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Introduction

0.1 Background and motivation

Computational marine hydrodynamics is a multidisciplinary field of research.
It resides at the intersection between marine engineering, fluid dynamics,
numerical analysis and computer science. Researchers from many different
communities are involved, all bringing their special knowledge, language, tra-
ditions and biases to the scene. Each of the afore-mentioned disciplines have
their own major conferences, journals and text books. Consequently, it can
be a challenging task to get an updated overview of all relevant sources of in-
formation. With that in mind, a logical starting point for the current study is
to look into recent proceedings of the most important conferences in marine
engineering and hydrodynamics. One of them is the biennial Symposium on
Naval Hydrodynamics, headed by the Office of Naval Reseach (ONR). Here
we get an indication of what’s state of the art in marine hydrodynamics,
and a flavour of the wide variety of topics covered. Another example is the
annual International Conference on Offshore Mechanics and Arctic Engi-
neering (OMAE), headed by The American Society of Mechanical Engineers
(ASME). Studying the proceedings of cornerstone conferences gives a good
overview of the research activity within different areas.

The challenges in the field of computational marine hydrodynamics may
be divided into two main categories: (1): Ship flow problems, (2): Offshore
flow problems. Two main features set ship flow problems apart from other
marine flow problems: (1) The geometry, and (2) the forward speed. The
forward speed creates a complex wave system which puts special demands
on the computational method. Also, the Reynolds number is generally very
high. Flow around a ship without forward speed (subject to waves and/or
current), may be viewed as an offshore problem according to the previous
definition.

A short review of the two main types of problems will be given in the
following.

X



X INTRODUCTION

0.1.1 Ship flow problems

Within the field of computational marine hydrodynamics, ship flow prob-
lems have always been an important driving force, putting heavy demand on
both numerical methods and hardware resources. A recent, comprehensive
treatment of viscous ship flow problems can be found in the proceedings of
the Gothenburg 2000 workshop on numerical ship hydrodynamics [1]. At this
workshop, three different ship models of displacement type were used as test
cases, each with a particular focus area: Stern flow prediction of a full ship
form, propeller/hull interaction, and the wave field of a transom stern hull,
respectively. Apart from the usual discussion of methods and results, a ma-
jor issue at the workshop was verification and validation of computer codes,
demonstrating the need for good quality experimental data when doing pio-
neering flow calculations. All in all, the Gothenburg 2000 workshop gives a
good picture of the CFD (Computational Fluid Dynamics) capabilities of the
ship hydrodynamics community, as well as revealing some of the weaknesses.
Accurate prediction of a ship’s power requirement is of great importance
when planning a new vessel. Shipbuilders, shipowners and military govern-
ments have always depended on time consuming and expensive towing tank
experiments in order to get their resistance and propulsion data. As a conse-
quence, the calm water forward speed case is by far the most studied in ship
hydrodynamics. The possibility of getting accurate resistance predictions
quickly and at a low cost using computers has been a strong driving force
behind numerical ship hydrodynamics research since the beginning. The ”"nu-
merical towing tank” concept clearly illustrates the vision of replacing real
towing tanks by virtual ones. However, the view of CFD as complementing
rather than replacing traditional experiments is more realistic in the fore-
seeable future. The numerical towing tank has a long way to go before it
can predict a ship’s resistance with the same accuracy as the world’s lead-
ing experimental facilities. On the other hand, CFD can provide detailed
information about the flow field which can’t be measured in experiments.
Some detailed historical reviews, analyses of the present state and fu-
ture prospects in numerical ship hydrodynamics can be found in [2], [3] and
[4]. The development of numerical methods for solving the ship resistance
problem is greatly influenced by experimental traditions. The pioneers in
numerical ship hydrodynamics realized that the well established practice of
subdividing a ship’s resistance in a viscous and a wavemaking part lent itself
well to a new computational approach. One of the first to solve the ship
wave problem by means of a numerical computer code was C. Dawson in
1977 [5]. He modeled the flow with the assumption of inviscid (or ideal)
fluid, using potential theory with a linear free surface boundary condition.
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His solution is a modification of a source technique developed for arbitrary
3D bodies in infinite ideal fluid by Hess and Smith in 1962 [6]. Still, the
viscous part had to be computed by means of empirical formulae, such as
the ITTC-57 correlation line. Dawsons method has later been improved with
exact, nonlinear boundary conditions. Similar methods are also extended to
include ship motions. Computer programs based on potential flow are widely
used in industry today. The methods generally give good results for surface
elevation, wave resistance and seakeeping characteristics, and many other
flow problem in which viscous effects are small. They are very computa-
tionally efficient compared to codes solving the full Navier-Stokes equation.
Used with some care, a potential flow code is a powerful tool in ship design
optimization problems, e.g. when studying details like the bow shape’s influ-
ence on the wavemaking. However, potential theory fails to predict the flow
near the stern, where strong vorticity and massive separation are important
flow features. So, in order to get detailed information about the flow into
the propeller plane, calculate viscous resistance, determine the manoeuvering
characteristics, or solve a whole range of other marine engineering problems,
we have to include viscosity in our physical model.

0.1.2 Offshore flow problems

Any case of flow around a marine structure which isn’t a ship can be catego-
rized as an offshore flow problem. This collective term covers a wide variety
of cases. Qil drilling platforms, fixed or floating, are common examples. As
mentioned above, a ship without forward speed may also fall into the same
category. A review of the diversity of challenges within the field of both ship
and offshore flow problems can be found in Faltinsen [7].

The main objective in computational marine hydrodynamics is to deter-
mine the motions and structural response caused by the hydrodynamic forces.
The information provided from computations is invaluable when evaluating
new designs with regards to safety and operability in different conditions. In
many flow problems, viscous effects are small or negligible. A common exam-
ple is the flow around a large structure in waves at zero forward speed. In such
cases, computational methods based on potential theory give good results.
Three-dimensional source techniques originally developed for the aerospace
industry (e.g Hess & Smith [6]) are combined with complex Green’s functions
which account for the surface waves (similar to Dawson’s ship wave solution
[5]). Such methods have been used since the early 1970s. Today, computer
codes based on these methods are industry standard for solving wave response
problems. An early example of the application of the 3D source technique
can be found in a paper due to Faltinsen and Michelsen [8].
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The grand challenges of present day computational marine hydrodynam-
ics are found in problems where viscous effects play an important role. A
problem in this category which receives a lot of attention is vortex induced
vibrations (VIV) of slender marine structures. Examples of slender marine
structures are flexible risers, tendons of tension leg platforms and free span-
ning pipelines. Steady current past the cylindrical structures causes vortex
shedding, which leads to oscillating pressure forces on the structures. These
forces can cause resonance, which may in turn lead to large motions. In the
case of systems of flexible risers, the motions can result in collisions between
individual risers, often causing structural damage or failure. The dynamic
behaviour of slender structures subject to VIV is very complicated, and is not
yet fully understood. In order to reproduce this behaviour in numerical sim-
ulations, the fluid flow problem and the structural response problem must be
solved simultaneously. This approach is known as FSI, or Fluid-Structure In-
teraction. Three-dimensional numerical simulations of flow around very high
aspect ratio cylinders at realistic Reynolds numbers are not feasible even on
today’s most powerful computers. Consequently, two-dimensional approxi-
mations have been employed to calculate the response of risers in cross flow,
such as the strip theory (Herfjord et al [9]). Also, "quasi-3D" extensions to
the strip theory have been used, to account for spanwise variation (shearing)
of the current velocity profile (Willden & Graham [10]). However, the true
three-dimensionality of the flow around the cylinder may be an important
factor influencing the VIV dynamics. Also, turbulence come into play at re-
alistic Reynolds numbers. In conclusion, VIV of slender marine structures is
a challenging area of research with many unsolved problems, some of which
are addressed in the present study.

0.2 QOutline of the present work
The present study is part of the Strategic University Program in Compu-

tational Science and Engineering (CSE) at NTNU, as one of nine doctoral
projects. The objectives of the CSE program are threefold:

1. To improve the national level of competence to utilise mathematics and
computer science in engineering.

2. To improve the competitiveness of Norwegian marine related industry.

3. To improve NTNU’s role and position in a national collaboration on
scientific computing.
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Figure 1: The MAC model

The CSE program uses the so-called MAC model as a conceptual frame-
work, see figure 1. The three circles represent Mathematical modeling,
Application and Computer science, respectively. Computational science and
engineering resides in the centre. In the present study, main emphasis is put
on the application part of the MAC model.

The first part of the thesis covers the theoretical backgrond for compu-
tational fluid dynamics; specifically, the incompressible Navier-Stokes equa-
tions. Some general solution methods are reviewed, as well as the most com-
mon discretization techniques, which form the basis of modern CFD codes.

The second part is a report of a series of numerical experiments, including
a short description of the computational method applied in the Navier-Stokes
solver. The following flow cases are computed:

e Laminar flow around a fixed, three-dimensional circular cylinder at a
Reynolds number Re = u,.d/v = 265. Different cylinder lengths are
tested. The onset of three-dimensionality in the wake flow is given
particular attention. The sensitivity to time step and grid refinement
is investigated.

e Subcritical turbulent flow around a cylinder at Re = 3900. The tur-
bulence is modelled using large-eddy simulation (LES). The effects of
using wall damping and different time integration schemes are investi-
gated.

e Turbulent flow around two fixed circular cylinders arranged in tandem
at Re = 21600. This test case is a model problem for flow around
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marine risers. Drag and lift on the two cylinders are compared with
experimental data; both mean values and standard deviation.

e Laminar cross flow around a 6:1 ellipsoid at Re = 100. An initial calcu-
lation of this case is presented, showing the potential of the numerical
method for other marine applications. The 6:1 ellipsoid is a standard
model problem for a submarine.

e Laminar flow around a sphere at Re = 300. This is a generalized case
of flow around bluff bodies, studied by many researchers. An initial
calculation is performed.

The three first cases can be seen as steps towards the VIV problem,
taking a bottom-up approach. A logical next step could be, for example,
adding forced motion to the downstream cylinder in the tandem case. In
all the flow simulations performed in this thesis work, we have aimed for
high fidelity, obtaining a higher level of accuracy than in most engineering
calculations. Computational tools currently under development at SINTEF
Applied Mathematics in collaboration with NTNU have been used. These
tools include a Navier-Stokes solver (VISTA, ref. chapter 3) and a grid
generator (Griddler, ref. section 4.2.2).

The simulations are performed using NTNU’s High Performance Comput-
ing (HPC) facilities [11], two SGI Origin 3800 machines with 896 processors
combined, a total memory of 816 GB and a total peak performance of 998
Gflops. Most of the simulations are run on 32-96 processors, depending on
the problem size. The total time needed to simulate a sufficiently long time
series range from 1-3 days for the laminar cases to a couple of weeks in the
largest turbulent cases. Here, the "total time" also incudes periods when the
jobs are pending or suspended due to higher priority jobs. The figures are
included to give an indication of the quite substantial computational work
involved.
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Chapter 1

Incompressible Navier-Stokes
Equation

The equations which today are known as Navier-Stokes relations were in fact
derived by 5 different 19th century mathematicians: The four Frenchmen
Navier (1822), Cauchy (1828), Poisson (1829) and Saint-Venant (1843);
and the Englishman Stokes in 1845. This was generally done by modifying
the equations of frictionless fluid motion, derived by Leonard Fuler in 1755.
The first one, C.M.L.H. Navier, arrived at the correct form of the equations,
however, his physical reasoning was not quite accurate. This may be why
the equations was not generally accepted by other scientists at that time.
According to Anderson [17], A.J.C.B de Saint-Venant was the first one who
correctly modeled the physics, identifying the internal viscous stresses and
their relation to the velocity gradients. He also introduced the coefficient
of viscosity for the first time. Curiously, his name never became associated
with these equations, even if he published his results two years before G.H.
Stokes.

This chapter is intended as a brief introduction to the theory of compu-
tational fluid dynamics (CFD), so the actual derivation of the Navier-Stokes
equations will not be shown here. Focus will be on the physical interpretation
of the equations. Details of the deduction of the Navier-Stokes equations as
we know them today can be found in many text books, e.g. White [12] [13]
and Schlichting [14].

1.1 Conservation laws. (Governing equations

The traditional way of describing fluid flow is by laws of conservation. Such
laws are fundamental, and apply to all physical systems. The number of con-
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servation laws needed to describe a particular flow situation depend upon the
physical and/or chemical complexity of the flow. In that respect, hydrody-
namic flow is quite simple: We only consider (sea-)water, a newtonian fluid
(linear relation between stress and rate of strain) of uniform, homogeneous
composition, without any diffusion of species, chemical reactions or electro-
magnetic effects. This class of flows can be described by the three most basic
conservation laws:

1. Conservation of mass (continuity)
2. Conservation of momentum (Newton’s second law)

3. Conservation of energy (first law of thermodynamics)

In order to obtain the governing equations, we apply these conservation
laws to an enclosed region of the flow, called a control volume (CV). The
CV may be of finite size or infinitesimally small; it may be fixed in space or
moving with the fluid. An infinitesimally small control volume becomes a
differential volume dV in the mathematical sense. The choice of control vol-
ume determines the form of the governing equations: integral or differential,
conservative or non-conservative form. The four combinations are shown in
table 1.1.

Physically and mathematically, the different forms of the equations are
equivalent. Through manipulation of the equations, one form may be ob-
tained from the other. However, when solving the equations numerically,
the choice of form becomes important. To illustrate the basic concepts of
CFD, the differential form of the equations is chosen as the starting point.
Both the conservative (fixed CV) and non-conservative (moving CV) forms
are stated. The integral form will be discussed briefly in relation to the finite
volume method (see section 2.2.2).

The law of mass conservation assures continuity of fluid. We cannot
have fluid accumulation, nor can there be voids anywhere in the fluid. The
resulting continuity equation on differential, non-conservative form can be

CV size Fixed in space Moving with fluid
Finite sized IE, conservative IE, non-conservative
Infinitesimally small | PDE, conservative PDE, non-conservative

Table 1.1: Four different versions of the control volume give different forms
of the governing equations. (IE: integral equation, PDE: partial differential
equation).
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written as follows (in vector notation):

Dp
V- -u=0 1.1
o TPV -u (1.1)
where p is the fluid density. The particle or substantial derivative is defined

o D 0
D=L+ w-w0 (12

Here, u = (u,v,w) is the velocity vector, and V the vector differential opera-
tor. The substantial derivative is used when we follow a fluid element moving
with the flow. Replacing the substantial derivative in equation 1.1 with the
r.h.s of 1.2 gives the conservative form of the continuity equation:

9 +V.-(pu)=0 (1.3)
ot

For the hydrodynamic flows of interest here, the Mach number M = u/c
is small, i.e. the flow velocities u are small compared to the speed of sound in
water, ¢. According to White [13], we can assume the flow to be incompress-
tble when M < 0.3, which is certainly the case in most marine applications
(slamming being an important exception). Incompressibility implies that the
density is constant. Consequently, % = 0, and the continuity equation may
be written
V.u=0 (1.4)

This simplification has important implications both physically and numeri-
cally, as we shall see later. A thorough treatment of incompressible flow as
well as fluid dynamics in general can be found in Panton [19].

Conservation of momentum expresses the relation between applied force

and resulting acceleration of a particle system, which is the same as apply-
ing Newton’s second law to a fluid particle (or volume). The mathematical
statement of Newtons second law in fluid dynamics constitutes Navier-Stokes
equation:
%?:wa—l—f = g—?+(u~V)u:V~a+f (1.5)
Equation 1.5 is the stress-strain formulation of the Navier-Stokes equation.
In marine hydrodynamics, the external body force f commonly accounts for
gravity, but may also include other forces, e.g inertia forces due to a rotating
coordinate system. The stress tensor o is given by

Uij = —p(Sij + 2VSZ‘]‘ (16)
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where p is the kinematic pressure (i.e. pressure divided by density), 0;;
the Kronecker delta function, and v = pu/p the kinematic viscosity. (The
kinematic pressure will be used in the following, unless stated otherwise).
The components of the rate of strain tensor S is commonly written as

1 au, a’u]'

(1.7)

Note that only the shear deformations is present in S, because the terms
related to normal deformation (through the bulk viscosity \) vanish when we
use the incompressibility assumption. Equation 1.5 is also referred to as the
momentum transport equation or the unsteady advection-diffusion equation
in literature, among other terms.

Conservation of energy is also known as the first law of thermodynamics.
It implies that the increase of energy of a system equals the sum of work and
heat added to the system. The energy equation can be written:

D(pc,T)

i =+ V- (kVT) (1.8)

Here, T is the temperature, ¢, the heat capacity, € the viscous dissipation and
k the heat conductivity. The viscous dissipation is usually small compared to
the heat conduction, and may be neglected in most cases. In reality, both ¢,
k and the viscosity p vary with temperature. However, when temperature
variations are small, as in marine hydrodynamic flows, these properties are
assumed constant throughout the fluid.

The unknown quantities we obtain from equations 1.4, 1.5 and 1.8 are
the three velocity components, pressure and (absolute) temperature. But, in
most marine flow problems, only velocity and pressure are of interest. We
observe that equations 1.4 and 1.5 can be solved for u and p without knowing
T, and this is generally what’s done in numerical marine hydrodynamics.
Having found the velocity field, the temperature distribution can easily be
obtained from equation 1.8.

