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Abstract

The scope of study is an umbilical arranged in a lazy wave configuration at 1300
m depth in Brazilian waters. The surface vessel is a ship, about 300 m long
and 55 m wide. The wave environment is given by a wave scatter diagram and
a 100-year contour curve and is acting in the beam sea direction of the ship.
The long term extremes of important top end excitation parameters have been
determined using frequency domain methods. This includes the wave elevation,
the top end umbilical axial motion and velocity as well as the vessel roll an-
gle. Long term extremes of important umbilical response parameters as bend
stiffener angle and tension have been estimated in addition to the sag tension
through time domain simulations considering the entire wave scatter diagram.
The long term extremes have been compared to results from simulations of sea
states on the 100-year wave contour curve. A selected 100-year sea state have
been investigated using full non-linear time domain analysis. Extreme value es-
timates from ten three hour realizations have been established for top and sag
tension including top angle. The relation between the top end axial velocity
and the sag tension have been investigated. The results demonstrates that the
extreme top axial velocity is well correlated to the sag tension and show that
the the axial velocity extreme occurs practically at the same time as the sag
tension extreme.
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term maximum and α: Ẋ=6.89 m/s, α = 0.927. . . . . . . . . . . 78

38 Maximum vessel angle θ′y (projection) along 100-year wave con-
tour curve, 270◦ wave direction. Effect of different α-values. As-
sociated long term maximum and α: θ′y=12.33◦, α = 0.904. . . . 78

39 Maximum dynamic bend stiffener tension Tbs along 100-year
wave contour curve, 270◦ wave direction. Effect of different α-
values. Associated long term maximum and α: Tbs=238.81 kN,
α = 0.893. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



LIST OF FIGURES ix

40 Maximum dynamic sag tension Tsag along 100-year wave contour
curve, 270◦ wave direction. Effect of different α-values. Associ-
ated long term maximum and α: Tsag=45.77 kN, α = 0.657. . . . 79

41 Maximum dynamic bend stiffener angle θy (projection) along
100-year wave contour curve, 270◦ wave direction. Effect of dif-
ferent α-values. Associated long term maximum and α: θy=14.42◦,
α = 0.801. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

42 Gumbel probability plot for g(T,C), simulation: lw-32700405. . . 87
43 Level up-crossing frequencies for g(T,C), ten realizations. . . . . 87
44 Statistical boundary polygon describing critical tension and cur-

vature combinations for load case lw-32700405. . . . . . . . . . . 88
45 Level up-crossing frequencies for sag tension, ten realizations in-

cluding analytical results for a linear or quadratic load, L(ζ) =
Aζ or Q(ζ) = B|ζ|ζ, associated with Gaussian input ζ. . . . . . . 88

46 Velocity in static axial direction versus associated values of sag
tension maxima and minima. . . . . . . . . . . . . . . . . . . . . 93

47 Rank of axial acceleration maxima versus rank of sag tension
maxima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

48 Time delay between axial acceleration maxima and sag tension
maxima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

49 Rank of axial velocity maxima versus rank of sag tension maxima,
all velocity maxima. . . . . . . . . . . . . . . . . . . . . . . . . . 95

50 Rank of axial velocity maxima versus rank of sag tension maxima,
the 30 most extreme velocity maxima. . . . . . . . . . . . . . . . 95

51 Time delay between axial velocity maxima and sag tension maxima. 96
52 Rank of axial velocity minima versus rank of sag tension minima,

all velocity minima. . . . . . . . . . . . . . . . . . . . . . . . . . . 96
53 Rank of axial velocity minima versus rank of sag tension minima,

the 30 most extreme velocity minima. . . . . . . . . . . . . . . . 97
54 Time delay between axial velocity minima and sag tension minima. 97
55 Fraction of pairs (rx, ry) satisfying rx ≤ n and ry ≤ n plotted

against n on first axis. Plot is for axial velocity maxima and sag
tension maxima. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

56 Fraction of pairs (rx, ry) satisfying rx ≤ n and ry ≤ n plotted
against n on first axis. Plot is for axial velocity minima and sag
tension minima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

57 Group of large extremes in time series around time 7600 seconds,
load case lw-32700405. . . . . . . . . . . . . . . . . . . . . . . . . 99

58 Rank of axial velocity maxima versus rank of sag tension maxima,
20 intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

59 Rank of axial velocity maxima versus rank of sag tension maxima,
80 intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

60 Rank of axial velocity minima versus rank of sag tension minima,
20 intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

61 Rank of axial velocity minima versus rank of sag tension minima,
80 intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



x LIST OF FIGURES

Nomenclature
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1

1 Introduction

The main objective of this work is to investigate extreme value estimation pro-
cedures that are suitable for simulations that give results in the form of long
time series.

The investigated umbilical system is arranged in a lazy wave configuration con-
nected to a ship. There is significant tension dynamics and compression in the
sag region of the umbilical. This system was chosen for the desire to see if the
main cause for this could be determined.

Further motivation for this work is related to the practical task of bend stiffener
design in irregular wave analysis. The interesting parameters are the simulta-
neous combinations of umbilical tension and angle – in the statistical sense.

Simplified methods are of general interest, partly because long non-linear sim-
ulations of useful length are still associated with hours of computer time com-
pared to minutes if applying deterministic regular waves for design checks –
but also because of the large amounts of data produced. Hence, simplifications
that may more easily lead towards a solution in practical engineering cases are
always valuable. Particularly those simplified method whose accuracy can be
made explicit and tested.

The Master thesis assignment can be found in appendix A.

2 Summary

This report starts with a brief description of the purpose of an umbilical in the
oil and gas industry. The umbilical carry in most cases electric, hydraulic or
light signals for operation of subsea equipment such as valves or pumps.

Next, the umbilical cross section and the geometry of the applied global lazy
wave configuration is presented. This is followed by a description of the envi-
ronmental conditions typical for deep waters east of east of Brazil. The water
depth at the field is 1300 m.

Then there are some chapters presenting some theory for bend stiffener design,
methods for dynamic analysis and a simplified method for determining the long
term 100-year extreme. This is followed by a chapter regarding the use of the
Poisson distribution for estimating short term and long term extreme values by
use of empirically obtained level up-crossing frequencies from simulated time
series.

The simplified method evaluated in this document is based on using the top
axial velocity for predicting interesting time instants for sag tension extremes.
The investigation of this issue is mainly performed using the concept of rank
order, e.g. the largest value gets rank 1, the second largest value gets rank 2
and so on. Hence, our object of study is lists as [1,2,3,...] and [2,1,4,...] for axial
velocity and sag tension respectively. The correlation coefficient between such
rank order lists is Spearman’s rho. Therefore, Spearman’s rho is reviewed and
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some investigations are done to see if we can learn something about what rank
order correlation to expect for a non-perfect approximation method – with an
explicit success rate.

The top axial velocity is caused by the floating vessel, whose motions are given
by transfer functions, RAOs. The chapter on RAOs give some background
on their meaning and also some information regarding checking of RAO-values
when using the Riflex computer program. Also, part of this chapter is a sec-
tion on transformation of RAOs and a brief summary on how to calculate the
response from transfer functions and wave spectrum based on the Gaussian
assumption.

The Gaussian response calculations are then used to estimate the long term
100-year extreme for wave and vessel motions at the umbilical hang-off point.
Also, the long term 100-year extreme of selected umbilical responses are cal-
culated by time domain analysis. These results are also used to investigate
which of the top end parameters that are better correlated with the umbilical
response. As expected, instead of the wave elevation – top axial velocity is
a better indicator for the important sea states considering umbilical tension.
Likewise, the vessel angle is a better indicator for the most important sea states
considering umbilical top angle.

These long term 100-year extreme estimates are then compared to the results
obtained from the 100-year contour curve sea states. The non-exceedance quan-
tile α needed to realize the long term 100-year extreme by the contour curve
approach has also been determined. It appears that α = 0.90 is an overall
suitable value for the response quantities studied.

The final chapter deals with non-linear analysis of a selected sea state. In this
section the two main issues are extreme value estimation for selected response
parameters and rank order investigation of the relation between the top ax-
ial velocity and sag tension. Empirical level up-crossing frequencies are also
presented for two response quantities.

3 Umbilical technology

Within the oil and gas industry, the purpose of an umbilical is to carry electric,
hydraulic or light signals to operate equipment as valves or pumps. An umbilical
may therefore also called an Electric, Optical and Hydraulic (EOH) cable. Some
tubes may also be included for the purpose of injecting fluids, chemicals or gas,
into other system pipe lines for flow assurance. Larger electrical conductors for
power transmission may also be included.

3.1 Electric signal and power cables

The typical voltage of signal cables is about 1 kV whereas power cables typically
operate at voltage level 6 kV. Four conductors are usually assembled in a quad,
this is a circular bundle with typical outer diameter in the range 15-20 mm.
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The electric signals are carried through small area copper conductors. The
conductor size is small, typically 7.5 mm2 corresponding to a outer diameter
(outside the copper) of about 3 mm. Power cables are more varied in size, a
typical diameter over the copper may be about 20 mm.

The conductors are made of almost pure copper for high electrical conductivity.
Each conductor typically consists of a small center strand surrounded by min-
imum 6 equal strands – the latter are wound helically around the first. For a
signal cable, the strand diameter is about 1 mm. The strands are drawn by the
manufacturer from annealed circular copper wire with initial dimension about
10 mm.

Parameter Unit Value

Yield strength, Rp0.2 MPa 70
Tensile strength, Rm MPa 210
Elongation at break % 45
E-modulus, E MPa 115000
Density, ρ kg/m3 8920

Table 1: Typical mechanical properties for annealed copper.

3.2 Tubes and hoses

The hydraulic control signals are transmitted through steel tubes or hoses filled
with hydraulic fluid. The density of the hydraulic fluid is typically around 1050
kg/m3. The internal pressure is typically between 69-103 Mpa (10000-15000
psi). The internal pressure of these hydraulic lines keeps spring loaded valves
opened. The valves are made so that they close if the hydraulic pressure is lost
due to some event, this is the fail-safe principle.

The tube material is high strength steel, Super Duplex. The yield strength is
typically in excess of 650 MPa and the E-modulus is around 200000 MPa. This
material is more corrosion resistant than most other materials for most fluids
and temperatures as used in umbilicals. Since high strength steel has a different
cathodic potential than ordinary steel, the tubes are therefore usually plastic
coated, mainly to avoid corrosion of the Super Duplex steel tubes.

3.3 Design criteria

The steel tubes are usually designed checking two load cases separately. The
load case with internal pressure only – and a load case with combined pressure
load, static and dynamic loads.

The design criteria is associated with the von Mises stress and the allowable
value is usually limited to some fraction of the yield stress. This is the approach
used in the standard “ISO 13628-5:2009, part 5: Subsea umbilicals”. However,
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there are other standards under which the calculated stress shall be compared
to the ultimate tensile stress.

Fatigue is conventionally checked for dynamic umbilicals. The allowed fatigue
damage is usually 0.10 over the entire service life. The conventional Miner-
Palmgren method using a SN-curve is applied in the fatigue calculations.

3.4 Equations for tube stress calculations

The total tube stress is calculated based on the principle of linearity. This
means that the effect of the various loads are simply added. A cylindrical
coordinate system will be adopted in the following. Indices, x, h and r will be
adopted to designate the stress components in the axial direction (Sxx), hoop
direction (Shh) and radial direction (Srr) respectively. To the extent that shear
stresses are needed, they will be labeled in the conventional fashion, example
Srh, reference Mase (1970) [15].

Assuming that the stress check is to be performed by calculating the maximum
von Mises stress and comparing this to the allowable stress. The allowable
stress is a fraction of the material yield strength (SMYS), ηSyield.

The pressure induced stresses, the end-cap pressure, Sxxp, the hoop stress Shh
and the radial stress Srr are calculated by Lames’ equation, see equations 1, 2
and 3. Note regarding axial stress, the concept of effective tension is applied.
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The axial stress does also get contributions from the effective tension T (Sxxt)
and bending curvature C (Sxxc). These components are calculated as follows:

Sxxt =
T

π(r2
o − r2

i )
= aT (4)

Sxxc = CrE = bC (5)

The total axial stress, Sxx is obtained as the sum of the axial contributions
since the problem is linear, se equation 6:

Sxx = Sxxt + Sxxc + Sxxp (6)
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Having determined these stresses and for generality assuming also that the shear
stress components Sxh, Sxr and Shr exist – the von Mises stress is calculated
from equation 7.

Svm =

√
(Sxx − Shh)2 + (Shh − Srr)2 + (Srr − Sxx)2

2
+ 3

(
S2
xh + S2

xr + S2
hr

)
(7)

Assuming that there is only pressure acting on the tube, the shear stresses are
zero.

The von Mises stress equation can be used to determined the capacity curve
for a simple tube. This is done by neglecting the shear stresses and introducing
Sxx = Y + Sxxp where Y = Sxxt + Sxxc is the combined effect of the tension
and bending. This give 8.

S2
vm =

1
2
(
(Y + Sxxp − Shh)2 + (Shh − Srr)2 + (Y + Sxxp − Srr)2

)
=

1
2
[
2Y 2 + 2Y (Sxxp − Shh + Sxxp − Srr) + ((Sxxp − Shh)2 + (Shh − Srr)2 + (Sxxp − Srr)2)

]
= Y 2 + Y β + S2

vm0

(8)

Here we see that the square of the von Mises stress is a quadratic polynomial in
Y = Sxxt +Sxxc, the axial stress resulting from the external loads, the effective
tension T and the bending curvature C. Furthermore we see that the square
of Mises stress from pressure alone takes the role of a constant. The constant
B = 2Sxxp − Shh − Srr is interesting – because this tells us that for B 6= 0, the
minimum von Mises stress happens for Y = −β/2, that is – for external load
greater than zero.

Likewise, it is of considerable interest to learn that the von Mises stress is
constant for any constant value of Y = Sxxt + Sxxc. Since Y = Sxxt + Sxxc =
aT + bC where T and C are the effective tension and curvature respectively.
This tells us the that isocline curves for von Mises stress are parallell when
plotted on a T/|C|-diagram.

It may be also shown that for any chosen radius between the inner and the
outer of the tube, there will be two lines in a T/|C|-diagram that delimits the
allowable tension/curvature combinations for the single pressurised tube. One
line for each of the solutions of Y in equation 8.

Note: The dependancy on the radius occurs since the radius affects the radial
and hoop stress. Of the two lines mentioned, one will have a positive slope and
the other will have a negative slope.
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4 Umbilical description

The umbilical consist of 16 tubes in total, 2 tubes with inner diameter of 1 inch
(25.4 mm) tubes and 14 with inner diameter of 1/2 inch (12.7 mm). In addition
to this, we find two electric signal cables, see figure 1.

The two largest tubes are arranged as helicals in the first layer together with
two of the smallest tubes. In the second layer, we find the remaining smaller
tubes and the signal cables, also arranged in helicals. Outside of this we find
the inner polyethylene (PE) sheet, two layer of round armouring wires with
diameter close to 5 mm and finally – the outer polyethylene sheath.

Figure 1: Umbilical cross-section.

4.1 Mechanical properties

Table 2 give geometrical information for the tubes of this umbilical. Cross-
section properties including hydrodynamic coefficients are given in table 3.

4.2 Capacity curves

The design pressure is 69 MPa (10 000 psi) for all tubes. Table 4 contains stress
isoclines for simultaneous effective tension and global curvature acting on the
umbilical. The capacity curves are illustrated on figure 2. The curves have been
prepared numerically by Nexans using the computer program Uflex2d version
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No. off ID OD WT Material SMYS SMTS E-modulus
Item (-) (mm) (mm) (mm) (-) (MPa) (MPa) (MPa)

1 inch tubes 2 25.40 31.10 2.85 SD steel 600 850 200 000
1/2 inch tubes 14 15.70 15.22 1.26 SD steel 670 850 200 000
Armouring wires 142 - 5 - Steel 400 650 210 000

Table 2: Main elements of the umbilical.

Parameter Symbol Value Unit

Mass (filled and flooded) m 43.1 (kg/m)
Submerged weight (filled and flooded) Sw 0.259 (kN/m)
Outer diameter OD 0.144 (m)
Axial stiffness EA 659 (MN)
Bending stiffness EI 18.5 (kNm2)
Torsion stiffness GJ 96.1 (kNm2)

Drag-coefficient, longitudinal CDt 0.01 (-)
Drag-coefficient, normal (upper 300 m) CDn 1.1 (-)
Added mass coefficient, longitudinal Cat 0 (-)
Added mass coefficient, normal Can 1 (-)

Table 3: Cross-section mechanical properties and hydrodynamic coefficients.

2.2.2 (2010) [25]. Issues such as non-linearities because of contact and friction
are included in these analysis.

It should be mentioned that the stress isoclines used in this study are defined
under Petrobras specific requirement for umbilicals. Under this regime, the
stress levels shall be measured relative to the ultimate strength of the material,
the relevant stress isoclines are for stress levels 0.60×SMTS and 0.77×SMTS.
These stress levels shall not be exceeded for normal and abnormal extreme
conditions respectively.

With reference to the capacity curve figure, 2 and table 4. The upper part of the
0.60× SMTS-curve defined by the 1/2 inch tube appears to be non-straight.

The reason for the non-straight deviation is mainly the friction that acts be-
tween the elements. Once a negligible and small curvature has been established,
so that there is full slip between elements – there is an element friction stress
amplitude due to the contact pressures. This friction stress amplitude is de-
termined by the tension level in the umbilical. The tension level is determined
from the umbilical effective tension, the internal tube pressures and the po-
tential external static pressure. (Note that the internal voids of the umbilical,
those between umbilical elements is sea water filled and that the pressure in
these voids is equal to the external hydrostatic pressure, Po = ρgh.)

The friction stress amplitude is to a first approximation independent of the cur-
vature level provided that the curvature is greater than the so called slip-level.
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Because the friction stress amplitude is linearly increasing with the effective
tension, we would expect to see slightly greater effects for larger tension lev-
els. For this reason, the departure from linearity for the 1/2 inch tube is as
expected.

The part of the curve defined by the larger 1 inch tube is found to be straight.
after inspection of the results between data points 1 to 7. The only notable
finding is that there is a slight slope reduction from the 0.60×SMTS-curve to
the 0.77 × SMTS-curve. This is mentioned since stress isoclines for an single
tube would be parallel.

The slope reduction is small, only 3%. The reason is partially the friction
stress amplitude, but the more significant cause is that stress components as
Srr and Shh would obviously depend on the tension level – because of the direct
connection with the contact pressure. The dependency on the curvature level
would be comparatively less.

The construction elements that defines these capacity curves are: the large 1
inch tube, the smaller 1/2 inch tube and the copper within the electrical signal
cables. The copper requirement is manufacturer specific.

It is worth noting that the largest 1 inch tube determine the part of the capac-
ity curve for the very low tension levels. For close to the highest tension level,
the 1/2 inch tube becomes critical. For the highest tension level the copper
is critical since the manufacturer considers it unwise to allow material yield in
an extreme condition. Stress analysis have been performed to determine the
marked points on the capacity curves. Regarding the straight lines connect-
ing any two adjacent points. The finding from section 3.4, that the capacity
curves for individual tubes (or rods) are indeed straight lines in a T/|C|-diagram
supports this practice.

Normal extreme conditions Abnormal extreme conditions
Svm = 0.60 SMTS Svm = 0.77 SMTS

Point Tension Curvature Tension Curvature
(kN) (1/m) (kN) (1/m)

1 0.0 0.130 0.0 0.189
2 84.0 0.123 108.9 0.179
3 168.0 0.116 217.7 0.169
4 252.0 0.108 326.6 0.160
5 336.0 0.101 435.5 0.150
6 420.0 0.094 544.4 0.140
7 504.0 0.086 653.2 0.130
8 588.0 0.079 762.1 0.120
9 672.0 0.060 871.0 0.110
10 756.0 0.034 979.9 0.100
11 840.0 0 1089. 0

Table 4: Umbilical capacity curves, internal tube pressure is 69 MPa.
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Figure 2: Umbilical capacity curves with identification of the defining element.

5 Global configuration

The umbilical is arranged in a lazy wave type of global configuration. At the
top end there is a bend stiffener, this is attached to the I-tube of the vessel
by a steel flange. Near the seabed there is a buoyancy section of distributed
buoyancy modules.

The nominal top angle is 7 degree with the vertical. This angle matches that
of the vessel I-tube. This contributes to reduce the overall length of the bend
stiffener. The length of the buoyancy section is 125 m, the length averaged
submerged weight of the buoyancy section is −3 times that of the umbilical
itself, i.e. k = SwB/Sw = −3.

The umbilical hang-off location of the umbilical is at the vessel port side. How-
ever, the umbilical goes under the vessel keel and lands on the seabed at the
vessel starboard side. The umbilical direction is -90◦ relative to the vessel lon-
gitudinal axis. The vessel is oriented such that the vessel X-axis points in the
south-east direction. This means that waves from south-west propagate in the
vessel Y-direction. Hence, creating the maximum roll motion. See table 6 and
figure 3.

