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Abstract 
 
 
 
A two-dimensional Boundary Element Method (BEM) based on potential flow theory is developed 
to study wave-body interaction problems with strongly nonlinear effects. In particular, the 
following problems are studied. One problem is the symmetric water entry of rigid bodies, i.e. of a 
wedge, a bow-flare ship section and a circular cylinder. Further, the asymmetric water entry of a 
bow-flare ship section, the water impact on an elastic cylindrical shell and the large-amplitude 
forced heave motions of a wedge and a bulbous-bow ship section are examined. Fully nonlinear 
free surface conditions are always satisfied. The exact body boundary conditions are also satisfied 
except in the water impact of a cylindrical shell. In this special case, the effects of the elastic 
vibrations are linearized and the body boundary conditions are satisfied on the undeformed shell 
surface. Gravity effects on the water flow are in general included.  
 
The numerical difficulties encountered in solving the initial phase of the blunt body impact are 
handled by using flat plate theories, i.e. von Karman’s theory or Wagner’s theory at the initial stage. 
The numerical errors associated with the very thin jet rising up along the body surface are reduced 
by cutting off the thin jet. Thin sprays evolving from the free surface are cut off to avoid breaking 
waves hitting on the underlying free surface and thereby creating vorticity. A numerical damping 
beach in the far-field is utilized to ensure the condition of outgoing waves generated by an 
oscillating body.  
 
A flow separation model is merged with the BEM to simulate the non-viscous flow separation from 
the knuckles of a section or from a curved body surface. In the latter case, a criterion related to the 
low-pressure area on the wetted body surface near the free surface is introduced to predict the 
occurrence of the flow separation.  
 
Hydroelasticity effects are accounted for in the water impact problem of a cylindrical shell by 
coupling the BEM with a modal analysis. An alternative approach is developed for cases when the 
submergence of the shell is small relative to its radius. In this approach, a flat plate theory, von 
Karman’s theory or Wagner’s theory, is coupled with the modal analysis.  
 
Finally, the hydrodynamic performance of a prismatic planing hull in steady or unsteady motions is 
investigated by using a 2D+t theory combined with the two-dimensional BEM. The planing speeds 
are moderate in the studied cases. The three-dimensional effects neglected in the 2D+t theory and 
the gravity effects are discussed for the steady planing cases. In the unsteady cases, the planing hull 
is forced to oscillate in heave or pitch. The dependence of the linearized added mass and damping 
coefficients on the forced oscillation frequency is investigated.  
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Nomenclature 
 
 
 
General Rules 
 

• Symbols are generally defined where they appear in the text for the first time. 
• Matrices and vectors are represented by bold face characters. 
• Overdots signify differentiation with respect to time. 
• Sometimes the same symbol is used in different problems to indicate different things.  

 
Abbreviations: 
 
2D   Two dimensional 
BEM   Boundary Element Method 
BVP  Boundary Value Problem 
CFD  Computational Fluid Dynamics 
COG  Centre of Gravity 
IBVP  Initial Boundary Value Problem 
 
Subscript: 
 
ij i = 3 and 5 correspond to the vertical force and pitch moment, respectively; j = 3 and 5 

correspond to the forced heave and pitch motion, respectively. 
max Maximum value 
 
Roman symbols: 
 
a Radius of the neutral surface of a cylindrical shell 
an Principal coordinate for mode n in a modal analysis for a shell structure 
A(x,t) Sectional added mass approximation for a planing hull 
Aij Added mass coefficients for a planing hull 
An Time-dependent coefficients for the general solution near a flow separation position 
Anm Equivalent added mass terms in the vibration equation for mode n induced by the 

vibration in mode m 
az Vertical acceleration 
A3/2 A parameter in the analytical solution near a flow separation position 
A33 2D added mass of a section in heave 
b Half beam B/2 
B Beam  
Be Extension in half beam 
Bij Damping coefficients for a planing hull 
Bk Beam of a V-shaped section measured between knuckles. 
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Bnm Equivalent added mass terms in the vibration equation for mode n induced by the 
vibration in mode m 

B33 2D damping coefficient of a section in heave 
B33

v Viscous damping coefficient in heave 
c(t) The half wetted length of  plate in a flat plate theory 
CD Drag coefficient 
Cf Frictional force coefficient 
CL Lift coefficient 
CLβ Lift coefficient for a planing hull 
Cm A correction coefficient in the expression of A(x,t) 
Cp Pressure coefficient 
C33 Restoring force coefficient 
Cij Restoring force coefficients for a planing hull 
d Thickness of the wall of a cylindrical shell 
d(x,t) Instantaneous local draft for a planing hull in unsteady motions 
d0 The threshold in the cut-off model for the very thin jet 
D Draft or Diameter of a circular cylinder or the flexural rigidity of a cylindrical shell 
DT Draft at the transom stern of a planing vessel  
E Young’s modulus  
f Frictional force 
fn Natural frequency for mode n for a cylindrical shell vibrating in the radial direction 
f3 Normalized sectional vertical force on a planing hull 
F(t) Time history of the vertical force due to the water pressure on a heave section  
Fan Amplitude of the nth order harmonic force component for a heaving section 
FnB Beam length based Froude number U/(gB)1/2 

FnD Froude number based on the diameter of a circular cylinder U/(gD)1/2 
Fn The generalized force for mode n in a modal analysis for a shell structure  
Fv Vertical viscous force on a heaving section 
Fz Total vertical force on the body due to water pressure. 
F0 Total mean force on a heaving section 
F0

(2) Second order mean force for a heaving section 
F3 Total vertical force on a planing hull 
F3

(2D)  Sectional vertical force on a planing hull 
F5 Total pitch moment on a planing hull about the COG 
g Acceleration of gravity 
h Drop height in a free drop test 
Jk(x) Bessel function of the first kind of order k 
Jk,n Simplified expression of Jk(nc(t)/R) 
k A ratio of the mass of a circular cylinder to the mass of  the displaced water when it is 

fully submerged. 
k Unit vector in positive z-direction  
K A coefficient in the expression of the added mass A(x,t) 
KC Keulegan-Carpenter number 
lp  The distance measured along the keel from transom stern to the centre of the water 

pressure for a planing hull 
lcg  The distance from the transom to the COG of a planing hull measured along the keel  
L Length of a cylinder or the mean wetted length for a planing hull 
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LC Chine wetted length for a planing hull 
LD  Length of the damping region in a numerical calculation 
LK Keel wetted length for a planing hull 
LT Total length of a water domain in a numerical calculation 
m The mass of a 2D section with unit length or number of periods used in the calculation 

force components of different order for a forced heaving body 
mn Equivalent mass term for mode n in a vibration equation 
M Total mass of a body 
n  Normal vector on a boundary surface, pointing out of the fluid domain. 
Nm The maximum number of mode in a numerical calculation by a modal analysis 
N  2D normal vector on the hull surface in a cross-plane 
(NX, NZ) Components of the normal vector N 
(r,θ) A polar coordinate system in the local solution around a flow separation position 
R Radius of a circular cylinder 
RnD Renolds number RnD =UDν-1 for the water flow around a circular cylinder 
S Closed boundary for a fluid domain 
S0 Mean submerged area of a heaving section 
p Pressure 
pa Atmospheric pressure 
t Time 
T Period for a forced oscillation 
u, w velocity components  
U Forward speed of a planing hull or the speed of a body in steady motion 
Us Fluid velocity at the separation position in a non-viscous flow separation 
v Tangential displacement of a cylindrical shell at a cross-section 
vcg  The distance of the COG of a planing hull above the keel line measured normal to the keel  
V Velocity vector of the rigid body 
V0 Initial water entry speed 
V(t) Vertical velocity of the rigid body 
w Normal displacement of a cylindrical shell at a cross-section 
(x,y,z) Earth-fixed coordinate system in the problem of a planing hull 
           A coordinate system fixed on a planing hull  
(X,Y,Z)  Hull-fixed coordinate system for a planing hull 
xcp or

cpx  The x- (or x -) coordinate of the centre of the water pressure on a planing hull in a hull-
fixed coordinate system 

xs or
sx  The x- (or x -) coordinate for the chine wetted position on a planing hull in a hull-fixed 

coordinate system 
xg The x-coordinate of the COG of a planing hull in a Earth-fixed coordinate system 
(y,z) Space-fixed coordinate system used in the 2D BEM. 
zg The z-coordinate of the COG of a planing hull in a Earth-fixed coordinate system 
Z Forced heave motion 
Za Amplitude of the forced oscillation in heave  
 
Greek symbols: 
 
α Angle of attack for a planing surface or a parameter used in the curve fitting of the free 

surface profile after the transom stern of a planing vessel 

( , , )x y z
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β Deadrise angle 
β0 Non-dimensional parameter in the expression for ν0 
γ Poisson’s Ratio 
δ(n) Phase angle of the nth order harmonic force 
∆t Time step in the numerical calculations 
ε Normalized amplitude for the forced oscillations in heave; a parameter in the flow 

separation model; slenderness parameter for a vessel defined by the ratio of the draft to the 
length of the vessel 

ε0 Elongation in the neutral plane of a cylindrical shell 
εθ Strain on the inner surface of a cylindrical shell, in the tangential direction at a cross-

section  
ξ Local coordinate on a linear element in the BEM 
ξB Normalized frequency for the forced oscillations in heave 
ξ- ζ A local coordinate sysmtem near transom stern at the centre plane of a planing hull 
ζ(x,y, t) Free surface elevation around a planing hull 
ζ(t) Submergence of the lowest point on a body into water relative to undisturbed free surface 
η(y,t) Free surface elevation at time t 
η A local non-dimensional coordinate in a damping region 
η3 Heave motion of a planing hull 
η3a Amplitude of the forced oscillations of a planing hull in heave 
η5 Pitch motion of a planing hull 
η5a Amplitude of the forced oscillations of a planing hull in pitch 
θ Constant roll angle of a section during an asymmetric water entry or the radial coordinate 

at a cross-section of a cylindrical shell 
θ(t) Instantaneous trim angle of a planing hull in unsteady motions. 
λ Wave length 
λw Mean wetted length-beam ration for a planing hull 
µ Mass per unit area of a cylindrical shell 
ν Kinematic viscosity of water 
ν(y) Absorption coefficient in the damping region 
ν0 Maximum absorption coefficient for ν(y) 
π The constant 3.1415926… 
ρ Water density 
ρs Material density of a cylindrical shell 
ρs Equivalent mass density of a cylindrical shell 
τ Trim angle in radian of a planing hull in steady motion or the mean trim angle in unsteady 

motions 
τdeg Trim angle in degree of a planing hull 
ω Frequency in a forced oscillation 
Ω Fluid domain 
φ(y,z,t) Velocity potential of the fluid flow in two dimensions. 
φn Normal derivative of the velocity potential  
φs Tangential derivative of the velocity potential 
ψ A correction coefficient in the expression of A(x,t) 
ψ(y,z,t)  An auxiliary function used in the calculation of pressure 
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CHAPTER 1 
 
 
Introduction 
 
 
 

1.1 Background and motivation 
 
In the field of marine technology, strongly non-linear free surface effects can occur in many wave-
body interaction problems. Examples are green water on deck, resonant sloshing in ship tanks and 
breaking waves around ships. Large relative vertical motions between the waves and the body will 
lead to strongly nonlinear free surface effects. Even though the relative vertical motions between a 
planing hull and the waves are not very large, nonlinearities easily occur. Further, the larger the 
Froude number of a vessel is, the more important the nonlinearities of the steady flow field become. 
 
Many of the strongly nonlinear wave-body interaction problems originate from the slamming 
problems in ship and ocean engineering. In a dictionary, the word “slamming” means the hitting on 
something with sudden or violent force. In marine technology, slamming is referred to as the water 
impact on a part of a ship or some other marine structure. The slamming on ships and ocean 
structures often happens in rough sea, as shown in Fig. 1.1 (a) and (b), respectively.  
 

       
(a)      (b) 

Fig. 1.1. Slamming in rough sea: (a) slamming on a ship; (b) slamming on a platform. (photos downloaded 
from the internet.) 
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(a)      (b) 

 

       
(c)      (d) 

Fig. 1.2. Examples of slammings on ships. (a) Bottom slamming; (b) Green water slamming; (c) Bow-flare 
slamming; (d) Bow stem slamming (Photos downloaded from the internet). 
 
The slamming on a ship hull can be categorized as bottom slamming, bow-flare slamming, bow 
stem slamming, stern slamming and wet-deck slamming, according to the vessel region where the 
phenomenon happens. Fig. 1.2 shows some examples of slamming on real ships. Sometimes the 
bow stem slamming is also named as breaking wave impact because the bow stem is hit by the 
breaking waves, for instance caused by the interaction between the incident waves and the ship-
generated waves. In addition, green water slamming occurs during the shipping of water on deck. 
Slamming during sloshing inside a ship tank is another important kind of slamming. It is crucial in 
the design of prismatic LNG tanks. For offshore structures, slamming is also of concern. Examples 
are the slamming on horizontal members of a jacket or on the deck platform.                   
 
The slamming process is often characterized by large hydrodynamic loads within a short duration. 
The effects are twofold. On the one hand, the very high slamming pressures can cause local 
structural damages. Yamamoto et al. (1985) reported serious structural damages on a container ship 
in a heavy sea due to bow-flare slamming.  On the other hand, the integrated loads due to large 
slamming pressures may greatly affect the global ship behavior. One of the transient global effects 
excited by the local slamming is whipping, which is normally associated with two-node vertical 
vibrations, as well as heave and pitch accelerations. Ge et al. (2005) demonstrated significant 
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whipping effects on a catamaran caused by wetdeck slamming and indicated that it is both the 
water-entry and water-exit loads that matter. Further, Gu & Moan (2005) showed that the nonlinear 
loads related to whipping can greatly increase the fatigue damage for a container ship with large 
bow-flare and low hull rigidity. Global rigid-body motions can also be affected by the local 
slamming. For example, Rognebakke & Faltinsen (2001) showed that for a ship in beam sea, the 
nonlinear slamming loads inside a ship tank during sloshing can affect the global sway motions. 
Altogether, various kinds of slamming events have important influences on ocean structures. 
Therefore, it is necessary to investigate the slamming problems and make further improvements in 
the design procedures for ships and other ocean structures.  
 
Because of the violent water flow in the slamming problems, non-linear effects due to the wave-
body interactions are often prominent. The typical phenomena induced by the strongly non-linear 
effects are, for instance, thin jets and sprays, wave breaking, non-viscous flow separation, air 
cavities enclosed on the body surface, bubble collapse, cavitation and ventilation, etc. These 
phenomena cause complexities in the problems. The compressibility of the water and hydro-
elasticity may also be relevant. Therefore, it is quite challenging to accurately predict the free 
surface flow and the loading on the body in the problems with those complicated effects. 
 
Before a complete simulation of the slamming on an actual ship or other ocean structures, some 
basic wave-body interaction problems have to be solved. For example, to investigate the bow-flare 
slamming or bottom slamming, one needs to study the water entry of a bow-flare ship section or a 
circular cylinder. The lower surface of the circular cylinder resembles the bottom of a bulbous bow. 
When oscillatory motions in a slamming problem are relevant, one should first study the forced 
oscillatory motions of a two-dimensional section. Such kind of basic wave-body interaction 
problems are the major topics of the present work. The typical features associated with strong non-
linear effects can be revealed in the studies. The outcome can help the further investigations for 
more sophisticated and realistic slamming events. An application like this will be shown in Chapter 
7, where the planing hull in steady or forced unsteady motions is studied, on the basis of the 
investigations in Chapters 3 and 4 on the water entry of a V-shaped section and forced oscillations 
of a floating V-shaped section.  
 
 

1.2 Review of the previous work  
 
The slamming problems in marine technology have received increased attention in recent years. 
Korobkin (1996) reviewed some specific issues and approaches in water impact problems in ship 
hydrodynamics. In particular, the acoustic effects and air-cushion effects were discussed. 
Mizoguchi & Tanizawa (1996) reviewed various approaches used for different slamming problems. 
They also discussed the water impact problem with trapped air, the effects of fluid compressibility, 
hydroelasticity and three-dimensionality, and how to describe slamming in a stochastic analysis. 
Later, Faltinsen (2000) discussed many different slamming problems in ship and ocean engineering 
and particularly stressed the importance of hydroelasticity. More recently, Faltinsen et al. (2004) 
presented up-to-date reviews of the research work on the slamming problems in marine 
applications. The state of art of the research on different kinds of slamming problems as well as 
future challenges were given. In this section, a review of previous work relevant to this thesis is 
presented.  
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• Water entry of a 2D rigid body  
 
The water entry of a rigid body in two dimensions has been widely studied ever since the 
pioneering works by Von Karman (1929) and Wagner (1932). A review of the earlier research on 
water entry problems was given by Korobkin & Pukhnachov (1988). In the rapid water entry of a 
rigid body, viscous effects are often negligible. Compressibility and air-cushion effects between the 
body surface and the impacting free surface only matter initially in a very short duration. So they 
were also neglected in many studies. The following review will focus on studies based on potential 
theory, where the water is assumed incompressible, inviscid and the flow is irrotational.    
 
Various kinds of methods have been developed to solve the water entry problems. One group of 
methods originate from Wagner’s theory with a flat plate approximation and linearized free surface 
conditions in the domain outside the spray roots (outer domain). The other group of methods are 
devised by utilizing the self-similar property for some special problems. More recently, numerical 
methods were widely used to solve the water entry problems with fully nonlinear free surface 
conditions and without restrictions of the body shape or neglecting gravity effects. 
 
In von Karman (1929)’s impact model, the water surface elevation and gravity are neglected. A flat 
plate approximation is applied in the model. The impact loads are underestimated in particular for 
small deadrise angles. Wagner (1932) further developed Von Karman’s theory by accounting for 
the local uprise of the water. Better predictions of the hydrodynamic loads and peak impact 
pressures can be obtained by Wagner’s method when the deadrise angle is small and no air cushion 
is entrapped. However, singularities still exist at the water-body intersection points in the outer 
domain solution. By using the matched asymptotic expansion technique, Watanabe (1986) removed 
the singularity by matching the planing plate solution for the splash region (spray root domain) 
with Wagner’s outer domain solution. However, the inner solution is not good enough because in 
the planing plate solution there is a free surface downstream the plate which does not exist in his 
water entry problem. This weakness is avoided by Cointe & Armand (1987). They removed the 
singularity by matching the outer domain solution with Wagner’s inner domain solution at spray 
roots. The method was used to study the water impact on a blunt body surface. Further, Howison et 
al. (1991) extended the approach to solve the water entry of a section with more general shape, yet 
the impacting body is required to be nearly parallel to the undisturbed water surface, i.e. the local 
deadrise angle is very small. Cointe (1991) also applied the method for the water entry of a thin 
wedge and a flat wedge. However, a solution was only obtained in the flat wedge case. Recently, 
the limitation to small deadrise angles was avoided in Faltinsen (2002)’s approach. The method of 
matched asymptotic expansions was also applied, but different inner and outer solutions were used 
to obtain the results for any local deadrise angle. The time dependent water entry speed could also 
be accounted for.  
 
In the water entry of a wedge of infinite extent, the flow can be assumed to be self-similar, as long 
as the gravity is neglected and the water entry speed is constant. Similarity solutions for the water 
entry of a wedge were derived by Dobrovol’skaya(1969) and Hughes (1972). Fully-nonlinear free 
surface conditions and the exact body boundary condition were satisfied in their methods. However, 
in both cases the solutions were not explicitly given. Numerical computations were implemented to 
obtain the results. Dobrovol’skaya(1969) only presented results for deadrise angle larger than 30º. 
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Later, Zhao & Faltinsen (1993) obtained the numerical results for Dobrovol’skaya (1969)’s 
similarity solution for deadrise angle within the range 4º ~ 81º. It is numerically demanding to 
obtain similarity solution results for small deadrise angles. The application of the similarity 
solutions is limited by the shape of the body and constant water entry speed, and the gravity effects 
can not be accounted for. However, the similarity solution is still a favorable method to describe 
the initial stage of the water entry when the gravity, body shape and variation of speed are less 
important. A similar but different problem, the impact of a water wedge on a plane rigid surface, 
can also be described by a similarity solution. Such solutions were presented, for instance, in 
Cumberbatch (1960) and Zhang et al. (1996). 
 
Numerical methods have been extensively used to solve the water entry of a rigid 2D body with 
fully nonlinear free surface conditions. The obvious advantage of numerical methods is the fact that 
there are no restrictions for the body shape and water entry speed. The gravity can be optionally 
included. The Boundary Element Method (BEM) is one of the most popular numerical methods 
which can be applied to solve nonlinear water-entry problems. Vinje & Brevig (1981) proposed a 
BEM based on Cauchy’s theorem to solve fully nonlinear free surface problems without the 
restriction of zero gravity. This method was later used by Greenhow & Lin (1985), Yim (1985) and 
Greenhow (1987) to simulate the water entry of a wedge with nonlinear free surface conditions. 
However, Greenhow (1987)’s numerical results were only satisfactory for deadrise angle larger 
than 60 degree because of the difficulties associated with the thin jet flow. Wu et al. (2004) applied 
a similar BEM combined with an analytical solution for the jet based on a shallow water 
approximation to study the wedge-water entry. The effect of gravity was neglected. Good results 
were obtained for wedges with deadrise angles down to 10º for a constant water-entry speed. 
However, the exact description of the thin jet does not seem to be quite necessary, because the 
pressure in the jet is nearly atmospheric and the thin jet gives a small influence on the other parts of 
the fluid. That is why the thin jet was cut in Zhao & Faltinsen (1993)’s fully nonlinear Boundary 
Element Method without gravity. A control surface was introduced at the spray root to simplify the 
treatment of the jet and to avoid the numerical difficulty in locating the intersections between the 
thin jet and the body surface. The smallest deadrise angle in their study was as small as 4º. Actually, 
in cases with deadrise angles smaller than 2~3º, air-cushion can occur due to the existence of 
knuckles.  Zhao et al. (1996) further extended their work by considering the flow separation from 
knuckles and general body sections. Gravity was neglected in their studies. Nevertheless, gravity 
effects are not negligible in some situations. For example, in the later stage of the water entry when 
the body is further submerged, the influence of gravity becomes more significant and can affect the 
hydrodynamic behavior.  
 
All the works mentioned above were mainly concentrated on symmetric water-entry problems. 
However, asymmetric water entry is also practically important. Asymmetric water impacts on a 
ship section often occur in reality, when the ship is heeled or when there are oscillatory sway, roll 
or yaw motions, as well as in the conditions with asymmetric free surface elevation with respect to 
the ship’s central plane. Such situations are, for instance, common for planing hulls during 
maneuvering operations. In an asymmetric water entry, the originally symmetric section can be 
inclined, or enter the water with both a vertical and a horizontal speed. The second case is often 
called ‘oblique water entry’.  
 
The earliest theoretical study on asymmetric water impact problem was given in Garabedian (1953), 
where the oblique water entry of a wedge was studied. Later, Chekin (1989) studied oblique water 
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entry of a wedge section with constant speed by using a method generalized from Dobrovol’skaya 
(1969)’s similarity solution. The flow on the leeside was either forced to attach on the body surface 
or forced to separate from the vertex. Recently, de Divitiis & de Socio (2002) used a conformal 
mapping transformation to study the same problem. The limits of the sideslip angle for the onset of 
the separation from the vertex were predicted. Judge et al. (2004) studied experimentally and 
theoretically the oblique water entry problem, and also predicted the limits for flow separation from 
the vertex. However, the limits were found to be larger than those predicted by de Divitiis & de 
Socio (2002). Judge et al. (2004) argued that in a real fluid, the limits can be affected by the 
reattached jet flow on the leeward side. The reattachment effect was not considered by de Divitiis 
& de Socio (2002).  
 
The other kind of asymmetric water entry is the vertical water entry of an asymmetric body. 
Toyama (1993) generalized the Wagner’s theory to study the vertical water entry of an arbitrary 
asymmetric section. However, the method has several limitations. For example, the flow separation 
can not be considered. Xu et al. (1998) extended the flat-cylinder theory by Vorus (1996) to study 
the water entry of an asymmetric wedge. The flow separation from knuckles and from the vertex 
can both be included. They indicated that the interaction between the two sides of the body matters. 
Therefore, it is not appropriate to separately calculate each side of the asymmetric wedge and 
average the solutions afterwards. This interaction was neglected in the study of the water impact on 
a bow flare ship section with a large heel angle by Arai & Matunaga (1989). They only studied the 
half-plane with the windward side. Their theoretical results agreed only qualitatively with their 
experimental results. To be accurate, one must not neglect the interaction between the two sides. 
The most recent study of the water entry of an asymmetric section was presented by Semenov & 
Iafrati (2006). They investigated the vertical water entry of a heeled wedge by their nonlinear 
analytical self-similar solution. The occurrence of a stagnation point on the less inclined side of the 
wedge was clearly shown, which further confirms the importance of the interaction between the 
two sides. No flow separation from the wedge apex was assumed, but the limit of the heel angle for 
separation-free situation was calculated for different wedge angles. However, those limits need to 
be further confirmed by experiments, because the reattached jet flow may affect the limits similarly 
as indicated by Judge et al. (2004) for their oblique water entry problems. The possible 
reattachment to the body surface and the resulting enclosed cavity need to be investigated. For a 
more general section, the bottom surface can have a finite curvature. This necessitates the 
simulation of the flow separation from the curved surface on the leeward side. The challenge is 
then to find the separation position.  
 
 

• Water impact of a circular cylinder 
     
When a horizontal cylinder with a large length-to-diameter ratio impacts with the water, one can 
neglect the variation of the flow along the length of the cylinder and study a two-dimensional 
hydrodynamic problem in a cross-plane. An exception is that the elastic vibrations of the structure 
in the lengthwise direction vary on the scale of the transverse dimension. Another exception is that 
the horizontal cylinder impacts on a steep wave. If the rigidity of the cylinder is large and the 
impact velocity is small, the cylinder can be regarded as a rigid body. However, if it is flexible and 
the impact velocity is large, the cylinder must be modeled as an elastic structure and hydroelasticity 
must be considered.  
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Even for a rigid circular cylinder, it is not easy to exactly solve the water impact problem, because 
the free surface will initially change very rapidly and the process may involve many complicated 
effects, such as air cavity entrainment, flow separation and wave breaking. Actually, the rate of 
change of the wetted surface is initially infinite according to Wagner (1932). Approximate methods, 
i.e. the methods based on flat plate theories are often used in practice. For example, as mentioned 
earlier, Cointe & Armand (1987) studied the water entry of a circular cylinder by using the method 
of matched asymptotic expansions. It was found that larger errors appear in the later stage of the 
water entry. Mei et al. (1999) derived an analytical solution for the water entry of a general section, 
motivated by the generalized Wagner theory proposed in Zhao et al. (1996), and applied the 
method to a circular cylinder. However, the nonlinearity was only partly included because the free 
surface boundary condition was linearized. To exactly solve the problem with fully nonlinear free 
surface conditions, numerical methods have to be applied. Greenhow (1988) studied the water 
entry of a rigid circular cylinder by using a BEM based on Cauchy’s theorem. However, the flow 
separation model needs to be improved. Recently, Zhu et al. (2005) applied an advanced CFD 
(Computation Fluid Dynamics) method, the CIP method, to study the water entry of a rigid circular 
cylinder. Viscous effects are simulated by this method, but viscosity does not matter much in the 
rapid water entry problem. However, viscous effects may matter for the water exit of a cylinder 
starting from below a free surface (Zhu et al., 2005). 
 
For a cylindrical shell impacting on the free surface, it is necessary to consider the hydroelasticity 
when the cylinder’s wall is thin and flexible and the impact velocity is large. Belytschko & Mullen 
(1981) attempted to solve the water impact of a cylindrical shell by coupling a Finite Difference 
Method (FDM) for the fluid analysis and a Finite Element Method in 2D for the shell structure. 
Shibue et al. (1994) studied experimentally the water impact of a cylindrical shell and estimated the 
strain responses by applying the measured water pressure on a shell structure model. Arai & 
Miyauchi (1998) investigated the water impact of cylindrical shells, both experimentally and 
numerically. A FDM based on the Euler equations was applied for the flow field and a modal 
analysis was used for the shell structure. A flat plate theory was adopted by Ionina & Korobkin 
(1999) to solve the water impact of a cylindrical shell. Bereznitski (2003) simulated the 
experiments by Arai & Miyauchi (1998) by using a commercial software (Dytran). All these 
investigations contribute in some aspects. Nevertheless, there are still many unsolved problems 
related to the occurrence of phenomena, e.g. ventilation, enclosed air cavities and cavitation. 
 
 

• Bow-flare slamming 
 
In earlier days, the main concern in a ship design procedure was focused on the ship form below 
the water line. However, it was later realized that slamming on the bow flare above the water line 
may also cause structural damages (Yamamoto et al., 1985). The bow flare can be simplified as a 
V-shaped section, or a wedge section. So the studies of the water entry of a wedge section as 
mentioned earlier were also in some cases motivated by the bow flare slamming problems. 
Sometimes in a severe sea state, the bulbous bow can be lifted totally out of the water and then 
impact on the free surface. Then an equivalent process is the water entry of a bow section with bulb 
and flare. The study of asymmetric water entry of a bow-flare section with a large roll angle is 
necessary. In such case, high pressure on the flare region may occur when the water impacts on the 
flare, because the contact angle between the flare surface and the impacting water surface can be 
very small. 
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Arai & Matsunaga (1989) applied the Finite Difference Method (FDM) developed by Arai & 
Tasaki (1987) to simulate the water entry of a bow-flare ship section into initially calm water with 
the consideration of gravity effect. Flow separation from the knuckle of the section was simulated. 
It was found that high pressures appear over a large area of the bow flare when the bow flare region 
impacts the water, especially for the case with a large roll angle. Later, Arai et al. (1995) performed 
calculations for the water impact of different ship sections, and found that the initial bottom 
slamming on a bow-flare section can generate separated water flow, which will impact on the bow 
flare at a later stage and cause very high pressures on the bow. This is called secondary water 
impact. However, when the water entry speed is not so high, the secondary impact does not 
necessarily happen. 
 
Aarsnes (1996) performed drop tests of ship sections, i.e. a wedge section and a bow flare section 
for different roll angles. The lower part of the bow flare section was designed to be relatively thin, 
so that the secondary impact was less important. Mei et al. (1999) tried to use a generalized 
Wagner’s method to study the drop tests by Aarsnes, but the solutions can only be given before the 
flow separation from the knuckles happens. However, the impact pressure on the bow flare matters 
after the flow separation, as shown by Arai & Matsunaga (1989). Zhao et al. (1996) have 
numerically studied one symmetric case in Aarsnes (1996)’s drop tests for the bow-flare section 
giving good predictions of the vertical force. Flow separation from knuckles was simulated. 
Gravity was not included but this does not seem to affect the accuracy of the results. However, 
when the bulb of the bow flare section is not thin and the impact speed (Froude number) is not too 
low, flow separation from the bulb occurs in the early stage of the water entry, so one needs to 
simulate the separated flow from the bulb surface. CFD methods such as the FDM in Arai et al. 
(1995) and the CIP method used by Zhu (2006) seem to be capable to do this work, but up to now 
the calculations by most CFD methods are too time-consuming to be used in a practical problem. A 
more realistic solution is to further develop a BEM similar as in Zhao et al. (1996) to solve the 
problem. 
 
 

• Forced oscillatory motions of a floating body 
 
Investigations of the forces on an oscillatory free-surface piercing body were started many decades 
ago. The problem is relevant in the study of floating bodies in waves. Radiation forces on the 
oscillatory bodies need to be evaluated. For simplicity, a body is just forced to oscillate in an 
experiment or in a theoretical study. Two-dimensional experimental studies were carried out, for 
instance, by Vugts (1968), Tasai & Koterayama (1976) and Yamashita (1977).  
 
In some situations, such as for very small amplitudes, the forces can be almost linearly dependent 
on the forced oscillation amplitude. Therefore, in the earlier theoretical studies, good results for 
some cases were obtained just by a linear theory. However, when the oscillation amplitudes are 
larger, the non-linear force components will be more significant. Second-order theories were 
extensively developed in predicting the second-order forces on oscillating bodies, e.g. by Lee 
(1968), Potash (1971), Papanilolaou & Nowacki (1980). However, it is cumbersome to further 
develop nonlinear solutions to the third or higher order by a perturbation scheme. On the other 
hand, viscosity causes nonlinearities for sections with sharp corners even when the oscillation 
amplitude is small, because viscous flow separations will occur and the resulting vortex shedding 
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affects the loads on the body. This was shown e.g. by Yeung & Ananthakrishnan (1992) for a 
heaving rectangular cylinder by using numerical methods. 
 
More recently, numerical potential flow methods were introduced to simulate the forced large 
amplitude oscillations of 2D bodies. Nonlinear time-domain simulations are first performed and the 
nonlinear forces components can then be calculated from the time history of the force, e.g. by 
Kashiwagi (1996) and Koo & Kim (2004) for forced heave motions. In the large-amplitude heave 
motions of a more general ship section, such as a bow-flare ship section, more physical effects can 
be involved, such as non-viscous flow separation, secondary water impact, cavity enclosure, etc. 
An advanced CFD method with proper verification is able to simulate such complicated situations, 
however, greater complexities require more computational time. Further, to obtain a steady-state 
condition and continue for sufficient oscillation periods implies a long time simulation. At this 
point, the BEM shows its advantages, because it takes much shorter time to perform the simulation. 
However, numerical difficulties can be encountered in the BEM based on potential theory, for 
instance, when a plunging wave impacts the underlying free surface. The generation of vorticity 
during this water-water impact is inconsistent with the assumption of a potential flow throughout 
the fluid domain. Such numerical difficulties have to be avoided in the BEM.  
 
 

• 2D+t theory 
 
In a 2D+t theory, the original 3D problem for a ship in waves is approximated by a series of time-
dependent 2D problems in Earth-fixed cross-planes intersecting the ship. In this approximation, the 
ship is assumed to be slender, which means the transverse dimensions should be much smaller than 
the longitudinal dimension. Three-dimensionality is partly considered because the flow at a cross-
section is influenced by the flow upstream of this section. However, transverse waves can not be 
described in the 2D+t theory. The consequence is that the ship-length based Froude number must 
be larger than ≈0.5 when one solves the steady and unsteady problems with symmetric flow about 
the ship’s central plane (Faltinsen, 2005). The 2D+t theory is also called a 2.5D theory. In the 
formulation of the 2.5D theory, a two-dimensional Laplace equation is solved in ship-fixed cross-
planes, and the free surface conditions are satisfied in three dimensions. The calculations can start 
from the bow of the ship and then proceed along the longitudinal downstream direction of the ship. 
However, an inconsistency happens at a transom stern for high Froude number cases when the flow 
separates at the transom stern, because the 2D+t theory can not foresee the flow separation and the 
influence from the flow downstream the transom stern is not considered. This shows an inherent 
deficiency for the 2D+t theory. In spite of this, the 2D+t theory has proved to be a very efficient 
approach for high speed ships with strongly nonlinear effects. In contrast, traditional linear theories 
can no longer provide good predictions to these problems and fully three-dimensional numerical 
methods may need rather long time to complete the simulations.  
 