Assuming incompressible flow and constant viscosity, Navier-Stokes equa-
tion 1.5 can be rewritten as follows:

ou 9
E+(u~V)u:—Vp+l/V u+f (1.9)
Equation 1.9 is often referred to as the Laplacian form of Navier-Stokes
equation. It is a system of nonlinear partial differential equations (PDEs),
generally parabolic in nature. With proper initial and boundary conditions
for the unknown variables, we can close the system of equations 1.4 and 1.9,
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and get a well-posed problem. ”Well-posed” means that a solution to the
problem must exist, be unique, and depend continuously upon the initial
or boundary data. The initial condition is simply a start-up field; a known
solution in the whole domain (including the bondaries) at ¢ = 0, i.e

u=uy and p=py at t=0 (1.10)
The boundary conditions for a PDE generally fall into two categories:

1. Dirichlet condition: Variable values are given at the boundaries.

2. Neumann condition: Derivatives of the variables are given at the bound-
aries.

Denoting the solution domain €2, the boundary 02 consists of the parts
I'? and I'V with Dirichlet and Neumann conditions, respectively. In the case
of the incompressible Navier-Stokes equation, the Dirichlet condition is given
by

u=rp on I”? (1.11)

The Neumann condition for the stress-strain formulation 1.5 is given as
_ N
oc-n=ry on I (1.12)
whereas for the Laplacian formulation 1.9, the condition reads

—pn + V% =ry on IV (1.13)
where n is the outward normal vector. The expressions in 1.12 and 1.13 give
the same exact solution, but the discrete solutions can be different. Equation
1.12 corresponds to prescribing an external force on I'V, while this is generally
not the case for equation 1.13 (Melbp & Kvamsdal [16]). This can influence
the computation of drag and lift forces on bodies.

Unique analytical solutions of the incompressible Navier-Stokes equation
have been found only for a few laminar flow cases (i.e. low Reynolds num-
ber) with simple geometries (e.g. channel or pipe flow). For higher Reynolds
numbers (Re), the equation becomes non-unique, and impossible to solve
analytically. Physically, the flow becomes unstable, and undergoes a tran-
sition from laminar to turbulent as Re increases. So, in most real-life flow
situations, we need to seek for a numerical solution.
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Chapter 2

Computational fluid dynamics

Computational fluid dynamics, CFD, has roots in many disciplines. The in-
terpretations of what CFD ”really is” may differ considerably from, say, a
mathematician to an engineer or a computer scientist. In the present work,
focus will be on the numerical solution methods. In a broad sense, CFD is
the art of finding a numerical solution to one or more flow equations in a
given fluid domain by the use of computers. In our case, the flow equations
are the incompressible Navier-Stokes equations. Solving these equations nu-
merically is an area of intensive research. A large number of methods have
been developed, and are constantly being improved. It’s beyond the scope
of this work to cover every aspect of such solution methods in great detail.
However, some key concepts which are crucial in all CFD will be dealt with
in the following sections.

2.1 (General solution of Navier-Stokes equa-
tion

2.1.1 Two-dimensional solution approach

For many applications, solving the incompressible Navier-Stokes equation in
two dimensions (2D) can be an attractive modeling approach. In marine
hydrodynamics, roll damping of ships is a good example. In this case, the
water is mostly flowing within cross-sectional planes perpendicular to the
ship’s longitudinal axis. We only have three-dimensional (3D) effects near
the bow and stern, and these effects are not very pronounced. Thus, a 2D
analysis may be expected to give reasonable results. In industry today, 2D
modeling is also applied to cases where the simplification is less valid, perhaps
due to limited hardware or software resources, or a lack of knowledge. Either

9
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way, 2D methods are still used even if 3D calculations may be regarded as
"state-of-the-art” in CFD as a whole.

A popular method restricted to 2D is the vorticity-stream function ap-
proach. Here, a change of variables is made in order to eliminate the pressure
from Navier-Stokes equations. The vorticity vector ¢ is defined as

¢(=Vxu (2.1)

where u = (u,v) is the two-dimensional velocity vector. The scalar value of
the vorticity is

(o _on 2

A transport equation for the scalar value of vorticity can be obtained by
manipulation of the x- and y-momentum equations, thereby eliminating the
pressure:

D¢ 2

= _ 2.

o =V (2.3)
In two dimensions, the stream function 1 is defined by

9y

i 24

5, = " (24)

oy

= — _ 2.5

e v (2.5)
Inserting equatons 2.4 and 2.5 into 2.2 gives a Poisson equation for :

V2 = ¢ (2.6)

Equations 2.3-2.6 can be solved using a time-marching procedure. Having
found w and v, the (kinematic) pressure can be obtained from the following
equation:

(8u v Oudv )
Ordy Oyor
So, in this approach, pressure and velocity are decoupled in an exact way.

This greatly reduces the computational work compared to solving the original
Navier-Stokes equations.

V?p =2 (2.7)

2.1.2 Three-dimensional approaches

In three space dimensions, the stream function does not exist. Consequently,
the vorticity-stream function approach cannot be used in the way described
above. Three-dimensional generalizations of the method have been devel-
oped, but much of the advantage present in 2D is lost in the process. So, in
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3D the incompressible Navier-Stokes equations are most often solved directly
for velocity and pressure, the primitive variables of the flow problem. The
incompressibility assumption does however lead to some difficulties, because
the time derivative of density is removed from the continuity equation. As
a consequence, pressure waves propagate at infinite speed through the fluid,
and not with the (finite) speed of sound, which is the correct physical behav-
iour. From a purely physical point of view, this is not a big problem, since
we operate with flow velocities far below the speed of sound. (This is exactly
the argument for assuming incompressibility in the first place, as previously
mentioned). The real problem lies in the mathematical behaviour of the new
equation system. The presence of a density time derivative is the mechanism
which prevents the problem from becoming singular for low Mach numbers.
In compressible flow, velocity and density are related in the continuity equa-
tion, and pressure is in turn linked to density through the equations of state.
But in the incompressible system of equations, this relation is missing, so
there is no obvious way of linking pressure with velocity. Numerically, this
may lead to a singular system of algebraic equations.

Many methods have been proposed for solving the incompressible Navier-
Stokes equations over the last three decades. The main challenge has been
to find a consistent way of linking pressure with velocity, as described above.
Most of the solution methods fall into two broad categories; coupled or un-
coupled.

In the coupled approaches, all dependent variables (u, v, w and p) are
treated as simultaneous unknowns. An important group of coupled methods
are based on a technique proposed by A.J. Chorin [20] in 1967, the artificial
compressibility method. Here, the incompressible continuity equation 1.4 is
given a perturbation of the form Jp*/0t*, where p* is an artificial density.
This is done to stabilize the system, and get a nonsingular behaviour. The
fictitious time scale t* is analogous to real time in compressible flow. When
the solution converges to steady state, the artificial compressibility term van-
ishes. The artificial density is related to the pressure through p = p*/e, an
artificial equation of state. The compressibility factor € is chosen to facilitate
fast convergence. The optimal value of ¢ can be problem dependent. Since
we’re looking for a time independent solution, the physical time scale ¢ in the
momentum equation can be substituted by ¢*. Thus, we get the following
system of equations:

2;: +(u-Viu = —-Vp+vViu+f (2.8)
V-u+68p =0 (2.9)

ot*
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This problem can be solved by using standard time-dependent techniques
developed for compressible flow. A major drawback is obviously that this
method can only be used for steady flow problems. A slightly different
method proposed by Hughes et al [21] also uses a modified continuity equa-
tion, but in this case, the added term is of the form ep, with € as a small
penalty parameter:

V-u+ep=0 (2.10)

Equation 2.10 is inserted into the momentum equation in order to eliminate
the pressure:

% +(u-V)u=1V(V . u)+ V2 (2.11)
€

This equation can be solved directly for the velocity, and the pressure can
subsequently be found from 2.10. This strategy, referred to as the penalty
method, can also be used for unsteady problems, unlike the artificial com-
pressibility method. However, it’s not obvious how to choose €. A too small
e will lead to a numerical ill conditioning. Chosen too large, ¢ may cause
unacceptable errors in the continuity equation, which amount to a net loss
or gain of fluid. This error can bee seen as the ”penalty” of the method.

The uncoupled approaches represent a different strategy to solving the in-
compressible Navier-Stokes equations. These methods are also referred to as
pressure correction, sequential or segregated methods. Here, the momentum
equation 1.9 is solved componentwise for the velocity, using the best pressure
estimate available, typically the pressure distribution from the previous time
step. However, the new velocity field will generally not satisfy the continuity
equation. Consequently, a separate equation for the pressure is solved, which
satisfies the incompressibility constraint. The velocity field is then corrected
with the new and improved pressure distribution.

An early example of this approach is the projection method, proposed by
A.J. Chorin [22] in 1968. This method is applied in the Navier-Stokes solver
used in the present study (see also chapter 3). The method is also known
as the fractional step or operator splitting method, and is quite prototypical
of the uncoupled solution strategies. (The term splitting reflects that the
velocity field is split into a divergence free and a curl free part.) As a first
step, the momentum equations are advanced in time, neglecting the pressure
gradient term, in order to obtain an intermediate velocity u. If we use the
backward Euler time discretization scheme (see section 2.3), this step will
read:

u—u

ot

where superscript n denotes the time step. The velocity u does not satisfy

=—(Uu-V)u+vvia+4 ! (2.12)
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the continuity equation. The updated pressure field is calculated from

un—|—1 -1
—— =-Vp"t! 2.13
5 p (2.13)
By taking the divergence of equation 2.13, and imposing the incompressibility
constraint Vu™*' = 0, we obtain a Poisson equation for the pressure:
Vi
v = =2 (2.14)

In summary, the algorithm consists of three steps:

1. Calculate the intermediate velocity u from equation 2.12.
2. Solve equation 2.14 for the new pressure p"**.

3. Calculate the new velocity u"*from equation 2.13

Another variant of the method carry over pressure information from the
previous time step, and the momentum equation may have the form (step

1):

u—u

ot
where [ is used as a relaxation parameter, and may be adjusted to improve
convergence. In this case, the pressure equation 2.13 will read

n

= —(u-V)u-— BVp" + vV (2.15)

un+1 -1 . "
————=-V"" - 5" (2.16)
ot
and the Poisson equation:
Vu
ot

A whole range of methods that follow a similar strategy has been de-
veloped over the years, with varying level of sophistication. However, the
general principles remain:

V(" - Bp") = (2.17)

1. Calculate an intermediate velocity field without satisfying continuity,
2. solve a separate pressure equation which does satisfy continuity, and
3. correct the velocity field according to the new/improved pressure field.

Many methods also apply iteration between momentum and pressure
equations until a divergence free velocity field is obtained. Details of specific
methods apart from the one described above will not be given here.
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2.2 Space discretization

In fluid mechanics, as well as many other physical sciences, the world is
viewed as a continuum. This means that physical properties are imagined
to be distributed throughout space. The natural independent variables are
three-dimensional space and time. The basic equations of fluid flow are based
on the continuum assumption. However, in order to solve the equations
numerically, the dependent variables are considered to exist only at discrete
points in space and time. The result of discretizing the problem domain
is that a system of generally insolvable PDEs transforms into a system of
algebraic equations which can be solved.

The first step in any spatial discretization scheme is to construct a mesh
or grid for the fluid domain. The grid file is generally made up of three main
types of information :

e A list of coordinates for the grid points where flow variables are to be
calculated (also called vertices or nodes)

e Information about how the grid points are connected

e Boundary information

The connectivity information may appear as indexing of the grid points.
This is the case for structured grids, where each internal grid point has the
same number of neighbours. In 2D, the (closest) neighbours of the point (4,5)
then becomes (i+1,7), (i-1,5), (i, j+1) and (4, j-1). In unstructured grids,
each point may have a different number of neighbours. In this case, the
connectivity is given explicitly in a table. The connectivity may also tell us
how grid points are grouped together in cells or elements, depending on the
choice of discretization method. Boundary information in its simplest form
is merely a set of indicators; numbers which act as name tags, telling the
CFD code if a grid point belongs to a boundary, and if so, which boundary.
The theory and practice of grid generation is a large topic in itself. Further
details can be found in [23], and its references.

The most common space discretization schemes used in CFD are local,
which means that the flow variables at any given point only depend upon the
values at neighbouring points (here meaning ”points nearby”, not necessarily
the closest neighbours only). The most widely used local techniques are the
Finite Difference Method (FDM), the Finite Volume Method (FVM) and the
Finite Element Method (FEM).
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2.2.1 Finite Difference Method

The Finite Difference Method (FDM) uses the differential form of the con-
servation equations as its starting point. Each of the space derivatives in the
Navier-Stokes and continuity equations are replaced by difference formulas.
These formulas are commonly based on Taylor series expansion. Consider
for instance the one-dimensional Taylor series

ou(z,t) 1 ,0%u(z,t) 1 ,0%(z,t)

_h27 —h3
o o T oz TR T s

Rearranging this yields the following expression for the first derivative:

w(x+h,t) =u(z,t)+h +... (2.18)

ou(z,t)  wu(r+h,t) —u(x,t)
L = ’ - O(h 2.19
- . +0(h) (219)
In our case, h is the grid spacing. Equation 2.19 is a forward difference
approximation of the space derivative, or just forward space. The expression
is first order accurate, which means that the leading error term is of first
order in h, denoted O(h). Similarly, we may use the Taylor series
Ou(x,t) Pu(x,t) 1 30%u(x,t)

1 2
—h— — —h——=+ ... (2.2
or Tt o 3 st (220

to obtain the backward space approximation:

u(x—h,t) =u(x,t)—h

ou(z,t)  wu(z,t) —u(z — h,t)
i N + O(h) (2.21)
Using backward difference for the convection term is often referred to as
upwinding. The effect of upwinding is similar to adding positive diffusion to
the equation. This is often employed to stabilize the solution in advection-
dominated problems, even if this means altering the physics of the problem
slightly.
Subtracting equations 2.20 from 2.18 yields the second order accurate
central difference approximation for the first space derivative:

Ou(x,t)  u(x+h,t) —ulx —h,t) 5
ek o + O(h?) (2.22)

The central difference for the 2nd derivative (or Laplacian) reads

Pu(x,t)  w(r+h,t) —2u(x,t) +u(z — h,t)

orz h?
Higher order approximations may be obtained in a similar manner as de-
scribed above. As an example, using the central space approximations for

(2.23)
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both 1st and 2nd derivatives of velocity, we obtain the following semi-discrete
version (discretized in space, but not in time) of the z-component of Navier-
Stokes equation 1.8 in 2D:

Ous Uit1j — Ui Uijy1 — Uij1 Dit1j — Dic1,
Ly gy L - L i (2.4
ot 7 20w ! 20y 20w ( )
Uiy1,5 — 2Ui,‘ +Ui—1 Ui, j+1 — 2“1‘,' + Ui i1
( +1,5 23 i Wi+ 23 LY 4 i
oz oy

Eq. 2.24 is solved at point (x;,y;), and the index notation used here implies
that w1 ; = u(z; + ox,y;,t), wij—1 = u(x;,y; — dy,t) and so on. dx and
0y are the grid spacings in the z- and y-direction, respectively. The discrete
continuity equation reads

Wit1,j — Wi—1, i Vigj+1 — Vij-1
20w 20y

=0 (2.25)

The extension to 3D is straightforward, and we get expressions similar to
2.24 and 2.25. The scheme results in a system of algebraic equations, with
the nodal values as unknowns.

An alternative way of approximating the derivatives is to fit nodal val-
ues to an interpolation curve, and differentiate the resulting curve. This
technique is called polynomial fitting. See e.g. Cheney & Kincaid [24] for
details.

The historical roots of FDM dates back to the 18th century, when Leon-
hard Euler first studied the calculus of finite differences. FDM schemes were
also the first to be applied in CFD. When applied to a regular grid with
rectangular (2D) or prismatic (3D) cells on a simple domain (i.e. channel
flow, cavity flow), FDM is easy to implement, and can be very efficient. For
general geometries and less regular grids, however, the implementation soon
becomes quite complicated, especially with regards to boundary conditions.
Also, since FDM is a strictly nodal (or point) based method using the dif-
ferential form of governing equations, global mass conservation tends to be
poor. Due to these drawbacks, the finite difference method is rarely used
in commercial CFD codes nowadays. However, FDM still has its appeal for
academic purposes, mainly because of its conceptual simplicity and efficiency
for simple, ”academic” flow cases. Details about the finite difference method
can be found in several text books, for example [18] and [26].

2.2.2 Finite Volume Method

The Finite Volume Method (FVM) was originally developed as a special ver-
sion of the finite difference formulation, tailor-made for fluid flow and heat
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transfer problems. FVM is the most popular discretization method in en-
gineering CFD, including ship hydrodynamics applications. As the name
implies, FVM is a volume based method. It uses the integral form of the
conservation equations as its starting point, as opposed to FDM, which uses
the differential form of the equations. The solution domain is subdivided
into a finite number of contiguous control volumes (CV), also called cells
or elements. The conservation principles are applied directly to the CVs.
Conservation of a general flow variable ¢ within a CV is achieved through
a balancing of the fluxes of ¢ across the CV’s boundaries and the net cre-
ation of ¢ inside the CV. Transformation of spatial derivatives into fluxes
is accomplished by using Gauss’ divergence theorem. Mathematically, this
approach leads to an integral formulation of the Navier-Stokes equation 1.5
and continuity equation 1.4:

%///udVJru//undA _ //(o—-n)d5+///fdv (2.26)
/ / (u-n)dA = 0 (2.27)

Here, A denotes the total surface area of the control volume CV, n the
outward normal vector to A, and u,, the normal velocity of fluid across A,
positive outwards. Otherwise, previous definitions apply. The unknowns of
eq. 2.26 and 2.27 are calculated at nodal points within each control volume,
and are assumed constant over the C'V. Thus, the volume integral of any value
over C'V is simply the nodal value times the volume of the element. Gradients
at nodal points may be approximated by difference formulas, similar to FDM.
In 3D, the surface A consists of a given number of polyhedral boundary faces.
Consequently, the flux integral of e.g. a scalar ¢ over A will be the area a;
of face 7, times the unknown ¢, times the normal vector, summed over the

number of faces N: N
// ¢ndA = Z a;p;n; (2.28)
A i=1

Values of ¢ at the boundaries are commonly approximated by interpolation
between nodal points. The simplest case is linear interpolation. Gradients at
boundary faces are also calculated using nodal values at neighbouring points.
The actual choice of approximation techniques for the different terms may be
problem dependent, or just a matter of taste. The finite volume discretization
results in an algerbaic equation system, analogous to FDM. However, despite
the apparent similarities, FVM does have some important advantages over
FDM:
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e Both local and global mass conservation is automatically satisfied in
FVM.

e F'VM allows for easier treatment of boundary conditions for complex
domains.

e F'VM is better adapted for the use of unstructured grids.

