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Abstract

When a ship is moored alongside a terminal, the ship and the fluid entrained in between
the ship and the terminal may both experience large motion. The large motion occur at
the resonance frequency of the coupled ship and piston-mode motion. Large ship motions
induce significant wave frequency forces in moorings and fenders, while large piston-mode
amplitude causes large drift forces. Linear theory in general over-predict the resonant ship
and fluid motions rather severely. For example, if in reality the piston-mode amplitude
is found to be five times that of the incoming wave, linear theory may typically predict a
factor of ten - twenty, or even more.

It is with this discrepancy between linear theory and that observed in reality we
are mainly concerned in the present work. The possible candidates explaining the dis-
crepancy are probably (1) effects due to the nonlinear free-surface conditions, (2) flow
separation and (3) boundary layer effects. We investigate these three candidates with
special attention to the flow separation from the bilges of the ship. We limit ourselves
to a two-dimensional setting. A two-dimensional ship section will resemble the mid-ship
section of a long ship in beam sea waves.

Our work is mainly of numerical and experimental character. We assume potential
flow and implement a linear numerical wavetank as well as a fully nonlinear numerical
wavetank. Both wavetanks are implemented in the time-domain. We use the Boundary
Element Method (BEM), and employ the Mixed Eulerian-Lagrangian (MEL) formalism.
Flow separation is modelled in the nonlinear numerical wavetank by an inviscid vortex
tracking method where a thin free shear layer is evolved. The in- and out-flow of the
boundary layers is modelled in the linear wavetank by a semi-analytical method involving
a convolution integral. Two-dimensional physical model tests are carried out as well.

The free shear layer will become entangled if not continuously simplified. An algorithm
for automatic simplifications is developed and implemented. The simplification procedure
is found necessary for long-time simulations in order to reach steady-state. By long-time
we here mean typically 20 - 50 wave periods or more. The simulations will break down
after about one single wave period if the simplifications are not carried out.

We consider both a fixed ship section, forced motion of a ship section and a ship
section that is free to oscillate in sway, heave and roll. In the last case the coupled fluid-
and body-motion is solved. To overcome the problem that the ¢; term in the Bernoulli
equation is not defined in the MEL approach when the boundaries are moving (nonlinear
wavetank only), an alternative formulation of the force where the time derivative is moved
outside the integral is derived and implemented in the nonlinear numerical wavetank.

Results from numerical simulations are compared to experimental results. Three main
studies are carried out, including a fixed ship section in incoming waves, a ship section
in forced motion and a moored ship section oscillating in incoming waves. The influence
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of geometric parameters like the distance between the ship and the terminal and the
water depth as well as wave steepness is investigated. The linear simulations over-predict
the piston-mode motion by about 30 - 300% in the considered cases. Qualitatively, the
ship motion is over-predicted by an equal amount. The nonlinear wavetank without
flow separation show the same over-predicting trends. Exceptions are in shallow water
waves, where our results are somewhat inconclusive. The results from simulations by the
nonlinear wavetank including flow separation from the ship bilges do on the other hand
compare well with the experimental results. Our work hence strongly suggests that flow
separation from the ship bilges is found to cause the majority of the discrepancy, and this
serves also as a validation of our numerical work. The effect from the boundary layer flow
is found negligible to all purposes.

The present study has direct relevance also to other problems within marine hydro-
dynamics that inhibit gap resonances, such as moonpools, multi-hull vessels or two ships
in side-by-side configuration.



Nomenclature

(General rules

e Only the most used symbols are listed in the following sections

e Meaning of symbols given at least when introduced in the thesis

e Sometimes the same symbol is used to indicate different quantities

e Vectors are represented by bold-face letters

Subscripts

Normal derivative, or
natural period
Tangential derivative
Deep water limit

Roman Letters

HURO W T

S xNZm TS

@

«Q

S

Q

Amplitude of incoming, undisturbed wave (A = H/2)
Piston mode amplitude, amplitude in terminal gap (A, = H,/2)
Distance from ship section to terminal (terminal gap width)
Ship section beam (also called ship breadth)

Group velocity

Clearance from ship bottom to sea floor

Ship section draft

Horizontal and vertical force in inertial frame

Acceleration of gravity (g = 9.81m/s”)

Water depth

Wave height

Piston mode crest to trough height

Roll moment of inertia

Keulegan-Carpenter number (defined where it appears)
Ship section mass
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T,y

Roll moment

Pressure

Radius of curvature, or

distance from field point to position of singularity
Reynolds number (defined where it appears)

Arc length along a boundary

Boundary of closed domain of numerical wavetank
Boundary of ship section

Boundary of free surface

The free shear layer

Time

Wave period of regular wave

Natural period of coupled ship and piston mode motion
Natural period of piston mode

Shedding velocity just outside boundary layer
Horizontal and vertical axes of inertial frame

T,y Horizontal and vertical coordinates of center of gravity

Bold Roman Letters

XX K Qw
Frsne

Unit normal vector

Unit tangential vector

Velociy of the free shear layer

Field point (z,y) in two-dimensional space

Center of gravity, i.e. (zg,yq)

Position (parametrized by s) of the free shear layer

Greek Letters

iy

DE N DD E I

Internal angle along the boundary .S, or
cumulative angle between free shear layer elements
Parameter in cosine squared distribitution of elements, or
angle between two free shear layer elements
Circulation

Ship section motion in j’th degree of freedom
Wavelength

Velocity potential

Fluid density

Roll angle of ship section

Free surface elevation

Wave frequency (rad/s)

Computational domain
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Chapter 1

Introduction

Gap resonances are resonant fluid motion within semi-entrained vertical gaps between
two or more structures or within one structure defining a gap of some sort. Consider-
able vertically oscillating fluid motion may occur in such gaps under forcing at particular
frequencies. Typical examples where vertical gaps are introduced within marine hydro-
dynamics are moonpools, multi-hull vessels, two ships in side-by-side configuration and a
ship alongside a terminal. In the two latter cases, large ship motions and not only large
fluid motion is associated with the resonance problem.

The gap resonances are what we consider external resonance problems and differ from
the internal resonance problem, i.e. sloshing, in that the fluid within the gap communi-
cates with the outer, or external, flow. The consequence is that liquid volume conservation
is satisfied in sloshing, while this is in general not true for the gap problem. The latter
fact allows for a piston-mode resonance in the gap problem, which is not present in the
sloshing problem.

Linear potential flow theory predicts infinite fluid motions in the sloshing problem.
In the gap resonance problem, except in some rare cases called wave trapping, the com-
munication allows for outgoing waves. This introduces potential flow damping. In gap
resonance problems the fluid motion hence remains finite at resonance even within linear
theory.

However, although present, the potential flow damping may be very small in gap
resonance problems, and the response near the resonance frequency is often highly over-
predicted by linear theory relative to that observed in reality. The over-prediction by
linear theory poses a practical problem when analyzing this kind of problems using e.g. a
three-dimensional linear frequency domain code. Sharp spikes occur in the response curves
that are not associated with irregular frequencies which are of mathematical character,
but rather existing physical resonance frequencies of the system. The level of response
predicted by linear theory at these frequencies may be several times that observed in
reality.

Although not as drastic as that predicted by linear theory, the ship and water motions
may still be large in reality. It is therefore of interest to be able to predict the level of
response correctly, something linear theory fails to do. The two main possible candidates
causing the discrepancies are (a) effects associated with the nonlinear free-surface con-
ditions and (b) viscous effects. Postulations that viscous effects provide damping and
thereby explain the discrepancies have been made in the literature. The problem was
investigated by means of a Navier-Stokes solver by Maisondieu et al. (2001), but to the



2 Introduction

Figure 1.1: Illustration of planned Gravity Based Structure (GBS) type offshore Lique-
fied Natural Gas (LNG) terminal. Actual site: Port Pelican, coast of Louisiana in Gulf
of Mexico (ChevronTexaxo). Water depth h = 25m, distance from land 50km, GBS
dimensions 364m x 89m x 57m and storage capacity 330.000m>. The capacity of the
LNG carriers is at the present time typically up to 140.000m? and typical dimensions
are L x B x D = 300m x 45m x 12m, where L is length, B the beam and D the draft.
The LNG is first off-loaded to the terminal where re-gasified and transported to land
by pipelines.

author’s knowledge the postulations have not explicitly been investigated in other works.

This is what we investigate in detail in the present work. Within the framework of
potential flow theory, we investigate the effect of flow separation from the bilges of the
ship on the resonant behaviour of a ship alongside a terminal by means of time-domain
numerical wavetanks based on the boundary element method including an inviscid vortex
tracking method.

1.1 Offshore LNG terminals - Challenges

Through increased focus on risk regarding the off-loading of Liquefied Natural Gas (LNG)
from LNG carriers to terminals traditionally located within harbors, there has recently
evolved a trend of moving LNG terminals offshore, say 10 - 50 km from land. The carriers
off-load their cargo to the terminals where the LNG is re-gasified and transported to land
by pipelines. The situation is illustrated in Figure 1.1, where the terminal dimensions and
particulars of the site are given. This particular terminal is of Gravity Based Structure
(GBS) type, the type used in water depths h of h ~ 15 — 30m. At larger depths, fixed
platform systems involving jacket type installations are used for water depths of h ~
30 — 100m, and floating systems at water depths A > 100m.

Along the US coast, sixteen offshore terminals were projected by mid 2007 (cf. Mar-
itime Administration (2007)). Some projects have apparently been withdrawn due to high
economical costs. The Port Pelican depicted in Figure 1.1 is among those put on hold
for this reason. Several projects are also planned in Japan and Europe, where one, the
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Figure 1.2: The North Adriatic LNG terminal tested at MARINTEK.

so-called North Adriatic LNG terminal off the coast of Italy has recently been installed.
A photo from model tests of this terminal performed at MARINTEK is shown in Figure
1.2.

Aside from a risk perspective, the concept of offshore terminals offer additional advan-
tages such as reducing port congestion as well as accommodation of larger LNG vessels.
Due to the increasing activity in LNG transportation using vessels of increasing size these
matters inspire the utilization of the offshore areas for LNG terminals.

However, along with the advantages there are also challenges associated with moving
offshore. Intuitively there is an issue with the environmental loads experienced at such
unsheltered areas relative to those in harbors, introducing concerns about available oper-
ational time. The duration of an off-loading is typically 12 - 24 hours. The system will
be exposed to wind, current and waves.

In the present work we consider the hydrodynamic problem, and more specifically, the
wave-structure interaction of relevance for an LNG carrier alongside a GBS type offshore
terminal as those shown in Figures 1.1 and 1.2.

The terminal introduces a fixed vertical wall extending from the sea floor and thereby
a vertical gap between itself and the ship. Hence the system is prone to gap resonances.

Around resonance the ship may experience resonant motion in all six degrees of free-
dom. Vertical motions, including both pitch and roll in addition to heave, then may
become an issue with respect to contact with the sea floor due to the small bottom clear-
ance.

Large forces exerted on the moorings and fenders is yet another concern. The fenders
and moorings exhibit nonlinear characteristics. These are in general designed such as to
withstand drift and slowly varying forces and not the first order ship motions. However,
large first order fluid motions in the gap between the ship and the terminal introduce
large drift forces.

Large vertical fluid motions in the gap also involves hazards in relation to the actual
operation of off-loading. One may in severe cases experience damage of the structures
involved in the off-loading by the large water motion.

In addition to the gap resonances there are also issues regarding shallow water wave
aspects given the relatively small water depths. Waves of periods 7" > 10s - 14s entering
the terminal area of water depths of h ~ 15 — 30m are true shallow water waves, with
their associated nonlinear behaviour and complexity of modelling. Further, a consequence
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‘ Mid-ship cut

7
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GBS | -
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< L LNG carrierj

A

Waves

Figure 1.3: The hydrodynamic problem of an LNG ship alongside a terminal is in
principal three-dimensional (left). In the present work we consider a mid-ship cut and
beam sea waves. We restrict ourselves to a two-dimensional approach as illustrated to
the right.

of shallow water is small bottom clearance of the ship. Although the main focus of the
present work is on the damping effect of flow separation from the ship bilge keels, we also
investigate to a certain extent the behaviour of a the system in shallow water waves.

1.1.1 Scope and limitations of the present work

In the present work we limit ourselves to long-crested, beam sea waves and no current
or wind. Since the longitudinal dimensions of the problem is rather large relative to
the lateral dimensions, and with the restriction of beam sea waves we may to a certain
extent allow for a two-dimensional approach. This corresponds to an infinitely long ship
and terminal and is a reasonable approximation regarding the mid-ship cut. We will
throughout the text refer to the two-dimensional setting illustrated in the right part of
Figure 1.3 as a “ship section by a bottom mounted terminal”. We restrict our work to such
a two-dimensional setting. We consider rigid body motions in sway, heave and roll. The
three-dimensional fluid flow related to the longitudinal ends of the structures are hence
not investigated in the present work, nor are the surge, pitch or yaw motions of the ship.

A motivation for a two-dimensional study is that it more easily than a three-dimensional
study allows for detailed and controlled numerical and experimental studies of the physics
of the problem.

Throughout our work we shall denote the gap between the ship and terminal by the
“terminal gap”. Within the terminal gap the free surface may undergo resonant motion of
any mode. The zeroth mode, being the massive bulk of fluid in the terminal gap oscillating
with a flat free surface, is often referred to as the piston mode. We shall concern ourselves
with the piston mode, and do not consider resonance of the higher modes, i.e. the sloshing
inside the terminal gap. This means we consider wave frequencies away from the sloshing
frequencies. Although pure piston-mode motion will in general not exist, as in reality also
some disturbance of the free surface will inevitably occur, we will most often denote the
near piston-mode motion simply by piston-mode motion.

We will refer to piston-mode resonance as well as coupled ship and piston-mode res-
onance. If two-dimensional linear potential flow theory is considered, piston-mode reso-
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nance is associated with peaks in the piston-mode amplitude in the diffraction or radiation
problem, that is, for fixed ship section or forced motion of the ship section. Coupled ship
and piston-mode resonance is the coupled resonant motion of the ship section and piston-
mode when the ship is free to oscillate and associated with peaks in the ship motion
amplitude. These resonance frequencies are in general different.

Our work is carried out within the framework of potential low theory of an incom-
pressible fluid. We assume the water to be inviscid outside boundary and free-shear layers.
Viscous effects are, however, modelled. We model flow separation from sharp corners as
well as the in- and out-flow of viscous boundary layers. Vorticity is then introduced,
but assumed to be limited to thin free shear layers within the water or in thin boundary
layers. The flow in the main bulk of the water is hence irrotational. We solve the Laplace
equation under the restraint of the usual boundary conditions, both linearized and fully
nonlinear. Two time-domain numerical wavetanks are implemented, one linear wavetank
and one fully nonlinear wavetank. Both are based on a Boundary Element Method (BEM)
and within the Mixed Eulerian Lagrangian (MEL) framework.

Flow separation is modelled by an inviscid vortex tracking method. In order to reach
steady-state conditions, an automatic simplification algorithm for the free shear layer is
developed and implemented. There are certainly limitations associated with the inviscid
vortex tracking method and the presently developed simplification procedure, but it has
proved useful in our work regarding accurate predictions of the effect of flow separation.

Integration of the equations of motion need special treatment in the nonlinear wave-
tank. We assume slip conditions. The sway and heave forces as well as roll moment
are obtained by integration of the pressure given by Bernoulli’s equation over the ship
section. However, in the Mixed Eulerian-Lagrangian approach we have adopted, the time-
derivative of the velocity potential, ¢;, in Bernoulli’s equation is not defined over the ship
section when this is moving. To overcome this problem, an alternative formulation of the
force and moments are derived and implemented in this work.

1.2 Previous related work

The problem of a ship by an offshore terminal in shallow water was treated by Buchner
et al. (2001). Their study was three-dimensional and within linear theory. Calculated
drift forces about four times that observed in corresponding model tests were predicted for
frequencies near gap resonance. The discrepancy was remedied by applying a numerical
damping lid on the free surface in the gap. The damping coefficient of the numerical lid was
tuned using the model test results, with improved correspondence between simulations
and model tests as a result. Similar works are reported in Buchner et al. (2004) and
Buchner et al. (2004), where also significant run-up on the ship was observed due to
nonlinearity introduced by the shallow water. Pauw et al. (2007) considered two ships
in a side-by-side arrangement with emphasis on the effect on linear versus second order
quantities when tuning the damping parameter of the numerical lid. They recommended
that the damping parameter be tuned in such a way that the drift forces are optimal
rather than the linear quantities.

The numerical lid approach as used in these works is explained in Huijsmans et al.
(2001). The damping is achieved using the same approach as for removing irregular
frequencies. While irregular frequencies are of pure mathematical character appearing
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as a consequence of artificial internal resonance problems associated with the structures
involved, the gap resonances are physical. In that regard the empirical damping lid
approach is perhaps somewhat questionable, as it does not reflect the physics. Since
the model requires experimental input, its practical usefulness in studying new concepts
without doing model tests is limited. Similar numerical damping lid approaches have also
been used by Newman (2004), Newman and Lee (2005) and Chen (2005).

Practical problems for engineering purposes associated with gap resonances are dis-
cussed by Pinto et al. (2008) for moored ships in harbors. A moored ship in harbor
was also studied by Bingham (2000) where he introduces a hybrid method coupling two
established methods; a time-domain method based on Boussinesq type equations for prop-
agating waves from deeper waters and into the shallow waters of the harbor, and a linear
frequency domain panel method for the wave-structure interaction. The latter uses the
wave spectrum at the position of the ship given by the Boussinesq model as input, as-
suming these are free waves. Bingham argues that sub-harmonics are generated as waves
propagate over a sloping sea floor, and these become important with respect to the ex-
citation of resonant ship motions, and should therefore be carefully modelled. This is
achieved fairly well with the Boussinesq model as the method shows promising results in
comparison with model tests. The used Boussinesq model is well documented in Madsen,
Bingham, and Hua (2002) and previous work cited therein. We note that since nonlin-
earities in the incoming wave field is important, we expect similar nonlinear interaction
between the ship generated waves and the incoming waves. This is not modelled in the
hybrid model by Bingham (2000). Bingham also mentions that in constricted waters as
in a harbour, seiching, the resonant fluid motion associated with the basin, may also in-
duce resonant ship motions. In the present case there is no harbour. The modelling of
the incoming waves by e.g. a Boussinesq model would nevertheless be applicable also in
our case when considering the transformation of the waves when entering the associated
shallow waters at the offshore terminals.

A review of literature related to gap resonances, inviscid vortex tracking methods and
force calculations in the nonlinear numerical wavetanks follows.

Gap resonances. Molin (2001) studied, within linear potential flow theory, the
eigenvalue problem for gap flows. Infinite water depth was assumed. A simplified, quasi-
analytical approach to calculate approximately the resonance frequencies for the piston-
mode as well as the sloshing modes in rectangular moonpools was presented. Also the
corresponding shapes of the sloshing modes were calculated. The work was both for
the two-dimensional (infinitely long moonpool) and three-dimensional case. The effect of
beam to draft ratio of the moonpool was considered in particular.

Faltinsen et al. (2007) studied, also within linear potential flow theory, the piston-
mode problem in a moonpool in a more exact manner. The work was restricted to the
two-dimensional problem, but for arbitrary finite water depth. They followed the strategy
of domain decomposition and derived applicable Green functions for the problem along the
so-called Neumann traces dividing the different domains. Under forced heave of the two
rectangular ship hulls defining the moonpool, they considered both the natural frequency
and the amplitude of the piston-mode motion. They defined the natural frequency of
the piston mode as that with the largest corresponding piston-mode amplitude after
considering forced motion for a range of frequencies. The calculated natural frequencies
reported therein were found correct to at least the seventh digit.
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Meclver (2005) investigated the problem of a freely floating body with a gap of some
sort, for instance a moonpool. He considered the radiation and diffraction problems.
He denoted by the resonant coupled ship and fluid motion the “motion resonance”. He
further denoted the resonant fluid motion where the body is fixed or forced to oscillate by
the “sloshing resonance”. We remark that in his nomenclature, the first sloshing mode is
what we in the present denote the piston mode. He showed analytically that the natural
frequencies of the coupled fluid and ship motions are in general different from the sloshing
frequencies. He also showed that the response near the sloshing resonances (which are
for fixed body or forced motion of the body) will be nearly annulled when the ship is free
to oscillate. An exception was in case the ship was restrained from oscillating in one or
more degrees of freedom. In that case, large fluid motion also at the sloshing frequencies
could be attained, although the body is free to oscillate in some degrees of freedom.

An interesting feature of gap resonance is the so-called trapped modes. There exists
geometries where under certain conditions resonant fluid motion may occur without ra-
diating waves. The first such was discovered by Mclver (1996) - the Mclver toroid, and
other have been found and studied later. We have not found any evidence that our present
problem exhibit wave trapping. This was also the conclusions by Faltinsen et al. (2007)
in their investigation of resonant piston-mode motion in moonpools.

Eatock Taylor et al. (2008) generalized the three-dimensional method of Molin (2001)
to study the gap resonances of a ship by a terminal by substituting the Neumann con-
ditions with Dirichlet conditions at the longitudinal ends. They compared their approx-
imated theory with results from a linear diffraction code with promising results both in
terms of estimation of natural frequencies as well as level of fluid response in the gap.
They used the theory to introduce an artificial damping on the frequency response func-
tion, in order to investigate the influence of this damping on the ship response due to
transient wave trains with peak period around resonance.

Inviscid vortex tracking models. A number of inviscid models for vortex shed-
ding has been developed over the years, falling mainly into two categories characterized
by approximating the shed vorticity either by discrete vortices or by a continuous distri-
bution of vorticity. Continuous representation of the free shear layer has the advantage
relative to discrete methods that the actual vortex shedding is well defined, and the fine
structures of the free shear layer is represented in a more rigorous way. Further, problems
associated with the unphysical infinite velocity at the discrete vortex cores are avoided. A
disadvantage, however, is the requirement that the whole free shear layer be connected at
all times leading to increasingly complicated structures during time evolution in unsteady
flow. We shall in the following refer to both the terms free shear layer and vortexr sheet
meaning the same thing.

Clements (1973) gives a comprehensive overview of earlier works on discrete vortex
methods. We here refer to key points of the evolution for the reader to get acquainted.
Perhaps the first to represent a vortex sheet by an array of discrete vortices for numerical
purposes was Rosenhead (1932). He examined the so-called Rayleigh instability of an
initially perturbed straight line of constant vorticity representing e.g. the layer between
two velocities of a stream. The numerical calculations were in that work done by hand. As
in all discrete vortex methods, the velocity of each vortex was calculated and the positions
stepped forward in time. He was successful in showing perpetual growth of the instabilities
also beyond the valid regime of linear theory, with the sheet forming shapes resembling
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breaking waves. Later, the calculations were re-done with a finer discretization by Birkhoff
and Fisher (1959) and the method was shown to be unstable, considered therein to be due
to the higher influence of the unphysical infinite velocities at the center of each vortex in
their case of higher resolution. Chorin and Bernard (1973) introduced in this respect a
small cut-off near the vortex origin, giving the stream function constant values near the
origin and hence avoiding the infinite velocities. They concluded that in any successful
application of discrete vortex models such a cut-off or other similar strategy is necessary,
otherwise solutions will diverge under increasing resolution. Similar conclusions were
made by Clements (1973) where they investigated the roll-up of the end of a vortex sheet.

When considering vortex shedding from a structure using a discrete vortex method,
ambiguities arise on where to place a newly shed vortex. This is discussed in several
works, see e.g. Sarpkaya (1975). He gives a nice overview of discrete vortex methods with
emphasis on the numerical treatment of the Kutta condition. The Kutta condition says
that the fluid flow must remain finite at the point of separation, and that it must leave
tangentially from the body. The Kutta condition is a matter of observation in physical
experiments. During his literature review he found that there were a different numerical
treatment of the Kutta condition in almost each publication. The position and strength of
each new vortex was different. In most works mapping was used to identify the positions.

For discrete vortex methods there are therefore issues both regarding how to satisfy
the Kutta condition rigorously and how to treat the singular behaviour at the vortex
cores. However, since these issues have been understood for quite some time, several
authors report satisfactory results. Application of a discrete vortex method to a ship
heaving with consequent flow separation around the bilge keels is discussed in Soh and
Fink (1971).

A continuous vortex method was developed by Faltinsen and Pettersen (1987). They
investigated separation from both blunt and sharp edged bodies with emphasis on marine
applications. They performed boundary layer calculations to obtain the separation points
on the blunt bodies. Dipoles were distributed over the free shear layers which were dis-
cretized by piecewise linear elements. Over each free shear layer element a linear variation
of the dipole distribution was assumed. We mention that assuming piecewise constant
values is similar to a discrete vortex method, as each node connecting two elements will
then be like a discrete vortex. A difference is, however, that velocities are calculated on
the mid-point of each element in their work, and not at the nodes. The method was used
by Braathen (1987) to study roll damping of ships, with satisfactory results reported, and
further by Lian (1986) for more general cases. The method was also used by Aarsnes
(1984) to study current forces on ships. He considered flow separation from continuously
curved surfaces by coupling the global solution to viscous boundary layer calculations in
order to determine the separation points. Difficulties occured at the separation points
that were remedied by introducing the so-called “triple-deck” method. The entanglement
of the free shear layer was in all these works a major issue.

More recently, a higher order representation of the vortex sheet was developed by
Jones (2003) and applied to oscillatory flow past sharp edges. He put, like Faltinsen and
Pettersen (1987), emphasis on the treatment of the Kutta condition in the unsteady case,
giving what he denotes a generalization to that in the well established case of steady
flow. The method of Jones was further developed by Shukla and Eldredge (2007) where
they investigated the flow separation from a deforming body of prescribed motion, with
propulsion from aquatic organisms in mind, with aims at the possible improvement of
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propulsion systems. The numerical results were promising showing non-entangled, quite
impressive, vortical structures for long time simulations in oscillatory flow. In the works by
Jones (2003) and Shukla and Eldredge (2007), there was in addition to the oscillatory flow
induced by the body, also a mean steady flow implying that the vorticity was convected
away from the body. This considerably simplifies the problem.

Three dimensional vortex sheets have been modelled by Winckelmans and Leonard
(1993) and Brady, Leonard, and Pullin (1998). In the former a discrete distribution
was applied. In the latter a continuous distribution was used. There, they introduced
a length scale cut-off in order to suppress small scale deformations. The suppressions
were implemented such as to work in an automatic manner. Their results are in general
not compared to measurements, although they compare well in a two-dimensional case
of axisymmetric flows. The three-dimensional vortical structures appear by all means
reasonable.

Analytically based approaches has also been applied. Faltinsen and Sortland (1987)
used a single vortex tracking method, and investigated the drag force on a ship due to
separation from the bilge keels of the ship. Downie, Bearman, and Graham (1988) studied
roll damping of a ship section. They used a technique where the local solution of the vortex
shedding, which was assumed to be localized to the corner of separation, was matched to
an outer solution.

We also mention the so-called vortex-in-cell method. Actually, here, the Navier-Stokes
equation is the basis, and so it is not an inviscid vortex tracking method. It has, however,
the similarity that it tracks the vorticity. One formulate an equation for vortex trans-
portation and use an operator-splitting technique, i.e. the vortices are first convected and
next diffused. The Poisson equation for the stream function is solved for. This was used to
study the flow separation around two-dimensional finned bodies by Yeung (2002). They
also refer to the method as the “vortex blob” or random-vortex method. In Yeung et al.
(2008) they used the method to study the three-dimensional problem of yaw moments on
a slender body in terms of a strip theory approach.

As far as (attached) boundary layer effects are concerned, Liu and Orfila (2004) mod-
elled the in- and out-flow of boundary layers as boundary conditions on the sea floor in a
Boussinesq model in order to study viscous effects on propagating shallow water waves.

Force calculations. The Mixed Eulerian-Lagrangian (MEL) approach is adopted in
the present study in order to numerically solve the fully nonlinear potential flow problem.
In the Eulerian step the boundary integral equation is solved given the instantaneous
potential and geometry. Next, based on the solution from the Eulerian step, the potential
on the free surface and geometry of the free surface are stepped forward in time in the
Lagrangian step. This allows for solving the problem involving a deforming geometry. The
MEL approach was suggested by Ogilvie (1967) in a numerical study on ship resistance
and later used by Longuet-Higgins and Cokelet (1976) where they investigated numerically
the breaking of waves. Faltinsen (1978) used Ogilvie’s ideas in a semi-Lagrangian manner
to study numerically the nonlinear problem of a surface-piercing body undergoing forced
heave motion. Faltinsen (1978) used the method to also study nonlinear sloshing in tanks.
The MEL approach has later been used by many authors e.g. to study waves in wavetanks
and their interaction with fixed structures or structures subject to forced motions.

Introducing free body motions, a challenge is introduced in solving the equations
of motion. In the nonlinear numerical wavetank the ¢, term in Bernoulli’s equation is
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not defined at boundaries that evolve, so calculating the force on an oscillating ship by
integrating the pressure requires special care. Evaluating ¢, simply by finite differences
in time leads inevitably to numerical instability.

To our knowledge three main strategies have been adopted to overcome the problem.
One is to evaluate @, in a separate problem. We mention that in the literature the ¢, term
is commonly referred to as the “acceleration” term, referring to its gradient being the fluid
acceleration at a fixed point. The second is to manipulate the force expression in such a
way that the time derivative is moved outside the integral. The third is to introduce a
generalized total derivative.

For the first main strategy, according to Tanizawa (2000) four methods have been
employed which he denote iterative methods, decomposition methods, indirect methods
and implicit boundary condition method. Iterative methods imply estimating ¢; by finite
differences and then iterating until some criteria is met. A problem with the method is
time consumption as the boundary value problem is solved in each iteration. Decompo-
sition methods involve decomposing the force in that from a unit acceleration multiplied
by an effective mass defined in the actual application, and that from a fixed body. This
was used by Cointe (1989), and further elaborated in Cointe et al. (1991). They posed
a boundary value problem for ¢; similar to that of ¢. The indirect method also solves
a boundary value problem for ¢;, but at the same time also an artificial problem is in-
troduced and solved for. This approach has been employed by Wu and Eatock Taylor
(1996) and Kashiwagi (2000). In all these works the additional computational cost asso-
ciated with solving the boundary value problem for ¢, is small, but as with all numerical
procedures these methods exhibit challenges, such as estimating higher order derivatives,
e.g. ©ns, along the body. Here, the subscripts n and s means partial derivative in the
normal and tangential directions respectively. The implicit boundary condition method
was employed in earlier works by Tanizawa (see references in Tanizawa (2000)), but it is
not clear to the author what this theory involved.

The second strategy was followed by Faltinsen (1977), where he re-cast the force
expression by integrating over a closed contour involving the body, the surrounding free
surface and a surface at “infinity” (a distance b from the body). In the present work we
follow this approach, although re-formulating the expression to overcome the limitation
that the fluid had to be still exterior to b. In the case of incoming waves, as in most of
the present work, this would not be applicable.

The third method was used by Zhao and Faltinsen (1993) in a study on water entry
of a wedge. They introduced the derivative D'/Dt = 9/0t + U - V where the velocity U
was not the fluid velocity, but rather the body velocity. They showed convergence of the
numerical results.

1.3 Present work - structure and findings

In the present study we have implemented and applied numerical models as well as per-
formed several sets of model tests. All work has been restricted to two dimensions. Model
tests performed rather early in our study provided valuable insight to the author on res-
onant fluid behaviour and the appearance of shallow water waves that would otherwise
not be as accessible. They further provided inspiration in connection with the work of
implementing the numerical models, a task that at times may be experienced not so
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inspirational in itself.

We wish to emphasize the following aspects regarding model tests and numerical mod-
els. Validation and verification of a numerical code is always a necessity, and model tests
are in that respect very useful. However, one should be careful about considering model
tests as the “truth” from the fact that bias errors may be present. Then comes precision
errors. We regard the numerical and experimental work, of course together with analysis,
as tools to study a problem. They are like partners with different skills; both posses
unique features that may provide valuable information and they complement each other.
In this respect rather extensive efforts have been made both in debugging and verifying
the numerical codes as well as on identifying bias errors in the model tests. Bias errors
such as wave reflections, reduced wave making capacity and slight flexing of structures
which were supposed to be rigid have been discovered during post-processing of our model
test data. Some were discovered from arguments of analytical character, but others in
fact through direct use of the numerical codes.

Associated with model tests there are scale effects relative to full scale, for instance
associated with the Reynold’s number. In case of flow separation from blunt parts of
structures this is an important issue. In the present work flow separation from sharp
corners have been studied, and hence model scale effects are considered not to be of great
importance.

1.3.1 Structure of the present thesis

The structure of the present thesis is as follows. In Chapter 2 the mathematical formula-
tions upon which we base our numerical work are given. We first formulate the standard
set. of equations describing potential free-surface flow, next the theory of inviscid flow
separation, then the viscous boundary layer flow, and last state the equations of motion
of a rigid body.

In Chapter 3 we discuss physical and numerical issues regarding wave generation in
wavetanks with emphasis on reaching steady-state when starting from calm conditions.

In Chapter 4 we discuss the relevant dimensions of our problem and present the basic
problem of resonant piston mode and resonant coupled ship and piston-mode behaviour.

The numerical work is presented in the next four chapters, i.e. Chapters 5 - 8. In
Chapter 5 the basics of the numerical wavetanks are presented. We introduce the spatial
discretization and time integration. Some attention is paid to the treatment of intersection
points between the free surface and solid boundaries. Our chosen methods of wave making
and wave absorption is explained. In Chapter 6 the inviscid vortex tracking method is
presented, along with some verification by foil theory. Special attention to the algorithm
for automatic simplifications of the free shear layer during nearly sinusoidal ambient flow
is made, as this is new to the present work, and considered a contribution to the field.
In Chapter 7 the modelling of the in- and out-flow of boundary layers in the present
linear numerical wavetank is presented. In Chapter 8 the derivation of the alternative
formulation of the force and moment is given. The implementation is verified to the
extent a fully nonlinear method may be verified.

The model tests are presented in Chapter 9. This involves four sets of model tests
carried out within the present work, as well as a recapitulation of a set of previously
performed model tests whose results are used in the present work. The first two sets
involved a fixed rectangular ship section with rounded bilges by a terminal in incoming
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shallow water waves. The focus in the first of these was shallow water effects on forces
and wave kinematics, while in the second resonant piston-mode motion. The last two sets
involved a moored rectangular ship section with sharp corners in resonant motion by a
terminal in incoming waves. The recapitulated model tests, called the moonpool tests,
were originally performed to study resonant piston motion in moonpools under forced
heave of two rectangular sections with sharp corners. With the symmetric geometry in
the set-up, this is equivalent to a ship by a terminal in forced heave. The range of model
tests thus include the three sub-problems in linear theory: Diffraction, radiation and freely
floating ship section, all by a bottom mounted terminal.

In Chapter 10 our studies on resonant behaviour are presented. They all involve a ship
section by a bottom mounted terminal. The studies involve results from present numerical
simulations as well as the model tests. There are three main studies, directly related to
the experimental work described above, and two supplemental studies involving numerical
simulations only. The three main studies are (1) the diffraction problem involving a fixed
ship section, and no flow separation, (2) the radiation problem involving forced heave of
the ship section with flow separation and (3) a moored ship including flow separation.
The two supplemental studies involve forced sway of a ship section with flow separation
and a fixed ship section in incoming waves including flow separation.

A summary with recommendations to further work is given in Chapter 11.

1.3.2 Main contributions
We summarize what we consider the main contributions of the present work as follows:

e Linear theory over-predict the ship and piston-mode motion near resonance. Our
conclusions are that (1) the discrepancy is mainly caused by the damping effect
from flow separation at the ship bilges, (2) nonlinear potential flow effects are small
and (3) the damping effect of the in- and out-flow of boundary layers is negligible

e An algorithm for automatic simplification of the free shear layer in nearly sinusoidal
ambient flow is developed and implemented

e A new alternative expression for the force and moment on a surface piercing body
in a nonlinear wavetank is derived and implemented

As for the first, linear theory over-predicts the piston-mode motion around the piston-
mode resonance frequency in the case of a fixed ship section or forced motion of the
ship section. Linear theory also over-predicts both the ship motion and the piston-mode
motion near the coupled ship and piston-mode resonance frequency when the ship is free
to oscillate. In the latter case, the discrepancies are larger than in the former. Our
results strongly indicate that the observed discrepancy between linear theory and model
tests is explained practically in full by the damping effect caused by flow separation. The
nonlinear potential flow effects due to gravity waves are not dominant. That is, satisfying
the boundary conditions at the instantaneous free surface as well as including the square
term in the Bernoulli equation is not important in the present resonance problem. Further,
the effect of the in- and out-flow of boundary layers is negligible for all practical purposes.
We emphasize that since our conclusion is based on numerical work and not analytically
derived results, we have not actually shown this fact. We feel, however, that the good
agreement, with model tests provide strong evidence that the conclusion is feasible.
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In order to reach these conclusions, we needed to handle the free shear layer in a
rational manner. We developed an algorithm for automatic simplifications of the free
shear layer in near sinusoidal ambient flow, providing a means to apply the inviscid vortex
tracking method involving a continuous representation of the vortex sheet for long-time
simulations until steady-state. Without the automatic simplification procedure our results
regarding flow separation could not have been achieved as the free shear layer becomes
entangled. We also regard the automatic simplification algorithm as a contribution by
itself.

We also needed to deal with the problems associated with calculation of the forces
and moment in the nonlinear wavetank. In this respect we derived and implemented a
new alternative expression for the hydrodynamic force and moment on a body in a closed
nonlinear numerical wavetank. By alternative we mean the following. The integral of the
pressure over the body is re-written by introducing a closed control surface involving the
body, a part of the free surface and a connecting surface within the fluid. By manipulations
employing Gauss’ theorem for force and Stokes’ theorem for moment, the time derivative
of the ¢; term is moved outside the integrals. The alternative expression hence avoids the
need to evaluate ¢; directly. The free shear layer is included explicitly in the formulation.

A limitation to the presently adopted BEM model with free shear layer is that it
is most applicable to separation from sharp corners, as the separation point is hard to
predict in case of blunt bodies. In the present implementation, separation from sharp
corners only are considered. One may ask why a Navier-Stokes solver (CFD) was not
chosen to investigate the present problem. There are a large variety of CFD methods
such as FDM, FVM, FEM, SPM etc., and different ways of handling the free surface by
either free-surface tracking or capturing methods. There is no method that a priori stands
out as the perfect choice, and the chosen method has to undergo a verification phase in
the same way as is done in the present thesis with the adopted BEM model with free shear
layer. When that is said, we note two aspects that are of significance from a practical
point of view and that perhaps inspires the use of the present method. First, the CPU
time when simulating typically 40 - 50 wave periods in a rather long wavetank is probably
modest using the present BEM method compared to that of a CFD code. Second, the
present method has the convenient feature that flow separation may be turned on or off
simply by a flag specifying whether flow separation should be included in the simulation
or not. This allows for an easy way of investigating the effect of flow separation.
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Chapter 2

Mathematical formulations

2.1 Potential free-surface water flow

In the present work we consider the two-dimensional motion of an incompressible and
inviscid fluid with the objective of studying the fluid interaction with a ship section by a
bottom-mounted terminal. We model flow separation from sharp corners by an inviscid
vortex tracking method. Further, the in- and out-flow of viscous boundary layers is
modelled by a semi-analytical method, under the assumption of laminar boundary layer
flow. Vorticity is in both cases introduced, but assumed to be limited to thin free shear
layers within the main bulk of the water, or within thin boundary layers along the solid
boundaries. The flow in the main bulk of the water is hence irrotational.

The work is carried out within a closed tank as illustrated in Figure 2.1. We denote the
domain of the tank by €2 and its boundary by S+ Sy,. We make a distinction between the
“physical” boundary S and that excluding the free shear layers Sy,. We define S to consist
of the solid surfaces Sy + S as well as the free surface Sg, such that S = Sy + S + Sk.
There may be an arbitrary number of free shear layers. They are collectively denoted
Sy. They are not allowed to enter a solid boundary or cross the free surface. Although
Sy in the figure appears to be within the domain €, it rather is introduced to exclude
the vorticity from the free shear layers from 2. The modelling of the free shear layer is
treated in Section 2.2.

We define an Earth-fixed right-handed coordinate system with Cartesian coordinates
(x,y) where y is positive upwards, and the horizontal axis defined by y = 0 is in the mean
water line as indicated in the figure. The surface Sp represents a ship section, while 5
typically a wavemaker, sea floor and bottom mounted terminal. The domain 2 bounded
by the closed surface S is hereafter usually referred to as the numerical wavetank.

We make a distinction between the linear wavetank and the nonlinear wavetank. In the
linear wavetank, the domain and its boundary is fixed in time. The free-surface elevation
is in this case denoted ((z,t). In the nonlinear wavetank, the domain and its boundary

do evolve with time, i.e. Q = Q(t) and S = S(¢).

We now introduce the governing Laplace equation in €} and the standard boundary
conditions on S.

15
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Figure 2.1: Hlustration of the closed tank considered in the present work. The domain
is denoted §2 and its boundary S + Sy = Sg + Sp + Sg + Sy. All free shear layers
are collectively denoted Sy . The Cartesian coordinate system denoted (x,y) is defined
such that y = 0 is in the mean water line. The unit normal vector n is defined positive
into the water, and s is the unit tangential vector with positive direction as shown.

2.1.1 Governing equation

With the fluid assumed incompressible, conservation of mass may be described by the
usual zero divergence of the velocity, i.e. V -u = 0, where u is the fluid velocity at any
point and at any time, and V = (9/dx,0/0y). Further, with the fluid assumed inviscid,
and upon excluding any vorticity from the main bulk of the fluid, the velocity may be
represented by the gradient of a velocity potential ¢, such that u = V. Our governing
equation for the fluid motion is then the Laplace equation,

Vip=0 inQ. (2.1)

We aim at solving for the unknown ¢ over the domain 2. The governing equation (2.1)
implies that we have an elliptic problem. This means that the solution at any point of
the domain depends on the solution everywhere else in the domain. We therefore need
boundary conditions along all the boundary S.

2.1.2 Boundary conditions

Along Sr we have the dynamic and kinematic free-surface conditions, while along Sy + Sg
we have the zero-penetration boundary condition. Along Sy we impose a zero pressure
drop condition. This is explained further in Section 2.2. In the present section, we state
the free-surface conditions only.

The necessary evolution equation for the velocity potential on the free surface is the so-
called dynamic free-surface boundary condition derived from Bernoulli’s equation which
relate the pressure p to the fluid velocity and gravitational force per fluid volume at any
point in the fluid,

Oy NG 1 /9p\? B
p+p5+p§<%) +p§(a—y +pgy=C, (2.2)

where p is the fluid density, g is the acceleration of gravity and y the vertical coordinate
being zero at the mean free surface and with positive direction upwards as illustrated in
Figure 2.1. Here C' is uniform in space and constant in time. If we consider the special
condition of zero flow everywhere, we have from (2.2) that p + pgy = C, and it follows
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that C' = p, at y = 0, where p, is the atmospheric pressure. We may subtract p, on both
sides of the equality sign in (2.2). The net pressure p := p — p, in the resulting equation
must then be interpreted as the net pressure when the atmospheric is subtracted. In this
thesis, it is the net pressure we consider. We further neglect surface tension. There should
then be no pressure drop across the free surface, and we obtain from (2.2) the standard
dynamic free-surface condition on Sg,

Dy 1 /0p\> 1 /[p\°
(= —[==) - S 2.3
Dt 2(855) T3\ay) ~ omer (2:3)
where Dy /Dt = 0p/0t + u - Vi is the total derivative. As above, u = V.
The evolution of the free surface with coordinates denoted by xx(t) is governed by the

kinematic free-surface condition such that Sg is tracked by following the velocity of the

fluid at the free surface itself,

dx
d—tF =Vy on Sp, (2.4)

where d/dt is the usual differentiation operator with respect to time.

On solid boundaries we impose the zero-penetration condition, that is the fluid velocity
normal to the boundary is imposed as

g—z:U~n on Sy + Sg, (2.5)

where U is the velocity of the boundary Sy + Sp relative to the defined Earth-fixed
coordinate system (x,y) and n is the unit normal vector defined positive into the fluid as
shown in Figure 2.1.

In the linearized problem the boundary S itself does not evolve in time. The boundary
conditions are hence imposed on the initial position of the boundary S, so (2.3) and (2.4)
are reduced to

s =—9¢ ony=0,
ot (2.6)
% = _8_<p ony =10
ot on y=5

where by y = 0 we here mean the part of the mean water line outside the body. Note
that 9/0n = —0/0y due to the direction of the normal vector pointing into the water.
The solid boundary condition is also in the linearized problem that of (2.5).

2.2 Flow separation - Inviscid vortex tracking model

An essential feature of a viscous fluid is that the fluid separates from convex corners
forming a free shear layer. The free shear layer contains vorticity shed into the main bulk
of the fluid domain from the separating boundary layer. The vorticity in the boundary
layer is a consequence of the no-slip condition on solid surfaces. The situation is illustrated
in Figure 2.2. One may say that the flow separation provides a means for the fluid to retain
a finite velocity at the corner of separation. In “standard” potential theory, an infinite
fluid velocity will be predicted at convex corners. This is not physical. The physical
behaviour is recovered by imposing a Kutta condition. The Kutta condition says that the
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Figure 2.2: Conceptual illustration of a free shear layer representing vorticity shed into
the fluid by flow separation from sharp corner. In reality, the free shear layer has a
finite width (~ ¢) which will increase away from the separation point due to diffusion.
In the present vortex tracking model the whole free shear layer is assumed infinitely
thin, i.e. 6 — 0.

flow must leave tangentially from the body at the point of separation, and that the fluid
velocity must be finite. The means to ensure this is in the present model is described in
this section.

2.2.1 Validity of the vortex tracking model

The free shear layer is in the present model assumed to be thin, i.e. the vorticity is assumed
to be concentrated in a thin strip in the fluid domain. This means that the model is only
valid for high Reynolds numbers. In the cases we have studied, the Reynolds numbers
have been sufficiently large.

We illustrate that the Reynolds numbers have been sufficiently large in the following.
We emphasize that the Reynold’s number does not explicitly enter the computations. A
sufficiently large Reynold’s is purely a matter of having the right conditions for which
the model is valid, i.e. that the free shear layers are thin. We start out by assuming
steady-state sinusoidal ambient flow above a straight plate in a semi-infinite fluid. In that
case the Reynold’s number is

2wa?

