
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Direct Numerical Simulation of the Flow

Past a Curved Circular Cylinder

by
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Preface

This document titled ‘Direct Numerical Simulation of the Flow Past a Curved Circular

Cylinder’ and the work presented in it are the Master thesis of José P. Gallardo Can-

abes, prepared in the Fall of 2010, as the final part of his Master of Science in Marine

Technology degree from the Norwegian University of Science and Technology. In this

work, the results obtained from the numerical simulations of the flow past a curved

cylinder are presented and discussed. The motivation to carry out these simulations

was the understanding of the dynamics of the flow past marine structures with catenary

shape. The first set of simulations was intended to be used for comparison with previous

published studies. The second set of simulations was conducted in order to investigate

the influence of shear flow in the dynamics of the flow past the curved cylinder.

According to the objectives exposed above, the present Master thesis is developed in the

following chapters:

Chapter 1. Introduction. Presents some relevant topics from previous studies, giving

thus a theoretical basis for the development of this work.

Chapter 2. Numerical Solution of the Navier-Stokes Equations. Contains a sum-

mary of the relevant issues associated to the numerical solution of the Navier-Stokes

equations.

Chapter 3. Flow Configuration and Simulation Tests. The boundary conditions

and computational domain are discussed here.

Chapter 4. Results and Discussion: Uniform Flow. Presentation and discussion

of the results obtained with uniform flow.

Chapter 5. Results and Discussion: Shear Flow. Presentation and discussion of

the results obtained with shear flow.

Chapter 6. Conclusions. A summary and discussion of the main findings.
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Abstract
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Offshore marine applications often include configurations of cylindrical structures that

produce complex three-dimensional flow features. Catenary risers, for instance, can

create complex flow patterns when subjected to hydrodynamic loads. In recent published

studies, the shape of a catenary riser has been approximated by a quarter segment of

a ring followed by a horizontal extension, obtaining a curved circular cylinder. In the

present Master thesis, Direct Numerical Simulations at Re = 100 and 500 have been

conducted in order to study the flow past such geometry. The main flow direction was

parallel to the plane of curvature of the cylinder and directed towards the convex face

of the quarter-of-ring. Additionally, a sheared incoming flow has been considered in the

analysis by imposing a linearly varying velocity profile at the inlet.

The shedding mechanism observed in uniform flow was similar to that reported in previ-

ous published studies. One single shedding frequency prevailed along the entire span of

the cylinder at Re = 100 and 500. Moreover, the vortex cores at Re = 100 were normal

to the flow direction and exhibited slight distortions as they were convected downstream,

whereas at Re = 500 the wake topology was characterized by three-dimensional struc-

tures of smaller scale. A sheared inflow, on the other hand, gave rise to an oblique and

cellular vortex shedding pattern with two cells of different shedding frequencies. The

strong slanting of the vortices, as well as the cellular pattern, was clearly induced by the

variation of the local Reynolds number along the front stagnation point.

The basic knowledge gained from this thesis appear as very promising in the context

of marine structures, it is therefore expected that this work will constitute a basis for

further investigations considering this type of geometry.
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Chapter 1

Introduction

Flow over bluff bodies, in association with the flow over an obstacle or the movement

of a body, are commonly encountered in nature and engineering applications. Typical

examples within the context of marine applications are the flows past a fishing net,

a submarine, a ship, the legs of an oil platform, and a riser. The three-dimensional

complexity that these flows possess makes them a significant topic of research by means

of experiments and numerical simulations, being perhaps the flow past a circular cylinder

the bluff-body configuration that have received most of the attention during the 20th

century (see for instance the work by Zdravkovich, 1997). In many cases, however,

cylindrical geometries are non-uniform, introducing further complexities into the flow

features that are interesting to study.

In order to highlight some relevant topics for the development of this thesis, this chapter

presents a brief description of the dynamics of the flow past three types of bluff-body

geometries: straight circular cylinders, yawed circular cylinders and curved circular

cylinders. In this case, yawed cylinders have been included to link the flow past straight

cylinders with the flow past curved cylinders. In section 1.4, the effects of having shear

flow in the free-stream is discussed . Finally, the motivation to carry out this work is

presented in section 1.5.

1
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1.1 Flow past circular cylinders

One of the most popular problems in fluid mechanics is the flow around a uniform circular

cylinder. The fact that there is a huge amount of available literature on this subject

is not surprising, since flow past cylinders has been a topic of theoretical, experimental

and numerical research for many years. In the extensive review made by Zdravkovich

(1997), three main components of the flow past a circular cylinder (and past a bluff body

in general) are mentioned: the boundary layer, the separated shear layers and the wake

(see figures 1.1 and 1.2). In the absence of surface roughness and blockage effects, these

interacting components undergo a transition process towards turbulence that depends

on only one parameter of the flow, namely the Reynolds number, Re, which is defined as

Re =
U∞D
ν

, (1.1)

with U∞ the characteristic velocity of the incoming flow, D the cylinder diameter and ν

the kinematic viscosity of the fluid. Some stages of this transition process as Re increases

are summarized in this section.

At very low Reynolds numbers, i.e. Re < 4–5, the boundary layers are completely

attached to the cylinder walls, this steady regime is known as creeping flow. At 4–

5 < Re < 30–49 a steady separation regime develops in which the boundary layers

separate and are transported downstream as two free shear layers and eventually reattach

along the wake centerline, thus forming a recirculation region composed of two steady,

symmetric, and closed vortices that adhere to the cylinder (see figure 1.1). It has been

observed that the maximum length of the wake (recirculation region) increases linearly

with increasing Reynolds number due to viscous stresses (see Coutanceau and Bouard,

2006), whereas the base pressure coefficient decreases (Henderson, 1995). In this context,

the base pressure corresponds to the pressure measured at the rear stagnation point of

the cylinder, i.e. the point located at 180◦ from the leading edge of the cylinder.

When the Reynolds number is increased beyond 49, a transition from the steady state

to an unsteady state occurs, giving raise to the laminar vortex shedding regime (in the

range 49 < Re < 190). A characteristic flow feature in this regime is the Kármán-Bénard

eddy street, which consits of a staggered array of vortices that are shed periodically from
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U∞

Figure 1.1: Wake pattern in the steady regime, depicting the pair of symmetric
recirculating vortices.

alternates sides of the body, as seen in figure 1.2. The departure from the steady state is

marked by instabilities that start developing at the downstream end of the recirculation

bubble; these instabilities gradually grow in strength and amplification with Re. The

behaviour of this instability near the transition threshold, i.e. Re ≈ 49, was investi-

gated by Provansal et al. (1987); the separated near-wake undergoes a Hopf bifurcation,

and the flow can be represented as a dynamical system with its behaviour described

by a Stuart-Landau equation. Williamson (1996a) proposed that this transition process

can be measured in terms of amplitude of maximum wake velocity fluctuations, which

increase monotonically with Re, and a gradual displacement upstream towards the cylin-

der of the instability formation length. Various formulations have been proposed for the

relationship between the Strouhal number (St = fD/U∞, where f is the frequency of

the vortex shedding) and Re. The work of Williamson (1998), for instance, proposed a

relationship between St and Re based on an expansion in powers of 1/
√
Re. Although

the upper limit for the laminar vortex shedding regime in terms of Reynolds number is

rather spread in the literature, with Re = 140 up to 194 Williamson (1996b), experimen-

tal and numerical results obtained in the last decade suggest that the critical Reynolds

number is placed around 190 (Barkley and Henderson, 1996, Miller and Williamson,

1994, Persillon and Braza, 1998). At this point a second transition takes place.

U∞

Boundary layer

Shear layer
Wake

Figure 1.2: Wake pattern in the unsteady regime, depicting the vortex eddy street.

The wake-transition regime occurs at Re ≈ 190 to 260, here the flow becomes intrinsi-

cally three-dimensional and two marked discontinuities in the St-Re relationship arise as
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a distinguishing feature. The first of these discontinuities, identified as ’mode A’ insta-

bility by Williamson (1996a), takes place near Re = 180–190 and involves the formation

of vortex loops and streamwise vortex pairs due to the deformation of the primary vor-

tices; the spanwise wavelength of these instabilities may vary between 3 and 4 diameters.

This transition is identified as a drop in the Strouhal frequency from the laminar St-Re

curve, and is known to be hysteric, i.e. the exhibited critical Re value for the transition

will be different depending on whether the free-stream speed is increased or decreased.

A further increase of the Reynolds number to the range Re = 230–260 yields the sec-

ond discontinuity (’mode B’) in the St-Re relationship. This mode is characterized

by streamwise vortices of finer-scale with a spanwise wavelength close to one diameter.

Williamson (1992) showed for this transition regime the formation of large-scale spot-like

“vortex dislocations” between spanwise cells of different frequency, explaining thus the

presence of large intermittent low-frequency wake velocity fluctuations found in previous

studies. In contrast to ’mode A’, the ’mode B’ discontinuity depends on the reverse flow

of the bluff-body wake, and is responsible for the break-up to turbulence of the wake

as it is transported downstream. The wake-transition regime has also been analyzed

by means of numerical simulations, obtaining good agreement with the experimental

studies (Barkley and Henderson, 1996, Karniadakis and Triantafyllou, 1992, Persillon

and Braza, 1998).

Around Re = 260 the base pressure attains a peak which, according to Williamson

(1996a), is associated with a peak in the Reynolds stresses and a particularly regular

arrangement of the fine-scale streamwise vortices in the near wake. Although fine-scale

streamwise vortices are present, the wake behaves much like the laminar vortex shedding

regime up to this Re. A further increase of the Reynolds number leads to increasing

disorder in the fine-scale three-dimensional structures, resulting in an apparent reduction

in the two-dimensional Reynolds stresses, a marked reduction in the base pressure, and

an increasing vortex formation length, which is defined as the distance downstream from

the cylinder axis to the point where the root mean square (rms) velocity fluctuations

are maximized on the wake center line. Using Direct Numerical Simulation (DNS),

Karniadakis and Triantafyllou (1992) investigated the transition to turbulence in the

wake of a circular cylinder (Re beyond 260), reporting a chaotic state in the flow at

Re around 500 resulting from a cascade of period-doubling bifurcations; they concluded

that the transition to turbulence in the wake follows this period-doubling route.
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In the range of Reynolds numbers greater than 260 at which the wake becomes turbu-

lent, the transition point moves upstream and instabilities in the shear layer arise; this

phenomenon marks the beginning of the shear layer transition regime (Re = 1× 103 to

2× 105). In connection with transition, Bloor (1968) observed regular sinusoidal waves

within the region of vortex formation at Re > 1300. The frequency of these waves

was found to be roughly proportional to Re3/2, suggesting that they may be identified

with Tollmien-Schlichting waves. Moreover, a decrease in the length of the formation

region beyond Re = 1300 was reported by Bloor (1968). A Kelvin-Helmholtz that

develops from the instability of the shear layers, which is basically a two-dimensional

phenomenon, contributes to the increase in the two-dimensional Reynolds stresses and

thereby to the rise in base suction. The developing instabilities of the separating shear

layers from the sides of the cylinder are also known to induce a gradual decrease in

Strouhal frequency associated with the increase in the base suction (Norberg, 1994). A

development of three-dimensional structures on the scale of the shear layer vortices, as

well as three-dimensionality on the scale of the primary vortices, are expected in this

regime (Williamson, 1996b). The boundary layer in this regime still remains laminar.

Since flows at Reynolds numbers beyond the shear layer transition range are out of

the scope of the present work, they will not be described here. For further reading,

please refer to the comprehensive reviews by Roshko (1993), Williamson (1996b) and

Zdravkovich (1997).

1.2 Flow past yawed circular cylinders

The description given in the previous section applies for cylinders with their axes perpen-

dicular to the free-stream direction. In many engineering applications, however, circular

cylinders are positioned at a certain yaw angle α, which is defined as that between the

cylinder axis and the normal to the free-stream velocity. A typical flow configuration of

the flow past a yawed cylinder is shown in figure 1.3. The response of a yawed cylinder

in terms of vortex shedding frequency, base pressure and hydrodynamic forces may differ

from the normal incidence case. According to Zdravkovich (2003), the following features

are associated to flow past yawed cylinders:
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z

x

αU∞

UnUt

Figure 1.3: Schematic view of the flow past a yawed cylinder. Here α is the yaw angle
and U∞ is the inflow velocity, which is decomposed in its normal Un and tangential Ut

components. For the configuration shown here, α = 0◦ corresponds to cross flow and
α = 90◦ corresponds to axial flow.

i. The cross-section of a yawed circular cylinder becomes elliptical, being the ratio

of the major-to-minor axis of the ellipse proportional to the yaw angle.

ii. The free stream velocity has two components, one normal to the cylinder axis

Un = U∞ cosα, and the other parallel to the cylinder axis Ut = U∞ sinα. From

this two, it has been argued that Un has a larger effect on the flow.

A common approach to modelling the hydrodynamics of the flow past yawed cylin-

ders is to use the Independence Principle (IP), also known as the Cosine Law. In this

formulation the projected flow in the normal plane, based on the component of the free-

stream velocity normal to the cylinder axis Un, is similar to the normal incidence case.

Zdravkovich (2003) mentions the following limitations of the IP:

i. Originally the IP was derived from the laminar boundary layer theory, which

becomes invalid beyond separation.

ii. As the flow past yawed cylinders is subjected to end effects, the mathematical

idealization of two-dimensional flow past cylinders of infinite aspect ratio cannot

be realized in practice. This is especially relevant for experimental studies.

iii. The transition around separation for unyawed cylinders occurs at a certain Reynolds

number due to instability of the boundary layers. It may be expected that the

instability would occur at the same Re for a yawed cylinder, but the spanwise flow

is likely to modify the disturbances and the Re value at which separation occurs.
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Early attempts to experimentally verify the IP in the laminar regime were done by Han-

son (1966). He measured the frequency of the wake trail oscillations, and subsequently

the eddy shedding in the range 40 ≤ Re ≤ 150 for the yaw angles 0◦ ≤ α ≤ 72◦. It

was reported that α has an effect upon the onset of the laminar vortex shedding regime

Reosc, based on the free stream velocity. Hanson noted that Reosc rises with increasing

α. However, when using the local Reynolds number Ren = UnD/ν, the critical Reynolds

number at which vortex shedding initiates was constant up to α = 50◦.

Hanson (1966) also studied vortex shedding for low Reynolds number from vibrating

yawed hot wires in an air stream. Using the Roshko’s number (Ro = fD2/ν), Hanson

obtained different straight lines of Ro vs. Re for various values of α in the low Reynolds

number range 40–150. Scaling this data by Ren gave evidence that the following linear

relationship derived for uniform cylinders could be extended for yawed cylinders

Ron = 0.212Ren − 4.5, for α ≤ 50◦. (1.2)

For α = 72◦, however, Hanson (1966) noted that the shedding frequencies values (or

values of Ro) departed from equation (1.2).

In an attempt to explain the apparent discontinuity reported by Hanson (1966) for α in

the range 50◦ ≤ α ≤ 75◦, Van Atta (1968) carried out careful measurements of the vortex

shedding frequency. For constant Ren, he reported a steady decrease of St as the yaw

angle α increases. He concluded that the discontinuity observed by Hanson was not due

to the large α, but to the existence of locked-in modes depending on the value of the wire

tension. He also reported that for a given tension, the wire does not necessarily vibrate

with the frequency of the harmonic that is nearest to the natural shedding frequency,

but always locks-in to the frequency that is lower than the natural shedding frequency.

In the case of non-vibrating yawed cylinders, Van Atta (1968) showed that for α ≤ 35◦

the vortex shedding frequency decreases nearly like the IP, whereas for larger angles the

decrease with increasing angle of yaw α is slower than the proposed IP.

Ramberg (1983) studied the effect of yaw angle (α = 0–60◦) and end-conditions for sta-

tionary and forced vibrating circular cylinders (with aspect ratio 20–100) in the Reynolds

number range 150–1000. He found that the results were very sensitive to end-conditions

especially at the lower Reynolds numbers, showing that slantwise shedding at angles
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other than the cylinder yaw angle is intrinsic to stationary inclined cylinders in the ab-

sence of end-effects. Ramberg (1983) suggested that the IP fails in the case of stationary

yawed cylinders because the shedding frequency is always greater than that expected

from the IP, while the shedding angle, the vortex-formation length, the base pressure

and the wake width are all less than expected. Nevertheless, he concluded that locked-

in vortex wakes of vibrating yawed cylinders can be described successfully by the IP.

In this case, frequency lock-in between the vortex wake and the cylinder motion was

accompanied by vortex shedding parallel to the cylinder axis.

A numerical study using DNS at Re = 1000 and a yaw angle range 0-60◦ was conducted

by Zhao et al. (2009), showing that the Strouhal frequency at various yaw angles followed

the Independence Principle. In this case, the use of DNS allowed for better visualization

of additional flow features in the streamlines and the vortical structures. The streamlines

approached the leading edge of the cylinder with an increasing bending and sliding

along the cylinder, followed by a deflection in the main flow direction. After passing the

cylinder, a fraction of the streamlines are retained inside the recirculation region and

move in the spanwise direction of the cylinder in helical tracks, while others move in the

free stream direction. Once the primary vortex is shed from the cylinder surface, the

trapped streamlines are released and their directions change back to the incoming flow

direction. The spanwise vortices in this study were identified as isosurfaces of spanwise

vorticity ωz. At α = 45◦ the spanwise vortices were shed parallel to the cylinder axis,

whereas at α = 60◦ the shedding angle was less defined. This was in good agreement

with a previous study by Lucor and Karniadakis (2003), in which they observed that

the spanwise wake vortices are oriented at a smaller angle than the yaw angle of the

cylinder for α > 45◦. Zhao et al. (2009) also noticed that the mean pressure coefficient

Cp along the surface of the cylinder decreases with increasing α, reducing the difference

in pressure between the front and rear stagnation lines as well. The validity of the IP

was obtained by normalizing the pressures coefficients by Un, in this case the pressure

coefficient curves for different α’s collapsed into a single curve. The frequency spectra

were obtained for different values of α, no variation in the peak locations with α was

detected. Moreover, the peak region for α = 60◦ was broader than that for the unyawed

cylinder, indicating that with the increase of the yaw angle, the rate of the breakdown

of the vortical structures is increased.
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Using a phase averaged technique, Zhou et al. (2010) investigated the dependence of the

wake vortical structures on cylinder yaw angle 0–45◦. All three-velocity and vorticity

components were measured simultaneously using an eight-hot wire vorticity probe in

the intermediate region x/D = 10 of a yawed stationary circular cylinder wake. It was

found that when α ≤ 15◦, the maximum coherent concentrations of the three vorticity

components do not change with α. However, when α is increased to 45◦, the maximum

concentrations of the coherent transverse and spanwise vorticity components decrease

by about 33% and 50%, respectively, while that of the streamwise vorticity increases by

about 70%, suggesting that the strength of the primary vortices shed from the yawed

cylinder decreases and the three dimensionality of the flow is enhanced.