The last item is especially important for handling complex geometries,
as unstructured grids can fit arbitrary domain boundaries, and the grid gen-
eration process can be fully automated. This is one of the reasons for the
method’s popularity in industrial use. Also, the fact that all terms in the
equations have direct physical meaning makes FVM particularly attractive
to engineers. Further details about the finite volume method can be found
in e.g. [25] and [26].

2.2.3 Finite Element Method

The Finite Element Method (FEM) was first applied as a computational tool
in the field of structural engineering. Here it became a powerful method for
calculating stresses and strains in various load-bearing structures. Subse-
quently, using variational methods and functional analysis, mathematicians
have developed FEM into a general method of solving partial differential
equations. In this context, the finite element method as we know it today
has been equipped with a strong mathematical foundation, with the avail-
ability of theoretical error estimates and error bounds. The method has its
followers in the CFD community, especially among mathematicians. How-
ever, in the fluid engineering community, FEM is generally regarded as more
abstract and difficult to comprehend in a fluid dynamics context, as com-
pared to the finite volume method. Despite this view, the finite element
method applied to fluid flow problems resembles FVM in many ways. In
FEM the computational domain is subdivided into a set of volumes called
finite elements, quite similar to the finite volumes in FVM. However, the dis-
tinguishing feature of FEM is that the differential form of the conservation
equations are multiplied by test functions before they are integrated over
the computational domain. In FVM, the integral form of the conservation
equations are used directly.

The mathematical statement which forms the most common ”point of
departure” for finite element methods in CFD is the variational (or weak)
formulation of the Navier-Stokes equation system. This form is obtained by
multiplying equations 1.5 and 1.4 by test functions v and ¢ respectively, and
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then integrate over the fluid domain Q with boundary I' = '’ UT'N. The
variational formulation reads (Laplacian form):
Find u € U and p € @ such that

Z (%ltlv + (- Vjuv +vVu- Vv —p(V V)) Q= (2.29)

/f-de—l—/rN-vdS YveV
Q

TN
/q(V~u)dQ:0 VgeQ (2.30)
Q
with boundary conditions
u = rp on I'P (Dirichlet) (2.31)
—pn+l/% = ry on 'V (Neumann) (2.32)

The functional spaces U, V and @ are defined by

e U = {v sufficiently smooth and satisfy v|rp =rp}
e V = {v sufficiently smooth and satisfy v|r = 0}

e Q = {q sufficiently smooth and satisfy |, ¢dQ = 0}

The formulation above is commonly referred to as the Galerkin finite ele-
ment formulation, perhaps the most common FEM approach. Discretization
of the problem is done by introducing a finite nodal basis for the functional
spaces. If N; is a nodal basis function, it has by definition the value one
at node 4, and zero everywhere else. In FEM, nodes include all the ele-
ment corners, and can also include point(s) inside the element. The discrete
approximation u;, may then be written:

NDOF

u,(x,t) = Z w; V; (2.33)

where u; = uy(x;,t) is the unknown nodal value. Subscript DOF' denotes
"degrees of freedom”. We get a similar expression for the test function v.
The functions N; are piece-wise polynomials, usually of low order, often
exemplified in literature by so-called ”hat functions” in one space dimension.
The resulting one-dimensional approximation will then be piece-wise linear.



20 CHAPTER 2. COMPUTATIONAL FLUID DYNAMICS

In 3D, the analogue is a ”trilinear” basis function, i.e. linear in each space
dimension. Many alternative basis functions may be used, however, they
must produce a continuous solution for the velocity. The basis functions ¢,
for the pressure is often of one order lower than the velocity basis function.
This is motivated by the fact that the weak formulation includes 1st order
derivatives of the velocity, while there are no pressure derivatives, only the
pressure itself, see eq. 2.29. We get

NDOF

pn(x,t) = Z pid; (2.34)

where p; = pp(x;,1).
The resulting semi-discrete algebraic equations may be written in the
following compact matrix-vector form:

0
MZE 4+ [K + L(u)u+Cp = by +b, (2.35)

ot
C'u = 0 (2.36)
Here, u and p are vectors containing the unknown (discrete) velocities and
pressures, respectively. Further, by = / f-vdQ and b; = / ry - vdS
[9) N

(r.h.s of 2.29). The subscript h is dropped for convenience. (FNote: Bold
face is mot used for the pressure vector, in order to indicate that it’s (still)
a scalar value, though represented mathematically as a vector in this case).
The coefficient matrices are commonly named as follows:

e M is the mass matrix

e K is the viscous (or diffusion) matriz

e L(u) is the nonlinear advection (or convection) matriz

e C is the coupling matriz (it couples the velocity and the pressure)

The global coefficient matrices are assembled from element matrices in a
quite mechanical way, element by element. For details on the construction
of these matrices, see e.g. Gresho & Sani [28].

Apart from the strong mathematical foundation, a great advantage of the
finite element method is the built-in ability to incorporate different physi-
cal boundary conditions on complex domains, especially the Neumann type.
Also, FEM is often considered more accurate than FVM. For these and other
reasons, FEM is chosen as the space discretization technique in the Navier-
Stokes solver used in the present work (ref. chapter 3). For more details on
FEM in the context of fluid dynamics, see [27], [28].
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2.2.4 Global methods

The discretization schemes mentioned thus far are local, low order methods.
For most engineering purposes, the accuracy and convergence properties of
these methods are satisfactory. However, higher accuracy and/or faster con-
vergence may be needed in certain cases, for example in time-dependent
problems where long time integration is required. A typical example is di-
rect numerical simulation of turbulence. The method of choice for these
problems are often spectral methods. An important sub-category of the spec-
tral discretization methods is the spectral element method, also called spec-
tral Galerkin method. The overall procedure is similar to FEM as described
above, but the nodal basis functions are global polynomials, instead of the
piece-wise polynomials used in FEM. Common basis functions are the Cheby-
shev or Legendre type polynomials, and the grid is formed using various types
of Gauss points. Another type of spectral method is the spectral collocation
(or pseudo-spectral) method. Here, a set of global polynomials are used to
interpolate the original Navier-Stokes equation directly at certain collocation
points, also of Gaussian type.

The local methods described in previous sections all result in algebraic
equations for which the coefficient matrices (see eq. 2.35 and 2.36) are sparse
(i.e. many zero elements). Sparse matrix systems can be solved very effi-
ciently, using comparatively little storage space. Spectral methods, on the
other hand, produce full matrices, consequently the system is much more
expensive to solve. However, spectral methods are more accurate and con-
verge faster, so fewer nodes and fewer iterations are needed to obtain the
same degree of accuracy compared to local methods. The reason why spec-
tral methods are rarely used in industrial CFD is that the use of global
polynomials severely reduces the flexibility with respect to handling complex
domain geometries. For details on spectral methods, see [29].

2.3 Time discretization

So far, we have only considered a few approaches to spatial discretization
of the Navier-Stokes equations, leaving time as a continuous variable. From
a mathematical point of view, time could readily be treated as yet another
space dimension, an approach which is employed by e.g. Zienkiewicz & Tay-
lor [27]. However, there are some important arguments in favour of treating
time differently. The most obvious is that time, unlike space, is hyperbolic
in nature, which means that it has a definite direction of influence. Infor-
mation can only travel forwards in time, whereas in space information can
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travel in any direction. Furthermore, higher-order schemes produce very
large matrix systems, which makes them quite expensive to solve [30]. Fi-
nally, advancing time in a step-by-step or "marching” manner enables us to
write the semi-discrete algebraic equations as a set of ordinary differential
equations (ODEs), for which there exist a great variety of sophisticated nu-
merical methods. Consequently, the latter approach is most widespread in
CFD.
Assuming some kind of spatial discretization of the Navier-Stokes system
is already performed, the remaining problem can be expressed as
dl;—it) =f(t,u(t)); u(ty) =u’ (2.37)
where u(t) is a vector containing all the unknowns. Eq. 2.37 is an initial
value problem, where the basic task is to find the solution a short time ot
after the initial time ¢y, at which the solution is known. The solution u! at
t; = tg + 0t forms a new initial condition, and the solution can be advanced
to ty = t1 + 0t, t3 =ty + 0t,... and so on. Only a few of the simpler methods
for solving 2.37 are included here, in order to illustrate the main principles.
The starting point for many methods is obtained by integrating eq. 2.37
from t, to t,,1:
tn+1
utt —u" = / f(t,u(t))dt (2.38)
tn
Thus, the problem is reduced to finding some approximation to the integral
on the right hand side. If we use the value of the integrand at the initial
point t,, to evaluate the integral, we have:

u"tt = u" + f(t,,u")dt (2.39)

which is known as the forward or explicit Fuler method. The method is
called explicit because it only requires values at t,,, which are already known.
If we instead use t"*!, we obtain the backward or implicit Euler:

u"tt =u" + f(t, ., 0"t (2.40)
We may also use values at a point midway between ¢, and ¢,,,1:
utt = (w6t (2.41)

which is commonly known as the midpoint rule. Another important scheme
uses a straight line interpolation between ¢, and ¢,.;to approximate the
integral:

1
un+1 =u"+ é[f(tn, un) + f(tn-i-la un+1)]6t (242)
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This method is called the trapezoid rule. All the methods mentioned so far
involve only a single time step 0t, and are often referred to as single-step
methods. The term two-level method is also used. Further, all the methods
mentioned above except the first one (forward Euler) are implicit. These
methods require values of u at points other than ¢,, where the solution is
known. Thus, in order to calculate the right hand side, further approximation
or iteration is needed. Explicit methods, on the other hand, can be solved
directly. Details on time stepping schemes can be found in many textbooks,
e.g Ferziger & Peric [26].

2.4 Boundary conditions in CFD

As mentioned earlier, initial and boundary conditions are needed to get a
closed set of algebraic equations to be solved numerically. In general, every
boundary node must have one condition (Dirichlet or Neumann) for each of
the unknown variables, in order to close the equations, but not overdeter-
mine the problem. In CFD, it is common to divide the boundary conditions
into physical and artificial (or computational) boundary conditions. Phys-
ical boundary conditions are imposed exactly as in the real world, such as
e.g rigid, no-slip walls. In cases where the physical flow domain is infinite
(in one or more directions), artificial boundary conditions are used to cre-
ate a bounded (finite sized) computational domain. In other cases when the
real world conditions are indeterminable and/or hard to implement, artifi-
cial conditions are created in order to mimic the real conditions as closely
as possible. Artificial boundary conditions include e.g far field and outflow
conditions. "Far field" means far enough away from no-slip walls so that
any disturbance can be neglected. Examples of the most common "practical
boundary conditions" (physical and artificial) used in CFD (incompressible
calculations) are mentioned below:

e No-slip wall: zero velocity
e Inflow: prescribed normal velocity

e Far field: "free-slip wall", i.e prescribed tangential velocity or zero
tangential stress (depending on formulation), in addition to zero normal
velocity (no in- or outflow)

e Outflow: prescribed pressure or zero normal stress

It should be noted that the practical implementation of boundary con-
ditions depends strongly upon the choice of general solution method and



24 CHAPTER 2. COMPUTATIONAL FLUID DYNAMICS

discretization scheme, and will not be examined here. However, the general
features of the examples given above should apply in most cases.

2.5 Some numerical aspects

In order to give a physically realistic and reasonably accurate solution to the
flow problem at hand, the numerical method should possess certain proper-
ties. Some of the properties are determined unconditionally by the solution
approach and discretization methods chosen, while other features may be
problem dependent. The most important properties are commented in the
following sections. Most of what’s written is extracted from Tannehill et
al[18] and Ferziger & Peric[26].

2.5.1 Consistency

Firstly, the discretization scheme should be consistent. Consistency means
that the truncation error becomes zero when the grid spacing and/or time
step goes to zero. Thus, the original differential equation is recovered. The
truncation error is the difference between the exact and the discretized equa-
tions. Consistency can be demonstrated by replacing nodal values in the
discretized equations by Taylor series expansions about a single point.

2.5.2 Stability

Furthermore, the method should give a numerically stable solution. A method
is stable if it does not amplify errors occuring in the numerical simulation.
For iterative methods, stability ensures a solution that does not diverge. For
time dependent problems, stability guarantees a bounded solution of the dis-
cretized equation when the solution of the underlying differential equation is
also bounded. We may define the amplification factor G of a time stepping
or iterative scheme in the following way:

n+1

G —

o (2.43)
where u" and u"*'are numerical solutions at times ¢,, and ¢, 1, respectively.

The stability condition is then given as
G| <1 (2.44)

This condition forms the basis of the Fourier series method (or von Neu-
mann method), perhaps the most common stability analysis method (see e.g
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Tannehill et al [18]). Other methods include the matriz method [18] and
the maz-min method, ref. Greenspan & Casulli, [31]. These methods are
however difficult to apply to non-linear PDEs such as Navier-Stokes equa-
tions. Consequently, stability analysis for a given discretization scheme is
normally performed on linearized model equations, investigating one term
at a time. For example, the well-known CFL condition (Courant-Friedrich-
Levy) is derived from the linearized convection equation (or first order wave
equation). The CFL condition states that fluid should not be convected
through more than one cell /element per time step, demanding that the time
step is smaller than the minimum ratio of grid size to velocity. Analyzing
linearized equations may give stability criteria which are sufficient, but too
restrictive compared to the necessary criteria.

2.5.3 Convergence

In order to be usable, a numerical method has to be convergent, i.e the so-
lution of the discretized equations should tend towards the exact solution of
the PDE as the grid spacing and/or time step goes to zero. For a well-posed,
linear initial value problem, Laz’ equivalence theorem states that stability is
a necessary and sufficient criteria for convergence of a consistent discretiza-
tion scheme. However, convergence of non-linear problems with complex
boundary conditions (e.g Navier-Stokes equations) is more difficult to prove
theoretically. Numerical experiments are therefore commonly used to demon-
strate convergence of a particular CF'D code for a given flow problem.

2.5.4 Accuracy

All numerical solutions to fluid flow problems are approrimate solutions,
and will contain errors. There are several different types of errors. The
truncation error is already mentioned, usually proportional to a power of the
grid spacing h and/or the time step 6t. If the leading term of the truncation
error is proportional to e.g h? and §t3, we say that the method is second order
accurate in space and third order accurate in time, or O(h?,t*). However,
as a measure of accuracy, this only tells us the rate at which the truncation
error decreases as h and 0t goes to zero, but nothing about the magnitude of
the error itself in a given flow calculation. The truncation error together with
errors due to boundary conditions fall under the collective term discretization
errors.

The difference between the "real" flow and the exact solution of the math-
ematical model (i.e the PDE) is defined as the modeling error. As an exam-
ple, the incompressibility assumption in the Navier-Stokes equation introduce
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modeling errors if the velocities become very large. Another example are er-
rors related to turbulence modeling.

Because digital computers have finite accuracy, any algebraic operation
performed on a computer will have round-off errors. The total (accumu-
lated) round-off error will normally increase with the number of algebraic
operations, i.e it will become larger when the grid spacing and/or time step
is reduced. Furthermore, most CFD codes involve iterative solution of al-
gebraic equation systems. The difference between the iterative and exact
solution of these equations are called the iteration error. The iteration errors
can be controlled during the simulation by setting appropriate convergence
criteria. The smaller we want the error to be, the stricter the criteria, and
the more iterations are needed.

Controlling the errors, and knowing how the numerical method behaves
when inevitable errors occur, is a major task in CFD. The goal is to achieve
maximum accuracy with the available resources, or conversely, to obtain the
desired accuracy at minimum computational cost.
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Chapter 3

Computational method

The computer code used in the numerical experiments is called VISTA, devel-
oped at SINTEF Applied Mathematics in collaboration with NTNU. VISTA
is an object oriented Navier-Stokes solver for incompressible flows, designed
to run on large parallel computers. It is implemented in C++, using the nu-
merical library Diffpack™ [32]. The calculations are performed on NTNU’s
high performance computing facilities [11], two SGI Origin 3800 machines
with 896 processors combined, a total memory of 816 GB and a total peak
performance of 998 Gflops.

The numerical solution methods applied in the VISTA code are described
in chapter 2, but will be defined more precisely in the following sections.

