [m/s2]
along z-direction (side view).

(c) Contours of air volume fraction
on the propeller plane (x=0).

Figure 5.43: Start of a fully ventilating event [h/R = 1.72, ṅ = 208.7 rad/s2, t =
0.49 s].

5.4.3 Comparison

A comparison between the two analyzed submergences is shown in Figure 5.44.
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Figure 5.44: Comparison of the thrust ratio as a function of time between moderate
(h/R = 1.4) and deep (h/R = 1.72) submergences [ṅ = 208.7 rad/s2].

As expected, at moderate submergence (h/R = 1.4) air-drawing occurs earlier
and with stronger intensities. The only remarkable differences in terms of loads
are visible after ventilation inception and before fully-ventilation occurs for the
deeper case (h/R = 1.72), between t = 0.35 and t = 0.5 s. In this time interval,
the propeller thrust is lower at moderate submergence (h/R = 1.4) and the blade
thrust is subject to large oscillations. The blade thrust is the same in the two
conditions after t = 0.5 s, when fully ventilation occurs also for h/R = 1.72,
while the propeller thrust for this deeper submergence case remains higher.

5.5 Summary

Numerical simulations were performed in order to investigate the characteristics of
the inherently unsteady ventilation phenomenon. A moderate submergence ratio
was chosen (h/R = 1.4), leading to full-ventilation after the propeller becomes
surface-piercing. The complexity of the phenomenon itself leads to unstable nu-
merical simulations, very sensitive to the used numerical parameters, somehow
reflecting the large deviation found in the experiment.
The Multiple Reference Frame (MRF) model allows to capture the main fea-

tures observed during the experiments; air is sucked down from the free-surface
and transported through the propeller rotation. However, global loads are generally
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156 Numerical simulations

over-estimated.
The Sliding Mesh (SM) model was adopted in order to handle the unsteady

nature of the phenomenon. A stable solution could be obtained only reducing the
Under Relaxation Factors (URFs) for the solved equations. The obtained quasi-
steady oscillatory thrust is generally over-estimated along the rotation. A modest
improvement is obtained with respect to the MRF model in the upright position,
where the blade is piercing the free surface. At this angular position the agreement
of both numerical models with the experimental data is satisfactory, whereas thrust
is overestimated at all the other angular positions.

The simulation of a surface-piercing propeller was performed in order to test
the capabilities of the solver on a different type of ventilation, where blades are
surface-piercing already from rest (h/R = 0 and h/R = 0.24). A previous work
on a surface-piercing propeller with supercavitating-type profile (sharp leading
edge and thick abrupt trailing edge) exists (Caponnetto, 2003), showing a good
agreement with the experimental results. Although present results approach the
experimental trend better than for the deeper submergence, thrust is still over-
estimated for the angular positions were the blade is submerged. This difference
between experimental and numerical results could be ascribed to the specific ge-
ometry and conditions object of this study:

• the blade sections are not of the supercavitating type, but designed with a
conventional lifting foil (blunt leading edge and sharp trailing edge):
⇒ the blunt leading edge will not work as a sharp interface, not being able
to separate the two phases after the impact with water;

• the propeller is working at very high propeller loadings:
⇒ characterized by strongly non-linear flow leading to low induced axial
velocities on the tip.

The analysis of the first time instants, before a quasi-steady oscillatory solution is
obtained, allows a deeper insight into two different types of ventilation inception:

• surface-piercing propeller at moderate submergence (h/R = 1.4):
the deformation of the free surface is such that the blades become surface-
piercing;

• by free-surface vortex formation at deeper submergence (h/R = 1.72):
vortical structures forming on the free-surface reach the propeller tip.

The thrust loss due to ventilation by vortex formation is less repeatable, depending
on the location of the impact of the free-surface vortex, and not only to the proxim-
ity to the undisturbed free-surface. Eventually, full ventilation by surface-piercing
propeller can occur also at this deeper submergence.
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Chapter 6

Discussion

6.1 Dynamic loads

The amount and type of ventilation have been shown to depend on submergence,
propeller loading and advance ratio. Despite the differences among different cases,
some recurring characteristics could be observed. In proximity of the free surface,
the oscillatory loads on a blade occurring during one revolution can be ascribed to
three different reasons:

• The proximity of the free-surface leads to a thrust loss around 0 rad, sketched
in Figure 6.1a.

• A thrust loss between 0 and π/2 occurs due to air-sucking through a free-
surface vortex (at deeper submergence) or a tip vortex (at moderate submer-
gence, Figure 6.2a).

• For the surface-piercing ventilation type, around 3/2 π a thrust loss occurs
due to the impact with the air drawn through the tip vortex trailing from the
blade preceding the blade where measurements are taken (Figure 6.2b).

The most severe thrust loss is not located at 0 rad, but slightly after, around π/4.
At this angular position the skewed part of the blade is completely out of water,
and the effect of the low-pressure region leading to the tip vortex (Figure 6.2a) is
stronger than in the upright position—where the tip vortex would be located in air.
The identified model of loads is visualized in qualitative sketches in Figure 6.1 for
ventilation by free-surface vortex and in Figure 6.3 for surface-piercing propellers.
These sketches can be thought of as the dynamic loads obtained averaging the
results from several revolutions. They agree quite well with the trend observed
both with numerical and experimental results. However, experiments show that
for each revolution the trend could be different, where the peaks due to thrust
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158 Discussion

losses can be located on a slightly different angular position and can exist in a
higher number, such that the blade is impacting the air mass several times during
its rotation.
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(a) Thrust loss around 0 rad due to proximity to the free-surface.
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(b) Thrust loss around π/4 rad due to air-sucking, corresponding to Figure 6.2a.
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(c) Total thrust loss, Figure 6.1a + Figure 6.1b

Figure 6.1: Dynamic loads during ventilation through a free-surface vortex.
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6.2 Comparison

Although the agreement of the CFD results with the experiments is qualitatively
good, being able to capture the occurrence of thrust losses during the propeller
rotation, numerical results generally under-estimate the thrust loss relative to the
experiments.
In order to understand the causes of this discrepancy, the instantaneous flow field
of the fully-ventilated flow for the numerical simulation and the experiments will
be compared, starting from a qualitative point of view. The presence of air is
an excellent marker describing ventilation, and its content can be compared in
Figure 6.4. The free-surface visualized in the CFD results (Figure 6.4a) is the
location where γair = 0.5.

(a) CFD: Contours of air-volume-fraction. (b) Experiments (Koushan, 2006b).

Figure 6.4: Instantaneous flow field.

The fully-ventilated flow observed during experiments (Figure 6.4b) is char-
acterized by a thin sheet cavity covering the suction side of the blades, extending
radially from the tip to roughly half of the blade radius. An additional air-flow
characterized by small bubbles is superimposed, extending radially as much as the
sheet cavities, and covering the entire propeller disc, including the blade-to-blade
passage. This secondary bubbly flow is quasi-steady, while the sheet cavities fol-
low the rotation of the propeller.
Comparing the results obtained with the numerical simulation (Figure 6.4a), al-
though the air pattern is very similar, substantial differences can be observed:
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• Extension of the cavities

– Angular
The air initially drawn from the free surface is convected from the
blade rotation only for half a revolution. Only a small amount of air
is able to follow partially the remaining half revolution (residuals of
air are visible on the blade at 3/2 π rad). Most of it is instead being
transported downstream by the axial flow.

– Radial
The blade is covered by air only in proximity of the tip.

• Bubbles
The rapid formation of bubbles observed during the experiment is not visu-
alized in the contours of volume fraction.

The ventilation phenomenon simulated numerically is a simplified model of
the complex physical phenomenon, and is based on several assumptions, the most
restrictive being incompressibility, absence of turbulence and cavitation. Further-
more, the spatial discretization of the domain might neglect important flow fea-
tures, such as bubbles and discrete vortices.
The following list enumerates the approximations which might possibly invalidate
the present numerical results. The listed parameters will then be analyzed in detail
in the remaining of this section.

• Simulation time.

• Turbulence.

• Cavitation.

• Air loss.

– Through the sliding interface.

– Within the rotating domain.

• Bubbly flow mechanics.

• Compressibility.

• Flow around the blade.
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162 Discussion

6.2.1 Simulation time

The simulated time—only one second for most simulations, corresponding to about
15 revolutions—is much shorter than the duration of an experimental test, but long
enough to reach oscillatory, quasi-steady forces. This assumption is corroborated
by the fact that a steady-state flow pattern is achieved in less than 10 revolutions
during experiments.
Recent experiments1 have shown different ventilation modes occurring during the
same test, where the blade loads are moving from one level of quasi-steady oscil-
latory forces to a completely different level, without changing any parameter. This
change occurs after several seconds, at a time much longer than the one reached
with a numerical simulation. Although simulating different ventilation modes is
out of the scope of this study, it is possible that a simulation of much longer time
could capture other flow modes.

6.2.2 Turbulence

All the results presented in Chapter 5 were obtained using a laminar flow, without
introducing a turbulence modeling, unless otherwise stated.
This assumption was based on the fact that the free-surface deformation due to an
attached flow over a lifting surface is due to the pressure forces exerted from the
body, while viscosity plays a marginal damping role.
However, turbulence is important for flow separation, and it is not known a priori
what role it is playing when ventilation occurs. A simulation including turbulence
was thus attempted (Figure5.13), showing very little changes with respect to the
laminar solution.