The concept of the 2D+t approximation was proposed by Munk (1924) in his slender body theory 
for airships. The idea was applied to slender planing surfaces by Tulin (1957). The effect of gravity 
was neglected in his study. Ogilvie (1967) tried to account for gravity effect in a 2D+t approach. 
Chapman (1976) further applied the 2D+t approach together with nonlinear free surface conditions 
to solve the problem of a vertical flat plate with yaw motion in a uniform stream. Yeung and Kim 
(1981) employed a similar concept and calculated the hydrodynamic forces on a frigate hull with 
forward speed and forced heave or pitch motions. However, the free surface conditions were 
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linearized in their method. Chapman (1976)’s approach was generalized by Faltinsen & Zhao (1991) 
to study the steady and unsteady motion of a high speed slender ship. The steady flow was 
nonlinear, while the unsteady flow was assumed linear. Maruo & Song (1998) followed a 2D+t 
theory to simulate the steady and unsteady motions of a frigate model with nonlinear free surface 
conditions and gravity effects. The generation of spray and breaking bow waves were well 
simulated. However, flow separation was not included. Tulin & Wu (1996), Fontaine & Cointe 
(1997) and Fontaine et al. (2000) further applied the 2D+t theory to study the nonlinear bow waves. 
The theory proved to be very efficient in their studied cases. Lugni et al. (2004) presented results of 
the steady wave elevation around a semi-displacement monohull with transom stern. They 
compared the results of linear 3D and nonlinear 2D+t computations and proved the effectiveness of 
the 2D+t theory for a large range of high Froude numbers. CFD methods can also be combined 
with a 2D+t theory. Tulin & Landrini (2001) used the Smoothed Particle Hydrodynamics (SPH) 
method in a 2D+t fashion to investigate the breaking bow waves of slender ships. 
 
 

• Planing hull 
 
A planing hull introduces more hydrodynamic challenges relative to semi-displacement vessels. 
For instance, dynamic stability gets increased importance. Examples are dynamic roll instability, 
broaching and porpoising (Faltinsen, 2005). In order to study these instability problems, the 
hydrodynamic forces on the planing hull in steady and unsteady motions have to be accurately 
predicted. Nonlinearities play a more significant role than for a displacement or semi-displacement 
ship. Further, the high speed of a planing vessel causes higher probability of cavitation and 
ventilation.   
 
Both experimental and theoretical approaches have been used to study the hydrodynamic features 
of planing vessels, but doing experiments is more straightforward and therefore was the main 
approach in earlier studies on planing vessels. The experiments by Sottorf (1932 and 1934) were 
amongst the earliest experimental studies on planing vessels. Savitsky (1964) presented empirical 
equations for lift, drag and centre of pressure for prismatic planing hulls, based on experimental 
data. Later, Altman (1968) performed forced oscillation experiments of prismatic hulls and Fridsma 
(1969, 1971) conducted experiments for prismatic hulls in regular and irregular head sea. Troesch 
(1992) studied experimentally forced vertical motions from low to moderate planing speeds of 
prismatic planing hulls.  
 
Some attempts have been made to analytically solve the problem by linearization, e.g. in Wang & 
Rispin (1977), Martin (1978a, 1978b). Due to strong nonlinearities involved in planing vessels, the 
application of these linear solutions is quite limited. Numerical approaches were introduced in 
recent decades. Vorus (1992, 1996) developed a two-dimensional theory by distributing vortices in 
a horizontal plane at the mean free surface. The theory was combined with a 2D+t theory. Lai 
(1994) solved the planing problem in three dimensions using a vortex lattice method. Zhao et al. 
(1997) applied a 2.5D theory in combination with the BEM described in Zhao & Faltinsen (1993) 
to study the steady flow past high-speed planing hulls on a straight course. However, all the 
numerical methods mentioned above assume very high speed, or infinite Froude number for the 
planing vessel, so that gravity is neglected in their analyses. Lai (1994) examined gravity effects 
for some cases by adding hydrostatic force to the hydrodynamic lift force. This is not a full 
consideration of gravity effects.  One must also consider the influence of gravity on the free surface 
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elevation and the associated pressure distribution on the hull. When gravity is included in the 
analysis of wave generation, these effects can be shown, and the hydrodynamic features of a 
planing vessel in oscillatory motions will be frequency and Froude number dependent.   
 
 

• Boundary Element Method applied to solve nonlinear free surface problems 
 
Different numerical methods can be used to solve the strongly nonlinear wave-body interaction 
problems. The most commonly used methods are the BEM (Boundary Element Method) based on 
potential theory and CFD methods based on the Navier-Stokes equations or Euler equations. Zhu 
(2006) presented a review of different CFD methods used for strongly nonlinear wave-body 
interaction problems. Some complicated phenomena can be simulated by a CFD method, e.g. a 
plunging wave breaking with impact on the underlying free surface. Further, those viscous effects 
such as boundary layer separation and vortex shedding can be simulated in a CFD method based on 
Navier-Stokes equations. However, for the time being, CFD methods are still quite time-consuming. 
In fact, in many of the strongly nonlinear wave-body interaction problems, the fluid viscosity is 
unimportant or at least not the key factor. Then it is reasonable to apply the BEM based on 
potential theory. However, special care must be taken to avoid the numerical difficulties such as 
due to initial water-body impact and breaking waves. Those problems can often be efficiently 
tackled by combining the BEM with certain local analytical solutions or by using numerical 
treatments.  
 
The BEM method has been widely applied in marine hydrodynamics. Longuet-Higgins & Cokelet 
(1976) proposed the Mixed Eulerian-Lagrangian method (MEL) to simulate steep free surface 
waves. A similar numerical approach has been presented earlier by Ogilvie (1967) to solve the near 
field around a ship. Later, this method combined with a Boundary Element Method was extensively 
used to simulate the nonlinear waves and to solve nonlinear wave-body interaction problems, 
especially in two dimensions. We can see many successful examples using this approach, to name a 
few, Zhao & Faltinsen (1993) simulated the water entry of a wedge with strongly nonlinear free 
surface flow; Cao et al (1994) and Kashiwagi (2000) studied nonlinear wave-induced motions of a 
floating body; Zhang et al. (1996) simulated the impact of a plunging breaker on a wall; Baarholm 
(2001) studied the water impact on decks of offshore platforms with nonlinear effects; Greco et al. 
(2004) examined green water on deck where strongly nonlinear plunging waves can occur. 
 

1.3 Present work 
 
In the wave-body interaction problems studied in the present work, the water is assumed inviscid 
and incompressible and the water flow is irrotational. So the work is carried out in the framework 
of potential theory. Nonlinear free surface conditions are commonly satisfied on the free surface. 
The exact nonlinear body boundary conditions are usually satisfied, except that in a fluid-structure 
interaction problem the nonlinear body boundary conditions are approximately satisfied on the 
undeformed position of the body surface. The fluid domain is assumed unbounded in most cases. 
Air cushion formed in the initial stage of the water impact of a body is not taken into account. 
Hydroelasticity is only included in the water impact problem of a cylindrical shell in the present 
study. 
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1.3.1 Contributions in the present work 
 
Major contributions in the present work are given as follows.   
 

 A BEM developed with gravity effects 
 
A Boundary Element Method is developed to solve the fully nonlinear wave-body interaction 
problems. The gravity is, in general, included in the method. The thin jet on the body surface is cut 
in a way different from what was used in Zhao & Faltinsen (1993). The deadrise angle of the 
wedge section has been as small as 4º in the numerical calculations. The thin spray evolved from 
the free surface is also cut to avoid wave breaking.  
 

 Non-viscous flow separation 
 
The non-viscous flow separation from a sharp corner or from a curved body surface can be 
simulated in the BEM. On a curved body surface, the water flow is forced to separate from the 
body surface when a large area with pressure less than atmospheric pressure is detected. This is the 
first time, to the author’s knowledge, that the non-viscous flow separation on a curved body surface 
is simulated in a Boundary Element Method. 
 

 Asymmetric water entry 
 
Asymmetric water entry problems of a ship-bow section with different heel angles are solved by 
the BEM. Pressure distributions on both the impact side and the leeward side of the section at any 
time instant can be calculated. Negative pressure areas are observed on the leeside of the section, 
which indicate the possibility of ventilation and the resulting separation.  
 

 Prediction of nonlinear forces on heaving 2D bodies 
 
The heave motions of some special cross-sections are investigated, i.e. a bulbous bow ship section 
and a flat wedge section. Viscous flow separation affects the damping coefficients in the cases for 
the bulbous bow ship section. Strongly nonlinear effects are associated with the latter case even 
when the heave amplitude is relatively small.  
 

 Hydroelastic analysis  
 
In the study of the water impact of a circular cylindrical shell, the importance of the extension in 
the middle plane of the shell wall, the influence of the higher order modes and the role of the rigid-
body motion in the coupled analysis are discussed. Further, the influence of the exact description of 
the water flow, i.e. the nonlinear free surface and body conditions and the non-viscous flow 
separation, is shown from the comparisons between the results by the BEM plus the modal analysis 
and the results by the flat plate theory plus the modal analysis.  
 

 Steady and unsteady motions of a planing hull with gravity effects 
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Both the steady and unsteady motions of a planing hull at moderate planing speeds are investigated. 
It is demonstrated that gravity matters for moderate planing speeds. The 3D effect at the transom 
stern is found to be particularly important for the planing hull at moderate planing speeds. In the 
unsteady problems, the frequency dependency of the added mass and damping coefficients is 
investigated for a moderate planing speed.  
 
1.3.2 Outline of the thesis 
 
The BEM and associated numerical techniques are described in Chapter 2. The numerical method 
is verified by comparing with the similarity solution results given by Zhao & Faltinsen (1993) for 
the water entry of a wedge with deadrise angle in the range of 4º ~ 45º. Further, an improved way 
to calculate the acceleration during the free fall of a light body is introduced.  
 
Then in Chapter 3, an analytical solution of the separated flow near the separation position is 
presented in detail. The analytical solution can be combined with the BEM to simulate the non-
viscous flow separation. Examples are given to illustrate the efficiency of the flow separation 
model. The three examples are, respectively, the flow separation from the knuckle of a wedge 
during its water entry process, the flow separation from the transom stern of a planing hull and the 
flow separation during the water impact of a circular cylinder. 
 
In Chapter 4, the water entry of rigid bodies in two dimensions is investigated numerically by the 
BEM described in Chapters 2 and 3. Flat plate theories are used at the initial stage of the free water 
entry to provide the initial conditions for the BEM. First, the symmetric water entry of a wedge, a 
bow-flare ship section and a circular cylinder are studied numerically and the results are compared 
with experiments. Then the asymmetric water entry of the bow-flare ship section is investigated 
numerically by changing the heel angle of the section or the drop height. The effects of the heel 
angle and the drop height are discussed. Comparisons with experiments are also shown. 
 
In Chapter 5, the water impact of a cylindrical shell is studied including hydroelasticity effects. 
Coupled analyses by von Karman’s method or Wagner’s method for the water flow together with a 
modal analysis for the structural responses are presented. Some physical effects are discussed from 
the coupled analysis by these methods. The coupled analysis is also performed by using the BEM 
for the water flow and the modal analysis for the structure. The numerical results are compared 
with experiments. Different physical effects and possible error sources in the experiments and 
numerical calculations are discussed. 
 
In Chapter 6, the water flow due to the heaving of a two-dimensional section on the free surface is 
numerically studied by the BEM together with the application of a numerical damping beach. The 
heave motions of a thin wedge and a half-buoyant circular cylinder are first investigated. The 
results are compared with the experiments and theoretical results in order to verify and validate the 
numerical method. Then the numerical simulations are performed for the heave motions of a 
bulbous bow ship section with two different drafts and a flat wedge section. Different effects 
associated with these problems are discussed. 
 
The initial part of Chapter 7 formulates the problem of a prismatic planing hull in calm water. A 
2D+t theory combined with the BEM is then presented to study a prismatic planing hull in steady 
motion. Three-dimensional effects and gravity effects are discussed. Then the 2D+t theory is 
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generalized to study the forced unsteady heave or pitch motions of a planing hull. The added mass 
and damping coefficients are evaluated for different frequencies at a moderate planing speed.  
 
Finally in Chapter 8, the conclusions drawn from the present work are given and the perspectives 
for further studies are proposed.  
 
Most contents in this thesis have been published respectively in the following five papers: Sun & 
Faltinsen (2006a, 2006b, 2006c), Sun & Faltinsen (2007a, 2007b). Details for these publications 
can be seen in References.  
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CHAPTER 2  
 
 
A Boundary Element Method  
 
 
 
A 2D Boundary Element Method (BEM) is developed to solve the water flow around a free-surface 
piecing body. The motion of the body can be given or be free. The body is assumed to be rigid. The 
vertical motion is along the vertical symmetry line of the body in two dimensions. The description 
of the method and numerical schemes involved will be introduced in this chapter. The BEM in this 
chapter are mainly concerned with the symmetric water entry of rigid bodies. However, the 
numerical method will be generalized in Chapter 4 to solve an asymmetric water entry problem. 
 

2.1 The Boundary Element Method 
 
 

Fig.  2.1. 2D Earth-fixed coordinate system and definitions. 
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A two-dimensional section is moving vertically on the free surface with a time-dependent velocity 
V = V(t) k (Fig. 2.1). The unit vector k is pointing in the positive direction of z-axis. In a water 
entry problem, the V(t) is negative, which means the body is moving downwards. An Earth-fixed 
Cartesian coordinate system yoz in the two-dimensional cross-plane is applied, with y-axis on the 
calm free surface, z-axis pointing upward and z=0 corresponds to the calm free surface. Due to the 
symmetry about the z-axis, only one half of the fluid domain is studied. The water is assumed 
inviscid and incompressible and the water motion is assumed irrotational. So a velocity potential 
φ(y,z,t) satisfying a 2D Laplace equation can be used to describe the water flow, which means 
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The boundary condition on a rigid body surface is given by 
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where n is the normal vector pointing out of the fluid domain in two dimensions. Further, fully 2D 
nonlinear free surface kinematic and dynamic boundary conditions are satisfied on the free surface, 
i.e.  
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ϕ
ϕ= ∇ −         on the free surface    (2.4) 

 
where g is the acceleration of gravity and D/Dt is the substantial derivative. The effect of the 
surface tension is neglected. The dynamic free surface condition implies that the pressure on the 
free surface is constant. A consequence is that the air flow between the cylinder bottom and the free 
surface before the water impact is neglected. A truncation boundary at a distance far from the body 
and a flat bottom boundary at a deep water depth are assumed. The boundary condition on these 
two boundaries are given as 
 

0
n

ϕ∂
=

∂
        (2.5) 

 
In a water entry problem, if the truncation boundary is far enough from the body, the existence of 
the boundary will not give significant influence during the rapid water entry process. In a heaving 
problem, in order to avoid reflection waves from the truncation boundary, a ‘numerical beach’ is 
applied in front of the truncation boundary to damp out the waves. This numerical technique will 
be described in Chapter 6. When the water flow is symmetric about the z-axis, the behavior of φ at 
infinity boundary is like a vertical dipole in an infinite fluid with singularity at y=0 and z=0. 
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Initially, if the water is at rest before the body interacts with the water, then the velocity potential is 
zero on the undisturbed free surface.  
 
By using Green’s second identity, the velocity potential at a field point P within the fluid can be 
represented by 
 

( ) ( ),
2 , Q

P Q Q

S Q Q

G P Q
G P Q ds

n n

ϕ
πϕ ϕ

∂∂
= −

∂ ∂

⎡ ⎤
⎢ ⎥
⎣ ⎦
∫     (2.6) 

 
where G(P,Q) = log r(P,Q) and r(P,Q) is the distance from a source point Q on the fluid boundary S 
to the field point P in the fluid domain Ω. The fluid domain is surrounded by the closed boundary S 
consisting of SS (the body surface), SF (the free surface), SI (the boundary at infinity), SB (the 
bottom surface) and SC (the symmetry line boundary). By letting the field point P approach S, an 
integral equation can be obtained. If one assumes that at a certain time instant φ is known on the 
free surface, and ∂φ/∂n on the body surface is known from Eq. (2.2), then by solving the resulting 
integral equation, one can obtain the velocity potential φ on the body surface and the normal 
velocity ∂φ/∂n on the free surface. The free surface elevation and the velocity potential on the free 
surface for the next time instant can be updated by using Eqs. (2.3) and (2.4).  Given initial 
conditions for φ on the free surface and the free surface elevation, one can just follow a time 
marching procedure to solve the Initial Boundary Value Problem (IBVP).  
 
From Bernoulli’s equation, the pressure on the body surface can be evaluated by 
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    (2.7) 

 
where pa is the atmospheric pressure and ρ is the water density. The pressure −ρgz is included so 
that the influence of gravity on the hydrodynamic force on the body can be incorporated. 
Integrating the pressure times the z-component of the normal vector along the wetted surface will 
result in the total vertical force due to the water pressure.  
 
The term ∂φ/∂t can be evaluated by solving a boundary value problem for an auxiliary function 
ψ(y,z,t) defined by 
 

/ tψ ϕ ϕ= ∂ ∂ + ⋅∇V       (2.8) 
 
As proved by Greco (2001), the auxiliary function ψ satisfies the 2D Laplace equation 
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2 2
0

y z

ψ ψ∂ ∂
+ =

∂ ∂
      (2.9) 

 
Inserting Eq. (2.8) into Eq. (2.4) results in the boundary condition for ψ on the free surface  
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On the body surface, the body boundary condition for ψ can be derived similarly as in Greco 
(2001). Therefore one has 
 

n

ψ∂
= ⋅

∂
n V       (2.11) 

 
where /d dt=V V is the acceleration vector of the rigid-body motion. After solving ∂φ/∂n on the 
free surface from the earlier mentioned Boundary Value Problem (BVP) for φ at a certain time 
instant, the right-hand side of Eq. (2.10) can be evaluated. Then the BVP for ψ described by Eqs. 
(2.9)-( 2.11), together with zero-disturbance requirement at infinity, can be solved numerically. The 
procedure is just like solving for the velocity potential φ. The value of ψ on the body surface is then 
found and substituted into Eq. (2.7) to obtain ∂φ/∂t. 
 
The rigid-body motion can be determined by solving the equation of motion from Newton’s second 
law. 

zMV F Mg= −      (2.12) 
 
where M is the total mass of the body, Fz is the total vertical force due to the water pressure, 

/V dV dt= is the vertical acceleration of the rigid-body motion. The acceleration vector can be 
written as  V=V k . In order to calculate V  from this equation, one has to know the Fz integrated 
from the pressure. However, the pressure is unknown before V is given (see Eq. (2.11)). So the 
BVPs for φ and ψ are coupled with the rigid-body motion equation. Ideally, we have to solve them 
simultaneously by iterations. For simplicity, we can approximately use the acceleration in the last 
time step to give the boundary condition in Eq. (2.11) in the calculation of ψ. Then we solve Eq. 
(2.12) to obtain the new acceleration for the current time step.  Numerical problems may occur in 
cases when the total mass of the body M is small relative to the added mass in the vertical motion. 
The errors in the acceleration can cause divergence. In order to avoid this numerical problem, one 
can use an alternative way to calculate the acceleration. This method will be presented in section 
2.9. 
 

2.2 Initialization for the BEM calculation 
 
Initially, the velocity potential is zero on the undisturbed free surface. For an oscillation problem, 
the numerical calculation starts from this condition. However, for a water entry problem, an initial 
water entry phase has to be simulated by an approximate method, i.e. von Karman’s method or 
Wagner’s method. This is due to the fact that there is a rapid change in the free surface profile at 
the initial water entry stage, especially for a wedge section with a small deadrise angle. Great 
computational efforts are required to accurately simulate such a change. Alternatively, one can just 
employ an approximate method to simulate this initial stage when the gravity is negligible. The 
argument is that at the initial stage of the water entry, the scale of the submerged cross-section is 
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very small. The Froude number of the local flow is therefore very large, which means that gravity 
gives less important contributions. Maruo & Song (1994) adopted Mackie (1962)’s analytical 
solution for the water entry of a sharp wedge to give the initial conditions in their BEM 
calculations. The deadrise angles of their sections were quite large. In present study, Wagner’s 
approximation is applied to provide the initial conditions in the water entry problems for a small- 
deadrise-angle wedge and for a circular section.  
 
For the free water entry of a 2D wedge, one can derive the following differential equation by using 
Wagner’s outer-domain solution (Faltinsen, 2005, exercise 8.9.4 and Sun, 2006).  
 

2 3 2
2 2

2 28 tan 4 tan

d d d g
g

dt m dt dt m

ζ ρπ ζ π ρ
ζ ζ

β β
+ + =⎡ ⎤

⎢ ⎥⎣ ⎦
   (2.13) 

 
where ζ(t) is the submergence of the wedge apex relative to the undisturbed free surface, m is the 
mass of the section of unit length and β is the deadrise angle (See Fig. 2.1). The water entry 
velocity results from the equation V(t) = −dζ/dt, which can be combined with Eq. (2.13) and  
numerically solved simultaneously. The initial values at time t = 0 when the body touches the calm 
water surface are given as ζ(0) = 0 and V(0) = −(2gh)1/2, where h is the drop height measured from 
the apex of the wedge at rest to the calm water surface. Further, the wetted area due to the thin 
spray is neglected and the half wetted width c(t) is expressed as 
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c t
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At time instant t, the free surface profile is given by 
 

( ) ( )( ) (
, arcsin

(

)
)

y t c t
y t t

c t y

ζ
η ζ= −
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,    for y>c   (2.15) 

 
If the computation by the BEM starts form time instant t, then the initial condition of the free 
surface profile for the numerical calculation can be given by this equation because ζ(t) and c(t) 
have been obtained from the Wagner’s solution. The initial velocity potential is φ = 0 on the free 
surface. Starting from those initial conditions, the numerical calculations will soon come to a stable 
state in the time integration procedure.  
 
For the water entry of a circular cylinder, the analytical solutions in the initial stage by approximate 
methods will be given in Chapter 4. For an arbitrary section, the initial stage will be numerically 
solved when using von Karman’s method, which will also be shown in Chapter 4. 
 

2.3 Discretization in the BEM 
 
The closed boundary S of the fluid domain includes the body surface SS, the free surface SF, the 
truncation boundary SI, the bottom SB and the symmetry line boundary SC. In the numerical 
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calculations, the boundaries will be discretized into straight-line elements. Because the boundaries 
SI and SB are far away from the body, it is satisfactory to use only a few elements on these 
boundaries. Equally distributed elements are used on the body surface. Further, elements varying in 
size are distributed on the symmetry line boundary. The element closest to the body surface has the 
same size as its neighboring body surface element. Then the elements are geometrically increasing 
along the symmetry line boundary, as they are further away from the body. The free surface 
boundary is divided in two regions. Equal elements are distributed on the first region near the body, 
while geometrically increasing elements are distributed on the other region far from the body. 
Usually more elements are distributed on the near-body region than on the other region. The length 
ratio of these two regions and the number of elements on them can be adjusted. Generally speaking, 
two rules are followed. The first rule is to use finer elements on regions closer to the body and to 
use larger elements far away from the body. The other rule is to control that the ratio of lengths of 
two adjacent elements is around one, so that they have similar size. 
 
On each element, a linear interpolation function is applied to approximate the values between two 
nodes in terms of the nodes’ values. The interpolation function is given by 
 

1 1

1

( ) ( )i i i i

i i

f f
f

ξ ξ ξ ξ
ξ ξ

+ +

+

− + −
=

−
     (2.16) 

 
in which ξ is the distance along the element and the subscript indicates the serial number of the 
node. The unknown f can be either φ or φn . By applying this interpolation function, the integral 
equation resulting from Eq. (2.6) can be discretized into a set of linear algebraic equations 
 

1 1

N N

i ij j ij nj
j j

H Gαϕ ϕ ϕ
= =

= −∑ ∑     (2.17) 

 
where N is the total number of elements on the boundary S, Hij and Gij are coefficients in front of 
unknowns and the internal angle α is equal to π when the surface is smooth at the point i, otherwise 
the angle should be calculated separately. The equation system can be written in a compact matrix 
form 

[ ]{ } [ ]{ }nH Gϕ ϕ=      (2.18) 
 
where [H] and [G] are coefficient matrices, {φ}is the vector of velocity potential values and {φn} is 
the vector of normal derivative values of the velocity potential. The direct calculation of internal 
angle α can be avoided according to Beskos (1987), because the diagonal elements of [H] can be 
computed in terms of the off-diagonal ones by using  
 

1

N

ii ij
j
j ì

H H
=
≠

= −∑       (2.19) 

 
On boundaries with Dirichlet conditions φ is known and on boundaries with Neumann conditions 
φn is known. One can move the unknown terms to one side and the terms which are already known 
to the other side of the equation, hence 



2.3 Discretization in the BEM     21 

 

 
S S

n

S F I B C F S F I B C F

n

I B C I B C

n

H G H G H G

ϕ ϕ

ϕ ϕ

ϕ ϕ

+ + + +

+ + + +

− = −

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪

⎡ ⎤ ⎡ ⎤⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

  (2.20) 

 
where the superscripts correspond to the definition of the boundaries in Fig. 2.1.  
 
Special care must be taken near the intersection of the body surface and the water surface. The 
velocity potential is continuous on this intersection. However, the normal velocity is discontinuous 
because the normal directions at the two sides of the intersection are different. A common 
treatment to this problem is to assume that the normal velocity should be known on the body 
surface, but unknown on the free surface. So the normal velocity on the intersection at the free 
surface side is solved together with the other points on the free surface.  
 
After solving the equation system in (2.20), one will obtain the velocity potential on the body-
surface nodes and the normal velocity on the water-surface nodes. Afterwards, one can proceed to 
update the body surface, the free surface elevation and the velocity potential on the free surface, in 
a way described in Section 2.7. However, after the updating, the first point on the free surface can 
not exactly fall on the updated body surface. This implies a small gap between the free surface and 
the body surface, which is not allowed in a BEM. In order to fulfill the closed-boundary 
requirement in a BEM, the first point on the free surface has to be corrected. One way is to project 
the point normally to the body surface. Then the root of the normal line is the new body-water 
surface intersection. Further numerical treatments to the free water surface will then be performed, 
such as cutting the thin jet on the body surface, cutting thin sprays, smoothing and regriding.  
 

2.4 Jet cutting 
 
A very thin jet will run up along the body surface when the angle between the impacting water 
surface and the body surface is small. This often occurs for a falling wedge section on the water 
surface especially for small deadrise angle cases. Because of the very small contact angle between 
the body surface and the free surface on the jet, numerical errors near the intersection point can 
easily cause the points on the free surface of the jet to move to the other side of the body surface 
and the calculation will then break down. Therefore, the jet flow near the intersection point must be 
appropriately controlled. One solution is to cut the very thin jet.  
 
There are different ways to do the cut-off. Zhao & Faltinsen (1993) introduced a small element 
normal to the body surface. Kihara (2004) controlled the contact angle to be always smaller than a 
threshold value and introduced a new segment on the free surface. A new cut-off method is now 
introduced. This method looks similar to the one used by Kihara (2004). However, they are two 
different approaches.  
 
The cut-off model is shown in Fig. 2.2 for a wedge section. A, B and C are points on the free 
surface. When the normal distance from point B to the body surface is smaller than a threshold 
value d0, the area enclosed by ABCD is cut by introducing a new segment DC on the free surface. 
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The value of the normal distance is regarded as negative when B is on the other side of the body 
surface. This procedure controls the jet flow both when the jet is too thin and when the points on 
the jet cross to the inside of the body surface. 
 
By applying this cut-off model, the thin jet can be kept longer than when using the cut-off model in 
Zhao & Faltinsen (1993). This is not advantageous for the pressure distribution, because large 
pressure oscillation can happen in the long thin jet area due to numerical errors. However, when the 
gravity effect is considered, the flow on the top of the jet will be more likely to be affected by 
gravity.  In order to simulate the influence of gravity, a reasonable part of the jet must be kept. The 
pressure oscillations will be reduced when the elements on the body and the free surface near the 
jet tip are made smaller and in comparable size.  

                     
       Fig.  2.2. Cut-off model of a thin jet.                    Fig.  2.3. Scheme of the cut-off of a thin spray. 
 

2.5 Spray cutting 
 
When the gravity is accounted for, a thin spray can evolve from the free surface. It will at a later 
time overturn and hit the free surface underneath. If this happens, the calculations break down. The 
reason is that the penetration of the free surface causes circulation, i.e. vorticity and thus the 
potential theory can no longer be used to describe the fluid flow. Further, a detailed description of 
the spray requires the consideration of the surface tension. However, the spray gives little 
contribution to the pressure on the body. Even though the splash happened, the vorticity generated 
by the splash would influence a limited area in the flow and could only have a small effect on the 
body. Therefore, the spray can just be neglected by cutting it before it touches the free surface 
underneath. In such a way the numerical calculations can be continued until the completion of the 
concerned water entry process.  
 
The cutting scheme is shown in Fig. 2.3. When the spray grows long enough and before its tip 
(point B) touches the free surface, a part of the spray is cut. The cut line is normal to the upper free 
surface AB. Point C is the highest point on the lower free surface. The cut line goes through the 
middle point between B and C, thus the spray can be cut from around the middle of it. That part of 
the spray which is cut off is assumed to be independent of the remaining part of the fluid and its 
motion is only influenced by gravity. This assumption can be confirmed by the results in the 
example presented in Fig. 2.4 and Fig. 2.5. The 2D water entry of a wedge section with deadrise 
angle β = 45º is simulated. The constant water entry speed is V= 1.0ms-1. It can be seen that the 
cutting does not change the free surface profile in the remaining part. The vertical force Fz on the 
section with unit length is not apparently influenced by the cutting, either.  

Body surface 
Free surface 

 Cut line 

 B 

 A

 C

A

B

C

DBody surface 

Free surface 
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Fig.  2.4. Free surface profiles with and without sprays.       Fig.  2.5. Vertical force histories.  
 

2.6 Smoothing and regriding 
 
Smoothing and regriding of the updated free surface are performed at each time step. Numerical 
instabilities can be prevented by using these two numerical techniques.  
 
In the time stepping procedure, a sawtooth instability of the free surface profile will appear. A 
reason for this instability is due to the nature of the integral equation solved by the numerical 
method. The integral equation is a mixture of Fredholm integral equations of the first kind and the 
second kind. The numerical solution of Fredholm integral equation of the first kind can induce 
instability problems. This problem is described in many mathematic books, such as Delves & 
Walsh (1974, Chapter 13) and Arfken & Weber (2001, Chapter 16). The saw tooth instability can 
be removed by using a smoothing technique (Longuet-Higgins & Cokelet, 1976). A set of five-
point-third-order smoothing formulas for equally spaced points is now adopted. It is only applied 
on the near-body region of the free surface, where the elements are uniformly distributed. Actually, 
the smoothing is not necessary for the free surface region far away from the body, because the free 
surface profile does not change so violently as in the near-body region. Other smoothing techniques 
can also be applied to tackle the sawtooth instability. For instance, Maruo & Song (1994) applied a 
five-point smoothing algorithm in their BEM. The five-point-third-order smoothing formulas 
applied in the present numerical method are expressed as 
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= − + − + +    (2.21.e) 

 
where yi (i = 1,2,…, N) are original values before smoothing and fi (i = 1,2,…, N) are values after 
smoothing. N is the total number of nodes on the free surface region to be smoothed. The values 
can be y- and z- coordinates and the velocity potential φ on a node. The first two equations are used 
for the first two nodes and the last two equations are used for the last two nodes. The third equation 
can be used for any point at i =3,…, N-2. It should be noted that the smoothing must not be applied 
to the water-body surface intersection point, because the position of this point should not be 
changed by smoothing. 
 
After the updating of the free surface at each time step, the nodes can become too close to each 
other or too far away from each other, which may also cause numerical instabilities. The free 
surface needs to be re-discretized. A cubic spline approximation is used to interpolate the new 
points on the free surface. The regridding is performed by the following three steps. The first step 
is to find out the cubic spline approximation of the free surface profile by using polygonal arc 
length as the parameter. The second step is to calculate the arc length of the free surface and 
formulate the cubic spline approximations in terms of the arc length. Then the final step is to re-
distribute the nodes on the free surface by dividing the boundary into equal arcs or into arcs 
increasing geometrically in length.  
 
In the first step, we have known the positions of all the nodes on the free surface. The polygonal 
arc length from the first point of the free surface to the starting point of any segment i can be 
calculated, which is denoted as qi. On segment i, the y and z coordinates can be expressed as 
 

( ) ( ) ( ) ( )2 3
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where N is the number of nodes involved in the regriding process. Then by using continuity of the 
first and the second derivatives of yi and zi, we can find out the coefficients ayi, azi, byi, bzi, cyi, czi, dyi 
and dzi. A detailed description of the implementation is given by Bhat & Chakraverty (2004).  
 
In the second step, the arc length between point i and point i+1 is denoted as mi and the arc length 
from the first point (point 1) to point i is denoted as hi . Because the analytical approximate 
expressions of yi(q) and zi(q) on each segment are known, we can calculate the arc length mi from 
the following integration 
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with  

( ) ( ) ( )22 3i yi yi i yi iy q b c q q d q q′ = + − + − ,  

( ) ( ) ( )22 3i zi zi i zi iz q b c q q d q q= + − + −′ .  
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The Legendre-Gauss quadrature is used to calculate the integrals numerically. The integral is first 
transformed to be integrated in the interval [-1, 1] by 
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Then the integral in the interval [-1, 1] is calculated by the Gaussian quadrature formula: 
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Here n = 6 is chosen in the calculations. jx for j = 1,2,3,…,6 are the six roots in the interval [-1, 1] 
of the sixth order Legendre polynomial P6(x) = 0 and correspondingly Cj are the six coefficients. 
The six roots and six coefficients are given as follows:  
 

1 6x x= =0.1713244924, 
1 6

C C= − =0.9324695142   (2.26.a) 

2 5x x= =0.3607615731, 
2 5

C C= − =0.6612093865   (2.26.b) 

3 4x x= =0.4679139346, 
3 4

C C= − =0.2386191861   (2.26.c) 
 
By using the Legendre-Gauss quadrature to calculate the integrals, one can acquire a higher 
accuracy in the results of the integrals than just using the trapezoidal rule. This Legendre-Gauss 
quadrature is described in detail by Bhat & Chakraverty (2004). When n is different from 6, the 
values for the roots ix and the coefficients Ci can be found in this reference.  
 
