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Abstract

A two-dimensional Boundary Element Method (BEM) based on potential flow theory is developed
to study wave-body interaction problems with strongly nonlinear effects. In particular, the
following problems are studied. One problem is the symmetric water entry of rigid bodies, i.e. of a
wedge, a bow-flare ship section and a circular cylinder. Further, the asymmetric water entry of a
bow-flare ship section, the water impact on an elastic cylindrical shell and the large-amplitude
forced heave motions of a wedge and a bulbous-bow ship section are examined. Fully nonlinear
free surface conditions are always satisfied. The exact body boundary conditions are also satisfied
except in the water impact of a cylindrical shell. In this special case, the effects of the elastic
vibrations are linearized and the body boundary conditions are satisfied on the undeformed shell
surface. Gravity effects on the water flow are in general included.

The numerical difficulties encountered in solving the initial phase of the blunt body impact are
handled by using flat plate theories, i.e. von Karman’s theory or Wagner’s theory at the initial stage.
The numerical errors associated with the very thin jet rising up along the body surface are reduced
by cutting off the thin jet. Thin sprays evolving from the free surface are cut off to avoid breaking
waves hitting on the underlying free surface and thereby creating vorticity. A numerical damping
beach in the far-field is utilized to ensure the condition of outgoing waves generated by an
oscillating body.

A flow separation model is merged with the BEM to simulate the non-viscous flow separation from
the knuckles of a section or from a curved body surface. In the latter case, a criterion related to the
low-pressure area on the wetted body surface near the free surface is introduced to predict the
occurrence of the flow separation.

Hydroelasticity effects are accounted for in the water impact problem of a cylindrical shell by
coupling the BEM with a modal analysis. An alternative approach is developed for cases when the
submergence of the shell is small relative to its radius. In this approach, a flat plate theory, von
Karman’s theory or Wagner’s theory, is coupled with the modal analysis.

Finally, the hydrodynamic performance of a prismatic planing hull in steady or unsteady motions is
investigated by using a 2D+t theory combined with the two-dimensional BEM. The planing speeds
are moderate in the studied cases. The three-dimensional effects neglected in the 2D+t theory and
the gravity effects are discussed for the steady planing cases. In the unsteady cases, the planing hull
is forced to oscillate in heave or pitch. The dependence of the linearized added mass and damping
coefficients on the forced oscillation frequency is investigated.



il



Acknowledgements

I must thank my supervisor Prof. Odd M. Faltinsen for his great contributions to this thesis. It is his
patient guidance and continuous encouragement that enabled me to finish the work and write this
thesis. His insight into physics, brilliant ideas to solve problems and his ways of thinking make me
benefit throughout these years. His enthusiasm for research often influenced me and motivated me
to persevere in my goals.

I would like to thank the professors and lecturers who taught courses in my first year and helped
me understand so much knowledge in Marine Technology. I am also grateful to Dr. Marilena
Greco for her kind help and her careful proof reading of this thesis.

My thanks also go to Prof. Torgeir Moan, who efficiently directs the Centre for Ships and Ocean
Structures (CeSOS) where I have been doing my PhD study. The scientific environment of the
centre is friendly and enjoyable. Further, his guidance to us about how to get a PhD has helped me
in different stages in my study.

I appreciate my fellow PhD students and the staff in CeSOS and the Department of Marine
Technology for their help. In particular, I want to thank Renato Skejic, Zhen Gao and Csaba
Pakozdi for the helpful and pleasant discussions with them when we worked together in some
courses. | also want to mention Dr. Xinying Zhu, Dr. Bin Zhang and Dr. Olav Rognebakke, for
their kind help and the valuable discussions with them. Further, I would like to thank all the
Chinese friends working in the CeSOS and in the department, as well as their families in
Trondheim. I really appreciate the friendships and the home-like environment they gave me.

My gratitude goes to my husband Zhi Shu for his love, encouragement and his support in both
academic aspect and in life. I am also deeply indebted to my family in China. They have been

giving me both material and spiritual support during my stay in Norway.

Specially, this thesis is dedicated to my mother. Her unconditional love and her support always
accompany me in my life.

This PhD fellowship is given by the Research Council of Norway through the CeSOS in
Norwegian University of Science and Technology.

iii



v



Nomenclature

General Rules

e  Symbols are generally defined where they appear in the text for the first time.

e Matrices and vectors are represented by bold face characters.

e Overdots signify differentiation with respect to time.

e Sometimes the same symbol is used in different problems to indicate different things.

Abbreviations:

2D Two dimensional

BEM Boundary Element Method

BVP Boundary Value Problem

CFD Computational Fluid Dynamics

COoG Centre of Gravity

IBVP Initial Boundary Value Problem

Subscript:

ij i=3and 5 correspond to the vertical force and pitch moment, respectively; j =3 and 5

correspond to the forced heave and pitch motion, respectively.
max Maximum value

Roman symbols:

a Radius of the neutral surface of a cylindrical shell

a, Principal coordinate for mode n in a modal analysis for a shell structure

A(x,t) Sectional added mass approximation for a planing hull

Aj Added mass coefficients for a planing hull

A, Time-dependent coefficients for the general solution near a flow separation position

Anm Equivalent added mass terms in the vibration equation for mode n induced by the
vibration in mode m

a, Vertical acceleration

Asp A parameter in the analytical solution near a flow separation position

As; 2D added mass of a section in heave

b Half beam B/2

B Beam

B. Extension in half beam

Bjj Damping coefficients for a planing hull

By Beam of a V-shaped section measured between knuckles.
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Equivalent added mass terms in the vibration equation for mode n induced by the
vibration in mode m

2D damping coefficient of a section in heave

Viscous damping coefficient in heave

The half wetted length of plate in a flat plate theory

Drag coefficient

Frictional force coefficient

Lift coefficient

Lift coefficient for a planing hull

A correction coefficient in the expression of A(x,t)

Pressure coefficient

Restoring force coefficient

Restoring force coefficients for a planing hull

Thickness of the wall of a cylindrical shell

Instantaneous local draft for a planing hull in unsteady motions

The threshold in the cut-off model for the very thin jet

Draft or Diameter of a circular cylinder or the flexural rigidity of a cylindrical shell
Draft at the transom stern of a planing vessel

Young’s modulus

Frictional force

Natural frequency for mode n for a cylindrical shell vibrating in the radial direction
Normalized sectional vertical force on a planing hull

Time history of the vertical force due to the water pressure on a heave section
Amplitude of the nth order harmonic force component for a heaving section

Beam length based Froude number U/(gB)"?

Froude number based on the diameter of a circular cylinder U/(gD)
The generalized force for mode n in a modal analysis for a shell structure
Vertical viscous force on a heaving section

Total vertical force on the body due to water pressure.

Total mean force on a heaving section

Second order mean force for a heaving section

Total vertical force on a planing hull

Sectional vertical force on a planing hull

Total pitch moment on a planing hull about the COG

Acceleration of gravity

Drop height in a free drop test

Bessel function of the first kind of order k

Simplified expression of Ji(nc(t)/R)

A ratio of the mass of a circular cylinder to the mass of the displaced water when it is
fully submerged.

Unit vector in positive z-direction

A coefficient in the expression of the added mass A(x,t)

Keulegan-Carpenter number

The distance measured along the keel from transom stern to the centre of the water
pressure for a planing hull

The distance from the transom to the COG of a planing hull measured along the keel
Length of a cylinder or the mean wetted length for a planing hull

1/2
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Lc Chine wetted length for a planing hull

Lp Length of the damping region in a numerical calculation

Lk Keel wetted length for a planing hull

Ly Total length of a water domain in a numerical calculation

m The mass of a 2D section with unit length or number of periods used in the calculation
force components of different order for a forced heaving body

m, Equivalent mass term for mode n in a vibration equation

M Total mass of a body

n Normal vector on a boundary surface, pointing out of the fluid domain.

N The maximum number of mode in a numerical calculation by a modal analysis

N 2D normal vector on the hull surface in a cross-plane

(Nx, Nz) Components of the normal vector N
(r,0) A polar coordinate system in the local solution around a flow separation position
R Radius of a circular cylinder

R.p Renolds number R,p =UDv!' for the water flow around a circular cylinder
S Closed boundary for a fluid domain

So Mean submerged area of a heaving section

P Pressure

Pa Atmospheric pressure

t Time

T Period for a forced oscillation

u,w velocity components

U Forward speed of a planing hull or the speed of a body in steady motion
Us Fluid velocity at the separation position in a non-viscous flow separation
v Tangential displacement of a cylindrical shell at a cross-section

veg The distance of the COG of a planing hull above the keel line measured normal to the keel
\% Velocity vector of the rigid body

Vo Initial water entry speed

V(t) Vertical velocity of the rigid body

W Normal displacement of a cylindrical shell at a cross-section

(x,y,z) Earth-fixed coordinate system in the problem of a planing hull

(X,7,%Z) A coordinate system fixed on a planing hull

(X,Y,Z) Hull-fixed coordinate system for a planing hull

Xep OT X The x- (or X -) coordinate of the centre of the water pressure on a planing hull in a hull-

fixed coordinate system
xsor,~ The x- (or X -) coordinate for the chine wetted position on a planing hull in a hull-fixed

coordinate system

Xg The x-coordinate of the COG of a planing hull in a Earth-fixed coordinate system

(v,2) Space-fixed coordinate system used in the 2D BEM.