Note that the global coordinate system as applied in the analysis model coin-
cides with the vessel coordinate system as shown on figure 3.
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Parameter Value Unit

Water depth 1300.0 (m)
Bend stiffener flange location, depth below water line 6.0 (m)
Top departure angle with vertical 7.0 (◦)
Vertical distance from bend stiffener flange to seabed 1294.0 (m)
Horizontal distance from bend stiffener flange to model end
at seabed

1100.0 (m)

Length from bend stiffener flange to buoyancy section, L1 1520.0 (m)
Length of buoyancy section (k=-3), L2 125.0 (m)
Length from buoyancy to model end at seabed 430.0 (m)
Total umbilical length in model 2075.0 (m)

Table 5: Description of lazy wave configuration, see figure .

Xh Yh Zh Heading rel. vessel X
(m) (m) (m) (◦)

Umbilical hang-off and heading 10.00 29.00 2.00 -90◦

Table 6: Umbilical hang-off coordinates in vessel coordinate system, origin in vessel
center and at keel. See figure 3.

Effective tension Curvature

Top Bottom Sag/Touchdown Hog Top angle
Vessel position (kN) (kN) (1/m) (1/m) (◦)

Nominal configuration 358.3 43.67 0.00593 -0.01780 7.00
Far offset, 150.5 m 373.2 69.90 0.00371 -0.01112 10.80
Near offset, 150.5 m 351.4 27.95 0.00927 -0.02780 4.56

Table 7: Key results, tension and curvature, for lazy wave configuration with nominal
top angle equal to 7◦, see figures 4, 5 and 6.

Horizontal distance Vertical distance
Top to touch- Sag bottom Hog top
down point to seabed seabed

Vessel position (m) (m) (m)

Nominal configuration 898 79.5 153.1
Far offset, 150.5 m 940 123.2 149.4
Near offset, 150.5 m 877 45.4 167.6

Table 8: Key results, distances, for lazy wave configuration with nominal top angle
equal to 7◦, see figures 4, 5 and 6.
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Figure 3: Vessel orientation and umbilical hang-off locations, see table 6. Note that
the coordinate system used in the analysis coincides with the X- and Y-
directions shown for the vessel.

5.1 Computer model and analysis details

The time domain analysis are performed using the computer program Riflex
version 3.6.5 (2008), developed by Marintek, reference [13] and [14].

The simulation length is either 11000 seconds or 3660 seconds. The initial 60
seconds are discarded from post-processing. The pre-generated time series of
wave kinematics and vessel motion are sampled every half second. The time
step used in the integration algorithm is 0.125 s and the analysis results are
sampled every 0.25 s.

The applied integration algorithm is of Newmark type, the parameter values
are β = 1/4 and γ = 1/2. Hence, constant average acceleration is assumed in
the integration.

The simulations are performed using a constant Rayleigh damping matrix which
is defined at analysis start. The assumed level of Rayleigh damping is such that
the relative damping is about 14% for a loading period of 10 seconds and 7% for
a loading period of 20 seconds. The cause of the damping is internal friction,
mainly associated with bending and occuring in the armouring layer of the
construction.

See tables 9 and 10 for modelleing details as beam element discretization, mass
and stiffness.
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Length No. elements El. length Mass Dia. EI Sum length

Segment (m) (-) (m) (kg/m) (m) (kNm2) (m)

1 0.300 5 0.060 43.1 0.144 120000 0.3
2 0.350 4 0.087 43.1 0.144 120000 0.6
3 0.204 2 0.102 43.1 0.144 5725.6 0.9
4 0.204 2 0.102 43.1 0.144 5083.8 1.1
5 0.204 2 0.102 43.1 0.144 4497.7 1.3
6 0.204 2 0.102 43.1 0.144 3963.9 1.5
7 0.204 2 0.102 43.1 0.144 3479.3 1.7
8 0.204 2 0.102 43.1 0.144 3040.7 1.9
9 0.204 2 0.102 43.1 0.144 2645.2 2.1
10 0.204 2 0.102 43.1 0.144 2289.7 2.3
11 0.204 2 0.102 43.1 0.144 1971.6 2.5
12 0.204 2 0.102 43.1 0.144 1688 2.7
13 0.204 2 0.102 43.1 0.144 1436.4 2.9
14 0.204 2 0.102 43.1 0.144 1214.3 3.1
15 0.204 2 0.102 43.1 0.144 1019.3 3.3
16 0.204 2 0.102 43.1 0.144 849.1 3.5
17 0.204 2 0.102 43.1 0.144 701.4 3.7
18 0.204 2 0.102 43.1 0.144 574.3 3.9
19 0.204 2 0.102 43.1 0.144 465.6 4.1
20 0.204 2 0.102 43.1 0.144 373.6 4.3
21 0.204 2 0.102 43.1 0.144 296.4 4.5
22 0.204 2 0.102 43.1 0.144 232.4 4.7
23 0.204 2 0.102 43.1 0.144 179.9 4.9
24 0.204 2 0.102 43.1 0.144 137.4 5.1
25 0.204 2 0.102 43.1 0.144 103.7 5.3
26 0.204 2 0.102 43.1 0.144 77.4 5.5
27 0.204 2 0.102 43.1 0.144 57.3 5.7
28 0.200 2 0.100 43.1 0.144 48.7 5.9
29 0.300 2 0.150 43.1 0.144 18.5 6.2
30 0.500 2 0.250 43.1 0.144 18.5 6.7
31 0.750 2 0.375 43.1 0.144 18.5 7.5
32 1.250 2 0.625 43.1 0.144 18.5 8.8
33 7.000 10 0.700 43.1 0.144 18.5 15.8
34 20.000 15 1.333 43.1 0.144 18.5 35.8
35 25.000 14 1.786 43.1 0.144 18.5 60.8
36 25.000 10 2.500 43.1 0.144 18.5 85.8
37 110.000 29 3.793 43.1 0.144 18.5 195.8
38 110.000 19 5.789 43.1 0.144 18.5 305.8
39 20.000 2 10.000 43.1 0.144 18.5 325.8
40 864.250 44 19.642 43.1 0.144 18.5 1190.0
41 20.000 2 10.000 43.1 0.144 18.5 1210.0
42 10.000 3 3.333 43.1 0.144 18.5 1220.0
43 300.000 150 2.000 43.1 0.144 18.5 1520.0

44 (buoyancy) 125.000 62 2.016 192.41 0.580871 18.5 1645.0
45 320.000 150 2.133 43.1 0.144 18.5 1965.0
46 100.000 50 2.000 43.1 0.144 18.5 2065.0
47 10.000 3 3.333 43.1 0.144 18.5 2075.0

Table 9: Model details, mass, length, diameter and bending stiffness. The model
starts at the top with segments 1 and 2 representing the stiff (steel) part
of the bend stiffener, segments 3-28 being the soft (polymer) part of bend
stiffener and segment 44 as the buoyancy section. The buoyancy section
properties are averaged over the length, see also table 10

Cdt Cdn Cat Can

Umbilical 0.01 1.1 0 1
Buoyancy section 0.16 0.65 0.46 0.85

Table 10: Hydrodynamic coefficients for analysis model. Axial and normal drag: Cdt

and Cdn. Axial and normal added mass: Cat and Can. The buoyancy
section properties are averaged over the length, see also table 9.
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6 Environmental conditions

6.1 Wind and vessel induced offset

The direct effect of wind speed, the potential wind induced drag load is usually
neglected in conventional riser analysis. This simplification is done, even when
the riser hangs freely from the deck of the floater. However, the effect of the
wind on the floater horizontal offset is accounted for.

The floater offsets applied in the riser analysis are the extremes as determined
from mooring analysis. These extreme offsets should not include the first order
wave induced floater motions because these are added separately in the the
dynamic umbilical analysis.

It is usual to consider both a maximum and minimum offset associated with
specified wave, current and offset directions. In this study, all analysis are
performed with no vessel offset.

6.2 Waves

The wave conditions described here are typical for the deep waters east of Brazil.
The data are for the Jubarte Field which is 70 km offshore the Brazilian state
of Espirito Santo, see figure 7. The state capital Vitoria is about 500 km north
of the city Rio de Janeiro. The Jubarte offshore field is part of the Campos
Basin area, the area of the latter is about 100 000 km2. The water depth at
the Jubarte field is 1300 m.

Figure 7: Jubarte field location east of Brazil.



16 6 ENVIRONMENTAL CONDITIONS

Only wave data for direction south-west, from south-west, are given here. The
wave data have been obtained from reference [3]. The so-called contour curves
are illustrated on figure 8 for different return periods, the numerical data are
given in tables 11 and 12. The observed wave scatter diagram consistent with
the contour curves is given in table 13. Section 6.3 defines the applicable wave
spectrum which is of Jonswap type - and adapted for the location.

Regarding table 11, it should be mentioned that the parameters Hmax and
THmax are the extreme regular wave height and period associated with the
irregular sea state as described by the Hs- and Tp-values.

RETURN PERIOD (YEARS)
Parameter 1 year 10 year 30 year 50 year 100 year

Hs (m) 6.37 7.16 7.49 7.64 7.84
Tp (s) 13.93 14.78 15.15 15.32 15.55
Tz (s) 10.18 10.78 11.05 11.17 11.33
Hmax (m) 11.89 13.30 13.90 14.17 14.53
THmax (s) 13.72 14.40 14.69 14.82 14.99

Table 11: Extreme waves from south-west, irregular and regular wave data.
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Figure 8: Contour curves for extreme waves from south-west, data from tables 12 and
11.
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RETURN PERIOD (YEARS)
Period 1 year 10 year 30 year 50 year 100 year
Tp(s) Hs(m) Hs(m) Hs(m) Hs(m) Hs(m)

6.0 3.11 3.69 3.90 4.00 4.12
6.5 3.52 4.07 4.27 4.35 4.46
7.0 3.89 4.38 4.57 4.65 4.76
7.5 4.19 4.68 4.87 4.95 5.05
8.0 4.49 4.95 5.14 5.21 5.31
8.5 4.75 5.20 5.38 5.46 5.56
9.0 5.00 5.45 5.63 5.70 5.80
9.5 5.21 5.67 5.84 5.92 6.02
10.0 5.42 5.88 6.05 6.13 6.22
10.5 5.61 6.08 6.26 6.33 6.43
11.0 5.78 6.26 6.44 6.52 6.62
11.5 5.94 6.44 6.62 6.70 6.80
12.0 6.08 6.60 6.80 6.88 6.97
12.5 6.19 6.74 6.95 7.04 7.15
13.0 6.29 6.88 7.10 7.19 7.30
13.5 6.34 6.99 7.23 7.33 7.45
14.0 6.36 7.09 7.34 7.45 7.58
14.5 6.32 7.13 7.43 7.56 7.70
15.0 6.23 7.13 7.48 7.61 7.79
15.5 6.08 7.08 7.45 7.62 7.84
16.0 5.88 6.93 7.36 7.56 7.78
16.5 5.62 6.72 7.18 7.37 7.63
17.0 5.35 6.47 6.93 7.13 7.40
17.5 5.05 6.20 6.66 6.86 7.12
18.0 4.73 5.90 6.37 6.57 6.82

Table 12: Contour curves for extreme waves from south-west, see figure 8.

6.3 Wave spectrum definition

The Jonswap wave spectrum has been adapted for the Jubarte field location,
see the Metocean specification (2005) [3].

The Jonswap wave spectrum is formulated as follows:
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Tp(low) (s) 5 6 7 8 9 10 11 12 13 14 15 16 17
Tp(high) (s) 6 7 8 9 10 11 12 13 14 15 16 17 18

Hs(low) Hs(high)
(m) (m) Sum Pr(h≤Hs) Mean Tp (s)

0.0 0.5 0 0.00% 0
0.5 1.0 2 1 3 0.34% 7.78
1.0 1.5 3 4 10 16 9 14 3 1 1 61 6.94% 9.89
1.5 2.0 6 13 21 28 37 21 5 2 133 15.13% 9.78
2.0 2.5 6 12 24 39 56 40 22 8 207 23.55% 10.30
2.5 3.0 1 2 13 31 49 43 33 8 1 181 20.59% 10.84
3.0 3.5 4 14 18 23 37 22 12 4 5 139 15.81% 11.22
3.5 4.0 1 13 15 13 19 15 2 1 1 80 9.10% 11.70
4.0 4.5 7 4 5 11 11 6 1 45 5.12% 12.26
4.5 5.0 1 4 2 6 3 3 1 20 2.28% 12.48
5.0 5.5 1 1 1 3 1 7 0.80% 12.77
5.5 6.0 1 1 0.11% 11.13
6.0 6.5 2 2 0.23% 13.48
6.5 7.0 0 0.00% 0

Sum 3 15 36 82 153 199 177 122 65 17 9 0 1 879
Pr(t≤Tp) 0.34% 1.71% 4.10% 9.33% 17.41% 22.64% 20.14% 13.88% 7.39% 1.93% 1.02% 0.00% 0.11%

Mean Hs (m) 1.35 1.89 2.13 2.27 2.53 2.56 2.67 3.10 3.53 4.01 3.40 0.00 3.78

Table 13: Wave scatter diagram for waves from south-west.
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(9)

The relation between Tz and Tp for the adapted Jonswap wave spectrum is
given by:

Tz = Tp

√
5 + γ

10.89 + γ
(10)
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7 Bend stiffener basics

The task of the bend stiffener is to protect the umbilical from being over bent
when subjected to a specified combination of tension (T) and angle (θ), see
figure 9. Over bending is defined to occur if the resulting maximum curvature
(C) within the bend stiffener exceed that defined by the capacity curve for the
associated tension level. Normally, there are several defined load combinations
that must be checked as indicated on figure 10.

The bend stiffener supplier is responsible for designing a suitable bend stiffener
meeting the requirements associated with purchaser specified load cases. The
load cases that must be considered are those associated with extremes, see
figure 10 but also fatigue loads must be given. The fatigue loads are usually
given as histograms where the number of cycles and associated tension and angle
variations are given for several bins. This histogram description is deceptively
simple since it is not obvious that the true vector nature of the bend stiffener
angle is properly accounted for. With reference to the next section and figure 11,
the length of the angle vector |V(t)| = θ may be constant even if the direction
of the angle vector V(t) is changing. Hence, loads and material strains could
be varying even if the bend stiffener angle θ is constant.

Figure 9: A bend stiffener subjected to a tension/angle-load and resulting curvature.

Figure 9 clarifies the application of the simultaneous tension/angle-load on the
bend stiffener. The figure does also show the resulting curvature within the
bending stiffener.

7.1 The bend stiffener angle is a vector

For calculation of the bend stiffener angle, see figure 11. The procedure is to
calculate the angle between two vectors, A(t) which follows the vessel and the
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Figure 10: Tension, angle and curvature requirements for bend stiffener design.

vector B(t) below the tip of the bend stiffener. The position of the vector B(t)
should be sufficiently below the bend stiffener tip so that there is negligible
bending at that location, see Sødahl [26]. A ball joint model may be applied in
the first iteration if the bend stiffener is not known in advance.

The bend stiffener angle is a vector determined from the cross-product between
a vector at the top end (fat end) A of the bend stiffener, from a beam element
at the vessel fixation side, and a vector from a beam element just below the
bend stiffener tip B. Their cross product is normalized and assigned a length
equal to the angle between the vectors A and B, this is the rotation vector V.

The bend stiffener angle vector is calculated as follows:

V = evθ =
A(t)×B(t)
|A(t)×B(t)|

θ (11)

where θ is determined from |A(t)||B(t)| sin(θ) = |A(t)×B(t)|.

This angle vector V contains all the information that is needed to accurately
rotate the vector A(t) onto the vector B(t). Note that this vector is always
laying the plane of the bend stiffener flange and that it therefore may be ar-
bitrarily decomposed into a suitable coordinate system that follows the bend
stiffener flange (vessel) motion.

This is an application of the Euler’s rotation theorem for a solid body. Observe
that the use of the three Euler angles to rotate a solid body is a different repre-
sentation for exactly the same, see Arfken and Weber, Mathematical methods
for physicist, pp. 188 [5].
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Note that a convenient approximation may be obtained by decomposing the
B(t) vector into its static and time variant part, B(t) = B0+∆B(t). If the time
variant part ∆B(t) is negligible, V(t) ≈ V′(t) = A(t)×B0

|A(t)×B0|θ
′, where sin(θ′) =

|A(t)×B0|/(|A(t)||B0|).
Conceptually we may therefore consider the bend stiffener angle as the sum of
two parts, θ = θ′ + θ′′:

θ′: The angle between the moving vessel versus the static top end direction of
the umbilical.

θ′′: The deviation in the umbilical direction from the static direction due to the
dynamic loads and the forced top end motion of the umbilical.

Figure 11: Parameters for the bend stiffener angle calculation.

7.2 A convenient approximation for bend stiffener curvature

The bend stiffener curvature vector C may be assumed parallel to the angle
vector V discussed in the previous section if there is no bending moment or
torque acting at the lower end of the beam element defining the vector B(t)
and the loads directly acting on the bend stiffener are neglected.

Under this assumption, the value of the curvature at a particular length location
can be assumed a function of the tension, T, and the bend stiffener angle θ.
A planar problem will be assumed in the following. We expect: C = f(T, θ).
Studying the Taylor expansion around θ = 0 considering the angle θ we obtain
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the approximation C ≈ a(T )θ+b(T )θ3 + . . . since the curvature is obviously an
odd function of the angle (from the planar assumption). For small angles, the
θ3 term is negligible compared to the leading term. Hence, if also the tension
is constant, we may write C ≈ kθ where k is a number that characterizes this
bend stiffener and umbilical assembly.

The above approximation is particularly useful when the driving design criteria
is fatigue. Such fatigue driven design situations are often claimed to be iterative
and may be experienced as confusing. Here it is claimed that the k-factor offers
much desired control in exactly this kind of situation since the dominating
fatigue conditions are usually associated with a near constant tension and small
angles. For such a situation, the fatigue damage would be proportional to
typically km where m is a characteristic slope of the SN-curve, typically m
is around 4. It is here assumed that the bending stresses are proportional
to curvature (therefore also proportional to k) and that the fatigue damage
is calculated using SN-curves and the Miner-Palmgren approach. It is also
assumed that the fatigue loading is dominated by bending which is the only
case where an improved bend stiffener design could help.

The relation that should dictate the iteration procedure when the bend stiffener
design is governed by fatigue requirements is described by the following: Given
a known fatigue damage result D1 for a particular bend stiffener identified by k1,
the result for a different k2-value would be about D2 = D1(k2/k1)m. Since D2

is known as the requirement, the required k2 can be determined and converted
to a bend stiffener requirement. Note that the unit of k is curvature per angle,
e.g. 1/m◦.

7.3 Bend stiffener coordinate system

The bend stiffener angle vector V is as described in the previous section 7.1
is always laying in the plane of the bend stiffener flange at the top end, see
figure 11. It is convenient to define a local coordinate system for the bend
stiffener flange. This is a right-handed Cartesian coordinate system as follows:

• The X-axis is in the umbilical tangent direction and is positive upwards.

• The Y-axis is in the plane of the bend stiffener flange, it is also perpen-
dicular to the nominal umbilical configuration plane.

• The Z-axis is also in the plane of the bend stiffener flange, the nominal
umbilical configuration is in the XZ-plane.

Practically, this coordinate system is established using two beam elements both
attached to the vessel at the same point and spanning out a part of the XZ-
plane. The first of these is indicated by the A-vector of figure 11, the second
has no structural purpose and is not illustrated.

This bend stiffener coordinate system will move as a function of the time since
the bend stiffener is fixed to the vessel. However, since the nodal coordinate
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positions are known for every point in time, the coordinate system is also known.
Velocities and accelerations in the different directions, such as the axial direction
are obtained by numerical differention using the central difference scheme as
described by Bergan et al [6] pp. 210. The time series ends are treated specially,
using the forward and backward scheme.

8 Dynamic analysis methods

The purpose of all dynamic analysis methods is to determine the combined load
on the system as the sum of the static plus dynamic loads. The dynamic loads
arise from the time varying loads or boundary conditions for the system. The
system equation that must be solved is the following according to Bergan et al,
“Svingning av konstruksjoner” (1981) pp. 223 [6].

Mr̈(t) + Cṙ(t) + Kr(t) = R(t) (12)

where M, C and K are the mass, damping and stiffness matrices of the system.
The nodal displacements and its time derivatives are given by r(t), ṙ(t) and
r̈(t). The load is given by R(t)

The damping matrix usually given as Rayleigh damping, which is a linear com-
bination of the mass and stiffness matrices, [6] pp. 201:

C = α1M + α2K (13)

The coefficients α1 and α2 can be determined from the known relative damping
λ at two frequencies since for any circular frequency ωi.

λi =
1
2

(
α1

ωi
+ α2ω2

)
(14)

8.1 Frequency domain analysis

If the system matrices M, C and K are constant, or frequency dependent – and
the load is linear, the total response from a sum of harmonic loads at different
frequencies (including zero, the static load) is obtained by super-positioning.

The calculation of the load effect is then most conveniently done in the frequency
domain, considering the harmonic response caused by a harmonic load. This
yields the following where the load and the response are complex numbers to
account for their phase difference, Passano (1994) [24] pp. 11:

(−ω2M + iωC + K)r(ω) = R(ω) (15)

For a slender marine structure as an umbilical, a prominent load is the drag load
which is quadratic in the relative velocity between the umbilical and the water
particles. If such a structure is to be analyzed in the frequency domain, the
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drag load must be linearized. It should be noted that a frequency domain does
not yield information about the response distribution. However, the consistent
choice associated with the assumption of a linear Gaussian narrow banded re-
sponse is Rayleigh distributed maxima- and minima-values. This assumption
is usually made in practical work when using the frequency domain method.

