
 NTNU
 Norwegian University of Science and Technology
 Department of Marine Technology

Address: Location Tel. +47 73 595501
NTNU Marinteknisk Senter Fax +47 73 595697
Department of Marine Technology O. Nielsens vei 10
N-7491 Trondheim

MSc Master Thesis

Configuration Tool for Conceptual Design

of an Offshore Supply Vessel using

3D Modular Building Blocks

by

Tommy Torgersen

Spring 2009

Advisor

Stein Ove Erikstad

MSc Master Thesis

Stud. techn. Tommy Torgersen

“Configuration Tool for Conceptual Design

of an Offshore Supply Vessel Using

3D Modular Building Blocks”

Spring 2009

Background

A key research areas within Marine Systems at NTNU is the development of
efficient design tools and methodologies to be used in the tendering and
conceptual design of complex marine systems, such as ships and offshore
structures. One particular area is the efficient development of customized
designs based on the configuration of components from an existing library
or product platform. This process should be driven forward both by the
human designer using an efficient form and 3D based user interface to
select, scale and arrange components into a synthesized solution, as well as
applying rules to propose, effectuate and verify the solution along the way.

Overall aim and focus

The overall aim of the thesis is to develop a first prototype, with
corresponding product models that may serve as a basis for a 3D modular
building block approach in a configuration-based conceptual design process.
The case domain should be OSVs, but to the extent possible the conclusions
made should be made general.

Scope and main activities

The candidate should presumably cover the following main points:

1. Describe a relevant case for the conceptual design of a Platform Supply
Vessel or similar, based on an existing design. Identify (high level) main
modules both from a geometry and systems point-of-view.

2. Discuss the architecture/structure and important features for a PSV design
configuration application.

3. Investigate the Microsoft Xna framework and how this can be used for the
3D visualization.

4. Investigate the arrangement, scaling and selection process for some of the
parts and systems.

5. Discuss representation models for both the product (ship) to be designed,
and the library of modules to select from, in the configuration application.

6. Draw a general conclusion on the applicability of this approach to support
the conceptual design of marine systems such as PSV, and discuss to what
extent these conclusions are also valid for other marine systems.

Modus operandi

A prototype for an external configuration application should be developed in
Visual Studio using C#, since this is preferable both for the BRIX Rule
Framework integration and with respect to a possible collaboration with
DNV during the project.

At NTNU, Professor Stein Ove Erikstad will be the responsible supervisor for
the project.

The project is within the topic area of the KMB R&D project SHIP-4C, and is
thus eligible for travelling grants from this project.

The work shall follow the guidelines given by NTNU for the MSc Thesis work.

Stein Ove Erikstad
Professor /Supervisor at NTNU

Preface

This project was conducted as the master thesis of my MSc. de-
gree, at the Norwegian University of Science and Technology. I am
studying I&IKT, a combination of computer science and marine
technology, and have tried to combine both fields in this thesis.

Based on the work done in my previous project [Torgersen, 2008],
I have now performed further studies regarding the process of
parts and systems selection, as well as arrangement visualization
for the configuration of PSVs. An improved version of the first
configuration application prototype has been developed. This time
with integrated 2D and 3D graphics.

I have had some challenges working with this thesis. One con-
stantly recurring problem was good ideas that seemed valid on
paper and in theory, but turned out to be much more complex,
and even impossible when it came to implementation. As a result
of this I have used much time in this project to verify, that the
content presented in this report actually is possible to implement.

I would like to thank my advisor professor Stein Ove Erikstad
for all the help I have received during this project. I have also
discussed different aspects of my work with the students Eskild
Thereby, Magnus Porsmo Stoveland and Janina Therese Meyer,
which has been very helpful. They have been working on projects

VI

within some of the same subjects.

Trondheim, June 9, 2009

Tommy Torgersen

Summary

The individual offshore supply ships are complex and often de-
signed to perform some specific tasks. This makes it complicated
to reuse the previous designs. Developing these kinds of vessels
require an experienced design team and a lot of time. To help with
this process, various tools have been made to assist the engineers
to perform their job faster and more efficient. These systems are
made in order to try and utilize some of the design knowledge and
reuse this in new projects.

In this thesis I have been looking into how a prototype for PSV
configuring application could be made. Earlier design knowledge
are extracted, to form a basis for selection of parts and system for
the vessel being design. Subsets of different components from the
database, to select form, are generated by the program. These lists
contain parts and systems that are ranked based on rules in the
application and requirements inserted by the user. Components
with scores that do not meet these criteria are removed.

The graphics is made based on Microsoft Xna. I chose this frame-
work because it was easy to use, had a lot of helpful features and
could import models from a lot of different applications. Models
and even entire scenes can be designed in external applications
like 3D Studio Max, and then be inserted into the configuration
application. This is done by the .FBX file format.

The prototype is developed with a four layered architecture, to
group coherent code and increase modifiability and maintainabil-

VIII

ity. The user interacts with the top layer. This presentation layer
contains the configuration panels and a 3D visualization window
based on Xna. The business layer beneath performs calculations
based on the user input, like determining the size and number
of cargo tanks based on cargo capacity. The third layer defines
the domain objects, like Tank, Cargo, Ship and Cabin. These are
stored and retrieved from the database with queries from the ac-
cess layer at the bottom.