Zy The z-coordinate of the COG of a planing hull in a Earth-fixed coordinate system

V4 Forced heave motion

Z, Amplitude of the forced oscillation in heave

Greek symbols:

a Angle of attack for a planing surface or a parameter used in the curve fitting of the free

surface profile after the transom stern of a planing vessel
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Deadrise angle

Non-dimensional parameter in the expression for v,

Poisson’s Ratio

Phase angle of the nth order harmonic force

Time step in the numerical calculations

Normalized amplitude for the forced oscillations in heave; a parameter in the flow
separation model; slenderness parameter for a vessel defined by the ratio of the draft to the
length of the vessel

Elongation in the neutral plane of a cylindrical shell

Strain on the inner surface of a cylindrical shell, in the tangential direction at a cross-
section

Local coordinate on a linear element in the BEM

Normalized frequency for the forced oscillations in heave

A local coordinate sysmtem near transom stern at the centre plane of a planing hull
Free surface elevation around a planing hull

Submergence of the lowest point on a body into water relative to undisturbed free surface
Free surface elevation at time t

A local non-dimensional coordinate in a damping region

Heave motion of a planing hull

Amplitude of the forced oscillations of a planing hull in heave

Pitch motion of a planing hull

Amplitude of the forced oscillations of a planing hull in pitch

Constant roll angle of a section during an asymmetric water entry or the radial coordinate
at a cross-section of a cylindrical shell

Instantaneous trim angle of a planing hull in unsteady motions.

Wave length

Mean wetted length-beam ration for a planing hull

Mass per unit area of a cylindrical shell

Kinematic viscosity of water

Absorption coefficient in the damping region

Maximum absorption coefficient for v(y)

The constant 3.1415926...

Water density

Material density of a cylindrical shell

Equivalent mass density of a cylindrical shell

Trim angle in radian of a planing hull in steady motion or the mean trim angle in unsteady
motions

Trim angle in degree of a planing hull

Frequency in a forced oscillation

Fluid domain

Velocity potential of the fluid flow in two dimensions.

Normal derivative of the velocity potential

Tangential derivative of the velocity potential

A correction coefficient in the expression of A(x,t)

An auxiliary function used in the calculation of pressure
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CHAPTER 1

Introduction

1.1 Background and motivation

In the field of marine technology, strongly non-linear free surface effects can occur in many wave-
body interaction problems. Examples are green water on deck, resonant sloshing in ship tanks and
breaking waves around ships. Large relative vertical motions between the waves and the body will
lead to strongly nonlinear free surface effects. Even though the relative vertical motions between a
planing hull and the waves are not very large, nonlinearities easily occur. Further, the larger the
Froude number of a vessel is, the more important the nonlinearities of the steady flow field become.

Many of the strongly nonlinear wave-body interaction problems originate from the slamming
problems in ship and ocean engineering. In a dictionary, the word “slamming” means the hitting on
something with sudden or violent force. In marine technology, slamming is referred to as the water
impact on a part of a ship or some other marine structure. The slamming on ships and ocean
structures often happens in rough sea, as shown in Fig. 1.1 (a) and (b), respectively.

(a) (b)
Fig. 1.1. Slamming in rough sea: (a) slamming on a ship; (b) slamming on a platform. (photos downloaded
from the internet.)
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(c) (d)
Fig. 1.2. Examples of slammings on ships. (a) Bottom slamming; (b) Green water slamming; (c) Bow-flare
slamming; (d) Bow stem slamming (Photos downloaded from the internet).

The slamming on a ship hull can be categorized as bottom slamming, bow-flare slamming, bow
stem slamming, stern slamming and wet-deck slamming, according to the vessel region where the
phenomenon happens. Fig. 1.2 shows some examples of slamming on real ships. Sometimes the
bow stem slamming is also named as breaking wave impact because the bow stem is hit by the
breaking waves, for instance caused by the interaction between the incident waves and the ship-
generated waves. In addition, green water slamming occurs during the shipping of water on deck.
Slamming during sloshing inside a ship tank is another important kind of slamming. It is crucial in
the design of prismatic LNG tanks. For offshore structures, slamming is also of concern. Examples
are the slamming on horizontal members of a jacket or on the deck platform.

The slamming process is often characterized by large hydrodynamic loads within a short duration.
The effects are twofold. On the one hand, the very high slamming pressures can cause local
structural damages. Yamamoto et al. (1985) reported serious structural damages on a container ship
in a heavy sea due to bow-flare slamming. On the other hand, the integrated loads due to large
slamming pressures may greatly affect the global ship behavior. One of the transient global effects
excited by the local slamming is whipping, which is normally associated with two-node vertical
vibrations, as well as heave and pitch accelerations. Ge et al. (2005) demonstrated significant
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whipping effects on a catamaran caused by wetdeck slamming and indicated that it is both the
water-entry and water-exit loads that matter. Further, Gu & Moan (2005) showed that the nonlinear
loads related to whipping can greatly increase the fatigue damage for a container ship with large
bow-flare and low hull rigidity. Global rigid-body motions can also be affected by the local
slamming. For example, Rognebakke & Faltinsen (2001) showed that for a ship in beam sea, the
nonlinear slamming loads inside a ship tank during sloshing can affect the global sway motions.
Altogether, various kinds of slamming events have important influences on ocean structures.
Therefore, it is necessary to investigate the slamming problems and make further improvements in
the design procedures for ships and other ocean structures.

Because of the violent water flow in the slamming problems, non-linear effects due to the wave-
body interactions are often prominent. The typical phenomena induced by the strongly non-linear
effects are, for instance, thin jets and sprays, wave breaking, non-viscous flow separation, air
cavities enclosed on the body surface, bubble collapse, cavitation and ventilation, etc. These
phenomena cause complexities in the problems. The compressibility of the water and hydro-
elasticity may also be relevant. Therefore, it is quite challenging to accurately predict the free
surface flow and the loading on the body in the problems with those complicated effects.

Before a complete simulation of the slamming on an actual ship or other ocean structures, some
basic wave-body interaction problems have to be solved. For example, to investigate the bow-flare
slamming or bottom slamming, one needs to study the water entry of a bow-flare ship section or a
circular cylinder. The lower surface of the circular cylinder resembles the bottom of a bulbous bow.
When oscillatory motions in a slamming problem are relevant, one should first study the forced
oscillatory motions of a two-dimensional section. Such kind of basic wave-body interaction
problems are the major topics of the present work. The typical features associated with strong non-
linear effects can be revealed in the studies. The outcome can help the further investigations for
more sophisticated and realistic slamming events. An application like this will be shown in Chapter
7, where the planing hull in steady or forced unsteady motions is studied, on the basis of the
investigations in Chapters 3 and 4 on the water entry of a V-shaped section and forced oscillations
of a floating V-shaped section.

1.2 Review of the previous work

The slamming problems in marine technology have received increased attention in recent years.
Korobkin (1996) reviewed some specific issues and approaches in water impact problems in ship
hydrodynamics. In particular, the acoustic effects and air-cushion effects were discussed.
Mizoguchi & Tanizawa (1996) reviewed various approaches used for different slamming problems.
They also discussed the water impact problem with trapped air, the effects of fluid compressibility,
hydroelasticity and three-dimensionality, and how to describe slamming in a stochastic analysis.
Later, Faltinsen (2000) discussed many different slamming problems in ship and ocean engineering
and particularly stressed the importance of hydroelasticity. More recently, Faltinsen et al. (2004)
presented up-to-date reviews of the research work on the slamming problems in marine
applications. The state of art of the research on different kinds of slamming problems as well as
future challenges were given. In this section, a review of previous work relevant to this thesis is
presented.
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e Water entry of a 2D rigid body

The water entry of a rigid body in two dimensions has been widely studied ever since the
pioneering works by Von Karman (1929) and Wagner (1932). A review of the earlier research on
water entry problems was given by Korobkin & Pukhnachov (1988). In the rapid water entry of a
rigid body, viscous effects are often negligible. Compressibility and air-cushion effects between the
body surface and the impacting free surface only matter initially in a very short duration. So they
were also neglected in many studies. The following review will focus on studies based on potential
theory, where the water is assumed incompressible, inviscid and the flow is irrotational.

Various kinds of methods have been developed to solve the water entry problems. One group of
methods originate from Wagner’s theory with a flat plate approximation and linearized free surface
conditions in the domain outside the spray roots (outer domain). The other group of methods are
devised by utilizing the self-similar property for some special problems. More recently, numerical
methods were widely used to solve the water entry problems with fully nonlinear free surface
conditions and without restrictions of the body shape or neglecting gravity effects.

In von Karman (1929)’s impact model, the water surface elevation and gravity are neglected. A flat
plate approximation is applied in the model. The impact loads are underestimated in particular for
small deadrise angles. Wagner (1932) further developed Von Karman’s theory by accounting for
the local uprise of the water. Better predictions of the hydrodynamic loads and peak impact
pressures can be obtained by Wagner’s method when the deadrise angle is small and no air cushion
is entrapped. However, singularities still exist at the water-body intersection points in the outer
domain solution. By using the matched asymptotic expansion technique, Watanabe (1986) removed
the singularity by matching the planing plate solution for the splash region (spray root domain)
with Wagner’s outer domain solution. However, the inner solution is not good enough because in
the planing plate solution there is a free surface downstream the plate which does not exist in his
water entry problem. This weakness is avoided by Cointe & Armand (1987). They removed the
singularity by matching the outer domain solution with Wagner’s inner domain solution at spray
roots. The method was used to study the water impact on a blunt body surface. Further, Howison et
al. (1991) extended the approach to solve the water entry of a section with more general shape, yet
the impacting body is required to be nearly parallel to the undisturbed water surface, i.e. the local
deadrise angle is very small. Cointe (1991) also applied the method for the water entry of a thin
wedge and a flat wedge. However, a solution was only obtained in the flat wedge case. Recently,
the limitation to small deadrise angles was avoided in Faltinsen (2002)’s approach. The method of
matched asymptotic expansions was also applied, but different inner and outer solutions were used
to obtain the results for any local deadrise angle. The time dependent water entry speed could also
be accounted for.

