
Paper-based electronic voting

Anna Vederhus

Master of Science in Mathematics (for international students)

Supervisor: Kristian Gjøsteen, MATH

Department of Mathematical Sciences

Submission date: December 2015

Norwegian University of Science and Technology

Paper-based electronic voting

Anna Vederhus

December 2015

2

Table of Contents

1 Introduction 7

2 Theory 11
2.1 Definitions . 11
2.2 Mathematics . 13

2.2.1 Public Key Encryption . 13
2.2.2 Exponential ElGamal . 14
2.2.3 Negligible function . 15
2.2.4 Decisional Diffie Hellman Assumption 15
2.2.5 Commitment Scheme . 16
2.2.6 Threshold Scheme . 17

3 Demos 19
3.1 Introduction . 19
3.2 Cryptographic description . 20

3.2.1 Setup phase . 21
3.2.2 Voting phase . 23
3.2.3 Tallying phase . 23

3.3 Example . 24

4 Prêt-à-voter 29
4.1 Introduction . 29
4.2 Cryptographic description by decryption mix-net 30

4.2.1 Setup phase . 30
4.2.2 Voting phase . 33
4.2.3 Tallying phase . 33

4.3 Example . 34
4.4 Cryptographic description by re-encryption mix-net 37

4.4.1 Setup phase . 38
4.4.2 Voting phase . 40
4.4.3 Tallying phase . 40

3

5 Requirements in the voting phase of Demos 43
5.1 Privacy . 44
5.2 Verifiability . 44
5.3 Conclusion . 46

6 Analyzing cryptographic components of Demos 47
6.1 Commitment scheme . 47

6.1.1 Privacy . 48
6.1.2 Verifiability . 50

6.2 Bulletin board . 53
6.2.1 Requirements . 53
6.2.2 Protocol . 54

6.3 Conclusion . 55

7 Demos as an end-to-end verifiable voting system 57
7.1 Verifiability Game . 57
7.2 The verifiability proof . 60

7.2.1 Producing the proof . 60
7.2.2 Producing the verifiers challenge 61

7.3 Conclusion . 62

8 Closing Remarks 63

4

Abstract
In this thesis, we present two paper-based electronic voting systems Prêt-à-Voter and De-
mos. We describe these in the same systematic way with new examples. Furthermore, we
implement RSA cryptosystem in Prêt-à-Voter. Then, we contribute with an informal anal-
ysis of what is required both in practice and in the technical part of Demos. We present
how the bulletin board must be constructed and in the analysis of the commitment scheme
we propose a new way to generate the commitment key strengthening the verifiability and
privacy of the system. Finally, we show how the verifiability of Demos is dependent on
the practical and technical elements analysed. In specific, we show how the randomness
in the voting phase contributes with entropy to the σ-protocol of ballot correctness. For
a general analysis of Prêt-à-Voter and Demos this thesis should be read together with the
thesis of Anna Testanière.

Sammendrag
I denne oppgaven presenterer vi to papir-baserte elektroniske stemmesystemer Prêt-à-
Voter og Demos. Vi beskriver de på en lignende måte med nye eksempler og vi innfører
RSA kryptosystem i Prêt-à-Voter. Videre bidrar vi med en uformell analyse av hva som
kreves av den praktiske og tekniske delen av Demos. I analysen av commitment scheme
foreslår vi en ny måte å genererer nøklene som styrker tilliten til systemet. Vi beskriver
også hva som kreves av en bulletin board. Til slutt, viser vi hvordan verifiserbarheten til
Demos er avhengig av både den praktiske og tekniske delen som analyseres. Spesielt viser
vi hvordan tilfeldigheten i stemmefasen bidrar med entropi i σ-protokollen som beviser at
stemmesedlene er korrekt konstruert. For en generell analyse av Prêt-à-Voter og Demos,
burde denne oppgaven leses sammen med oppgaven skrevet av Anna Testanière.

5

Acknowledgement
I skrivende stund, har jeg endelig en opplevelse av at dette går i havn. Jeg vil takke hov-
edveileder Kristian Gjøsteen for hjelp i høst, det har vært fint å kunne å ha et kryptografi
leksikon noen etasjer opp fra lesesalen. Jeg vil også takke Martin Strand for oppmuntrende
veiledning i vår. Tusen takk til de tre jentene hjemme Torunn, Ingeborg og Kjersti som et-
ter endt skoledag, gjør at jeg vil løpe hjem. Videre takk til mattelands innbyggere spesielt
Sigurd, Marit og Anna som får meg til å ha lyst til å løpe tilbake til skolen om morgenen.
Mine foreldre inspirerer meg, dere viser forbilledlig hvordan det å tilegne seg kunnskap gir
mening og er gøy. Helt siden jeg kan huske, har dere engasjert dere og delt kunnskap slik
at enhver av mine prosjekter har blitt så lærerike. Spesielt takk til min far som i de siste
årene aldri har takket nei til en matematisk prat, uansett hvor opptatt han selv måtte være.
Til slutt vil jeg takke min kjære kollega og venninne Anna, ditt intelekt, vesen og talent
imponererer meg. Tusen takk for et år med latter, faglige og ikke-faglige diskusjoner, takk
for at du har gjort det å skrive master til en glede!

6

Chapter 1
Introduction

In an election, it is crucial for the society to trust the voting system implemented. That is,
the voter should be certain that when the election is done her vote is counted as intended.
This property is called verifiability. Moreover, she should be able to vote as she wants
without being controlled by another, and she should have the right to vote privately. This
is the privacy property. Finally, the system should be accessible and understandable to
every voter. This is the availability property.

These requirements, categorised into verifiability, privacy and availability are fundamental
in a trustworthy system. Unfortunately, it is a quite difficult task to satisfy these properties
simultaneously. Indeed, it seems that more of one gives less of the other. For example, if
the voting system allows the voter to use her personal mobile-phone as a voting device,
the system is definitely available, but the privacy of the vote can not be assured.

Let’s now have a closer look at our traditional way of voting. In Norway, the voter must
go to a polling place. There, she makes her choice in a polling booth, privately. Her paper
ballot is folded so that no one can see how she voted. Then, she must register and prove
to the authority that she is eligible to vote. If yes, her ballot is stamped and she puts her
ballot in an urn, which will be counted at the end of the election by the authority. It is
a well-thought-out system, but can we really trust this traditional way of voting? Does it
fulfill the trust-requirements that we have stated?

Firstly, this system appears available since the way of voting is understandable to all and
the polling places are accessible to some extent. Secondly, it seems to ensure privacy as the
voter is alone in the voting booth and leaves without any receipt. But, let’s not forget that
nowadays the voter can use her personal electronic devices while voting and take pictures
of or film her choices. This can cause vote-selling and making it possible for an adversary
to coerce her.

Finally, the voter can not be certain that her ballot has been counted or even counted
correctly. In other words, the voter must trust the election authority and the tellers to be
honest while tallying her and all the other ballots. Miscounting and cheating occurs more

7

often than we think and can have great consequences. So, as we can see, this voting system
has some weaknesses motivating research of a better solution. Can we make a system more
secure, robust and trustworthy using new technology?

In an electronic voting system, cryptography could offer more security for instance by
making it possible for the voter to verify her vote and making it more difficult for the
different agents involved in a voting system to cheat. Moreover, by avoiding the “human
counting”, the tallying procedure could be more efficient. This could also reduce the
cost of the election, especially if we consider remote electronic voting. Although not
important for a trustworthy system, efficiency and cost are properties that must be taken
into consideration.

However, turning to electronic voting does not only come with advantages. If we consider
a remote electronic voting system, where the voter can cast her ballot from home, at work
or in the bus, how can we ensure the privacy needed? How can we be certain that she was
not forced or manipulated to vote in some way? This problem is so large and complicated
that as per today, a remote system that ensures privacy, has not been found. We need the
privacy of the voter to be kept, hence it has to be supervised, but we also want the voter to
be able to verify her vote, therefore we turn to supervised electronic voting. By that, we
mean having cryptographic elements making the verification possible, without losing the
privacy requirement as the voting is still happening at a polling station.

Table Three voting systems with a superficial analysis of benefits and drawbacks.
Availability Privacy Verifiability

Traditional
Norwegian
voting system

Yes.
- Accessible to the extent
that the voter needs to go to
a polling station to vote.
- Understandable to every
voter.

Yes.
- Coercion resistant be-
cause of polling booth and
receipt-freeness.
- Anonymous.

No.
- The voter cannot verify
that her vote was counted.
- Only parts of the elec-
tion process can be veri-
fied.

Remote
voting system

Yes.
- Accessible to the extent
that the voter has access to
Internet.
- Understandable to every
voter, may be more compli-
cated because of the crypto-
graphic elements and the use
of the technological devices.

Difficult.
- No privacy ensured while
voting, more complicated to
achieve coercion resistance.
- Anonymous to the extent
that her vote can not be
traced in the system.

Yes.
- The voter can verify that
her vote was counted.
- All parts of the election
process can be verified.

Paper-based
electronic
voting system

Yes.
- Accessible to the extent
that the voter needs to go to
a polling station to vote.
- Understandable to every
voter, may be more compli-
cated because of the crypto-
graphic elements.

Yes.
- Coercion resistant be-
cause of polling booth and
cryptographic receipt.
- Anonymous.

Yes.
- The voter can verify that
her vote was counted.
- All parts of the election
process can be verified.

8

In chapter 2, we present the definitions and mathematical notions used in this thesis. In
chapter 3, we describe the voting system Demos and explain further the setup phase, the
voting phase and the tallying phase of the system. We conclude this chapter with an il-
lustrating example. Similarly, we present in chapter 4 two versions of the voting system
Prêt-à-Voter. First, we describe a version based on decryption mix-net and second, a ver-
sion based on re-encryption mix-net. We also make an illustrating example of the first
version.

We analyse Demos in chapter 5, 6 and 7. In chapter 5, we present and investigate the
requirements needed in the voting phase first with respect to the privacy and then the veri-
fiability. In chapter 6, we analyse two cryptographic components, namely the commitment
scheme and the bulletin board. We end this thesis in chapter 7 by introducing a math-
ematical definition of verifiability followed by an analysis of how Demos satisfies this
definition.

9

10

Chapter 2
Theory

2.1 Definitions
Numerous notions and many requirements can be used to define a voting system. We
define only the notions and requirements that are used in this thesis. These definitions are
informal but meant to be sufficient to read this thesis. Interested readers are welcome to
read more about these notions from Clarkson, Chong and Myers [2], Juels, Catalano and
Jakobsson [10], Chondros, Delis, and Gavatha et al. [7] and Kiayias, Zacharias and Zhang
[11].

Electronic voting system The casting and counting of votes in a election require informa-
tion and communication technologies.

Supervised voting system The voter votes at a polling station.

Remote voting system The voter does not need to go to a polling station to vote.

We concentrate on three security requirements; verifiability, availability and privacy. We
present here a general definition for each of these.

Verifiability A voting system is verifiable if it fulfills one or more of the following defini-
tions.

• Voter Verifiability The voter can check that her own vote is included in the tally.

• End-to-end Verifiability It can be checked that all votes cast are counted, that only
authorized votes are counted, and that no votes are changed during counting.

Availability A voting system is available if it is both accessible and understandable.

• Accessible The voter is able to vote without any restriction.

• Understandable The voter can understand and use the system.

Privacy A voting system is private if it is coercion resistant and if it ensures anonymity.

11

• Coercion Resistant A coercer can not be certain whether the voter cooperated with
him, even if they interact while she votes.

• Anonymity The identity of the voter and her vote can not be linked.

There is a related notion called receipt-freeness, which is a weaker version of coercion
resistance.

Receipt-freeness The voter does not receive a receipt that can prove how she voted.
We remark that a system that is coercion-resistant is consequently receipt-free.

12

2.2 Mathematics
To ease the notation, we define [1, n] to be {1, 2, ..., n}.

2.2.1 Public Key Encryption
In public key encryption [15], a message is encrypted with a public key. To decrypt this
message, the corresponding private key is needed. We define public key encryption with
the following notation in this thesis.

Public Key Encryption

A public cryptosystem is defined by (P, C,K, E ,D) where,

• P denotes the set of plaintexts.

• C denotes the set of ciphertexts.

• K denotes a key generator with output (pk, sk), where pk is the public key and
sk is the corresponding secret key.

• E denotes the set of encryption algorithms.

• D denotes the set of decryption algorithms.