The transfer function, generally H(ω) is an important concept in frequency
domain analysis. Here, H(ω)−1 = −ω2M + iωC + K.

Application of the transfer function H(ω)s and the procedure for calculating
the response caused by a Gaussian sea state is described in section which deals
with the vessel motions transfer function, RAOs. The method for calculating
the response spectrum, standard deviation and zero up-crossing frequency is
described in section 12.4.

8.2 Time domain analysis

Time domain analysis is capable of handling non-linearities in both the system
matrices and in the load term. This is therefore the natural choice for riser
analysis in which the non-linear drag load is a significant.

The system matrices may then be updated in each time step accounting for the
geometry and tension at each time instant. However, the system matrices may
also be practically constant if the deformations or the tension variations are
small. This may be the case for some analysis task, like e.g. fatigue evaluation.
It should however be noted that proper modelling of seafloor interaction would
require a full non-linear analysis where system matrices are updated in each
time step.

The equation of motion is then used in the following incremental form [24] pp.
10 and [6] pp. 223:

M∆r̈ + C∆ṙ + K∆r = ∆R(t) (16)

The load on the right hand side may depend on unknown incremental values on
the left hand side. In such a case iteration must be used to solve the equation.
Typical integration methods for solving such problems are the Newmark and
the Wilson θ methods.

8.3 Damping

According to Bergan et al (1981) pp. 192-194 [6], the energy dissipation in a
harmonic deformation cycle is given by:

Wd =
∮
F du (17)

The unit of the product Fu must energy conjugated dimensions, meaning that
the unit of the product must be that of energy, kNm. Examples are force-
deflection, moment-curvature and also stress-strain where integration over a
material volume is implied for the latter.
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The loss coefficient is the energy loss per radian Wd/(2π) divided by the peak
potential or strain energy U = 1/2ku2

0 for a linear material. Here, k = dF/du
and u0 is the maximum deflection amplitude for the cycle.

No matter the type of damping, the loss coefficient η, or the specific damping
capacity per radian is given by:

η =
1

2π
Wd

U
(18)

The damping level relative to the critical, ξ can be determined from the loss
coefficient η. This damping level ratio is exact if the source of the damping is
viscous and a reasonable approximation for a harmonic motion sequence [6].

ξ =
1
2
η (19)

9 Method for determining the long term extreme

A simplified methodology to determine the 100-year response maxima (or min-
ima) has been described by Larsen and Olufsen (1992) [10]. This method is
based on the initial assumption of Gaussian distribution of response quantities
– and is described as follows:

• Step 1: Obtain the wave scatter diagram. This wave scatter diagram is
then divided into a suitable number of bins for numerical work. Establish
for each bin a representative sea state (Hs,Tp,γ)i and the associated sea
state probability (fraction of time with this sea state), Pi. Note: that
the full scatter diagram may be used since frequency domain methods are
fast.

• Step 2: Establish the wave standard deviation (σi) and the zero up-
crossing frequency (ν0i) for each defined bin per the previous step. Use
this to establish the long term distribution of wave maxima. This is done
by assuming that the wave response is Gaussian distributed within each
sea state. This assumption means that the maxima/minima distribution is
known for all sea states. The maxima/minima distribution may be taken
as the Rayleigh distribution if narrow bandedness is assumed. Alterna-
tively, the level up-crossing frequency relation for a Gaussian stochastic
process can be used directly. (Note that if an exact long term result is
wanted, the exact level up-crossing frequency relation can be used – if
available.)

• Step 3: Calculate the wave level that is exceeded on the average once
in 100-year. This is done by summation over all sea states in 100-years,
either by weighed summation over the Rayleigh distributed peaks or by
the Poisson approach where weighed summation of up-crossing level fre-
quencies is performed. Note that the Poisson approach is used in this
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report, this give exactly the same result as assuming Rayleigh distributed
maxima/minima as shown below. This happens since the equation for the
Poisson approach can be converted to the equation associated with the
Rayleigh approach. Also, the importance (contribution) of the sea states
with respect to the long term extreme is calculated.

• Step 4: Perform response calculations by approximate frequency domain
method (Gaussian assumption) using the most important sea states found
in step 3.

• Step 5: Establish the long term response extreme based on the Gaussian
assumption which is exceeded on the average once in 100-year. As in step
3, also the importance (contribution) of the sea states with respect to the
long term extreme is calculated. For each of this sea states (and others
if desired) determine the duration of the sea state under the condition
that the long term extreme shall be the most probable extreme (under
the Gaussian assumption) for this particular sea state and that storm
duration

• Step 6: Use refined time domain calculation method for one (or more)
selected sea state found in step 5 with storm duration as also found in
step 5 for this sea state. Estimate the most probable extreme based on
this simulation result.

This procedure is a staged procedure where sea states that are not considered
significant contributors to the long term maximum are discarded early. The
wave height is used in this first stage for this purpose – assuming Rayleigh dis-
tribution of the wave maxima within each sea state (consistent with a Gaussian
narrow banded wave spectrum). Only the most contributing sea states to the
long term wave maximum are kept for the response calculations. In effect, de-
tailed analysis effort is not wasted on sea states with suspected negligible effect
on the end result – this being the main objective of the procedure.

The fourth step according to Larsen and Olufsen is to perform simplified re-
sponse analysis (using e.g. frequency domain method) for the remaining sea
states. Only those with significant contribution to the long term wave elevation
maxima are used in this step. The results from these calculations are again
used to determine the most contributing sea states, this time considering the
contribution to the long term response maxima (not the wave elevation). Fur-
thermore, for each of these most contributing stationary sea states – the storm
duration needed to establish the determined long term response maxima as the
characteristic largest is calculated. Note that the method applied to calculate
this storm duration must be consistent with that applied in the previous step.

Now, the crucial sixth step comes – Larsen and Olufsen suggest that this storm
duration (for a specific sea state) provides the link to the more accurate long
term response maxima. In brief, the maximum response that is exceeded on
the average once for this storm duration is claimed to be a proper estimate
for the long term response. Note that once per storm duration is a specified
up-crossing frequency.
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Hence, the final step is to perform a most detailed analysis in order to determine
the response level that is indeed exceeded only once for the specified storm
duration and associated sea state.

Equation 29 is basis for determining the long term response xD, it is the x-value
that solves the following equation,

Prob(M(T ) ≤ x) =

exp(−1) = exp

[
−T

n∑
i=1

ν+(x,Wi)PWi

]

Here the left hand side equals Prob(M(T ) ≤ x) = exp(−1) since we are de-
termining the characteristic largest of x for the duration T which is 100-years
expressed in seconds, see table 14. For a Gaussian response, the up-crossing
frequency is given by equation 30, ν+(x,Wi) = ν+

0i exp(−1/2(x/σi)2). Here σi
and ν+

0i are the response standard deviation and the zero up-crossing frequency
respectively, the sea state probability is PWi .

The above equation is obviously most easily solved in the following form,

1 = T
n∑
i=1

ν+
0i exp

[
−1

2

(
x

σi

)2
]
PWi

This is readily transformed to the one suggested by Larsen and Olufsen, their
equation 4, note that they do not write out the equation in full. The first
step is to divide by the average number of cycles in the period T (100 years),
N = T ν̄. The equation as given by Larsen and Olufsen under the Gaussian
(Rayleigh) assumption is obtained after rearrangement. Note that the final
term (ν+

0i/ν̄ = T̄z/Tzi) is the weight factor associated with going from a time
based probability to a cycle based probability,

1
N

= T

n∑
i=1

ν+
0i exp

[
−1

2

(
x

σi

)2
]
PWi

1
N

= T
n∑
i=1

ν+
0i exp

[
−1

2

(
x

σi

)2
]
PWi

1
T ν̄

=
n∑
i=1

exp

[
−1

2

(
x

σi

)2
]
PWi

(
ν+

0i

ν̄

)

Once the specified long term maximum xD is determined, the contribution for
each sea state to this maximum can be calculated. The contribution ci from
sea state number i is given by: ci = Tν+

0i exp(−1/2(xD/σi)2)PWi, note that T
is the number of seconds in 100-years here.

To prepare for the final step we need to determine the duration Di for sea state
i, such that the characteristic largest value for this sea state with unknown



28 10 POISSON DISTRIBUTION, USE OF UP-CROSSING FREQUENCY

duration Di equals the found long term value xD. The desired storm dura-
tion Di solves the following equation, 1 = Diν

+
0i exp(−1/2 (xD/σi)

2)PWi where
everything except Di is known.

Finally, when doing the detailed analysis – the characteristic maximum, the
value that is exceeded on the average once per storm duration Di is needed.
This translates to solving exp(−1) = exp[−Diν

+
i (x)] when using the Poisson

approach, see section 10.2.3. Here the function ν+
i (x) is determined to fit the

simulation results. It has been shown in section 10.2.3 that this is equivalent
to the response value which is exceeded once in Ni = Diν

+
0i cycles.

Verification of this simplified method is possible if determining for each sea
state the exact distribution of cycles, or perhaps simpler – the level up-crossing
frequencies. The exact long term extreme may then be calculated. This is
however a major task which is rarely performed in routine design work.

10 Poisson distribution, use of up-crossing frequency

Naess have in a series of papers advocated the use of the level up-crossing fre-
quency and the assumption of the Poisson distribution for estimating extreme
values of a response parameter ξ, see Naess (1984) [19] and [20], Naess et al
(2007) [2] and [18], (2008) [16] and [17]. The derivation of the Poisson distri-
bution is described by Newland (2005) pp. 194-195 [21].

This section summarize some of the information referred to above. The main
objective of this section is to present the equations needed for using the Poisson
approach in a ready-to-use form. This material is used when calculating the long
term extreme mainly, see section 9 – but is also used in section 15 considering
extreme value estimation.

The use of the Poisson distribution in extreme estimation implies that the up-
crossing events for large response values are assumed independent.This is the so-
called Poisson assumption. This assumption is normally acceptable. Exceptions
are very short time durations or very narrow band processes.

The Poisson assumption means that there is a direct link between the extreme
value, the up-crossing rate and the cumulative probability distribution (cdf ),
Naess (1984) [19]. Let M(T ) = max{X(t), 0 ≤ t ≤ T} be the extreme value of
the response process X(t). The cdf for the largest response value M(T ) in a
stationary short-term sea-state with duration T is then:

FM(T )(ξ) = Prob(M(T ) ≤ ξ)

= exp
[
−
∫ T

0
ν+(ξ, t) dt

]
= exp

[
−
{

1
T

∫ T

0
ν+(ξ, t) dt

}
T

]
= exp

[
−ν̄+(ξ)T

]
(20)



10.1 Empirical estimation of the mean up-crossing rate 29

The basic idea is to estimate ν̄+(ξ), the average mean up-crossing rate of the
level ξ from the short term time series:

ν̄+(ξ) =
1
T

∫ T

0
ν+(ξ, t) dt (21)

Only a minor modification is required to establish the cdf for the long term
extreme value. The instantaneous ξ-level up-crossing rates must be summed
over the full long term period T . This summation is in practice performed by
considering the long term period built-up by a series of stationary short-term
sea-states characterized by W = (Hs, Tp). For each such sea-state we know the
probability density (pdf ) fW (W ) and the level up-crossing rate ν̄+(ξ,W ). The
long term cdf for the largest response value M(T ) in the long term period T :

FM(T )(ξ) = Prob(M(T ) ≤ ξ)

= exp
[
−
∫ T

0
ν+(ξ, t) dt

]
= exp

[
−T

∫
W
ν+(ξ,W )fW dW

] (22)

In practice, the integral is usually evaluated numerically over a discrete selection
of sea states W1,W2, . . . ,Wn where each sea state has an associated probability
equal to PW1 , PW2 , . . . , PWn ,

FM(T )(ξ) = Prob(M(T ) ≤ ξ)

= exp

[
−T

n∑
i=1

ν+(ξ,Wi)Pwi

]
(23)

10.1 Empirical estimation of the mean up-crossing rate

From an ergodic time series with total duration kT seconds, both the sam-
ple mean up-crossing rate ˆ̄ν+(ξ) and the associated sample standard devia-
tion ŝ(ξ) can be estimated in addition to the 95% confidence interval CI0.95 =
[CI−0.95(ξ),CI+

0.95(ξ)] of ν̄+(ξ).

The procedure is to divide the longer time series into e.g. k ≥ 30 pieces with
equal length T . The confidence interval is based on the standard deviation,
ŝ(ξ), assuming a normal distribution. The latter is the reason for the required
large k. Let n+

j (ξ, [0, T ]) be the number of level ξ-up-crossing events during the
time interval [0, T ] from piece j of the total time series.
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ˆ̄ν+(ξ) =
1
k

k∑
j=1

n+
j (ξ, [0, T ])

T

=
1
k

k∑
j=1

ˆ̄ν+
j (ξ)

=
1
T

1
k

k∑
j=1

n+
j (ξ, [0, T ])

=
ˆ̄n+(ξ, [0, T ])

T

(24)

ŝ(ξ)2 =
1

k − 1

k∑
j=1

[
n+
j (ξ, [0, T ])

T
− ˆ̄ν+(ξ)

]2

=
1

k − 1

k∑
j=1

[
ˆ̄ν+
j (ξ)− ˆ̄ν+(ξ)

]2

=
1

k − 1

k∑
j=1

[
n+
j (ξ, [0, T ])

T
−

ˆ̄n+(ξ, [0, T ])
T

]2

=
1
T 2

1
k − 1

k∑
j=1

[
n+
j (ξ, [0, T ])− ˆ̄n+(ξ, [0, T ])

]2

=

(
std(n+

j (ξ, [0, T ])
T

)2

(25)

Note that if the number of level up-crossings n+
j (ξ, 0, T ]) is a Poisson variable

as assumed, the standard deviation can be estimated without sub-dividing the
longer time series into k shorter time intervals. The standard deviation is then
determined by the equation:

ŝ(ξ)2 =
ˆ̄ν+(ξ)
T

=
1
kT

k∑
j=1

ˆ̄ν+
j (ξ)

(26)

The confidence interval for the mean up-crossing rate of the level ξ is calculated
as:

CI±0.95(ξ) = ˆ̄ν+(ξ) ± 1.96
ŝ(ξ)√
k

(27)
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10.2 Use of empirical up crossing rates

10.2.1 Calculating the extreme value for a short term condition

The interesting extreme value is the maximum ofX for a short time span T . The
time span T is typically 0.5 hour in Gulf of Mexico and 3 hours for the North Sea.
The environmental conditions are expected to be stationary within this time
span. The short term extreme value is determined using the assumed known
up-crossing rate function ν+(X). With reference to the following equation, let
M(T ) = max{X(t), 0 ≤ t ≤ T} be the extreme value of the response process
X(t).

FP (X) = Prob(M(T ) ≤ X) = exp
[
−ν+(X)T

]
(28)

To define the maximum X-value for the duration T – a specific definition is
required. The following extreme value definitions are in common use:

The value associated with a specified quantile , the quantile is the non-
exceedance probability. A quantile value of α = 0.90 is suggested by
Sverre Haver (2007) [1]. Hence, Prob(M(T ) ≤ X) = α is specified.

The characteristic largest value is the peak value which is exceeded on the
average only once during the time span T . The characteristic largest value
XN is usually obtained from F (XN ) = 1 − 1/N where N = TνX̄ is the
number of peaks and F (XN ) is the individual peak distribution, counting
one peak between each mean level upcrossing.

The probability that all peaks are less than XN is given by: Prob(M(T ) <
XN ) = (1 − 1/N)N – since the entire time span (all N peak values) is
considered. This is the relevant non-exceedance probability when using
the Poisson approach to determine the characteristic largest value. When
N is large, say N > 100, it is more convenient to use the asymptotic limit:
Prob(M(T ) ≤ XN ) = 1/e = 0.3679.

The most probable largest can be obtained by investigating the extremal
point of the pdf of Fp(X), f = dFP /dX. The sought extreme value of
X is determined from solving df/dX = 0. In practice, the characteristic
largest is often taken as the most probable largest. This approximation is
very good if the asymptotic extreme value distribution is indeed Gumbel,
which is correct when the underlying peak distributions are Rayleigh or
Weibull type, Bury (1975) [7].

The expected largest is particularly useful because this statistical estimate
is readily compared with the obtained sample extremes, especially when
the sample size is large. The exact expected extreme value can be esti-
mated from: Xe =

∫
XfP (X) dX where fP (X) = dFp(x)/dX. However,

a useful approximation is readily available if the Gumbel extreme value
distribution is the asymptotic limit for large duration T (or large number
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of peaks N). Since the expected extreme value (Xe) for the Gumbel distri-
bution, FG(X) = exp(− exp(−(X−XN )/σ)) is known to beXe = XN+γσ
where γ ≈ 0.57722 (Euler’s constant). The asymptotic non-exceedance
probability is readily determined as: Prob(M(T ) ≤ Xe) = FG(Xe) =
exp(− exp(−γ)) = 0.5704.

It is seen that the most direct method for obtaining the extreme value of X is by
specifying the non-exceedance probability Prob(M(T ) < XN ) of the equation:
Prob(M(T ) ≤ X) = exp [−ν+(X)T ]. Here, both ν+(X) and T are known.

Table 14 provides a convenient summary, assuming that T (or N is large) and
that the Gumbel distribution is the asymptotic extreme value distribution.

Definition Prob(M(T ) ≤ X)

Characteristic largest FP (XN ) = exp(−1) ≈ 0.3679
Expected largest FP (Xe) = exp(− exp(−γ)) ≈ 0.5704
Typical quantile, FP (Xα) = α = 0.90

Table 14: Values for Prob(M(T ) ≤ X) when determining the extreme value X for
duration T . Solve Prob(M(T ) ≤ X) = exp [−ν+(X)T ] for the short
term extreme. For the long term extreme, solve Prob(M(T ) ≤ ξ) =
exp [−T

∑n
i=1 ν

+(ξ,Wi)Pwi
].

10.2.2 Calculating the extreme value for a long term condition

The procedure of the previous section applies. Table 14 give the left hand side
value for Prob(M(T ) ≤ ξ). The difference is found on the right hand side
considering the up-crossing frequency. For the long term extreme, the weighed
sum of (the average) up-crossing frequency over all sea states Wi is used. The
weight factor is the sea state probability PWi .

FM(T )(ξ) = Prob(M(T ) ≤ ξ)

= exp

[
−T

n∑
i=1

ν+(ξ,Wi)Pwi

]
(29)

10.2.3 Application example, comparison with results from Rayleigh
distribution

The extreme value results obtained from the Poisson distribution will be com-
pared to conceptually similar results from the Rayleigh distribution.

The Rayleigh distribution is the correct distribution of peaks when a stationary
and ergodic Gaussian process is narrow banded, Newland (2005) [21]. When
the process is broadbanded, it is well known that the peaks are Rice-distributed
if broadbanded. In both cases the Rayleigh distribution is suitable to predict
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extreme values, Leira et al ”Stochastic theory of sealoads” (2005) [12]. The
Rayleigh distribution is exact in the narrow banded case and a conservative
approximation otherwise.

According to Newland, the level up-crossing frequency for a general stationary
Gaussian process with zero mean is given by equation 30.

ν+(X) = ν+
0 exp

[
−1

2

(x
σ

)2
]

(30)

The required extreme value is obtained simply by replacing the left hand side
value of Prob(M(T ) ≤ X) = FP (X) = exp [−ν+(X)T ] with a fixed value taken
from table 14. The equation is thereafter solved for X.

FP (X) = exp

[
−Tν+

0 exp

[
−1

2

(
X

σ

)2
]]

ln[FP (X)] = −N exp

[
−1

2

(
X

σ

)2
]

− ln[FP (X)]
N

= exp

[
−1

2

(
X

σ

)2
]

ln
(
− ln[FP (X)]

N

)
= −1

2

(
X

σ

)2

ln (− ln[FP (X)])− ln(N) = −1
2

(
X

σ

)2

σ
√

2 ln(N)− 2 ln (− ln[FP (X)]) = X

(31)

To obtain the characteristic largest, Fp(XN ) = exp(−1) is substituted according
to table 14. A familiar result emerges: XN = σ

√
2 lnN , note that N is the

number of zero up-crossings.

Likewise, the expected largest is obtained by substituting FP (Xe) = exp(− exp(−γ)).
This yield Xe = σ

√
2 lnN + 2γ – unlike the expected σ

(√
2 lnN + γ√

2 lnN

)
.

However, recalling that N must be large for the asymptotic approach, it is
clear that the first term under the square root sign is much larger than the
second. A Taylor expansion keeping first terms up to first order demonstrates
that the Poisson asymptotically give the same result:

Xe = σ
√

2 lnN + 2γ

= σ
√

2 lnN

√
1 +

2γ
2 lnN

≈ σ
√

2 lnN(1 +
γ

2 lnN
) = σ

(√
2 lnN +

γ√
2 lnN

) (32)

It should be noted that the expected extreme from the Rayleigh distribution is
also an asymptotic result. Where the exact extreme value distribution, FR(X)N
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is approximated by a Gumbel distribution, also keeping terms to the first order
in a Taylor series, Bury (1975) [7].