In the water entry of a wedge of infinite extent, the flow can be assumed to be self-similar, as long
as the gravity is neglected and the water entry speed is constant. Similarity solutions for the water
entry of a wedge were derived by Dobrovol’skaya(1969) and Hughes (1972). Fully-nonlinear free
surface conditions and the exact body boundary condition were satisfied in their methods. However,
in both cases the solutions were not explicitly given. Numerical computations were implemented to
obtain the results. Dobrovol’skaya(1969) only presented results for deadrise angle larger than 30°.



1.2 Review of the previous work 5

Later, Zhao & Faltinsen (1993) obtained the numerical results for Dobrovol’skaya (1969)’s
similarity solution for deadrise angle within the range 4° ~ 81°. It is numerically demanding to
obtain similarity solution results for small deadrise angles. The application of the similarity
solutions is limited by the shape of the body and constant water entry speed, and the gravity effects
can not be accounted for. However, the similarity solution is still a favorable method to describe
the initial stage of the water entry when the gravity, body shape and variation of speed are less
important. A similar but different problem, the impact of a water wedge on a plane rigid surface,
can also be described by a similarity solution. Such solutions were presented, for instance, in
Cumberbatch (1960) and Zhang et al. (1996).

Numerical methods have been extensively used to solve the water entry of a rigid 2D body with
fully nonlinear free surface conditions. The obvious advantage of numerical methods is the fact that
there are no restrictions for the body shape and water entry speed. The gravity can be optionally
included. The Boundary Element Method (BEM) is one of the most popular numerical methods
which can be applied to solve nonlinear water-entry problems. Vinje & Brevig (1981) proposed a
BEM based on Cauchy’s theorem to solve fully nonlinear free surface problems without the
restriction of zero gravity. This method was later used by Greenhow & Lin (1985), Yim (1985) and
Greenhow (1987) to simulate the water entry of a wedge with nonlinear free surface conditions.
However, Greenhow (1987)’s numerical results were only satisfactory for deadrise angle larger
than 60 degree because of the difficulties associated with the thin jet flow. Wu et al. (2004) applied
a similar BEM combined with an analytical solution for the jet based on a shallow water
approximation to study the wedge-water entry. The effect of gravity was neglected. Good results
were obtained for wedges with deadrise angles down to 10° for a constant water-entry speed.
However, the exact description of the thin jet does not seem to be quite necessary, because the
pressure in the jet is nearly atmospheric and the thin jet gives a small influence on the other parts of
the fluid. That is why the thin jet was cut in Zhao & Faltinsen (1993)’s fully nonlinear Boundary
Element Method without gravity. A control surface was introduced at the spray root to simplify the
treatment of the jet and to avoid the numerical difficulty in locating the intersections between the
thin jet and the body surface. The smallest deadrise angle in their study was as small as 4°. Actually,
in cases with deadrise angles smaller than 2~3°, air-cushion can occur due to the existence of
knuckles. Zhao et al. (1996) further extended their work by considering the flow separation from
knuckles and general body sections. Gravity was neglected in their studies. Nevertheless, gravity
effects are not negligible in some situations. For example, in the later stage of the water entry when
the body is further submerged, the influence of gravity becomes more significant and can affect the
hydrodynamic behavior.

All the works mentioned above were mainly concentrated on symmetric water-entry problems.
However, asymmetric water entry is also practically important. Asymmetric water impacts on a
ship section often occur in reality, when the ship is heeled or when there are oscillatory sway, roll
or yaw motions, as well as in the conditions with asymmetric free surface elevation with respect to
the ship’s central plane. Such situations are, for instance, common for planing hulls during
maneuvering operations. In an asymmetric water entry, the originally symmetric section can be
inclined, or enter the water with both a vertical and a horizontal speed. The second case is often
called ‘oblique water entry’.

The earliest theoretical study on asymmetric water impact problem was given in Garabedian (1953),
where the oblique water entry of a wedge was studied. Later, Chekin (1989) studied oblique water



6  Chapter 1 Introduction

entry of a wedge section with constant speed by using a method generalized from Dobrovol’skaya
(1969)’s similarity solution. The flow on the leeside was either forced to attach on the body surface
or forced to separate from the vertex. Recently, de Divitiis & de Socio (2002) used a conformal
mapping transformation to study the same problem. The limits of the sideslip angle for the onset of
the separation from the vertex were predicted. Judge et al. (2004) studied experimentally and
theoretically the oblique water entry problem, and also predicted the limits for flow separation from
the vertex. However, the limits were found to be larger than those predicted by de Divitiis & de
Socio (2002). Judge et al. (2004) argued that in a real fluid, the limits can be affected by the
reattached jet flow on the leeward side. The reattachment effect was not considered by de Divitiis
& de Socio (2002).

The other kind of asymmetric water entry is the vertical water entry of an asymmetric body.
Toyama (1993) generalized the Wagner’s theory to study the vertical water entry of an arbitrary
asymmetric section. However, the method has several limitations. For example, the flow separation
can not be considered. Xu et al. (1998) extended the flat-cylinder theory by Vorus (1996) to study
the water entry of an asymmetric wedge. The flow separation from knuckles and from the vertex
can both be included. They indicated that the interaction between the two sides of the body matters.
Therefore, it is not appropriate to separately calculate each side of the asymmetric wedge and
average the solutions afterwards. This interaction was neglected in the study of the water impact on
a bow flare ship section with a large heel angle by Arai & Matunaga (1989). They only studied the
half-plane with the windward side. Their theoretical results agreed only qualitatively with their
experimental results. To be accurate, one must not neglect the interaction between the two sides.
The most recent study of the water entry of an asymmetric section was presented by Semenov &
Iafrati (2006). They investigated the vertical water entry of a heeled wedge by their nonlinear
analytical self-similar solution. The occurrence of a stagnation point on the less inclined side of the
wedge was clearly shown, which further confirms the importance of the interaction between the
two sides. No flow separation from the wedge apex was assumed, but the limit of the heel angle for
separation-free situation was calculated for different wedge angles. However, those limits need to
be further confirmed by experiments, because the reattached jet flow may affect the limits similarly
as indicated by Judge et al. (2004) for their oblique water entry problems. The possible
reattachment to the body surface and the resulting enclosed cavity need to be investigated. For a
more general section, the bottom surface can have a finite curvature. This necessitates the
simulation of the flow separation from the curved surface on the leeward side. The challenge is
then to find the separation position.

e Water impact of a circular cylinder

When a horizontal cylinder with a large length-to-diameter ratio impacts with the water, one can
neglect the variation of the flow along the length of the cylinder and study a two-dimensional
hydrodynamic problem in a cross-plane. An exception is that the elastic vibrations of the structure
in the lengthwise direction vary on the scale of the transverse dimension. Another exception is that
the horizontal cylinder impacts on a steep wave. If the rigidity of the cylinder is large and the
impact velocity is small, the cylinder can be regarded as a rigid body. However, if it is flexible and
the impact velocity is large, the cylinder must be modeled as an elastic structure and hydroelasticity
must be considered.



1.2 Review of the previous work 7

Even for a rigid circular cylinder, it is not easy to exactly solve the water impact problem, because
the free surface will initially change very rapidly and the process may involve many complicated
effects, such as air cavity entrainment, flow separation and wave breaking. Actually, the rate of
change of the wetted surface is initially infinite according to Wagner (1932). Approximate methods,
i.e. the methods based on flat plate theories are often used in practice. For example, as mentioned
earlier, Cointe & Armand (1987) studied the water entry of a circular cylinder by using the method
of matched asymptotic expansions. It was found that larger errors appear in the later stage of the
water entry. Mei et al. (1999) derived an analytical solution for the water entry of a general section,
motivated by the generalized Wagner theory proposed in Zhao et al. (1996), and applied the
method to a circular cylinder. However, the nonlinearity was only partly included because the free
surface boundary condition was linearized. To exactly solve the problem with fully nonlinear free
surface conditions, numerical methods have to be applied. Greenhow (1988) studied the water
entry of a rigid circular cylinder by using a BEM based on Cauchy’s theorem. However, the flow
separation model needs to be improved. Recently, Zhu et al. (2005) applied an advanced CFD
(Computation Fluid Dynamics) method, the CIP method, to study the water entry of a rigid circular
cylinder. Viscous effects are simulated by this method, but viscosity does not matter much in the
rapid water entry problem. However, viscous effects may matter for the water exit of a cylinder
starting from below a free surface (Zhu et al., 2005).

For a cylindrical shell impacting on the free surface, it is necessary to consider the hydroelasticity
when the cylinder’s wall is thin and flexible and the impact velocity is large. Belytschko & Mullen
(1981) attempted to solve the water impact of a cylindrical shell by coupling a Finite Difference
Method (FDM) for the fluid analysis and a Finite Element Method in 2D for the shell structure.
Shibue et al. (1994) studied experimentally the water impact of a cylindrical shell and estimated the
strain responses by applying the measured water pressure on a shell structure model. Arai &
Miyauchi (1998) investigated the water impact of cylindrical shells, both experimentally and
numerically. A FDM based on the Euler equations was applied for the flow field and a modal
analysis was used for the shell structure. A flat plate theory was adopted by lonina & Korobkin
(1999) to solve the water impact of a cylindrical shell. Bereznitski (2003) simulated the
experiments by Arai & Miyauchi (1998) by using a commercial software (Dytran). All these
investigations contribute in some aspects. Nevertheless, there are still many unsolved problems
related to the occurrence of phenomena, e.g. ventilation, enclosed air cavities and cavitation.

e Bow-flare slamming

In earlier days, the main concern in a ship design procedure was focused on the ship form below
the water line. However, it was later realized that slamming on the bow flare above the water line
may also cause structural damages (Yamamoto et al., 1985). The bow flare can be simplified as a
V-shaped section, or a wedge section. So the studies of the water entry of a wedge section as
mentioned earlier were also in some cases motivated by the bow flare slamming problems.
Sometimes in a severe sea state, the bulbous bow can be lifted totally out of the water and then
impact on the free surface. Then an equivalent process is the water entry of a bow section with bulb
and flare. The study of asymmetric water entry of a bow-flare section with a large roll angle is
necessary. In such case, high pressure on the flare region may occur when the water impacts on the
flare, because the contact angle between the flare surface and the impacting water surface can be
very small.
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Arai & Matsunaga (1989) applied the Finite Difference Method (FDM) developed by Arai &
Tasaki (1987) to simulate the water entry of a bow-flare ship section into initially calm water with
the consideration of gravity effect. Flow separation from the knuckle of the section was simulated.
It was found that high pressures appear over a large area of the bow flare when the bow flare region
impacts the water, especially for the case with a large roll angle. Later, Arai et al. (1995) performed
calculations for the water impact of different ship sections, and found that the initial bottom
slamming on a bow-flare section can generate separated water flow, which will impact on the bow
flare at a later stage and cause very high pressures on the bow. This is called secondary water
impact. However, when the water entry speed is not so high, the secondary impact does not
necessarily happen.