1.3 Flow past curved circular cylinders

Although there is a considerable amount of research on yawed cylinders, as seen in the

brief review of section 1.2, the wake behind curved or deformed cylinders have received

much less attention, perhaps because of the higher degree of complexity involved in the

three-dimensional geometry. Begak et al. (1985) published a short paper reporting an

investigation with yawed and curved cylinders in a wind tunnel, obtaining two main

conclusions from this experimental work. The first was that reducing the radius of

curvature of the cylinder induces a reduction in the Strouhal number, and the second,

that the frequency of the vortex shedding along the model remains constant. No further

studies on curved cylinders are reported by these authors, however. Recently, detailed

investigations of the flow past curved cylinders have been carried out with the help of

DNS. This studies have considered stationary geometries (Miliou et al., 2003a,b, 2005,

2007) as well as oscillating geometries (De Vecchi et al., 2008, 2009). The curved cylinder

in all these cases consisted of a quarter section of a ring.

In order gain preliminary understanding of the flow dynamics that develop past a curved

cylinder, Miliou et al. (2003b) performed simulations at a Reynolds number of 100.

Different inflow velocity profiles and inflow directions were used in this study. They

observed that when the flow acted normal to the plane of curvature, a shedding pattern

similar to that corresponding to a uniform cylinder was produced, i.e. in-phase parallel

shedding. A shear velocity profile was found to be more significant than the effects

of curvature in this case. When the flow was in the direction parallel to the plane of
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curvature of the cylinder, the shedding of vortices was found to be less energetic as the

cylinder bends to become aligned with the main flow.

The investigation on the wake of curved circular cylinders with the main flow direction

parallel to the plane of curvature was continued by Miliou et al. (2007). Computations

using three-dimensional spectral/hp at Reynolds numbers of 100 and 500 were conducted

in order to study the shedding dynamics. Fully three-dimensional wake dynamics were

observed when the flow was directed towards the outer face of the bend (convex configu-

ration), with the vortex shedding driven mainly from the vortices shed at the top of the

cylinder. However, when they directed the free stream towards the inside of the bend

(concave configuration), no vortex shedding was detected. An explanation suggested to

this latter phenomenon was that the shedding was suppressed by the strong axial flow

driven by the horizontal extension attached to the curved cylinder. Furthermore, the

numerical results presented in this study were contrasted qualitatively with experimen-

tal work. A model of a cylinder with the same aspect ratio as in the DNSs was towed

in a water tank at Reynolds numbers equal to that of the simulations, obtaining flow

visualizations with dye markers. Good qualitative agreement was obtained between the

numerical simulations and the flow visualizations.

De Vecchi et al. (2008) further extended these studies by performing numerical simula-

tion of forced oscillations at Re = 100 on the same geometries tested in Miliou et al.

(2003b, 2007). In a first stage, the cylinder was forced to transversely oscillate at a fixed

amplitude, while the frequency was varied around the Strouhal value. Although the

wake topology of the convex and concave configurations was noticeable different, both

geometries were characterized by in-phase vortex shedding with the vortex cores bent

according to the cylinder’s curvature. This is in accordance with the observations made

by Ramberg (1983) for oscillating yawed cylinders. Of particular importance was the

fact that the concave configuration, which was shown to suppress the vortex shedding

when the body was stationary (Miliou et al., 2007), exhibited a primary instability in the

presence of a forced motion. An oscillatory roll motion, which consisted in a rotation

about the axis of the bottom section (horizontal extension), was also imposed to the

body. This case exhibited out-of-phase vortex shedding and straight vortex cores.

More recently, De Vecchi et al. (2009) forced the convex configuration to sinusoidally
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vibrate in the cross-flow direction at different amplitudes and frequencies. The three-

dimensional numerical simulations were again performed at Re = 100. The shedding

past the bluff body was influenced by curvature and the flow behaviour depended on

whether the frequency ratio fs/f0 was within or outside the lock-in region for a straight

cylinder. Here f0 is the input frequency for the oscillatory motion, and fs is the Strouhal

frequency for a stationary uniform cylinder at Re = 100. Within the lock-in region the

shedding exhibited a 2S mode, whereas outside this region a so-called “weak” form of

shedding consisting of two pairs of counter-rotating vortices (per cycle) appeared in the

top part of the geometry. Finally, at lower amplitudes of oscillation and frequencies

below the St value for a straight cylinder, dislocations arose in the middle part of the

curved geometry.

1.4 Effects of uniform shear as an inflow boundary condi-

tion

In addition to geometry, the wake dynamics of the flow past bluff bodies are also affected

by the incoming flow condition. This issue is of particular relevance to the marine

industry, since ocean currents interacting with waves, wind and the sea bottom have

non-uniform vertical velocity profiles. The experimental (Kappler et al., 2005, Mair

and Stansby, 1975, Maull and Young, 1973, Sumner and Akosile, 2003, Woo et al.,

1989) and numerical (Mukhopadhyay et al., 1999, 2002, Silvestrini and Lamballais, 2004)

investigations of the flow past a circular cylinder in uniform shear flow have revealed the

presence of secondary flows, as well as oblique and cellular vortex shedding, as a direct

consequence of the inflow condition.

The experimental study by Maull and Young (1973) gave early evidence of the cellu-

lar pattern in the vortex shedding behind a bluff body when uniform shear is imposed

as an incoming flow condition, i.e. a velocity profile that varies linearly in the verti-

cal direction. The model they employed consisted of a semi-elliptic nose followed by a

parallel-sided section. The experiments were performed in a low-speed wind tunnel at

Re = 2.85 × 104, measuring base pressure as well as vortex shedding frequency with a

hot-wire anemometer. A spectral analysis based on the velocity measurements revealed

the occurrence of shedding cells with constant frequency along the vertical axis. They
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suggested that the splitting of the vortex shedding in cells of constant frequency oc-

curred in order to maintain certain degree of coherence in the shed vortices. A constant

frequency is required over certain lengths for coherence, but at the same time the flow

tends to maintain a constant St with basis on the local velocities, thus the shedding

frequency is forced to vary in this cellular pattern. In connection with this, a variation

of the pressure coefficient within each constant frequency cell was also reported. Fur-

thermore, the presence of horseshoe vortices was mentioned as an important physical

mechanism in this study. These vortices appear because the shear flow contains a vor-

ticity component normal to the plane of the flow, thus the vorticity filaments originally

perpendicular to the flow direction are progressively tilted and bent into the streamwise

direction as they approach the body. It was suggested that when interacting with the

Kármán vortex street, this streamwise vorticity component caused the division between

the vortex shedding cells. This was supported by experiments in which a delta wing was

placed in the bluff body to produce streamwise vorticity in uniform inflow, obtaining

the same pattern of cell division as in the shear flow tests.

A review of the results obtained by Maull and Young (1973), accompanied by results

from new experiments of the flow past a bluff body in uniform shear, were reported by

Mair and Stansby (1975). The experiments were performed with cylinders of circular

and D-shaped section in a wind tunnel, where measurements of base pressure and vortex

shedding frequency at different spanwise positions were carried out. Spanwise cells of

constant shedding frequency were also reported in this case. A similar mechanism to

that proposed by Maull and Young (1973), i.e a concentration of streamwise vorticity

between cell boundaries, was suggested as an explanation to the cellular vortex shedding

phenomenon. The largest cell lengths observed were in the range 4D to 6D, suggesting

that there is an upper limit to the length of any spanwise vortex cell. Above this

limit the vortices have a tendency to lose their coherence. Inclination or obliqueness

of the primary vortices was directly observed by introducing smoke to the stream, and

explained by the spanwise variation of the inflow velocity, which carries the vortices

downstream at different velocities along the span. Although there were some differences

in the shape of the frequency spectra, results with the D-shaped section were closely

similar to those reported by Maull and Young (1973). Additionally, the influence of the

aspect ratio H/D (where H is the spanwise length of the cylinder and D its diameter),

the boundaries, and the use of end plates was explored.
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Mukhopadhyay et al. (1999, 2002) conducted three-dimensional numerical simulations

of uniform shear flow past a circular cylinder at a mean Reynolds number of 131.5. The

cylinder spanned 24 diameters, and free-slip and non-slip plates boundary conditions

were tested. Previous experimental observations such as dislocations and obliqueness of

the vortex shedding were reproduced in this study, obtaining always shedding frequencies

lower than those corresponding to parallel shedding (calculated from correlation formulas

at the same local Reynolds numbers). Additionally, it was determined that the cell

boundaries moves continuously in time. The lengths of the vortex shedding cells were

observed to be between 3D and 7D, with the larger cells located at the low velocity end.

Numerical simulations involving shear flow are affected by the vertical extension of

the shear zone, the vertical domain size (span) and the shear intensity. These were

addressed in the study by Silvestrini and Lamballais (2004), which conducted DNSs at

a mean Reynolds number of 200 using four different flow configurations. The velocity

profile considered in this study consists of two regions of constant velocity at the ends

of the cylinder, and a region with constant shear between these two regions of constant

velocity. This profile shape, according to the authors, enables preservation of the free-

slip boundary condition at the spanwise ends while considering shear flow extending over

a wide region. The free slip condition imposes a kinematic blocking associated with the

vertical velocities at the spanwise ends, which involves the formation of sharp gradients

of the vertical velocity at the boundaries. Despite these effects, the authors mention that

the main features of the wake dynamics were preserved when the free-slip walls were

used instead of the periodic boundary condition. Based on visualizations of isosurfaces

of the square-root of the enstrophy, or vorticity modulus |ω| = (ω2
x + ω2

y + ω2
z)1/2, it

was noticed that the extent of the regions where oblique vortex shedding was found

do not necessarily coincide with the regions of constant shear. Moreover, since the

vortices were observed to propagate from the high speed region towards the low speed

region, the angle of the vortex shedding was associated with the characteristic speed of

vortex shedding propagation in the spanwise direction. It is noteworthy that the range of

Reynolds number used in this study involves instabilities corresponding to the transition

to three-dimensionality (Williamson, 1988), and thus the dislocations attributed to the

shear effects were not isolated.
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1.5 Motivation

The main objective of the present work is to study the wake dynamics of the flow past a

curved circular cylinder. Flows past this type of bluff body have direct engineering sig-

nificance in the field of offshore marine applications involving catenary risers, cables and

pipelines, which are cylindrical structures that resemble the shape of the curved cylinder

studied here. When subjected to hydrodynamic loads, the wake past such structures

may contain complex three-dimensional flow patterns. In addition, the shedding of vor-

tices is accompanied by fluctuating pressure forces in a direction transverse to the flow,

leading to vortex induced vibration (VIV) which, due to fatigue or damage accumula-

tion, may trigger structural failure. Although VIV is out of the scope of this work, a

detailed knowledge of the flow physics when the body is fixed constitutes a first step

towards more elaborated studies.

It is well known that waves and currents have non-uniform velocity profiles that, as seen

in section 1.4, affect the flow past a bluff body. Due to interactions with the curvature

effects described by Miliou et al. (2007), the three-dimensional effects induced by shear

flow in a straight cylinder are not easily extended to a curved circular cylinder. It is

therefore interesting to explore the effects of shear flow combined with curvature, since

this may reveal new flow physics.

In the present thesis, the results from DNSs of the flow past a curved circular cylinder in

uniform shear flow are presented and discussed. This will enable the study of the effects

of curved geometry, uniform shear-rate and aspect ratio on the instantaneous vortex

topology, recirculation region as well as on the shedding mechanisms. The previous

DNSs with this geometry were performed using a spectral/hp element Navier-Stokes

solver and a boundary-fitted grid. In the present study the solution of the Navier-

Stokes equations is obtained with a Cartesian grid solver, and a direct forcing Immersed

Boundary Method (IBM) is used to implement the non-slip boundary condition at the

solid surfaces. It is thus intended to check the overall performance of these methods for

the complex geometry involved. In order to achieve this comparison, we intentionally

considered a convex-shape geometry identical to that studied by Miliou et al. (2007)

with uniform inflow in the first set of simulations.
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Part of this work has been presented at the conferences 8th International ERCOFTAC

Symposium on Engineering Turbulence Modelling and Measurements (ETMM8) in Mar-

seille, France; and the 5th European Conference on Computational Fluid Dynamics (EC-

COMAS CFD 2010) in Lisbon, Portugal; both in June of 2010. The papers published

in the proceedings of both conferences are included as appendices.



Chapter 2

Numerical Solution of the

Navier-Stokes Equations

This chapter contains a summary of the relevant issues associated to the numerical solu-

tion of the Navier-Stokes equations, starting from the governing equations for the incom-

pressible flow past a bluff body. Section 2.2 contains a description of the code MGLET,

including the numerical schemes employed to discretize the Navier-Stokes equations in

time and space, and a discussion regarding parallelization of the code. Finally, the

immersed boundary technique is discussed in section 2.3.

2.1 Governing equations of flow

The dynamics of the flow are described by the time-dependent Navier-Stokes equations

for an incompressible Newtonian fluid. These equations are normalized by the cylinder’s

diameter D and the inflow velocity U∞ as

ui =
ũi
U∞

, t =
t̃

T0
, xi =

x̃i
D
, p =

p̃

P0
,

where

T0 =
D

U∞
, P0 =

1

2
ρU2
∞.

16
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Applying this normalization, the non-dimensionalized equations for mass conservation

and momentum can thus be written in tensorial notation as

∂ui
∂xi

= 0, (2.1)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

. (2.2)

Here, the Reynolds number is based on the cylinder diameter and the inflow velocity

Re = U∞D/ν.

2.2 The Navier-Stokes solver MGLET

The governing equations (2.1) and (2.2) have been directly solved with the code MGLET.

This section briefly explains the discretizations schemes used in this code, the solution

algorithm implemented, and its parallelization.

2.2.1 Finite volume discretization

In the finite-volume code MGLET, the Navier-Stokes equations for an incompressible

fluid (2.1) and (2.2) are discretized on a staggered Cartesian mesh with non-equidistant

grid-spacing (Manhart, 2004). The starting point for the finite volume discretization is

the integral form of equation (2.2)

∂

∂t

∫

Ω
ui dΩ +

∫

S
uiu · ndS −

∫

S

(
1

Re
gradui − p

)
ii · ndS. (2.3)

Here the velocities ui and pressure p are defined on a staggered arrangement in the

control volume shown in figure 2.1. The mid-point rule is employed to approximate the

fluxes with the variables defined on the control cell. The velocities u(i + 1/2, j) and

u(i, j + 1/2) at the faces of the momentum cell for the u-velocity are obtained by linear

interpolation. A central difference scheme is used to approximate the derivatives in the

x- and y-directions at the positions (i + 1/2, j) and (i, j + 1/2) respectively, ensuring

second order accuracy in the spatial discretization of the convective and diffusive terms

(Ferziger and Peŕıc, 2002).
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p(i, j)
u(i, j) u(i+ 1/2, j)

u(i, j + 1/2)v(i, j)

Figure 2.1: Control volumes for the u-velocity (dashed lines) and the pressure (gray)
in the staggered grid.

2.2.2 Temporal discretization and solution of the Poisson equation

For the time advancement of the momentum equations, an explicit third-order Runge-

Kutta scheme is used (Williamson, 1980). The pressure at the new time level n + 1 is

found by solving the Poisson equation for the pressure correction ∆pn+1 = pn+1 − pn

∇2(∆pn+1) =
1

2∆t
div(u∗) (2.4)

where u∗ is an intermediate velocity field computed from the momentum equation.

Equation (2.4) is solved iteratively by Stones strongly implicit procedure (SIP), yielding

intermediate pressure p∗ and velocity u∗ fields at each iteration. According to equation

(2.1) for mass conservation, the divergence of the intermediate velocity field div(u∗) must

approach zero as the number of iteration increases. In order to meet this condition, the

divergence of the intermediate velocity field must be reduced to some value below a

tolerance ε, which is defined by the user. When div(u∗) ≤ ε, the intermediate pressure

and velocity fields are updated at the next time step tn+1 as pn+1 = p∗ and un+1 = u∗

respectively.

Defining k as an iteration counter, the three steps constituting one iteration are the

pressure estimate

∆pk+1 = Ω
1

2∆t
div(u∗)k

1

1/(∆x)2 + 1/(∆y)2 + 1/(∆z)2
, (2.5)
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the correction of the velocity field

(u∗)k+1 = (u∗)k + 2∆t∇(∆pk+1), (2.6)

and the correction for the pressure

pk+1 = pk + ∆pk+1. (2.7)

An overrelaxation factor Ω is introduced in equation (2.5) in order to obtain the same

convergence properties as a conventional Gauss-Seidel iteration with successive overre-

laxation (SOR); details of the SOR method are given by Ferziger and Peŕıc (2002).

2.2.3 Parallelization

The most reliable approach to the prediction of turbulent flows is to solve the Navier-

Stokes equations using DNS, which provides all the relevant turbulent length and time

scales. However, as the Reynolds number increases, the computation times and memory

requirements become too high and parallel processing has to be taken into account.

The code MGLET is designed to run efficiently on vector and parallel computers (Man-

hart et al., 2001), making it suitable for large scale computations on High Performance

Computing (HPC) facilities. When running on several processors (it can run as a single-

grid code as well), the parallelization algorithm generates multiple grid blocks that are

handled with single-grid subroutines. These subroutines were originally part of the code

before it was parallelized. The domain decomposition, i.e. division of the grid in an

arbitrary number of subgrids according to the number of processors, can be done in two

directions. Message Passing Interface (MPI) is the communication protocol that allows

for communication between different processors. A red-black algorithm is employed in

order to interchange data between neighbouring grids for the velocity pressure iterations

specified in equations (2.5) to (2.7). This parallel code was tested in massive parallel

machines and vector supercomputers by Manhart et al. (2001), who reported that the

performance scales well with the problem size and the number of processors.
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φ0, interpolated boundary condition
(xr, φr), triangle intersection point

∆x

Blocked cell at interface

Blocked cell

Fluid cell

Figure 2.2: One-dimensional stencil for the interpolation in the x-direction using the
IBM method; the body boundary corresponds to the thick blue line. Adapted from the

work by Peller et al. (2006).