For any (pk, sk) generated by K there is an Epk ∈ E where Epk: P → C and a
corresponding Dsk ∈ D, where Dsk: C → P . For every m ∈ P ,

Dsk(Epk(m)) = m

13

2.2.2 Exponential ElGamal
The exponential ElGamal is a modified version of the ElGamal cryptosystem [15]. A gen-
erator g of prime order is raised to the power of the message m, so that gm is encrypted.
While the original ElGamal is homomorphic over multiplication, this system satisfies the
additive homomorphic property, gm1 ·gm2 = gm1+m2 . After decrypting the ciphertext, gm

is obtained. Because of the discrete logarithm problem, the message m has to be small so
that it can be retrieved by known algorithms such as Shanks Algorithm or with a precom-
puted table. The exponential ElGamal described below can be used on a general group.
To ease in reference we use the group Z∗p since it is this specific version of exponential
ElGamal we refer to later in this thesis.

Exponential ElGamal Public-Key cryptosystem in Z∗p

Let G be a subgroup of Z∗p with order q and generator g, where both p and q are primes.
Assume computing discrete logarithms in G is infeasible. G is isomorphic to Zq .

• P= Zq

• C= Z∗p × Z∗p

• (pk, sk)← K, where pk = (p, g, β) and sk = e.
β ≡ ge mod p.

Let k,m ∈ P , where k is a secret random number and m is the message to encrypt. We
define the encryption algorithm, Epk:

Epk(m′) = (c1, c2),

where m′=gm, c1 = gk mod p, c2 = gmβk mod p.

For (c1,c2) ∈ C, we define the decryption algorithm Dsk:

Dsk(c1, c2) = c2(c1
e)−1 = gmβk(gke)−1 = gmgek(gke)−1 = gm = m′.

Then retrieving m from m′ either by known algorithms or from a precomputed table.

We note that using exponential El Gamal is not problematic in a voting system since the
plaintexts often are candidates from a small set, so that the discrete logarithm may be
found.

14

2.2.3 Negligible function
One of the main goals of using a cryptographic scheme is that no adversary can break the
scheme without knowing the key. However, an adversary given unbounded computational
power can find the key to the scheme by brute force. Most cryptographic systems in use
today assume an adversary with bounded computational power.

Negligible function

The function neg : N→ [0, 1] is defined as negligible if for all c > 0, there exists an
n > Nc such that,

neg(n) <
1

nc
.

In a cryptographic system n ∈ N is the key length. We observe that, a negligible function
multiplied by any polynomial p(n) is still negligible, neg(n) < 1

nc · p(n). We often refer
to negligible functions when defining the probability that an adversary breaks the system.
If the probability of breaking the scheme is negligible, the probability stays negligible if it
is repeated a polynomial number of times. For all c > 0, there exists an n > Nc such that,

Pr[an adversary breaks the scheme] ≤ 1

nc
· p(n).

2.2.4 Decisional Diffie Hellman Assumption

Decisional Diffie Hellman Assumption

Let G be a group generated by g. If the Decisional Diffie Hellman Assumption holds, it
is infeasible to distinguish between,

{(ga, gb, c) | a, b, c ∈ G}

and
{(ga, gb, gab) | a, b ∈ G}.

The Decisional Diffie Hellman Assumption is stronger than assuming that computing the
discrete logarithms in the group is infeasible. By knowing a or b one can compute gab and
distinguish c′ from c.

15

2.2.5 Commitment Scheme
A commitment scheme [1] is a method of committing to a value while keeping it secret to
others. By this, the scheme has two properties, namely hiding and binding. The commit-
ment gives no information about the value committed, providing the hiding property. The
binding property follows because the commitment eliminate the possibility of changing
the original value. To open the commitment, a secret opening value has to be revealed
by the agent who preformed the commitment. Below we present a general commitment
scheme.

Commitment Scheme

Let ck the commitment key. A commitment scheme is based on the following:

• For any m ∈ P
Comck(m) = (c, d)

is the commitment/opening pair form of m, where c is the commitment value and
d is the opening value.

• The opening of the commitment is presented as

Openck(c, d) = m ∈ P ∪ {⊥},

where ⊥ is returned if the commitment/opening pair (c, d) does not open to any
valid message in P .

Below we show how a commitment scheme is used in practice. We assume Bob wants to
commit a value m to Alice.

1. Bob generates Comck(m) = (c, d), and sends c to Alice.

2. To open the commitment, Bob sends d to Alice.

3. Alice computes Openck(c, d) = m and accepts the value, provided m 6=⊥.

In voting systems, commitment schemes can be used to ensure verifiability and privacy of
a cast vote.

16

2.2.6 Threshold Scheme
A threshold scheme [15] is a method of sharing a secret key by dividing the information
among several participants. It is called a (k, n)-threshold scheme if n is the number of
participants, from which any subgroup of k participants can compute the secret key, but
no group of k − 1 participants can obtain this information.

Shamir (k, n)-Threshold Scheme

Key Distribution
Let q be a prime. A third party D wants to divide a secret key a0 ∈ Zq among n
participants.
D chooses randomly k − 1 elements of Zq , denoted a1, a2, ..., ak−1 in secret.
D constructs the polynomial:

p(x) = a0 + a1x+ a2x+ ...+ ak−1x
k−1 mod q

Then D chooses n non-zero elements of Zp, denoted xi, for i ∈ [1, n].
Finally, D computes

p(xi) for i ∈ [1, n]

and distributes p(xi) to participant i, for i ∈ [1, n].

Retrieving Secret Key
Only k honest participants are needed to retrieve the polynomial p(x), and hence the
secret key a0. Given a set of k points, (x1, p(x1)), (x2, p(x2)), ..., (xk, p(xk)), the
interpolation polynomial in the Lagrange form is the linear combination:

L(x) = p(x1)l1(x) + p(x2)l2(x) + ...+ p(xk)lk(x) mod q

where, lj(x) =

k∏
m=1,m6=j

x− xm
xj − xm

The k participants can then computes L(0) = a0 in order to obtain the secret key.

The threshold scheme described above is used in voting systems to share the secret de-
cryption key of the votes into several independent parties. This supports the verifiability
requirement of a voting system, both making the whole system more robust against attacks
and making it harder for malicious agents who decrypt, to manipulate votes without being
caught.

17

18

Chapter 3
Demos

3.1 Introduction
Demos [8, 11] is presented as a paper-based electronic voting system that supports ver-
ifiability and voter privacy. It has been tested in a pilot experiment during the European
elections 2014 in Athens, Greece. It can be used as a supervised or a remote voting system.
We present the supervised version.

At the polling station, the voter receives one ballot including left-hand side A and right-
hand side B, both containing the candidate list in alphabetical order. For each candidate
there is a corresponding vote-code and a code-receipt. They are both randomly chosen for
each side, and they are unique for each candidate. The voter must separate side A and side
B and choose randomly between them: one side is used for voting and the other one for
verification.

A ballot including left-hand side A and right-hand side B, having ballot number 127.

Without loss of generality, we assume that she chooses side A for voting and side B for
verification. In order to cast her vote, she first scans the QR-code on side A in the voting
machine. The names of the candidates appear on the screen. She selects the candidate of

19

her choice and the corresponding code-receipt will appear. She can immediately verify
that the code-receipt on the screen corresponds to the code-receipt next to her candidate
on the paper-ballot. She writes down the vote-code corresponding to the candidate of her
choice from side A and keeps side B for verification. Side A must be destroyed, so no one
can figure out which candidate corresponds to her vote-code.

In advance, the election authority in charge of the election has committed to all the infor-
mation on side A and on side B, so that these can not be changed during the election. The
voter can verify that her vote was counted correctly by logging in with her ballot number
on the election website. There, all the vote-codes from side A appear in a random order,
and one of the vote-codes is marked. To provide coercion-resistance, the names of the can-
didates do not appear on the screen. Because of that, she can not be sure that this marked
vote-code corresponds to the correct candidate.

To verify the system, the voter does two things. First, she checks that the vote-code marked
on the screen is the same as she has written down from side A. Moreover, because the voter
choses side A to vote with, the commitment on side B will be opened and available on the
website. She verifies that the side B on the screen is exactly the same as the side B she has
kept.

The key idea of the system is that the vote-codes of the candidates are different from ballot
to ballot. This makes it impossible for a third party to guess which candidate corresponds
to the vote-code written on the website. This contributes to the privacy of the system.
Furthermore, each voter verifies the correctness of a random side of their ballot on the
election website. If the information on the side appearing on the screen is correct, so should
the information on the other side. This gives assurance that the ballots are constructed in
a correct way contributing to the verifiability of the system.

3.2 Cryptographic description
We present in this section the cryptographic description of Demos. The voting system is
based on commitments made before the election of both the vote-codes and the candidates.
Most of the work of the election authority is done and published in advance in a committed
form, so that they minimize the work after the voting phase. This gives assurance to voters
and candidates that the election authority does not cheat during the process.

The code-receipt is not included in the article presenting the mathematical description of
the system. When the voter cast her ballot by submitting her vote-code, the corresponding
code-receipt appears on the screen. This assures the voter she votes correctly, since the
code-receipts are unique. The code-receipt does not seem to have other purposes and is
therefore omitted in this thesis.

The bulletin board often takes form of an election website in a voting system. From now
on, we use the more technical notion bulletin board instead of election website.

Additionally, the system is presented for an election where the voter votes for one candi-
date only. The system may also be implemented for an election where the voter can vote
for multiple candidates.

20

3.2.1 Setup phase
There are three different types of agents involved in the voting system: the election au-
thority, the bulletin board and the voters. Demos stresses that the election authority can be
split into different parties.

• The election authority generates the setup phase, the ballots and their commitments,
tallies the votes and publishes proofs of his honest work.

• The bulletin board passively provides storage of information used for verification
and results.

• The voter votes for the candidate of her choice, and can verify that her vote was
counted correctly.

First, the election authority includes the set of voters, V = {V1, V2, ..., Vl}, and the set
of candidates, T = {T1, T2, ..., Tm} in the voting system. Then, the election authority
generates the commitment key, ck, for the commitment scheme.

Commitment Key Generation

The commitment key generation in Demos is based on a group over an elliptic curve.
The elliptic curve domain parameters are pk:=(p, a, b, g, q), where

• p is a prime specifying the field Fp.

• a, b ∈ Fp define the elliptic curve E(Fp) by the equation, E : y2 = x3 + ax+ b
mod p.

• g = (x0, y0) is an element in E(Fp) with prime order q.

• G is the group generated by g and is isomorphic to Zq .

• it is assumed the Decisional Diffie Hellman Assumption holds over G.

Let ω be a random element in Zq and h = gω .
The commitment key is ck = (pk, h).

Encoded candidate The election authority encodes the candidates in a number system to
facilitate the tallying. In the number system with base l + 1, where l is the number of
voters and m is the number of candidates, the encoding of candidates is denoted by

Ti ← (l + 1)i−1, i ∈ [1,m].

Thus, the pairs (T1, (l+ 1)0), (T2, (l+ 1)1), ..., (Tm, (l+ 1)m−1) are obtained. Note that
the encoding of candidates is the same for all the ballots.

Generating a ballot We now describe the process of generating a ballot. A ballot must
include a unique ballot number, two sides A and B containing the list of the candidates in
alphabetical order (T1, T2, ..., Tm) with their corresponding vote-codes (C1, C2, ..., Cm)
and QR-codes containing this information.

21

Generating a ballot

A ballot consists of side A, sA, and side B, sB . To create a ballot the election authority
does the following:

1. Selects a unique ballot number, denoted BN.

2. Selects random vote-codes, CAi ∈ Zq for i ∈ [1,m], unique for each candidate,
Ti ∈ T , on side A. Similarly, selects random CBi ∈ Zq on side B.

3. Generates the ballot, s = (BN, sA, sB), where
sA = {(Ti, CAi)}i∈[1,m] and sB = {(Ti, CBi)}i∈[1,m].

Commitment scheme To ensure privacy and verifiability, the encoded candidates together
with the vote-codes must be kept secret and unchanged. Demos uses therefore a commit-
ment scheme during the setup phase which commits the election authority to the encoding
and the vote-codes while keeping these secret to others during the election. The commit-
ments are opened during the tallying phase. As wanted, the commitment scheme gives
an assurance that both the encoding of the candidates and the vote-codes remain secret
and unchanged. The election authority implements a commitment scheme based on the
discrete logarithm problem using the commitment key ck.

Commitment Scheme based on exponential ElGamal

Let ck = (pk, h) be the commitment key defined above. For m, t ∈ Zq where t is
random:

Comck(m) = (c, d) = ((gt, gm · ht), t)

is the commitment/opening pair form of m.
The commitment/opening pair is homomorphic under operation:

Comck(m1) · Comck(m2) = Comck(m1 +m2)

For m1,m2 ∈ P .