Then we use hi to replace qi in the first step and form new interpolation functions in terms of h, i.e. 
yi(h) and zi(h), on element i. Similarly we can formulate the approximate functions for velocity 
potential as φi(h). 
 
In the final step, we can calculate the arc length from the first node to any new node on the free 
surface. The arc length is inserted into the approximate functions on the element, in which the new 
node locates, to calculate the y, z and φ for this new node. Thus the coordinates of the new nodes 
and velocity potential on them are found.  
 
 

2.7 Time-marching procedure 
 
A time-marching procedure is followed by integrating the evolution equations, i.e. Eqs. (2.3) and 
(2.4) with respect to time. When the body motion is free, the equation of motion (2.12) needs to be 
accounted for. This procedure is numerically realized by using a fourth-order Runge-Kutta method.  
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Initially the coordinates and the velocity potential for the free surface nodes are known. When the 
water entry speed is constant, the unknowns to be updated to the next time step include yi, zi, φi (i = 
1, 2, … , N+1), where N is the total number of linear elements on the free surface. The derivatives 
∂φ/∂y (φy ) and ∂φ/∂z  (φz) on the free surface, which need to be evaluated in Eq. (2.3) and (2,4), 
can be expressed by the normal derivative ∂φ/∂n (φn) and tangential derivative ∂φ/∂s (φs) as 
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     (2.27) 

 
The normal derivates φn on the free surface are solved from the linear system given in Eq. (2.20). 
The tangential derivatives φs can be obtained from yi, zi, φi similarly as in Greco (2001). From the 
coordinates of nodes yi, zi on the free surface, we can calculate the length of each linear element. 
The length of element i is denoted as si. The nodes on the two ends of the element i are numbered 
as node i and node i+1. The velocity potential on node i is denoted as φi. Then the tangential 
derivatives on nodes are calculated by using the following equations: 
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A fourth-order Runge-Kutta method is applied to numerically integrate the equations in Eqs. (2.3) 
and (2.4) in time. The derivation of the formulas for the fourth-order Runge-Kutta method is given 
in Bhat & Chakraverty (2004). Now the time derivative of the unknown vector X={{y},{z},{φ}} is 
expressed by a function dX/dt =  f ({y}, {z}, {φ}, {φn}) = f ( X, {φn}). The normal derivatives in 
{φn}are assumed unchanged in the time interval ∆t. Then we have 
 

( )1

1 2 3 42 2 / 6n nX X k k k k t+ = + + + + ∆      (2.29) 
 
where Xn+1 and Xn are unknown vectors at time step n+1 and n, ∆t is the time interval and the 
coefficient vectors k1, k2, k3 and k4 are given by 
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2.8 Verification by comparing with similarity solutions  
 
Zhao & Faltinsen (1993) presented the similarity solutions for the water entry of wedge sections at 
constant entry speeds for different deadrise angles. In Fig. 2.6, the pressure distributions on the 
body surface and the free surface profiles by the present numerical calculations are compared with 
their similarity solutions for deadrise angles β =4º, 7.5º, 10º, 20º, 30º and 45º, respectively. The 
gravity is neglected in the BEM calculations in order to compare with the similarity solutions 
without gravity effects. Good agreement can be seen. The results for relatively small deadrise 
angles are shown here. It is more difficult to obtain good numerical results for smaller deadrise 
angles than for larger deadrise angles. The reason is that a smaller deadrise angle causes a faster 
and thinner jet flow which is more difficult to control numerically. Therefore, the good agreement 
for smaller deadrise angle cases shows the robustness of the present numerical method. 
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Fig.  2.6. (See the caption in page 29). 
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Fig.  2.6. Comparisons between the numerical results (BEM) and the similarity solutions (SIM.) in Zhao & 
Faltinsen (1993) for different deadrise angles: β =4º, 7.5º, 10º, 20º, 30º and 45º. Left column: Free surface 
profiles; right column:  Pressure distributions. 
 

2.9 An improved method in the calculation of the acceleration 
 
For a free drop of a body into the water, the acceleration has to be instantaneously calculated. In 
most cases, the vertical acceleration can be calculated from Eq. (2.12) by 
 

/zV F M g= −        (2.30) 
 
However, in some cases when the total mass of the body M is much smaller than the added mass in 
the vertical motion, the numerical errors can be accumulated and lead to divergence. The reason is 
the following. Implicitly, Fz is a function of the acceleration dV/dt. For a water entry problem with 
a linear approximation of the free surface condition, i.e. φ=0, the linear added mass force –A33dV/dt 
expresses the acceleration dependent component in the hydrodynamic force where A33 is the high 
frequency added mass in heave for the body (see Faltinsen, 1990, pp. 299). This expression of the 
added mass force is borrowed here to approximate the acceleration-dependent part in the present Fz. 
If the added mass is much larger than the body mass M, then the error in dV/dt from the last time 
step will be amplified by A33/M when we use Eq. (2.30) to calculate the acceleration dV/dt. The 
error will be further passed to the pressure calculated in the next time step through the body 
boundary condition in Eq. (2.11). Therefore, the numerical errors are amplified and accumulated as 
time goes on, and finally lead to divergence.  
 
In order to avoid this problem, a numerical treatment is introduced. An estimated added mass force 
–A33 dV/dt is subtracted from both sides of Eq. (2.12). In doing this, the equation is not changed. 
The added mass can be approximated by a flat plate theory, or by other available methods. As long 
as the estimated added mass force represents a major part of the acceleration-dependent part in Fz, 
this method will work. Eq. (2.12) can be rewritten as 

 
( )33 33zM A V F V MgA+ = −+      (2.31) 
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Then the acceleration will be obtained by dividing the right hand side of this equation by the sum 
(M + A33). Because a large part of the added mass force has been subtracted from the Fz, the error 
in the acceleration will be less likely to be passed on to later time steps. So the accuracy of the 
results can be fairly improved. 
 
In the calculation of the free water entry of a circular cylinder in Chapter 4, this method is followed. 
The submergence of the cylinder can be very large. When the submergence of the cylinder is 
smaller than the cylinder radius, von Karman’s method is applied together with the flat plate 
approximation to give the 2D added mass 

2

33

1

2
A cρπ=       (2.32) 

where the half-wetted length c(t) is measured on the calm water surface. When the submergence is 
larger than the order of the cylinder radius, the non-viscous flow separation is likely to occur and it 
is not appropriate to continue using von Karman’s approach to estimate the added mass. However, 
the flat plate approximation can still be applied, but c(t) is determined in a different way. The half-
wetted length c(t) is calculated as the length from the centre of the flat plate to the horizontal 
position of the body-water surface intersection predicted by the BEM.  
 
This treatment is simple but useful. An example is given to show the effectiveness of this approach. 
A wedge of length 1.0m and beam 0.2m are dropped from a height h = 0.5m. The water flow is 
assumed totally two-dimensional. The drop height is measured from the lowest apex to the calm 
water level. The deadrise angle of the wedge is 30 degree. The total mass of the wedge is 10 kg. 
The initial stage before t = 0.0008s is simulated by Wagner’s method. After this moment, the BEM 
takes over the calculation. The vertical accelerations and vertical velocities calculated by the BEM 
are shown in Fig. 2.7. Different approaches to solve the acceleration are applied in the two 
calculations. In ‘Method 1’ the acceleration is calculated by using the original equation of motion. 
‘Method 2’ refers to the calculation by using the numerical treatment presented in this section. The 
former calculation by ‘Method 1’ diverges at about time instant t = 0.17s, while the latter 
calculation converges. It shows that the accuracy of the acceleration calculation is improved by 
using this numerical technique and the divergence can therefore be effectively avoided. 
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Fig.  2.7. Comparison of the results by using different methods to calculate the acceleration. 
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CHAPTER 3 
 
 
Non-viscous flow separation  
 
 
 
When a free-surface piercing body is moving with large motions, the water flow can separate from 
the body. This flow separation is not due to viscous effects and is different from the viscous flow 
separation of a boundary layer. It is called non-viscous flow separation. The condition for viscous 
flow separation is that the normal derivative of the tangential velocity at the body surface is zero. 
This condition is not satisfied in a non-viscous flow separation. The separation position can be 
either on a fixed point, such as the knuckle of a section or a transom stern, or moving on a curved 
surface. Moreover, the non-viscous flow separation is a well-known fact for the steady flow past a 
body with an attached cavity. In this chapter, a flow separation model which can be incorporated in 
the BEM will be introduced. 
 

3.1 Local solution of a separated flow   

 
Fig.  3.1. Non-viscous flow separation at a sharp corner and the coordinates. 

 
 
As shown in Fig. 3.1, the free surface separates from a sharp corner of a body section in two 
dimensions. An analytical solution for the local flow near the separation point can be found (see 
Zhao et al., 1996 and Faltinsen, 2005). A polar coordinate system (r,θ) fixed with the body is 
adopted. The origin is located at the separation point S (Fig. 3.1). The water is assumed 
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incompressible and inviscid with irrotational flow.  A velocity potential φ(r, θ, t) is used to describe 
the flow. It satisfies the Laplace equation in the polar coordinate system, 
 

2 2

2 2 2

1 1
0

r r r r

ϕ ϕ ϕ

θ

∂ ∂ ∂
+ + =

∂ ∂ ∂
     (3.1) 

 
In the body-fixed coordinates, the normal velocity of the fluid particle on the body boundary must 
be zero. Then the body boundary condition gives 
 

0
ϕ

θ

∂
=

∂
       (3.2) 

 
First, a general solution satisfying the governing equation in Eq. (3.1) and body boundary condition 
in Eq. (3.2) will be found. More restrictions, such as finite velocity at the separation point, will also 
be satisfied. Then for different problems, the description of the free surface condition is different. 
Therefore, different particular solutions can be obtained. 
 
Appendix A shows the derivation of the general solution of φ(r, θ, t) satisfying Eq. (3.1) and (3.2). 
The solution is 
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where C1, B0, D0, Bn, Dn are time-dependent coefficients and n is a real number. So the radial 
velocity is  
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At the separation point where r→0, the velocity must be finite, so the coefficients in front of r-1 and 
r -n-1 must be zero. Further, if 0 < n < 1, the coefficients in front of r n-1 must also be zero. Therefore, 
the general solution can be rewritten as 
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where the coefficients C1, B0, D0, Bn, Dn have been combined to given the new coefficients A0 and 
An (n≥1), which are also time-dependent. So the radial velocity and angular velocity are given by 
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Along the body surface, θ=0, hence 
 

( ) 1

1
1

0 n

r n
n

v A A nrθ −

>

= = +∑      (3.8) 

 
At the separation point r = 0, the tangential velocity Us along the body surface in s-direction (s-axis 
is shown in Fig. 3.1 with origin at the separation point) can be expressed as 
 

( ) 10, 0s rU v r Aθ= − = = = −      (3.9) 
 
If the water flow separates tangentially along the body surface, then the free surface approaches the 
straight line θ=π near the separation point. From Eq. (3.6), we have 
 

( )r sv Uθ π= →  as r→0        (3.10) 
 
which means that the tangential velocity on the free surface near the separation point tends to the 
tangential velocity at the separation point as the location approaches the separation position. 
 

3.2 Flow separation at knuckles 
 
Based on the general solution given in the section 3.1, a local analytical solution can be found for 
the flow separation at the knuckle of a 2D section impacting water surface. The free surface 
conditions will be satisfied. This local solution can be incorporated into the BEM to simulate the 
non-viscous flow separation at the knuckle point. An example will be given to demonstrate the 
effectiveness of the flow separation model. 
 
3.2.1 Local analytical solution near a  knuckle 
 
In the water entry of a two-dimensional section, the water flow will separate from the knuckle if 
there is a sharp corner at the knuckle point. The general solution given in the section 3.1 is further 
developed by satisfying the free surface conditions. Neglecting the gravity, the dynamic free 
surface condition can be written as 
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      (3.11) 

 
where V(t) is the water entry speed of the section relative to the calm water. From Eqs. (3.5) and 
(3.9), the term ∂φ/∂t can be expressed as 
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Inserting Eqs. (3.6), (3.7) and (3.12) into Eq. (3.11), we have 
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Eq. (3.13) can be expanded as 
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Near the separation point, the coordinate r is small, so we can rearrange the terms in Eq. (3.14) in 
ascending order of r n . The lowest order approximation of Eq. (3.14) is formed by zero order terms 
in O(r0), 
 

20 2( ) 1 1
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dA t
U V t
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This equation is automatically satisfied because it follows from the fact that the pressure at the 
separation point is atmospheric pressure. The second lowest order approximation is given from the 
terms in O(rn-1), i.e. 
 

( )[ ]1 cos 1 0n
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The lowest order corresponds to k=0, which gives n=3/2. If we neglect all the other higher order 
terms, then the velocity potential close to the separation point can be written as 
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Then the radial velocity near the separation point is  
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On the body surface at θ=0, the tangential velocity is 
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( ) 1/ 2
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2s r sv v U A t r= − = −      (3.20) 

 
On the free surface at θ= π and r→0, 
 

s r sv v U= =       (3.21) 
 
The angular velocity near the separation point on the free surface is given as 
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3 / 2

3

2
v A rθ =       (3.22) 

 
From the kinematic free surface condition, the fluid particle on the free surface will always stay on 
the free surface, hence,  
 

n

s s

v vdn

ds v v
θ= =       (3.23) 

 
where the n-axis is normal to the s-axis as shown in Fig. 3.1. From Eqs. (3.21), (3.22) and (3.23), 
one has 

1/ 23 / 23
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Adn
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=       (3.24) 

 
Integrating this equation in s, one can obtain the profile of the free surface as 
 

3 / 23 / 2( )
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n s s
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The coefficient A3/2(t) can not be determined by this local analysis. It follows by matching the local 
solution with the global analysis.  
 
The pressure on the body surface near the separation position can be written as  
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Inserting the velocity potential in Eq. (3.18) and the radial velocity in Eq. (3.20) into the pressure 
gives 
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where the terms with order higher than O(r) have been neglected. The term proportional to r1/2 in 
the pressure will result in the following term in the pressure gradient ∂p/∂r, 
 

 ( )3 / 2

3 1

4 sU A t
r
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Because of this term, the pressure gradient will go to infinity, as the position approaches the 
separation point, i.e. r→0. Due to the infinite pressure gradient, the acceleration of a fluid particle 
at the separation point will be very large, which can be much larger than the gravitational 
acceleration. This is consistent with the earlier assumption that the gravity should be neglected 
around the separation position. 
 
3.2.2 Numerical implementation 
 
In the numerical calculations, the relations in the local solution described in section 3.2.1 will be 
utilized. From Eqs. (3.20) and (3.21), in the very close vicinity of the separation point, the 
tangential velocity vs on the free surface can be approximated by the tangential velocity on the 
body surface. As a further approximation, the term proportional to r1/2 in Eq. (3.20) has been 
neglected. The geometry of the free surface and the normal velocity on the free surface should 
follow Eq. (3.25) and (3.22), respectively. However, the coefficients Us(t) and A3/2(t) are unknown 
in advance. However, very close to the separation point, the terms of order O(r1/2) and O(r3/2) are 
small values. If these terms in Eqs. ( 3.25) and (3.22) are neglected, the normal velocity vn and the 
normal displacement n(s) will be approximated as zeros. It means that, in the very close vicinity of 
S, the free surface is just tangential to the body surface and the normal velocity on the free surface 
equals the normal velocity of the rigid body. 
 
 

 
Fig.  3.2. Numerical simulation of the flow separation at a knuckle. 
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In the numerical simulations, an artificial body surface tangentially extended from the knuckle 
point S along the wedge surface is introduced (Fig. 3.2). The wetted artificial body surface is 
treated like a physical body surface when we solve the fluid field. Once it is detected that the water 
goes beyond the knuckle point S, the flow separation model will be applied.  
 
The following steps are performed to make the flow separate from the knuckle point. At first, the 
free surface is located at ABC as shown in Fig. 3.2. Then the artificial body surface SA is changed 
into a part of the free surface by keeping its geometry and normal velocity but changing the 
tangential velocity. The tangential velocity on SA is set equal to the tangential velocity at knuckle 
point S, which is calculated by using the velocity potential on the physical wedge surface adjacent 
to S. The free surface part SA is then updated to a new position A1A1

* by using the free surface 
conditions and the free surface part ABC is updated to a new position A1

*
 B1C1 . These two parts of 

free surface A1A1
* and A1

*
 B1C1 are connected to form the new free surface A1 B1C1. The small 

surface SA1 then becomes an artificial body surface. In the next time step, the similar procedure is 
followed by changing the artificial body surface SA1 to a part of free surface and then updating it. 
Then a separated free surface A2B2C2 can be obtained. By following those steps, the water flow 
will continuously separate from the wedge surface. 
 
Gravity has been neglected in the local analytical solution. Zhao et al. (1996) incorporated this 
local solution with a Boundary Element Method without considering gravity effects. However, in 
the present BEM, the gravity is, in general, included. It may be questioned whether this local 
solution can still be combined with the present BEM. The answer to this question is positive. In the 
currently studied problems, although the gravity matters in some areas away from the knuckle, it is 
less important in the very close vicinity of the separation point. The validation of the combination 
of the local analytical solution and the present BEM can be seen from the examples as follows.  
 
The free surface profiles during the free water entry of a 30 degree V-shaped section in the 
experiment by Greenhow & Lin (1983) are compared with present numerical results in Fig. 3.3 (a)-
(d). Free surface profiles obtained by the numerical simulations are plotted in the experimental 
photos taken at four different time instants. The beam of the section is 0.218m. The water entry 
speed has been estimated from the photos. A decelerated motion can be observed. The initial time 
instant is t = 0.200s when the wedge apex just touches the water surface. At t = 0.205s, a very thin 
jet is formed along the body surface; at t = 0.210s the spray root has just passed the knuckle; at t = 
0.215s, the top of the jet turns over, which implies the existence of the gravity effect. The 
discrepancies in the figures can be explained by the following reasons. Firstly, the information 
about the falling speed is not given in the experiment report. So the speed can only be roughly 
estimated from the photos. Errors may be introduced during this estimation. Further, as stated in the 
experiment report, the timing system in photographing can have an error of ±0.005s, which may 
also affect the agreement. However, generally speaking the numerical simulations show good 
predictions of the free surface profile.  
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Fig. 3.3. Free surface elevations around a wedge in a free water entry. The results by the numerical 
simulations are compared with the photos taken in the drop tests by Greenhow & Lin (1983). 
 
 

3.3 Steady flow separation from transom stern 
 
A similar local solution can be found for the flow separation from the transom stern of a planing 
hull (Chapter 9 in Faltinsen, 2005) in steady motions. As shown in Fig. 3.4, the flow separates from 
the stern in a centerline plane of a planing hull. In reality, the flow around the transom stern should 
be three-dimensional. For simplicity, one can assume a two-dimensional flow in the centerline 
plane. A local 2D coordinate system ξ-ζ fixed on the hull is used. By following the similar 
procedure as in section 3.2, one can find the following relation from the lowest order 
approximation 
 

22s TU gD U= +      (3.30) 
 
where Us is the fluid velocity at the flow separation position, DT is the draft at the transom stern and 
U is the forward speed of the planing hull. 

(a) 

(c) (d) 

(b) 
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Fig.  3.4. Flow separation at the transom stern of a planing vessel in steady motions. 

 
If one includes the second lowest order terms, the velocity potential near the separation point can 
be approximated by 
 

3 / 2

0 3/ 2 cos(3 / 2)sA U A rϕ ξ θ= ++    (3.31) 
 
This solution is in the same form as the solution in Eq. (3.18). Therefore, similarly as in the last 
section, the free surface profile is given by  
 

3 / 23/ 2( )
s

A

U
ζ ξ ξ=      (3.32) 

 
The pressure on the hull surface near the separation position, i.e. the transom stern, is written as 
 

1/ 2

3 / 20

3

2a s sp p U u U A r
θ

ρ ρ
=

− = − =    (3.33) 

 
An application of this local solution will be given in Chapter 7 to demonstrate the 3D effects near 
the transom stern. 
 

3.4 Flow separation from a curved body surface 
 
The non-viscous flow separation can also happen on a curved body surface, such as the surface of a 
horizontal circular cylinder, during the water entry of the cylinder. At first, a water jet will rise 
along the body surface as shown by the dotted line BC in Fig. 3.5. The fluid particles in the jet tip 
are moving in curved trails. The centripetal acceleration is provided by the pressure gradient in the 
normal direction pointing into the body. In order to acquire this pressure gradient, the pressure on 
the wetted surface near the jet tip must be lower than the atmosphere pressure on the jet surface. 
However, if the low-pressure wetted area is too large, the air can easily enter the area. Then the 
pressure gradient becomes insufficient to provide the necessary centripetal acceleration. As a result, 
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the jet tip will tangentially run away from the body surface. That is how the non-viscous separation 
happens on the curved surface. 
 
Unlike the previously discussed non-viscous flow separation from a sharp corner, the flow 
separation from the curved surface will not always occur at a fixed point. As the body enters the 
water, the separation position will move along the body surface. Nevertheless, at a given time 
instant, we can still obtain a similar local analytical solution around the flow separation position. If 
we assume that the free surface separates tangentially from the body surface, and the body surface 
in the close vicinity of the separation point can be viewed as a flat surface, then we can apply the 
local solution derived in section 3.2 to describe the local flow around the moving separation 
position. It will be shown how to incorporate this local solution in the global analysis.  
 

 
Fig.  3.5. Numerical simulation of the non-viscous flow separation on a curved surface. 

 
 
The non-viscous flow separation can be simulated numerically as follows. When a large area with 
pressure lower than pa is detected, say, the area between point A and B in Fig. 3.5, the following 
will be done to make the water separate from the body surface. First the wetted body surface AB is 
changed to a part of free surface, which means to keep its geometry and the normal velocity on it, 
but to approximate the tangential velocity by the tangential velocity at point A on the body surface. 
Then the free surface part AB is updated by using the free surface conditions to a new position 
A1B1. The free surface part BC is updated to the free surface B1C1. Therefore a new free surface 
A1B1C1 is obtained by connecting A1B1 with B1C1. Point A1 is projected to the body surface and 
becomes the new body-water surface intersection. This point is then the flow separation position. In 
the next time step, the free surface is just updated as usual. The curve A2B2C2 shows the free 
surface at a certain time instant after the flow separation. The separation position just moves along 
the body surface until a new large area of low pressure is developed. When this happens, the 
procedure above will be repeated.  
 
From the description above, it can be expected that in the numerical simulation the separation 
position will be moving back and forth on the body surface. This is because the position moves 
upwards during the water entry in a general trend, but every time after the flow separation 
procedure, the separation position will move backwards. The threshold of the length of the low 
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pressure area, where the pressure is lower than the atmospheric pressure, is chosen in advance. It 
will be shown later that the oscillation amplitude of the separation position can be reduced by using 
a smaller threshold value. However, the body motions are not sensitive to the threshold value.  
 
An example taken from the drop tests by Greenhow & Lin (1983) is now given. The water entry of 
a half-buoyant circular cylinder is numerically simulated to show the validity and convergence of 
the numerical method with the flow separation model. The diameter of the horizontal circular 
cylinder is D = 0.11m. The mass of the half-buoyant cylinder of unit length is ρπD2/8. The cylinder 
is dropped from a height h = 0.5m above the water. For simplicity, the simulation of initial impact 
stage is omitted. The numerical calculation by the BEM starts from the time instant when the 
cylinder has entered slightly into the water. This time instant is set as t=0. The initial submergence 
is arbitrarily chosen as a small value, say, 0.005m which is only 1/22 of the cylinder diameter. To 
account for the speed reduction due to the initial impact, the inital water entry speed in the 
calculation is roughly taken as 2.0ms-1, which is not exact but in an acceptable range for the 
purpose of testing the flow separation model. Detailed discussion of the influence of the initial 
water impact phase and more exact results will be given in Chapter 4. It should be noted that the 
definition of the time t=0 in the results given in Chapter 4 is different. In Chapter 4, t =0  
corresponds to the time when the cylinder is released at a height above the water.  
 
Fig. 3.6 shows the comparison of the numerical results by using different threshold values in the 
flow separation model. The percentage ε is defined as the ratio of threshold length of the low 
pressure area to the arc length of the half wetted area before the flow separation. The time histories 
of the horizontal position Ys of the body-water surface intersection normalized by the radius of the 
cylinder R = 0.055m are compared in Fig. 3.6 (a). When the threshold is smaller, the starting time 
for the flow separation, when Ys suddenly decreases, is earlier, but the amplitudes of the 
oscillations are smaller. The time histories of the vertical acceleration of the cylinder are compared 
in Fig. 3.6 (b). The acceleration also oscillates due to the oscillatory change of the wetted surface. 
However, the oscillations are very small compared with the overall acceleration. So the body 
motions are not strongly affected by the choice of the threshold length of the low pressure area.     
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Fig.  3.6. Influence of the threshold value in the flow separation simulation. The parameter ε is the ratio of the 
threshold length of the low pressure area to the length of the wetted surface. (a) Horizontal coordinates of the 
body-water surface intersection; (b) Vertical accelerations of the cylinder.  
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Fig.  3.7. Free surface profiles in the right- half plane during the water entry of a half-buoyant circular cylinder. 
 
 
Fig. 3.7 shows the numerically calculated free surface profiles around the circular cylinder at 
different time instants during the water entry of the half-buoyant cylinder. In the calculations, ε = 
10%, ∆t = 0.0001s. Due to the symmetry, only the right half of the cylinder (solid lines) and the 
flow on the right side (dashed lines) are shown. The cylinder moves downwards continuously. The 
seven half-circles and the free surface profiles tangentially attached to them shown from the top to 
the bottom correspond respectively to the seven time instants at t = 0.01s, 0.02s, 0.03s, 0.04s, 0.05s, 
0.085s and 0.120s. In the figure, the water flow separated from the body surface gradually develops 
into a water jet and rises up, as the cylinder enters the water. The separation position does not 
change much (See also Fig. 3.6 (a)). However, in a general trend, it moves upwards. At t = 0.120s, 
the position moves to the upper surface of the cylinder. According the Zhu (2006)’s investigation 
of the water entry of a circular cylinder with constant speed, the threshold Froude number (FnD = 
|V|/(gD)1/2) for the appearance of a closed air cushion on the cylinder top is between 0.9247 and 1.1. 
For the present case, the Froude number estimated by using the initial speed 2.0ms-1 is FnD=1.9, 
which is much larger than the threshold value. So it means that in the later stage of the water entry 
the water surfaces on the two sides of the cylinder will approach each other and close an air 
cushion above the cylinder. However, the deceleration of the cylinder during the water entry and 
the finite depth (0.3m) in the drop tests can affect the phenomenon. 
 
The temporal and spatial convergence of the numerical method is shown in Table 3.1 and Fig. 3.8. 
The water entry of the horizontal half-buoyant cylinder is calculated by using different time steps 
and different number of elements on the body surface and the free surface. All the calculations 
converge up to a certain time. The time history of the acceleration for each calculation is compared 
with the first calculation. This calculation (No.1) is done by using the smallest time step and finest 
discretizations and thus expected to produce the best result. So it is used as a reference calculation. 
The plots of these calculations are given in Fig. 3.8. The errors of other calculations relative to the 
reference calculation are estimated by using the following formula.  
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where Xai means the results by calculation No. 1, Xbi means the results in any other calculations 
and Xamax is the maximum value by the first calculation. N=2001 is the total number of compared 
pairs of values from t = 0 to t = 0.04s. After t = 0.04s, all the calculations almost converge to a 
single line. For ∆t other than 0.00002s, the values are linearly interpolated so that in each 
calculation there are N=2001 values. Seen from Table 3.1, the relative errors tend to smaller values 
when the time step decreases and the number of elements increases. It shows that the calculations 
converge relative to the time step and the grid size. 
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Fig.  3.8. Time histories of the acceleration by different calculations. 

 
 
Table 3.1. Temporal and spatial convergence of the numerical method with a flow separation model. 
 

No. ∆t (s) NS NF Er relative to No. 1 
1 0.00002 800 350 --- 
2 0.00010 500 250 0.0063 
3 0.00015 500 250 0.0074 
4 0.00020 500 250 0.0093 
5 0.00025 200 150 0.0206 
6 0.00030 200 150 0.0253 

 
NS : Number of elements, which are equally distributed on the half circular body surface. 
NF : Number of elements on the free surface. (NF-50) elements are equally distributed on the 25% length of 
the free surface in the near-body region and 50 elements geometrically increasing are distributed on the rest 
75% free surface. 
∆t: Time step in second. 
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CHAPTER 4 
 
 
Free water entry of a two dimensional section 
 
 
 
The water entry of a two dimensional section can be simulated by the BEM. In principle, the shape 
of the cross-section can be arbitrary. The free water entry of three different cross-sections, i.e. a 
wedge section, a bow-flare ship section and a circular cylinder, are studied in this chapter. In the 
initial stage of the water entry, a flat plate theory, i.e. von Karman’s theory or Wagner’s theory, is 
used to avoid the numerical difficulty at the initial time. Finally, the BEM is generalized to solve an 
asymmetric water entry problem. The water entry of an inclined bow-flare ship section is studied. 
 

4.1 Approximate methods 
 
As mentioned in Chapter 2, Wagner’s theory is applied to simulate the initial stage of the free water 
entry of a wedge and provide initial conditions for the BEM calculations. Von Karman’s theory can 
also be applied as well. Faltinsen (1990, 2005) described these two flat plate theories used in water 
entry problems. When the deadrise angle of a wedge is small, Wagner’s theory gives better 
prediction than von Karman’s theory (see Faltinsen 2005, Chapter 8). However, for a very thin 
body von Karman’ theory shows more reliable results.  
 
The equation of the motion follows from Newton’s second law. Neglecting the buoyancy force in 
the initial stage, the vertical force on the body due to the water pressure can be written as − 
d(A33V)/dt (Faltinsen 1990, pp. 299). The rigid-body motion equation is then given by 
 

[ ]33

dV d
m A V mg

dt dt
= − −      (4.1) 

 
where m is the mass per unit length of the two-dimensional section, V(t) is the water entry velocity 
with positive direction pointing upwards, A33 is the high-frequency added mass in heave for the 
body. The buoyancy force has been neglected, because in the initial time of the free water impact, 
the buoyancy force is far less than the hydrodynamic force. According to a flat plate theory, the 
added mass can be written as A33 = ρπ c2/2, where c(t) is half the wetted length of an equivalent flat 
plate. Wagner’s theory and von Karman’s theory will give different predictions of this length. In 
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Wagner’s theory the uprise of the free surface is taken into account while in von Karman’s theory 
the length is measured from the undisturbed water surface. Integrating Eq. (4.1) once with respect 
to time, one has 

[ ]33( ) (0)m A V m V gt+ = −      (4.2) 
 
where the initial time t = 0 means the time instant when the body touches the calm water surface.  
 
4.1.1 Circular cylinder 
 
For a circular cylinder analytical solutions can be found by using the flat plate theories. From the 
Wagner’s theory described in Faltinsen (1990), the half wetted length c(t) can be obtained from the 
differential equation  

( ) ( )
2

c t dc
V t

R dt
− =       (4.3) 

 
where R is the cylinder radius. Inserting Eq. (4.3) and A33 = ρπ c2/2 into Eq. (4.2), and then 
integrating the resulting equation in time once again, it follows that   
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Solving this equation, one can express c2 as 
 

( )2 22
1 1 4 0 0.5

m R
c V t gt

m

πρ

ρπ
= − + + − +
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  (4.5) 

 
Inserting Eq. (4.5) into Eq. (4.3), one has 
 

( ) ( )
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   (4.6) 

 
In von Karman’s theory, the half wetted length is expressed as c2 =R2-(R - ζ)2 where ζ is the 
submergence of the lowest point of the circular cylinder into the water relative to the calm water 
surface. From this relation, one can obtain a differential equation 
 

( )dc d
c R

dt dt

ζ
ζ= −      (4.7) 

 
From this relation, it is not straightforward to find the analytical solution similar as in the Wagner’s 
method. However, numerical solutions can be found. Substituting Eq. (4.7) and A33 = ρπ c2/2 into 
Eq. (4.1), one has 
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   (4.8) 

 
This differential equation can be combined with V = −dζ/dt to form an equation system and then 
numerically solved by a fourth-order Runge-Kutta method. In the initial stage of a water entry 
when the submergence is very small, i.e. ζ <<R, the half wetted length can be approximated as c = 
(2Rζ)1/2. Using this relation, an approximate analytical solution can be derived. First, it can be 
proved that the following differential equation holds 
 

( ) ( )c t dc
V t

R dt
− =      (4.9) 

 
This equation is quite similar to Eq. (4.3) except for a factor 2 in the denominator. Then a similar 
procedure is followed and finally the water entry speed is written as 
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   (4.10) 

4.1.2 Arbitrary section  
 
Both Wagner’s theory and von Karman’s theory can be used to solve the water entry problem of an 
arbitrary section. However, it is simpler to use von Karman’s method because it is easier to 
determine the half-wetted length c(t). Therefore, von Karman’s method is adopted to solve the 
initial stage of the water entry of a ship bow section in section 4.3. Further, the lower part of the 
bow section is thin. For the water entry of a thin body, von Karman’s method is expected to give 
good predictions.  
 
The submergence of the apex of the section into mean water surface is ζ(t). In the von Karman’s 
theory the half-wetted length can be expressed as a function of the submergence, i.e c(t) = f (ζ(t)), 
where the function z = f(y) gives the section profile in the right half plane when the lowest point on 
the section just touches the calm water surface.  Hence, the added mass is given by 
 

( )2
33

1
2

A fρπ ζ=      (4.11) 

 
From equation (4.2) and (4.11) and the relation dζ(t)/dt = -V(t), one can obtain 
 

( )2

(0)
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d V gt
dt f m
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ρπ ζ

− +
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+
    (4.12) 

 
This differential equation for ζ(t) can be numerically solved by the fourth order Runge-kutta 
method. Then the velocity is given by Eq. (4.12), and the acceleration is calculated from equation 
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The derivative f ' (ζ) = df /dζ in the equation has to be evaluated numerically if one only knows the 
section shape at discrete points rather than an analytical expression describing the surface.  
 