Aarsnes (1996) performed drop tests of ship sections, i.e. a wedge section and a bow flare section
for different roll angles. The lower part of the bow flare section was designed to be relatively thin,
so that the secondary impact was less important. Mei et al. (1999) tried to use a generalized
Wagner’s method to study the drop tests by Aarsnes, but the solutions can only be given before the
flow separation from the knuckles happens. However, the impact pressure on the bow flare matters
after the flow separation, as shown by Arai & Matsunaga (1989). Zhao et al. (1996) have
numerically studied one symmetric case in Aarsnes (1996)’s drop tests for the bow-flare section
giving good predictions of the vertical force. Flow separation from knuckles was simulated.
Gravity was not included but this does not seem to affect the accuracy of the results. However,
when the bulb of the bow flare section is not thin and the impact speed (Froude number) is not too
low, flow separation from the bulb occurs in the early stage of the water entry, so one needs to
simulate the separated flow from the bulb surface. CFD methods such as the FDM in Arai et al.
(1995) and the CIP method used by Zhu (2006) seem to be capable to do this work, but up to now
the calculations by most CFD methods are too time-consuming to be used in a practical problem. A
more realistic solution is to further develop a BEM similar as in Zhao et al. (1996) to solve the
problem.

o Forced oscillatory motions of a floating body

Investigations of the forces on an oscillatory free-surface piercing body were started many decades
ago. The problem is relevant in the study of floating bodies in waves. Radiation forces on the
oscillatory bodies need to be evaluated. For simplicity, a body is just forced to oscillate in an
experiment or in a theoretical study. Two-dimensional experimental studies were carried out, for
instance, by Vugts (1968), Tasai & Koterayama (1976) and Yamashita (1977).

In some situations, such as for very small amplitudes, the forces can be almost linearly dependent
on the forced oscillation amplitude. Therefore, in the earlier theoretical studies, good results for
some cases were obtained just by a linear theory. However, when the oscillation amplitudes are
larger, the non-linear force components will be more significant. Second-order theories were
extensively developed in predicting the second-order forces on oscillating bodies, e.g. by Lee
(1968), Potash (1971), Papanilolaou & Nowacki (1980). However, it is cumbersome to further
develop nonlinear solutions to the third or higher order by a perturbation scheme. On the other
hand, viscosity causes nonlinearities for sections with sharp corners even when the oscillation
amplitude is small, because viscous flow separations will occur and the resulting vortex shedding
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affects the loads on the body. This was shown e.g. by Yeung & Ananthakrishnan (1992) for a
heaving rectangular cylinder by using numerical methods.

More recently, numerical potential flow methods were introduced to simulate the forced large
amplitude oscillations of 2D bodies. Nonlinear time-domain simulations are first performed and the
nonlinear forces components can then be calculated from the time history of the force, e.g. by
Kashiwagi (1996) and Koo & Kim (2004) for forced heave motions. In the large-amplitude heave
motions of a more general ship section, such as a bow-flare ship section, more physical effects can
be involved, such as non-viscous flow separation, secondary water impact, cavity enclosure, etc.
An advanced CFD method with proper verification is able to simulate such complicated situations,
however, greater complexities require more computational time. Further, to obtain a steady-state
condition and continue for sufficient oscillation periods implies a long time simulation. At this
point, the BEM shows its advantages, because it takes much shorter time to perform the simulation.
However, numerical difficulties can be encountered in the BEM based on potential theory, for
instance, when a plunging wave impacts the underlying free surface. The generation of vorticity
during this water-water impact is inconsistent with the assumption of a potential flow throughout
the fluid domain. Such numerical difficulties have to be avoided in the BEM.

e 2D+t theory

In a 2D+t theory, the original 3D problem for a ship in waves is approximated by a series of time-
dependent 2D problems in Earth-fixed cross-planes intersecting the ship. In this approximation, the
ship is assumed to be slender, which means the transverse dimensions should be much smaller than
the longitudinal dimension. Three-dimensionality is partly considered because the flow at a cross-
section is influenced by the flow upstream of this section. However, transverse waves can not be
described in the 2D+t theory. The consequence is that the ship-length based Froude number must
be larger than =0.5 when one solves the steady and unsteady problems with symmetric flow about
the ship’s central plane (Faltinsen, 2005). The 2D+t theory is also called a 2.5D theory. In the
formulation of the 2.5D theory, a two-dimensional Laplace equation is solved in ship-fixed cross-
planes, and the free surface conditions are satisfied in three dimensions. The calculations can start
from the bow of the ship and then proceed along the longitudinal downstream direction of the ship.
However, an inconsistency happens at a transom stern for high Froude number cases when the flow
separates at the transom stern, because the 2D+t theory can not foresee the flow separation and the
influence from the flow downstream the transom stern is not considered. This shows an inherent
deficiency for the 2D+t theory. In spite of this, the 2D+t theory has proved to be a very efficient
approach for high speed ships with strongly nonlinear effects. In contrast, traditional linear theories
can no longer provide good predictions to these problems and fully three-dimensional numerical
methods may need rather long time to complete the simulations.

The concept of the 2D+t approximation was proposed by Munk (1924) in his slender body theory
for airships. The idea was applied to slender planing surfaces by Tulin (1957). The effect of gravity
was neglected in his study. Ogilvie (1967) tried to account for gravity effect in a 2D+t approach.
Chapman (1976) further applied the 2D+t approach together with nonlinear free surface conditions
to solve the problem of a vertical flat plate with yaw motion in a uniform stream. Yeung and Kim
(1981) employed a similar concept and calculated the hydrodynamic forces on a frigate hull with
forward speed and forced heave or pitch motions. However, the free surface conditions were
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linearized in their method. Chapman (1976)’s approach was generalized by Faltinsen & Zhao (1991)
to study the steady and unsteady motion of a high speed slender ship. The steady flow was
nonlinear, while the unsteady flow was assumed linear. Maruo & Song (1998) followed a 2D+t
theory to simulate the steady and unsteady motions of a frigate model with nonlinear free surface
conditions and gravity effects. The generation of spray and breaking bow waves were well
simulated. However, flow separation was not included. Tulin & Wu (1996), Fontaine & Cointe
(1997) and Fontaine et al. (2000) further applied the 2D+t theory to study the nonlinear bow waves.
The theory proved to be very efficient in their studied cases. Lugni et al. (2004) presented results of
the steady wave elevation around a semi-displacement monohull with transom stern. They
compared the results of linear 3D and nonlinear 2D+t computations and proved the effectiveness of
the 2D+t theory for a large range of high Froude numbers. CFD methods can also be combined
with a 2D+t theory. Tulin & Landrini (2001) used the Smoothed Particle Hydrodynamics (SPH)
method in a 2D+t fashion to investigate the breaking bow waves of slender ships.

e Planing hull

A planing hull introduces more hydrodynamic challenges relative to semi-displacement vessels.
For instance, dynamic stability gets increased importance. Examples are dynamic roll instability,
broaching and porpoising (Faltinsen, 2005). In order to study these instability problems, the
hydrodynamic forces on the planing hull in steady and unsteady motions have to be accurately
predicted. Nonlinearities play a more significant role than for a displacement or semi-displacement
ship. Further, the high speed of a planing vessel causes higher probability of cavitation and
ventilation.

Both experimental and theoretical approaches have been used to study the hydrodynamic features
of planing vessels, but doing experiments is more straightforward and therefore was the main
approach in earlier studies on planing vessels. The experiments by Sottorf (1932 and 1934) were
amongst the earliest experimental studies on planing vessels. Savitsky (1964) presented empirical
equations for lift, drag and centre of pressure for prismatic planing hulls, based on experimental
data. Later, Altman (1968) performed forced oscillation experiments of prismatic hulls and Fridsma
(1969, 1971) conducted experiments for prismatic hulls in regular and irregular head sea. Troesch
(1992) studied experimentally forced vertical motions from low to moderate planing speeds of
prismatic planing hulls.