Contents

I Problem formulation III

II Preface V

III Summary VII

IV Contents IX

V List of Figures XII

VI List of Tables XVI

VII Abbreviations XVIII

1 Introduction 1

2 Existing configuration systems 5

2.1 Quaestor and Rhinoceros 5

2.2 Paramarine . 7

3 Platform supply vessel 9

X Contents

3.1 Overall design . 10

3.2 Requirements . 10

3.3 Cargo and Tanks . 11

3.4 Machinery . 15

3.5 Accommodation . 15

3.6 Hull . 17

4 The configuration prototype 19

4.1 General information . 20

4.2 Customer requirement 21

4.2.1 KPI . 21

4.2.2 Main Dimensions 22

4.2.3 Cargo . 23

4.2.4 Classification/Flag 23

4.2.5 Machinery . 24

4.2.6 Accommodation 25

4.3 Selection of parts and systems 26

4.3.1 Selection of tanks 26

4.4 3D Arrangement . 29

5 Ranking and arrangement 31

5.1 Tank . 32

5.1.1 Ranking . 32

5.1.2 Arrangement . 33

Contents XI

6 Software architecture 35

6.1 Presentation layer . 36

6.2 Business layer (BL) . 36

6.2.1 Management classes 37

6.3 Domain . 39

6.4 Data Access layer (DAL) 41

7 Xna 43

7.1 Xna -framework . 44

7.2 The class structure of
Game and GameComponents 45

7.2.1 The default methods 46

7.2.2 The execution sequence 47

7.3 Components . 48

7.4 Models . 50

7.5 Services . 51

8 Conclusion and future work 53

Bibliography . 54

Appendix 56

A Accommodation drawings 57

XII Contents

List of Figures

1.1 Design knowledge [Ullman, 2002] 2

2.1 Quaestor . 5

2.2 A ship model made in Rhinoceros 6

2.3 Paramarine: Frigate . 7

2.4 Paramarine: Supply vessel 8

3.1 Far Supplier: Tank specification 12

3.2 Far Supplier: GA drawing 13

3.3 Lady Grete: GA drawing 14

3.4 Machinery layout . 15

3.5 Hull dimension . 17

3.6 Hull in Xna . 18

4.1 Prototype: Main panel 20

4.2 Prototype: KPI panel . 22

4.3 Prototype: Main dimensions panel 22

4.4 Prototype: Cargo panel 23

XIV List of Figures

4.5 Prototype: Classification panel 24

4.6 Prototype: Machinery panel 25

4.7 Prototype: Accommodation panel 26

4.8 Tank selection 1 . 27

4.9 Tank selection 2 . 28

4.10Tank selection 3 . 28

4.11Prototype: 3D Cargo room 29

4.12Prototype: 2D Cargo room 30

4.13Prototype: 3D Accommodation 30

5.1 Arrangement grid . 33

5.2 Lady Grete: Gid . 34

5.3 Far Supplier: Grid . 34

6.1 Architecture layout . 35

6.2 BL:Flowchart - Cargo tanks 37

6.3 Management classes view 38

6.4 Doamin: Systems . 39

6.5 Domain: Hull . 39

6.6 Domain: Machinery . 40

6.7 Domain classes . 40

7.1 Xna execution sequence 48

7.2 Xna: Components layout 49

7.3 Bridge: Box . 51

List of Figures XV

7.4 Bridge: Outfitted . 51

A.1 Vessel side . 57

A.2 Bridge . 58

A.3 Officer deck . 59

A.4 Upper Forecastle deck 60

A.5 Forecastle deck . 60

A.6 Main deck . 61

XVI List of Figures

List of Tables

3.1 Cargo types . 11

3.2 Accommodation . 16

4.1 KPI rules . 21

7.1 2D/3D Software . 51

XVIII List of Tables

Abbreviations

API - Application Programming Interface
BL - Business Logic
B - Beam
BLL - Business Logic Layer
CLR - Common Runtime Language
CPU - Central Processing Unit
DAL - Data Access Layer
GA - General Arrangement
GPU - Graphics Processing Unit
GUI - Graphical User Interface
Loa - Length overall
Lpp - Length between perpendiculars
Lwl - Length of waterline
PSV - Platform Supply Vessel
UI - User Interface
WPF - Windows Presentation Foundation

Chapter 1

Introduction

The financial situation today, as we have experienced, has caused
an unfortunate ripple effect and evolved into events affecting the
global market. This development has also contributed to reduced
workload for many design companies, and perhaps less profit on
each job they actually get. It is probably a long time since the
possibility of getting new-building contracts for the shipyards has
been this low. A result of this is a time consuming task of pro-
ducing a large number tender invitation, to get the design and
building contracts available.

Offshore supply vessels are considered complex, and with a large
degree of customization. To design this kind of vessels, the de-
signers and engineers involved are faced with a challenging task.
To assist them in this process there has been made various pro-
grams, tools and applications to make their job faster and more
efficient. Several of them utilize a combination of numerical analy-
sis and simulations, and some combine this with 3D visualization.
While many of these programs have different focus, and are built
to assist in different aspects of the job, they all have one thing in
common, trying to make you a better and more productive em-
ployee.

These kinds of programs are different from more traditional design

2 Chapter 1. Introduction

applications like 3D design packages and CAD systems. It will be
discussed in more detail later in this report, but the short version
is that those programs often are used in a later design phase.
Their focus is more on detailed design of individual components
and systems, and finalizing them for production. Some can also
do calculations on the entire structure or substructures, as well
as stability analyses of the complete vessel. Most CAD systems
also perform strength analysis and produce production drawings.

Figure 1.1 shows how the increasing in design knowledge and
reduction of design freedom changes as the time progress in a
project. From the graph you can see the benefit of using previous
knowledge, and how this has a positive influence on the design
process. This is because decisions made in an early phase affect
the design freedom in subsequent phases.

Figure 1.1: Design knowledge [Ullman, 2002]

The application type treated in this project is used in the early
conceptual design phase, and tries to take advantage of the knowl-
edge and experience form privies designs. These programs are

Chapter 1. Introduction 3

usually not off the-shelf packages, and many of these are tailor
made software, designed to perform some specific tasks for a given
company. Many of these systems are complex packages and rely
on skilled and experienced users to give satisfying results.

I have made a prototype application for use in these early stages
of the planning and design phase, trying to capture some of this
design knowledge. The main focus was to demonstrate how to
make a program that is easy to use and also showed fast re-
sults. The implementation of user-friendly GUI and understand-
able graphic visualization was used to achieve this. I decided to
try the Microsoft Xna Framework for the visual representation in
this project, to see if it could be used in an application like this.
One of the advantages from this approach is all the "out of the box"
functionality the framework provides. This makes it very easy to
create a graphical representation of the desired domain.

The prototype also enables an iterative design approach. When
using it, I do not have to provide all the input at once. I can
start filling out the information I have at the time, and then the
program will use statistical information from the ships stored in
a database to fill out the blanks. With an extensive collection of
previous ships and design information, the application then have
a good possibility for providing satisfying solutions, for selecting
different parts and systems.

4 Chapter 1. Introduction

Chapter 2

Existing configuration
systems

2.1 Quaestor and Rhinoceros

Bart van Oers et al. [2008] have studied how to combine knowledge-
base systems with computer aided design packages. Some of the
programs they have used are the knowledge system Quaestor and
CAD tool Rhinoceros where they have had good results.

Figure 2.1: Quaestor

Quaestor is a knowledge based sys-
tem used to assist in the design
of ships and other products. The
system uses an enhanced Newton-
Raphson solver to combine design re-
lation from its internal knowledge-
base with the calculated models. The
models are based on the user’s re-
quirements throughout an iterative
process, where he has select parame-
ters and goals based on relations and

6 Chapter 2. Existing configuration systems

constraints from the knowledge-base.

In addition to these constrains, relations and parameters defined
in the program, the system also has the ability to connect to ex-
ternal application and use data and relations defined in other
databases or spreadsheets.

Rhinoceros is a powerful general-purpose CAD package, with a
low-price compared to similar applications. Figure 2.2 shows how
the program creates models based on curves, surfaces and solids
defined by Non-Uniform Rational B-Splines. NURBS is a math-
ematical model for representing 3D geometry and are commonly
used in computer graphics because of its flexibility and accuracy.
The Rhinoceros package also includes various analysis tools to
establish properties for the curves, areas and volumes, and func-
tions for assisting the position of items inside the hull.