3.1 General solution method

The general solution method applied in the code is the projection method
introduced by A.J. Chorin [22]. In principle, this method consists of three
steps. First, the momentum equations are advanced in time, neglecting the
pressure gradient term, in order to obtain an intermediate velocity u (ref.
eq. 2.12):

u—u

ot

where superscript n denotes the time step. The velocity u does not satisfy
the continuity equation. In this case, the backward Euler time discretization
method (with extrapolated convective velocity) is shown to exemplify the
equation. The updated pressure field is calculated from

= —(u"-V)u+rvVia+ (3.1)

= —Vp"t! (3.2)
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(Ref. eq. 2.13). By taking the divergence of eq. 3.2, and imposing the
incompressibility constraint Vu™*' = 0, we obtain a Poisson equation for
the pressure (2.14):

Vu
ot
Note that p is the kinematic pressure (i.e. pressure divided by density).

To summarize:

V2pn+1 — (33)

1. Calculate the intermediate velocity u from eq. 3.1.
2. Solve eq. 3.3 for the new pressure p"?.

3. Calculate the new velocity u""from eq. 3.2

In VISTA, the operator splitting is performed on the continuous equa-
tions as shown above. The resulting equations are subsequently discretized.
When performed in that order, the method is called the continuous projection
method, as opposed to the discrete projection method, where the discretiza-
tion comes first.

3.1.1 Splitting error

The splitting error term can be obtained by combining equations 3.1 and 3.2,
eliminating the intermediate velocity u. The error term reads

es = 6t(vV? — (u" - V))Vp"H! (3.4)

This term is O(dt), and tends to stabilize the solution. Consequently, when
0t becomes very small, the solution may become unstable.

3.2 Space discretization

Finite elements are used for space discretization. In the finite element method
(FEM), the variational (weak) form of the conservation equations is used.
The computational domain is subdivided into a set of volumes called finite
elements. The variational form of the Navier-Stokes equation system is ob-
tained by multiplying the differential form of the equations by test functions
before integrating over the computational domain. The variational formula-
tion reads (ref. equation 2.29 to 2.32):
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Find u € U and p € @) such that

/ (%v +(u-V)uv +vVu- Vv —p(V- V)) dQ) = (3.5)

Q

/f-de—l—/rN-vdS YveV

Q N
/q(V~u)dQ:0 VgeQ (3.6)
Q
with boundary conditions
u = rp on I'P” (Dirichlet) (3.7)
—pn+l/% = ry on 'Y (Neumann) (3.8)

The functional spaces U, V and @ are defined by

e U = {v sufficiently smooth and satisfy v|rp =rp}
e 1V = {v sufficiently smooth and satisfy v|r =0}

e Q = {q sufficiently smooth and satisfy |, ¢dQ = 0}

Discretization of the problem is done by introducing a finite nodal basis
for the functional spaces. The discrete approximation u, may be written
(ref. equation 2.33):

NDOF

u,(x,t) = Z w; V; (3.9)

where u; = u,(x;,t) is the unknown nodal value and N; denotes the nodal
basis functions. We get a similar expression for the weight function v. The
functions N; are piece-wise polynomials. In the VISTA code, the velocity
basis functions can be of first or second order. The discrete approximation
for the pressure may be written (ref. eq. 2.34):

NDOF

pn(x,t) = Z Pid; (3.10)

where p; = pp(x;,t). The basis functions ¢, for the pressure are of first
order in the VISTA code. The resulting semi-discrete algebraic equations
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may be written in the following compact matrix-vector form (ref. equations
2.35-2.36):

B
MEE 4+ [K + L(u)u+Cp = bs+b, (3.11)

ot
C'u = 0 (3.12)
Here, u and p are vectors containing the unknown (discrete) velocities and

pressures, respectively. Further, by = / f-vdQ) and b, = / ry - vdS
Q Ty

(r.h.s of 3.5). The subscript & is dropped for convenience. For details on the
construction of the coefficient matrices M, K, L(u) and C, see e.g. Gresho
& Sani [28].

3.3 Time discretization

Three different time discretization schemes are implemented in VISTA; the
backward Euler method (first order), the trapezoid rule combined with a
modified Euler method (denoted trapez/Euler; second order), and the Crank-
Nicholson/Adams-Bashforth method (second order). Semi-implicit versions
are used, because the projection methods prohibit the use of fully implicit
methods. The diffusion term is treated implicitly, while the convective veloc-
ity is taken from the previous time step. In this version, the backward Euler
applied to Navier-Stokes equations reads as follows:

un+1 —u®
— = —(u" - V)u"t — vp £ oV T (3.13)
V.outl=0 (3.14)

In the present computations, the backward Euler and trapez/Euler methods
are used. See Holmen [36] for further details on the implementation of the
schemes.

3.4 Turbulence model

The effect of turbulence is modelled using large-eddy simulation (LES). In
LES, the larger unsteady turbulent motions are directly represented, whereas
the effects of the smaller-scale motions are modelled. The velocity u(x,t)
is decomposed into a space filtered (or resolved) component u(x,t) and a
residual (or subgrid-scale, SGS) component u'(x,t), so that

u(x,t) =u(x,t) + u'(x,1) (3.15)
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The decomposition (equation 3.15) is inserted into the Navier-Stokes equa-
tions, here written in Einstein notation, conservative form (omitting the body
force for convenience):

Ou;  O(uiuy) op 9%u;
S DA 1
ot " o, oz, +on,01, (3.16)
8u,~
= 1
oz, 0 (3.17)
The resulting filtered equations read:
= — 1
du;
or, 0 (3.19)

The filtered product w;u; is different than the product of the filtered velocities
u;uj. The difference is defined as the residual-stress tensor,
’7'5 = Uiy — ﬂz‘ﬂj (320)

The residual kinetic energy is

Ky

1
575 (3.21)

and the anisotropic residual-stress tensor is defined as

2

T = 7'57 - gkraij (3.22)

where §;; is the Kronecker delta, defined as

= 1 for i=

The isotropic part of the residual stress is absorbed into the pressure term,
giving a modified filtered pressure:
2

P=0+3h (3.24)

The filtered momentum equation (eq. 3.18) may then be rewritten as follows:

ou; _ om  Op Pu; 0Ty
™ R — 2
ot Yoz, om Vo010, (3.25)
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Eq. 3.25 and 3.19 may be solved for u(x, t) and p'(x,t) in the same manner
as described in section 3.1. However, the filtered equations are unclosed,
so we need a model for residual-stress tensor 77;, also called a subgrid-scale
(SGS) model. The oldest and most well-known SGS model is the one due
to Smagorinsky (1963), and this model is also implemented in the VISTA
code. Here, the residual stress is related to the filtered rate of strain using
the eddy-viscosity hypothesis:

L
Tij = —2I/TSZ‘J‘

where

ou;  Ou;j
(=— +

8@ 8:(:1
The eddy viscosity of the residual motions, v,(x,t), is modelled by analogy
to Prandtl’s mixing length hypothesis:

5 1

i =5 ) (3.26)

v, = (CsA)S (3.27)

where S = (2§ij§ij)%. Cs is the Smagorinsky coefficient and A the filter
width. We may note that the actual filtering operation is never explicitly
performed, but lies implicitly in the model for 7;;. In our case, the filter

width A is taken as the geometric mean of each element, i.e A = (A1A2A3)%,
and is thus a function of the local grid resolution.

The basic Smagorinsky model as described above is not well suited for
wall-bounded flows, since the residual viscosity does not vanish at the wall.
A common remedy to this problem is to multiply v, by a damping function,
which is unity in the free flow, but reduces to zero at the wall. In the
VISTA code, the van Driest damping function is implemented, replacing the
Smagorinsky coefficient with the following expression:

Cs = Og[1 — exp(—y*/AT)] (3.28)

where 4y = u,y/v is the distance from the wall in dimensionless (wall) units,
ur = (T4/p)? the wall friction velocity, and 7, the magnitude of the shear
stress at the wall. A™ is a dimensionless constant, normally taken to be 25.
C? is commonly chosen to be 0.1, but may vary depending on the type of
flow. Further details on large-eddy simulations may be found in e.g. Pope

[41].



Chapter 4

Flow around a single cylinder

4.1 Introduction

Flow around a circular cylinder is one of the most studied flow cases in fluid
dynamics. The geometry is very simple, yet this flow has many interesting
and complex features, described by many researchers through theoretical, ex-
perimental and numerical work. Also, the circular cylinder plays an integral
role in a large number of practical applications. Today, the rapid increase in
computer power makes it possible to perform detailed numerical studies at
ever increasing Reynolds numbers, and consequently, this flow case is still the
subject of many studies. These considerations makes flow around a circular
cylinder an ideal test case for verification and validation of CFD codes, as
well as a good starting point for the study of more complex flows.

The behaviour of flow around a cylinder changes dramatically as the
Reynolds number, defined as Re = uyd/v, increases from zero. Here, uy, is
the free stream velocity, d the cylinder diameter and v the kinematic viscos-
ity. Starting from rest, the flow around a cylinder is steady and stable. At
Reynolds number Re ~ 5 a couple of symmetrical two-dimensional vortices
are formed behind the cylinder. At Re ~ 45 to 47 these vortices become
unstable (the primary instability of the flow), and starts to shed successively
from each side of the cylinder, leading to oscillating drag and lift forces on
the cylinder. The vortex shedding continues for Reynolds numbers up to at
least O(10°). This phenomenon is also known as the von Kdrmdn vortex
street, see figure 4.1.

The non-dimensional form of the shedding frequency f is defined as
St = f - d/us, known as the Strouhal number. The Strouhal number in-
creases with increasing Reynolds number. At Re ~ 190, the 2D oscillatory
flow becomes unstable to long-wavelength 3D perturbations (the secondary

35
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Figure 4.1: Von Karmén vortex street: velocity field (colormap) with vorticity
contour lines (black). Results from 3D calculation at Re = 265, present study.

instability of the flow). A discontinuity (’jump’) in the Strouhal-Reynolds
number relationship occurs, see figure 4.2. Streamwise vortices are formed
in the wake, together with a "waviness" in the primary vortex shedding.
This flow regime is called 'mode A’ (by C.H.K. Williamson [37]). Using
stability analysis, Barkley and Henderson [38] showed that the transition to
'mode A’ at Re ~ 190 happens when the spanwise wavelength A of the three-
dimensional perturbation reach a critical value of 3.96 cylinder diameters. At
Re ~ 260, there is a second jump in the St-Re relationship. The following
Reynolds number regime is called 'mode B’, where the flow is unstable to
short-wavelength instabilities, with a critical A of 0.822 diameters [38]. A
visualization of the flow patterns is shown in figure 4.3. An isosurface of the
vorticity field is plotted at Re = 265 (results from present study, see section
4.2). The vorticity field is the scalar value of the vorticity vector, defined
as ¢ = V x u. We can clearly observe both the short- and long-wavelength
instabilities. The three-dimensional wake patterns resulting from 'mode A’
and 'mode B’ have similar visual appearence, however at different length
scales, but are assumed to arise from different physical mechanisms [37].
Curves of neutral stability for the 2D von Kdarmén wake with respect to
3D perturbations are shown in figure 4.4. From the figure we see that for
a given Reynolds number larger than the critical value(s), Re ~ 190 and
Re ~ 260, each instability mode is associated with a continuous band of
wavelengths, not with a single wavelength value. The number of discrete
wavelengths present in the wake depends on both Re and spanwise dimen-
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Figure 4.2: Variation of Strouhal number as a function of Reynolds number for 2D
and 3D cylinder wake flow (reproduced after Henderson [39]). Notice the significant
difference between the 2D simulations and the experimental measurements already
at Re > 190.

sion ( = cylinder length). In flow calculations, periodic boundary conditions
are commonly used in the spanwise direction to approximate the flow past an
infinitely long cylinder. However, this approximation is not valid unless the
spanwise domain size is large enough to represent the continuous spectrum
of the infinite problem [39]. Only perturbations with wavelength A\, = L/n,
where n is an integer, will be present in the solution. According to Hender-
son, the flow will be perfectly periodic if a single mode (A or B) is present.
Two modes will lead to a quasiperodic behavior, where the shedding fre-
quency will alternate between the two modal values. Finally, when three
or more modes are amplified, the flow will go into a state of spatiotemporal
chaos, which eventually leads to turbulence at Re ~ 1000. Transition to
turbulence starts in the separated shear layers downstream of the cylinder.
The point of transition moves upstream as Re increases, but the boundary
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Figure 4.3: Isosurface of the vorticity field (scalar value of the vorticity vector)
at Re = 265. Results from present study, showing the 3D character of the wake
flow. The vorticity value is |¢| = 300, approx 4% of the maximum value.
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Figure 4.4: Curves of neutral stability with respect to spanwise perturbations.
Unstable modes exist in the regions inside the curves (reproduced after Henderson
[39]). The two cases considered in section 4.2 are marked with an asterisk ().
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layer around the entire cylinder remains laminar until Re ~ 200,000. Upon
a further increase in Re, the flow will go through stages of laminar boundary
layer separation and subsequent turbulent re-attachement. This leads to a
narrowing of the wake, and a large decrease in drag on the cylinder. At
Re ~ O(10%) the final stage of transition occurs, when the bondary layer on
the cylinder becomes turbulent upstream of the separation point. A detailed
review of the different flow regimes is given by C.K.H. Williamson [40]. In
the present study, detailed calculations of the flow around a single cylinder
are performed at Re = 265 and Re = 3900, and calculations of flow around
two cylinders arranged in tandem are carried out at Re = 21600 (treated
separately in chapter 5).

4.2 Flow around a cylinder at Re = 265

4.2.1 Description of the numerical experiment

Numerical simulation of laminar flow around a circular cylinder is performed
at Re = 265. The Navier-Stokes equations are solved without the use of
a turbulence model. Direct numerical simulation (DNS) results reported by
Henderson [39] show that the onset of three-dimensionality in the wake, which
happens at Re ~ 190, influences the mean surface pressure on the cylinder.
Here, the 'mean surface pressure’ is defined as the surface pressure averaged
in time and along the span of the cylinder. We may define a surface pressure
coefficient as

Cy = (p— puc) 5 (4.1)

where p is the mean surface pressure and p. is the free stream pressure.
The three-dimensional behavior causes a reduction in magnitude of C),, on
the low-pressure side (or base) of the cylinder, compared to two-dimensional
simulations. This will lead to a reduction in mean drag on the cylinder.
A comparison of the surface pressure from one 2D simulation and two 3D
simulations (ref. Henderson [39]) with different cylinder lengths, L = 0.822d
and 3.288d respectively, is shown in figure 4.5. Here, § = 0 is the base
of the cylinder, and § = =4 is the front stagnation point, see figure 4.6.
The Reynolds number of 265 is just above the critical Re for 'mode B’. In
Henderson’s 3D simulation with the shortest cylinder (L = 0.822d), only a
single ‘'mode B’ instability is present. In the simulation with the four times
longer cylinder, L = 3.288d, one 'mode A’ and one 'mode B’ instability is
present. This result can be inferred from the stability diagram on figure 4.4.
We will use Henderson'’s results as benchmark data for the present study (see
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Figure 4.5: Expanded view of the mean surface pressure distribution on the low-
pressure side (base) of a circular cylinder at Re = 265 (DNS results by Henderson
[39]). Dashed line: 2D simulation. Solid line: 3D simulation with L = 0.822d.
Dash-dot: 3D simulation with L = 3.288d.
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Figure 4.6: Definition of the angular position 0
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Figure 4.7: Computational domain for the circular cylinder

table 4.3). The two cases considered in the present study are marked with
an asterisk (x) in figure 4.4.

The computational domain is shown in figure 4.7. The cylinder diameter
d = 0.1.The centre of the cylinder is placed halfway between the free-slip
walls, making the flow domain symmetrical about the x-axis (the ambient
flow direction). This can make it difficult to start the vortex shedding when
gradually increasing the Reynolds number, because the symmetry tends to
reinforce the stability of the low Re solution. A common remedy to this prob-
lem is to place the cylinder slightly off centre, thus introducing an asymmetry.
In the present case, however, a non-uniform initial velocity field is used to
trigger the flow instabilities; both the 2D vortex shedding and the 3D (span-
wise) instability. At ¢ = 0, the velocity field is described by a linear function
in y multiplied by a quadratic function in z (see fig. 4.7 for axis definitions).
During a time interval 7 after ¢ = 0, the inflow and free-slip wall velocities
gradually transform into a prescribed constant value of u. This effectively
provokes the desired flow behaviour. So, after a time 7 the boundary condi-
tions become stationary, with v = u,, = 2.65 and v = w = 0 at the inflow
and free-slip wall boundaries. In order to get the prescribed Reynolds num-
ber of 265, the viscosity and density are adjusted to suitable values. We have
chosen viscosity © = 1-1073 and density p = 1.

Periodic boundary conditions are used in the spanwise direction. At the
outflow boundary, the pressure is set to zero. Note that p = 0 is stricter
than the usual homogeneous Neumann condition, which requires zero normal
stress. However, using the Neumann condition at the outflow caused some
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problems with pressure growth in the corners between the outflow and the
periodic boundaries. So, p = 0 was chosen instead, in order to avoid these
difficulties. The outflow boundary is assumed to be far enough downstream
so that the zero pressure condition doesn’t influence the pressure on the
cylinder surface.

The backward Euler time discretization scheme is used in all the simu-
lations in the present section. This is a first order method, unconditionally
stable and known to produce a smooth (non-oscillatory) solution even for
very large time steps. Therefore, our main consideration is accuracy when it
comes to choosing the time step 6t. (However, it should be noted that the
use of equal order finite elements in combination with the projection method
may lead to instabilities when the time step becomes too small relative to
the grid spacing). In order to get accurate results, the physical time scales of
interest should be sufficiently resolved, i.e. 6t << T},s. The most significant
physical time scale in our case is the vortex shedding period (which is equal

to the lift cycle):
d
T = 4.2
! Uoo * ST (4.2)
Based on literature and a number of calculation tests, we estimate that
O(100) time steps per vortex shedding cycle is required. A more system-
atic study of time step sensitivity is performed as part of the experiment, see

below.