2.3 The Immersed Boundary Method

At the walls, the non-slip and non-impermeability conditions are taken into account by

using a direct forcing Immersed Boundary Method (IBM). Basically, the cells at the fluid-

solid interface are transformed into internal boundary conditions on the corresponding

computational domain by using higher order interpolation from the fluid cells in the

vicinity of the body. This method represents a simple way to deal with complex geome-

tries avoiding the need to generate a body fitted grid. A detailed review of the IBM

method is found in the work by Mittal and Iaccarino (2005).

The general stencil configuration for the IBM method is depicted in figure 2.2 for the

one-dimensional case. Here φ represents one of the velocity components, φ0 is the

internal Dirichlet boundary condition, φr the value at the wall; and φ1, φ2 and φ3 the

values in the fluid used for the interpolation. The internal boundary condition based on

interpolation from N neighboring cells is determined by the following expression

φ0 =

(
N∑

i=1

αiφi

)
+ αrφr (2.8)

where αi and αr are the interpolation coefficients for the variable φ at the fluid cells and

the body, respectively.

As mentioned above, MGLET uses a Cartesian staggered grid, which means that the

boundaries between velocity and pressure cells do not coincide (see 2.1). The blocking

strategy for the IBM method is pressure oriented, then the blocked cells are pressure cells
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that lie within the surfaces that demarcate the solid walls. According to this criterion,

the blocked velocity cells are those touched by the blocked pressure cells.

The interpolation can be either carried out by Lagrange polynomials or using least

squares interpolation. It was shown by Peller et al. (2006) that the interpolation co-

efficients αi and αr depend only on the geometry, thus they can be determined in a

preprocessing step. In order to account for three-dimensionality, weighting factors are

estimated in the different directions to compute φ0. Finally, the computational repre-

sentation of the body can be done analytically or using a non-structured mesh consisting

of triangles.



Chapter 3

Flow Configuration and

Simulation Tests

In this chapter, the basic geometry and flow configuration used for the simulations is

presented in section 3.1. In section 3.2, relevant computational issues such as boundary

conditions, the grid resolution and parallelization are discussed. Finally, the influence

of the computational domain size in different directions is presented in section 3.3.

3.1 Problem definition

Figure 3.1 shows a schematic view of flow past a curved cylinder which is composed

of a quarter segment of a ring and a horizontal extension. Of particular importance

in curved cylinder flows is the non-dimensional radius of curvature. This dimensionless

parameter is defined as the ratio of the radius of curvature of the quarter-ring R to

its cross-sectional diameter D. In the present set of simulations we consider a flow

configuration identical to that of Miliou et al. (2007). This consists of a quarter-ring

with curvature ratio R/D = 12.5 and a horizontal extension of length 10D between

the end of the bend and the outflow plane; the free-stream corresponds to uniform flow

parallel to the plane of curvature and directed to the outside region of the bend (convex

configuration). Throughout the present work, the span s is defined as the arc-length of

the curved cylinder measured from the top plane; i.e. s = Rθ with θ the angle measured

in radians from the top plane.

22
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Figure 3.1: Computational domain size, geometry and flow configuration shown at
the middle (x, z)-plane. The size of the computational domain is 28D, 11D and 18D in
the x-,y- and z-directions, respectively. The inflow is uniform in this case and denoted
by U∞. The spanwise coordinate s is measured along the cross-sectional axis following
the curvature of the cylinder from the top plane, varying between 0 and 19.6D at the

end of the bend.

Miliou et al. (2003b) selected this geometry according to the generic shape for a catenary

riser. The top portion nearly perpendicular to the inflow is directed towards the offshore

vessel, while the length of the horizontal extension was selected in order to allow the

wake to evolve and stabilize. Perhaps a more realistic approach would consider the

vertical extension lying in the seabed rather than hanging in the free-stream; although

this was initially addressed by Miliou et al. (2003b), no further investigations were done

with this configuration.

3.2 Simulation parameters and implementation

In the first set of simulations, the dimensions of the grid in each direction are Nx = 400,

Ny = 150 and Nz = 258, resulting in a total of 15.48×106 grid points. Tabulated values

of boundary layer thickness versus Reynolds number for a straight uniform circular

cylinder (Zdravkovich, 1997) were used to estimate the boundary layer thickness δ,

resulting in δ ≈ 0.5D at Re = 100. Another possibility is to use equations for the

viscous flow near a stagnation point proposed by Hiemenz (see White, 2006). The

boundary layer thickness δ according to this approach is given by
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(a) (b)

Figure 3.2: Detail of the 400× 150× 258 Cartesian mesh around the curved cylinder
. (a) View of the (x, y)- and (y, z)-planes; (b) (x, y)- and (x, z)-planes.

δ

D
=

1.2√
Re

. (3.1)

At Re = 100, the boundary layer thickness obtained from equation (3.1) is δ ≈ 0.12D.

Of these two approaches, perhaps the former gives a more reliable estimation of δ/D than

the latter. The reason is that the values given by Zdravkovich (1997) are obtained from

experimental data for circular cylinders, while the equation (3.1) consist on a general

formulation for the boundary layer close to a plane stagnation point, giving only a rough

estimate of δ.

In order to adequately resolve the details of the boundary layer and the wake without

using too many grid points where not required, non-uniform grid spacing is used in

the three spatial directions. The minimum grid spacing for the uniform and shear flow

cases are ∆x/D = 0.05, ∆y/D = 0.02 and ∆z/D = 0.057 in the x-, y- and z-directions

respectively. Different planes of the mesh close to the body are shown in figure 3.2,

depicting the clustering of points in the vicinity of the body.

Figure 3.3 shows the blocking of the Cartesian grid by the IBM method in the (x, y)-

and (y, z)-planes. The least squares method was chosen as interpolation scheme since

it possesses better stability properties than the Lagrange interpolation method (Peller

et al., 2006). The body composed of a quarter-ring and a horizontal extension was
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represented by a structured mesh consisting of triangles. The resolution of this mesh

was rather high in order to avoid errors in the representation of the curved surfaces.

In many physical situations the flow is not confined, and boundary conditions are there-

fore not necessary. In a numerical simulation, however, the computational domain has

a finite extension and the confination problem has to be taken into account. A suitable

choice of boundary conditions is therefore essential in order to not confine the compu-

tational domain from the external flow. For the cases studied, the boundary conditions

imposed are:

i. A uniform velocity profile at the inlet (u = U∞).

ii. At the walls of the curved cylinder, non-slip and non-impermeability conditions,

i.e. u = 0.

iii. A free-slip condition on the horizontal top (z = 18D) and bottom (z = 0) planes,

w = 0,
∂u

∂z
= 0, and

∂v

∂z
= 0; (3.2)

as well as on the vertical sides (y = 0 and 11D) of the computational domain:

v = 0,
∂u

∂y
= 0, and

∂w

∂y
= 0. (3.3)

iv. At the outlet (x = 28D), a Neumann boundary condition was prescribed for the

velocities:

∂u

∂x
= 0,

∂v

∂x
= 0, and

∂w

∂x
= 0; (3.4)

in addition the pressure was set to zero (p = 0). This gives a fully developed zero

stress condition in order to avoid reflections from the outlet.

The constant time step used for the simulations was ∆t = 0.005D/U∞, which ensured

low values of the maximum Courant number. The flow field evolved to the laminar vortex

shedding regime at tUc/D ≈ 100, after which statistics were gathered for a period of

300D/Uc.

The code was run in parallel on an IBM p575+ machine. The simulations for this case

were run on 48 processors, the domain decomposition consisted of 16 processors in the
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Figure 3.3: View of the blocking of cells in the Cartesian mesh by the IBM method.
(a) View of the (x, y)-plane at z/D = 14; (b) (y, z)-plane at x/D = 12.

x-direction and 3-processors in the y-direction. In average, the time required to compute

one time-step was 2 seconds, resulting in approximately 33 hours to run the 60000 time

steps required to gather statistics.

3.3 Influence of the domain size

The domain size presented in section 3.2 was chosen in order to compare the results

obtained with MGLET and the previous published results by Miliou et al. (2007). Before

undertaking any further analysis with this domain, the influence of the computational

domain has to be analyzed to check if there is any blockage effect. To this purpose, three

specific dimensions have been chosen for the analysis of the computational domain: the

length Xi, which specifies minimum distance between the inflow boundary and the body,

Yh is the half-width of the domain in the horizontal direction, and Zu which represents

the length of an extension of the curved cylinder in the vertical direction. The minimum

grid spacing in the three additional cases were kept the same as those presented in see

section 3.2; the Reynolds number is Re = 100. The influence of the domain in terms of

the Strouhal frequency is summarized in table 3.1.

For the first computational domain denoted by D1, the Strouhal frequency attains a

value of 0.176; this is in excellent agreement with the Strouhal frequency of 0.1761
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Domain Nx ×Ny ×Nz Xi Yh Zu St = fD/U∞
D1 400× 150× 258 5D 5.5D 0 0.176

D2 432× 150× 258 10D 5.5D 0 0.170

D3 400× 240× 258 5D 10.5D 0 0.170

D4 400× 150× 360 5D 5.5D 6D 0.176

Table 3.1: Parameters of the different computational domains.

reported by Miliou et al. (2007). Increasing the inflow length Xi by 5D yields a Strouhal

frequency of 0.170, the same frequency was obtained when the horizontal half-length Yh

is increased by 5D. This difference in frequency is 3.41%, and although it could be

attributed to blockage effects, no experimental data has been published yet (to the

knowledge of the author) to validate this argument; the experimental data mentioned

by Miliou et al. (2003b, 2007) consists only of qualitative data used for visualization

purposes.

As discussed in section 1.2, the Strouhal frequency for yawed cylinders decreases with

increasing yaw angle α (Van Atta, 1968). As an example, if we use the St-Re relationship

for a straight cylinder proposed by Williamson (1998)

St = 0.2731− 1.1129√
Re

+
0.4821

Re
, (3.5)

we obtain St = 0.167 for a straight cylinder at Re = 100. Then, for a cylinder with a

certain yaw angle we will have that St ≤ 0.167 at a Reynolds number of 100. By analogy

with a yawed cylinder, a similar behaviour may be expected for a curved cylinder. The

results from the simulations show, however, that this is not the case since the Strouhal

frequencies obtained in the cases D1 to D4 are higher than those corresponding to a

straight cylinder.

The last configuration tested was obtained by adding a vertical extension of 6D on the

top of the curved cylinder (domain D4). This constitutes an addition of approximately

50% of the height of the curved cylinder. The Strouhal frequency in this case remained

the same as that without a vertical extension. Additionally, in order to determine if

there were any changes in the wake topology by adding this extension, the vortical

structures based in the λ2 method (Jeong and Hussain, 1995) were obtained for the

domains D1 and D4. The scalar quantity λ2 defines a region of minimum pressure due

to swirling motion in an incompressible fluid based on the second largest eigenvalue
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of the symmetric tensor ΩijΩij + SijSij , where Sij is the symmetric component of the

velocity gradient tensor and Ωij the antisymmetric part.

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.6)

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (3.7)

Figures 3.4.(a) and (b) depict that the vertical extension has almost no effect on the

shape of the vortex cores, except for a slight distortion between z/D = 16 and 18. This

slightly wavy shape of the vortex cores in figure 3.4.(b) is probably due to the fact that

the vertical extension in the domain D1 (figure 3.4.a) has been replaced by a symmetry

boundary condition on the top plane.

The analysis presented in this section shows that, despite some minor differences in the

Strouhal frequency and in the wake topology, the simulations with the domain D1 are

be able to predict the three-dimensional flow around the curved cylinder. Moreover,

the exact values of the Strouhal frequency for this case are still unknown, and the only

available studies for comparison consider a computational domain identical to the case

D1 (De Vecchi et al., 2008, 2009, Miliou et al., 2003b, 2007).
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Figure 3.4: Perspective view of the vortex cores at Re = 100 to analyze the effect
of adding a vertical extension. Here the inflow is uniform flow and λ2 = −0.1. (a)
Computational domain size Lx×Ly×Lz = 28D×11D×18D; (b) addition of a vertical
extension of 6D, with computational domain size Lx × Ly × Lz = 28D × 11D × 24D



Chapter 4

Results and Discussion: Uniform

Flow

This chapter presents a summary of the results obtained from the simulations when the

flow at the inlet is uniform. The main objective here is to compare our results with

those published by Miliou et al. (2007). This was a necessary step in order to check

the results obtained with the code MGLET, because no experimental data was available

for validation purposes. Moreover, these results constitute a basis for comparison when

uniform shear flow is introduced as an inflow boundary condition. A second set of

simulations at Re = 100 was conducted in order to study the effect of doubling the

non-dimensional radius of curvature R/D.

One of the difficulties associated with the analysis of the data obtained from these DNSs

is the three-dimensional character of the results. While some quantities such as vortical

structures can be easily visualized as iso-surfaces, other scalar or vector quantities have

to be chosen at a specific location within the flow field. In this work, most of the results

that are not presented in three-dimensional form are referred to the middle (x, z)-plane

shown in figure 4.1, i.e. the plane at y/D = 5.5.

Sections 4.1 and 4.2 present and discuss the results at Reynolds numbers of 100 and

500; the results are associated with stagnation pressure, recirculation region, vortex

shedding frequency and wake topology. Section 4.3 is related to the effects of increasing

the non-dimensional radius of curvature R/D.

30
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(x, z)-plane

Figure 4.1: Location of the middle (x, z)-plane for the analysis of results.

4.1 Re = 100

At Re = 100, the flow past the convex configuration shown in figure 3.1 is expected to be

laminar. Although laminar flows past bluff-bodies rarely occur in practical applications,

the laminar wake features give a good starting point to understand the flow physics

before moving towards higher Reynolds numbers. The analysis presented herein starts

at the near wake with the stagnation pressures and the recirculation region, and then it

moves downstream to study the vortex shedding frequency and the wake topology.

4.1.1 Stagnation pressures and recirculation region at Re = 100

An interesting feature of the flow field is the variation of the mean pressure along the

front and rear stagnation lines. The pressure coefficient is defined as

Cp =
p− p∞
1
2ρU

2∞
, (4.1)

where p∞ denotes the pressure at the inlet. The variation of Cp along the stagnation

lines up to the horizontal extension is shown in figure 4.2. Along the front stagnation line

the pressure gradient is negative (i.e. ∂Cp/∂s < 0). This favourable pressure gradient

induces an axial flow along the convex face of the quarter ring towards the horizontal

cylindrical extension. On the other hand, the rear stagnation line exhibits a positive

pressure gradient along the entire span length (∂Cp/∂s > 0). The general tendency

here is that the pressure coefficient decreases as the angle measured from the top plane
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Figure 4.2: Mean pressure coefficients Cp along the span of the curved cylinder at
Re = 100. Here —�—, stagnation pressure coefficient; —•—, base pressure coefficient.

θ increases (see figure 3.1), attaining a value of zero at the location where the curved

segment and the horizontal extension meet. A similar phenomenon was reported for

yawed cylinders; Zhao et al. (2009), for instance, noted that Cp along the surface of

a yawed cylinder decreases with increasing yaw angle, reducing thus the difference in

pressure between the front and rear stagnation lines as α increases. They showed,

however, that the Independence Principle was valid when the pressure coefficients where

normalized by the normal component of the free stream velocity,

Cpn =
p− p∞

1
2ρU

2
n

. (4.2)

Following this idea, it is expected that when the pressure coefficients for the curved

cylinder are normalized by Un, the Cpn values obtained will be close to unity; this

normalized mean pressure coefficient has been plotted along the span of the curved

cylinder in figure 4.3. It can be noticed in figure 4.3 that the Independence Principle

(i.e. Cpn ≈ 1.0) is valid up to s/D ≈ 10, or θ ≈ 45◦. At s/D > 10, the normalized

mean pressure coefficient decreases monotonically on both, front and rear stagnation

lines, and the IP ceases to be valid.

Regarding Cp along the front stagnation line, it was commented before that the pressure

gradient along the front stagnation line is associated with a spanwise flow along the outer

face of the quarter ring towards the horizontal cylindrical extension. The streamlines of

the mean flow in the (x, z)–plane shown in figure 4.4 clearly depict this phenomenon;

here the streamlines approach the convex face with an increasing bending and sliding
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Figure 4.3: Mean pressure coefficients normalized by Un along the span of the curved
cylinder at Re = 100. The values of Cpn are close to one from s/D = 0 to s/D ≈ 10, or
θ ≈ 45◦, revealing that the Independence Principle is valid within this interval. Here

—�—, stagnation pressure coefficient; —•—, base pressure coefficient.

Figure 4.4: Streamlines of the mean flow taken at the middle (x, z)-plane at Re = 100.

along the cylinder. Curvature is also affecting the back–flow direction in the recirculation

region. Close to the top part of the cylinder the vertical component of the back–flow

is almost negligible, whereas an increase on this vertical component takes place as we

move along the span.

It is well known that the base pressure distribution (i.e. pressure along the rear stagna-

tion line) influences, among other quantities, the size of the recirculation region which

develops in the near-wake due to the separation of boundary layers from the surface of

the solid body. This is reflected in figure 4.5 where the non-dimensional local separation

length Ls/D is plotted along the span of the quarter-ring segment. Here, Ls is defined

as the streamwise distance from the rear stagnation line to where the mean streamwise
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Ls

Figure 4.5: Recirculation length Ls along the span of the curved cylinder at Re = 100.

velocity changes sign from negative to positive. At the top plane (s/D = 0), the local

separation length is 1.575D; this value remains approximately constant up to s/D = 8,

where it starts decreasing monotonically, reaching zero at s/D ≈ 15, or θ ≈ 69◦.

4.1.2 Frequency analysis at Re = 100

The discussion in the previous section was related to the flow features in the near–

wake. As the flow evolves downstream, the different types of instabilities created by

the separation of the boundary layers will be amplified, leading to a regular shedding

of vortices commonly referred to as a Kármán vortex street. In this context, one of the

parameters that may affect the frequency of the this vortex shedding is the bluff–body

geometry. In order to investigate the influence of curvature on the shedding frequencies,

the time evolution of the cross-stream velocity v has been evaluated within the (x, z)–

plane of symmetry of the cylinder. For this purpose, a non-dimensional time of 300U∞/D

was considered for the simulation, which covers about 53 shedding cycles in this case.

Shown in figure 4.6(a) is the time evolution of the v-velocity component taken along a

sampling line located at x/D = 18. The pattern clearly corresponds to regular alternat-

ing vortex shedding along a large portion of the sampling line; the fact that no distortions

or dislocations arise indicates that the flow is laminar. This is in accordance with the

observations reported by Miliou et al. (2007), the vortex shedding pattern corresponds

to that of laminar flow, and no dislocations occur despite the non-uniform geometry of

the cylinder.