Figure 2.2: A ship model made in Rhinoceros

The combination of Quaestor and Rhinoceros makes it a more
flexible system then two separate applications. The programs
linked together make a system where the user provides require-
ments, the Rhinoceros part draws geometry and Quaestor posi-
tions it. Because the user can chose between different properties
and relations, it system enables a rapid re-configuration of the
design. When the application has made a design solution it is

Chapter 2. Existing configuration systems 7

possible to manually change the position of a component, this ad-
justment is den reanalyzed by Quaestor.

2.2 Paramarine

Paramarine is an application based on the principle of Building
block design. David Andews is one of the key persons studding
methodology at the University College of London (UCL). Building
blocks are used instead of the more traditional work breakdown
structure, because this design process makes it easier to find pos-
sible new ways of arranging and positioning parts and systems.
The blocks also contain information like weight and center of grav-
ity. [M Bole, C Forrest, 2005]

Figure 2.3: Paramarine: Frigate

David Andrews has done a lot of research for the British royal
navy, and figure 2.3 shows the layout of a Frigate in Paramarines
Building Block view. Supply ships has also been build in this
program, figure 2.4 shows the initial configuration of a early stage

8 Chapter 2. Existing configuration systems

design of a supply ship.

Figure 2.4: Paramarine: Supply vessel

Chapter 3

Platform supply vessel

A platform supply vessel (PSV) is a ship designed to support off-
shore platforms and installations. With its large cargo capacity
and good sea keeping performance, it is able to safely operate and
perform various tasks in the heavy seas offshore. A typical ves-
sel like this can range from 20-120 m in length, and several of
them are specially designed with focus on fuel efficiency and en-
vironmental concerns. A PSV can be outfitted to accomplish a
particular job, or it can be used as a multipurpose vessel. [Wiki
PSV, 20.4.09]

A PSV transports supplies, goods and people to and from plat-
forms. The main deck of the vessel can be filled with containers,
and below deck there is a collection of different tanks. These usu-
ally contain fluids like fuel oil, methanol, mud, water or chem-
icals required by the platform. Some chemicals also have to be
returned to shore for proper recycling or disposal. In addition to
fluids, some types of dry bulk are also supplied. [Farstad, 12.3.09]

The number of crew members accommodated on board the vessel
can range from 20 persons on smaller ship and up to 50 on larger
support vessels. In addition to spaces like bridge, engine rooms,
living quarters, galley and mess, several of the PSVs also have

10 Chapter 3. Platform supply vessel

larger designated areas for work and recreation.

Some of these vessels are also equipped to support other chal-
lenges the offshore installations might have, like fire hazard and
oil spillage. These ships have firefighting capabilities and oil con-
tainment and recovery equipment. [Wright International, 18.3.09]

3.1 Overall design

This is a basic overview of some general PSV designs, focusing on
the parts and areas that are most relevant for this report. This
chapter is later used as a basis for the development of the config-
uration application described in chapter 4. I have chosen to focus
on cargo capacity and tanks, which are important aspects of a
PSV. The general accommodation and machinery composition is
also introduced, in addition to a simplified version of the hull.

The reference information and ship specifications I have used as
a basis throughout this report is collected from various design
companies. The Farstad [12.3.09] website and the shipbroker site
Wright International [18.3.09] have been especially helpful. These
has also been used to fill the database with reference ships, for
the statistical comparison described in chapter 5.

The vessels on Farstad’s website had some good General Arrange-
ment (GA) drawings and detailed information regarding the cargo
and tank arrangement. Wright International had a lot of general
information about PSVs as well as useful GA drawings of the ac-
commodation layout.

3.2 Requirements

These requirements include operational specifications from the
customer. They are detailing aspects like range, speed and cargo
that have to be met. Other restriction could be related to for

Chapter 3. Platform supply vessel 11

instance maximum draught, if the ship is operated in shallow
harbors. The customer might also have requests affecting the
choice of accommodation, machinery and propulsion. Other sys-
tems like navigation and communication would probably not be
taken into consideration this early, as it does not affect this de-
sign stage. All these requests regarding systems, areas and their
layouts would often be supplemented by internal requirements
from the designers, based on their former design knowledge and
experience. [Brathaug, 2008]

There are also some external rules and regulations that has to
be fulfilled. The ship might be affected by regulations from inter-
national organizations like IMO, which deals with environmental
issues. Classification societies like DNV, Lloyd’s and Bureau Ver-
itas also have requirements that have to be followed. Examples
are safety regulation regarding crew, ship and cargo.

3.3 Cargo and Tanks

The ability to transport cargo is the most important mission for a
supply ship. The cargo capacity then becomes one of the deter-
mining factors affecting the main dimensions of the vessel. The
most frequent cargo types transported on a PSV are listed in table
3.1.

• Fuel oil • Ballast water • Base oil
• Potable water • Dry Bulk • Brine
• Drill water • Liquid Mud • Methanol

Table 3.1: Cargo types

Figure 3.1 gives an overview of the cargo transported on Farstad’s
Far Supplier. The table also contains a detailed list of each tank on
this ship, its capacity and cargo content. Lists like these have also
been used to fill the prototypes database, to present an example
of earlier design knowledge.

12 Chapter 3. Platform supply vessel

Figure 3.1: Far Supplier: Tank specification

Figures 3.2 and 3.3 shows the tank layout for two of Farsatd’s
ships. These and 15-20 similar GA drawings are used as a basis
for the selection and arrangement of tanks in the prototype. This
process is described further in chapter 5.

Chapter 3. Platform supply vessel 13

Figure 3.2: Far Supplier: GA drawing

14 Chapter 3. Platform supply vessel

Figure 3.3: Lady Grete: GA drawing

Chapter 3. Platform supply vessel 15

3.4 Machinery

As seen from the previous drawings a PSV can have several differ-
ent machinery configuration and layouts. The following decks are
displayed in the GA drawings above.

• Main deck
• Tween deck / 2nd deck
• Tank top

Farstads "Far Supplier" in figure 3.2 have two shafted main diesel
engines located in the aft part of the ship. "Lady Grete" is also
equipped with two shafted main engines, but these are located in
the forward part of the ship. The vessel in figure 3.4 on the other
hand have diesel-electric propulsion. The two medium speed diesel
engines power the three generators running two fixed pitch rudder
propeller.

Figure 3.4: Machinery layout

3.5 Accommodation

As mentioned earlier a small supply vessel can have about 20
crew members on board, while a larger support vessel can accom-
modate 50 persons. The number of decks in the wheel house is
therefore affected by the number of cabins and other rooms. Ap-
pendix A contain drawings of a70m PSV accommodating 32 per-
sons. Table 3.2 shows the different rooms and their location. The

16 Chapter 3. Platform supply vessel

number of decks is also depending on the main dimensions of the
ship, which determine the available base area on main deck.