Rn = : (2.7)

v

where w is the imposed circular frequency, a is the amplitude of the relative ambient flow
and v is the kinematic viscosity. In the present problem, none of the above assumptions
are strictly speaking fulfilled. First, the flow past the ship section is not that of an
infinite fluid. Second, since we investigate the nonlinear problem, the ambient flow may
in principle undergo rather complicated flow, and further, we investigate the transient
problem with the flow starting from rest. However, the flow around the ship section
corner will behave similar to that around one corner of a rectangle in infinite fluid. This
applies at least if the vortical structures are confined to the vicinity of the corner such that
the bottom, terminal, the other corner of the ship section and free surface are considered
in the far-field. Further, in all the investigated cases, when the system has reached steady-
state, the piston-mode motion has been quite sinusoidal. This means that in steady-state
conditions, we may take the piston-mode amplitude as a relevant measure of the ambient
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flow amplitude a in (2.7). Also, in the transient part, taking the “instantaneous” piston-
mode amplitude over one period, (2.7) provides in our opinion a relevant measure of the
“instantaneous” Reynold’s number.

For a measure of the boundary layer thickness we use the distance § from the wall
where the actual flow differs from the outer flow by 1%. This is § ~ 4.6,/2v/w for laminar
boundary layer flow (see e.g. Faltinsen (1990)). In the main part of the present work, we
have had the following situation regarding the boundary layer thickness and the Reynold’s
number range in steady state conditions. We take the ship section beam B ~ 0.5m (model
scale) as a typical structural length, w ~ 2—9rad/s and a ~ 0.01—0.05m as representative
values for the circular frequencies and ambient flow amplitudes. We then get that Rn ~
103 —5x 10* and §/B ~ 5 x 1073 — 1072, These Reynold’s numbers are considered large
enough for the inviscid vortex tracking model to be valid. The boundary layer thickness,
and hence the thickness of the free shear layer, are also considered small relative to the
body geometry. Although this is not a direct criterion, it provides qualitative information
of interest for the user. It is, however, directly relevant in the modelling of the in- and
out-flow of thin boundary layers which will be treated in the next section.

In full scale the boundary layers in the terminal gap are most probably turbulent,
and estimations of the boundary layer thickness becomes more involved. The model test
scale above is roughly 1:100. We denote the inverse of the scale by x, so that x = 100
in this case. Since the Reynold’s number Rn scales like %2, we have full scale values of
Rn ~ 10% — 5 x 10”. In oscillatory flow over a smooth bed, the critical Reynold’s number
for transition between laminar and turbulent boundary layer flow is O{10°}. In our case
then, the lower bound is in the regime of transition from laminar to turbulent boundary
layers, while the upper is well into the turbulent regime. An estimation of the boundary
layer thickness for a turbulent boundary layer is given in Fredsge and Deigaard (1992)
(see p. 29) as §/a = 0.093Rn~"!'. They give no formal definition of what is meant by
boundary layer thickness, but the formula is based on the assumption of a hydraulically
smooth surface and a log-law for the velocity distribution. Using this formula, we get
§/B~4x10"*—1073.

In order to reduce possible confusion, we want to make the following remark. Although
the boundary layer flow is laminar, the free shear layer is likely to be turbulent. Whether
the free shear layer is turbulent or not is not, however, an issue regarding the applicability
of the inviscid vortex tracking model. On the other hand, whether the boundary layers
are laminar or turbulent, becomes an issue in case of separation from a rounded part of
a body. The separation point will differ in the two cases. In the case of separation from
blunt bodies without sharp corners, a boundary layer calculation would be required in
order to determine the separation points. The point of separation would vary in time.
We mention that the boundary layer calculations needed for blunt bodies without sharp
corners is quite troublesome, as discussed by Aarsnes (1984). A complication is that the
boundary layer cannot be considered thin in the vicinity of the separation point. Also, a
distinction between laminar and turbulent boundary layers is necessary. This is a practical
matter when considering model testing versus full scale behaviour. This is not relevant,
however, for bodies with sharp corners. In the present work we restrict ourselves to flow
separation from sharp corners only, meaning that the separation points are well defined.
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2.2.2 Recapitulation of the theory

In the following we recapitulate the theory presented by Faltinsen and Pettersen (1987).
The vortex tracking model is based wholly on Bernoulli’s equation (2.2). Following similar
arguments as those behind Prandtl’s boundary layer equations and assuming the free shear
layer to be thin, the pressure is impressed onto the shear layer from the ambient flow from
both sides, and so, there may be no pressure drop through the layer. Denoting the two
sides by + and — as indicated in Figure 2.3 means we may write pt = p~, yielding

dot 0o~ 1 [/00"\> 1 /[/00°\> 1[0 \? 1 /00 \?
Opt Oy L (0pT\T L (09T \T L (0PI L0 (g
ot ot 2\ Oz 2\ Oz 2\ Oy 2\ Oy

This may be re-arranged as

At —p7) 1 (0pt 9o Y 0pt—p ) 1[0t 9o\ dlgt — o
(" —en) L [opm  0p7 | et —¢7) L [OpT | 097 O¢T —¢7) _
ot 2 | Oz ox ox 2 | Oy oy dy
(2.9)
and defining
I'=¢"—¢, (2.10)
we may write (2.9) as
or
ov VT = 2.11
o+ Ue VI =0, (2.11)
where 1 (00" 0o~ dpt
U == |22 422 F % (2.12)

2 | Ox ox ' Oy oy |’

Since (2.11) is the advection equation, I" is advected with the velocity U, , or put in another
way, I' does not change when following a path defined by this velocity. This means that
the geometry x, of the free shear layer at any time ¢ may be found by integrating (2.12)
from zero to t, or on differential form

dx,

dt

~U.. (2.13)

The free shear layer is fully described by x, and I'. These quantities are parametrized
by the arc length s of the free shear layer, such that x, = x,(s) and I' = I'(s). It is here
implied that x, and I' both are functions of time as well, although not stated explicitly.
We define s = 0 to be at the separation point and s = L, at the far end free shear layer,
where L, is the free shear layer length.

The discontinuity in the potential o — ¢~ = I" along the free shear layer is illustrated
in Figure 2.3. The circulation along any closed path enclosing the free shear layer such as
Se (which resides in the zy-plane) is given by the integral fSC dp/0s ds = ¢~ — T, where
the integration direction is positive in the counter-clockwise direction. This is equal to
—I', meaning that here, ['(s) is the negative value of the circulation at any point along
the free shear layer.

Kutta condition. The Kutta condition involves two aspects. First, the fluid is
required to leave tangentially from the body. This may be from either of the two sides
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Figure 2.3: Illustration of the potential jump I'(s) = ¢ (s) — ¢~ (s) along the free shear
layer. The dashed line indicates the value of ¢ along the free shear layer and body.
The dash-dotted line S, is an arbitrary closed curve in the xzy-plane enclosing the free
shear layer.

of the body. The side from which it should leave depends on the water flow in the near
vicinity of the separation point. We use the tangential fluid velocity along the ship section
sides on both sides of the separation point as measures of the flow. These are measured
a small distance away from the separation point. We choose the side of separation as
that which has the highest velocity towards the separation point. Choosing the side may
be a somewhat delicate matter in practice, and how this is implemented in the present
code is explained in sub-section 6.3.3. The second aspect of the Kutta condition is that
the velocity at the point of separation is finite. This is imposed in the BEM by requiring
that the quantity ¢t — ¢~ must vary smoothly from the fluid and onto the body. This
is required on the side of shedding only. There will be a discontinuity of the potential
from the body and into the fluid along the opposite side of the body. Now, given such a
smoothly varying I' along the free shear layer, we may require the jump in the potential
on the body at the corner of separation to be exactly the value of I" on the free shear layer
at the point of separation, that is (¢™ _‘Pi)body =Ty, where 'y = I'(0). The implication
of this requirement is perhaps not so obvious at the present stage. However, it provides
a mean of imposing the proper flow in the numerical model as shown later in the text.

The time rate of change of I' at the separation point, I'y, is also found from the
Bernoulli equation. Following the definitions above and in Figure 2.3, and because the lee
side of the point of separation x, is a stagnation point (cf. Figure 2.2) as a consequence
of the Kutta condition, we get from (2.8) that

dly 1.,
— = 4= 2.14
dt 2US’ ( )

where U; is the fluid velocity just outside the boundary layer at the corner on the side
where shedding occurs, i.e. Ug; = 0p/0s(x;). The sign on the right hand side is negative
when the flow separates from the +-side, and positive when the flow separates from the
other.
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2.3 Viscous boundary layer - In- and out-flow

In this section we consider attached, viscous boundary layers. We explain how the in-
and out-flow of the viscous boundary layers is modelled such that it may be used in the
present BEM.

As mentioned above, a consequence of the no-slip condition is that vorticity is gen-
erated. The generated vorticity is localized to a thin boundary layer close to the wall.
This has, due to continuity of mass, the effect of inducing an in- and out-flow, say v, of
the “outer limit” of the boundary layer. In all physical flows the in- and out-flow will act
globally as damping. This follows from the fact that there is energy dissipation in the
boundary layer. This means that the sum of the kinetic and potential energy in the whole
fluid must be reduced, or damped.

We are interested in the effect of the in- and out-flow in the present problem of a reso-
nant piston-mode motion. Under certain assumptions, the steady-state periodic solution
of v is found in standard textbooks, as noted somewhat further below. However, since
we investigate this problem by means of an initial value problem starting from rest, we
have unsteady conditions. After deriving the expression for v in unsteady flow, we use it
as right-hand-side in the body boundary conditions (2.5), i.e. dp/0n = .

Liu and Orfila (2004) considered the in- and out-flow in the unsteady case, and presents
a solution for v in a similar form as will be done below, but without derivation. The
solution is therefore derived in the following.

We assume that the boundary layer flow is laminar. Since the in- and out-flow of the
boundary layers are imposed directly on the solid boundaries, the layer should be thin
relative to a typical dimension of the geometry. We require that 6/B < 1. Further, the
curvature of the boundary, «, must be small compared to the boundary layer thickness,
that is 0k > 1, so that we may solve the problem locally in s in a curvilinear manner,
where s is the local tangential coordinate. The boundary layer thickness is as before
denoted §. We denote by n the local normal coordinate as indicated in the left part
of Figure 2.4. The domain is assumed to extend infinitely far in both the positive and
negative s-direction as well as in the positive n-direction. We let the velocity immediately
outside the boundary layer be given by (Ue(s,t), V.(s,t)) with V, = 0. This is the external
flow. We further write the total velocity as (u,v) = (u,?) + (Ue, 0), where u is required
to satisfy the no-slip condition on the wall, i.e. u =0 at n = 0.

In steady-state conditions the expression for v is found in many text books, e.g. in
Faltinsen (1990). With U.(s,t) = Uy(s) coswt this is

8UO 14
s acos(wt—ﬂ/él). (2.15)

U=
There is a phase lag of 7/4 relative to the outer horizontal flow, meaning there are equal
contributions in phase with acceleration and in phase with the velocity, where the latter
has a damping effect.

We expect a similar behaviour also in the case of arbitrary unsteady flow. We take
the linearized Prandtl equations as a starting point. We mention that the linearized
Prandtl equation is equivalent to the heat equation. Relevant theory may be found e.g.
in Landau and Lifschitz (1987) (see discussion around the heat equation in §52). We have
the following initial boundary value problem for u, where the initial condition is assumed
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Figure 2.4: In- and out-flow © of a boundary layer. Left: Near field with curvilinear
coordinates (s,n). Right: Far field where the in- and out-flow ¢ imposed directly
on solid parts of the boundary S. This may be done since § is small relative to a
characteristic length of the problem.

that of starting from rest:

ou 0*a

5 I/% =0, u(s,0,t)=—Ucs,t), u(s,o0,t)=0,

u(s,n,0) =0, U.(s,0)=0.

(2.16)

Note that instead of 6 we write co in the boundary condition. We take the Laplace
transform of (2.16), where we define the transform f(b) of a function f(¢) by

Fb) = £{f()} = / Tt dt, (2.17)

and get

2~

bu — I/% =0, (s,0,b) = —U.(s,b), (s,o00,b)=0. (2.18)

b is here a complex variable. Note that we have here used that the flow is initially at rest,

or @(s,n,0) = 0. The solution must be of the form @ = A(s,b) e*", and using the two

boundary conditions at zero and infinity we get that « = —+/b/v and A(s,b) = —U.(s,b),
so that

i = —U.(z,b) e Vb7 (2.19)

The vertical velocity at n = § is obtained by integrating the equation of continuity from
n = 0 to infinity, 0 = — fooo 0u/0s dn, yielding

~

0(s,00,b) = 8626(5,6)\/% (2.20)

The right hand side consists of a product of the two transforms fl = /v/b and f2 =
0U,/0s, and the inverse of the product is hence a convolution integral between the inverse
transforms f; = v/y/7wt and fo = OU,./0s. The convolution integral is defined as

RO = [ Rt =) falr)dr (2.21)
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Figure 2.5: Roll is denoted by 6, and is taken to be positive counter-clockwise. Centre
of gravity is denoted by x¢ = (z¢, ya)-

and so the solution to our problem is

- v ['OU, 1
v(s,t):\/; e = (2.22)

As discussed, under the assumption of a thin boundary layer, we may impose the
velocity (2.22) directly on the solid boundaries, providing a slightly different boundary
condition than the classical zero penetration condition. This is illustrated by the far-field
representation in the right part of Figure 2.4.

Near corners of the solid boundaries and intersection points between the free surface
and solid boundaries we still apply (2.22), although the situation in the vicinity of these
positions is strictly speaking not as assumed.

2.4 Rigid body motion

In the present work we are primarily interested in a ship section by a terminal, with the
section either fixed or moving and with the motion either forced or free. In the case of free
body motion, the equations of motion must be solved for. We consider rigid-body ship
motions in three degrees of freedom; sway, heave and roll. In the inertial coordinate system
Ozy as used throughout the present work and illustrated in Figure 2.5, the equations of
motion are

m:iG = FJ;,
6= M,

where m is the body mass, Z the roll inertia about the center of gravity of the ship
section x¢ = (z¢,yqs), Fr and F, the horizontal and vertical forces and M the roll
moment, about the center of gravity. We denote by motion of the center of gravity in
the x-direction sway and in the y-direction heave. Roll is denoted by # and measured in
radians. The roll motion and moment are considered positive in the counter-clockwise
direction as indicated in Figure 2.5.

Although in the previous section we described a method to include the viscous effect
of in- and out-flow of boundary layers we neglect shear stress when calculating the forces
and the moment. We only consider the contribution from the pressure. The fluid force
F = (F,, F,) and moment M acting on the body are then the pressure given by the
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Bernoulli equation multiplied by the body normal vector and integrated over the body,

F:—/ pn ds,
Sp

M:—/ png ds,
Sp

where n = (n,, n,) and ng = (r — z¢)n, — (y — ya)n,. The expression for ny is explained
in more detail in Section D.1.

(2.24)
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Chapter 3

Wave modelling in a wavetank

We are basically concerned with wave-body interaction and some knowledge on the matter
of water waves has proved useful throughout our study. In the present chapter we discuss
some aspects regarding generation of steady-state waves in a wavetank. This applies to
both physical and numerical modelling.

There are no new results presented in this chapter. We do however, devote a separate
chapter to aspects concerning obtaining steady-state, or at least nearly steady-state, wave
conditions, as we find the issues discussed herein of appreciable importance to keep in mind
during studies such as the present one. Special attention is paid to shallow water waves.

Relevant to offshore terminals in small water depths, we give a short overview over
developments in shallow water wave modelling by Boussinesq type of equations made over
the last one or two decades.

3.1 Linear propagating waves

For a linear, regular wave we denote by T the wave period, A\ its wavelength and H
its trough-to-crest height. From these we have the wave frequency w = 27/T, the wave
number k& = 27/ and the wave amplitude A = H/2. We also introduce the wave steepness
H/X. In other contexts, such as in perturbation schemes of the velocity potential, a more
convenient definition is perhaps kA which is 7 times larger.

Assuming constant water depth A in a fluid extending infinitely in the horizontal
direction, a steady-state harmonic solution may be found, giving the linear dispersion
relation relating the wave frequency w, wave number k and acceleration of gravity g,
which is the well known

w? = gk tanh kh. (3.1)

From an energy consideration of a narrow banded wave train, in the limit, we recover the
propagation velocity of the energy associated with the wave, denoted the group velocity

Cy = dw/dk, which is
C 2kh
Co=73 (1 TS 2kh) ’ (3:2)

where C' = w/k is called the phase velocity. In the deep water limit when the wavelength
becomes negligible compared to the water depth, or kh — oo, we get C; = C/2. In the
shallow water limit where kh — 0, we get Cy = C' = /gh.

27
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Figure 3.1: Two types of wave making devices. Left: Piston type. Right: Hinged flap
type.

We also mention that when a regular wave enters from one water depth to another
over a gently sloping bottom, not only the wavelength, but also the amplitude will change
somewhat according to linear theory. This problem is discussed e.g. in Mei (1989) where
the solution to the linearized problem is obtained assuming multiple scales. The behaviour
is governed by the so-called wave action equation, which is in three-dimensional space
D/Ot(E/w) + V - (CxE) = 0, where E = 0.5pgA? for long crested waves. With no
temporal changes in the topography or current, there is no temporal change in period or
energy, which means that in two dimensions CyF = const, or

A CgO
- _ [ 3.3
AO Cg ’ ( )

where subscript zero means a reference water depth, e.g. deep water. The wavelength
decreases appreciably when entering an area of smaller water depth, but the amplitude
changes to a lesser extent. The steepness hence increases until finally breaking at suf-
ficiently small water depths. We make use of (3.3) when defining the environmental
conditions in the model tests presented in Section 9.1.

3.2 Steady-state wavemaker theory

We next present linear wavemaker theory and discuss aspects that have consequences in
a wavetank. The theory is found in many textbooks, see e.g. Hughes (1993), Dean and
Dalrymple (1984) or Faltinsen (2005).

Given a wave period T and a desired far-field waveheight H for a regular wave in
steady-state, the solution of the linearized problem of the motion of different types of
wavemakers has been found and referred to in the above references. The solutions are
given in terms of transfer functions expressing the ratio between the waveheight and the
stroke S of the wave making board, sometimes referred to as Biésel transfer functions.
The stroke S is the horizontal distance between the two extrema of the paddle motion
taken in the still free surface as indicated in Figure 3.1. The motion of the wavemaker is
assumed sinusoidal. Perhaps the most common type of wave making devices are (1) the
piston type being a vertical plate typically extending the full water depth h for shallow
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water waves, and (2) hinged flap of arbitrary height h,,,, for deeper water, both illustrated
in Figure 3.1. The transfer function for these are

H  2(cosh2kh —1)

S " b2k ok (Liston), -
H 4sinh kh . cosh k;(h — hwm) — cosh kh . .
'S~ sinh 2kh + 2kh (Smh kh + K ) (Hinged flap).

A special flap-type wavemaker that is commonly used is the double-hinged flap. It will
typically be proper for generating waves over a large range of wave frequencies; the top
flap may generate the shortest waves, while the lower plus upper flap the longer waves.

Note that in the linearized problem the actual geometry does not change, that is the
boundary conditions are satisfied on the mean position of the paddle. Therefore, the
validity of (3.4) becomes questionable if the paddle motion is large, e.g. large flap angles.
This is, however, in many cases not a practical problem.

As stated, the transfer functions provide relations between the far-field waveheight and
the stroke. There are, however, also near-field disturbances that do not propagate, often
called evanescent modes. The evanescent modes appear since the paddle motion does not
in general satisfy the exact fluid kinematics under a steady wave train. They vary sinu-
soidally with depth and decay exponentially in the horizontal direction as A, exp(—k,x).
Here x = 0 corresponds to the wave board at rest and the water domain is for z > 0 in
a linear analysis. There is an infinite number of evanescent modes with k,, the positive
roots of the equation w? = —gktankh. Note the minus sign and tan rather than tanh.
The solution procedure for obtaining A, is given in detail in Faltinsen (2005) (see p. 283).
The amplitude of the evanescent modes depends on the type of wavemaker, wave period
and water depth. A rule of thumb is that undisturbed outgoing waves appear about
2 — 3\ away from the wavemaker. However, this depends on a reasonable choice of type
of wave making device. Two extreme cases are (1) attempting to create deep water waves
with a piston type paddle extending to the tank bottom and (2) creating shallow water
waves with a flap hinged far from the bottom. In the former case, the amplitude of the
evanescent modes A, will be large and give significant disturbances beyond that of the
rule of thumb above. In the latter case the ability to produce waves with any significant
amplitude will be very limited.

3.3 Reaching steady-state

The linear dispersion relation and its derived results such as group velocity, is strictly
speaking valid in steady conditions only. It is perhaps somewhat confusing how steady-
state might exist, but in our case it means that there is an infinitely long wave train
caused by a local disturbance, sinusoidal in time, located infinitely far away that started
at t = —oo. In practice we have only a finite length wavetank and a finite amount of
time to produce waves, so that we may obtain only near steady-state behaviour. This
has practical implications. Assume that the fluid is initially at rest in a closed wavetank.
When a wave making device at one end of the wavetank starts undergoing regular motion,
a wave train will start to propagate along the tank. The wave train front experiences a
different reality than the waves further behind which, at least some distance from the
wavemaker experience a near steady-state condition. The wave front may be described
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by an infinite sum of frequencies, and therefore, some energy will travel with the velocity
Vgh (the zero frequency limit), and its disturbance will be vertically uniform. This is
relevant for seiching, which may occur in a basin or wave flume. Disregarding the detailed
behaviour of the wave front, we note that the velocity of the wave train front is limited
by the velocity that the energy is transported which is Cj. In the deep water limit, the
waves travel twice as fast as the wave front, since C;; = C'/2, whereas in the shallow water
limit the waves travel with the same velocity as the energy propagates, since Cy = C. A
body in the wavetank will reflect waves that are in turn re-reflected from the wavemaker.
The time of re-reflection is roughly 3{/Cy, where [ is the distance from the wavemaker to
the body. The number of periods where the incoming waves at the position of the body
attain a near steady-state behaviour is therefore dependent on the relation C'/C, and the
distance [. In the shallow water limit this is at most half that in the deep water limit,
but in practice somewhat less due to the somewhat transient behaviour typically of the
first two or three wave crests in the wave train front. This is indeed a practical limitation
that must be considered if performing physical or numerical work on shallow water.

3.4 Shallow water aspects

For deep water waves nonlinearity is associated by a large wave amplitude, with the rele-
vant non-dimensional parameter being the steepness kA. In finite water depths, another
relevant parameter is kh. There are thus the two independent parameters kA and kh,
that are both measures of nonlinearity. They relate the horizontal dimension to the ver-
tical dimensions of the wave, i.e. the wavelength to the wave amplitude and water depth,
respectively.

kh becomes important when the water depth becomes shallow. The deep water limit,
is usually considered \g/h < 2, while the traditional limit for a shallow water wave is
Xo/h > 10. The latter is equivalent to koh < 7/5 =~ 0.63. The subscript 0 means deep
water limit. We mention that shallow water waves are often also denoted long waves,
referring to their length compared to the water depth. Nonlinearity is introduced when
kh becomes small, as may be seen from the ratio of the two acceleration terms in the
Euler equations, uu, /u; ~ kA/tanh kh. Given A, the nonlinear advection term becomes
important when kh becomes small. When kh — 0, the ratio tends to A/h, and so in very
shallow waters, the degree of nonlinearity is associated with the ratio of the amplitude
to the water depth. Ursell (1953) further found that the parameter U, = kA/(kh)3,
commonly known as the Ursell parameter, is a more descriptive parameter regarding the
amount of nonlinearity introduced by the finite water depth relative to that from the wave
amplitude. Relative to the above discussion, we see that U, = 1/(kh)* A/h.

3.4.1 Permanent shape of the waves

We present in Figure 3.2 four snapshots of waves produced by four simulations using the
present nonlinear wavetank. For each simulation, the water depth h was changed, other-
wise, the conditions were the same. The motion of the piston wavemaker was sinusoidal at
period T' = 1s with stroke S corresponding to deep water wave steepness is Hy/\g = 1/50.
The parameter relating the deep water wavelength to water depth Ag/h is included for
each of the four snapshots in the figure. The lower snapshot represent deep water con-



3.4. Shallow water aspects 31

)\O/h=6.24

)\0/h=1.56

Figure 3.2: Snapshots showing typical shallow water effects on propagating waves.
Simulations from the present nonlinear wavetank. Same wave period in all four simu-
lations, but different constant water depths h. The horizontal axis represent distance
x along the wavetank.

dition, the second lowest an intermediate depth, while the two upper represent shallow
water conditions. We want to mention the following two features. First, the shape of the
free-surface elevation changes drastically upon exceeding the shallow water limit, almost
unrecognizable when comparing to the well-known near sinusoidal deep water wave. Sec-
ond, the presented shallow water waves do not attain profiles of permanent shape, the
profile varies along the tank. In shallow water, waves of permanent shape do, however,
exist. These are called Cnoidal waves. Generation of Cnoidal waves requires a paddle
motion other than sinusoidal, as discussed e.g. in Mei (1989). In the case of sinusoidal
motion, so-called parasitic free second-order waves are propagated, as discussed e.g. in
Hughes (1993). With second order we here refer to an expansion of the potential in the
wave steepness parameter kA. In very shallow water as that in the upper snapshot, this
expansion becomes less valid from the discussion around the Ursell parameter above, but
the main feature is still explained in a qualitative manner.

The features discussed here introduce practical issues when modelling long waves in
a wavetank. In case of sinusoidal wave paddle motion, the lack of permanent shape
suggests that one should perform wave calibration tests without the model present in
order to measure the wave at the position where the model will later be placed. The far
from sinusoidal shape further complicates the matter on what is actually a representative
value for the waveheight H. An obvious option is to take the crest-to-trough height over
one paddle period. This is what has been done during the present work in the parts
involving shallow water waves. There is a question, however, if the crest-to-trough height
at e.g. the mid-position of the model is an adequate measure of say, the energy in the
wave. These kinds of issues illustrates some difficulties regarding shallow water waves.
Not only do they involve a great deal of care in modelling, but once modelled, the way to
extract of information from the results are not obvious.
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3.4.2 Boussinesq models

With respect to the modelling of shallow water waves we feel that so-called Boussinesq
type of equations deserves to be mentioned. These equations basically keep some of the
nonlinearity in the dynamic free-surface condition, and makes implicit restrictions on the
dispersive character of the waves. They are based on expansion of the velocity potential in
the two parameters p = kh as well as € = kA. One may associate with kh the dispersive
characteristics of the waves, and with £A the nonlinearity introduced by the nonlinear
free-surface conditions. What is characteristic by the traditional Boussinesq models is
that € and ;2 are assumed to be of the same order of magnitude. In newer formulations,
the two parameters are treated more separately. The variation in the vertical direction
y is assumed small and represented traditionally as a power expansion in ky. The order
of the method with respect to dispersion is the highest order of ky kept. Since the range
of y is in the order of h, one usually refers to kh rather than ky when discussing the
order of the method. So an expansion to (ky)? is referred to as an expansion up to (kh)?2.
Expansions other than power expansions, like Padé approximants has more recently been
applied.

The basic idea behind a Boussinesq model is that some of the nonlinearity of the water
wave problem is retained through the expansion in £A. Since shallow water waves attain
nonlinear behaviour, this may be essential in a given physical problem. The capability
of the model to capture the nonlinear characteristics depends on how the nonlinear free-
surface conditions, or expansion in kA, is treated. This varies from model to model.

A Boussinesq model will not model the exact dispersive character of the waves. It
will be valid only for a certain range of kh. The range of water depth to wavelength
ratios (kh) for which a given Boussinesq model is applicable must be investigated for
each specific model. It is a question of settling a limit for kh where the model captures
global linear wave characteristics like the wave celerity C' and group velocity Cy reasonably
well. Beyond this limit, the errors typically increase very fast with increasing kh. The
dispersive characteristics of the wave field is modelled improvingly well the higher the
order of the Boussinesq model is. One may then in theory expand to a very high order in
kh. However, the resulting equations become very complex if expanding to orders higher
than, say, 4 — 6.

The classical Boussinesq equations were derived by Peregrine (1967), and is applicable
for A\g/h = 8, or equivalently kh < 0.75. Significant progress has been made in the last
one or two decades in the treatment of medium deep to shallow water waves. A wealth
of suggested models improving both nonlinearity of the free surface as well as extending
the ranges of kh have been published. Recently, so called enhanced Boussinesq type of
equations have been developed and presented in Madsen et al. (2002), applicable for
Xo/h = 0.15 or kh < 40. Interesting to note is that, compared to Peregrine’s model, the
water depth may be about 50 times greater. Note also that the water depth may in the
latter model be about seven times greater than the wavelength, and that is definetely a
true deep water wave. In practice this removes the restriction to shallow water almost
completely. They used a so-called Padé approximant rather than a power expansion in
ky. A Padé approximant type of expansion involves a quotient in the shape p(ky)/q(ky).
For example, keeping the first order term in each function gives a second order method,
as (1+ a(ky))/(1 +b(ky)) ~ (1 + a(ky))(1 — b(ky)) when b(ky) is small. According to
their work such an expansion gives a higher range of kh where the model is applicable
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relative to that for a traditional power expansion to the same order (second order in this
case). Further, one may choose pairs of a,b such as to maximize this range.

We mention last that originally our purpose was to study shallow water effects related
to offshore terminals, and so we considered coupling a Boussinesq type of model with a
BEM. The idea was to evolve the waves from deep sea waves entering a sloping bottom
and thereby undergoing transformations. The advantage of Boussinesq models is that
discretization is needed only along one horizontal strip, e.g. along the bottom. In a BEM
the whole boundary is discretized and thereby more computationally demanding. A dis-
advantage of the Boussinesq models is maybe that they involve spatial derivatives in the
horizontal directions. Solving the equations numerically typically involves using a finite
difference scheme, and in that respect, numerical damping may be an issue. Numerical so-
lution of a set of Boussinesq equations by finite elements is, however, reported in Sgrensen
et al. (2004) with application of waves entering a medium steep slope. Interesting results
are also reported by Fuhrman et al. (2005) in an application of wave interaction with
a bottom-mounted surface-piercing structure using the high-order Boussinesq type equa-
tions presented in Madsen et al. (2002). In all these work, two horizontal dimensions are
considered.

We chose at an early stage not to pursue the approach of coupling Boussinesq and
BEM type solvers. We have developed numerical wavetanks based on the BEM only.
The wavetanks have been implemented such as to account for arbitrary bathymetry. The
present nonlinear wavetank was used for studying waves interacting with a ship located
near a steeply sloping bottom by Fredriksen (2008). In all the present applications of the
numerical models, however, the water depth has been constant. We have not considered
the nonlinear aspects of the transformation of waves entering from deep to shallow water.

We now turn to the formulation of the two-dimensional problem of a ship section by
a bottom mounted terminal and the associated resonance problems.
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Chapter 4

The physical resonance problem

In this chapter we introduce the two-dimensional hydrodynamical problem of a rectangular
ship section by a bottom mounted terminal. We first present in Section 4.1 the geometric
parameters in the problem. Next, for the reader to get acquainted with the two resonance
phenomena that we denote the piston-mode resonance and the coupled ship and piston-
mode motion resonance, we present in Section 4.2 a schematic and descriptive overview
with some direct references to specific parts of the results from our analysis which are
presented in Chapter 10. We emphasize that some parts of the discussion is not based
on analysis only, but rather from observations during our case studies by means of model
tests and simulations. However, we feel that several key features are enlightened and the
evidence for our reasoning quite strong.

4.1 Formulation of the basic two-dimensional problem

Throughout the present study we have considered our ship section to be of a simple
rectangular shape with sharp or rounded corners. A rectangle with sharp corners will
resemble a typical mid-ship section of an LNG carrier which has rounded bilges including
bilge keels. In the present study we have not investigated the effect of bilge keels; we have
not considered ship section geometries with that degree of detail. We have only considered
ship sections with 90° corners or with rounded corners. The details of the separated flow
will certainly be different around a bilge keel compared to those around a corner of a
rectangle, but the flow will always separate in both cases. This is illustrated in Figure

Figure 4.1: Instantaneous scenarios of flow around bilges. The flow will always separate
around a sharp corner. Left: No bilge keel. The flow will still separate at sufficiently
large K C-numbers, but not in the illustrated case. Middle: Bilge keel. Right: Sharp
corner with bilge keel superimposed for illustration purposes.
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Figure 4.2: Dimensions in the problem of a ship section by a bottom mounted terminal:
Water depth h, bottom clearance d, ship section beam or breadth B, ship section draft
D and terminal gap width b.

4.1, where streamlines indicate the imagined flow pattern. The effect of the depth or size
of the bilge keels on drag forces were investigated in Faltinsen and Sortland (1987). They
showed significant increase in the drag with increasing bilge keel depth. This means the
effect of separation increases with the bilge keel depth. We imagine that there would be
a similar significant effect of bilge keel depth in the present case of a ship section by a
terminal. This has not been investigated, though.

In Figure 4.1 we also define the bilge radius . In the case of finite radius r the flow
will separate provided the K C-number is sufficiently large, although in the figure we have
illustrated non-separated flow. More discussion on that matter is provided in Section 10.1
in connection with the study involving a ship section with rounded bilges.

We define by B the ship beam or breadth and D the ship draft as illustrated in Figure
4.2. In the figure the vertical wall to the right of the ship section represents the bottom
mounted terminal, and the distance from the ship section to the terminal is denoted b.
We will throughout the work call the area between the terminal and the ship section the
terminal gap, and b the terminal gap width. The still water depth is denoted i and the
bottom clearance d.

There is a fair number of dimensions to consider in this problem. The beam-to-draft
ratio B/D is a main parameter for the ship section hull itself. For an LNG carrier this
is typically around B/D = 4. The ratio between the beam and the water depth B/h is
a relevant parameter when considering finite water depth effects on ship section motion.
Considering the terminal, the ratios between the terminal gap width and the ship section
beam and draft, b/B and b/D, are relevant. If we consider forced motion of the ship
section, these parameters describe the ability the ship has to disturb the fluid in the
terminal gap when forced to move in heave and sway.

Choosing one single dimension to characterize our problem in full is of course not
possible. However, if forced to make a choice, perhaps B is a reasonable candidate. It
defines in a way the relative extent of the terminal gap and further, the distance from the
“external” flow to the left of the ship section and to the “inner” flow in the terminal gap.
We have in the present work mostly chosen B as our typical dimension of the problem
and hence present variations of the other dimensions as nondimensional parameters with
respect to B.
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We will consider ship sections of different B/D ratios in settings with different water
depths A and terminal gap widths b. The ship section will be subject to incoming regular
waves of varying regular wave period 7" and wave steepness H/\. It will also be forced in
sinusoidal motion in heave with varying heave amplitude 73,, or sway with varying sway
amplitude 7y,. The results will in general be presented as function of the nondimensional

wave frequency w/+/g/B.

4.2 Resonant behaviour

In the gap resonance problem that we study in the present work, there is in principle
an infinite number of resonance frequencies. Most of these are associated with modes of
the free surface localized in the terminal gap. We refer to these localized modes as the
sloshing modes. Note that we make a distinction between the sloshing modes and the
piston mode, which is of a more global character. This should become clear shortly.

We want to remark that the approach taken in the present work is solving the linear
and fully nonlinear problems by means of a BEM and not that of a modal method. With
the chosen BEM we may not separate modes as such. We solve in principle the full
problem without assumption of participating modes. We do, however, nevertheless find
it useful to use the notion of modes in our discussion.

Now, unless the ship section draft D is very small relative to the terminal gap width
b, that is, unless D/b < 1, these modes are similar to those in a closed rectangular tank
of breadth b and water depth D. This is due to the exponential decay of the fluid motion
under a traveling or standing wave, and that the fluid motion is near zero at y = —D, i.e.
it is as if a horizontal solid boundary encloses the gap from below. The first mode is under
the above restriction roughly that of a standing wave of wavelength 2b. Then comes the
higher modes. The first and higher modes all have their associated resonance frequencies.
We note that there are also disturbances of the free surface in the terminal gap other than
those caused by the sloshing modes. These are evanescent-like disturbances.

In addition to the sloshing modes, there is a zeroth mode which is usually referred to
as the piston mode. The piston mode is characterized by that the fluid entrained in the
terminal gap undergoes near uniform vertical oscillatory motion with a flat, horizontal
free surface. This is illustrated in the left part of Figure 4.3. The piston mode has an
amplitude which we call the piston-mode amplitude and denote it by A,. More specifically,
we define A, = H,/2, where H, is the trough-to-crest height of the free surface averaged
over the terminal gap. Following this definition of the piston-mode amplitude, it also
holds in the nonlinear case where the magnitude of the trough might typically be slightly
different from the magnitude of the crest. Associated with the piston mode is a resonance
frequency which we denote the piston-mode resonance frequency. This will typically be
lower than those of the sloshing modes. Hence, if the excitation frequency is in the vicinity
of the piston-mode resonance frequency, the dominating part of the fluid motion is that
of the piston mode, although also local evanescent-like disturbances of the free surface
will be present. We denote this as piston-like behaviour. The piston-like behaviour is
illustrated in the right part of Figure 4.3.

It is the piston-like behaviour we study in the present work. We hence do not study
violent sloshing behaviour involving run-up and wave breaking, which is a typical feature
of the internal resonance problem. The internal problem we refer to here is that of a closed
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Piston mode + higher modes
Piston mode -+ other disturbances

“Communication”

Figure 4.3: Illustration of the piston-mode motion. Piston-mode amplitude is A, =
H,/2 where H, is the crest-to-trough height of the free-surface elevation averaged over
the gap. Higher modes hardly communicate with the outer flow while the piston mode
must do so due to continuity of mass.

tank partially filled with liquid. The present external resonance problem differ from the
internal one basically in the following two ways. First, in the external problem there exists
a piston mode as just discussed. As a consequence of mass conservation this does not
exist in the internal problem. Under forced heave of a partially filled tank, linear theory
predict zero sloshing. We mention, however, that nonlinear effects may cause parametric
resonance in that case. Second, in the external problem energy may in general escape
via radiated waves. The radiated waves generated by the fluid motion in the terminal
gap introduces damping, and hence the motion is kept at a finite level. The system is
therefore, one might say, not forced to act in an essentially nonlinear manner. In the
internal problem, under forced oscillation in sway at the natural frequency of an anti-
symmetric mode, linear theory predicts infinite fluid response. In reality, the behaviour
of that system around resonance is essentially nonlinear as described e.g. by Faltinsen
(1974). If the depth is finite, in a two-dimensional tank, nonlinear Duffing type behaviour
limits the fluid motion. See also thorough description of the three-dimensional case in
Faltinsen et al. (2005) and Faltinsen et al. (2003).

The damping effect due to radiated waves in the external problem applies in principle
to all modes in the terminal gap, although most pronounced for the piston mode, since
the basic nature of the piston mode is such that it communicates appreciably with the
external flow due to continuity of mass. This is illustrated as “Communication” in the
left part of Figure 4.3. The higher modes will communicate with the external flow to a
considerably lesser extent as the fluid motion decays roughly exponentially from the free
surface.

There are two separate resonant problems associated with the piston-like behaviour.
One is the resonant motion of the piston mode when the ship section is fixed or forced
to oscillate. These are the usual diffraction and radiation sub-problems respectively. The
resonant piston-like motion will be triggered whether excited by waves entering the system
or by forced ship section motion, so disregarding which sub-problem, there is one single
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Figure 4.4: Simplified, linear hydrodynamical problem of piston-mode motion. The
fluid motion within €, is assumed uniform, so the shaded mass acts like a rigid body.
Sy, is the dashed (horizontal) curve only.

resonance frequency of the piston-mode motion, which we denote w,. This is what we
have so far referred to as the piston-mode resonance frequency. Since the type of external
resonance we investigate is also called gap resonance, we will use terms like terminal
gap resonance and piston-mode resonance interchangeably. The other resonant problem
appears when the ship section is free to oscillate. The system of the coupled ship section
and piston-like fluid motion then exhibits two other natural frequencies, one associated
with the stiffness in heave and the other with the stiffness in roll. We note that if the
ship section is moored by linear, horizontal springs there will be another third resonance
frequency associated with sway. We choose to call the one associated with the stiffness in
heave the coupled ship and piston-mode resonance frequency, and denote it by w,,.

In the following we describe how to obtain the piston-mode resonance frequency w, and
the coupled ship and piston-mode frequency w,. We also include some discussion on the
dependence on the geometric parameters as well as the overall behaviour of the system.
We will throughout the work also refer to the resonance periods which are 7}, = 27 /w, and
T, = 2w /w,. Also, we will use the terms resonance and natural frequency, or resonance
and natural period interchangeably.

4.2.1 Piston-mode resonance

An approximate method to estimate natural periods in gaps such as in the present case
was derived within linear theory by Molin (2001) for the case of infinite water depth.
The problem for finite water depth was treated by means of domain decomposition and
finding relevant Green functions in Faltinsen et al. (2007). We have not in the present
work undertaken a frequency domain analysis such as in their works. Rather, a time-
domain approach has been taken. The resonance frequency of the piston mode w, is then
found by performing forced motion of the ship section for a range of frequencies using
the linear time-domain numerical wavetank which is described later in the text, and the
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Circulation

Free shear layer

Figure 4.5: Tllustration of the circulation introduced by the shed vorticity. The shed
vorticity is in the present work assumed to be contained in thin free shear layers.

simulations run to steady-state. The resonance frequency of the piston mode, w,, is taken
as the frequency for which the averaged amplitude of the free surface in the terminal gap
attains a local maximum when plotted versus frequency.

The piston “body”. The existence of a natural period of the piston mode is a
consequence of the mass-spring type behaviour of the piston-mode motion. We illustrate
this by the following simplified, linear analysis. The starting point of the analysis is as
that of a moonpool in Faltinsen (1990) (see p. 99). We assume that the fluid motion in
the whole terminal gap is uniform, and denote the flat free surface by 7(¢) as illustrated
in Figure 4.4. This means that all the fluid in the shaded area denoted €2, in the figure
oscillates vertically with velocity 7;. Under the assumption of uniform fluid motion within
2, the fluid in 2, will act just as a rigid body on the surrounding fluid. The equation of
motion in heave of the piston “body” €2, is then

(pDb + Ap) i + By e + pgbn = Fp. (4.1)

where A,(w) and B,(w) are the added mass and damping coefficients of the piston body,
respectively, and Fp is the excitation force. If we in (4.1) assume harmonic motion,
n = n,e™t, we may solve the homogenous problem to find the natural period Tp. The
homogenous equation is —w?(pDb + A(w)) + iwB(w) + gb = 0. The undamped natural
period is, from this,

7 1 [pDb+ A,

- 4.2
P\ (4.2)

where A, is the added mass at the natural period.

We see from (4.2) that the natural period increases with the square root of the draft
D. Tt further depends on the added mass term Ap. The added mass term will depend
on all geometric parameters B, D, b and h. The exact behaviour is captured through a
dedicated analysis only. It is not easy even to give a rough estimate on the dependence
of 121, as the added mass typically varies appreciably in such gap problems. In any case, it
is maybe not so rewarding to make a detailed investigation of this simplified problem of
uniform flow in the present gap-resonance context, as it is not an exact approach; the fluid
flow along the lower parts of €2, will not behave as the assumed uniform flow. However,
what we have illustrated in this description, is that the piston mode to a certain extent
may be thought of as a rigid body. An explicit approximate formula for 7}, is given by
Molin (2001) in the case of deep water and small b/ B ratio. The error in his formlula is

Of{(b/B)*}.
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7§I —
Figure 4.6: Schematics of the effect of circulation. Left: Deep water. Right: Finite
water depth.

Effect of flow separation. What we have shown in the previous paragraphs is that
the piston mode in the terminal gap behaves like a damped, linear harmonic oscillator.
Therefore, the response level relative to the level of excitation is at resonance directly
dependent on the level of damping, where linearly, damping is manifested through wave
radiation only. This is the potential low damping. In reality, however, the flow separates
at the sharp corner. In other words vorticity is shed into the bulk of the fluid with the main
consequence that circulation is introduced as illustrated in Figure 4.5. The circulation is
roughly speaking 45deg out of phase with the relative ambient flow, such that the phase
creates a back-flow acting as a damping. This is further conceptually illustrated in Figure
4.6. The damping effect of flow separation on the piston-mode amplitude due to forced
heave of the ship section is found significant in the study presented in Section 10.1, as also
described in Kristiansen and Faltinsen (2008). The results from the study further indicate
that nonlinear effects associated with the nonlinear boundary conditions are small.

4.2.2 Coupled ship and piston-mode resonance

The terminal gives rise to a coupling between the fluid flow and all three modes of rigid-
body motion of the ship section; sway, heave and roll. This is in contrast to a ship section
in open waters, where there is for symmetric bodies a coupling between sway and roll
only. The coupling between all three modes of motion and the piston-mode motion is an
essential feature of our problem. There is in particular no pure heave resonant motion,
only that of the coupled ship section and fluid motion.

If considering the steady-state velocity potential as a function of complex frequency,
resonances are related to poles in the complex-frequency domain that lies close to the real
frequency axis, see e.g. McIver (2005). In that work, he analyzed the gap problem for both
the radiation, diffraction and freely oscillating problem by a linear potential flow analysis.
He investigated the behaviour around simple poles of the complex potential. He first shows
that the poles are the same in all the three radiation problems and the diffraction problem.
He next considers the homogenous solution of the equations of motion. The added mass
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and damping as well as excitation forces from the radiation and diffraction problems are
hence included. He checks for what he calls consistence to see if the radiation/diffraction
natural frequency w, is existent in the equations of motion. His analysis shows that this
is not so. An exception exists if the ship section is fixed in one or two degrees of freedom.
The system may then retain the w, resonance. Further, he shows that in general, w, # w;,.
He describes this as a shift in the resonance frequency, from w, to w,. The coupled ship
and piston-mode behaviour is thus, when free to oscillate in all three degrees of freedom,
in resonance at w, only. The practical implication is that when the ship section is free to
oscillate, the coupled ship and piston-mode motion will be considerable around w,, only.