Some attempts have been made to analytically solve the problem by linearization, e.g. in Wang &
Rispin (1977), Martin (1978a, 1978b). Due to strong nonlinearities involved in planing vessels, the
application of these linear solutions is quite limited. Numerical approaches were introduced in
recent decades. Vorus (1992, 1996) developed a two-dimensional theory by distributing vortices in
a horizontal plane at the mean free surface. The theory was combined with a 2D+t theory. Lai
(1994) solved the planing problem in three dimensions using a vortex lattice method. Zhao et al.
(1997) applied a 2.5D theory in combination with the BEM described in Zhao & Faltinsen (1993)
to study the steady flow past high-speed planing hulls on a straight course. However, all the
numerical methods mentioned above assume very high speed, or infinite Froude number for the
planing vessel, so that gravity is neglected in their analyses. Lai (1994) examined gravity effects
for some cases by adding hydrostatic force to the hydrodynamic lift force. This is not a full
consideration of gravity effects. One must also consider the influence of gravity on the free surface
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elevation and the associated pressure distribution on the hull. When gravity is included in the
analysis of wave generation, these effects can be shown, and the hydrodynamic features of a
planing vessel in oscillatory motions will be frequency and Froude number dependent.

e Boundary Element Method applied to solve nonlinear free surface problems

Different numerical methods can be used to solve the strongly nonlinear wave-body interaction
problems. The most commonly used methods are the BEM (Boundary Element Method) based on
potential theory and CFD methods based on the Navier-Stokes equations or Euler equations. Zhu
(2006) presented a review of different CFD methods used for strongly nonlinear wave-body
interaction problems. Some complicated phenomena can be simulated by a CFD method, e.g. a
plunging wave breaking with impact on the underlying free surface. Further, those viscous effects
such as boundary layer separation and vortex shedding can be simulated in a CFD method based on
Navier-Stokes equations. However, for the time being, CFD methods are still quite time-consuming.
In fact, in many of the strongly nonlinear wave-body interaction problems, the fluid viscosity is
unimportant or at least not the key factor. Then it is reasonable to apply the BEM based on
potential theory. However, special care must be taken to avoid the numerical difficulties such as
due to initial water-body impact and breaking waves. Those problems can often be efficiently
tackled by combining the BEM with certain local analytical solutions or by using numerical
treatments.

The BEM method has been widely applied in marine hydrodynamics. Longuet-Higgins & Cokelet
(1976) proposed the Mixed Eulerian-Lagrangian method (MEL) to simulate steep free surface
waves. A similar numerical approach has been presented earlier by Ogilvie (1967) to solve the near
field around a ship. Later, this method combined with a Boundary Element Method was extensively
used to simulate the nonlinear waves and to solve nonlinear wave-body interaction problems,
especially in two dimensions. We can see many successful examples using this approach, to name a
few, Zhao & Faltinsen (1993) simulated the water entry of a wedge with strongly nonlinear free
surface flow; Cao et al (1994) and Kashiwagi (2000) studied nonlinear wave-induced motions of a
floating body; Zhang et al. (1996) simulated the impact of a plunging breaker on a wall; Baarholm
(2001) studied the water impact on decks of offshore platforms with nonlinear effects; Greco et al.
(2004) examined green water on deck where strongly nonlinear plunging waves can occur.

1.3 Present work

In the wave-body interaction problems studied in the present work, the water is assumed inviscid
and incompressible and the water flow is irrotational. So the work is carried out in the framework
of potential theory. Nonlinear free surface conditions are commonly satisfied on the free surface.
The exact nonlinear body boundary conditions are usually satisfied, except that in a fluid-structure
interaction problem the nonlinear body boundary conditions are approximately satisfied on the
undeformed position of the body surface. The fluid domain is assumed unbounded in most cases.
Air cushion formed in the initial stage of the water impact of a body is not taken into account.
Hydroelasticity is only included in the water impact problem of a cylindrical shell in the present
study.
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1.3.1 Contributions in the present work
Major contributions in the present work are given as follows.
= A BEM developed with gravity effects

A Boundary Element Method is developed to solve the fully nonlinear wave-body interaction
problems. The gravity is, in general, included in the method. The thin jet on the body surface is cut
in a way different from what was used in Zhao & Faltinsen (1993). The deadrise angle of the
wedge section has been as small as 4° in the numerical calculations. The thin spray evolved from
the free surface is also cut to avoid wave breaking.

=  Non-viscous flow separation

The non-viscous flow separation from a sharp corner or from a curved body surface can be
simulated in the BEM. On a curved body surface, the water flow is forced to separate from the
body surface when a large area with pressure less than atmospheric pressure is detected. This is the
first time, to the author’s knowledge, that the non-viscous flow separation on a curved body surface
is simulated in a Boundary Element Method.

=  Asymmetric water entry

Asymmetric water entry problems of a ship-bow section with different heel angles are solved by
the BEM. Pressure distributions on both the impact side and the leeward side of the section at any
time instant can be calculated. Negative pressure areas are observed on the leeside of the section,
which indicate the possibility of ventilation and the resulting separation.

=  Prediction of nonlinear forces on heaving 2D bodies

The heave motions of some special cross-sections are investigated, i.e. a bulbous bow ship section
and a flat wedge section. Viscous flow separation affects the damping coefficients in the cases for
the bulbous bow ship section. Strongly nonlinear effects are associated with the latter case even
when the heave amplitude is relatively small.

=  Hydroelastic analysis

In the study of the water impact of a circular cylindrical shell, the importance of the extension in
the middle plane of the shell wall, the influence of the higher order modes and the role of the rigid-
body motion in the coupled analysis are discussed. Further, the influence of the exact description of
the water flow, i.e. the nonlinear free surface and body conditions and the non-viscous flow
separation, is shown from the comparisons between the results by the BEM plus the modal analysis
and the results by the flat plate theory plus the modal analysis.

= Steady and unsteady motions of a planing hull with gravity effects
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Both the steady and unsteady motions of a planing hull at moderate planing speeds are investigated.
It is demonstrated that gravity matters for moderate planing speeds. The 3D effect at the transom
stern is found to be particularly important for the planing hull at moderate planing speeds. In the
unsteady problems, the frequency dependency of the added mass and damping coefficients is
investigated for a moderate planing speed.

1.3.2 Outline of the thesis

The BEM and associated numerical techniques are described in Chapter 2. The numerical method
is verified by comparing with the similarity solution results given by Zhao & Faltinsen (1993) for
the water entry of a wedge with deadrise angle in the range of 4° ~ 45°. Further, an improved way
to calculate the acceleration during the free fall of a light body is introduced.

Then in Chapter 3, an analytical solution of the separated flow near the separation position is
presented in detail. The analytical solution can be combined with the BEM to simulate the non-
viscous flow separation. Examples are given to illustrate the efficiency of the flow separation
model. The three examples are, respectively, the flow separation from the knuckle of a wedge
during its water entry process, the flow separation from the transom stern of a planing hull and the
flow separation during the water impact of a circular cylinder.

In Chapter 4, the water entry of rigid bodies in two dimensions is investigated numerically by the
BEM described in Chapters 2 and 3. Flat plate theories are used at the initial stage of the free water
entry to provide the initial conditions for the BEM. First, the symmetric water entry of a wedge, a
bow-flare ship section and a circular cylinder are studied numerically and the results are compared
with experiments. Then the asymmetric water entry of the bow-flare ship section is investigated
numerically by changing the heel angle of the section or the drop height. The effects of the heel
angle and the drop height are discussed. Comparisons with experiments are also shown.

In Chapter 5, the water impact of a cylindrical shell is studied including hydroelasticity effects.
Coupled analyses by von Karman’s method or Wagner’s method for the water flow together with a
modal analysis for the structural responses are presented. Some physical effects are discussed from
the coupled analysis by these methods. The coupled analysis is also performed by using the BEM
for the water flow and the modal analysis for the structure. The numerical results are compared
with experiments. Different physical effects and possible error sources in the experiments and
numerical calculations are discussed.

In Chapter 6, the water flow due to the heaving of a two-dimensional section on the free surface is
numerically studied by the BEM together with the application of a numerical damping beach. The
heave motions of a thin wedge and a half-buoyant circular cylinder are first investigated. The
results are compared with the experiments and theoretical results in order to verify and validate the
numerical method. Then the numerical simulations are performed for the heave motions of a
bulbous bow ship section with two different drafts and a flat wedge section. Different effects
associated with these problems are discussed.

The initial part of Chapter 7 formulates the problem of a prismatic planing hull in calm water. A
2D+t theory combined with the BEM is then presented to study a prismatic planing hull in steady
motion. Three-dimensional effects and gravity effects are discussed. Then the 2D+t theory is
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generalized to study the forced unsteady heave or pitch motions of a planing hull. The added mass
and damping coefficients are evaluated for different frequencies at a moderate planing speed.

Finally in Chapter 8, the conclusions drawn from the present work are given and the perspectives
for further studies are proposed.

Most contents in this thesis have been published respectively in the following five papers: Sun &
Faltinsen (2006a, 2006b, 2006c), Sun & Faltinsen (2007a, 2007b). Details for these publications
can be seen in References.



CHAPTER 2

A Boundary Element Method

A 2D Boundary Element Method (BEM) is developed to solve the water flow around a free-surface
piecing body. The motion of the body can be given or be free. The body is assumed to be rigid. The
vertical motion is along the vertical symmetry line of the body in two dimensions. The description
of the method and numerical schemes involved will be introduced in this chapter. The BEM in this
chapter are mainly concerned with the symmetric water entry of rigid bodies. However, the
numerical method will be generalized in Chapter 4 to solve an asymmetric water entry problem.

2.1 The Boundary Element Method
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Fig. 2.1. 2D Earth-fixed coordinate system and definitions.
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A two-dimensional section is moving vertically on the free surface with a time-dependent velocity
V = V(t) k (Fig. 2.1). The unit vector Kk is pointing in the positive direction of z-axis. In a water
entry problem, the V(t) is negative, which means the body is moving downwards. An Earth-fixed
Cartesian coordinate system yoz in the two-dimensional cross-plane is applied, with y-axis on the
calm free surface, z-axis pointing upward and z=0 corresponds to the calm free surface. Due to the
symmetry about the z-axis, only one half of the fluid domain is studied. The water is assumed
inviscid and incompressible and the water motion is assumed irrotational. So a velocity potential
o(y,z,t) satisfying a 2D Laplace equation can be used to describe the water flow, which means

=0 in the water domain 2.1

The boundary condition on a rigid body surface is given by

a— =V-n on the body surface (22)
n

where n is the normal vector pointing out of the fluid domain in two dimensions. Further, fully 2D
nonlinear free surface kinematic and dynamic boundary conditions are satisfied on the free surface,

ie.