Vote-code commitment The election authority generates random tAi , t
B
i ∈ Zq and com-

putes the vote-code commitment/opening pairs for i ∈ [1,m]:

Comck(CAi) = (c(CAi), d(CAi)) = ((gt
A
i , gC

A
i · ht

A
i), tAi)

Comck(CBi) = (c(CBi), d(CBi)) = ((gt
B
i , gC

B
i · ht

B
i), tBi)

Encoded candidate commitment The election authority generates random rAi , r
B
i ∈ Zq

and computes the encoded candidate commitment/opening pairs for i ∈ [1,m]:

Comck((l + 1)i−1) = (c((l + 1)i−1), d((l + 1)i−1)) = ((gr
A
i , g(l+1)i−1

· hr
A
i), rAi)

Comck((l + 1)i−1) = (c((l + 1)i−1), d((l + 1)i−1)) = ((gr
B
i , g(l+1)i−1

· hr
B
i), rBi)

22

Random permutation of the order of the candidates To support privacy of the vote on
the bulletin board, the election authority selects random permutations which shuffle the
order of the vote-codes on side A and side B for each ballot. Indeed, if the vote-codes are
not shuffled, the position of the marked vote-code on the bulletin board reveals the vote.
Without information of the permutation, the privacy of the voter is kept during this phase.
For each ballot, the random permutations on side A and side B are:

πA : [1,m]→ [1,m]

πB : [1,m]→ [1,m]

The new position of the ith vote-code is denoted by πA(i) and πB(i), respectively.

Finally, the election authority publishes all the information needed on the bulletin board.
The opening (d(Cπ(i)), d((l + 1)i−1)) for π(i) ∈ [1,m] is kept secret.

Published on the bulletin board

• The set of candidates T .

• The set of voters V .

• The commitment key, ck.

• For side A and side B of each ballot; the ballot number, BN, and the pair of vote-
code/encoded candidate in committed form:

(c(Cπ(i)), c((l + 1)i−1)) forπ(i) ∈ [1,m]

in the permutation order, πA, πB , respectively.

3.2.2 Voting phase
During the voting phase, the voter chooses randomly between side A and side B by tossing
a coin. Without loss of generality, let’s assume she votes with side A. She chooses the
candidate Ti ∈ T of her choice, by selecting the corresponding vote-code CAi . The vote
cast is Vcast = (BN, sA, CAi) and the receipt obtained is Vreceipt = (BN, sB , CAi).

3.2.3 Tallying phase
After the vote is cast, it must be recorded in the system. The other side can be published
together with its secret information for verification on the bulletin board.

23

Retrieving information from a vote

Without loss of generality, we assume the vote cast is Vcast = (BN, sA, CAi).
Then the election authority follows the procedure:

1. Publishes (Vcast, s
B) to the bulletin board and opens the commitments of side B.

2. Matches the vote-code CAi with the permuted vote-code: CAπ(i) ← CAi .

3. Marks CAπ(i) as voted and sends the corresponding commitment c((l + 1)i−1) to
tallying.

Now, the election authority has sent all the votes in their encoded commitment form to the
tally. Due to their homomorphic property, it is the commitments of the encoded candidates
that are counted under the tallying.

Tallying of the ballots

We denote C the product of all the encoded candidates commitments for all the votes
cast l. That is,

C =

l∏
j=1

c((l + 1)ij−1) = c((l + 1)i1−1 + (l + 1)i2−1 + ...+ (l + 1)il−1),

where ij corresponds to the candidate choice of voter Vj . The election authority
publishes C on the bulletin board with its corresponding opening. We set
Openck(C) = T . The election result, R, is calculated in the number system with base
l + 1 by the following algorithm. For i ∈ [1,m]:

• xi = T mod (l + 1)

• T = (T − xi)/(l + 1)

• Return R = (x1, x2, ..., xm)

After tallying the ballots, the election authority publishes the result R = (x1, x2, ..., xm),
where xi is the number of votes for the candidate Ti.

3.3 Example
We make a simplified example of the system for a better understanding.

Setup phase The election authority includes two voters, V1 and V2 and three candidates
namely Anna, Marit and Sigurd in the voting system. Additionally, the election authority
encodes the candidates. Anna is encoded to (2+1)0 = 1, Marit is encoded to (2+1)1 = 3
and Sigurd is encoded to (2 + 1)2 = 9.

24

Generation of ballots

The election authority proceed with the following:

Generation of ballot s1

1. Selects BN= 23.

2. Respectively, for Anna, Marit and Sigurd,

• Selects random vote-codes CA1 = 241, CA2 = 756 and CA3 = 345 for side
A.

• Selects random vote-codes CB1 = 123, CB2 = 385 and CB3 = 946 for side
B.

3. Generates the ballot s1 = (23, sA, sB), where

• sA = ((Anna, 241), (Marit, 756), (Sigurd, 345))

• sB = ((Anna, 123), (Marit, 385), (Sigurd, 946))

Generation of ballot s2

1. Selects BN= 84.

2. Respectively, for Anna, Marit and Sigurd,

• Selects vote-codes CA1 = 256, CA2 = 486 and CA3 = 542 for side A.

• Selects vote-codes CB1 = 383, CB2 = 430 and CB3 = 639 for side B.

3. Generates the ballot s2 = (84, sA, sB), where

• sA = ((Anna, 256), (Marit, 486), (Sigurd, 542))

• sB = ((Anna, 383), (Marit, 430), (Sigurd, 639))

Then, the election authority selects random permutations to shuffle the vote-codes on each
ballot,

Ballot number 23: πA1 : (1, 2, 3)→ (3, 2, 1) and πB1 : (1, 2, 3)→ (1, 2, 3)

Ballot number 84: πA2 : (1, 2, 3)→ (2, 1, 3) and πB2 : (1, 2, 3)→ (3, 2, 1)

The vote-code and encoding for each side of each ballot are paired up. Finally, the election
authority generates the commitment/opening pair of the vote-codes and the encodings of
the candidates. The commitments in their permutation order are posted on the bulletin
board while the corresponding openings are kept secret by the election authority.

25

Published on the bulletin board

• The set of candidates: Anna, Marit, Sigurd.

• The set of voters: V1 and V2.

• The commitment key, ck.

Ballot number 23: Ballot number 84:
Side A: Side B: Side A: Side B:
(c(345), c(9)) (c(123), c(1)) (c(486), c(3)) (c(639), c(9))
(c(756), c(3)) (c(385), c(3)) (c(256), c(1)) (c(430), c(3))
(c(241), c(1)) (c(946), c(9)) (c(542), c(9)) (c(383), c(1))

Voting phase After these computations by the election authority, the voting phase can
start.

• V1 picks the ballot s1 = (23, sA, sB), flips a coin, and votes with side A, sA, for
Anna.

1. The vote cast is Vcast = (23, sA, 241).

2. The vote receipt received is Vreceipt = (23, sB , 241).

• V2 picks the ballot s2 = (84, sA, sB), flips a coin, and votes with side B, sB , for
Sigurd.

1. The vote cast is Vcast = (38, sB , 639).

2. The vote receipt received is Vreceipt = (38, sA, 639).

Tallying phase After the voting is done, the election authority retrieves information of the
vote.

Retrieving information from the votes

The election authority:

1. Publishes Vcast = (23, sA, 241) and Vcast = (38, sB , 639) on the bulletin board.

2. Opens the commitments of side B for ballot 23 and side A for ballot 38 and the
commitments of the vote-code cast, 241 and 639.

3. Matches the vote-codes with their corresponding encoded candidate
commitments (241, c(1)) and (639, c(9)) and mark them as voted.

4. Sends the encoded candidate commitments c(1) and c(9) to tallying.

Now the election authority tallies the votes.

26

Tallying of votes

The tallying is done homomorphically by computing the product of the
commitment/opening pair,

Comck(1) · Comck(9) = Comck(1 + 9) = Comck(10) = (c(10), d(10))

The election authority publishes c(10) along with its opening, d(10), on the bulletin
board, hence T = Openck(c(10), d(10)) = 10 is now known.

The election result, R is calculated in the number system with base l + 1 = 3 by the
algorithm presented earlier:

• x1 = T mod l + 1 = 10 mod 3 = 1

• T = (T − x1)/(l + 1) = 9/3 = 3

• x2 = T mod l + 1 = 3 mod 3 = 0

• T = (T − x2)/(l + 1) = 3/3 = 1

• x3 = T mod l + 1 = 1 mod 3 = 1

⇒ R = (x1, x2, x3) = (1, 0, 1).

The result states that Anna got one vote, Marit got zero votes and Sigurd got one vote.

27

28

Chapter 4
Prêt-à-voter

4.1 Introduction
Prêt-à-voter is a supervised electronic voting system based on paper ballots. At the polling
station, the voter receives a ballot with two sides, for simplicity called side A and side B.
Side A contains the list of the candidates, written in an alphabetical order with a cyclic
shift, for each ballot. The voter marks a cross next to the candidate of her choice on side
B. Then, she has to divide the two parts.

A completed ballot form with side A and side B having ballot number 127.

Side A must be destroyed at once, so no one knows the order of the candidate list on her
ballot. Side B, however, is signed and scanned to be counted, then it is kept by the voter
as a receipt.

29

Side B of the ballot form, scanned to be counted and kept as receipt.

Side B contains a cross marking a position but not a candidate. She can later verify that
her vote was counted correctly by entering her ballot number on the election website. If
nothing went wrong, her exact side B should appear on the website. The key idea of
the system is that the candidate list is random, varying from ballot to ballot. This makes
it impossible for a third party to guess which exact candidate order corresponds to the
receipt, side B.

Prêt-à-voter is a family of voting systems [12, 14, 6, 3, 13]. We concentrate in this thesis
on the article summarising Prêt-à-voter from 2010 [13], presenting two different ways of
designing the ballot forms, and how these can be tallied. First, we present the design
based on decryption mix-net used when the ballots are pre-printed. Then, we present re-
encryption mix-net, used when the ballots are printed on-demand.

4.2 Cryptographic description by decryption mix-net
The ballot is constructed in a way so that the encrypted vote, side B with the marked
cross, can be decrypted. Simply explained, the QR-code contains encrypted information
of which box corresponds to which candidate. So that when the vote is cast, it is possible
to retrieve which candidate the marked cross corresponds to.

4.2.1 Setup phase
There are four different types of agents involved in the decryption mix-net version of Prêt-
à-voter: the election authority, the mix-servers, the bulletin board and the voters.

• The election authority includes the set of voters, the set of candidates and the set
of mix-servers in the voting system and designs the ballots by using public keys
generated by the mix-servers.

• The mix-servers generate key-pairs both for encryption of ballots and decryption of
votes and shuffle all the ballots.

30

• The bulletin board passively provides storage of information used for verification
and results.

• The voter votes for the candidate of her choice, and can verify that her vote was
counted correctly.

First, the election authority includes the set of voters, V = {V1, V2, ..., Vl}, the set of
candidates, T = {T1, T2, ..., Tm} and the set of mix-servers S = {S1, S2, ..., Sk} in the
voting system. Each mix-server Si ∈ S generates two pairs of keys, (pki,1, ski,1) and
(pki,2, ski,2) using RSA key generation [15].

Key Generation using RSA

A key pair, (pk, sk), is generated using RSA. The mix-server proceeds with the
following:

1. Generates two large primes, p and q, such that p 6= q and differ in length by a few
digits.

2. Calculates n = pq and φ(n) = (p− 1)(q − 1), where φ is the Eulers’ totient
function.

3. Chooses a random b ∈ [1, φ(n)] such that gcd(b, φ(n)) = 1.

4. Calculates a = b−1 mod φ(n).

The key pair (pk, sk) is now generated where, pk = (n, b) and sk = (p, q, a).

To prepare against failing mix-servers, the keys are shared among all the mix-servers in a
threshold scheme presented in section 2.2.6.

Encryption We denote the alphabetical ordered candidate list (T1, T2, ..., Tm). First the
election authority chooses a random shiftα0,2 of this list, denoted (T1, T2, ..., Tm)α0,2 modm
which is the order used during the tallying of the votes.

Assuming there are k mix-servers, the election authority continues by selecting 2k ran-
dom seed values {t1,1, t1,2, t2,1, t2,2, ..., tk,1, tk,2}. With a hash of the seed t1,1, denoted
h1,1, the election authority shifts the candidate list (T1, T2, ..., Tm)α0,2 modm to obtain
(T1, T2, ..., Tm)α0,2+h1,1 modm. He repeats this procedure, and the candidate list printed
on the ballot is (T1, T2, ..., Tm)α0,2+Σk

i=1(hi,1+hi,2) modm = (T1, T2, ..., Tm)α0,2+h mod m
.