Assuming no moorings, there are two resonance frequencies. These are found from
the two zeros of the determinant of the system of the three coupled equations of motion
when assuming steady-state motion e™!. That is, the equations of motion in sway, heave
and roll. As we stated earlier, the one associated with the stiffness in heave is what we
call the coupled ship and piston-mode resonance frequency w,. The required added mass
and damping coefficients are in the present work found from forced motion simulations
using the linear time-domain wavetank presented later in the text. The simulations are
run to steady-state and the hydrodynamic coefficients extracted from steady parts of the
time-series. The procedure is standard and explained in more detail in Section 10.3.

We now discuss the mechanisms that drives the coupled ship and piston-mode motion.
In the discussion we consider only sway and heave. The reason we do not include roll, is
that it was not included in the concrete example that will be given shortly. Roll should
in principle also have been considered.

Now, considering sway and heave only, there are three excitation mechanisms for the
piston-mode motion; sway, heave and the external flow. By external flow we mean the
incident waves. The relative phasing between the three excitation mechanisms is crucial
for the level of response in the terminal gap, i.e. the achieved steady-state piston-mode
amplitude A,. As a special case, if the ship motion resonance period 7;, is low enough so
that the fluid motion induced by the incoming wave does not “reach” into the terminal to
any significant extent, the direct communication between the external flow and that in the
terminal gap is small and the ship motion becomes the major excitation mechanism of the
fluid in the terminal gap. Large piston-mode amplitudes are then achieved when the sway
and heave motion is close to 180deg out of phase, meaning the ship moves downwards and
towards the terminal simultaneously. However, with a relative phasing of around Odeg,
the terminal gap response may be almost canceled. Large ship motions may, however,
be experienced also in this case. The relative phasing between sway and heave motion
in steady-state conditions seems in our experience to be quite sensitive to the /B ratio.
This matter is discussed more in Section 10.3.

On the other hand, from a ship section point of view the excitation forces acting on
the ship are due to the fluid flow which we may conceptually divide into two parts; the
external flow and the terminal gap flow. The relative phasing between the external forces
are then crucial for the ship motion response level. It is the net force that the ship section
responds to.

At resonance, the amplitude of the ship motion is proportional to the net force and
also inversely proportional to the damping. Waves radiated both as a consequence of the
ship section motion and the piston-mode motion contribute to the potential damping.

A concrete example. We now give a concrete example taken from the study of
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Figure 4.7: Nondimensional piston-mode amplitude due to forced motion of the ship
section. Left: b/B = 0.2. Right: b/B = 0.15. Ay is the piston-mode amplitude. 1, is
the amplitude of the forced sway motion and 73, is the amplitude of the forced heave
motion. The natural frequencies of piston mode w, = 2m/T, and coupled ship and
piston-mode motion w,, = 27/T,, are indicated.

a moored ship in Section 10.3. The rectangular ship section has beam to draft ratio
B/D = 4, the water depth is h/B = 2.2 and we consider two terminal gap widths
b/B = 0.2 and b/B = 0.15. The natural frequencies of the coupled ship motion and
piston-mode motion were w,/+/g/B ~ 1.635 and w,/+/g/B ~ 1.726 for the two cases
respectively. From the linear solution the steady-state amplitudes of the piston-mode
motion and sway and heave motion was in both cases

Ay JA~ 15,
Moa/A >~ 2.5 — 3, (4.3)
7730,/14 ~ 32— 25,

where A is the amplitude of the undisturbed, incoming wave.

In both cases the direct communication between the external flow and that in the
terminal gap was quite weak around the resonance frequency w,. This conclusion was
reached based on the following check. We performed simulations with the ship section
fixed and subject to incoming waves at the frequency w,, with a resulting piston-mode
amplitude of A;/A ~ 0.4. Since a piston-mode elevation A,/A < O(1) is negligible in the
current discussion, the communication between the external flow and that in the terminal
gap was mainly via the ship motion.

Further, from the simulations it was clear that around w,,, the relative phasing between
sway and heave was close to 180deg. This means the ship section moved downwards and
towards the terminal simultaneously. In light of the discussion above, the achieved piston-
mode amplitude should then be a superposition of that resulting from forced sway and
forced heave separately. This was in fact what we found. This should become clear from
the following.
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The piston-mode amplitude due to forced sway and heave is presented as function of
forcing frequency in Figure 4.7. The amplitude of the forced sway motion is denoted 7,
and the amplitude of the forced heave motion is denoted 7n3,. In these two particular
cases, the terminal gap response due to sway and heave is very similar, but the behaviour
will depend on the beam to draft ratio B/D. With a smaller B/D ratio, sway will induce
larger piston-mode amplitudes than heave, and with a larger B/D value, the heave will
induce the largest piston-mode motion. What is the key information in the figure, is the
level of response at the natural frequency w,. This is indicated by vertical and horizontal
lines in the figure. We see that the piston-mode amplitude per unit motion of the ship
in both sway or heave at ship motion resonance w,, is approximately 2.5 - 3. This means
that superposing a unit amplitude in sway and and a unit amplitude in heave with a
relative phasing of 180deg should result in 5 - 6 units piston-mode amplitude. Now, with
approximately 2.5 units of ship section motion in both sway and heave as that indicated
in (4.3), we shold get about 12 - 15 units of piston motion. This is what we got, as seen
from (4.3).

Effect of flow separation. So far we have discussed the linearized solution only.
What we have illustrated is that, given the ship motion, and under the condition that the
excitation of the piston-mode motion was mainly via the ship, the terminal gap elevation
was predicted well by linear theory using forced motions. The problem which is not
taken into account by linear theory is of course the flow separation. In reality, the flow
separation must be modelled in order to find the actual ship motion near resonance. And
so, we need to include the flow separation directly in our analysis. This is what we have
done in the present work and present in the main study in Section 10.3.

A comment on three-dimensional effects. We want to comment on that the
present, work has only considered the two-dimensional problem, whereas all realistic sit-
uations are three-dimensional. In the problem of a ship by a terminal, waves will be
scattered in all directions and in particular radiate from the fore- and aft ends of the
structures. This means there is a further damping effect associated with these openings,
as the wave radiation represents an energy flux out of the system. This radiation is cap-
tured by linear potential flow theory. However, a three-dimensional viscous effect is that
investigated in Aarsnes (1984), where the effect of flow separation from the fore- and aft
ends of a ship in open waters (i.e. without terminal) was considered. Seen from above the
flow separation from the longitudinal extremities induces a back-flow, thereby reducing
the in-flow velocity on the bilge keels resulting in less vorticity shed from these. In the
present context, the net effect from this phenomenon on the piston-mode resonance is not
easily deducted without detailed investigation.



Chapter 5

Numerical wavetank - the basics

In this chapter we explain the basics of our time-domain numerical wavetanks. The plural
form “wavetanks” refers to a linear as well as a fully nonlinear wavetank. The inclusion
of the free shear layer and in- and out-flow of boundary layers are explained in the two
next chapters. We here introduce the boundary integral equation on which all of the
numerical work is based, and its discretized version in terms of a set of boundary element
equations leading to a Boundary Element Method (BEM). Evolution in time is achieved
by adopting the Mixed Eulerian - Lagrangian (MEL) approach. In the Eulerian phase we
solve the boundary element equations, whereas in the Lagrangian phase the free surface
as well as the potential on the free surface are stepped forward in time according to the
free-surface conditions using the solution acquired in the Eulerian phase.

None of the theories in this chapter are new to this work; the boundary integral
equations, the BEM as well as the MEL approach are well established in the literature.
One may therefore argue that some of the following text is, strictly speaking, unnecessary.
We feel, however, that neglecting to include the following theory would leave the present
text incomplete and the work nearly impossible to reproduce, in particular that regarding
the alternative force expression in Chapter 8, where e.g. sign conventions are crucial. We
therefore proceed by introducing the boundary integral equation.

5.1 Boundary integral equation

The Laplace equation (2.1) is our governing equation for the fluid flow in QUS (cf. Figure
2.1) given in so-called strong, or differential form. This may, along with proper boundary
conditions, be recast into a weak, or integral form upon applying Green’s second identity,
leading to a boundary integral equation. The re-writing is of a purely mathematical
character. Therefore, after the statement of the integral equations, we include a short
discussion on how to interpret the boundary integral, which in our opinion is quite useful
for understanding the physical fluid flow of our problem.

We assume that the velocity potential p(x) that we aim at solving for is analytic for
all x € QU S. In order to apply Green’s second identity we need to introduce another
function . If this is harmonic in Q, we have V21 = 0. Then,

/Q (V2 — V) dQ =0 (5.1)

45
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We now take 1) = logr, which is the fundamental solution of the Laplace equation in free
space. This function is singular at the point 7 = 0, where r = ((z — &)% + (y — n)2)"/%.
We call x = (z,y) the field point and € = (£, n) the location of the singularity. If we let
x € QUS, from (5.1) and Green’s second identity we get

_ oy _ Oy oy _0p
0_/51 (wan on ) d8+/5(§08n on ) ds, (5:2)

where the integration is with respect to £&. S is introduced in order to exclude the singular-
ity. This is explained in connection with Figure A.1. After the limiting process described
there, we obtain the boundary integral equation that we will use for our numerical work,

which is P(E. %) 90(£)
Y X QD

o0px) = [ o1& 58 as— [ S8 (e as (5.9
Here, a(x) is the internal angle measured counter-clockwise, being e.g. —27 when the field
point x is away from the boundary and —7 when on a flat part of the boundary. 9/0ne =
ny 0/0¢ + n, 0/0n is the normal derivative with respect to the integration parameter.
When the field point x is on the boundary, the first integral in (5.3) must be interpreted
as a principal value integral. The contribution from that integral is explicitly given by
the term on the left hand side.

1 = log r is within the theory of fluid mechanics referred to as a source. Differentiating
the source with respect to & one obtains what is referred to as a dipole. The dipole has a
direction, and when differentiating in the n¢-direction, it is called a normal dipole. The
functions are

¥(§,x) = logr (Source),

(g, x) 0 . (5.4)
D = e logr (Normal dipole),

which are also often referred to as Rankine singularities in the present context. These are
singularities that do not satisfy any boundary conditions, they are solutions of the infinite
fluid case. With the present choice of 1, the boundary integral equation (5.3) expresses
a distribution of Rankine singularities over the boundary S.

The dipole attains a stronger singularity at » = 0 than the source. A source has a
range of influence far beyond that of a dipole of the same strength, but the dipole has a
more pronounced influence in its immediate neighbourhood, for physically, the range is
proportional to the induced velocity which is the gradient of the potential, being propor-
tional to 1/r for the source and 1/r? for the dipole. These facts are keys in understanding
how the fluid reacts when disturbed.

The source distribution represents the motion of a boundary. In the boundary integral
equation (5.3), the source strength Op/One represents the normal velocity of the solid
boundaries, and is known via the solid body boundary condition (2.5). The role of the
dipoles is not interpreted as easily. It is two-fold. Firstly, they ensure locally that no flow
induced by sources or dipoles elsewhere induces flow through the wall at its position, and
secondly induce flow felt in its neighbourhood, which depending on the characteristics of
the problem may be globally significant or not. In any case, the dipole strength represented
by ¢ is known on the free surface via the free-surface boundary condition (2.3).
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We mention that the so-called desingularized boundary element methods exists where
point singularities are distributed along fictitious lines outside the boundary S of the
domain, as well as outside the fluid domain. According to the principle of distributing
sources and dipoles for constructing a solution as discussed above, this is another way of
doing that. However, the method is actually based on assuming analytic continuation of
the potential outside the considered domain. Due to this assumption, there are limitations
on how to go inside a body with sharp corners and also how to treat the intersections
between the free surface and solid boundaries. Singularities must be distributed there, and
care must be taken in doing that. We have not in the present work used or investigated this
method, but the desingularized method has been applied e.g. by Schgnberg and Rainey
(2002) to study green water loading and Lalli (1997) to study the wave resistance problem.
They point out that a disadvantage of the desingularized method is that an ill-conditioned
matrix system appears if the position of the point singularities are not carefully chosen.
The argument for using the desingularized method, however, is according to Lalli (1997)
a faster solver, ease of implementation and avoiding strong singularities associated with
higher order methods. On the other hand, it is expected that the accuracy of the solution
at intersection points between the free surface and a solid surface such as a body, is reduced
relative to the method applied in the present case where singularities are distributed along
the boundary itself.

5.2 Wave making and absorption

There are two main strategies for generating waves in a time-domain numerical wavetank.
The first is by moving a part of the solid boundary. This is rather straight-forward in a
BEM, and the chosen strategy in the present work. This was found most convenient since
we have a closed tank. The second is by imposing analytic values for the fluid velocity
along a vertical control surface as well as imposing the corresponding free-surface elevation
there. This is a convenient way to do it if the wavetank is not closed. This strategy has
been adopted e.g. by Baarholm (2001) where he investigated the two-dimensional problem
of slamming underneath platform decks using a fully nonlinear time-domain wavetank.
He modelled parts of the free surface only, and the water depth was infinite. The domain
was restricted laterally by a control surface on one side, and a numerical damping zone on
the other. On the control surface he applied the analytic results in infinite water depth as
given by Bryant (1983). The fully nonlinear solution is there given as a series, which in
practice is truncated. In finite depth, similar solutions are given by Rienecker and Fenton
(1981).

In the present work, both the piston and single flap type wavemakers are implemented.
During the present study only regular waves have been considered. See Figure 3.1. The
user prescribes the wavemaker type and height of the paddle h,,,, the wave period and a
desired (linear) steepness, and the stroke S is calculated from the Biésel transfer functions
(3.4). Alternatively, the wavemaker stroke S(¢) may be given as a time-series provided
by means of a text-file generated a priori, allowing e.g. for reproduction of model tests
or for irregular wave generation. We have used the latter extensively during the present
work. We have not, however, considered irregular waves.

A numerical damping zone is used to damp out waves in the far-field. There are
several possible ways to achieve wave damping as discussed e.g. in Newman (2008). We
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Figure 5.1: Tllustration of numerical damping zone parameter v(x). Typical scenarios
of a body in incoming waves (upper) or in forced heave motion (lower).

follow that described by Clement (1996), where artificial dissipation terms are added in
the free-surface conditions, here chosen to be proportional to the vertical coordinate of the
free surface y and the potential ¢ in the kinematic and dynamic free-surface conditions,
respectively,
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Dt
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Here v = v(z) is typically a smooth function which is nonzero in the damping zone, and
zero elsewhere. See Figure 5.1. It is taken such as to smoothly increase up to a value
Vmaz- The interval over which v(z) is nonzero is denoted L,. Since the function should
be smooth to minimize reflections, it must vary with 2. The function v is from (5.5) not
explicitly a function of z, it rather has the dimension of frequency 1/s. This indicates a
dependence on wave frequency or equivalently wave number, or equivalently, wavelength.
The dependence on wavelength justifies the spatial variation. Choosing the actual shape
of v(x) is a matter of experience, and we have chosen the shape of a third order polynomial
as V() = Vpae (=223 + 32?%), where & = (v — x4)/ Ly, where x4 is described in Figure 5.1.
During our work we have usually taken L, to be a multiple of the wavelength. Typical
values are Ly = 3XA — 6. The actual value of v,,,, is determined empirically, typically
depending on water depth and L,;. The empirically based damping zone is found to work
satisfactory.

As kh decreases, the effectiveness of the damping strategy in (5.5) will decrease. The
strategy provides no damping in the shallow water limit. This was discussed in detail by
Clement (1996). So for example the front of a wave train is not effectively damped out.
A piston-type strategy at the far end of the tank is then appropriate, as suggested by
Clement, (1996). He presented a simple piston-type damping strategy based on control

theory, and demonstrated its effectiveness for small kh. Such a piston-type damping
device has not been implemented in the present work.

=V —vy on Sp,
(5.5)
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5.3 The Boundary Element Method

The BEM is the discretized version of the boundary integral equation (5.3). The boundary
of the fluid domain, S, is divided into elements of some prescribed shape, and the variation
of the unknowns over each element assumed to be of a certain order. A so-called low order
method assumes constant value of variation of the unknowns over each element, while a
higher order method assumes a linear or higher order of variation of the unknowns over
each element. Typically, one assumes a similar order of the shape of the elements as that
assumed of the variation of the elements. What one chooses is more or less a matter of
taste.

Assuming a constant variation over each element, the boundary conditions are typi-
cally satisfied at the mid-point of each element, and with a higher order variation it is
satisfied at several collocation points on each element. Methods with constant variation
has been applied in studies on slamming by several authors and with good results, e.g.
Baarholm (2001) and Zhao and Faltinsen (1993). Note that in their works, a parabolic
fit of the free surface was introduced in order to properly conserve mass near the body in
connection with the kinematic free-surface condition. Linear variation over each element,
with piecewise straight elements, has been adopted with success for a nonlinear numerical
wavetank by Greco (2001). A method for free-surface flows using arbitrary high order is
presented in Landrini, Grytgyr, and Faltinsen (1999).

A consequence of choosing a higher order method is that we satisfy the boundary
conditions at singular points involving convex corners of the domain as well as the inter-
section between the free surface and solid boundaries. Although a higher order variation
provides a better description of the solution in the main part of the domain, it does not
provide a more accurate solution at the singular points. It is perhaps natural to expect
problems of numerical character associated with the singular points due to the lack of
proper mathematical modelling. However, the works referred to above presents numerical
results that are of good quality.

In the present work we have chosen piecewise linear elements and a piecewise lin-
ear variation of the unknowns over each element. When dealing with propagating wave
problems, higher order variation (including linear) is perhaps more commonly used than
constant variation, judging from the literature. We believe that for propagating waves
over several wavelengths and over many periods it is proper to use a linear variation.

We divide the boundary S into a total of N straight elements. A linear variation of
some quantity z over element j is then

z= Ms—zj on S;. (5.6)

Sj+1 7 55

In the present context, z represent ¢, , or Xg, and s is the arc length along the element.
As introduced earlier, x; are the free-surface coordinates. The boundary integral equation
(5.3) is satisfied at the NV end points x; of the elements, hereafter called nodes. The two
integrals in (5.3) become sums of 2V integrals, each over an element S;, and the discrete
version of (5.3) is given by (A.1). Re-arranging the terms such that the known quantities
are on the right hand side and the unknowns on the other, we obtain a linear system of
N equations in N unknowns, say

Az = b, (5.7)
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where the unknowns in x are the values of ¢, and ¢ on the free-surface and the solid
boundary nodes, respectively.

We require the potential to be continuous at the intersections between the free surface
and solid boundaries, such that ¢ is known through the dynamic free-surface condition
at these points. The unit normal vector is here essentially discontinuous and the normal
velocity therefore double valued, with that on the wall known through the body boundary
condition while that on the free surface is an unknown.

5.4 Time-stepping - the Lagrangian phase

Once the solution z in (5.7) is obtained as just described, the potential and the free-surface
position are updated according to the free-surface conditions (2.3) and (2.4) respectively.
The free-surface conditions are both ordinary differential equations of type Z = f(¢, 2),
with z being the potential ¢ or the free-surface position x, while f is 0.5 @2 +0.5 ¢* — gy
or Ve in the two free-surface conditions respectively. In the present work we use an
explicit Runge-Kutta method of order m for time integration scheme. The explicit Runge-
Kutta methods are predictor-corrector type of schemes, that is the right hand side of the
ordinary differential equation f is estimated, iteratively, m times at positions updated
from the previous estimate, and the final f taken as a weighted sum of the estimates.
This means that the boundary value problem must be solved at least m times each main
time-step. When solving the fully nonlinear problem, the system matrix A in (5.7) must
be constructed each sub-step, whereas in the linear case where the computational domain
does not change, the system matrix is constructed and inverted once at the beginning of
the simulation. The system (5.7) must, however, be solved each sub-step also in the linear
case.

The present implementation is such that an arbitrary order up to m = 4 may be
chosen. For higher orders, the number of predictions needed is higher than the achieved
order, see e.g. Iserles (1996). Typical choices in our field is order two or four. Order one is
also used, but seems from the literature to be less popular in the context of time-domain
BEM codes. There is always a trade-off between computational time and accuracy, and
in the present work we have preferred the fast convergence provided by the fourth order
scheme on the expense of doubled computational time relative to order two. The classical
explicit Runge-Kutta fourth order scheme is

zn+1:zn+%(f1+2f2+2f3+f4) (5.8)

where At is the length of the main time-step, the super-script n means main time-step
number, and

fi=1" fa=f"+05ALf1, fs=[f"+05Atfs, fi=[f"+Atfs (5.9)

Choosing the type of time integration scheme is a matter worth attention. Attention
must, however, also be given to how to actually update the position of the nodes, i.e.
how to calculate the right hand side f. Due to our choice of having the collocation points
at the nodes, the unit normal and tangential vectors are not uniquely defined there. We
have chosen to introduce averaged unit vectors n; and s; at the nodes as illustrated in
Figure 5.2. In the present a second order polynomial y(z) is fitted through the node j
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Tangent

Second order polynomial

Figure 5.2: Average unit normal and tangential vectors n; and §; at nodes estimated
by the tangent of a second order polynomial fitted through the node itself and its two
neighbouring nodes.

and its two neighbouring nodes. The tangent of the polynomial at node j is taken to
represent the tangential direction. At intersection points, n; and s; are taken as n and s
at its neighbouring element. The position of node j is hence updated by the velocity

(Vﬁp)j = (Qpn)j n; + (908)3‘ S (5'10)

where the normal velocity (¢,); is the solution from (5.7), and the tangential velocity
(ps); estimated by difference-schemes correct to second order in a curvilinear manner,
using central differences at the main part of the free-surface nodes, while forward and
backward differences at the intersections. Expressions for the difference schemes are given
by the expressions (A.4) - (A.6).

In the construction of the second-order polynomial above, we represent the free surface
by the vertical coordinate as a function of the horizontal coordinate, y(z). This limits the
applicability to a non-overturning free surface. This is, however, a limitation which has no
practical limitations in the present work. Throughout our studies, we did not consider any
breaking waves. A plunging breaker would introduce problems in long-time simulations
without proper handling of these, and this was outside the scope of the present project.
In case one wishes to study overturning waves, however, the method is easily modified by
the following approach. For each node j, rotate the two neighbour elements S;_; and S;
such that the two far end-points x;;; and x; lie in the horizontal plane. Then compute
the second order polynomial in this rotated plane to obtain the tangent there. Calculate
the unit vectors in the rotated plane based on the tangent. The unit vectors n; and s; in
the physical plane are obtained by rotating these back to the physical plane.

5.4.1 The intersection point between the free surface and a solid
boundary

Since, as discussed earlier, within the framework of potential theory the intersection points
between the free surface and solid boundaries are singular, there is no way that we may
represent the physics in an absolute sense here. Thorough analysis of the problem of a
wavemaker of both sudden and infinitely smooth start-up assuming linear potential flow
theory is presented in Roberts (1987), where he demonstrates that the solution in the very
near vicinity of the wavemaker attains a spatially oscillatory behaviour with the amplitude
finite, but the wave number increasing to infinity when approaching the singular point.
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Note that this is a consequence of assuming linear theory. The oscillatory behaviour is
not captured in the present linear wavetank, as we in general discretize the free surface
such that these oscillations are on a much smaller scale than the first element. This lack
of modelling is thought not to be of significance in the present work.

However, there are inconsistencies introduced by the discretization; the velocity com-
puted based on ¢,, and ¢, on the free surface is in general not consistent with that imposed
on the solid surface. Effort should be made on treating this matter as consistent as pos-
sible. We tried two methods, where the latter was found superior to the first, providing
more stable long-time simulations. In the first method, the position of the intersection
node was updated simply according to (5.10), and next extrapolated/interpolated along
the newly defined free-surface element onto the new position of the solid boundary. This
was found to work satisfactory except for long time simulations with large motion of the
solid boundary. This caused saw-tooth type of instabilities on the free surface in the ter-
minal gap in cases of large ship section motion. An improved, probably more consistent
method was as follows. First denote by u the velocity from (5.10). Next, this is projected
onto the solid boundary providing a velocity component along the wall u,, = u-s,,, where
the subscript w refers to “wall”. The node velocity is then taken as

VSD = Upw Ny + Ugy Sw, (511)

where u,,, = U -n is given by the solid boundary condition (2.5). This is thought to give
a more consistent motion seen from the solid boundary point of view.

There are also other, similar choices, such as the “double node” approach explained in
Tanizawa (2000). The idea of the double node approach is to require that n, - u =
and ny - u = u,y. Here, u = (u,,u,) is the unknown and desired velocity vector of the
intersection point, u,, is the prescribed normal velocity of the wall at the intersection
point, and u, s the normal velocity of the free surface at the intersection point. This yields
two equations for the two unknown velocity components, u, and w,, which is readily solved
for. We see that the double node approach does not make use of the tangential velocity
along the free surface, g, and hence avoids the use of a finite difference scheme which is
necessary for estimation of that quantity.

5.4.2 Mass conservation in the numerical scheme

Mass conservation is the core of our method, expressed by the Laplace equation and re-
formulated in the boundary integral equations. At each time-step we calculate the exact
volume V' of the discretized surface using Gauss’s theorem (see Section D.2), for example

by
Vv :/yny ds (5.12)
S

since V = [,1dQand V- (0,y) = 1.

The spatial discretization naturally introduces errors, as does the temporal discretiza-
tion. Throughout our work we have checked the level of error in this respect in all cases.
We typically observe a nearly sinusoidal variation of V', but in no cases any sign of increase
or decrease of the volume. The oscillation amplitude decreases with decreasing time-step.
Except for some of the very early work, the amplitude has been within V/Vy ~ O (1079),
where Vj is the initial volume at still water conditions.
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5.5 Dynamic re-gridding of the boundaries

Dynamic re-gridding of the discretized boundary is applied in the nonlinear wavetank in
order to make it possible to impose a resolution at a certain level. The discretization
of the boundary S is initially prescribed. Typically, a cosine distribution of elements is
used along each part of the boundary, as described by (A.8). Note that the parameter
[ in (A.8) indicates the degree of refinement towards one or both ends of the selected
part of the boundary. What we mean by a “parts of a boundary” in this context is either
one side of the ship section, the terminal wall, the wavemaker, the sea floor or the two
separated parts of the free surface. A gradually refined grid with refinement near the ends
as provided by this kind of distribution is considered good practice, in particular towards
intersection points between the free surface and a solid part of the boundary. However,
with a fine discretization near an intersection point the need for re-gridding is evident.

The implementation of dynamic re-gridding was in the present work mainly inspired
by the large vertical piston-mode motion in the terminal gap. Re-gridding the right side of
the ship section and the terminal was found necessary. The implementation was, however,
done slightly more general than only to include the terminal gap area. The two closest
elements near any of the intersection points between the fluid and the solid boundaries
are split upon exceeding 1.8 of their original lengths, and removed if smaller than 0.4 of
the original lengths. There is no re-gridding applied on other parts of the boundary other
than the elements closest to the intersection points. The re-gridding is applied at the end
of each main time-step.

The potential is linearly interpolated when splitting a free-surface element. During our
work we experienced some parasitic oscillatory saw-tooth like behaviour of the free surface
nodes closest to an intersection point following re-gridding of the free surface. We believe
that the parasitic oscillations are associated with the linear interpolation of the potential
when splitting an element, which we suspect is too crude. We have not considered more
refined interpolation strategies, such as using cubic spline interpolation, but have from
communication with other researchers the feeling that the goodness of the re-gridding of
the free surface is sensitive to these issues. We have hence tried to keep the occurrence
of re-gridding of the free surface at a minimum. In our application of a ship section by a
terminal, re-gridding is typically associated with two phenomena: Stokes drift and large
sway or roll motion of the ship section. As for the first, the Stokes drift will stretch the
element closest to the wavemaker, but any pronounced Stokes drift is associated with
larger amplitude waves than those generated for the most part in the present work. For
the second, since we have studied piston-like behaviour, i.e. a near flat free surface in the
terminal gap, there has been no need to apply a fine discretization of the free surface in the
terminal gap. The number of elements on the free surface in the terminal gap has mainly
been chosen such as to avoid splitting of the elements there. Saw-tooth instabilities would
arise and become significant typically after about 5 - 10 wave periods after a splitting.

We also want to mention a few words regarding smoothing of the free surface. We
have seen that many authors mention that smoothing every time-step or at periodic
time intervals is a necessity for stable long-time simulations, e.g. for the propagation
of wave trains. They report that saw-tooth instabilities quickly arise and eventually
lead to simulation break-down if neglecting smoothing. For example, Longuet-Higgins
and Cokelet (1978) used a stencil providing a weighting procedure of nearby points, and
prefers what they call the five-point stencil. Koo and Kim (2004) refers to this as five-point
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Chebyshev smoothing.

In the present work we have used no such smoothing. There has been no need for this.
In our experience there are three situations that give rise to the mentioned saw-tooth
instabilities. First, as discussed, improper re-gridding of the free surface, with particular
reference to the re-distribution of the potential . Second, improper handling of the
intersection points. And third, implementation errors, in particular those associated with
creating the system matrix A in (5.7). For instance, bugs may easily be introduced if not
careful with respect to the principal value integrals, the internal angle a or the treatment
of the atan-function. We emphasize that these three situations are those experienced by
the author during work with weakly nonlinear flow only, e.g. with no overturning of the
free surface or wave run-up, and does not constitute a complete list of reasons for the
occurrence of saw-tooth instabilities in general for more violent free-surface flow.



Chapter 6

Numerical modelling of the flow
separation

In this chapter we present the numerical aspects of including the free shear layer in
the numerical wavetank. This involves the limiting process of excluding the vorticity
from the domain to obtain an extended version of the boundary integral equation (5.3),
the discretization of the resulting thin free shear layer and an explanation on how the
Kutta condition is imposed numerically. We next present an algorithm for automatic
simplifications of the free shear layer which was developed in order to be able to run
long-time simulations without excessively complex vortical structures in near sinusoidal
flow. We last present an application of the method to foil in infinite fluid serving partly
as a verification of the present implementation.

The method of including the free shear layer as a dipole distribution into the boundary
integral formulation is not new to this work, including also its discretization and some
numerical aspects as how to enforce the Kutta condition and a method of re-gridding
the free shear layer. However, the algorithm for the automatic simplifications is new and
considered a contribution from the present work to the field of flow separation modelling.

6.1 Boundary integral equation including the free shear
layer

The free shear layer is included in the boundary layer equation by excluding the thin
strip containing vorticity, Sy, in a similar manner as the singular points are excluded as
described earlier in connection with equation (5.3). The integration path is shown in the
left part of Figure 6.1. The limit is taken such that Sy, S, and S5 tend to zero length,
while S3 and S, tends to Sy, resulting in the configuration shown in the right part of
Figure 6.1. The boundary integral equation (5.3) is then extended to

x) = [o©255 a5 [ 2848 ye ) as
0n5 S 8n5 (61)
g,
Sy 3

for all points x € QU S U Sy . If the field point x is on one of the boundaries S or Sy, the
corresponding integral over the dipole distribution must be interpreted as a principal value

%)
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Figure 6.1: The limiting process of a thin free shear layer. Sj_5 are shrunk to a single
line. The unit normal vector on the - side is denoted n~. We finally let n := n™ and
s :=s~ along Sy.

integral. The source terms along S5 + S; cancel due to the assumption of an infinitely
thin shear layer and opposite signs of the normal vectors on each side, while the normal
velocity is continuous across the free shear layer. The I'-term appears since I' = ot — ™,
and since T # ¢, these terms do not cancel. We recognize the negative value of the
circulation —I" as the strength of the dipole distribution along the free shear layer.

We mention that, in reality, the free shear layer has a finite width actually expanding
from the time the shedding occurs, as indicated in Figure 2.2. If modelling a finite width
free shear layer, the source terms would model the spreading of the shear layer, a diffusion
effect.

The velocity of the free shear layer, U, is given formally by (2.12). We may, however,
express U, explicitly as the gradient of (6.1). Some care must be taken in this procedure,
as described in the following. In the limiting procedure for the exclusion of the free shear
layer described above, we now take the field point x to be on the free shear layer. As the
two sides S3 and Sy are shrunk towards each other, a full circle remains enclosing the field
point, with the two halves of the circle residing on each side of the free shear layer. So
the value of the potential is ¢~ over one half of the integral and ¢ over the other half
of the integral, giving —m¢~ — mp™ = —27p, where ¢ = 0.5(¢p~ + ¢T). Considering now
equation (6.1) we get ¢ on the left hand side and on the right hand side the last integral
becomes a principal value integral. The velocity of the free shear layer, being U, = V¢,
is then

_ 81/1 B &p .
Ul = [e@vHE - [ VOl ) d -
NS '
f v s
Sy T

where V = (0/0x,0/0y) is as before the usual gradient operator, and the last term is a
principal value integral.

Riemann cuts. Before we proceed with the discretization of the free shear layer,
we introduce so-called Riemann cuts. We define by a Riemann cut a curve of any shape
in the (x,y)-plane with a discontinuity of the potential ¢ across the cut, and with the
restriction that there is no change in I" along it. Since I' is constant along it, there is no
shear along a Riemann cut. The Riemann cuts are of purely mathematical character and
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Figure 6.2: Tlustration of Riemann cuts represented by the three dashed lines collec-
tively called Sr. The solid line S, represents the unsimplified part of the free shear
layer. Across the Riemann cut Sg, the potential ¢ is discontinuous, while the normal
and tangential velocities, ¢, and @, are continuous. Expections are at the connection
points denoted by squares. These points are singular and each point represents a point
vortex.

is introduced basically as a means of simplifying the structure of the free shear layer. The
shape of the Riemann cut may typically be that of a straight line.

In the present methodology a Riemann cut is modelled as a curve with constant dipole
distribution I'. There are singularities at the ends of the Riemann cuts that need special
care. Introducing a Riemann cut is mathematically equivalent to introducing a point
vortex at its far end, and typically we want to simplify the free shear layer such that a
near circular vortical structure is represented by a point vortex. Since there is no shear
along the main parts of a Riemann cut both the tangential and normal velocities are
continuous along this part. All the shear is concentrated to the end vortex which is
singular. An example of a Riemann cut made up from three straight lines is shown in
Figure 6.2. We denote the unsimplified part of the free shear layer by S, and the Riemann
cuts by Sg. Together they represent what we consider the whole free shear layer in our
model, i.e. Sy = S, + Sg. Along each Riemann cut the dipole strength I' is constant.
If the value of I' on two neighbouring Riemann cuts differ, the effect is a point vortex at
the connecting point, indicated by the squares. The far end square will represent a point
vortex as long as I # 0 along the last straight segment of the Riemann cut. We will often
refer to this set-up as having three Riemann cuts, meaning the three straight curves.

There may in principle be several Riemann cuts connecting several unsimplified parts
of the free shear layer. We have in our work always considered Riemann cuts to represent
the far end of the free shear layer. The reason is that we cut the end parts of the free shear
layer twice each wave period. This will become clear when we shortly discuss the auto-
matic simplification procedure of the free shear layer. We first present the discretization
procedure for the free shear layer.

6.2 Discretization of the free shear layer

We discretize the unsimplified part of the free shear layer S, into N, piecewise linear
elements, and assume I' to vary piecewise linearly along each element. Choosing the
lowest, order method with constant dipole distribution along each element would provide
poor accuracy of the induced velocities close to the free shear layer, as each node would
effectively act as a discrete vortex, with resulting insufficient modelling of the spiraling
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vortices. Anyway, since we assume the same variation of ¢ and ¢, along S, including
the free shear layer into the system of equations is a straightforward extension. We
further include the N Riemann cuts as straight elements with constant dipole strength
I' over each cut. A Riemann cut is thus in this sense treated similar to an element
of the unsimplified part of the free shear layer, except it has always a constant dipole
distribution. We denote by Ny the sum of the free shear layer elements and Riemann
cuts, that is Ny = N, + Ng.

The discrete version of (6.1) is given by (B.1). This is the same as (A.1) except with
also a sum over the dipoles of Sy with strength I';. The contribution from the integral
over the free shear layer enters the right hand side of the system (5.7) as known quantities
since I' is known.

6.2.1 Kutta condition

As stated earlier, there are two requirements in the Kutta condition. First, the flow
must leave tangentially from one side of the body, and second, the potential must be
continuous from the body and into the fluid. In the numerical model these are imposed
by the following procedure.

First, the flow is imposed to leave tangentially by imposing the direction of the free
shear layer element closest to the separation point to be in the direction of the tangent of
the body element closest to the point of separation (on the shedding side). Node 2 of the
free shear layer, which is the end of the first free shear layer element, is forced to move in
the tangential direction with the velocity 0.5U;.

Second, the continuity of ¢ from the body and into the fluid is imposed in the following
manner. When flow separation is enforced, we avoid to explicitly satisfy the boundary
value integrals at the node defining the separation point x, as we do in the case without
separation. In that case the boundary integral equation was satisfied at the corner with
a = —371/2 in (5.3). Instead, extrapolation from both sides along the body is used.
Not solving for this node means we loose one equation. Further, since the potential is
discontinuous over the free shear layer, i.e. ¢ # ¢~ in general at the corner, we implicitly
add one unknown. This means we are two equations short. However, we require the
potential jump on the body to be equal to I'y, hence introducing one additional equation
since the circulation is known. Next, we represent the two values of the potential at
the separation point by extrapolating ¢ linearly along the walls using the values at the
two elements on each side next to the elements closest to the separation point. This
introduces two more additional equations, meaning there is an overhead by one equation.
We resolve that by not satisfying the boundary integral equations at the end point of one
of the elements adjacent to the corner. We have chosen to exclude ¢; 1 as unknown in
our calculations, where node 7 defines the separation point. We get that

et — ¢~ =T,

6.3
" =api1 +bpire, ¢ =coit+dei, (6:3)

where a = 14+ As;/As;11, b= —As;/Asii1, ¢ =1+ As; 1 /As; o and d = —As;_1/As; .
As; is the length of element ¢ which has end-points x; and x;, 1.
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6.3 Evolution of the free shear layer

Once the system of equations (5.7) are solved, we may calculated the velocity U, at the
nodes of the free shear layer as well as the separation velocity U,. Using these and the
position of the free shear layer x, and the circulation I' may be stepped forward in time
according to (2.13) and (2.14).

The chosen time integration scheme for the free shear layer is the simple explicit Euler
scheme, that is, in the numerical wavetank where the fourth order Runge Kutta method
is used, the free shear layer is updated only once at the beginning of each main time-step.
Choosing the simple explicit Euler method must be seen in context with the re-gridding
and automatic simplifications applied to the free shear layer which will be discussed in
detail in the next section. Also, the explicit Euler scheme was found to be adequate in
earlier works, e.g. in Faltinsen and Pettersen (1987). This means, given the solution of
¢ and ¢, along S, and I' along Sy at the beginning of time-step n, we calculate the
separation point velocity U, and U, based on these, and the updated solutions x, and I
are next used as forcing on the right hand side of (5.7) in all the four sub time-steps of
the fourth order Runge Kutta scheme for the free surface.

6.3.1 The velocity of the free shear layer nodes

We need to distinguish slightly the way to obtain the velocity at the nodes of the unsim-
plified part of the free shear layer, and that of the point vortices. The latter is explained
in the next sub-section.

The discrete version of the velocity of the mid-point of an element of the unsimplified
part of the free shear layer is given by (B.2). Note that the summation over the free
shear layer is both the free shear layer elements and the Riemann cuts, altogether Ny
terms. The free shear layer velocities at each node, except for the end node, is found by
linear interpolation of the calculated velocities at the mid-points of the two neighbouring
elements in a curvilinear fashion.

The velocity at the end node, that is node N, + 1, is obtained as follows. First, the
value from linear extrapolation using the values at the mid-points of elements N, and
N, — 1 is calculated, call it u,. Next, the value based on fitting a second order polynomial
through the mid-point of element N, — 1 and that of nodes N, — 1 and N, is calculated,
call it u,. Upon using only u,, the end node tends to cross the inner spiral core after some
time, and upon using only u, the end element tends to rotate around its hinge point.
Since extrapolation in general is a dubious affair, we chose to experiment with different
combinations of u, and wu; following the strategy of trial and error. The final combination
was taken as 0.6 u, + 0.4 v, (for node N, + 1).

We mention that the computer time associated with calculating the velocity of the N,
nodes of the free shear layer is not negligible, at least when N,/N ~ O{1}. This is due to
the summation in (B.2) over all N + Ny elements when calculating the velocity at each
of the N, free shear layer element mid-points.

6.3.2 The velocity of the point vortices

The velocity of a point vortex, or the far end of a Riemann cut, needs special treatment.
Basically, the expression (B.2) is used, but modified in two ways. First the sum is over all
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free shear layer elements, so the “j # ¢” should be neglected. Second, and more impor-
tantly, a point vortex does not induce any velocity on itself. Therefore, the contribution
from its one or two neighbouring Riemann cuts must be treated specially. If S% is the
k’th Riemann cut with end coordinates x4 and x., then x, is the location of the point
vortex for which we want the velocity. The velocity induced by S%, call it Ug,, at some
position x is

Uab) = —5 (50— 0 - 50—~ e —a) + lo-m). 64

2m E 7“_3 e d
The two terms involving 1/r? must be interpreted as the contribution from the point
vortex located at position x = x.. When calculating the velocity of the point vortex at
X, these two terms should be excluded. The procedure must be carried out for both the
neighbouring Riemann cuts if not considering the very end vortex.

6.3.3 Separation velocity

The separation point velocity U is in the present taken positive towards the separation
point, and basically taken as the largest of the two candidates on each side, being

Ua =—((Ve)" —vp) s,
Ua=((Vy)” —vg)-s

where vg = &g + w X r is the ship section motion at x,; and s is the unit tangential
vector along the body. Ideally, there is a stagnation point on the lee side of separation.
However, the fluid velocities in (6.5) are calculated over the elements not next to, but
second next to x,, and hence will take non-zero value in general. The chosen criterion
for swapping side of separation in case of unsteady flow has in our experience only small
consequence regarding the accuracy, but is, however, a matter of importance with respect
to numerical stability. We believe that the treatment of the free shear layer element
closest to the body should be considered in connection with this as well. We have chosen
the following strategy for deciding separation direction. Given a shedding direction with
velocity, say U, this is changed whenever Uy exceeds (1 + €)U,; with £ a small value,
and left unchanged otherwise. We found that simulations using € = 0 often resulted in
numerical instabilities in the case of oscillatory ambient flow around a ship section corner
due to the small velocities occurring at both sides around the time of the flow separation
changing direction. This typically caused frequent changes back and forth every other
time-step leading eventually to entanglement of the free shear layer elements closest to
the separation point. We found a value of ¢ = 0.1 to improve this matter significantly.
There is, however, still room for further improvements in order to ensure a more globally
robust numerical method. We report some problems related to the flow direction change
in connection with the study of a ship section moored to a terminal in Chapter 10.

(6.5)

6.4 Automatic simplifications of the free shear layer

In order to apply the present method to oscillatory flow, repeated simplifications of the
free shear layer geometry as the simulation progresses is crucial. We begin by posing the
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two rules that (1) the free shear layer is not allowed to become too complex, and (2) the
free shear layer must not be over-simplified. We exploit our knowledge regarding the main
features of the free shear layer in order to define a physically sound set of simplifications
which obeys these two rules. Ignoring the simplification procedure, even after one single
period the free shear layer structures become exceedingly complex, as will become clear
in this section.

6.4.1 Characteristics in sinusoidal flow

In arbitrary oscillatory ambient flow, there is no simple characteristic of the free shear
layer, while for sinusoidal ambient flow there is. Basically, in sinusoidal ambient flow four
single vortices, or two pairs of vortices, are shed each period. The two single vortices
shed each half period form a vortex pair, that is, they are formed in such a way that they
remain close to each other and once created they travel along under mutual influence.
Their vortex strengths are of opposite sign due to opposite sign of the shed vorticity
from the two sides of the body, and typically they travel away from the body and return
in a large circular motion. The circular motion appears when the absolute value of the
strength of each of the two are not equal. With identical absolute values of the strengths
they would in infinite fluid travel in a straight line, and most likely away from the body.
We illustrate the behaviour by means of an example. Figure 6.7 presents snapshots
of the free shear layer geometry during the first few periods of a typical simulation. The
time step number is indicated in each sub-plot. References to the figures will be made
in the following explanations of the four main tools that we use: Re-gridding, dumping,
cutting and resolution limitation (both temporally and spatially). None of these four
tools are new to this work. However, the automatic identification of the main vortical
structures allowing for continuous simplifications crucial to long time simulations is new,
and is considered as a contribution to the area of vortex tracking methods. We discuss
this matter in some length and detail, as we have found, in accordance with earlier users
of the method (e.g. Braathen (1987), Faltinsen and Pettersen (1987)), that a substantial
amount of details must be dealt with properly in the practical use of the method.

6.4.2 Re-gridding of the free shear layer

Since a spiral core will tend to stretch the rest of the free shear layer, the actual length
L, is in general longer than the sum of the lengths of the shed elements. Areas of large
vorticity curls up and stretches areas with less vorticity, thereby causing element lengths
to become increasingly different. Our re-gridding strategy is as in Faltinsen and Pettersen
(1987)) based on keeping all elements of the free shear layer, except the two closest to the
separation point, of equal length at all times. As illustrated in Figure 6.3(a), the nodes
on the N, — 2 free shear elements are after each time-step slided along the existing free
shear layer geometry such that each element obtain the length As? = L, /(N, —2). The
length L, is conserved in this manner.

More refined re-gridding strategies may have been chosen, such as having As, o« 1/k,
where £, is the local curvature of the free shear layer, providing more elements to regions
of high curvature and hence providing higher resolution to fine structures. The present
strategy, however, although perhaps somewhat crude, has the advantage of stabilizing the
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New vortex

High velocity

Figure 6.3: Left: Re-gridding of the free shear layer. Equal free shear element length
strategy. Forcing equal length prevents large differences in element lengths as vortical
structures curls up. Two secondary effects are that it (1) prevents unwanted perturba-
tions growing, but also (2) partly prevents formation of new vortices. Right: Expla-
nation of effect (2). The high velocity induced in between the two vortices defining a
vortex pair stretches the free shear layer.

free shear layer in the sense of preventing the growth of perturbations. This is in our
experience in practice crucial for the survival of the simulation.