Chapter 4. Results and discussion: Uniform Flow 35

z
/
D

tU∞/D

(a) (b)

Figure 4.6: Time analysis at Re = 100 of cross-stream velocity v along a sampling
line taken at x/D = 18 in the middle (x, z)–plane. (a) Time evolution of the velocity;

(b) time trace of velocity.

Further insight of the periodic behaviour of the flow in this case can be gained from the

plot of the time traces of the v–velocity at x/D = 18, taken at six different positions

along the z-axis, as seen in figure 4.6(b). With the exception of the time trace at

z/D = 8, where the vortex shedding is less energetic, all the traces exhibit the same

amplitude and frequency. The suppression of the vortex shedding due to the low local

Reynolds number (Ren ≈ 50) occurs at z/D ≈ 7 in this case.

In order to obtain the exact value of the dominant shedding frequency, a spectral analysis

with basis on the time-domain signals of the v-velocity has been carried out. The spectra

are obtained by the Fast Fourier Transform method (FFT). The signals are sampled

each 100th time–step during the simulation; this sampling frequency is lower than the

maximum value D/(U∞∆t) = 200 required to avoid aliasing effects (see Persillon and

Braza, 1998). The v-velocity signals were taken at x/D = 18, and z/D = 7 and

16, and their spectra are shown in figure 4.7. The peak in both spectra occurs at

fD/U∞ = 0.176, which corresponds to the Strouhal number for this case. Although both

cases exhibit a clear peak, the spectrum at x/D = 7 in figure 4.7(a) contains less energy

because, as mentioned above, the vortex shedding is suppressed at this location due to

the low values of Ren. Furthermore, previous studies conducted on straight cylinders

have shown that as the Reynolds increases, an amplification of the odd harmonics occurs

(Persillon and Braza, 1998). The incipience of this phenomenon can be seen in figure

4.7(b), here the spectrum contains a the second peak at 3St.

As discussed in section 1.4, a cellular pattern arrangement consisting of constant fre-

quency cells characterizes flows past straight cylinders which are subject to varying
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Figure 4.7: Power spectra of the v-velocity signal at Re = 100, the signal is taken at
x/D = 18. (a) Spectrum at z/D = 7 and; (b) Spectrum at z/D = 16.

Strouhal numbers. The results presented here and those published by Miliou et al.

(2007) show, nevertheless, that the flow past this type of curved cylinder is character-

ized by one single Strouhal frequency. This may seem surprising given the variation of

the local Reynolds number Ren based on the normal component of the inflow velocity,

and shows therefore that approaches based on a sectional approximation of the flow, or

the IP, could be misleading when using this type of geometry. A question that remains

open here is whether cellular vortex shedding will occur or not if the radius of curvature

R is changed; this will be addressed in section 4.3.

4.1.3 Wake topology at Re = 100

The wake topology based on the λ2–criterion of Jeong and Hussain (1995) is depicted

in figure 4.8 at a λ2 value of −0.1. In order to capture the main features of the wake

topology, three different views are shown. The first one is the projection from the

side (or (x, z)–plane), where the vortex cores are observed to be almost normal to the

flow direction close to the cylinder, and inhabit slight distortions as they move further

downstream. A staggered array of vortices with a clear alternating pattern depicted by

the projection from the top or (x, y)–plane. The combination of these two characteristics

of the wake topology can be seen in the perspective view. The same wake topology was

reported by Miliou et al. (2007) from both numerical simulations and experimental

visualization studies. They noted an inconsistency between the shape of the primary

vortices and the plot of the sectional forces on the cylinder. While the vortices are

straight and similar to those observed from the flow past a straight cylinder, the sectional
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Figure 4.8: Wake topology at Re = 100 depicted as instantaneous iso–surfaces of λ2.
In the clockwise direction: side view, top view and perspective view of the vortex cores

in the wake of the curved cylinder; here λ2 = −0.1.

forces plot changed sign along the span at a given time. This discrepancy was attributed

to curvature effects by noting that the gradual reduction of the distance between the

vortex cores and the cylinder along the span (see figure 4.8) leads to a gradual phase

change in the sectional forces.

Further insight of the wake topology can be gained from the iso–surfaces of instantaneous

streamwise and vertical vorticity, denoted as ωx and ωz respectively. These components

of the vorticity vector can be expressed as

ωx =
∂w

∂y
− ∂v

∂z
, (4.3)

ωz =
∂v

∂x
− ∂u

∂y
. (4.4)

The iso–surfaces of ωx and ωz have been plotted in figure 4.9, where the black and

white iso–surfaces represent streamwise and vertical vorticity, respectively. The shape

of the iso–surfaces of ωz is clearly associated with the shape of the primary vortices

shown in figure 4.8; they constitute layers of vorticity that roll–up from the walls of the
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Figure 4.9: Isosurfaces of instantaneous vorticity ωx (black) and ωz (white) at Re =
100. The isosurfaces are obtained at ωx = ±0.3 and ωz = ±1.2.

cylinder. This is not very different from what happens in a straight circular cylinder at

this Reynolds number, however. Perhaps the presence of streamwise vorticity is a more

interesting phenomenon since this is directly relate to the curvature of the cylinder. The

black–isosurfaces reveal that streamwise vorticity is triggered in the lower part of the

domain, affecting the vortex shedding pattern with respect to that of a straight circular

cylinder. Previous studies have reported that streamwise vorticity may be the cause of

cellular vortex shedding, see for instance the work by Maull and Young (1973). This is

nevertheless not the case for this particular geometry since, as discussed in subsection

4.1.2, there is a single frequency at which vortices are shed. Further analysis of the

amount of streamwise vorticity to break–up the primary vortices may help to determine

whether cellular vortex shedding may occur in the wake of a curved cylinder in uniform

flow or not.

Finally, in order to study the evolution of the wake at different spatial locations, the

instantaneous vorticities ωx and ωz were plotted in three consecutive planes (figure 4.10).

The instantaneous streamwise vorticities in the (y, z)–planes shown in figure 4.10(a) give

a clear picture of the evolution of ωx in the x–direction. The plane at x/D = 7 is located

within the recirculation region in the upper portion of the cylinder, and the amount of the

streamwise vorticity here is rather low. At x/D = 12, two regions of ωx with different

sign can be identified close to the cylinder; here the amount of streamwise vorticity

has increased with respect to the previous location. As we move further downstream

at x/D = 18, the streamwise vorticity decreases in intensity; this reduction may be

attributed to the axial flow that develops close to the horizontal extension.
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Figure 4.10: Isocontours of instantaneous vorticity at Re = 100. (a) ωx in the (y, z)–
planes at x/D = 7, 12 and 18; (b) ωz in the (x, y)–planes at z/D = 8, 12.5 and 17.5.

A similar analysis may be performed with the vertical vorticity ωz. Figure 4.10(b)

depicts this instantaneous component of the vorticity vector on three consecutive (x, y)–

planes. At z/D = 12.5 and z/D = 17.5 a clear pattern of laminar vortex shedding

is observed. On the other hand, even though the wake could be regarded as unsteady

at z/D = 8, the pattern is more close to the first transition to instability described in

section 1.1 for a straight circular cylinder, i.e. Reynolds numbers slightly above 50. In

fact, this location is very close to x/D = 7, where the vortex shedding is suppressed due

to the low value of the local Reynolds number Ren. In addition, the three consecutive

planes (by looking from x/D = 7 to x/D = 17.5) also depict how the vortex formation

region moves upstream as the Ren increases.

4.2 Re = 500

At a Reynolds number of 500, the wake of the flow past a straight circular cylinder con-

tains fine scale three-dimensional structures arranged in an irregular pattern. Whether

this regime corresponds to turbulence or not has been discussed in previous studies.

For instance, although a chaotic state in the flow at Re around 500 was obtained from

the numerical simulations of Karniadakis and Triantafyllou (1992), it was not decisively

concluded that the flow at this Re was turbulent; the authors suggested that further

analysis of particle trajectories and mean turbulence intensities may help to determine
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whether the flow is turbulent or not. In analogy with a circular cylinder, a curved cylin-

der at Re = 500 is expected to exhibit an unstable and irregular general pattern of the

flow; this was shown by Miliou et al. (2007) when they reported small vortical structures

associated to three–dimensional wake instabilities.

In this section, the results obtained from DNSs at Re = 500 are presented in a similar

arrangement as the results in section 4.1, in order to enable comparison between both

flow regimes. The simulations were conducted using the same mesh as that used for the

case at Re = 100. This mesh had enough resolution to be able to capture the small

scale three-dimensional structures at this Re. In order to verify quantitatively that the

current simulation is a fully resolved DNS, the Kolmogorov length scale η was estimated

from the energy dissipation rate ε as (ν3/ε)1/4. The adopted grid spacing turned out to

never exceed 4η.

4.2.1 Near wake flow at Re = 500

The variation of the time–averaged pressure coefficients along the stagnation lines at

Re = 500 is shown in 4.11. The behaviour of the mean pressures along the front and

rear stagnation lines is similar to that exhibited at a Reynolds number of 100. While the

stagnation line develops a negative pressure gradient expressed as ∂Cp/∂s < 0, the base

pressure along the rear stagnation line exhibits a positive gradient, i.e. ∂Cp/∂s > 0. In

this case also, the pressure gradients affect the flow in the vicinity of the body, as seen in

the streamlines of the mean flow taken at the middle (x, z)–plane shown in figure 4.12.

The streamlines clearly depict the development of an axial flow along the convex face of

the quarter ring towards the horizontal cylindrical extension, which seems to slide in a

direction tangential to the quarter–of–ring. Regarding the recirculation region, close to

the top plane the streamlines are almost parallel to the free–stream, but when proceeding

along the span towards the horizontal extension, they are gradually deflected in the anti–

clockwise direction (or negative z–direction) until they become parallel to the main flow

at the junction between the curved and horizontal segments. This may be explained by

the fact that the absolute value of the base pressure decreases monotonically along the

span, as seen in figure 4.11. This causes that the main flow gradually prevails over the

suction induced by the negative pressure, and therefore the base suction can no longer

maintain the streamlines in a direction parallel and opposite in sign to the free–stream.
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Figure 4.11: Mean pressure coefficients Cp along the span of the curved cylinder at
Re = 500. Here —�—, stagnation pressure coefficient; —•—, base pressure coefficient.

Figure 4.12: Streamlines of the mean flow taken at the middle (x, z)–plane at Re =
500.

The previous discussion above regarding the recirculation bubble can be complemented

by the observation of the instantaneous streamlines shown in figure 4.13. Here the

fraction of the streamlines the pass the body close to y/D = 6 continue in the direction

of the free–stream, as depicted in figure 4.13(a). The remaining streamlines that pass the

body at about y/D = 5 correspond to the recirculating streamlines which, in addition,

move downwards as seen in figure 4.13(a). Figure 4.13 also allows to visualize the

complex three-dimensional structure that develops in the near wake.

The variation of the non-dimensional local separation length Ls/D along the span of the

curved cylinder at Re = 500 is shown in figure 4.14. At this Reynolds number, Ls/D

is plotted up to s/D = 9 only due lack of resolution in the mean pressure, which is

probably attributed to short time to gather statistics (60000 time–steps). Despite this
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Figure 4.13: Instantaneous streamlines at Re = 500 close to the recirculation region.
(a) Projection in the (x, y)–plane; (b) projection in the (x, z)–plane.

Ls

Figure 4.14: Recirculation length Ls along the span of the curved cylinder at Re =
500.

limitation, some important features of the recirculation length are identified. As seen in

figure 4.14, Ls exhibits a monotonic decrease along the span, with its highest value equal

to 1.375D at the top of the computational domain, i.e. s/D = 0. Although the lowest

value of Ls is 0.96D at x/D = 9.14, the recirculation length is suppossed to reach zero at

some point in the interval 10 ≤ s/D ≤ 19.6; for instance at Re = 100 the recirculation

length attains a zero value at s/D ≈ 15. It can be further noticed that the maximum

value of Ls at 500 is lower than that at Re = 100, being the exact difference in terms of

Ls equal to 0.2D. Moreover, the Ls/D-s/D curve starts decreasing immediately from

s/D = 0, instead of having a plateau as that exhibited in figure 4.14 at Re = 100.
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Figure 4.15: Time analysis of cross-stream velocity v at Re = 500 along a sampling
line taken at x/D = 18 in the middle (x, z)-plane. (a) Time evolution of the velocity;

(b) time trace of velocity.

4.2.2 Frequency analysis at Re = 500

In a similar way as in the case at Re = 100, the time evolution of the cross-stream

velocity v has been evaluated within the (x, z)-plane of symmetry of the cylinder. The

time evolution of this velocity component along a sampling line located at x/D = 18 is

shown in figure 4.15(a); the pattern corresponds to strong alternating vortex shedding,

which due to the higher Ren, occurs along the whole sampling line in this case. Although

a quasi–periodic pattern is clear in figure 4.15(a), some dislocations appear close to the

horizontal extension between z/D = 6 and z/D = 8. The corresponding time-traces of

the v-velocity are shown in figure 4.15(b) at three locations along the sampling line. The

signals are characterized by a fairly periodic behaviour with similar amplitudes at the

different vertical positions. Furthermore, the presence of interspersed distortions in the

signal reveal the same characteristic features of the transitional and turbulent regimes

in the wake of a straight cylinder (Karniadakis and Triantafyllou, 1992, Williamson,

1996a).

The spectral analysis with basis on the time-domain signals of the v-velocity was con-

ducted with basis on a time–series of length 300D/Uc, which covers about 67 shedding

cycles at Re = 500. The analysis was performed under the same conditions defined for

the case at Re = 100, and the spectra obtained at two different locations along the sam-

pling line at x/D = 18 are shown in figure 4.16. In contrast with the spectra obtained

at Re = 100, the spectra at Re = 500 exhibits wideband with the Strouhal frequency

prevailing at a value of 0.2246. This shows again that despite the intermittent character

of the flow observed in figure 4.15(b), a coherent vortex street pattern is still present
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Figure 4.16: Power spectra of the v-velocity signal at Re = 500 taken at x/D = 18 .
(a) Spectrum at z/D = 7 and; (b) Spectrum at z/D = 16.

at one single shedding frequency along the span of the curved cylinder. The Strouhal

frequency obtained from this analysis was compared with St for a straight circular cylin-

der at Re = 500, estimated from the St-Re relationship proposed by Williamson (1998)

and expressed in equation (3.5). According to this relationship, the Strouhal frequency

obtained for an uniform circular cylinder is 0.2243, which agrees remarkably well with

St = 0.2246 for a curved cylinder at Re = 500.

4.2.3 Wake topology at Re = 500

A first impression of the three-dimensional vortical structures at Re = 500 is obtained

using the λ2–criterion. The iso–surfaces of λ2 = −1.5 are able to educe the presence

of instabilities in the form of streamwise vortical structures, as seen in the different

views displayed in figure 4.17. This wake topology is similar to that observed by Miliou

et al. (2007); the primary vortices are roughly aligned with the geometry of the curved

cylinder, and the stretching of these primary vortices gives birth to streamwise vorticity.

The projection on the (x, y)–plane, i.e. viewed from the top, highlight the shape and

alternating pattern of these rib–like vortical structures associated with ωx.

According to Williamson (1992), a fundamental mechanism in the transition to turbu-

lence in the wake of a straight cylinder is the appearance of intermittent spanwise vortex

dislocations. This feature has its origin in the differences in frequency of the spanwise

vortex shedding cells, producing streamwise vorticity where the spanwise vortices split.

This process is shown in figures 4.18(a) and (b). The instantaneous streamwise vortic-

ity, represented by the black isosurfaces, appears at the locations where splitting of the
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Figure 4.17: Wake topology at Re = 500 depicted as instantaneous iso–surfaces of
λ2. In the clockwise direction: side view, top view and perspective view of the vortex

cores in the wake of the curved cylinder; here λ2 = −1.5.

vertical vortices (white isosurfaces) occur. Another feature mentioned by Williamson

(1992) is an helical twisting of the vortices, which is noticeable in the ωz-isosurfaces in

figure 4.18(b). Williamson concluded that these helical twisting are the fundamental

cause for the rapid spanwise spreading of dislocations, and, indeed, for the large-scale

distortion and break–up to turbulence in a natural transitional wake behind an uniform

cylinder.

As figure 4.19(a) depicts, there is a rapid spreading of the streamwise vorticity as the

wake evolves downstream. In the recirculation region, at x/D = 7 the streamwise vor-

ticity is concentrated towards the axis of the cylinder. Then, at x/D = 12 two different

patterns coexist in the same slice: on the upper part, the vorticity is concentrated only

on one side, revealing the alternating pattern of ωx after the vortices are shed; the lower

portion, on the other hand, is still in the recirculating region and exhibits a behaviour
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Figure 4.18: Isosurfaces of instantaneous vorticity ωx (black) and ωz (white) at Re =
100. The isosurfaces are obtained at ωx, ωz = ±1.8.
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Figure 4.19: Isocontours of instantaneous vorticity at Re = 500. (a) ωx in the (y, z)-
planes at x/D = 7, 12 and 18; (b) ωz in the (x, y)-planes at z/D = 8, 12.5 and 17.5.

similar to that shown at x/D = 7. Further downstream, at x/D = 18, a dispersed

and irregular distribution of ωx prevails. Moreover, the slices of ωz clearly depict that

vortex shedding takes place at all levels, supporting the observations based on the fre-

quency analysis in section 4.2.2. Finally, and in analogy with the case at Re = 100, a

displacement of the vortex formation region towards the rear stagnation line is evident

by observing sequentially the slices at z/D = 8, 12.5 and 17.5.
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4.3 Effects of a larger radius of curvature at Re = 100

In the first set of simulations, some physical mechanisms governing the dynamics of

the flow past a curved cylinder have been analyzed in terms of the Reynolds number.