The numerical experiment consists of the following parts:
1. Cylinder of length L = 0.822d

e (Calculations performed on three topologically similar grids, G1
("coarse"), G2 ("medium") and G3 ("fine"). The goal is to in-
vestigate the sensitivity to grid resolution. In this part of the
experiment, the time step 6t is kept fixed at 0.001, which gives a
dimensionless time step 0t' = 0t - Uy /d = 0.0265.

e (Calculations with varying time step performed on one of the grids
(G2), in order to investigate time step sensitivity.

2. Cylinder of length L = 3.288d

e (Calculations with a longer cylinder, performed on a grid with iden-
tical 2D cross sections as grid G2 (but with a different 2 resolu-
tion). The aim here is to study the change in wake flow pattern
when the cylinder length is increased.
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Figure 4.8: Block topology of the grids (schematic view). Number of elements
and grading factors for the different curves are given in table 4.1, referring to the
numbers 1-4 in the figure.

4.2.2 Cylinder of length L = 0.822d

Computational grids

The computational grids used in the simulations are generated using Grid-
dler [42], a computer program developed at SINTEF Applied Mathematics.
The grids are block structured, with 8 node linear hexahedral elements for
both velocity and pressure. The block topology of the grids is shown as a 2D
cross section in figure 4.8. The nodes are uniformly spaced in the spanwise
(z) direction, and clustered towards the cylinder surface. Four thin "shell
blocks" enclosing the cylinder ensures proper control of the gridding in the
boundary layer close to the surface. The clustering (grading) of nodes is done
as "evenly" as possible, in order to avoid any large jumps in element size,
which may cause numerical difficulties. See figure 4.9 and 4.10. Data for the
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Figure 4.9: The coarsest grid, G1 (ref. table 4.1)
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Figure 4.10: Close-up view of grid G1.



4.2. FLOW AROUND A CYLINDER AT RE = 265 45

Grid: G1 G2 G3

Total no. of nodes 181860 365202 719136
No. of nodes in the xy plane 8660 13526 22473
Total no. of elements 169600 345800 688128
Elem. thickness at the cyl. surface, % of d 0.577  0.464  0.388
No. of spanwise elements 20 26 32

No. of elem. along curves marked 1 and 2 40 50 64

No. of elem. along curves marked 3 20 26 32

No. of elem. along curves marked 4 8 10 12
Grading factor, curves marked 1 and 3 1 1 1
Grading factor, curves marked 2 32 32 32
Grading factor, curves marked 4 4 4 4

Table 4.1: Grid data, cylinder of length L.=0.822d. Curve numbers refer to
figure 4.8. The grading factor is the ratio between the largest and smallest
element along the curve. A grading factor of 1 means that no grading is
used; all elements have equal length. Whenever grading is used, the nodes
are clustered towards the cylinder surface, see figures 4.9 and 4.10

grids covering the computational domain (shown in figure 4.7) are given in
table 4.1. (In this case, detailed data are provided for future reference). The
coarsest grid (G1) is uniformly refined throughout the domain, in order to
produce the medium fine grid (G2). A refinement factor of approximately
25 is used along each curve defining the grid. Consequently, G2 has approxi-
mately twice as many nodes as G1. The same refinement is used from G2 to
G3, so that G3 has ca. twice as many nodes as G2. In order to get accurate
results, the grid spacing in the wall-normal direction near the cylinder surface
should be small enough to capture the most important features of the bound-
ary layer. As a rule of thumb, the boundary layer thickness is often taken
to be O(d/v/Re). According to this measure, the grids in the present study
have between 5 and 10 elements inside the boundary layer, which should be
sufficient resolution.

Simulation setup

An overview of the individual runs performed in this experiment are shown
in table 4.2. The first column of table 4.2 constitutes a "grid convergence"
test, while the second row makes a "time step convergence" test. Each time
series are run for 3 seconds, i.e. 3000 time steps when 6t = 0.001, 1500 when
ot = 0.002 etc.



46 CHAPTER 4. FLOW AROUND A SINGLE CYLINDER

Grid 6t =0.001 ot =0.002 ot =0.004

Gl x
G2 X X X
G3 X

Table 4.2: Overview of simulations with cylinder of length L.=0.822d and
Reynolds number Re=265

Drag and lift coefficient, grid G1, dt=0.001
T T T
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Figure 4.11: Drag and lift coefficient, grid G1, 6t = 0.001.

Results overview

The fluctuating drag and lift coefficients as a function of time for the simu-
lation with grid G1 and 6t = 0.001 is shown in figure 4.11. Time histories
of drag and lift from the other runs in table 4.2 are shown in appendix A.1.
The drag and lift coefficient are defined as

F, F,

= d COp=1—"— 4.3
spu Ld o t spu Ld (43)

Cp
(See figure 4.7 for further definitions.) The drag and lift time histories look
quite similar in all the runs. It takes about 1 sec. of "physical" time to reach
a time-periodic state, regardless of time step. Flow visualizations show that
the 'mode B’ instability is present in all the runs. An example is shown in
figure 4.12.
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Flow
direction

Figure 4.12: Isosurface of the velocity field, grid G3, 6t = 0.001. The 'mode B’
pattern can be seen as a sinusoidal spanwise variation of the velocity field.

The most important flow parameters (from the perfectly time-periodic
part of the calculations) are shown in table 4.3, together with reference values.
2D reference values are also included, and we see that both the 2D Strouhal
number and pressure coefficients are slightly higher than the 3D reference
values. Subscript "PtP" denotes "peak-to-peak", defined as the difference
between max and min values. Note that the peak-to-peak value is unique only
when the time series is perfectly periodic, as in the present case. Otherwise,
the standard deviation should be used as a measure of the level of fluctuation.
Cpo is the mean base pressure coefficient (the pressure coefficient at 0 =
0), and Cpip, the mean lowest value of C,. The definition of the pressure
coefficient (), is given in the previous section. The instantaneous pressure on
the cylinder surface is collected from two full lift cycles towards the end of
each simulation, approx. 100 time steps per lift cycle, forming the basis for
the calculation of the mean pressure distribution. The Strouhal number St is
calculated directly from the mean zero crossing period of the lift coefficient.

Grid convergence test

A comparison of the pressure distribution on the cylinder for the cases with
0t = 0.001 and different grids is shown on figure 4.13, together with 3D ref-
erence data (circles). The base pressure coefficient C) is plotted against the
total number of nodes, together with the reference value (dash-dotted line)
in figure 4.14. From figure 4.13 we see that the general shape of the pressure
curves is well reproduced, and also the position of minimum pressure. As the
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Data from: St CD CDJDtp CL,ptp Cpmin Cpo

G1, 6t = 0.001 0.205 1.308 0.138  1.550  -1.530 -1.185
G2, 0t = 0.001 0.205 1.289 0.133 1473  -1.505 -1.140
G2, 0t =0.002 0.197 1.281 0.139 1.560  -1.479 -1.136
G2, 0t = 0.004 0.185 1.260 0.137  1.564  -1.441 -1.110
G3, 0t = 0.001 0.205 1.263 0.109 1338  -1.477 -1.079
Ref. 3D 0.202 (1) - - - -1.560 (2) -1.195 (2)
Ref. 2D 0.207 (2) - - - -1.580 (2) -1.210 (2)

Table 4.3: Flow parameters from present DNS and reference data; (1) Ex-
periment by Williamson [40], (2) Simulations by Henderson [39].

Cp(9)

Figure 4.13: Mean pressure distribution on the cylinder surface, three different
grids with fixed time step ¢ = 0.001. Circles (o) mark the reference values from
Henderson [39] (3D).
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Figure 4.14: Comparison of base pressure coefficient Cpy with reference value
from [39], grid convergence test

grid is refined, the pressure level around the rear of the cylinder increases
(i.e the "base suction" decreases), and consequently the mean drag decreases
(see table 4.3). This trend is consistent with resolving more and more of
the three-dimensional physics of the wake. The results also indicate that the
VISTA code converges towards a different level of mean surface pressure than
the code used by Henderson, i.e. our results depart from Henderson’s, when
the grid is refined. This may be attributed to the different computational
methods chosen in the two codes. Henderson uses a very accurate, high order
spectral element method. However, further refinement studies are needed to
confirm this trend. Also, we may notice a reduction in peak-to-peak values
as the grid is refined. This indicates that force oscillations become smaller
as more of the 3D physics is resolved.
An error estimate of the base pressure coefficient may be taken as

calc ref
. |Cp0 - CpO

— (4.4)
‘Cp()f

err

According to this estimate, the error will thus increase with increasing node
number, see figure 4.15, and a possible reason for this is mentioned above.
Obviously, the error shows exactly the same trend as figure 4.14. We may
note that the error is below 10 % in all the runs. This is a quite satisfactory
result, and in any case good enough for engineering purposes.
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Figure 4.15: Error in base pressure coefficient Cp relative to the reference value
from [39], grid convergence test

Time step convergence test

A comparison of the pressure distribution on the cylinder for the cases with
grid G2 and three different time steps is shown on figure 4.16, together with
the reference data. The general shape of the curves and the position of min-
imum pressure is well reproduced, as in the grid convergence test. However,
decreasing the time step seems to have the opposite effect as refining the grid.
Indeed, our pressure distribution curve approaches the reference curve when
the time step becomes smaller, but at the same time we approach the 2D
solution (the dashed curve in figure 4.5). We would expect the same trend
when decreasing the time step as we observed when refining the grid. As
this is not the case, we should make further investigations. Consequently,
an additional calculation is done on the same grid, one with 6t = 0.0005
(i.e. halving the shortest time step). The resulting pressure distribution
is plotted in figure 4.17, together with the 6t = 0.001 curve. We see that
the curves lie very close together. The blue curve (6t = 0.0005) lies just
below the red curve (6¢ = 0.001) on most of the rear side of the cylinder
(|£] £ 0.5). Only at the base itself the blue curve barely crosses the red one.
Thus, the trend is somewhat inconclusive in this case. Upon close inspection,
we may notice that the blue curve isn’t perfectly smooth, but has a slight
‘saw-tooth’ pattern. A magnified view is shown in figure 4.18. A similar
but less distinct pattern is also present in the pressure distribution for the



4.2. FLOW AROUND A CYLINDER AT RE = 265 51

1.5 ! ! ! ! ! T T

1
—— dt=0.001
— - dt=0.002
- dt=0.004

Cp(8)

Figure 4.16: Mean pressure distribution on the cylinder surface, grid G2 with
three different time steps. Circles (o) mark the reference values from Henderson
[39] (3D).
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Figure 4.17: Mean pressure distribution on the cylinder surface. Grid G2 with
two different time steps, 6t = 0.0005 (blue) and ot = 0.001 (red)
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Figure 4.18: Magnified view of the mean pressure distribution shown in figure
4.17. Grid G2 with two different time steps, 6t = 0.0005 (blue) and ¢ = 0.001
(red)
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Figure 4.19: Magnified view of the mean pressure distribution shown in figure
4.13, three different grids with fixed time step 6t = 0.001.

coarser G1 grid with 6t = 0.001. It’s difficult to see in figure 4.13, but be-
comes apparent when we magnify pressure distribution, see figure 4.19 (note:
the reference data (circles) in figure 4.13 are not plotted in figure 4.19). The
base pressure coefficient C) for all the four runs is plotted against the time
step together with the reference value (dash-dotted line) in figure 4.20. From
this figure it appears that the optimal time step for this particular grid is
somewhere between 0.001 and 0.002. In general, decreasing the time step
will lead to a smaller discretization error. This error is O(0t) for the back-
ward Euler method. However, errors due to the operator splitting will also
become smaller as we decrease the time step. The splitting error (see equa-
tion 3.4) has a stabilizing effect on the solution, which is important when
we use equal order (linear) elements for velocity and pressure, as we do in
this numerical experiment. When the time step becomes very small, we will
lose this stabilization. Eventually, our solution will be destroyed. This can
explain the saw-tooth pattern mentioned above. A similar saw-tooth pattern
also appeared when we used a larger time step on the coarsest grid. This
means that the error due to the operator splitting is a function of the grid
spacing as well as the time step.
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Figure 4.20: Comparison of base pressure coefficient Cpy with reference value
from [39], time step convergence test

Conclusions

Our findings in the first part of this numerical experiment are summarized
below:

e A single 'mode B’ instability is present in our calculations of flow
around a cylinder of length L = 0.822d and Re = 265.

e The general shape of the mean pressure distribution on the cylinder
surface is well reproduced in the calculations, and also the position of
minimum pressure, compared to the reference results.

e The VISTA code seems to converge towards a different pressure distri-
bution than the reference solution when the grid is refined, but further
refinement studies are needed to confirm this.

e For any particular grid, there exists an optimal time step for which the
error is minimal. If the time step is decreased beyond this optimum,
we will lose stabilization. When linear elements are used for both ve-
locity and pressure, the loss of stabilization will eventually destroy the
solution.

e The stabilization also depends on the grid spacing. The finer grid, the
smaller time step can be used without losing stabilization.
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Drag and lift coefficient, L=3.288d, dt=0.001
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Figure 4.21: Time series of drag and lift coefficient, L = 0.3288d, dt= 0.001.

4.2.3 Cylinder of length L = 3.288d
General remarks

In this part of the numerical experiment, a calculation is performed on a sin-
gle computational grid, and with one time step, 6t = 0.001. The simulation
is run for 5000 time steps. The grid is based on grid G2 from the previous
section. It has the same 2D cross section as G2, but only 56 elements in the
z-direction, whereas G2 had 26. The cylinder is now four times longer; so
ideally there should be 4 x 26 = 104 elements in the z-direction in order to
make a direct comparison with the results from G2. However, some software
limitations at the time of the calculations made it necessary to reduce the
problem size somewhat. The total number of nodes in the new grid is 770982.
The purpose of this part of the experiment is to study the change in wake
flow pattern when the cylinder length is increased.

Results and discussion

The drag and lift history is shown in figure 4.21. We observe that the simula-
tion does not reach a perfectly time-periodic state; there is a slight variation
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Figure 4.22: Isosurface of the velocity field. We may observe four repetitions of
the pattern shown in figure 4.12 along the span of the cylinder.

in mean drag, and a variation in amplitude of both lift and drag. This is
consistent with observations made by Henderson [39], where the flow enters
a quasi-periodic state with mixed mode A and B patterns at Re = 265 and

L = 3.288d.

Figure 4.22 illustrates the characteristic 3D spanwise variation of the
velocity associated with the 'mode B’ instability. We can clearly recognize
the pattern shown in figure 4.12 for the short cylinder (L = 0.822d), but now
repeated four times along the span of the cylinder.

Figure 4.23 shows the development of the Strouhal number’s relative
change from the mean value, starting at time step 1500 when the startup
transient has died out (see figure 4.21). Interestingly, St seems to vary within
a group of five distinct values. This is similar to the behaviour demonstrated
by Henderson [39]. However, the simulation time in the present calculation is
too short to draw any definitive conclusions regarding drag, lift and Strouhal
number variations.

Vorticity isosurfaces at two different times are shown in figure 4.24, the
first one after approx. 2000 time steps (top), and the second after approx.
4900 time steps (bottom). The grid lines at the centre plane is also shown.
Both snapshots are taken at the same phase within the oscillation cycle, and
the same vorticity value, || = 300, is represented in both cases. || = 300
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Figure 4.23: Relative change in St as a function of lift half-cycle number, starting
at time step no. 1500 (ref. fig. 4.21).

is about 4% of the maximum vorticity at the give time steps.

After 2000 time steps we clearly see that both the 'mode A’ (long wave-
length) and 'mode B’ (short wavelength) pattern is present. At the later
time, however, the 'mode B’ pattern seems to have disappeared. This may
be due to the bi-modal behaviour of the flow, in which case we would ex-
pect the 'mode B’ pattern to reappear later in the simulation. In order to
demonstrate this, however, we would require a considerably longer simulation
time. Another possible explanation is that the grid resolution in the spanwise
direction is insufficient, having the effect that the shortest wavelengths are
damped out after some time.

The pressure distributions corresponding to the two flow situations shown
in figure 4.24 are shown in figure 4.25. Here we observe a pressure drop
around the base of the cylinder when the 'mode B’ pattern is no longer
present. This change in pressure is consistent with going to a more two-
dimensional flow behaviour, also shown by Henderson [39] (see also figure
4.5). Also, we may notice a slight increase in drag and lift amplitudes starting
around time step 3000, see figure 4.21.
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Figure 4.24: Vorticity isosurface with value |¢| = 300 after approx. 2000 time
steps (top) and 4900 time steps (bottom). Notice how the ‘'mode B’ pattern present
after 2000 time steps seems to have disappeared after 4900 time steps.
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Surface pressure distribution, L=3.288d, dt=0.001
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Figure 4.25: Pressure distribution from two different intervals: Timestep 1500~
2000 (solid line, corresponding to the situation at the upper half of figure 4.24), and
timestep 4000-5000 (dotted line, corresponding to the lower half of figure 4.24).
Notice that there is less three-dimensionality in the lower half of figure 4.24 than in
the upper half. The corresponding difference in pressure distribution is consistent
with results from Henderson [39], see figure 4.5.
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Conclusions

The findings in the second part of the experiment can be summarized as
follows:

e Both 'mode A’ and 'mode B’ instabilities are present in our calculation
of the flow around a cylinder of length L = 3.288d and Re = 265.

e The flow does not reach a perfectly time-periodic state as in the case
of the short (L = 0.822d) cylinder. There are slight variations in mean
drag, amplitudes of lift and drag, and also Strouhal number, during the
course of the simulation. This is linked to the bi-modality of the flow.

e Towards the end of the simulation, the shortest wavelength pattern
('mode B’) is no longer present. The corresponding surface pressure
distribution shows a drop around the base of the cylinder, consistent
with a more two-dimensional flow behaviour. The simulation time is
too short to determine whether the disappearence of the 'mode B’ pat-
tern is a characteristic of the flow itself, or if it’s due to insufficient grid
resolution in the spanwise direction.