Dy dp Dz 0p

, on the free surface 2.3)
Dt oy Dt o0z
D 1
= _ —|V(z)|2 -gz on the free surface 2.4)
Dt 2

where g is the acceleration of gravity and D/Dt is the substantial derivative. The effect of the
surface tension is neglected. The dynamic free surface condition implies that the pressure on the
free surface is constant. A consequence is that the air flow between the cylinder bottom and the free
surface before the water impact is neglected. A truncation boundary at a distance far from the body
and a flat bottom boundary at a deep water depth are assumed. The boundary condition on these
two boundaries are given as

op
on

0 .5)

In a water entry problem, if the truncation boundary is far enough from the body, the existence of
the boundary will not give significant influence during the rapid water entry process. In a heaving
problem, in order to avoid reflection waves from the truncation boundary, a ‘numerical beach’ is
applied in front of the truncation boundary to damp out the waves. This numerical technique will
be described in Chapter 6. When the water flow is symmetric about the z-axis, the behavior of ¢ at
infinity boundary is like a vertical dipole in an infinite fluid with singularity at y=0 and z=0.
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Initially, if the water is at rest before the body interacts with the water, then the velocity potential is
zero on the undisturbed free surface.

By using Green’s second identity, the velocity potential at a field point P within the fluid can be
represented by

oG (P, o0p,
27r¢)P:I ¢)QM—G(P,Q)8—L ds,
n

N nQ o

2.6)

where G(P,Q) = log r(P,Q) and r(P,Q) is the distance from a source point Q on the fluid boundary S
to the field point P in the fluid domain €. The fluid domain is surrounded by the closed boundary S
consisting of Sg (the body surface), Sr (the free surface), S; (the boundary at infinity), Sp (the
bottom surface) and Sc (the symmetry line boundary). By letting the field point P approach S, an
integral equation can be obtained. If one assumes that at a certain time instant ¢ is known on the
free surface, and 0@/On on the body surface is known from Eq. (2.2), then by solving the resulting
integral equation, one can obtain the velocity potential ¢ on the body surface and the normal
velocity O0p/On on the free surface. The free surface elevation and the velocity potential on the free
surface for the next time instant can be updated by using Egs. (2.3) and (2.4). Given initial
conditions for ¢ on the free surface and the free surface elevation, one can just follow a time
marching procedure to solve the Initial Boundary Value Problem (IBVP).

From Bernoulli’s equation, the pressure on the body surface can be evaluated by
op 1 )
P-p, =—p(gz+—+—|Vgo|j 2.7)
o 2

where p, is the atmospheric pressure and p is the water density. The pressure —pgz is included so
that the influence of gravity on the hydrodynamic force on the body can be incorporated.
Integrating the pressure times the z-component of the normal vector along the wetted surface will
result in the total vertical force due to the water pressure.

The term O¢/0t can be evaluated by solving a boundary value problem for an auxiliary function
w(y,z,t) defined by

w=0p/ot+V -V (2.8)

As proved by Greco (2001), the auxiliary function i satisfies the 2D Laplace equation

=0 2.9)

Inserting Eq. (2.8) into Eq. (2.4) results in the boundary condition for y on the free surface
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,,,:V.vq,_awr e (2.10)

On the body surface, the body boundary condition for y can be derived similarly as in Greco
(2001). Therefore one has

y
on

=n-V (2.11)

where V = dV / dt is the acceleration vector of the rigid-body motion. After solving d¢/dn on the
free surface from the earlier mentioned Boundary Value Problem (BVP) for ¢ at a certain time
instant, the right-hand side of Eq. (2.10) can be evaluated. Then the BVP for y described by Egs.
(2.9)-( 2.11), together with zero-disturbance requirement at infinity, can be solved numerically. The
procedure is just like solving for the velocity potential ¢. The value of  on the body surface is then
found and substituted into Eq. (2.7) to obtain O¢/ot.

The rigid-body motion can be determined by solving the equation of motion from Newton’s second
law.

MV =F — Mg (2.12)

where M is the total mass of the body, F, is the total vertical force due to the water pressure,
V =dV /dtis the vertical acceleration of the rigid-body motion. The acceleration vector can be

written as V = ¥ k . In order to calculate ¥/ from this equation, one has to know the F. integrated

from the pressure. However, the pressure is unknown before V is given (see Eq. (2.11)). So the
BVPs for ¢ and y are coupled with the rigid-body motion equation. Ideally, we have to solve them
simultaneously by iterations. For simplicity, we can approximately use the acceleration in the last
time step to give the boundary condition in Eq. (2.11) in the calculation of . Then we solve Eq.
(2.12) to obtain the new acceleration for the current time step. Numerical problems may occur in
cases when the total mass of the body M is small relative to the added mass in the vertical motion.
The errors in the acceleration can cause divergence. In order to avoid this numerical problem, one
can use an alternative way to calculate the acceleration. This method will be presented in section
2.9.

2.2 Initialization for the BEM calculation

Initially, the velocity potential is zero on the undisturbed free surface. For an oscillation problem,
the numerical calculation starts from this condition. However, for a water entry problem, an initial
water entry phase has to be simulated by an approximate method, i.e. von Karman’s method or
Wagner’s method. This is due to the fact that there is a rapid change in the free surface profile at
the initial water entry stage, especially for a wedge section with a small deadrise angle. Great
computational efforts are required to accurately simulate such a change. Alternatively, one can just
employ an approximate method to simulate this initial stage when the gravity is negligible. The
argument is that at the initial stage of the water entry, the scale of the submerged cross-section is
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very small. The Froude number of the local flow is therefore very large, which means that gravity
gives less important contributions. Maruo & Song (1994) adopted Mackie (1962)’s analytical
solution for the water entry of a sharp wedge to give the initial conditions in their BEM
calculations. The deadrise angles of their sections were quite large. In present study, Wagner’s
approximation is applied to provide the initial conditions in the water entry problems for a small-
deadrise-angle wedge and for a circular section.

For the free water entry of a 2D wedge, one can derive the following differential equation by using
Wagner’s outer-domain solution (Faltinsen, 2005, exercise 8.9.4 and Sun, 2006).

' pr ¢l 7pg
. {éf —= (=g (2.13)
di’  Smtan’ S dt dt 4mtan §

where {(t) is the submergence of the wedge apex relative to the undisturbed free surface, m is the
mass of the section of unit length and f is the deadrise angle (See Fig. 2.1). The water entry
velocity results from the equation V(f) = —d{/dt, which can be combined with Eq. (2.13) and
numerically solved simultaneously. The initial values at time t = 0 when the body touches the calm
water surface are given as {(0) = 0 and V(0) = —(Zgh)” ? where h is the drop height measured from
the apex of the wedge at rest to the calm water surface. Further, the wetted area due to the thin
spray is neglected and the half wetted width c(?) is expressed as

t
=20 (2.14)
2tan S
At time instant ¢, the free surface profile is given by
t t
n(y,t)zyi())ar i (c()] é’( ) for y>c (2.15)
c(t

If the computation by the BEM starts form time instant ¢, then the initial condition of the free
surface profile for the numerical calculation can be given by this equation because {(t) and c(¥)
have been obtained from the Wagner’s solution. The initial velocity potential is ¢ = 0 on the free
surface. Starting from those initial conditions, the numerical calculations will soon come to a stable
state in the time integration procedure.

For the water entry of a circular cylinder, the analytical solutions in the initial stage by approximate

methods will be given in Chapter 4. For an arbitrary section, the initial stage will be numerically
solved when using von Karman’s method, which will also be shown in Chapter 4.

2.3 Discretization in the BEM

The closed boundary S of the fluid domain includes the body surface Ss, the free surface Sg, the
truncation boundary S, the bottom Sg and the symmetry line boundary Sc. In the numerical
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calculations, the boundaries will be discretized into straight-line elements. Because the boundaries
S; and Sy are far away from the body, it is satisfactory to use only a few elements on these
boundaries. Equally distributed elements are used on the body surface. Further, elements varying in
size are distributed on the symmetry line boundary. The element closest to the body surface has the
same size as its neighboring body surface element. Then the elements are geometrically increasing
along the symmetry line boundary, as they are further away from the body. The free surface
boundary is divided in two regions. Equal elements are distributed on the first region near the body,
while geometrically increasing elements are distributed on the other region far from the body.
Usually more elements are distributed on the near-body region than on the other region. The length
ratio of these two regions and the number of elements on them can be adjusted. Generally speaking,
two rules are followed. The first rule is to use finer elements on regions closer to the body and to
use larger elements far away from the body. The other rule is to control that the ratio of lengths of
two adjacent elements is around one, so that they have similar size.

On each element, a linear interpolation function is applied to approximate the values between two
nodes in terms of the nodes’ values. The interpolation function is given by

_ (‘é:m — é:)f, + (f - é:i )fm

f é:m - é

(2.16)

in which ¢ is the distance along the element and the subscript indicates the serial number of the
node. The unknown f can be either ¢ or ¢, . By applying this interpolation function, the integral
equation resulting from Eq. (2.6) can be discretized into a set of linear algebraic equations

N N
ap, = ZHU,gpj —ZG‘](/)W (2.17)
Jj=1 j=1

where N is the total number of elements on the boundary S, H;; and G; are coefficients in front of
unknowns and the internal angle a is equal to © when the surface is smooth at the point i, otherwise
the angle should be calculated separately. The equation system can be written in a compact matrix
form

[H#]{e} =[G]{s,} (2.18)

where [H] and [G] are coefficient matrices, {@}is the vector of velocity potential values and {g,} is
the vector of normal derivative values of the velocity potential. The direct calculation of internal
angle a can be avoided according to Beskos (1987), because the diagonal elements of [H] can be
computed in terms of the off-diagonal ones by using

N
H =-)H, (2.19)

j=1

J#l
On boundaries with Dirichlet conditions ¢ is known and on boundaries with Neumann conditions

¢, 1s known. One can move the unknown terms to one side and the terms which are already known
to the other side of the equation, hence
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s s
@ ?,

|:HS _GF H1+B+C:| ¢nF _ I:GS _HF G[+E+C:| (DF (220)
1+B+C 1+B+C

where the superscripts correspond to the definition of the boundaries in Fig. 2.1.