In order to test this method for an arbitrary section, the following comparisons are made. The water 
entry of a circular section is calculated by both the present method for an arbitrary section and the 
specific numerical method for a circular cylinder in section 4.1.1. Discrete points on a circle are 
provided as the input to the first calculations. The radius is R = 1.0m. The initial water entry 
velocity is V(0) = −1.0ms-1. The mass per unit length of the section is m = 1000kg/m. Then the time 
histories of the submergence and the water entry velocity of the circular section by these two 
methods are compared in Fig. 4.1. These two calculations show good consistency. So the numerical 
method for an arbitrary section by the von Karman’s theory is verified.  
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Fig.  4.1. Comparisons between two numerical methods based on von Karman’s theory for the water entry of a 
circular section. (a) Submergence ζ(t); (b) Water entry velocity V(t). 
 
 

4.2 Water entry of a wedge section  
 
Aarsnes (1996) performed free drop tests of a V-shaped section and a ship-bow section. The cases 
with roll angle θ = 0, i.e. symmetric water entries for the V-shaped section (or wedge section) are 
numerically studied in this section. The configuration of the section model used by Aarsnes (1996) 
is shown in Fig. 4.2. The deadrise angle of the wedge section is 30 degrees. The horizontal and 
vertical forces were measured on a measuring section with length 0.1m during the drop tests. Two 
dummy sections with length 0.45m were fixed on both ends of the measuring section. So the total 
length of the model is 1.0m. The vertical acceleration of the falling body was also measured. The 
total weight of the falling rig is 288kg. The pressures at five points from P1 to P5 (Fig. 4.2) on the 
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bottom of the section were measured. The drop tests of the ship-bow section will be numerically 
studied in later sections.  
 
Four cases with roll angle θ = 0 and drop heights h = 0.13m, 0.195m, 0.313m and 0.5m are studied 
in this section. The drop height is defined to be the distance from the apex of the wedge to the calm 
water surface when the section is at rest in the air and going to be released. The experimental 
results and the results numerically calculated by the BEM for these four cases are shown in Fig. 4.3 
– Fig. 4.6, respectively. The time histories of the vertical velocity and acceleration, the vertical 
force and the pressures are shown. The measured pressures in the model tests are not shown in the 
figures, because the quality of the measured data is not satisfactory enough. The data often show 
inconsistencies between different cases. Sometimes they even conflict with the reality.  
 
In the numerical calculations, the initial stage is simulated by Wagner’s theory in the way 
mentioned in Chapter 2. After a short time duration, about 0.001 ~ 0.003s, the BEM takes over the 
calculations. The initial water entry speed in the calculation for each case is given by the estimated 
drop speed in Aarsnes (1996). They are respectively 1.55ms-1, 1.91ms-1, 2.42ms-1 and 3.05ms-1 for 
h = 0.13m, 0.195m, 0.313m and 0.5m. These drop speeds are slightly smaller than what can be 
calculated from (2gh)1/2 with g = 9.81ms-2. Aarisnes (1996) may have accounted for the speed loss 
due to some reasons during the free fall of the rig in the air. One of the possible reasons is the 
frictional force between the falling rig and the trail. Air resistance is not likely to affect the speed 
apparently, as indicated in the study by Zhu (2006).  
 

 

 
 

Fig.  4.2. V-shaped section in the drop tests by Aarsnes (1996). 
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Fig. 4.3. Results for the water entry of the wedge for a drop height h = 0.13m. Exp.: Experiments by Aarsnes 
(1996); BEM: Calculations by the BEM. P1-P5: Five positions on the wedge surface (1 bar = 105 Nm-2). 
 
The measured results for accelerations and forces have been filtered using a cut-off frequency of 
700 Hz. The oscillations of the experimental results after low pass filtering are due to the vibration 
of the drop rig which supports the model during the tests. Because the vibrations are present even 
before the section touches the calm water surface, they are probably excited when the rig is 
released. The vertical force results were further corrected after the filtering by subtracting the 
inertial force – Maz from the filtered force results, where M=10.3kg is the mass of the measuring 
section and az is the vertical acceleration. The corrected force is then the vertical force due to the 
water pressure, which includes the added mass force. Because the added mass force –A33az depends 
on the vertical acceleration, the oscillations in the acceleration cause the oscillations in the 
corrected force results. It seems as if some high-frequency oscillations have been superimposed on 
the mean force results. The mean lines of the experimental results for the acceleration and the 
vertical force show reasonable agreement with the numerical results. The vertical velocity is less 
affected by the vibrations and better agreement can be seen. 
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Fig.  4.4. Results for the water entry of the wedge for a drop height h = 0.195m. Exp.: Experiments by Aarsnes 
(1996); BEM: Calculations by the BEM. P1-P5: Five positions on the wedge surface (1 bar = 105 Nm-2). 
 
The maximum acceleration and vertical force occur near the instant when the spray root reaches the 
knuckle. Afterwards, the water flow separates from the knuckles and the acceleration and vertical 
force start to decrease. The maximum values are larger for cases with larger drop heights. The 
calculated maximum vertical forces are always greater than the experimental results. One of the 
reasons is the three-dimensional effects as analyzed in Zhao et al. (1996) in their study of the free 
drop tests for the same wedge model. The 3D effects were estimated by applying Meyerhoff’s 
(1970) results to be able to cause a 20% reduction in the vertical force at the stage when the spray 
roots reach the knuckles. So it means the maximum forces shown in Figs. 4.3-4.6 can be reduced 
by 20% due to the 3D effects. With such corrections, the numerical predictions can be clearly 
improved, except for the case in Fig. 4.5. The maximum force in Fig. 4.5 after such a correction 
will be obviously smaller than the experimental result. This is because the oscillations in the force 
results also affect the predicted maximum force. Another possible reason for the overestimate of 
the maximum forces is the frictional force along the guide trail. However, just from the information 
given in the experiment report, it is difficult to judge how large the influence from the frictional 
force could be.  
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Fig. 4.5. Results for the water entry of the wedge for a drop height h = 0.313m. Exp.: Experiments by Aarsnes 
(1996); BEM: Calculations by the BEM. P1-P5: Five positions on the wedge surface (1 bar = 105 Nm-2). 
 
 
In all the four cases, the calculated maximum pressures at the five positions are successively 
captured from the lowest P1 to the highest P5. The time when the maximum pressure at a certain 
position occurs should correspond to the time when the spray root reaches that position. This is due 
to the fact that the maximum pressure exists near the spray root in the spatial pressure distribution 
along the wedge surface, for a deadrise angle of 30º. For a larger drop height, the maximum 
pressure at a position is larger and occurs earlier. It means that the spray root moves faster when 
the water entry speed is larger.  
 
In a drop test, the maximum pressure values for different positions from P1 to P5 are similar.  The 
pressure depends on both the velocity and acceleration of the body. In a flat plate theory (Faltinsen 
2005), the pressure on the body can be expressed as 
 

2 2

2 2

c dc dV
p V c x

t dt dtc x

ϕ
ρ ρ ρ
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= − = − − −
∂ −
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Fig. 4.6. Results for the water entry of the wedge for a drop height h = 0.5m. Exp.: Experiments by Aarsnes 
(1996); BEM: Calculations by the BEM. P1-P5: Five positions on the wedge surface (1 bar = 105 Nm-2). 
 
 
The first term associated with the impact velocity is the slamming pressure. The second term is 
related with the acceleration and is called as added-mass pressure. In the four cases, the 
accelerations are relatively small. So the slamming pressure dominates and the velocities do not 
change much during the water entry. As a result, the maximum pressures at four different positions 
have comparable values. For the water entry of a wedge with constant speed and deadrise angle β, 
the spatial maximum pressure coefficient expressed by Cpmax = pmax/(0.5ρV2) is a constant. The 
present deadrise angle is β=30º. For this angle, the similarity solution in Zhao & Faltinsen (1993) 
gives Cpmax = 6.927 for a constant water entry speed. A rough calculation of Cpmax based on the 
numerical pressure results can be done. For the four cases shown in Fig. 4.4 – Fig. 4.9, the 
maximum pressures are pmax ≈ 0.10, 0.14, 0.22 and 0.32 bar, and the averaged water entry speeds 
are |V| ≈ 1.7, 2.0, 2.45 and 3.0 ms-1, so we can obtain Cpmax = 6.9, 7.0, 7.3 and 7.1, respectively. 
These results are very close to the similarity solution result, which verifies the order of magnitude 
of the calculated pressures. 
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4.3 Water entry of a ship bow section  
 
The shape of the ship bow section in the drop tests by Aarsnes (1996) is shown in Fig. 4.7. The left 
figure is reproduced from Aarsnes (1996) and the right figure shows the profile of the outer surface 
of one half section in an Earth-fixed y-z coordinate system. The coordinates on the profile are read 
from the left figure by assuming that the section locates just above the calm water surface. 
Pressures are measured at the four points P1-P4 on one side of the section shown in Fig. 4.7. 
Similar as for the wedge model, the total length of the ship bow section is 1.0m. However, the 
forces were measured on a measuring section of 0.1m, which is placed in the middle of two dummy 
sections of length 0.45m. The total weight of the falling rig is 261kg. Four cases with roll angle 
θ=0 and different drop heights are studied in this section. The initial water entry speed are given as 
0.58ms-1, 0.61ms-1, 1.48ms-1 and 2.43ms-1 for h=0.018m, 0.020m, 0.118m and 0.318m, respectively. 
 
The numerical solution by von Karman’s theory described in section 4.1.2 is used to simulate the 
initial stage of the water entry of this bow-flare section. The initial time span in which the 
approximate method is used is denoted as t1. In the cases calculated in this section, t1 is chosen in 
the range of 0.0008s~0.003s. Then the BEM starts the calculations from t = t1. 
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Fig. 4.7. Ship bow section in the drop tests by Aarsnes (1996). 
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Fig. 4.8. Results for the water entry of the ship bow section for a drop height h = 0.018m. Exp.: Experiments 
by Aarsnes (1996); BEM: Calculations by the BEM. P1-P4: Four positions on the section surface (1 bar = 105 

Nm-2). 
 
In the numerical simulations, the section profile is formed by connecting the discrete points read 
from the left picture in Fig. 4.7. Due to the errors in the reading, the normal vectors on the section 
surface calculated from the discrete coordinates show irregular oscillations along the section profile, 
which cause spatial oscillations in the pressure distributions. This purely artificial disturbance can 
be minimized by using the regriding technique based on the cubic-spline approximations described 
in chapter 2. A new set of coordinates equally spaced on a continuous section profile can be 
obtained and thus the calculated pressure distributions are much smoother. The coordinates of P2, 
P3 and P4 on the section are calculated by using the distances marked in Fig. 4.7 between the 
pressure-cell positions to the knuckle point. The value is interpreted by the author to be the length 
of the curve between every two points. The flow separation model introduced in section 3.2 is 
applied to simulate the non-viscous flow separation from the knuckles during the water entry.  
 
The calculated results are compared with experimental results in Fig. 4.8 to Fig. 4.11. The 
measured accelerations and forces were filtered using a cut-off frequency of 300 Hz and the 
vertical force was further corrected by subtracting the inertial force – Maz where the mass of the 
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measuring section is M=6.9kg. The results for accelerations and vertical forces after filtering still 
show obvious oscillations whose governing frequency is 100Hz. Similarly as in the drop tests of 
the V-shaped section discussed in section 4.2, those oscillations are caused by the oscillations of 
the drop rig, and possibly excited during the release of the drop rig (see Aarsnes, 1996). The large 
amplitude oscillations in the accelerations induce oscillations in the added mass force, which can 
be implied in the oscillations of the vertical force results. Reasonable agreement can be seen 
between the calculations and the experiments. In some cases, we can see phase differences between 
the experiments and calculations. Because the falling rig continuously oscillates during the free fall, 
it was hard to detect the time instant when the section touches the calm water surface in the 
experiments. The error in the estimation of the initial time instant in the experiments can be one of 
the reasons for the phase differences. The three-dimensional effects and the mechanic friction force 
also influence the agreement between the experimental and numerical results. Zhao et al.’s (1996) 
analysis for this ship bow section shows that the 3D effects causes 8% reduction of the maximum 
force. It implies that the 3D effects for this bow-flare section case are not so important as for the 
wedge cases, in which the 3D effects can cause 20% reductions (see section 4.2).  
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Fig.  4.9. Results for the water entry of the ship bow section for a drop height h = 0.020m. Exp.: Experiments 
by Aarsnes (1996); BEM: Calculations by the BEM. P1-P4: Four positions on the section surface (1 bar = 105 

Nm-2). 
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Fig.  4.10. Results for the water entry of the ship bow section for a drop height h = 0.118m. Exp.: Experiments 
by Aarsnes (1996); BEM: Calculations by the BEM. P1-P4: Four positions on the section surface (1 bar = 105 

Nm-2). 
 
 
Measured pressures in the drop tests are shown in Figs. 4.8 – 4.11. The calculated pressures yield 
good agreement with the experimental results. The pressure at the bottom of the section shows a 
sharp peak in the initial impact phase. Afterwards, the maximum pressures at P1-P4 occur almost at 
the same time at a later stage when the water flow hits the flare part of the section. This is 
obviously different from what appears in the wedge entries, where the maximum pressures for 
different positions successively occur in time. Further the pressure histories imply that when the 
water impacts the flare region the high pressure area covers almost the whole section surface. 
Similar phenomenon was presented by Arai and Matsunaga (1989) in their study of the water entry 
of a bow-flare section. 
 
For the last case with h = 0.318m, the present numerical results by the BEM are also compared 
with the numerical results in Zhu (2006) by a CIP method. Good agreement is shown between the 
two numerical calculations.   
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Fig.  4.11. Results for the water entry of the ship bow section for a drop height h = 0.318m. Exp.: Experiments 
by Aarsnes (1996); BEM: Calculations by the BEM; CIP: Calculations in Zhu (2006) by a CIP method. P1-P4: 
Four positions on the section surface (1 bar = 105 Nm-2). 
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4.4 Water entry of a circular cylinder  
 
The BEM is now applied to study the water entry of a circular cylinder except in the initial phase. 
The initial stage of the water entry is simulated by Wagner’s method or von Karman’s method as 
presented in section 4.1.1. The numerical results are compared with the experimental results by 
Greenhow and Lin (1983). Greenhow and Lin (1983) did free drop tests of horizontal circular 
cylinders into initially calm water. A half buoyant cylinder model and a neutrally buoyant cylinder 
model are used in the experiments. ‘Half buoyant’ means that the cylinder’s weight equals one half 
of the buoyancy force on a totally submerged cylinder, while the ‘neutrally buoyant’ means the 
weight equals the buoyancy force. The diameters of both cylinders are 0.11m. Both cylinders are 
dropped from a height of 0.5m, which is measured from the centre of the cylinder at rest to the 
calm water surface. So the distance that the cylinder falls in the air should be h = (0.5-0.011/2)m = 
0.445m. The initial water entry speed is then calculated as V0 = (2gh)1/2 = 2.955ms-1. The timing in 
the drop tests starts from the moment when the cylinders were released, so the time instant when 
the cylinder touches the water surface is t0 = V0/g = 0.301s. Wagner’s method is used in the initial 
time interval for 0.0015s right after the cylinder touches the water. Afterwards, the BEM takes over 
the calculations. 
 
The calculated results for the penetration depth into the water are compared with the experimental 
results by Greenhow and Lin (1983) in Fig. 4.12. Reasonable agreement is obtained, except for the 
experimental value with a question mark. Greenhow and Lin put a question mark upon this value, 
because the data obviously deviate from the other data. The free surface profiles during the water 
entries of the half buoyant cylinder and the neutrally buoyant cylinder are shown in Fig. 4.13 and 
Fig. 4.14, respectively. The solid lines represent the results by the BEM. The photos show the 
experimental pictures. The numerically predicted free surfaces are in good agreement with the free 
surface elevations in the photos. In the experiments, instability seems to develop on the free surface 
adjacent to the open cavity above the cylinder in the drop tests for the neutrally buoyant case. 
However, this fact is not present in the numerical results. The phenomenon can be seen in the 
photos at t = 0.390s, 0.410s and 0.500s. There is a spatially oscillating behavior with small 
amplitude on the free surface which is not shown by the BEM results. 
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Fig.  4.12. Depth of penetration during the water entry of a rigid circular cylinder. BEM: the present 
calculations; EXP: experimental results by Greenhow and Lin (1983). 
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   t = 0.305s     t = 0.320s  
 

  
   t = 0.330s               t = 0.385s 
 
Fig.  4.13. Free surface profiles during the water entry of a half buoyant circular cylinder. Photos are taken by 
Greenhow & Lin (1983). Solid lines show the numerical results by the present BEM. 
 
Viscous effects have a non-negligible effect on the hydrodynamic loads if viscous flow separation 
occurs in the Reynolds number range of interest for the considered problem. According to the CIP 
results by Zhu (2006), viscous flow separation does not occur. If viscous flow separation does not 
happen, the level of viscous loads can be found by considering the frictional forces. The present 
method can in principle be combined with a separate boundary layer calculation to estimate the 
viscous loads in a transient boundary layer. This would require that the time-dependent boundary 
layer equations are solved and then the resulting shear stresses and their effects on the pressures are 
taken into account. For simplicity, only a rough estimation of the frictional force is shown here to 
check their order of magnitude. It is assumed that a circular cylinder be moving steadily in an 
infinite water domain at the same Reynolds number as in the present problem. The diameter of the 
cylinder is D=0.11m. The speed of the inflow U is assumed to be 3.0ms-1. The kinematic viscosity 
of water is set to be ν =1.0×10-6m2s-1. So the Reynolds number RnD=UDν-1 is about 3×105. Then 
from the experimental results by Achenbach (1968, 1971), the friction coefficient Cf = f/(0.5ρU2D) 
is about 0.017, which gives the frictional force f = 8.4Nm-1. However, the studied cylinder is not 
fully wetted, so the frictional force is even smaller. It implies that the frictional force is clearly 
smaller than the water impact force which is in the order of 100 N/m and can be much higher in the 
initial water impact.  
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t = 0.315s      t = 0.390s 
 

  
t = 0.410s      t = 0.500s 

 
Fig.  4.14. Free surface profiles during the water entry of a neutrally buoyant circular cylinder. Photos are 
taken by Greenhow & Lin (1983). Solid lines show the numerical results by the present BEM. 
 
 
For the neutrally buoyant case, the cylinder bounces on the bottom of the tank at a depth of 0.3m. A 
rigid bottom is modeled in the BEM calculations. The effect of the wall will be obviously felt when 
the cylinder is at a close distance from the wall. The finite depth clearly influences the 
accelerations, but has a negligible effect on the motions. This wall effect is different from what 
happens to a cylinder near a wall in a semi-infinite domain (Faltinsen 1990, pp. 54). In that case, 
the hydrodynamic force increases when the cylinder moves closer to the wall. In our case the force 
diminishes as the cylinder approaches the wall. This is associated with a decreasing wetted surface 
as the cylinder approaches the wall.  
 
The initial force impulse is important. The water entry velocity is rapidly decelerated during an 
initial phase. The influence of the force impulse can be demonstrated by using the flat plate 
theories. In Wagner’s theory, one can approximate the acceleration, i.e. the time derivative of V(t) 
in Eq. (4.6), for small time t as  

4
1

dV h
g

dt kR
≈ −⎛ ⎞

⎜ ⎟
⎝ ⎠

     (4.14) 
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where V(0) is replaced by −(2gh)1/2 and the mass is expressed as m = kρπR2 where k is a parameter. 
For h>kR/4, the water entry speed will be decelerated. The initial dV/dt is 31.4ms-2 for the neutrally 
buoyant case (k=1), and 63.7ms-2 for the half buoyant case (k=0.5). The upward acceleration dV/dt 
will decelerate the water entry speed |V|. The acceleration is larger for a smaller k (i.e. a lighter 
cylinder) or a larger h/R ratio. This is why the half buoyant cylinder is more decelerated than the 
neutrally buoyant cylinder in the initial phase (see Fig. 4.12).  
 
In von Karman’s theory, the time derivative of V(t) expressed in Eq. (4.10) can be approximated by 
using Eq. (4.8) as 
 

2
1

dV h
g

dt kR
≈ −⎛ ⎞

⎜ ⎟
⎝ ⎠

     (4.15) 

 
So the von Karman’s method gives a smaller deceleration than the Wagner’s method initially. It 
implies that by using different flat plate theories initially, the starting conditions for the BEM will 
be different. However, if the takeover by the BEM is early enough, the influence to the later 
calculations by the BEM due to this initial difference is not prominent.  
 
Fig. 4.15 shows the comparison of the results by using different flat plate theories initially. The 
results for both the neutrally buoyant and the half buoyant circular cylinders are shown. Either 
Wagner’s method or von Karman’s method is used to simulate the initial 0.0015s. The difference 
between different calculations is not prominent. Ideally, we need to know the bias error range for 
the experimental results in order to justify which calculation agrees better with the experiments. 
However, the error analysis for the drop test was not presented in Greehow and Lin (1983). 
Intuitively speaking, for the half buoyant case the calculations by the BEM plus Wagner’s method 
agrees better with the experiments, while for the neutrally buoyant case, the results by the BEM 
plus von Karman’s method show better agreement with the experiments. It is expected that 
Wagner’s method will give a better prediction than von Karman’s method in the initial water entry 
of a circular cylinder, because the bottom of the cylinder is very flat and the angle between the 
body surface and the impacting water surface is very small. However, from the comparisons in Fig. 
4.15, one can not draw such a conclusion that Wagner’s theory is better than von Karman’s method. 
What is sure is that the difference caused by using different flat plate theories in the initial time will 
become smaller when the transition of the calculation to the BEM is earlier. 
 
Von Karman’s method and Wagner’s method as described in section 4.1.1 can be independently 
applied to simulate the water entry of the circular cylinder for a longer time, rather than just in the 
initial stage. It will be shown that von Karman’s theory gives obviously better predictions than 
Wagner’s theory in a later stage. Figure 4.16 shows the comparison of the results by only von 
Karman’s method and by only Wagner’s method with the results by the BEM plus theWagner’s 
method in the initial 0.0015s. When the cylinder submergence is larger than the cylinder diameter, 
the calculations stop. In von Karman’s method, the small submergence approximation is not 
followed, which means that the exact differential equation Eq. (4.8) and V = −dζ/dt are numerically 
solved by the fourth-order Runge-Kutta method.  
 
From Fig. 4.16 we can see that in the early stage of the water entry, different calculations agree 
well with each other. Then the results by the von Karman’s theory keep close to the BEM results 
for a longer time than those by the Wagner’s theory. The results by von Karman’s method also 
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starts to diverge from the BEM results when the submergence is larger than the cylinder radius, i.e. 
ζ(t)>R=0.055m. However, the buoyancy force will contribute when the submergence is large. 
Considering this effect, one can expect a better agreement between the results by von Karman’s 
method and the BEM results for ζ(t)>R. The comparisons show that for the studied cases von 
Karman’s method gives better predictions than Wagner’s method in the later stage of the water 
entry. 
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Fig. 4.15. Comparisons between the experimental results and the results by using different flat plate theories 
in the initial time duration of 0.0015s. (a) Half buoyant case; (b) Neutrally buoyant case. 
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Fig. 4.16. Comparisons between the results by the BEM and the results by two different flat plate theories 
(von Karman’s method and Wagner’s method) for the water entry of a horizontal circular cylinder. (a) Half 
buoyant case; (b) Neutrally buoyant case. 
 
 



64     Chapter 4 Free water entry of a two-dimensional section 

 

4.5 Asymmetric water entry of a two-dimensional section 
 
For a two-dimensional section symmetric about a vertical line, the water flow around it will be 
non-symmetric if it impacts the water in the following two situations. The first one is that the 
section enters the water with both a vertical and a horizontal speed. This is called ‘inclined water 
entry’. The other situation is that the section inlines to one side and moves vertically down into the 
water. Only the second case will be studied in this section. A constant roll angle, or a heel angle, is 
given to the section before the water entry. Then the section enters vertically into the water. 
 
4.5.1 The calculation in a whole fluid domain 
 
An asymmetric water entry of a two-dimensional section is shown in Fig. 4.18. The constant roll 
angle of the section is denoted as θ. The water flow on the two sides of the section is different. 
Therefore, the whole water domain has to be solved in the numerical simulations. In contrast, only 
the right half of the fluid domain is solved in a symmetric water entry problem as presented in 
Chapter 2 and in the previous sections.  
 

        Fig. 4.18. Asymmetric water entry of a two-dimensional section. 
 
 

The numerical method, i.e. the BEM, is generalized to solve the whole water domain. As shown in 
Fig. 4.18, the water domain is surrounded by the wetted section surface SS, the free surface on the 
right SFR, the truncation boundary on the right SIR, the bottom surface SB, the truncation boundary 
on the left SIL and the free surface on the left SFL. The origin of the space-fixed coordinates y-z is at 
the lowest point of the rotated section when the section just touches the calm water surface. The 
velocity potential in the water domain φ(y,z,t) satisfies the governing equation in Eq. (2.1). The 
body boundary condition in Eq. (2.2) is satisfied on the body surface SS and the free surface 
conditions in Eqs. (2.3)-(2.4) are satisfied on the two free surfaces SFR and SFL. The truncation 
boundaries and the bottom boundary are set far from the body, so that the disturbances on these 
boundaries are assumed zero in the time scale of the studied water entry problems. The boundary 
value problem is solved by the BEM. Numerical techniques such as jet-cutting, spray-cutting, 
smoothing and regriding are applied on both free surfaces. The free surfaces are updated by using 
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the free surface conditions. Flow separations can happen at both knuckles of the section. The flow 
separation model is applied when the flow separation occurs. 
 
Generally speaking, in the numerical techniques, there is nothing new for this asymmetric problem 
relative to the symmetric problem. All the treatments to the body surface and the free surface on the 
right are similarly applied to those on the left. However, attention must be paid to the following 
differences when the treatments are numerically implemented. First, when the section rotates, not 
only the coordinates on the section, but also the normal vector on the section will be changed in the 
space-fixed coordinate system. Secondly, there are two body-water surface intersections PL and PR 
(Fig. 4.18). The numbering of the discretized elements starts from the left intersection PL and then 
along the wetted body surface. Successively in clock-wise direction, the elements on SFR, SIR, SB, 
SIL will be numbered. The final element on the left free surface intersects the first element on the 
body surface at point PL. This new intersection point must be carefully treated.  
 
In the initial stage, the flat plate theory can also be used. In section 4.1.2, a numerical method based 
on von Karman’s theory is introduced to simulate the initial water entry of an arbitrary section. 
This method can be generalized for the asymmetric water entry problem. The wetted length of the 
equivalent flat plate is given by cL(t)+cR(t), where cL(t) is the wetted length on the left side and cR(t) 
is the wetted length on the right side. They can be expressed as functions of the submergence ζ of 
the lowest point of the section, respectively as  
 

( ) ( )L Lc t f ζ=  and ( ) ( )R Rc t f ζ=     (4.16) 
 
Further, the half wetted length can be written as 
 

( ) ( )
( )

2
L Rc t c t

c t
+

=      (4.17) 

 
So Eqs. (4.11) to (4.13) can still be used if the function f(ζ) in these equations is replaced by 
 

( ) ( )
( )

2
L Rf f

f
ζ ζ

ζ
+

=      (4.18) 

 
The method developed for the whole water domain is verified. The symmetric water entry of a 
ship-bow section is calculated by both the new program and the previous program for a half 
domain. The results by these two programs agree very well, which proves the accuracy of the new 
program developed for the whole water domain.  
 
4.5.2 Asymmetric water entry of a ship bow section 
 
The drop tests of a ship-bow section in Aarsnes (1996) with different non-zero roll angles are 
numerically studied. The same model as in the symmetric cases discussed in Section 4.3 was used 
in the drop tests. The only difference is that the section is rotated with a constant non-zero angle θ 
during the water entries. The drop tests were performed for five different roll angles. They are θ = 
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4.8º, 9.8º, 14.7º, 20.3º and 28.3º. For each roll angle, the section was dropped from different drop 
heights.  
 
The numerical results will be compared with the experiments for cases with different roll angles 
and different drop heights in the section. The influence of the roll angle on the forces, pressures, 
accelerations and velocities will be discussed by comparing the results for different roll angles and 
similar drop heights. The influence of the drop height, or the initial water entry speed, will be 
discussed by comparing results for various drop heights and the same roll angle. The initial water 
entry speeds were estimated in the experiments (Aarsnes 1996), similarly as in the symmetric cases, 
and applied in the numerical calculations. 
 
The roll angles and drop heights for the numerically studied cases, i.e. case 1 – case 7, are listed in 
Table 4.1. The serial numbers for the drop tests in the experiments are quoted. In most of the drop 
tests listed in Table 4.1, the pressures were measured at the apex P1 and P2 – P4 on the impact side, 
i.e. the right side of the section in Fig. 4.7 when the section rotates to the right as shown in Fig. 
4.18. However, in one case for θ = 9.8º and one case for θ = 20.3º, the pressures were measured at 
the apex P1 and the positions P2 – P4 on the leeward side, i.e. the left side in Fig. 4.7. 
 
Table 4.1. Parameters for the cases in the numerical calculations. 
 

Case  Test Number Drop 
height  
(m) 

Roll 
angle 
(degree) 

Initial water 
entry speed 
 (ms-1) 

Position of Pressure gauges  

1 No.217, No.218 0.017 4.8 0.57 P2-P4 on the impact side and P1 
No.225, No.226 0.020 9.8 0.61 P2-P4 on the impact side and P1 2 No.227, No.228 0.020 9.8 0.61 P2-P4 on the lee side and P1 

3 No.269, No.270 0.020 14.7 0.61 P2-P4 on the impact side and P1 
No.236, No.237 0.030 20.3 0.75 P2-P4 on the impact side and P1 4 No.234, No.235 0.030 20.3 0.75 P2-P4 on the lee side and P1 

5 No.268 0.020 28.3 0.61 P2-P4 on the impact side and P1 
6 No.221, No.222 0.119 9.8 1.49 P2-P4 on the impact side and P1 
7 No.223, No.224 0.318 9.8 2.43 P2-P4 on the impact side and P1 

 
 
Fig. 4.19 – Fig. 4.22 show the comparisons between the present calculations by the BEM and the 
experiments for different roll angles (cases 1 – 5). The numerical results presented in Zhu (2006) 
by the CIP method are also shown in the Fig. 4.19 and Fig. 4.20 except for the case 5 with θ = 28.3º, 
because this case (No. 268) were not presented in Zhu (2006). Then Fig. 4.23 shows the pressure 
distribution on the ship bow section at different time instants for the case 4 with a large roll angle θ 
= 20.3º and a drop height h = 0.030m. Fig. 4.24 – Fig. 4.26 show the present numerical results and 
the experimental results for cases 2, 6 and 7 with θ = 9.8º and three obviously different drop 
heights. Before the comparisons, the signs of the horizontal force, vertical acceleration and the 
vertical velocity in the experiments and in the CIP results are changed, because of the different 
definitions of the positive directions of these values in the experiments and in the CIP calculations, 
relative to the present definitions.  
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The experimental results of the forces and accelerations have been filtered by using a cut-off 
frequency of 300 Hz. The oscillations in the experimental results for the forces and accelerations 
are due to the vibrations of the drop rig, similarly as in the symmetric case (see section 4.3). The 
calculations show reasonable agreement with the experiments in all the cases. Elastic ropes were 
used to stop the model at the later stage of the water entry. Experimental bias errors caused by this 
fact can account for the apparent discrepancies in the acceleration and velocity results at the later 
time for some cases. In Fig. 4.20 for cases with θ = 9.8º and θ = 20.3º, such errors are obvious. 
Near the end of the time histories in those cases, the measured accelerations increase and the 
resulting water entry speeds suddenly decrease, which implies the section is held up by something. 
The CIP results are consistent with the present BEM results. Similar discrepancies are also shown 
between the CIP results and the experiments.  
 
The effects of the roll angle are investigated by examining the results shown in Figs. 4.19 – 4.22. In 
Fig. 4.19, the influence of the constant roll angle to the forces on the measuring section can be seen. 
When the roll angle is larger, both the maximum vertical force and the maximum horizontal force 
become larger. However, the maximum horizontal force does not change so obviously as the 
maximum vertical force. The reason can be the following. The maximum vertical and horizontal 
forces are obtained when the spray root of the water jet arrives at the knuckle of the section. The 
main contribution comes from the large pressure on the flare area on the impact side. For larger roll 
angles, the flare surface is quite flat, which means the horizontal component of the normal vector 
on the surface is very small. Although the pressures on the flare area are larger for larger roll angle 
(see Fig. 4.21), the horizontal components of the pressures are not necessarily so. As a result, the 
total horizontal forces are not obviously larger. 
 
From the results of the vertical acceleration and velocity for different roll angles in Fig. 4.20, it can 
be seen that, although the maximum acceleration increases when the roll angle is larger, the vertical 
velocity is not obviously affected by changing the roll angle.  
 
Fig. 4.21 gives the time histories of the pressures at the apex P1 and the positions P2-P4 at the 
impact side for the five cases with different roll angles. Good agreement between the calculations 
and the experiments is obtained, except some phase differences. Positions P3 and P4 are located at 
the flare area of the section. When the roll angle increases, the maximum pressures at P3 and P4 
increase. It implies that the pressures on the flare region become larger for larger roll angles. This 
is consistent with the fact that the maximum pressure on a wedge surface is higher when the 
deadrise angle is smaller. P1 locates at the apex of the section. As the section rotates to the right, P1 
turns to the leeward side. There is a sharp peak pressure at P1 in the initial stage when the round 
bottom impacts the water. To predict the peak value, one must consider the finite dimension of the 
pressure gauge and the pressure should be averaged on the area covered by the pressure gauge. 
This is not followed in the present calculations, so the numerically predicted pressure peaks are 
often larger than those in the experiments. However, this peak pressure does not matter much 
because of its very short duration. It is more important to note that the pressure at P1 becomes 
negative in the later stage for large roll angles θ = 20.3º and θ = 28.3º. The negative pressure means 
the pressure is less than the atmospheric pressure. A large area of negative pressure on the wetted 
body surface may result in ventilation. However, the ventilation needs to be triggered by other 
factors. It was indicated in Zhu (2006) that the ventilation actually occurred in the experiments at θ 
= 28.3º. This could be triggered by the rig vibrations in the tests (Zhu 2006). However, this does 
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not seem to have happened in test No. 268 for θ = 28.3º, because the pressure measured at P1 keeps 
negative. If ventilation happened, the pressure would go back to zero, i.e. atmospheric pressure.  
 