6.2.3 Cavitation

While rotating in water, the pressure on the blade might fall below the vapor
pressure leading to cavitation. The propeller is specifically designed not to cav-
itate when fully submerged. Nevertheless, Nishiyama (1986) has shown that the
low pressure achieved at the core of vortical systems—tip-vortex or free-surface
vortex—might induce cavitation on the blade surface.
For the present fully ventilated case, ventilation should always occur before cav-
itation, since the vapor pressure leading to cavitation is lower than atmospheric
pressure. This is questionable for a partially ventilated case, where a link might
exist between ventilation and cavitation (Kozlowska et al., 2009).

The possible cavitation inception can trigger bubble formation through a nu-
cleation process and interact with the ongoing ventilation. If occurring, this phe-

1Preliminary results from A.M. Kozlowska during the ventilation test campaign Koz10.
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nomenon is not captured with the present formulation, whereas a cavitation model
should be introduced in order to account for:

• the formation and transport of vapor bubbles,
• the turbulent fluctuations of pressure and velocity,
• the magnitude of noncondensable gases, which are dissolved or ingested in
the operating liquid.

Singhal et al. (2002) have derived the phase-change rate expressions from a re-
duced form of Rayleigh-Plesset equation for bubble dynamics. These rates depend
upon local flow conditions (pressure, velocities, turbulence) as well as fluid prop-
erties (saturation pressure, densities, and surface tension). The phase-change rate
expressions employ two empirical constants, which have been calibrated with ex-
perimental data covering a very wide range of flow conditions, and do not require
adjustments for different problems.

6.2.4 Air loss

In this section the possibility of air losses due to the adopted numerical implemen-
tation is investigated.

6.2.4.1 Through the sliding interface

Air mass-flow might be lost through the sliding interface, i.e. the air flowing
through the interface rotating with the propeller is smaller than the air flowing
through the corresponding fixed surface.
The source of this error could be searched in:

• interpolation
the projection of the nodes from the rotating to the fixed surface can lead to
interpolation errors in the areas through which fluxes are computed;

• grid size
– time step too high with respect to the grid size;
– air bubbles of the size of a few grid cells could be numerically lost
through the sliding interface.

The air mass-flow-rate is conserved through all the sliding interfaces, as shown
in Figure 6.5, where the results obtained on the fixed and moving interfaces are
perfectly overlapped—and thus can not be distinguished.
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• grid size
– time step too high with respect to the grid size;
– air bubbles of the size of a few grid cells could be numerically lost
through the sliding interface.

The air mass-flow-rate is conserved through all the sliding interfaces, as shown
in Figure 6.5, where the results obtained on the fixed and moving interfaces are
perfectly overlapped—and thus can not be distinguished.
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However, air bubbles smaller than the cell size might still be filtered out at the
sliding interface, as observed for the free-surface vortex halting (Figure 6.6a) and
then vanishing (Figure 6.6b).

(a) Halt at the sliding interface. (b) Vanishing.

Figure 6.6: Halt and vanishing of the free-surface vortex impinging the sliding
interface.
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6.2.4.2 Within the rotating domain

The air mass-flow-rate is conserved: the flow rate of air entering and leaving the
sliding interface over a certain simulation time is equal to the rate of change of air
contained in the rotating cylinder delimited by the sliding interfaces (Figure 6.7).
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Figure 6.7: Air-mass content as a function of time.

6.2.5 Bubbly flow

Experiments show—from the very beginning, when ventilation occurs—a rather
uniform mixture of air and water around the propeller disc, rather than two distinct
phases with a sharp separation between air and water, as seen from the CFD cal-
culations.
The tiny bubbles seen in the experiments, characterized by a diameter of O(10−2)
m, are not captured by the numerics with the used discretization. The buoyancy
force acting on a bubble of diameter D is O(D3), while the drag force is O(D2).
The larger bubbles simulated with CFD will thus be subject to higher buoyancy-
to-drag force ratio—compared to the small bubbles filling the same enveloped vol-
ume. As a result, the simulated entrapped air will rise quicker and dissolve faster
than in reality.
Looking at Figure 6.4a, the display of the interface with γair = 0.5 does not

give a complete picture of the presence of air in the numerical domain. The vi-
sualizations of air-volume-fractions between 0 and 0.5 (Figure 6.8) show a larger
domain with smaller air content, giving a final picture compatible with the pres-
ence of bubbles observed during the experiments (Figure 6.4b).
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(b) 0.4 ≤ γair ≤ 0.5.
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(c) 0.3 ≤ γair ≤ 0.5.
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(d) 0.2 ≤ γair ≤ 0.5.
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(e) 0.1 ≤ γair ≤ 0.2. (f) 0.01 ≤ γair ≤ 0.5.

Figure 6.8: Instantaneous flow field

166 Discussion

(a) Free-surface (γair = 0.5).

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(b) 0.4 ≤ γair ≤ 0.5.

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(c) 0.3 ≤ γair ≤ 0.5.

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(d) 0.2 ≤ γair ≤ 0.5.

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(e) 0.1 ≤ γair ≤ 0.2. (f) 0.01 ≤ γair ≤ 0.5.

Figure 6.8: Instantaneous flow field

166 Discussion

(a) Free-surface (γair = 0.5).

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(b) 0.4 ≤ γair ≤ 0.5.

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(c) 0.3 ≤ γair ≤ 0.5.

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(d) 0.2 ≤ γair ≤ 0.5.

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(e) 0.1 ≤ γair ≤ 0.2. (f) 0.01 ≤ γair ≤ 0.5.

Figure 6.8: Instantaneous flow field

166 Discussion

(a) Free-surface (γair = 0.5).

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(b) 0.4 ≤ γair ≤ 0.5.

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(c) 0.3 ≤ γair ≤ 0.5.

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(d) 0.2 ≤ γair ≤ 0.5.

5.00e-01
4.75e-01
4.50e-01
4.25e-01
4.00e-01
3.75e-01
3.50e-01
3.25e-01
3.00e-01
2.75e-01
2.50e-01
2.25e-01
2.00e-01
1.75e-01
1.50e-01
1.25e-01
1.00e-01
7.50e-02
5.00e-02
2.50e-02
0.00e+00

Z

YX

(e) 0.1 ≤ γair ≤ 0.2. (f) 0.01 ≤ γair ≤ 0.5.

Figure 6.8: Instantaneous flow field
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This qualitative similarity does not allow us to draw a final conclusion about
the effect of these bubbles on the forces on the blade. The presence of air with
γair < 0.5 can be the result of the numerical diffusion introduced by the VOF
method, which tends to spatially diffuse the originally sharp air-water interface
while the time is marching.
On the other hand, the domain with γair < 0.5 can be due to the physical

nucleation of air bubbles and following coalescence at the high pressures achieved
in proximity of the propeller. Bubble dynamics — breakup, coalescence and inter-
actions — is strongly dependent (Clift et al., 1978; Brennen, 2005) on the mutual
action of surface tension and turbulence.
Surface tension acts as the force restraining deformation and tends to stabilize the
interface, while viscous forces slow the rate of growth of unstable surface waves.
The total local shear stress, τ , imposed by the continuous phase acts to deform a
drop or bubble, and to break it if the counter-balancing surface tension forces and
viscous stresses inside the fluid particle are overcome.
Where implemented, turbulence is treated with a two-equation model, or Eulerian
model, that treats the discrete phase as a continuum and use conservation equa-
tions for mass and momentum and closure equations for the turbulence parameters
of the flow, in order to solve for the turbulence field and the average behavior of
the dispersed phase. Michaelides (2006) has described the intrinsic limitations of
the Eulerian model in bubble dynamics. Being essentially a continuum model for
interacting fluids, this approach does not allow to properly account for the effects
of particle interactions and collisions.
A different approach to solve the turbulent flow field is given from the La-

grangian models, that treat the air bubbles as discrete elements separated from the
continuous phase and use an equation of motion to determine the trajectories of a
number of immersed objects. The Lagrangian models treat the immersed objects
in turbulence individually. The main characteristics of the Lagrangian models are
that they determine the trajectories of a number of elements of the dispersed phase
by using an explicit equation of motion for the immersed objects, which stems
from Newton’s second law. This equation accounts fully and explicitly for the
forces acting on the dispersed phase and is written in a Lagrangian frame of ref-
erence that coincides with the geometric center of the elements of the dispersed
phase. The continuous phase is modeled in a Eulerian frame of reference.

6.2.6 Compressibility

Compressibility was neglected throughout the present work. This is an established
assumption for water, but could be too stringent within the gaseous phase. The
region containing air was cut with a x− y plane passing through the propeller axis
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from the atmospheric pressure—which is everywhere negative.

(a) View of the cutting x − y plane with contours
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(b) Contours of static pressure [Pa].

Figure 6.9: Contours of air-volume fraction and static pressure on the x − y mid-
plane cutting the region with air.