Special care must be taken near the intersection of the body surface and the water surface. The
velocity potential is continuous on this intersection. However, the normal velocity is discontinuous
because the normal directions at the two sides of the intersection are different. A common
treatment to this problem is to assume that the normal velocity should be known on the body
surface, but unknown on the free surface. So the normal velocity on the intersection at the free
surface side is solved together with the other points on the free surface.

After solving the equation system in (2.20), one will obtain the velocity potential on the body-
surface nodes and the normal velocity on the water-surface nodes. Afterwards, one can proceed to
update the body surface, the free surface elevation and the velocity potential on the free surface, in
a way described in Section 2.7. However, after the updating, the first point on the free surface can
not exactly fall on the updated body surface. This implies a small gap between the free surface and
the body surface, which is not allowed in a BEM. In order to fulfill the closed-boundary
requirement in a BEM, the first point on the free surface has to be corrected. One way is to project
the point normally to the body surface. Then the root of the normal line is the new body-water
surface intersection. Further numerical treatments to the free water surface will then be performed,
such as cutting the thin jet on the body surface, cutting thin sprays, smoothing and regriding.

2.4 Jet cutting

A very thin jet will run up along the body surface when the angle between the impacting water
surface and the body surface is small. This often occurs for a falling wedge section on the water
surface especially for small deadrise angle cases. Because of the very small contact angle between
the body surface and the free surface on the jet, numerical errors near the intersection point can
easily cause the points on the free surface of the jet to move to the other side of the body surface
and the calculation will then break down. Therefore, the jet flow near the intersection point must be
appropriately controlled. One solution is to cut the very thin jet.

There are different ways to do the cut-off. Zhao & Faltinsen (1993) introduced a small element
normal to the body surface. Kihara (2004) controlled the contact angle to be always smaller than a
threshold value and introduced a new segment on the free surface. A new cut-off method is now
introduced. This method looks similar to the one used by Kihara (2004). However, they are two
different approaches.

The cut-off model is shown in Fig. 2.2 for a wedge section. A, B and C are points on the free
surface. When the normal distance from point B to the body surface is smaller than a threshold
value d), the area enclosed by ABCD is cut by introducing a new segment DC on the free surface.
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The value of the normal distance is regarded as negative when B is on the other side of the body
surface. This procedure controls the jet flow both when the jet is too thin and when the points on
the jet cross to the inside of the body surface.

By applying this cut-off model, the thin jet can be kept longer than when using the cut-off model in
Zhao & Faltinsen (1993). This is not advantageous for the pressure distribution, because large
pressure oscillation can happen in the long thin jet area due to numerical errors. However, when the
gravity effect is considered, the flow on the top of the jet will be more likely to be affected by
gravity. In order to simulate the influence of gravity, a reasonable part of the jet must be kept. The
pressure oscillations will be reduced when the elements on the body and the free surface near the
jet tip are made smaller and in comparable size.

A Body surface

Body surface Free surface

Cut line

Free surface

Fig. 2.2. Cut-off model of a thin jet. Fig. 2.3. Scheme of the cut-off of a thin spray.

2.5 Spray cutting

When the gravity is accounted for, a thin spray can evolve from the free surface. It will at a later
time overturn and hit the free surface underneath. If this happens, the calculations break down. The
reason is that the penetration of the free surface causes circulation, i.e. vorticity and thus the
potential theory can no longer be used to describe the fluid flow. Further, a detailed description of
the spray requires the consideration of the surface tension. However, the spray gives little
contribution to the pressure on the body. Even though the splash happened, the vorticity generated
by the splash would influence a limited area in the flow and could only have a small effect on the
body. Therefore, the spray can just be neglected by cutting it before it touches the free surface
underneath. In such a way the numerical calculations can be continued until the completion of the
concerned water entry process.

The cutting scheme is shown in Fig. 2.3. When the spray grows long enough and before its tip
(point B) touches the free surface, a part of the spray is cut. The cut line is normal to the upper free
surface AB. Point C is the highest point on the lower free surface. The cut line goes through the
middle point between B and C, thus the spray can be cut from around the middle of it. That part of
the spray which is cut off is assumed to be independent of the remaining part of the fluid and its
motion is only influenced by gravity. This assumption can be confirmed by the results in the
example presented in Fig. 2.4 and Fig. 2.5. The 2D water entry of a wedge section with deadrise
angle p = 45° is simulated. The constant water entry speed is V= 1.0ms™. It can be seen that the
cutting does not change the free surface profile in the remaining part. The vertical force F, on the
section with unit length is not apparently influenced by the cutting, either.
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Fig. 2.4. Free surface profiles with and without sprays. Fig. 2.5. Vertical force histories.

2.6 Smoothing and regriding

Smoothing and regriding of the updated free surface are performed at each time step. Numerical
instabilities can be prevented by using these two numerical techniques.

In the time stepping procedure, a sawtooth instability of the free surface profile will appear. A
reason for this instability is due to the nature of the integral equation solved by the numerical
method. The integral equation is a mixture of Fredholm integral equations of the first kind and the
second kind. The numerical solution of Fredholm integral equation of the first kind can induce
instability problems. This problem is described in many mathematic books, such as Delves &
Walsh (1974, Chapter 13) and Arfken & Weber (2001, Chapter 16). The saw tooth instability can
be removed by using a smoothing technique (Longuet-Higgins & Cokelet, 1976). A set of five-
point-third-order smoothing formulas for equally spaced points is now adopted. It is only applied
on the near-body region of the free surface, where the elements are uniformly distributed. Actually,
the smoothing is not necessary for the free surface region far away from the body, because the free
surface profile does not change so violently as in the near-body region. Other smoothing techniques
can also be applied to tackle the sawtooth instability. For instance, Maruo & Song (1994) applied a
five-point smoothing algorithm in their BEM. The five-point-third-order smoothing formulas
applied in the present numerical method are expressed as

1

f1=%(69y1+4y2—6y3+4y4—y5) (2.21.a)
1

f, :§(2yl +27y, +12y, -8y, +2y,) (2.21.b)
1

f :§(—3yi_2 +12y  +17y, +12y  =3y,)) (2.21.c)

1
S, = g(2 Vo =8y, 12y 427y +2y) (2.21.d)
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1
f, = %(- Ve +4y, =6y, +4y,  +69y,) (221.e)

where y; (i = 1,2,..., N) are original values before smoothing and f; (i = 1,2,..., N) are values after
smoothing. N is the total number of nodes on the free surface region to be smoothed. The values
can be y- and z- coordinates and the velocity potential ¢ on a node. The first two equations are used
for the first two nodes and the last two equations are used for the last two nodes. The third equation
can be used for any point at i =3,..., N-2. It should be noted that the smoothing must not be applied
to the water-body surface intersection point, because the position of this point should not be
changed by smoothing.

After the updating of the free surface at each time step, the nodes can become too close to each
other or too far away from each other, which may also cause numerical instabilities. The free
surface needs to be re-discretized. A cubic spline approximation is used to interpolate the new
points on the free surface. The regridding is performed by the following three steps. The first step
is to find out the cubic spline approximation of the free surface profile by using polygonal arc
length as the parameter. The second step is to calculate the arc length of the free surface and
formulate the cubic spline approximations in terms of the arc length. Then the final step is to re-
distribute the nodes on the free surface by dividing the boundary into equal arcs or into arcs
increasing geometrically in length.

In the first step, we have known the positions of all the nodes on the free surface. The polygonal
arc length from the first point of the free surface to the starting point of any segment i can be
calculated, which is denoted as ¢g;. On segment i, the y and z coordinates can be expressed as

v(g)=a,+b,(g-q,)+c,(q-q ) + d, (qg-q, ) (i=1,2, ..., N-1) (2.22.a)

4 (q) =a_+b, (q—q,)+czi (q —-q, )2 +d. (q —-q, )3 (i=1,2,...,N-1) (2.22.b)

where N is the number of nodes involved in the regriding process. Then by using continuity of the
first and the second derivatives of y; and z;, we can find out the coefficients a,;, a.; b, b.; ¢y, iy dy
and d,;. A detailed description of the implementation is given by Bhat & Chakraverty (2004).

In the second step, the arc length between point i and point i+1 is denoted as m; and the arc length
from the first point (point 1) to point i is denoted as A; . Because the analytical approximate
expressions of y,(q) and z,(q) on each segment are known, we can calculate the arc length m; from
the following integration

mo=h —h= j \/I:y ()] +[2' ()] dg (=18 2.23)

with
yi' (q) = byi + zcyi (q - qi ) + 3dw‘ (q _qi )2 ?

Z[, (q) = bz[ + 20:[ (q _q[)+3d;f (C] -9, )2 :
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The Legendre-Gauss quadrature is used to calculate the integrals numerically. The integral is first
transformed to be integrated in the interval [-1, 1] by

b b—a ¢ b—a_ a+b
[r(x)ax=—] f( T+ jd}? (2.24)
“ 2 72 2
with 32 (@02
(b—a)/2

Then the integral in the interval [-1, 1] is calculated by the Gaussian quadrature formula:

[ FoaE=3crE) (2.25)

Here n = 6 is chosen in the calculations. fj for j = 1,2,3,...,6 are the six roots in the interval [-1, 1]

of the sixth order Legendre polynomial P4(x) = 0 and correspondingly C; are the six coefficients.
The six roots and six coefficients are given as follows:

% =X, =0.1713244924, C = -C, =0.9324695142 (2.26.2)
¥, =¥,=0.3607615731, C, = -C,=0.6612093865 (2.26.b)
¥, = X,=0.4679139346, C, = -C,=0.2386191861 (2.26.)