LOA ∗B −DeckArea (3.1)

Cabins Location
Captain & Chief Eng 2x 2x Officer deck
One-Man Cabins 2x 2x Upper Forecastle deck
Two-Man Cabins 2x 1x Upper Forecastle deck,

1x Forecastle deck
Four-Man Cabins 6x 1x Upper Forecastle deck,

5x Forecastle deck

Crew Mess Room 1x Main deck
Officer’s Mess Room 1x Main deck
Hospital 1x Main deck
Office 1x Upper Forecastle deck
Meeting Room 1x Forecastle deck
Galley 1x Main deck
Cold Store 1x Main deck
Freezer 1x Main deck
Landry Room 1x Main deck

Table 3.2: Accommodation arrangement
Crew: 32

Chapter 3. Platform supply vessel 17

3.6 Hull

Figure 3.5 show the cross-section of the tank top, tween deck and
main deck. As the detailed design of the hull is not important
for this thesis, I have created a simple version of this. Based on
the GA drawings shown earlier, the variable Loa, Lwl, Lpp, B 1

and some assumed constants I have made the following drawing.
The reason for the simplification is to reduce the complexity of the
representation in Xna.

Figure 3.5: Hull dimension

1Loa (length overall), Lwl (length of waterline), Lpp (length between perpen-
diculars), B (beam)

18 Chapter 3. Platform supply vessel

Figure 3.6 shows the simplifications done in order to make the
3D hull. I will not go into details on how graphics is made in
Xna, but everything is made by triangles. I have used seven to
nine points/corners on each deck, this decrease the complexity
of the model significantly. Even with as few as 25 point I still get
a satisfying model of the hull. Chapter 7 will describe how this
model could be designed in another program instead of creating it
from scratch in Xna.

Figure 3.6: Hull in Xna

Chapter 4

The configuration
prototype

I started making a prototype for a PSV configuration tool for the
project [Torgersen, 2008]. Based on this code I have now devel-
oped the program further. The external graphic solution with the
connection to Autodesk Inventor from the previous version is now
replaced and I have created an integrated graphic engine, based
on the Xna framework. In addition to this, the functionality of the
program is expanded and its internal architecture is improved.

I am now going to demonstrate how this prototype works, and
go through each step, explaining the user interface and give a
general overview of some of the internal procedures. I will supply
some input and show how the application could generate a PSV.
Later in this report I will look closer into some of the key working
principles of this prototype.

I have based the design process for configuring a vessel on an iter-
ating approach. This means that the application does not require
me to insert all the information in every panel or text box on the
first walkthrough. I can start to fill out all the requirements and
information at hand, and based on this the program will gener-

20 Chapter 4. The configuration prototype

ate different alternatives for the missing values. I will then have
the opportunity to select suitable solutions generated from earlier
designs. It is possible to go back and alter some of the values
inserted earlier in the previous design phases. As I do modifi-
cations to the design, the application recalculates and keeps the
alternative solution updated.

4.1 General information

The general information about the ship is inserted in the Main
window. The ID displayed at the top is now given according to
the ships primary key in the database, but this could easily be
changed to represent a value according to a shipyard’s or a design
company’s ID system. I have also created some fields to insert the
vessels name, type and design company. The information in this
view are details that do affect the configuration process. The Main
window is shown in figure 4.1

Figure 4.1: Main panel

Chapter 4. The configuration prototype 21

4.2 Customer requirement

4.2.1 KPI

Key performance indicators (KPIs) are used when ranking differ-
ent solutions for parts and systems which are going to be scaled
and selected. This is done based on the vessels in the database.
The KPIs also help reduce the list of alternative parts and systems
the user can select from, and use as a base for his design. This is
shown in section 4.3, where I am selecting cargo tanks. Ranking
is described in chapter 5.

Figure 4.2 show the KPI panel. In the combo boxes on the left side
I chose the KPIs that I think is most important. The first choice
get 25 points, the next 20 p and so on. It is also possible increase
the value of each KPI further; this is done in the slid panel on the
right. The blue interval shows which values I can chose from.

I have implemented the following rules:

KPI affects
Max tank volum Cargo
Max deck space Cargo
Min investment cost
Speed Machinery
Min hull size Main dimensions
Eco-friendly
Accommodation Cabin

Table 4.1: KPI rules

In this example I have given the Cargo 45p and Cabin 10p, the
minimum value for the blue line is then set to 45 and 10 respec-
tively. I can now increase this value, like I have done with the
Machinery, but it is not possible to give them lower score with the
slider (this can only be done by adjusting the combo box values).

22 Chapter 4. The configuration prototype

Figure 4.2: KPI panel

4.2.2 Main Dimensions

Restrictions for the main dimensions must sometimes be added
to the design. If the ship is going to be used in a shallow harbor,
all hull solutions with a draught more than x meters must be ex-
cluded from the configuration process. In the dimension panel
in figure 4.3 I have inserted requirements for Loa, Beam, and
Draught. The unspecified values Lpp and Depth are calculated
by the application.

Figure 4.3: Main dimensions panel

Chapter 4. The configuration prototype 23

4.2.3 Cargo

The total tank capacities are set in the panel in figure 4.4, it is
also possible to specify the amount of cargo for each individual
cargo type. I have listed up the eight most common cargo types
transported with PSVs, I have also made an available TBA1 field
for an arbitrary cargo type (if needed). Change the name from TBA
to the new cargo type, fill in the volume and specify a SG. The deck
load and area can also be inserted in this window.

Figure 4.4: Cargo panel

4.2.4 Classification/Flag

The choice of class notation can have an effect on the available
systems to choose from, and the design of the vessel. An example
is the class notation of Clean Design, which stat that there has to
be a void between the hull side and the cargo. This will reduce the
amount of cargo the vessel can transport.

1TBA: To Be Assigned

24 Chapter 4. The configuration prototype

Figure 4.5 show a list of the available class society to choose from.
An improvement to this panel could be to list some of the impor-
tant rules that this choice would have on the design of the vessel,
as a reminder for the designer.

Figure 4.5: Classification/Flagg panel

4.2.5 Machinery

The Machinery panel contains information about propulsion type
and power requirements for the machinery. Combined with op-
erational requirement like service speed and range, and the KPIs
selected earlier (70p to machinery), this will form the basis for the
selection of engines.

Like the other requirement panel, these fields are also optional.
All the information that is not inserted will be calculated by the
application.

Chapter 4. The configuration prototype 25

Figure 4.6: Machinery panel

4.2.6 Accommodation

Like the cargo capacity, the number of crew members the vessel
is going to support will have an affect on the volumetric, area and
weight requirements. In the accommodation panel i figure 4.7 I
can insert requirements for cabin type and size. I have also added
some other rooms and specified some areas, the application will
then calculate the rest.