4.3 Flow around a cylinder at Re = 3900

4.3.1 Description of the numerical experiment

Large-eddy simulation (LES) of turbulent flow around a circular cylinder
is performed at Re = 3900. Flow around a cylinder at Re = 3900 has
become a benchmark case for numerical simulation of subcritical /transitional
flows. This is mainly due to the particle image velocimetry (PIV) experiments
performed by Lourenco and Shih [45], and later also hot wire experiments
by Ong and Wallace [46]. At Re = 3900 the cylinder flow is characterized by
laminar boundary layer separation, with transition to turbulence happening
somewhere in the wake. The flow is more complex and ’chaotic’ now than
in the previous cases at Re = 265, but still the two-dimensional large-scale
vortex shedding is a dominating feature, see figure 4.26.

The computational domain is identical with the one used in the previous
case with Re = 265 and L = 3.288d, see figure 4.7. Thus, the Reynolds
number is the only flow parameter which has changed. Other authors have
used L = nd, e.g [43], [44], but for the sake of comparison with the lower
Re calculations, L = 3.288d is chosen here. Similar initial and boundary
conditions are used, but now with u, = 3.9 and p = 1.107* (the density
remains unchanged). In order to initiate the turbulent behaviour of the flow,
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Figure 4.26: Isosurfaces of instantaneous spanwise vorticity, ¢ ,= 200 (green) and
(,= —200 (red). Results from present study.

Description Value
L/d 3.288
Total no. of nodes 1079960
No. of nodes in the xy plane (2D cross-sections) 22040
Total no. of elements 1044480
No. of circumferential elements 240

No. of spanwise elements 48

Element thickness at the cylinder surface, % of d 0.12

Table 4.4: Data for grid used in LES at Re=3900

1% white noise is added at ¢t = 0. The grid topology and element type (8 node
linear hexahedral elements for both velocity and pressure) is also the same,
however, a somewhat finer grid is used in the present case. Key data for the
grid are given in table 4.4. As in the previous grids, the nodes are clustered
towards the cylinder surface, and evenly spaced in the spanwise direction. In
addition, there is a moderate clustering in the tangential direction towards
6 = £7/2 (see figure 4.6) in order to increase the resolution in the separation
region, and also some clustering towards # = 0 throughout the wake.

In this numerical experiment, the effect of using van Driest wall damping
and the influence of changing the time integration scheme is examined. Three
simulations are performed, see table 4.5. Here, TE denotes the trapezoid rule
combined with a modified Euler method (referred to as trapez/Euler in the
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Case Time integration scheme Van Driest damping

1 TE yes
2 BE yes
3 BE no

Table 4.5: Overview of simulations, LES at Re=3900. TE: Trapez/Euler,
BE: Backward Euler.

Data from: St Cp L./d
Case 1 0.205 1.134 1.226
Case 2 0.202 1.148 1.024
Case 3 0.214 1.070 1.258

Experiment 0.214+0.005 (1) 0.99+0.05 (2) 1.184+0.05 (3)

Table 4.6: Mean flow parameters, Re=3900. Lr: Recirculation length. Exp.
data: (1) Ong/Wallace, (2) Norberg, (3) Lourenco/Shih (in ref. [43])

following). Trapez/Euler is a second order implicit method (apart from one
approximation, see Holmen [36]). BE is the backward Euler method, first
order implicit. All the calculations are performed on the same grid, with time
step 6t = 0.001. The simulations are run for 2000 time steps. It should be
noted that an attempt was made with trapez/Euler and no wall damping, but
this turned out to be unstable to the extent that the solution was destroyed.
Flow statistics was accumulated over approximately 10-12 vortex shedding

cycles (see figure 4.27), corresponding to 50-60 dimensionless time units,
tus /d.

4.3.2 Results and discussion

The Strouhal number, mean drag, and recirculation length from the present
LES runs are given in table 4.6, together with experimental data, cited from
Kravchenko and Moin [43]. The experimental data originate from different
studies, since not all experiments provide all the flow parameters of interest.
The recirculation length L, is measured from the back of the cylinder.

The Strouhal number agrees very well with experimental result, while
the mean drag is overpredicted in all the calculations. As noted in section
4.2, the three-dimensional behaviour of the flow leads to a reduction of base
pressure and mean drag compared to 2D flow simulations. A restriction of the
spanwise domain size will also restrict the 3D behaviour, and may lead to an
increase in mean drag. This could explain the overprediction in the present
case, where the cylinder is relatively short. However, further simulations with



64 CHAPTER 4. FLOW AROUND A SINGLE CYLINDER

Drag and lift coefficient for a cylinder, Re=3900, dt=0.001
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Figure 4.27: Drag and lift coefficient, Trapez/Euler with van Driest wall damping
(Case 1).

varying cylinder length would be needed to confirm this. The recirculation
length is in good agreement with the experiment in case 1 and 3, whereas it
is somewhat underpredicted in case 2.

The time history of drag and lift from case 1 is shown in figure 4.27. The
corresponding figures from case 2 and 3 are shown in appendix A.2. It is
evident that the flow is quasi-periodic, still with the primary vortex shedding
as the dominating feature, but there also seem to be some variation of the
force amplitudes. However, the simulation time is too short to demonstrate
whether these variations are quasi-periodic or have a more stochastic nature.
The drag and lift shows a similar progress in all the three cases, but in
case 2 the oscillation amplitudes are noticeably larger in the first part of the
simulation than the two other cases.

The mean streamwise velocity along the centreline is shown in figure 4.28.
Firstly, we may note that the curve from the experiment by Lourenco & Shih
behaves a bit oddly in the interval z/d = 2.5 to 4.5. None of the present
simulations show this behaviour, nor do simulations by other authors ([43],
[44]). Also, the velocity should be exactly zero at the back of the cylinder,
however, the data are taken "as is" from Tremblay et al [44], since the original
data were unavailable. The position of minimum velocity, as well as the size
of the resirculation zone, agree well with the experiment in case 1 and 3.
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However, the minimum value of u itself doesn’t quite match in either case.
Also, the curves in case 1 and 3 has a change in slope very close to the
cylinder, which is not present in the experiment by Ong & Wallace [46].
The slope seems to be better predicted in case 2, but here the position of
minimum value is a bit too close to the cylinder surface. In the far wake,
case 1 is in best agreement with the experiment by Loureco & Shih [45].

Figures 4.29 to 4.31 show mean streamwise velocity profiles at three lo-
cations in the wake. On figure 4.29, we observe that case 2 is in exellent
agreement with the experiment in the very near wake at xz/d = 1.06, apart
from the minimum value of u at the centreline. Case 2, as well as the ex-
periment, show V-shaped profiles at z/d = 1.06, while case 1 and 3 show
more U-shaped profiles at this position. At z/d = 1.54, all three cases show
V-shaped profiles, similar to the experiments, but here the results are more
scattered near the centreline. An interesting observation in figure 4.29 and
4.30 is that case 2 show good agreement with the experiment also at the
wake boundaries (outside the U/V shape itself, |y/d| 2 0.75), whereas the
velocity in case 1 and 3 is too high in these regions. At the far wake position,
x/d = 7.0, agreement with the experiment is fair, however, the results are
generally more scattered.

As we have seen, the overall agreement between the simulation results
and the experimental data is good. However, looking at all the results in
connection, the effects of interchanging time discretization scheme and turn-
ing on and off the van Driest damping can be seen more clearly. Case 1 and 3
may be regarded as permutations of case 2. In case 1, the time discretization
scheme is changed from backward Euler to trapez/Euler, and in case 3, wall
damping is turned off. In the near wake, these two separate changes (from
case 2 to case 1 and 3 respectively) appear to have a qualitatively similar
effect. In both case 1 and 3 we observe a change in slope of the centreline
streamwise velocity very close to the cylinder, along with an increase of the
resirculaton length. Also, the streamwise velocity profile at position z/d =
1.06 changes from a near V-shape in case 2 to a more pronounced U-shape
in case 1 and 3. However, Tremblay et al [44] point out that the shape of the
streamwise velocity profile is closely related to the relative position within
the recirculation region. In case 2, z/d = 1.06 corresponds to a position im-
midiately downstream of the point of minimum streamwise velocity, while in
case 1 and 3, z/d = 1.06 is just upstream of the point of minimum streamwise
velocity, see figure 4.28. This means that the wake in case 2 has developed
further at position z/d = 1.06 than in case 1 and 3, and this may account
for the difference in shape.

It is difficult to give a perfectly good explanation for the observed differ-
ences between the three cases. The time discretization schemes have slightly
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Figure 4.28: Mean streamwise velocity along the centreline of the wake. The x
coordinate is measured from the cylinder centre, so x/d = 0.5 corresponds to the
back of the cylinder. Experimental data (taken from [44]): 4 Lourenco and Shih
[45], X Ong and Wallace [46].
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Figure 4.29: Mean streamwise velocity profile at location x/d=1.06. Symbols as
in figure 4.28.
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Figure 4.30: Mean streamwise velocity profile at location x/d=1.54. Symbols as
in figure 4.28.
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Figure 4.31: Mean streamwise velocity profile at location x/d=7.00. Symbols as
in figure 4.28.
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different characteristics. Backward Euler is a 1st order method, known as be-
ing more stable, but also more dissipative, than the 2nd order trapez/Euler
method. The van Driest damping function is a much used improvement
of the Smagorinsky model, affecting the velocity fluctuations very close to
the cylinder surface, and thereby influencing everything that happens in the
wake. There may be numerical interaction between the different models and
methods employed, which may reinforce or weaken certain characteristics.
However, it is evident from the three test cases that both the choice of time
discretization scheme and the issue of wall damping have a significance for
the prediction of the recirculation region behind a cylinder using large eddy
simulations.

4.3.3 Conclusions

A few concluding remarks on our findings in this experiment are given below:

e The overall agreement between the present LES and the experimental
data is good.

e The mean drag is overpredicted in all the test cases. A possible cause
is that the spanwise domain size (cylinder length) is too small.

e There are some differences in velocity profiles and centreline velocity
between the three cases, especially in the near wake. These differences
suggest an influence of both time discretization scheme and van Dri-
est damping. However, it is not clear from the present simulations
which case give the "best" result, also keeping in mind that there are
uncertainties in the experimental data.



Chapter 5

Flow around two cylinders in
tandem

5.1 Introduction

Two or more parallel circular cylinders placed close to each other are found in
many areas of engineering. Systems of flexible risers or tendons are examples
of applications with particular interest in marine engineering. Risers are
commonly arranged in clusters, and an important issue is avoiding collisions
between the individual risers. Flow interference effects may strongly influence
the dynamic behaviour of the riser system.

Despite its widespread applications, the study of flow around two cylin-
ders started much later than flow around a single cylinder. According to
Zdravkovich [47], a reason for this was the common assumption that the
flow around two cylinders, and the resulting forces acting on the cylinders,
should be similar to the flow around and forces acting on a single cylinder.
This implied weak or negligible flow interference between the two cylinders.
However, early tests (late 1960s - early 1970s) showed that this was not the
case. It turned out that interference effects might change the flow pattern
and vortex shedding dramatically, as well as the direction and magnitude of
forces acting on the cylinders. The degree of interference was found to de-
pend on the arrangement of the cylinders relative to each other, and on their
orientation to the free stream. Even today, the flow around two cylinders
is less well understood than the flow around a single cylinder, and also less
studied.

Figure 5.1 shows two cylinders close to each other, with the cylinder
axis perpendicular to the free stream velocity. The three main arrangement
categories are: side-by-side (S = 0, T#0), tandem/in-line (S#0,T = 0), and
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Figure 5.1: Definition sketch for the different arrangements: Side-by-side (S=0,
T#0), tandem/in-line (S#0,T=0), and staggered (S#0, T=#0). Further, there
should be a gap between the cylinders, i.e. the total distance between the cylinder
centres is greater than one cylinder diameter.

staggered (S#£0, T#0). S and T are the streamwise and transverse spacings
between the cylinder centres, respectively. In the present study, flow around
two cylinders in a tandem arrangement (S = 5d, T = 0, see figure 5.1) will
be investigated numerically.

A detailed experimental study of flow around two cylinders in tandem is
reported by Igarashi [48]. The Reynolds number range in the experiments is
8.7-10% < Re < 5.2-10* (subcritical regime), and the cylinder spacing is varied
in the range 1.03 < S/d < 5.0, where d is the cylinder diameter. A total of 8
different flow patterns are identified in this parameter space. For Re greater
than approx. 3.5-10%, the flow pattern only depends on the cylinder spacing,
whereas for lower Re, there is also some Reynolds number dependence. Some
key features are summarized below (ref. [47]) (the transverse spacing is T =
0 in all the cases):

e Streamwise spacing S/d < 1.1-1.3: The separated shear layer from the
upstream cylinder does not reattach to the downstream cylinder. The
two cylinders act (more or less) like a single body.

e Streamwise spacing 1.1-1.3 < S/d < 3.5-3.8: The separated shear layer
from the upstream cylinder reattaches to the downstream cylinder. The
reattachement can be alternate, permanent or intermittent.
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Figure 5.2: Drag coefficients as a function of cylinder spacing S/d. Two cylinders
in tandem at Re=21000 (exp. by Imaichi et al, ref. [10] in [48]). Notice the
discontinuity (jump) at S/d ~ 3.5. At the jump, the separated shear layer from
the upstream cylinder goes from a state where it reattaches to the downstream
cylinder, to a state where it rolls up in front of the downstream cylinder. After the
jump, we have vortex shedding behind both cylinders. (Figure reproduced after
Igarashi [48])

e Streamwise spacing 3.5-3.8 < S/d < 5-6: The separated shear layer from
the upstream cylinder roll up in front of the downstream cylinder, i.e.
we have vortex shedding behind both cylinders. The two vortex streets
are syncronized in frequency and phase.

e Streamwise spacing S/d > 5-6: Uncoupled vortex shedding behind both
cylinders. Possible different shedding frequencies for the two cylinders.

Figure 5.2 shows the drag coefficient of two cylinders in tandem as a func-
tion of the spacing S/d at Re = 21000 (data from experiments by Imaichi
et al, referenced by Igarashi [48]), and figure 5.3 shows the Strouhal num-
ber based on measured velocity fluctuations behind the downstream cylinder
at Re = 22000 (data from experiments by Igarashi [48]). The discontinu-
ity in drag and Strouhal number at S/d ~ 3.2-3.5 indicates the start of the
regime where the separated shear layer from the upstream cylinder no longer
reattaches to the downstream cylinder, and we have vortex shedding behind
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Figure 5.3: Strouhal number as a function of cylinder spacing for two cylinders
in tandem at Re=22000 (exp. by Igarashi [48]), based on measured velocity fluc-
tuations behind the downstream cylinder. See also comments to figure 5.2.

both cylinders. There is a quite dramatic jump in drag coefficient at this
point, especially for the downstream cylinder, where Cp changes from neg-
ative to positive. When S/d increases beyond the discontinuity, we see that
the Strouhal number gradually approaches the value of a single cylinder.
This will also be the case for the drag coefficient of the upstream cylinder,
see figure 5.2.

5.2 Large-eddy simulation at Re = 21600

5.2.1 General description

Large-eddy simulation (LES) of the turbulent flow around two cylinders in a
tandem arrangement is performed at Re = 21600. The cylinders are fixed in
space, subject to a constant, uniform and turbulence free inflow velocity field.
The results are compared with data from laboratory experiments done in the
current flume at Danish Hydraulic Institute (DHI) in 1999 [49], commissioned
by Norsk Hydro Production. At Re = 21600, the flow around a single cylinder
is characterized by laminar boundary layer separation, with transition to
turbulence happening somewhere in the near wake. This will also be the case



5.2. LARGE-EDDY SIMULATION AT RE = 21600 73

Free-slip wall Periodic\
L _/‘ Y {/
8d \
Inflow ——| ;. d[ > { ); e 16d
1\
8d S 244 ™ Qutflow
y
X L3
z
32d+ S .
Free-slip wall

Figure 5.4: Key dimensions of the computational domain

for the upstream cylinder in the tandem arrangement, while the downstream
cylinder will be exposed to the turbulent wake generated by the upstream
cylinder. The computational domain is shown in figure 5.4. The cylinder
diameter is d = 0.1, and the cylinder spacing is S/d = 5.0 in all the test
cases. Figure 5.5 shows a principle drawing of the main flow characteristics
for this cylinder spacing (ref. Zdravkovich [47]). Three different spanwise
dimensions L (in the z-direction) are tested; L = 0.822d, 1.644d and 3.822d.
The aim is to investigate the influence of the cylinder length in the three-
dimensional computations.