Assuming an isentropic process, i.e. adiabatic and reversible, of an ideal gas,
pressure and density can be expressed by the isentropic relationship:(
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= constant (6.1)

where γ = cp/cV is the heat capacity ratio, which is equal to 1.4 for a diatomic
ideal gas (air). cP and cV are the specific heat capacities of the gas, suffix P
and V referring to constant pressure and constant volume conditions, respectively.
According to Equation 6.1, a volume expansion would follow a pressure decrease
of an air bubble drawn down from the free surface. The constant in the isentropic
relation (Equation 6.1) can be referred to the initial state above the free surface in
order to determine the expansion of the drawn bubble:(

p

ρ

)γ

=

(
p0

ρair

)γ

(6.2)

The maximum pressure-difference computed with CFD in the region of air (Fig-
ure 6.9b) is about 7000 Pa, which is small with respect to the atmospheric pressure
(101325 Pa). According to Equation 6.2, the corresponding density inside this
region will not differ significantly from the air density, and the expansion the air
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volume would be subject to—including compressibility—would be negligible. It
will later be stressed that the pressure difference computed by CFD can be under-
estimated within the core of the tip vortex. A larger pressure difference might in-
validate the assumption of incompressibility, leading to a volume expansion which
can not be neglected.
Full-scale pressure-differences will also be larger, as computed from the equality
of the pressure coefficients in model (m) and full (s) scale:

ps − p0
1
2ρU2

s

≡ pm − p0
1
2ρU2

m

⇒ ps − p0 =

(
Us

Um

)2

(pm − p0) = λ(pm − p0) (6.3)

Using a typical full-scale diameter of 4 m, the pressure difference in full scale
would be λ = Ds/Dm = 16 times the corresponding model-scale value, about
16×(−7000) = −112000 Pa, thus larger than the atmospheric pressure in absolute
value. It is clear that for this obtained vacuum pressure compressibility will matter
and the air drawn by the full-scale propeller will be subject to an expansion leading
to a stronger ventilation.
This consideration was drawn assuming that the gaseous phase is only consti-

tuted of air. The contours of air-volume-fraction on the x − y mid-plane cutting
the region with air (Figure 6.10) identifies a mixture of air and water, where the air
content at the center of this region is about 80%. This mixture is rapidly formed
after air is drawn and mixed with water due to propeller rotation.

Figure 6.10: Contours of air-volume fraction on the x − y mid-plane cutting the
region with air.

In order to assess the assumption of incompressibility, we start writing the
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Bernoulli equation for an inviscid compressible flow:

U2

2
+

γ

γ − 1

p

ρ
= constant (6.4)

The sound speed a can be written for an isentropic process:

a2 =
dp

dρ
= γ

p

ρ
(6.5)

We now assume that the entropy level is constant not only in time (isentropic), but
also in space, i.e. the process is homentropic. Equation 6.4 can be re-written as:

U2

2
+

γ

γ − 1

p

ρ
=

γ

γ − 1

pa

ρa
(6.6)

with pa and ρa computed at a stagnation point, i.e. where the velocity is zero.
Using Equation 6.5, the previous formula becomes:

γ − 1

2
U2 + a2 = a2

a (6.7)

Dividing by a2 and introducing the Mach numberM = U/a a different expression
for the Bernoulli equation can be found:

a2
a

a2
= 1 +

γ − 1

2
M2 (6.8)

Using the isentropic relation (Equation 6.1) and the ideal gas law p/ρ = RT (R
and T are the ideal gas constant and the absolute temperature, respectively), an
analogous expression for pressure and density can be found:

p2
a

p2
=

(
1 +

γ − 1

2
M2

) γ
γ−1

(6.9a)

ρ2
a

ρ2
=

(
1 +

γ − 1

2
M2

) γ
γ−1

(6.9b)

According to Equations 6.9, considering the flow as incompressible is a reasonable
assumption for M → 0. An acceptable upper limit is M = 0.3, where it can be
shown that the error obtained from the incompressible Bernoulli equation is about
2.3% (it is about 1% forM = 0.2).
The maximum velocity attained around the propeller in corresponding open water
conditions is about 12 m/s. Using the value of 340 m/s for the sound speed in
air, the corresponding Mach number is 0.04, thus well below the upper limit for
incompressibility just found.
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It was earlier found that the air drawn from the propeller is rapidly mixed with
water along its rotation, such that a mixture is formed with a concentration of the
two phases variable in space and time. For such a mixture, the speed of sound will
be different from those of the single phases. An expression was derived by Wood
(1930):

amixture =

√
ElEg

[(1 − γ)ρl + γρg][(1 − γ)Eg + γEl]
(6.10)

where E is the bulk modulus and subscripts l and g are referred to the liquid
and gaseous phase, respectively. Equation 6.10 is plotted in Figure 6.11. For a
wide range of the air-filling-ratio between 0.1 and 0.9 the mixture sound speed is
below 40, reaching at 0.5 the minimum value, around 24 m/s. Using the maximum
velocity found in open water, the Mach number can increase up to 0.5 for a 50%
air-volume-fraction. The corresponding error obtained using the incompressible
Bernoulli equation is still modest, about 6.4%, but might invalidate the assumption
of incompressibility.
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Figure 6.11: Sound speed for the mixture phase computed using Equation 6.10
(Wood, 1930).
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6.2.7 Pressure drop

The thin cavity-sheet visible on the blade wall (Figure 6.4b) suggests that the suc-
tion side is completely covered with air. In these conditions, the minimum thrust
measured in the experiments is about one third of that measured in deep water, and
it corresponds to the thrust exerted only by the pressure side when fully submerged.

The corresponding picture from the numerical simulations (Figure 6.4a) shows
a suction side covered with air only partially, and computes subsequently a thrust
higher than in the experiments.
Two mechanisms are introduced in order to explain the under-estimation of air
content on the surface of the blade:

I. the amount of air reaching the blade is not sufficient;

II. the amount of air reaching the blade, although being sufficient, remains con-
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Both mechanisms assert that the pressure drop is not sufficient to suck enough
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(i) along the air channel connecting the blade with the free surface;
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blade is assumed completely laminar or turbulent, depending on whether turbu-
lence modeling was implemented. In reality, a laminar-to-turbulent transition will
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The location of the transition would in turn modify the local pressure field on the
walls.
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be related to the mesh refinement and to the numerical accuracy achieved.
The unsteady nature of the phenomenon required an unsteady simulation over a
truncated computational domain sufficiently large to avoid unphysical reflections
from the boundaries. Although run in parallel, this type of simulations requires
long-time simulations, ranging between 4 and 12 weeks on a 16 cores cluster.
In this framework, a consistent mesh refinement study could not be performed
and the uncertainty of the obtained results (Roache, 1997) could not be assessed.
Nevertheless, in order to establish the differences with respect to the base-line grid,
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of the segments forming a cell. A comparison of the thrust coefficient obtained
with the base-line and locally-refined grids was shown in Figure 5.16. The trend
achieved with the refined grid is very similar, and the differences obtained can not
explain the substantial discrepancy of the numerical simulations with respect to
the experiments.
However, the mesh refinement was probably not adequate to resolve some local
flow features where strong pressure gradients exist, such as at the leading edge of
the blade and in the core of the tip vortex, connecting the blade to the free surface
through an air channel (i). Once ventilation has started, the amount of drawn air
will depend on the sectional area of the channel and on the achieved pressure drop.

6.2.7.1 Tip vortex

The under-pressure computed in the tip vortex connecting the blade with the at-
mospheric pressure might be insufficient to allow more air-mass-flow entering the
blade surface.
In § 4.5.1 the inception of ventilation for a moderately submerged propeller was
described by means of the visualization of the tip vortex ”breaking” a hole in the
free surface. This tip vortex could still play an important role after the blade has
become surface-piercing, acting as a channel continuously supplying air to the
blade’s surface. The air mass-flow-rate through this channel will depend on its
diameter and on the minimum pressure achieved in correspondence to the blade.
Accurate predictions of the vortex flow phenomena require a very fine mesh in

the vortex core. The exact location of the vortex core and the level of its under-
pressure depend strongly on the mesh refinement, due to the high velocity gradi-
ents present in the flow (Chen, 2000; Bulten and Oprea, 2006; Li et al., 2006).
Assuming a solid body rotation distribution within the core of the tip vortex,

the radius Rtip can be expressed in terms of the pressure in its center p(0):

Rtip =
γtip

2π

√
ρ

p0 − p(0)
(6.11)

where γtip is the circulation of the tip vortex.
Assuming along the blade a span-wise circulation Γ(r), the circulation of the

free vortices γF (r) shed at each radial position can be obtained as:

γF (r) = −∂Γ(r)

∂r
dr (6.12)

The total circulation of the tip vortex γtip can then be computed summing up all the
free vortices rolling up to form a concentrated tip vortex. The observation of the
path-lines along the blade in open water (Figure 6.12) can give a rough estimation
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174 Discussion

of the radial location above which free vortices merge to form the tip vortex, about
r = 0.1 m (r/R = 0.8).

Figure 6.12: Path-lines in open water colored with the radial position [m].