To not reveal how the candidate list has been shifted, the election authority encrypts
α0,2 and the random seed values {t1,1, t1,2, t2,1, t2,2, ..., tk,1, tk,2} layers by layers into
an onion using the 2k public keys generated by the mix-servers. How this is done, is ex-
plained thoroughly later. In this design any public cryptosystem can be implemented, but
we present a case using the RSA public cryptosystem.

31

RSA public cryptosystem

Let n = pq where, p and q are primes.

1. P = C = Zn.

2. K = (pk, sk) = ((n, b), (p, q, a)) where, ab ≡ 1 mod φ(n).

3. The encryption algorithm Epk ∈ E is,

Epk(m) = mb mod n.

4. The decryption algorithm Dsk ∈ D is,

Dsk(c) = ca mod n.

For each ballot the election authority does the following:

1. Selects randomly α0,2 ∈ Z, which modulo m represents the cyclic shift of a candi-
date list, (T1, T2, ..., Tm)α0,2 modm.

2. Selects randomly ti,1 ∈ Zni,1 and ti,2 ∈ Zni,2 for i ∈ [1, k]:

(a) Shifts the candidate list by a hash of ti,1, hi,1 = H(ti,1) mod m and ti,2,
hi,2 = H(ti,2) mod m such that,

(T1, T2, ..., Tm)α0,2+Σk
i=1(hi,1+hi,2) modm.

(b) Encrypts the seeds ti,1 of the shift hi,1 and ti,2 of the shift hi,2 with the public
key pki,1 = (ni,1, bi,1) and pki,2 = (ni,2, bi,2) respectively such that,

αi,1 = Epki,1(ti,1, αi−1,2) = (ti,1, αi−1,2)bi,1 mod ni,1 = (t
bi,1
i,1 , α

bi,1
i−1,2) mod ni,1,

αi,2 = Epki,2(ti,2, αi,1) = (ti,2, αi,1)bi,2 mod ni,2 = (t
bi,2
i,2 , α

bi,2
i,1) mod ni,2.

From the initial list (T1, T2, ..., Tm)α0,2 , the candidate list is cyclically shifted by,

h = Σki=1 hi,1 + hi,2 mod m.

The onion of the initial order α0,2 and the seed value ti,j of the shift hi,j for i ∈ [1, k] and
for j ∈ [1, 2] is,

α = αk,2 = Epkk,2
(tk,2, Epkk,1

(..., Epk1,2(t1,2, Epk1,1(t1,1, α0,2)))).

Generating a ballot We now describe the process of generating a ballot. A ballot must
include two sides, A and B. Side A contains the list of the candidates in an alphabetical or-
der (T1, T2, ..., Tm) with a cyclic shift α0,2 +hmodm. Side B contains the ballot number,
boxes aligned with the candidate list and the QR-code containing encrypted information.

32

Generating a ballot

A ballot consists of side A, sA, and side B, sB . To create a ballot the election authority
does the following:

1. Selects a unique ballot number, denoted BN.

2. Selects an initial order α0,2 and computes the cyclic shift h of the candidate list
(T1, T2, ..., Tm)α0,2 modm, obtaining (T1, T2, ..., Tm)α0,2+h modm.

3. Encrypts the initial order of the candidate list α0,2 together with the seeds ti,j of
the shifts hi,j for i ∈ [1, k] and j ∈ [1, 2], into the onion α which is encoded into
a QR-code.

4. Generates the ballot, s = (sA, sB) where, sA = (T1, T2, ..., Tm)α0,2+h modm and
sB = {BN,QR}.

4.2.2 Voting phase
During the voting phase, the voter receives a ballot s = (sA, sB). She chooses the can-
didate of her choice, Ti ∈ T , and marks a cross in the corresponding box. The vote cast
is Vcast = (sB , β) where β is the position of the cross. She destroys sA and receives the
receipt, Vreceipt = (sB , β). Note that Vcast = Vreceipt in Prêt-à-voter.

4.2.3 Tallying phase
Decryption The encrypted vote, Vcast, contains the position of the cross and a correspond-
ing onion where the initial order of the candidate list is encrypted (α, β). To decrypt their
part, mix-servers use their two secret keys to peel off two layers of the onion. Instead of
shifting the order of the list as the election authority did during the encryption, the mix-
server shifts the place of the cross. He then passes the partly-decrypted onion and the
new cross to the next mix-server who follows the same procedure. The result is a specific
position, β0,2, of the cross, together with a specific order of the candidate list α0,2. These
are matched to obtain the vote.

We define β = βk,2 to be the position of the cross made by the voter on the ballot. For
every ballot, each mix-server Si ∈ S does the following:

1. Retrieves the pair (αi,2, βi,2).

2. Decrypts αi,2 one layer, using his secret key ski,2, Dski,2(αi,2) = (ti,2, αi,1).

3. Computes the hash of ti,2, hi,2 = H(ti,2) mod m.

4. Calculates the cyclic shift of the cross, βi,1 = βi,2 − hi,2.

5. Obtains the pair (αi,1, βi,1).

6. Decrypts αi,1 one layer, using his secret key ski,1, Dski,1(αi,1) = (ti,1, αi−1,2).

33

7. Computes the hash of ti,1, hi,1 = H(ti,1) mod m.

8. Calculates the cyclic shift of the cross, βi−1,2 = βi,1 − hi,1.

9. Obtains the pair (αi−1,2, βi−1,2).

After 2k decryption, the pair (α0,2, β0,2) is obtained. The initial order of the candidate list,
(T1, T2, ..., Tm)α0,2 modm, can be calculated and matched with the cross in position β0,2.

Mix-net Above we have described how a mix-server decrypts his part of the onion for
one vote. To provide privacy of the votes in the tallying phase, each mix-server must also
shuffle the collection of pairs (αi,1, βi,1) and (αi−1,2, βi−1,2). Each mix-server Si ∈ S
retrieves a collection Li,2 = (B1

i,2, B
2
i,2, ..., B

l
i,2) from the bulletin board where, Bji,2 =

(αji,2, β
j
i,2) is the vote from Vj , for j ∈ [1, l]. He decrypts, and publishes the decrypted

pairs in permuted order on the bulletin board. This is done twice for each mix-server, using
their two secret keys. The next mix-server continues with the same procedure, decrypting
each ballot with his secret keys and shuffling the decrypted collection of pairs.

The mix-server Si does the following using his secret keys ski,2 and ski,1:

1. Retrieves the collection Li,2 = (B1
i,2, B

2
i,2, ..., B

l
i,2) from the bulletin board.

2. Decrypts Dski,2(Bi,2)j = Bji,1 for j ∈ [1, l].

3. Selects a permutation, π, randomly.

4. Permutes the collection such that, Li,1 = (B
π(1)
i,1 , B

π(2)
i,1 , ..., B

π(l)
i,1).

5. Decrypts Dski,1(Bi,1)j = Bji−1,2 for j ∈ [1, l].

6. Selects a permutation, π, randomly.

7. Permutes the collection such that, Li−1,2 = (B
π(1)
i−1,2, B

π(2)
i−1,2, ..., B

π(l)
i−1,2).

8. Publishes Li−1,2 to the bulletin board.

4.3 Example

We make a simplified example of the system for a better understanding.

Setup phase First, the election authority includes one voter, V, three candidates T =
{Anna, Marit, Sigurd} and two mix-servers, S = {S1, S2} in the voting system. Since
there are two mix-servers, the election authority generates the ballot with four random val-
ues {t1,1, t1,2, t2,1, t2,2}. The mix-servers, S1 and S2, generate two public and two secret
keys, denoted (pk1,1, sk1,1), (pk1,2, sk1,2) and (pk2,1, sk2,1), (pk2,2, sk2,2) respectively.

Encryption The election authority encrypts the ballot of the voter in the following way:

34

1. Selects randomly α0,2 ∈ Z = 2, which represents the shift of the alphabetical
ordered candidate list,

(Anna, Marit, Sigurd)2 = (Marit, Sigurd, Anna).

2. Selects randomly ti,j ∈ Zni,j
for i ∈ [1, 2] and j ∈ [1, 2],

(a) Computes
h1,1 = H(t1,1) = 2 mod 3

h1,2 = H(t1,2) = 2 mod 3

h2,1 = H(t2,1) = 1 mod 3

h2,2 = H(t2,2) = 0 mod 3

(b) Encrypts the seed ti,j of the shift hi,j with the public key pki,j = (ni,j , bi,j)
for i ∈ [1, 2] and j ∈ [1, 2] such that,

α1,1 = Epk1,1(t1,1, α0,2)

α1,2 = Epk1,2(t1,2, α1,1)

α2,1 = Epk2,1(t2,1, α1,2)

α2,2 = Epk2,2(t2,2, α2,1)

3. The initial list (Marit, Sigurd, Anna) is cyclically shifted by, h = Σ3
i=0(hi) = 5 = 2

mod 3,
(Marit, Sigurd, Anna)2 = (Sigurd, Anna, Marit).

The onion of the initial order α0,2 and the seed value ti,j of the shift hi,j for i ∈ [1, 2]
and j ∈ [1, 2] is,

α = α2,2 = Epk2,2(t2,2, Epk2,1(t2,1(Epk1,2(t1,2, Epk1,1(t1,1, α0,2))))).

Generating a ballot Now the election authority generates the ballot with the encrypted
information above.

Generating a ballot

A ballot consists of side A, sA, and side B, sB . To create the ballot the election
authority does the following:

1. Selects a unique ballot number, denoted BN= 250.

2. Selects the initial order α0,2 = 2 and computes the cyclic shift h = 2 of the
candidate list (Marit, Sigurd, Anna)2, obtaining (Sigurd, Anna, Marit).

3. Encrypts the initial order of the candidate list α0,2 = 2 together with the seeds
ti,j of the shifts hi,j for i ∈ [1, 2] and j ∈ [1, 2], into the onion α which is
encoded into a QR-code.

4. Generates the ballot, s = (sA, sB) where, sA =(Sigurd, Anna, Marit) and
sB = {250,QR}.

35

Voting phase Now, the voter makes her choice and votes for Anna, obviously. She sep-
arates the two parts: side A is thrown away while side B is scanned, and then kept for
verification by the voter.

Decryption The two mix-servers decrypt α = α2,2 and shift the place of the cross namely
β = β2,2 = 1 to obtain the vote cast.

Mix-server S2 ∈ S does the following:

1. Retrieves the pair (α2,2, β2,2).

2. Decrypts α2,2 one layer, using his secret key sk2,2, Dsk2,2(α2,2) = (t2,2, α2,1).

3. Computes the hash of t2,2, h2,2 = H(t2,2) = 0 mod 3.

4. Calculates the cyclic shift of the cross, β2,1 = β2,2 − h2,2 = 1− 0 = 1 mod 3.

5. Obtains the pair (α2,1, β2,1).

6. Decrypts α2,1 one layer, using his secret key sk2,1, Dsk2,1(α2,1) = (t2,1, α1,2).

7. Computes the hash of t2,1, h2,1 = H(t2,1) = 1 mod 3.

8. Calculates the cyclic shift of the cross, β1,2 = β2,1 − h2,1 = 0 mod 3.

9. Obtains the pair (α1,2, β1,2).

Mix-server S1 ∈ S does the following:

1. Retrieves the pair (α1,2, β1,2).

2. Decrypts α1,2 one layer, using his secret key sk1,2, Dsk1,2(α1,2) = (t1,2, α1,1).

3. Computes the hash of ti,2, hi,2 = H(ti,2) = 2 mod 3.

4. Calculates the cyclic shift of the cross, β1,1 = β1,2 − h1,2 = 0− 2 = 1 mod 3.

36

5. Obtains the pair (α1,1, β1,1).

6. Decrypts α1,1 one layer, using his secret key sk1,1, Dsk1,1(α1,1) = (t1,1, α0,2).

7. Computes the hash of t1,1, h1,1 = H(t1,1) = 2 mod 3.

8. Calculates the cyclic shift of the cross, β0,2 = β1,1 − h1,1 = 1− 2 = 2 mod 3.

9. Obtains the pair (α0,2, β0,2).

After four decryptions, α0,2 = 2 is obtained, and the initial order of the candidate list,
(Marit, Sigurd, Anna), can be calculated, and matched with the cross which is decrypted
to be in position, β0,2 = 2. A vote for Anna is counted.

As illustrated the vote is decrypted correctly.