On the other hand, a negative effect of the present strategy is the partly prevention
of new vortex formation in connection with the pronounced stretching from a newly
formed vortex pair. This is illustrated in Figure 6.3(b). Here, the newly forming vortex is
struggling to curl up due to the stretching by the vortex pair. This problem may, however,
be overcome by replacing the long flat part of the free shear layer by a Riemann cut. The
replacement is plausible since there is next to zero vorticity along this part anyway, that
is I' is near constant, so the exact shape, which is more or less a straight line, is just as
well represented by a Riemann cut with constant I". This procedure is called dumping.

6.4.3 Dumping

By dumping we mean that a certain number of elements of the free shear layer forming a
near circle are replaced by a single discrete vortex. This is feasible since a closed circle with
uniform vorticity distribution, or equivalently, linearly varying dipole strength, induces
identically the same velocities outside the circle as a discrete vortex located at its origin. A
spiral which in shape is close to a closed circle exhibits approximately the same properties.
The discrete vortex is represented by a constant distribution of dipoles along a Riemann
cut. The Riemann cut is connected to the remaining free shear layer in one end, while
the other end is located at the origin of the spiral core. This position, x4, is the weighted
mean of the positions of the mid-points of the dumped elements, weighted by the vorticity
over each element, i.e.

Xq =

Z 7Yj Ru; (6.6)

Fk+1 -
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v =11 =T, Xy = 0.5(Xy;41 +Xu;), and the sum is over an appropriate set of elements
defining the near circle, or spiral core, in this case elements ¢ to k. The criteria that we
use are purely geometrical, based on accumulated angles as well as distance of the spiral
core from the separation point. The algorithm for identifying a spiral core as well as the
criteria for dumping are described in detail in the following.

We first denote by 3; the angle between the neighbouring pair of elements at node x,;,
being the elements S; and S;;1. The angle between two elements are determined using
the standard function atan2 along with the dot and cross products. For unit vectors we
have that cos 5 = a-b and sin # = (a x b) - k, where k is the unit normal vector pointing
out of the paper, i.e. k =1 x j. We use the unit tangential vector along free shear layer
element j, that is s; = (x,j11 — Xyj)/(As);, and get that

B; = atan2 (c;,d;) — , (6.7)

where ¢; = (s; X sj_1) -k and d; = s; - s;_;. This gives the angle §; in a robust manner
from —27 to 0. Next, we define the accumulated angle «; at node ¢ as that calculated
from s = 0 and further the accumulated angle a; at node I as that calculated from node
I tos=0L,,i.e.

a;=%i_,0;, ar=3X1 0. (6.8)
Note the convention of upper- and lower-case 1.

The first dumping occurs as the spiralling vortex reaches four turns, or |a;| > 167
with I = 2. The elements forming the inner turn, identified by the node I which is such
that a; just exceeds 2w, are then dumped. This process is repeated as long as the single
vortex continues to roll up, and is illustrated in Figure 6.7(a-c).

When a vortex pair has established its shape such as that shown in Figures 6.7(c) and
6.4(a), two criteria has to be met before dumping to a vortex pair. First the point i; as
indicated in Figure 6.4(a) is identified by an accumulated angle |o;,| > 37/2 where the
sign of 3; for j = 1, ..,4; are required all to be equal. Next, the distance from the node
Xy, to the separation point x, must be larger than a given characteristic length, that is
|Xyi;, — Xs| > Dp. A certain distance from the corner is required so as not to violate the
rule of not over-simplifying. The impact of the dumping on the body will in general be
smaller the larger the distance is. Dy is in the present taken as the mean of the maximum
extent of the vortex in the z- and y-directions, disregarding the part of the free shear
layer from s = 0 and to the point i, as illustrated in Figure 6.4(a). If both criteria are
met, the point i, is identified as one node of the element being closest to perpendicular to
the shedding direction, that is such that |a;,| ~ 7/2 with the sign of a;, opposite to that
of a;,;. The part beyond this point is dumped into the existing end vortex, while the part
between i; and 75 are dumped into the second vortex. The situation is then typically as
illustrated in Figure 6.7(d) which is just after the vortex structure in Figure 6.7(c) has
been dumped to the shown vortex pair.

When a new vortex has started forming, such as that illustrated in Figures 6.7(e,i) and
6.4(b), the point i3 as indicated in Figure 6.4(b) is identified as that with accumulated
angle || > 37/2. If this exists, all elements beyond i3 are dumped into a new, single
vortex. Since the vorticity is highly concentrated in the near vicinity of i3, the long tail
extending to the vortex pair with almost zero vorticity has a negligible contribution to
the position of the dumped vortex.

There are now three Riemann cuts, representing three discrete vortices. At this stage,
however, the double pair is removed, as described in connection with the description of
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Figure 6.4: Illustration of characteristic length scale for a double vortex Dy = 0.5 (D o+
Do) and the nodes i; — i3 identified and used in the automatic dumping process.

cutting. The situation after dumping to a new single vortex at i3 and removal of the
double pair is depicted in Figures 6.7(f,j). The process of dumping to a new double pair
repeats in Figure 6.7(h) and the simulation goes on.

Dumping has two main effects. First, it simplifies the inner core of the evolving spiral
vortex, vital to avoid too few elements per turn resulting in inadequate resolution. A
typical situation is the end element crossing the second innermost spiral which in general
is inevitable if dumping is ignored. A positive side effect is the reduction of the number
of free shear layer elements which in turn reduces the computational costs.

The second main effect is to effectively “disconnect” the free shear layer from a newly
formed vortex pair. Since the nature of the free shear layer is such that it stretches
due to roll up, the forming of the new single vortex at i3 (see Figure 6.4(b)) is partly
denied if the free shear layer is allowed to roll up between the vortex pair as discussed
earlier under re-gridding and illustrated in Figure 6.3(b). Therefore, some time after the
double vortex is formed, all the free shear layer elements in its vicinity are dumped. The
stretching of the remainder of the free shear layer is then avoided, allowing the new vortex
to form. The fact that the new vortex formation is partly denied by the stretching is of
purely numerical character, while dumping is a matter of simplified representation of the
physics. However, the dumping is to our understanding physically sound in this situation
just as when dumping the inner spiral core.

To give an idea of the complications arising when dumping is ignored an example
is provided in Figure 6.5. Also, cutting, which is described shortly, is ignored in the
example. The free shear layer enters into the body right after the situation shown in
Figure 6.5(b). The entering of the body occurs in connection with the formation of a
new single vortex. Although the simulation proceeds, the numerical solution becomes
unphysical. Perhaps the situation could have been avoided by decreasing the element size
on the ship section side, with the zero penetration condition thereby enforced to a higher
degree, but perhaps also the somewhat messy behaviour of the free shear layer introduces
the necessary numerical errors for the penetration to happen. The vortex pair reaches and
penetrates also the terminal wall some time later, where the resolution is poor relative
to the vortex dimensions as shown in Figure 6.5(c). Again, perhaps this could have been
avoided by decreasing the element size on the wall. However, the required resolution
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Figure 6.5: Tllustration of typical breakdown when dumping is disregarded. In this
example, the simulation breaks down because the free shear layer penetrates the wall
near the separation point, where-after the evolution is unphysical.

would lead to excessive use of computer time. Also, the structures will quickly become
too complicated for the present method to resolve properly. As a curiosity the situation
about three quarters of a period later, just before the simulation breaks down, is shown
in Figure 6.5(d).

6.4.4 Cutting

Cutting is in the present work associated with the action of removing a vortex pair.
Cutting allows the simulation to go on for any wanted number of periods, as it basically
serves as a restart of the system. If cutting is not performed the vortex pair will remain
forever and eventually be entangled in the new developing double vortex or interfere with
the free surface. This is most probably occurring also in nature, but there, the vortex
strength will not be preserved. In reality, the vortex strength of the double vortex will
weaken due to turbulent dissipation. A vortex pair will dissipate at a higher rate than a
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single vortex, since the two vortices which remain close inhibit opposite sign of vorticity
causing a cancellation effect due to viscosity. Further dissipation occurs if the vortex pair
“slides” along the wall interfering with the boundary layer which may inhibit vorticity of
opposite sign. The interaction between vortices and a boundary layer is in general not
well understood.

With dumping only, and no cutting, the simulations in general survive for some time,
perhaps a couple of periods, but the behaviour becomes to our understanding unphysical.
A typical scenario is presented in Figure 6.6. Dumping is performed as described above,
but a number of vortex pairs are accumulated as they are not removed, in this case two
pairs. The firstly shed vortex pair travels towards the terminal wall as indicated by the
arrow in Figure 6.6(a). This was also the case in the discussion above where dumping was
suppressed, but now, the free shear layer does not penetrate the solid walls. However,
as this vortex pair reaches the wall, the two individual vortices start travelling along the
wall in opposite directions as illustrated by the arrows in Figure 6.6(b), both remaining
close to the wall. They would interfere with the boundary layer and further, in reality,
feel the no-slip conditions here. The second shed vortex pair travels in a circle and nearly
infiltrates the vortex sheet as shown in Figure 6.6(c). The simulation eventually breaks
down as one of the discrete vortices from the first vortex pair infiltrates the free surface,
see Figure 6.6(d).

The method of suddenly removing a pair may seem crude. A possibility is of course
to model the decay of vortex strength, i.e. the decay of I', and then eventually remove
the vortex pair when its strength is below some threshold. This requires a mathematical
model for the decay, and one such model is due to Oseen, see e.g. Venkatalaxmi et al.
(2007). However, any substantial decay of single Oseen vortices that we investigated takes
in the order of ten or more periods, while the double vortices seem from informal physical
experiments to dissipate faster. An explanation to this discrepancy may be that an
Oseen vortex only considers laminar viscous effects, while in reality the flow is turbulent.
Therefore, without further reasoning we cut the pair at the instant the first dumping is
performed for the new single vortex, i.e. at the instant just before that e.g. in Figure
6.7(f). The double vortex has then in general travelled a fair distance away from the body
and is considered not to induce considerable velocities there. A small, sudden jump in
the potential on the body in the vicinity of the separation point is experienced in these
cases. The implications related to the force calculations and integration of the equations
of motion are to our experience of little practical importance as discussed in Chapter 8.

The free surface seems free from such jumps if the intensity of the circulation is not too
large and if the vortical structures are confined to an area close to the corner of separation.
We require the vortical structures to be confined in the vicinity of the corner of separation
if Dy/D << 1, where D is the ship section draft as before and Dj is illustrated in Figure
6.4. If this is the case, also the vortex pairs will typically be removed when still in the far-
field of other boundaries such that the terminal and sea floor. The nature of the vortical
structures are also of course a function of its strength, which in principle is independent
of the size Dy, but in practice strongly related. In our experience the cutting strategy
and hence the automatic simplification procedure works well if Dy/D < 0.25, given that
the other structural dimensions are in the order of the draft or larger, in this case that
b/D ~ 1land d/D ~ 1, where b and d are the terminal gap width and the bottom clearance
respectively.

We illustrate in Figure 6.8 how the free surface is affected in a case where Dy/D ~ 1.
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Figure 6.6: Illustration of typical breakdown when cutting is disregarded. All vortex
pairs are kept. The arrows indicate the direction the discrete vortices travel. The
Riemann cuts are represented by the dashed lines, and these are bent in order to avoid

possible crossing of the corner of the body.

A regular wave with period close to the natural piston-mode period enter a fixed ship,
and the fluid motion in the terminal gap builds up. Velocity vectors are included in order
to visualize qualitatively the strength of the vortical structures. The time-step number
is also shown, and there are N, = 600 time-steps per wave period. In the initial stage
(Figure 6.8 (a - b)), the vortical structures are reasonably confined to the vicinity of the
corner. As the flow builds up, however, the size and also its strength increases. At a later
stage (Figure 6.8 (p - 1)), the free-surface kinematics become somewhat violent. Although
not clear from the figures, shocks are induced by each cutting which occurs twice each
wave period, and the induced sloshing behaviour hence considered artificial. From Figure
6.8 (n - 0) it is clear that the fluid flow in the lower part of the terminal gap is altered
appreciably by the removal of the vortex pair. The influence from the pair on the flow
near the free surface perhaps looks quite insignificant, but it does have a disturbing effect.
We also show the time of break-down in Figure 6.8 (r) when the free shear layer enters
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the ship section. The simulation survives about six wave periods. This is not enough
in this case to reach steady-state. In case of surviving sufficiently amount of periods to
reach steady-state we would still, however, deem the results unphysical in this case where

Note that from the velocity vectors in Figure 6.8 one may at least qualitatively feel
confident that the Kutta condition is fulfilled by the present implementation. That is,
the flow leaves tangentially from the corner of separation and stagnation of the fluid flow
on the lee side is indicated by only very short velocity vectors there.

The discussed limitation on vortical structure size implies a limitation to the validity
of the algorithm, but in all the cases investigated during the present work, the requirement
has been fulfilled, i.e. Dy/D < 0.25. In case of investigating more severe vortex shedding,
we would recommend using other numerical methods.

6.4.5 Spatial and temporal resolution

The free shear layer has an unstable nature in the sense that short wave instabilities arise.
In fact, an infinitely long and straight vortex distribution is unstable to any perturbation.
A stabilizing effect is that the core of the vortex, if sufficiently strong, stretches the free
shear layer as described earlier. During one period there are, however, several stages where
the majority of the free shear layer may adopt small scale instabilities whose growth cause
destruction of the major structures. This typically happens when very small elements or
time-steps are allowed.

A crucial parameter is therefore the lower limit of the length of the free shear layer
element closest to the separation point until a new first element is born, As™™. This
length should be related to the characteristic dimension of the free shear layer Dy. We
have found As™" ~ Dy /m with m =~ 20 — 30 a reasonable choice through trial and error.

The chosen value of As™" should not be too large either. If chosen too large, the
vortical structures are poorly resolved, leading among other things to large vorticity in
the end free shear layer element which then rapidly swirls around its hinge point, which
is unphysical, as the free shear layer should not cross itself. This is basically a resolution

problem.

The choice of the time-step length At seems in our experience also to be crucial. Too
small time-steps allows the free shear layer to grow small scale instabilities, and with too
long time-steps typically the free shear layer enters the body, after which the results are
rendered unuseful. More specifically, our experience points to that N, = 600 time-steps
per period is a good choice. While e.g. N, = 400 is slightly too coarse and the structures
tend not to be adequately resolved with the risk of free shear layer entering the body,
N, = 800 is slightly too fine with small scale instabilities evolving.

The recommended values of the parameters As™™ and At must be seen in context
with the fact that the re-gridding algorithm is applied each time step. Using other re-
gridding strategies would probably yield other values of the parameters. In our experience,
though, a successful simulation depends on re-gridding each time-step, as attempts with
every second, fourth and eight all resulted in devastating small scale instabilities.
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6.4.6 Start-up and element shedding

The start-up of the free shear layer is implementation-wise straightforward. Uj is cal-
culated and a free shear layer element of length 0.5 U;At is created. In the following
time-steps, this is prolonged by advecting node 2 which is the far end of the first element,
with the velocity 0.5 Uy, until reaching the length As™". The element is then split in
two. The node 2 is forced to move along the tangent direction of the body from the side
the shedding occurs as explained in connection with the Kutta condition. The shedding
velocity is hence applied to a point somewhat away from the separation point (node 2),
but only by a small distance and so considered feasible. The physics are not well described
in the very early stages of the start-up process, but the free shear layer curls up under the
influence of its own induced velocities, as e.g. shown in Figure 6.7(a) in an early stage.
An improved description of the physics in the early stages may perhaps be achieved by
introducing a starting vortex, but this has not been done in the present work; it was not
found necessary.

We next present an application of the vortex tracking method to a foil in infinite fluid.
The focus is there not on the automatic simplification procedure, rather on verification of
the basic implementation. The automatic simplification procedure is validated through
the main studies in Chapter 10.
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Figure 6.7: Typical behaviour of the free shear layer from the initial stage and up to
steady-state. Time step number is given. (a-h) describe roughly the first period. The
free shear layer started at time step n = 391 and number of time steps per period is
N, = 600.
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6.5 Application to foil in infinite fluid - A verification

The first implementation of the inviscid vortex tracking method was in the present work
done for a foil in infinite fluid, and next further developed for arbitrary number of sep-
aration points in oscillatory flow around a rectangular box also in infinite fluid. The
resulting code was finally exported nearly as a separate module into the existing numeri-
cal wavetank. Choosing the case of foil in infinite fluid was a matter of providing a safe
environment for the early development. The results serve, however, as a first verification
and we present some of the results in the following.

In the steady case, analytical solutions of the flow exist for Joukowski foils, see e.g.
Milne-Thomson (1968). In the unsteady case linear theory gives the lift for an impulsively
started flat plate in terms of the Wagner function (see e.g. Newman (1977)). For a foil in
oscillatory flow physical model tests show that under certain circumstances a mushroom
like wake is formed as in e.g. the experiments presented by Giesing (1968).

The boundary value problem is posed in the xy-plane in the usual manner where a
total potential ¢ is introduced as ¢ = ¢; + ¢, where ¢; represents the ambient flow taken
in the present case to be ¢; = U(xcosf + ysin3). Here, U is the magnitude of the
ambient flow. The angle 3 is measured from the x-axis with positive direction in the
counter-clockwise direction. We impose a zero penetration condition on the foil boundary
S, which means that dp/0n = —dp;/0n, and solve for ¢ through (6.1). In the absence
of a free surface in the case of infinite fluid, the only unknown is ¢ along the foil. In
the steady case the boundary value problem is solved once, while in the unsteady case
the MEL approach as described earlier is used with a first order explicit Euler scheme for
time stepping.

6.5.1 Joukowski foil in steady flow

We first consider the steady solution of a Joukowski foil at an angle [ relative to the
incoming flow of constant velocity U as described above. By steady we mean that the
magnitude and direction of the ambient flow has been constant for a very long time,
and further that there is a stagnation point both on the lower and upper sides of the
trailing edge. The flow is assumed to leave with half the apex angle from the trailing
edge. We note two things. First, the flow hence does not leave tangentially from any
of the sides of trailing edge of the foil, as in the case of unsteady foil. In that case the
side of shedding will change with time; the flow will leave from the upper or lower side
of the foil in an oscillating manner under steady inflow condition. Second, the so-called
homogeneous solution is obtained with an infinite valued transverse flow at the trailing
edge if not imposing the Kutta condition.

We first revisit the essentials of Joukowski foil theory, being the analytic expression
for the complex velocity and the circulation by which we may directly compare with
our present simulations. Note that the complex mapping is such that one may directly
compare velocities in the physical plane with those in the auxiliary plane, but not the
values of the complex potential itself.

The foil geometry in the physical complex z-plane is expressed by the Joukowski
transformation



6.5. Application to foil in infinite fluid - A verification 73

T T
—— 1% thickness
——39% thickness

102*10%"1'2/ 1
| ]

18

T T T T T T T T T T
0.5¢ 1 l@,| Joukowski -
| o loJBEM 098 1
. . . . . . . . . | <
c

.9 .9!
0 05 1 095 1 108%2 124 16 18 2 0% 0005 001 0015 002 0025 003 003 004 004 005
sic slc slc N

Figure 6.9: Joukowski foil in steady flow. Angle of attack § = 1deg. Upper: Example
of foil geometry (I = 0.97 and p = —0.03 corresponding approximately to 3% thickness,
and N = 121). The free shear layer extends approximately 100c to the right. Lower
left (four plots): The computed and theoretical tangential velocity along the foil. The
correspondence is good. Right: Convergence study of the circulation I' with respect to
refinement of the body discretization (increasing N) for three foil thicknesses.

where ¢ = £ + p with € = Re® describing a circle of radius R in an auxiliary complex
plane. The coordinate point £ = R maps to the trailing edge of the foil. The chord length
of the foil is ¢ = 2R+ *((R+ p)™' + (R — p)~!). Choosing p < 0 has the effect of
“twisting” the right part of the circle. Choosing [ and p such that [ — pu = 1 provides a
foil with a smooth leading edge and sharp trailing edge. Taking p = 0 yields a flat plate,
and for small values it gives approximately the thickness of the foil, with e.g. © = —0.01
being a foil with thickness approximately 1% of the chord length. The complex potential
describing the flow is f(§) = U (e + R%/¢) 4+ T'log &/2mi. The complex velocity is
u — v = df/dz which is

weiv= (0 (- &)+ o) T (6.10)

Stagnation points on both the lower and upper sides of the trailing edge is enforced by
requiring that u —iv = 0 at £ = R. From (6.10) a circulation of

['=4nURsin (6.11)

is required to satisfy the zero flow condition. Note that this is consistent with linear foil
theory for a flat plate which predicts a circulation I' = 7Uc 3, where ¢ ~ 4R.

We model the free shear layer by two elements of equal and constant vorticity as il-
lustrated in the upper left of Figure 6.9. Only a small portion of the second element
extending to the far-field is shown in the figure. We do the following reasoning to justify
this representation. A constant dipole distribution along a straight element is mathe-
matically equal to two point vortices of opposite strengths located at each end of the
element. As is well known, and will be exemplified below for an impulsively started foil,
the initially shed vorticity from a foil starting from rest will create what we for simplicity
may call a starting vortex which is convected to infinity with the ambient flow. The exact
path is not known, but in the present case not of interest as long as the second element
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represents a vortex in the downstream far-field. The first element may be short compared
to the foil and has the direction of the half apex angle of the trailing edge. The required
length of the second element for it to represent a vortex in the far-field depends on the
magnitude of the circulation (—I"). In the case presented in Figure 6.9 a distance > 100c
was needed. In the lower left part a comparison between the calculated and theoretical
tangential velocity along the foil is shown, and the comparison is promising.

A convergence study on [' with respect to body discretization for the circulation is
presented in the right part of Figure 6.9, which shows a reasonable convergent behaviour.
In the figure, I'g is the analytic value given by (6.11), while I" is the circulation obtained
by the present BEM.

We experienced some problems with divergence when increasing the number of ele-
ments N on the body to higher values than those shown. We believe this is a numerical
effect due to the very fine elements near the trailing edge giving a near zero angle between
the two elements constituting the trailing edge and hence a nearly singular system matrix
A. We did not pursue this further, as the problem of near zero angle is not relevant for
our main study, namely flow separation from a rectangular ship section. Even in the case
of modelling a bilge keel, the angle would exceed by at least an order of magnitude that
encountered when refining the grid of the Joukowski foil.

6.5.2 Thin foil in impulsively started flow

We next consider what we call a thin foil in impulsively started flow and compare with the
solution for the linearized problem of a flat plate as given by the Wagner function. The
chord length of the flat foil is as before denoted c¢. The shape of the foil is like a diamond.
That is, the thickness increases linearly, both in the upper and lower parts, from zero at
the two ends to the middle point ¢/2, where it attains its maximum thickness a. The foil
in the present study has a thickness of 1% (a/c = 0.01). The angle of attack is § = 4deg.
The geometry is shown in the middle part of Figure 6.10. The grid is refined towards
the trailing edge. For all grids the two elements defining the trailing edge was of length
As ~ 0.002c¢.

The steady-state circulation given by the linearized problem of a flat plate is 'y, =
wUc3. The Wagner function which represents I'(¢) /T, attains a value of 0.5 at ¢ = 0. In
the numerical solution we model this by a starting vortex with strength equal to ', /2.
The numerical solution may not capture this behaviour directly without such a starting
vortex. This is seen from the following. Consider the homogeneous solution which predicts
an infinite velocity at the tip of the foil. We obtain numerically the homogeneous solution
if solving the boundary value problem without enforcing the Kutta condition, that is,
when solving without any free shear layer elements or Riemann cuts, say, at the first
time-step. The separation velocity Uy is taken as the velocity over the lower aftmost
element on the foil by a simple finite difference estimator Us; = (2 — ¢1)/As, where ¢
and 9 are the values of the potential at the element ends, and As the element length.
The evolution of the circulation is governed by (2.14), such that when discretized, the
solution at time-step n is I'™ = I'™™! £ 0.5 At U?. Now, if I’ = 0 (no starting vortex),
the circulation after the first time-step is I'" = 0.5 At U2, Now, since U, calculated as
described is finite, the expression tends to zero with decreasing time-step, not to 'y, /2,
and provides hence by no means a convergent numerical scheme.

The starting vortex is modelled by a Riemann cut connected to a short free shear layer
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Figure 6.10: Thin foil in impulsively started flow. Upper: Circulation I'/T's, for a foil
in infinite fluid with impulsively started flow. I'c = wUcfS is steady-state lift for a
flat plate (linear theory). Wagner function representation given in Bisplinghoff et al.
(1996): T'/Ts ~ 1 — 0.165 exp~0-091Ut/c _() 335 exp~0-6Ut/¢ Numerical results referred
to as BEM are from the present simulations for a flat foil of 1% thickness and angle
of attack f = 4deg. N refers to number of elements on the body. Nondimensional
time-step is AtU/c = 0.02. Middle: Flat foil geometry. Lower: Snapshot of the foil
and free shear layer after Ut/c = 14.

element of length 0.01c. The Riemann cut extends to a position x,,. The position is not
determined analytically, rather by numerical experiments. In the present case, the position
was taken as (0.2¢, 0.38¢) relative to the trailing edge of the foil. The dipole strength over
the Riemann cut is taken as 'y, /2, and as discussed earlier, this is equivalent to a single
potential vortex at position xX,. The boundary value problem is solved, giving U,, and
the time-marching procedure of shedding free shear layer elements starts. The evolution
of the circulation should then follow quite close to that of the Wagner function. We note
that the numerical results represent the fully nonlinear solution, whereas the Wagner
function is the solution to the linearized problem. We will expect some discrepancies due
to the nonlinearity in the problem. The nonlinearity is, as pointed out by Giesing (1968),
basically only associated with the vortex structure which involves a curled up free shear
layer. This means we expect some discrepancy at the initial stages, but this should vanish
for long times. The discrepancy should also decrease with decreasing angle of attack [3.
For our chosen rather small angle of attack of 5 = 4deg, there should be quite small
discrepancies.

Time-series of the circulation are presented in the upper part of Figure 6.10. The
Wagner function is that of a representation given in Bisplinghoff et al. (1996). The
number of elements on the foil N is varied to check the convergence. The results seem
to converge quite well. The time-step is in all cases At U/c = 0.02. There was no visual
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difference when using half the time-step. Choosing twice the time-step gave a slightly less
comparable result for Ut/c < 4, otherwise the same.

A snapshot of the foil and free shear layer including the Riemann cut whose far end
is represented by the small square is also presented in the figure. The snapshot is taken
at Ut/c = 14 for the case with N = 240.

We also performed simulations of the impulsively started foil without a starting vortex.
The circulation I'" then starts with zero value as discussed. It does, however, approach
quite close to the theoretical solution after the foil has travelled about 6-8c. This indicates
that a starting vortex is basically needed only to capture the initial stages of the evolution.
The steady-state value seems to be quite insensitive to the start-up of the process.

6.5.3 Foil in oscillatory inflow

Since we are in the main part of the present work investigating oscillatory flow, we lastly
present some results from simulations of a Joukowski foil with 1% thickness in uniform
oscillatory ambient flow. Application of the present BEM qualitatively gives the wake
picture as observed in physical model tests presented in Giesing (1968). In the model
tests presented there a NACA 0015 foil profile was used. Around a certain oscillatory fre-
quency, or Strouhal number UT /¢, he obtained a mushroom like behaviour of the wake.
An example of a simulation with the present BEM is shown in Figure 6.11. The obtained
structures as shown in the figure do compare qualitatively well with those obtained ex-
perimentally by Giesing (1968). The amount of details captured in the wake was found
quite strongly dependent upon the time-step. With twice the time-step there was no
strong curling up of the structures furthest away from the foil as that in Figure 6.11, only
similar to those closest to the foil. This is in a way natural. The finer time-step, the finer
the problem is modelled. With increasing time-step the physics is modelled in a more
averaged way. In reality, however, viscosity will cause dissipation of the free shear layers,
diffusing the structures with time, so a more detailed representation of the free shear layer
than that shown is perhaps not correct in that respect anyhow.

We conclude that the present BEM with vortex tracking method reproduces analytic
and experimental results in the setting of foils in infinite fluid satisfyingly well. This goes
for both steady and unsteady conditions.
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Figure 6.11: Foil with 1% thickness in oscillatory flow with angle varying sinusoidally
with amplitude 17.8 deg. UT/c = 0.537. Simulation with N, = 100 time steps per
period. Time step number is shown in each subplot.
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Chapter 7

Numerical modelling of the in- and
out-flow of boundary layers

The expression for the in- and out-flow velocity © of a laminar boundary layer along a
smooth solid surface in unsteady ambient flow was derived and given by (2.22). The
expression involved a convolution integral. In the present chapter we describe how the
matter is treated numerically.

The in- and out-flow was implemented in the linear wavetank only, and not in the
nonlinear wavetank. In the linear case where the boundary of the domain S is fixed, the
implementation was straight-forward, and in our experience involving no numerical prob-
lems e.g. such as instabilities or large associated computation time. The implementation
involved evaluating the convolution integral (2.22) numerically at each time-step and at
each node of the solid parts of the discretized boundary. This was done each sub time-
step in the fourth order Runge Kutta scheme in order to provide a consistent boundary
condition on the solid boundaries at all times.

We considered also implementing the in- and out-flow into the nonlinear wavetank,
but the damping effect of the attached boundary layer was found by all means negligible
in the present context of a ship by a terminal, or resonant piston-mode motion in a
moonpool (see Figure 10.9), and we therefore decided not to. We mention, however, some
thoughts around implementing the in- and out-flow effect in the nonlinear wavetank. In
the nonlinear case, a question on how to treat the free-surface zone would arise. First
of all, the basic idea behind modelling a viscous boundary layer is to incorporate the
effect of the no-slip condition. A physical modelling problem then arises, since there is
a conflict between the no-slip condition at the wall and the treatment of the intersection
between the free-surface and the wall in the BEM. In this regard we stress that the no-slip
condition is in the present viscous boundary layer model not enforced explicitly in the
BEM, we rather impose the resulting in- and out-flow on the solid boundaries. Next, a
practical problem is that the parts of the solid boundaries that are in the free-surface
zone will alternately be dry and wetted. If one should attempt to implement the method
in the nonlinear case, we suggest the following strategy: Re-start the convolution integral
associated with positions in the free-surface zone each time the fluid enter that position.
Now, since (2.22) is derived assuming locally the flow to be of semi-infinite extent, this
approach would perhaps be somewhat questionable in the initial phase of wetting of a
position. Further, nonlinear terms in the boundary layer calculations should be included
in the nonlinear BEM case. We did not investigate the matter further.

79
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7.1 Numerical integration of the convolution integral

There is no analytic solution to the convolution integral (2.22) for general unsteady am-
bient flow U,, and so, it must be integrated numerically. Being of the form

I(t):/ot 1) g, (7.1)

t—T1

we see that some care must be taken due to the square root singularity at 7 = ¢t. The
square-root singularity is a weak singularity that we may remove in at least two standard
ways. One is by integration by parts and another by substitution of variables. Although
we chose integrating by parts, we first briefly outline a possible strategy if choosing sub-
stitution of variables. In the following, we take f = /v /70U, /0s.

7.1.1 Substitution of variables

The method of substitution of variables may be applied by introducing an auxiliary vari-

able u. Substituting u? =t — 7 into (2.22) leads to the integral fo\/IE f(s,t —u?) du. In
this expression the integration parameter appears in the argument of the integrand as u?,
which means that numerically, where the integral is approximated by a sum, the integrand
would be evaluated at time-steps n, n — 1, n — 4 etc., where time-step n is the present
time-step. The sum hence involves only y/n and not n terms, which reduces the cost of
evaluating the sum. Note that this is so in the case of constant time-step length At.
With a varying time-step some interpolation would be necessary.

7.1.2 Integration by parts

In the method of integration by parts, which we have chosen to use, all n terms are
in principle involved in the sum, but due to the 1/4/7 term the sum may in practice be
truncated, as the value of the integrand in (7.1) vanishes as 7 becomes large. The perhaps
seemingly excessive time consumption associated with the summation is therefore avoided.
The reason we discuss time consumption is that in some applications, this may become an
important issue. However, in the simulations performed in the present work all n terms
were included with only a minimum of time consumption experienced.
The following approximate expression for the integral is derived in Appendix C:

1) = (Z f; Iy %f”‘l - %%) VAL, (7.2)

In the derivation, constant time-step At is assumed, and the expression is correct to second
order in time. The expression (7.2) was implemented into the linear numerical wavetank
with the outer flow taken as that on the solid boundary itself, i.e. dU./0s = 0%*p/ds>.
The second derivative of the potential was estimated numerically by the difference scheme
given by (A.7) and using the known values for the potential along the solid boundary from
the previous (sub) time-step.
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Figure 7.1: Decay of a standing wave in a rectangular tank. Simulations using the
present linear wavetank compared to theoretical decay. The decay is due to the damping
introduced by the in- and out-flow of the boundary layers along the tank bottom and
walls. Lower plot is zoom-in of the upper. Tank length is L = 1m, still water depth
h/L = 0.5 and v = 10~°m?/s. Initial amplitude is Ag/L = 0.0147.

7.2 Standing wave in a rectangular tank - A verification

A verification of the current method and implementation of (7.2) into the linear numerical
wavetank is presented in the following by means of a free decay test. The test involves a
fixed rectangular tank, partially filled with water. The tank length is . = 1m, and still
water depth h/L = 0.5. We investigate the decay of the standing wave of wavelength
A/L = 2, that is, the first linear mode. The initial condition for the potential ¢ and
the free surface ¢ is taken from the analytic linear solution. The free-surface elevation
is initially at a maximum, such that the fluid velocity is zero in the whole domain. The
initial standing wave amplitude is A/L = 0.0147. The kinematic viscosity that enters
(7.2) is here chosen to be v = 10"°m?.

The simulated time-series of the wave elevation ( at the left wall is presented in Figure
7.1. The numerical results are compared to theory as presented by Keulegan (1959) where
the decay of the amplitude is, for small values of v/, assumed to be exponential exp(—at/T)
where « is found from an energy consideration. The expression for « is shown in the
figure along with the analytic solution exp(—at/T) represented by the dashed curve.
The number of elements along the boundary as well as the actual grid is also indicated
in the figure. The element size was refined near the two intersections between the free
surface and the vertical walls according to a cosine squared spacing with the resolution
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parameter 3 = 0.7 in the formulation given in (A.8). The number of time-steps per period
was N, = 120. From the figure it is clear that the numerical solution recovers that of the
theoretical quite nicely. From the zoomed view in the lower part of the figure we may
estimate the discrepancy to approximately 2 - 3% after 200 periods of oscillations. We
performed no systematic convergence study. However, we did some checks with different
grids. The results were slightly improved with the refined grid near the intersections
relative to constant element size. Further, they approached the theoretical solution with
increasing number of elements.

We feel comfortable that the present method of modelling the in- and out-flow of
boundary layers is feasible, and that its implementation in the linear wavetank has been
verified through this example.



Chapter 8

Numerical force calculations

We have in the three preceding chapters introduced and discussed the numerical wavetanks
including the free shear layer as well as the in- and out-flow of boundary layers. In this last
chapter on numerical issues we present the numerical force calculations and integration
of the equations of motion.

Rigid body motion may be forced or free, where in both cases the normal velocity is
imposed as a boundary condition in the boundary integral equations (6.1). The difference
between the two cases is that in the latter the velocity must be solved for simultaneously
and in a way becomes another unknown requiring an additional set of equations to solve.
The equations of motion provide the required additional set of equations.

The right hand side of the equations of motion are the force and moment on the body.
When imposing a slip-condition as we do here, these are found by integrating the pressure
given by the Bernoulli equation multiplied with the unit normal vector along the full body
boundary. The integration of the pressure involves integration of the instantaneous time
rate of change of the potential, ;. In the linear case, the boundary is fixed at all times
and the force calculations rather straight-forward. However, in the nonlinear case, ¢, is
not defined over a moving boundary, since we have adopted the MEL approach. The
MEL approach is explained in Chapter 5.

There are to our knowledge three main strategies to overcome this problem, and we
refer the reader to the introduction chapter of the present text for a review of these. There
are challenges associated with each strategy. In the present work we chose to pursue the
strategy of manipulating the force and moment expression in such a way that the time
derivative of ¢; is moved outside the integral.

In this chapter we start by deriving the alternative formulations for the forces and
moment. We next discuss some characteristics of these expressions. As a result of the
manipulation, the equations of motion are cast into a set of so-called differential algebraic
equations. We point at problems related to solving these. We last present some verification
cases.

8.1 Alternative formulation of the forces and moment
In the present work we derive an alternative expression for the force and moment on a
freely floating, surface piercing body in a nonlinear wavetank. The basic idea is as that

presented in Faltinsen (1977), where the time derivative is moved outside the integrals.
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+
So G

Figure 8.1: Closed path of integration in force calculations S; = S+ Sp + S‘jf + 57+
So + 53, enclosing a domain called €2;. Here, Sr is the part of the free surface between
A and B. Sp denotes the solid boundaries of the closed wavetank. Right: Path of
integration along S‘j,[ =Sy, + S‘J; , where Sy, is denoted simply as Sy after collapsing
Sy, and S"ﬁ to one single curve.

In his work disturbances all the way to infinity was allowed, but only vertical dipole-like.
There were no waves allowed beyond a distance “b” from the body. This assumption was
suitable for cases with forced body motion with radiating waves in otherwise still fluid. In
the case of a body in a closed wavetank subject to incoming waves that are generated at
one of the lateral boundaries, however, we may not make the assumption of no waves far
away. We therefore derive an expression which is basically a generalization of the formula
presented therein. More terms are involved in the present expression.

8.1.1 Derivation of the alternative formulation

In short, moving the time derivative outside the integral is achieved by manipulation by
use of Gauss’ theorem for the force and Stokes’ theorem for the moment, as well as the
Transport theorem. We first introduce a closed control surface as that shown in Figure
8.1 enclosing and including only the body of interest. Here the closed surface is denoted
Sr=Sg+ Sp+ S$ + 51+ Sy + S3. By Sp we here mean the part of the free surface
limited by the body and the intersection points between S; and S5 with S, denoted A
and B in the figure. By ST = Sy + Sy we mean a surface enclosing the whole free shear
layer, including the unsimplified part as well as Riemann cuts. This is illustrated in the
right part of Figure 8.1. We will later collapse Si; to Sy. The horizontal coordinates of
the vertical parts of the control surface, S; and S,, as well as the whole of surface Ss,
are fixed. Only the upper ends of S; and S5 change with time, and only vertically. For
convenience in the derivation we define S¢ = S; + Sy + S3. The vertical axis is as before
denoted y being positive upwards, and the normal points into the fluid as before. We
derive the expression for the force only. The moment may be derived in the same manner,
only using Stokes’ instead of Gauss’ theorem.

We write the force (2.24), after adding and subtracting the integral of pn over S;—Sp,
as

F:—/ pnds+/ pn ds. (8.1)
St SF+Sc+S‘j,E
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In the second term on the right hand side, the integrals of the pressure over Sp and
S§ vanish, that is fSF+S$pn ds = 0. This is so since on the free surface the pressure
is assumed zero in the present application of Bernoulli’s equation. Over the free shear
layer, the pressure drop is zero while the normal vector is opposite along S}, and S;> when
taking the limit of a thin free shear layer. Substituting the pressure given by Bernoulli’s
equation (2.2) into (8.1) we now get

F:p/ o ds+p/ 0.5|Vey|°n ds+pg/ yn ds—p/ p;nds. (8.2)
Sy Sp+Sp+SE Sp+SF Sc
———

Iy

Here, the integral of gy over the free shear layer S‘f vanishes for the same reason as just
explained above, since y is equal along both sides. We proceed by rewriting [;. First,
using Gauss’ theorem (D.3) we have that

I :/ prn ds = — Vi, d€. (8.3)
St Qr

Next, from the Transport theorem (D.4), we get

d
I = | Veda- [ VoU ds
Tdt 5,

. (8.4)

gpnds—/ Ve, ds,
dt SB+SF+S$

where U is the normal velocity of the boundary, defined positive into €2;. In the last
equality, Gauss’ theorem and the fact that U = 0 on S¢ and U = ¢,, on S+ Sp + S§ is
used. Inserting this expression for I; into (8.2), we get

F=p— /gpnds+pg/ yn ds
de St Sp+SF

(8.5)
+ p/ (0.5(¢2 — p2)n — pup,s) ds — p/ o ds.
Sp+Sp+S¢ Se
where the expression in the second last integral is obtained due to the equality
0.5|Vel*n - Voo, = 0.5(¢7 — op)n — pups s, (86)
since Vi = ¢p,n + ¢gs. Over S‘jf we show in Section D.3 the following equality,
/ (0.5(@? —¢)n — gon%s) ds = / (Ueps — Uesn) I ds, (8.7)
ST Sy

where U.; = U, - s and U, = U, - n where U, is the wake velocity given by (2.12),
and Sy := S, in the limit that Sy, and S;> collapses to one single line. Note that
the contribution over the Riemann cuts vanish in this integral. Strictly speaking, the
integration is therefore over S, only, although we write Sy .

We see that there still remains an integral with ¢, in the integrand of (8.5). We reduce
this term into two much simpler terms as follows. We use the one-dimensional version of
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the Transport theorem (D.5). Take the function f in (D.5) to be f = ¢ n. We may then,
according to (D.5), write

d
— gond:s:/ eends+uen]a+[uen]p. (8.8)
Sc

dt Js,

The points A and B are the contact points between Sc and the free surface as shown in
Figure 8.1. uy and up are the vertical velocities of the free surface at points A and B.
Both must be taken as positive in the positive y-direction. This is so since the direction
of expansion of the curve S¢ is in the positive y-direction. This means that the direction
out of the “domain” S¢ in the Transport theorem is in that direction. The values of the
potential is that at the time instant of evaluation. The normal vectors are those of the
control surface S; and Sy at the contact point, i.e. pointing horizontally (not vertically).
We may now substitute (8.8) into (8.5), and we arrive at the alternative force expression
where the (; term is eliminated,

d d
F:pd—/ gpnds—pd—/ Fnds+pg/ yn ds+ plupn]s+ plupn]p
t Sp+SF t Sy Sp+SF

+ p/ (0.5 (go? —¢)n — gon%s) ds + p/ (Ueps —Uesm) Ty ds.
Sp+SEg S

Vv

(8.9)

The moment is derived in the same manner, only using Stokes’ theorem rather than Gauss’
theorem, cf. (D.3), and the result is analogous to (8.9), being

d d
M =p—/ P ds—p—/ I'ng ds+pg/ yng ds+ plupngla+ plupnglp
dt Js, s, dt Js, Sp+Sp

+ p/ (0.5 (gp? — 02 )ng — gongos,SQ) ds + p/ (Uen 86 — Uesng) Ty ds,
SB+SF SV

(8.10)

where ng and sg are given by (D.1), except here, they apply to all surfaces, not only Sp
as indicated in that expression.

Note that the present formulations may readily be used in multi-body problems. One
simply defines a separate control surface enclosing each body. Each control surface must
then enclose its associated body only, and not other bodies. If the bodies drift, such that
one body drifts across another body’s control surface, one must redefine the positions of
the control surfaces at some stage. This will presents no considerable practical problem
in a numerical implementation. This strategy of redefining the control surface may also
be followed for a ship in forward speed.

8.1.2 Some characteristics of the alternative formulation

There are two key features of the alternative expressions (8.9) and (8.10). First, they
involve several integral terms as opposed to the original single integral term over the
body itself. Second, and this was the primary goal, the time derivative is moved outside
those integrals involving ;. As for the first, the additional cost of evaluating the extra
terms is negligible as they are over known quantities. A problem that arises, however, is
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that pairs of terms may attain large amplitude of opposite sign which in theory should
nearly cancel, but in practice may pollute the numerical solution. This is so in particular
when calculating the roll moment. As far as the second goes, moving the time derivative
outside the integral means that the integral itself represents momentum, giving velocity
directly without time integration. This may at first sight seem attractive, but represent
in practice what we might consider a phasing problem with respect to the remaining
integrals. In mathematical terms we are left with a set of so called differential-algebraic
equations which in general is not trivial to solve. This means the present method also has
its challenges, where suggested resolutions will be discussed shortly in connection with
time integration of the equations of motion.

We first shortly discuss some characteristics of the contribution of each of the terms
in (8.9) or (8.10) and consider one of the force components F,, F, or the moment M
and denote this simply by F. We refer to F' as force, although it also applies to the
moment. We further denote by n and s the corresponding components of the unit normal
and tangential vectors respectively. We write

d 3 10
F:p&ZKjJr,OZKj, (8.11)
j=1 j=4

where the K -terms are

Klz/ pn ds, K2:/ pn ds, K3:—/ I'n ds,
Sp Sp Sy

K4=9/ yn ds, K5:g/ yn ds, Kg=[upnla, K7 =[uen]p, (8.12)
SB SF

Kg = fi ds, Kg= fids, Kijp= fa ds,
SB Sr Sy

where f1 = 0.5 (92 — ©2)n — ©ups s and fo = (Uyy s — Uggn) Ty,

Assuming linear theory, and neglecting flow separation, we indeed recover the linear
force due to the following. All terms Kg_g are of second order and therefore vanishes in
the limit of linear theory. Further, since Sr and Sp are in the linear case the fixed mean
position of the free surface and the body, the time derivative goes under the integral sign
of Ki. Then, dK5/dt + K5 = 0 due to the linear free-surface condition, and we are left
with only dK;/dt representing the added mass and damping force and K, the restoring
force. Removing the assumption of linear theory we may perhaps still associate with K;
the “added mass and damping” and with K, the “restoring term”, at least for small ship
motion, although strictly speaking, these are no longer defined.

To second order we observe the following. The terms K, K5 and K3 do not contribute
to the mean force since any constant term is differentiated away. Kg and K7 do not
contribute to the heave force at all, since the normals of the vertical parts of the control
surface S¢ point horizontally. The two terms do, however, contribute significantly to the
mean drift force in sway. Except from Kg and K7, all the other terms K, - Ko contribute
to the mean force or moment in all three degrees of freedom.
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8.2 Numerical integration of the forces and moment

The numerical treatment of the spatial integrals as well as the integration of the equations
of motion are discussed in the following. We begin with the rather straight-forward im-
plementation of the spatial integrals and next describe in some detail that of the temporal
integration.