10.3 Curve-fit

Naess et al suggests to fit a curve to the empirical values ˆ̄ν+(ξ). For improved
curve-fit and extrapolation behavior the focus should be on response values
larger than a specified lower value, ξL ≤ ξ where the lower threshold ξL is
greater than the mean response ξ̄.

The suggested model function by Naess can:

• Exactly represent the response up-crossing rate for a Gaussian stochastic
process where the response is linear with the load.

• Exactly represent the response up-crossing rate for a Gaussian stochastic
process where the response is quadratic with the load.

• Exactly represent the asymptotic behavior of the Gumbel distribution for
large response levels.

The suggested model function contain 4 unknown parameters a, b, c and d that
must be determined to best fit the empirical up-crossing rates.

ν+(ξ) = exp[−f(ξ)] where f(x) = a(ξ − b)c − d
where:

ξ̄ ≤ ξL ≤ ξ
b ≤ ξL ≤ ξ
a, c > 0

(33)

It should be noted that the d-parameter is essentially a slowly varying function
that for practical purposes can be represented by a constant for large response
levels ξ. This is one of the reasons for introducing a the specified lower value
ξL.

The curve-fit is done by regression based on the logarithm of the empirical up-
crossing frequency, ln ν̂+

ξ . The model parameters a, b, c and d minimize the
weighed squared sum of residuals:

S =
n∑
i=1

1
2
wi [ ln ν̂+

ξi
+ f(ξi) ]2 (34)

The weight for each data point is suggested as wi = [ln(CI+
i ) − ln(CI−i )]2 by

Naess. The parameters CI+
i and CI−i are the upper and lower limits of the

95% confidence interval for the empirical up-crossing frequency.

The applied curve fit procedure by Naess et al is the Marquardt-Levenberg
algorithm according to the referred papers.
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In this report, only empirically level up-crossing frequencies have been deter-
mined. Figures 43 and 45 show some of the more interesting empirical level
up-crossing frequency results from the simulations reported in section 15.

11 Spearman’s rho

11.1 Motivation

This section deals with the expectation of a rank correlation coefficient −1 ≤
ρ ≤ 1 when we are studying an approximation versus the true result. The
puzzle started when the author read section“3.2 Evaluating and comparing time
series”, pages 17, 18 and table 3.1 of Passano (1994) [24]. In this table the rank
correlation coefficient between both maxima and minima of two realizations
(two different time series both representative of the same sea state) is reported as
high as 0.786. As mentioned by Passano on page 17, this is of course misleading
since maxima are restricted to correspond to maxima and minima to minima.
However, this led to the question – what do we expect regarding the rank
correlation value when studying the performance of an approximation method?

The following is the result of the authors investigation. Section 11.4 contain
table 17 which contain critical values, ρcritical based on a claimed quality of the
approximation method Psuccess – the author is not aware of similar published
information. To qualify the method, some published results according to table
15 have been reproduced.

11.2 Description of Spearman’s rho

Charles Spearman’s rank correlation coefficient, rho, is a non-parametric mea-
sure of order correlation between two associated variablesX and Y , see Wikipedia
[30]. It is therefore useful to judge how well an arbitrary but not necessarily
known monotonic function f(X) is approximating the value of Y . The rank
correlation is independent of the frequency distribution of the variables.

Definition of monotonic functions:

• A monotonically increasing function: a ≤ b ⇐⇒ f(a) ≤ f(b).

• A monotonically decreasing function: a ≥ b ⇐⇒ f(a) ≥ f(b).

Spearman’s rho is a number in the range −1 to +1. A value of zero (0) means
that there is no rank correlation whereas +1 means that the order is exactly the
same. A value of −1 means that the order is perfectly opposite. Spearman’s rho
is often designated ρ when calculated for a population and r when calculated
using sample data.

The X- and Y -values are lists: [X1, X2, . . . , Xn] and [Y1, Y2, . . . , Yn] where
(Xt,Yt) are associated values.
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11.2.1 How to calculate Spearman’s rho

To calculate Spearman’s rho, the raw data values Xt and associated Yt are first
converted to rank values xt and associated yt. That is: Xt → xt and Yt → yt.
The rank value of Xt and Yt is the sequence number after sorting, maintaining
the association between Xt and Yt. A rank value of one (1) is assigned to the
largest value of X (or Y ), two (2) to the second largest value, . . . , and finally n
to the lowest value. Ties are handled differently – the applied rank value for a
group of ties is the average of their positions in the sorted list. As an example,
if the second (2) largest is exactly equal to the third (3) largest – these two
equals would both get a rank value of (2 + 3)/2 = 2.5.

Spearman’s rho is calculated as the Pearson product-moment correlation coeffi-
cient, Pearson’s r. It is obtained by dividing the covariance of the two variables
(ranks)) by the product of their standard deviations. For a population:

ρx,y =
cov(x, y)
σxσy

(35)

or – for a sample – where it should be observed that the sample standard
deviations sx and sy have been normalized by

√
n− 1 to be unbiased:

rx,y =
1

n− 1

n∑
i=1

(xi − x̄)
sx

(yi − ȳ)
sy

(36)

It should also be observed that for finite n — Spearman’s rho would obtain
discrete values in the interval −1 to +1, ends included. This occurs since the
rank values of X and Y are permutations of the integers: 1, 2, . . . , n.

11.3 Classical, H0: There is no relation between X and Y

This is the classical method. The question here is whether the correlation
ρ between a fixed rank vector y = [y1, y2, . . . , yn] and x = [x1, x2, . . . , xn] is
significantly better than what would result if x = [x1, x2, . . . , xn] is completely
random. Here, better implies correlation ρ > 0.

This can be checked by performing a hypothesis check. The null -hypothesis, H0,
is that x is the result of randomness. If this is the case - the most likely ρ-value is
zero (0) whereas ρ-values close to −1 and +1 are very unlikely. Our alternative
hypothesis, H1, is that x = [x1, x2, . . . , xn] is not the result of randomness. This
may be true and may imply causality if the observed ρ is close to +1.

Given randomness,the probability distribution of ρ can be obtained by Monte-
Carlo simulation. The probability for exceeding the calculated (observed) ρ-
value can then be taken from the simulated cumulative probability distribution.
We reject the null -hypothesis if the exceedance probability for the observed ρ-
value is small, say probability less than 0.01.

If the full probability distribution is not available, we may still perform the
hypothesis check by consulting a table of critical ρ-values. The procedure is to
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choose the significance level α (the exceedance probability), say α = 0.01 – and
to determine the associated ρcritical for the relevant sample size n. The observed
ρ-value is then compared to ρcritical and the null -hypothesis (randomness) is
rejected if the observed ρ is greater than the critical value, ρobserved ≥ ρcritical.

Table 15 provides critical values of Spearman’s rho for small sample sizes n
and different significance levels, α. The leftmost part of the table has been
taken from Zar (1972) [4]. The rightmost part is the result of the Monte Carlo
simulation performed here, see section 11.4.2. The results compares well for
corresponding significance levels α. The results from the Monte Carlo simula-
tion appears correct to two decimals for sample size n > 10. The results for
the median case, α = 0.50 allows for a comparison with the true median value,
zero (0).

n α = 0.05 α = 0.01 n α = 0.50 α = 0.10 α = 0.05 α = 0.01
5 0.900 - 5 0.000 0.700 0.800 0.900
10 0.564 0.745 10 -0.006 0.442 0.552 0.733
15 0.443 0.604 15 0.000 0.350 0.439 0.596
20 0.380 0.520 20 -0.002 0.296 0.376 0.517
25 0.337 0.466 25 -0.002 0.263 0.335 0.465
30 0.306 0.425 30 0.000 0.241 0.306 0.424
35 0.283 0.394 35 0.001 0.221 0.282 0.395
40 0.264 0.368 40 -0.001 0.205 0.262 0.365
45 0.248 0.347 45 0.001 0.194 0.248 0.348
50 0.235 0.329 50 0.000 0.183 0.234 0.327

Table 15: Critical values of Spearman’s rho for hypothesis test against randomness.
H0: x is completely random. H1: x is not random. The leftmost values
are taken from Zar (1972) [4]. The rightmost values are obtained by Monte
Carlo simulation as described in section 11.4.2.

The reasons for the minor deviations in table 15 may be found in:

• The number of realizations, 100 000 for each n in the Monte Carlo simu-
lations.

• The random number generator.

• The way the critical ρ-value for at given significance level was obtained.
This is mentioned since the ρ-values are discrete values in the interval
[−1,+1]. Here a single look-up in the empirical cdf is used for each
significance level α. This disregards the fact that the ρ-value may be
constant for a small α-change. It is therefore reasonable to expect that
the tabulated critical values obtained from Zar (1972) [4] corresponds to
the next higher ρ-value since the purpose of this test is to discriminate
between randomness or not – via the calculated correlation coefficient r.
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11.4 Alternative, H0: There is a strong relation between X and
Y

The issue is to evaluate the goodness of approximations to the true values Y =
[Y1, Y2, . . . , Yn] where the approximations are given by X = [X1, X2, . . . , Xn].

The basic idea is that the Spearman’s rank correlation, rho, between the n
largest results from an approximate analysis and an advanced analysis can be
used to judge if the approximation method is still performing well. This was
mentioned by Passano (1994) pp. 17 [24].

The aim here is to describe a hypothesis test by which the quality of an approx-
imative method can be tested routinely by checking the value of Spearman’s
rho.

The null -hypothesis (H0) is that the approximative method has a specified suc-
cess rate, Psuccess where Psuccess is the strength of the relation. The alternative
hypothesis (H1) is that the success rate is lower, implying a lower quality ap-
proximation.

The success rate measures the quality of the approximation process. It is a
number between zero (0) and one (1). For a value of zero (0) the approximation
process is similar to random guessing. A value of one (1) would mean that the
approximation process always gets it right.

Such a hypothesis test would enable us to: check the performance of the ap-
proximation method for each new simulation; identify situations where more
simulation is needed - or identify situations where the approximative method
fails. The key to suspect a failing approximation is obviously an observed low
value of Spearman’s rho, the rank correlation coefficient. But how low can the
rank correlation coefficient be, given a specified Psuccess?

The probability density distribution of rho for a given Psuccess is the key to the
answer.

11.4.1 How to determine Psuccess in time domain analysis

Within the context of time domain analysis of a riser system, the following
description is given to obtain Y = [Y1, Y2, . . . , Yn] and X = [X1, X2, . . . , Xn].
The below description identifies the scenario that leads up to the hypothesis
test and the Monte Carlo simulation that is needed to establish the critical
rho-values including significance levels, α.

1. The values of Y = [Y1, Y2, . . . , Yn] are the n largest true response values
(maxima) from a long accurate time domain analysis considering the full
length time series, say 3 hours. The index t of Yt indicates the time
window containing the extreme value, t ∈ [1, n], n is a small number in
comparison to all occuring maxima.

2. The purpose of the approximation method is to identify a time window
containing the time instant of a true extreme value Yt. The time window
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is a centered around the critical time instant as found by the approximate
method. The interval length is small, in the order of 2-3 characteristic
wave periods.

3. The approximation method is assumed a stochastic process where the
probability that the suggested time window contains one of [Y1, Y2, . . . , Yn]
is constant and equal to psuccess. Either it contains the value or not.

4. This success rate, psuccess, can be determined as the overlap ratio of the
n largest results from several trial analysis. This is full length analysis
using both the detailed and the approximative method. The time instant
for each of the n largest results found using the approximative method is
needed. The time instants are also needed for the n largest results found
using the detailed method.

5. For success, the critical time window is identified by the approximation
process. The value of the simplified result Xt will then be exactly equal to
Yt because Xt is determined by the most advanced time domain method
on this identified small time window. Due care should be given to avoid
transients from the start-up in the dynamic simulation.

6. For failure, the critical time window is not identified. The value of Xt

would be less than min[Y1, Y2, . . . , Yn] since these Yt are by definition the
n largest found after a full simulation. Since this failure occurs at random
with probability 1−psuccess, the consistent choice of Xt is a random value
less than min[Y1, Y2, . . . , Yn].

7. From X and Y , the ranks x and y are determined and finally the rank
correlation coefficient, r is computed. (Note that the possibility of expe-
riencing equal values, Xi ≡ Xj or Yi ≡ Yj (i 6= j) may be neglected since
we are using floating point numbers in our simulation).

11.4.2 Monte Carlo simulation

The above procedure may be implemented in a Monte Carlo simulation. The
simulation is performed considering unique rank values only. Without loss of
generality, the n Y -values have been ordered and the associated rank values
are y = [1, 2, . . . , n]. The success ratio of the simplified method is input and
provided as Psuccess.

The procedure to simulate one realization of the approximation x and calculat-
ing Spearman’s rho is described below. It is also described how to establish the
empirical cdf and critical rho-values.

1. Create y = [1, 2, . . . , n], this needs to be done once only.

2. Create the n-length zero-initiated rank list: x = [0, 0, . . . , 0].

3. Create a random vector: u = [u1, u2, . . . , un], where ui ∈ [0, 1] and uni-
formly distributed.
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4. Identify the failure instances, those where ui > Psuccess. The ranks of
the identified failure instances is next put into the x-vector at their cor-
responding positions. The largest ufailure is assigned rank n, the second
largest ufailure is assigned rank n− 1 and so on.

5. Assign rank values to all unset positions of x, those with values 0. Start
at the leftmost position and assign rank values 1, 2, . . . and so on.

6. Calculate Spearman’s rho, ρ, and register the result.

7. Repeat the procedure from step 1 until the sample size of ρ is sufficient.

8. Prepare the empirical cumulative distribution function for Spearman’s
rho. This is done by sorting the obtained ρ-values and assigning the
probability Fi = i/(n+ 1) to ρi where i ≥ 1 is the sort position.

9. The critical ρ-values are then determined by a simple table look-up for
each interesting significance level α. This procedure does not account for
the discrete distribution of the ρ-values. The effect of this simplification
is considered small, but greater for smaller sample sizes n.

Table 16 illustrates how to assign rank values, steps 1 to 5.

y (rank) u (random number) x (rank)
1 0.43 1
2 0.20 2
3 0.69 3
4 0.93 (failure) 10
5 0.21 4
6 0.51 5
7 0.87 (failure) 9
8 0.72 6
9 0.27 7
10 0.11 8

Table 16: An example Monte Carlo simulation illustrating the rank assignment pro-
cedure, Psuccess = 0.80, Spearman’s ρ = 0.6727.

It should be observed that the values of x would be fully arbitrary if a zero suc-
cess rate is specified, Psuccess = 0. This allows for verification of the performed
Monte Carlo simulation by comparison with published data, Zar (1972) [4]. The
total number of random realizations for each different n is 100 000 here. The
comparison is shown in table 15. The differences are small and considered in-
significant. The above procedure is therefore concluded correctly implemented
in the prepared program.

11.4.3 Critical rho-values for given Psuccess.

The competing hypothesis are:
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• H0: The success rate of the approximation method is equal to or better
than psuccess.

• H1: The success rate of the approximation method is less than psuccess.

Monte Carlo simulations have been performed to establish critical ρ-values for
Psuccess = 0.80 and Psuccess = 0.90. The critical ρ-values have been determined
for significance levels α = 0.50, α = 0.10, α = 0.05 and α = 0.01. The critical
rho-values are given in table 17.

The hypothesis test is done as follows:

1. Define a success ratio for the approximate method, Psuccess, see section
11.4.4.

2. Choose a significance level, α = Prob(R < ρcritical).

3. Determine ρcritical from table 17.

4. Use the results from the simplified method X = [X1, X2, . . . , Xn] and the
most advanced method Y = [Y1, Y2, . . . , Yn]. Convert the results to ranks
x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn]. Calculate the rank correlation
coefficient, rx,y, see section 11.2.1.

5. The rule is to reject hypothesis H0 in favor of H1 if rx,y < ρcritical.

Figures 12 and 13 illustrates how the critical ρ-values are influenced by the
sample size n. These figures considers significance levels α = 0.10 and α = 0.50
(the median) only.

Figures 14, 15, 16 and 17 show some results from the Monte Carlo simulation
for sample size n = 20. Figure 14 shows the obtained cumulative distribu-
tion functions for success ratios, Psuccess: 0.0, 0.80 and 0.90. The associated
histograms of the Monte Carlo results are presented on figures 15, 16 and 17.

If the approximation method is perfect, Psuccess = 1, the probability density
function will become the Dirac delta function: δ(ρ − 1) (an infinite spike at
ρ = 1). The corresponding cumulative distribution function is Heaviside’s step
function, formulated as: H = 0 for ρ < 1 and H = 1 for ρ = 1 – since
ρ is discrete, see [28] and [29]. The histograms presented on figures 15, 16
and 17 show that the histograms indeed are narrowing as the success ratio is
approaching one (1).

11.4.4 On qualifying an approximate method

The rank order of the approximate results versus the ranks of the advanced re-
sults should be investigated considering full length time series. The rank results
for the n extremes should be compared graphically and quantified numerically
using Spearman’s rho.
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α = 0.50 α = 0.10 α = 0.05 α = 0.01
Psuccess 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90
n=5 0.900 1.000 0.000 0.200 -0.100 0.000 -0.600 -0.300
10 0.661 0.927 0.212 0.455 0.055 0.333 -0.212 0.030
15 0.668 0.868 0.300 0.532 0.182 0.421 -0.032 0.225
20 0.660 0.839 0.349 0.567 0.253 0.486 0.071 0.314
25 0.655 0.828 0.380 0.600 0.296 0.525 0.142 0.378
30 0.653 0.827 0.407 0.622 0.330 0.554 0.184 0.420
35 0.652 0.827 0.424 0.636 0.355 0.575 0.221 0.451
40 0.650 0.824 0.438 0.646 0.373 0.590 0.248 0.480
45 0.650 0.822 0.452 0.657 0.392 0.605 0.279 0.502
50 0.647 0.821 0.460 0.665 0.405 0.616 0.298 0.517

Table 17: Critical values of Spearman’s rho, for different success ratios, Psuccess, and
significance levels, α. Hypothesis, H0: The success rate of the method is
equal to or better than Psuccess. Alternative hypothesis, H1: The success
rate of the method is less than Psuccess. Reject H0 in favor of H1 if the
calculated rank correlation coefficient r is less than ρcritical.
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Figure 12: Critical values of Spearman’s rho considering Psuccess = 0.80 and signifi-
cance levels α = 0.50 and α = 0.10.

Several full length simulation using both the approximate and the detailed
method are needed to quantify the success rate of the approximate method.

The purpose of the approximate method is to define n small time windows
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Figure 13: Critical values of Spearman’s rho considering Psuccess = 0.90 and signifi-
cance levels α = 0.50 and α = 0.10.

through which we optimistically can see all of the n largest values from the
detailed analysis. Let c be the count of those that we actually see. The success
ratio, Psuccess, is defined as the expectation value of the product c/n. It is
calculated as follows after having studied several (k) cases in full length.

Psuccess =
1
k

k∑
i=1

ck
n

(37)

The performance of the simplified method is not only dependent on the identi-
fication of critical time instants. The quality of extreme estimates from a small
sample must also be compared to the true result obtained from several greater
length time series.

Ultimately, the quality of a simplified method can only be measured as the
difference between the exact and the simplified extreme value estimate. The
size of the difference is conjectured to be in the order of the standard error for
the statistical estimator used in the simplified analysis.

This suggests that the sample size n needed to obtain a target precision (stan-
dard error) can be investigated in the several initial full length simulations when
calibrating the simplified model. This information may be used to suggest in-
vestigative actions if the simplified model fails to perform later on.

Tentative procedure:
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Figure 14: Example cumulative distribution functions for Spearman’s rho when con-
sidering Psuccess = {0, 0.80, 0.90} and n = 20.
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Figure 15: Example histogram from Monte Carlo simulation, n = 20, Psuccess = 0.
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Figure 16: Example histogram from Monte Carlo simulation, n = 20, Psuccess = 0.80.
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Figure 17: Example histogram from Monte Carlo simulation, n = 20, Psuccess = 0.90.
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• Use several full length simulations, both detailed and simplified to identify
Psuccess as function of n, say 20 per 3 hours.

• Investigate the ratio of extreme values from detailed and simplified method,
exact/approximate.

• Investigate the standard error of the extreme estimates from the simplified
method as function of n.

• Determine a sufficient n-value and the associated success ratio: Psuccess.

11.4.5 On actions when the hypothesis is rejected.

If the calculated rank correlation r is less than ρcritical from table 17 – the
null -hypothesis (H0) is rejected and we must explore the possibility that our
approximation method is less accurate then initially assumed. This may happen
if the simplified method is used against some new response parameter or if some
other new load effect has become significant.

However, it may also happen that the null -hypothesis is rejected even if it is
true. The probability for this is equal to the selected significance level α.

The simplest investigative procedure is perhaps to do a repeat analysis – a new
realization – if the hypothesis test fails. Depending on the chosen significance
level α, a second failure to pass the hypothesis test would be a very strong indi-
cator of a significantly changed condition, since the probability of this occurring
normally would be small, α2.

Example: For a selected significance levels α = 0.10 – the probability for ex-
periencing a false rejection is 0.1. The probability for experiencing two false
rejections in a row is then 0.01.