Fig. 4.22 shows the time histories of the pressures at P1 and P2-P4 on the leeward side for the drop 
tests with different roll angles. The pressures on the leeward side were measured only for cases 
with two different roll angles θ = 9.8º and θ = 20.3º. For larger roll angles, the pressures at P2-P4 
are smaller. So the pressures on the leeward side contribute less to the total forces. For θ = 20.3º, 
the measured pressures at P1- P4 never return to zero. It means that ventilation did not happen in 
that test.  
 
The numerically calculated pressure distributions along the ship bow section at different time 
instants t = 0.05s, 0.08s, 0.09s, 0.10s, 0.12s and 0.17s are shown in Fig. 4.23 for a large roll angle θ 
= 20.3º and drop height h = 0.03m. The time history of the vertical force for this case has been 
shown in Fig. 4.19. The spray root comes to the knuckle point and the maximum vertical force 
occurs near t = 0.09s. Correspondingly, in Fig. 4.23 at t = 0.09s the spatial maximum pressure 
appears near the knuckle point. After the flow separation from the knuckle on the right, i.e. for t = 
0.10s, 0.12s and 0.17s, the pressure on this side becomes more uniform than before. On the other 
hand, negative pressure develops on the leeward side adjacent to the apex of the section in a larger 
and larger area. As discussed earlier, ventilation can happen but does not necessarily happen.  
 
The effects of the drop height are investigated by examining the results in Figs. 4.24 – 4.26. In Fig. 
4.24, the vertical forces and horizontal forces on the ship section with θ = 9.8º for three different 
drop heights are shown. The effect of the drop height (or the initial water entry speed) can be seen 
from the comparison of the results. For larger drop height, the maximum horizontal and vertical 
forces are larger and occur earlier. Fig. 4.25 shows the vertical acceleration and velocity. 
Consistently with the vertical force results, the maximum vertical acceleration is larger for larger 
drop height and reached earlier, which means the falling body is decelerated more rapidly. Fig. 
4.26 shows the pressures at P1 and P2 – P4 on the impact side for two different drop heights. The 
pressures are obviously larger for a larger drop height. 
 
For drop height h = 0.119m, the experimental accelerations rapidly increase to very large values in 
the end of the time histories. This shows an obvious effect of the elastic ropes which were used to 
stop the falling of the section. Therefore, the experimental results after about t = 0.1s are doubtful 
for this case.  
 
In summary, the capability of the present BEM to simulate the asymmetric water entry with non-
viscous flow separations at knuckles is shown. The effects of constant roll angle (or heel angle) are 
the following. First, for larger roll angle, the maximum vertical force becomes larger and horizontal 
force also becomes larger. Secondly, the pressure on the flare area on the impact side is higher for 
larger roll angles, while the pressure on the leeward side is lower. Thirdly, for large roll angles, 
negative pressure appears adjacent to the tip of the section on the leeward side. Ventilation can 
happen in such a case. However, no ventilation is expected for the studied cases by examining the 
experimental pressures on the leeward side. Finally, the effect of the drop height is found. For 
larger drop heights, the maximum forces on the body will be larger. The acceleration is larger and 
the section is more rapidly decelerated. The maximum pressures on the impact side also become 
larger.   
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Fig. 4.19. (See the caption in the next page.) 
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Fig. 4.19. Vertical and horizontal forces on the ship bow section during the water entries with different roll 
angles θ and similar drop heights h. Left column: Vertical force; Right column: Horizontal force. Results 
denoted by a serial number are experimental results by Aarsnes (1996); BEM: Results by the BEM; CIP: 
Results in Zhu(2006) by a CIP method. 
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Fig. 4.20. (See the caption in the next page) 
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Fig. 4.20. Vertical accelerations and velocities of a ship bow section during the water entries for different roll 
angles θ and similar drop heights h. Left column: Vertical acceleration; Right column: Vertical velocity. 
Results denoted by a serial number are the experimental results by Aarsnes (1996); BEM: Results by the BEM; 
CIP: Results in Zhu(2006) by a CIP method. 
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Fig. 4.21. (See the caption in the next page) 
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Fig. 4.21. Pressures at the apex P1 and the positions P2, P3 and P4 on the impact side of the ship bow section 
during the water entries for different roll angles θ and similar drop heights h (1 bar = 105 Nm-2). Solid lines: 
Numerical results by the BEM; Dashed lines: Experimental results by Aarsnes (1996).  
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Fig. 4.22. Pressures at the apex P1 and the positions P2, P3 and P4 on the leeward side for different roll angles 
of the ship bow section during the water entries for different roll angles θ and similar drop heights h (1 bar = 
105 Nm-2). Solid lines: Numerical results by the BEM; Dashed lines: Experimental results by Aarsnes (1996).  
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Fig. 4.23. Pressure distributions along the wetted surface of the ship bow section at different time instants 
during the water entry with a roll angle θ = 20.3º and a drop height h = 0.030m (1 bar = 105 Nm-2).  
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Fig. 4.24. Vertical and horizontal forces on the ship bow section during the water entries with θ = 9.8º for 
different drop heights h. Left column: Vertical force; Right column: Horizontal force. Results denoted by a 
serial number are experimental results by Aarsnes (1996); BEM: Results by the BEM. 
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Fig. 4.25. Vertical accelerations and velocities of the ship bow section during the water entries with θ = 9.8º 
for different drop heights h. Left column: Vertical force; Right column: Horizontal force. Results denoted by a 
serial number are experimental results by Aarsnes (1996); BEM: Results by the BEM. 
. 
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Fig. 4.26. Pressures at the apex P1 and positions P2, P3 and P4 on the impact side of the ship bow section with 
a roll angle θ = 9.8º during the water entries for different drop heights h (1 bar = 105 Nm-2). Solid lines: 
Numerical results by the BEM; Dashed lines: Experimental results by Aarsnes (1996).  
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CHAPTER 5  
 
 
Water entry of an elastic cylindrical shell with 
hydroelasticity effect 
 
 
 
The water entry of a cylindrical shell is numerically studied in this chapter. The effect of 
hydroelasticity is considered. The BEM or flat plate theories are applied to solve the water flow 
around the shell, while modal analysis is used to solve the structural responses. The hydroelasticity 
effect is accounted for by solving the water flow and the structural responses simultaneously. The 
calculations by the BEM together with the modal analysis are compared with the experiments by 
Arai and Miyauchi (1998) and with the experiments by Shibue et al. (1994). 
 

5.1 Fluid-structure coupled problem 
 
5.1.1 Formulation of the problem 

 
 
Fig. 5.1. Coordinate system and definitions for the numerical simulation of the water entry of a cylindrical 
shell. 
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As shown in Fig. 5.1, a cylindrical shell is penetrating the water surface with a time varying 
vertical water entry speed |V(t)|. The same coordinate system as in Fig. 2.1 is used. The water 
domain and the closed boundary are also defined like before. The fluid is assumed inviscid and 
incompressible with an irrotational flow. Therefore a velocity potential φ(y,z,t) satisfying the two-
dimensional Laplace equation 2 2 2 2/ / 0y zϕ ϕ∂ ∂ + ∂ ∂ =  in the fluid domain Ω can be used to describe 
the fluid flow. Surface tension is neglected and the kinematic and dynamic boundary conditions on 
the free surface given in Eqs. (2.3) and (2.4) are satisfied on SF. The boundary condition on the 
shell surface SS is  
 

w
n

ϕ∂
= ⋅ +

∂
V n     on the shell surface SS        (5.1) 

 
where V = V(t)k is the velocity of the rigid-body motion of the cylinder. The body surface SS is the 
undeformed shell surface and the term /w w t= ∂ ∂ is the normal vibration velocity with positive 
direction pointing to the cylinder centre. The body boundary condition in Eq. (5.1) is originally 
satisfied on the instantaneous deflected shell surface. If the displacement is much smaller than the 
radius of the cylinder, we can Taylor expand the boundary condition around the mean position of 
the elastically vibrating shell surface and neglect the higher order terms. This gives the boundary 
condition satisfied on the mean shell surface. The boundary conditions on the bottom and the 
symmetry line boundary are zero normal velocity. The behavior of φ at SI for deep water is like a 
vertical dipole in an infinite fluid with singularity at y = 0 and z = 0.  

 
Before the cylinder impacts the water surface, calm water is assumed. So φ is initially zero on the 
undisturbed free surface. The fact that the time rate of the change of the wetted surface of the 
circular cylinder is initially infinite causes numerical problems in the BEM. This is circumvented 
by using a flat plate theory, either the von Karman’s theory or the Wagner’s theory, in an initial 
period, after which the BEM will take over and continue the calculations. This is similar as in the 
water entry of a rigid cylinder discussed in Chapter 4. The coupled analysis by using a modal 
analysis and a flat plate theory will be presented in section 5.3. 

 
From Bernoulli’s equation, the pressure on the shell surface p(θ,t) can be calculated by Eq. (2.7). 
The angular coordinate θ is defined in Fig. 5.1. It is numerically difficult to accurately determine 
∂φ/∂t directly for moving bodies, no matter whether the body is rigid (section 2.1) or elastic. For an 
elastic body, Tanizawa (1999) proposed to use an acceleration potential. In the present study, a 
different approach is applied. 
 
Similar as for a rigid body case, a function given by ψ=∂φ/∂t+V·∇ φ is introduced to calculate 
∂φ/∂t indirectly. The governing equation is a 2D Laplace equation for ψ. This can be similarly 
shown as Greco (2001) did for a rigid-body case. From Eq. (2.4), the free surface condition for ψ 
can be written in the same form as in Eq. (2.10). It means 
 

21

2
gzψ ϕ ϕ= ⋅∇ − ∇ −V        on the free surface SF            (5.2) 

 
The following relation holds 
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BO BOD D

n n Dt Dt n

ϕψ ϕ∂ ∂ ∂
= =

∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

    (5.3) 

 
with the differential operator DBO/Dt = ∂/∂t+V·∇ . This relation was derived for a rigid body in 
Greco (2001). However, it is still valid for a flexible shell. Substituting Eq. (5.1) into Eq. (5.3), one 
has 

w w
n

ψ∂
= ⋅ + + ⋅∇

∂
V n V   on the shell surface SS      (5.4) 

 
where 2 2/w w t= ∂ ∂  is the vibration acceleration and /d dt=V V is the vertical rigid-body 
acceleration. The derivations of Eqs. (5.3) and (5.4) are given in Appendix B. Like in Eq. (5.1), the 
body boundary condition in Eq. (5.3) is also satisfied on the undeformed shell surface. When the ψ 
on the body surface is solved, the ∂φ/∂t can be evaluated by using ∂φ/∂t = ψ − V·∇ φ. 
 
From Newton’s second law, the equation of the rigid-body motion is given by 
 

( ) zM t F Mg= −V      (5.5) 
 
where M is the total mass of the body and Fz is the total vertical force due to the water pressure. 
Here, Fz is a function of V, w and t. The rigid-body acceleration can be integrated in time to obtain 
the rigid-body velocity and be further integrated to obtain the rigid-body motion.  
     
Because the thickness d of the cylinder’s wall is assumed much smaller than the radii R(outer 
radius) and Ri=R–d (inner radius), the thin shell theories can be applied (Ventsel and Krauthammer, 
2001, Timoshenko and Woinowsky-krieger, 1970). Neglecting the variation along the longitudinal 
direction of the cylinder, the dynamic equation for the shell can be written as 
 

( )
22

2 2 2

1 , 0M Tw f t
t a a

θ θµ θ
θ

∂∂
− − − =

∂ ∂
     (5.6) 

2

2 2

1 1 0T Mv
t a a

θ θµ
θ θ

∂ ∂∂
− + =

∂ ∂ ∂
     (5.7) 

 
where a=R - d/2 is the radius of the neutral surface, µ=ρsd is the mass per unit area of the shell, 
f(θ,t) = p(θ,t) – pa is the normal loading, Mθ = −Dχθ is the bending moment and Tθ =EAε0 is the 
tensile force in the tangential direction with D=Ed3/[12(1-γ2)] and EA=Ed/(1- γ 2). E is Young’s 
modulus and γ is the Poisson’s ratio. ρs is the mass density of the shell. The change of curvature χθ 
and the elongation of the middle plane ε0 are related with the tangential displacement v and the 
normal displacement w by χθ = (∂v/∂θ + ∂2w/∂θ2 )/a2  and ε0 = (∂v/∂θ-w)/a. Therefore the equations 
can be rewritten as 
 

( )
2 3 4

2 4 3 4 2 , 0a
w D v w EA vw p t p

t a a
µ θ

θ θ θ
⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ + + − − − =⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

   (5.8) 
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2 2 2 3

2 2 2 4 2 3 0v EA v w D v w
t a a

µ
θ θ θ θ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
− − − + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

   (5.9) 

 
Structural damping is neglected. Initially the elastic deformation and the vibration velocity are zero. 
The strain at a point on the inner surface of the shell can be calculated by 
 

2

0 2 2

1 1
2 2
d v w d v w

a a aθ θε ε χ
θ θ θ

⎛ ⎞∂ ∂ ∂⎛ ⎞= − = − − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
   (5.10) 

 
If the elongation in the middle plane is neglected, i.e. ε0 =(∂v/∂θ-w)/a=0, then the tangential 
displacement v can be eliminated from the equation system and then one has 
 

( )
6 4 2 2 4 2

4 6 4 2 2 2 2 22 , a
D w w w w w p t p
a t t

µ µ θ
θ θ θ θ θ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + − + = −⎡ ⎤⎜ ⎟ ⎣ ⎦∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (5.11) 

 
The strain on the inner surface of the shell is calculated by 
 

 εθ = −(d/2)(∂2w/∂θ2+w)/a2      (5.12) 
 
 
5.1.2 Modal analysis  
 
To solve the structural equations given by Eqs. (5.8) and (5.9) or just Eq. (5.11), a modal analysis 
can be applied. The tangential and normal displacement can be expressed respectively as  
 

( ) ( )
1

, sin( )n
n

v t b t nθ θ
∞

=

= ∑       (5.13) 

( ) ( )
0

, cos( )n
n

w t a t nθ θ
∞

=

= ∑      (5.14) 

 
The mode n=0 for w represents the radial oscillation. Because the loading is not symmetric about 
the axis of the circular cylinder, the normal displacement in the mode n = 0 is much smaller than 
the normal displacements in the other modes. The mode n=0 is only included when the importance 
of the extension in the middle plane is investigated, because a0 contributes to ε0. In the modes for 
n=1, the shell behaves like a rigid body.  
 
Substituting the expressions for v and w in Eq. (5.13) and (5.14) into Eqs. (5.8) and (5.9), one can 
obtain the equations for the principal coordinates an(t) and bn(t) as 
 

0 0 02

EA
a a q

a
µ + =       (5.15) 

n n n n n na K a L b qµ + + =  for n = 1,2,3…   (5.16) 

0n n n n nb L a H bµ + + =  for n = 1,2,3…   (5.17) 



5.1 Fluid-structure coupled problem     83 

 

with  
3

4 2n

D EA
L n n

a a
= − −  

4
4 2n

D EA
K n

a a
= +  

2 2
4 2n

D EA
H n n

a a
= +  

 
and the generalized forces are expressed as 
 

( )( )2

0 0

1
,

2 aq p t p d
π

θ θ
π

= −∫     (5.18) 

( )( )2

0

1
, cosn aq p t p n d

π
θ θ θ

π
= −∫     (5.19) 

 
A finite number of modes will be used in the numerical calculations. Ideally the number should be 
large enough so that further increasing the number will not cause noticeable difference in the 
results. However, choosing fewer modes can facilitate the calculations without affecting the 
accuracy. The choice of the number of modes and the effect of higher modes will be discussed later. 
 
When the elongation in the middle plane of the cylindrical membrane is neglected, we can 
substitute Eq. (5.14) into Eq. (5.11) and obtain the equations for the principal coordinates  
 

( ) ( ) ( )22

2 3

1
1 1n n n

D
a a t n a t F

n a
µπ π+ + − =⎛ ⎞

⎜ ⎟
⎝ ⎠

, for n=2, 3, …, Nm   (5.20) 

with 

( )( ) ( )
2

0
, cosn aF p t p n ad

π

θ θ θ= −∫     (5.21) 

 
where Fn is the generalized force and na = dan /dt, na = d2an /dt2. A finite number of modes, Nm−1 
elastic modes, are included. If n=1, Eq. (5.20) will give a similar equation as the rigid-body 
equation  in Eq. (5.5), except that the gravity force -Mg is excluded. However, the gravity force is 
negligible in the present impact problem, so the equation for mode n=1 will give almost the same 
solution as Eq. (5.5). Further, the mode n = 1 in w gives no contribution to the flexural strain in Eq. 
(5.12), so there is no need to solve the equation for mode n=1. The mode for n = 1 in w  or w  are 
also excluded from Eqs (5.1) and (5.4), because the rigid-body motion terms have been explicitly 
expressed in those equations.  
 
From Eq. (5.20), the natural frequencies can be written as 
 

( )2

2 2

11

2 1
n

n n D
f

a nπ µ

−
=

+
     (5.22) 

 



84     Chapter 5 Water entry of an elastic cylindrical shell with hydroelasticity effect 

 

However, Arai and Miyauch (1998) used a ring model for the shell, so that the natural fn 
frequencies are different, which is caused by replacing D with EI = Ed3/12, thus  
 

( )2

2 2

11

2 1
n

n n EI
f

a nπ µ

−
=

+
     (5.23) 

 
Shibue et al. (1994) further corrected the frequencies by adding the Poisson’s ratio in the 
denominator to consider the twist of the ring, which is based on the theory in Timoshenko et al. 
(1974). Hence 

( )2

2 2

11

2 1
n

n n EI
f

a nπ µν

−
=

+ +
     (5.24) 

 
Eq. (5.20) can be rewritten as  
 

( )22 /n n n n na f a F mπ+ =   for n = 2, 3,…, Nm   (5.25) 
 
with mn = aµπ(1+1/n2). The equations in Eq. (5.25), instead of the equations in Eq. (5.20), are 
solved to obtain the principal coordinates an. Therefore, by using different formulas in Eqs.( 5.22), 
(5.23) or (5.24) to calculate the natural frequencies fn , we will solve different equations for an , so 
the calculated structural responses will be different. The difference between these formulas for 
frequencies is usually small, but the small difference will be enlarged in a coupled analysis due to 
the fluid-structure interaction. This will be shown in later discussions.   
 
5.1.3 Fluid-structure coupled analysis 
 
Two kinds of coupled analysis are performed. One is a partly coupled analysis; the other is a fully 
coupled analysis. In a partly coupled analysis, the coupling between the water flow and the elastic 
vibrations of the body is considered, but the rigid-body motion is calculated separately. All the 
terms related to the elastic shell vibrations are neglected in the calculations of the vertical force Fz. 
Therefore, the rigid-body motion is the same as predicted in a problem of a rigid body. However, in 
a fully coupled analysis, the rigid-body motion, water flow and elastic vibrations are solved 
simultaneously. All the terms related to the elastic vibrations in the body boundary conditions for φ 
and ψ are retained.  
 
When the BEM is used to solve the water flow, the coupled problems are solved by iterations. The 
procedure of iteration for a fully coupled analysis is given in Fig. 5.2. In the first iteration in each 
time step, w , w  and V are estimated from the last time step. Then the newly calculated values for 
them will be fed back to the boundary conditions for φ and ψ in the next iteration. The control error 
is the relative difference between the results by two successive iterations. The time step is chosen 
to be compatible with the size of the elements on the free surface and the body surface to ensure 
convergence.  
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Fig. 5.2. Procedure of the iteration for the fluid-structure coupled analysis by the BEM and a modal analysis. 
 
 
A high accuracy of the accelerations of both the rigid-body motion and the elastic vibration is 
essential to get a converged result. As discussed in section 2.9, numerical errors can be 
accumulated in the calculations of the rigid-body accelerations when the mass is small, and lead to 
divergence. For light and thin cylindrical shells, the mass terms can be significantly smaller than 
the added mass terms in both the rigid-body motion equation and the vibration equations. The 
approach introduced in section 2.9 is applied to improve the accuracy of the rigid-body acceleration. 
A similar procedure is also followed in the solution of the vibration equations. Then the added 
mass terms in the vibration equations are approximated by the added masses derived in the coupled 
analysis by von Karman’s theory and a modal analysis (see Eq. (5.42) and (5.46)).  
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When a flat plate theory, i.e., von Karman’s theory or Wagner’s theory is used to solve the water 
flow, the general rules for the partly coupled analysis and fully coupled analysis will be the same. 
However, iterations are not necessary, because the equations for the water flow and the equations 
for the structural responses can be combined into an equation system and solved at the same time. 
More details are presented in the section 5.3. 
 

5.2 Two experiments on the water impact of cylindrical shells 
 
5.2.1 Shibue’s experiments 
 
Shibue et al. (1994) did drop tests of two cylindrical shells, a thick shell of thickness 5.1mm and a 
thin shell of thickness 1.0mm. The shells are made of steel. The thick shell case will be studied in 
this chapter. The parameters of the thick shell model are given in Table 5.1. Strains responses at 
different positions at a cross-section were measured in the experiments. The experimental results at 
angles θ = 0, 10, 20 and 30 degrees for drop height h = 1.0m are available to compare with the 
calculations. 
 

Table 5.1. Parameters for the shell model in Shibue et al. (1994)’s experiments. 
 

Length L 0.6m 
Radius R 0.156m 
Thickness d 0.0051m 
Mass M  23.8kg 
Young’s modulus E 2.06×1011Pa 
Poisson’s ratio γ 0.3 
Mass density of the material ρs 7.848×103kg/m3 

 
5.2.2 Arai’s experiments 
 
Arai and Miyauchi (1998) performed experiments about the water entry of a horizontal cylindrical 
shell made of aluminum. Parameters of the shell model are as given in Table 5.2. No error analysis 
was presented. However, some possible error sources will be discussed later. The case of drop 
height h = 1.0m will be studied, so the initial water entry speed is calculated as V0 = (2gh)1/2 = 
4.429m/s when the shell just touches the water. Only the measured strain on the inner surface at the 
bottom of the cylindrical shell (θ = 0) is available. So the strain responses measured at this position 
are compared with the calculations. 
 

Table 5.2. Parameters for the shell model in Arai and Miyauchi (1998)’s experiments. 
 

Length L 0.6m 
Radius R 0.153m 
Thickness d 0.003m 
Mass M 5.2kg 
Young’s modulus E 7.35×1010Pa 
Poisson’s ratio γ 0.34 
Mass density of the material ρs 2.70×103kg/m3 
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5.3 Coupled analysis by a flat plate theory and the modal analysis 
 
5.3.1 Methods to solve the coupled problem  
 

 
Fig. 5.3. Scheme used in a flat plate theory. 

 
 

The basic idea of flat plate theories is to satisfy the body boundary condition on a flat plate as 
shown in Fig. 5.3. Disregarding the gravity, the free surface condition can be linearized as φ = 0 on 
z = 0 for |y| > c(t), where c(t) is the half wetted length of the flat plate. The body boundary 
condition on the flat plate is given by  
 

( )V t w
z

ϕ∂
= +

∂
     on z = 0  for |y| < c(t)        (5.26) 

 
For a rigid body, the term w is omitted, and the solution of the velocity potential is simply 
 

( ) ( )2 2, ( )y t V t c t yϕ = −    on z = 0 for |y| < c(t)      (5.27) 
 
When the velocity potential φ is known, the hydrodynamic pressure pd on the plate can be 
calculated by -ρ∂φ/∂t. Because the submergence is small and the fluid accelerations near the body 
are high, the quadratic velocity term in Bernoulli’s equation has been neglected. So the vertical 
hydrodynamic force is written as  
 

/
c

d dc

c

c
F p dy tdyρ ϕ

− −
= = ∂ ∂−∫ ∫                 (5.28) 

 
For a rigid body, the hydrodynamic force can be written as 
 

21

2dF c V V ccρπ ρπ= − −⎛ ⎞
⎜ ⎟
⎝ ⎠

    (5.29) 

-c(t) c(t)

y

y

z

|V(t)|

Zc 

-x1 x1 



88     Chapter 5 Water entry of an elastic cylindrical shell with hydroelasticity effect 

 

where c = dc/dt. To approximately consider the gravity effect, the buoyancy force Fs on the shell is 
caluclated by integrating the −ρgz term in the pressure times the z-component of the normal vector 
over the exact wetted shell surface below the undisturbed water surface. So it follows that 
 

1

1

2 2 2arccos
x

s x

c
c c

z
F gzdx g R z R z

R
ρ ρ

−
= − = − −⎡ ⎤

⎢ ⎥⎣ ⎦∫    (5.30) 

 
where x1 = (R2-zc

2)1/2  and ±x1 are the x-coordinates of the intersections of the shell surface with the 
calm water surface (Fig. 5.3) and zc is the vertical centre of the cylindrical shell. Then the total 
vertical force due to the water pressure is given by the sum of the buoyancy force and 
hydrodynamic force, hence 
 

z
d s

F
F F

L
= +       (5.31) 

 
where L is the length of the cylinder and Fz is the total vertical force due to water pressure on the 
cylinder. Therefore, from Eq. (5.5), the equation of the rigid-body motion is written as 
 

( ) d sm t F F mg= + −V      (5.32) 
 
where the mass of the cylinder of unit length is m = M/L. When the submergence of the cylinder is 
small, the hydrostatic force Fs is far smaller than the hydrodynamic force Fd during the water 
impact. In cases when the cylindrical shell is light, the gravity force mg is also a trivial part relative 
to Fd. When both the hydrostatic force and the gravity force are neglected, the equation of motion 
is simplified as 
 

( ) dm t F=V       (5.33) 
 
Similarly as in the rigid-body case, the half wetted length c(t) is differently decided in von 
Karman’s theory and in Wagner’s theory. In von Karman’s theory, c(t) is measured from the calm 
water level, hence 
 

( ) 2 2
cc t R z= −       (5.34) 

 
In Wagner’s theory, the uprise of the water along the body surface is considered. It is assumed that 
the shell vibration will not affect the uprise of the free surface. Therefore, the half wetted length is 
obtained from the following equation 
 

( ) ( )
2

c t dc
V t

R dt
= −       (5.35) 

 
If the normal displacement w is expressed by modes for n = 2,..,Nm, then the normal vibration 
velocity is 
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( )
2

/ ( ) cos
mN

n
n

w w t a t nθ
=

= ∂ ∂ = ∑     (5.36) 

 
The vertical velocity on an equivalent flat plate is expressed 
 

( , ) ( sin , ) ( ) ( , )e eV y t V R t V t w tθ θ= = +    (5.37) 
 
In order to solve the velocity potential satisfying the body boundary condition in Eq. (5.26) 
analytically, we have to assume a distribution of the vertical velocity on the flat plate. There are 
two options. One is to approximate the vertical velocity on the plate by an average velocity, and the 
other one is to approximate the vertical velocity by a Fourier series.  
 
 (1) Constant vertical velocity approximation 
The term w  in Eq. (5.37) is replaced by the average normal vibration velocity w  on the wetted 
shell surface, which is written as 
 

0
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m m
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N N
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m m
m mc c

m
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m
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with θc = sin-1(c(t)/R). By simply replacing V(t) in Eq. (5.27) with Ve(θ,t)=V(t) + w , one can obtain 
the velocity potential as  
 

( ) ( ) ( )2 2, ( )y t V t w c t yϕ = + −  on z = 0 for |y| < c(t)      (5.39) 

Thus 
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The integrals in Eq. (5.41) can be integrated analytically, therefore 
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where Jk,n = Jk (nc/R) and Jk(x) is the Bessel function of the first kind of order k. Nm is the 
maximum number of modes used in the modal analysis, Anm are the added mass coefficients and 
Bnm are the damping coefficients. The calculations of the integrals In

1 and In
2 are shown in 

Appendix C. The assumption of small submergence has also been used. 
 
(2) Fourier approximation 
 
We can account for the fact that w  is varying on the flat plate by expanding w  in a Fourier series. 
A similar solution of φ for wetdeck slamming problem can be found in Kvålsvold (1994). The 
vertical velocity in Eq. (5.37) is Fourier expanded as 
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where y = c(t) cosθ1 = R sinθ, A0 and Ak are coefficients in the Fourier approximation. The angle θ1 
is a variable in the Fourier expansion. It is time-dependent and varying in the range [0, π]. The 
velocity potential can be written as 
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on z = 0 for |y| < c(t)   (5.44) 
 
With the small submergence assumption, we have the relation θ = sinθ. From Eq. (5.28), the 
hydrodynamic force is written as 
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The generalized force is written as 
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Detailed derivations of the hydrodynamic force and the generalized force in Eqs. (5.45) and (5.46) 
are given in Appendix D. The derivations are based on a small submergence assumption. The 
Fourier approximation can account for the variation of the vertical velocity along the flat plate. 
However, when the submergence is small, the difference between the results by using these two 
different approximations is not prominent.  
 
If the extension in the middle plane is neglected, the generalized forces Fn (n=2,…,Nm) given in Eq. 
(5.42) or Eq. (5.46) are substituted into the vibration equations in Eq. (5.25). The rigid-body 
motion is solved from the rigid-body equation, where the Fd is given by Eq. (5.29) for a partly 
coupled analysis, or given by Eq. (5.40) or Eq. (5.45) for a fully coupled analysis. The vibration 
equations and the rigid-body motion equation can be combined as an equation system 
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⎨
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    (5.47) 

 
This equation system can be rearranged by moving all the acceleration terms to the left hand side 
and non-acceleration terms to the right hand side. Then we can solve the equation system by using 
the fourth-order Runge-Kutta method. When using von Karman’s theory, we can directly calculate 
the half wetted length c(t) from Eq. (5.34). However, when using Wagner’s theory, we must 
incorporate Eq. (5.35) into the equation system in Eq. (5.47) and solve c(t) at each time step 
simultaneously with other unknowns.    
 
When the extension is included, the similar procedure will be followed. However, the vibration 
equations are given by Eq. (5.15)-( 5.17), with generalized forces given in Eq. (5.18) and (5.19). 
The principal coordinates a0, an, bn (n=2, …, Nm) will be solved. Again, the modes for n=1 have 
been excluded, because the rigid-body motion will be solved from the rigid-body equation and the 
rigid-body velocity and acceleration have been represented by V and dV/dt. 
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5.3.2 Effect of the extension in the middle plane 
 
The importance of the elongation of the neutral plane, i.e. the middle plane, is now discussed. Von 
Karman’s method is coupled with the modal analysis to solve the fluid-structure interaction 
problem by following a fully coupled analysis. When the stress in the middle plane ε0 is considered, 
both the tangential displacement v and the normal displacement w will be solved, whereas only w is 
solved in the calculations without consider ε0. In both calculations, the constant vertical velocity 
approximation is followed. 
 
The strain response at θ = 0 on the inner surface of the shell for h = 1.0m in Arai and Miyauchi’s 
experiments by these two different calculations are shown in Fig. 5.4. A negligible difference can 
be seen between the results with and without considering the extension of the middle plane. The 
strain due to the extension in the middle plane ε0 is also shown in the figure. It is far smaller than 
the total strain.  
 
However, Ionina and Korobkin (1999) argued that the elongation in the middle plane matters in 
their calculations. This is because more elastic modes were used by them and the extension of the 
middle plane is increasingly important for increasing order of mode. Here in the calculations, only 
the two lowest elastic modes are included, so the extension in the middle plane does not show an 
obvious significance. Therefore in the following calculations, this effect will be neglected, i.e. only 
the normal displacement w is solved and there is no need to solve the tangential displacement v.  
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Fig. 5.4. Effect of the elongation of the middle plane. 
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5.3.3 The higher-order modes 
 
The choice of the number of elastic modes is discussed by using Von Karman’s method to simulate 
the water flow. The importance and influence of different modes are assumed to be similar when 
different methods for the water flow are used. Nm is denoted as the maximum serial number of the 
modes in the calculations. Then the total number of the elastic modes used is (Nm−1). The results 
for Nm = 3, 4, 7, and 10 are shown in Fig. 5.5. The results converge when Nm is increasing.  
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Fig. 5.5. Effect of higher modes and convergence with respect to the number of modes.  
 
 
To show the importance of different modes in the experiments, a simple Fourier transformation is 
applied to the measured strain time history at θ =0 in Arai and Miyauchi (1998) (shown in Fig. 
5.9(a)). The amplitudes depending on frequencies can be seen in Fig. 5.6 (a). The first three modes 
for n = 2, 3 and 4 corresponding to the three peaks at frequencies 49Hz, 195Hz and 341Hz are the 
most important. However, the amplitude of the mode n=4 is only 10% of the amplitude of mode 
n=2. The amplitude of any higher modes for n>4 is less than 5% of the amplitude of mode n=2. 
Actually, the effects of the higher modes are not significant except in the initial stage, because the 
higher modes will decay due to structural damping in reality. Therefore, only two elastic modes for 
n = 2, 3 are used in the calculations for Arai and Miyauchi (1998)’s experiments. The effects of 
modes for n ≥ 4 can be seen from Fig. 5.5. When more modes are included, smaller oscillations 
will appear, the extreme values become larger and the strain increases faster initially.  
 
A similar Fourier analysis is performed for the experimental results in Shibue et al. (1994)’s 
experiments. The measured strain responses varying with time at four positions at θ =0, 10º, 20º 
and 30º are shown in Fig.  5.15. The amplitudes depending on frequencies for each time history can 
be seen in Fig. 5.6(b). The results for θ =0 and θ = 10º only show slight difference. The first three 
elastic modes are the most important for these two cases. However, for θ = 20º, the modes n = 2 
and 3 matter, while for θ = 30º, the modes n = 2 and 4 matter. The numerical calculations for this 
experiments will be performed by using Nm = 3 and Nm = 4 respectively. The results will be 
discussed later, from which we can see the effects of the higher elastic modes to the strain 
responses. 
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Fig. 5.6. Fourier analysis of the experimental results: (a) Arai & Miyauchi (1998); (b) Shibue et al. (1994). 
 