8.2.1 Spatial integration

Numerically, the K terms in (8.12) are obtained by summation over the body, free surface
and free shear layer elements. Since the potential etc. vary linearly over linear elements,
the expressions are straight-forward to deduce consistent to second order accuracy in space
as other quantities in the present work. The sums representing the integrals are given by
(D.8). Note that for the term Ky there is a contribution from the Riemann cuts, while
it was shown in the derivation of (8.7) that the contribution from Riemann cuts was zero
for KlO-

8.2.2 Time integration of the equations of motion

The force is integrated to velocity and the velocity to position. As a standard mathe-
matical procedure the equations of motion (2.23), being a set of second order differential
equations, may be converted into another set of twice as many first order differential
equations by introducing the velocities in the three degrees of freedom v,, v, and vy, and
we write the six equations of evolution

iG = Uy, UJ: - J:/m
yG = Uy, Dy - y/m (813)
9 = Vg, i)g = M/I

where for each there is an initial value at ¢ = 0. Although necessary in the boundary
integral formulation (6.1), the velocities may in a sense be considered auxiliary functions.
As a mean of further studying the nature of the alternative force expression (8.9) we
introduce yet another set of auxiliary functions as follows. We express the motion z
and velocity v in one of the degrees of freedom, each by a sum of two auxiliary terms
T = x4 + a3 and v = v, + v, such that 9, = dK,/dt and 0, = K where K, = ¥3_ K;
and K, = 2]1.0:4K ;- In the selected degree of freedom we therefore have the set of four
equations of evolution

Vg = Kcu Uy = Kb7 Ty = Vg, Tp = Up, (814)

where we have assumed v,g = 0. We see that one part of the velocity, v,, is governed by
an algebraic equation and is known explicitly at time ¢ given the geometry and potential
at that instant in time, while for the second part of the velocity, v,, and for the positions
x, and z;, first order ordinary differential equations govern the solutions.

Now, considering all three degrees of body motion, we have three algebraic and nine
ordinary differential equations. Further, for the coupled fluid-structure problem, we also
have the two free-surface conditions, (2.3) and (2.4), as well as the evolution equation
of the free shear layer (2.13) and that of the circulation (2.14). In the MEL approach,
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where total derivative is like a normal time derivative, we then have thirteen ordinary
differential equations, and these together with the three algebraic equations constitute a
so-called set of differential-algebraic equations (DAE).

Differential-algebraic equations are known to be non-trivial to solve, and some
aspects of the numerical solution are discussed e.g. in Hairer, Lubich, and Roche (1989).
Here we only give a quick outline of our understanding of the implied difficulties. As an
example, consider the motion of some arbitrary object in three-dimensional space with
solution (z(t),y(t), 2(t)) with the motion governed by

:‘E - f(x7 y? Z7 t)7
y = g('z" y7 Z7 t)’ (8'15)
0= h(z,y,z1),

together with proper initial conditions. Note the zero on the left hand side of the last
equation. This is a set of two ordinary differential equations and one algebraic equation.
Now, the algebraic equation is not an equation of evolution, but rather a constraint as
to where the object might travel. The solution is thus defined over a manifold, i.e. lives
in this case on a surface in three-dimensional space, with the surface possibly of complex
shape. Intuitively, keeping the solution on that surface is harder than having available
the whole three-dimensional space. This goes in particular for a numerical method where
one in a discrete time stepping algorithm is prone to “fall off” the surface.

Accuracy and stability. The consequence of the above discussion is in a way two-
fold, although the two matters are inter-related. The first matter is regarding the order of
accuracy of the time-stepping algorithm. This will become clear in a while. The other is
regarding numerical stability. Both matters are related directly to the difficulties with the
numerical solution of DAE. Here we explain the way the problems are overcome thus far,
regarded sufficient for the present problem. More efforts would nevertheless be welcome
in order to handle the problems in an improved manner in future works.

As for the first, from a practical point of view, the DAE represent a phasing problem.
For example, consider the linearized problem and resonant heave motion of a ship section.
The relative phasing between the added mass and damping force represented by d K7 /dt
and the restoring force represented by K} is crucial at resonance. The only way we have
managed to model this in a proper way with convergent results is using a sense of averaging
during the four sub-steps of the fourth order Runge Kutta scheme. The implication is that
we recover a numerical method only first order in time, not fourth order. Although the
ship motion is in this way only captured to first order in time we still use the fourth order
Runge Kutta method as it gives a truly superior numerical solution of the free surface in
the far field, e.g. the propagation of the incoming wave train.

As far as the numerical stability goes, a technique as used by several other authors
is adopted in the present implementation. The first one known to the auther to use the
technique was Kvaalsvold (1994). Later it has been used by e.g. Wu and Eatock Taylor
(2003), Sun and Faltinsen (2006). The technique is simple and robust. In the equations
of motion an artificial “added mass” term is added on each side of the equality sign. For
example, in the equation of motion for heave, where we denote the artificial added mass
by Ay, we get (m+ Ayy)ic = F, + Ayyiic. In the numerical scheme, the acceleration on
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Figure 8.2: Tllustration of peaks occurring in the force and moment time-series due to
simplifications of the free shear layer.

the left hand side is the unknown to be solved for, while that on the right hand side is
taken as that of the previous time-step or sub time-step. This does not reduce the order
of accuracy, as it is already first order as described above. In our experience the results
are not sensitive to the chosen value for A,, as long as it is in the same order of magnitude
as the actual added mass. We have found this technique to be strictly necessary in heave,
as neglecting its use leaves an unconditionally unstable numerical scheme, the simulation
will break down after only few time-steps even in still water tests. In our experience it
also stabilizes the roll motion in cases with more pronounced roll than in the present. We
have not applied the technique for sway as was done by Wu and Eatock Taylor (2003), as
it was not found necessary. Recommended values for the added mass terms for all degrees
of freedom is given therein. This may not, however, be adopted directly here due to a
different formulation of the problem relative to the present.

An observation regarding this stabilizing technique which has to our knowledge not
been noted in the literature on the matter is the following. The described technique
is intrinsically similar to a finite impulse response (FIR) filter commonly used among
other places in control theory, see e.g. Rabiner and Gold (1975). It basically averages
new estimates and existing known values. In this respect, we performed a quick study by
applying a FIR filter for reproduction of a sinusoid when solving a second order differential
equation similar to the equation of motion. With A,, = m, this gave a reproduction
lagging one time-step disregarding the size of the time-step, and an error in the reproduced
amplitude which was by all means negligible. The small discrepancies found in this simple
test explains qualitatively the goodness of the method experienced by others as well as
the present author.

8.2.3 Problems related to large roll motion

We now look closer into some problems of the method based on the alternative formulation
of the moment to calculate roll motion. In cases of considerable roll we found it necessary
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Figure 8.3: Close-ups of the heave force time-series presented in Figure 8.2.

to neglect all other terms than dK;/dt and K. That is, we keep only the “linear” terms.
The main problem was that the sum of the terms over the free surface dK,/dt and
K5, which in theory only should contribute to second and higher order, in general gave
contributions in the same order as the “linear” terms, gave rise to inaccuracies that in turn
caused instabilities. One reason that the numerical inaccuracies arise is perhaps that in
the integration over the free surface, each term involve multiplication with the distance
from the center of gravity, which may become large depending on the extent of the control
surface. We did not resolve this problem satisfactory during the present work, and we
recommend for future use a proper investigation possibly resolving the problem. We can
not, for example, neglect the possibility of a bug in the code.

We emphasize that in case of small roll angle, the instability does not arise, and all
terms may be kept. We realize that “small” roll angle is not well defined in this discussion.
However, for example in the study of a moored ship by a terminal presented in Section
10.3, the roll amplitude was “small”, and no sign of instability was observed during that
study. We did, however, perform numerical experiments with a rectangular box floating
in a sloshing tank. The motion was started from rest, and a sinusoidal motion of the tank
walls was prescribed. The frequency was that of the first sloshing mode of the tank. The
box was placed in the middle of the tank. The roll moment of inertia was taken such that
the roll motion of the box should be equal to the slope of the free-surface at its position
in the tank, i.e. in the quasi-static roll regime. In the initial stages of the simulations, the
box behaved well in both sway, heave and roll. However, as the free-surface motion built
up, the roll motion of the box became unstable. This was in the case all the Kj-terms
were kept. Neglecting all terms except the “linear”, however, the roll motion was stable,
and did follow the free-surface slope, even up to the stage where the free-surface was near
breaking.

8.2.4 Effect of free shear layer simplifications

As was explained in Chapter 6 we automatically simplify the free shear layer during a
simulation. We argued that dumping near circular vortical structures to a single vortex
and cutting pairs of vortices of near opposite strength were acceptable actions both based
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Figure 8.4: The velocities resulting from integration of the forces in Figure 8.2.

on physical reasoning as well as in a mathematical sense. The surroundings do, however,
feel these simplifications as a shock. The experienced level of the shock depends on the
size of the vortical structures and of course their strengths relative to the magnitude of the
ambient flow. For example, cutting a vortex pair will have an influence on the potential
@ near the corner of the ship. A vortex pair of large strength relative to the ambient flow
will naturally cause a larger influence on the surroundings than a pair of modest strength.
An example involving large vortical structures was given and discussed in connection with
Figure 6.4. In all of the present work, however, the flow has been such that the vortical
structures have been constrained to the vicinity of the corner of separation.

In any case, removing a part of the free shear layer either by dumping or cutting will
inevitably lead to a peak in the force time history, since parts of Sy disappear with a
jump in the velocity v, in (8.14) as a consequence. We illustrate this by an example
from simulations using the present nonlinear wavetank with flow separation from the ship
bilges. The example involves a moored ship in incoming waves, and is taken from the
same simulation as that presented later in Figure 10.21, with further specifics explained
there. The specifics are not important to the present discussion. The force and moment,
time-series in all three degrees of freedom are presented in Figure 8.2 with close-ups of the
heave force in Figure 8.3. We observe from Figure 8.2 that four main peaks occur each
wave period. These are associated with cutting of the two free shear layers emanating
from each of the two ship bilges. Each free shear layer is, as explained in Section 6.4,
cut twice each wave period. Other irregularities in the time-series are associated with
dumping, but these are very small.

From Figure 8.3 it seems that the force simply continues on “its track” after some high-
frequency oscillation lasting about five to six time-steps. The way it continues back on
track is consistent with the findings of Braathen (1987). The curve denoted “Differentiated
velocity” is the time derivative of the velocities as written to file after each main time-step
during the simulation and multiplied by the body mass. The other curve represents the
force or moment as written to file. There is a small discrepancy between the reconstructed
force and that written to file. This is a consequence of the difficulties associated with
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the DAE discussed earlier. The discrepancies are so small that they have no practical
relevance.

At first sight the force peaks may look devastating. However, the influence on the
resulting velocities is small as illustrated in Figure 8.4. The shock are smoothed out. The
shocks are further smoothed out when integrating to position. Physically we may say that
the large peak in the force occurs over such a small interval of time that any momentum
of significance is not transferred to the body.

8.3 Solving the equations of motion - Verification tests

In this section we seek to verify the alternative force and moment expressions (8.9) and
(8.10), and their implementation into the nonlinear numerical wavetank. We may not
verify all aspects regarding this problem due to lack of theoretical results of the fully
nonlinear problem. Only “linear” motion and “second order” drift forces are verified. No
verification associated with flow separation is done. The method is, however, validated
through the study on a moored ship section by a terminal presented in Section 10.3.

We have chosen to investigate three cases. First, free heave and roll under wave
excitation. Second, heave decay of an initially displaced ship section in still water. Third,
horizontal mean drift force on fixed ship sections. In all the cases we investigate surface
piercing, rectangular ship sections of beam to draft ratios B/D = 2 or 4. An important
feature in the present work is a correct reproduction of heave damping, crucial to the level
of response around ship motion resonance. This is verified by the first two cases. Another
feature is the mean drift away from the terminal in resonant condition. The third case
serves qualitatively as a verification in that respect.

Since we have adopted a time-domain approach, the simulations are run until steady-
state. Here, as well as later on the applications to ship by terminal, we have based
our chosen time-windows on the group velocity C, as well as visual inspection. In the
verification cases presented in the following, we have deep water conditions with h = 2.

8.3.1 Free heave and roll

Assuming linear theory, the ship section behaviour in a free, single degree of freedom
motion is described as a damped harmonic oscillator. The nonlinear numerical wavetank
should be able to reproduce this behaviour in case of a body in heave or roll in vanishingly
small amplitude waves. Given an incoming wave of prescribed steepness we compare
the computed ship section response to the theoretical. For the theoretical solution we
need the added mass and damping coefficients. These are provided by Skejic (2008)
using a frequency domain boundary element code for infinite water depth. The provided
coefficients are assumed to be of high accuracy, and hence regarded as benchmark results
for our purpose.

We follow the standard six degree of freedom convention of sway being direction 2,
heave 3 and roll 4. The vertical coordinate is y as shown in the lower right part of Figure
8.5. The linearized equations of motion are in heave and roll given as

(m + As3) i + Bas e + Cs3 ye = Fi,

g . (8.16)
(Lya + Agy + 2ycAsgs + yéAn) 0 + (Bys + 2yc B + yéBm) 04 Cyy 0 = Fy,
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where I44 is the moment of inertia calculated around the center of gravity x¢ = (zg, yg),
that is, around the origin of the coordinate system 0Zy indicated in the lower right of
Figure 8.5. A;; and B;; are the added mass and damping coefficients in the i'th degree
of freedom due to motion in the j'th degree of freedom. C); is the stiffness in the i’th
degree of freedom. The coupling terms between sway and roll, being the third, fourth,
sixth and seventh terms in the second equation of (8.16) appear since the hydrodynamic
coefficients A;; and B;; are calculated with respect to the Oxy coordinate system, and not
with respect to 0zy.

In steady-state, the ratio between the amplitude of the motion x, to the amplitude
fa of the excitation force is for a linear damped mass-spring system given by the transfer
function

Ty 1
fuJc 1 —w2ajc+iwb/c’

(8.17)

If we relate the equations of motion (8.16) to (8.17), the parameters a, b and ¢ are given by
the added mass, damping and restoring coefficients. For heave, a = m + A3z, b = B33 and
¢ = Cs3. Forroll a = Iy + Ay + 2y Aas + Y2 Aso, b = Buy + 2ycBas + Y2 Bas and ¢ = Cyy.
The roll moment of inertia is taken as Iy /(mB?) = 1/6. The restoring coefficients are
Cs3 = pgB and Cyy = pB?/12 + pg(ys — ya), where 3, is the center of buoyancy. In the
present case yg = Yp.

We investigate free heave for two ship sections of B/D = 2 and 4, and free roll for
a ship section of B/D = 2. We mention that we also attempted to investigate free roll
for a ship section of B/D = 4, but due to the very small potential damping for this
B/ D ratio (see Figure 3.17 in Faltinsen (1990)), we were not able to reach anywhere near
steady-state around resonance within acceptable CPU times.

The steepness of the incoming waves was small, with H/\ = 10~%. We emphasize that
it is the nonlinear wavetank we are verifying. With the small wave steepness used, we
adopt the strategy of linear theory where we solve several sub-problems. First, the ship is
restrained to oscillate and subject to incoming waves. This provides the amplitude of the
excitation forces or moments F,,. Next, the ship is subjected to the same waves while free
to oscillate in the chosen degree of freedom, providing the amplitude of the motion. This
is performed for a range of wave frequencies from the small frequency, stiffness dominated
regime through the resonance and to the high frequency, mass dominated regime.

The dimensions of the nonlinear wavetank are shown schematically in the upper part
of Figure 8.5. The still water depth was h = 2\, providing deep water conditions. Ten
wavelengths in front of the ship section provided a sufficient amount of wave periods so
that steady-state could be achieved before re-reflections from the wavemaker reached the
ship section. The damping zone started two wavelengths downstream of the ship section
and extended four wavelengths. This was through testing found to sufficiently damp out
the transmitted waves. The spatial resolution was in all cases the same. Np = 300, with
200 elements on the free surface upstream of the ship section and 100 downstream with
increasing element length along the tank. Np = 60 on the ship.

The results are presented in three of the sub-plots of Figure 8.5. Convergence with re-
spect to temporal resolution was performed, with N, = 40, 80, 120 and 160 time-steps per
period. The results from the simulations are presented by markers, while the results from
using (8.17) with the coefficients obtained by the frequency domain code is represented
by the solid curve. For five selected frequencies the values of the transfer function from
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Figure 8.5: Transfer function between response and forcing for a square ship section.
Upper: Schematics of numerical wavetank. Middle left: Heave (B/D = 2). Middle
right: Heave (B/D = 4). Lower left: Roll (B/D = 2). Lower right: Coordinate
systems. Nonlinear numerical simulations with H/\A = 1074 and h = 2.

the present simulations are presented as function of temporal resolution 1/N,,, nondimen-
sionalised by those acquired from the frequency domain code, are presented in Figures
8.6 and 8.7. The selected frequencies are indicated in the figure. The results indicate a
convergence rate approximately first order in time, as argued earlier in the chapter. Con-
sidering that the spatial resolution is fixed, the results converge rather nicely for heave.
For roll, it is clear that a sufficient number of time-steps per period is necessary around
resonance in order to reach an acceptable level of error. We tried running these simulation
both with only K; and K, as well as with all K;-terms included, with no difference. The
reason is the very small amplitude waves. The remaining terms introduce inaccuracies
and instabilities only when the steepness becomes appreciable.
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Figure 8.6: Convergence results for heave transfer functions 7s,/(Fsq/c33) at five se-
lected frequencies. B/D = 2.
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Figure 8.7: Convergence results for roll transfer functions 744 /(Fyq/caa) at five selected
frequencies. B/D = 2.

8.3.2 Heave decay

We next study heave decay of a square section with B/D = 4 with initial displacement
Ayg/D = 1072 and zero initial velocity. In this study we use both the linear wavetank
as well as the nonlinear wavetank. The results are compared with digitized data from
theoretical results on free decay presented by Yeung (1982).

The parameters used in the present numerical simulations were identical for the linear
and nonlinear wavetanks. The ship section was located in the middle position of the
wavetank which had length L/B = 50. The still water depth was h/B = 7.5. The
number of elements on the free surface was N F_240 with half on each side and a cosine
spaced variation with 5 = 0.5 (cf. Equation (A.8)) and increasing element size away
from the body. On the body the number of elements were Np = 120, with refinement
towards the intersection points, using also here g = 0.5. Two damping zones extending
from 10B away from the ship section and to both tank ends were used. Several different
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Figure 8.8: Heave decay of a rectangular body with B/D = 4 using the present linear
and nonlinear numerical wavetanks, and comparing with the theory of Yeung (1982).
Initial displacement Ayg/D = 1072 and zero initial velocity.

time-steps were used, ranging approximately from NV, = 60 to 600 per “period”, with the
“period” taken in the case of this transient behaviour, as the time from the first to the
second positive peaks in the time-series of the vertical displacement. For values higher
than about 120, there was no visible change in the behaviour. We also tried varying the
artificial added mass term A,, described earlier, and the behaviour proved insensitive to
the actual value, except when exceeding about 20 times the body mass m. For A,, =0,
the simulations broke down after five-six time-steps.

The time-series of the vertical displacement of the rectangular section obtained by the
linear wavetank, nonlinear wavetank and from Yeung’s theory are presented in Figure
8.8. The comparisons are in general good. There are no nonlinearities predicted by the
nonlinear simulations on the chosen scale of the figure. This is as expected. There are,
however, some discrepancies between Yeung’s theory and our simulations, in particular
around the two first negative peaks. We attempted to run simulations with several larger
water depths h as we suspected that perhaps the initial wave front which is induced at the
time of release, experiencing finite water depth in any finite depth condition, in some way
could cause the discrepancies, but the results seemed absolutely insensitive to variation
in h beyond that used here. The discrepancies are, however, very similar to those noted
by Yeung (1982) between the theory and model tests reported therein, in that case for a
circular cylinder.

With the good comparison to Yeung’s theory and the numerical method proving in-
sensitive to the choice of A,,, we feel quite confident that the heave damping properties
are well described in the present numerical work.
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8.3.3 Mean drift force

In the last case of the verification process, we investigate the mean horizontal drift forces
due to incoming waves on fixed rectangular ship sections of beam to draft ratios B/D = 2
and B/D = 4. Knowing the incoming wave amplitude A as well as transmitted wave
amplitude A7 we may compare with the analytical expression known as Maruo’s formula,
which is correct to second order in deep water,

]
F,= Zpg(A2 + A} — A})
(8.18)

1

where Ap is the amplitude of the reflected wave and the overbar indicates mean value.
We mention that in the case of finite water depth, a formula due to Longuet-Higgins is

1 2
Fy = 2pg (A% + A7, — A7) (1 + %) , (8.19)
where k is as usual the wave number given by the linear dispersion relation (3.1).

The wave steepness was in our numerical tests taken to be H/A = 1/100. The wavetank
arrangement in the numerical simulations is presented in the upper part of Figure 8.9, and
the specifications are as follows. The still water depth h = 2], i.e. deep water conditions.
The total length is L = 38\ + B with the ship section front 16\ from the wavemaker,
and a downstream tank length of 22\. The numerical beach starts at z;, = 22\ giving a
relatively long beach of length 16\ in an attempt to avoid reflections from the transient
wave front. The spatial resolution was taken quite high, with Nr = 600 elements on the
free surface, 400 upstream and 200 downstream of the ship section. In the downstream
part the element size increased along the tank according to § = 0.6. The number of
elements on the ship section was Ng = 120, with a variation according to § = 0.6 along
each of the sides. 100 elements were used on the tank bottom. The number of time-steps
per period was N, = 120. We did not perform a systematic convergence test, but found
that the resolution needed in order to approach good solutions was higher than in the two
previous cases validating linear quantities. This is perhaps not a surprise.

Results from the simulations with the nonlinear wavetank by means of the normalized
mean force are presented as a function of the scattering parameter £B in Figure 8.9. The
markers represent the mean forces taken from a part of the force time-series that seemed
stationary. The values for A and Ar was taken as steady-state values from the same part
of the time-series and used in (8.18). These values are represented by the solid curves and
indicated as “Maruo” in the figure. Although the comparison is qualitatively quite good,
there are noticeable discrepancies. The discrepancies are small for small wavelengths, say
less than 2 - 3% for kB > 4. For 1 < kB < 4 the discrepancies are within 10%. For the
smallest scattering parameters, the relative error is large. However, the values are very
small since nearly all the wave energy is transmitted, as the long waves do not feel the
presence of the body. The discrepancies may be due to numerical errors in the estimated
amplitudes. Since A7 — A as kB tends to zero, only small errors in the wave amplitudes
will cause significant relative errors in the mean force as seen from (8.18).

Reaching steady-state of the mean force. Some effort was made to understand
the discrepancies more in-depth. Using the same arguments based on group velocity as
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Figure 8.9: Upper: Schematic overview of the nonlinear numerical wavetank in Maruo
tests. Total tank length is L = 38\ + B, length from wavemaker to ship front is 16,
while the damping zone extends from 6\ downstream the ship until the far tank end.
Deep water conditions (h = 2)). Flap type wavemaker hinged at y = —\/2. Bottom:
Results from simulations with the present nonlinear numerical wavetank. (o): F, taken
directly from the force time-series. (-): F}, taken from Maruo’s formula (8.18) with the
amplitudes A and Ap from the simulations using the nonlinear numerical wavetank.

above, the wave elevation time-series from visual inspections seemingly reached steady-
state. However, the second order quantities perhaps did not really reach a proper steady-
state. We base our speculation on the following. Consider two wave-trains propagating
in opposite directions in a domain extending to infinity in the horizontal direction. This
may for example be the incoming wave-train and that reflected from the ship section.
Then, a spatially uniform and oscillatory second order disturbance is created below these
wave fields, with the solution of this second order potential given in Faltinsen (1990) (see
p. 168). In the present nomenclature the solution is ¢y = 0.5AAg wsin(2wt 4+ §). The
solution oscillates with the sum-frequency 2w, and has an amplitude of 0.5AAzw. Upon
visual investigation of the potential at the mid position between the wavemaker and the
ship section at y = —h, we found this to seemingly approach the value 0.5AAgw, but
approaching in a manner much slower than what we have observed the linear quantities
to do. The linear quantities such as A and Ap typically reach steady-state condition
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about 10 - 15 periods after the wave-train has reached the position of measurement. The
amplitude of the second order 2w oscillation was still increasing about 40 wave periods
after the wave-train had reached the ship section, and was at the end-time about 10% off
the theoretical value. Since mean values may not undergo visual inspection in the same
manner, we do not know whether this quantity also experience a similar slow convergence
to steady-state, but it is possible.

The above discussion indicates that a time-domain fully nonlinear numerical wave-
tank does experience challenges regarding nonlinear effects despite the seemingly straight-
forward handling of these. However, in the application of the nonlinear numerical wave-
tank used in the main part of the work related to a moored ship by a terminal as pre-
sented in the next chapter, the scattering parameter is kB > 2, a regime where the error
is thought to be acceptably low for our purposes.



Chapter 9

Model tests

Altogether four sets of model tests were performed during the present work. Two related
sets were performed in September and November 2006, and another two related sets in
April and June 2008. In all four sets a two-dimensional rectangular shaped ship section
by a bottom mounted terminal subjected to waves was considered. In the 2006 tests a
fixed ship section with rounded bilges was used, while in the 2008 tests we considered a
moored ship section with sharp bilges. For convenience we shall henceforth refer to these
as the September and November 2006 tests and April and June 2008 tests.

In the September 2006 tests the aim was to investigate shallow water effects on the
forces as well as the kinematics considering waves of full scale periods 6s - 15s. The
resulting forces and free-surface kinematics contained considerable nonlinearities associ-
ated with the shallow water. However, more interestingly the results suggested we were
approaching a resonant behaviour of the fluid column in the terminal gap at the highest
wave periods, and we decided to perform another set of tests around the natural periods
which resulted in the November 2006 tests. Only the results from the November tests
have thus far been published, see Kristiansen and Faltinsen (2009a).

In the 2008 tests the ship section was moored by horizontal, linear springs and thereby
free to move in three degrees of freedom, this time essentially in deep water. The purpose
was two-fold, first to validate the numerical work involving solving the equations of motion
in the nonlinear numerical wavetank, and second to investigate resonant behaviour also
in the more realistic case of a moored ship as opposed to the fixed ship in the previous
model tests. It turned out, however, that during the April 2008 tests the terminal, being
only an unstiffened and hardly horizontally supported 3mm aluminum plate had slightly
flexed due to the hydrodynamic pressure. This caused additional damping, and the model
tests had to be repeated. This resulted in the June 2008 tests. Results from the June
tests have been published in Kristiansen and Faltinsen (2009b).

In addition, model test results from moonpool experiments performed in 2005 and
reported in (Faltinsen, Rognebakke, and Timokha (2007)) were re-analyzed for further
investigation of some rather surprising results reported therein. The model tests involved
forced heave of two surface piercing rectangular sections in a wave flume resembling the
present problem of a ship by a terminal under the assumption of symmetry around the
mid-line of the moonpool. The re-analysis showed that the somewhat surprising results
were caused by wave reflections. The re-analyzed data have been published in Kristiansen
and Faltinsen (2008).

In the first three sections of the present chapter, we describe the test set-up, test
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Table 9.1: Key parameters in the September 2006 model tests. Full scale and 1:70
model scale. Full scale dimensions are based on a typical mid-ship section of an LNG

carrier.
| Quantity | Term | Full scale | Model scale 1:70
Beam [m] B 45.0 0.64
Draft [m] D 12.0 0.17
Bilge radius [m] r 4.2 0.06
Water depth [m] h 16.0 - 20.0 0.23 - 0.29
Bottom clearance [m] d 4.0 - 8.0 0.06 - 0.12
Terminal gap [m] b 15.0 - 22.0 0.22 - 0.32
Periods [s] T 6-15 0.72 - 1.79
Wave steepness H/X | 1/60 - 1/40 1/60 - 1/40

conditions, some results and a discussion around sources of model test errors and its
possible influence on the results from the 2006 and 2008 tests. In the last section we
present, the re-analysis of the moonpool tests.

9.1 Fixed ship section in shallow water - Sept 2006

The nearly two-dimensional model tests of a fixed ship section by a bottom mounted
terminal subject to incoming medium deep to shallow water waves were conducted in a
26.5m long and 0.595m wide wave flume at the Division of Marine Civil Engineering at
NTNU. The flume had plexiglas walls, and was equipped with a piston-type wavemaker
from DHI with a paddle extending from the bottom. The wave paddle controller included
an active wave absorption system (AWACS). The system proved to effectively damp out
reflections during the tests, and was useful also for damping out the waves in between
runs. A parabolic beach was used at the far end as wave absorber during wave calibration.

In this section we first present the choice of parameters in these model tests, next
describe the models, rigging and instrumentation, and last discuss sources of error and a
brief look at some results. Results from the present model tests have not been published
earlier.

9.1.1 Model test overview - choice of parameters and test condi-
tions

The dimensions and environmental conditions used for the model tests were chosen based
on a mid-ship section of a typical LNG carrier subject to near regular waves of periods
corresponding to typical deep water wave spectra at sea. The full scale wave period range
was T = 6s - 15s. LNG carriers typically have beam of B ~ 45m, a beam to draft ratio
as large as B/D ~ 4, and a bilge radius of » ~ 4m. In reality, bilge keels extend about
half the length of the ship, but these were not modelled. The bilges were rounded such
as to avoid flow separation as far as possible, with the K C-number bringing relevance
to the problem. The water depths were chosen according to typical water depths were
Gravity Based Structure (GBS) type of offshore terminals are to be installed, which are
h ~ 15 — 30m. The carrier is typically fendered out from the terminal with relatively
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Figure 9.1: Schematics of the ship section and terminal wall used in the fixed ship
section tests of September and November 2006.

large terminal gap widths of typically b/B ~ 0.2 — 0.35.

The model scale was chosen to be 1:70. The main parameters and environmental
conditions are listed both in full scale and model scale in Table 9.1. The still water depth
h and implicitly the bottom clearance d, the terminal gap width b as well as the incoming
wave period and steepness were varied. The draft D was not changed during the tests.
The ship section dimensions in model scale are presented in detail in Figure 9.1. The ship
section height of 0.6m was chosen to ensure no fluid overturning the model. The terminal
was modelled as a straight wall extending from the sea floor.

The test matrix is presented in Table E.2 and additional information about the waves
such as group velocity and finite water depth steepness is presented in Table E.5. The true
shallow water conditions according to the usual definition of Ag/h > 10 are indicated by
light grey background in the tables. The test numbering convention was as the following.
Each run was named by a four digit number where the first number corresponds to b, the
second number to h, the third to 7" and the last is reserved for either repetition or re-
running. Each of the eight test conditions indicated in the test matrix by two test numbers
connected by a hyphen were run in total five times for repeatability check. Except for
these, all other tests with other than zero last digit is a re-run. In particular, the 8000-
series was originally run as Hy/\y=1/30 steepness, but this was found too steep for our
purpose as breaking occured for the two longest waves on water depth of A = 0.29m, so
the 8000-series and 8100-series were re-run with the indicated Hy/A\o=1/40 steepness and
named 8005 - 8095 and 8105 - 8185.

Among the parameters subject to variation as mentioned above was the wave steepness
Hy /Ao where subscript 0 means deep water limit. The finite depth waveheights H were
chosen based on the following philosophy. When a deep water wave with steepness Hy/\g
propagates up a very gentle slope it will become shorter and also loose some height. The
(linear) wavelength at finite water depth X is then calculated using the linear dispersion
relation (3.1), whereas the (linear) waveheight H is given by the steady wave action
equation (3.3). Since in the model tests, the wave flume was such that only the finite
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Figure 9.2: Two snapshot from the September 2006 tests. The ship section is fixed and
subject to waves entering from the right. The water depth is A = 0.23m.

depth part was modelled, the finite water depth waveheight H was that input to the
wavemaker. The stroke of the paddle was then automatically found through the transfer
function (3.4).

9.1.2 The models, rigging and instrumentation

The ship section was constructed by steel plates of 1.5mm thickness. The section was
connected to a vertically adjustable steel rig through a six degree of freedom (dof) force
transducer. The force transducer was constructed by two horizontal 0.45m x 0.45m and
1.5cm thick aluminum plates connected to each other at six positions. The model and the
rig are shown Figure 9.2 and also in the lower part of Figure 9.3. The force transducer
is shown in the upper left part of the upper photo of Figure 9.3. The force transducer
produced at MARINTEK was of high quality, but not very robust. Stiffeners were there-
fore placed in between the top and bottom plates when being moved during rigging and
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Figure 9.3: Upper: Force transducer (top left corner), filter box (lower left corner),
wave gauge amplifier (middle) and force amplifier of type Hottinger MGCplus (right).
Lower: Reinforcement of the rig by two steel bars.

transportation. Further, the model was loaded with weights in order to balance the buoy-
ancy force, such that the force transducer experienced a minimum of pretension. The
transducer was mounted with its midline in the still water line, that is, 0.17m above the
bottom of the model in order to minimize moments. Each of the six connection points
between the two plates were associated with a force measuring unit, one in the transverse
direction, two in the z-direction and three in the (vertical) y-direction, giving a total need
of six channels for logging. Total forces and moments were obtained by summation.

Using a six dof force transducer when a three dof is ideally enough for two-dimensional
model tests was a matter of availability. It proved, however, useful to measure transverse
forces due to some transverse sloshing in the wave flume during the model testing.

The terminal was fastened to the wave flume frame by clamps, and loaded with about
30kg of weights, as illustrated in Figure 9.1.

A total of twelve wave gauges denoted by wl - w12 were mounted for measurement



106 Model tests

Side view: = 18.30m Y
»n < | |
A ~ " 1:30 slope! | I
Bird view: 19 w1l w9 w6§ Piston wavemaker
; :x\{x W5 | - w4 w3ew2-wl o <
wl0 w8 w7 |
7.95m 10.10m 6.60m 1.85m

Figure 9.4: Schematics of the wave flume in the September 2006 tests including the
1:30 sloping bottom. See Table E.1 for positions of the wave gauges wl - w12. Mid-ship
position is x = 18.30m as indicated. The terminal gap width b was varied by changing
the position of the terminal.

of free-surface elevation. The location of these are shown schematically in Figure 9.4 and
listed in Table E.1. The wave gauges were of standard capacitance type with two metal
bars lcm apart, each with diameter of approximately Imm. The length of these ranged
from about 35cm to 46cm. Manual calibration was done at least once per day, and except
for two of the wave gauges only very small drift was observed. The zero level and gain
was sensitive to temperature changes, that is, when adding water or changing the water,
the drift was large until room temperature had been reached. After completely refilling
the tank, it typically took one day and night to reach a steady temperature, while the
actual process of filling in itself only took about one minute. For wave calibration runs,
all twelve wave gauges were used, whereas in the tests with ship section only ten were
used in order to fit six force channels in the sixteen channel filtering box which is shown
in the lower left corner of the upper photo in Figure 9.2. The amplifier receiving the wave
gauge signals is shown in the middle part of the same photo.

The amplifier of type Hottinger MGCplus receiving the force signals is shown in the
lower right corner of the upper photo in Figure 9.2. The force and wave elevation signals
were acquired at a sampling frequency of F,—200Hz, while the wavemaker signals were
by default acquired at 40Hz.

9.1.3 Estimation of measurement error and observed artefacts

Although we believe that the model test results in general were of fairly high quality, in
our opinion, a careful identification of possible sources to error with attempts to provide
estimates of these is crucial. There are two kinds of error; random error and bias error.
The random errors may be quantified by repetition tests. Other means of investigations
are needed in order to identify possible bias errors. The process of identifying possi-
ble sources of bias error includes actions such as quantifying known limitations of the
equipment, utilizing your own and others’ experience, “brain storming” as well as care-
ful observation during the model testing. During the model testing, continuous efforts
were hence made to observe and identify artefacts of possible significance to the results.
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A summary of the possible sources of error and observed artefacts with their assumed
significance, quantitative or qualitative, is given in Table 9.2, and each discussed in the
following.

A parabolic beach, or any shaped beach, will not in general be a perfect wave
absorber. The strategy of such a beach is inducing wave breaking. This will never
remove all the energy in a wave. This is true in particular for shallow water waves.
In fact, a parabolic beach is basically a low-pass filter. Therefore, some reflection was
inevitable in the present tests. No quantitative analysis of the reflection intensity has
been performed, although the available data would allow such an analysis, but some non-
negligible reflection is expected for the longest waves, say for T" > 1.5s. Wave reflections
are typical examples of bias errors in model tests.

Capacitance type wave gauges consist of two parallel steel wires penetrating the
free surface. Bias error is introduced through nonlinearity in the voltage created, the sur-
face tension causing the water to “climb” on the steel wires, also known as the meniscus
effect, as well as drifting over time. A semi-quantitative estimate of that introduced by
nonlinearity based on our experience from daily calibration is in the present < 0.5mm.
Drifting was kept under control by daily recalibration, and no significant drift was ob-
served. The meniscus effect is said to introduce an error in the order of the diameter of
the steel wires. In our case this would mean 1mm. However, based on our experience it
is much less than that, perhaps an order of magnitude lower. This is shortly discussed
later in connection with the June 2008 tests. There, we did a short investigation using
wave gauges of different diameters. Based on this we would say that the error introduced
by the meniscus effect is negligible in the present context.

A slight motion of the ship in the order of 1 - 2mm was observed during the
tests with the longest waves. The motion was caused by that the rig was originally
not constructed adequately stiff with respect to forces in the z-direction. The mounting
brackets were placed near the top of the rig implicitly indicating large moments. This
was mended by mounting additional steel bars to the rig at a lowest possible position as
shown in the lower left picture in Figure 9.2. About half of the runs were made prior to
this remedy, but were not re-run. Another related effect was an observed indentation of
the ship side due to the hydrodynamic forces exerted on the unstiffened 1.5mm steel plate
constituting the ship section. The indentation might have been in the order of 1 - 2mm
as well. Whereas the motion of the whole model was of a rigid body character, the latter
effect was a hydroelastic effect. Assuming the ship motion was repeatable, this introduced
a bias error. The measured forces may have been somewhat affected by the motion as well
as the indentation, but we have not investigated quantitatively the significance. We also
mention that during a few tests the screws connecting the force transducer (and hence
the model), to the rig were loose, and a clear 6Hz disturbance was introduced in the force
measurements due to the sudden jerky movements of the ship. These tests were re-run,
however.

Seiching is a low-frequency oscillation of the fluid corresponding to the first longitu-
dinal eigenperiod of the basin, that is, a standing shallow water wave. This is in theory
always triggered in any flume or basin. Typically the standing wave has a very low ampli-
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Table 9.2: Summary of possible error sources and their estimated or assumed signifi-
cance in the September 2006 tests.

Artefacts Significance

Beach reflections Non-negligible for longest waves
Wave gauge random error < 0.5mm

Ship moved slightly (rig stiffness) Little

Indentation of the ship side Some

Seiching Negligible

Transverse sloshing and glass wall gap Little (except when T = 0.96s)
Three dimensional effects near model ~ Unknown

tude, but results in fluid motion of possibly appreciable horizontal extent, i.e. it basically
acts as an oscillating current. As the AWACS is based on wave elevation, the seiching was
not effectively damped out. It typically took 3 - 5min and sometimes closer to 10min to
adequately damp out seiching following the tests with the longest waves. Oscillating shear
type currents, both in the vertical plane as well as in horizontal plane, were also observed
to some extent, although of significantly smaller amplitude than that of the seiching. The
seiching and shear currents were observed until almost vanished before starting a new
run, and any effect therefore considered negligible.

Transverse sloshing is the corresponding transverse standing wave of the first eigen-
period in the transverse direction of the flume. With a breadth of 0.595m, the resonant
period using the deep water limit of the dispersion relation is 0.87s. Transverse sloshing
was observed in particular during the tests with wave periods 7" = 0.84s, 0.96s and 1.79s.
For the latter wave period, the second harmonic triggered the transverse instability. The
onset of transverse sloshing is a consequence of the three dimensional instability inher-
ent in wave trains as investigated theoretically in e.g. McLean et al. (1981). In our
case, the slightly three-dimensional flow introduced e.g. by the gaps formed between the
wave paddle and the glass walls would provide the necessary perturbation from pure two-
dimensional flow. In the measurements the transverse sloshing is manifested as a slight
phase difference between the side-by-side mounted wave gauges, that is, between w8 and
w9 as well as between w10 and w12, accompanied by a transverse force of appreciable
magnitude for these periods on the model as seen in Figure E.1.

Glass wall gap. The transverse force must be seen in context with the 3 - 4mm wide
water column in the gap between the model and the glass wall, hereby denoted by the glass
wall gap. The gap was a matter of necessity in connection with force measurements. The
ship section had to be denied any mechanical contact except through the force transducer.
Using a quasi-static approach, the amplitude of the transverse force due to the water
columns in the glass wall gaps on each side is F, = 0.5pgB ((D + A7)* — (D — Ar)?)
where B = 0.64m is the beam, D = 0.17m the draft and Ay the amplitude of the standing
wave. As two examples, in tests 2120 (7' = 0.96s) and 2130 (7" = 1.08s), the amplitude of
the linear force was 4N and 13N, and this is achieved if A7 is 2mm and 6mm respectively.
From visual observations and qualitative inspection of wave elevation time series from
w8 and w9 in front of the ship these predicted values of Ap are probable. Although of
appreciable amplitude for some wave periods, the transverse sloshing is considered not to
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have influenced the other results significantly. For example, no transverse motion of the
ship section leading to mechanical contact with the glass walls occured.

Slight tilt. Another three-dimensional effect of unknown significance was a slight
transverse variation of the distance b between the terminal and the ship of about 0.5cm,
due to a small mounting angle of the ship as seen from above. From video recordings we
observed slightly three dimensional kinematics in terms of higher modes in the terminal
gap during the tests with the longest and steepest waves.

9.1.4 Short discussion of the results

The results of the September model tests were not used further throughout the present
work as our focus turned to resonant behaviour in general water depth rather than shallow
water effects, and an extensive analysis has therefore not been performed. However,
following the testing condensed results as well as all time series were included in a model
test report. The condensed results included steady-state values taken from steady time
windows of the time series of the first three harmonics, mean value as well as peak to
peak values of the forces and the wave kinematics. A selection of results are presented in
Figure E.1.

The repeatability proved to be good, even in some rather extreme test cases with
transverse sloshing induced. A selection of results from the random error analysis of the
repetition tests is shown in Figure E.2 where bars represent mean values from the five
tests in each of the eight test groups as indicated in the test matrix, and diamonds and
numbers the corresponding standard deviation relative to the mean value in percentage.
In general for all cases and all channels, the standard deviation is less than 0.5% for the
first harmonic, and for the second and third harmonics in the cases with an appreciable
mean value, below 3% and 10% respectively.

9.2 Fixed ship section with piston-mode resonance -
Nov 2006

The November 2006 tests were performed in order to investigate the resonant piston-mode
motion in the terminal gap. The model test set-up was very similar to the September
tests; the same facility, ship section and terminal as well as equipment was used, except
the 1:30 sloping bottom had been removed and force measurements were not made.

9.2.1 Model test set-up and test conditions

A schematic overview of the set-up is presented in Figure 9.5 and pictures are shown in
Figure 9.6. Expecting large fluid motions in the terminal gap in resonant condition, the
glass wall gap was attempted sealed with rubber bands at the expense of loosing force
measurements. Wave elevation was measured at twelve locations, denoted by w1l - w12
as before, but at slightly different locations due to re-rigging. See Table E.1. New to
the November tests was video recordings by a high-speed camera acquiring images with
resolution 1280x1024 at 200Hz, as well as video by an ordinary digital camera.
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Figure 9.5: Schematics of wave flume in the November 2006 tests, same as that used
in the September 2006 tests (see Figure 9.4). See Table E.1 for positions of the wave
gauges wl - wl2. Mid-ship position is x = 18.50m as indicated. The terminal gap
width b was varied by changing the position of the terminal.

As in the September tests, the water depth h, the terminal gap width b, the wave
period T and the wave steepness ¢ = Hy/)\y were varied in a systematic manner and
wave calibration tests without the model were performed for all waves used. The wave
steepness was lower in the present model tests due to expected large resonant motion as
well as higher wave periods. We group the tests into three cases denoted by Case 1 -
3 with the specifics given in Table 9.3. More details are provided in the test matrix as
given in Table E.3. There, the theoretical resonance periods calculated from the theory
by Faltinsen et al. (2007) are indicated by a dark grey background. The resonance period
in general increases with decreasing depth h and increasing terminal gap width b. Those
tests with shaded numbers were not successfully run simply due to a limitation of the
maximum possible stroke length of the paddle which was S = 0.3m.

Table 9.3: Specifics of the three cases denoted Case 1 - 3 in the November 2006 model
tests. In the case denoted (x) the free surface in the terminal gap reached below the
ship section bilge, introducing violent sloshing in the gap.

Case 1 0.625 0.34 X X (x)
Case 2 045 0.34 X X -
Case 3 045 0.17 X x -

Repetition tests were not performed in the November 2006 tests, as good repeatability
was found from the September 2006 tests.

9.2.2 Wayve generation capability

Analysis of the results from the wave calibration tests after performing the model tests,
showed a discrepancy between the theoretical and achieved waveheight given by the wave-
maker stroke an the Biésel transfer functions (3.4). Although (3.4) is based on linear
theory it should adequately describe the situation at least in the majority of our regime
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Figure 9.6: November 2006 model tests. Left: Model test set-up. Terminal seen to the
far left. Clay and rubber bands were used to seal gap between glass wall and models.
The black cloths reduced reflections when acquiring high-speed photos. Right: Sample
of high speed camera.

of periods and steepness. This introduced a practical problem when attempting to repro-
duce the model test results using the recorded wavemaker signal as input to the numerical
wavetank. Some effort was made in order to understand the discrepancy, including re-
visiting the laboratory, checking wave gauge calibrations and manually measuring the
paddle stroke in order to check the recorded wavemaker signal. No negative observations
were made in this respect. One question was why the DHI software came with an op-
tion “amplification factor” controlled entirely by the user. In the current model tests, the
wavemaker signal was multiplied by a factor of 1.28 in all tests, with its choice based on
one single wave calibration test from the beginning of the model tests without further
thoughts on the matter. Our post-processing analysis showed, however, a significant vari-
ation between the tests, with an ideal value for the amplification factor being between
about 1.05 to 1.35, depending on all parameters h, H and T'. A phone call to DHI revealed
that in general, and in particular for shallow water wave flumes, the desired waveheight is
not achieved using (3.4) only, thereby for practical purposes allowing for a user specified
amplification factor (or calibration factor) depending on the actual test condition. The
phone call was followed by a literature search, and a discussion of the wave generation
capability of a paddle wavemaker was found in Madsen (1970). They analysed the flow
due to leakage around the sides and bottom of the paddle and found this to explain most
of the observed discrepancies between wavemaker theory and their model tests. The wave
flume was in those model tests similar to that used in the present model tests, and with
similar gap width of about 0.5cm between the paddle and the walls and bottom of the
tank. A more general discussion of the problem is given in Hughes (1993) with the con-
clusion that the wave generation capability of the wavemaker is in general less than that
predicted by two-dimensional potential theory, and decreases in practice with decreasing
water depth. The discrepancy is, however, significantly reduced when sealing the gaps
between the paddle and the walls and the floor. Intuitively, letting w — 0, effectively al-
lowing the free surface to act as a rigid lid, the fluid will prefer flowing through the gaps.
A practical implication is that when reproducing the wave in a two-dimensional numerical
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wavetank, the wavemaker signal must be adjusted according to this amplification factor.