It should be noted that sea states for which such repeated failures occurs would
be natural candidates for calibration of a new simplified model. The simplified
method would therefore be gradually improving as we are learning more about
the system.

11.4.6 An application example

The relation between axial forced motion at the top end of catenaries was
investigated by Passano and Larsen in their 2006 paper: Efficient analysis of
catenary risers, reference [22].

They claim that there is a strong correlation between the bending moments and
the effective tension in the bottom region.

Furthermore, they claim that the correlation between the axial velocity and the
effective tension value is excellent. The correlation between the axial velocity
and bending moment values is described as good.

They provide a table containing axial displacements and velocity of the catenary
riser at the top: X and Ẋ. The associated minimum effective tension (T) and
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bending moment (M) for the small time interval surrounding the instant of
extreme minimum velocity Ẋ are also provided.

Their table is reproduced here in entirety for completeness, see table 18. Neither
the time instant nor the sequence numbers (seq.no) is of any interest for us. The
rest is exactly what is needed to exercise the previously described hypotheses
check regarding the relation between: velocity and effective tension; velocity
and bending moment.

t (-) time Ẋ seq. no (-) X seq.no. T seq.no. M )
(-) (s) (m/s) (-) (m) (-) (kN) (-) (kNm)
1 76 -2.35 5 -5.36 1 -210 1 1133.0
2 2910 -2.31 21 -4.17 2 -189 6 988.5
3 245.2 -2.27 6 -5.29 3 -172 2 1053.7
4 2666 -2.25 7 -5.22 4 -169 3 1034.2
5 1126 -2.24 41 -3.68 5 -167 12 922.0
6 3234 -2.09 4 -5.40 6 -126 5 1004.4
7 3374 -2.08 2 -5.57 7 -123 4 1005.9
8 2860 -2.07 1 -5.59 8 -113 7 984.2
9 59.2 -2.04 10 -4.94 10 -104 10 946.7
10 1112 -2.04 3 -5.55 11 -103 9 957.4

Table 18: The ten largest axial velocity minima and the corresponding response max-
ima/minima, 16.5 m sea state, 1800 m water depth.

Our first observation from table 18 is that 9 out of the 10 smallest tension
values (T) are found in the same intervals as the 10 smallest velocities. The
same finding is made for the bending moment (M) From this limited evidence,
we conjecture that the success ratio for the approximate method is 90%. This
implies Psuccess = 0.90.

The hypothesis are as follows:

• H0: The success rate of using the negative axial velocity to identify critical
time intervals for effective tension (compression) and extreme bending
moment near the bottom is equal to or better than 90%.

• H1: The success rate of this method is lower.

We believe in the H0-hypothesis. Our task now is to check if our belief is
unreasonable based on the evidence at hand. The procedure described in section
11.4.3 tells us that we must calculate the ranked order correlation, r. The rank
values for the raw data are first established, while maintaining the association,
see table 19.

The rank correlation coefficient rẊ,T is calculated between the velocity and the
effective tension, and rẊ,M between velocity and bending moment. The results
are as follows:

• Effective tension: rẊ,T = 1.
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t Ẋ(m/s) T (kN) M (kNm) rank(Ẋ) rank(T ) rank(M)
1 -2.35 -210 1133 1 1 1
2 -2.31 -189 988.5 2 2 6
3 -2.27 -172 1053.7 3 3 2
4 -2.25 -169 1034.2 4 4 3
5 -2.24 -167 922.0 5 5 10
6 -2.09 -126 1004.4 6 6 5
7 -2.08 -123 1005.9 7 7 4
8 -2.07 -113 984.2 8 8 7
9 -2.04 -104 946.7 9 9 9
10 -2.04 -103 957.4 10 10 8

Table 19: Raw data values and assigned ranks.

• Bending moment: rẊ,M = 0.648

Critical rho-value: In table 17, for n = 10, Psuccess = 0.90 and selected signifi-
cance level α = 0.10 – we find ρcritical = 0.455.

Conclusion: Since the rank correlation coefficients for both effective tension
and bending moment are greater than the critical value we do not reject the
null -hypothesis – our belief.

11.5 Further development needed for use with interval extremes

A rank value xt must be assigned to the simplified result Xt in the Monte Carlo
simulation. According to section 11.4.1, the rank value of Xt is exactly equal
to that of Yt in case of successful identification of the critical time window.
For a failure in identifying the critical time window, the rank of Xt is deter-
mined based on the definition that Xt < min[Y1, Y2, . . . , Yn]. Hence, the failure
instances would be assigned the largest rank numbers – randomly if several
failure instances.

However, the above inequality Xt < min[Y1, Y2, . . . , Yn] does not hold when
using interval extremes as is often used with Gumbel extreme values. The
interval length is then more than 50 characteristic wave cycles, typically. All
we can say for a failure instance in any such interval number f – is that Xf < Yf
since Yf is by definition the largest value of this particular interval. Hence, if
the Y -values are initially ordered so that Y1 > Y2 > . . . Yn we can only claim
rank(Xf )≥ f .

The effect of this would be increased expected correlation even in failure in-
stances. The critical rho-values as obtained by Monte Carlo simulation and
given in table 17 are therefore not accurate in such a case. To evaluate this
issue, Monte Carlo simulations with a revised rank assignment rule are needed.

The critical rho-values as given in table 17 may nevertheless be of use monitoring
the results of an approximation method, since they form a lower bound.
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12 Vessel transfer function, RAO

The response amplitude operator, RAO or transfer function, is most often input
when performing riser analysis. The purpose of the RAO is to describe the
dynamic vessel motion amplitude and the phase relative to the elevation of the
incoming unit wave. The RAO is also known as the frequency response function
for a linear system, see [21] pp. 53-58. Because of the linearity, response
superposition can be done. The RAOs describe only the dynamic surge, sway,
heave, roll, pitch and yaw motion of the vessel. The static and second order
(low frequency) vessel motion must be determined by some other means.

Without loss of generality, the dynamic surge motion x(t) is used as an example
in the following. The total surge motion is obtained as the sum of the mean
and dynamic motion xtotal(t) = xmean +x(t). Note also that the wave elevation
is taken at the coordinate system origin. Equation 38 shows the reference wave
elevation, whereas the resulting dynamic surge motion is given by equation 39.

ζ(t) = ζ0 cos(ωt) (38)

x(t) = x0 cos(ωt+ φx)
= Hx(ω)ζ0 cos(ωt+ φx)

(39)

The above equations 38 and 39 are more conveniently using expressed as the
real part of the complex equations and 40 and 41. The amplitudes, x0 and
ζ0, may take complex values. This give a compact representation of both the
amplitude and the phase. Example for the wave: ζ0 = a0 + ib0 defines the wave
amplitude as |ζ0| =

√
a2 + b2, and the phase as φζ = atan2(b0/a0). The wave

elevation is the real part of equation 40, this equals ζ(t) = |ζ0| cos(ωt+ φζ).

ζ(t) = ζ0e
iωt (40)

x(t) = x0e
iωt

= Hx(w)ζ0e
iωt

(41)

12.1 Quality assurance

The transfer function, Hx(ω) is usually received as tabulated values covering the
relevant wave directions and wave periods. These tables cover the vessel motion
degrees of freedom: surge, sway, heave, roll, pitch and yaw. The forced top-end
motion of the riser caused by combinations of these is likely to be a dominant
load for the riser system. Hence it is necessary to interpret and convert the
given RAO correctly.

The given data must be checked and converted to the format required by the
applicable riser analysis program, in this case Riflex prior to use. This implies
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putting the data into the required file structure, assuring the proper normaliza-
tion of the RAO amplitudes, checking that the correct wave direction convention
is used and finally – making sure that the RAO phase angle convention is as
expected. For this reason, some basic knowledge of what to expect for RAOs
for a floating vessel is required.

Appendix 7A of the Riflex theory manual (2008) [13] contains a useful and
general note by Ivar J. Fylling, Marintek on this issue: “Motion characteris-
tics of floating vessel. Motions transfer function specification, diagnostics and
transformation.”

The motivation is quoted:

A lot of trouble has been caused by erroneous interpretation of
transfer functions and erroneous transformations. In many cases a
simple checking of asymptotic phase angles can be useful in verifying
the actual interpretation. The present note is an effort to describe
the asymptotic phase angles, the different coordinate systems that
are often used, and to show a recipe for transformation of phase
angles.

The vessel transfer function, Hx(ω) describes the steady-state harmonic vessel
motion caused by a unit amplitude (ζ0) sinusoidal wave with a fixed frequency
(and fixed direction). The frequency of the resulting harmonic vessel motion is
the same as that of the wave because of linearity. The unit of the amplitude
ratio may therefore be (feet/feet) for a translation (surge, sway, heave) and
(◦/feet) for a rotation.

Considering floating vessels it is for practical reasons beneficial to normalize the
RAO values such that the amplitude ratios are dimensionless. The physically
relevant wave parameters determines the normalizing scales. For translations,
the wave amplitude (length unit) is the obvious choice, e.g. X0/ζ0. Likewise, the
wave slope amplitude measured in radians is used to normalize the rotational
vessel motion, also measured in radians, θx/(ζ0k). The wave slope amplitude is
found from studying dζ(t)/dx where ζ(t) = ζ0 cos(ωt + kx) and k is the wave
number, k = 2π/λ. Faltinsen (1990) gives an overview of relations for Airy
wave theory [9].

The RAO normalization required by Riflex is dimensionless as described above.
The referred note by Ivar J. Fylling derives the asymptotic phase angle, limω→0 φ,
for a stick-like vessel with a coordinate system xyz associated with the longitu-
dinal, transverse and vertical directions. See table 20 for the asymptotic RAO
phase angles when using the Riflex programme.

Limiting ourselves to a symmetric stick-like vessel and wave directions parallel
to the vessel coordinate system axis 0◦, 90◦, 180◦ and 270◦ we may also make
a claim regarding the expected asymptotic amplitude ratio. This is claimed to
be unity (1) limω→0 |H(ω)| = 1 for vessel motions triggered by the chosen wave
direction. Example: For a long wave in direction 0◦, the asymptotic amplitude
ratio H = 1 is expected for the surge-, heave- and pitch-motion. The sway-,
roll- and yaw-motion should be zero because of the assumed symmetry.
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Wave direction in 2nd quadrant Wave direction in 1st quadrant
φx = +90◦ φx = −90◦

φy = −90◦ φy = −90◦

φz = 0◦ φz = 0◦

φxx = −90◦ φxx = −90◦

φyy = −90◦ φyy = +90◦

φzz = 0◦ φzz = +180◦

Wave direction in 3rd quadrant Wave direction in 4th quadrant
φx = +90◦ φx = −90◦

φy = +90◦ φy = +90◦

φz = 0◦ φz = 0◦

φxx = +90◦ φxx = +90◦

φyy = −90◦ φyy = +90◦

φzz = +180◦ φzz = 0◦

Table 20: Asymptotic RAO phase angles for long wave per Riflex convention for dif-
ferent wave propagation directions. The associated asymptotic RAO ampli-
tude value is unity (1) for relevant motions when wave is parallel to either
x- or y-axis.

12.2 Check of applicable RAO files

Two sets of vessel RAOs have been received for the ship shaped FPSO. The
length of the close to box-shaped FPSO is about 300 m and the width is about
55 m. The draft of the FPSO is between 7 and 13 m dependent on the loading
condition. The two RAO sets are for the ballast and full draft of the ship shaped
FPSO, see table 21.

Draft Distance of CoG above water line xcog ycog zcog

Condition (m) (m) (m) (m) (m)

Ballast 8.0 8.733 0 0 16.733
Full 12.8 2.150 0 0 14.950

Table 21: Vessel RAOs, vessel draft and location of RAO specification point, here
CoG. Vessel coordinate system origin is at keel level in the center of the
FPSO.

The RAOs have been received in files already in the format required by Riflex.
They are nevertheless checked considering the expectations of table 20. For
both RAO sets the amplitude ratios and phase angles for the longest wave,
highest periode, compares well with the asymptotic results. All wave directions
have been checked: 0◦, 15◦, 30◦, . . . , 360◦. The RAOs for surge, sway and heave
are illustrated on figures 20, 21 and 22. The RAOs for roll, pitch and yaw
are illustrated on figures 23, 24 and 25 respectively. Table 22 contains the
check result for wave direction 90◦ (beam sea). The vessel surge, pitch and yaw
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motions are insignificant for this wave direction, as expected.

Amplitude Phase Asymptotic phase
DOF (-) (◦) (◦) Finding

sway 0.963 -90.06◦ -90◦ OK
heave 1.001 0◦ 0◦ OK
roll 1.070 -98.539◦ -90◦ OK

Table 22: Vessel RAO check, 90◦ wave direction (beam sea) and 30.1 s wave period.

12.3 Transformation of the vessel RAO

The vessel transfer function defines the harmonic motion of any point on the
rigid vessel body using a specified coordinate system, xyz. The vessel motion for
the origo of this coordinate system is described by the complex RAO-values, one
value for each of the six degrees of freedoms: surge Hx(ω), sway Hy(ω), heave
Hz(ω), roll Hxx(ω), pitch Hyy(ω) and yaw Hzz(ω). The frequency dependency
will be dropped for brevity in the following.

Let H = [Hx Hy Hz Hxx Hyy Hzz]T be the complex RAO value for a given
frequency ω that in general depends on the wave direction. By denoting the
RAOs for translations as H1 = [Hx Hy Hz]T and those for rotations as H2 =
[Hxx Hyy Hzz]T we can write H = [H1 H2]T .

The motion of a fixed point rp = [xp yp zp] on the vessel can be written as
s(t) = [s1(t) s2(t)]T where s1(t) = [x(t) y(t) z(t)]T is the translational motion
and s2(t) = [θx(t) θy(t) θz(t)]T is the rotational motion, see Faltinsen (1990)
pp. 41 [9]. The motion s(t) of an arbitrary point can be calculated as shown by
equation 42. Note the linearity, that the rotation is independent of the point
position and that the real part corresponds to the physical motion.

x(t)
y(t)
z(t)
θx(t)
θy(t)
θz(t)

 =
[
s1(t)
s2(t)

]
=
[
H1 + H2 × rp

H2

]
ζ0e

iωt (42)

12.3.1 RAO for point rp – using coordinate system xyz

The RAO, H′ = [H′1 H′2]T , for a different point rp on the vessel is given by
equation 43 when using the same coordinate system xyz. This is the time
invariant part preceding ζ0e

iωt of equation 42.

H′ =
[
H′1
H′2

]
=
[
H1 + H2 × rp

H2

]
(43)
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12.3.2 RAO for motion in specified direction

The RAO for the motion in a specified direction may be interesting. The
direction is represented by a unit directional vector, n = [nx ny nz]. Use
equation 44 if the translational motion parallel to the unit vector n is desired
and equation 45 if the RAO for the rotation about the unit vector n is wanted.

H′1 = n · (H1 + H2 × rp) (44)

H′2 = n ·H2 (45)

12.3.3 RAO for origin – using rotated coordinate system x′y′z′

Consider now a completely different coordinate system (x′y′z′) where the axis
directions are changed according to a constant 3 × 3 transformation matrix
T with real entries. Note that each row of the transformation matrix can be
interpreted as the unit vector of a skewed axis direction per previous section.

The transformation matrix satisfies T−1T = TTT = I because it is orthonor-
mal. The transformed RAO H′′ = [H′′1 H′′2]T is given by equation 46.

H′′ =
[
H′′1
H′′2

]
=
[
TH1

TH2

]
=
[
T 0
0 T

] [
H1

H2

]
(46)

12.3.4 An interesting result

Let us review the motion s′(t) = [s′1(t) s′2(t)]T at a fixed point rp = [xp yp zp]
on the vessel in the changed coordinate system x′y′z′. Note that r′p = Trp.

First, the harmonic translational (s′1) and rotational (s′2) point motion is ob-
tained by the transformation T on the motion resulting from using RAOs for
the xyz-system. See equation 42, the result is given by equation 47.

[
s′1(t)
s′2(t)

]
=
[
Ts1(t)
Ts2(t)

]
=
[
TH1 + T(H2 × rp)

TH2

]
ζ0e

iωt (47)

Second, the same harmonic motion is obtained by using the RAOs for the
rotated x′y′z′-system. This give equation 48, note that H′′1 = TH1, H′′2 = TH2

and r′p = Trp.

[
s′1(t)
s′2(t)

]
=
[
H′′1 + H′′2 × r′p

H′′2

]
ζ0e

iωt =
[
TH1 + TH2 ×Trp

TH2

]
ζ0e

iωt (48)

The cross product term of equations 47 and 48 must be equal.

Hence, T(H2 × rp) ≡ (TH2)× (Trp).
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This means that the vector cross product is rotationally invariant similar to
the vector dot product. However, unlike the vector dot product (~a · ~b) which
is rotationally invariant for any n-dimensional vector space – the vector cross
product (~a×~b) is rotationally invariant only for the 3-dimensional vector space
according to George B. Arfken and Hans J. Weber in “Mathematical methods
for physicist” (1995) pp. 10, 16 and 22 [5]. It is exactly this property that
proves that the vector cross product is indeed a proper vector.

12.3.5 Vessel induced motion at the hang-off point

It is reasonable to expect that the dynamic vessel motion at the umbilical hang-
off point is a significant cause to the varying loads in the umbilical system. This
is in particular so considering vessel rotations which will cause bending in the
top bend stiffener. This will happen if the even if the umbilical in itself is
standing perfectly still. If the umbilical is also moving due to e.g. wave action,
this will increase the total bending variation in the top end.

However, bending is only part of the picture – the associated tension is like-
wise interesting. Passano (1994) [24] pp. 109 and Passano and Larsen (2006)
[22] have demonstrated that the axial velocity of the umbilical at the top is a
dominant cause for tension dynamics. They have demonstrated that the time
instants for tension maxima and minima in the lower end near the seabed are
well predicted from the top end axial velocity extremes.

The above means that the transfer function for the top end axial motion (in
fixed initial tangential direction) is well worth studying if the concern is ten-
sion dynamics near the seabed. Likewise, the RAO for the vessel angles are
interesting since they are closely associated with the bending at the top end.

The RAO for the umbilical hang-off point has been obtained by transforma-
tion of the vessel RAO, see section 12.3. These are presented in figure 18 for
wave direction 90 ◦ and figure 19 for wave direction 270 ◦. The right-handed
and Cartesian coordinate system at the top end is given by the umbilical angle
with the vertical and the umbilical heading (azimuth direction). The top end
coordinate system is set-up such that the x’-axis is in the umbilical tangent
direction (positive upwards), The y’-axis is perpendicular to the nominal um-
bilical configuration plane such that the nominal umbilical configuration plane
is entirely in the x’z’-plane. This choice of coordinate system means that the
bend stiffener flange is in the y’z’-plane, the x’-axis is perpendicular to the bend
stiffener flange, see section 7.3.

The top end motion transfer functions show a significant difference in the axial
motion and velocity for wave periods in the range 10-15 s. Wave direction 270 ◦

is causing the greatest axial motion for a given sea state, a particular Hs-/Tp-
combination. It should be observed that the rotational angle is independent
of the wave direction. This is as expected since both are beam sea directions
inducing roll only. In this case it is natural to choose the angular component
parallel to the vessel X-axis for study. Note that even if many different angular
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projections exists, all the interesting ones are contained within the plane of the
bend stiffener flange – since these are associated with bending.
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Figure 18: Motion RAOs for the umbilical hang-off point, wave direction 90 ◦.
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12.4 How to calculate the motion from the RAO

The transfer function, H(ω), has its use in the dynamic analysis of linear sys-
tems. It is particularly well suited to describe the stationary dynamic response
caused by a stationary and stochastic Gaussian sea state which is assumed
Gaussian. The response is then also Gaussian because of the linearity, Larsen,
“TMR 4180, Marin dynamikk” (2007) [11].

The dynamic excitation is in this case caused by the superposition of a great
number of linear regular waves (Airy wave theory) with different amplitudes Aj
and frequencies ωj where j = 1 . . . N . The following description is taken from
Faltinsen (1990) pp. 37 [9] with additional information from Newland (2005)
[21]. The accumulated wave elevation is then given by:

ζ(t) =
N∑
j=1

Aj cos(ωjt− kjx+ εj) (49)

Similar to Faltinsen, the Aj , ωj , kj and εj are respectively the wave amplitude,
circular frequency, wave number and the fixed random phase angle from a uni-
form distribution between 0 and 2π. The variance from each sinusoidal wave
with amplitude Aj equals A2

j/2. It is this value which is specified by the wave
spectrum Sζ(ω).

1
2
A2
j = Sζ(ω)∆ω (50)

The mean value of wave elevation ζ(t) is zero and the total variance of ζ(t)
is given by sum over all contributing sinusoidal waves: σ2

ζ =
∑N

j=1A
2
j/2 =∫∞

0 Sζ(ω) dω. Recalling that the associated response amplitude is given by
xoj = Hx(ωj)ζ0j , the contributing variance for each sinusoidal response with
the same frequency wj is known as x2

0j/2. Likewise, the response spectrum is
also known:

Sx(ω) = |Hx(ω)|2Sζ(ω) (51)

Two particularly significant parameters can be extracted from the 1st and 2nd

moments of this response spectrum. Namely the response variance σ2
x and the

zero up-crossing period Tz.