 
5.3.4 Influence of the rigid-body motion  
 
As mentioned earlier, both a fully coupled analysis and a partly coupled analysis can be applied to 
solve the problem. The difference between them is whether the rigid-body motion is solved 
simultaneously with the water flow and the structural responses. In the partly coupled analysis, the 
rigid-body motion is separately calculated. Von Karman’s theory is now applied together with the 
modal analysis to perform both a fully coupled analysis and a partly coupled analysis. From the 
comparison between the results by these two kinds of analyses, the influence of the variation of the 
rigid-body motion can be seen. 
 
The strain responses by using these two different methods are compared in Fig. 5.7 for two 
different experiments. The left figure shows the results at position θ=0 for the case in Arai and 
Miyauchi’s experiments with h = 1.0m. A substantial difference can be seen between the two 
calculations. It implies that the interaction between the rigid-body motion and the structural 
response is important. Fig. 5.7(b) shows the results at position θ=0 for the thick shell case in Shibue 
et al.(1994)’s experiments with h = 1.0m. The difference between the two calculations is much 
smaller than in the previous case.  
 
Fig. 5.8 presents the rigid-body accelerations calculated by two different methods for those two 
cases.  For the first case, the acceleration calculated in a fully coupled analysis oscillates with large 
amplitudes around the acceleration calculated in a partly coupled analysis. This is because the 
structural vibrations cause oscillations in the pressure on the wetted surface. The oscillations in the 
pressure cause oscillatory vertical forces and accelerations in a fully coupled analysis. A similar 
situation is shown in Fig. 5.8 (b) for the other case. However, the amplitudes of the oscillations are 
much smaller than in the case in Fig. 5.8 (a). It means the influence of the rigid-body motion is less 
important in the latter case. One of the reasons for this can be the fact that the shell model in 
Shibue et al. (1994)’s tests is more rigid than the shell model in Arai and Miyauchi (1998)’s tests. 
All the calculations in later discussion will be based on fully coupled analyses. 
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Fig. 5.7. Comparison of strain responses by the partly coupled and the fully coupled analysis.  
(a) Calculations for Arai and Miyauchi’s experiments; (b) Calculations for Shibue et al.’s experiments. 
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Fig. 5.8. Rigid-body accelerations by the partly coupled analysis and the fully coupled analysis.  
(a) Calculations for Arai and Miyauchi’s experiments; (b) Calculations for Shibue et al.’s experiments. 
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Fig. 5.9. Experimental results and different calculations for Arai & Miyauchi’s experiments: (a) Strain on the 
inner surface at the lowest position; (b) Rigid-body velocity. 
 
 

5.4 Coupled analysis by the BEM and the modal analysis 
 
5.4.1 Calculations compared with Arai and Miyauchi’s experiments 
 
Fig. 5.9 (a) shows the strain responses calculated in the fully coupled analysis by the BEM and the 
modal analysis, compared with the experimental results and the calculations by Arai and Miyauchi 
(1998).  Von Karman’s method is coupled with the modal analysis in the initial phase from t = 0 to 
0.0015 s before the BEM takes over the calculations. In the calculations by Arai and Miyauchi 
(1998) von Karman’s method is applied to calculate the rigid-body motion separately. This fact 
causes errors because the rigid-body motion should be solved simultaneously with the fluid flow 
and the structural response. The inclusion of the rigid-body motion into the fluid-structure coupled 
analysis has been shown to be important in earlier discussions. Here, in Fig. 5.9(b), the rigid-body 
velocities calculated in the fully coupled analysis by the BEM plus the modal analysis (Coupled) 
and the results by using von Karman’s method without interactions with structural responses 
(Uncoupled) are compared. There are obvious differences between these two calculations, 
especially at a later stage after t = 0.005s. The results by the coupled analysis oscillate around the 
results by the uncoupled analysis.  
 
The effect of the additional weights on the shell in the experiment can be used to partly explain the 
phase difference between the numerical results and the experiments. The mass of the aluminum 
shell is small, so the additional mass on the shell model due to the cables and connectors is a non-
trivial percentage, about 11%, of the total mass of the model. This additional mass will affect the 
structural response. However, these additional parts are concentrated in certain areas on the model, 
so it is hard to exactly include their effects in the structural model. Alternatively, Ionina & 
Korobkin (1999) distributed the total mass uniformly along the shell and obtained an equivalent 
density of the shell ρ0 = 3.04×103kg/m3, which is larger than the density of the material ρs. This 
approach is followed here. The ρ0 is used to replace ρs in the calculation. The calculated results and 
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the previous results are compared with the experiments in Fig. 5.10. Then it is found that the phase 
and the extreme values agree better after considering the additional mass effect.  
 
The frictional force on the sliding system in the tests can also have an effect on the strain response. 
As a result of the friction, the initial water entry speed of the model will be smaller than V0 = 
4.429m/s. Assume that the speed loss is 10%, then the initial speed is corrected as V0 = 3.968m/s. 
The resulting strain responses are shown in Fig. 5.11. The extreme values are smaller when the 
water entry speed is reduced; however, the phases are not obviously affected by the change of the 
water entry speed. 
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Fig. 5.10. Additional mass effect.           Fig. 5.11. Speed loss due to the frictional force. 
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Fig. 5.12. Effect of the initial impact.           Fig. 5.13. Influence of natural frequencies. 
 
 
The initial force impulse also matters for the water entry of a cylindrical shell, especially when the 
mass of the shell is small. This effect can be seen by using different flat plate theories to simulate 
the initial phase. The strain responses for different calculations are shown in Fig. 5.12. Von 
Karman’s method is used in the initial 0.0010s in ‘Calculation A’. In ‘Calculation B’ Wagner’s 
method is used in the initial 0.00025s, then von Karman’s method is used from t = 0.00025s to 
0.0010s. After t = 0.0010s, the BEM takes over the calculations. Wagner’s method is expected to 
be more accurate initially than the von Karman’s method. However, this superiority only exists for 
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a very short time before the local contact angle, which means the angle between the tangential line 
through the body-water surface intersection and the calm water surface, is very small, say, less than 
10 degree according to the study on a wedge (Faltinsen, 2005, Chapter 8). In the calculated 
cylinder case, the local contact angle predicted by Wagner’s method is larger than 10 degree after t 
= 0.00025s. So the calculation is transferred to von Karman’s method. The BEM can not start from 
this time instant because the wetted body surface is too small and the increasing of the wetted 
surface is too fast, so that it is difficult to acquire a satisfactory accuracy by the BEM starting from 
this time instant. From Fig. 5.12, the effect of the initial impact force can be seen.  A larger initial 
force predicted by Wagner’s method makes the strain response increase faster initially, and makes 
the extreme values in the time history larger.  
 
Eq. (5.23) has been used in the results discussed above. As mentioned before, when the natural 
frequencies are calculated by different ways, i.e. by using different structural models, as shown in 
Eq. (5.22), (5.23) and (5.24), there will be small differences in the frequency values. For the case 
studied above, the lowest frequency by Eq. (5.22) and (5.23) are respectively 89.3Hz and 84.0Hz, 
so the natural periods are 0.0112s and 0.0119s. However, in Fig. 5.13, where calc.1, calc.2 and 
calc.3 correspond respectively to Eq. (5.22), (5.23) and (5.24), the difference in the lowest periods 
between calc.1 and calc.2 is about 0.001s which is larger than (0.0119-0.0112)s=0.0007s. This 
means the difference in the natural frequency is enlarged due to the fluid-structure interaction. 
Further, different determinations of the natural frequencies cause discrepancies not only in the 
phase, but also in the extreme values. The difference between calc.1 and calc.2 shows the 
difference between a shell model and a ring model. The difference between calc.2 and calc.3 
implies the possible effect of the twist of the structure.  
 
It has been detected that the calculated pressure on the whole wetted shell surface can be below the 
atmospheric pressure pa during the water impact. This means ventilation can happen during the 
impact. The detailed mechanism of ventilation is not known. A triggering mechanism can be 
cavitation (Faltinsen, 2005). If the ventilation occurs, an air cavity can be enclosed on the shell 
surface by the water. The air cavity can affect the structural responses and may later collapse into 
bubbles. The bubble collapse is complicated and can not be simulated by the present BEM.  
 
However, the predicted pressure was never as low as the vapor pressure, which means that 
cavitation does not occur according to the present numerical results. Other effects such as the 
compressibility of the water and the possible formation of air cushions are expected to have 
negligible effects. The reason is the short duration relative to the time duration which is necessary 
for the structure to respond.  
 
3D hydrodynamic and structural effects are believed unimportant for the predicted strain responses. 
The 3D effect in the structure model depends on the end conditions of the shell. According to the 
experiments, the ends were free and only two soft rubber membranes were used to cover the ends 
of the cylindrical shell. Then there will be little constraint between two adjacent cross-sections in 
the shell, which means the deflection of the shell can be assumed two-dimensional. The 3D effects 
in hydrodynamic forces are also negligible. According to the experiments, two end plates are 
settled in the tank to prevent the water flow around the ends of the shell and they can therefore 
cause 2D flow.  
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5.4.2 Comparisons between the BEM and the flat plate theories 
 
The results by using the BEM differ from the results by using a flat plate theory in the later stage of 
the water impact. When the submergence becomes larger, the exact descriptions of the flow 
separation and the exact free surface and body boundary conditions have more obvious effects on 
the structural responses.  
 
Fig. 5.14 (a) shows the comparison of the results by the BEM (von Karman’s method is used in the 
initial 0.0015s) and by only the von Karman’s method. Eq. (5.23) is used to determine the natural 
frequency. An obvious difference between these two calculations appears after about t = 0.012s. 
This implies that the physical effects due to the exact body surface conditions and free surface 
condition, as well as the flow separation, matter at a later time. The results by von Karman’s 
method vary more rapidly than the results by the BEM after about t = 0.012s. So it seems that the 
lowest natural period predicted by the BEM is closer to the lowest natural period in the experiments 
than that predicted by von Karman’s method. However, it is difficult to judge which method 
predicts better results than the other, because there is uncertainty related to the natural periods in 
the experiments due to the additional weights on the shell model, as discussed earlier in Fig. 5.10.  
 
Similarly, Fig. 5.14(b) shows the results by only the Wagner’s theory and the results by the BEM 
while the initial 0.0015s is simulated by Wagner’s theory. Although in Wagner’s theory, the uprise 
of the free surface is considered, it does not give better agreement with the BEM than von 
Karman’s method. One reason is the fact that Wagner’s method only gives better description of the 
free surface when the local contact angle is small. Further, the non-viscous flow separation along 
the circular surface is not considered in Wagner’s theory. Therefore, the treatment of the free 
surface in Wagner’s theory is not any better than von Karman’s theory at a later stage when flow 
separation occurs. In addition, the peak values predicted by the BEM in Fig. 5.14(b) are larger than 
the results by the BEM in Fig. 5.14(a), because initially Wanger’s method predicts larger pressures 
than von Karman’s method. This is consistent with the effects shown in Fig. 5.12.    
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Fig. 5.14. Comparisons between the BEM and flat plate theories: (a) BEM versus von Karman’s theory; (B) 
BEM versus Wagner’s theory. 
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5.4.3 Calculations compared with Shibue’s experiments 
 
The BEM and modal analysis are used to study the case in Shibue et al. (1994)’s experiments for h 
= 1.0m. The strain responses are calculated at four positions at θ =0, 10º, 20º and 30º, and 
compared with the experimental results. Fig. 5.15 shows the results by using two elastic modes and 
Fig. 5.16 shows the results by using three elastic modes. Von Karman’s method is applied to 
simulate the initial stage from t = 0 to 0.0012s. A shell model is assumed, which means the natural 
frequencies are calculated from Eq. (5.22). From Fig. 5.15, we see that the calculations agree well 
with the experiments, except that the oscillations in higher modes are not captured. Then from Fig. 
5.16, we can see higher mode oscillations because one more mode n=4 is included. Especially, at θ 
=30º the strain decreases to negative values from t = 0. This feature is shown when mode n=4 is 
included. At θ =20º the measured strain also decreases to negative values at t =0. However, even 
the calculations with Nm = 4 do not show this. Much higher modes need to be included to show this 
effect. The higher modes are more important in the initial stage than in the later stage. When higher 
modes are included, the maximum values become a little larger. However, the results will converge 
when more and more modes are included, similarly as shown in Fig. 5.5. 
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Fig. 5.15. Comparisons between the experimental and numerical strain responses at four positions for Shibue 
et al.’s experiments. Solid lines: Experiments; Dashed lines: Numerical results by the BEM and the modal 
analysis with two elastic modes n = 2 and 3 (Nm = 3).  
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Fig. 5.16. Comparisons between the experimental and numerical strain responses at four positions for Shibue 
et al.’s experiments. Solid lines: Experiments; Dashed lines: Numerical results by the BEM and the modal 
analysis with three elastic modes n= 2,3 and 4 (Nm = 4).  
 
 
The initial impact force will affect the responses at a later time. Fig. 5.17 shows the results when 
Wagner’s theory is used in the initial stage from t = 0 to t = 0.0012s. The strain responses are 
obviously different from the results by using von Karman’s theory in the initial stage. The 
maximum values become larger.  
 
From Fig. 5.18 we can see the time histories of the rigid-body acceleration and rigid-body velocity 
in the two different calculations by using different flat plate theories initially. When Wagner’s 
theory is used in the initial time, the oscillation amplitudes of the acceleration in later calculations 
by the BEM are larger than when von Karman’s theory is used initially. This corresponds to the 
larger amplitudes in the strain responses shown in Fig. 5.17. The obvious difference shows the 
importance of the modeling of the initial stage. When von Karman’s method is used initially, the 
calculations agree much better with the experiments, but this does not mean that von Karman’s 
method is more accurate than Wagner’s theory in the present case. Similar uncertainties in the 
experiments as discussed in the case of Arai and Miyauchi’s experiments also exist here, such as 
the frictional force on the sliding system and the effect of the additional mass (although this effect 
is not so important as in that case). 
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Fig. 5.17. Strain responses at four positions for Shibue et al.’s experiments. Exp.: Shibue et al. (1994); Num.: 
Fully coupled analysis by the BEM and the modal analysis while the water flow is simulated by Wagner’s 
theory in the initial 0.0012s and two elastic modes are included (Nm = 3). 
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Fig. 5.18. Comparison of the rigid-body accelerations and velocities for Shibue et al.’s experiments between 
the two calculations by using Wagner’ theory and von Karamn’s theory in the initial 0.0012s, respectively. 
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CHAPTER 6  
 
 
Heaving of a two-dimensional section piercing the 
free surface 
 
 
 
In this chapter, the hydrodynamic forces on a 2D free-surface piercing section are numerically 
calculated in the time domain by applying the BEM to simulate the fluid field. The shape of the 
section can be arbitrary. A numerical damping beach is applied to damp out the waves generated by 
the heaving body. The numerical method is first verified and validated by simulating the heaving of 
a thin wedge and a half-submerged circular cylinder heaving with small amplitudes. Then the 
heave motions of a bow-flare section with two different mean drafts and a V-shaped section are 
respectively studied. The heave amplitudes are quite large compared with the beam at the mean 
water surface. The numerical results are compared with the experiments by Tasai & Koterayama 
(1976). 
 

6.1 Numerical damping beach 
 
A 2D bow-flare section symmetric about its vertical axis is forced to oscillate vertically on the free 
surface (Fig. 6.1). Waves will be generated and then be propagating outwards. Due to the 
symmetry, only one half of the fluid domain is studied. A truncation boundary is placed at a 
distance LT away from the symmetry line of the body. The forced heave motion is given by 
 

( )sinaZ Z tω= −     for t≥0    (6.1) 
 
where Za is the heave amplitude in meter, ω is the frequency in radian per second. Initially the body 
is at its mean position. Then it starts oscillating by first moving downwards. By using the beam B 
at the mean water line as the characteristic length, the heave amplitude and frequency can be 
normalized respectively by 
 

0.5
aZ
B

ε =  and  
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ωξ =  
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Fig. 6.1. Coordinate system and definitions in the numerical calculations. 
 
 
An outgoing condition has to be satisfied at the truncation boundary. There are many different 
ways to numerically damp out waves generated from the heaving body. Here the ‘numerical beach’ 
method proposed by Clément (1996) is followed. Right upstream of the truncation boundary, a 
damping zone with length LD is situated. In the damping region, a dissipative term ( ) /y nν ϕ− ∂ ∂  is 
added to the right hand side of the dynamic free surface condition in Eq. (2.4). So the free surface 
condition in the damping zone is 
 

( )21

2

D
gz y

Dt n

ϕ ϕ
ϕ ν

∂
= − + ∇ −

∂
  for y>(LT-LD)  (6.2) 

 
The absorption coefficient ( )yν is given by 
 

3 2
0( ) ( 2 3 ) yν ν η η= − +  for 0< 1.0η <    (6.3) 

 
where η = (y-(LT –LD ))/LD is a local non-dimensional coordinate, the maximum absorption 
coefficient is ν0 = β0 (0.5gB)1/2 and β0 is a non-dimensional parameter. The parameter β0 and the 
lengths LT and LD must be properly chosen to gain the best absorption effects without affecting the 
forces on the body.  
 
In the calculations in this chapter, LD is 3λ and LT is larger than 6λ, where the wavelength λ is 
estimated by 2πg/ω2. The parameter β0 is chosen between 0.2 ~ 0.36. This damping beach approach 
is more efficient for higher frequencies (Clément 1996). For lower frequency cases, the energy 
absorption can be insufficient. Energy absorption coefficient is defined by the ratio of the absorbed 
wave energy to the total wave energy before the damping region. The energy absorption coefficient 
can be estimated in the numerical calculations. In most cases examined in this chapter, the energy 
absorption coefficients are larger than 95%, but for some very-long-period cases, the coefficients 
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can be lower than 80%. However, this deficiency can be somewhat made up by using larger LD and 
LT. Thus more energy can be absorbed during the propagation and reflection in the damping region. 
Further, it will take longer time for the reflected energy to arrive the heaving body. Actually, the 
calculation is stopped before an obvious influence from the reflected energy is detected, e.g. when 
it is found that the force history shows periodic disturbance such as a small periodic change of the 
amplitude. 
 

6.2 Force coefficients 
 
From Bernoulli’s equation the pressure on the body surface is calculated from Eq. (2.7). Then the 
total vertical force on the section with unit length can be calculated by integrating the pressure 
times the z-component of the normal vector on the wetted body surface. A time series of the 
vertical force F(t) can be obtained in a time marching procedure. The time series can be Fourier 
expanded as 
 

(1) ( 2 ) ( 3 )

0 1 2 3
0

sin( ) sin(2 ) sin(3 ) ...( )
N

n a a a
n

t t tF F F F F Ft ω δ ω δ ω δ
=

+ + + + + + += =∑   (6.4) 

with 

( )0

0
0

1 t mT

t
F F t dt

mT

+

= ∫  

( ) ( )0

0

( ) 2
cos sin

t mTn

an t
F F t n t dt

mT
δ ω

+

= ∫ ,   n = 1, 2, 3, …, N 

( ) ( )0

0

( ) 2
sin cos

t mTn

an t
F F t n t dt

mT
δ ω

+

= ∫ , n = 1, 2, 3, …, N 

 
where the coefficient F0 is the total mean force, the coefficient Fan is the amplitude of the nth order 
harmonic force and δ(n) is the phase angle of the nth order harmonic force. F(t) is positive when it is 
upwards. The time series used in the calculation of the coefficients starts from time t0 to t0+mT 
where T = 2π/ω is the period of the forced oscillation and m is the number of periods. The starting 
time t0 should ideally be the time when the transient effects disappear and steady-state condition is 
obtained.  
 
The harmonic force amplitudes can be non-dimensionalized as 
 

( )22 / 2
na

na n

F
F

g Bρ ε
=      (6.5) 

 
So the first, second and third order harmonic force amplitudes are non-dimensionalized as 
Fa1/(ρgBZa), Fa2 /(2ρgZa

2) and Fa3 /(4ρgZa
3/B), respectively. The second order mean force is 

calculated using F0
(2) = F0 – ρgS0, where S0 is the mean submerged area of the cross-section. The 

second order mean force is non-dimensionalized as F0
(2) /(2ρgZa

2).  
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Further, the added mass and damping coefficients can be calculated from the first order force 
amplitude. The first harmonic force can be expanded and expressed as  
 

( ) ( ) ( )(1) 2

1 33 33 33sin( ) sin cosa a a aAt Z C Z t B Z tF ω δ ω ω ω ω−+ = + +   (6.6) 
 
where A33, B33 and C33 are added mass, damping and restoring coefficients in heave respectively. 
C33 is known from the geometry of a given cross-section. So the added mass and damping 
coefficients can be written as 
 

(1)

1 33
33 2

cosa a

a

F C Z
A

Z

δ

ω

−
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−
     (6.7) 
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33
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F
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Z

δ

ω
=       (6.8) 

 

6.3 Validation and verification 
 
The numerical method used to calculate the forces on a 2D heaving body is verified and validated 
by comparing the numerical calculations with other theoretical results and experiments for some 
cases without strongly non-linear effects. The heave motions of a thin wedge with three different 
heaving amplitudes and the heave motions of a half-submerged circular cylinder with a small heave 
amplitude are studied.  
 
6.3.1 Heaving of a thin wedge 
 
Yamashita (1977) did experiments with oscillating cylinders of different sections, including two 
elliptic cylinders, a circular cylinder, a stern-section cylinder and a wedge. The first, second and 
third order hydrodynamic forces are analyzed from the experimental force data. In this section, the 
cases for the wedge are numerically simulated by the present BEM and the calculated results are 
compared with the experimental results. The compared results include the added mass and damping 
coefficients in heave, the amplitude and phase angle of the second order harmonic force, the second 
order mean force and the third order force amplitude.  
 
The parameters of the wedge model in the experiments are given as the following: length of the 
model L = 0.99m; beam B = 0.1584 m; half beam b = 0.0792m; draft D = 2.5a = 0.1981m. The 
dimensions of the water tank in the tests are given as Length×Width×Depth = 15m×1.0m×0.6m. 
The cross-section of the thin wedge is shown in Fig. 6.2. Three heave amplitudes were used in the 
experiments for the wedge section. They are given by ε = Za/b = 0.2, 0.4 and 0.6. For each heave 
amplitude, a series of heaving tests were performed at different heave frequencies. In the numerical 
calculations, the frequencies are given by ξB= bω2/g = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 and 
1.1 for each heave amplitude. An additional frequency with ξB = 0.1 is used for ε = 0.6.  
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Fig. 6.2. Wedge section in the experiments by Yamashita (1977). 

 
 
In the comparisons in Fig. 6.3 - Fig. 6.8, “Num.” means the numerical results by the present BEM, 
“Exp.” means the experimental results by Yamashita (1977).  
 
Fig. 6.3 and Fig. 6.4 show the calculated and experimental results of the added mass coefficients 
and damping coefficients for three different heave amplitudes at ε = 0.2, 0.4 and 0.6. The added 
mass and damping coefficients are non-dimensionalized as A33/(ρb2) and B33 /(ρb2(g/b)1/2). For the 
thin wedge, the linear restoring coefficient C33 = ρgB is used in the calculation of the added mass. 
Good agreement between the calculations and experiments can be seen. It means that the BEM 
gives good predictions of the first order harmonic forces on a heaving thin wedge.  
 
Fig. 6.5 shows the second order harmonic force coefficients by the calculations and experiments for 
the three different heave amplitudes. Fig. 6.6 shows the results of the phase angle of the second 
order harmonic force for ε = 0.6. Good agreement is also shown by these results. In Fig. 6.7, the 
second order mean force coefficients are given. The results denoted by “Theo” mean the theoretical 
results by the second-order theory in Papanikolaou & Nowacki (1980). The numerical results 
clearly differ from the experimental results, but agree much better with the theoretical results. The 
reason why the experimental data disagree with the numerical and theoretical results is unknown.   
 
If the effects of the finite water depth and the three-dimensionality can be neglected, a quasi-steady 
analysis can be applied. The analysis will show that for very low frequency cases the second order 
mean force coefficient F0

(2) /(2ρgZa
2) tends to 0.1. This proves that the numerical and theoretical 

results are reasonable. 3D effects may be negligible in the model tests because there are only small 
gaps between the ends of the model and the tank wall. The finite water depth will have effects for 
lower frequency cases. The water depth 0.6m is small relative to the wavelengths estimated for the 
lower frequency cases. For instance, the estimated wavelength is 2.3m for ξB = 0.2. However, 
neglecting this finite depth effect will not change the order of magnitude of the results. Therefore, it 
is assumed in the quasi-steady analysis that the water has infinite depth and the water flow is 
completely 2D. 
 
The quasi-steady analysis is given for a very low frequency situation as follows. Because the heave 
frequency is very low, the hydrostatic force on the body dominates and the hydrodynamic force can 
be neglected. So the force on the section can be written as 
 

D

B

4
5

B
D
=

b = B/2
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( ) 0.5 ( )dF t BD F tρ= +      (6.9) 
 
where the first term represents the mean buoyancy force and the dynamic buoyancy force Fd (t) can 
be expressed as 

( ) ( ) ( )
0

t

d wpF t gA t dZ tρ= −∫     (6.10) 

 
The water-plane area can be written as 
 

( ) [ ]( )wp

B
A t D Z t

D
= −      (6.11) 

 
Inserting Eq. (6.1) and Eq. (6.11) into Eq. (6.10), one has 
 

( ) [ ]
2

sin 1 cos(2 )
4

a
d a

Z
F t gBZ t gB t

D
ρ ω ρ ω= + −    (6.12) 

 
From the first term and the definition of the restoring force coefficients we know C33 = ρgB. The 
time independent term gives the second order mean force as 
 

2
( 2 )

0 4
aZ

F gB
D

ρ=       (6.13) 

 
So the nondimensional force coefficient F0

(2) /(2ρgZa
2) is B/(8D). For the present thin wedge, B/D 

= 4/5, so the second order mean force coefficient is 0.1.  
 
Fig. 6.8 shows the third order harmonic force coefficients by calculations and experiments. The 
agreement is better in the low-frequency cases than in the cases for higher frequencies. Kashiwagi 
(1996) also numerically calculated the third order force coefficients in this problem. He mentioned 
that the accuracy of the experimental results may be not satisfactory, because the absolute values of 
the third-order forces are very small.  
 
From the comparisons above, we can see that the numerical method can well predict the first order, 
second order forces and show reasonable predictions of the third-order force. The validity of the 
BEM used in the heaving problem, as well as the numerical damping beach method, is therefore 
proved. 
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Fig. 6.3. Added mass coefficients for a heaving thin wedge versus heave frequency for three different heave 
amplitudes ε = 0.2, 0.4 and 0.6. 
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Fig. 6.4. Damping coefficients for a heaving thin wedge versus heave frequency for three different heave 
amplitudes ε = 0.2, 0.4 and 0.6. 
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Fig. 6.5. Second-order harmonic force coefficients for a heaving thin wedge versus heave frequency for three 
different heave amplitudes ε = 0.2, 0.4 and 0.6. 

 

            

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4
-180

-120

-60

0

60

120

180

 

 

Ph
as

e 
an

gl
e 
δ(2

)  (d
eg

re
e)

ξB

ε = 0.6
 Exp.
 Num.

 
 

Fig. 6.6. Phase angle of the second order harmonic force versus heave frequency for a heave amplitude ε = 0.6. 
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Fig. 6.7. Second-order mean force coefficients versus heave frequency for a heave amplitude ε = 0.6. 
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Fig. 6.8. Third-order harmonic force coefficients for a heaving thin wedge versus heave frequency for three 
different heave amplitudes ε = 0.2, 0.4 and 0.6. 
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6.3.2 Heaving of a circular cylinder with small amplitudes 
 
The numerical method can also be applied to calculate the forces on a heaving circular cylinder. 
Tasai & Koterayama (1976) conducted experiments of a semi-submerged circular cylinder in 
forced heave motions. The beam of the section B = 2R with R the cylinder radius. Only the cases 
with heave amplitude ε = 0.2 are studied numerically and compared with the experiments here.  
This amplitude is relatively small, so that a linear theory is expected to give good predictions of the 
first order forces.  
 
Fig. 6.9 shows the non-dimensional added mass and damping coefficients from the experiment and 
by the numerical calculations. The added mass and damping coefficients are non-dimensionalized 
by A33/(ρS0) and B33 (0.5B/g)1/2/(ρS0), where S0 = 0.5πR2 is the mean submerged area of the section. 
The theoretical results denoted as “Theo” were calculated by Tasai & Koterayama (1976) by a 
linear theory.  
 
Fig. 6.10 shows the second order mean force coefficients and the second order harmonic force 
coefficients. The experimental data for Fa2 are obtained from Tasai & Koterayama (1976), but the 
data for F0

(2) are obtained from Yamashita (1977) because F0
(2) are not available in Tasai & 

Koterayama (1976). The theoretical results were calculated by a second order theory in 
Papanikolaou & Nowacki (1980).  
 
The good agreement between the calculations and the experimental and theoretical results confirms 
the validity of the adopted numerical models and the accuracy of the present numerical method.  
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Fig. 6.9. Added mass and damping coefficients for a heaving semi-submerged circular cylinder versus heave 
frequency. Exp. : Experimental results; Cal. : Numerical results; Theo. : theoretical results. 
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Fig. 6.10. The second order force coefficients for a heaving semi-submerged circular cylinder versus heave 
frequency. Exp. : Experimental results; Cal. : Numerical results; Theo. : theoretical results. 
 
 

6.4 Heaving of a bow-flare section with a deep draft  
 
Tasai & Koterayama (1976) also performed heaving tests of a bow-flare ship section. The bow-
flare ship cross-section with a deep draft is shown in Fig. 6.11(a). The draft is D = 0.120m. The 
beam at the calm water level is B = 0.0626m. An exact profile for the bulbous bow section was 
presented in Tasai & Koterayama (1976). The profile is reproduced and shown in Fig. 6.11(b) 
when the section is at its mean position. The section is forced to heave on the free surface with the 
three amplitudes, i.e., Za = 0.02m, 0.04m and 0.06m. The first amplitude is relatively small, but the 
other two amplitudes are quite large relative to the beam. Obvious nonlinear effects can be seen for 
the cases with larger amplitudes. 
 
The force coefficients versus the oscillation frequency are shown in Fig. 6.12 for this bow flare 
section. The calculations are compared with the experiments in Tasai & Koterayama (1976). The 
added mass and damping coefficients are also compared with the linear-theory results from Tasai & 
Koterayama (1976). In the figures, Exp. means experimental results; Cal. means calculations; Cor. 
means calculated results after corrections. 
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Fig. 6.11. The bow-flare section with a deep draft in the experiments by Tasai & Koterayama (1976) at the 
mean position. 
 
 
For a small heave amplitude Za = 0.02m, the calculations are in good agreement with the model 
tests. The calculated damping coefficients also agree well with the linear-theory results. 
 
From Fig. 6.12 it can be seen that the damping coefficients are underestimated. This may be caused 
by neglecting the viscous effects in the calculations. The viscous effects can be discussed similarly 
as in Baarholm (2001). In particular, the vertical viscous force is written as 
 

1

2v DF C B Z Zρ= −      (6.14) 

 
where the drag coefficient CD should depend on Za, ω and t, or on non-dimensional parameters 
such as Reynolds number Rn, Keulegan-Carpenter number KC and normalized frequency ξB.  Here 
the CD is just assumed constant and chosen as CD = 0.2 for Za= 0.04m and CD = 0.3 for Za= 0.06m. 
These coefficients have been subjectively chosen in order to obtain the best overall agreement. 
Inserting Eq. (6.1) into Eq. (6.14), one can obtain 
 

2 21
cos cos

2v D aF C BZ t tρ ω ωω=     (6.15) 

 
The time dependent factor in this expression can be Fourier expanded as 
 

0.0626m 
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When n is even the coefficient bn is zero. The first order term from the expansion is b1cos(ωt) 
where the coefficient b1 = 8/(3π). The viscous force Fv can also be written as 33

vB Z− . So the viscous 
damping coefficient is obtained from 
 

( ) ( )
33

2 21

2

8
cos ( ) cos

3
v

D a aBC BZ t Z tρ ω ω ω ω
π

−= −    (6.17) 

 
i.e. 33 4 /(3 )v

D aB BC Zρ ω π= . 
 
The damping coefficients corrected with this additional damping contribution are also presented in 
Fig. 6.12 and show a much better agreement with the experiments. 
 
The Reynolds numbers in the examined cases are of the order of 104, so the viscous shear force on 
the body surface is unimportant. The drag force is mainly due to the pressure induced by the 
viscous flow separation.  
 
The drag force coefficient CD of a circular cylinder in infinite fluid and subcritical flow is 
approximately 0.2KC (Faltinsen 1990), when KC>≈2 and KC<≈10. If one assumes that the 
diameter of the cylinder equals the maximum beam of the bulb, i.e. Bm = 0.102m, then KC = 2 πZa 
/Bm can be estimated to be 2.5 or 3.7 for Za=0.04 or 0.06m, respectively, which gives CD ≈ 0.5 or 
0.74. However, one can not directly apply these results to the bulbous bow section. During the 
water entry phase, the vortex shedding will mainly affect the pressures on the top part of the bulb. 
Because the associated area is small and the z-component of the normal vector in this area is also 
small, the resulting vertical force contribution is expected to be small. However, the vertical force 
contribution will be significant during the water exit phase when the vortex shedding affects the 
pressures on the lower round side of the bulb. Thus, one can expect that the CD here is about the 
half of 0.5 or 0.74 because a water exit phase lasts a half cycle. Hence, the selected CD values have 
reasonable order of magnitude.  
 
Further, the amount of shed vorticity is affected by the free surface (Faltinsen 1993). So the CD 
should be frequency dependent. This fact can also be seen from the varying agreement between the 
experimental results and the corrected numerical results of the damping for different frequencies.   



116     Chapter 6 Heaving of a two-dimensional section piercing the free surface 

 

 

Fig. 6.12. Force coefficients for a heaving bulbous bow section with deep draft versus heave frequency for 
three different heave amplitudes. Exp: Experimental results by Tasai & Koterayama (1976); Cal.: Calculated 
results by the present BEM.  
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6.5 Heaving of a bow-flare section with a shallow draft 
 
Tasai & Koterayama (1976) performed the similar tests for the same bow-flare ship section 
discussed in section 6.4 with a shallow mean draft. The section at its mean position is shown in Fig. 
6.13. The draft is D = 0.066m. The beam at the calm water level is B = 0.092m. 
 