This discussion also in principal applies to the September tests, but as these were not
equally in-depth analysed nor the results compared to numerical simulations, this was not
an issue.

Note that the purpose of the November model tests was to investigate the resonance
in the terminal gap, so the main focus was on the excitation period, and not on the exact
shape of the waves. When disregarding the AWACS, the paddle motion was harmonic,
so waves of permanent shape, or Cnoidal waves, were not generated. The waveheight
is therefore not uniquely defined as the wave may have typically two local minima per
period, basically due to free traveling second order waves, but it is hereby defined as the
vertical distance from the minimum to the maximum free-surface elevation during each
period.

9.2.3 Short discussion on error sources

The same discussion on sources of error and their estimated significance to the results
applies here as in the September tests. We do, however, make some further remarks on
the possible three dimensional leakage effects around the ship section in light of the above
discussion on reduced wave making capability. Also, we emphasize the possibly significant
influence from deflections of the side of the ship section on the piston-mode amplitude in
resonant conditions. The deflections occurred also in the November 2006 tests.

The gap between the glass wall and the ship section was sealed with rubber bands and
clay along the vertical sides of the ship section. The horizontal part was not. Leakage-like
behaviour thus occured along the horizontal part of the ship model, where the dynamic
fluid pressure in the area below the ship section created fluid motion in the glass wall gap.
Although the sealing of the vertical parts significantly reduced the flow in the glass wall
gap, leaving the horizontal part open only partly gave the desired sealing effect. Thinking
in terms of this being in reality a passive wavemaker by means of reflecting waves, the
same gap effects as those discussed with regard to the wave paddle may have been of
relevance.

We believe that a more important source of error was introduced by the ship side
deflections. This was most likely rather insignificant in the September tests as the con-
ditions were not resonant. However, in case of resonant piston-mode motion, this most
probably acted effectively as a damping. This matter is discussed in detail, and quan-
titative analysis performed, in connection with the model tests of a moored ship in the
next section. There, small deflections of the terminal was in fact the reason for re-running
those experiments. We have not made a quantitative analysis of the possible effects on the
results from the present model tests. But discrepancies with respect to linear and nonlin-
ear simulations of approximately 20 - 25% around resonance as presented in our studies
on resonant behaviour in Section 10.1 indicates a possible effect. The K C-numbers indi-
cate that flow separation may have occured to some extent around resonance, but then
an effect of wave steepness should have been more pronounced than that found. More
thorough discussion on this matter is presented there.
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Figure 9.7: Schematics of the April 2008 model test set-up which involved a moored
ship section by a terminal. The sketches are not to scale.

9.3 Moored ship section in resonant motion - April and
June 2008

Two sets of model tests considering a moored ship by a bottom mounted terminal subject
to incoming waves were performed in April and June 2008. The focus was the coupled
resonant ship section and piston-mode motion.

Basically, the June tests were re-runs of the April tests as the results of the latter were
contaminated by bias error due to a slight flexing of the terminal causing a large reduction
in the response of the system in resonant condition. In this section we report both sets
of model tests together. We point out main differences and associated improvements,
with the main improvement being a thorough stiffening and horizontal support of the
terminal as opposed to the unintentionally flexible terminal in the first tests. Although
the results from the first set of experiments were unusable, we still report the test set-
up along with some results. We justify this by arguing that negative results should in
principle be reported not only through the odd comment, but in a manner allowing the
reader to extract knowledge useful for his or her work, possibly avoiding making the same
mistakes.

We proceed by reporting the model test set-ups, instrumentation, test conditions and
a qualitative investigation of the effect of a flexing terminal.
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Figure 9.8: Schematics of the June 2008 model test set-up which involved a moored
ship section by a terminal. The sketches are not to scale.

9.3.1 Model test set-up and test conditions

Schematics of the test facility, test set-up and ship sections for the April tests are presented
in Figure 9.7, and those for the June tests in Figure 9.8. Main specifications for both sets
are given in Table 9.4. The tests were performed in a wave flume at MARINTEK with
glass walls and bottom, of total length 13.67m and breadth 0.60m, essentially in deep
water conditions with fixed water depth h = 0.88m, wave period range T" = 0.6s — 1.0s
and with fixed beam to draught ratio B/D = 4. The wavemaker was of hinged flap
type with dry backside, hinged 0.12m above the flat flume bottom, having a slight initial
forward tilt, and was controlled by a Rexroth system.

In up-right position we found the flap to be slightly skewed, producing transverse waves
of significance, particularly pronounced in some pre-tests with terminal and without ship
section. This resembles a “sloshing tank” which is vulnerable to any transverse excitation.
After some trial and error we found the transverse waves to be acceptably low using an
initial forward tilt of approximately 5 deg, as indicated in the figures, as the skewness of
the flap was there at a minimum. The small amplitude waves generated during the tests
required flap stroke of less than 1cm, and hence the transverse wave generation was kept
at a minimum, although not completely removed. The transverse fluid motion will be
discussed later in the section.

In the April tests, the input to the wave making system was merely an amplitude
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Table 9.4: Relevant measures of moored ship section model tests. The tank length L
is the distance from the flap top, i.e. the intersection between the wavemaker flap and
the free surface in still conditions, to the terminal. The water depth range indicate a
slight variation along the flume, assumed negligible for the present model tests.

April 2008 tests June 2008 tests

Tank length L (from flap top) 9.40m 9.515m
Tank width (transverse) 0.60m 0.60m
Water depth & 0.880m - 0.882m  0.880m - 0.882m

Initial forward tilt angle wm flap 4.3deg 5.5deg
Ship section breadth B 0.40m 0.4m

Ship section draft D 0.099m 0.10m

Ship section width [, 0.595m 0.590m

Ship COG yg (above still water line) 0.034m 0.025m

Ship roll moment of inertia I 0.21kgm 0.31kgm

Spring stiffness (4 springs) 21.95 - 22.30N/m  21.95 - 22.30N/m

in voltage along with desired wave frequency, and the flap motion had a sudden start-
up, i.e. no initial ramping period, and also a sudden stop taking the flap back to zero
position. Although parasitic disturbances were hence created, steady-state was in our
opinion adequately reached during all the tests within the range of periods tested. In
the June tests a signal in voltage was produced a priori, and we used a linearly varying
start-up during the first three seconds and a similar ramp down by the end of the signal.
The smooth ramp down helped avoiding rather large transients to be generated, practical
with respect to reduced waiting time in between tests. Unfortunately there was no active
wave absorption implemented on the wavemaker system, and slow dissipation of the fluid
disturbances in between runs was experienced as expected. A calm free surface was in
general reached after about 7 - 12 minutes, with the longest waiting time for the shortest
wave tests with the ship hardly moving, acting as a total reflecting wall, and shortest
around resonance where the ship motion caused damping.

For all tests, the recording time was one minute, with re-reflections from the wavemaker
reaching the ship section within that amount of time.

The test matrix for the June tests is presented in Table E.4, where hyphens indicate
repetition tests. The test program included two terminal gap widths of b = 0.08m and
b = 0.06m, 16 wave periods and two wave steepnesses ¢, = H/\ ~ 1/170 and e = H/\ ~
1/85. We group the tests into two cases denoted by Case A and B with the specifics given
in Table 9.5.

Table 9.5: Specifics of the two cases denoted Case A and Case B in the June 2008
model tests. Here, e = H/\. The water depth was h/B = 2.2.

b/B € ~1/170 € ~1/85
Case A 0.2 X X
Case B 0.15 X X

The same two terminal gaps and range of wave period and steepness were used in the
April tests. We do not report the exact test matrix here. The test conditions were then
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determined more or less ad-hoc during the testing, with the eigenperiods estimated from
free decay tests of the ship section in the initial phase of the testing since no simulations or
other estimates had been done prior to the testing for that particular geometry. We believe
a proper investigation of the system to be tested prior to model testing is important. The
ad-hoc procedure followed in the April tests are not, in general, recommended. It was,
however, a question of availability of the laboratory which was very limited in time and
somewhat earlier than originally planned.

Once the test set-up was completed, meaning the weights inside the model was prop-
erly positioned, the spring arrangement fine-tuned, wave gauges positioned and sensible
camera arrangements including adequate lighting found, the actual testing went quite
smooth. For the June tests we spent about one week for the set-up while three days
completing the test runs, including the repetition tests. In the cases of more than one
repetition, the repetition tests were run both just before and just after each of the four
test series, meaning the repetition tests were basically run over 4 - 5 hours, and should
therefore include any drift in the gain of the instrumentation. The drift was according to
this argumentation found to be small, and any observed variability of significance caused
by other factors.

9.3.2 Rigging and instrumentation

A description of the rigging of the ship section and terminal as well as instrumentation
now follows.

Ship section, moorings and terminal. The ship section used in the June tests
had only slightly different measures relative to that used in the April tests. The measures
are given in Table 9.4. They both consisted of painted blocks of divinicell (compressed
foam) that were hollowed out. A 4mm aluminum plate was used as lid for the ship section
model. Two photos of the ship section from the June tests are shown in the upper part of
Figure 9.9. Weights were positioned inside the ship section for correct draught, positioned
such as to give a somewhat realistic roll moment of inertia I44. The roll moment of inertia
as well as the center of gravity yo were, as is usual, calculated by summation of weights to
144 = 0.21kgm around COG, and ys = 0.034m above the still water line in the April tests,
whereas Iy = 0.34kgm around COG, and yg = 0.025m above the still water line in the
June tests. A certain level of pitch and yaw moment of inertia was found to be important
with respect to stability in those modes such as to avoid mechanical contact with the
glass walls due to transverse disturbances. In the preliminary stages of the testing this
was not considered. The weights were positioned near the mid-ship position only, leaving
the model prone to in particular yaw motion under minor disturbances. The implication
was that mechanical contact occurred between the ship section and the glass walls. The
problem was remedied before the actual testing started by re-distributing the weights,
hence achieving higher moments of inertia in pitch and yaw. These two quantities were
not measured or calculated, but found during model testing large enough for the ship
section model to be stable.

The mooring arrangement was as simple as possible, consisting of four horizontal
linear springs with two on each side of the ship section fixed 20cm apart for stability in
the transverse direction. The distance from the ship side to the connection between the
springs and the extending rope, denoted by [ in Figures 9.7 - 9.8 was [, = 0.62m in
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Figure 9.9: Pictures from the 2008 moored ship section model tests. Upper: The June
test set-up. Lower: unstiffened terminal from the April tests (left), and the stiffened
and supported terminal from the June tests (right).

the case of terminal gap width b = 0.06m and extended by 2cm on each side in the case
of terminal gap width b = 0.08m. There was a variation of the spring stiffnesses of the
four springs of about 1.5%, and the length at rest with about 3.5%. Given their slightly
unequal properties we chose pairs as equal as possible in order to obtain transverse spring
forces and moments on the ship section at a minimum. The total pre-tension in each
spring pair was 16.3N in the case of terminal gap width b = 0.06m.

As will be discussed somewhat further below, the ship section preferred a position
close to either of the glass walls, choosing one or the other side according to only small
perturbations of the position of the far end mounting point of the springs. Based on
observations the model kept that side during an entire test, and further, no mechanical
contact between model and wall did, according to our observations, occur.

The terminal is depicted in the two lower pictures of Figure 9.9 and presented schemat-
ically in Figure 9.10. The terminal was in fact the same as that used in the fixed ship
section tests of 2006, but described in more detail here. The terminal consisted of three
main parts; a vertical aluminum plate of 3mm thickness, 0.595m width and 0.90m height
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Figure 9.10: Left: The terminal being a 3mm thick aluminum plate as used in the April
tests before stiffeners were mounted, with deflection wp and associated velocity vp as
indicated. Right: Three vertical pipes are welded onto the vertical aluminum plate as
well as to the bottom plate and an added top plate, and an additional horizontal pipe.
Based on flat plate theory, the estimated maximum deflection given the conditions in
the current tests were reduced from 1 - 2mm to O(10~%m) when including stiffeners.

welded onto a similar horizontal plate of approximately 0.3m length, and with two skew-
mounted stiffeners extending from the top corners of the vertical plate and to the far
end corners of the horizontal plates. As we mentioned earlier, the aluminum plate that
represented the bottom mounted terminal flexed during the testing. The flexing occurred
due to the hydrodynamic pressure from the water motion in the terminal gap, and was
of static character since the frequencies were far from any natural structural frequency.
There was obviously a lack of stiffening, as is indicated in the left of Figure 9.10. For this
reason, in the June tests three vertical pipes were welded onto the vertical plate as well as
to the bottom plate and an added top plate, and an additional horizontal pipe was added
near the middle part, as shown in the right part of the figure. Further, the reinforced
terminal model was next supported by horizontal wooden piles clamped to the terminal
top plate at one end and to the fixed wave beach at the other end. This is shown in the
two right photos of Figure 9.9. The terminal was after the reinforcement and support
considered to adequately represent a fixed and rigid bottom mounted structure. A layer
of rubber bands provided a sealed gap between the terminal and the wave flume floor,
and for the same purpose clay was used along the gaps between the terminal and the
glass walls of the flume. The sealing property was tested when filling the wave flume with
water and found close to absolute. In comparison, no rubber bands towards the flume
floor were used in the April tests, and only the top 30 - 40cm was then sealed with clay.

Wave elevation and ship section motions. Relevant information of the instru-
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Table 9.6: Instrumentation in April and June 2008 model tests. Positions and relevant
specifics of instrumentation of the moored ship section model tests. D,, means diameter
of the wave gauge wires. Range indicates the maximum measurable acceleration of each
accelerometer where g is the acceleration of gravity. Position of accelerometers are pairs
of transverse/longitudinal distances relative to the lower left corner of the ship section
as seen from above when keeping your head pointing along the incoming wave direction.
Text in brackets indicate from where the distance is measured.

‘ ‘ April tests ‘ June tests ‘
Dy, [mm] Position [m] Dy, [mm] Position [m]
wl 4.0 2.232 (flap top) 1.5 2.345 (flap top)
w2 4.0 ~ 5.1 - 5.18 (flap top) 1.5 «
w3 4.0 0.62 (terminal) 4.0 3.42 (flap top)
w4 4.0 0.025 (terminal) 4.0 0.624 (terminal)
W) - - 4.0 “
w6 - - 4.0 0.037 (terminal)
w7 - - 4.0 “
Range Position [m] Range Position [m]
an | 100g (0.217,0.20) 20g (0.172,0.20)
(g ; ; 20g (0.418,0.20)
Ayt 100g (0.2975,0.20) 20g (0.295,0.345)
ay2 100g (0.2975,0.271) 20g (0.295,0.20)
y3 - - og (0.295,0.055)
Freq. [Hz] Resolution Freq. [Hz]  Resolution
HS 100 1280x1024 bw 100 1280x1024 bw
Ixus 32 640400 32 640400
Casio - - 60 6Mp

mentation is given in Table 9.6. Wave elevation was measured by capacitance type wave
gauges, four in the April tests and seven in the June tests, while ship motion was mea-
sured by accelerometers mounted on the aluminum top plate, three in the April tests and
five in the June tests. The diameter of each wire of the wave gauges was for the main
part 4mm, except for wl and w2 in the June tests having a diameter of 1.5mm in an
effort to investigate the influence from wire diameter on the meniscus effect, that is, the
characteristic curved fluid surface at the intersection between the fluid and the wire due
to surface tension. We were not able to detect or conclude on any measurable difference
between wave measuring capability of the 1.5mm and 4mm diameter wave gauges in our
tests based on pre-tests with wave only using first the 4mm diameter wave gauges as wl
and w2.

In the April tests two accelerometers in the vertical direction gave heave and roll, while
one in the horizontal direction gave sway. The accelerometers used in the April tests had
maximum range of 100g, far beyond the accelerations experienced in our tests which was
in the order of 0.1g, and typically showed drift of some significance during a single run.
Significant low-frequency noise disallowed measurements of the slowly varying motion as
well as the mean drift in sway. Also, noise in the wave period range gave, when integrated
twice to motion, approximately 0.5mm amplitude motions. Further, noticeable zero drift
during one single run was observed, and although filtered out in the post-processing, we
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Figure 9.11: Two examples of photos from the high-speed (HS) camera capturing the
terminal gap kinematics. Number marks are in centimeter. Resonant condition of
coupled ship and piston-mode motion. Free surface at lower (left) and upper (right)
position during a wave period.

felt that the equipment was somewhat improper. The three 100g accelerometers were
therefore changed with one 5g and four 20g accelerometers for the June tests. Although
much more stable during the test period as well as with hardly any drift during a run,
the low-frequency noise still disallowed direct integration to motion without band-pass
filtering, and the noise in the wave frequency range was also for these about 0.5mm. This
meant that e.g. roll less than 0.5deg was dominated by noise. In the tests with wave period
below about 0.8s, the roll was based on visual observations from video recordings, well
below 0.5deg, and therefore in reality not measured. Other measuring techniques could
have been chosen, such as optical systems, in order to reduce noise as well as getting the
low-frequency and mean sway position, but this type of equipment was not available. A
force ring connected to the spring arrangement was used in the April tests, and would in
principle give combined mean roll and sway, but too much noise precluded also this signal,
and the force ring was not used in the June tests. However, we believe the wave frequency
motion was captured satisfactorily well by the accelerometers used, in particular those of
range 5g and 20g.

Flow visualization. Three different cameras with slightly different purposes were
utilized during the tests, denoted here as the high-speed (HS) camera, the Ixus and the
Casio.

First, the wave kinematics and ship section motion in the terminal gap area was cap-
tured by a high-speed camera with frequency chosen at 100Hz and resolution 1280x 1024
giving tiff-images in black and white. Two examples of HS images are presented in Figure
9.11. The model and glass wall were both marked with grids so that both ship motion
and terminal gap elevation were monitored in detail. We mention that a white plate po-
sitioned laterally, that is on the back side of the wave flume relative to the camera side,
was found essential with respect to setting the lighting for clear high-speed photos. With
no such background plate, or dark background, the free surface was not captured well.
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Figure 9.12: Attempts to capture vortical structures using a green colour mixed in
the water. HS camera (left image) and Casio camera (right photo). One may vaguely
observe a vortex just below the ship corner of approximately 2cm extent.

Second, the whole set-up was captured by a standard digital camera of type Canon
Ixus 60 for a more qualitative observation of the global behaviour of the system.

Third, a Casio Exilim EX-F1 camera able to record a total of 60 colour images over one
second with resolution of 6Mp along with powder providing green colour (bottle labeled
Fluorescenium Natricum) mixed in the tank was used in an attempt to capture vortical
structures. This turned out not to be successful to any satisfactory degree. The high-speed
camera was also used during repetition runs by the end of the model testing in further
attempts to study the flow separation. The green colour was hardly visible on the black
and white high speed photos using the white background due to the light appearance of
the coloring, something a black background improved. The green colour was, however, in
general too evenly distributed throughout the fluid, so any clear vortical structures were
in general not captured. We therefore tried mixing the colour with syrup and/or honey,
sticking a lump on the ship corner just prior to a run using a ruler, resulting in relatively
nicely visualized vortices during the initial stages, but dissolving almost completely before
any steady-state motion was reached. An example from the Casio camera with white
background and one from the high-speed camera with dark background, both in steady-
state conditions, are shown in Figure 9.12. Although nearly dissolved, the colouring
indicates some vortical structures of about 2cm extent just below the ship section corner,
in particular in the high-speed photo.

We conclude that the free surface and ship motions were captured well by the cameras,
while the flow separation not so well.

9.3.3 Main differences between April and June tests

In Table 9.7 we summarize the main differences between the April and June tests with
possible improvement indicated in the right column. We have already touched upon most
of these through the above description of models and test set-up, but still dwell somewhat
on this matter to emphasize the importance of taking previous experience into account
when designing experiments.

The main and decisive improvement in the June tests relative to the April tests was
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Table 9.7: Main differences between the June and April tests. Potential improvements
are indicated in the right column. The main improvement in the June tests relative to
the April tests was that the terminal was thoroughly stiffened and supported.

April tests June tests Improvement
Terminal plate Stiff and supported Unstiffened Yes - major
No. of wave gauges 4 7 Yes
Calibration First day only Each day Yes
No. of acc.meters 3 5 Some
Wavemaker signal ~ Abrupt start-up Smooth start-up Some
Test program ad-hoc Planned Some
Terminal sealing Top 30 - 40cm All boundaries Little
HS Lighting No background White background Little
Ship section marks Ticks 2cm x 2em grid Little
Model length 0.595m 0.590m Unknown

by all means the stiffening and support of the terminal. Two other improvements not
regarded crucial, although still providing results of what we believe is somewhat higher
in quality than in the first tests were that (1) three pairs of wave gauges in side-by-side
arrangements allowed identification of transverse oscillations, and (2) the wave gauges
and the accelerometers were calibrated each morning. Also, a new set of accelerometers
which proved to have less drift, and with a redundancy of one in each direction, gave more
trustable body motion measurements. For example, calculating roll using three different
combinations of the vertically positioned accelerometers gave differences only within 1-2%.

As far as the wavemaker motion goes, a smooth wavemaker start-up is considered an
improvement in particular with respect to reproduction by a numerical wavetank, avoiding
transients of non-smooth character.

Following a well defined model test plan is considered an advantage as opposed to
the approach of more or less ad-hoc type of testing. It is on the other hand of course
the danger of being biased towards the acquired results when expecting certain results.
We feel, though, that we have treated both sets of data neutrally during the testing and
post-processing.

Proper sealing of the terminal intersections with the flume bottom and walls is regarded
a decent action, although the deep water conditions and relatively small gaps would
indicate very small leakage in any case below about 30 - 40cm from the free surface.

Improved image quality in terms of better lighting as well as grid on both the ship and
the glass wall provided an opportunity to qualitatively double check both the ship section
motion and the free-surface elevation in the terminal gap, in particular the former.

Lastly, a 0.5cm shorter length of the ship section [, (in the transverse direction of the
wave flume) may have reduced possible, yet quite unlikely, glass wall friction. By glass
wall friction we mean the shear forces acting on the ship section due to the boundary layer
flow in between this and the glass walls. On the other hand, it did most likely introduce
additional three-dimensional effects, therefore the indication “unknown” in Table 9.7. By
three-dimensional effects we mean the following. In the April tests the section length was
0.595m, leaving a 2 - 3mm gap between the ship section and glass walls on each side, while
in the June tests there was a total gap of about lcm. The frictional forces were in the
April tests a priori estimated using a Stokes second problem approach. In Stokes second
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Figure 9.13: Numerical investigation of the effect of flexing terminal wall. Time-series
of terminal gap elevation from simulations using the numerical wavetank without flow
separation. Results from numerical simulations with no deflection of the terminal and
with deflection according to wr = 0.05(, and wr = 0.1(, are shown.

problem there is a semi-infinite fluid over a flat plate of infinite extent. In our approach
there were two parallell plates a distance d apart. Both plates were of infinite extent, one
at rest and the other one oscillating laterally in harmonic motion. No-slip condition was
prescribed on both plates. The resulting shear force was obtained by integration over an
area equal to BD and multiplied by 2 due to the two sides of the ship section. The opening
effects near the ends of the ship section sides were thus not accounted for. We mention
that the resulting frictional force was not significantly different from that estimated using
the classical approach. This goes for the given oscillation periods and gaps of 2 - 3mm.
For smaller gaps, the two estimates deviated. The force estimation indicated the shear
forces to be by all means negligible relative to other forces acting, even with respect to
roll damping. However, adding an extra bHmm gap was nevertheless chosen in case of
miscalculation or lack of validity of the simplified approach. During the June tests it
turned out, however, that the ship section always preferred a position approximately 2 -
3mm from one of the sides, leaving a 7 - 8mm gap on the other. This introduced some
three-dimensionality through the ship sections’ role as wave making device. The measured
wave elevation at w6 and w7 in the terminal gap differed in some cases around resonance
by up to 15%, with the lowest on the side with the largest gap. Slight justifications
of the spring arrangement between runs allowed control of which of the glass walls the
model preferred being close to, and we found that changing sides also changed the side
on which the highest terminal gap amplitude was measured. We believe that a model
length of [, = 0.595m, leaving a gap of about 2 - 3mm on each side, would have resulted
in somewhat higher responses, say maybe 7 - 8% higher than those acquired during the
present tests.

9.3.4 The effect of a flexing terminal

We here present a qualitative investigation of the effect of a statically flexing terminal.
The flexing amplitude wy (cf. Figure 9.10) of about 1 - 2mm as observed during the



124 Model tests

experiments is first substantiated by estimates using beam theory on a horizontal strip of
the terminal. The actual flexing and its effect of reducing the amplitude of the resonant
ship and piston-mode motion is next modelled by use of the nonlinear numerical wavetank.

We assume that the terminal plate is free at the ends towards the wave flume wall,
that is, neglect the stiffeners connecting the vertical and horizontal aluminum plates.
We further assume a uniform hydrodynamic pressure over the breadth and consider a
horizontal strip at the top of the terminal. The maximum deflection is then given by
wy = (5/384)ql*/ E1, where for aluminium E = 0.7-10°M Pa, I = ¢*/12 with ¢t = 0.003m
being the plate thickness, [ = 0.6m the breadth of the tank and ¢ = p x 1 is the pressure
times a unit section. The back of the plate was wetted, such that the net pressure acting
was the dynamic pressure in the terminal gap, and we estimate ¢ from the amplitude of
the dynamic pressure near the free surface pg, >~ pgA,. As defined earlier in the text, A,
is the amplitude of the piston-mode motion. As an example, for one test near resonance
with A; ~ 9mm, meaning p¢, ~ 100Pa, we get that the deflection amplitude would be
wr ~ Imm, which corresponds well with that observed. The averaged deflection over the
breadth is then 2wy /7 ~ 0.64mm which is about 7% of the piston-mode motion.

Next, we assume the plate deflection to vary linearly along its height as indicated in
Figure 9.10, with deflection w7 at the top due to the dynamic pressure acting there, and
zero at the bottom. Since the range of wave periods was away from that providing any
plate dynamics, we may further safely assume the plate deflection to have been quasi-
static. This means we may express the plate deflection as w(y,t) = wr(1 + y/h), with
wr = aCy The fraction a is chosen based on observation and the above estimates of the
deflection. The time derivative of w serves as body boundary condition (2.5) along the
terminal, i.e. ¢, = —w in the numerical wavetank. Examples of terminal gap elevation
time-series from running the nonlinear numerical wavetank is shown Figure 9.13. Flow
separation is not included. In the figure, the thin solid curve corresponds to no deflection
of the terminal, and the other two curves corresponds to deflections of wr = 0.05¢, and
wp = 0.1(;. The effect of the deflection is significant. Although steady-state is not
reached, the results indicate that the terminal gap amplitude is reduced to about 60%
and 30% of that without deflection in the two cases respectively.

Condensed results from both the April and June tests by means of steady-state termi-
nal gap amplitudes normalized by the amplitude of the incoming wave is shown in Figure
9.14. These show that the near resonance amplitudes of the April tests were about 60% of
those in the June tests. This fraction of about 60% corresponds well with the numerical
results combined with the estimates and observations of the flexing amplitude.

The above discussion provides clear evidence of the significant reduction effect of a
flexible terminal. We conclude that emphasis must be made on modelling boundaries
that are supposed to be fixed and solid thoroughly stiff when investigating resonance
phenomena.

Last, we suggest that this effect could also be utilized in practice in design. For
example, a plate hinged near the bottom of a terminal or inside a moonpool, allowed
to under-go quasi-static motion might be an effective device to reduce motions around
resonance. The spring effect could be achieved for example by placing pieces of rubber
or similar between the hinged plate and the terminal. The concept is based on a passive
system, meaning no active control is needed.
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Figure 9.14: Comparison between the nondimensional terminal gap amplitude from the
April tests with a slightly flexible terminal, and the June tests where the terminal was
stiffened. € = H/\ is the wave steepness and b/B the terminal gap width nondimen-
sionalized by the ship section beam. Around resonance the results from the April tests
are about 60% of those from the June tests.

9.4 Moonpool tests briefly recapitulated

The so-called moonpool model tests were performed in connection with the work by
Faltinsen et al. (2007) during summer 2005, and results from these are reported therein.
Time-series were provided electronically for use in the present work. A re-analysis was
done as reported in Kristiansen and Faltinsen (2008) in order to investigate in-depth the
rather surprising results that the piston-mode amplitude in the model tests in one case
actually exceeded that predicted by linear theory. The re-analysis revealed that wave
reflections from the far ends of the wave flume caused the discrepancies. This is presented
briefly in the following.

9.4.1 Model test set-up and test conditions

Model tests involving forced heave of two rectangular sections with sharp corners were
performed in the same wave flume described in connection with the moored ship section
model tests, and the model test set-up is presented schematically in Figure 9.15. Under the
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Figure 9.15: Schematics of model test set-up in the moonpool tests with a selection of
the twelve wave gauges and dimensions. Note that the sketch is not to scale.

assumption of symmetry about the center-line of the moonpool, the set-up is equivalent
to that of a single ship section by a wall at a distance half that between the two sections.
The still water depth was h = 1.03m. The beach was of parabolic shape, approximately
2.3m long, and the wavemaker was at that time equipped with an active wave absorption
system. The center-line of the model was [; — 4.2m away from the wavemaker and
a distance [y = 9.47m from the tank wall behind the beach. There were twelve wave
gauges, denoted by wl - w12, where w3 was in the center-line, and w10 and w1l were
0.7m away from the model extremities on the wavemaker side and beach side respectively.
wl - wb defined an array positioned longitudinally along the tank with 40mm cc distance
between each.

As in Faltinsen et al. (2007) and Kristiansen and Faltinsen (2008) we group the
results in three different cases denoted by Case I - III with variations in the draft D and
the “terminal gap” width b = L;/2, where L; is the distance between the two sections.
There were two forcing amplitudes in Cases I and 11, and one in Case III. The specifics of
the three cases are summarized in Table 9.8. The normalized heave amplitude is denoted
by € = n3,/B, where 13, is the amplitude of the forced heave motion with 2.5mm and
Smm used in the model tests, such that ¢; = 1/144 and e = 1/72. A linear ramp
during the first test seconds were used for the forced heave motion. We use the ship
section beam B = 0.36m as characteristic length, rather than the quantity L; = 2b in
the mentioned works, and a nondimensional wave frequency w/+/g/B, where w is the
circular frequency, rather than A = w?L;/g. Redefining the characteristic length and
nondimensional frequency is purely a matter of providing consistent presentation relative
to the other studies in the present work.

Table 9.8: Specifics of the three cases denoted Case I - IIT in the moonpool model
tests. € = 13,/B is nondimensional forced heave amplitude. The still water depth was
h/B = 2.86.

B/D /B e =1/144 ¢ =172
Case I 2 0.25 X X
Case II  1.33 0.25 X X
Case III 2 0.5 X -
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9.4.2 Wayve reflections

Investigations of time-series showed clear indications of wave reflections in the wave flume,
both from the beach side and from the wavemaker side. It seems that neither the wave-
maker absorption system nor the beach was able to properly damp out waves radiated by
the forced heave motion, and we speculate that this was due to the very low wave steep-
ness, typically H/A ~ 1/1000 — 1/300. As far as the beach goes, the waves will refuse to
break at such low steepness, and for the wavemaker, the induced forces were perhaps in
a lower range than the working range. The authors are not aware of the working range
or the actual functionality of the absorption system of the wavemaker.

The existence of reflections is best illustrated by a few examples. In Figure 9.16 the
time-series of w3, w10 and w1l from four tests (a-d) are presented. We denote the time
instants when the wave train fronts are, roughly, to return from the two extremes of the
tank by 7,1 = 2,/C, and T, = 2l,/C,. The Hilbert envelopes, low-pass filtered at 1Hz,
reflecting the energy in the signal, are superimposed as solid curves enclosing the time
histories, and the time instants ¢ = T}.; and t = T, are indicated by dash-dotted vertical
bars. The solid vertical bars denote the time window used for estimation of the fluid
elevation amplitudes. The spurious behaviour in the very beginning of each signal is due
to band-pass filtering, and does not affect the following observation.

If there are no asymmetries inside the moonpool, the radiated waves to each side
should evolve equivalently. This means that, given a symmetric behaviour of the fluid in
the moonpool, the measured signals from w10 and w11 should be the same. From visual
observations during the testing (oral communication) and from movies of the free surface
elevation reconstructed using the signals from w1 - w5, there were no asymmetries in the
moonpool of significance. This means that any discrepancy beyond measurement accu-
racy between w10 and w1l must be a consequence of reflections. Significant discrepancy
between the signals from w10 and w11 is indeed observed in several cases such as that in
Figure 9.16(c). We therefore conclude that reflections did occur at least in this test taken
from Case III, but most likely in all tests to some extent. Modulations of the amplitudes
occur around 7T,, which is a clear indication that waves reflected from the beach side is
the cause of the strong modulations in the particular test shown in Figure 9.16(c). A con-
sequence of the reflected wave is an altering of the fluid behaviour also in the moonpool
with a resulting lowering of the amplitude as seen from the bottom time-series of w3.

In Figure 9.16(d), the difference between w10 and w1l is not pronounced, but small
amplitude modulations in w3 around both ¢ = T}.; and t = T, are observed. In Figure
9.16(a) and (b) which are from Case I and Case II, there are some visible modulation
around both T,; and T,,, although very small.

We conclude that wave reflections of some significance occured in Case III, while in
Cases I and TII, reflections did occur, although not that significant. This is taken into
account in our study on resonant piston-mode motion due to forced heave in the next
chapter.
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Figure 9.16: Time of w3, wl0 and wll from four tests: (a) Case I with e
and w/+/g/B = 1. 017 (b) Case II with g9 and w/+/g/B = 0.885. (c) Case III with

w/\/g/B 0.842. (d) Case III with w/+/g/B = 0.872. The Hilbert envelope reflecting
the energy in the g al is superimposed.




Chapter 10

Studies on resonant behaviour

In this chapter the results from our studies of a ship section by a bottom mounted terminal
in resonant conditions are presented. The studies are presented within the five sections of
the present chapter. The first three sections represent the main work that includes both
experimental and numerical results. Most of these results have already been published over
three papers. The two last sections include numerical studies only, and are considered as
supplement for the three preceding main studies. Results from these have not previously
been published. A summary of the studies with main particulars is presented in Table
10.1. We further summarize the studies as follows.

In Section 10.1, a study on a fixed ship section with rounded bilges by a bottom
mounted terminal subjected to incoming shallow water waves with focus on the piston-
mode resonance is presented. The rounded bilges were such as to avoid flow separation as
far as possible. The numerical part of the study involves simulations from both the linear
wavetank as well as the nonlinear wavetank without flow separation. The results are com-
pared with experimental results from the November 2006 model tests performed within
this work as reported in Section 9.2. The majority of the results have been published in
Kristiansen and Faltinsen (2009a).

In Section 10.2, a study on forced heave of a ship section with sharp bilges by a bottom
mounted terminal with focus on the effect of flow separation on the amplitude of the piston
mode near resonance is presented. The numerical part of the study involves simulations
from both the linear wavetank as well as the nonlinear wavetank with and without flow
separation. The considered case is equivalent to that of a moonpool, and the results
are compared with experimental results from the moonpool tests briefly recapitulated
in Section 9.4. The results have previously been published in Kristiansen and Faltinsen
(2008).

In Section 10.3, a study of a moored ship section with sharp bilges by a bottom
mounted terminal with focus on the effect of flow separation on the resonant coupled ship
and piston-mode motion is presented. The numerical part of the study involves also here
simulations from both the linear as well as the nonlinear wavetanks with and without flow
separation. The results are compared with experimental results from the June 2008 model
tests performed within this work as reported in Section 9.4. The results have previously
been published in Kristiansen and Faltinsen (2009b).

In Section 10.4 we present numerical results of forced sway motion with otherwise the
same set-up as in the work on forced heave reported in Section 10.2. This work involves
simulations from both the linear wavetank as well as the nonlinear wavetank with flow
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Table 10.1: Overview of the studies presented in Sections 10.1 - 10.5. By “Wave” forcing
we mean incoming waves generated by a wavemaker.

Section: ‘ 10.1 10.2 10.3 10.4 10.5
Ship section Fixed Forced Moored  (as 10.2) (as 10.1)
Forcing Wave Heave Wave Sway  (as 10.1)
Flow separation No Yes Yes (as 10.2) Yes
Model tests | Nov. 2006 “Moonpool” June 2008 - -
Water depth |  Shallow Deep Deep (as 10.2) (as 10.1)
B/D 3.76 1.33- 2 1 (as 10.2) (as 10.1)
h/B | 0.45 - 0.625 2.86 2.2 (as 10.2) (as 10.1)
b/B| 017-034 025-05 0.15-02 (as10.2) (as 10.1)
r/B 0.09 0 0 (as 10.2) 0-0.014
B [m] 0.64 0.36 0.40 (as 10.2) (as 10.1)
Ts| 1.3-28 1.0-1.7  06-1.0 (as10.2) (as 10.1)

separation. In Section 10.5 we study numerically the effect of flow separation on the
piston-mode resonance for a fixed ship section by a bottom mounted terminal subjected
to incoming waves, with the same set-up as that reported in Section 10.1. We present
numerical results involving simulations from both the linear as well as the nonlinear
wavetanks with flow separation, and the ship section bilges are modelled both as sharp
and with a finite curvature with fixed separation point.

10.1 Fixed ship section by a bottom mounted terminal

We now present and discuss the results from our first main study involving a fixed ship
section with rounded corners by a bottom mounted terminal. The ship section and ter-
minal are subject to incoming regular waves with wave periods around the piston-mode
resonance period 7). The study is based on the November 2006 model tests described in
Section 9.2, and the particulars of the geometry and wave conditions are described there.

Before we proceed, we want to make the following three remarks. First, the relatively
high piston-mode resonance period 7}, implied rather shallow water waves (h/Ay < 1/10),
with which one will typically associate large nonlinearities in the incoming waves. We do
observe clear nonlinearities associated with the shallow water waves on the wave kinemat-
ics in the external part of the fluid. In the terminal gap itself, however, from observation
during the model tests and video recordings we found that no higher modes of significance
were triggered, except in some extreme cases where the terminal gap amplitude was large
enough for the free surface to reach the rounded bilges, hence introducing significant
disturbances. Video recordings from the high-speed camera shows clearly that violent
sloshing, or run-up along the ship and terminal occured in these cases. The described
disturbances were, however, introduced by the curved geometry, and not by the nonlin-
earity in the incoming waves. These tests were not considered in the following study. The
terminal gap elevation, (,, turned out to be nearly harmonic in all other cases. Second,
this study involves a fixed ship section. This is not a realistic case, of course. It was,
however, convenient to begin with a fixed ship section. Third, the results of this study
and the discussion of these must be viewed in light of being our first study on the resonant
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behaviour and the first real study applying the numerical models. More knowledge on the
resonant behaviour was naturally acquired throughout the later studies. This goes both
for the model testing and the application of the numerical wavetanks. For the former, the
level of response is highly sensitive to additional damping which may easily be introduced
by bias errors. For the latter, in the later studies we were typically more careful with
studying the necessary resolution in time and space.

We now present the parameters in the numerical simulations and next compare the
numerical results to those acquired from the model tests.

10.1.1 Parameters in the numerical simulations

The length from the mean position to the terminal is denoted L. The exact wave flume
geometry from the model tests was reconstructed in both the linear wavetank and nonlin-
ear wavetank, except for the beach. This means that in the simulations including the ship
section and terminal, the exact geometry was reconstructed. In the wave calibration runs,
however, the part from the position of the terminal and onwards was not reconstructed as
this would involve wave breaking over the parapolic beach as in the physical tank. Wave
absorbtion was done by using the numerical beach approach, that is, using (5.5).

The motion of the wave paddle in the numerical wavetank was that recorded during
the model tests with the signal divided by the amplification factor discussed in sub-section
9.2.2.

Although the ship section in the model test had rounded corners of radius r/B =
0.09, the ship was in the numerical model taken as a rectangle. The argument was that
quantities such as added mass and damping of this structure of area ratio Ag/(BD) =~
0.986, where Ag is the actual area of the ship section with rounded bilges, would not be
affected to any significant degree.

Table 10.2: Numerical parameters in simulations of a fixed ship section by a bottom
mounted terminal. Initial number of elements on the different parts of the boundary

S.

Free surface (external + terminal gap) Np = 357+ 3 = 360
Ship section (side + bottom + side) Np=5+5+5=15

Bottom of wavetank Npor = 240
Terminal Nrgry =7
Wavemaker Nwy = 10
Numerical beach length Lg = 3\
Dissipation parameter Viaz = 0.8

No. of time-steps per period Np =20-280

The initital number of elements used on the different parts of the geometry, the nu-
merical beach parameters and the time discretization parameter are tabulated in Table
10.2. These parameters applied to both the linear wavetank and nonlinear wavetank.
Typically 30 periods were run, but in some cases the simulations broke down earlier. The
CPU time for a single run on a 2.67GHz PC ranged from about 6min for the linear runs
without beach and up to 40min for the nonlinear runs including the beach.

No formal convergence testing with respect to the beach length L; was performed
for the specific cases in the present study. Rather extensive testing of the parameter Ly
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was done during the implementation of the numerical beach prior to the study. We then
found that Ly = 3\ in general gave reflections less than 1% of the incoming waves. This
was done in intermediate to deep water conditions. We have no reason to believe that an
extensive amount of reflection did occur in the present study. However, since the present
damping strategy is not valid in the shallow water limit, we expect that L; = 3\ might
have been a little too short to achieve less than 1% reflection for the longest waves in the
study.

A selection of numerical tests involving the ship section and the terminal were checked
for convergence with respect to resolution in time and space. These indicated that the
numerical error associated with the present simulations were within 1 - 3%. Note that
this was for tests including the ship section and terminal. A similar convergence study
was not done for the wave calibration runs.

As pointed out in Section 5.4.2, the total fluid mass showed an oscillatory behaviour.
In the present study this had an oscillation amplitude of O(107*). There was never any
sign of mean mass loss. This holds also for the wave calibration runs when the artificial
damping was applied. We remark that in later studies the amplitude of oscillation was

0{10-5}.

10.1.2 Results - Piston-mode resonance

The results from our study are organized as follows. First, time-series and snapshots of
the free-surface elevation in two selected conditions are presented. Next reduced data
are presented as function of wave frequency. As described in connection with the model
tests we grouped the tests into three cases, called Case 1 - 3, with specifics given in Table
9.3. Since in Kristiansen and Faltinsen (2009a) the work was limited to investigating
Cases 1 and 2 only, we present these results in the same detail as therein in connection
with Figures 10.3 - 10.5. We also shortly present some results from Case 3, including
piston-mode amplitudes from linear simulations and model tests, shown in the left part
of Figure 10.6. In the right part of the same figure we include some results also from the
September 2006 tests for frequencies higher than the resonance frequency.

Time-series. We first present the selected time-series from the model tests and
nonlinear numerical simulations. Time-series at five locations along the wave flume from
wave calibration tests are presented in Figures F.1 and F.2, and from corresponding tests
with ship section and terminal in Figures F.3 and F.4. The wave condition in Figures F.1
and F.3 represent near piston-mode resonant condition in Case 1. The wave frequency
is w/y/g/B = 0.791. The nominal wave steepness in deep water is e = Hy/\g = 1/115.
In the actual water depth where the wavelength and waveheight have both changed, we
have H/A = 1/115 and H/h = 1/10. Figures F.2 and F.4 present near piston-mode
resonant condition in Case 2. The wave frequency is w/\/g/B = 0.707. In this case we
also have e; = Hy/A\g = 1/115, but H/\ = 1/73 and H/h = 1/6. The wave calibration
time-series compare in our opinion quite well. Exceptions are the troughs at w8 and w12
in Figure F.2. This discrepancy might just as well be due to beach reflections in the wave
calibration tests during the physical model as well as due to inaccuracies in the numerical
model.

In all the considered tests, we have a similar level of comparison as in Figures F.1 -
F.4. The troughs at w8 and w12 in Figure F.2 represent the worst level of comparison.
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Figure 10.1: Snapshots of wave elevation in the run corresponding to that in Figure
F.3. The lower plot represents other time-steps than the upper plots.

In other words, we feel the results compare reasonably well.

When the ship and terminal is present, the time series for wl - w8 compare quite well
up to the stage when the wave is re-reflected from the wavemaker to the wave gauges.
The discrepancies after this stage is due to the leakage effect around the wave paddle
which was discussed in sub-section 9.2.2. The AWACS adjusts the motion of the paddle
continuously in order to damp out the reflected waves, and does so rather successfully
in the physical tank. However, the recorded wavemaker motion will not effectively damp
out the reflected waves in the numerical model due to the leakage in the physical tank.
It will partly work, though, one may say, and the behaviour of the simulated free-surface
elevation is qualitatively similar to that in the model tests. See for instance w1 after about
t/T = 15 in Figure F.3 and w4 after about ¢/7° = 12 in Figure F.4. The kinematics in
the terminal gap (w12), however, is over-predicted right from the start. The discrepancy
stays constant for some time, until it increases about when the re-reflected wave reaches
the model. This last increase is due to the leakage around the paddle. The discrepancy
in the first steady-state part is the core of the present study. We discuss this in detail
below, in connection with the reduced data.
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Figure 10.2: Snapshots of wave elevation in the run corresponding to that in Figure
F.4. The lower plot represents other time-steps than the upper plots.