σ2
x =

∫ ∞
0
|Hx(ω)|2Sζ(ω) dω (52)

The spectrum of x(t) is given by 51. To obtain the zero up-crossing period it is
necessary to consider the response spectrum of the derived process dx(t)/dt =
ẋ(t) – or to be specific, the variance of ẋ(t). Since the spectrum for a derived
process is Sẋ(ω) = ω2Sx(ω):

σ2
ẋ =

∫ ∞
0

ω2|Hx(ω)|2Sζ(ω) dω (53)
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Figure 20: Surge RAO for ballast condition.

The zero up-crossing period is then calculated as Faltinsen (1990) pp. 25 [9],
Newland (2005) pp. 89:

Tz = 2π
σx
σẋ

(54)

Finally, once we know the mean response and the standard deviation as well
as the zero up-crossing period (and the zero up-crossing frequency ν+

0 = 1/Tz)
– we can calculate the characteristic extreme value for a storm duration of
typically 3 hours (10800 seconds) by using the Rayleigh distribution. This give:
xmax = xmean + σx

√
2 ln(10800./Tz).
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Figure 21: Sway RAO for ballast condition.
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Figure 22: Heave RAO for ballast condition.
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Figure 23: Roll RAO for ballast condition.
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Figure 24: Pitch RAO for ballast condition.
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Figure 25: Yaw RAO for ballast condition.
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13 Long term 100-year response

The purpose of this section is to calculate long term 100-year response values
directly from all the sea states of the wave scatter diagram, table 13. The re-
sponse values studied are wave, top end motions and selected umbilical response
parameters.

The simplified method as described in section 9 is used.

13.1 Reasons for inspecting the vessel induced motions

Inspection of the transfer functions for umbilical axial motion at the hang-off
position reveals that the umbilical axial motion is significantly affected by the
direction of the wave, see figures 18 and 19. Wave direction 270 ◦ causes much
more axial motion and velocity than wave direction 90 ◦. Hence, we should
expect comparatively less accelerations and therefore also less dynamic tension
in the umbilical for the 90◦ wave propagation direction.

Figures 18 and 19 describe also the transfer function for the roll angle of the
vessel. The rotation of the vessel is similar for both directions 90◦ 270◦ as it
should be since both are beam sea directions are inducing vessel roll only. The
roll motion is interesting since even if the umbilical is hypothetically unaffected
by the direct wave action, the vessel rotation would cause bending in the bend
stiffener.

For these reasons, the long term extreme vessel motion at the top end point
is interesting. The long term response is established by performing frequency
domain analysis considering the entire scatter diagram, see table 13. It should
be noted that the same scatter diagram is used for both vessel beam sea di-
rections, 90◦ and 270◦. The long term wave elevation is obtained in the same
manner for comparison purpose.

The main objectives are:

• Verify that wave direction 270◦ is indeed the most critical as indicated by
the motion transfer functions at the hang-off point.

• Determine the long term response values for subsequent comparison with
contour curve results. Of particular interest is the non-exceedance prob-
ability α for the extreme determined from sea states along the contour
curve. S. Haver et al, reference XYZ, suggests that the contour curve
extremes should be associated with an α-value of 0.90 to be consistent
with long term extreme results.

• For subsequent comparison with estimates of umbilical long term re-
sponses, prepare information to see which of the wave elevation or vessel
response parameters that is better correlated with the umbilical response.

Subsequently, long term estimates of umbilical response quantities will be inves-
tigated using obtained standard deviations and mean level up-crossing frequen-
cies from linear time domain analysis for all the sea states of the wave scatter
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diagram. The simulation time is 1 hour (3600 s) for each sea state. These linear
time domain analysis are performed using constant system stiffness, damping
and mass matrices. Note that the external loads are non-linear similar to those
of a full non-linear time domain analysis.

The method for the long term analysis is presented in section 9.

13.2 Top motion, long term 100-year response

The vessel induced motions at the top end of the umbilical has been calculated
using frequency domain methods by use of given vessel transfer functions. The
responses have been calculated from the response spectrum, see section 12.4.

The following response quantities have been considered: the motion in the static
axial direction of the umbilical (7 ◦ with the vertical) (X), the axial velocity
(Ẋ) in the same direction and also the component of the vessel induced angle
parallel with the ship’s longitudinal axis – the vessel roll angle (θy).

The transfer functions for X and θy have been obtained from the provided vessel
RAOs through transformation, see section 12.3. The transfer function for Ẋ is
obtained from that of X by HẊ(ω) = iωHX(ω).

The long term results are given in table 23 for wave directions 90◦ and 270◦.
As indicated by the transfer functions for X, Ẋ and θy, see section 12.3.5 and
figures 18 and 19, the vessel angle is similar for the two directions and the axial
motion is significantly more severe for wave directions 270◦. Note that a 270 ◦

wave direction means that the waves moves from the umbilical top end towards
the bottom end when seen from above.)

Wave direction 90◦ 270◦

Wave elevation, ζ (m) 8.122 8.122
Axial motion, X (m) 4.837 13.580
Axial velocity, Ẋ (m/s) 2.491 6.889
Vessel angle, θ′y (◦) 12.328 12.328

Table 23: Long term dynamic maximum values.

Table 24 give the contribution for the 8 largest contributors to the long term
extreme value of wave elevation, ζ. This table shows that the most contributing
sea state to the long term extremes is the sea state with the largest wave height.
Note that all the sea states in the wave scatter diagram are included in the
analysis even if not shown here..

It is readily observed in table 24 that the sea state with the largest wave height
contributes the most for all response quantities: ζ, X, Ẋ and θ′y. Limiting
ourselves to the three largest contributors a period dependency may also be
suspected. This is perhaps most easily seen in table 25 where only the contri-
butions ranks are given, the largest contributor is assigned a rank value of 1,
the second largest a rank value of 2 and so on.
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Sea state Contribution to the long term extreme
Hs (m) Tp (s) γ ζ X Ẋ θ′y

6.25 13.50 1.783 0.939878 0.990461 0.958859 0.992288
5.75 11.50 1.929 0.047263 0.001368 0.030354 0.000108
5.25 13.50 1.783 0.004947 0.005835 0.005447 0.005935
5.25 10.50 2.017 0.002132 0.000000 0.000064 0.000000
5.25 11.50 1.929 0.001941 0.000029 0.001197 0.000001
5.25 12.50 1.852 0.001783 0.000765 0.003284 0.000436
5.25 14.50 1.722 0.001535 0.001329 0.000331 0.001063
4.75 12.50 1.852 0.000152 0.000057 0.000335 0.000029

Table 24: Sea state contribution to the long term extreme of top motion, wave di-
rection 270◦.

Sea state Contribution rank
Hs (m) Tp (s) γ (-) ζ X Ẋ θy

6.25 13.50 1.783 1 1 1 1
5.75 11.50 1.929 2 3 2 5
5.25 13.50 1.783 3 2 3 2
5.25 10.50 2.017 4 15 9 20
5.25 11.50 1.929 5 9 5 10
5.25 12.50 1.852 6 5 4 4
5.25 14.50 1.722 7 4 7 3
4.75 12.50 1.852 8 7 6 8

Table 25: Ranked sea state contribution to the long term extreme of top motion,
wave direction 270◦.

As for the contributors to the long term extreme wave elevation ζ, table 25
seems to indicate that the wave height is more important than the wave period.
It is the ranks greater than 8 for the other parameters that indicates this. This
means that the sea states important for the wave elevation are not so important
for the induced top end motions.

The duration associated with the long term extreme are given in table for wave
direction 270◦. It is seen that the required duration to realize the characteristic
largest value in a simulation is about 2000 hours. This means that detailed time
domain simulation using a sea state part of the given wave scatter diagram is
not practical. The reason for this is probably that the given scatter diagram is
observed, not analytically extended.

As to the efficiency of the wave elevation in predicting the sea state contribution
to the long term maximum, figures 26 and 27 illustrates this for wave directions
90◦ and 270◦ respectively. Based on these figures it appears as if the wave
elevation is not so strongly correlated to the top end motion.
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Sea state Duration for long term extreme
Hs (m) Tp (s) γ (-) ζ X Ẋ θ′y

6.25 13.50 1.783 2122 2014 2080 2010
5.75 11.50 1.929 2.11E4 7.289E5 3.286E4 9.208E6
5.25 13.50 1.783 6.048E5 5.127E5 5.493E5 5.041E5
5.25 10.50 2.017 4.678E5 3.394E10 1.561E7 1.438E15
5.25 11.50 1.929 5.138E5 3.402E7 8.335E5 7.057E8
5.25 12.50 1.852 5.594E5 1.303E6 3.037E5 2.287E6
5.25 14.50 1.722 6.498E5 7.506E5 3.014E6 9.383E5
4.75 12.50 1.852 3.938E7 1.046E8 1.785E7 2.062E8

Table 26: Sea state duration to realize long term extreme (hours) of top motion,
wave direction 270◦.

Figure 28 contains the data for all the sea states part of the scatter diagram.
This figure shows that for any constant wave height, the top end motions are
more sensitive to the wave period variation than to the wave elevation ζ. Figure
29 shows that all the top 10 ranks are found in the period band from 10 to 16
seconds.
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13.2 Top motion, long term 100-year response 65

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80

R
an

k 
of

 c
on

tri
bu

tio
n 

to
 lo

ng
 te

rm
 m

ax
im

um

Seastate no (rank for contribution to maximum wave elevation)

Rank of contribution to long term maximum.
The largest contribution has rank 1. Wave direction: 270 degree.

Wave elevation        
Axial motion amplitude

Axial velocity amplitude
Roll angle

Figure 27: Rank of wave elevation contribution to long term maximum versus rank
of vessel induced top end motion contribution, wave direction 270◦.
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13.3 Umbilical, long term 100-year response

Time domain analysis with constant system matrices have been performed for
all sea states in the scatter diagram. From the simulations, each with dura-
tion 3600 s, the standard deviation and the up-crossing frequency for selected
umbilical response quantities have been obtained.

The studied parameters are:

• TBS, the bend stiffener tension (the umbilical tension immediately below
the bend stiffener).

• Tsag, the tension in the sag bend of the lazy wave configuration.

• θy, component of the bend stiffener angle (the angle between the vessel
fixation and the moving umbilical immediately below the bend stiffener
tip, see section 7.1 for the calculation method.

The bend stiffener tension and angle are particularly important parameters for
the design and verification of bend stiffeners. As to the angle, this is a vector
and is expected to be correlated to the vessel rotation since the relative angle
between the moving umbilical and the moving vessel may be assumed the sum
of two parts, θ = θ′ + θ′′, see section 7:

Part 1: θ′, the angle between the moving vessel versus the static direction of
the umbilical (top end vector).

Part 2: θ′′, the deviation in the umbilical direction from the static direction
due to the dynamic loads and the forced top end motion.

Such a description may be beneficial, since the first part may be readily and ac-
curately calculated in advance using RAOs and frequency domain tools. Hence,
we would have useful and quick approximation subject to the assumption that
part 2 is small in comparison.

Table 27 give the estimated long term umbilical response values, note that these
calculated assuming Gaussian response using standard deviations and zero up-
crossing frequencies from linear time domain analysis (analysis with constant
system matrices).

Static ± dynamic

Bend stiffener tension, Tbs (kN) 356.377 ± 238.814
Bend stiffener angle, θy (◦) 0.034 ± 12.417
Sag tension, Tsag (kN) 45.812 ± 45.768

Table 27: Long term dynamic umbilical response values, 270◦wave direction.
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Table 28 give the sea state contributions for the eight (8) sea states that con-
tributes most to the wave elevation ζ. The contribution ranking is given in
table 29.

The duration associated with the long term extreme are given in table for
wave direction 270◦. The duration to realize the characteristic largest umbilical
response in a time domain simulation is between 2000 and 2600 hours which
compares well with the roughly 2050 hours required for the top motion. Again,
this means that detailed time domain simulation using a sea state part of the
given wave scatter diagram is not practical.

Sea state Contribution to the long term extreme
Hs (m) Tp (s) γ (-) ζ Tbs θy Tsag

6.25 13.50 1.783 0.9399 0.7858 0.9942 0.9686
5.75 11.50 1.929 0.04726 0.1937 2.477E-6 0.0308
5.25 13.50 1.783 0.004947 0.002038 0.003855 0.0001052
5.25 10.50 2.017 0.002132 0.004491 3.686E-18 8.634E-6
5.25 11.50 1.929 0.001941 0.008421 1.232E-8 0.0001787
5.25 12.50 1.852 0.001783 0.004631 6.746E-5 0.0002657
5.25 14.50 1.722 0.001535 3.189E-5 0.001749 6.143E-7
4.75 12.50 1.852 0.000152 0.000352 2.259E-6 9.407E-7

Table 28: Sea state contribution to the long term extreme of umbilical response, wave
direction 270◦.

Sea state Contribution rank
Hs (m) Tp (s) γ (-) ζ Tbs θy Tsag

6.25 13.50 1.783 1 1 1 1
5.75 11.50 1.929 2 2 8 2
5.25 13.50 1.783 3 6 2 5
5.25 10.50 2.017 4 5 24 6
5.25 11.50 1.929 5 3 12 4
5.25 12.50 1.852 6 4 4 3
5.25 14.50 1.722 7 10 3 8
4.75 12.50 1.852 8 7 9 7

Table 29: Ranked sea state contribution to the long term extreme of umbilical re-
sponse, wave direction 270◦.

Table 31 provides the response standard deviations and zero up-crossing fre-
quencies for It is interesting to observe that θ′y and θy in the above are very
close to each other. The only difference is that for the latter – the dynamic um-
bilical motion is accounted for whereas it is taken as fixed in the former. It is
noted that this analysis is performed without current and that larger deviation
may be seen in a case with current.
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Sea state Duration for long term extreme
Hs (m) Tp (s) γ (-) ζ Tbs θy Tsag

6.25 13.50 1.783 2122 2538 2006 2059
5.75 11.50 1.929 2.11E4 5148 4.027E8 3.238E4
5.25 13.50 1.783 6.048E5 1.468E6 7.762E5 2.843E7
5.25 10.50 2.017 4.678E5 2.22E5 2.706e+20 1.155E8
5.25 11.50 1.929 5.138E5 1.184E5 8.092E10 5.58E6
5.25 12.50 1.852 5.594E5 2.154E5 1.478E7 3.753E6
5.25 14.50 1.722 6.498E5 3.127E7 5.703E5 1.624E9
4.75 12.50 1.852 3.938E7 1.7E7 2.649E9 6.361E9

Table 30: Sea state duration to realize long term extreme of umbilical response
(hours), wave direction 270◦.

90◦wave direction 270◦wave direction
Response σ ν+

0 σ ν+
0

ζ 1.560 0.1001 1.560 0.1001
X 0.932 0.0818 2.635 0.0805
Ẋ 0.478 0.0942 1.332 0.0851
θ′y 2.396 0.0778 2.396 0.0778
Tbs 45.741 0.0909
Tsag 8.835 0.0905
θy 2.414 0.0772

Table 31: Response standard deviations (σ) and zero up-crossing frequency (ν+
0 )for

the most severe sea state in the scatter diagram, Hs=6.25 m, Tp=13.5 s
and γ=1.783.
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13.4 Example calculation of 100-year extreme value and con-
tribution

The axial top end velocity, Ẋ, is studied. This response parameter is in the
static direction of the umbilical at the upper end. From table 31 for the most
severe sea state in the scatter diagram – the standard deviation is 1.332 m/s
and the zero up-crossing frequency is 0.0851 1/s. The storm duration is 2080
hours per table 13.3, i.e. T = 2080 · 3600 = 7488000 seconds.

The desired extreme value is the characteristic largest value which has an up-
crossing frequency equal to once per the storm duration, ν = 1/T . The extreme
value may therefore be calculated using the up-crossing relation for a Gaussian
stochastic process 30, nu = ν0 exp(−1/2(x/σ)2). This give the maximum veloc-
ity: Ẋmax = σ

√
2 ln(ν0T ) = 1.332

√
2 ln(0.08517488000) = 6.887 m/s. When

accounting for round off effects, this is equal to the long term maximum value
found in table 23, 6.889 m/s.

This sea state, Hs=6.25 m and Tp=13.5 s, has a probability of P = 2/879 per
the wave scatter diagram, see table 13. The contribution to the maximum value
is calculated as follows: c = ν0T100year exp(−1/2(Ẋmax/σ)2)P The contribution
becomes c = 0.0851 · (100365.25243600) exp(−1/2(6.887/1.332)2)2/879 = 0.957
which is equal to the value reported in table 24 (0.959) when accounting for the
effect of round off.

13.5 Summary and evaluation of the long term 100-year re-
sponse calculation

The long term extremes have been calculated for selected top end motions
and selected umbilical response parameters. All sea states part of the scatter
diagram have been considered for the top end motions. In this case the wave
direction is either 90◦wave direction or 270◦which both are vessel beam sea
directions.

Table 32 show that the long term response is significantly larger for the 270◦direction.
The 270◦wave direction have therefore been chosen for dynamic time domain
analysis of the umbilical system. All the load cases part of the scatter dia-
gram are simulated for 1 hour using constant system matrices (linear analysis).
Gaussian response distribution is assumed in the long term response estimation.

It is of interest to see how well the umbilical response contributions are corre-
lated with the contribution ranks for the wave elevation ζ. Figure 30 demon-
strates that not all sea states contributing most to the long term extreme wave
elevation are interesting for the umbilical response. This finding is similar to
that considering umbilical top motion, see figures 26 and 27.

It is expected that the top end motions are well correlated with the umbilical
response, in special the top axial velocity is expected to be well correlated with
the umbilical tension. Based on figure 31 this appear indeed to be the case
for both top tension and the sag tension. In a similar manner, it is suspected
that the vessel roll angle, here θ′y, is well correlated with the bend stiffener
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Wave direction 90◦ 270◦

Wave elevation, ζ (m) 8.122 8.122
Axial motion, X (m) 4.837 13.580
Axial velocity, Ẋ (m/s) 2.491 6.889
Vessel angle, θ′y (◦) 12.328 12.328

Static ± dynamic

Bend stiffener tension, Tbs (kN) 356.377 ± 238.814
Sag tension, Tsag (kN) 45.812 ± 45.768
Bend stiffener angle, θy (◦) 0.034 ± 12.417

Table 32: Summary of long term extreme estimates.

angle. This suspicion appears to be verified by figure 32. It should be noted
that all response calculations have been based on the assumption of a Gaussian
response. This should be acceptable for the top end motions, but may not be
accurate for the umbilical response in the most severe sea states.
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14 Extreme response for 100-year contour curve sea
states

The extremes response obtained when using sea states from the 100-year con-
tour curve is often taken as an approximation to the 100-year long term response
which was studied in 13. This is a convenient approximation since proper evalu-
ation of the long term extreme is considerably more demanding than evaluation
of some few sea states along the 100-year contour curve.

The purpose of this section is to evaluate the accuracy of the contour curve
approach. The procedure is to determine the maximum response for the spec-
ified storm duration, 3 hours, for several sea states on the contour curve. The
largest response value thereby obtained is then compared to the long term re-
sponse value as given in table 32.

It is obvious that the largest value in any sea state will depend on a precise
definition of the extreme value, the non-exceedance probability α as mentioned
in section 10.2. An α-value of 0.90 will typically be an adequate value when
using 100-year contour curves according to Sverre Haver (2007) [1]. If α = 0.90
is correct, the extreme value from the 100-year contour curves, table 12, should
closely match the corresponding 100-year long term value.

It is clear that the correct α-value is initially unknown and probably different
for various response quantities. Hence, it is of interest to learn the correct α-
values for the umbilical system studied here. To this end, the 100-year long
term response values are given in table 32 are useful.

These long term results will be compared to the 100-year contour curve results
based on different values of the α-parameter. The α-value that causes a match
between contour curve results and long term results will also be determined.

For consistency the contour curve estimates are prepared using method similar
to those used when determining the long term extreme value. Hence, the re-
sponse is assumed Gaussian and it is sufficient to know the response standard
deviation and the up-crossing frequency for the static response level.

14.1 Results, α-values for 100-year contour curve

The long term results and the α-value that brings correspondence between the
long term result and the contour curve result are given in table 33.

Response statistics for the different response parameters are given in table 34
for the axial motion X and the axial velocity Ẋ, table 35 for top angles, the
vessel angle θ′y and the bend stiffener angle θy (projections) and table 36 for
the tension in the bend stiffener and sag region, Tbs and Tsag.

Example, calculating the expected maximum Ẋe for wave direction
270◦: The 3 hour dynamic extreme value of Ẋ comes in addition to the average
which is 0 m/s. For this example, the sea state given by Hs=7.70 m, Tp=14.5
s is chosen. Furthermore, it is chosen calculate the expected maximum axial
velocity Ẋe for this storm duration, T = 10800 seconds. According to section
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10.2 and table 14, the expected largest has an exceedance probability of 57.04%.
Since the response is assumed Gaussian, either equation 31 or 32 can be used.

Here, the zero up-crossing frequency ν+
0 =0.0829 1/s and the number of zero-up-

crossings is N = ν+
0 T=895.32, the standard deviation is σ=1.573 m/s and the

non-exceedance probability is FP (Ẋe)=0.5704 for a storm duration of 3 hours,

see table 34. Equation 31 give Ẋe = σ
√

2 ln(N)− 2 ln[− ln(Fp(Ẋe))]=6.041

m/s whereas equation 32 give Ẋe = σ[
√

2 ln(N) + 0.57722/
√

2 ln(N)] = 6.046
m/s which is the same for all practical purposes.