Another non–dimensional quantity that may affect dynamics of the flow past a curved

cylinder is the non–dimensional radius of curvature R/D. In order to analyze the in-

fluence of this parameter, a second set of simulations with R/D = 25 was conducted

at Re = 100 with the flow configuration shown in figure 4.20. The dimensions of the

grid in each direction are Nx = 640, Ny = 160 and Nz = 400, resulting in a total of

40.96× 106 grid points. The minimum grid spacing is ∆x/D = 0.03, ∆y/D = 0.02 and

∆z/D = 0.06 in the x-, y- and z–directions respectively. The number of processors for

the domain decomposition was npx × npy = 20× 8, i.e. a total of 160 processors. Other

parameters such as the time–step and the temporal length for statistics were kept the

same as in the previous cases presented.

z

x

D

25D

2.5D

5D

5D

31D

33D

U∞

Figure 4.20: Computational domain size, geometry and flow configuration shown at
the middle (x, z)-plane and at R/D = 25. The size of the computational domain is

33D, 11D and 31D in the x-,y- and z-directions, respectively.
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Begak et al. (1985) reported a variation of the Strouhal number with the radius of cur-

vature, and proposed the following empirical relationship between these two parameters

St = 0.19− 1

1.4R3
, (4.5)

where R is the radius of curvature. Using R/D = 12.5, the Strouhal frequency obtained

from this expression is 0.1896, which is larger than St obtained from the frequency

analysis in this work, and that reported by Miliou et al. (2007) as well. The range of

validity in terms of R/D for equation (4.5) is not given by the authors, however.

In order to determine if there is any variation in the Strouhal frequency when R/D is

changed, a frequency analysis similar to that presented in sections 4.1 and 4.2 (i.e. based

on the time-domain signals of the v-velocity) was conducted. The spectra obtained at

four different vertical locations along a sampling line at x/D = 25 are shown in figure

4.21. The characteristics of the spectra are identical to those exhibited when R/D = 12.5

at a Reynolds number of 100, and the Strouhal frequency surprisingly remained the same

(St = 0.1758). Although this is in contrast with the observations by Begak et al. (1985),

further investigation with other radii of curvature is required in order to be conclusive.

Another feature which is interesting to note from the spectral analysis is the amplification

of the odd harmonics, which are exhibited in all the spectra except the spectrum taken at

z/D = 8. Particularly interesting is the spectrum shown in figure 4.21(c) at z/D = 24,

which besides the secondary peak at 3St contains a small peak at 5St.

Finally, the vortical structures depicted as iso–surfaces of λ2 = −0.1 are shown in figure

4.22. Despite differences in geometry, the vortex cores are similar to those obtained at a

non–dimensional radius of curvature of 12.5. This complements the frequency analysis

in the sense that, at least at this Reynolds number, increasing the radius of curvature

does not affect the wake dynamics. Further work has to be conducted in order to explain

these facts, however.
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Figure 4.21: Power spectra of the v-velocity signal at Re = 100 and R/D = 25;
signal taken at x/D = 25. (a) Spectrum at z/D = 8; (b) Spectrum at z/D = 16; (b)

Spectrum at z/D = 24 and; (b) Spectrum at z/D = 30.
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Figure 4.22: Wake topology at Re = 500 and R/D = 25 depicted as instantaneous
iso–surfaces of λ2. Here λ2 = −0.1.



Chapter 5

Results and Discussion: Shear

Flow

In addition to the effects of non–uniform geometry, three–dimensionalities in the wake

of bluff bodies are also enhanced by imposing a non-uniform velocity profile in the free–

stream. As discussed in section 1.4, features like oblique and cellular vortex shedding

are found in the wake of the flow past straight cylinders in uniform shear. Although no

cellular arrangement of the vortex shedding frequencies was detected as a consequence

of the curved geometry, the presence of a sheared flow may disrupt the vortex shedding

pattern in a curved cylinder, leading thus to the same types of phenomena as those

observed in the flow past straight cylinders in uniform shear. Therefore the interaction

between curved cylinders and shear flows, whose understanding is important in the

design of marine structures, will be addressed in this chapter.

With the exception of the inlet boundary condition, the flow configuration used here

is the same as that used in the previous analysis with uniform inflow, as figure 5.1

depicts. The linearly varying velocity profile prescribed at the inlet can be expressed

mathematically as

U∞(z)

Uc
=
Kz

D
+
U0

Uc
, (5.1)

where the non-dimensional inlet shear rate K was set to 0.1. Here, K = (dU∞/dz)D/Uc,

with dU∞/dz defined as the inflow shear rate, Uc is the inflow velocity at the mid height

(or average of the inflow velocity in the z–direction), and U0 is the inflow velocity at

50
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Figure 5.1: Flow configuration considering shear flow at the inlet. Computational
domain size, geometry and flow configuration shown at the middle (x, z)-plane. The
inflow velocity varies linearly in the z-direction, with an average value Uc at the mid

height of the computational domain.

the bottom plane (z = 0). In most of the normalizations, the velocity Uc will be used

instead of the non–uniform velocity U∞(z). Two cases at Reynolds 100 and 500 were

studied with this shear rate; the Reynolds number here is defined as Re = UcD/ν. In

this context, we also define the local Reynolds based on the shear velocity profile as

Rel(z) = U∞(z)D/ν.

5.1 Effects of the shear flow in the near wake

The variation of the mean pressure along the stagnation lines, this time normalized by

the dynamic pressure 1/2ρU2
c , is shown in figure 5.2 at Re = 100 and 500. The variation

of the Cp along the front stagnation line is identical at both Reynolds numbers, and

besides, they are substantially steeper than the curves of Cp in uniform flow, presented

in section 4.1 (see figures 4.2 and 4.11). This is a clear example of the combined effect

of curvature and a linearly varying velocity profile; both conditions induce separately

a negative pressure gradient along the span (∂Cp/∂s < 0), that results in a large rate

of change of Cp from the combined effect. Moreover, the decreasing of Cp remains

monotonic.

On the rear stagnation line, a region of almost zero mean pressure gradient is exhibited

at Re = 100 and 500 on the top part of the curved cylinder (i.e. low values of s/D). At

Re = 100, as figure 5.2(a) depicts, this plateau extends up to s/D ≈ 4, where a positive
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(a) (b)

Figure 5.2: Mean pressure coefficients Cp along the span of the curved cylinder at
Re = 100 and 500 in uniform shear. Here —�—, stagnation pressure coefficient; —•—,

base pressure coefficient. (a) Re = 100 and; (a) Re = 500.

pressure gradient builds-up afterwards. At Re = 500, on the other hand, the plateau

extends further down along the span to s/D ≈ 5 before the gradient increases (see

figure 5.2.b). Regions of constant base pressure coefficient were previously reported by

Maull and Young (1973) for a straight cylinder in uniform shear. Regarding the cellular

vortex shedding pattern detected in this experimental work, the flat regions of Cp along

the base line occurred at the division between cells of constant frequency; within each

constant frequency cell the base pressure varied.

The axial flow developed along the front stagnation line, attributed to the favourable

pressure gradient ∂Cp/∂s < 0, does not differ much from that obtained in uniform flow,

as the streamlines in figure 5.3 depicts. The mean streamlines in the recirculating region,

on the other hand, clearly differ from those obtained with uniform flow at the inlet. The

recirculating streamlines in the vicinity of the upper part of the curved cylinder have a

positive component of the mean velocity in the z–direction, giving the impression that

they are drawn from their original position towards the upper plane. This behaviour

may be associated with the region of sustained base pressure observed in figure 5.2,

which drives the recirculating streamlines upwards. Furthermore, in figure 5.3(a) the

upheaving of the streamlines seems to be stronger than that depicted by figure 5.3(b).

An explanation to this difference is that at Re = 500, the base suction that attracts

the streamlines has to compete with the mixing and dissipation levels expected at this

Reynolds number, while at Re = 100 the flow regime remains laminar.

In order to support the observations above, streamlines obtained from the instantaneous

flow field are shown in figures 5.4. While some streamlines pass the body and continue in
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(a)

(b)

Figure 5.3: Streamlines of the mean flow taken at the middle (x, z)-plane at Re = 100
and 500 in uniform shear. (a) Re = 100 and; (b) Re = 500.

the direction of the main flow, as seen in figures 5.4(b) and (d), part of the recirculating

streamlines exhibit an helical motion in the positive z–direction. It can be further noticed

that although the pattern of recirculation at Re = 100 depicted by figure 5.4(a) is more

regular than that at Re = 500, the presence of two groups of streamlines recirculating in

opposite directions1 at the same time indicates that cellular vortex shedding is occurring.

Each of the two groups are shed with a phase difference in this case. In figures 5.4(c) and

(d) the streamlines exhibit a tangled form, which is related to the increasing disorder

in the fine scale structures due to higher local Reynolds numbers. Despite this spatial

complexity, the typical structure of the three-dimensional vortex shedding remains.

1Although these two regions can be identified as vortices, Jeong and Hussain (1995) showed that
streamlines do not provide an absolute criterion to identify a vortex.



Chapter 5. Results and discussion: Shear Flow 54

(a)

x/D

y
/
D

(b)

x/D

z
/
D

(c)

x/D

y
/
D

(d)

x/D

z
/
D

Figure 5.4: Instantaneous streamlines at Re = 100 and 500, and K = 0.1; close view
of the recirculation region. (a) Projection in the (x, y)–plane at Re = 100; (b) projection
in the (x, z)–plane at Re = 100; (c) Projection in the (x, y)–plane at Re = 500 and; (b)

projection in the (x, z)–plane at Re = 500.

Finally, the non–dimensional local separation length Ls/D is plotted along the span of

the curved cylinder in figure 5.5. The variation of Ls at Re = 100 in the presence of

shear is fairly similar to that observed in the uniform flow case (see figure 4.5), but

instead of being almost constant between the non–dimensional spanwise locations 0 and

8, it exhibits a local minimum at s/D ≈ 5. Such behaviour along the first part of

the span has its origin in the pressure coefficient distribution shown in figure 5.2(a).

Moreover, at Re = 100 the recirculation length for the shear flow case (K = 0.1) is

larger than that for the uniform flow case at all the spanwise locations; in this case the

maximum value of Ls is 2.475D, and it becomes zero at s/D = 16.41. At a Reynolds

number of 500, the local separation length at the top plane for uniform shear is twice

as that for uniform flow; here the maximum value of Ls/D is 3.175 at the top plane,

reaching zero at s/D = 12.33. Furthermore, the shape of the recirculation region is

substantially affected by the shear induced motion; the curve in figure 5.5 exhibits a
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Ls

Figure 5.5: Recirculation length Ls along the span of the curved cylinder at Re = 100
and 500 in uniform shear: —•— at Re = 100 and ; · · ·N · · · at Re = 100.

steep slope up to s/D = 6, then Ls/D is relatively constant before it drops to zero in

the interval s/D = 10–12. On both cases, Re = 100 and 500, uniform shear creates

longer separation length which is coupled with higher base pressure for s/D < 5.

5.2 Cellular vortex shedding

Vortices shed at different frequencies characterize the flow past a circular cylinder in

the presence of uniform shear. The arrangement of the streamlines shown in figure

5.4(a) gave an indication that, at least for Re = 100, a cellular pattern of the vortex

shedding is occurring. In order to validate this observation, a frequency analysis of

the time evolution of the cross-stream velocity v, evaluated within the (x, z)-plane of

symmetry, has been carried out. As in the previous cases, the total simulated time was

300D/Uc, which covers about 73 shedding cycles (taken at the mid height, i.e z/D = 9)

at Re = 100 and 500.

Figure 5.6 contains the plots of the time evolution and time traces of the v-velocity

component taken along a sampling line located at x/D = 18 for the two Re under

investigation. At Re = 100, periodic dislocations in the time evolution of v can be

identified in the upper part of the domain, as figure 5.6(a) depicts; this supports the

observation that vortices are shed at different frequencies, based on the streamlines plot
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in section 5.1. These dislocations arise at a local Reynolds number of 167 (z/D = 15.7),

which is lower than the critical Reynolds number range (Re = 180–194) for the mode A

instability described by Williamson (1996b). The discontinuities in the vortex shedding

frequency are therefore attributed to the shear rate imposed (K = 0.1). The time traces

of the v-velocity signals at four different vertical positions shown in figure 5.6(b) clearly

differ from those corresponding to uniform inflow. The behaviour in this case is quasi–

periodic, with the suppression of vortex shedding occurring around z/D ≈ 10, where

the signal almost dissappear. The periodic dislocations shown in figure 5.6(a) are due

to the splitting of the Kármán vortices as they are shed from the upper segment of the

curved cylinder. This splitting, for instance, can be identified in the periodic distortions

arising in the v-velocity trace at z/D = 16, and in the low frequency modulation at

z/D = 14; both features are characteristic of dislocations between cells in uniform

cylinders (Williamson, 1992). The period of the dislocations is five shedding cycles.

The time evolution of the v-velocity obtained at Re = 500 is shown in figure 5.6(c).

Here the signal is less synchronized and characterized by non-periodic occurrence of

vortex dislocations or vortex splits along the span. The corresponding time-traces of

the v-velocity are shown in figure 5.6(d). It was previously stated in section 4.2 that,

even though at Re = 500 in uniform flow the signals are distorted, they exhibit a fairly

periodic behaviour with similar amplitudes at different vertical positions. This is not

the case in the presence of shear, as seen figure 5.6(d), because noticeable differences

exist between the amplitude and frequency of the time-traces at the lower position at

z/D = 10, and those at the upper positions at z/D = 14, 16 and 18. Additionally,

the time-traces become less periodic as compared to the uniform flow case. Despite the

random fluctuations due to turbulence, a low frequency modulation is still visible in

certain signals.

In figure 5.7, we can also compare the power spectra of the v–velocity signal at two

different positions along the sampling line. The spectrum taken at z/D = 12 and

Re = 100 (figure 5.7.a) do not differ much from the spectrum obtained when the flow is

uniform at this Re. The peak corresponds to the dominant Strouhal frequency, and most

of the energy in the spectrum is concentrated around this point, with the peak differing

by a factor of ≈ 104 from the spectral densities at other frequencies. At z/D = 17

(figure 5.7.b), the spectrum exhibits a higher dominant shedding frequency together

with a increase in the energy level, this is evidently due to the higher local Reynolds
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Figure 5.6: Time analysis of cross-stream velocity v at Re = 100 and 500 in uniform
shear; sampling line taken at x/D = 18 in the middle (x, z)–plane. (a) Time evolution
of the velocity at Re = 100; (b) time trace of velocity at Re = 100; (c) Time evolution

of the velocity at Re = 500 and; (d) time trace of velocity at Re = 500.

number Rel. The spectral densities at Re = 500 become substantially more wideband;

this is especially evident at z/D = 9 (figure 5.7.c), where the peak in the spectrum

at fD/Uc = 0.244 differs only by a factor of ≈ 100 from the lower spectral densities.

The peak at z/D = 17 occurs at a higher frequency (fD/Uc = 0.367), as seen in

figure 5.7(d), and although the spectrum also possesses wideband, this peak is easily

distinguished from the other lower spectral densities.

The cellular pattern of the vortex shedding is even more clear in figure 5.8, where

the dominant shedding frequencies normalized by both, local U∞(z) and mid height

Uc velocities, are plotted versus the local Reynolds numbers Rel. The St-Re curve at

Re = 100 (figure 5.8.a) exhibits two frequency cells at fD/Uc = 0.240 and 0.283, the

length of these cells are 5.63D and 2.37D respectively; here the dislocation occurs at

Rel = 167 (z/D = 15.7). When the Reynolds number is increased to 500, on the other

hand, the St-Re curve exhibits four frequency cells at fD/Uc = 0.152, 0.176, 0.244

and 0.367; with dislocations occurring at Rel = 361, 384 and 575, as seen in figure

5.8(b). The length of these cells is 0.17D, 0.40D, 3.71D and 7.35D. It can be further
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Figure 5.7: Power spectra of the v-velocity signal at Re = 100 and 500 in uniform
shear; signal taken at x/D = 18. (a) Spectrum at z/D = 12 and Re = 100; (b)
Spectrum at z/D = 17 and Re = 100; (c) Spectrum at z/D = 9 and Re = 500 and; (d)

Spectrum at z/D = 17.

noticed that below z/D = 10 at Re = 100, the vortex shedding is suppressed despite

the fact that Rel = 110 (based on the local inflow velocity only), this is evidently due

to the interaction between shear flow and curvature effects. This interaction also occurs

at Re = 500, but since the local Reynolds numbers are higher, it is more difficult to

become aware of the combined effect between curvature and shear flow from the visual

inspection of figure 5.8(b).

5.3 Influence of the shear rate on the wake topology

Previous studies of uniform shear flow past a straight cylinder have reported oblique-

ness of the vortical structures, see for instance the work by Mair and Stansby (1975),

Mukhopadhyay et al. (2002), Silvestrini and Lamballais (2004). This is due to the fact

that the vortices are transported downstream at different velocities as they are shed from
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Figure 5.8: Strouhal frequencies along a sampling line taken at x/D = 18 in the
middle (x, z)–plane. Shear flow cases, ◦, St computed with the local inflow velocity

U∞; •, St computed with Uc. (a) Re = 100 and; (b) Re = 500.

the cylinder. This phenomenon was also detected on the flow past a curved cylinder at

K = 0.1, as seen in figure 5.9. Here the two cases analyzed in uniform shear (Re = 100

and 500) exhibit a rather high degree of obliqueness in their vortical structures.

The vortex cores at Re = 100 shown in figures 5.9(a) and (b) exhibit two distinct

behaviours related to the presence of uniform shear at the inlet. Close to the top of the

computational domain, where the highest local velocities of the free-stream occur, the

iso–surfaces of λ2 are associated to streamwise vorticity (ωx). This component arises

from two sources, one of them is the local Reynolds number range (Rel = 180–190),

and the other is the horseshoe vortex that form due to the bending of the vorticity

contained in the shear flow (ωy) when it encounters the cylinder (see section 1.4). The

presence of ωx leads to instabilities and the periodic splitting of the primary vortices

(or dislocations) discussed previously in the frequency analysis. Below the upper part

of the cylinder, the vortex cores becomes increasingly slanted as they are transported

further downstream. Previous studies of the cellular pattern of the vortex shedding and

the obliqueness of the vortices in the presence of shear consider a straight cylindrical

geometry (Kappler et al., 2005, Mair and Stansby, 1975, Mukhopadhyay et al., 2002,

Silvestrini and Lamballais, 2004, Woo et al., 1989), hence, further studies with different

shear rates are relevant for the understanding of the interaction between shear flow and

curved cylinders. For the uniform flow case at Re = 100, for instance, the streamwise

vorticity arises as an effect of curvature (see figure 4.9); the streamwise vorticity induced

by different shear rates may have either an adverse or favourable effect when interacting

with the streamwise vorticity due to curvature, changing thus the wake dynamics.

Besides the increasing obliqueness in the downstream direction, the shear flow case at
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Figure 5.9: Wake topology depicted as instantaneous iso–surfaces of λ2 for the cases
in uniform shear. (a) Projection in the (x, z)–plane at Re = 100 and λ2 = −0.2; (b)
projection in the (x, y)–plane at Re = 100 and λ2 = −0.2; (c) projection in the (x, z)–
plane at Re = 500 and λ2 = −2.5 and; (d) projection in the (x, y)–plane at Re = 500

and λ2 = −2.5.