4.4 Cryptographic description by re-encryption mix-net

Re-encryption mix-net is the printed-on-demand version of Prêt-à-voter. The basic idea
is that the voter prints her ballot just before voting so that the election authority does not
have access to ballots before the voting phase. Because the ballots are printed on-demand,
each ballot contains two QR-codes encoding the encryption of the order of the candidate
list. The QR-code on side A is decrypted by the ballot printer at once, so that the voter
receives a ballot with a candidate list. The QR-code on side B is decrypted by the tellers
during the tallying of the votes.

In this description, we omit an example and some parts of the cryptography that are very
similar to the decryption mix-net version of Prêt-à-voter and focus more on the difference
between these versions.

37

4.4.1 Setup phase

There are five different types of agents involved in the re-encryption mix-net version of
Prêt-à-voter: the election authority divided into groups, the mix-servers, the tellers, the
bulletin board and the voters.

• The election authority includes the set of voters, the set of candidates, the set of mix-
servers and the set of tellers in the voting system. The election authority divided,
into groups, generates the ballot forms.

• The mix-servers shuffle and re-encrypt the received votes.

• The tellers generate key-pairs both for encryption of ballots and decryption of votes
and publish the election result.

• The bulletin board passively provides storage of information used for verification
and results.

• The voter votes for the candidate of her choice, and can verify that her vote was
counted correctly.

For simplicity, we assume that the election authority divided into groups, the mix-servers
and the tellers are all divided into k groups. In reality, this number can be different for
each types of agents.

The election authority divided into groups, G = {G1, G2, .., Gk}, determines the set of
mix-servers S = {S1, S2, ..., Sk}, the set of voters V = {V1, V2, ..., Vl}, the set of candi-
dates T = {T1, T2, ..., Tm} and the set of tellers N = {N1, N2, ..., Nk}. The tellers and
the ballot printer generate two independent keys using exponential ElGamal presented in
chapter 2.1.2.

Key Generation using exponential ElGamal

We assume the ElGamal parameters (g, p, q) are made public in advance. p and q are
large primes such that q | p− 1, and g is a generator of Zq which is isomorphic to a
subgroup of Z∗p with order q.

• The ballot printer randomly selects a secret key skr ∈ Zq and reveals its public
key hr = gskr .

• The set of tellers N generates the secret key skt ∈ Zq in a threshold fashion.
Then publishes the corresponding public key ht = gskt .

Encryption The election authority divided into groups, G1, G2, .., Gk, is in charge of the
encryption using the public keys. They have to encrypt the order of the candidate list in
two ways. The first encryption, using hr is decrypted later by the ballot printer during the
voting phase. The second encryption using ht is decrypted later by the set of tellers during
the tallying phase.

38

1. G1 randomly selects α1 ∈ Zm and x1, y1 ∈ Zq to generate an encryption pair

(gx1 , hx1
r · g−α1) and (gy1 , hy1t · g−α1).

2. For i ∈ [2, k]:

• Gi randomly selects α′i ∈ Zm and x′i, y
′
i ∈ Zq to generate an intermediate

encryption pair

(gx
′
i , hr

x′i · g−α
′
i) and (gy

′
i , h

y′i
t · g−α

′
i).

• Gi multiplies the intermediate onion pair with the encryption pair received
from Gi−1

(gxi , hr
xi · g−αi) = (gx

′
i , hr

x′i · g−α
′
i) · (gxi−1 , hr

xi−1 · g−αi−1)

(gyi , ht
yi · g−αi) = (gy

′
i , ht

y′i · g−α
′
i) · (gyi−1 , ht

yi−1 · g−αi−1).

3. The final encryption pair is: (gx, hr
x · g−α) and (gy, ht

y · g−α), where

x = xk = x1 + Σkj=2x
′
j mod q

y = yk = y1 + Σkj=2y
′
j mod q

α = αk = α1 + Σkj=2α
′
j mod q.

The order of the candidate list written on the ballot is denoted by α. Note that α must be
equal in both encryption.

Generating a ballot We now describe the process of generating a ballot. A ballot must
include two sides, A and B. Side A contains a QR-code containing encrypted information
of the list of the candidates in an alphabetical order (T1, T2, ..., Tm) with a cyclic shift α.
Side B contains the ballot number, boxes aligned with the candidate list and the QR-code
containing the same information encrypted in a different way.

Generating a ballot

A ballot consists of side A, sA, and side B, sB . To create a ballot the election authority
does the following:

1. Selects a unique ballot number, denoted BN.

2. Generates an order α of the candidate list obtaining (T1, T2, ..., Tm)α.

3. Encrypts the order of the candidate list α using hr which is encoded into the
QRA-code on side A.

4. Encrypts the order of the candidate list α using ht which is encoded into the
QRB-code on side B.

5. Generates the ballot, s = (sA, sB) where, sA = {QRA} and sB = {BN,QRB}.

39

4.4.2 Voting phase

During the voting phase, the voter receives a ballot s = (sA, sB).

A ballot before the ballot printer has printed on the candidate list.

She inserts the ballot into the printer. The ballot printer decrypts the code on side A, QRA
by using the secret key skr, and prints out the candidate list in the order (T1, T2, ..., Tm)α
corresponding to the decrypted code.

A ballot after the ballot printer has printed on the candidate list.

The voter chooses the candidate of her choice, Ti ∈ T , and marks a cross in the corre-
sponding box on sB . The vote cast is Vcast = (sB , β) where β is the position of the cross.
She destroys sA and receives the receipt, Vreceipt = (sB , β).

4.4.3 Tallying phase

After the voting phase, side B of all the ballots are published on the bulletin board.

Including the mark on the ballot in the encryption The election authority must include
the marks on each ballot in the encrypted code (gy, ht

y · g−α) on side B so that it can
be tallied. The position of the cross, denoted by β, is included in the encryption in the
following way,

(gy, ht
y · g−α · gβ) = (gy, ht

y · g−α+β).

40

Mix-net In order to provide privacy, the encrypted votes (gy, ht
y ·g−α+β) are re-encrypted

and shuffled in a mix-net by the mix-servers using permutation functions. This procedure
is very similar to the decryption and shuffle phase in the decryption mix-net in chapter
4.2.3. However, instead of decrypting, the mix-servers re-encrypt the votes. These re-
encryption do not change −α+ β.

Tallying Finally, the random sequence of re-encrypted votes are decrypted by the tellers
using their secret key skt. After decryption, the tellers finally perform −α + β = γ. The
tellers obtain that the voter voted for candidate Tγ in the alphabetical ordered candidate
list (T1, T2, ..., Tm). The decrypted votes are then included in the tallying.

41

42

Chapter 5
Requirements in the voting phase of
Demos

We have described two different paper-based electronic voting systems, Demos and Prêt-
à-Voter. The objective of the following chapters is to analyse Demos. We explore how
Demos defines and ensures a trustworthy system by examining the privacy, verifiability
and availability properties of the system. First we state the requirements needed in the
voting phase at the polling station in chapter 5 and then the requirements needed in the
technical part of the system in chapter 6. In chapter 7 we present the analysis by the
article, referred to above, of the verifiability based on a verifiability game.

The motivation behind this first chapter of the analysis is to get a closer look at how Demos
can be implemented in a real-life election. A study of the voting phase is omitted in the
article presenting Demos by Kiayas, Zacharias and Zhang [11] which is why we focus on
the voting phase in this chapter. We note that, in Demos, the election authority controls the
whole election. He is responsible for the setup phase, the generating, and the tallying of
the votes. Consequently we often analyse Demos in the case where the election authority
is the adversary. When needed, we also look at external adversaries.

We start by analysing which requirements are needed during the voting phase, at first
with respect to the privacy and then to verifiability. In other words, how to organise the
voting phase at the polling station so that it is certain that both the voter privacy and the
verifiability of the vote are kept.

Assuming side A is used for voting and i ∈ [1,m], then a particular cast vote is presented
as Vcast = (BN, sA, CAi) and the vote receipt, received after scanning the ballot, is pre-
sented as Vreceipt = (BN, sB , CAi) in Demos. The ballot number is denoted as BN, the
chosen side to vote with is represented by sA and CAi is the vote-code of the chosen can-
didate. For verification, the other side, sB , is used. We state requirements needed during
the voting phase, and justify their importance.

43

5.1 Privacy

Requirement 1 The election authority has no control over how the ballots are dis-
tributed among the voters.
Without this condition a malicious election authority can break the privacy of a voter by
distributing specific ballots to specific voters. For example if the voter receives a ballot
memorized by an adversary, submits the vote Vcast = (BN, sA, CAi), the adversary will
know the corresponding candidate of the vote-code CAi cast.

This requirement demands the election authority to be split into independent parties. A
possible solution to weaken the election authority’s attack, could be to leave a number
of ballots inside the voting booth, making the voter choose for herself which ballot to
use for voting. However, this creates the possibility of a chain attack, where the voter
now becomes the adversary. She can take with her a number of ballots which she demands
other voters to use. The receipt printed Vreceipt = (BN, sB , CAi) contains the ballot number,
the verification side and the vote-code chosen. With this receipt, the adversary can obtain
proof of whether the voter cooperated with her or not. In other words to prevent against
coercing, the voter can not leave the polling station with an unused ballot.

A better solution may be to implement a ballot printer, similar to the one used in Prêt-à-
Voter [13]. Here the ballots are printed randomly on the polling station, so that the election
authority supposedly has less control over the distributing of ballots.

Requirement 2 The voter is alone in the voting booth and no one can look over her
shoulder observing what she votes.
Without the conditions above, the voter privacy is trivially broken. Either by a malicious
election authority or an adversarial voter looking over the shoulder of the voter while she
votes. Demos does not explain thoroughly what happens to the voting side sA of her ballot
after it is cast. With the requirement above, the voter is alone in the voting booth, maybe
having the opportunity to keep her voting side without anyone noticing. This can be used
as a receipt of her vote which can be exploited by an adversary. Hence it is important
that the voter can not leave the polling station with her voting side. A possible realistic
solution in the implementation of the system could be to make the voting machine destroy
the voting side of the ballot immediately after it is cast.

5.2 Verifiability

Requirement 1 Every voter should have the possibility of verifying the ballots in the
voting phase.
With test ballots, the voter can on the polling station make sure that her ballot has been
constructed correctly, and that the verifying procedure is proper. By scanning a ballot the
voter can verify that the candidate and vote-code correspondences s = {(Ti, Ci)}i∈[1,m]

are identical on the ballot and on the screen. Without this condition, a malicious election
authority can get away with manipulating ballots, and the following attacks become more
relevant.

44

Requirement 2 The choice of which side the voter uses for voting is random.
The key to the verifiability of Demos is the voters random choice of side A or side B in
the voting phase. This randomness is not easily implemented in a real election. A possible
solution would be to use a ballot printer, deciding randomly which side to vote with and
which to verify with, si, i ∈ {a, b} chosen randomly. However we can not be certain this
printer is not controlled by an adversary. Another solution could be to implement a real
coin-toss for every voter, where for example heads corresponds to sa and tails to sb. This
solution affects the availability of the system since it requires that an election authority
verifies that the coin toss actually happens.

Without the requirement above, the malicious election authority can analyse the behaviour
of voters and produce attacks based on this analysis. For example, if both sides are pre-
sented to the voter at the polling station as side A and side B such that side A is on the left
and side B on the right, one can assume that most uninterested honest voters vote with A
and use B for verification. The election authority can take advantage of this and produce a
fake side A, but a real side B. Moreover, the analysis can go further by assuming that there
is a higher probability that voters that vote with ballot A are the same voters that does not
verify their vote. Hence these votes can be manipulated with higher probability without
being caught.

We present attacks made by the adversary in the printing phase where we assume the
random choice of side A and B is left to the voter. These attacks are modified versions
of the attacks presented by Kiayas, Zacharias and Zhang [11]. First we introduce some
common assumptions to make the description of the attacks simpler.

• The adversary knows that the voter votes for Marit with side A.

• The adversary wants Anna to win, and tries to change the vote to her advantage.

The Modification attack The Modification attack is based on changing the candidate
and vote-code correspondence. The adversary copies and manipulates a real ballot and
gives this to the honest voter. When this ballot is cast by the honest voter, the voting
system will recognize it as the original ballot. In other words, in the system it is the
real ballot that will be tallied. The adversary manipulates the copied ballot by doing the
following:

• Swap the corresponding vote-codes for Anna and Marit on side A.

• Let side B be the same as on the real vote.

When the honest voter votes for Marit, by using what looks like the corresponding vote-
code, it will be counted as a vote for Anna in the voting system. When the honest voter
verifies the ballot with side B, she will see that the vote-codes corresponds correctly to the
candidates stated. When the honest voter verifies her vote, the system confirms her that
the vote-code she cast will be tallied correctly. Hence she can not figure out that her vote
has been manipulated.