Two-dimensional simulations are also performed (ref. [50]) using the same
code and input data, for comparison. A two-dimensional equivalent of LES
with wall damping is used. In addition, 2D simulations are carried out using
no turbulence model at all. It should be noted, however, that 2D simulations
of turbulent flow can never be physically correct, since turbulence is a three-
dimensional phenomenon. Nevertheless, 2D computation of turbulent flow
around bodies can give reasonable results in certain cases. In the present
work, the two-dimensional results are included to demonstrate that there is
a difference between 2D and 3D, and that three-dimensional effects are quite
significant for the flow case in question.

The initial condition and the boundary conditions are similar to the con-
ditions used in the previous case with a single cylinder at Re = 3900 (see
section 4.3). In the present case, the inflow velocity is u., = 2.16 and the
viscosity p = 1-1075, in order to get the prescribed Reynolds number of 21600
(the density remains unchanged). Also here, a non-uniform velocity field is
used throughout the domain at ¢ = 0, and 1% white noise is added in order
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vortex shedding from the upstream cylinder creates a vortex street in front of
the downstream cylinder. Two vortex streets are formed behind the cylinders,
syncronized in frequency and phase ("binary" vortex street). The forces acting
on the upstream cylinder are mainly unaffected by the downstream cylinder (ref.
Zdravkovich [47]).

to initiate the turbulent behaviour of the flow.

5.2.2 Computational grids

Three computational grids with identical two-dimensional cross-sections but
with different spanwise dimension are generated, i.e. one grid for each test
case. The grids are denoted SC ("short cylinder"), MC ("medium") and LC
("long"). These descriptions should only be regarded as a convenient way
of distinguishing between the different cases, and not as an indication of the
domain size relative to the infinite physical problem.

In the present study, a grid sensitivity analysis is not performed. Based on
experience from previous simulations, the grid resolution should be sufficient
in order to obtain good etimates of the Strouhal number and mean forces,
even if grid convergence is not proven. Key data are given in table 5.1.
Notice that the cylinder length is doubled from short to medium, and from
medium to long. The basic length of L/d = 0.822 corresponds to the critical
length scale of the 'Mode B’ instability in laminar flow (see section 4.1).
This basic length is chosen also in the present simulations because it has
some physical significance, rather than just choosing, say, L/d = 1 as the
basic length. The thickness of the elements adjacent to the cylinder wall
corresponds to 0.385%. The quantity % is a frequently used estimate
of the order of magnitude of the boundary layer thickness. As in previous
simulations, the grids are block structured, with 8 node linear hexahedral
elements for both velocity and pressure. The block topology of the grids is
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Description SC MC LC
Aspect ratio, L/d 0.822 1.644  3.288
Total no. of nodes 472624 915709 1801879
No. of nodes in each 2D cross-section 29539 29539 29539
Total no. of elements 438000 876000 1752000
No. of circumf. elem., upstream cylinder 180 180 180

No. of circumf. elem., downstream cylinder 200 200 200

No. of spanwise elements (along L) 15 30 60

Elem. thickness at the cylinder wall, % of d 0.262  0.262  0.262

Table 5.1: Grid data

Figure 5.6: Block topology of the grids in the xy plane. See also figure 5.4.

shown as a 2D cross section in figure 5.6. The nodes are clustered towards
the cylinder surface, and evenly distributed in the spanwise direction. There
is a concentration of nodes in the zone between the cylinders, and behind the
downstream cylinder. Moderate clustering is applied towards the middle of
the wake in these areas. A detailed view of the grid is shown in figure 5.7.

5.2.3 Time integration

The second order trapez/Euler method is used in the present simulations.
The time step in all three cases is 0t = 0.002, which translates to O(100)
time steps per vortex shedding cycle. Based on literature study and previous
experience, this is found to be sufficient in order to resolve the large scale
motions of the flow. An estimate of the viscous (Kolmogorov) timescale may
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According to this, the ratio of time step to viscous timescale is §t/T, ~ 1.2,
i.e the chosen time step does not resolve the estimated viscous timescale.
However, in LES this should be sufficient resolution, since we filter out the
smallest turbulent scales.

The total simulation time in each case is 10 seconds of "physical time", or
5000 time steps. This corresponds to a dimensionless time of tu,,/d = 216.

(5.1)

5.2.4 Results

Time series of fluctuating drag and lift coefficients from case SC (L/d =
0.822) is shown in figure 5.8. The time series from the two other 3D cases
(MC and LC) and from the DHI experiment are shown in appendix B. Key
results for the upstream cylinder is given in table 5.2, and for the downstream
cylinder in table 5.3. When extracting data from the LES series, the first 600
time steps are excluded from the calculations, due to startup transients. The
experimental data are used in full length. The results in table 5.2 and 5.3
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Figure 5.8: LES results: Time series of drag and lift, case SC (L./d=0.822)

Upstream  DHI exp. LES, SC LES, MC LES,LC 2DY  2D?
cylinder Ref. [49] Present Present Present Ref [50]  Ref. [50]
L/d 7.5 0.822 1.644 3.288 0 0

St 0.1921 0.2006  0.1964 0.1879 0.1837 0.2232
Mean drag 1.0558 1.1243 1.0799 1.0031 1.5493 0.9126
Mean lift 0.0269 -0.0057 -0.0062  -0.0021  0.0037 0.0084
St.dev., drag 0.0706 0.0712  0.0479 0.0294 0.1550 0.0758
St.dev., lift ~ 0.1874 0.2496  0.1660 0.0719 0.9267 0.1947

Table 5.2: Key results for the upstream cylinder. The Strouhal number is
based on the frequency of the lift oscillations. Startup transients are excluded
from the simulation data. From the DHI experiment, all the available data
are used. 2D simulations: 1) with turbulence model (2D equivalent of LES),

2) no turbulence model.
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Downstr. DHI exp. LES, SC LES, MC LES,LC 2DY  2D?

cylinder Ref. [49] Present Present Present Ref [50]  Ref. [50]
L/d 7.5 0.822 1.644 3.288 0 0

St 0.1910 0.2006  0.1964 0.1879 0.1837 0.2232
Mean drag 0.5003 0.4909  0.4785 0.5813 0.3574 0.6885
Mean lift -0.0095  0.0040  0.0011 -0.0105  0.0003 0.0030

St.dev., drag 0.0823 0.1816  0.1354 0.1057  0.3953 0.2814
St.dev., lift ~ 0.3699 0.9403  0.8140 0.6746 1.5372  0.6380

Table 5.3: Key results for the downstream cylinder. See comments to table
5.2.

are plotted as a function of cylinder length in figures 5.9 to 5.12. Note that
the mean lift is not plotted; as this should theoretically be zero. Small devi-
ations from zero in the simulations are insignificant, and may be due to the
asymmetrical initial velocity field. However, we may notice that the mean
lift on the upstream cylinder in the laboratory experiment is significantly
larger than in the simulations, see table 5.2. This could imply a systematic
error in the measurements. The data from the DHI laboratory experiments
are plotted as constant levels in figures 5.9 to 5.12, independent of the cylin-
der length. The reason is that the results from the physical experiments are
assumed to represent an infinitely long, "real" cylinder, although the actual
length is L/d = 7.5. The influence of cylinder length in the laboratory ex-
periments is not considered here, however, this may be an important factor
that should be investigated.

Power spectra of the lift coefficient are presented in figure 5.13 (upstream
cylinder) and 5.14 (downstream cylinder), calculated using FFT. The spectra
are normalized (i.e the area under the curve is equal to one).

Figure 5.15 shows examples of the vorticity isosurface at corresponding
phase within the shedding cycle for the three test cases; SC, MC and LC
(top to bottom). The vorticity field is the scalar value of the vorticity vector,
defined as ¢ = V x u. The isosurface value is approx. 1.5% of the maximum
vorticity.

5.2.5 Remarks on sampling time

When doing physical experiments or numerical simulation of "nearly ran-
dom" processes such as turbulent flow, considerable sampling times are re-
quired in order to obtain a representative population of sample values. In
the present case, the forces on the cylinders are of primary interest, so we
need to look at the available time series of lift and drag from the experiment
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Figure 5.11: Standard deviation of drag as a function of cylinder aspect ratio,
L/d. 2D simulations: L./d = 0 = data on the y-axis.
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Figure 5.13: Normalized power spectra of lift, upstream cylinder. The peak on
each curve represents the primary vortex shedding frequency, i.e. the Strouhal
number.
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Figure 5.14: Normalized power spectra of lift, downstream cylinder.
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Figure 5.15: Vorticity isosurface at corresponding phase. Top to bottom: SC, MC
and LC. Isosurface value: || = 500, approx. 1.5% of max. value. Notice how the
wake becomes less coherent and more three-dimensional and chaotic, especially
behind the downstream cylinder, as the cylinder length increases.
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Figure 5.16: DHI experiment: Cumulative mean drag force on the two cylinders.

in order to get some clue as to how long simulation time we need. We only
have access to a single time sample in the present study, so we assume that
this sample is completely representative of the flow case in question (ergodic
process). The total sampling time of the DHI experiment is approximately
370 in dimensionless time units, tus/d. Figure 5.16-5.17 show the cumula-
tive mean values of drag and lift on the two cylinders, i.e. a new mean value
is calculated for each time step added to the series, starting at the beginning
of the sample. The cumulative values are plotted as a function of dimension-
less time, tus/d. Figure 5.18 shows the cumulative standard deviation of lift
and drag,.

We see that the mean drag shows little change after approx. 50 time
units, while it takes about 200 time units for the mean lift to stabilize at a
more or less constant level (if we disregard the oscillations). The standard
deviations also appear to become more stable after 200 time units, however,
the trends are less conclusive. For example, the standard deviation of lift
on the upstream cylinder shows a slightly decreasing tendency, see figure
5.18. From the cumulative values it seems clear that accurate prediction of
the standard deviations require longer sampling times than what is needed
for mean value estimates. Even with the available data covering 370 time
units, there is some uncertainty regarding the standard deviations in the DHI
experiment.



84 CHAPTER 5. FLOW AROUND TWO CYLINDERS IN TANDEM

0.1

0.08 i~

|

0.02 - : 1

-0.02 f1 4

-0.08 Iy a

—— Upstream cylinder
—— Downstream cylinder
0.1 L 1 L L L

0 50 100 150 200 250 300 350

Dimensionless time, tu w/d

Figure 5.17: DHI experiment: Cumulative mean lift force on the two cylinders.
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Figure 5.18: DHI experiment: Cumulative standard deviation of lift and drag for
the two cylinders.
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Figure 5.19: LES, case MC: Cumulative mean drag and standard deviation of lift
for the two cylinders.

The present LES time series include about 4400 time steps when the
startup transients are removed, equivalent to 190 dimensionless time units.
Cumulative mean drag and standard deviation of lift for one of the LES
time series (case MC) is shown in figure 5.19, starting at time step 600.
We observe that the mean drag converges after about 50 time units also
here, while the standard deviation of lift stabilizes earlier in the simulation
than in the physical experiment. The two other cases (SC and LC) show
similar trends. Consequently, 190 time units should be sufficient to obtain
representative values for both mean and standard deviation of lift and drag
in the numerical simulations.

5.2.6 Discussion

The following trends may be observed directly from the time series of lift and
drag (figure 5.8 and figures in appendix B):

e The mean drag on the downstream cylinder is about half the mean
drag on the upstream cylinder. Clearly, the downstream cylinder is
sheltered behind the upstream cylinder. Consequently, the effect of the
incoming flow on the downstream cylinder is reduced.
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e The oscillations of both lift and drag are significantly larger on the
downstream cylinder than on the upstream cylinder. This is caused
by the vortices shed by the upstream cylinder colliding with the down-
stream cylinder, inducing large pressure fluctuations.

e There appears to be an "almost periodic" variation in the force am-
plitudes, which can be seen most clearly in the lift time series. The
phenomenon is especially evident in the laboratory experiment, where
the time series are longer, but the same effect appear in the numerical
simulations as well. In order to quantify this variation, we would need
significantly longer sampling times.

From figure 5.9 we see that the Strouhal number (St) of the present
large-eddy simulations agrees well with the DHI experiment. The deviation
is only about 2-4% for all the three cylinder lengths. Further, we observe
that the Strouhal number decreases when the cylinder length is increased,
which clearly indicates a length dependence. We may also note that St
from the present LES and the DHI experiment are both in good agreement
with experiments by Igarashi [48], see figure 5.3. The 2D simulation with
turbulence model (denoted ’2D - model’ in the following) also gives a good
estimate of St, while the 2D simulation with no model (denoted 2D - no
model’) is a bit further off. Note that St is identical for the upstream and
downstream cylinder in all the simulations, while there is a small difference
between the cylinders in the experimental results. However, this difference is
too small to disprove frequency syncronization in the laboratory experiment.

The mean drag on both cylinders in the present LES is also in excellent
agreement with the DHI experiment, see figure 5.10. The largest deviation
is ca. 5%. Also here, the mean values show a slight decrease when the
cylinder length is increased. The trend is consistent, apart from one result;
the mean drag on the downstream cylinder in the LC case. Note that the
experiment by Imaichi, ref. figure 5.2, gives a higher drag coefficient for the
upstream cylinder than the present LES and the DHI experiment, whereas
the agreement is good for the downstream cylinder. The 2D results do not
agree equally well; especially the mean drag on the upstream cylinder in the
2D - model’ case is much too high.

When it comes to the standard deviation of lift and drag (figure 5.11-5.12),
the present LES show reasonably good agreement for the upstream cylinder,
however, the force oscillations on the downstream cylinder are generally too
high compared to the experimental results. This can also be seen directly
from the time series of drag and lift (figure 5.8 and the figures in appendix
B). However, the decreasing trend with increasing cylinder length is very
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consistent. In the case of standard deviations, 2D - no model’ appears to
hit the spot for the upstream cylinder, while the values for the downstream
cylinder are too high. 2D - model’, on the other hand, is further away from
the experimental results. Not surprisingly, it appears to be more difficult to
get good estimates of the standard deviations than of the Strouhal number
and mean values of lift and drag in the numerical simulations.

From figure 5.13-5.14, we see that the present LES and the experiment
have the same general shape of the lift power spectra. The peaks are a
bit higher in the simulation than in the experiment, suggesting that more
energy is concentrated around the primary (von Karman) vortex shedding
frequency in the simulations. The difference is largest for the downstream
cylinder. Here we can clearly see a few additional peaks around the Strouhal
frequency on the experimental spectrum, which are not present on the simu-
lated spectrum. Apart from this, the spectral content of the lift oscillations
appears to be quite similar in the simulations and the experiment.

The influence of the cylinder length is quite evident in the 3D simula-
tions. All the main parameters (apart from the mean drag on the down-
stream cylinder) show a consistent decrease when the spanwise dimension
L is increased. An indication of what causes the decrease in mean drag on
the upstream cylinder may be found by looking at figure 5.15. When com-
paring the isosurfaces of vorticity from the three cases, we may notice that
the wake becomes less coherent, and more chaotic and "three-dimensional"
as the length increases. It is also quite evident that the vortex shedding
from the upstream cylinder becomes less syncronized along the span of the
cylinder. What happens around the downstream cylinder is more difficult
to see from the isosurface plot. A loss of syncronization in the z-direction
means that the integrated effect of the pressure distribution on the cylinder
surface is reduced, and we get a lower mean drag. In the case of 2D flow
simulation, we have perfect syncronization (as everything happens in a single
cross-section), and consequently the mean drag becomes higher.

5.2.7 Conclusions

The results from the present large-eddy simulations of flow around two circu-
lar cylinders in a tandem arrangement at Re = 21600 show good agreement
with the experimental data from DHI. This demonstrates that the numerical
method can be applied successfully to this type of flow case, at least for the
purpose of estimating the Strouhal number and mean forces acting on the
cylinders. The main characteristics of the flow are well reproduced. However,
whether or not the computed velocity field contains the small-scale charac-
teristics of a true turbulent flow field has not been investigated here, as this
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is beyond the scope of the present study. Nevertheless, the isosurface plot in
figure 5.15 gives an impression of the complexity of the flow, and shows that
the flow is indeed three-dimensional, even if the geometry is nominally two-
dimensional. Overall, the 3D simulations give better and more consistent
results than the 2D simulations.

A clear dependence on the spanwise dimension (cylinder length) is demon-
strated in the computations. The plots in figures 5.9-5.12 suggest that the
results may change even more if the cylinder length is increased beyond L/d
= 3.288. Further simulations should be carried out with the same 2D cross-
section, but with even larger spanwise dimension, in order to determine the
asymptotic cylinder length for the present case (i.e. the spanwise dimension
for which the results become length independent).

Further investigations into the apparent quasi-periodic variation of the
force amplitudes should also be carried out, however, this will require sig-
nificantly longer simulation times. Assuming we need O(50) cycles of the
force amplitude variation to get a representative sample, the simulation time
should be at least ten times longer than in the present simulations.



Chapter 6

Laminar flow around spheroids

6.1 Flow around a 6:1 ellipsoid

Flow around an ellipsoid (or prolate spheroid) with an aspect ratio of 6:1 has
become a benchmark case for numerical investigation of bluff body flows.
The geometry can be seen as a generalization of several applications in aero-
and hydrodynamics: A simplified submarine hull, the body of an airplane
or helicopter, a missile or torpedo etc. Several researchers have done CFD
computations of flow around an ellipsoid at an angle of attack, typically
10-20 degrees, see figure 6.1. This may represent e.g. a turning U-boat.
See for example Rhee & Hino [51], Constantinescu et al [52]. However, in
the present case, the 6:1 ellipsoid is subject to pure cross flow, i.e a = 90
degrees, see figure 6.2. In this initial study of flow around an ellipsoid, a
single computational grid with approx. 434000 nodes is used. The body
surface is constructed from six rational B-spline surfaces, see figure 6.3. The
Reynolds number is Re = uyd/v = 100 (laminar flow), and the dimensionless
time step is 0t' = dt - us/d = 0.075. When choosing the resolution in space

e

Figure 6.1: Definition of the the angle of attack . In most of the computational
and experimental work done by other researchers, o < 20 degrees.
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Figure 6.2: Ellipsoid in pure cross flow.

and time, similar considerations are made as in the cylinder case (laminar
flow), see section 4.2. A single simulation is performed, with a sampling
time of ¢ - us/d = 225 (dimensionless units is), corresponding to 3000 time
steps. The time integration is performed using the first order backward Euler
method.