Snapshots. In Figures 10.1 and 10.2 snapshots of the simulated wave elevation for
the two conditions are presented. The geometry is stretched in the vertical direction
for illustration purposes. From the figures it is clear that nonlinearities in the wave in
the up-stream part of the wavetank are more pronounced in the latter case. The free
surface becomes very messy in the second case as illustrated in Figure 10.2, but the time
series nevertheless compare quite well, ref. Figure F.4. Note that the steepness H/\ is
roughly the same for the two conditions. However, H/h is not the same. The values are
H/h = 1/10 and 1/6 in the two cases, respectively. The large motion in the terminal
gap is clear, and dominated by the piston motion. Some disturbances other than the
piston mode are also seen. So, as discussed in Chapter 4, the behaviour is piston-like, and
not that of pure piston-mode motion. We take (; = 0.5(wll + w12) as a representative
measure of the piston-mode elevation. The positions of these are given in Table E.1.
Wave gauge w10 gave a few spurious results, and was not included in the analysis. For
consistency, we use the same measure in the numerical simulations.

Reduced data. Steady-state values of the free-surface elevation are taken from steady
parts of the time-series. The simulated time-series were only stationary until the re-
reflected waves reached the position of each wave gauge, but we found that the free-surface
elevation at w1l and w12 were steady in the time-interval ¢ = 25— 35s. This was a matter
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Figure 10.3: Wave amplitude A = H/2 from wave calibration runs. H is taken as the
average of the trough-to-crest heights of w8, w1l and w12.

of visual inspection combined with arguments using the group velocity C,. The value of
H, is in this way estimated using 3 - 7 periods, depending on the wave period. The mean
undisturbed waveheight H was taken as the crest-to-trough distances taken from the wave
calibration runs, using the same time interval for consistency.

In Figures 10.3 - 10.5 there are four sub-plots in each of the figures, representing Case
1 by the two upper and Case 2 by the two lower plots. The left plots represent the highest
wave steepness €;, while the right plots the lowest wave steepness €.

In Figure 10.3, the wave amplitude A is presented. As explained earlier, A = H/2.
In the model tests, the wave gauges were positioned equally in the wave calibration tests
and the tests with ship section and terminal. The waveheight H is taken as the mean
of those from w8, wll and w12 from the wave calibration runs. The wave amplitude
from the nonlinear simulations compares well with those from the model tests, except
for some of the longest waves. The discrepancies might be due to beach reflections in
both the physical and the nonlinear wavetank. The nonlinear wavetank length was in the
wave calibration tests not the same as the physical wavetank length, so reflections would
influence the solution differently in the measured and simulated wavetanks.

In Figure 10.4, the terminal gap elevation A, is presented. We note that some data
points seem to be “missing” in the lower left plot for Case 2 with e;. This is due to
the following. First, the model tests could not be run for lower wave frequencies than
those shown due to limitations in the wave paddle stroke S. The “missing” nonlinear
simulations broke down before steady-state was reached due to entanglement of the free-
surface elements near the sharpest peaks of the free surface up-stream of the ship. The
break-down may perhaps be avoided by using a re-gridding algorithm of the whole free
surface, but this has not been done in this work. We mention that this sharp crest was
denoted “fountain” by Buchner et al. (2004), something they observed during model
testing of a ship by a terminal in shallow water. The same fountain effect was observed
during our model testing.

In Figure 10.5, the nondimensional terminal gap amplitude A,/A is presented. The
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Figure 10.4: Piston-mode amplitude A, = H,/2. H, is taken as the average of the
trough-to-crest heights of w1l and w12.

four main observed features are the following. First, the linear results over-predict around
the resonance frequency, with predicted nondimensional terminal gap amplitudes A,/A ~
6 in both Cases 1 and 2 while the ratio from the model tests lie between four and five.
Second, the nonlinear results in general lie between the measured and linear, also over-
predicting with respect to the measured values. Third, there is close to no effect of
steepness in Case 1 with the largest water depth h/B = 0.625, while there seemingly
is an effect in the Case 2 with the smallest water depth h/B = 0.43. This applies to
both the experiments and the nonlinear simulations. Last, for the frequencies higher
than resonance the measured and simulated results compare well, as expected, while for
lower frequencies some discrepancies are observed. We discuss these discrepancies in the
following.

The fact that linear theory over-predicted was expected, but the nature of the nonlinear
behaviour was not known a priori. From Figure 10.5 we can see that there is an effect of the
nonlinearity parameter H/h, while there is seemingly no effect of the other nonlinearity
parameter, the wave steepness ¢ = Hy/Ag. The results from the nonlinear simulations
leave the linear to an appreciable degree when H/h is higher than, say, 1/6. This may be
seen from a combination of the lower left sub-plots of Figures 10.4 and 10.5. In the latter
figure, the discrepancy between the linear and nonlinear behaviour is non-negligible for
w/+/g/B < 0.7. For these wave frequencies, we see from Figure 10.4 that the waveheight
H =2A > 0.05. With the water depth h = 0.29m, this means H/h > 1/6. This is about
the limit when we start observing significant nonlinearities in the external fluid kinematics
as illustrated above in connection with the time-series and snapshots.

The fact that the nonlinear results are in general closer to the linear than to the
measured around resonance means that the majority of the discrepancy between measured
and linear values are explained by other effects than those associated with the nonlinear
free-surface conditions, assuming that the simulated results are accurate. We propose
four candidates. First, flow separation from the ship section bilges did probably occur.
Second, the slight flexing of the side of the ship section in the model tests as was observed
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Figure 10.5: Nondimensional piston-mode amplitude A,/A.

is a candidate. Third, the leakage between the glass wall and ship section might have
been a contributor. Last, wave reflections was most probably of some importance for the
longest waves. The three last candidates represent bias errors in the model tests. This
illustrates the importance of discussing this matter as we did in the presentation of the
model tests. The leakage effect and possible wave reflections are not discussed further
here. We do, however, discuss the two other.

In the present model tests the corners were rounded in order to avoid flow separation
as far as possible. However, using 2r = 0.12m as a characteristic length, U,, = nH,/T
as the maximum fluid velocity and a kinematic viscosity of v = 107% we get e.g. near
resonance in Case 1 (T' = 2s) that the Keulegan-Carpenter number KC = U,,T/2r ~ 5.
Futher, the Reynolds number R, = 2rU,,/v ~ 4-10* and 8 = Rn/KC =~ 7000. For
these conditions flow separation probably occurs, although it is not easily observable,
as discussed in Faltinsen (1990) (see discussion on p. 229). The flow will separate for
KC > 1, but the separated flow will not break strongly away from the body as visible
vortices unless KC' > 5. So, even though we did not observe vortices breaking away from
the rounded ship bilge, some contribution to the discrepancies may nevertheless have been
due to flow separation, due to the achieved K C-numbers. If flow separation was the main
contributor, however, there should have been a more clear effect of wave steepness than
that observed for Case 2 in the two upper plots.

We therefore speculate that the observed slight flexing of the ship side is the main con-
tributor. We base this on the fact that the piston-mode amplitudes A, around resonance
were higher in Case 2 than in Case 1, around 50 - 60% higher. This was due to the chosen
fixed wave steepness and longer waves in Case 2. The ability to indent the ship section
side was therefore about twice as large in the Case 2 than in Case 1. Referring to the
discussion on the rather significant motion reduction effect of flexing walls in connection
with the study on a moored ship section in Section 10.3, we find this a plausible cause of
the observed discrepancies.

Last, we briefly present in Figure 10.6 (left plot) results from Case 3 with the smaller
terminal gap width /B = 0.17, and in Figure 10.6 (right plot) some results from the
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Figure 10.6: Additional results from the study of a fixed ship section. Left: Half the
terminal gap width b/B = 0.17 relative to that presented in Figure 10.5 (Case 3).
Right: Results from September 2006 model tests as indicated in the legend. The other
results from the November 2006 tests as presented in Figure 10.5.

September 2006 model tests with b/B = 0.34, overlapping those in the November 2006
tests. We see from the left plot of the figure that the piston-mode amplitude is higher
in Case 3 relative to those in Cases 1 and 2. We note that in Case 3, the terminal gap
width b is half that of Cases 1 and 2. Linear theory predicts piston-mode amplitudes of
A, /A ~ 8, while we measure about 6.5 - 7.5. Nonlinear simulations were not performed
for Case 3. There seems to be a slight effect of wave steepness, but quite small. The
terminal gap amplitudes around resonance were (in dimensional form) smaller in Case 3
than in Cases 1 and 2 due to shorter wavelengths. The ability to indent the ship section
side was therefore smaller. This seems consistent with a somewhat less over-prediction
by linear theory in this case, and supports our suspicion of the flexing being the main
contributor to the discrepancy.

In the right part of Figure 10.6 nondimensional terminal gap amplitude from the
September 2006 tests for higher wave frequencies than the resonance frequency is pre-
sented and compared with the slightly overlapping November 2006 tests. The water
depht is h/B = 0.45. We note that the results from the November tests are the same
as those presented in the lower parts of Figure 10.5. The reason we did not include the
results from the September 2006 tests there was that the wave steepness was higher, being
Hy/X\o = 1/40 and Hy/\y = 1/60, and the incoming waves were subject to a 1:30 sloping
bottom. The behaviour seems, however, in general to be consistent in the two sets of
model tests. For the one overlapping wave frequency (w/+/g/B =~ 0.897), the nondimen-
sional amplitude is about 11% higher in the November tests. This is probably due to the
smaller wave steepness.
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10.1.3 Summary of the study

We summarize the present study as follows. The study involved a fixed ship section by
a bottom mounted terminal. The ship section had rounded corners in order to avoid
flow separation. The ship section and terminal were subjected to incoming shallow water
waves. The wave periods 1" were chosen to be around the piston-mode resonance period
T,. We varied the water depth h, the terminal gap width b and the wave steepness H/\.
The studied cases are summarized in Table 9.3. The primary goal was to study the
piston-mode amplitude around piston-mode resonance. A secondary goal was to study
the effects of the shallow water wave conditions.
The main results from the studied cases are briefly summarized as:

e The present linear simulations predicted piston-mode amplitudes A,/A ~ 6 — 8 at
the piston-mode resonance period 7,.

e Piston-mode amplitudes in the model tests were around resonance 10 - 30% lower
than that predicted by linear theory.

e The present nonlinear simulations predicted values in between that predicted by the
linear simulations and measured in the model tests.

e Shallow water wave effects seemed to slightly affect the piston-mode amplitude for
large H/h, say H/h > 1/6 in the investigated cases.

e Flexing of the ship side probably introduced a reduction of the piston-mode motion
in the model tests. We believe this caused a major part of the discrepancies.

e Flow separation is thought not to have been important in the present study.

There seemed to be a relatively small effect on the piston-mode amplitude due to
nonlinearity associated with the free-surface conditions, despite the rather nonlinear be-
haviour of the external wave field in the shallow water conditions. We believe that for
the most part, the discrepancies between measurements and nonlinear simulations are
explained by flexing of the ship sides rather than by flow separation from the rounded
bilges.

10.2 Forced heave of a ship section by a bottom mounted
terminal

Our second main study involves forced heave motion of a ship section with sharp bilges by
a bottom mounted terminal in deep water conditions. The ship section is forced at periods
around the piston-mode resonance period 7,,. Although the deep water conditions are not
realistic regarding offshore LNG terminals, the study is directly relevant to the problem.
We investigate the discrepancies between the piston-mode amplitude predicted by linear
theory and that observed in experiments. The experiments we refer to were carried out
to investigate resonant fluid behaviour in moonpools, and originally reported in Faltinsen
et al. (2007). They also presented a newly developed linear theory for this problem. The
solution procedure involves domain decomposition and Green functions distributed along
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the so-called Neumann traces defining the fictitious boundaries of each domain. We use
this theory to verify the present results from application of our linear wavetank.

In the present section we present results from our numerical simulations using both
the linear wavetank and the nonlinear wavetank, where in the former case, both with and
without in- and out-flow of boundary layers, and for the latter both with and without flow
separation from the ship section bilges. The numerical results are compared to the above
mentioned linear theory and experiments. All results presented in the present section are
previously published in Kristiansen and Faltinsen (2008). There, the experimental data
were re-analyzed and reflections in the wave flume were found to cause some surprising
results in some cases. This discussion is also found in Section 9.4. The results include
piston-mode amplitude, A,, the “far-field” amplitude, denoted by Ay, as well as phases of
the free-surface elevation relative to the heave motion.

We proceed with a description of the parameters used in the present numerical work,
and next present and discuss the results of the study.

Table 10.3: Numerical parameters in the simulations of forced heave of a ship section
by a bottom mounted terminal. Initial number of elements on the different parts of the
boundary S.

Free surface (external + terminal gap)  Np = 184 + 16 = 200
Ship section (side + bottom + side) Np = 30+ 60 + 30 = 120

Bottom of wavetank Ngor = 30
Terminal NTERM =40
Far end of damping zone Nwy =4
Tank length L ~47B
Numerical beach length Ly=1L/2
Dissipation parameter Vinaz = 0.4
No. of time-steps per period Np =120 or 600

10.2.1 Parameters in the numerical simulations

The exact geometry of the physical wave flume was not reproduced in this case as it was
in the study of the fixed ship described in the previous section. Only one ship section was
modelled due to symmetry of the flow under forced heave in otherwise calm conditions.
The terminal gap width b was thus half the distance between the two hulls in the model
tests. The tank length in the numerical work was L/B ~ 47. The gridding and time-step
was similar for all tests and both the linear and nonlinear wavetanks, with cosine spacing
for refinement near the intersections between the free surface and solid boundaries, and
in particular near the convex corners of the body. The ratio of the element lengths on
the mid-part of the body to those at the corners were 200 in the simulations with flow
separation, while 25 in the other simulations. A close-up of the body and its near vicinity is
shown in Figure 10.7. As described earlier, dynamic re-gridding of the geometry was used.
The inital number of elements, numerical beach parameters and temporal discretization is
presented in Table 10.3. The number of time-steps per period was N,, = 120 in simulations
without flow separation. In the simulations with flow separation this was changed to
N, =600 at the onset of the free shear layer. We chose to initiate the flow separation at
minimum ambient velocity during the fourth period. This means that the flow separation
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Figure 10.7: An example of discretization of the boundary with refined grid near the
ship section bilges.

inititated when the piston-mode elevation was at its maximum during the fourth period.
In practice this meant after approximately 3.75 periods. In the simulations with the
nonlinear numerical wavetank the forced heave motion of the ship section was as recorded
during the model tests, whereas in the linear simulations simply a linear ramp of the first
two periods were used. Running 20 - 30 wave periods on a 2.4GHz computer took for the
simulations with free shear layer typically 1.5 hours, the nonlinear simulations without
free shear layer about 20 minutes and the linear simulations about 10 minutes.

In some cases the simulations with free shear layer broke down during the first critical
period, but the majority of the runs finalized, in particular those around the natural
period with appreciable gap amplitude. Flow separation was suppressed at the corner
of the ship opposite to the moonpool. Although the computer code may handle an
arbitrary number of free shear layers simultaneously, the simulation easily breaks down
if the ambient velocity is very low. Small induced vorticity in the free shear layer will
then result in devastating short wave instabilities. We ran one test successfully with
separation at both corners, but the effect of the second free shear layer was negligible
both on the piston-mode and far-field behaviour and we therefore decided not to include
flow separation there.

10.2.2 Results - Piston-mode resonance due to forced heave

Three different cases were considered. The draft D, terminal gap width b and the am-
plitude of the forced motion ¢ = 73,/ B were varied. The specifics are given in Table 9.8,
where the three cases are denoted Case I - III.

In Cases I and II, the piston-mode motion is represented by the mean signal of wl
- wb, whereas in Case III, where the gap width is doubled, and the array w1l - wb is
thought not to represent the piston mode as well, only the signal from w3 is used. For
consistency, the results from theory and simulations are taken as the averaged amplitude
across the moonpool in Cases I and II, while that at the center-line of the moonpool (or
on the terminal wall in our terminology) in Case III. The phase of a signal is computed
by identifying the time of zero up-crossing, tg, in a steady part of the time-series yielding
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Figure 10.8: Time-series of the piston-mode elevation (, from Case I with ez = 13,/B =
1/72 and w/+/g/B ~ 1.017. Experiments and nonlinear simulations where flow sepa-
ration is included. The recorded ship heave motion was used as input to the numerical
model. The onset of the free shear layer is after 3.775 periods.

the phase 0 = wAty, where Aty is the time difference between t, for the signal and heave
motion.

Time-series. An example of comparison between experimental and simulated piston-
mode time-series for a test near resonance in Case I with the highest forcing amplitude
€2 = N3qa/B = 1/72 is presented in Figure 10.8. The time of onset of the free shear layer
is in this test t/T" = 3.775. The steady-state results were found not to be sensitive to
the time of onset, but a certain flow magnitude is required in order for the model to be
valid, i.e. the Reynold’s number to be sufficiently large. The simulation over-predicts in
the beginning, which is natural as the onset of the free shear layer is delayed, whereas
in reality the flow separates immediately. The two time-series converge fairly well after
a while (lower middle plot). Some time after this a modulation of the trough in the
experimental time-series occurs (lower right plot), whereas not in the simulations. The
modulations observed there occur just after ¢ = T, ~ 197 (see upper sub-plot), and
we want to elaborate somewhat on this phenomenon, which is most likely explained by
slight reflections in the flume, as discussed in Section 9.4. We mentioned there that the
reflections were of smaller relative importance in Cases I and II than in Case III. The
argumentation for this is as follows. In the two examples in the lower part of Figure 9.16,
taken from Case III, the amplitudes of the radiated waves A; are in the same order as
the piston-mode amplitude A,, more specifically A;/A, ~ 2. For the tests in Case III
we have in general that A;/A, ~ 2 — 3. For Case I and II, however, this ratio is much
larger around resonance, it is Ay/A; ~ 7 — 10. Therefore the potential of the reflections
to affect the fluid behaviour in the moonpool is in general higher in Case I1I than in Cases
[ and II. In Figures 9.16(a) and (b) examples near resonance are presented from Case I
and Case II respectively.
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Figure 10.9: The effect of the boundary layer on the nondimensional piston amplitude
is negligible. To the right is a close-up around the resonance frequency. Case I with es.

Reduced data. With this discussion in mind, we choose to present the nondimen-
sional amplitudes by means of “error bars”, with one end being the value acquired from
the steady-state part of the time-series indicated by the solid vertical bars in Figure 9.16,
and the other end the value acquired using the time window extending from one period
before and until one period after t = T}.,. This certainly is not a measure of measurement
accuracy or a range over where the “real” values would reside. It is not any rigorous
attempt to rule out the bias introduced by reflections, simply because this would not be
possible. However, it gives a reasonable range for the values, and the reader should keep
the above discussion in mind when using the data. Choosing the latter end of the error
bar was a matter of observations from inspection of figures like Figure 9.16 for all tests,
revealing a tendency that the system is closing in on steady-state around ¢ = 7,5 in most
of the tests. This means that we to a certain extent rule out reflections from the beach
side (cf. Figure 9.15), but not reflections from the wavemaker side and we neglect in a
way the fact that steady-state in general is not perfectly reached.

We stress that, as we have argued, reflections most likely have not affected the results
for Case I and II to a very high degree due to the small amplitudes of the radiated waves.

As in the work by Faltinsen et al. (2007) and Kristiansen and Faltinsen (2008), we
consider the nondimensional piston-mode amplitudes A,/7s,, the “far-field” amplitudes
Ay /n3, at the position of wll (see Figure 9.15), the phases as well as the added mass and
damping.

We first discuss the results from the linearized problem. Results from present linear,
inviscid simulations and from the theory are presented and compared with respect to
free-surface kinematics in Figures 10.10 - 10.14. Added mass and damping coefficients
are presented in Figures 10.15 - 10.17. The theoretical results are represented by solid
curves, while the present linear simulations are represented by markers. The agreement
between the present linear simulations and the linear theory is obvious for both the piston-
mode and far-field amplitudes as well as the added mass and damping. This serves as a
verification of the basic linear wavetank on which the other numerical wavetanks are built.
We note the occurrence of negative added mass which is typical of resonant behaviour. The
added mass and damping coefficients are calculated from the present linear simulations
by numerical evaluation of the expressions

T . T .
A= o Fiipdt oy iy di 01
kj — T/ \o ) kj — T/ \g ) (0)
Jo (iij)? dt Jo (7y)% dt
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Figure 10.10: Case I (B/D =2 and b/B = 0.25) with forcing amplitude ¢; = 13,/B =
1/144. Upper: Nondimensional amplitude of the piston mode (average of wl - w5) and
“far-field” (at wll). Lower: Phases. The two sets of experimental values are connected
with vertical bars. These bars should not be interpreted directly as error bars, cf. the
discussion.

where [F}; = pfSB pyng ds is the part of the force due to the unsteady term in the
Bernoulli equation, ¢y, in the £’th direction due to forced motion in the j’th degree of
freedom and ny is the corresponding component of the normal vector. Here, Sg is the
fixed mean boundary of the ship section. ¢, is estimated by numerical differentiation
of , in the present taken as (¢"™! — ©")/At, where n is main time-step number. The
expressions in (10.1) appear directly from the definition of added mass and damping, i.e.
Fy; = —Ay;ij — By,7;, upon multiplicating this by 7j; or 7);, integrating over an integer
number of wave periods and using the orthogonality properties of cos and sin. We have
during the present work integrated over 5 - 10 periods. The added mass and damping are
in the present nondimensionalized as As3/(pB?) and Bss/(pB*\/g/B).

In Figure 10.9 a selection of results from the linear simulations with in- and out-
flow of the boundary layers, with Case I arbitrarily chosen, is compared to “standard”
linear theory. The data points are close to indistinguishable, hence the damping due to
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Figure 10.11: Same as in Figure 10.10, but for forcing amplitude e = n3,/B = 1/72.

(attached) boundary layer effects is negligible to all practical purposes, and will not be
further considered in the present work.

Hereafter, we focus on the effects on the system associated with the free-surface con-
ditions and those associated with the separated flow, with emphasis on the latter. These
results are also presented in Figures 10.10 - 10.14. The discussion above on the wave re-
flections in the measurements must be kept in mind, but apart from Case III, one should
not over-emphasize the effect this have had on the experimental results.

In short, from the figures our simulations clearly suggest that separation has a sig-
nificant damping effect on both the piston-mode and far-field amplitudes. Further, our
simulations without flow separation suggest that the nonlinearity associated with the free
surface is quite insignificant. Believing the numerical results, and comparing to the ex-
perimental data, one may draw the main conclusion that flow separation at the corner
of the ship section explains by far the major part of the discrepancies between the linear
theory and the experimental results.

The results from Case I are presented in Figures 10.10 and 10.11, with the smallest and
largest forcing amplitude € = 73,/ B in the two figures respectively. The response curve of
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Figure 10.12: Case II (B/D = 1.33 and b/B = 0.25) with forcing amplitude ¢; =
N3a/B = 1/144. Upper: Nondimensional amplitude of the piston mode (average of wl
- w5) and “far-field” (at wll). Lower: Phases. The two sets of experimental values are
connected with vertical bars. These bars should not be interpreted directly as error
bars, cf. the discussion.

the piston-mode amplitude is somewhat narrower in the experiments than that estimated
by the numerical results for both forcing amplitudes. The results are in good agreement
around and far from resonance, but differ somewhat for frequencies in the vicinity of
resonance. The same holds for the far-field amplitudes. The rapid phase shift around
resonance is somewhat relaxed by the separation effect, as seen from the right sub-plots.
The phase of the radiated wave is more affected by the separation than the phase of the
free-surface elevation in the terminal gap, and there is a clear effect of forcing amplitude,
as seen for the frequencies just above the resonance frequency. The phases of the radiated
waves predicted by the simulations with separation for w/+/g/B ~ 1.15 differ somewhat
from the linear theory, despite the seemingly small effect of the separation judging from
the piston-mode amplitude. In these tests the amplitude of the radiated waves are very
small, and perhaps the numerical modelling of these small waves were not completely
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Figure 10.13: Same as in Figure 10.12, but for forcing amplitude e2 = n3,/B = 1/72.

successful. For the main part otherwise, the trends of the phases from experiments and
simulated results are in good agreement.

We remark that an alternative to Equation (10.1) is to calculate the added mass
and damping from Fj3 using phases. Since the agreement between the added mass and
damping coefficients from the present linear simulations and the theory is in general good,
implicitly, the phasing is also good. Therefore, the phase from the linear simulations is not
presented in Figures 10.10 - 10.14, although agreement has been checked by the author.

The results from Case II are presented in Figures 10.12 and 10.13, again with the
smallest and largest forcing amplitude ¢ = 73,/B in the two figures respectively. The
simulated amplitudes and phases exhibit the same qualitative behaviour in Case II as in
Case 1. However, the experimental results from Case II show a slightly different behaviour
to those in Case 1. The response curve of the piston-mode amplitude in the experiments
seemingly inhibits a shift to the left (lower frequency), whereas that from the simulations
does not. We believe the shift in the experimental data is a bias error caused by the
reflections in the wave flume, as the shift is towards the same wave frequency as where we
observe strange behaviour in Case III as will be shown shortly. The frequency we speak
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discussion.

of is w/y/g/B ~ 0.87. The simulations in general predict slightly higher response than
that measured near and above the resonance frequency. The same holds for the far-field
amplitudes. As for the phases, the rapid change of phase around resonance of the terminal
gap motion is also somewhat shifted to the left in the experiments, whereas not in the
simulations, and above the resonance frequency, the measured phases are somewhat lower
than those simulated, although showing the same trend relative to linear theory.

The results from Case III are presented in Figure 10.14. In Case III the behaviour
of the simulations are similar to that in Cases I and II, but less pronounced, and one
may say that the behaviour is close to linear. The effect of flow separation is according
to our results very modest in this case. The relatively large span in the “error-bar” for
the majority of the presented model test results prohibits drawing conclusion about the
correctness of the numerical results. However, the values taken from around t = T,



10.2. Forced heave of a ship section by a bottom mounted terminal 149

25 T T T
o —— Added mass (theory)
oL K ¢ Added mass (present) |
o % --- Damp?ng (theory)
150 3 o o Damping (present)
|

_1‘ L L L L L L L
36 0.7 0.8 0.9 1 1.1 )
w/(g/B)°®

Figure 10.15: Heave added mass and damping of the ship section. The hydrody-

namic coefficients are nondimensionalized as As3/(pB?) and Bsz/(pB%\/g/B). Case 1
(B/D =2 and b/B = 0.25).

25

R
-0 ° 1

8
-0.5- b
1k i
-15 I I I I I I I
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
OJl(g/B)OS

Figure 10.16: As Figure 10.15, but for Case II (B/D = 1.33 and b/B = 0.25).

in Figure 10.14 do suggest a relatively linear behaviour also in the model tests. It is
not surprising that the behaviour is more linear in Cse IIT than in Cases I and II, when
considering the vertical displacement relative to the horizontal dimensions. With double

gap width b and approximately half the response A,, we would expect less effect of flow
separation in this case relative to the other two cases.

The relative difference between the linear theory and the present nonlinear simulations
is presented in more detail in Figure 10.18. For the nonlinear simulations without free
shear layer, results only from Cases I and IIT are included in order to avoid over-loading
of the figure, but the behaviour in Case II is similar to that in Case 1. Our simulations
suggest that the altering of the piston-mode amplitude A, as a result of the nonlinear
free-surface conditions in Cases I and II is only around 3 - 4%, and is similar for both
forcing amplitudes. We would in general expect an amplitude dependent behaviour, but

this is small here, so perhaps this is due numerical inaccuracies. For the frequencies
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Figure 10.17: As Figure 10.15, but for Case III (B/D = 2 and b/B = 0.5).

just above resonance, or w/+/g/B =~ 1.05 the nonlinearity introduced by the free-surface
conditions seem to amplify the response somewhat, meaning we see a slight broadening
of the response. We see some amplitude dependency there. In Case III the nonlinearity
introduced by the free-surface conditions gives no effect of practical interest. The effect of
the flow separation is in Cases I and II a reduction of the amplitude around resonance of
about 40% at the largest forcing amplitude and about 30% at the lowest forcing amplitude,
both of which are quite significant. In Case III the effect of flow separation is a reduction
near resonance of about 8% which is fairly moderate in comparison to the other two cases,
meaning the response is significantly more linear.

10.2.3 Summary of the study

We summarize the present study as follows. The study involved forced heave of a ship
section by a bottom mounted terminal. The ship section had sharp bilges in order to fix
the separation point. The periods T of the forced heave motion were chosen to be around
the piston-mode resonance period 7,,. The goal was to study the effects from the nonlinear
free-surface conditions, flow separation from the ship bilges as well as in- and out-flow of
the boundary layers on the piston-mode amplitude around piston-mode resonance. We
varied the ship section draft D, the terminal gap width b and amplitude of the forced
heave motion 73,. The studied cases are summarized in Table 9.8.
The main results from the present study are

e Linear theory (Faltinsen et al. (2007)) as well as the present linear simulations
predicted A, /73, ratios at resonance up to about 13 in Cases I and II and 4 in Case
I1T.

e The corresponding ratios measured in the model tests were about 7 for the largest
heave amplitude and about 8 for the smallest heave amplitude in Cases I and II. In
Case III wave reflections made the data hard to interpret, but most probably, the
ratios were very similar to those predicted by linear theory.

e The present nonlinear simulations without flow separation predicted A,/n;, ratios
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Figure 10.18: Relative difference between the piston-mode amplitude predicted by
linear theory and simulations with and without flow separation. Only results from
Cases I and III for simulations without free shear layer are presented for presentability.

very similar to the linear, so there were only very small effects of the nonlinear
free-surface conditions.

e The present nonlinear simulations with flow separation predicted A,/ns, ratios very
close to those measured in the model tests.

e The present linear simulations including in- and out-flow of the boundary layers
showed that this effect was totally negligible in the present context.

The present study strongly indicates that flow separation is the main contributor to
the observed discrepancies between linear theory and experiments around piston-mode
resonance period T},.

10.3 Moored ship by a bottom mounted terminal

Our third and last main study involves a ship section with sharp bilges moored by a bottom
mounted terminal and subject to incoming waves in deep water conditions. Again, as in
the study on forced heave as discussed in the previous section, the water depth is too
large to give direct relevance to offshore LNG terminals. The study is nevertheless highly
relevant and describes key features of the problem.

This last study is in a way more realistic than the previous two studies, as the ship
section oscillates under influence from incoming waves, rather than being fixed or forced to
move. An implication is that the problem is more demanding as the ship motion becomes
a function of the surrounding fluid and vice versa. Despite the increased complexity we
believe that through both the physical and numerical models, reliable and interesting
results have been acquired. The model tests were described in Section 9.3. Also, some
of the numerical work involving the linear wavetank was reported in Section 4.2, used
there to exemplify the behaviour of the system. We proceed by reporting the relevant
parameters of the numerical work before presenting the results.



152 Studies on resonant behaviour

10.3.1 Parameters in the numerical simulations

In the simulations with the nonlinear wavetank, both with and without flow separation,
the exact geometry of the physical wave flume was modelled, including the initial tilt of
the hinged wavemaker flap, and the flap motion was according to the flap signal in the
model tests. The situation is described in Figure 9.8. For the linear wavetank, a tank
length of L = 18\ was used for each run, meaning the model test geometry was not
reconstructed. Based on the group velocity Cy, re-reflections will occur after 108 periods
with this tank length. In the linear simulations we attempted to reach closer to steady-
state than in the runs with the nonlinear tank without flow separation where significant
beating of the signals occurred. The beating behaviour in the numerical wavetanks is
further discussed below. A sinusoidal signal with linear initial ramp of five periods was
used in the linear case.

Typical spatial discretization as used in the present simulations is exemplified in the
snapshots in Figure 10.19. The initial grid resolution is indicated by numbers in the figure.
A somewhat finer body discretization was used in the simulations with flow separation
than in those without. A finer resolution near the corners of separation was required in
the former case. As in the study of forced heave, the element lengths followed a cosine
squared distribution, with the length of the elements near the corner 1/200 of those in
the middle part of each body surface. On the free surface, a total of 300 elements was
found adequate in order to propagate the waves properly, giving a number of elements per
wavelength between 18 for the shortest waves of period 7" = 0.6s and 52 for the longest
waves of period T" = 1.0s. Around the resonance periods of 7' ~ 0.73s—0.78s this was 25 to
33, which we have found represents both amplitude and group velocity well for such small-
amplitude waves. Only two elements were used to describe the free surface in the terminal
gap, reasoning that hardly any local disturbances in the terminal gap were observed in
the experiments. The low resolution helped avoiding numerical instabilities related to
frequent re-gridding of the free surface. The numerical instabilities are associated with
the linear interpolation of the potential when splitting an element, which we suspect is too
crude on the free surface. This was discussed in Section 5.5. The sway motion of the ship
induced a slightly tilted terminal gap free-surface. This is, however, captured adequately
using only two elements, and the chosen resolution therefore considered sufficient for our
purpose. As before, re-gridding was applied in order to keep the resolution at a certain
level, in particular along the ship side and terminal wall.

The number of time-steps was N, = 120 per period in the runs without flow separation.
In those with flow separation, 120 was used until the onset of separation, and 600 after
the onset. The number 600 is considered near optimal in the sense that the free shear
layer behaviour behaves well as discussed in detail earlier. The time of onset was in the
present study chosen as the instant the free surface in the terminal gap, (,, starts moving
downwards from maximum positive elevation under the condition that (;, > 3A, where A
is the incoming wave amplitude. As mentioned in the previous section, the steady-state
results are found not to be sensitive to the time of onset, but a certain flow magnitude is
required in order for the model to be valid, i.e. the Reynold’s number to be sufficiently
large (cf. Section 2.2). The runs without free shear layer typically took two hours running
55 wave periods, while those with free shear layer about ten hours running 50 wave periods
on a 2.4GHz processor. The additional CPU time in the latter was for the most part due
to shorter time-step, but also due to somewhat higher resolution on the body as well as
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Figure 10.20: Added mass and damping calculated by using the linear wavetank. Left:
Case A. Right: Case B.

additional CPU time associated with the free shear layer.

For the linear wavetank a similar spatial discretization as for the nonlinear wavetanks
was used, except on the body only 36 elements, and along the bottom 80. The number
of time-steps per period was 80. Each simulation took about about 25 minutes running
90 wave periods on a 2.4GHz processor.

Added mass and damping used to estimate resonance frequencies, were acquired from
forced heave and sway simulations using the linear wavetank as described in the previous
section. In these tests the resolution was somewhat lower, taken as in the forced heave
study described in the previous section. The added mass and damping coefficients are
presented as functions of nondimensional frequency in Figure 10.20. The coupled ship and
piston-mode resonance frequency w,/+/g/B is indicated for reference. Note the negative
values of added mass and coupled damping coefficients.

For the highest steepness, only two runs with flow separation were successful. In all
other runs breakdown occured about 2 - 6 periods after the onset of flow separation. The
experience with forced heave was that if the simulations survived the first two periods it
would proceed without breakdown. This is also the case with the present lowest steepness
case. The reason for breakdown in the highest steepness case is probably associated with
an appreciably larger body motion than in the forced heave simulations. The automatic
simplification procedure was developed with small body motions. The breakdown is
in general due to element crossing near the corner of separation. As discussed in the
presentation of the automatic simplification procedure in Section 6.4, reducing the time-
step was not feasible and therefore not done. More work is needed in order to provide a
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more robust procedure, but this is left for future work.

Beating. As briefly mentioned above, the ship motion and terminal gap elevation
as simulated with the nonlinear wavetank without flow separation and linear wavetank,
for frequencies close to the natural frequency, exhibit pronounced beating due to the
transient behaviour starting from initially calm conditions. This is a result of small
damping. Therefore, steady-state is in general not reached within the time of simulation.
Further, at resonance, the motion is still slightly increasing even after the 90 wave periods
in the linear simulations. The condensed data presented in this study therefore must be
seen as near steady-state values only. In order to extract data as consistent as possible,
the average amplitude over one beating period, T;, is used as long as the time-series are
long enough. The beating period was taken as T, = 1/|f — f,| where f = 1/T and
fn = 1/T,, with T,, calculated a priori. At the natural frequency the average amplitude
of the last 10 periods were used. With the motion still increasing at resonance and with
the beating behaviour as described, the values are not exactly the desired steady-state
value, but do indicate reasonably well the steady-state values. In the model tests and
simulations including flow separation, however, steady-state is reached in all cases.

10.3.2 Results - Coupled ship and piston-mode resonance

Two different cases were considered. The terminal gap width b and the wave steepness
¢ = H/X were varied. The specifics are given in Table 9.5, where the three cases are
denoted Case A and B.

In the following we present results from the above described numerical work as well
as the model tests. We first present example time-series. Next, we present reduced data
in terms of near steady-state amplitudes of the ship motion and piston-mode amplitude.
These are nondimensionalized by the incoming wave amplitude and presented as function
of the nondimensionalized wave frequency w/1/g/B. The terminal gap amplitude is rep-
resented by the wave elevation 0.037m away from the terminal, taken in the model tests as
¢y = 0.5(w6 +wT7). What we refer to as terminal gap amplitude is thus not that averaged
over the terminal gap width, but in all the considered tests, the free surface was observed
to be near horizontal. This therefore represents the piston-mode amplitude quite well.
For consistency, the terminal gap elevation in the numerical simulations are taken as the
free-surface elevation at the same position.

Time-series. The time-series examples are presented in Figures 10.21 and 10.22.
They are taken from Case B (b/B = 0.15). The nondimensional wave frequency is
w/\/g/B =~ 1.69 (corresponding to 7' = 0.75s), and the steepness is ¢, ~ 1/170 in
the first figure and e, ~ 1/85 in the second figure. From top to bottom we present sway,
heave, roll, terminal gap elevation and the incoming wave. The vertical bars indicate the
onset of flow separation in the numerical simulations denoted “BEM with vortex” in the
legends. The nonlinear numerical simulations without flow separation is simply denoted
“BEM”. Time-series from the linear wavetank is not included since the model test geom-
etry nor the wavemaker motion were reconstructed in those runs. Please note that the
linear solution over-predicts significantly more than the nonlinear solution without flow
separation. This will become clear when we present the reduced data.

We first discuss the time-series in Figure 10.21. The horizontal drift away from the ter-
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Figure 10.21: Time-series of the three degrees of freedom ship motion, terminal gap
elevation and incoming wave elevation. From Case B. w/y/¢g/B ~ 1.69 and the lowest
wave steepness H/\ ~ 1/170. Nonlinear numerical wavetank without and with flow
separation denoted by “BEM” and “BEM with vortex”, respectively.

minal is clearly over-predicted by the simulation without flow separation relative to that
with flow separation. Since the experimental data are band-pass filtered we are not able
to compare the drift with that measured in the model tests. However, from the high-speed
video it is quite evident that the drift is much closer to that predicted by the simulations
including flow separation than to those without. The oscillation amplitude of the sway
motion is also largely over-predicted by the simulations without flow separation, whereas
only somewhat over-predicted by the simulations with flow separation. For heave, the
simulations without flow separation clearly over-predict, while the simulations with flow
separation compares well with the measured. Roll is very small and the experimental data
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Figure 10.22: Time-series of the three degrees of freedom ship motion, terminal gap
elevation and incoming wave elevation. From Case B. w/4/g/B ~ 1.69 and the highest
wave steepness H/A ~ 1/85. Nonlinear numerical wavetank without and with flow
separation denoted by “BEM” and “BEM with vortex”, respectively.

here shown are dominated by noise in the accelerometers. The roll amplitude is somewhat
smaller in the simulations with flow separation relative to those without flow separation,
with the relative difference more or less as for sway and heave. The amplitude is approx-
imately 0.5deg in the simulations including flow separation. The terminal gap amplitude
is also clearly over-estimated by the simulations without flow separation. Including flow
separation significantly improves the situation, although they still over-predict by about
25%. We note that for all main quantitities of the problem, i.e. sway, heave and terminal
gap motion, steady-state is reached in a matter of about 12 - 15 periods in the model
tests and the simulations with flow separation, whereas in those without flow separation,
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steady-state is not yet reached by the end of the simulation. There is a clear beating in
the signals from the nonlinear simulations without flow separation. The incoming wave
time-series, taken as 0.5(w1+w2), is presented in the bottom of the figure. The incoming
wave is reasonably reproduced by the numerical wavetank. We mention that there are
some small discrepancies as seen from the figure; the wave in the model tests exhibits some
features that are not as expected. This includes slightly larger minima than maxima and
slightly wider troughs than crests. The incoming wave amplitude was only 2.8mm in the
presented case. The amplitude of these features are thus very small. We believe they are
due to some transverse motion and possibly meniscus effects on the wave gauges.

Much the same discussion applies for the results in Figure 10.22. This corresponds to
the same set-up, but for the highest wave steepness. An exception is that the results from
the numerical model with flow separation over-predict less in this case. There is almost
no over-prediction for heave and about 12% for the terminal gap amplitude corresponding
to that in sway. The simulation without flow separation predicts a large drift away from
the terminal. The motion then tends away from resonance due to the increased gap which
is initially /B = 0.15, while it increase to b/B ~ 0.19 around ¢/T = 35 — 38. In reality
a taut mooring will not allow this significant drift, and the over-prediction would most
likely be higher in such a case.

As a supplement, we present time-series of the terminal gap elevation for a range of
wave periods in Figures F.5 - F.8. These illustrate the beating behaviour for periods
around the natural period in the nonlinear simulations where flow separation is not in-
cluded. The vertical bars indicate initiation of flow separation in the tests where such
simulations were made. Some of these break down quite early, as discussed. Also some
of the nonlinear simulations without flow separation break down. When such large ship
motions occur that re-gridding is applied in the terminal gap, saw-tooth instabilities arise
with breakdown after a few periods as a consequence.

Reduced data. Reduced data in terms of near steady-state values are presented in
Figures 10.23 and 10.24. The main observations are that linear theory clearly over-predicts
around resonance as expected. Including flow separation (in the nonlinear simulations)
seems to remedy the majority of the discrepancies. In the nonlinear simulations without
flow separation the resonance frequency shifts somewhat to a lower value due to mean
drift away from the terminal, with the effect being more pronounced in the cases with
highest wave steepness, as one would expect. We note that this is not realistic in the
case of taut mooring, and the behaviour would most likely be closer to the linear if
restrained from drifting. If this is true, effects from the nonlinear boundary conditions
are not important. Further, believing the results produced by the simulations including
flow separation, the present results strongly indicate that flow separation is the main
contributor to the discrepancy between linear theory and experimental data.

This is consistent with the findings in the previous section for the forced heave prob-
lem, where around the piston-mode resonance period 7, there was a clear effect of flow
separation. It was, however, from that study not clear whether it would be so also in the
case of a moored ship undergoing resonant coupled ship section and piston-mode motion.
It turned out, as seen from the present results, that the flow separation effect is in fact
appreciably more pronounced in the case of a moored ship than in the radiation prob-
lem, now around the coupled ship and piston-mode resonance period T,,. In the forced
heave problem, linear theory over-predicted the piston-mode amplitude by about 45%
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and 65% in the lowest steepness and highest steepness cases respectively, while in the
present moored ship section problem, by about 240% and 300% for the two steepnesses

respectively.

We have no explanation for this observation. An explanation could perhaps have been
the different relative velocity Uy at the corner of separation. It is the relative velociy which
is relevant for the strength of the induced circulation, and thereby level of damping. The
piston-mode amplitudes were in the present case comparable to that in the forced heave
case presented in the preceding section. In both the forced heave study and the present
moored ship section study, the piston-mode amplitudes at resonance were approximately
A,;/B ~ 0.07 in the lowest steepness case and A,/B ~ 0.14 in the highest steepness case.
In the present case when the ship section is free to oscillate, there is a chance that the
relative velocity is higher, despite a comparable piston-mode amplitude. We argue in
the following, however, that this was not the case. We exemplify this as follows: In the
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forced heave case, we had e.g. for Case I in the lowest steepness case that ns,/A, ~ 1/10.
In Case A in the present moored ship section case, we have that yg/A, ~ 1/5 and
rg/A, ~ 1/4. If we assume that the piston-like fluid motion is out of phase with the
heave motion, the amplitude of the circulation should go like (1 4 0.1)* = 1.21 (for Case
I) and (1+0.2—0.25)% ~ 0.9 (for Case A) relative to the circulation with no ship motion
and only fluid motion. This means the flow separation effect should be, according to this
simple analysis about 0.9/1.21 ~ 0.75 times stronger in the moored ship case than in the
forced heave case. That is, according to this reasoning, the induced circulation is lower
in the moored ship case. Still, the effect is, as stated above, much more pronounced.

One should be careful with generalizations, but we believe that in a large number of
applications in marine hydrodynamics with similar types of gap resonance phenomena
where linear theory in general over-predicts relative to experiments or full-scale measure-
ments, flow separation is the major cause to this discrepancy. Our feeling is also that
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Figure 10.25: Observed ship motion behaviour as function of wave frequency.

effects associated with the nonlinear free-surface conditions is of minor importance, at
least as long as the free surface behaves non-violent as in the present case.

Some further interesting observations partly based on the results from Figures 10.23
and 10.24, and partly from video recordings and investigation of corresponding time-series
is presented schematically in Figure 10.25. For high wave frequencies basically only sway
is excited. A rapid increase in heave occurs when tending to the natural frequency from
above. Around resonance, the relative phase between heave and sway is as stated above,
approximately 180deg. This decreases rapidly to nearly Odeg with decreasing frequency,
with a near total canceling of the terminal gap motion.

In reality, bottom mounted GBS type of terminals are not built in water depths as
large as that considered here. The choice of water depth in the present study was a matter
of laboratory availability. The water depths in the present study was h/B = 2.2. The
water depths are more typically h/B ~ 0.4—0.7 for these types of installations. There are
three main effects associated with decreasing the water depth h, given otherwise the same
dimensions. First, as indicated in the discussion around Figure 4.4, T, increases with
decreasing water depth. Second, heave added mass of the ship section increases so that
also the ship motion resonance period T,, increases. A relevant question is then whether
T,, becomes closer to T, or not. If they come close, substantially larger motion than
that reported here may be a consequence. Third, since the ship motion resonance period
increases, the associated incoming waves become longer and start communicating with
the terminal gap flow more directly, and the resulting discussion becomes slightly more
complicated than the above. Then comes the aspects of shallow water waves. Whether
the nonlinearities associated with the incoming shallow water waves are important to the
resonance problem is not clear at this stage. It was investigated for a fixed ship section in
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Section 10.1. The results in that study were somewhat inconclusive due to possible bias
errors in the model tests of that study. Our suggestion was, however, that the shallow
water wave effect was small in that case.