26 Chapter 4. The configuration prototype

Figure 4.7: Accommodation panel

4.3 Selection of parts and systems

4.3.1 Selection of tanks

The tank selection window is shown in figure 4.8, 4.8 and ref-
fig:appTankSelect1. This panel is divided in two parts. The left
side show the values for the vessel I am configuring and the right
side show a list of the ships in the database.

Figure 4.8: The left side is blank and the scores are 0 before
the Update button is pushed. The right side shows the reference
ships, their cargo and their cargo tanks. Each alternative at the
right side is rated according to the similarities with the capacities
I inserted in the cargo requirement panel.

Chapter 4. The configuration prototype 27

Figure 4.8: Tank selection 1

Figure 4.9: When the panel is updated the cargo rows appear on
the left and the ships at the right side is ranked. A ship score of
100% means that the volume of each cargo type match the volume
I specified in my cargo requirements. With a cargo score of 100%
the volume of this cargo match my requirement. A lower score
show how much the cargo or the entire ship deviate from my ship.
If the score is to low I will start adding tanks from scratch, rather
than selecting an alternative from the database.

Figure 4.9: It is not easy to show how a program works from
a picture, but this is what I have done to get the results in this
figure.

28 Chapter 4. The configuration prototype

Figure 4.9: Tank selection 2

Figure 4.10: Tank selection 3

Chapter 4. The configuration prototype 29

1. I selected Fuel oil on Far Strider and got a copy of all its fuel
tanks.

2. I now have 10 tanks on the left side. I push the - button on
six of the them, and have 4 fuel tanks left.

3. I select two singe Potable water tanks from Far Strider.

4. I push the + button in my potable water view on the left, and
add on tank manually (not shown in the figure)

The details of the selection and rating procedure will be explained
further in chapter 5

4.4 3D Arrangement

Figure 4.11 show the 3D cargo room from the prototype. Four
cylindrical cement tanks are placed in the middle of the ship. It
is possible to select a tank, which then is colored blue. This tank
can be positioned manually.

Figure 4.11: 3D Cargo room

Figure 4.12 is the 2D view of the tanks in figure 4.11. This view is
inspired by Farstad’s 2D drawings in chapter 3, and shows how

30 Chapter 4. The configuration prototype

the tanks go from the tank top, through the tween deck and up to
the main deck 2.

Figure 4.12: 2D Cargo room

Figure 4.13 show one of the accommodation decks, with two cubes
representing rooms. When the right size and position of these
rooms are determined, they can be they can be replaced with
outfitted rooms (scenes) designed in other applications. This is
explained in chapter 7

Figure 4.13: 3D Accommodation

2they are not shown on the top drawing because they do not go through the
main deck

Chapter 5

Ranking and arrangement

In chapter 4 I illustrated the different functionality of the applica-
tion and how the program is used. In this chapter I will show in
more detail how some of those functionalities actually work and
try to explain some of the routines and procedures.

One of the important aspects with this application is its ability of
storing previous ship designs and information of parts and sys-
tems. As this database grows larger, it gets harder to find the
correct design or design piece to reuse, I have therefore made a
ranking system to help decrease the amount of comparable data
used in the different selection phases.

The scores, which I will show examples of later, is constantly recal-
culated and updated as the user go through the different configu-
ration steps shown in chapter 4. Since the score on the parts and
systems in the database, can only be associated with the "current
configuration" they are not saved with the objects in the database.
The score is based on a 0 - 100% match, related to the correspond-
ing part, system or capacity of the current ship being configured.

32 Chapter 5. Ranking and arrangement

5.1 Tank

5.1.1 Ranking

The ranking process for the tanks is performed in the TankMan-
ager in the Business layer, which I will get back to in chapter 7. I
will now show how the ships in the database are ranked so they
can be used to aid in the selection of tanks for the ship being
customized.

Each ship in the database, as well as their individual cargo types,
get a score in the tank selection view shown in figure 4.9, as ex-
plained in chapter 4. This percentage reflects the reference ships
deviation from the current ship, and help me select the best basis
for a tank assembly.

First the total cargo volume is compared, to rule out the ships
that are not in the desired range. To be a part of the reference
list the ships has to exceed the lower limit of similarity, which was
specified in KPI requirement in chapter 4.

|myCargoV olume− CargoV olumei|
myCargoV olume

= xi 0 < xi < 1 ∀i (5.1)

The variance is calculated based on equation 5.1, and if the score
in equation 5.2 is within the KPI limit the ship is added to the list.
Where

%Score = (1− xi) ∗ 100 ∀i i = referenceShip (5.2)

Each cargo type on these ships is ranked individually by the same
equation above. The score for the reference ship is then recalcu-
lated this time to reflect the total cargo match. It is this new score
which is displayed in the database list in the tank selection view.
Equation 5.3 shows the new ship score.

%Score =
n∑

j=0

ShipCargoScoreij

n
∀i (5.3)

Chapter 5. Ranking and arrangement 33

5.1.2 Arrangement

Chapter 3 showed some GA drawings from some of Farstad’s ship
designs. Based on these I have tried to extract some general rules
and characteristics that could be used for tank arrangement in
the prototype. By comparing the layout and location of the tanks,
based on the reference ships, I decided to make a simple grid
system to help with the arrangement. Figure X shows how this is
done on the tank top and tween deck level.

Figure 5.1: Arrangement grid

Each tank is placed in its appropriate grid. To determent which
grid a tank should be placed in is done based on statistical infor-
mation from earlier designs. The tanks in the database contains
a position ID specifying which grid it is located in. This could be
F (forward), A (aft), S (starboard side), P (port side) or C (center).
The size of the grid for the ship being customized is then adjusted
based on the number and dimensions of the tanks located inside
it.

Statistics show that the cargo with the highest specific gravity (SG)
is positioned in the center, usually dry bulk like cement. Each side
contains base/fuel oil and liquid mud, and potable/dill water is
located in the forward and aft part of the vessel.

Figures 5.2 and 5.3 show how this would look like on the tween
deck on some of the reference ships used earlier. As you can
see these grid lines nearly always corresponds to a walking path
through the ship. They are alos positioned differently because Far
Supplier have two center row with tanks, and Lady Grete has only

34 Chapter 5. Ranking and arrangement

on.