6.2 Flow around a sphere

Numerical simulation of flow arund a sphere is one of the most challenging
cases of three-dimensional bluff body flow. It may be see as a generalization
of flow around spheroids, like the 6:1 ellipsoid described above. What makes
the sphere even more difficult than the ellipsoid is the fact that the sphere
is rotationally invariant about every axis - all directions are equal. Conse-
quently, flow around a sphere is less geometry driven than any other bluff
body flow. From a computational point of view, this makes the flow very
sensitive to numerical methods and user input.

In the present study, flow around a sphere Re = 300 is performed. The
results are compared with data from Johnson & Patel [53]. A single simula-
tion is performed, with a computational grid of approx. 732000 nodes. As in
the ellipsoid case, the grid is generated using rational B-spline surfaces. The
dimensionless time step in the simulation is §t' = 0t - u,/d = 0.03. The sam-
pling time is ¢ - us /d = 105, corresponding to 3500 time steps. The second
order trapez/Euler time integration method is applied in this simulation.
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Figure 6.3: The figure shows the computational grid on the surface of the ellipsoid
itself, and on two planes intersecting the ellipsoid; the xz plane (green) and the
yz plane (blue). We can also see one of the domain boundaries (red, upper right
hand corner of the image).
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Force coefficients vs. time for a 6:1 ellipsoid at Re=100
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Figure 6.4: 6:1 ellipsoid, Re = 100: Time history of force coefficients C,. (drag),
Cy (lift) and C', (side force).

6.3 Results and discussion

Figure 6.4 and 6.5 show the time history of the force coefficients in each axial
direction for the ellipsoid and the sphere, respectively. The force coefficients
for the ellipsoid are defined as

Fz7y
C:E7y — W (6.1)
F,
C. = %pUQ d2 (6.2)
and for the sphere:
Fx7y7z
Coye = %pu2 2 (6.3)

Here, C, corresponds to drag, C, lift and C, side force coefficient. We observe
that the drag (C,) on the ellipsoid does not quite stabilize at a constant mean
level within the time sample, but shows a slight increase towards the end of
the simulation. This slow variation most likely "overrides" any oscillations in
drag force, and the drag curve appears smooth. The drag on the sphere, on
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Force coefficients vs. time for a sphere at Re=300
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Figure 6.5: Sphere, Re = 300: Time history of force coefficients C,, (drag), C,
(lift) and C, (side force).
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Ellipsoid, Re = 100 Sphere, Re = 300 Sphere, Re = 300

Description Present simulations Present simulations Simulations, ref. [53]
Strouhal number  0.0993 0.1252 0.137
Mean drag (x-dir.) 1.1245 0.6846 0.656
Mean lift (y-dir.)  -0.0059 -0.0693 -0.069
Peak-to-peak drag  0.0000 0.0043 0.007
Peak-to-peak lift 0.0325 0.0205 0.032

Table 6.1: Mean flow parameters for the 6:1 ellipsoid at Re=100 and the
sphere at Re=300.

the other hand, shows a small periodic oscillation around a constant mean
value. The lift force (C,) is perfectly time periodic in both cases. Further,
there are small numerical oscillations in side force (C,) in the two cases
(notice that the scale on the C.-axis spans the interval —107% to 107¢). By
definition, the side force acts normal to the mean flow symmetry plane, and
should therefore be zero.

A visualization of the wake flow pattern behind the ellipsoid is shown
in figure 6.6. The figure shows the instantaneous streamwise vorticity ¢, as
isosurfaces (top, side and perspective view of the same instant). The green
surface has the value ¢, = 0.5, while the red surface has (, = —0.5. These
values correspond to about 5% of the maximum streamwise vorticity, positive
and negative. Figure 6.7 shows a similar visualization of the streamwise
vorticity behind the sphere. The green and red surfaces have the values
¢, = —1.7 and 1.7 respectively. This corresponds to ca. 10% of the max
values.

Key parameters from the present simulations of ellipsoid and sphere flow
are listed in table 6.1, together with data from Johnson & Patel [53]. Their
numerical results show that the flow around a sphere becomes unsteady and
periodic at Re ~ 280. At Re = 100, the sphere flow is steady and axisym-
metric. Looking at the present ellipsoid simulation, the the flow is clearly
unsteady at Re = 100. This indicates that unsteadiness starts at a much
lower Reynolds number for the ellipsoid than for a sphere. From table 6.1,
we see that the Strouhal number for the ellipsoid at Re = 100 is lower than
for the sphere at Re = 300, however, the St values are comparable in mag-
nitude. Some of the difference in St may be due to the difference in Re in
the two cases. The computed mean drag on the ellipsoid at Re = 100 is very
close to the value of about 1.12 reported for a sphere at Re = 100 (Johnson
& Patel and their references, both simulations and experiments).

In the case of the sphere at Re = 300, we may note that the overall
agreement between the present simulation and the data from Johnson &
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Figure 6.6: 6:1 ellipsoid: Isosurfaces of instantaneous streamwise vorticity,
(,= 0.5 (green) and (,= —0.5 (red). Three different views of the same instant.
The values correspond to about 5% of the max values (positive and negative).
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Figure 6.7: Sphere: Isosurfaces of instantaneous streamwise vorticity, ¢, = 1.7
(green) and (, = —1.7 (red), corresponding to about 10 % of the max. values
(positive/negative).
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Patel is very good. Especially, the mean lift forces are very close in the two
cases. The Strouhal number is slightly lower in the present simulation, and
this may be due to insufficient grid resolution. Also, the peak-to peak values
are lower than the results of Johnson & Patel. However, the oscillations
are generally very small relative to the mean force on the sphere - much
smaller than the oscillatory force on a cylinder at Re = 265, see table 4.3.
This indicates that the vortex shedding is quite weak. Therefore, we would
expect the flow around a sphere to be more sensitive to grid resolution and
time step than the flow around a circular cylinder.

All the three cases listed in table 6.1 show a mean lift force (or lateral
force in the case of a sphere) different from zero, a quite interesting flow
feature. According to Johnson & Patel, this is due to a loss of axial symmetry
occuring before the flow becomes unsteady. The loss of symmetry starts at Re
= 212 in the sphere case. When the Reynolds number increases, the absolute
value of mean lift also increases, which means that the flow becomes more
asymmetric.

6.4 Conclusions

Initial simulations of flow around an ellipsoid and a sphere at low Reynolds
numbers are performed, and the results are very encouraging. Regarding
the cross flow around a 6:1 ellipsoid, it’s impossible to draw any definitive
conclusion from a single time sample at Re = 100, with no reference data
available. However, the present simulation gives a few indications concerning
the nature of the wake flow. First of all, the flow is unsteady and time periodic
at Re = 100. The visualization shows that the flow pattern bears little
resemblance to the von Karman vortex street behind a circular cylinder, but
looks more similar to the flow behind a sphere at Re = 300. The comparison
of mean flow data from the present 6:1 ellipsoid simulation and the data for a
sphere at Re = 300 substantiates the relationship between the flows around
the ellipsoid and the sphere, in particular, the non-zero lift force found in
both cases.
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Chapter 7

Concluding remarks and future
work

Through a series of numerical experiments we have demonstrated that the
Navier-Stokes solver VISTA is able to simulate realistic, complex three-
dimensional flow situations, generic to many problems in the field of ma-
rine engineering. The agreement with reference values, i.e experiments at
the same Reynolds number, is generally very good. In all the cases where
mean drag has been compared, we obtain a deviation on the order of 5%
from the reference results. This is within the bounds of uncertainty (stan-
dard deviation) in most laboratory experiments. So, the goal of high fidelity
simulations in marine engineering has been fulfilled. Of course, this level of
accuracy comes at a cost; the computational work involved is substantial.
The total simulation time for a representative time sample may vary from
a couple of days in the laminar cases, to more than a week for the largest
turbulent cases. Most of the simulations presented have been run on 32-96
processors on the supercomputer at NTNU. It should be noted, however,
that the supercomputer processors are up to 5 years old. The VISTA code
has been tested on a new (2004) PC cluster, and a performance increase of a
factor 4-5 compared to the supercomputer has been reported. It should also
be stressed that the VISTA code is still under development, and has not yet
been fully optimized for serial performance.

An important insight from the cylinder cases is that "the world is 3D"
- even when the geometry is nominally two-dimensional, and the Reynolds
number is low. Although the two-dimensional vortex shedding is very strong,
and governs the overall flow picture around a circular cylinder in a large
Reynolds number region, three-dimensional effects play an important role
long before the flow becomes turbulent. In fact, the wake turbulence has its
origin in the 3D instabilities described in section 4.2.
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A substantial part of the man-hours required to do the present simula-
tions were spent on grid generation. High quality computational grids are
essential in order to obtain accurate results in CFD. The grid generator used,
Griddler, is a script based code, with no graphical user interface. Using a
script based tool ensures good control of the grid generation, but the input
can be quite tedious. All the grids used in the present simulations are block
structured, with hexahedral elements. This type of grid is favourable with
respect to controlling the grid quality in critical areas, such as the boundary
layer regions very close to body surfaces. Also, structured grids are generally
known to have good convergence properties. On the downside, structured
grids are not very flexible. In order to get enough elements where you want
them, you may have to put a lot of elements where they are not needed,
and this is not very cost-effective. When the geometry and block topology
becomes more complex, this problem increases. An obvious solution is to
use unstructured grids (currently not implemented for 3D grids in Griddler).
This solves the flexibility problem, and in addition, we get the possibility
of using adaptive grids. However, we lose some control of the gridding in
critical areas (boundary layers etc.). An even better solution would be to use
grids that are structured in areas where we need full control, and unstruc-
tured/adaptive in the rest of the domain (hybrid grids). This type of grid is
also well suited for moving objects.

Introducing moving cylinders is a highly relevant extension of the present
work, with particular view to the problem of vortex induced vibrations (VIV)
of marine risers. A logical first step towards true fluid-structure interaction
(FSI) would be to impose forced oscillations of the cylinders (or the down-
stream cylinder in the tandem case), and solve the fluid problem indepen-
dently of the cylinder motion. Of course, both the problem of forced oscilla-
tions, and the true FSI problem where the motion is determined by the forces
acting on the cylinder, are significantly more computationally expensive than
the fixed cylinder problem. Vortex induced vibrations and fluid-structure in-
teraction are hot topics in the marine research communities at present, and
areas of ongoing work in the VISTA group.

Visualization of complex fluid flows is a challenging task. This applies
to both computer simulations and laboratory experiments. Turbulent flows
in particular put great demands on the visualization techniques, but also
laminar flows can be quite complicated, as the present study has shown. In
the case of 3D cylinder wakes, the fact that the geometry has a constant
2D cross-section makes the flow easier to visualize. We can get much infor-
mation about the flow field from looking at cutting planes. However, three-
dimensional flow features require other visualization tools. Examples are
particle tracing, streak lines, or the iso-surfaces used in the present study.
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When the geometry is also "fully three-dimensional", as in the case of a
sphere or an ellipsoid as presented in chapter 6, we really depend upon 3D
visualization in order to understand what is going on. In these cases, even
iso-surfaces of scalar fields such as the velocity or vorticity fail to give a clear
picture of the complex vortex shedding.

CFD simulations have the potential of generating huge amounts of data,
but storing all the data is neither possible nor desirable. Consequently, care-
ful data extraction and postprocessing are essential ingredients in the suc-
cessful use of CFD. The resolution of data that can be extracted from a
simulation is only limited by the grid resolution and the time step. In most
cases, the velocity and pressure fields are output directly from the solver.
All other visualization variables are derived from the velocity and pressure.
Laboratory experiments also generate a lot of data. However, in contrast to
CFD, practical limitations related to experimental measurements determine
which data can be extracted. For example, state of the art PIV (particle
image velocimetry) equipment can provide a high resolution of the three-
dimensional velocity vector, but measurements may only be performed in a
single two-dimensional cutting plane at a time. It is not possible to capture
the entire three-dimensional flow domain at once, as we can do with CFD.
Also, the pressure on body surfaces can only be measured experimentally at
discrete points. An advantage of experiments, however, is that certain as-
pects of the flow can be seen directly, such as 3D separation lines and vortex
patterns, turbulent mixing, and so on. These flow features are not trivial to
abstract from computed velocity and pressure fields.

Practically all flow problems encountered in marine engineering are tur-
bulent, and turbulence modelling will inevitably become an important is-
sue when doing marine CFD calculations. In the present work, the highest
Reynolds number is Re = uyd/v = 21600, at which also the referenced model
tests of marine risers are performed [49]. In this flow regime, we have laminar
separation on the cylinder surface, and turbulence occuring somewhere in the
near wake (subcritical turbulent flow). We do not require a turbulence model
that can treat turbulent boundary separation very accurately in this case.
The static Smagorinsky model used in the present simulations is relatively
crude when it comes to near-wall modelling, but still gives good results for
the Strouhal number and mean forces. Apart from the fact that the flow
is subcritical, this could also indicate that the flow problem itself is mainly
geometry driven, and not very sensitive to turbulence modelling in general.
The full scale Reynolds number for ocean current past a typical marine riser
is O(10%). Further simulations of flow around a 3D cylinder at e.g Re = 10°,
using both the static Smagorinsky model and more sophisticated models,
may answer some of these questions, and would be a relevant extension of
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the work presented here. Also, a proper physical assessment of how well the
simulated turbulence agrees with real turbulence should be performed.

Many questions related to numerics and software implementation have
come up in the course of the present work, and should be addressed as part
of the general validation and verification of the code. This includes more com-
plete convergence studies, error estimation and so on. Also, issues related to
serial as well as parallel performance of the code should be investigated. We
have not focused on perfomance in this study. There are also many interest-
ing questions related to general CFD practice that need further investigation.
One example is regarding the size of the computational domain. In the cylin-
der cases, we have focused on the spanwise domain size, i.e the length of the
cylinders. Increasing the cylinder length further is an obvious extension of
the present work, simply to determine the length required to approximate an
infinitely long cylinder in three-dimensional flow simulations. But also, the
width and the streamwise dimension of the computational domain are im-
portant factors. We want to avoid blockage effects, pressure reflections from
the outflow boundary etc., but we would also like to keep the computational
domain as small as possible to save computational work. These issues have
not been investigated in the present work.

An important statistical issue concerns the length of time samples, not
only in computations, but also in laboratory experiments. How long time
series do we need? The answer depends on the nature of the flow. If the
flow is perfectly periodic, a few vortex shedding cycles is enough. But in
most situations, the flow is only quasi-periodic - even low Reynolds number
flow past a circular cylinder, as the present study has shown. There may be
slow variations in frequency and amplitude of the oscillating forces on the
cylinders. In order to quantify these variations, we need significantly longer
sampling times than what’s required for perfectly periodic flows. In computer
simulations we also want to make sure that such variations are of physical and
not numerical origin. The physical mechanisms governing the slow amplitude
variations involve interaction between different types of vortex shedding and
turbulence, and are not yet understood. This problem, as well as many other
complex phenomena, ensures that flow around a circular cylinder will remain
a challenge for researchers in the years to come.
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Appendix A

Drag and lift, single cylinder

A.1 Re = 265, L = 0.822d

Drag and lift coefficient lift vs. time, grid G2, dt=0.001
T T T T T
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°
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timestep no.

Drag and lift coefficient, grid G2, ot = 0.001.

109



110 APPENDIX A. DRAG AND LIFT, SINGLE CYLINDER

Drag and lift coefficient lift vs. time, grid G2, dt=0.002
T T
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Drag and lift coefficient, grid G2, ét = 0.002.

Drag and lift coefficient lift vs. time, grid G2, dt=0.004
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Drag and lift coefficient, grid G2, 6t = 0.004.




A.l. RE =265, L = 0.822D 111

Drag and lift coefficient lift vs. time, grid G3, dt=0.001
T
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Drag and lift coefficient, grid G3, ot = 0.001.
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A.2 Re = 3900, L = 3.288d

Drag and lift coefficient for a cylinder, Re=3900, dt=0.001
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Drag and lift coefficient, backward Euler with van Driest wall damping (Case 2).

Drag and lift coefficient for a cylinder, Re=3900, dt=0.001
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Appendix B

Drag and lift, two cylinders in
tandem

B.1 Re = 21600, S/d =5, T/d = 0

Drag and lift coefficient for 2 cylinders in tandem arrangement: S/d=5, L/d=1.644, Re=21600
2 T T T T T T T
Upstream cylinder
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LES results: Time series of drag and lift, case MC (L/d=1.644)
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Drag and lift coefficient for 2 cylinders in tandem arrangement: S/d=5, L/d=3.288, Re=21600
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nondimensional time, tu _/d

LES results: Time series of drag and lift, case LC (L/d=3.288)

Drag and lift coefficient for 2 cylinders in tandem arrangement: S/d=5, Re=21600 (DHI exp.)
T
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Experimental data, DHI: Time series of drag and lift