Re = 500 exhibits vortical structures of a much finer–scale compared to the uniform

flow case. As seen in figure 5.9(c), these fine–scale structures are produced on the upper

portion of the domain (z/D = 14–18) due to the higher local Reynolds number. Below

z/D = 10, the structures associated with streamwise vorticity appears at the locations

where the primary vortices split.

The instantaneous streamwise vorticity components ωx and ωz at Re = 100 were plotted

in three consecutive planes in figure 5.10. The instantaneous streamwise vorticity in the

(y, z)–planes shown in figure 5.10(a) give a clear picture of the evolution of ωx in the

x–direction. The plane at x/D = 7 is located well within the recirculation region in the

upper portion of the cylinder, here we observe two parallel layers of ωx with opposite

sign corresponding to the bended vortex filaments of ωy in the shear flow. The plane

at x/D = 12 exhibits a similar pattern at the lower part of the curved cylinder, but

the layers of ωx here have different sign than those at x/D = 7; on the upper half

of this plane negative values of ωx prevail. At x/D = 18 the streamwise vorticity is

split into several regions of counter rotating vorticity. Regarding the vertical vorticity

component, figure 5.10(b) depicts the pattern for ωz on three consecutive (x, y)-planes.
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Figure 5.10: Isocontours of instantaneous vorticity at Re = 100 in uniform shear. (a)
ωx in the (y, z)-planes at x/D = 7, 12 and 18; (b) ωz in the (x, y)-planes at z/D = 8,

12.5 and 17.5.

Since the vortex shedding starts above z/D = 10, only two regions of ωz appear at

z/D = 8, here the flow could be regarded as locally stationary. At z/D = 12.5, where

the local Reynolds number is 135, a clear pattern of vortex shedding is represented by

the isocontours of ωz. Close to the top of the domain at z/D = 17.5 the pattern of ωz

is more irregular than that at z/D = 12.5, the ωz–cores are spread, covering a larger

area at this vertical location. Here Rel = 185, i.e. within the range at which the mode

A instability occurs (Williamson, 1988), thus the wake instabilities will be amplified as

they are transported further downstream.

Finally, the same analysis based on the vorticity components was performed at Re = 500.

In figure 5.11(a), the (y, z)-plane at x/D = 7 exhibits lower magnitudes of streamwise

vorticity in the recirculation zone as compared to the planes at z/D = 12 and 18, where

the wake has evolved. The two thin layers of ωx correspond to the horseshoe vortices

discussed above. This increase of ωx is not surprising since this case possesses three

sources of ωx, namely the curvature of the cylinder, the wake instabilities due to the

turbulent regime, and the shear rate imposed. As for the vertical component of the

vorticity ωz, figure 5.11(a) shows at the upper plane (z/D = 17.5) a stretching of the

vertical vorticity in the downstream direction close to the recirculation zone, presenting

a rather diffusive pattern as it continues downstream. The lower planes at z/D = 12.5

and 8 exhibit a characteristic vortex shedding pattern with some irregularities associated

to Re = 500.
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Figure 5.11: Isocontours of instantaneous vorticity at Re = 500 in uniform shear. (a)
ωx in the (y, z)-planes at x/D = 7, 12 and 18; (b) ωz in the (x, y)-planes at z/D = 8,

12.5 and 17.5.



Chapter 6

Conclusions

This work presents a series of numerical simulations of the flow past a curved circular

cylinder at Reynolds numbers of 100 and 500. The bluff body geometry was composed of

a quarter segment of a ring, and a horizontal extension between the end of the bend and

the outflow plane. The free-stream was parallel to the plane of curvature of the deformed

cylinder, and directed towards the outside region of the quarter-or-ring; this was the so-

called convex configuration. In the first set of simulations, a radius of curvature of 12.5D

was selected in order to enable comparison with the previous published study of Miliou

et al. (2007). In a second stage, the effects of increasing the radius of curvature to

25D and the influence of a sheared inflow were also investigated. In general terms, the

results obtained were in excellent agreement with those published by Miliou et al. (2007).

In addition, a combination of shear flow and curvature effects that led to oblique and

cellular vortex shedding was shown to occur for this convex configuration. Regarding the

DNS code MGLET used for the computations, the performance of the IBM method was

very promising when performing the simulations using this curved cylinder geometry

embedded in a Cartesian mesh.

The analysis of the mean pressure coefficients along the front and rear stagnation lines

revealed some characteristic features associated to the curvature of the cylinder, that

were previously reported by Miliou et al. (2007). In uniform flow, a negative pressure

gradient occurred along the front stagnation line at Re = 100 and 500. This pressure

variation induced the development of a significant axial flow aligned to the leading

edge of the curved cylinder. In the presence of shear, on the other hand, the pressure
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gradient along the front stagnation line was larger on the upper part of the cylinder,

due to the higher variation of the local velocities that resulted from the combination of

shear and curvature. Also in the shear flow cases, the mean pressure coefficient along

the rear stagnation line (or base line) exhibited a region of almost zero pressure gradient

on the upper part of the cylinder. This clearly affected the distribution of velocities

in the recirculation zone and the size of the recirculation bubble. Additionally, the

Independence Principle was shown to be valid for the pressure coefficients along the

stagnation lines up to an angle of 45◦ measured from the top plane. This was in good

agreement with the observations by Zhao et al. (2009) for a yawed cylinder.

The frequency of the vortex shedding, obtained from a spectral analysis of the temporal

evolution of cross-stream velocities, was an important parameter for comparison between

the different cases. When the flow was uniform the vortices were shed at one single

frequency along the span of the cylinder. This behaviour was previously reported by

Begak et al. (1985) and Miliou et al. (2007). Additionally, when at Re = 100 the radius

of curvature was increased from 12.5D to 25D, the Strouhal frequency remained the

same (St = 0.1758). This is in contrast with the observations by Begak et al. (1985),

who proposed a relationship for the variation of the Strouhal frequency with the radius

of curvature. Further work will help to elucidate this discrepancy. It was also noticed

that the domain size may influence the Strouhal frequencies at some degree. A difference

of 3.4% was estimated when the domain was increased in 5D between the inlet plane and

the cylinder, and 10D in the horizontal y-direction, independently. Furthermore, the

Strouhal frequency obtained at Re = 100 is higher than that corresponding to a straight

cylinder at the same Re, whereas at Re = 500 the Strouhal frequency for curved and

straight cylinders were the same.

A distinct vortex shedding pattern was observed in the presence of uniform shear flow,

with the vortices shed in cells of different frequency depending on the Reynolds number

used for the simulation. At a Reynolds number of 100, two distinct cells of different

shedding frequency with values fD/Uc = 0.240 and 0.283 were identified. The computed

length of these cells was 5.63D and 2.37D, with a dislocation at z = 15.7D occurring

periodically each five shedding cycles. A Reynolds number of 500 also yielded two

cells, this time with values fD/Uc = 0.244 and 0.367 and lengths of 3.71D and 7.35D,

respectively. The dislocation here occurred at z = 10.5D.
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The vortical structures in uniform flow at Re = 100 and 500 were in good qualitatively

agreement with those reported by Miliou et al. (2007). At Re = 100 the vortex cores

were vertical close to the body and exhibited slight distortions as they traveled fur-

ther downstream, whereas at Re = 500 the vortical structures were characterized by

three-dimensional wake instabilities of a smaller scale. While at Re = 500 most of the

streamwise vorticity was due to instabilities, at a Reynolds number of 100 the produc-

tion of streamwise vorticity was associated to curvature effects only. In the shear flow

cases, due to the high shear rate imposed (K = 0.1), the vortical structures exhibited

an increasing rate of obliqueness as they evolved downstream.

The issues presented in this work appear as very promising in the context of marine

structures such as catenary risers and cable lines. It is therefore intended to extend

this study to similar flow configurations, contributing thus to the knowledge of the flow

physics of the wake past such geometries.
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Abstract
The effect of uniform shear on the flow past a

curved cylinder has been studied by means of direct
numerical simulations. The geometrical configura-
tion consisted of a quarter-of-ring segment of non-
dimensional radius of curvature 12.5, and a horizontal
extension between the end of the bend and the outflow
plane. The flow was directed towards the external face
of the quarter-ring, and the non-dimensional shear-rate
at the input was set to K = 0 and 0.1. One single
shedding frequency prevailed along the entire span of
the cylinder for K = 0 whereas at a non-dimensional
shear-rate of K = 0.1, the shear flow gave rise to an
oblique and cellular vortex shedding pattern with two
dominant shedding frequencies decreasing toward the
horizontal extension. The local base pressure coeffi-
cient for uniform shear gave evidence of a region dom-
inated by favourable pressure gradient close to the top
of the cylinder which resulted in a longer recirculation
bubble in this region than for K = 0.

1 Introduction
Many offshore structures consist of several cylin-

drical elements. Catenary risers, cables and pipelines
are examples of simple marine structures which create
complex three-dimensional flow patterns when sub-
jected to hydrodynamic loads. Miliou et al. (2003)
approached this problem by considering the geome-
try of a catenary riser as a quarter segment of a ring,
and performed simulations at Re = 100 for differ-
ent flow configurations. In a subsequent work, Mil-
iou et al. (2007) studied the same geometry with the
free stream aligned with the plane of curvature of the
cylinder at Reynolds numbers of 100 and 500. An in-
teresting finding in their work was the presence of one
single shedding frequency along the span of the cylin-
der when the flow was directed towards the outer face
of the quarter-ring. This led to the conclusion that the
vortex shedding was driven by the shedding arising at
the top of the curved geometry.

Due to effects like wind and bottom interaction,
ocean currents have non-uniform velocity profiles that

affect the flow around bluff bodies. The physics of
uniform shear flow past a straight circular cylinder are
described by Zdravkovich (1997). The presence of a
uniform shear-rate gives rise to a spanwise pressure-
gradient that leads to a secondary flow in the front
and rear stagnation zones. A similar type of secondary
flow is induced by vorticity generated from the shear
flow. Another interesting phenomenon that occurs in
the presence of shear at the inlet is a cellular vortex
shedding pattern induced by the spanwise variations
in the Strouhal frequency. These three-dimensional ef-
fects are not easily extended to a curved circular cylin-
der because the distribution of the stagnation and the
base pressure along the span is also affected by the
curved geometry (see Miliou et al., 2007).

In the present study we perform direct numerical
simulation (DNS) of flow past a curved circular cylin-
der in uniform shear flow. This will enable us to study
the effect of a uniform shear-rate on the instantaneous
vortex topology, recirculation region as well as on the
shedding mechanisms. In order to enable comparison
with the published data, we intentionally considered
a convex-shape geometry identical to that studied by
Miliou et al. (2007) with uniform inflow.

2 Method

Flow configuration
Figure 1 shows a schematic view of flow past a

curved cylinder which is composed of a quarter seg-
ment of a ring and a horizontal extension. Of partic-
ular importance in curved cylinder flows is the non-
dimensional radius of curvature. This dimensionless
parameter is defined as the ratio of the radius of cur-
vature of the quarter-ring R to its cross-sectional di-
ameter D. In the present study we consider a flow
configuration identical to that of Miliou et al. (2007).
This consists of a quarter-ring with curvature ratio
R/D = 12.5 and a horizontal extension of length 10D
between the end of the bend and the outflow plane.
Throughout the present paper, the span s is defined as
the arc-length of the deformed cylinder measured from
the top plane; s = Rθ with θ the angle measured from
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Figure 1: Computational domain size, geometry and flow
configuration shown at the middle (x, z)-plane. The inflow
velocity varies linearly in the z-direction, with an average
value Uc at the mid height of the computational box. The
spanwise coordinate s is measured along the cross-sectional
axis following the curvature of the cylinder from the top
plane, varying between 0 and 19.6D at the end of the bend.

the top plane.
The dynamics of the flow are described by

the time-dependent Navier-Stokes equations for an
incompressible Newtonian fluid expressed in non-
dimensional form:

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂x2
j

, (2)

Here, the Reynolds number is based on the cylinder
diameter and the inflow velocity at the mid height of
the computational domain Re = UcD/ν, with ν the
kinematic viscosity. For the simulations presented in
this work we set Re = 500.

Numerical approach
The computational domain has streamwise length

Lx = 28D, cross-stream width Ly = 11D and
vertical height Lz = 18D. The center of the ring
is placed at (18D, 5.5D, 18D). This gives a mini-
mum distance of 5D between the solid body and the
front, side and bottom planes. The grid resolution
was kept the same for all simulations, and the num-
ber of grid points was 400 × 150 × 258 in the x, y
and z-directions, respectively. Non-uniform grid spac-
ing has been used in the three non-homogeneous di-
rections in order to adequately resolve the whole spec-
trum of scales. The minimum grid spacing was thus
∆x/D = 0.05, ∆y/D = 0.02 and ∆z/D = 0.057.

As for boundary conditions, the following have
been used:

(i) A free-slip condition on the top and bottom
planes as well as on the sides of the computa-
tional domain.

(ii) A uniform shear velocity profile at the inlet,
U∞(z)/Uc = Kz/D + U0/Uc, where the
non-dimensional inlet shear rate K was set to
0 and 0.1 for the two cases. Here, K =
(∂U∞/∂z)D/Uc, with ∂U∞/∂z defined as the
inflow shear rate; and U0 is the inflow velocity at
the bottom plane. In this context, we also define
the local Reynolds number as Rel = U∞D/ν.

(iii) At the outlet, a Neumann boundary condition
was prescribed for the velocities, i.e.
∂u/∂x = 0, ∂v/∂x = 0, and ∂w/∂x = 0; in
addition the pressure was set to zero. This gives
a fully developed zero stress condition in order
to avoid reflections from the outlet.

(iv) A direct forcing immersed boundary method
(IBM) was used to transform the no-slip condi-
tion at the cylinder surface into internal bound-
ary conditions at the nodes of the Cartesian grid
on which the computations were performed. A
least squares high-order method was considered
for the interpolations. The detailed derivation,
validation, and implementation of this technique
in the code MGLET can be found in Peller et al.
(2006).

The governing equations (1) and (2) have been
directly solved with the code MGLET (see Man-
hart, 2004). MGLET is a finite-volume code in
which the Navier-Stokes equations are discretised on
a staggered Cartesian mesh with non-equidistant grid-
spacing. The spatial discretization for the convective
and diffusive terms is of second order. For the time
advancement of the momentum equations an explicit
third-order Runge-Kutta scheme is used. The incom-
pressibility constraint is satisfied by solving the Pois-
son equation for the pressure by Stones strongly im-
plicit procedure.

The constant time step used for the simulations was
∆t = 0.005D/Uc which ensured small values of the
maximum Courant number. The flow field evolved to
a quasi-periodic state at tUc/D ≈ 100, after which
statistics were gathered for a period of 300D/Uc. In
order to verify that the current simulation is a fully re-
solved DNS, the Kolmogorov length scale η was esti-
mated from the energy dissipation rate ϵ as (ν3/ϵ)1/4.
The adopted grid spacing turned out to never exceed
4η.

3 Results and discussions
An interesting feature of the flow field is the vari-

ation of the mean pressure coefficient along the front
and rear stagnation lines. This is depicted in figure
2 where Cp is defined as 2(P − P∞)/ρU2

∞. Along
the front stagnation line, both the uniform (K = 0)
and shear flow (K = 0.1) cases are characterized by
a favourable pressure gradient which leads to the de-
velopment of an axial flow along the outer face of the
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Figure 2: Mean pressure coefficients Cp along the span of
the curved cylinder. Uniform flow at the inlet (K = 0):
—�—, stagnation pressure coefficient; —•—, base pressure
coefficient. Shear flow at the inlet (K = 0.1): · · · ∗ · · · ,
stagnation pressure coefficient; · · · N · · · , base pressure co-
efficient.
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Figure 3: Streamlines of the mean flow in the middle (x, z)-
plane. (a) Uniform; (b) shear flow.

quarter ring towards the horizontal cylindrical exten-
sion; see figure 3. Along the rear stagnation line the
uniform flow case (K = 0) indicates the presence
of an adverse pressure gradient along the entire span
length. For the shear flow case (K = 0.1), however,
the mean pressure coefficient exhibits a local mini-
mum at s/D ≈ 5.5, where a favorable pressure gra-
dient builds-up afterwards. The region of favourable
gradient yields a positive mean w-velocity which de-
flects the streamlines of the mean flow on the upper
part of the recirculation zone as shown in figure 3(b).

It is well known that the base pressure distribu-
tion (i.e. pressure along the rear stagnation line) in-
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Figure 4: Recirculation length Ls along the span of the
curved cylinder: —•— uniform flow (K = 0); —N— shear
flow (K = 0.1).

fluences, among other quantities, the size of the recir-
culation region which develops in the near-wake due
to the separation of boundary layers from the surface
of the solid body. This is reflected in figure 4 where the
non-dimensional local separation length Ls/D is plot-
ted along the span of the quarter-ring segment. Here,
Ls is defined as the streamwise distance from the rear
stagnation line to where the mean streamwise veloc-
ity changes sign from negative to positive. At the top
plane, the local separation length for uniform shear is
twice that for uniform flow. Moreover, the shape of
the recirculation region is substantially affected by the
shear induced motion. It changes from being relatively
constant along a major part of the span for K = 0 to
a monotonically decreasing pattern for K = 0.1. The
two profiles intersect around s/D ≈ 4.5 where the
separation length for the uniform flow case becomes
larger than that for uniform shear. Such a behaviour,
along the first part of the cylinder, has its origin in
the pressure coefficient distribution shown in figure 2.
Uniform shear creates longer separation length which
is coupled with higher base pressure for s/D < 4.5.

Frequency analysis
In order to investigate the shedding frequencies

and instabilities in the wake, the time evolution of the
cross-stream velocity v has been evaluated within the
(x, z)-plane of symmetry of the cylinder. The total
simulated time was 300D/Uc which covers about 67
shedding cycles for K = 0 and 73 shedding cycles for
K = 0.1.