Using the span-wise circulation obtained using the BEM solver AKPA, γtip

was found to be equal to 0.13 m2/s.
Introducing the pressure computed from CFD calculations (Figure 6.13), Equa-
tion 6.11 gives Rtip ≈ 5 mm. With this value, one would expect that the vortex is
properly described close to the blade, where the cell size is smaller than 1 mm.

Since the distance traveled by the vortex from the tip to the free-surface is
very short, we will assume for simplicity that the radius would remain constant
along this path, neglecting the effect of diffusion. In proximity of the undisturbed
free-surface—where the cell size is about 5 mm—the diameter of the tip vortex is
distributed over only two grid cells, which seem inadequate to capture the strong
gradients occurring within the vortex core.

Another consideration should be made about RANS. Being based on the time
averaging of the turbulent quantities, the flow field obtained with these methods
can be smoothed out, obtaining poor performances while attempting to properly
describe vortical structures. Solving directly the turbulent quantities could help
resolving the unsteady nature of the vortices. Whereas a Direct Numerical Simu-
lation (DNS) can not be attempted due to the large extent of the present numerical
domain, the use of Large Eddy Simulations (LES) could be an option in order to
better resolve the tip vortices, since the only limitation for this model is given by
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the grid size (space filtering).
Among other applications, Karlsson and Fuchs (2000) and Secareanu et al. (2005)
have satisfactorily applied LES methods to study the evolution of the ground vor-
tex. Nagahara et al. (2006) concluded that RANS calculations have inherent limi-
tations in resolving the unsteady flow of the vortex sucked in a pump intake sump,
when compared with LES. On the other hand, LES models are very sensitive to the
grid size, and care should be taken in the discretization of the domain, especially
close to the blades.
There is a mutual interaction between the tip vortex and the drawn region with

air. Figure 6.13 shows the pressure coefficient on the x − y mid-plane, together
with the position of the mixture phase (starboard). The intersection of the blades
with the x − y mid-plane is also visualized. It was earlier suggested that the tip
vortex located starboard carrying along z+ vorticity is responsible for ventilation
inception for this moderate submergence. The same vortex is in turn affected by
the presence of the mixture phase, showing much smaller intensities with respect
to the tip vortex ”freely” traveling in water on the port side.

Figure 6.13: Pressure coefficient contours on the x − y mid-plane.

A visual estimation of Rtip can be obtained from the contours of vortex tan-
gential velocity—axial (Figure 6.15a) and radial velocity (Figure 6.15b) in the
fixed reference frame. Assuming for the diameter of the tip vortex the distance
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176 Discussion

between velocities with opposite signs, the value obtained for the radius Rtip

is about 6 mm, which is in agreement with the one found using Equation 6.11
(Rtip ≈ 5 mm). Assuming that the width of the vortex core remains unchanged
after air is drawn—which seems reasonable comparing the port and starboard side
in Figures 6.13, 6.15a and 6.15b—and using the corresponding pressure computed
from CFD (Figure 6.13), the resulting air-volume-fraction is 0.67, thus within the
range shown from Figure 6.10.

(a) View of the port and starboard side.

(b) Close-up around the mixture phase.

Figure 6.14: Velocity vectors colored with velocity magnitude on the x − y mid-
plane.
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Figure 6.15: Velocity contours [m/s] on the x − y mid-plane.
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178 Discussion

The presence of air has the effect to accelerate the flow, as shown in Figure 6.14
and 6.15. Since the circulation must remain constant (Kelvin’s theorem), vorticity
must increase after stretching of the tip vortex towards the free surface, leading to
increased tangential velocities in the vortex plane (axial velocities in Figure 6.15a
and radial velocities in Figure 6.15b). Vorticity amplification by vortex stretching
is a well known phenomenon within a single phase, but it is not clear whether the
presence of air itself has the effect of increasing the velocity field, reducing the
density of the mixture phase.
Within the vortical channel entraining air a larger velocity parallel to the chan-
nel can also be observed (tangential velocity relative to the propeller rotation in
Figure 6.15c).
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Chapter 7

Conclusions

7.1 Summary

By means of model tests and numerical simulations the present work aimed at
understanding the physical mechanisms underpinning propeller ventilation.
The combination of the propeller submergence, loading and advance ratio

determines the nature of the ventilation mechanism, (i) at deeper submergences
through a free-surface vortex and (ii) at moderate submergences through the blade
itself piercing the free-surface.
Three different ventilation regimes could be identified, depending on the influence
of the above mentioned mechanisms.

• Free-surface vortex
characterized by severe and discontinuous thrust losses occurring when the
vortex reaches the surface of the blade; the amplitude during a ventilation
event can deviate significantly from the mean value, which is slightly lower
than the nominal one.

• Surface-piercing
characterized by uniform thrust losses during the complete revolution; the
thrust encompasses a narrow amplitude range around the mean value, which
is in turn significantly lower than the nominal one.

• Intermediate
where both mechanisms (i) and (ii) act alternately during the same test case;
the thrust encompasses a broad and uniform amplitude range and the mean
value is somewhere in between those found in the previous two regimes.

The high-speed video recordings synchronized with the measurements allowed es-
tablishing a relation between dynamic forces and ventilation. This was achieved
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180 Conclusions

both for the recurring loads during a cycle of full ventilation and for the ventilation
through a free-surface vortex.
For the latter case, the literature study allowed identifying analogies with other
phenomena seen in fields different from marine applications, such as the inlet vor-
tex in pump sumps and the ground vortex at the inlet of aircraft engines—for which
an extensive literature exists.

The analysis of the first time instants, before a quasi-steady oscillatory solu-
tion is obtained, allows a deeper insight into two distinctive types of ventilation
inception:

(a) Surface-piercing at moderate submergence
(h/R = 1.4): Blades become surface-piercing
after the deformation of the free surface.

(b) By free-surface vortex formation at deeper
submergence (h/R = 1.72): Vortical structures
forming on the free surface reach the propeller tip.

Figure 7.1: Two types of ventilation inception, from numerical simulations.

Unlike ventilation of surface-piercing propellers with supercavitating profile, it
was found that the tip vortex has a dominant role in the ventilation of conventional
propellers. A qualitative model was derived (Figure 7.2a) based on the tip-vortex
system transporting air to the propeller and leading to two main thrust losses: (i)
about π/4 leading to an absolute minimum load and (ii) about 3/2 π leading to a
local minimum load.

The complexity of the ventilation phenomenon itself leads to unstable numeri-
cal simulations, very sensitive to the used numerical parameters, somehow reflect-
ing the large deviation found in the experiments. The dynamic loads computed
with the numerical model are in satisfactory agreement with the experimental data
at the upright position where the blade is piercing the free surface, whereas thrust is
over-estimated at all the other angular positions. A thorough analysis of the causes
of this deviation was performed, identifying the under-estimation in the numerical
simulations of the pressure difference—from the atmospheric pressure—in the tip
vortex as the most likely responsible factor.
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Among other causes, the assumption of incompressibility was found to be too
stringent within the ventilated region, consisting of a mixture of air and water,
characterized by a density lower than in water and a speed of sound lower than in
air and in water alone.
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Figure 7.2: Dynamic loads during ventilation of a surface-piercing propeller.

7.2 Recommendations for future work

Research in ventilation of submerged bodies, with special emphasis to propellers,
has been a subject of study already for many years, with renewed interest following
the new technology achievements and the always growing computer capabilities.
Within this framework, the present research activity can be seen as an intermediate
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182 Conclusions

step towards a fully comprehensive understanding of the mechanisms underpin-
ning the physical phenomenon, which can make its modeling possible. A more
general form of the model derived for the dynamic loads occurring during venti-
lation is thus foreseen as the natural evolution of the present work. This model
should contain not only qualitative information about dynamic loads, but also a
prediction of their intensities.

RANSmethods used in the present calculations have shown their limits in pre-
dicting accurately the dynamic loads during ventilation. These limits could be
summarized in the difficulty to accurately capture the pressure in the core of the
tip vortex that both model tests and numerical simulations have shown to be a key
mechanism for ventilation. In this respect, every attempt to refine the grid in order
to better capture the low pressures within the tip vortex would result in an increase
of the already long computational times and worsen the stability of the simula-
tion. The research of the solution through simpler, less computationally expensive
methods is suggested. This could be achieved by modeling the tip vortex, instead
of resolving the complex flow-field within its core.
Manzke and Rung (2010) have implemented a ”vortex confinement” method in a
RANS-based solver to model the tip vortices of a marine propeller, showing how
such an approach is able to follow for a longer time the evolution of the tip vortex
and better capture the low pressure within its core.
Vortex-confinement involves ”regularizing” the numerical diffusion by adding a
term depending on local variables—such as grid size and vorticity—to the mo-
mentum equation, obtaining confined vortical regions even on coarse grids with
low-order discretization schemes (Steinhoff and Underhill, 1994).
Modeling of the tip vortex could also be achieved by an a priori knowledge, which
might be built upon simpler methods, less sensitive to numerical diffusion, such
as potential methods. The obtained fluid-dynamics quantities about the tip vortex
could then be fed to the RANS solver to simulate the occurrence of ventilation.
An attempt to include compressibility should also be made in order to verify
whether the ventilated region is able to expand and spread on a wider area of the
propeller, causing higher thrust losses while the blade is fully submerged.