Fig. 6.13 shows the results for the bulbous bow section with shallow draft. Similarly as in the deep 
draft case in section 6.4, the numerically calculated results agree well with the experiments for Za = 
0.02m. The calculations for the added mass and damping coefficients for Za = 0.02m also agree 
with the linear-theory results. However, the calculated damping coefficients for Za = 0.04m and 
0.06m are smaller than the experimental results. The agreement can be improved by adding the 
viscous damping contributions with CD = 0.25 for Za = 0.04m and CD = 0.35 for Za = 0.06m. These 
CD coefficients are also in a reasonable range according to the discussion in the last section.  
 
Non-viscous flow separation may occur at high frequencies for Za = 0.04m and 0.06m. If the 
impact velocity is high enough during the water entry phase, the free surface will separate from the 
curved body surface. In the present numerical simulations, this flow separation can not be included. 
If the flow separates, the separated flow may reattach to the body surface sometime later in the 
evolution and then enclose an air cavity between the water and the body surface. However, the 
cavity flow can not be simulated in the present BEM. Therefore, the free surface is forced to 
remain attached to the body surface all the time, so a wrongly predicted low pressure area will 
appear in the vicinity of the water-body intersection points. As a result, the calculated vertical force 
during the water entry phase will be lower than the force in reality. This can be a reason why the 
computed F0

(2) are smaller than the experimental values at higher frequencies for Za = 0.04 and 
0.06m. However, from the comparison of the results, the influence does not appear to be significant. 
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Fig. 6.13. Bow-flare section with a shallow draft in the experiments by Tasai & Koterayama (1976) at the 
mean position. 
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Fig. 6.14. Force coefficients for a heaving bulbous bow section with shallow draft versus heave frequency for 
three different heave amplitudes. Exp: Experimental results by Tasai & Koterayama (1976); Cal.: Calculated 
results by the present BEM.  
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6.6 Heaving of a V-shaped section  
 
The heaving of a V-shaped section was also studied experimentally by Tasai & Koterayama (1976). 
The deadrise angle of the section is 30º. The dimensions of the cross-section are shown in Fig. 6.15, 
where the section is situated at its mean position. The beam length at the mean water surface is B = 
0.180m, the draft is D = 0.052m. However, the beam at the knuckles was not given in the reference. 
 

 
Fig. 6.15. The V-shaped section in the experiments by Tasai & Koterayama (1976) at the mean position. 

 
 

Fig. 6.16 shows the results for the triangular section. It is noted that the computed added mass and 
damping coefficients at Za = 0.02m do not agree with the linear-theory results at higher frequencies. 
However, the calculations agree better with the experiments. It means that non-linearity is 
important for a V-shaped section with small deadrise angle even for small heave amplitudes. 
 
For smaller amplitudes and lower frequencies, the calculations agree well with the experiments. 
However, a discrepancy arises when the amplitude or the frequency increases. This can not be 
explained by viscous damping effects, because viscous flow separation is not likely to happen on a 
triangular section. Instead, the non-viscous flow separation at the knuckles of the section is a 
possible reason for the discrepancies.  
 
In the computations, it has been assumed that the beam at knuckle Bk (see Figure 6.3) is 
sufficiently large. Because the deadrise angle is fixed, this also implies that the knuckle is high 
enough above the mean water surface. Therefore, in the heave motions the water jet will not reach 
the knuckles and there is no flow separation from the knuckles. However, the knuckle beam in the 
experiments is not specified in Tasai & Koterayama (1976). If the actual Bk in the experiments is 
not large enough, flow separations can happen, which may significantly influence the force time 
histories. This fact is suggested by the better agreement obtained when we assume Bk /2 = 0.3m 
and the flow separation at the knuckles is simulated. The improved results are given for ξB = 1.45 
and ξB = 1.71 with Za = 0.06m. The numerical flow separation model introduced in Chapter 3 is 
applied. The spray from the separated flow is cut away to avoid plunging waves impacting on the 
underlying water surface.  

Knuckle beam Bk 

0.180m 

0.052m 30º 
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Fig. 6.16. Force coefficients for a heaving triangular section versus heave frequency for three different heave 
amplitudes. Exp: Experimental results by Tasai & Koterayama (1976); Cal.: Calculated results by the present 
BEM.  
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It is worth mentioning that for the higher frequency cases at Za = 0.06m for the triangular section, 
3D instabilities in the propagating waves can happen. According to the criterion in Melville (1982), 
a fully three-dimensional instability will occur in a wave train in the water tank for 2πa/λ>=0.31, 
where a is the wave amplitude and λ is the wave length. In that situation a large percentage of 
energy will be dissipated due to breaking waves. Based on the present numerical simulations, the 
nonlinear waves generated by the heaving body in those cases satisfy the criterion for a 3D 
instability. It is also noted that the measured wave elevation in the model tests by Tasai & 
Koterayama (1976) is much smaller than the present calculated results, which suggests that wave 
energy could have been significantly dissipated in reality. It is uncertain whether this instability 
problem will have an effect on the force results, but a possibility does exist. 
  
For Za = 0.06m, the triangular section will move to positions above the mean water level because 
the mean draft D = 0.052 is smaller than Za. However, the section was never observed to be 
detached completely from the water surface in the numerical simulations.  
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CHAPTER 7 
 
 
Steady and unsteady motions of a planing hull in 
calm water 
 
 
 
The vertical forces and pitch moments on a planing hull can be numerically calculated by using a 
2D+t theory combined with the BEM. No incident waves are present in the problems studied in this 
chapter. The hull is either planing steadily in calm water, or forced to oscillate in the vertical plane 
during the planing in calm water. These two problems will be respectively investigated numerically 
in this chapter. The hull is assumed rigid and prismatic, which means hydroelasticity is not 
considered and the cross-section of the hull does not vary along the vessel. 
 

7.1 A prismatic planing hull in calm water 
      

 
 
Fig. 7.1. Hull-fixed coordinates and parameters. 
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Fig. 7.1 shows the body-fixed Cartesian coordinate system for a prismatic hull with the x -
coordinate pointing toward the stern and the y -coordinate toward the starboard. The z -coordinate 
is upward with the z  = 0 plane in the mean free surface. The distance of the centre of gravity 
(COG) above the keel line measured normally to the keel is vcg and the longitudinal distance of 
COG from the transom measured along the keel is lcg. The heave motion η3 is defined positive 
upward and the pitch motion η5 is defined positive as the bow goes up. The deadrise angle β is 
constant along the hull. Three wetted lengths are defined, i.e. Lc, Lk and L, where Lc is the chine 
wetted length, Lk is keel wetted length and L is the mean wetted length. B is the beam of the vessel. 
Then the mean wetted length-to-beam ratio is defined as  
 

( )/ 0.5 /k cw L B L L Bλ = = ⋅ +     (7.1) 
 
In the planing motion, the free surface will rise up on both sides of the V-shaded bottom, as shown 
in the view of section A−A in Fig. 7.1. Point C is the intersection of the bottom surface and a line 
which is normal to the bottom and tangential to the free surface at the spray root region. A 
connection of all such intersection points on each cross-section will form a spray root line, as 
shown in the left figure in Fig. 7.1. This implies that the spray root line is different from the mean 
water line which is the intersection line of the bottom surface and the undisturbed water. The x -
position where the chine wetting starts is denoted as sx  and called the chine wetted position. In 
front of this position, the wetted area is defined to be the body surface below the spray root line. 
Further, one has 

k c sL L x− =       (7.2) 
 
If λw and sx are known, then the keel wetted length and chine wetted length can be solved from Eqs. 
(7.1) and (7.2) as 

/ 2k w sL B xλ= +      (7.3) 

/ 2c w sL B xλ= −      (7.4) 
 
The vertical lift force and pitch moment can be calculated by using the sectional force F3

(2D) (x,t) 
along the length. The vertical force is defined to be positive in the positive z -direction, and the 
pitch moment is about COG and defined positive in the positive y -direction, i.e. the pitch moment 
is positive when it makes the bow go up. They can be written as 
 

( 2 )

3 30

kL DF F dx= ∫       (7.5) 

( ) ( 2 )

5 30

kL D

kF L lcg x F dx= − −∫     (7.6) 

 
The sectional force can be normalized as f3 = F3

(2D)/(0.5ρV2B). So the non-dimensional lift force 
and pitch moment can be written as 
 

( )* * *3
3 32 2 0

/1

2
KL BF

F f x dx
U B

τ
τ

ρ
= = ∫     (7.7) 
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* *5
5 32 3

plF lcg
F F

U B B Bρ
= = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (7.8) 

 
where x* = τ x /B, τ is the trim angle in radian of the planing vessel and lp is the distance measured 
along the keel from the transom stern to the centre of pressure and calculated by  
 

1p cpK

w w

l xL

B B Bλ λ
= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

      (7.9) 

 
The x - position of the centre of pressure cpx in the body-fixed coordinate system is decided by 
 

/ * *

30

/ *

30

 K

K

L B

cp

L B

x f dxx

B f dx

τ

τ

τ
=
∫
∫

      (7.10) 

 
The derivation of Eqs. (7.7) and (7.8) is given in Appendix E. 
 
 

7.2 2D+t theory for a prismatic planing vessel in steady motion 
 
Because the forward speed of a planing vessel is very high, the 2.5D method, or 2D+t method, can 
be applied to calculate the water forces on the planing hull. In a ship-fixed coordinate system, 2.5D 
theory means that the two-dimensional Laplace equation is solved together with three-dimensional 
free surface conditions. If the attention is focused on an Earth-fixed cross-plane, one will see a 
time-dependent problem in the 2D cross-plane when the vessel is passing through it. So the theory 
is also called 2D+t theory. In a 2D+t theory, the time-dependent 2D problem is first solved in 
Earth-fixed cross-sections and then the results will be utilized to obtain the sectional force 
distribution along the planing hull.  
 

 
                         
Fig. 7.2. Application of 2D+t theory to a prismatic planing vessel. 
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As shown in Fig. 7.2, a prismatic planing vessel with a small trim angle τ is moving through an 
Earth-fixed cross-plane with speed U. At time t = t0 the cross-section is just above the free surface; 
at time t = t1 the cross-section is penetrating the free surface; at time t = t2, flow separates from the 
chine line. Thus one can see a process with a V-shaped cross-section entering the water surface in 
this cross-plane with a speed 

V Uτ=       (7.11) 
 
For a steady problem, this procedure will be the same in different cross-sectional planes. So one 
can just solve the water entry problem in one plane and the force distribution along the vessel can 
be obtained by using the relation between the time and the x -coordinate, i.e. 
 

x Ut=       (7.12) 
 
where t0 = 0 is assumed and the x -coordinate is defined in Fig. 7.1. The origin of the x -axis is 
located at the intersection of the keel and the calm water surface. 
 
If the forward speed U and the trim angle τ of the planing hull are given, the constant water entry 
speed V in the equivalent 2D time-dependent problem can be obtained from Eq. (7.11). Then the 
water entry of a wedge section with unit length and constant falling speed V is numerically 
simulated by using the BEM in two dimensions from time t = 0 to t = te, in which te corresponds to 
the position of the transom stern x = Lk. The keel wetted length Lk can be found in the numerical 
calculation as follows. At each time step we can find the point C as indicated in Fig. 7.1. The time 
instant when the point C arrives at the knuckle of the V-section is denoted as ts. Then the position 

sx  can be found as sx = U ts, where the spray-root line intersects with the hard chine. If λw is also 
given, then the keel wetted length can be obtained from Eq. (7.3) and the time te = Lk /U.  
 
In the time-marching procedure, the vertical force on the 2D section with unit length is calculated 
at each time step. So we can obtain a time series of the vertical force F3

(2D) on the 2D section. In the 
2D time-dependent water entry problem, the time is normalized by t* =Vt/B. So we can obtain a 
curve of the normalized force f3 = F3

(2D)/(0.5ρV2B) changing with t* from t* = 0 to t* = Vte/B. 
From Eqs. (7.11) and (7.12), it follows 

* *x
Vt x

t
B B

τ
== =      (7.13) 

 
Then the curve can be transformed into a curve of the normalized sectional force varying with x*= 
τ x /B from x*= 0 to x*= τLk/B, by replacing t* with x*. Recalling Eqs. (7.7) and (7.10), we can 
calculate the normalized lift force on the planing hull and the normalized position for the centre of 
the pressure by 

( )/* * *3
3 32 2 0

1

2
et V BF

F f t dt
U B

τ
ρ

= = ∫     (7.14) 
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So the normalized pitch moment is calculated from Eq. (7.8). The lift coefficient CLβ=F3/(0.5ρU2B2) 
is then found as 

LC β =
*3

32 2
2

0.5

F
F

U Bρ
=      (7.16) 

 

7.3 Results and discussions for a prismatic planing hull in steady 
motion  
 
7.3.1 Comparisons with experiments 
 
Troesch (1992) conducted experiments for prismatic planing vessels at low to moderate planing 
speeds. Both steady and unsteady problems were studied. In this section, only the steady cases with 
different constant heave or pitch (sinkage and trim) are numerically simulated and the results of 
wetted lengths, forces and moments will be compared with the experiments. The parameters in the 
tests which will be numerically studied are given in Table 7.1.  
 

Table 7.1. Parameters in the model tests by Troesch (1992). 
 
Beam 0.318 m 
Beam Froude number /nBF U gB=  2.0, 2.5 
Deadrise angle 20.0 degree 
Trim angle τ  0.0698 radian (or 4.0degree) 
Mean wetted length-beam ratio λw 3.0 
Position of gravity  
             lcg/B 1.47 
             vcg/B 0.65 

 
The wetted lengths Lk/B, Lc/B and L/B varying with either constant heave displacement (sinkage) 
or constant pitch displacement (trim) at FnB = 2.0 are shown in Fig. 7.3 (a) and (b), respectively. If 
the mean wetted length-to-beam ratio λw0 = L0/B at η3 = 0 and η5 = 0 is known, the mean wetted 
length at constant heave or pitch can be predicted by 
 

0 3
3 5

5 5

cos( ) ( ) sin( )
( , )

tan( ) sin( )

vcg L lcgvcg
L lcg

τ τ η
η η

τ η τ η

− − +
= + −

+ +
  (7.17) 

 
The corresponding Lk/B and Lc/B can then be obtained by substituting the length L calculated from 
Eq. (7.17) and the numerically predicted sx  into Eqs. (7.3) and (7.4). Good agreement between the 
numerical and experimental results is shown in Fig. 7.3.  
 
Then the vertical forces and pitch moments at different sinkage or trim are given in Fig. 7.4 (a)-(d).  
Experimental results by Troesch (1992) and the results calculated by Savitsky’s empirical formula 
are also shown together with the numerical results. The Savitsky’s formulas are given in Faltinsen 
(2005, pp. 349, 351) and originally presented in Savitsky (1964).  
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(a)      (b) 

Fig. 7.3. Wetted lengths varying with constant heave or pitch at FnB = 2.0. Exp. means experimental results in 
Troesch (1992); Num. means numerical results. (a) Heave; (b) Pitch. 
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Fig. 7.4. Vertical force and pitch moment versus constant heave or pitch displacement for FnB = 2.5. (a) 
Vertical force versus heave η3 /B ; (b) Pitch moment versus heave η3 /B; (c) Vertical force versus pitch η5; (d) 
Pitch moment versus pitch η5. Exp. means experimental results. 
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From those figures, one notes that the numerical results, denoted by ‘Numerical’, show the same 
trend as the experimental and empirical results. However, the vertical forces are generally 
overestimated, while the pitch moments agree better. The later discussions will indicate that the 
good agreement for the pitch moment can be coincidental. The discrepancy between the numerical 
results and the experiments can be due to three-dimensional effects neglected in the 2D+t theory. 
 
3D effects can occur both at the bow and stern. In a planing problem, it also appears near the chine 
wetted position, where the chine wetting starts i.e. x  = sx , due to the sudden change of the 
increasing rate of the wetted surface. The neglect of 3D effects often causes an overestimation of 
the pressure, which is believed to be resulting from the fact that the energy is thus restrained in a 
more limited area.  
 
Results after the 3D correction near the chine wetted position are shown in the figures, as denoted 
by ‘Some 3D correction’. The total forces decrease a little after this correction. However, the total 
pitch moments decrease in some cases and increase in other cases. This is because the changed 
moment depends on the position of the centre of action of the overestimated force relative to the 
centre of gravity. The method to calculate 3D correction factors will be described in the next 
section. Although this correction cannot cause great improvements, it demonstrates the influence of 
the 3D effects near the chine wetted position.  
 
There is a more significant 3D effect near the transom stern. Because the flow separates at the 
transom, the pressure at the transom stern should be atmospheric. This means that the sum of the 
hydrostatic and the hydrodynamic vertical force per unit length must decrease to zero at the stern. 
However, in the 2D+t calculation, the existence of the transom stern cannot be felt in the 
calculations ahead of it, thus the forces will be overestimated in a certain area in front of the stern. 
Because the hydrodynamic pressure at the transom stern must be negative to counteract the positive 
hydrostatic pressure in order to predict an atmospheric pressure there, this effect is referred to a 
suction pressure in Faltinsen (2001). 
 
Section 3.3 has presented an analytical solution near the transom of a planning vessel in steady 
motion. A 2D separated potential flow in the center plane is assumed. This theory can not be 
matched with the 2D+t theory, but the results by this simplified theory can be patched with the 
2D+t theory results in the same figure (see section 7.3.3). Then one can see that there is a rapid 
decrease in the pressure in a narrow region near the transom on the hull. Actually the pressure 
gradient is infinite at the transom stern.  
 
In Faltinsen & Zhao (1991) a similar situation has been encountered. Steady vertical forces were 
calculated for a ship with transom stern running at a length Froude number U/(gL)1/2 = 1.14 and 
compared with the model tests by Keuning (1988).The 2.5D results agreed well with the 
experiments except near the transom stern, where the averaged force excluding buoyancy on the 
last segment in the model test was negative, while a positive hydrodynamic force was predicted in 
the 2.5D solution. Hence they argued that there must be a rapid decrease in the force near the 
transom stern. More recently, in the experiments about transom stern flow for high-speed vessels as 
given in Maki et al. (2005), negative hydrodynamic pressures were also observed.  
 
In order to estimate the magnitude of the suction force effect at the stern, a similar approach as in 
Faltinsen (2001) is followed. Because the consequence of the suction force is a smaller loading in 



130     Chapter 7 Steady and unsteady motions of a planing hull in calm water 

 

the vicinity of the transom stern, this can be accounted for by using a smaller Lk in the calculation. 
As suggested in the paper, reducing Lk with 0.5B gives good correlation with Savitsky’s formula. 
The discussion was applied to a planing vessel with the same mean trim angle and mean wetted 
length-to-beam ratio as in the cases in Fig. 7.4. So the same correction factor 0.5B is used in the 
present study. Results after such a correction are also shown in Fig. 7.4 (a)-(d), which is denoted as 
‘Suction force correction’. The resulting vertical forces agree very well with both the experiments 
and Savitsky’s formula, and the pitch moments agree better with Savitsky’s formula. Because the 
0.5B correction mainly account for the total force, not the force distribution, the correction to the 
moment is questionable. Therefore it is hard to judge the agreements for the pitch moments here. 
Nevertheless, the results with such a correction indicate that the suction force effect is the most 
significant reason for the discrepancy between numerical results and experiments. 
 
The restoring force coefficients can then be calculated by taking the derivative of force or moment 
in each figure with respect to heave or pitch motion, i.e. 
 

i

ij

j

F
C

η

∂
= −

∂
  with  i, j = 3, 5      (7.18) 

 
From the figures, one can see that the slope of the curves formed by the numerical results can agree 
well with the experimental results and empirical formula, even before the corrections. In Fig. 7.4(d) 
the slopes of the experimental results are obviously different from those of the numerical results 
and the empirical results for large pitch motions. Experimental errors may be the reason for such a 
discrepancy, as indicated in Troesch (1992). From those figures, one can see that the restoring force 
coefficients obtained from the numerical results are obviously nonlinear and the coupling between 
heave and pitch is very significant. 
 
7.3.2 Three-dimensional effects near chine-wetted position 
 
An analogy between the planing surface problem and lifting surface problem is used to estimate 3D 
effects at very high Froude number. Fig. 7.5 shows the projection on the x - y  plane of the wetted 
surface of a planing vessel with trim angle τ moving at high speed U. To consider the influence of 
the separated jet flow, an artificial body surface is introduced as plotted by the dashed line in the 
figure. The water flow on both sides of the hull separates at the chine line tangentially from the hull 
surface, so the part of the separated free surface which is nearly parallel to the bottom of the hull 
can be viewed as an extension of the hull surface. On this artificial body surface the pressure is 
atmospheric. As shown in the right picture of Fig. 7.5, the beam is extended at both sides to the 
position of the spray root. In the figure the ‘normal line’ is normal to the upper free surface and 
tangential to the spray root curve. The extension in half beam Be at the transom is given according 
to the 2D+t results, then the extension at each cross-section just increases linearly from the chine 
wetted position to the transom stern. 
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Fig. 7.5. A simplified analysis to obtain 3D correction factor. 
 
 
At very high Froude number, gravity is negligible and the free surface condition is approximated as 
φ=0. On the real body surface the boundary condition is linearized as ∂φ/∂ z  = Uα, where the angle 
of attack α = τ. On the artificial body surface the same boundary condition is applied, but finally the 
lift force will be calculated by just integrating the pressure on the real body surface because the 
pressure on the artificial body surface should be atmospheric pressure. 
 
By imaging the body and the flow about the mean free surface, we can analyze a double body 
moving in infinite fluid. Such a lifting problem can be solved in three dimensions by distributing 
vortices on the projection of the body surface and the wake on the x - y  plane so that the body 
boundary condition and the Kutta condition at the trailing edge are satisfied. The general theory 
and numerical methods are described in Newman (1977, Chapter 5) and Katz & Plotkin (1991, 
Chapter 12). The problem can also be solved asymptotically by a slender-wing theory using 2D 
results, as described in Katz & Plotkin (1991, pp.212-222). A brief description of these two 
methods is given in Appendix F.  
 
The lift force distributions by both methods for an example of Lk/B = 3.8, sx /B = 1.6 and Be/B = 
0.167 are shown in Fig. 7.6. Obvious 3D effects can be seen near the chine wetted position and 
near the transom stern. There is also a 3D effect near the bow, but it is not apparent in the figure 
because the numerical model used here is quite simplified. However, the figure shows the tendency 
of the distribution of 3D effects for the planing vessels at very high Froude number.  
 
The predicted lift force should be zero at the transom stern. However, the 3D solution gives a finite 
value there. This is due to a numerical error near the trailing edge. When using more panels near 
the trailing edge, the finite value there will tend to zero. Thus the suction force effect as discussed 
before cannot be found here, because for very high Froude number, the gravity is totally neglected. 
In other words, the suction force effect is associated with gravity effects. 
 
 
 
 
 

sx  

Lk 

Lc 

B 

Be 

x

y  
Chine wetted position At the transom stern 

Be Be 
Be 

Spray 
root 

Normal 
line 

y  



132     Chapter 7 Steady and unsteady motions of a planing hull in calm water 

 

 

0 1 2 3 4
0.00

0.05

0.10

0.15
x

x

(dL/d   )/(0.5ρU2B)

 

 

/B

 3D solution
 Slender wing theory

 
Fig. 7.6. Three-dimensional effects in very high speed planing calculations. 

 
 

The sectional correction factor 3 2( / ) /( / )D DdL dx dL dx can then be obtained, in which 2D means the 
solution by the slender-wing theory. This sectional factor will be multiplied to the force distribution 
results by 2D+t to make the correction. However, the free surface condition φ = 0 is not a good 
approximation at moderate planing speed when the local Froude number Fnx = U/(g x )1/2  is small, 
i.e. when the x -position is far from the bow. So the 3D correction is only made to the vertical force 
distribution ahead of the chine wetted position in each case in Fig. 7.4.   
 
7.3.3 Three dimensional effects at the transom stern 
 
A local analytical solution near the transom stern at the 2D centerline plane of the planning hull 
given in section 3.3 is applied. The constant A3/2 in the solution can be found by curve fitting the 
separated free surface expressed in Eq. (3.32) with an empirical formula by Savitsky (1988), which 
gives 
 

( ) ( ) ( )2 2.44

1 2 3

( )
( )x C x C x C x

B

ζ ξ
ζ = = − +    (7.19) 

 
where ξ-ζ is the local coordinate system defined in Fig. 3.4 and /x Bξ= . The three coefficients 
C1, C2 and C3 are calculated by  
 

( )20.7 0.6

1 deg0.02064 / nBC Fτ= ,  

( )2.440.7 0.6

2 deg0.00448 / nBC Fτ= , 
0.34

3 deg0.0108 wC λ τ= ,  
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where τdeg is the trim angle in degree. By following the approach in Faltinsen (2005), one can apply 
a least square fit of Eq. (3.32) and Eq. (7.19) from x /B = 0 to α to estimate the constant A3/2 as  
 

3 / 2

3 / 2 4 1/ 2 0

4
( )sU

A x x dx
B

α

ζ
α

= ∫       (7.20) 

 
The beam Froude number is FnB = 2.5. The draft at the transom stern is predicted by the 2D+t 
solution as DT = 0.266B. From Eq. (3.30) one can find that Us = 2.60(gB)1/2. The coefficients in Eq. 
(7.19) can be respectively evaluated as C1 = 0.0479, C2 =0.0125 and C3 = 0.0519. The upper limit 
for the fitting is arbitrarily chosen as α = 3, which means the fitting of the free surface profile after 
the transom stern is valid up to three times the beam. Then Eq. (7.19) is substituted into Eq. (7.20) 
to give A3/2 = 0.207g1/2. Therefore, from Eq. (3.32), we can obtain the free surface profile as 

3 / 2( ) 0.0795x xζ = . This curve is plotted in Fig. 7.7 together with the curve given by Savitsky’s 
fomula in Eq. (7.19). We can see those two curves fit well in the range [0, 3].  
 
The pressure near the transom stern on the centerline of the hull can be calculated from Eq. (3.33) 
as  
 

0.807ap p gB xρ− = −      (7.21) 
 
If we assume that the pressure does not change along the beam direction, then the pressure times 
the beam of the hull will give the sectional vertical force near the transom stern. The sectional force 
is then non-dimensionalized and expressed as 
 

 
2

3
2 2

( ) 1.61

0.5

D

nB

F
x

U B Fρ
= −      (7.22) 

 
The resulting force distribution for x from −0.1 to 0 is patched with the sectional force distribution 
calculated by the 2D+t theory together with the BEM, as shown in Fig. 7.8. The origin of the global 
x-axis locates at the front of the planing surface. The force predicted by the 2D+t theory keep 
increasing when approaching the transom stern. However, due to the non-viscous flow separation 
at the transom stern, the force should decrease to zero, i.e. the pressure should decrease to the 
atmospheric pressure. The force distribution calculated from the local analytical solution shows the 
behavior of the force decreasing near the transom stern. The sectional force falls rapidly to zero 
when approaching the transom stern. 
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Fig.  7.7. Free surface near the transom stern.               Fig.  7.8. Sectional vertical force on a planing hull. 
 
 
7.3.4 Gravity effects 
 
Fig. 7.9 shows the free surface profiles around a planing vessel with the same parameters as in Fig. 
7.4 at FnB = 5.0 and 2.5, which correspond to high and moderate planing speed, respectively. 
Results for ten successive cross-sections from x /B=1.141 to x /B=3.678 with interval x∆ /B=0.282 
are presented. At the higher Froude number FnB = 5.0, spray runs up continuously from the bow to 
the stern and it reaches very high in the air near the transom, which implies that the gravity effect is 
not so significant in this case. However, at the lower Froude number FnB = 2.5, the influence of 
gravity to the free surface elevation seems more apparent, because the spray does not run up very 
high and it then falls down.  
 
Vertical force distributions along the x-coordinate are also calculated and shown in Fig. 7.10 (a)-(c), 
in which the hydrostatic forces are obtained by integrating the pressure term −ρg z  on the wetted 
body surface below the mean free surface, and the remaining force means the resulting force after 
the subtraction of the hydrostatic force from the total vertical force. The numerical calculations 
start with an initial submergence. So the force on the hull in front of the position x /B = 0.8 is not 
shown in the figure. Because the gravity is insignificant on that part, the force distribution is 
instead calculated by using the similarity solution.  
 
Then the influence of gravity to the vertical force can be seen from this figure. Firstly the gravity 
effect is negligible before the chine wetted position, but it is more and more important when 
approaching the transom stern. Secondly, the hydrostatic force is dominant after chine wetting for 
FnB = 2.5. However, for FnB = 5.0 the remaining force is dominant all along, except that it is 
comparable with the hydrostatic force near the stern. This means that gravity is more important in 
the case of moderate planing speed. Thirdly, the remaining forces for these two cases are similar 
but not equal. So the gravity also influences the hydrodynamic part of the force. This is because the 
gravity will change the fluid flow around the hull and affect the free surface elevation, as one can 
see from Fig. 7.9. Therefore, simply adding the hydrostatic force to the lift force obtained by 
neglecting gravity cannot fully account for the influence of gravity.  
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Fig. 7.9. Free surface elevations around the planing hull for FnB = 2.5 and 5.0. Dashed lines: the hull surface, 
solid lines: the free surface. 
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Fig. 7.10. Comparison of vertical force distributions along the planing hull for FnB = 2.5 and 5.0. Solid lines: 
FnB = 2.5; dashed lines: FnB = 5.0. 
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7.4 2D+t theory for a prismatic planing vessel in forced unsteady 
motions 
 
The forward speed of the planing hull is U. Forced oscillations in heave or pitch are given to the 
vessel. No incident waves are present. A 2D+t theory similar as in Maruo & Song (1994) is applied 
with the present BEM to numerically calculate the water loading on the planing hull.  
 
The Earth-fixed coordinates xyz and the body-fixed coordinates XYZ are defined in Fig. 7.11. The 
xy plane is in the calm water surface and the z-axis is pointing upwards. The planing hull is moving 
in the negative x-direction. The origin of XYZ is fixed at the centre of gravity (COG) of the hull. 
The X-axis is pointing to the stern and the Y-axis is towards the starboard. The instantaneous trim 
angle θ is defined positive when the bow is going up. The position of the COG in the Earth-fixed 
coordinates is (xg,0,zg). The body-fixed coordinates can be related to the Earth-fixed coordinates by 
 

( ) cos ( ) sin

( ) sin ( ) cos

g g

g g

X x x z z

Y y

Z x x z z

θ θ

θ θ

= − − −

=

= − + −

⎧
⎪
⎨
⎪
⎩

     (7.23) 

 

 
Fig. 7.11. Coordinate systems and main parameters. 

 
 
A velocity potential φ(x,y,z,t) is introduced to describe the water flow around the vessel. The 
velocity potential satisfies the three-dimensional Laplace equation. Fully nonlinear free surface 
conditions and exact body boundary conditions are satisfied in three dimensions as follows.  
 

( ) ( )cos sin sin cosX g g Z g gn x z Z n x z X
n
ϕ

θ θ θ θ θ θ
∂

= − − + − − − − +
∂

 on the hull surface  (7.24) 

( )2 2 21
0

2 x y z g
t

ϕ
ϕ ϕ ϕ ζ

∂
+ + + + =

∂
    on the free surface ( , , )z x y tζ=   (7.25) 

0
t x x y y z

ζ ζ ϕ ζ ϕ ϕ∂ ∂ ∂ ∂ ∂ ∂
+ + − =

∂ ∂ ∂ ∂ ∂ ∂
    on the free surface ( , , )z x y tζ=  (7.26) 
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where n = (nX, nY, nZ) is the normal vector on the hull surface expressed in the hull-fixed 
coordinate system. The forced heave or pitch motions are given to the planing hull with constant 
forward speed U. These oscillatory motions can be expressed as 
 

( )3 3 sina tη η ω= −   for t≥0    (7.27) 

( )5 5 sina tη η ω= −  for t≥0     (7.28) 
 
where η3a and η5a are heave amplitude in meter and pitch amplitude in radian, respectively. The 
heave is positive when it is upward and the pitch is positive when the bow is going up. The dot 
above η3 and η5 denotes time derivative. So the instantaneous trim angle is θ(t) = τ + η5(t) where τ 
is the trim angle of the hull at the mean position. 
 
The time derivatives of the coordinates of the COG and the instantaneous trim angle are given as 
 

gx U= −       (7.29) 

3gz η=        (7.30) 

5θ η=        (7.31) 
 
A slenderness ratio is now introduced as ε = d/L, where d is the draft and L is the length of the hull. 
By using slender body assumption, one has ∂/∂x~O(ε), ∂/∂y ~O(1), ∂/∂z~O(1). Further, ∂/∂X 
~O(ε) , ∂/∂Y~O(1), ∂/∂Z ~O(1) and it is assumed that the trim angle is small. Neglecting the terms 
of the order of O(ε2) in the governing equation and the boundary conditions, one can obtain the 2D 
Laplace equation and the boundary conditions in a cross- plane given by  
 

2 2

2 2
0

y z

ϕ ϕ∂ ∂
+ =

∂ ∂
       (7.32) 

( )3 5X Zn U n U X
N

ϕ
θ η η

∂
= − − − +

∂
  on the hull surface (7.33) 

( )2 21
0

2 y z g
t

ϕ
ϕ ϕ ζ

∂
+ + + =

∂
  at ( , , )z x y tζ=     (7.34) 

0
t y y z

ζ ζ ϕ ϕ∂ ∂ ∂ ∂
+ − =

∂ ∂ ∂ ∂
 at ( , , )z x y tζ=     (7.35) 

 
where the normal vector N = (Ny, Nz) is the 2D normal vector on the hull surface in the cross-plane. 
For a prismatic hull it follows that nX=0. When the trim angle is small nZ = Nz. In addition, far-field 
conditions are also specified so that the disturbance in transverse direction goes to zero at infinity. 
 
The Boundary Element Method described in Chapter 2 is now used to solve the 2D problem 
described by Eqs. (7.32) – (7.35) . In the BEM, the thin jet along the body surface is cut off. When 
the water flow separates from the knuckles of the V-shaped section, the flow separation model 
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described in Chapter 3 is applied. Thin sprays will rise up along both sides of the section after 
separation and turn over to hit the water surface underneath. To avoid wave breaking, the 
overturning thin spray is cut away before it hits the underlying water. Numerical challenges are in 
particular found for the present unsteady problems.       
 
Initially the prismatic hull is planing steadily on the free surface, so the initial conditions for the 
water flow can be obtained from the steady calculations in the previous sections. Then a forced 
unsteady oscillation in heave or pitch is given to the hull. The time histories of the total vertical 
force and the pitch moment around the COG of the hull can be calculated. The vertical force is 
positive in positive z-direction and the pitch moment is positive when it makes the bow go up.  