Shown in figure 5 is the time evolution of the v-
velocity component taken along a sampling line lo-
cated at x/D = 18. In accordance with Miliou et
al. (2007), the pattern in figure 5(a) clearly indicates
strong alternating vortex shedding along the whole
span of the cylinder. However, some distinct dislo-
cations are observed close to the horizontal extension
between z/D = 6 and z/D = 8. In the presence
of shear, on the other hand, the signal is less synchro-
nized and characterized by non-periodic occurrence of
vortex dislocations or vortex splits along the span. The
corresponding time-traces of the v-velocity are shown
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Figure 5: Time evolution of cross-stream velocity v along a
sampling line taken at x/D = 18 in the middle (x, z)-plane.
(a) Uniform flow; (b) shear flow.

in figure 6 at four different vertical positions. In the
case of uniform flow, the signals exhibit a fairly pe-
riodic behaviour with similar amplitudes at the dif-
ferent vertical positions. For uniform shear, how-
ever, noticeable differences exist in the amplitude and
frequency of the time-traces between the lower posi-
tions at z/D = 8 and 10, and the upper positions at
z/D = 16 and 18. Additionally, the time-traces be-
come less periodic as compared to the uniform flow
case. In both cases, the presence of interspersed dis-
tortions in the signal reveal the characteristic flow fea-
tures of the transitional and turbulent regimes of the
wake of a straight cylinder (Williamson, 1996; Karni-
adakis & Triantafyllou, 1992).

In order to identify the dominant shedding frequen-
cies, a spectral analysis with basis on the time-domain
signals of the v-velocity has been carried out. The
sampling rate of the signals is 100Uc/D, which is
lower than the maximum value 1/∆t = 200Uc/D re-
quired to avoid aliasing effects (see Persillon & Braza,
1997). The v-velocity signals were taken at x/D =
18, and z/D = 10 and 18, and their spectra are shown
in figure 7. The uniform flow case exhibits a wide-
band spectrum with a dominant shedding frequency at
fD/Uc = 0.225, as shown in figure 7(a). This sug-
gests that despite the intermittent character of the flow
observed in figure 6(a), the vortex street pattern pre-
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Figure 6: Time traces of cross-stream velocity v along a sam-
pling line taken at x/D = 18 in the middle (x, z)-plane. (a)
Uniform flow; (b) shear flow.

vails at one single shedding frequency along the span
of the curved cylinder. On the other hand, figure 7(b)
shows that for the shear flow case the peaks in the
spectra of the two signals taken occur at different fre-
quencies. At z/D = 10 (Rel = 550) the spectrum is
broadbanded and the peak occurs at fD/Uc = 0.244,
while at z/D = 18 (Rel = 950) it is clear that the
dominant frequency is fD/Uc = 0.367.

The difference in the dominant frequencies re-
vealed by figure 7 for the shear flow case indicates
that the vortex shedding is arranged in a cellular pat-
tern (see for instance the work by Narasimhamurthy et
al., 2009; and Mukhopadhyay et al., 2002). This is ev-
ident in figure 8, where the dominant frequencies are
plotted versus the local Reynolds numbers. The St-Re
curve exhibits four frequency cells at fD/Uc = 0.152,
0.176, 0.244 and 0.367; with dislocations occurring at
Rel = 361, 384 and 575. The length of these cells is
0.17D, 0.40D, 3.71D and 7.35D.

Instantaneous vortical structures
In order to explore the instantaneous vortex topol-

ogy, regions of vortical motion are visualized using the
λ2 definition proposed by Jeong & Hussain (1995).
Following Jeong & Hussain (1995), λ2 identifies the
region of minimum pressure due to swirling motion
in an incompressible fluid based on the second largest
eigenvalue of the symmetric tensor ΩijΩij + SijSij ,
where Sij is the symmetric and Ωij the antisymmetric
part of the velocity gradient tensor.

The three-dimensional vortical structures observed
in this case are displayed in figure 9. For both cases,
uniform and shear flow, the isosurfaces of λ2 reveal the
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Figure 8: Strouhal frequencies along a sampling line taken
at x/D = 18 in the middle (x, z)-plane. Shear flow case,
•, St computed with the local inflow velocity U∞; ◦, St
computed with Uc.

presence of wake instabilities in the form of stream-
wise vortical structures. When the inflow is uniform,
the topology of the vortical structures is similar to that
observed by Miliou et al. (2007), the primary vortices
are roughly aligned with the geometry of the curved
cylinder and the stretching of these primary vortices
gives birth to the streamwise vorticity. On the other
hand, the shear flow case exhibits obliqueness of the
primary vortices which increases as the primary vor-
tices are convected downstream. Besides, due to the
relatively large local Reynolds numbers in the upper
portion of the domain, the vortical structures are char-
acterized by a finer-scale relative to the uniform flow
case.

According to Williamson (1992), a fundamental
mechanism in the transition to turbulence in the wake
of a straight cylinder is the appearance of intermittent
spanwise vortex dislocations. This feature has its ori-
gin in the differences in frequency of the spanwise
vortex shedding cells, producing streamwise vortic-
ity where the spanwise vortices split. This process is
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Figure 9: Side view showing isosurfaces of λ2. (a) Uniform
flow, λ2 = −1.5; (b) shear flow, λ2 = −2.5.

shown in figure 10(a) for the uniform flow case. The
instantaneous streamwise vorticity, represented by the
black isosurfaces, appears at the locations where split-
ting of the vertical vortices (white isosurfaces) occur.
Another feature mentioned by Williamson (1992) is
the helical twisting of the vortices, which is notice-
able in the ωz-isosurfaces in figure 10(a). When uni-
form shear is introduced to the flow, the ωz-isosurfaces
show different degrees of obliqueness and the insta-
bilities exhibit a finer-scale relative to the uniform
flow case, as seen in figure 10(b). Although the pres-
ence of streamwise vorticity is associated with three-
dimensional instabilities in the flow, the shear rate at
the inlet introduces a cross-stream vorticity component
ωy that is tilted when it interacts with the curved cylin-
der, turning ωy into ωx (see Woo et al., 1989).

Finally, in order to study the evolution of the wake
for the shear flow case, the instantaneous streamwise
vorticity ωx was plotted in three consecutive planes as
depicted in figure 11. The (y, z)-plane at x/D = 7
reveals lower magnitudes of streamwise vorticity in
the recirculation zone as compared to the planes at
z/D = 12 and 18, where the wake has evolved. This
delay in the appearance of ωx seems surprising since
this case possesses three sources of streamwise vor-
ticity, namely the curvature of the cylinder, the wake
instabilities and the shear rate.
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Figure 10: Detail of isosurfaces of instantaneous vorticity
ωx (black) and ωz (white). (a) Uniform flow isosurfaces
ωx, ωz = ±1.8; (b) shear flow isosurfaces at ωx, ωz ± 2.8.
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Figure 11: Cross-stream slices showing instantaneous
streamwise vorticity ωx at x/D = 7, 12 and 18 for the shear
flow case.

4 Conclusions
In this work, DNS of the flow past a curved cir-

cular cylinder at Re = 500 is performed to study the
influence of the curvature and different inflow condi-
tions on the wake dynamics. In order to compare our
results with the previous published studies, a uniform
inflow profile was considered in an initial stage. Then
the inflow condition was changed to a sheared inflow
profile which varied linearly in the z-direction.

Concerning the recirculation region, the base pres-
sure gradient for the uniform flow case was adverse
along the whole span, while the shear flow case ex-
hibited a region of favourable pressure gradient. This
clearly affected the distribution of velocities in the re-
circulation zone and the size of the recirculation bub-
ble. In the near wake, the time analysis for the shear
flow case revealed two distinct cells of shedding fre-
quency with values fD/Uc = 0.244 and 0.367. The
length of these cells was 3.71D and 7.35D, with a dis-
location occurring at z = 10.5D. From the vortical
structures analysis, streamwise wake instabilities were

identified in both cases. However, the shear flow case
was characterized by oblique vortex shedding as the
wake evolved downstream.

The issues presented here appear as very promising
in the context of marine structures such as catenary
risers and cable lines. It is therefore intended to extend
this study to similar flow configurations, contributing
thus to the knowledge of the flow physics of the wake
past such geometries.
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Abstract. The effect of uniform shear on the flow past a curved cylinder at a Reynolds
number of 100 has been studied by means of Direct Numerical Simulations on a staggered
Cartesian grid. The non-slip condition at the solid walls was taken into account by a
direct forcing Immersed Boundary Method. The geometrical configuration consisted of
a quarter-of-ring segment of non-dimensional radius of curvature 12.5, and a horizontal
extension between the end of the curved segment and the outflow plane. The flow was
directed towards the convex face of the quarter-ring, and the non-dimensional shear-rate
at the input was set to K = 0 and 0.1. One single shedding frequency prevailed along the
entire span of the cylinder for uniform flow (K = 0) whereas at a non-dimensional shear-
rate of K = 0.1, the shear flow gave rise to an oblique and cellular vortex shedding pattern
with two dominant shedding frequencies decreasing toward the horizontal extension. The
dislocations occurred periodically each five shedding cycles and at a local Reynolds number
of 167. The mean local base pressure for uniform shear gave evidence of a region dominated
by a fairly low favourable pressure gradient close to the top of the cylinder which resulted
in a longer recirculation bubble in this region than for K = 0.
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1 INTRODUCTION

Flows around circular cylinders comprise a variety of complex flow phenomena which
depend on the shape and orientation of the cylinder with respect to the flow direction
as well as on the incoming flow conditions. The flow past a straight circular cylinder is
perhaps the simplest of these configurations, and it is hardly surprising that this flow
problem has been extensively investigated during the past decades by means of labora-
tory experiments and computer simulations. Zdravkovich,1 for instance, has provided a
comprehensive review on this topic.

In many industrial applications, however, the flow past non-uniform circular cylinders is
frequently encountered. Such types of configurations give rise to different wake dynamics
compared to straight cylinder flows. A ring or torus with a circular cross-section, which is
obtained by bending a straight circular cylinder, represents an example of a non-uniform
cylinder geometry. Although the flow around a ring has been studied previously,2–4 most
of the studies have been focused on flows with the free stream aligned normal to the plane
of curvature of the ring. A variant of the ring-like geometry may be found in offshore
structures and marine operations, where hanging risers, anchor lines and pipelines form
catenaries whose geometries resemble that of a quarter turn of a ring with a high radius
of curvature. Miliou et al.5 used this geometry to investigate the flow past a riser at
Re = 100 by means of Direct Numerical Simulations (DNS) with the free-stream coming
from different directions. In a subsequent work, Miliou et al.6 studied the same geometry
with the free stream aligned parallel to the plane of curvature of the cylinder at Reynolds
numbers of 100 and 500. In this case, the authors observed different features in the vortex
shedding depending on the orientation of the cylinder with respect to the flow direction.

The other parameter affecting the wake in the flow past a circular cylinder, namely the
incoming flow condition, is of particular importance to the marine industry since ocean
currents interacting with waves, wind and the sea bottom have non-uniform vertical ve-
locity profiles. The experimental7–10 and numerical11,12 studies of the flow past a circular
cylinder in uniform shear flow have revealed the presence of secondary flows as well as
oblique and cellular vortex shedding as a direct consequence of the inflow condition. Due
to the shear effect, pressure gradients are generated along the front and rear stagnation
lines, causing secondary flows to appear at these locations. The experimental work done
by Woo et al.8 estimated magnitudes for the mean velocities induced by these pressure
gradients. In addition, the presence of horseshoe vortices may enhance these secondary
flows on the rear stagnation line. The numerical simulations of Miliou et al.6 on curved
circular cylinder flows predicted the existence of pressure gradients dictated by the ge-
ometry along the front and rear stagnation lines. This induced secondary flows along
the stagnation lines. It seems therefore interesting to investigate the effects of combining
incoming shear flow with a non-uniform geometry like a curved cylinder.

In the present study we perform DNS of the flow past a curved circular cylinder in
uniform shear flow. This will enable us to study the effect of a uniform shear-rate on the
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Figure 1: Computational domain size, geometry and flow configuration shown at the middle (x, z)-plane.
The size of the computational domain is 28D, 11D and 18D in the x-,y- and z-directions, respectively.
The inflow velocity varies linearly in the z-direction, with an average value Uc at the mid height of the
computational domain. The spanwise coordinate s is measured along the cross-sectional axis following
the curvature of the cylinder from the top plane, varying between 0 and 19.6D at the end of the bend.

instantaneous vortex topology, recirculation region as well as on the shedding mechanisms.
The previous DNSs with this geometry5,6 were performed using a spectral/hp element
Navier-Stokes solver and a boundary-fitted grid. In the present study the solution of
the Navier-Stokes equations is obtained with a Cartesian grid solver, and a direct forcing
Immersed Boundary Method (IBM) is used to implement the non-slip boundary condition
at the solid surfaces. It is thus intended to check the overall performance of these methods
for the complex geometry involved. In order to achieve this comparison, we intentionally
considered a convex-shape geometry identical to that studied by Miliou et al.6 with
uniform inflow.

2 FORMULATION

2.1 Flow configuration

Figure 1 shows a schematic view of flow past a curved cylinder which is composed
of a quarter segment of a ring and a horizontal extension. Of particular importance
in curved cylinder flows is the non-dimensional radius of curvature. This dimensionless
parameter is defined as the ratio of the radius of curvature of the quarter-ring R to its
cross-sectional diameter D. In the present study we consider a flow configuration identical
to that of Miliou et al.6 This consists of a quarter-ring with curvature ratio R/D = 12.5
and a horizontal extension of length 10D between the end of the bend and the outflow
plane. Throughout the present paper, the span s is defined as the arc-length of the curved
cylinder measured from the top plane; i.e. s = Rθ with θ the angle measured in radians
from the top plane.
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p(i, j)
u(i, j) u(i + 1/2, j)

u(i, j + 1/2)v(i, j)

Figure 2: Control volumes for the u-velocity (dashed lines) and the pressure (gray) in the staggered grid.

2.2 Governing equations of fluid motion

The dynamics of the flow are described by the time-dependent Navier-Stokes equations
for an incompressible Newtonian fluid expressed in non-dimensional form:

∂ui

∂xi

= 0, (1)

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+
1

Re

∂2ui

∂x2
j

, (2)

Here, the Reynolds number is based on the cylinder diameter and the inflow velocity at
the mid height of the computational domain, Re = UcD/ν, with ν the kinematic viscosity.
For the simulations presented in this work we set Re = 100.

2.3 Numerical method

The governing equations (1) and (2) have been directly solved with the code MGLET.
In this finite-volume code, the Navier-Stokes equations for an incompressible fluid are
discretised on a staggered Cartesian mesh with non-equidistant grid-spacing.13,14 The
mid-point rule14 is employed to approximate the fluxes with the variables defined on the
control cell shown in figure 2. The velocities u(i + 1/2, j) and u(i, j + 1/2) at the faces
of the momentum cell for the u-velocity are obtained by linear interpolation. A central
difference scheme is used to approximate the derivatives in the x- and y-directions at the
positions (i + 1/2, j) and (i, j + 1/2) respectively, ensuring second order accuracy in the
spatial discretization of the convective and diffusive terms.15

For the time advancement of the momentum equations an explicit third-order Runge-
Kutta scheme is used. The pressure at the new time level n + 1 is found by solving
the Poisson equation for the pressure correction ∆pn+1 = pn+1 − pn based on the the
intermediate velocity fields u∗ computed from the momentum equation (2). The Poisson
equation is solved iteratively by the Stones strongly implicit procedure (SIP), producing
intermediate pressure p∗ and velocity u∗ fields at each iteration. The divergence of the

4
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intermediate velocity fields div(u∗) is checked against a defined tolerance ϵ for each iter-
ation. When div(u∗) ≤ ϵ the intermediate pressure and velocity fields are updated at the
next time step tn+1.

2.4 Immersed boundary method

At the walls, the non-slip and non-impermeability conditions are taken into account by
using a direct forcing Immersed Boundary Method (IBM). Basically, the cells at the fluid-
solid interface are transformed into internal boundary conditions on the corresponding
computational domain by using higher order interpolation from the fluid cells in the
vicinity of the body. This method represents a simple way to deal with complex geometries
avoiding the need to generate a body fitted grid. A detailed review of the IBM method
is found in the work by Mittal and Iaccarino.16

The general stencil configuration for the IBM method is depicted in figure 3 for the
one-dimensional case. Here ϕ represents one of the velocity components, ϕ0 is the internal
Dirichlet boundary condition, ϕr the value at the wall; and ϕ1, ϕ2 and ϕ3 the values in the
fluid used for the interpolation. The internal boundary condition based on interpolation
from N neighboring cells is determined by the following expression

ϕ0 =

(
N∑

i=1

αiϕi

)
+ αrϕr (3)

where αi and αr are the interpolation coefficients for the variable ϕ at the fluid cells and
the body, respectively.

As mentioned above, MGLET uses a Cartesian staggered grid, which means that the
boundaries between velocity and pressure cells do not coincide, as shown in figure 2. The
blocking strategy for the IBM method is pressure oriented, then the blocked cells are
pressure cells that lie within the surfaces that demarcate the solid walls. According to
this criterion, the blocked velocity cells are those touched by the blocked pressure cells.

The interpolation can be either carried out by Lagrange polynomials or using least
squares interpolation. It was shown by Peller et al.17 that the interpolation coefficients
αi and αr depend only on the geometry, thus they can be determined in a preprocessing
step. In order to account for three-dimensionality, weighting factors are estimated in the
different directions to compute ϕ0. Finally, the computational representation of the body
can be done analytically or using a non-structured mesh consisting of triangles.

2.5 Simulation parameters and implementation

In the present work the dimensions of the grid in each direction are Nx = 400, Ny = 150
and Nz = 258, resulting in a total of 15.48 × 106 grid points. The data for a straight
uniform circular cylinder presented by Zdravkovich1 was used to interpolate the boundary
layer thickness δ, obtaining δ ≈ 0.5D at Re = 100. In order to adequately resolve
the details of the boundary layer and the wake, non-uniform grid spacing is used in
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(xr, ϕr), triangle intersection point
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Blocked cell at interface

Blocked cell
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Figure 3: One-dimensional stencil for the interpolation in the x-direction using the IBM method; the
body boundary corresponds to the thick blue line. Adapted from the work by Peller et al.17

(a) (b)

Figure 4: Detail of the 400 × 150 × 258 Cartesian mesh around the curved cylinder . (a) View of the
(x, y)- and (y, z)-planes; (b) (x, y)- and (x, z)-planes.

the three spatial directions. The minimum grid spacing for the uniform and shear flow
cases are ∆x/D = 0.05, ∆y/D = 0.02 and ∆z/D = 0.057 in the x-, y- and z-directions
respectively. Different planes of the mesh close to the body are shown in figure 4, depicting
the clustering of points in the vicinity of the body.