Wave direction 90◦ 270◦ Note

Wave elevation, ζ (m) 0.842 0.842 See figure 33, same weather.
Axial motion, X (m) 0.022 0.893 See figures 34 and 35.
Axial velocity, Ẋ (m/s) 0.656 0.927 See figures 36 and 37.
Vessel angle, θ′y (◦) 0.904 0.904 See figure 38, symmetry.
Bend stiffener tension, Tbs (kN) 0.893 See figure 39.
Sag tension, Tsag (kN) 0.657 See figure 40.
Bend stiffener angle, θy (◦) 0.801 See figure 41.

Table 33: Non-exceedance probability, α-value for 100-year contour curve results.

Sea state X (m) Ẋ (m/s)
Hs (m) Tp (s) γ (-) σ ν+

0 (1/s) σ ν+
0 (1/s)

7.15 12.50 1.852 2.940 0.0839 1.547 0.0880
7.30 13.00 1.816 3.057 0.0821 1.575 0.0864
7.45 13.50 1.783 3.141 0.0805 1.588 0.0851
7.58 14.00 1.752 3.191 0.0791 1.586 0.0839
7.70 14.50 1.722 3.217 0.0779 1.573 0.0829
7.79 15.00 1.693 3.219 0.0767 1.551 0.0820
7.84 15.50 1.666 3.199 0.0756 1.520 0.0812
7.78 16.00 1.640 3.131 0.0746 1.467 0.0805
7.63 16.50 1.616 3.028 0.0736 1.400 0.0797
7.40 17.00 1.592 2.896 0.0726 1.321 0.0791
7.12 17.50 1.570 2.747 0.0717 1.237 0.0784
6.82 18.00 1.548 2.595 0.0707 1.153 0.0777

Table 34: Contour curve response statistics. Standard deviations (σ) and zero up-
crossing frequencies (ν+

0 ) for X and Ẋ, wave direction 270◦.
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Sea state θ′y (◦) θy (◦)
Hs (m) Tp (s) γ (-) σ ν+

0 (1/s) σ ν+
0 (1/s)

7.15 12.50 1.852 2.634 0.0805 2.585 0.0792
7.30 13.00 1.816 2.768 0.0791 2.773 0.0782
7.45 13.50 1.783 2.856 0.0778 2.914 0.0772
7.58 14.00 1.752 2.897 0.0767 3.003 0.0759
7.70 14.50 1.722 2.906 0.0758 3.053 0.0752
7.79 15.00 1.693 2.886 0.0750 3.067 0.0744
7.84 15.50 1.666 2.842 0.0743 3.047 0.0737
7.78 16.00 1.640 2.754 0.0737
7.63 16.50 1.616 2.636 0.0732
7.40 17.00 1.592 2.493 0.0727
7.12 17.50 1.570 2.338 0.0722
6.82 18.00 1.548 2.182 0.0718

Table 35: Contour curve response statistics. Standard deviations (σ) and zero up-
crossing frequencies (ν+

0 ) for θ′y and θy, wave direction 270◦.

Sea state Tbs (kN) Tsag (kN)
Hs (m) Tp (s) γ (-) σ ν+

0 (1/s) σ ν+
0 (1/s)

7.15 12.50 1.852 55.841 0.0936 11.373 0.0935
7.30 13.00 1.816 56.014 0.0925 11.578 0.0916
7.45 13.50 1.783 55.725 0.0910 11.625 0.0904
7.58 14.00 1.752 54.935 0.0899 11.514 0.0893
7.70 14.50 1.722 53.873 0.0888 11.309 0.0891
7.79 15.00 1.693 52.513 0.0884 11.009 0.0876
7.84 15.50 1.666 50.872 0.0878 10.616 0.0871

Table 36: Contour curve response statistics. Standard deviations (σ) and zero up-
crossing frequencies (ν+

0 ) for Tbs and Tsag, wave direction 270◦.
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Figure 33: Maximum wave elevation ζ along 100-year wave contour curve. Effect
of different α-values.Associated long term maximum and α: ζ=8.12 m,
α = 0.842.
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Figure 34: Maximum axial motion X along 100-year wave contour curve, 90◦ wave
direction. Effect of different α-values. Associated long term maximum
and α: X=4.84 m, α = 0.022.
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Figure 35: Maximum axial motion X along 100-year wave contour curve, 270◦ wave
direction. Effect of different α-values. Associated long term maximum
and α: X=13.58 m, α = 0.893.
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Figure 36: Maximum axial velocity Ẋ along 100-year wave contour curve, 90◦ wave
direction. Effect of different α-values. Associated long term maximum
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Figure 37: Maximum axial velocity Ẋ along 100-year wave contour curve, 270◦ wave
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Figure 40: Maximum dynamic sag tension Tsag along 100-year wave contour curve,
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15 Non-linear analysis of a selected sea state

One sea state part of the 100-year contour, table 12, have been selected for
further study through non-linear analysis using 3 hour simulations. The choice
of the sea state is based on the bend stiffener angle and the axial velocity at the
top end. Details about the time domain simulation method is given in section
5.1.

The bend stiffener angle is significant for the bend stiffener design whereas the
axial velocity is interesting because the extreme values may predict time instants
where compression occurs in the lower sag area of the lazy wave configuration.

Figures 36 and 37 show that wave direction 270◦ give significantly more axial
velocity than direction 90◦. Therefore, wave direction 270 ◦ is selected.

The axial velocity is largest for spectral peak period, Tp=13.5 s according to
figure 37 for 270◦ wave direction. Figure 41 show that the bend stiffener angle
is largest for spectral peak period 15.0 s. A sea state with an intermediate
spectral peak period is therefore chosen: Hs=7.70 m, Tp=14.5 s and γ=1.722
per table 34.

The simplified methods of interest are those were simplified methods are iden-
tifying interesting time windows (hopefully) for subsequent evaluation through
more detailed analysis.

To facilitate this investigation, the selected sea state is simulated ten (10) times,
each time with a different seed number to generate ten (10) unique wave time
series with length three (3) hours .

For each of the unique ten (10) wave time series, a pair of dynamic time domain
simulation analysis are performed. The first of this pair is done using constant
system stiffness and mass matrices, this is hereafter called a linear time domain
analysis. The second of this pair is a full non-linear time domain analysis. This
pair of analysis results may then also be used to investigate how well the linear
analysis results are in predicting the instances of interesting time windows in a
full non-linear analysis.

15.1 The expected extreme value for a 3 hour storm

The objective of the extreme value statistics is determination of the expected
extreme for a three hour storm. This is obtained by choosing non-exceedance
probability α=0.5704 in the extreme value estimation according to section 10.2
and table 14. This is done to allow comparison with observed maximum and
minimum values from the simulation which is slightly longer than three (3)
hours, actually 3 hour and 140 seconds.

For the bend stiffener tension Tbs, see table 37 – the skewness is close to zero
as expected for a Gaussian response whereas the kurtosis is slightly larger (3.3)
than the expected value for a Gaussian response, 3.0. Hence, the tension signal
may be characterized as non-linear. The average of the Gumbel minimum
and maximum bend stiffener tension from the time series are 106.4 and 601.3
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Case Bend stiffener tension, Tbs (kN) Expected Gumbel extreme
Average Std. Skew. Kurt. Tz (s) Minimum Maximum

lw-32700405 356.3 54.92 -0.04 3.28 11.04 111.8 591.3
lw-32700415 356.4 55.69 -0.03 3.24 11.17 91.0 577.3
lw-32700425 356.4 54.34 -0.04 3.15 11.11 125.9 594.2
lw-32700435 356.4 54.13 -0.03 2.97 11.07 134.7 571.4
lw-32700445 356.4 55.10 -0.06 3.55 11.15 77.2 621.3
lw-32700455 356.4 54.79 -0.03 3.30 11.02 105.2 613.3
lw-32700465 356.4 56.16 -0.04 3.39 11.17 92.3 637.5
lw-32700475 356.4 54.26 -0.05 3.13 11.22 114.3 598.6
lw-32700485 356.3 54.35 -0.04 3.26 11.12 118.2 595.6
lw-32700495 356.4 54.14 -0.07 3.40 11.25 93.1 612.6

Table 37: Bend stiffener tension results from non-linear analysis.

kN. This is -4.56 and +4.47 standard deviations from the average value. The
corresponding Gaussian extreme would be 3.86 standard deviations from the
average, yielding 568 kN as the maximum. Hence, the non-linearity induces
larger deviations from the average. Note that the observed ten sample maximum
values from the ten 3 hour + 140 s long simulation are in the range 551 to 651
kN with an average value equal to 582 kN and a sample standard deviation of
25.9 kN.

Case Axial velocity, Ẋ (m/s) Expected Gumbel extreme
Average Std. Skew. Kurt. Tz (s) Minimum Maximum

lw-32700405 0.00 1.564 0.00 3.12 11.96 -6.46 6.11
lw-32700415 0.00 1.588 0.02 3.04 12.07 -6.73 6.08
lw-32700425 0.00 1.548 0.01 2.94 12.03 -5.88 6.23
lw-32700435 0.00 1.545 0.01 2.84 12.21 -6.01 5.72
lw-32700445 0.00 1.564 0.00 3.22 12.06 -7.40 7.12
lw-32700455 0.00 1.560 0.02 3.06 12.01 -6.34 6.60
lw-32700465 0.00 1.600 0.00 3.13 12.11 -6.85 7.34
lw-32700475 0.00 1.554 0.00 2.94 12.11 -6.57 6.62
lw-32700485 0.00 1.558 0.01 3.02 12.22 -6.11 6.38
lw-32700495 0.00 1.546 -0.01 3.11 12.03 -6.62 6.64

Table 38: Axial velocity (Ẋ) results from non-linear time domain analysis.

For axial velocity Ẋ, see table 38 – the standard deviation from a separately
calculated response spectrum is 1.573 m/s which is bracketed by the values from
the simulations, 1.545-1.600. The average from the simulations is 1.563 m/s.
The zero up-crossing period from the response spectrum is 1/0.0829=12.06 s
which is close to the average from the simulations, 12.08 s. The expected mini-
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mum and maximum value is ± 6.04 m/s based on a Gaussian assumption. The
average of the Gumbel minimum and maximum values from the time series are
-6.50 m/s and +6.48 m/s respectively. For a Gaussian response, the skewness
and kurtosis should be 0 and 3 respectively. The simulations supports the view
that the axial velocity is a Gaussian response, which it should be since the ve-
locity is the time derivative of the axial motion, which is linearly obtained from
the Gaussian waves through the vessel RAOs.

Case Vessel angle θ′y (◦) Expected Gumbel extreme
Average Std. Skew. Kurt. Tz (s) Minimum Maximum

lw-32700405 0.00 2.899 0.00 3.28 13.23 -12.77 12.72
lw-32700415 0.00 2.957 0.00 3.06 13.21 -11.66 11.88
lw-32700425 0.00 2.851 0.00 2.89 13.24 -10.41 11.01
lw-32700435 0.00 2.838 0.00 2.83 13.16 -10.42 10.55
lw-32700445 0.00 2.892 0.00 3.21 13.18 -13.17 13.29
lw-32700455 0.00 2.889 0.00 3.00 13.24 -11.48 11.86
lw-32700465 0.00 2.999 0.00 3.14 13.37 -12.82 13.56
lw-32700475 0.00 2.886 0.00 2.98 13.16 -11.91 12.25
lw-32700485 0.00 2.909 0.00 2.94 13.29 -10.77 10.45
lw-32700495 0.00 2.865 0.00 3.20 13.12 -12.26 12.77

Table 39: Vessel angle θ′y (projection) results from non-linear time domain analysis.

For the vessel angle projection θ′y, table 39 – the standard deviation and the
zero up-crossing period from a separately calculated response spectrum is 2.906◦

and 1/0.0758=13.19 s which are both bracketed by the results in table 39, the
average standard deviation is 2.898◦ from the table. The expected minimum
and maximum value of θ′y is ± 11.092◦ based on a Gaussian assumption. The
average of the Gumbel minimum and maximum values from the time series
are -11.77◦ m/s and +12.03◦ respectively. Again, the time series results seem
to confirm that this vessel inclination angle projection is a Gaussian response,
which it should be since it is obtained from a linear transformation of the
assumed Gaussian waves through the vessel motion transfer function, the vessel
RAO.

The bend stiffener angle projection θy found in table 40 have an average stan-
dard deviation equal to 3.054◦ which is slightly larger (5%) than the average
for the vessel angle projection θ′y, 2.898◦. The average zero up-crossing period
for θy and θ′y are 13.59 s and 13.22 s respectively. The average skewness value
is −0.14, which means that values less than the average are, in a sense, more
likely to occur. The kurtosis value is 3.3 on average. This indicates a non-linear
response. Hence, it is expected to see extremes comparatively larger than those
associated with a Gaussian assumption. The Gaussian extreme would be ±3.81
standard deviations from the average. The average of the ten Gumbel max-
imums is +12.11◦ which is 3.99 standard deviations from the average. The
average Gumbel minimum is -14.26◦ which is 4.65 standard deviations from the
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Case Bend stiffener angle θy (◦) Expected Gumbel extreme
Average Std. Skew. Kurt. Tz (s) Minimum Maximum

lw-32700405 -0.07 3.054 -0.17 3.68 13.62 -15.94 13.43
lw-32700415 -0.08 3.126 -0.15 3.34 13.57 -14.35 12.00
lw-32700425 -0.07 2.988 -0.12 3.09 13.66 -12.49 11.59
lw-32700435 -0.07 2.968 -0.11 3.03 13.44 -12.16 10.33
lw-32700445 -0.07 3.047 -0.17 3.52 13.61 -16.08 13.08
lw-32700455 -0.07 3.042 -0.13 3.18 13.71 -13.70 11.40
lw-32700465 -0.08 3.192 -0.16 3.43 13.66 -16.14 14.00
lw-32700475 -0.07 3.041 -0.13 3.20 13.46 -14.20 12.14
lw-32700485 -0.07 3.067 -0.12 3.12 13.64 -12.24 10.71
lw-32700495 -0.07 3.017 -0.16 3.59 13.51 -15.33 12.42

Table 40: Bend stiffener angle θy (projection) results from non-linear time domain
analysis.

average.

The difference between θy and θ′y is that the umbilical moves in the calculation
of θy. The 5% angle increase and the induced non-linearity is caused by the
combined effect of the moving vessel and the wave action on the umbilical.

Case Utilization, g = g(T,C) = T/T0 + |C|/C0 (-) Expected Gumbel extreme
Average Std. Skew. Kurt. Tz (s) Minimum Maximum

lw-32700405 0.313 0.0695 1.22 5.56 10.27 0.112 0.798
lw-32700415 0.315 0.0703 1.10 4.77 10.27 0.104 0.751
lw-32700425 0.313 0.0667 0.99 4.46 10.11 0.101 0.689
lw-32700435 0.312 0.0657 0.94 4.32 10.06 0.117 0.696
lw-32700445 0.313 0.0689 1.17 5.59 10.14 0.082 0.836
lw-32700455 0.313 0.0684 1.03 4.45 10.25 0.105 0.745
lw-32700465 0.317 0.0716 1.13 5.04 10.23 0.104 0.797
lw-32700475 0.313 0.0681 1.03 4.59 10.15 0.105 0.764
lw-32700485 0.314 0.0681 1.01 4.47 10.19 0.110 0.717
lw-32700495 0.312 0.0683 1.19 5.55 10.05 0.099 0.768

Table 41: Umbilical utilization, g(T,C) = T/T0 + |C|/C0 results from non-linear time
domain analysis.

Table 41 show a highly non-linear result, g = g(T,C). This is the umbilical
utilization norm, g = g(T,C) = T/T0 + |C|/C0. The simultaneous combination
of tension T and absolute curvature |C| is acceptable from a structural point
of view if g(T,C) ≤ 1. The parameters T0 and C0 are parameters of a linear
segment of the capacity curve. Note that a capacity curve may consist of several
such piecewise linear segments that all must be checked. Here, the critical linear
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segment have been determined by inspection.

The g-results given in table 41 show that the distribution is highly positively
skewed and feature large kurtosis. This is always the case due to the absolute
curvature value in the equation. The average expected extreme value is g=0.756
based on the Gumbel extreme value results. Note that the average of the
observed ten sample maximum values have been calculated to g=0.734, the
sample standard deviation is 0.05. The observed ten maximum values from the
ten 3 hour + 140 s long simulations are between 0.673 and 0.850.

Case Sag tension, Tsag (kN) Expected Gumbel extreme
Average Std. Skew. Kurt. Tz (s) Minimum Maximum

lw-32700405 45.9 11.58 0.11 6.50 11.08 -25.3 118.4
lw-32700415 45.9 11.79 0.13 6.13 11.27 -31.2 118.6
lw-32700425 45.9 11.28 0.09 5.86 11.21 -26.4 127.5
lw-32700435 45.9 11.16 0.10 5.32 11.25 -19.4 115.0
lw-32700445 45.9 11.68 0.14 7.58 11.22 -38.6 136.9
lw-32700455 45.9 11.51 0.16 6.27 11.13 -25.9 128.8
lw-32700465 45.9 12.00 0.15 6.62 11.28 -28.6 133.5
lw-32700475 45.9 11.30 0.09 6.02 11.25 -28.2 127.0
lw-32700485 45.9 11.43 0.11 6.02 11.27 -24.3 125.4
lw-32700495 45.9 11.36 0.07 6.89 11.20 -29.7 125.1

Table 42: Sag tension results from non-linear analysis.

The sag tension is also highly non-linear as shown in table 42. The skewness
is close to zero as expected for a Gaussian signal. However, the value of the
kurtosis (on the average 6.3) is significantly higher than the Gaussian value of
3.0. As expected, this shows in the Gumbel maximum and minimum values.
The average of the Gumbel minimum and maximum values is calculated to -
27.8 and 125.6 kN respectively. These values deviates from the average value
with -6.4 and 6.9 times the standard deviation.

The average Gumbel minimum value of -27.8 kN for 3 hours is bracketed by
the range of the realized minimum values, from -32.3 to -8.8 kN for the 10940
s long simulations. The average of the ten observed sample minimum values is
-22.0 kN with a sample standard deviation equal to 6.7 kN.

Likewise, the average Gumbel maximum value of 125.6 kN for 3 hours is brack-
eted by the range of the maximum values from the 10940 s long simulations,
from 103.7 to 151.1 kN. The average of the ten observed sample maximum
values is +118.1 kN, the sample standard deviation is 12.0 kN.

15.2 On the extreme value estimation method, Gumbel

The Gumbel estimates for maximum (or minimum) extreme values are based
on so called interval maxima (or minima). For each analysis case, the full time
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series length of 11000 seconds, except the initial 60 seconds, is divided into 20
equal length intervals. For each of these intervals, the occurring maximum (or
minimum) values are identified. Hence, 20 sample points associated with an
interval length of (11000-60)/20=547 seconds is used to estimate the Gumbel
extreme value for 3 hours, 10 800 seconds.

The Gumbel estimate is prepared using the method of maximum likelihood, see
Bury (1999) [8] pp. 272. Once the Gumbel location and scale parameters µ
and σ respectively have been determined. The following cdf equation is used
to determine the 3 hour maximum value, Bury (1975) [7] pp. 376:

F (x) = exp
[
− exp(−x− (µ+ σ ln(n)

σ
)
]

(55)

Here n is the number of intervals in 3 hours, n=10800/547=19.744 intervals.
This stems from the fact that the extreme values from an initial Gumbel dis-
tribution are also Gumbel distributed. Again the left hand value, the non-
exceedance probability is taken from table 14 for consistency, here α=0.5704.

Figure 42 illustrates the sample analysis results for the umbilical utilization
norm g = g(T,C) = T/T0 + |C|/C0 for the simulation labeled lw-32700405.
The underlying time series of g feature a skewness value of 1.22 and a kurtosis
value equal to 5.56. The Gumbel analysis tells the expected 3 hour extreme
value, ge=0.786.

Figure 43 presents the empirical level up-crossing frequencies of g(t) from the
ten realizations. Also indicated in this figure is the average g-value determined
by the Gumbel method. The results seem to compare well as is expected.

Figure 44 provides a graphical way of presenting the statistical 3 hour extremes
for load case lw-32700405. This figure show that the statistical boundary sum-
marizes the statistical extremes for the bend stiffener tension Tbs and also the
g-parameter, see tables 37 and 41. Also included in the figure is the correspond-
ing statistical extreme for the maximum curvature in the bend stiffener. Note
that this curvature result is not reported elsewhere. The statistical boundary
is obtained by the method described by Ottesen and Aarstein (2006) [23].

Figure 45 show the empirical up-crossing frequencies from the ten realizations
considering the sag tension. Included in this figure is analytical curves as-
sociated with up-crossing frequencies for a linear or quadratic load based on
Gaussian input. These analytical results brackets the obtained simulation re-
sults. The Gumbel extreme values are also included. Again, the results seem
to compare well as is expected.