 
 

 
 

Fig. 7.12. Numerical scheme in the 2D+t theory for a planing hull in unsteady motion. 
 
 
The numerical calculations can be performed as follows. At first, a number of equally spaced 
vertical Earth-fixed planes intersecting the hull are introduced. The number of the planes is chosen 
as NX = 6 in Fig. 7.12 for the convenience of the illustration. More planes intersecting the hull are 
used in the numerical calculations in the later discussions. At each cross-plane, the free surface 
elevation and the velocity potential on the free surface are known from the steady calculations in 
advance. With these free surface conditions and the body boundary condition given by Eq. (7.33), 
the boundary value problem can be solved in the 2D cross-plane by the BEM. Then the pressure on 
the hull is calculated from Eq. (2.7). Properly integrating the pressure in this cross-section will 
result in a sectional vertical force. When the sectional forces in all the NX planes are known, we 
have an approximation of the sectional force distribution along the hull. From this force 
distribution, we can obtain the total vertical force and the pitch moment by using Eqs. (7.7) and 
(7.8). In the next time step, the free surface elevation and the velocity potential on the free surface 
at each plane are updated by integrating the free surface conditions by the fourth-order Runge-
Kutta method. We can continue the calculation until the hull advances forward for a distance equal 
to the interval of the cross-planes. Then we discard the plane No.1 and introduce a new plane No.7, 
so there are always NX=6 planes used in the calculations. The calculation starts in this new plane 
by using the initial conditions given from Wagner’s approximation. As the hull moves further, we 
will continuously discard the plane after the hull and introduce a new plane in front of the hull. In 
this way, the calculations proceed.  
 

12 3 4 5 6 7 8 

U 
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In front of the foremost plane, say No. 6 in Fig. 7.12, there is a small part of hull which has been 
neglected in the procedure described above. Instead, the forces on this part will be calculated by a 
simplified method by neglecting the gravity effects. Actually, around this forward part of the hull 
the water moves so fast that the acceleration of the water flow is much larger than the acceleration 
of gravity. This simplified method is similar as what is used in Lin et al.(1995). The sectional 
vertical force is approximated by 
 

( ) [ ],
D DA DV

f x t AV V A
Dt Dt Dt

= = +        (7.36) 

 
where A(x,t) is the 2D heave added mass at infinite frequency and V(x,t) is the vertical water entry 
speed of the section. The added mass is approximated by  
 

( ) 21
, ( )

2 mA x t C bρπ ψ=      (7.37) 

 
with b(x,t) as the local beam measured from the calm water surface and Cm and ψ are correction 
factors. By using the similarity solution in Zhao & Faltinsen (1993), these two factors for deadrise 
angle β=20º are given by Cm=0.787 and ψ=1.5. The added mass and its time derivative can be 
expressed in term of the instantaneous local draft d(x,t) as 
 

( )2( , ) ,A x t Kd x t=      (7.38) 

( ) ( )2 , ,
D

A Kd x t d x t
Dt

=     (7.39) 

 
where the coefficient K is given as 

2

22 tan
mC

K
ρπψ

β
=       (7.40) 

 
The local draft and its time derivative are written as 

( ) ( )( )5, k gd x t L lcg x x τ η= − + − +     (7.41) 

( ) ( )( ) ( )5 5, k g k g

D
d x t L x L lcg x x

Dt
τ η η= − + + − + −   (7.42) 

 
From the 2D body boundary condition in (7.33), V(x,t) can be written as  
 

( )5 3 5V U Xτ η η η= + − +      (7.43) 
Therefore,  

( )5 3 52 g

DV
U x x

Dt
η η η= − + −     (7.44) 
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From Eq. (7.36) to Eq. (7.44), one can find the expression of the sectional force f(x,t) as  
 
( ) ( )( ) ( )( ) ( )[ ] ( ) ( )[ ]0 5 5 0 5 5 3 5, 2 k g gf x t K x x L x x x U x xτ η τ η η τ η η η= − + − + + − + − + −  

( ) ( ) ( )[ ]2 2

0 5 5 3 52 gK x x U x xτ η η η η+ − + − + −     (7.45) 
 
where x0 = lcg − Lk (t) + xg (t) is the x-position of the foremost intersection between the water 
surface and the hull surface.  
 
The numerical calculations are performed for the unsteady model tests in Troesch (1992) with the 
parameters given in Table 7.1. The beam Froude number is FnB = 2.5 for the calculated cases. The 
amplitudes of the heave motion and the pitch motion are η3a =0.036B and η5a=0.43º , respectively. 
Five frequencies for ω(B/g)1/2 = 0.85, 1.13, 1.4, 1.7, 1.95 are used in the calculations. 
 
The number of the cross-planes intersecting the hull is chosen as NX=11. The period of adding a 
new plane can be obtained by dividing the interval of the Earth-fixed planes by the speed of the 
hull, which is about 0.02s. So there are periodic small disturbances of this period in the time 
histories of the force and moment. However, the amplitudes of the noise are much smaller than the 
amplitudes of the overall oscillations and the period of the noise is much shorter than the 
investigated heave or pitch periods. Further, increasing NX will result in more smooth time varying 
curves. However, the overall oscillations are not obviously affected.  
 
From a time history of the vertical force or the pitch moment, we can perform a Fourier analysis to 
find out the amplitudes of different harmonics. A time history f(t) can be expanded as 
 

( )0
1

( ) sin( ) cos( )n n
n

f t b a n t b n tω ω
∞

=

= + +∑     (7.46) 

 
The added mass coefficient and the damping coefficient can be estimated from the amplitudes of 
the first harmonic a1 and b1 as 
 

( )1

2

ij jaij

ij

ja

a C
A

η

ω η

− −
=

⎡ ⎤⎣ ⎦      (7.47) 

( )1 ij

ij

ja

b
B

ωη
=       (7.48) 

 
where the subscripts ij in (a1)ij and (b1)ij mean that the amplitudes a1 and b1 are taken from the 
vertical force (i= 3) or the pitch moment (i=5) when the forced heave (j=3) or pitch (j=5) is given to 
the hull. Because the definition of the positive direction of the pitch motion and pitch moment in 
the experiments is different from the present definition, the signs of the experimental A35, A53, B35 
and B53 are changed in the comparisons between the experiments and the present calculations. 
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Fig. 7.13. Added mass and damping coefficients changing with frequency. EXP. means experiments by 
Troesch (1992); NUM. means the present calculations. 
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Fig. 7.14. Added mass and damping coefficients after a three-dimensional correction. EXP. means 
experiments by Troesch (1992); NUM. means the present calculations. 

 
 

The restoring force coefficients Cij are nonlinear, Froude-number dependent and time dependent. 
However, for simplicity Troesch (1992) used a linear modeling, in which Cij were determined at 
ηj=0 from the experimental data in steady cases when a constant heave or pitch was given to the 
hull. To compare with the experiments we follow the same way to decide Cij. The calculated added 
mass and damping coefficients for the five different frequencies are compared with the 
experimental results in Fig. 7.13.  
 
All the damping coefficients and added mass coefficients except A35 seem to be independent of the 
frequency. There is large discrepancy between the experiments and calculations for A35, however, 
the agreement looks better for higher frequencies. From the study of the unified theory and the 
traditional strip theory (Newman & Sclavounos 1981), it can be shown that three-dimensional 
effects matter more for lower frequencies in the strip theory. This can also be true for the present 
method, because some three-dimensionalities have been neglected. It was shown earlier in section 
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7.3 that the 3D effect at the transom stern will apparently affect the force and the moment on the 
hull. After a certain correction of this 3D effect, better results were obtained. The same correction 
for the 3D effects at the transom is applied here. The results after the 3D correction are shown in 
Fig. 7.14. The agreement in damping coefficients is improved and they are still almost frequency 
independent. The agreement for A35 looks better. The other three coefficients become slightly 
frequency dependent. Experiments also show slightly frequency dependent added masses. However, 
there is better agreement at higher frequencies and larger discrepancy at lower frequencies. We 
have to notice another effect which can influence the comparison. It is the influence of the 
estimated restoring force coefficients Cij. The values of these coefficients used in Troesch (1992) 
are not directly given in his paper. Errors in Cij will cause larger discrepancy in Aij for lower 
frequencies because the added masses are calculated from Eq. (7.43). The error is proportional to 
1/ω2. Further, 3D effects near the chine wetted position, where the chine line starts to get wetted, 
cause overestimated force near this position, as shown in section 7.3.2. This effect will also cause 
errors in the results of the added mass and damping coefficients. Again, the effect is supposed to be 
more prominent for lower frequency cases. 
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CHAPTER 8 
 
 
Conclusions and future perspectives 
 
 
 
A two-dimensional Boundary Element Method (BEM) is developed to solve strongly nonlinear 
wave-body interaction problems. Gravity on the fluid is in general included. When the angle 
between the body surface and the free surface is small, thin jets can run up along the body surface 
and sprays can evolve from the free surface. Thin jets and sprays are cut to avoid numerical 
difficulties. An ad hoc flow separation model is incorporated in the BEM to simulate the non-
viscous flow separation from a sharp point or from a curved body surface. A numerical damping 
beach is applied in the far field to damp out the waves generated by the oscillatory motions of a 
floating body. Originally the BEM is developed to simulate symmetric problems. Then the 
numerical method is generalized to handle non-symmetric problems.  
 
In this thesis, the BEM is applied to several different strongly nonlinear wave-body interaction 
problems, i.e. the water entry of a rigid body, the forced heave motions of a floating body, and the 
water impact on an elastic cylindrical shell. Finally, the hydrodynamics of a planing vessel in 
steady or unsteady motions is investigated by using the 2D BEM within a 2D+t theory. The 
conclusions and future perspectives are presented as follows. 

8.1 Conclusions 
 

• Water entry of a rigid body  
 
The symmetric free water entries of a wedge with deadrise angle of 30º and a bow-flare ship 
section are studied. The time histories of the vertical forces, the vertical acceleration and velocity, 
and the pressures on given positions are compared with available experimental results. Reasonable 
agreement is obtained. The maximum force and the maximum pressure are larger and occur earlier 
for a larger drop height. For a wedge, the maximum pressures at different positions along the body 
surface occur at different time instants when the spray root arrives at the positions. However, for a 
bow-flare section, the maximum pressures on different positions occur almost at the same time 
when the water impacts on the flare region, if one exclude the pressure impulse on the bottom apex 
at initial time.  
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Then the water entry of a horizontal rigid circular cylinder is studied. The numerical predicted 
time-varying cylinder submergence and the free surface elevation at different time instants agree 
reasonably with the experiments by Greenhow and Lin (1983). It is found that the initial impact on 
the cylinder can significantly reduce the water entry speed. For a cylinder with a given radius, the 
speed is more rapidly decelerated when the cylinder mass is smaller, or when the drop height is 
larger.  
 
Finally, the asymmetric water entry problem, the vertical water entry of a bow-flare ship section 
with a constant roll angle, is studied. The numerical results of vertical and horizontal forces, 
vertical acceleration and velocity, as well as pressures on impact side (windward side) and leeward 
side, are compared with the experimental results by Aarsnes (1996). For a larger roll angle, the 
water impact on the flare part of the section is more violent, so the maximum forces and the 
maximum pressure on the impact side are generally larger. The vertical acceleration is also affected 
by the roll angle, while the vertical velocity is not significantly influenced. The pressure on the 
leeward side is smaller for a larger roll angle. Negative pressure, i.e. pressure smaller than 
atmospheric pressure, appears in the vicinity of the apex of the section on the leeward side. 
However, separation and ventilation are not believed to happen in the studied cases according to 
the experimental results. If the ventilation happens, all the measure pressures on the leeward side of 
the section should become nearly the atmospheric pressure. However, this is not observed from the 
experimental pressure results. The calculations are also performed for different drop heights and 
the same roll angle. It is shown that the maximum vertical and horizontal forces are obviously 
larger for a larger drop height. This results from fact that the pressure on the impact side is larger as 
the drop height and the resulting impact speed are larger. 
 

• Hydroelastic water impact on a cylindrical shell 
 
The BEM is combined with a modal analysis to study the fluid-structure interaction during the 
water impact of a cylindrical shell. When the submergence of the cylinder is small relative to the 
cylinder radius, flat plate theories, i.e. von Karman’s theory or Wagner’s theory can be used to 
substitute the BEM to model the water flow around the body and also work together with the modal 
analysis to solve the fluid-structure interaction problem.  
 
From the coupled calculations by von Karman’s theory and modal analysis, it is found that the 
elongation of the middle plane (neutral plane) of the shell wall is negligible when only the lowest 
two elastic modes are considered. Actually, these are the most important modes for the studied 
cases. The higher modes can be neglected because they are not significant except at the very initial 
time. It is also found that the calculation of the rigid-body motion must be coupled with the 
calculation of the water flow and the elastic responses.  
 
In the coupled calculations by the BEM and the modal analysis, the following effects can influence 
the results of the strain responses. Firstly, the calculation in the initial stage by using different flat 
plate theory approximations will affect the calculated structural responses in a later stage. Secondly, 
the results can also be affected by assuming different structural models for the natural frequencies 
of the shell. Thirdly, ventilation can have an influence on the structural responses, although the 
initial air cushion and cavitations are believed to be not likely to occur. All of these can cause 
uncertainties in the numerically predicted results. On the other hand, there are also error sources in 
the drop tests, such as the additional masses (connectors, cables, etc.) on the shell model which 
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may affect the natural periods of the structure, and the mechanic friction force which can reduce 
the water-entry speed.  

 
The results by using the BEM clearly differ from the results by using von Karman’s method or 
Wagner’s method at a later stage of the water impact. When the cylinder is more submerged, the 
non-viscous flow separation, exact body and water surface conditions will influence the structural 
responses. It implies that the study by the BEM is necessary in order to account for those effects.  
 

• Nonlinear forces on a heaving section 
 
The numerical method is verified and validated by calculating the linear and nonlinear force 
coefficients for a heaving thin wedge, and for a heaving half-submerged circular cylinder. The 
numerically calculated results by the BEM agree well with the experiments and the theoretical 
results.  
 
The advantage of the present numerical method is shown from the calculations of three different 
ship sections in large-amplitude-heave motions, i.e. a bow-flare ship section with two different 
drafts and a V-shaped ship section. Because of the peculiar shape of these sections, many 
complicated phenomena can happen. The numerical difficulties associated with thin jets, sprays 
and breaking waves are circumvented in the BEM. The calculated force coefficients in general 
agree well with the experimental results, however, some physical effects influence the agreement 
for larger amplitudes or higher frequencies. The viscous flow separation from the circular bottom 
of the bow-flare section affects the prediction of the damping coefficients for the two bow-flare 
section cases. The non-viscous flow separation from the knuckles of the V-shaped section is a 
possible reason for the discrepancies at larger heave amplitudes and higher heave frequencies.  
 

• Forces and moments on a planing hull 
 
The hydrodynamic features of a prismatic planing hull in steady motion and forced unsteady 
motions at moderate planing speed are studied. The gravity effect is fully considered in the 
numerical simulations by the BEM within the formulation of a 2D+t theory.  
 
For the steady case, the problem can be transformed as a 2D time-dependent fully nonlinear 
problem of the water entry of a V-shaped section. The vertical force and pitch moments on the 
planing hull are calculated for different trim angles and sinkages. The 2D+t calculations 
overestimated vertical forces with respect to model tests. Three-dimensional effects near the chine-
wetted position (where the chine lines starts to get wetted) and the transom stern are believed to be 
the reason for the discrepancies between numerical results and the experimental and empirical 
results. A simplified theory is utilized to estimate the 3D effects near the chine wetted position, and 
a reduction of the keel wetted length by 0.5B is applied to estimate the influence of the 3D effects 
near the stern. Then the gravity effect is discussed by comparing results for two different Froude 
numbers. At the moderate planing speed, free surface elevation is not so violent as for the higher 
planing speed and the hydrostatic force will dominate at the rear part of the hull. Furthermore, the 
gravity influences the hydrodynamic force as well.  
 
In the unsteady case, a planing hull is forced to oscillate in heave or pitch. A more general 
formulation of the 2D+t theory is presented to solve the unsteady problem. Time-dependent 
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problems are solved by the BEM in many different Earth-fixed cross-planes along the planing hull 
to give a prediction of the sectional vertical force distribution. Wagner’s method is applied to 
evaluate the sectional vertical force on the foremost part of the planing hull. The planing speed is 
also moderate, which means the gravity is not negligible. The time histories of the total vertical 
force and pitch moment versus time are calculated for given heave or pitch oscillations at different 
frequencies. Given the restoring force coefficients estimated from the results of the steady 
problems, one can evaluate the added mass and damping coefficients. In the studied cases, the 
damping coefficients are nearly frequency-independent but the added mass coefficients seem to be 
frequency dependent. However, the calculated added mass coefficients are sensitive to the 
estimated restoring force coefficients. Three-dimensionality at transom stern also matters. 
 

8.2 Future perspectives  
 
The 2D BEM method can be further developed to consider the secondary impact and the cavity 
enclosure at the body surface. A non-viscous flow separation from the lower part of the section, e.g. 
a bulb, needs to be simulated at first. The flow separation model used in the water impact of a 
circular cylinder in the present study can be similarly applied. Then the separated water flow can 
rise up and hit the body surface on the upper part of the section, say, the flare region. This water 
impact process causes numerical difficulties for the BEM. However, the initial stage of the impact 
can be simulated by an analytical solution e.g. Wagner’s theory, or a similarity solution, for a fluid 
jet impacting on a solid surface. Then the solution can be merged with the BEM in a later time just 
like Zhang et al. (1996) did. After the secondary impact, an air cavity will be enclosed on the body 
surface, the air flow has to be described by some simplified model, so that the boundary condition 
at the air water intersection inside the cavity can be properly given. However, in a further stage, the 
water jet inside the cavity will hit the other part of the air-water intersection. Then the calculation 
by the BEM based on potential theory will break down, because the water-water impact causes 
vorticity. 
 
Another application of the present BEM is to solve the water entry or radiation problems for a twin 
section, such as the section of a catamaran. This allows investigating the interactions between two 
bodies. If water impacts occur on the wetdeck between the two hulls, then the wetdeck slamming 
problem should be involved. In such cases, the secondary impact and air-cavity enclosure similar as 
mentioned above will also matter. The separated flow from the lower part of a monohull impacts 
on the wetdeck and, as a consequence, encloses air cavity. Then one must also pay attention to the 
3D effects in the enclosed air cavity.  
 
The water entry of inclined sections other than a bow-flare section can be studied. It may be 
necessary to simulate the non-viscous flow separation from the leeward side. However, a good 
criterion for the inception of the flow separation is necessary. For a wedge section with a sharp 
corner at the vertex, the flow separation always happens at the vertex in an asymmetric water entry. 
However, for some cases, the separated flow will soon reattach to the leeward side. Such 
reattachment needs further investigations. Another asymmetric water entry problem, the inclined 
water entry of a section, can be studied by the BEM. Attention must be paid to the horizontal water 
entry speed. The flow separation from the leeward side is still an essential issue to be tackled. 
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The hydroelastic analysis for a cylindrical shell impacting water surface can be further carried out. 
The ventilation can happen when the pressure on the shell surface is completely negative, i.e. less 
than atmospheric pressure. Such low pressure is caused by the elastic vibrations. This ventilation 
effect needs to be studied. However, it is unknown when the ventilation can be triggered and when 
the water will reattach to the shell surface afterwards. The structure can be modeled more exactly 
by a Finite Element Method. Then the shape of the structure can be more general. However, it 
demands more memory and CPU time.  
 
The 2D BEM can be combined with the 2D+t method to further study the strongly nonlinear 
hydrodynamic problems for a high speed ship. For a planing vessel, the numerical method can be 
easily generalized to planing hulls with varying cross-sections. The frequency dependence of the 
added mass and damping coefficients has been discussed for only a few cases. In a further study, 
the dependence of these hydrodynamic coefficients on heave or pitch amplitude, and Froude 
number dependence can be more extensively investigated. When these hydrodynamic coefficients 
are know, the inception of the porpoising instability of a planing vessel can be predicted by 
applying a linear stability model. Furthermore, the vertical motions of a planing hull in head sea 
can be studied.  
 
The 2D+t approach can also be applied to semi-displacement hulls at Froude number higher than 
0.6 approximately. However, when there is a transom stern, the 3D effect at the transom stern will 
still be an important aspect. It is necessary to taken this effect into account. One possible solution is 
to match the 2D+t solution with a local 3D solution near the transom stern. The local 3D solution 
may be either given analytically or numerically. In particular, the global effects due to local 
slamming on bow or stern can be investigated by this 2D+t approach. The interaction between the 
local slamming and the global ship motions is a direction for the future work. It is also possible to 
investigate the global transient vibrations in whipping by considering the global hydroelasticity. 
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Appendix 
 

Appendix A. The general solution near a separation position 
 
The time dependence is neglected in the following derivation. By using the separation of variables, 
a general form for the solution of Eq. (3.1) is  
 

( ) ( ) ( ),r rϕ θ θ= Λ Θ      (A.1) 
 
Substituting this form into Eq. (3.1), one can obtain two separated equations, 

 
( ) ( ) ( )2 0r r r r rλ′′ ′Λ + Λ − Λ =     (A.2) 

( ) ( ) 0θ λ θ′′Θ + Θ =      (A.3) 
 
where λ= n2  (n≥0) is a real constant. Then the solution of Eq. (A.3) gives 

 
( ) ( ) ( )1 2cos sinC n C nθ θ θΘ = +      (A.4) 

 
Applying the body boundary condition in Eq. (3.2), one has C2 = 0. Hence, 

 
( ) ( )1 cosC nθ θΘ =      (A.5) 

 
By introducing a different variable τ with τ = lnr or r=e τ, we can transform Eq. (A.2) as 
 

( ) ( )2 0nτ τ′′Λ − Λ =      (A.6) 
The solution of this equation is  

     
( )
( )

0 0     if n=0

   if n>0n n

n n

B D

B e D eτ τ

τ τ

τ −

Λ = +

Λ = +

⎧
⎨
⎩

 

 
So the solution of Eq. (A.2) is obtained by inserting τ = lnr. It follows that 
 

( )
( )

0 0 ln     if n=0

   if n>0n n

n n

r B D r

r B r D r−

Λ = +

Λ = +

⎧
⎨
⎩

    (A.7) 

 
From Eq. (A.5) and (A.7), we can write the general solution of φ as 
 

( ) ( ) ( )( )1 0 0 1
0

, ln cos n n

n n
n

r C B D r C n B r D rϕ θ θ −

>

= + + +∑   (A.8) 
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Appendix B. The body boundary condition of ψ on a shell structure. 
 
The auxiliary function ψ is defined as 
 

BO
P

D

Dt t

ϕ ϕ
ψ ϕ

∂
= = + ⋅∇

∂
V      (B.1) 

 
where Vp = VG + GP⋅ω is the velocity of the rigid-body motion on point P, ω is the angular 
velocity, point G is the center of gravity. In Chapter 5, Vp = V because there is no rotational motion. 
If the deflection of the shell is small, the following relation can be proved 
 

BO BOD D

Dt n n Dt n

ϕϕ ψ∂ ∂ ∂
= =

∂ ∂ ∂
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 on the shell surface  (B.2) 

 
First, the left hand side of the equation can be written as 
 

( )BO BOD D

Dt n Dt

ϕ
ϕ

∂
= ⋅∇

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

n ( )BO BOD D

Dt Dt
ϕ ϕ= ⋅ ∇ + ⋅∇

n
n   (B.3) 

 
Because the deflection of the shell is assumed to be small, we can neglect the change of the normal 
vector due to the deflection of the shell. Hence, 
 

BOD

Dt
= ×

n
ω n       (B.4) 

 
Further, it is noted that 
 
( ) ( ) ( ) ( ) ( ) ( )2P P P P Pϕ ϕ ϕ ϕ ϕ ϕ ϕ⋅∇ ∇ = ∇ ⋅∇ − ∇ ⋅∇ −∇ × ∇× = ∇ ⋅∇ − ×∇ −∇ ×V V V V V ω ω  

      ( )P ϕ ϕ= ∇ ⋅∇ + ×∇V ω  
 
Here the following relations have been used 
 

( ) Pϕ ϕ∇ ⋅∇ = ×∇V ω  
2P∇× =V ω  

 
Therefore, Eq. (B.3) can be rewritten as 
 

( )BO
P

D

Dt n t

ϕ ϕ
ϕ ϕ ϕ

∂ ∂∇
= ⋅ + ∇ ⋅∇ + ×∇ + × ⋅∇

∂ ∂
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

n V ω ω n  
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      BO BO
P

D D

t Dt n Dt

ϕ ϕϕ
ϕ

∂ ∂
= ⋅∇ + ⋅∇ = ⋅∇ =

∂ ∂
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

n V n  

 
So the relation in Eq. (B.2) holds. Therefore, the body boundary condition for ψ can be written as 
 

( )BO BO BOD D D
w

n Dt n Dt Dt

ψ ϕ∂ ∂
= = ⋅ +

∂ ∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

V n      (B.5) 

 
where the body boundary condition for φ has been inserted. The first term on the right hand side 
gives 
 

( )BO BO BOD D D

Dt Dt Dt
⋅ ⋅ + ⋅ = ⋅=V n V n V n V n      (B.6) 

 
Because ω = 0, the term DBO n/Dt gives no contribution.  
 
The second term on the right hand side of Eq. (B.5) can be calculated as 
 

BO
P

D w
w w w w

Dt t

∂
= + ⋅∇ = + ⋅∇
∂

V V      (B.7) 

 
So we have 
 

w w
n

ψ∂
= ⋅ + + ⋅∇

∂
V n V       (B.8) 
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Appendix C. Calculations of some integrals. 
 
The integrals In

1 and In
2 used in the expressions for Anm, Bnm in Eq. (5.42) can be calculated as 

follows. At first, the integrals are expressed as 
 

( )1 2 2

0
cosc

nI c y n d
θ

θ θ= −∫       (C.1) 

( )2

0 2 2

1
cosc

nI n d
c y

θ

θ θ=
−

∫       (C.2) 

 
A different variable θ1 is used to replace the variable θ in the integrals by following the relation 
 

1sin cosR c yθ θ= =      (C.3) 
 
Therefore, the range for θ = [0, θc] corresponds to the range for θ1 = [π/2, 0] and  
 

1 1cos sinR d c dθ θ θ θ= −      (C.4) 
 
Because the submergence of the cylinder is assumed small, the upper limit θc for angle θ is small. 
So the relations in Eqs. (C.3) and (C.4) can be approximated as  
 

1cos
c

R
θ θ=       (C.5) 

and 1 1sin
c

d d
R

θ θ θ= −      (C.6) 

 
Then the integral in Eq. (C.1) is rewritten as 
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=  

 
The integral in Eq. (C.2) is rewritten as 

/ 22

1 1 10
1

1
cos cos sin

sinn

c c
I n d

c R R

π

θ θ θ
θ
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1 10
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02
cJ n

R R
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The function Jk(δ) with variable δ is the Bessel function of the first kind with order k. The 
following integrals have been substituted in the derivations. 
 

( ) ( )
/ 2

20
cos cos cos(2 ) ( 1)

2
m

mm d J
π πδ θ θ θ δ= −∫  for m = 0,1,2,3,… (C.7) 

 
This integral is obtained from the integral representation of the Bessel function (Chow, 2000). It is 
originally given as 
 

( )
0

( ),  if k = 0, 2, 4, ...1 cos( sin ) cos
0,        if k = 1, 3, 5, ...

kJ
k d

π δ
δ θ θ θ

π
⎧

= ⎨
⎩

∫   (C.8) 

 
If we replace the indices k by 2m (m = 0,1,2, …) and notice that the functions cos(2mθ) and 
cos(δsinθ) are symmetric about θ = π/2, then we obtain 
  

( ) ( )

( ) ( )

/ 2

0 / 2

20

cos sin cos(2 ) cos sin cos(2 )

1 cos sin cos(2 )
2 2 m

m d m d

m d J

π π

π

π

δ θ θ θ δ θ θ θ
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=
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∫
   (C.9) 

 
Therefore,  
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/ 2 / 2
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2
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Appendix D. The hydrodynamic force and the generalized forces  
 
Substituting Eq. (5.36) into the expressions of A0 and Ak in Eq. (5.43), we obtain 
 

( )0 10
2

1
( ) ( ) cos

mN

n
n

A V t a t n d
π

θ θ
π =
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π

θ θ θ
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By assuming small submergence, we have θ = sinθ and the angle θ can be replaced by Eq. (C.5). 
Thus, 
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where Eq.(C.7) has been used. So the terms with odd index in Eq. (5.43) can be omitted and the 
equation is rewritten as 
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Now we have the formation of a lifting problem of a flat plate with the body boundary condition 
given by Eq. (5.26) where the vertical velocity on the flat plane is given by (D.3). By using the 
solution for a lifting problem (Newman, 1977), the velocity potential on the flat plate can be 
written as in Eq. (5.44). Then time derivative of the velocity potential gives 
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with 

1cos ( )
y
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θ θθ =    (D.5) 

 
To calculate the hydrodynamic force, we can rewrite Eq. (5.28) as 
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Substituting Eq. (D.4) into Eq. (D.6), we can find the hydrodynamic force on the flat plate  
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To calculate the generalized force, we can rewrite Eq. (5.21) as 
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Substituting Eq. (D.4) into Eq. (D.7), we can obtain  
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By using Eq. (C.7), we can calculated these four integrals as 
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So the generalized force Fn can be written as 
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Collecting the terms in the expression, we can write the coefficients n

excF , Anm, Bnm  in Eq. (5.46) as 
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Appendix E. The lift force and pitch moment on a planing hull 
 
The nondimensional lift force and pitch moment can first be written as 
 

( )
( 2 )

/ /* * * *3 3
3 32 2 20 0

1 1

2 0.5 2
K K

D
L B L BF F

F dx f x dx
U B V B

τ τ

τ τ
ρ ρ

= = =∫ ∫    (E.1) 

( )

( )

( ) ( )

( 2 )
/* *35

5 2 3 20

/ * *

30

/ /* * * * *

3 30 0

2 0.5

1

2

1 1

2 2

K

K

K K

D
L B

K

L B
K

L B L B
K

L lcg x FF
F dx

U B B V B

L lcg x
f x dx

B B

L lcg
f x dx x f x dx

B

τ

τ

τ τ

τ

ρ ρ

τ τ

τ

− −
= =

−
= −

−
= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫

∫

∫ ∫

   (E.2) 

 
The centre of the pressure is calculated by Eq. (7.10). Then it follows that 
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The relation between cpx and lp is given by Eq. (7.9). An equivalent expression is 
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Inserting Eqs. (E.1), (E.3) and (E.4) into Eq. (E.2), we can rewrite the non-dimensional pitch 
moment as 
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Appendix F. Lift force distribution on a slender wing 
 
The lifting problem described in section 7.3.2 about a double body moving in infinite fluid is 
solved by two different methods. The slender wing as shown in Fig. 7.5 is moving forward with 
speed U and a small angle of attack τ. The lift force distribution on the slender wing is calculated. 
The first approach is to use a slender wing theory. The other approach is to numerically solve the 
problem in three dimensions by distributing vortex ring elements on the wing and the wake.  
 
In a slender wing theory, only the portion of the wing ahead of one cross-section will have 
influence on this section, whereas the influence of the wing sections and the flow field behind this 
section is negligible. It means the effect of trailing wake is small. The existence of the trailing edge 
is not felt by the water flow in front of it. Such properties in the slender wing theory are quite 
similar as those in a 2.5D theory. From the slender wing theory given in Katz & Plotkin (1991), the 
pressure jump across the wing is written as 
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where the coordinates xyz are equivalent to the coordinates x y z  in Fig. 7.5 and the local beam 
b(x) including the extension in half beam Be is expressed as 
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As mentioned in section 7.3.2, on the free surface area extended from the hull surface the pressure 
is atmospheric. Therefore, the lift force on the body should be obtained by only integrating the 
pressure difference on the physical body surface in Fig. 7.5. It follows that 
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where [ ]( ) arcsin / ( )b x B b xθ =  for x>xs.  
 
In a numerical method, we can solve the lifting problem by distributing vortex ring elements on the 
wing and on the wake. The Kutta condition can be satisfied at the trailing edge. The influence from 
the downstream of the trailing edge is considered. This influence corresponds to the 3D effects at 
the transom stern which has been neglected in the 2D+t theory. So the solution by this numerical 
approach is denoted as ‘3D solution’ in Fig. 7.6. The procedure of the numerical calculation will be 
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briefly described as follows. More details for the numerical method can be found in Katz & Plotkin 
(1991).  
 
First the wing is panelized as shown in Fig. F.1. Due to the symmetry about the y-axis, only one 
half of the wing is shown. Then we distribute the vortex rings on the panels. The leading segment 
of the vortex ring is placed on the panel’s quarter chord line. The collocation point is put at the 
centre of the three-quarter chord line. Behind the trailing edge, a vortex ring (or a horse-shoe vortex) 
is distributed on the wake panel. The following edge of this ring is put far behind the wing.  In 
order to satisfy the Kutta condition at the trailing edge, the strength of the vortex on the wake panel 
is set equal to the strength of the ring vortex on the wing panel just in front of the wake panel. Then 
we calculate the velocity induced by a vortex ring to a given collocation point. The sum of the 
induced velocities by all the vortex rings on a collocation point should satisfy the body boundary 
condition. In this way, we can construct a system of algebraic equations with the strength of the 
vortex rings as unknowns. Solving this equation system, we find the strength of the vortex rings. 
Then we calculate the lift force on each panel and find out the lift distribution along the 
longitudinal direction on the wing.  
 
This numerical solver is verified by comparing with the experimental and theoretical results given 
in Ashley & Landahl (1965, pp 122) as shown in Fig. F.2. The compared results are the lift 
coefficients CL = L/(0.5ρU2S) divided by the angle of attack α for a triangular wing versus the 
aspect ratio A = B2/S, where S is the projected surface of the wing and B is the wingspan. The 
present numerical calculations are also shown. Good agreement with other results can be seen. 
 
 

 
Fig. F.1. Numerical calculations for a slender wing in infinite fluid. 

Lc xs 
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Vortex ring 
Vortex ring in the wake 

Γ
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Fig. F.2. Comparison of the lift-curve slopes for slender triangular wings. Exp.: Experiments; Num.: 
Numerical results.  
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