Figure 5.2: Lady Grete: Gid

Figure 5.3: Far Supplier: Grid

Chapter 6

Software architecture

Figure 6.1:
Architec-
ture layout

I have divided the application into four main parts.
The top layer contains the user interface, which is
the part of the program the user interacts with. This
is where the input is provided and the results and
visualization is displayed. Beneath this layer, the ac-
tual brain of the program is located. The Business
layer receives user input and does calculations based
on an interpretation of this information. The gener-
ated results are then returned to the Presentation
layer. The business layer also holds the instantiated
domain objects form the classes in the layer beneath.
The domain layer contains a definition of all the do-
main classes that represent the relevant concepts of
the real world. The program is based on classes like
Ship, Cargo, Tank and Cabin. The bottom layer deals
with data storage. The Data access layer connects
the domain classes to either a local database or an
external server.

The structure of each part will be discussed later in
this chapter, but the main reason for this separation
into layers, is to achieve high coherency within the

36 Chapter 6. Software architecture

program. This will give the advantage of increased modifiability
and maintainability, which will make it easier to develop the pro-
gram, as well as performing future implementations or improve-
ments. With this benefit I can work on each individual layer of the
program separately without being afraid of influencing other parts
of the application.

6.1 Presentation layer

The user interface consists of two main parts, the different con-
figuration panels and the 3D representation. The configuration
windows are based on the Windows Presentation Foundation. I
have continued the work I started in my previous project [Torg-
ersen, 2008], and develop this concept further. All the panels are
shown in chapter 4.

I have also been looking into different approaches for the integra-
tion of 3D graphics. In project [Torgersen, 2008] I tried to use
Autodesk Inventor as an external visualize. This solution turned
out to be more complication than first anticipated, and due to lack
of useful guidelines and a difficult API, I decided to not pursue this
alternative. OpenGL was another possibility I briefly looked at in
my previous project, and revisited in the start of this thesis. I com-
pared the framework with Microsoft’s Xna, and found that Xna
was a better choice. As I will show in chapter 7 this framework
provides a lot of "out of the box" functionality that require a small
amount of code to get the project up and running. These pre-
defined features I could later exchange with my own customized
parts and routines.

6.2 Business layer (BL)

The business layer defines the jobs the software is supposes to
do. This layer contains the business logic and rules and defines

Chapter 6. Software architecture 37

the purpose of the application. In chapter 5 I described some of
the ranging and arrangement procedures, these are located in this
layer.

The rules and procedures are located in different management
classes. I will describe the three of them involved with the selec-
tion of cargo tanks. All these classes are made static, this way
they can be used without instantiation, and having to transfer the
objects around in the presentation layer. Chapter 7 describe how
the Xna framework uses Services to avoid this problem.

6.2.1 Management classes

Figure 6.2: BL:Flowchart - Cargo tanks

In figure 6.2 I have made a flowchart to show what is involved in
the process of selecting and arranging the cargo tanks. First the
ship being configured is initialized, here represented by the object
myShip. The Ship Manager takes care of this object as well as a
list of all ships stored in the database.

In the Requirement phase, the ship’s cargo list is generated in the
CargoManager. This is based on the user input from the Require-
ment panel showed in chapter 4. The list is then sent to myShip.

In the Parts and System Selection phase the ships tank list is

38 Chapter 6. Software architecture

generated in the TankManager, based on the cargo list made in
the previous phase, as well as a reference ship list. This ship list
is a copy of the list made in the Ship Manager, which is reduced
by the ranking procedure described in chapter 5. This list is then
used as a basis for the tank arrangement.

Figure 6.3 shows how the management classes is organized. The
Ship Manager at the center is the main class and contains the
information about the customized this. All the other classes, here
represented by the management classes for Accommodation, Tank
and Cargo are used to support the ship.

They support classes contains methods for calculating the num-
ber of tanks or cabins, and routines for ranking different solu-
tions.

Figure 6.3: Management classes view

Chapter 6. Software architecture 39

6.3 Domain

These figures show an overview of the domain layer. The main
ship is divided into components, which is divided into subcompo-
nents.

Figure 6.4: Doamin: Systems

Figure 6.5: Domain: Hull

40 Chapter 6. Software architecture

Figure 6.6: Domain: Machinery

Figure 6.7: Domain classes

Chapter 6. Software architecture 41

6.4 Data Access layer (DAL)

The data access layer contains routines for storing and retrieving
information from the database. I have used LINQ to SQL to con-
nect to a local database. The advantage with using LINQ is that it
is easy to use and it auto-generate a lot of code. It make partial
classes with properties for all the tables in the database, which
saves me a lot of time when making the domain layer, because all
the properties is already made.

Listing 6.1: LinQ: Domain
1 public class Ship
2 {
3 \\ Properties
4 public int ID { get ; set ; }
5 public string Name { get ; set ; }
6 public string Design { get ; set ; }
7 }

To utilize the advantage described above the main LINQ class 1

has to be placed in the domain layer. All the queries and storage
procedures on the other hand is placed in the access layer as
common. Like the code below. This code also shows the small
amount of code needed to load a ship, and its cargo and tanks.

Listing 6.2: LinQ: Load ship
8 private stat ic LocalDB db = new LocalDB ("LocalDB . sdf ") ;
9

10 public stat ic IShip LoadShip (IShip ship)
11 {
12 ship = ((from s in db .Ship
13 where s .ID == ship .ID
14 select s) .SingleOrDefault ()) as IShip ;
15

16 // F i l l cargo l i s t
17 var cargos = (from c in db .Cargo
18 where c .ShipID == ship .ID
19 select c) ;

1the .dbml file

42 Chapter 6. Software architecture

20 foreach (Cargo c in cargos)
21 {
22 ship .CargoList .Add ((ICargo)c) ;
23 }
24

25 // F i l l tank l i s t
26 var tanks = (from t in db .Tank
27 where t .ShipID == ship .ID
28 select t) ;
29 foreach (Tank t in tanks)
30 {
31 ship .TankList .Add ((ITank)t) ;
32 }
33

34 return ship ;
35 }

Chapter 7

Xna

As mentioned earlier in chapter 5 and 6, I have used Xna as a
component in the prototype’s user interface. I will now give a brief
overview of some of the components and features of this frame-
work and why I have chosen this as the basis for the 3D represen-
tation.

Xna is actually the brand for Microsoft’s game-related technolo-
gies, and its primary user group is the gaming industry. Xna is
used to make games for the Windows platform, Xbox game console
and Mobile-based devices. The technology is built upon frame-
works like DirectX and .NET, and does also contain the Xna Game
Studio, which is the development environment used to program
against this framework. [Wiki, Xna, 14.4.09]

One of the benefits of using Xna is good libraries and functionality
to avoid writing "repetitive boilerplate code". These are sections
of similar code that needs to be included in several parts of the
code. It is also fairly easy to get started with a project, and to see
the visual results. The code below shows the few lines that are
necessary to have a model displayed on screen. Line 8 is used to
load the model, and the double for-loop goes through each mesh
to draw the part. If the model is solid, it is sufficient with only one
for-loop. The BasicEffect is one the existing predefined features

44 Chapter 7. Xna

in Xna.