Figure 5 shows the blocking of the Cartesian grid by the IBM method in the (x, y)-
and (y, z)-planes. The least squares method was chosen as interpolation scheme since it
possesses better stability properties than the Lagrange interpolation method.17 The body
composed of a quarter-ring and a horizontal extension were represented by a structured
mesh consisting of triangles. The resolution of this mesh was rather high in order to avoid
errors in the representation of the curved surfaces. In addition, the following boundary
conditions were imposed:

1. A free-slip condition on the horizontal top (z = 18D) and bottom (z = 0) planes as
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Figure 5: View of the blocking of cells in the Cartesian mesh by the IBM method. (a) View of the
(x, y)-plane at z/D = 14; (b) (y, z)-plane at x/D = 12.

well as on the vertical sides (y = 0 and 11D) of the computational domain.

2. A uniform shear velocity profile at the inlet,

U∞(z)

Uc

=
Kz

D
+

U0

Uc

, (4)

where the non-dimensional inlet shear rate K was set to 0 and 0.1 for the two cases
studied. Here, K = (dU∞/dz)D/Uc, with dU∞/dz defined as the inflow shear rate;
and U0 is the inflow velocity at the bottom plane (z = 0). In this context, we also
define the local Reynolds number as Rel(z) = U∞(z)D/ν.

3. At the outlet (x = 28D), a Neumann boundary condition was prescribed for the
velocities, i.e. ∂u/∂x = 0, ∂v/∂x = 0, and ∂w/∂x = 0; in addition the pressure was
set to zero (p = 0). This gives a fully developed zero stress condition in order to
avoid reflections from the outlet.

The constant time step used for the simulations was ∆t = 0.005D/Uc which ensured
low values of the maximum Courant number. The flow field evolved to a quasi-periodic
state at tUc/D ≈ 100, after which statistics were gathered for a period of 300D/Uc.

The code was run in parallel on an IBM p575+ machine. A discussion on the efficiency
of the parallelization in the code MGLET is found in the work by Manhart et al.13 All
the simulations were run on 48 processors, the domain decomposition consisted of 16
processors in the x-direction and 3-processors in the y-direction. In average, the time
required to compute one time-step was 2 seconds, resulting in approximately 33 hours to
run the 60000 time steps required to gather statistics.
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José P. Gallardo, George K. El Khoury, Bjørnar Pettersen and Helge I. Andersson

3 RESULTS

3.1 Near wake flow

An interesting feature of the flow field is the variation of the mean pressure along the
front and rear stagnation lines. This is depicted in figure 6(a) where the non-dimensional
mean stagnation pressure Ps/ρU2

0 is plotted as a function of the span s. Along the front
stagnation line, both the uniform (K = 0) and shear flow (K = 0.1) cases are characterized
by a negative pressure gradient (∂p/∂s < 0) which leads to the development of an axial
flow along the convex face of the quarter ring towards the horizontal cylindrical extension.
Along the rear stagnation line the uniform flow case (K = 0) indicates the presence of
a positive gradient along the entire span length (∂p/∂s > 0). For the shear flow case
(K = 0.1), however, the mean pressure exhibits a weak negative pressure gradient up to
s/D ≈ 4, where a positive pressure gradient builds-up afterwards.

It is well known that the base pressure distribution (i.e. pressure along the rear stag-
nation line) influences, among other quantities, the size of the recirculation region which
develops in the near-wake due to the separation of boundary layers from the surface of
the solid body. This is reflected in figure 6(b) where the non-dimensional local separation
length Ls/D is plotted along the span of the quarter-ring segment. Here, Ls is defined
as the streamwise distance from the rear stagnation line to where the mean streamwise
velocity changes sign from negative to positive. At the top plane, the local separation
length for the uniform flow case is approximately 1.5D; this value remains constant up
to s/D ≈ 8, then it starts decreasing monotonically, reaching zero close to the horizontal
part of the cylinder, at s/D ≈ 15. The variation of Ls for the shear flow case is fairly sim-
ilar to that of the uniform flow case, but instead of being constant between the spanwise
locations 0 and 8 it exhibits a local minimum at s/D ≈ 5. Such a behaviour, along the
first part of the span, has its origin in the pressure coefficient distribution shown in figure
6(a). It is noteworthy that the recirculation length for the shear flow case (K = 0.1) is
larger than that for the uniform flow case (K = 0) at all the spanwise locations.

Further differences between the uniform and shear flow cases are noticeable by looking
at the isocontours of mean u- and w-velocities, shown in figures 7(a) to 7(d). When the
inflow is uniform (K = 0), the lowest mean streamwise velocities in the recirculation
region occur close to the top of the cylinder, as seen in figure 7(a), while at a shear rate of
0.1 the region of lowest mean u-velocities is located downwards between z/D = 12 and 14
(figure 7c). The contour plot of mean w-velocity for the shear flow case displays a large
region with positive vertical velocities on the upper part of the recirculation region (figure
7d); in this case the contours of negative w-velocities are located close to the horizontal
extension, with the region of positive velocities above. The uniform flow case, on the
other hand, exhibits only a thin region of positive mean w-velocities attached to the rear
stagnation line, and negative mean w-velocities prevailing in the rest of the recirculation
zone (figure 7b).
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Figure 6: Near wake behaviour for the uniform and shear flow cases. (a) Pressure Ps on the front and
rear stagnation lines along the span of the curved cylinder. Uniform flow at the inlet (K = 0): —�—,
stagnation pressure coefficient; —•—, base pressure coefficient. Shear flow at the inlet (K = 0.1): · · ·∗· · · ,
stagnation pressure coefficient; · · · N · · · , base pressure coefficient. (b) Recirculation length Ls along the
span of the curved cylinder: —•— uniform inflow (K = 0); —N— shear inflow (K = 0.1).

3.2 Analysis of vortex shedding pattern

In the previous subsection it was discussed how the curved shape and the inflow con-
dition affect the near wake flow. As the flow evolves downstream, the different types of
instabilities created close to the body will be amplified, leading to a regular shedding of
vortices commonly referred to as a Kármán vortex street. In a similar way as for the near
wake flow, the frequency of the shedding and the shape of these vortices will vary accord-
ing to the geometry and the incoming flow conditions. Figure 8 shows the time evolution
of the cross-stream velocity v along a vertical line taken at x/D = 18 and the vortical
structures depicted by instantaneous λ2-isosurfaces.18 The scalar quantity λ2 defines a
region of minimum pressure due to swirling motion in an incompressible fluid based on
the second largest eigenvalue of the symmetric tensor ΩijΩij + SijSij, where Sij is the
symmetric component of the velocity gradient tensor and Ωij the antisymmetric part.

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (5)

Ωij =
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
. (6)

The v-velocity signal taken for the uniform flow case (K = 0) shown in figure 8(a) is
periodic along the vertical line, the pattern clearly corresponds to regular laminar flow,
with no distortions occurring; the vortex cores represented as isosurfaces of λ2 = −0.1
are vertical close to the body, presenting slight distortions as they move downstream. As
previously reported by Miliou et al.,6 the vortex shedding pattern for K = 0 corresponds
to that of laminar flow, no dislocations occur despite the non-uniform geometry of the
cylinder. A question that remains open here is whether cellular vortex shedding will occur
or not if the radius of curvature R is increased; this topic is currently under investiga-
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Figure 7: Isocountours of mean streamwise and vertical velocities in the (x, z)-plane. (a) Mean u-velocities
for the uniform flow case; (b) mean w-velocities for the uniform flow case; (c) mean u-velocities for the
shear flow case; and (d) mean w-velocities for the shear flow case.

tion. For the shear flow case (K = 0.1), on the other hand, periodic dislocations can be
identified in the upper part of the domain in the time evolution of v, as seen in figure
8(b). These dislocations arise at a local Reynolds number of 167 (z/D = 15.7), close to
the Reynolds number range at which the mode A instabilities described by Williamson19

appear. Furthermore, the vortex cores represented as isosurfaces of λ2 = −0.1 display a
high degree of obliqueness relative to the vertical, also a consequence of the shear rate
imposed.

The plot of the time traces of the cross-stream velocities at x/D = 18 and at six
different positions along the z-axis shown in figure 9(a) gives a clear picture of the periodic
behaviour of the uniform flow case. With the exception of the time trace at z/D = 8,
where the vortex shedding is less energetic, all the traces plotted have almost the same
amplitude. In this case the suppression of the vortex shedding occurs at z/D ≈ 7. At
an inflow shear rate of 0.1, the trace signals of the v-velocities clearly differ from those
corresponding to uniform inflow. The behaviour in this case is quasi-periodic, with the
suppression of vortex shedding occurring around z/D ≈ 10. The periodic dislocations
shown in figure 8(b) are due to the splitting of the Kármán vortices as they are shed from
the upper segment of the curved cylinder. This splitting, for instance, can be identified
in the v-velocity trace at z/D = 16; here the signal exhibits a low frequency modulation
and the dislocations occur each five shedding cycles.
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z
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Figure 8: Time evolution of cross-stream velocity v along a sampling line taken at x/D = 18 in the
middle (x, z)-plane (y/D = 5.5) to the left, and vortex cores represented as isosurfaces of λ2 = −0.1 to
the right. (a) Uniform inflow; (b) shear inflow.

In order to identify the dominant shedding frequencies, a spectral analysis with basis on
the time-domain signals of the v-velocity has been carried out. The sampling rate of the
signals is 100Uc/D, which is lower than the maximum value 1/∆t = 200Uc/D required
to avoid aliasing effects (see Persillon & Braza20). The dominant shedding frequency
obtained by Fourier analysis for the uniform flow case is fD/Uc = 0.176, prevailing
along the whole sampling line, with no cellular arrangement of the vortices. This is in
good agreement with the frequency 0.1761 reported by Miliou et al.6 for their convex
configuration. It has been shown in previous studies of circular cylinders that when
uniform shear flow is imposed as an inflow boundary condition, the vortex shedding will
arrange in a cellular pattern; see for instance the work by Mukhopadhyay et al.11 This
is the case in figure 10(a), where the dominant frequencies are plotted versus the local
Reynolds numbers. The St-Re curve exhibits two frequency cells at fD/Uc = 0.240
and 0.283, with lengths 5.63D and 2.37D respectively; here the dislocation occurs at
Rel = 167 (z/D = 15.7). Shown in figure 10(b) are the isocountours of streamwise
vorticity ωx in the middle (x, z)-plane, displaying the highest intensities close to the top
of the computational domain. Close to the upper part of the body, regions of streamwise
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Figure 9: Time traces of cross-stream velocity v along a sampling line taken at x/D = 18 in the middle
(x, z)-plane (y/D = 5.5). (a) Uniform inflow; (b) shear inflow.

vorticity with opposite sign can be identified, triggering the splitting of the main oblique
vortices (Kármán vortices). This fragmentation was observed by Persillon & Braza20

in their numerical simulations for a straight cylinder when they increased the Reynolds
number beyond 190.

Further insight in the vortex shedding behaviour can be gained from the isosurfaces
of instantaneous streamwise and vertical vorticity, which have been plotted in figure 11.
The white isosurfaces correspond to the primary vortex cores represented by ωz, while
the black isosurfaces depict the streamwise vorticity ωx. The shape of the primary vortex
cores shown in figure 11(a) is similar to those expected for a straight circular cylinder
(i.e. vertical). Furthermore, this particular geometry triggers streamwise vorticity in the
lower part of the domain, affecting the vortex shedding pattern with respect to that of a
straight circular cylinder. The streamwise vorticity for the shear flow case exhibits two
distinct behaviours related to the presence of uniform shear at the inlet. Close to the top
of the computational domain, where the highest local velocities of the free-stream occur,
the presence of streamwise vorticity reveals the instabilities that lead to the splitting of
the primary vortices discussed previously. Below this region, the isosurfaces of streamwise
vorticity are strongly slanted and are clearly related to the oblique shedding of vortices.
The cellular pattern of the vortex shedding and the obliqueness of the vortices behind a
bluff body has been previously reported.7–12 Most of these studies, however, consider a
straight cylindrical geometry. Hence, further studies with different shear rates are relevant
to better understand the interaction of the shear flow with this geometry. From figure
11(a), for instance, it was shown that streamwise vorticity arises as an effect of the curved
geometry for the uniform flow case; the tilting of the vorticity induced by different shear
rates may have either an adverse or favourable effect when interacting with the vorticity
induced by geometry effects.

Finally, in order to study the evolution of the wake for the shear flow case, the instan-
taneous streamwise vorticities ωx and ωz were plotted in three consecutive planes in figure
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Figure 10: (a) Strouhal frequencies along a sampling line taken at x/D = 18 in the middle (x, z)-plane
(y/D = 5.5). Shear flow case, •, St based in the local inflow velocity U∞(z); ◦, St based in Uc. (b)
Isocontours of instantaneous streamwise vorticity ωx in the middle (x, z)-plane (y/D = 5.5).

12. The instantaneous streamwise vorticities in the (y, z)-planes shown in figure 12(a) give
a clear picture of the evolution of ωx in the x-direction. The plane at x/D = 7 is located
within the recirculation region in the upper portion of the cylinder, here we observe two
parallel layers of ωx with opposite sign corresponding to the bended vortex filaments of ωy

induced by the shear rate.8 The plane at x/D = 12 exhibits a similar pattern at the lower
part of the curved cylinder, but the layers of ωx here have different sign than those at
x/D = 7; on the upper half of this plane negative values of ωx prevail. At x/D = 18 the
streamwise vorticity is split into several regions of counter rotating vorticity. In a similar
way, figure 12(b) depicts the pattern for the vertical vorticity ωz on three consecutive
(x, y)-planes. Since the vortex shedding starts above z/D = 10, only two regions of ωz

appear at z/D = 8, here the flow could be regarded as locally stationary. At z/D = 12.5,
where the local Reynolds number is 135, a clear pattern of vortex shedding is represented
by the isocontours of ωz. Close to the top of the domain at z/D = 17.5 the pattern of
ωz is more irregular than that at z/D = 12.5, the ωz-cores are spread, covering a larger
area at this vertical location; here Rel = 185, i.e. within the range at which the mode A
instability occurs,19 thus the wake instabilities will be amplified as they are transported
downstream.

4 CONCLUSIONS

In this work, DNS of the flow past a curved circular cylinder at Re = 100 is performed to
study the influence of the curvature and different inflow conditions on the wake dynamics.
In order to compare our results with the study by Miliou et al.,6 a uniform inflow profile
was considered as inflow boundary condition in an initial stage. Subsequently, the inflow
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Figure 11: Detail of isosurfaces of instantaneous vorticity ωx (black) and ωz (white). (a) Uniform flow,
isosurfaces of ωx = ±0.3 and ωz = ±1.2; (b) shear flow, isosurfaces of ωx = ±0.7 and ωz = ±1.6.

condition was changed to uniform shear with a shear rate of K = 0.1.
In general terms, good agreement was obtained between the present work and the

results reported by Miliou et al.6 for the uniform flow case. As a qualitative comparison,
the vortical structures depicted in figure 8 exhibited the same shape as those reported in
the mentioned study. Initially the vortex cores are vertical, then, as they travel further
downstream, small distortions appear in the λ2-isosurfaces. Additionally, the Strouhal
frequency obtained for the uniform case (fD/Uc = 0.176) was the same as that reported
by Miliou et al.6

Concerning the recirculation region, the base pressure gradient for the uniform flow
case was adverse along the whole span, while the shear flow case exhibited a region of
weak favourable pressure gradient. This clearly affected the distribution of velocities in
the recirculation zone and the size of the recirculation bubble, which was larger than the
recirculation bubble for the uniform flow case along the whole span, despite the local
minimum observed in figure 6(b). Further downstream in the wake, the time analysis for
the shear flow case revealed two distinct cells of different shedding frequency with values
fD/Uc = 0.240 and 0.283. The computed length of these cells was 5.63D and 2.37D, with
a dislocation occurring at z = 15.7D. Furthermore, it was estimated that the dislocations
occurred periodically each five shedding cycles. The analysis of vortical flow structures
based on the instantaneous λ2- and vorticity-isosurfaces revealed streamwise vorticity
induced by the geometry for the uniform flow case, and streamwise wake instabilities for
the shear flow case. Additionally, the shear flow case was characterized by oblique vortex
shedding as the wake evolved downstream.

The performance of the IBM method was very promising when performing the simula-
tions using this curved cylinder geometry embedded in a Cartesian mesh. It is therefore
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Figure 12: Instantaneous isocontours of vorticity for the shear flow case. (a) ωx in the (y, z)-planes at
x/D = 7, 12 and 18; (b) ωz in the (x, y)-planes at z/D = 8, 12.5 and 17.5.

intended to extend this study to other shear rates and radii of curvature, contributing
thus to the knowledge of the flow physics of the wake past such geometries.
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Appendix C

Visualizations

Since the presentation of the results obtained from the numerical simulations imply to

choose either a position in space to study time evolution, or a specific position in time to

study instantaneous quantities, part of the information is somehow lost in this process.

A visualization allows in some cases for a better understanding of some flow features, and

it gives additionally an general idea of how the flow behaves. The following animations

are included in the CD attached to this thesis.

1. Re = 100 with uniform flow in folder /Re100/Re100Uniform/.

1.1 Animation of v-velocity in the (x, z)-plane; folder /2D/, file xzV_Re100U.

1.2 Animation of the iso-surfaces of ωx and ωz (3D) in perspective view, and

projections in the (x, y)- and (x, z)-planes; folder /3D/, files isoOMXOMZ,

xyOMXOMZ and xzOMXOMZ.

1.3 Animation of the square-root of enstrophy |ω| = (ω2
x +ω2

y +ω2
z)1/2 (in 3D), in

perspective view, and projections in the (x, y)- and (x, z)-planes; folder /3D/,

files iso_ens, xy_ens and xz_ens.

2. Re = 100 with shear flow in folder /Re100/Re100Shear/.

2.1 Animation of v-velocity in the (x, z)-plane; folder /2D/, file xzV_Re100S.

2.2 Animation of the iso-surfaces of ωx and ωz (3D) in perspective view, and

projections in the (x, y)- and (x, z)-planes; folder /3D/, files isoOMXOMZ,

xyOMXOMZ and xzOMXOMZ.
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2.3 Animation of the square-root of enstrophy |ω| = (ω2
x +ω2

y +ω2
z)1/2 (in 3D); in

perspective view, and projections in the (x, y)- and (x, z)-planes; folder /3D/,

files iso_ens, xy_ens and xz_ens.

3. Re=500 with uniform flow in folder /Re500/Re500Uniform/.

3.1 Animation of v-velocity in the (x, z)-plane; folder /2D/, file xzV_Re500U.

4. Re=500 with shear flow in folder /Re500/Re500Shear/.

4.1 Animation of v-velocity in the (x, z)-plane; folder /2D/, file xzV_Re500S.
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