45

The Clash attack The Clash attack is based on making fake ballots by copying one
ballot. The adversary wants to attack θ honest voters who want to vote for Marit. We
assume the adversary can inject votes on the bulletin board, and proceed as follows:

• Injects θ − 1 votes for Anna on the bulletin board.

• Makes θ − 1 copies of a real ballot all having BN=102. These are recognized in the
system as the θ − 1 votes the adversary injected.

• Distributes the θ ballots to the group of honest voters.

When the θ ballots are cast by the honest voters, the system will recognize θ − 1 of them
as the votes already cast by the adversary for Anna. One of the θ votes is not manipulated,
hence when the honest voters verify their votes all with BN=102, the system will show the
verification of this vote. The θ − 1 voters will not figure out that their votes have been
manipulated. The adversary has managed to change θ − 1 votes in the election result.

5.3 Conclusion
Demos may have privacy weaknesses during the voting phase. We argue that the require-
ments stated above must be satisfied and practical implementations of these must be found.
While not enough privacy for the voter during this phase breaks the privacy of the system,
too much privacy opens possibility of vote-selling and coercing. Demos must take into
consideration both problems in an election. Regarding the verifiability, the attacks above
show how the implementation of a real coin-toss is crucial. With this randomness, the
attacks can be detected with a higher probability. This is discussed more in chapter 7.

46

Chapter 6
Analyzing cryptographic
components of Demos

In this chapter we analyse Demos by investigating the main cryptographic components of
the system, namely the commitment scheme and the bulletin board. We want to find out
whether the privacy and verifiability requirements needed are satisfied. In the traditional
Norwegian voting system, the setup phase and the tallying phase are understandable to
a regular voter. By using cryptographic components, Demos makes these phases more
difficult to trust. It is therefore important that both the commitment scheme and the bulletin
board works correctly since it can not be verified by a regular voter.

6.1 Commitment scheme
The beauty of the structure of Demos is that most of the computations of the voting system
are done during the setup phase using a commitment scheme. In other words the election
authority does not have much control after this phase. This might increase the trust of
the voters towards Demos in comparison to other voting systems, for example like Prêt-à-
voter which is dependent on computations by different agents after the voting phase. Of
course this trust requires that the commitment scheme is correctly constructed, so that a
malicious election authority can not cheat the voters. We therefore look at the properties
of a commitment scheme, and what is required for it to be secure.

In Demos the election authority commits to the encoded candidates, denoted c((l+ 1)i−1)
and the vote-codes, denoted c(Ci) for i ∈ [1,m], and publishes these on a bulletin board.
If the commitment scheme is secure, the election authority can not change the encoded
candidates or the vote-codes in the commitments. At the same time a third party can
not know the correspondences between the commitments and the encoded candidates or
vote-codes.

In other words a secure commitment scheme contains two properties namely the hiding

47

and the binding property. We investigate these properties, using the notations from the
general commitment scheme presented in chapter 2.2.4. Let k be the key length in the
voting system. As k gets bigger the security of the system increases.

As a reminder, G is the group generated by g and is isomorphic to Zq , where q is a prime.
G is a subgroup of a group defined by the elliptic curve parameters pk. A random element
ω in Zq is used to generate h = gω . The commitment key is ck = (pk, h). How the
commitment key is generated is described more thoroughly in chapter 3.2.1.

Commitment scheme based on exponential ElGamal

For m, t ∈ Zq where t is random,

Comck(m) = (c, d) = ((gt, gm · ht), t)

is the commitment/opening pair form of m.
The commitment/opening pair is homomorphic under operation,

Comck(m1) · Comck(m2) = Comck(m1 +m2)

for m1,m2 ∈ P .

6.1.1 Privacy
Hiding definition For any commitment, c, it is computationally hard for any polynomial
bounded adversary A, given two messages m0,m1 ∈ P , to distinguish between their
corresponding commitments. In other words, c(m) reveals no information of the message
m. It is given that the commitment key ck is generated by a trusted party.

A commitment scheme satisfies the hiding property if the probability of success for an
adversary who tries to distinguish between two commitments subtracting 1/2 is negligible.
We subtract 1/2 because this is the probability of guessing the message and commitment
correspondences. A trusted party, denoted TP, generates the commitment key, where the
size of its input is k. A coin toss is represented by b ← {0, 1} and neg(k) represents a
negligible function in k, presented in chapter 2.2.5.

The hiding property

Pr
[
b = b̃

∣∣∣∣ ck ← TP(1k), (m0,m1)← A, b← {0, 1}
(c, d)← Comck(mb), b̃← A

]
− 1

2
≤ neg(k)

Following the definition above, we investigate if the commitment scheme in Demos satis-
fies the hiding property.

In Demos the election authority randomly chooses t from Zq and keeps this value secret.
The commitment of a message m is then c(m) = (gt, gmht). The hiding property of the
commitment is satisfied since t is chosen randomly from Zq implying that the commitment
c(m) = (gt, gmht) is a random element in the group G × G. In other words, since t is

48

random and hidden, the adversary can not distinguish between the commitment of m or
any other element in G×G.

Decisional Diffie-Hellman Assumption It is also important to note that the Decisional
Diffie-Hellman Assumption holds over G in Demos. If not, assuming c′ is a commitment
to a random group element in G, an adversary knowing c(m0), c(m1) could distinguish
between c(m0m1) and c′.

The Decisional Diffie-Hellman Assumption does not hold for any presentation of a cyclic
group [4]. For example, one simple attack occurs in the group Z∗p where p is a prime, and
a, b, c random integers and g the generator of the group. By computing the Legendre sym-
bol of ga and gb one can easily find the Legendre symbol of gab and distinguish between
(ga, gb, gab) and (ga, gb, gc).

The commitment scheme in Demos uses a group parametrized by the elliptic curve param-
eters pk = (p, a, b, g, q). In this group the Decisional Diffie-Hellman Assumption holds.
Because of that the only possibility for an adversary to distinguish between (ga, gb, gab)
and (ga, gb, gc) is by using the full discrete logarithm algorithms.

The generation of the commitment key In the definition above, one assumes that the
commitment key, ck, is generated by a trusted third party. But in Demos it is the elec-
tion authority that controls the setup phase, in other words generates the commitment
key. Therefore, a malicious election authority can generate a commitment key, ck, in
ways allowing him to cheat. In this case an attack on the hiding property is possible.
Since the election authority generates the commitment key, he knows the secret ω in
ck = (pk, h) = (pk, gω). We make a short example to explain the attack. First note,
if the election authority is in control of every step in the commitment scheme, the hiding
property is broken trivially. Hence in the attack below we assume the election authority
generates the commitment key while an independent agent commits to the messages.

The set of encoded candidates is {(l + 1)i−1}, for i ∈ [1,m], where m is the number
of candidates and l the number of voters. Let (l + 1)v , where v ∈ [0,m − 1], be an
encoded candidate of the election. The commitment to (l + 1)v is calculated by an agent
independent of the election authority such that c((l+1)v) = (gt, ht·g(l+1)v), where t is the
random value hiding the message. The election authority knows all the encoded candidate
selections in {(l+1)i−1}, for i ∈ [1,m], since the number of candidates is relatively small.
By observing the commitment to (l+1)v the malicious election authority extracts the value
gt and then calculates (gt)ω . By multiplying this value with each possible g(l+1)i−1

for all
i ∈ [1,m] he eventually finds an i ∈ [1,m] such that

(gt)ω · gg
(l+1)i−1

= ht · g(l+1)v = (gω)t · g(l+1)v

⇒ (l + 1)i−1 = (l + 1)v.

The malicious election authority knows that the encoded candidate (l + 1)v corresponds
to the commitment c((l + 1)v). With this attack the hiding property of the commitment
scheme is broken, and hence the privacy requirement in the voting system is not fulfilled.

49

We discuss possible solutions of this problem, after introducing similar difficulties with
the second property of a commitment scheme, namely the binding property.

6.1.2 Verifiability
Binding definition It is computationally hard for any polynomial bounded adversaryA to
find a collision in commitments, let’s say (c, d0) and (c, d1) such that Openck(c, d0) 6=
Openck(c, d1) for two distinct messages m0 and m1. It is given that the commitment key
ck is generated by a trusted party.

A commitment scheme satisfies the binding property if the probability of success for an
adversary whose goal is to open a commitment in distinct ways is negligible. A trusted
party, denoted TP, generates the commitment key, where the size of its input is k. A
coin toss is represented by b ← {0, 1} and neg(k) represents a negligible function in k,
presented in chapter 2.2.5.

The binding property

Pr
[
(m0 6= m1)
∧(m0,m1 6=⊥)

∣∣∣∣ ck ← TP(1k), (c, d0, d1)← A,
m0 ← Openck(c, d0),m1 ← Openck(c, d1)

]
≤ neg(k)

In Demos the binding property of the commitment scheme strengthens the verifiability of
the voting system. When the commitment scheme is binding it is infeasible for a malicious
election authority to open the committed message to another. For example in Demos if the
commitment scheme is binding it is infeasible to change the encoded candidate or the
vote-code after the commitment. Following the definition above, we investigate whether
the commitment scheme in Demos satisfies the binding property.

Assume the adversary wants to open the commitment c in distinct ways. In other words
he wants to find two opening pairs (m0, t0), (m1, t1) where m0 6= m1 mod q and m0 =
Openck(c, t0), m1 = Openck(c, t1). We get,

c(m0) = c(m1)

⇒ (gt0 , ht0gm0) = (gt1 , ht1gm1)

⇒ (t0 = t1) mod q ⇒ gm0 = gm1 ⇒ m0 = m1 mod q.

The result contradicts our assumption where m0 6= m1 mod q. Hence the adversary can
not open the commitment in distinct ways which implies that the commitment scheme in
Demos satisfies the binding property.

We note that the binding property still holds when the commitment to a message m is
c(m) = htgm.

c(m0) = c(m1)⇒ gm0ht0 = gm1ht0 ⇒ h = g(m1−m0)(t0−t1)−1

Hence the adversary can directly calculate (m1 − m0)(t0 − t1)−1 mod q, which is the
discrete logarithm of h, providing that (t0− t1)−1 exists. Since the Decisional Diffie Hell-
man assumption holds over G we have that discrete logarithms are infeasible to compute.

50

This contradicts the attack above, where we just found a method of computing the discrete
logarithm of h.

The generation of the commitment key As we mentioned in the privacy section, the as-
sumption that a trusted party generates the commitment key, may not hold in Demos. This
time we assume that the election authority generates the commitment key and also com-
mits to the messages, since this will not trivially break the binding property. Even with this
control a malicious election authority can not break the binding property in the commit-
ment scheme implemented in Demos. If c(m0) = c(m1), (gt0 , ht0gm0) = (gt1 , ht1gm1)
which implies that m0 = m1. In other words a malicious election authority can not open
a commitment to distinct messages.

In the case where the commitment to a message m is c(m) = htgm and the Decisional
Hellman Assumption does not hold, an adversary generating the commitment key can
attack the binding property of the commitment scheme. Assume he generates h = gω

such that ω = (m1 −m0) · (t0 − t1)−1, where m0 and m1 are two distinct messages, and
t0, t1 are their corresponding commitment openings. Then commitment c can be opened
in distinct ways.

c(m0) = c(m1)⇒ gm0ht0 = gm1ht1 ⇒ gm0gω·t0 = gm1gω·t1

⇒ m0 + t0(m1 −m0) · (t0 − t1)−1 = m1 + t1(m1 −m0) · (t0 − t1)−1

⇒ (m1 −m0) · (t0 − t1)−1 = (m1 −m0) · (t0 − t1)−1

⇒ Openck(c) = m0 ∨Openck(c) = m1

Proposal of new commitment key generation We present two solutions to prevent the
attacks that occur when a malicious election authority has full control over the generation
of the commitment key.

1. Let ck be generated in a threshold fashion among several independents parties.

2. Implement a hash function in the commitment key.

In the implementation of the first solution we need a threshold scheme presented in chapter
2.2.6. The solution requires that the election authority in Demos is split into several parts
in the setup phase of the system, so that the generation of the secret, ω, of the commitment
key h = gω is divided in a threshold manner. This could improve the privacy of the voting
system and prevent the attack above, since the secret ω no longer is generated by only one
agent. Splitting the election authority into different independent parties may not be simple
in real life. One would have to be certain that the independent parties could not cooperate.

The second solution is to implement a hash function, H . In the following algorithm we
find a new commitment key h = (x, y). We assume the group structure is as defined in
the commitment scheme of Demos, a, b ∈ Fp defining the elliptic curve E(Fp) by the
equation, E : y2 = x3 + ax+ b mod p.

51

Algorithm to generate h

1. x0 ← H(...).