Concerning strictly the numerics, for this transient calculations the discretiza-
tion of the pressure-velocity coupling with a typical projection method (Bell et al.,
1989; Gresho, 1990) would remove the difficulties inherently related to the SIM-
PLE method. A more accurate time advancement scheme within two-phase flow
is also envisaged.

Some recommendations about experiments will also be made, based on the
present experience. Although giving a valuable contribution, especially when
combined with synchronized video recordings, blade dynamic loads still remain a
global measure of the ventilation phenomenon, which depends on local pressures
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falling below the atmospheric pressure. Whenever possible, force and moments
measurements should be accompanied by pressure transducers located on regions
expected to have low pressure, such as on the suction side, close to the leading
edge and around the tip. This is in practice hard to achieve, due to limited space
inside the blade able to fit at the same time a dynamo-meter and one or several
pressure transducers.
The investigation of simpler geometries is thus recommended, using for instance a
submerged hydrofoil, where pressure sensitive films can be applied. These results
can in turn be used to test the capabilities of RANS methods with vorticity con-
finement on the air drawing through the tip vortex of a submerged foil with finite
span and at high angle of attack.
Velocity measurement techniques, such as Particle Image Velocimetry (PIV), are
also envisaged in order to better follow vortical structures leading to ventilation.
Although some experimental studies on multiphase flow using the PIV technique
have been reported, the presence of the dispersed gas bubbles or columns usually
introduces problems to the PIV measurements (Deen et al., 2002), thus advanced
techniques have been developed. Among others, Defocusing PIV is used to de-
termine a 3D-3C (three components in three dimensions) velocity field using a
volume illumination. The separation of the two phases can also be achieved by
the combined use of PIV with Laser Induced Fluorescence (LIF), where seeded
particles—coated or embedded with a fluorescent dye—fluoresce at a wavelength
different from the incident laser light. Nevertheless, PIV measurements technique
used for bubbly flow is limited to relatively low volume fractions of the dispersed
phase, typically 1-4%.
Image techniques such as PIV are instead particularly suitable to free-surface flow
applications, being capable to determine the location of the free surface in an open-
channel type flow (Li et al., 2005). The gas phase and liquid phase show different
patterns on a PIV photograph—a relatively bright region for the gas phase and a
dark region with dense bright points (tracing particles) for the liquid phase—which
allow the free-surface level to be detected by an algorithm.
Pressure and velocity measurements will also create an important database for val-
idation of numerical results.
As a last recommendation, all the present and future activities should have in

mind the process of extrapolation to full scale. With respect to model scale, lower
pressures obtained in the corresponding full-scale conditions would be responsi-
ble not only for an easier ventilation inception with more severe thrust losses, but
will also lead more quickly to cavitation and make the assumption of incompress-
ibility less valid. A scenario where both cavitation and ventilation coexist, and
compressibility of air can not be neglected, would lead to a physical phenomenon
more complex than the one described throughout this dissertation.
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Appendix A

Experimental results

A.1 Constant shaft frequency

Acronyms:

experiment # name of the experiment;
h/R [/] water-depth ratio;
U [m/s] speed of advance;
n [1/s] shaft frequency;
J [/] advance ratio;
Δp/p0 [/] propeller loading;
θ [deg] blade correction angle.

h/R = 2.97

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp001 2.97 0.30 12 0.100 1.77% 0
exp002 2.97 0.30 14 0.086 2.44% 4
exp003 2.97 0.30 16 0.075 3.22% 14
exp004 2.97 0.35 12 0.117 1.75% 1
exp005 2.97 0.35 14 0.100 2.41% 21
exp006 2.97 0.35 16 0.088 3.18% 35
exp007 2.97 0.40 12 0.133 1.72% 4
exp008 2.97 0.40 14 0.114 2.38% 25
exp009 2.97 0.40 16 0.100 3.15% 42

Table A.1: Test specifications [h/R=2.97].

185

Appendix A

Experimental results

A.1 Constant shaft frequency

Acronyms:

experiment # name of the experiment;
h/R [/] water-depth ratio;
U [m/s] speed of advance;
n [1/s] shaft frequency;
J [/] advance ratio;
Δp/p0 [/] propeller loading;
θ [deg] blade correction angle.

h/R = 2.97

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp001 2.97 0.30 12 0.100 1.77% 0
exp002 2.97 0.30 14 0.086 2.44% 4
exp003 2.97 0.30 16 0.075 3.22% 14
exp004 2.97 0.35 12 0.117 1.75% 1
exp005 2.97 0.35 14 0.100 2.41% 21
exp006 2.97 0.35 16 0.088 3.18% 35
exp007 2.97 0.40 12 0.133 1.72% 4
exp008 2.97 0.40 14 0.114 2.38% 25
exp009 2.97 0.40 16 0.100 3.15% 42

Table A.1: Test specifications [h/R=2.97].

185

Appendix A

Experimental results

A.1 Constant shaft frequency

Acronyms:

experiment # name of the experiment;
h/R [/] water-depth ratio;
U [m/s] speed of advance;
n [1/s] shaft frequency;
J [/] advance ratio;
Δp/p0 [/] propeller loading;
θ [deg] blade correction angle.

h/R = 2.97

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp001 2.97 0.30 12 0.100 1.77% 0
exp002 2.97 0.30 14 0.086 2.44% 4
exp003 2.97 0.30 16 0.075 3.22% 14
exp004 2.97 0.35 12 0.117 1.75% 1
exp005 2.97 0.35 14 0.100 2.41% 21
exp006 2.97 0.35 16 0.088 3.18% 35
exp007 2.97 0.40 12 0.133 1.72% 4
exp008 2.97 0.40 14 0.114 2.38% 25
exp009 2.97 0.40 16 0.100 3.15% 42

Table A.1: Test specifications [h/R=2.97].

185

Appendix A

Experimental results

A.1 Constant shaft frequency

Acronyms:

experiment # name of the experiment;
h/R [/] water-depth ratio;
U [m/s] speed of advance;
n [1/s] shaft frequency;
J [/] advance ratio;
Δp/p0 [/] propeller loading;
θ [deg] blade correction angle.

h/R = 2.97

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp001 2.97 0.30 12 0.100 1.77% 0
exp002 2.97 0.30 14 0.086 2.44% 4
exp003 2.97 0.30 16 0.075 3.22% 14
exp004 2.97 0.35 12 0.117 1.75% 1
exp005 2.97 0.35 14 0.100 2.41% 21
exp006 2.97 0.35 16 0.088 3.18% 35
exp007 2.97 0.40 12 0.133 1.72% 4
exp008 2.97 0.40 14 0.114 2.38% 25
exp009 2.97 0.40 16 0.100 3.15% 42

Table A.1: Test specifications [h/R=2.97].

185



186 Experimental results

Figure A.1: [h/R = 2.97]

h/R = 2.44

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp010 2.44 0.30 12 0.100 1.77% 10
exp011 2.44 0.30 14 0.086 2.44% 20
exp012 2.44 0.30 16 0.075 3.22% 41

Table A.2: Test specifications [h/R=2.44].
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Figure A.2: [h/R = 2.44]

h/R = 2.24

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp013 2.24 0.30 12 0.100 1.77% 13
exp014 2.24 0.30 14 0.086 2.44% 26
exp015 2.24 0.30 16 0.075 3.22% 50

Table A.3: Test specifications [h/R=2.24].

Figure A.3: [h/R = 2.24]
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188 Experimental results

h/R = 2.04

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp016 2.04 0.30 12 0.100 1.77% 17
exp017 2.04 0.30 14 0.086 2.44% 31
exp020 2.04 0.30 16 0.075 3.22% 58
exp021 2.04 0.35 16 0.088 3.18% 76
exp023 2.04 0.40 16 0.100 3.15% 65

Table A.4: Test specifications [h/R=2.04].

Figure A.4: [h/R = 2.04]
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A.1. Constant shaft frequency 189

h/R = 1.96

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp024 1.96 0.30 12 0.100 1.77% 36
exp025 1.96 0.30 14 0.086 2.44% 46
exp026 1.96 0.30 16 0.075 3.22% 74
exp027 1.96 0.35 16 0.088 3.18% 72
exp028 1.96 0.35 14 0.100 2.41% 56
exp030 1.96 0.40 16 0.100 3.15% 73

Table A.5: Test specifications [h/R=1.96].

Figure A.5: [h/R = 1.96]
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190 Experimental results

h/R = 1.88

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp031 1.88 0.30 12 0.100 1.77% 41
exp032 1.88 0.30 14 0.086 2.44% 60
exp033 1.88 0.30 16 0.075 3.22% 89
exp034 1.88 0.35 14 0.100 2.41% 58
exp037 1.88 0.35 16 0.088 3.18% 87
exp039 1.88 0.40 14 0.114 2.38% 64
exp040 1.88 0.40 16 0.100 3.15% 88

Table A.6: Test specifications [h/R=1.88].