10.3.3 Summary of the study

We summarize the present study as follows. The study involved a moored ship section
by a bottom mounted terminal. The ship section had sharp bilges in order to fix the
separation point. The ship section and terminal were subjected to deep water waves. The
periods T of the incoming waves were chosen to be around the coupled ship and piston-
mode resonance period 7,,. We varied the terminal gap width b and wave steepness H/\.
The steepness was small. The studied cases are summarized in Table 9.5. The goal was
to study the effects from the nonlinear boundary conditions and flow separation from the
ship bilges on the amplitudes of the ship motions in sway, heave and roll as well as the
piston-mode amplitude around coupled ship and piston-mode resonance.
The main results from the present study are

e The present linear simulations predicted A,/A ratios at resonance up to about 15
in both Cases A and B. The sway and heave motion was (z,,v,)/A ~ 2 — 3. The
roll motion was very small.

e The A,/A ratios measured in the model tests were about 5 for the largest wave
steepness and about 6 for the smallest wave steepness in both Cases A and B.
There is a significant discrepancy between those measured and predicted by linear
theory. The sway and heave motion was z,/A ~ 1 — 1.5. The roll motion was close
to zero.

e The present nonlinear simulations without flow separation predicted A,/A ratios
in between those predicted by the linear simulations and measured in the model
tests. They were appreciably affected by large drift from the terminal. The drift
was caused by the largely over-predicted piston-mode motion. With a more realistic
taut mooring the drift would not occur and the results would probably be close to
the linear results.

e The present nonlinear simulations with flow separation predicted both ship motions
and piston-mode motion very close to those measured in the model tests.

The present study strongly indicates that flow separation is the main contributor to
the observed discrepancies between linear theory and experiments around coupled ship
and piston-mode resonance period T,,. The effect of flow separation is significantly more
pronounced when the ship section is free to oscillate than when forced to oscillate. The
latter was studied by means of a forced heave study in the previous section.

10.4 Forced sway of a ship section by a bottom mounted
terminal

We study the resonant piston-mode behaviour in forced sway of a rectangular ship section
with sharp bilges by a bottom mounted terminal. Forcing frequencies near the piston-
mode resonance frequency 7, is applied. The numerical work related to forced sway was
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Figure 10.26: Nondimensional piston-mode amplitude Ag/m2, in the case of a ship
section undergoing forced sway motion. Note the different scales in the figure axis.

originally meant as part of a quantitative study on the shape of the vortical structure
emanating from a sharp corner in collaboration with other researchers at NTNU. Model
tests of forced sway were planned in the wave flume at MARINTEK described in the
two previous sections, with measurements involving Particle Image Velocimetry (PIV).
Software had been developed by these researchers for identification of the main vortical
structures from the PIV images, suitable for direct comparison with the present simula-
tions. However, the model tests could not be performed due to an unresolved problem
of slight drift in the rig controlling the sway motion, so the present numerical work on
forced sway has not previously been published.

We nevertheless find it interesting to present the results from the numerical study as
a supplement to the study on forced heave presented in Section 10.2. The geometrical
set-up is the same as in that study. The parameters are described in Table 9.8.

Also the same numerical parameters as those used in the forced heave tests were used,
and forced sway amplitudes the same as the forced heave amplitudes. Not all simulations
with the nonlinear wavetank with flow separation were successful, but we made no effort
in improvements on this matter since the experimental work was stopped.

Reduced data by means of piston-mode amplitude A, /1., taken as that averaged over
the gap are presented in Figure 10.26. We note the considerable piston-mode amplitude
resulting from the forced sway motion in Cases I and II. In Case III, the response is much
lower. The results are hence sensitive to the ratio b/ B. The response in Case II is higher
than in Case I due to a larger draft D. The discrepancies between the linear simulations
and the nonlinear simulations with flow separation are very similar to those in the forced
heave study. The response is, however, significantly higher here, in particular in Case II.
For forced heave, the ratio was from linear theory A;/A ~ 13 in the heave case, while it is
A, /A ~ 43 in the present, sway case. Despite the different response, the relative damping
effect due to flow separation is very similar in sway and heave.



164 Studies on resonant behaviour

6 L
S|
o
<
2 L
0
6t Linear BEM |
O Nonlinear BEM
X Sharp corner %
< 4 O 1/B=0.5% 1t %
< = r/B=0.9%
ol A r/B=1.4%
0
10F
8 L
g%,
< 6 X
\U)
T 4yt
2 L
0 L L L L L L L L
0.6 0.8 1 1.2 0.6 0.8 1 1.2
0.5 0.5
w/(9/B) w/(9/B)

Figure 10.27: Nondimensional piston-mode amplitude A,/A in the case of a fixed ship
exposed to waves. Simulations include linear, nonlinear without flow separation and
nonlinear with flow separation. The simulations with flow separation include sharp
corner and rounded bilges of different radii ». Upper row: Case 1. Middle row: Case
2. Lower row: Case 3. Left column: Lowest wave steepness ¢; = 1/600. Right column:
Highest wave steepness €3 = 1/300

10.5 Fixed ship with flow separation

In light of the discrepancies between linear theory and model test results in the study
on the fixed ship section by a bottom mounted terminal subject to incoming waves, we
wanted to investigate the significance of possible flow separation on this system. As is
discussed in Section 10.1, we expect that flexing of the ship section side caused a similar
damping effect as that due to the flexing terminal in the moored ship section model
tests. We therefore reached the conclusion that flexing of the ship section side caused
a considerable damping in the fixed ship section model tests. The present study was,
however, done prior to that conclusion, and we still consider that the acquired results are
worth mentioning, showing trends as expected with respect to wave steepness and radius
of the bilge keels.

In the model tests the bilge radius was /B = 0.09, and we had at most KC' ~ 5. In
that case, vortices will not break strongly away from the ship section, although the flow
will separate. This was discussed in sub-section 10.1.2. With sufficiently low radius r,
however, the K C-numbers will be high enough in order to achieve vortex shedding. Our
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Figure 10.28: Zoom-up of the middle left sub-plot of Figure 10.27.

strategy to investigate the flow separation effect was to model the ship section bilge first
as sharp and then with increasing bilge radius, r, with a fixed separation point at the
mean apex angle. We realize the shortcomings of the method when fixing the separation
point. Boundary layer calculations would be needed in case of estimating the separation
point, but this was not done.

Suffering from numerical problems associated with the free shear layer entering the
body when increasing the bilge radius we were only able to simulate for r/B < 0.014. We
believe the problems were associated with the physics involved where, with decreasing
KC-number, vortices breaking away from the body becomes less likely.

The simulations were done with the same set-up and numerical parameters as in the
simulations of the study of the fixed ship section in Section 10.1, except the ship bilges
were allowed to be rounded and a higher number of elements were used on the ship section.
We considered all Cases 1 - 3, but had to reduce the steepness of the incoming waves to
€1 = 1/600 and e; = 1/300 as vortical structures with dimension Dy in the order of the
terminal gap width b and bottom clearance d evolved when using the original steepnesses.
In such cases the automatic simplification algorithm still works, but its validity seizes. An
example of this type of behaviour was presented and discussed in connection with Figure
6.8. We suspect that in such a case the free surface in the terminal gap as observed
from above in an experiment would look rather chaotic, since an appreciable amount of
vorticity would be advected towards the free surface.

In Figure 10.27 we present the nondimensional piston-mode amplitude A,/A as that
averaged over the free surface in the terminal gap. Note that with the wave steepness
being only about one quarter of that in the original study, the amount of vorticity shed
through flow separation and the K'C-numbers are not directly comparable to those used
in that study. Anyway, there is some effect of wave steepness, as seen when comparing
the left and right column of sub-plots in the figure. Also, there is some effect of bilge keel
radius. This is perhaps best illustrated by the lower right sub-plot. Those results suggest
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that a bilge radius of only 0.5% of the ship beam removes about one third of the damping
effect of flow separation. Further, from Figure 10.28, which is a zoom-up of the middle
left sub-plot of Figure 10.27, we see that the results seem to approach those without flow
separation when increasing the radius.



Chapter 11

Summary and further work

11.1 Summary of the present work

In the present work we investigated the gap resonance problems associated with a ship
alongside a bottom mounted terminal. The gap between the ship and the terminal was
denoted the terminal gap. The resonance problems were studied in a two-dimensional
setting, which means we studied a mid-ship section. If the ship section is forced to move,
or fixed and subjected to incoming waves, we have the piston-mode resonance problem.
By piston-mode motion we mean the massive, near vertically oscillating flow of the fluid
entrained between the ship and the terminal. If the ship section is free to oscillate, we
have the coupled ship and piston-mode resonance problem. With each of these problems
there is a resonance frequency.

The main focus was to investigate why linear theory in general over-predicts the ship
and piston-mode motion near the resonance frequencies. Dedicated experimental as well
as numerical work was performed and results compared. The present experimental work
involved a fixed and a moored ship section. Results from previously published experi-
ments on forced heave of two ship sections was also used. Geometrical parameters like
theterminal gap width b, the water depth h, and wave steepness H/\, were varied. The
present numerical work involved two time-domain wavetanks based on a boundary ele-
ment method, one linear wavetank and one fully nonlinear wavetank. We investigated
the effect of the nonlinear boundary conditions. Further, the following two viscous effects
were investigated: The in- and out-flow of boundary layers and flow separation from the
ship bilges. Special effort was made in modelling the flow separation as well as calculating
the ship motion in the nonlinear numerical wavetank.

Basic numerical wavetanks. We assumed potential flow. The boundary value prob-
lem involving the Laplace equation with the kinematic and dynamic boundary conditions
were recast into a standard boundary integral equation based on Green’s second identity.
Two time-domain wavetanks applying the Boundary Element Method (BEM) were im-
plemented, one linear and one fully nonlinear. By linear we mean that both linearized
boundary conditions were satisfied at the mean position of the boundaries. Rankine sin-
gularities were distributed along the boundary. The Mixed Eulerian-Lagrangian (MEL)
formalism was adopted, where the boundary value problem is solved given the instanta-
neous situation each time-step, and the unknowns, the free surface Sr and the potential
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v, are updated according to this solution. We chose a fourth order explicit Runge-Kutta
scheme for time-integration. Re-gridding of the elements defining the intersections be-
tween the free surface and the solid boundaries was implemented in order to keep the grid
resolution at a certain level. No explicit smoothing of any kind for the free surface was
used.

Numerical modelling of viscous effects. The two viscous effects of in- and out-flow
of boundary layers as well as flow separation were modelled. The former was implemented
in the linear wavetank only, and the latter in the nonlinear wavetank only. Switches de-
termined whether the two viscous effects be turned on or off. In this way, we were able to
isolate the different effects. Laminar boundary layers were assumed, and a semi-analytical
solution found as a convolution integral handling arbitrary outer flow. The in- and out-
flow velocity was posed directly on the solid boundaries. Flow separation was modelled
by an inviscid vortex tracking method where the shed vorticity is concentrated in thin
free shear layers in the irrotational fluid. The assumption of a thin free shear layer re-
quires high Reynold’s numbers. The vorticity in the free shear layer was represented by
a continuous distribution of dipoles. Re-gridding and automatic simplifications of the ge-
ometry of the free shear layer were applied each time-step. The automatic simplifications
were based on an algorithm developed within the present work and considered crucial for
the method to be applicable for long-time simulations in oscillatory flow. The procedure
required in practice the vortical structures to be localized in the vicinity of the corner of
separation.

Numerical modelling of ship motions. We considered rigid body motion in the
three degrees of freedom sway, heave and roll. This involved solving the equations of
motion. A challenge with evaluating the forces and moment was introduced by the adopted
MEL approach, since in the MEL approach, the ¢, term in the Bernoulli equation is not
defined. A simple differentiation in time gives an unstable numerical scheme. We derived
an alternative formulation of the force and moment where the time derivative was moved
outside the integrals. A closed control surface including the ship, the surrounding free
surface and a connecting surface inside the fluid was introduced and Gauss’ and Stokes’
theorems used. Some numerical problems were encountered for roll. For large amplitude
roll, the numerical scheme was unstable. For small roll amplitudes the solutions converged.
In the present work only small roll amplitudes and no instabilities were experienced. For
sway and heave the method worked well.

11.1.1 Studies of resonant ship and fluid motion

Three main studies and two supplementary studies were performed, all with a ship section
by a bottom mounted terminal. All studies were within a two-dimensional setting. In
the main studies we presented results from both model tests and present numerical sim-
ulations, while in the supplementary studies results from present numerical simulations
only. The two first main studies involved resonant piston-mode motion of the fluid with
the ship section fixed and subjected to incoming waves (“diffraction”) or forced in heave
(“radiation”). The third involved coupled ship and piston-mode motion of a moored ship
section. In the first study the ship section had rounded bilges to avoid flow separation
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as far as possible, while in the two last studies, sharp bilges in order to enforce flow sep-
aration and to ensure the separation point was fixed and known. Realistic water depths
for an offshore terminal was considered in the first study only, which involved shallow
water wave conditions. The other two main studies involved deep water conditions. In
all studies a range of wave periods 7" around resonance were considered.

Fixed ship section with rounded bilges. In the first main study the ship section
was fixed, and the model test set-up was originally meant for the study of shallow water
wave effects on offshore terminals. This involved full scale periods in the range T =
6s — 15s at full scale water depths of h = 16m — 20m. We next decided to investigate
the resonant piston-mode motion. The wave period range was extended to include wave
periods around the piston-mode resonance period 7, which in full scale was approximately
17s to 21s depending on the water depth. The water depth was extended to include also
h = 28m. We defined the three Cases 1 - 3. The ratio between the water depths and
ship beam were h/B = 0.45 — 0.625. The ship beam B and draft D were not varied.
The beam to draft ratio was fixed to B/D = 3.76. In addition to h, the parameters b
and wave steepness were varied. The steepness of the incoming waves were modest, with
Hy/X\o ~ 1/115—170, where subscript 0 means deep water limit. Flow separation was not
yet modelled numerically. The bilges were rounded in the model tests in order to avoid
flow separation as far as possible. The corner radius was r/B = 0.09. The KC-number
was no more than 5, where KC = wA,/r with A, the piston-mode amplitude. No vortex
shedding will occur for these KC-numbers, although the flow may separate. No flow
separation was observed visually during the experiments. Despite the low wave steepness,
significant nonlinearities in the free surface up-stream of the ship were introduced by the
shallow water, in particular for H/h > 1/6. The kinematics up-stream of the ship was
captured well by the nonlinear numerical wavetank. The linear simulations over-predicted
the piston-mode amplitudes A, relative to the measurements by 20 - 30% around piston-
mode resonance. Candidates explaining the discrepancy were effects associated with the
nonlinear free-surface conditions as well as flow separation from the rounded ship bilges.
If these were responsible, there should have been a clear effect of wave steepness. This
was not the case, however. We suspected that a bias error in terms of slight flexing of
the ship side in the model tests caused a reduction in the piston-mode motion, explaining
most of the discrepancy.

Forced heave of a ship section with sharp bilges. In the second main study
a ship section of rectangular shape and sharp bilges was forced to oscillate in heave
with amplitude 7s,. The parameters D, b and 73, were varied. The water depth was
h/B = 2.86. We defined three cases, Cases I - IIT with b/B = 0.25 in Cases I and II and
b/B = 0.5 in Case III. Previously published model test results were re-visited and used.
Results from a semi-analytical linear theory was also used. Our linear simulations were
verified against this linear theory.

Linear theory predicted in Cases I and IT about 30% higher piston-mode amplitudes
around piston-mode resonance 7T, relative to the measured for the lowest forcing ampli-
tude 73,, while 40% when doubling 73,. In Case III only the lowest forcing amplitude was
considered, and the linear theory over-predicted in that case only by about 10%. Also
far-field amplitudes were compared, with similar discrepancies. The in- and out-flow of
boundary layers were from our linear simulations with and without this effect turned on
found insignificant to all practical purposes. Thus, the “friction”, as one may think of
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it, along the ship side and terminal was negligible. There were only negligible effects
associated with the nonlinear free-surface conditions; the results from the nonlinear sim-
ulations without flow separation were very similar to those from the linear simulations.
Steady-state amplitudes as well as time-series from the nonlinear simulations including
flow separation compared well with those measured. Flow separation was thus found to
explain the discrepancies. The circulation introduced by the shed vorticity induced a
backflow acting like a damping. The study showed a rather weak dependence on 73,, but
rather pronounced dependence on b.

Moored ship section with sharp bilges. In the third main study the ship section
had sharp bilges and was moored by linear, horizontal springs. The beam to draft ratio
was B/D = 4. The parameters b and H/\ were varied. The water depth was h/B = 2.2.
We defined two cases, Case A with b/B = 0.2 and Case B with b/B = 0.15. No higher
modes or other local disturbances of significance were observed in the terminal gap during
model testing, while large ship and piston-mode motion were experienced. This was so
also in the numerical simulations. The results in Case A were very similar to Case B,
indicating weak dependence with b in this range of b. However, a short investigation
during model testing with b/B = 0.25 indicated a very different behaviour; the piston-
mode motion was nearly canceled at ship motion resonance 7, in that case, although the
ship motion was considerable. The phasing between the sway and heave motion of the ship
was crucial in this respect. This last case was not studied further due to time limitations.
Steady-state values were strictly speaking not obtained from the linear simulations nor the
nonlinear simulations without flow separation due to considerable beating effects. Only
near steady-state values were therefore presented. The system did reach steady-state,
however, in the model tests as well as in the simulations with flow separation. This was
so due to a significantly larger damping.

Linear simulations over-predicted both the ship motion and the piston-mode amplitude
around the coupled ship and piston-mode resonance 7;,, by two - three times relative to
that measured. The nonlinear simulations without flow separation also over-predicted,
but somewhat less than the linear. In both the experiments and the simulations with flow
separation some mean drift away from the terminal was observed. The mean drift was,
as expected, towards the wave direction due to the large piston mode. In the nonlinear
simulations without flow separation the mean drift was significantly over-predicted due
to over-prediction of the piston-mode motion. In the more realistic case of taut mooring
the experienced large drift would not be allowed. With such a mooring the nonlinear
simulations without flow separation would most probably over-predict nearly as much as
the linear simulations. We note that the ship may note drift in the linear case. As in
the forced heave case, steady-state amplitudes as well as time-series from the nonlinear
simulations including flow separation compared well with those measured. Based on this
discussion, we concluded that the discrepancies between linear theory and that measured
around ship motion resonance was due to flow separation.

The discrepancies between linear theory and that measured in the model tests were
nearly an order of magnitude higher than in the forced heave study. This indicated a
significantly stronger effect of flow separation in the resonant coupled ship and piston-
mode than in the forced heave problem with only resonant piston-mode motion.

Other studies. We also performed two supplementary, numerical studies. One with



11.2. Future work 171

forced sway with the same parameters as in the forced heave case. The results were very
similar to the forced heave case. In the second supplementary study the effect of flow
separation was investigated in the setting of the first main study of a fixed ship section in
shallow water. Also the effect of rounded bilges (/B = 0 — 0.014), with flow separation
from a the mean apex angle of the bilge, was investigated. A fixed separation point was
questionable. However, from the simulations, the damping effect of flow separation was
reduced by a third with r/B as small as 0.005 relative to a sharp corner.

11.2 Future work

Future work that could be carried out includes improvements of the present numerical
wavetanks as well as further case studies using these, either as they are or after im-
provement. We also think an investigation of the three-dimensional problem would be
interesting. Other aspects are mentioned last.

There are three numerical issues concerning the nonlinear wavetank as it is at the
present, that should be further investigated:

e The automatic simplification procedure works reasonably well. It is, however, not
very robust in cases with large ship motions. We believe that this could be improved
by developing a more robust handling of the free shear layer element closest to the
separation point to avoid entanglement when the direction of flow separation is
turning. We also expect that a higher order representation of the free shear layer
geometry would improve the matter. Less entanglement is then expected.

e When considering the coupled fluid and ship motion problem, a set of differential-
algebraic equations must be solved. To the author’s knowledge, this has not previ-
ously been explicitly noted in the literature. A further investigation of this matter
in order to try to improve the order of accuracy of the present numerical scheme
would be welcome.

e There is still an unresolved problem with roll. We are at the present time not
sure whether the roll instabilities, which occur when roll motion is appreciable,
are due to large terms that do not cancel due to numerical inaccuracies or simply
a programming bug. Perhaps a higher order spatial accuracy is needed in the
integration of the terms in the alternative expression for the moment.

Additional cases studies would be welcomed. With respect to a moored ship by an
offshore bottom-mounted terminal, it would be interesting to perform an investigation
such as the third main study in more realistic water depths of h/B ~ 0.4 — 0.8. This
would involve nonlinear effects associated with the shallow water waves as well as a more
pronounced communication between the outer flow with that in the terminal gap. In the
presented study, the communication was mainly via the ship. Further, nonlinear moor-
ing and fender characteristics should also be introduced. In the time-domain approach
adopted here, this should in principle be straight-forward to incorporate. The shallow
water effects and nonlinear mooring and fender characteristics are expected to introduce
challenges not considered in the present work. This could involve e.g. super-harmonic
resonances.
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The considered two-dimensional problem represents an infinitely long ship. In reality,
there are three-dimensional effects. One is the nearly sinusoidal mode shape of the “piston
mode” along the ship length. Another is flow separation at the longitudinal ends of the
ship and terminal. The behaviour of the three-dimensional problem is not clear to us
without further investigation. But it is not clear neither how such an investigation could
be performed. The formulation using the boundary integral formulation does not, in
principle, prohibit a direct three-dimensional investigation. The full three-dimensional
problem would, however, be very CPU-demanding and, we expect, prone to numerical
difficulties associated with the free shear layer. Consider e.g. the transverse instabilities
of the free shear layer. One could perhaps develop some automatic smoothing procedure
in that respect. Another possibility is a strip theory approach.

As described in the introduction, empirically based damping terms in the free-surface
conditions have been applied to three-dimensional linear radiation-diffraction frequency
plane codes in practice, and the magnitude of the damping terms are currently found
from model tests. A future work would be to suggest and elaborate on a more physically
based, possibly semi-empirical, method to resolve the practical problems associated with
linear theory and gap resonances. It is, however, not clear to the author what this would
involve.

We also note that the nonlinear wavetank including flow separation could be used in
other problems involving near sinusoidal flow with separation from sharp corners. For
example, the effect of baffles in a two-dimensional sloshing tank could be investigated
in case of non-violent free-surface flow. In cases involving violent free-surface flow, more
elaboration would, however, be needed with respect to the handling of the free surface in
the nonlinear numerical wavetank.
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Appendix A

The basic numerical wavetank

A.1 The discretized version of the boundary integral
equation

Assuming linear variation of ¢ and its derivatives, the discretized version of (6.1) is

N U U U Ol N Ol Ol O Ol
ap; = Z [80_]4»1 »J J7, + . It »J »J ] _ [0.]+1 »J J70g . Jt »J »J
J=1
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(A.1)
where o; = (¢,); and
0
IZDJ :/ log r; ds, IZDJ :/ a_nlogri ds,
3; 5,
0 (A.2)
LDJ :/ ¢logr; ds, [ZDJ :/ 5%1()%7’@' ds.
3; s,
The indefinite integrals are
M =¢ogr—1)+nr, IH=r1
(A.3)

ja.
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5" logr — 45 , 1= =nlogr,
where 7 = atan (£/7).

In these expressions, the integration over each element is carried out in a Cartesian
coordinate system (&, n) which is rotated and translated relative to the Earth-fixed coor-
dinate system (z,y). The former is denoted by the auxiliary plane and the latter by the
physical plane. The auxiliary plane is defined as follows. The positive {-direction coin-
cides with the tangential direction of the element in the physical plane. This direction is
defined by the unit tangential vector s of the element. Similarly, the positive n-direction
coincides with the normal direction of the element in the physical plane. This direction
is defined by the unit normal vector n of the element. This is a standard Jacobi rotation.
The rotated coordinate system is next translated such that the field point is in the origin.
Lengths are preserved in this procedure.
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Figure A.1: The path of integration. Global direction of integration as well as « are
positive in the counter-clockwise direction. The normal points into the fluid.

A.2 Exclusion of the singularity

The singularity at » = 0 from a source and/or dipole located inside the fluid domain
is excluded by performing the integration along the path S3 + S; + S, as shown in the
left part of Figure A.1. Letting first the distance denoted by a go to zero, the integrals
along S3 and S, cancel each other exactly, as the potential is continuous while the sign of
the normals are opposite. Next, letting the radius r of S; tend to zero, and noting that
0/0n = 0/0r where r is the distance from the field point to the boundary S; and further
that the integration direction is locally in the negative a direction, i.e. ds = —Rda,
we are left with the expression in (5.3). In the present case of the field point inside the
domain o« = —27w. When the field point is exactly on the boundary, we have the situation
in the right part of Figure A.1, and the same discussion applies except the boundaries S5
and Sy are not introduced, and that o = —m. Note that with x on the boundary, the first
integral on the right hand side of (5.3) must be interpreted as a principal value integral,
as the contribution from that point to the integral is, namely, a(x)p(x).

A.3 Finite difference schemes for spatial differentials

Expressions for the first and second order derivatives correct to second order in the grid
spacing are given in the following. It is assumed that a/b ~ O(1), where a,b > 0 are
explained in Figure A.2. We define a function y as a function of the curvilinear coordinate
s. For clarity in the notation we use yo = y(sj11), y1 = y(s;) and yo = y(s;—1). All
expressions may be derived by direct expansion of the function y into Taylor series.

yl sj) (b*y2 + (a® — b°)y1 — a®yo) /v (central) (A.4)
—b) >~ (=b*y2 + (a + b)*y1 — (2ab+ a*) yo) /v (forward) (A.5)
I(sj+ a) =~ ((2ab+b°) yo — (a + b)*y1 + a®yo) /v  (backward) (A.6)
yi(s) = (2by: — (a +b)y1 +ayo) /v (any) (A7)

where the prime denotes derivative, a = s;41 — sj, b =s; — s;_1 and v = ab(a + b). Note
that the expression for the second derivative is correct to second order in all the three
nodes.
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Figure A.2: The curvilinear s-axis. The indices below the curve indicate node number,
while those above the curve indicate element number.

A.4 Expression for cosine spacing along boundaries

We use a cosine squared distribution of the element lengths. This may be expressed by

ds(z) = (1 — Beos? (WLZ)) : ils;/z’ (A.8)

where 0 < 3 < 1 must be given, the parameter L is the length over which one desires an
uneven grid spacing and dsg is the element length according to an even distribution over
the length L. The value of 1/(1 — f3) is the ratio between the longest and the shortest
element. Note that with § = 0 we recover an even distribution of the nodes.
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Appendix B

Inviscid vortex tracking model

B.1 The discretized version of the boundary integral
equation including flow separation

Assuming linear variation of ¢ and its derivatives, the discretized version of (6.1) is

ap; = Z © +1 gﬂ + SD{J‘—HI@‘,J‘ - ]z‘,j B Z . Im — gj]m, B U‘§j+1lz‘,j _ Ii,j
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(B.1)

following the same definitions of £, 1, o and the [-terms as in connection with equation

(A1)

B.2 The discretized version of the free shear layer ve-
locity

The discretized version of (6.2) is, when considering the velocity U, at the mid-point of
element ¢ of the unsimplified part of the free shear layer S,

N
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Here, V = (0/0x,0/0y) while 0/0n¢ is the normal derivative with respect to the integra-
tion parameter £. The indefinite integrals are

gt — (—logr, —7), gt = (—E é),

r2’ r2

(B.4)

2
JH = (=€ +nt, —nlogr), gt = (_77_2§ + 7, §—2 —log'r’) ,
r r

where as in Appendix A, 7 = atan (/7). In the derivation of the indefinite integrals we
found Gradshteyn and Ryzhik (2000) useful (see Section 2.103 and formula (2.147)).



Appendix C

The in- and out-flow of boundary layers

C.1 Numerical integration of the convolution integral

We here derive (7.2), the numerical approximation of the convolution integral (7.1). In
the derivation, a constant time-step At is assumed. We first separate the integral from
(7.1) into two sub-integrals,

t—h t

f(7) / f(7)
I(t) = d d C.1
®) \/0 Vi—T1 7;+ nVt—T " (C1)

1) 1.(0)
where h < t. We integrate [}, by parts,
In(t) =2 ( (t — )\/_—i-/ d7'< TIVE—T dT) . (C.2)
t—h

This procedure removes the singularity. We choose h = At, and use the trapezoidal rule
for time integration. Using the trapezoidal rule will give estimates correct to second order
in time,

2dr

We approximate the derivative of f to first order in time by a backward difference scheme,
but the expression is still second order in time. We get

<>~2(f" RS f“rm)

Ih(t):2(f(t—At)\/A—t—l—l%(t—At) t—(t—At)At) (C.3)

(C.4)
— (fn 4 fnfl) / t
For I; we get, using the trapezoidal rule, that
n—1 fl n— lfn t
t) ~ 7 1/ v AL
) Z iflx/nAt—iA (Z i=1 \f) (©5)
5

n—1 fnfi 1 fl
n—1
= - = + VAL,
(; Vi 2 (f /n — 1))
where by Z /1 we mean that the first and last terms are multiplied by one half. If we
add (C.4) and (C.5) we obtain that of (7.2).
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Appendix D

Force calculations

D.1 Rotational motion

In the following statements we consider three-dimensional space for the sake of using the
cross-product, but with translational motion only in the x- and y-directions and rotational
motion only in roll, denoted #. The ship is thought to point towards the negative direction
of the z-axis with the z-axis being the direction perpendicular to and positive out of the
paper sheet with unit vector k. The unit vectors in the positive x- and y-directions are
denoted by the usual i and j.

The normal and tangential unit vectors for the moments are the vectors r x n and
r X s where r = x — X is the distance vector from the instantaneous center of gravity of
the body x¢ to a point x on the body surface. The third component, corresponding to
roll in our case, are then

ng = (v — xg)ny — (¥ — ya)n, on Sp,

D.1
sp = (x —x¢)sy — (Y — ya)ss on Sg, (D-1)

The velocity of any point on the body is vg = X¢ + w X r where in the case of roll
only and using the usual right hand rule, w = Ok such that w x r = (—yi + zj) 6. The
normal velocity of the body is vp-n = (X¢g + w Xr)-n =Xg-n+ w-r x n, where the
last equality is due to the interchangeability of the terms in the triple product. The same
applies for the tangential velocity except we consider v - s. The normal and tangential
velocities of the body are then

0 ) : . ;

55 = (i — 0y = ye)ne + (W + 0z — 2c)n, on S, b
D.2

0 ) : . :

oF = (i — 0y — ye))s, + (e + 6z — 26))s, on Sp.

D.2 The Gauss-, Stokes- and Transport-theorems

We consider a closed domain €2 enclosed by the surface S and define the normal vector n
along S to be positive when pointing into ¢2. The theorems known as Gauss’ and Stokes’
theorems may be written as

/Sfonds:—/QVofds, (D.3)
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where o is either nothing, cross- or dot product. If o is nothing, f is a scalar function. If
o is the dot- or cross-product, f is a vector function. In any case f must be defined over
QU S. Note the negative sign due to the direction of the normal. In the case that o is
nothing or dot-product, (D.3) is Gauss’ theorem. In the case o is cross-product (D.3) is
Stokes’ theorem.

The Transport theorem (see e.g. (Newman 1977)) is a special case of a more general
law of conservation. It says

%/ﬂ(t)fdsz/gft ds—/SfUds, (D.4)

where f may be a scalar or vector function, and U is the normal velocity of the boundary
S being positive into the domain with the current convention that the normal points into
the domain.

As a special case of the Transport theorem, consider a curve c(s,t) = (z(s,t),y(s,t))
parametrised by the arc length s in two-dimensional space and define a continuous function
f(z,y,t) over this curve. The total time derivative of the integral of f over this curve is

d b(t)

b
i, 160 ds:/a fu ds + [uf], + [uf],, (D.5)

where u, and u, are the tangential velocities of the end points of the curve ¢, or the rate
at which the domain ¢ expands or contracts, being positive in the direction of expansion.
Note that this definition of positive direction is opposite to that in equation (D.4).

D.3 Contribution from the free shear layer

We show in the following the equality (8.7). First we let Sy :=S;,. We then have that

1
/ (5(90§ - Soi)n - (Pngoss> ds
Sy
1

- (5 (02 = @) n - nlier = o)) as. (D.6)

due to opposite sign of the unit vectors along Sy, and S;;. We may rewrite the squared
terms as

5 (00 = (1)) = 501 +0D)(er — 60, (0.7)
We recognize that in both (D.6) and in (D.7) we have the term T'y = of — p;. We
further recognize in (D.7) the tangential velocity of the free shear layer U, = (o] +¢]).
Lastly, since the normal velocity is continuous across the free shear layer we may write
Qon:Uc'n:Ucn-

We need to pay extra attention to the Riemann cuts, the dashed line in Figure D.1,
which has an essential singularity of the potential at the far end. We show here that
the contribution over the Riemann cut to the integral (8.7) is zero. First note that the
contributions along S, cancels that along Sgrz due to opposite signs, i.e. n~ = —n* and
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Figure D.1: Integration along the Riemann cut S = Sg1+ Sgro+ Sgrs after the limiting
process.

orpesT = —ptofsT and (p;)* = (¢F)?. The only remaining contribution is over Sgo.
Since near the point vortex, ¢, — 0 due to the point vortex behaviour of zero normal
velocity, the only possible contribution is from the term %((ps)Qn. Now, given a small, but
finite radius of Sge, @ is constant along the curve, and may be pulled outside the integral.
But the integral over a complete circle of its normal is zero, hence the contribution is zero.
And this shows the equality in equation (8.7)

D.4 Numerical integration of the K; - terms

The integrals (8.12) are approximated by the following sums:

NB NF NB NF
Kl ~ E meznzASza KQ = E meznzAsia KB = E ymznzAsza K4 = E ymznzASz
=1 i=1 i=1 i=1

Np Np
K5 ~ Z fminiAs;,  Kg ~ Z fmiiAs;, K7 ~ uapany, Kg~ upppng
i=1 i=1
Ny Nr —(YRi+1 — YRi)
Ky ~ Z n; ' As; + Z TRi+1 — TRi I,
=1 =1 0-5($?%i+1 — T + yizz‘+1 — Y)

Ny
Ky ~ Z((_Ucmi +8) 0 + (Ueyi - my) 5;) AT
i=1
(D.8)
where subscript m indicates values at the mid-point of an element, i.e. ¢,,; = 0.5 (i1 +
©i)y Ymi = 0.5 (Yiy1 +¥i), Tomi = 0.5 (Ti1 +1%), Ugyyy = 0.5 (Ugiq +Ug;), ALy = T — Ty,
As; is the length of element number i, and (zg, yg) is the coordinate of the end points of

each Riemann cut relative to the center of gravity of the body. The intersection points A
and B will in general lie on a free-surface element. Only the part enclosed by the control
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surface should be included in the calculation. The terms v 94 and ugpp are estimated
by linear interpolation from the two end-points of the intersecting free surface elements.



Appendix E

Model tests - tables and selected results

The figures and tables presented here are referred to in the main text and not further
explained within this appendix.

Table E.1: The locations of wave gauges and mid-ship positions in the September and
November 2006 tests. Distances x measured from the mean position of piston wave
flap as indicated in Figures 9.4 and 9.5.

September 2006 November 2006

z [m] z [m]
wl 3.50 3.50
w2 5.00 5.00
w3 6.50 6.52
w4 13.5 12.06
wbH 16.91 16.90
w6 17.38 17.40
w7 17.65 17.87
w8 17.91 18.10
w9 17.91 18.10
wl0 18.75 18.95
wll 18.70 18.98
wil2 18.75 18.95
Mid-ship position 18.30 18.50
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Table E.2: Test matrix September 2006 tests. Subscript 0 means deep water limit.
Light grey background indicates shallow water waves (\g/h > 10).

Water depth A = 0.23m

b=0.22m b=0.32m
T [s] test wave test wave || test  wave | test  wave
0.72 3100 8105 3000 8005 || 2100 8105 | 2000 8005
0.84 3110 8115 3010 8015 || 2110 8115 | 2010 8015
0.96 3120 8125 3020 8025 || 2120 8125 | 2020 8025
1.08 || 3130 - 3134 8135 3030 8035 || 2130 8135 | 2030 8035
1.20 3140 8145 3040 8045 || 2140 8145 | 2040 8045
1.31 3150 8155 3050 8055 || 2150 8155 | 2050 8055
1.43 || 3160 - 3164 8165 | 3060 - 3064 8065 || 2160 8165 | 2060 8065
1.55 3170 8175 3070 8075 || 2170 8175 | 2070 8075
1.67 3180 8185 3080 8085 || 2180 8185 | 2080 8085
1.79 3090 - 3094 8095 2091 8095

Water depth A = 0.29m

b=0.22m b= 0.32m
T [s] test wave test wave || test  wave test  wave
0.72 3300 8305 3200 8205 || 2300 8305 | 2100 8205
0.84 3310 8315 3210 8215 | 2310 8315 | 2110 8215
0.96 3320 8325 3220 8225 | 2320 8325 | 2120 8225
1.08 || 3330 - 3334 8335 3230 8235 || 2330 8335 | 2130 8235
1.20 3340 8345 3240 8245 || 2340 8345 | 2140 8245
1.31 3350 8355 3250 8255 || 2350 8355 | 2150 8255
1.43 || 3360 - 3364 8365 | 3260 - 3264 8265 || 2360 8365 | 2160 8265
1.55 3370 8375 3270 8275 || 2370 8375 | 2170 8275
1.67 3380 8385 3280 8285 || 2380 8385 | 2180 8285
1.79 3290 - 3294 8295 2191 8295
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Table E.3: Test matrix November 2006 tests. Subscript 0 means deep water limit.

Water depth h = 0.40m, terminal gap width b = 0.22m (Case 1)

Ts]

Ho/Xo = 1/70

Ho/Xo = 1/115

Ho/Xo = 1/170

test

H [m]

wave

test

H [m]

wave

test

H [m]

wave

1.43
1.55
1.67
1.79
1.91
1.95

2.03
2.07
2.11
2.15
2.27
2.39
2.51
2.63

5000
5010
5020
5030
5040
5051
5060
5071
5080
5091
5100
5110

0.033
0.038
0.043
0.048
0.054
0.060
0.062
0.064
0.066
0.068
0.070
0.072
0.079
0.086
0.093

8807
8817
8827
8837
8847
8857
8867
8877
8887
8897
8907
8917
8927
8937

5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
5600
5610
5620
5630
5640

0.022
0.025
0.029
0.032
0.036
0.040
0.041
0.042
0.044
0.045
0.047
0.048
0.053
0.057
0.062

9007
9017
9027
9037
9047
9057
9067
9077
9087
9097
9107
9117
9127
9137
9147

5700
5710
5720
5730
5741
5750
5760
5771
5780
5790
5800
5810
5820
5830
5840

0.018
0.021
0.025
0.029
0.030
0.032
0.033
0.035
0.036
0.038
0.043
0.048
0.054
0.060
0.066

9207
9217
9227
9237
9247
9257
9267
9277
9287
9297
9307
9317
9327
9337
9347

Water depth h = 0.29m

Terminal gap width b = 0.22m (Case 2)

Terminal gap width b =0.11m (Case 3)

test

H [m]

wave

test

H [m]

wave

T [s]

test

H [m]

wave

test

H [m]

wave

1.79
1.91
2.03
2.15
227
2.39
243
247

2.55
2.59
2.63
2.75
2.87
2.99

4000
4010
4020
4030
4040
4050
4060
4070

251 4080

4090
4100
4110

0.033
0.038
0.043
0.048
0.054
0.060
0.062
0.064
0.066
0.068
0.070
0.072
0.079
0.086
0.093

8401
8411
8421
8431
8441
8451
8461
8471
8481
8491
8501
8511
8521

4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630

0.022
0.025
0.029
0.032
0.036
0.040
0.041
0.042
0.044
0.045
0.047
0.048
0.053
0.057
0.062

8601
8611
8621
8631
8641
8651
8661
8671
8681
8691
8701
8711
8721
8731
8740

1.31
1.43
1.55
1.67
1.71
1.75
1.83
1.87
1.91
2.03
2.15
2.27
2.39
2.51

6000
6010
6020
6030
6041
6050
6060
6071
6080
6090
6100
6110
6120
6130
6140

0.018
0.021
0.025
0.029
0.030
0.032
0.033
0.035
0.036
0.038
0.043
0.048
0.054
0.060
0.066

8550
8552
8554
8556
8558
8560
8401
8572
8574
8411
8421
8431
8441
8451
8461

6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340

0.012
0.014
0.017
0.019
0.020
0.021
0.022
0.023
0.024
0.025
0.029
0.032
0.036
0.040
0.044

8750
8752
8754
8756
8758
8760
8601
8762
8764
8611
8621
8631
8641
8651
8661




194 Model tests - tables and selected results

Table E.4: Test matrix June 2008 tests. Water depth h = 0.88m

Terminal gap width b = 0.08m (Case A) | Terminal gap width b = 0.06m (Case B)
T[s] H/A~1/170  H/N~1/85 | T[s] H/A~1/170  H/A ~1/85

0.60 40010 40210 0.60 40510 40710 - 40711
0.65 40020 40220 0.65 40520 40720
0.70 40030 40230 0.70 40530 40730
0.72 40040 40240 0.71 40540 40740
0.74 40050 40250 0.72 40550 40750
0.75 40060 40260 0.73 40560 40760
0.76 40070 40270 PON735N 40570 - 40572 40770

0.77 40080 - 40082 40280 - 40281 0.74 40580 - 40582 40780 - 40783
40090 - 40094 40290 - 40294 0.75 40590 - 40592 40790 - 40793
0.78 40100 - 40101 40300 - 40301 0.76 40600 - 40601 40800 - 40801

0.79 40110 40310 0.78 40610 40810
0.80 40120 40320 0.78 40620 40820
0.82 40130 40330 0.80 40630 40830 - 40831
0.85 40140 40340 0.85 40640 40840
0.90 40150 40350 0.90 40650 40850
1.00 40160 40360 1.00 40660 40860

Table E.5: Specifics of waves in September 2006 tests according to linear theory.

T[T X XN C Cu WN| H. H H/X| H  H H/\
h =0.23m

0.72 1 0.77 0.81 0.63 0.54 0.28 || 0.014 0.012 1/60 || 0.020 0.019 1/40
0.84 1 0.99 1.10 0.77 0.59 0.21 || 0.018 0.016 1/59 || 0.028 0.024 1/39
096 | 1.20 1.44 0.90 0.63 0.16 || 0.024 0.020 1/55 || 0.036 0.030 1/37
1.08 | 1.41 1.82 1.00 0.65 0.13 || 0.030 0.025 1/51 || 0.046 0.037 1/34
1.20 | 1.61 2.25 1.08 0.67 0.10 || 0.038 0.030 1/46 || 0.056 0.044 1/31
1.31 | 1.79 2.68 1.14 0.68 0.09 || 0.045 0.035 1/42 | 0.067 0.052 1/28
1.43 1199 3.19 1.19 0.69 0.07 || 0.053 0.041 1/39 | 0.080 0.061 1/26
1.55 1218 3.75 1.23 0.70 0.06 || 0.063 0.047 1/35] 0.094 0.071 1/23
1.67 | 2.37 4.35 1.27 0.71 0.05 || 0.073 0.054 1/32 0.109 0.081 1/21
1.79 | 2.56 5.00 1.30 0.71 0.05 || 0.083 0.062 1/30 || 0.125 0.093 1/20

0.72 1 0.79 0.81 0.60 0.55 0.36 || 0.014 0.013 1/60 || 0.020 0.019 1/40
0.84 | 1.04 1.10 0.75 0.62 0.26 || 0.018 0.017 1/60 || 0.028 0.025 1/40
0.96 | 1.28 1.44 0.89 0.67 0.20 || 0.024 0.021 1/58 | 0.036 0.031 1/39
1.08 | 1.52 1.82 1.01 0.70 0.16 || 0.030 0.025 1/55| 0.046 0.038 1/37
1.20 | 1.75 225 1.11 0.73 0.13 || 0.038 0.030 1/51 | 0.056 0.046 1/34
1.31 | 1.96 2.68 1.19 0.75 0.11 || 0.045 0.035 1/47 | 0.067 0.053 1/32
1431218 3.19 1.26 0.76 0.09 || 0.053 0.041 1/44 ] 0.080 0.062 1/29
1.55] 24 375 1.32 0.77 0.08 || 0.063 0.048 1/40 || 0.094 0.072 1/27
1.67 | 2.62 435 1.36 0.78 0.07 || 0.073 0.055 1/37 || 0.109 0.083 1/25
1.79 | 2.84 5.00 1.40 0.79 0.06 || 0.083 0.063 1/34 | 0.125 0.094 1/23
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Figure E.1: Selection of condensed results from tests with fixed ship section (September
2006 tests), with particulars b = 0.22m, h = 0.29m and Hy/Ao = 1/60. The numbers
in the legend correspond to wave gauge number. Force in [N] and wave elevation in
[m|. Note that F, is vertical force while F) is transverse force in our coordinate system.
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Figure E.2: Selection of results of repetition tests where the horizontal axis ticks 1-
8 correspond to tests 3060, 3090, 3130, 3160, 3260, 3290, 3330 and 3360 and their
respective four repetitions. Bars represent mean values and diamonds the standard
deviation relative to the mean value in percentage, also given by numbers above the
bars.
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Time-series from the studies
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Time-series from the studies
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Figure F.1: Fixed ship section study. Wave calibration for a chosen test in Case 1
(h/B = 0.625 and b/B = 0.34) with wave frequency w/y/g/B = 0.791. Solid curves
represent model tests, dashed lines nonlinear simulations (BEM).
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Figure F.2: Fixed ship section study. Wave calibration for a chosen test in Case 2

(h/B = 0.43 and b/B = 0.34) with wave frequency w/\/g/B = 0.707. Solid curves
represent model tests, dashed lines nonlinear simulations (BEM).
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Figure F.3: Same case as in Figure F.1, but with ship section and terminal.
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Legend as in Figures 10.21 and 10.22. Vertical bar indicates initiation of the free shear
layer.
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