2. y0 ← x3
0 + ax0 + b.

3. if y0 is a quadratic residue.

(a) x← x0.

(b) y ← the smallest root of
√

(x3 + ax+ b).

(c) If (x, y) ∈ G, output: (x, y).

4. else x0 ← x0 + 1 and return to step 2.

The election authority hash some random fixed values, for example the date, the number
of voters etc, into x0. Then by an algorithm he has to make sure x0 is a point on the elliptic
curve, and find (x, y) ∈ E(Fp).

By generating the commitment key using this algorithm, the privacy attack presented
above is prevented. Now the election authority does not have any information of how
h was generated, in other words no information of ω like in the key generation before.

Note that we assume that G is constructed so that it is a large subgroup of E(Fp), and that
it is feasible to check whether elements are not in G. In this way, 3(c) in the algorithm is
easily computed.

Conclusion The commitment scheme plays a key role in the voting system Demos. By
satisfying the hiding and the binding property, the commitment scheme strengthens the
privacy and verifiability requirement of the voting system. After the election authority has
committed to the encoded candidates and the vote-codes, it is infeasible for a third party
to open the commitments and for anyone to change the commitments. The only weakness
we find is that the election authority has full control over the setup phase of an election
including the generation of the commitment key. A malicious election authority can take
advantage of this power by breaking the hiding property of the scheme and consequently
the privacy of a vote. On the other hand, even with this power, it seems that the malicious
election authority can not break the binding property of the commitment scheme.

We also stress the importance of the election authority being divided into independent
parts. If the agent committing to the vote-codes and to the encoded candidates is cooper-
ating with the agent distributing the ballots at the polling station, the privacy of the vote
can be broken. The agents can recognize the commitment to the vote-code marked by the
voter.

52

6.2 Bulletin board
Demos, like many voting systems, depends on a bulletin board [9], publishing information
and results of the election. We investigate what the requirements of a bulletin board in
Demos are, and possible privacy and verifiability weaknesses surrounding this component.

First of all, the agents involved in the system of the bulletin board are the writer, the
bulletin board and the reader. In Demos the writer is the election authority. He publishes
keys, commitments and the tally of the votes. The reader is the election authority, voters,
candidates or other neutral parties. They retrieve information and verify the voting system.

Before starting the analysis we point out that the bulletin board can not be controlled
by the election authority. If this were not the case, a malicious election authority can
manipulate the whole election breaking both the privacy and the verifiability of the system.
The verifiability can be broken if for instance the malicious election authority replaces
commitments on the bulletin board during the election. In other words the bulletin board
needs to be an independent party.

Notation We introduce the following notation.

• The writers name is denoted W.

• The signature of the writer and the bulletin board are denoted sW and sB respec-
tively.

• The time of when information has been transmitted by the writer and by the bulletin
board are denoted tW and tB respectively.

• A hash function is denoted H .

• A hash with signature and time stamp by the writer and by the bulletin board are
denoted H.sW .tW and H.sB .tB respectively.

• The transcript at the bulletin board available for the reader at time t is denoted τt.

6.2.1 Requirements
Now we identify three properties needed of the bulletin board in Demos. First of all, the
information published on the bulletin board can not be removed, replaced or changed.
Moreover, no other than the election authority can publish information on the board. Fi-
nally, the order of the information on the bulletin board must correspond to the order in
which the election authority published the messages.
To achieve the first property the following requirement is needed.

Requirement 1 The reader must verify that the transcript on the bulletin board has not
been altered with. Assuming the reader viewed the transcript on the bulletin board at time
t0, and later at time t1, the reader should confirm that τt0 is a prefix of τt1 . Hence the only
possible differences of the two transcripts is that the latter can obtain further information

53

applied by the writer in the time period t1 − t0. In Demos and in voting systems in
general, independent parties should verify with short time intervals that the transcript has
not been altered with. This requirement is important for the verifiability property of the
voting system to hold. Without it, the bulletin board can manipulate the setup, the ballot
commitments and the tallying of the election without being detected.

To achieve the second property the following requirements are needed.

Requirement 2 The messages on the bulletin board must contain the writers name and
the signature of the bulletin board.
If the name of the writer, W, is not included, the bulletin board can publish messages
on behalf of the election authority without the reader noticing. Additionally the election
authority can not prove that the message was not applied by him.

If the signature of the bulletin board, sB , is not included the reader can not be sure that the
message applied by the election authority has been approved by the bulletin board. And
if the election authority manages to publish a message without the approval of the bulletin
board, the bulletin board can not prove this.

Requirement 3 In the communication between the election authority and the bulletin
board, both parts need to authenticate themselves. For the election authority to be cer-
tain that he communicates with the bulletin board an visa versa, they both need to prove
themselves by signatures. Here the assumption made above that signatures of messages
can only be signed by their respective writers is important. Without the requirement an
adversary can apply information to the bulletin board, or the election authority can give in-
formation to an adversary. This authentication can be implemented by a signature scheme
[15].

To achieve the third property the following requirement is needed.

Requirement 4 The time of when the election authority publishes the messages and
when the bulletin board approves the messages must be included on the bulletin board. If
tW is not included, the election authority can argue that it was published before and this
way cheat in the election. Additionally the election authority does not have any proof if
the bulletin board does not publish within the time limit.

If tB is not included, the election authority can not report if the bulletin board does not
publish the message in time. Conversely the bulletin board can not prove he has published
the message from the election authority in time.

6.2.2 Protocol

Now the election authority wants to publish a messagem on the bulletin board. We assume
that the agents approve the messages from each other if the time-stamp is within ε time
limit and the Hλ is the hash of the last posted message on the bulletin board. With all the
requirements now stated, the following protocol is presented:

54

Bulletin board Election authority

1. Hλ.sB .tB −→

2. ←− (m.sW .tW , H(m.sW .tW), H.sW .tW)

3. H.sW .tW .sB .tB −→

In the first step, the bulletin board sends the hash of the last message posted on the bulletin
board, with a signature and a time stamp. The election authority approves if the message
is less than ε old.

In the second step the election authority sends the message, signed and with a time stamp
and additionally, a hash of this, and at last a signed version of this hash. The bulletin board
approves if tW − tB < ε.

In the third step the bulletin board sends a signed and dated version of the hash sent
by the election authority. The election authority approves if tB − tW < ε. Addition-
ally the election authority checks on the bulletin board that the message has been posted
next in the sequence. If this does not occur or another message is published than the
one intended, the election authority can produce m together with the signature of the
bulletin board, to prove that it has been manipulated or deleted. If the signatures and
hashes are correct and the messages were sent within the time-limit, the message M =<
m, tW ,W,H,H.sW , H.sW .sB .tB > where H = H(m.tW .sW , Hλ) is posted on the
bulletin board.

The transcript τ on the bulletin board after l published messages will be:

< M1,M2, ...,Ml >

where, Mi =< mi, tW (i),Wi, Hi, Hi.sW , Hi.sW .sB .tB > are in timely order, Hi =
H(mi.tW (i).sW (i), Hi−1), and H0 = 0.

With the requirements fulfilled above, the bulletin board is consistent. Any reader can
observe that the transcript τt0 at time t0 is a prefix of the transcript τt1 viewed at a later
time t1.

We make one last remark, turning to the robustness of the bulletin board. Though it does
not have the power to manipulate information posted by the writer, it has the power to
abort the election, by shutting down the bulletin board. To avoid this, one solution would
be to distribute the bulletin board among independent parts, organisations or servers. This
would make the bulletin board more robust against sabotage attacks.

6.3 Conclusion
The technical parts of Demos are based on a commitment scheme and a consistent bulletin
board. Having a closer look at the commitment scheme used in Demos, we have seen that
it is both hiding and binding, given that the commitment key is generated by a trusted third

55

party. We presented new methods to generate the commitment key, preventing an attack
of a malicious election authority.

Because of its key-role in the system, we have explored what is required of a bulletin board,
and how the messages securely can be transmitted. Demos relies heavily on a consistent
bulletin board to fulfill the verifiability property. It prevents a malicious election authority
to take control over the bulletin board and change information already posted.

The purpose of these cryptographic components in Demos weakens if only one of them
works correctly. As part of a voting system a commitment scheme and a bulletin board
are dependent of each other. We trust the commitment scheme because the commitments
are published on the bulletin board. If the bulletin board is not consistent, the point of a
election authority committing to encoded candidates and vote-codes in the setup phase of
the election is lost. An election authority can replace commitments later, without being
caught. Without a hiding and binding commitment scheme, there is no point of a consistent
bulletin board. For example, the election authority can break the verifiability of the system
by opening a commitment on the board to another message.

56

Chapter 7
Demos as an end-to-end verifiable
voting system

Demos is presented as an end-to-end verifiable electronic voting system. The main focus
of the voting system is to fulfill the verifiability requirement. Hence, the discussion of
this chapter is around this notion and how it is presented, based on the Demos article by
Kiayas, Zacharias and Zhang [11].

7.1 Verifiability Game
The article of Demos defines the notion of verifiability by a verifiability game. We present
a simplified version of this verifiability game. As before, the system below is presented for
an election where the voter votes for one candidate only. The verifiability game is similar
for an election where the voter votes for multiple candidates.

In Demos, the election authority is the main agent, responsible for the election and the
generation and tallying of the ballots. Hence the verifiability game is based on the fact that
the election authority is the adversary. A challenger is introduced as the opponent in the
game, contributing with honest and successful votes in the election. The adversary wins if
he changes the election result without being caught.

We repeat how the election authority encodes the candidate selection. The vote is encoded
into an m-bit string, where m is the number of candidates. The bit in the i-th position is 1
if and only if candidate Ti is voted for. Thus, the output of the result algorithm is a vector
in Zm+ .

Before explaining further, we present the notations and different elements of the game. We
denote V the set of voters and V̄ the set of honest voters.

The vote extractor The vote extractor, denoted E , is an algorithm that takes as input the
set of all the cast votes, Vcast, together with the set of receipts of the honest votes, V̄receipt.

57

The algorithm extracts a set of adversarial and undefined votes Vfail from Vcast .

E(Vcast, V̄receipt) = Vfail where, | Vcast − V̄receipt |=| Vfail |

The purpose of the vote extractor algorithm is to report the dishonest and undefined votes
in the result.

The deviation The goal of the malicious election authority in this game is to figure out
how much the final results can be changed without being caught. The distance between
the real result and the published result of the malicious election authority is called the
deviation, denoted d, of the voting system.

To express the deviation formally, d is defined by a metric, here derived by the 1−norm,
|| · ||1 scaled to half.

d : Zm+ × Zm+ −→ Z

Assume the results R = (x1, x2, ..., xm) and R′ = (x′1, x
′
2, ..., x

′
m) where xj , x′j for

j ∈ [1,m] are the number of votes for the candidate Tj in R and R′ respectively. For an
adversary to change the result from R to R′, he must change,

d(R,R′) =
1

2
|| R−R′ ||1=

1

2

m∑
j=1

| xj − x′j |

number of votes. The norm is scaled to half, because the maximum number of votes that
can be changed to obtain this difference is half of the absolute difference of the votes.

Example Let v1 = (0, 0, 1,) and v2 = (1, 0, 0) be two votes.

| v1 − v2 |= 2

To change v1 to v2, only one vote is changed, hence we use d1 as metric:

d1(v1, v2) =
2

2
= 1

Further we present the verifiability game between the adversary, denoted A, and the chal-
lenger, denoted C, with the vote extractor, E , and the deviation, d. As mentioned earlier, the
adversary fully controls the election authority of the voting system. The minimum num-
ber of voters that the adversary must allow to vote honestly and terminate successfully is
denoted by θ.

58

Verifiability Game

1. A does the following:

• Selects voters, V = {V1, ..., Vl} and candidates, T = {T1, ..., Tm}
• For each voter Vi ∈ V , chooses either of the following:

– To corrupt the voter.
– To allow C to play on its behalf, by providing him with the candidate

selections of the honest voters.

• Provides C with the receipt of all Vi ∈ V̄ .

• Posts the results on the bulletin board.

2. Verifiability Game(m, l) = 1 if:

• All θ honest voters cast their votes successfully and audit the result success-
fully.

• One of the following:

– The extractor does not report all the dishonest and unsuccessful votes.

d(R,R′) > 0

– The extractor reports dishonest votes that actually are honest.

E(Vcast, V̄receipt)← ¯̄V ⊆ V̄ where ¯̄V is a subset of honest voters.

A wins if Verifiability Game(m, l) = 1.

C wins if Verifiability Game(m, l) = 0.

By using this verifiability game, we present the mathematical definition of verifiability.