15.3 Investigating the relation between top axial velocity and
sag tension

The scope of this section is to investigate the relation between the top axial
velocity and the sag tension. As described by Passano and Larsen (2006) [22]
– the time instants for maxima (or minima) of top axial velocity are close to
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Figure 43: Level up-crossing frequencies for g(T,C), ten realizations.

the time instants for maxima (or minima) of tension in the lower part of the
configuration. Their focus was on a catenary configurations and the situation
near the seabed mainly. Here, the tension in the sag bend of a lazy wave
configuration is investigated.
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Figure 46 demonstrates clearly that there is a quite strong and monotonic trend
between the top axial velocity and the sag tension. However, as indicated by the
scatter around the central values in particular, this is not a perfect monotonic
relation. It is the strength of this relationship that is studied here.

The selected basic tool in this evaluation is the rank order of maxima (or min-
ima), according to the idea presented by Passano (1994) pp. 17 [24]. Hence, we
are not interested in the response values as such. Our interest is in the relative
size of the response values – if the largest of the velocity maxima is correlated
with the largest of the tension maxima or if the second largest is associated
with the second largest maxima and so on. The following three questions are
attempted answered:

• How good is the correlation between the axial velocity and the sag tension?

• When do the tension maxima (or minima) occur relative to the axial
velocity maxima (or minima)?

• How many of the n largest velocity maxima are associated with the n
largest tension maxima? Is this a constant fraction, and is it possibly
time dependent?

The ranks are assigned as follows considering either maxima- or minima-values:
Rank 1 is assigned to the value that deviates most from the average, rank 2
is assigned to the value that deviates second most and so on. There would be
perfect correlation between the axial velocity and the sag tension if correspond-
ing ranks where similar and clustered on the line y = x, rank(Ẋ)=rank(Fx).
However, the term corresponding must be defined, this means that for each
maximum of axial velocity occurring at time ti, a time window around this in-
stant −Tz/4+ ti ≤ t ≤ Tz/2+ ti, is searched for the largest sag tension maxima.
The procedure is similar for the axial velocity minima, except that the time
window is then searched for the smallest tension minima.

15.3.1 Using all maxima and minima in the time series

Figure 47 illustrates the corresponding maxima ranks for axial acceleration Ẍ
versus sag tension Fx when all the maximas of acceleration and sag tension are
considered. All figures referred to, contain the information from in excess of 30
hours of non-linear time domain simulations unless otherwise stated. Figure 47
demonstrates that a large acceleration value is a very poor indicator of a large
sag tension value. Figure 48 show that the associated tension peak occurs about
3 seconds after the acceleration peak value for the largest accelerations and
tensions. The findings are similar for the minimas regarding axial acceleration
and sag tension. Hence, we abandon the acceleration and consider instead the
integrated value of the axial acceleration, the axial velocity Ẋ.

Figures 49 and 50 demonstrates that the axial velocity maxima are much better
suited to predict the time instances of large sag tension maximas. Figure 51
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show that the extreme tension value comes come just before the extreme axial
velocity value, about 0.5 second.

The results for the axial velocity minima and the correspond sag tension minima
are similar. Again, the extreme tension value come just before the extreme
velocity value, see figures 52, 53 and 54.

However, as can be seen by comparing the results for the 30 largest maxima
and minima values, see figures 50 and 53 – the rank correlation is less for the
minima values than for the maxima values.

Now, if we study a list of associated rank pairs, example: [ (1,2), (2,3) (3,4),
(4,1), (5,9), ...] – where each pair (rx, ry) is made by the rank values of asso-
ciated X and Y maxima (or minima), so that (rx, ry) = (rank(X), rank(Y )).
Then we may for the n first pairs study the count of ry-values that are max-
imum n. Given many such lists we may speculate if the fraction P=count/n
is a constant on the average for any given n? If so, this may be a probability.
It is conjectured that this fraction is a proper probability. Example: Choosing
n=5 in the above example list give a count of 4, since 4 of the 5 first ry-values
satisfy ry ≤ n. Hence, the probability is claimed to be, Prob=4/5=0.8.

Figures 55 and 56 illustrates this probability for maximas and minimas respec-
tively. If we select n=10, the maxima data on figure 55 suggest that we can
expect to observe minimum 0.9× 10=9 of the 10 largest sag tension maximas,
for n=100 we should expect to observe minimum 90 of the 100 largest. For the
minima, see figure 56 – if we select n=10, the minima data suggest that we
can expect to observe minimum 0.8× 10=8 of the 10 most extreme sag tension
minima. For n=100, on the average we can expect to observe about 90 of the
most extreme sag tension minima.

Tables 43 and 44 give some sample data for one of the one of the ten realizations.
These tables provides further demonstration of the ranking procedure and the
method used to calculated the mentioned probability. An interesting finding
in these tables is that the extreme maxima and minima values appears to be
clustered. In a small time window with length about 3 wave periods starting
at about 7600 seconds we find not only the maximas ranked number 1, 2 and
7 but also the minimas ranked 1 and 2, see figure 57 for the time series around
time 7600 seconds. Other parts of the realized time series have been inspected,
it appears as if the extremes are indeed clustered as shown on the figure 57. It
is mentioned that the more narrow the response spectrum is, the greater group
length is expected (number of consecutive high responses). It is also mentioned
that the method used to generate the wave time series from a wave spectrum
may affect the group length. As discussed by Tucker el al (1984) [27], for a finite
number of Fourier amplitudes the statistics of wave groups and the wave group
length is affected by the wave generation method. In these simulations, the fast
Fourier transform is used, see the Riflex manual (2008) [14]. A finite number
of deterministic amplitudes and random phase angles are used, the number of
frequencies is 4520 where 564 associated amplitudes have zero value.

The effect of such clustering can be reduced if studying interval maxima in-
stead. The interval should then be long compared to the characteristic wave
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period. Such interval extremes are then convenient sample data for extreme
value estimation using the Gumbel distribution, Bury (1975) [7].

15.3.2 Using only interval maxima and minima

For each realization the entire time series, 11000-60=10940 seconds, is divided
into n intervals, where n-values of 5, 10, 20, 40 and 80 have been considered.
The interval length is therefore from 137 to 2189 seconds.

For each interval,the interval extreme of the axial velocity, Ẋ is established.
This is done for both maxima and minima. The associated maxima (or minima)
for the sag tension is then searched for in a small time window with length
3/4 · Tz around the time instant of the velocity extreme, similar as described
in the previous section.

The following information is then established: 1) The rank correlations from
these interval pairs of associated velocity and sag tension; 2) The fraction of
these sag tension extremes that also are interval extremes, this is conjectured
to be a probability. Example: We use 10 intervals and have determined the ten
time instants for the axial velocity maxima. Next, we record the time of the ten
associated sag tension maximas which occurs almost at the same time as the
velocity maximas. Separately,we determine the time instants for the 10 interval
extremes of sag tension. We then count how many of the sag tension maximas
that occurs at the same time, the count divided by the number of intervals is
then the probability.

Figure 58 show the rank correlation between the axial velocity maxima and the
associated sag tension maxima when dividing the time series into 20 intervals.
Figure 58 show the same for 80 intervals. Based on the figures, the correlation
appears to be good. The probability (fraction) of the associated sag tension
maximas that are also the correct interval sag tension maximas is on the average
about 0.93 according to table 45. The probability appears to be independent
on the length of the intervals.

The rank correlation between the sag tension minima and the axial velocity
minima is shown in figures 60 and 61 for number of intervals equal to 20 and
80 respectively. Also, here the correlation is good – but perhaps slightly less
than for the maxima. The probability (fraction) of the associated sag tension
minimas that are also the correct interval sag tension minimas is on the average
about 0.88 according to table 46. Again, this probability is independent of the
interval length.

Finally, the rank order correlation – Spearman’s rho has been calculated for the
interval results, see table 47 for the maxima and table 48 for the minima.

15.3.3 Summary

The axial velocity maxima (or minima) comes about 0.5 second after the cor-
responding sag tension maxima (or minima) for extreme values. There appear
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to be good rank correlation between both maxima values and minima values.
The rank correlation seem to be slightly better for maxima values.

The time series show tendency of grouping of large responses. For this reason
the ranking of interval maxima and minima was also studied. The number of
intervals in the time series was between 5 and 80. Again, the rank correlation
seem to be slightly better for the maxima than for the minima.

The interval results was used to investigate the Psuccess as described in the
section dealing with Spearman’s rho, 11. A basic assumption of that section
seem to be confirmed since the probability Psuccess for identifying a critical time
window appears time independent. For the interval maxima Psuccess = 0.93
while Psuccess = 0.88 for the interval minima. The observed rank correlation
values was also reported for the interval cases studied.

rank(Ẋ) rank(Fx) Prob. Ẋ Fx time(Ẋ) time(Fx) ∆t
(-) (-) (-) (m/s) (kN (s) (s) (s)

1 2 0.000 5.85 117.20 7612.75 7612.75 0.00
2 1 1.000 5.85 118.32 7626.00 7625.75 -0.25
3 4 0.667 5.44 109.43 1099.00 1098.75 -0.25
4 3 1.000 5.43 110.54 8846.00 8845.75 -0.25
5 5 1.000 5.37 108.25 7722.50 7722.50 0.00
6 6 1.000 5.25 105.63 8215.00 8214.75 -0.25
7 7 1.000 5.00 100.57 7600.50 7600.25 -0.25
8 9 0.875 5.00 99.68 5205.00 5204.75 -0.25
9 8 1.000 4.95 100.43 5148.25 5148.00 -0.25

10 11 0.900 4.85 97.47 5705.75 5705.75 0.00
20 20 0.950 4.36 88.91 6264.25 6264.00 -0.25
30 27 0.967 4.14 86.97 10761.50 10761.00 -0.50
40 41 0.950 3.95 82.35 2110.75 2110.50 -0.25
50 49 0.940 3.84 81.34 1135.75 1135.25 -0.50
60 61 0.933 3.73 79.36 7853.25 7853.00 -0.25
70 81 0.943 3.61 76.92 7814.75 7814.25 -0.50
80 76 0.963 3.55 77.52 841.25 841.00 -0.25
90 93 0.967 3.40 74.66 6541.75 6541.50 -0.25

100 90 0.950 3.31 75.12 1048.50 1048.25 -0.25
200 227 0.960 2.70 64.34 9109.75 9109.00 -0.75
300 308 0.960 2.31 61.55 1436.00 1435.50 -0.50

Table 43: Associated maxima of axial velocity and sag tension, some sample data
from case lw-32700405.
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rank(Ẋ) rank(Fx) Prob. Ẋ Fx time(Ẋ) time(Fx) ∆t
(-) (-) (-) (m/s) (kN (s) (s) (s)

1 1 1.000 -6.60 -30.93 7606.50 7606.00 -0.50
2 2 1.000 -5.82 -15.55 7619.50 7619.00 -0.50
3 3 1.000 -5.40 -10.96 6757.75 6757.25 -0.50
4 5 0.750 -5.30 -7.70 5198.50 5197.75 -0.75
5 4 1.000 -5.20 -10.16 4729.75 4729.25 -0.50
6 8 0.833 -5.07 -3.56 7716.25 7715.75 -0.50
7 7 0.857 -5.00 -4.45 2272.25 2271.75 -0.50
8 6 1.000 -4.99 -4.49 8840.50 8840.00 -0.50
9 10 0.889 -4.93 -1.95 5142.50 5142.00 -0.50

10 9 1.000 -4.83 -3.42 8813.75 8813.25 -0.50
20 15 0.950 -4.38 1.38 6689.50 6689.00 -0.50
30 25 0.967 -4.16 4.69 9816.75 9816.25 -0.50
40 37 0.950 -3.94 9.78 8378.00 8377.25 -0.75
50 51 0.880 -3.81 12.01 4518.00 4517.50 -0.50
60 57 0.950 -3.71 12.49 4949.00 4948.50 -0.50
70 66 0.900 -3.54 14.32 4629.75 4629.25 -0.50
80 63 0.963 -3.48 13.41 66.00 65.50 -0.50
90 93 0.956 -3.36 18.34 2742.25 2741.50 -0.75

100 111 0.930 -3.25 20.13 6493.50 6493.25 -0.25
200 182 0.950 -2.75 24.42 10996.50 10995.75 -0.75
300 269 0.950 -2.32 28.16 7240.75 7240.00 -0.75

Table 44: Associated minima of axial velocity and sag tension, some sample data from
case lw-32700405.

Figure 46: Velocity in static axial direction versus associated values of sag tension
maxima and minima.
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Figure 49: Rank of axial velocity maxima versus rank of sag tension maxima, all
velocity maxima.
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Figure 50: Rank of axial velocity maxima versus rank of sag tension maxima, the 30
most extreme velocity maxima.
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Figure 51: Time delay between axial velocity maxima and sag tension maxima.
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Figure 52: Rank of axial velocity minima versus rank of sag tension minima, all ve-
locity minima.
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Figure 53: Rank of axial velocity minima versus rank of sag tension minima, the 30
most extreme velocity minima.

Figure 54: Time delay between axial velocity minima and sag tension minima.
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Figure 55: Fraction of pairs (rx, ry) satisfying rx ≤ n and ry ≤ n plotted against n
on first axis. Plot is for axial velocity maxima and sag tension maxima.

Figure 56: Fraction of pairs (rx, ry) satisfying rx ≤ n and ry ≤ n plotted against n
on first axis. Plot is for axial velocity minima and sag tension minima.
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Figure 57: Group of large extremes in time series around time 7600 seconds, load
case lw-32700405.

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25

R
an

k 
fo

r t
en

si
on

 m
ax

im
a,

 ra
nk

(Y
)

Rank for axial velocity maxima, rank(X)

Interval amplitude ranks for top axial velocity and sag tension
(Greatest absolute amplitude has rank 1, second largest has rank 2, ...)

lw-32700495-interval-20: 
lw-32700485-interval-20: 
lw-32700475-interval-20: 
lw-32700465-interval-20: 
lw-32700455-interval-20: 
lw-32700445-interval-20: 
lw-32700435-interval-20: 
lw-32700425-interval-20: 
lw-32700415-interval-20: 
lw-32700405-interval-20: 

y=x: 

Figure 58: Rank of axial velocity maxima versus rank of sag tension maxima, 20
intervals.
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Figure 59: Rank of axial velocity maxima versus rank of sag tension maxima, 80
intervals.
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Figure 60: Rank of axial velocity minima versus rank of sag tension minima, 20 in-
tervals.
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Figure 61: Rank of axial velocity minima versus rank of sag tension minima, 80 in-
tervals.

Number of intervals
Simulation 5 10 20 40 80

lw-32700405 0.600 0.800 0.850 0.850 0.911
lw-32700415 1.000 1.000 1.000 1.000 0.975
lw-32700425 1.000 0.900 0.800 0.950 0.912
lw-32700435 1.000 0.800 0.900 0.850 0.875
lw-32700445 1.000 1.000 1.000 0.925 0.963
lw-32700455 0.800 0.900 0.950 0.950 0.938
lw-32700465 1.000 0.900 0.950 0.950 0.938
lw-32700475 1.000 1.000 1.000 0.950 0.938
lw-32700485 1.000 1.000 0.850 0.950 0.925
lw-32700495 0.800 0.800 0.900 0.925 0.887

Interval length (s) 2188.8 1094.0 547.0 273.5 136.8
Average, P 0.920 0.910 0.920 0.930 0.926

Table 45: Probability, P, for maxima identification, from interval results.
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Number of intervals
Simulation 5 10 20 40 80

lw-32700405 0.800 0.800 0.900 0.875 0.863
lw-32700415 0.600 0.700 0.800 0.775 0.875
lw-32700425 0.600 0.800 0.950 0.925 0.912
lw-32700435 1.000 0.900 0.800 0.800 0.875
lw-32700445 1.000 0.900 0.900 0.925 0.863
lw-32700455 1.000 0.800 0.850 0.825 0.863
lw-32700465 0.800 0.900 0.900 0.850 0.925
lw-32700475 1.000 1.000 1.000 0.950 0.887
lw-32700485 1.000 1.000 1.000 0.925 0.887
lw-32700495 1.000 1.000 1.000 0.950 0.850

Interval length (s) 2188.8 1094.0 547.0 273.5 136.8
Average, P 0.880 0.880 0.910 0.880 0.880

Table 46: Probability, P, for minima identification, from interval results.

Number of intervals
Simulation 5 10 20 40 80

lw-32700405 0.900 0.976 0.989 0.991 0.992
lw-32700415 0.800 0.976 0.988 0.995 0.996
lw-32700425 1.000 1.000 0.992 0.987 0.990
lw-32700435 1.000 0.988 0.986 0.986 0.990
lw-32700445 0.900 0.988 0.994 0.998 0.996
lw-32700455 1.000 0.988 0.992 0.997 0.997
lw-32700465 1.000 0.976 0.989 0.997 0.996
lw-32700475 1.000 1.000 0.997 0.994 0.992
lw-32700485 1.000 0.988 0.994 0.990 0.991
lw-32700495 1.000 1.000 0.994 0.992 0.993

Interval length (s) 2188.8 1094.0 547.0 273.5 136.8
Minimum 0.800 0.976 0.986 0.986 0.990

Table 47: Rank order correlation for interval maxima, Spearman’s rho.
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Number of intervals
Simulation 5 10 20 40 80

lw-32700405 0.900 0.952 0.973 0.982 0.979
lw-32700415 0.900 0.964 0.974 0.988 0.987
lw-32700425 1.000 0.964 0.956 0.983 0.985
lw-32700435 0.900 0.903 0.965 0.982 0.985
lw-32700445 0.900 0.988 0.985 0.982 0.991
lw-32700455 1.000 0.976 0.980 0.991 0.986
lw-32700465 0.700 0.891 0.953 0.980 0.987
lw-32700475 1.000 1.000 0.989 0.986 0.987
lw-32700485 -0.500 0.758 0.956 0.980 0.987
lw-32700495 1.000 0.988 0.989 0.983 0.983

Interval length (s) 2188.8 1094.0 547.0 273.5 136.8
Minimum -0.500 0.758 0.953 0.980 0.979

Table 48: Rank order correlation for interval minima, Spearman’s rho.
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16 Concluding remarks

Long term extremes have been calculated considering the entire wave scatter
diagram based on the assumption of Gaussian response. It has been inspected
which of the top end parameters that are better correlated with the umbilical
response. Instead of the wave elevation – the top axial velocity is a better
indicator for the most important sea states considering umbilical tension. Like-
wise, the vessel angle is a better indicator for the most important sea states
considering umbilical top angle. This is as expected.

These long term 100-year extreme estimates are then compared to the results
obtained from the 100-year contour curve sea states. The non-exceedance quan-
tile α needed to realize the long term 100-year extreme by the contour curve
approach has also been determined. It appears that α = 0.90 is an adequate
value, see table 33 from section 14.1. That table is reproduced here as table 49:

Wave direction 90◦ 270◦ Note

Wave elevation, ζ (m) 0.842 0.842 See figure 33, same weather.
Axial motion, X (m) 0.022 0.893 See figures 34 and 35.
Axial velocity, Ẋ (m/s) 0.656 0.927 See figures 36 and 37.
Vessel angle, θ′y (◦) 0.904 0.904 See figure 38, symmetry.
Bend stiffener tension, Tbs (kN) 0.893 See figure 39.
Sag tension, Tsag (kN) 0.657 See figure 40.
Bend stiffener angle, θy (◦) 0.801 See figure 41.

Table 49: Non-exceedance probability, α-value for 100-year contour curve results.

The investigation of a particular extreme sea state in section 15 gave the op-
portunity to exercise extreme value estimation and also to establish empirical
level up-crossing frequencies and to compare these results with the obtained
estimates from using the Gumbel approach, see section 15 and figures 42, 43,
44 and 45.

The overall finding from investigating the relation between the axial velocity
and the sag tension in section 15.3 – is repeated from section 15.3.3:

The axial velocity maxima (or minima) comes about 0.5 second after the cor-
responding sag tension maxima (or minima) for extreme values. There appear
to be good rank correlation between both maxima values and minima values.
The rank correlation seem to be slightly better for maxima values.

The time series show tendency of grouping of large responses. For this reason
the ranking of interval maxima and minima was also studied. The number of
intervals in the time series was between 5 and 80. Again, the rank correlation
seem to be slightly better for the maxima than for the minima.

The interval results was used to investigate the Psuccess as described in the
section dealing with Spearman’s rho, 11. For the interval maxima Psuccess = 0.93
while Psuccess = 0.88 for the interval minima. A basic assumption of that section
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seem to be confirmed since the probability Psuccess for identifying a critical time
window appears time independent. Hence, statistics on Spearman’s rho may
be suitable for on-line monitoring of an approximative method whose basic
principle is identification of critical time windows.

17 Further work

A natural extension of the simplified method using the top end axial velocity
as an indicator for interesting events near the seabed – is to investigate if the
top end vessel angle can used in a similar manner regarding the bend stiffener
angle and curvature at the top.

However, a more encompassing approach would be use of linearized time domain
analysis to identify interesting time windows for further refined analysis.

A hypothesis test regarding Spearman’s rho have been suggested. This is suit-
able for on-line monitoring of an approximative method that identifies critical
time windows. Further development of this statistics is necessary in case of
using interval extremes. This is discussed in section 11.5. The character of
the parameter called Psuccess is somewhat unclear. It is uncertain if it is time
independent as suggested by the data in this study.
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