Figure A.6: [h/R = 1.88]
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A.1. Constant shaft frequency 191

h/R = 1.80

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp041 1.80 0.30 12 0.100 1.77% 53
exp042 1.80 0.30 14 0.086 2.44% 77
exp043 1.80 0.30 16 0.075 3.22% 95
exp044 1.80 0.35 12 0.117 1.75% 46
exp045 1.80 0.35 14 0.100 2.41% 80
exp046 1.80 0.35 16 0.088 3.18% 95
exp047 1.80 0.40 12 0.133 1.72% 53
exp048 1.80 0.40 14 0.114 2.38% 71
exp049 1.80 0.40 16 0.100 3.15% 90

Table A.7: Test specifications [h/R=1.8].

Figure A.7: [h/R = 1.80]
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experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp041 1.80 0.30 12 0.100 1.77% 53
exp042 1.80 0.30 14 0.086 2.44% 77
exp043 1.80 0.30 16 0.075 3.22% 95
exp044 1.80 0.35 12 0.117 1.75% 46
exp045 1.80 0.35 14 0.100 2.41% 80
exp046 1.80 0.35 16 0.088 3.18% 95
exp047 1.80 0.40 12 0.133 1.72% 53
exp048 1.80 0.40 14 0.114 2.38% 71
exp049 1.80 0.40 16 0.100 3.15% 90

Table A.7: Test specifications [h/R=1.8].

Figure A.7: [h/R = 1.80]

A.1. Constant shaft frequency 191

h/R = 1.80

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp041 1.80 0.30 12 0.100 1.77% 53
exp042 1.80 0.30 14 0.086 2.44% 77
exp043 1.80 0.30 16 0.075 3.22% 95
exp044 1.80 0.35 12 0.117 1.75% 46
exp045 1.80 0.35 14 0.100 2.41% 80
exp046 1.80 0.35 16 0.088 3.18% 95
exp047 1.80 0.40 12 0.133 1.72% 53
exp048 1.80 0.40 14 0.114 2.38% 71
exp049 1.80 0.40 16 0.100 3.15% 90

Table A.7: Test specifications [h/R=1.8].

Figure A.7: [h/R = 1.80]



192 Experimental results

h/R = 1.72

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp050 1.72 0.30 12 0.100 1.77% 63
exp051 1.72 0.30 14 0.086 2.44% 79
exp052 1.72 0.30 16 0.075 3.22% 100
exp053 1.72 0.35 12 0.117 1.75% 57
exp079 1.72 0.35 16 0.088 3.18% 103
exp080 1.72 0.35 14 0.100 2.41% 92
exp081 1.72 0.40 12 0.133 1.72% 64
exp082 1.72 0.40 14 0.114 2.38% 85
exp083 1.72 0.40 16 0.100 3.15% 104

Table A.8: Test specifications [h/R=1.72].

Figure A.8: [h/R = 1.72]
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h/R = 1.72

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp050 1.72 0.30 12 0.100 1.77% 63
exp051 1.72 0.30 14 0.086 2.44% 79
exp052 1.72 0.30 16 0.075 3.22% 100
exp053 1.72 0.35 12 0.117 1.75% 57
exp079 1.72 0.35 16 0.088 3.18% 103
exp080 1.72 0.35 14 0.100 2.41% 92
exp081 1.72 0.40 12 0.133 1.72% 64
exp082 1.72 0.40 14 0.114 2.38% 85
exp083 1.72 0.40 16 0.100 3.15% 104

Table A.8: Test specifications [h/R=1.72].

Figure A.8: [h/R = 1.72]

192 Experimental results

h/R = 1.72

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp050 1.72 0.30 12 0.100 1.77% 63
exp051 1.72 0.30 14 0.086 2.44% 79
exp052 1.72 0.30 16 0.075 3.22% 100
exp053 1.72 0.35 12 0.117 1.75% 57
exp079 1.72 0.35 16 0.088 3.18% 103
exp080 1.72 0.35 14 0.100 2.41% 92
exp081 1.72 0.40 12 0.133 1.72% 64
exp082 1.72 0.40 14 0.114 2.38% 85
exp083 1.72 0.40 16 0.100 3.15% 104

Table A.8: Test specifications [h/R=1.72].

Figure A.8: [h/R = 1.72]

192 Experimental results

h/R = 1.72

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp050 1.72 0.30 12 0.100 1.77% 63
exp051 1.72 0.30 14 0.086 2.44% 79
exp052 1.72 0.30 16 0.075 3.22% 100
exp053 1.72 0.35 12 0.117 1.75% 57
exp079 1.72 0.35 16 0.088 3.18% 103
exp080 1.72 0.35 14 0.100 2.41% 92
exp081 1.72 0.40 12 0.133 1.72% 64
exp082 1.72 0.40 14 0.114 2.38% 85
exp083 1.72 0.40 16 0.100 3.15% 104

Table A.8: Test specifications [h/R=1.72].

Figure A.8: [h/R = 1.72]



A.1. Constant shaft frequency 193

h/R = 1.64

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp084 1.64 0.30 12 0.100 1.77% 79
exp085 1.64 0.30 14 0.086 2.44% 97
exp086 1.64 0.30 16 0.075 3.22% 111
exp087 1.64 0.35 12 0.117 1.75% 67
exp088 1.64 0.35 14 0.100 2.41% 92
exp089 1.64 0.35 16 0.088 3.18% 103
exp091 1.64 0.40 14 0.114 2.38% 85
exp092 1.64 0.40 16 0.100 3.15% 96
exp093 1.64 0.40 12 0.133 1.72% 81

Table A.9: Test specifications [h/R=1.64].

Figure A.9: [h/R = 1.64]

A.1. Constant shaft frequency 193

h/R = 1.64

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp084 1.64 0.30 12 0.100 1.77% 79
exp085 1.64 0.30 14 0.086 2.44% 97
exp086 1.64 0.30 16 0.075 3.22% 111
exp087 1.64 0.35 12 0.117 1.75% 67
exp088 1.64 0.35 14 0.100 2.41% 92
exp089 1.64 0.35 16 0.088 3.18% 103
exp091 1.64 0.40 14 0.114 2.38% 85
exp092 1.64 0.40 16 0.100 3.15% 96
exp093 1.64 0.40 12 0.133 1.72% 81

Table A.9: Test specifications [h/R=1.64].

Figure A.9: [h/R = 1.64]

A.1. Constant shaft frequency 193

h/R = 1.64

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp084 1.64 0.30 12 0.100 1.77% 79
exp085 1.64 0.30 14 0.086 2.44% 97
exp086 1.64 0.30 16 0.075 3.22% 111
exp087 1.64 0.35 12 0.117 1.75% 67
exp088 1.64 0.35 14 0.100 2.41% 92
exp089 1.64 0.35 16 0.088 3.18% 103
exp091 1.64 0.40 14 0.114 2.38% 85
exp092 1.64 0.40 16 0.100 3.15% 96
exp093 1.64 0.40 12 0.133 1.72% 81

Table A.9: Test specifications [h/R=1.64].

Figure A.9: [h/R = 1.64]

A.1. Constant shaft frequency 193

h/R = 1.64

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp084 1.64 0.30 12 0.100 1.77% 79
exp085 1.64 0.30 14 0.086 2.44% 97
exp086 1.64 0.30 16 0.075 3.22% 111
exp087 1.64 0.35 12 0.117 1.75% 67
exp088 1.64 0.35 14 0.100 2.41% 92
exp089 1.64 0.35 16 0.088 3.18% 103
exp091 1.64 0.40 14 0.114 2.38% 85
exp092 1.64 0.40 16 0.100 3.15% 96
exp093 1.64 0.40 12 0.133 1.72% 81

Table A.9: Test specifications [h/R=1.64].

Figure A.9: [h/R = 1.64]



194 Experimental results

h/R = 1.56

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp068 1.56 0.30 12 0.100 1.77% 83
exp069 1.56 0.30 14 0.086 2.44% 97
exp070 1.56 0.30 16 0.075 3.22% 114
exp071 1.56 0.35 12 0.117 1.75% 68
exp072 1.56 0.35 14 0.100 2.41% 84
exp073 1.56 0.35 16 0.088 3.18% 105
exp074 1.56 0.40 12 0.133 1.72% 61
exp075 1.56 0.40 14 0.114 2.38% 77
exp076 1.56 0.40 16 0.100 3.15% 99

Table A.10: Test specifications [h/R=1.56].

Figure A.10: [h/R = 1.56]
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h/R = 1.56

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp068 1.56 0.30 12 0.100 1.77% 83
exp069 1.56 0.30 14 0.086 2.44% 97
exp070 1.56 0.30 16 0.075 3.22% 114
exp071 1.56 0.35 12 0.117 1.75% 68
exp072 1.56 0.35 14 0.100 2.41% 84
exp073 1.56 0.35 16 0.088 3.18% 105
exp074 1.56 0.40 12 0.133 1.72% 61
exp075 1.56 0.40 14 0.114 2.38% 77
exp076 1.56 0.40 16 0.100 3.15% 99

Table A.10: Test specifications [h/R=1.56].