Verifiability Definition

Assume the existence of an extractor E and that at least θ honest voters voted
successfully. For l,m, d ∈ N with d > 0, 0 < ε < 1, 0 < θ < l, the system supports
verifiability with an error ε.

Pr[Verifiability Game(m, l) = 1] ≤ ε

Demos fulfills the verifiability requirement if the probability that the adversary changes
the election result by a shift of d votes is less than or equal to an error ε.

59

7.2 The verifiability proof

The article proves that Demos is an end-to-end verifiable voting system by showing how
different attacks including the modification and clash attack, presented earlier, will not
succeed. It presents the weakness of the system by these attacks, showing that in Demos
a malicious election authority can manipulate the ballot in the printing phase and how the
vote is tallied. The article argues how the probability of a malicious election authority
getting away with these attacks is negligible. As we have explained earlier, one side of the
ballot will be used to vote with, the other to verify that the ballot is correctly constructed.
Detecting that one of the two sides is manipulated is done by probability 1/2, because of
the random choice of ballot side.

In other words the random coin-toss in the voting phase is the key reason of why Demos
is end-to-end verifiable. In this chapter we briefly explain how the article proves the ver-
ifiability, focusing on the technical part depending on the voters coin toss. For interested
readers we recommend further readings in the article where they present a σ-protocol of
ballot correctness which is omitted in the thesis.

7.2.1 Producing the proof

As in the presentation of Demos, we assume a 1-out-of-m election, where the voter can
only vote for one candidate.

The article of Demos introduce two types of attacks against the verifiability of the system.
The first type is introduced by the modification and the clash attack, where vote-codes
on the ballot corresponds to other candidates than what is printed on the ballot. The sec-
ond type is that a malicious election authority can manipulate the vote for the encoded
candidate (l + 1)s for some s ∈ [1,m] to be tallied as for example 1000 · (l + 1)s.

Given the attacks above, a conjunction of a cut-and-choose proof with a σ-protocol proof
of a committed value belonging to a set, assures that the probability of a malicious election
authority to not get caught is negligible.

The first attack against the verifiability is weakened by the cut-and-choose argument. Since
we assume the voter verifies the ballot with the side that was not used to vote with, the
probability of a malicious election authority getting caught is 1/2. The second attack
is weakened by a σ-protocol proof of ballot correctness that provides assurance that the
tallied commitment commits to one encoded candidate, but note not necessarily the correct
one because that would break the privacy. To sum up, by a cut-and-choose argument, the
article of Demos concludes that the election authority only needs to prove correctness with
a σ-protocol of a single commitment because:

1. with the implemented coin toss the probability of a malicious election authority
getting caught is 1/2.

2. with a σ-protocol the election authority proves that the commitment of the vote will
be counted as one vote for one of the candidates.

60

Further the article proves that the σ-protocol satisfies special soundness, and the special
honest verifier zero-knowledge property. We look further into the verifiers challenge in
this protocol, extracted from the voters coin.

7.2.2 Producing the verifiers challenge
The article introduces the definition of a min-entropy. This is used to measure how uncer-
tain the probability distribution of the coin toss must be for the voting system to fulfill the
verifiability requirement. We introduce the concept of entropy and a randomness extractor.

Entropy The entropy [5] is the measure of the unpredictability of a set of outcomes.
Given a set of n events with probabilities p1, p2, ..., pn, the entropy is the measure of
change after given events. The measure is maximum if the events have equal probability,
i.e. pi = 1

n for all i ∈ [1, n] and zero if pi = 1 and pj = 0 for all j 6= i. In other words
if all the events happen with equal probability, the unpredictability is large and if the
probabilities are different the uncertainty decreases. Greater uncertainty implies greater
entropy. We define Shannon entropy, denoted H1, below where X is the discrete random
variable with the n events described above as possible outcomes.

H1(X) = −
n∑
i=1

pilog2(pi)

Example Given n = 3 with p1 = 1
2 , p2 = 1

4 and p3 = 1
4 , the entropy of the discrete

random value X with these events as possible outcomes is,

H1(X) = −
3∑
i=1

pilog2(pi) = −(
1

2
log2(2−1) +

1

4
log2(2−2) +

1

4
log2(2−2)) =

3

2

In Demos a version of entropy called min-entropy is used. Let X be the discrete random
variable with possible outcomes 1, 2, ..., n and with respective probabilities p1, p2, ..., pn,
then the min-entropy, denoted H∞, is defined in the following way,

H∞(X) = −log2(max(pi)) i ∈ [1, n].

In other words a min-entropy is the largest number b such that all events occur with prob-
ability at most 1/2b. With the example above we would get the following min-entropy,

H∞(X) = −log2(max(pi)) = −log2(2−1) = 1 i ∈ [1, 3].

Randomness extractor The purpose of a randomness extractor is to produce a highly
random output from a weaker entropy source.

We present below a simplified version of how the article of Demos defines the verifiers
challenge in the σ-protocol for ballot correctness.

In the σ-protocol the prover wants to prove that a commitment commits to one encoded
candidate. The verifier provides the prover by a guessing probability which is extracted

61

by the voters coins denoted by a = (a1, a2, ..., al) ∈ {0, 1}l. The min-entropy of the
coins is only contributed by the honest voters, since the coerced voters does not choose
randomly their voting side. We find it realistic to assume that the honest voters coins are
independent, as we assume that the coin toss happen separately for each voter. Demos
states that if this guessing probability, D, satisfies H∞(D) ≥ b, then the probability of the
prover cheating the verifier by guessing is at most 1/2b.

An attack by a malicious election authority, presented in the article, can occur if the ai ∈ a
are in the order the votes were cast. The election authority can organize the cast protocol of
the election so that all the honest voters are put in a specific order, reducing the challenge
space to be at most log2 θ, where θ is the minimum number of honest voters. Then the
probability of the prover cheating the verifier by guessing is 1/2log2θ = 1/θ. Such a
level of entropy is insufficient in order to provide a small enough verifiability error. The
verifiability error ε should drop exponentially with θ.

In other words, it is important that a malicious election authority can not control the order
of the votes. A possible solution is to use a randomness extractor that distributes the votes
in a random fashion into subsets. If every subset has a high enough entropy then the
probability of the election authority cheating the verifier is small.

To sum up, the article of Demos depends on the randomness in the honest voters coin toss
in their proof of ballot correctness. In the view of the availability aspect, the coin toss
assumption in a real election can be unrealistic. Not only cheating can occur, but honest
voters may inadvertently introduce bias into the coin flips. In a deeper analysis it would
be interesting to make a pessimistic probability model, and compare it with a statistical
analysis of actual sample of coin flips.

7.3 Conclusion
With a verifiability game, the notion verifiability is defined mathematically. This definition
is used to show how the voting system Demos satisfies the requirement. A cut-and-choose
argument is used, narrowing the proof down to a σ-protocol of ballot correctness. The
random coin toss is important not only in the voting phase, but also in the technical parts
of the proof by providing entropy for the verifiers challenge. We do emphasize that this
was a short dive into how the verifiability notion in the system is defined and motivate the
reader to explore further in the article by Kiayas, Zacharias and Zhang [11].

62

Chapter 8
Closing Remarks

The primary goal of this thesis was to investigate the potential of paper-based electronic
voting systems. We chose to learn more about Demos and Prêt-à-voter, both appealing
because they introduce verifiability.

Firstly, we wanted to understand how such systems can be constructed. The investigations
required understanding in cryptography, knowledge of voting systems and awareness of
the human parameter. Our own presentation of Demos and Prêt-à-Voter together with
concrete examples was one of the main contribution of this thesis.

Secondly, the goal was to understand what is required of a voting system, both in the vot-
ing phase and in the cryptographic components used in the system. We analysed these in
Demos with respect to the privacy and the verifiability. The availability was always taken
into consideration. The goal was to motivate the reader to understand that making a voting
system trustworthy is complex. We found that the commitment scheme in Demos is both
hiding and binding and that if the election authority is divided into independent agents, the
commitment scheme is trustworthy. We also concluded that Demos depends on both the
commitment scheme and the bulletin board working correctly. If one of the components
does not satisfy the requirements the other component is weakened. At last, we investi-
gated how the notion of verifiability in Demos is defined and proved mathematically. We
concluded by making a relation between the voting phase and the more technical parts
of Demos by the coin-toss. We emphasized that a coin-toss is probably not realistic to
implement in an election.

If there had been more hours in a day we would also have investigated definition and proof
of privacy in Demos. Although this thesis did not analyse Prêt-à-Voter, understanding
this voting system has been important when analysing Demos and has contributed to our
perspective of paper-based electronic voting systems in general.

A personal goal was to get a deeper understanding in this field and to obtain an overall idea
of how cryptography can be used in a real life situation. We also wanted to investigate the
relation between the mathematics and the human parameter as both must be taken into

63

consideration in an election. Finally, we wanted to acquire the knowledge required to
follow ongoing research in electronic voting system.

64

Bibliography

[1] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature
and encryption. In Advances in Cryptology—EUROCRYPT 2002, pages 83–107.
Springer, 2002.

[2] Michael R Clarkson Stephen Chong Andrew and C Myers. Civitas: A secure remote
voting system. 2007.

[3] David Bismark, James Heather, Roger Peel, Steve Schneider, Zhe Xia, and Peter YA
Ryan. Experiences gained from the first pret a voter implementation. In Requirements
Engineering for e-Voting Systems (RE-VOTE), 2009 First International Workshop on,
pages 19–28. IEEE, 2010.

[4] Dan Boneh. The decision diffie-hellman problem. In Algorithmic number theory,
pages 48–63. Springer, 1998.

[5] Daniel RL Brown. Formally assessing cryptographic entropy. IACR Cryptology
ePrint Archive, 2011:659, 2011.

[6] David Chaum, Peter YA Ryan, and Steve Schneider. A practical voter-verifiable
election scheme. Springer, 2005.

[7] Nikos Chondros, Alex Delis, Dina Gavatha, Aggelos Kiayias, Charalampos
Koutalakis, Ilias Nicolacopoulos, Lampros Paschos, Mema Roussopoulou, Giorge
Sotirelis, Panos Stathopoulos, et al. Electronic voting systems–from theory to imple-
mentation. In E-Democracy, Security, Privacy and Trust in a Digital World, pages
113–122. Springer, 2014.

[8] Alex Delis, Konstantina Gavatha, Aggelos Kiayias, Charalampos Koutalakis, Elias
Nikolakopoulos, Lampros Paschos, Mema Rousopoulou, Georgios Sotirellis, Panos
Stathopoulos, Pavlos Vasilopoulos, et al. Pressing the button for european elections.

[9] James Heather and David Lundin. The append-only web bulletin board. In Formal
Aspects in Security and Trust, pages 242–256. Springer, 2009.

65

[10] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elec-
tions. In Proceedings of the 2005 ACM workshop on Privacy in the electronic society,
pages 61–70. ACM, 2005.

[11] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end verifiable
elections in the standard model. In Advances in Cryptology-EUROCRYPT 2015,
pages 468–498. Springer, 2015.

[12] Peter YA Ryan. Prêt à voter with paillier encryption. Mathematical and Computer
Modelling, 48(9):1646–1662, 2008.

[13] Peter YA Ryan, David Bismark, James A Heather, Steve A Schneider, and Zhe Xia.
The prêt à voter verifiable election system. IEEE transactions on information foren-
sics and security, 4(4):662–673, 2009.

[14] Peter YA Ryan and Steve A Schneider. Prêt à voter with re-encryption mixes.
Springer, 2006.

[15] D.R. Stinson. Cryptography: Theory and Practice, Third Edition. Discrete Mathe-
matics and Its Applications. Taylor & Francis, 2005.

66

	Introduction
	Theory
	Definitions
	Mathematics
	Public Key Encryption
	Exponential ElGamal
	Negligible function
	Decisional Diffie Hellman Assumption
	Commitment Scheme
	Threshold Scheme

	Demos
	Introduction
	Cryptographic description
	Setup phase
	Voting phase
	Tallying phase

	Example

	Prêt-à-voter
	Introduction
	Cryptographic description by decryption mix-net
	Setup phase
	Voting phase
	Tallying phase

	Example
	Cryptographic description by re-encryption mix-net
	Setup phase
	Voting phase
	Tallying phase

	Requirements in the voting phase of Demos
	Privacy
	Verifiability
	Conclusion

	Analyzing cryptographic components of Demos
	Commitment scheme
	Privacy
	Verifiability

	Bulletin board
	Requirements
	Protocol

	Conclusion

	Demos as an end-to-end verifiable voting system
	Verifiability Game
	The verifiability proof
	Producing the proof
	Producing the verifiers challenge

	Conclusion

	Closing Remarks