Draw a 3D model
1 Model myModel ;
2 BasicEffect basicEffect ;
3

4

5 // Loads the model into the ContentManager
6 protected override void LoadContent ()
7 {
8 myModel = Content .Load<Model>("Models\\p1_wedge") ;
9 }

10

11 protected override void Draw (GameTime gameTime)
12 {
13 foreach (ModelMesh mesh in myModel .Meshes)
14 {
15 foreach (BasicEffect effect in mesh .Effects)
16 {
17 effect .EnableDefaultLighting () ;
18 effect .View = Matrix .CreateLookAt (cameraPosition , ←↩

Vector3 .Zero , Vector3 .Up) ;
19 effect .Projection = Matrix .CreatePerspectiveFieldOfView←↩

(MathHelper .ToRadians(45.0f) , aspectRatio , 1.0f , ←↩
10000.0f) ;

20 }
21 mesh .Draw () ;
22 }
23 base .Draw (gameTime) ;
24 }

7.1 Xna -framework

The Xna Framework is based on the native implementation of
.NET 2.0 (Xna 2.0), .NET 3.0 (Xna 3.0) or the Compact Framework
(Xbox 360). It runs on a version of the Common Language Run-
time (CLR), which is optimized for graphics to provide a managed
execution environment. The CLR executes under the management
of a virtual machine, in contrast to unmanaged code that is exe-
cuted directly by the computer’s CPU. One of the benefits of using
managed code in this context is enhanced performance.

Chapter 7. Xna 45

The Xna Framework includes an extensive set of class libraries,
containing classes, interfaces and value types, which are avail-
able through Xna Game Studio. They are specialized for graphic
development, and created for maximum code reuse, as well as be-
ing used in many different applications, components or controls.
[Wiki, Xna, 14.4.09]

The framework provides classes for keyboard and mouse input,
which identifies and retrieves keystrokes, mouse clicks and po-
sitions. There are also defined standard structures for matrix,
planes, points and vectors with 2,3 and 4 components, as well as
support classes for converting and manipulate them. The Content
Manager is another important class. It is responsible for loading
and managing different objects from external files, like models, ef-
fects and textures. A model could be designed in other programs,
the textures would give it color and depth and the effects will de-
fine how the light is reflected off the surface. This is combined a
components Draw method and become the model you see on the
screen.

7.2 The class structure of
Game and GameComponents

Game1 is the main class in an Xna project. The code below shows
the default methods provided for this class or for a standard game
component class. The game implements the Xna Frameworks
Game interface, and a component would implement either a Game-
Component or a DrawableGameComponent interface. The main
difference between these two is the methods supported. The game
component has an Initialize and Update method, and the drawable
game component has the additional LoadContent, UnloadContent
and Draw methods.

1The name just reflects that game designers are this frameworks primary
users

46 Chapter 7. Xna

Game/Component class structure
1 public class Game1 : Game
2 {
3

4 public Game1 ()
5 {
6 }
7

8 protected override void Initialize ()
9 {

10

11 base .Initialize () ;
12 }
13

14 protected override void LoadContent ()
15 {
16 }
17

18 protected override void UnloadContent ()
19 {
20 }
21

22 protected override void Update (GameTime gameTime)
23 {
24 base .Update (gameTime) ;
25 }
26

27 protected override void Draw (GameTime gameTime)
28 {
29 GraphicsDevice .Clear (Color .CornflowerBlue) ;
30

31 base .Draw (gameTime) ;
32 }
33

34 }

7.2.1 The default methods

Initialize allows the game or a component to perform any ini-
tialization it needs to do before the application starts to run. This
method is often used to query for required services, like the Con-
tentManager, a Camera or an InputHandler. It is also used to load
other non-graphic content. The game class uses this method to
create instances of the other components and add them to the
ContentManager.

Chapter 7. Xna 47

LoadContent this method is called once when the program starts.
This is the place for loading content, especially related to graph-
ics. This is where the models, textures and effects are loaded into
the content pipeline.

UnloadContent is called when the application closed, and is
where the content is unloaded for releasing the memory used.

Update is an important method. This is where the logic for up-
dating the view is placed. This could be collision detection, code
for gathering input or moving or scaling of models.

Draw contains the code that displays the models on screen.

7.2.2 The execution sequence

Figure 7.1 show how the different methods described above is ex-
ecuted. [Carter, 2008]

1. Xna calls the Initialize method in Game
2. Xna calls the Initialize method in Components and Draw-

ableComponents
3. Xna calls the LoadGraphicsContent method in Drawable-

Components
4. Xna calls the LoadGraphicsContent method in Game
5. Xna calls the Update method in Game
6. Xna calls the Update method in Components and Drawable-

Components
7. Xna calls the Draw method in Game
8. Xna calls the Draw method in DrawableComponents

9. Steps 5 through 8 are repeated about 60 times each second

48 Chapter 7. Xna

Figure 7.1: Xna execution sequence

7.3 Components

The ContentManager is actually a just a Dictionary and one of the
features provided by the framework. This object is used to map
the contents name to the actual content. This way the given con-
tent only has to be loaded once and could then be used by mul-
tiple classes. In the prototype content like this would be models
like the tanks or engines and cubes representing different cabins
or entire rooms.

Chapter 7. Xna 49

Components layout

As shown in the figure 7.2 I have built the Xna graphics based
on components in a hierarchical structure. The class on top is
Xna’s main Game class which holds some game components. The
components themselves hold their own components. When mov-
ing from for instance the Cargo view in the Configuration appli-
cation to the Accommodation view, the main game class activates
the accommodation component (AccomodationRoom), which itself
activate its subcomponents (CabinManager etc.). The game then
deactivates the other components (CargoRoom), which in turn de-
activates its own subcomponents (TankManager etc.) down the
hierarchy.

Figure 7.2: Xna: Components layout

Activate/Deactivate components

This happens when changing from one Xna-view to another, in
the arrangement window. For instance when going from the cargo
room to the accommodation view. I used the Xna’s DrawableCom-

50 Chapter 7. Xna

ponent properties "Enable" and "Visual", which let me turn the
components Update and Draw method on and off, respectively.

7.4 Models

One of the main advantages of using the Xna Framework, as ex-
plained in chapter 7, is how easy it is to use models created in
other design application. I can make models, assemblies and GA
drawings in one of several different 2D or 3D applications and
then import the work into a program based on Xna, like the PSV
configuration application described in this thesis. The two main
formats for models used in Xna are .X and .FBX. The first one is
one of Microsoft’s own formats. It is also used in the development
of Direct3D, the graphical part of the DirectX framework.