Figure A.10: [h/R = 1.56]

194 Experimental results

h/R = 1.56

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp068 1.56 0.30 12 0.100 1.77% 83
exp069 1.56 0.30 14 0.086 2.44% 97
exp070 1.56 0.30 16 0.075 3.22% 114
exp071 1.56 0.35 12 0.117 1.75% 68
exp072 1.56 0.35 14 0.100 2.41% 84
exp073 1.56 0.35 16 0.088 3.18% 105
exp074 1.56 0.40 12 0.133 1.72% 61
exp075 1.56 0.40 14 0.114 2.38% 77
exp076 1.56 0.40 16 0.100 3.15% 99

Table A.10: Test specifications [h/R=1.56].

Figure A.10: [h/R = 1.56]

194 Experimental results

h/R = 1.56

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp068 1.56 0.30 12 0.100 1.77% 83
exp069 1.56 0.30 14 0.086 2.44% 97
exp070 1.56 0.30 16 0.075 3.22% 114
exp071 1.56 0.35 12 0.117 1.75% 68
exp072 1.56 0.35 14 0.100 2.41% 84
exp073 1.56 0.35 16 0.088 3.18% 105
exp074 1.56 0.40 12 0.133 1.72% 61
exp075 1.56 0.40 14 0.114 2.38% 77
exp076 1.56 0.40 16 0.100 3.15% 99

Table A.10: Test specifications [h/R=1.56].

Figure A.10: [h/R = 1.56]



A.1. Constant shaft frequency 195

h/R = 1.48

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp094 1.48 0.30 12 0.100 1.77% 78
exp096 1.48 0.30 14 0.086 2.44% 117
exp097 1.48 0.30 16 0.075 3.22% 142
exp098 1.48 0.35 12 0.117 1.75% 75
exp099 1.48 0.35 14 0.100 2.41% 105
exp100 1.48 0.35 16 0.088 3.18% 128
exp101 1.48 0.40 12 0.133 1.72% 66
exp102 1.48 0.40 14 0.114 2.38% 100
exp103 1.48 0.40 16 0.100 3.15% 120

Table A.11: Test specifications [h/R=1.48].

Figure A.11: [h/R = 1.48]

A.1. Constant shaft frequency 195

h/R = 1.48

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp094 1.48 0.30 12 0.100 1.77% 78
exp096 1.48 0.30 14 0.086 2.44% 117
exp097 1.48 0.30 16 0.075 3.22% 142
exp098 1.48 0.35 12 0.117 1.75% 75
exp099 1.48 0.35 14 0.100 2.41% 105
exp100 1.48 0.35 16 0.088 3.18% 128
exp101 1.48 0.40 12 0.133 1.72% 66
exp102 1.48 0.40 14 0.114 2.38% 100
exp103 1.48 0.40 16 0.100 3.15% 120

Table A.11: Test specifications [h/R=1.48].

Figure A.11: [h/R = 1.48]

A.1. Constant shaft frequency 195

h/R = 1.48

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp094 1.48 0.30 12 0.100 1.77% 78
exp096 1.48 0.30 14 0.086 2.44% 117
exp097 1.48 0.30 16 0.075 3.22% 142
exp098 1.48 0.35 12 0.117 1.75% 75
exp099 1.48 0.35 14 0.100 2.41% 105
exp100 1.48 0.35 16 0.088 3.18% 128
exp101 1.48 0.40 12 0.133 1.72% 66
exp102 1.48 0.40 14 0.114 2.38% 100
exp103 1.48 0.40 16 0.100 3.15% 120

Table A.11: Test specifications [h/R=1.48].

Figure A.11: [h/R = 1.48]

A.1. Constant shaft frequency 195

h/R = 1.48

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp094 1.48 0.30 12 0.100 1.77% 78
exp096 1.48 0.30 14 0.086 2.44% 117
exp097 1.48 0.30 16 0.075 3.22% 142
exp098 1.48 0.35 12 0.117 1.75% 75
exp099 1.48 0.35 14 0.100 2.41% 105
exp100 1.48 0.35 16 0.088 3.18% 128
exp101 1.48 0.40 12 0.133 1.72% 66
exp102 1.48 0.40 14 0.114 2.38% 100
exp103 1.48 0.40 16 0.100 3.15% 120

Table A.11: Test specifications [h/R=1.48].

Figure A.11: [h/R = 1.48]



196 Experimental results

h/R = 1.40

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp104 1.40 0.30 12 0.100 1.77% 95
exp105 1.40 0.30 14 0.086 2.44% 132
exp106 1.40 0.30 16 0.075 3.22% 140
exp107 1.40 0.35 12 0.117 1.75% 86
exp108 1.40 0.35 14 0.100 2.41% 114
exp109 1.40 0.35 16 0.088 3.18% 130
exp110 1.40 0.40 12 0.133 1.72% 72
exp111 1.40 0.40 14 0.114 2.38% 111
exp112 1.40 0.40 16 0.100 3.15% 130

Table A.12: Test specifications [h/R=1.4].

Figure A.12: [h/R = 1.4]

196 Experimental results

h/R = 1.40

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp104 1.40 0.30 12 0.100 1.77% 95
exp105 1.40 0.30 14 0.086 2.44% 132
exp106 1.40 0.30 16 0.075 3.22% 140
exp107 1.40 0.35 12 0.117 1.75% 86
exp108 1.40 0.35 14 0.100 2.41% 114
exp109 1.40 0.35 16 0.088 3.18% 130
exp110 1.40 0.40 12 0.133 1.72% 72
exp111 1.40 0.40 14 0.114 2.38% 111
exp112 1.40 0.40 16 0.100 3.15% 130

Table A.12: Test specifications [h/R=1.4].

Figure A.12: [h/R = 1.4]

196 Experimental results

h/R = 1.40

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp104 1.40 0.30 12 0.100 1.77% 95
exp105 1.40 0.30 14 0.086 2.44% 132
exp106 1.40 0.30 16 0.075 3.22% 140
exp107 1.40 0.35 12 0.117 1.75% 86
exp108 1.40 0.35 14 0.100 2.41% 114
exp109 1.40 0.35 16 0.088 3.18% 130
exp110 1.40 0.40 12 0.133 1.72% 72
exp111 1.40 0.40 14 0.114 2.38% 111
exp112 1.40 0.40 16 0.100 3.15% 130

Table A.12: Test specifications [h/R=1.4].

Figure A.12: [h/R = 1.4]

196 Experimental results

h/R = 1.40

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp104 1.40 0.30 12 0.100 1.77% 95
exp105 1.40 0.30 14 0.086 2.44% 132
exp106 1.40 0.30 16 0.075 3.22% 140
exp107 1.40 0.35 12 0.117 1.75% 86
exp108 1.40 0.35 14 0.100 2.41% 114
exp109 1.40 0.35 16 0.088 3.18% 130
exp110 1.40 0.40 12 0.133 1.72% 72
exp111 1.40 0.40 14 0.114 2.38% 111
exp112 1.40 0.40 16 0.100 3.15% 130

Table A.12: Test specifications [h/R=1.4].

Figure A.12: [h/R = 1.4]



A.1. Constant shaft frequency 197

h/R = 1.32

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp113 1.32 0.30 12 0.100 1.77% 105
exp114 1.32 0.30 14 0.086 2.44% 150
exp115 1.32 0.30 16 0.075 3.22% 150
exp116 1.32 0.35 12 0.117 1.75% 88
exp117 1.32 0.35 14 0.100 2.41% 140
exp118 1.32 0.35 16 0.088 3.18% 150
exp119 1.32 0.40 12 0.133 1.72% 82
exp120 1.32 0.40 14 0.114 2.38% 130
exp121 1.32 0.40 16 0.100 3.15% 140

Table A.13: Test specifications [h/R=1.32].

Figure A.13: [h/R = 1.32]

A.1. Constant shaft frequency 197

h/R = 1.32

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp113 1.32 0.30 12 0.100 1.77% 105
exp114 1.32 0.30 14 0.086 2.44% 150
exp115 1.32 0.30 16 0.075 3.22% 150
exp116 1.32 0.35 12 0.117 1.75% 88
exp117 1.32 0.35 14 0.100 2.41% 140
exp118 1.32 0.35 16 0.088 3.18% 150
exp119 1.32 0.40 12 0.133 1.72% 82
exp120 1.32 0.40 14 0.114 2.38% 130
exp121 1.32 0.40 16 0.100 3.15% 140

Table A.13: Test specifications [h/R=1.32].

Figure A.13: [h/R = 1.32]

A.1. Constant shaft frequency 197

h/R = 1.32

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp113 1.32 0.30 12 0.100 1.77% 105
exp114 1.32 0.30 14 0.086 2.44% 150
exp115 1.32 0.30 16 0.075 3.22% 150
exp116 1.32 0.35 12 0.117 1.75% 88
exp117 1.32 0.35 14 0.100 2.41% 140
exp118 1.32 0.35 16 0.088 3.18% 150
exp119 1.32 0.40 12 0.133 1.72% 82
exp120 1.32 0.40 14 0.114 2.38% 130
exp121 1.32 0.40 16 0.100 3.15% 140

Table A.13: Test specifications [h/R=1.32].

Figure A.13: [h/R = 1.32]

A.1. Constant shaft frequency 197

h/R = 1.32

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp113 1.32 0.30 12 0.100 1.77% 105
exp114 1.32 0.30 14 0.086 2.44% 150
exp115 1.32 0.30 16 0.075 3.22% 150
exp116 1.32 0.35 12 0.117 1.75% 88
exp117 1.32 0.35 14 0.100 2.41% 140
exp118 1.32 0.35 16 0.088 3.18% 150
exp119 1.32 0.40 12 0.133 1.72% 82
exp120 1.32 0.40 14 0.114 2.38% 130
exp121 1.32 0.40 16 0.100 3.15% 140

Table A.13: Test specifications [h/R=1.32].

Figure A.13: [h/R = 1.32]



198 Experimental results

h/R = 1.24

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp159 1.24 0.30 12 0.100 1.77% 120
exp160 1.24 0.30 16 0.075 3.22% 150
exp161 1.24 0.30 14 0.086 2.44% 147
exp162 1.24 0.35 12 0.117 1.75% 116
exp163 1.24 0.35 14 0.100 2.41% 141
exp164 1.24 0.35 16 0.088 3.18% 150
exp166 1.24 0.40 12 0.133 1.72% 115
exp167 1.24 0.40 14 0.114 2.38% 136
exp168 1.24 0.40 16 0.100 3.15% 150

Table A.14: Test specifications [h/R=1.24].

Figure A.14: [h/R = 1.24]
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h/R = 1.24

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp159 1.24 0.30 12 0.100 1.77% 120
exp160 1.24 0.30 16 0.075 3.22% 150
exp161 1.24 0.30 14 0.086 2.44% 147
exp162 1.24 0.35 12 0.117 1.75% 116
exp163 1.24 0.35 14 0.100 2.41% 141
exp164 1.24 0.35 16 0.088 3.18% 150
exp166 1.24 0.40 12 0.133 1.72% 115
exp167 1.24 0.40 14 0.114 2.38% 136
exp168 1.24 0.40 16 0.100 3.15% 150

Table A.14: Test specifications [h/R=1.24].

Figure A.14: [h/R = 1.24]
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h/R = 1.24

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp159 1.24 0.30 12 0.100 1.77% 120
exp160 1.24 0.30 16 0.075 3.22% 150
exp161 1.24 0.30 14 0.086 2.44% 147
exp162 1.24 0.35 12 0.117 1.75% 116
exp163 1.24 0.35 14 0.100 2.41% 141
exp164 1.24 0.35 16 0.088 3.18% 150
exp166 1.24 0.40 12 0.133 1.72% 115
exp167 1.24 0.40 14 0.114 2.38% 136
exp168 1.24 0.40 16 0.100 3.15% 150

Table A.14: Test specifications [h/R=1.24].

Figure A.14: [h/R = 1.24]

198 Experimental results

h/R = 1.24

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp159 1.24 0.30 12 0.100 1.77% 120
exp160 1.24 0.30 16 0.075 3.22% 150
exp161 1.24 0.30 14 0.086 2.44% 147
exp162 1.24 0.35 12 0.117 1.75% 116
exp163 1.24 0.35 14 0.100 2.41% 141
exp164 1.24 0.35 16 0.088 3.18% 150
exp166 1.24 0.40 12 0.133 1.72% 115
exp167 1.24 0.40 14 0.114 2.38% 136
exp168 1.24 0.40 16 0.100 3.15% 150

Table A.14: Test specifications [h/R=1.24].

Figure A.14: [h/R = 1.24]



A.1. Constant shaft frequency 199

h/R = 1.00

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp169 1.00 0.30 12 0.100 1.77% 127
exp170 1.00 0.30 14 0.086 2.44% 150
exp171 1.00 0.30 16 0.075 3.22% 150
exp172 1.00 0.35 12 0.117 1.75% 120
exp173 1.00 0.35 14 0.100 2.41% 130
exp174 1.00 0.35 16 0.088 3.18% 150
exp175 1.00 0.40 12 0.133 1.72% 110
exp176 1.00 0.40 14 0.114 2.38% 128
exp177 1.00 0.40 16 0.100 3.15% 143

Table A.15: Test specifications [h/R=1].

Figure A.15: [h/R = 1]

A.1. Constant shaft frequency 199

h/R = 1.00

experiment h/R U n J Δp/p0 θ
# [/] [m/s] [1/s] [/] [/] [deg]

exp169 1.00 0.30 12 0.100 1.77% 127
exp170 1.00 0.30 14 0.086 2.44% 150
exp171 1.00 0.30 16 0.075 3.22% 150
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A.2 Linear accelerations

Acronyms:

experiment # name of the experiment;
h/R [/] water-depth ratio;
U [m/s] speed of advance;
n [1/s] shaft frequency;
J [/] advance ratio;
Δp/p0 [/] propeller loading;
θ [deg] blade correction angle;
ṅ [rad/s2] linear acceleration.

experiment h/R U n J Δp/p0 θ ṅ
# [/] [m/s] [1/s] [/] [/] [deg] [rad/s2]

exp180 1.40 0.30 12 0.100 1.77% 100 208.7
exp181 1.40 0.30 14 0.086 2.44% 100 208.7
exp182 1.40 0.30 16 0.075 3.22% 100 208.7
exp183 1.40 0.30 12 0.100 1.77% 100 104.3
exp184 1.40 0.30 14 0.086 2.44% 100 104.3
exp185 1.40 0.30 16 0.075 3.22% 100 104.3
exp186 1.40 0.30 12 0.100 1.77% 100 52.2
exp187 1.40 0.30 14 0.086 2.44% 100 52.2
exp188 1.40 0.30 16 0.075 3.22% 100 52.2
exp189 1.40 0.30 12 0.100 1.77% 100 26.1
exp190 1.40 0.30 14 0.086 2.44% 100 26.1
exp191 1.40 0.30 16 0.075 3.22% 100 26.1
exp192 1.40 0.30 16 0.075 3.22% 100 26.1

Table A.16: Test specifications [h/R=1.4, U=0.3 m/s].
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experiment h/R U n J Δp/p0 θ ṅ
# [/] [m/s] [1/s] [/] [/] [deg] [rad/s2]

exp193 1.40 0.35 12 0.117 1.75% 100 208.7
exp194 1.40 0.35 14 0.100 2.41% 100 208.7
exp195 1.40 0.35 16 0.088 3.18% 100 208.7
exp196 1.40 0.35 12 0.117 1.75% 100 104.3
exp197 1.40 0.35 14 0.100 2.38% 100 104.3
exp198 1.40 0.35 16 0.088 3.15% 100 104.3
exp199 1.40 0.35 12 0.117 1.75% 100 52.2
exp200 1.40 0.35 14 0.100 2.44% 100 52.2
exp201 1.40 0.35 16 0.088 3.22% 100 52.2
exp202 1.40 0.35 12 0.117 1.75% 100 26.1
exp203 1.40 0.35 14 0.100 2.44% 100 26.1
exp204 1.40 0.35 14 0.100 3.22% 100 26.1
exp205 1.40 0.35 14 0.100 1.77% 100 26.1
exp206 1.40 0.35 16 0.088 2.44% 100 26.1

Table A.17: Test specifications [h/R=1.4, U=0.35 m/s].

experiment h/R U n J Δp/p0 θ ṅ
# [/] [m/s] [1/s] [/] [/] [deg] [rad/s2]

exp207 1.40 0.40 12 0.133 1.72% 100 26.1
exp208 1.40 0.40 14 0.114 2.38% 100 26.1
exp209 1.40 0.40 16 0.100 3.15% 100 26.1
exp210 1.40 0.40 16 0.100 3.15% 100 26.1
exp211 1.40 0.40 12 0.133 1.72% 100 52.2
exp212 1.40 0.40 14 0.114 2.38% 100 52.2
exp213 1.40 0.40 16 0.100 3.15% 100 52.2
exp214 1.40 0.40 12 0.133 1.72% 100 104.3
exp215 1.40 0.40 14 0.114 2.38% 100 104.3
exp216 1.40 0.40 16 0.100 3.15% 100 104.3
exp217 1.40 0.40 12 0.133 1.72% 100 208.7
exp218 1.40 0.40 14 0.114 2.38% 100 208.7
exp219 1.40 0.40 16 0.100 3.15% 100 208.7

Table A.18: Test specifications [h/R=1.4, U=0.4 m/s].
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experiment h/R U n J Δp/p0 θ ṅ
# [/] [m/s] [1/s] [/] [/] [deg] [rad/s2]

exp220 1.24 0.35 14 0.100 2.38% 100 26.1
exp221 1.24 0.35 14 0.100 2.38% 100 52.2
exp222 1.24 0.35 14 0.100 2.38% 100 104.3
exp223 1.24 0.35 14 0.100 2.38% 100 208.7

Table A.19: Test specifications [h/R=1.24].
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(g) h/R=1.56. (h) h/R=1.48.

(i) h/R=1.4. (j) h/R=1.32.

(k) h/R=1.24. (l) h/R=1.

Figure A.16: [J=0.1, n=14 Hz].
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(m) h/R=0.24 Koz10. (n) h/R=0 Kou05.
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