The FBX file format is developed by Autodesk, and is the one I
have used in this project. This format is Autodesk’s own preferred
choice of solution for transferring data between their different
products. This technology also supports platform-independent 3D
data exchange, and in addition to models and assemblies it can
also move entire scenes of geometry and animations. [AutoDesk,
1.5.09]

The fact that FBX can transfer complete scenes is a great advan-
tage. This could be utilized when it comes to the accommodation
models. The bridge could be modeled as a box, and when the
main dimensions are set, it could be replaced with a complete
room, made in for instance 3ds max. 2 3

Tabel 7.1 has a list of the most popular packages for designing
2D and 3D. These are all applications that can export models or
scenes to .fbx. 4

2Figure 7.4 is not made in 3ds, but visualize the idea
3http://www.mardep.gov.hk/en/others/facilities.html
4Some require a plug-in

Chapter 7. Xna 51

Figure 7.3: Bridge: Box

Figure 7.4: Bridge: Outfitted

Autodesk 3D Stuio max (3D design)
Autodesk Maya (3D design)
Autodesk AutoCAD (2D design)
SolidWorks (3D CAD)
Solid Edge (3D CAD)
Autodesk Inventor (3D CAD)

Table 7.1: 2D/3D Software

7.5 Services

Services are one of Xna’s useful features, they are used to main-
tain loose coupling between different objects that need to interact
with each other. I will show an example using camera. I have
made a general Camera class with a ICamera interface, which
contains the key camera attributes (Position, Orientation, Target,

52 Chapter 7. Xna

View and Projection). This is extended into a more specific First-
PersonCamera.

In the main game class I have instantiated the FirstPersonCamera
into a camera object and added the camera as a game component.
So far nothing special has been done. The game class itself does
not use a camera, but other components and models do. The
common way to solve this would be to pass the camera instance
to each and every part of the program that needs it. This will be
avoided with services.

So instead of passing along the camera instance I will register the
FirstPersonCamera as a service. This is done by adding this to
the constructor. Registered components can be requested by any
object, and it does not have to know where the instance where
made (the ServiceProvider).

1 game .Services .AddService (typeof (ICamera) , this) ;

When a drawable component then wants to use the camera, I only
have to add the following to its constructor.

1 ICamera camera = (FirstPersonCamera)game .Services .GetService (←↩
typeof (ICamera)) ;

Chapter 8

Conclusion and future
work

Having an application where the design team can take advantage
of earlier design knowledge is important. This reduces the design
time, and an application might also generate alternative solution
that the designers would not have come up with on their own.

In this thesis I have studied the configuration process for design-
ing an OSV. I have looked at how I can use previous designs to
assist with the selection of parts and system, based on KPI re-
quests. I have also investigated the Xna framework, and found
that this could be used to make a 3D visualization of the vessel.
Compared to the Autodesk Inventor API used in the project Torg-
ersen [2008], Xna is a far better choice.

For future development and studies I will suggest you look into
the following areas to improve this prototype:

• Improving the ranking procedure. This would be needed
when the database expands.

• Increase the domain model anding add more functionality to
the configuration process

54 Chapter 8. Conclusion and future work

• Adding more information in the database or connect to an
external database. With more parts and system the applica-
tion would provide better alternative design solutions.

• The Xna based graphics also need some improvements. And
more models from for instance 3d Studio Max has to be
made.

Bibliography

Abel Avram. Domain-Driven Design, Quicly. C4Media, 2006.

David Andrews. A Creative Approach to Ship Architecture, 2007.

Anthony S. Daniels et al. Development of a Hybrid Agent-Generic
Algorithm Approach to Genral Arrangement, 2008.

AutoDesk. FBX. http://www.autodesk.com/fbx, 1.5.09.

Bart van Oers et al. Combining a Knowledge System with
Computer-Aided Design, 2008.

BMT Fluid Mech. BMT Fluid Mechanics, web.
http://www.bmtfm.com/?/335/222/140, 10.5.09.

Thomas Brathaug. Product configuration in ship design. Master’s
thesis, Norwegian University of Science and Technology, 2008.

Chad Carter. Microsoft XNA Unleashed, page 525. Sams, 2008.

D. J. Andrews. Simulation and the design building block approach
in the design of ships and other complex systems, 2006.

Farstad. Farstad, web. http://www.farstad.no/?menu=98,
12.3.09.

Fredrick Hillier Gerald Liberman. Introduction to Operations Research,
pages 644–658. Eighth Edition, 2005.

Captain Vic Gibson. Supply Ship Operations. OPL, 1999.

Riemer Grotjans. Xna 2.0, Game Programmng Recipes, page 626.
Apress, 2008.

Hernani L. Brinati et al. Learning Aspects of Procedures for Ship
Conceptual Design Based on First Principles, 2007.

Jesper Riis Lars Hvam, Niels Henrik Mortensen. Product
customization. 2008.

M Bole, C Forrest. Early Stage Integrated Parametric Ship Design.
Graphical Research Corporation Ltd, UK, 2005.

Marintek. Tidligutrystning. 1996.

Paul Oldfield. Domain Modeling. Appropriate Pcocess Group,
2002.

Ajit Shenoi. Concurrent Engineering in the Context of FRP Boats,
2007.

Tommy Torgersen. Conceptual Ship Design using 3D Modular
Building Blocks. Master’s thesis, 2008.

David G Ullman. The Mechanical Design Process, page 432.
McGraw-Hill Higher Education, 2002.

Wiki PSV. PSV, wikipedia. http://en.wikipedia.org/wiki/Platform_supply_vessel,
20.4.09.

Wiki, Xna. Xna wikipedia. http://en.wikipedia.org/wiki/Microsoft_XNA,
14.4.09.

Wright International. Wright International Ltd, web.
http://www.wright-international.com, 18.3.09.

Appendix A

Accommodation drawings

Figure A.1: Vessel side

Figure A.2: Bridge

Figure A.3: Officer deck

Figure A.4: Upper Forecastle deck

Figure A.5: Forecastle deck

Figure A.6: Main deck

	I Problem formulation
	II Preface
	III Summary
	IV Contents
	V List of Figures
	VI List of Tables
	VII Abbreviations
	Introduction
	Existing configuration systems
	Quaestor and Rhinoceros
	Paramarine

	Platform supply vessel
	Overall design
	Requirements
	Cargo and Tanks
	Machinery
	Accommodation
	Hull

	The configuration prototype
	General information
	Customer requirement
	KPI
	Main Dimensions
	Cargo
	Classification/Flag
	Machinery
	Accommodation

	Selection of parts and systems
	Selection of tanks

	3D Arrangement

	Ranking and arrangement
	Tank
	Ranking
	Arrangement

	Software architecture
	Presentation layer
	Business layer (BL)
	Management classes

	Domain
	Data Access layer (DAL)

	Xna
	Xna -framework
	The class structure of Game and GameComponents
	The default methods
	The execution sequence

	Components
	Models
	Services

	Conclusion and future work
	Bibliography

	Appendix
	Accommodation drawings