By using the Legendre-Gauss quadrature to calculate the integrals, one can acquire a higher
accuracy in the results of the integrals than just using the trapezoidal rule. This Legendre-Gauss
quadrature is described in detail by Bhat & Chakraverty (2004). When n is different from 6, the

values for the roots X, and the coefficients C; can be found in this reference.

Then we use #4; to replace g; in the first step and form new interpolation functions in terms of 4, i.e.
vi(h) and z;(h), on element i. Similarly we can formulate the approximate functions for velocity
potential as ¢;(h).

In the final step, we can calculate the arc length from the first node to any new node on the free
surface. The arc length is inserted into the approximate functions on the element, in which the new
node locates, to calculate the y, z and ¢ for this new node. Thus the coordinates of the new nodes
and velocity potential on them are found.

2.7 Time-marching procedure

A time-marching procedure is followed by integrating the evolution equations, i.e. Egs. (2.3) and
(2.4) with respect to time. When the body motion is free, the equation of motion (2.12) needs to be
accounted for. This procedure is numerically realized by using a fourth-order Runge-Kutta method.
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Initially the coordinates and the velocity potential for the free surface nodes are known. When the
water entry speed is constant, the unknowns to be updated to the next time step include y;, z;, ¢; (i =
1,2, ..., N+1), where N is the total number of linear elements on the free surface. The derivatives
0¢/0y (p, ) and 0¢/0z (¢.) on the free surface, which need to be evaluated in Eq. (2.3) and (2,4),
can be expressed by the normal derivative 0¢/0n (¢,) and tangential derivative 0@/0s (¢;) as

Q =pn +on
: (2.27)

p.=—pn +on

The normal derivates ¢, on the free surface are solved from the linear system given in Eq. (2.20).
The tangential derivatives ¢, can be obtained from y;, z;, @; similarly as in Greco (2001). From the
coordinates of nodes y;, z; on the free surface, we can calculate the length of each linear element.
The length of element 7 is denoted as s;. The nodes on the two ends of the element i are numbered
as node i and node i+1. The velocity potential on node i is denoted as ¢;. Then the tangential
derivatives on nodes are calculated by using the following equations:

_ _(hzz +2h1h2)¢1 +(h1 + hz )2 ?, _hlz(ps

= 2.28.a
g i (1, +1) 228
“Ro +(h-h )o+h ¢
= (o (K)o + fori=2,...,N (2.28.b)
hihi—l (hz + hi—l)
2
Do = i (o) 0, + (K 420 o (2.28.0)

hl '—1hN (hN—l + hN )

N

A fourth-order Runge-Kutta method is applied to numerically integrate the equations in Egs. (2.3)
and (2.4) in time. The derivation of the formulas for the fourth-order Runge-Kutta method is given
in Bhat & Chakraverty (2004). Now the time derivative of the unknown vector X={{y},{z},{p}} is
expressed by a function dX/dt = f({y}, {z}, {¢}, {¢.}) =f (X, {p,}). The normal derivatives in
{¢,}are assumed unchanged in the time interval At. Then we have

X" = X"+ (k, +2k, + 2k, +k,) At/ 6 (2.29)

where X" and X" are unknown vectors at time step n+1 and n, At is the time interval and the
coefficient vectors k;, k», k3 and k, are given by

X' {o})

X" +k1At/2,{(ﬂ”})

(
(
(X” +k2At/2,{¢”})
(

A
=f
A
=f(x" +k3At,{¢”})

kl
kz
k3
k4
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2.8 Verification by comparing with similarity solutions

Zhao & Faltinsen (1993) presented the similarity solutions for the water entry of wedge sections at
constant entry speeds for different deadrise angles. In Fig. 2.6, the pressure distributions on the
body surface and the free surface profiles by the present numerical calculations are compared with
their similarity solutions for deadrise angles f =4°, 7.5°, 10°, 20°, 30° and 45°, respectively. The
gravity is neglected in the BEM calculations in order to compare with the similarity solutions
without gravity effects. Good agreement can be seen. The results for relatively small deadrise
angles are shown here. It is more difficult to obtain good numerical results for smaller deadrise
angles than for larger deadrise angles. The reason is that a smaller deadrise angle causes a faster
and thinner jet flow which is more difficult to control numerically. Therefore, the good agreement
for smaller deadrise angle cases shows the robustness of the present numerical method.
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Fig. 2.6. (See the caption in page 29).
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Fig. 2.6. Comparisons between the numerical results (BEM) and the similarity solutions (SIM.) in Zhao &
Faltinsen (1993) for different deadrise angles: f =4°, 7.5°, 10° 20° 30° and 45°. Left column: Free surface
profiles; right column: Pressure distributions.

2.9 An improved method in the calculation of the acceleration

For a free drop of a body into the water, the acceleration has to be instantaneously calculated. In
most cases, the vertical acceleration can be calculated from Eq. (2.12) by

V=F/M-g (2.30)

However, in some cases when the total mass of the body M is much smaller than the added mass in
the vertical motion, the numerical errors can be accumulated and lead to divergence. The reason is
the following. Implicitly, F, is a function of the acceleration dV/dt. For a water entry problem with
a linear approximation of the free surface condition, i.e. =0, the linear added mass force —A4;;dV/dt
expresses the acceleration dependent component in the hydrodynamic force where Aj; is the high
frequency added mass in heave for the body (see Faltinsen, 1990, pp. 299). This expression of the
added mass force is borrowed here to approximate the acceleration-dependent part in the present F,.
If the added mass is much larger than the body mass M, then the error in dV/dt from the last time
step will be amplified by A43;/M when we use Eq. (2.30) to calculate the acceleration dV/dt. The
error will be further passed to the pressure calculated in the next time step through the body
boundary condition in Eq. (2.11). Therefore, the numerical errors are amplified and accumulated as
time goes on, and finally lead to divergence.

In order to avoid this problem, a numerical treatment is introduced. An estimated added mass force
—Aj3; dV/dt is subtracted from both sides of Eq. (2.12). In doing this, the equation is not changed.
The added mass can be approximated by a flat plate theory, or by other available methods. As long
as the estimated added mass force represents a major part of the acceleration-dependent part in F,
this method will work. Eq. (2.12) can be rewritten as

(M +4,)V=F+A)V-Mg (2.31)
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Then the acceleration will be obtained by dividing the right hand side of this equation by the sum
(M + A33). Because a large part of the added mass force has been subtracted from the F,, the error
in the acceleration will be less likely to be passed on to later time steps. So the accuracy of the
results can be fairly improved.

In the calculation of the free water entry of a circular cylinder in Chapter 4, this method is followed.
The submergence of the cylinder can be very large. When the submergence of the cylinder is
smaller than the cylinder radius, von Karman’s method is applied together with the flat plate
approximation to give the 2D added mass

1
A, =—prc’ (2.32)
2

33
where the half-wetted length c(t) is measured on the calm water surface. When the submergence is
larger than the order of the cylinder radius, the non-viscous flow separation is likely to occur and it
is not appropriate to continue using von Karman’s approach to estimate the added mass. However,
the flat plate approximation can still be applied, but c(t) is determined in a different way. The half-
wetted length c(t) is calculated as the length from the centre of the flat plate to the horizontal
position of the body-water surface intersection predicted by the BEM.

This treatment is simple but useful. An example is given to show the effectiveness of this approach.
A wedge of length 1.0m and beam 0.2m are dropped from a height h = 0.5m. The water flow is
assumed totally two-dimensional. The drop height is measured from the lowest apex to the calm
water level. The deadrise angle of the wedge is 30 degree. The total mass of the wedge is 10 kg.
The initial stage before t = 0.0008s is simulated by Wagner’s method. After this moment, the BEM
takes over the calculation. The vertical accelerations and vertical velocities calculated by the BEM
are shown in Fig. 2.7. Different approaches to solve the acceleration are applied in the two
calculations. In ‘Method 1’ the acceleration is calculated by using the original equation of motion.
‘Method 2’ refers to the calculation by using the numerical treatment presented in this section. The
former calculation by ‘Method 1’ diverges at about time instant t = 0.17s, while the latter
calculation converges. It shows that the accuracy of the acceleration calculation is improved by
using this numerical technique and the divergence can therefore be effectively avoided.
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Fig. 2.7. Comparison of the results by using different methods to calculate the acceleration.



CHAPTER 3

Non-viscous flow separation

When a free-surface piercing body is moving with large motions, the water flow can separate from
the body. This flow separation is not due to viscous effects and is different from the viscous flow
separation of a boundary layer. It is called non-viscous flow separation. The condition for viscous
flow separation is that the normal derivative of the tangential velocity at the body surface is zero.
This condition is not satisfied in a non-viscous flow separation. The separation position can be
either on a fixed point, such as the knuckle of a section or a transom stern, or moving on a curved
surface. Moreover, the non-viscous flow separation is a well-known fact for the steady flow past a
body with an attached cavity. In this chapter, a flow separation model which can be incorporated in
the BEM will be introduced.

3.1 Local solution of a separated flow

Free surface

Separation point

Fig. 3.1. Non-viscous flow separation at a sharp corner and the coordinates.

As shown in Fig. 3.1, the free surface separates from a sharp corner of a body section in two
dimensions. An analytical solution for the local flow near the separation point can be found (see
Zhao et al., 1996 and Faltinsen, 2005). A polar coordinate system (r,0) fixed with the body is
adopted. The origin is located at the separation point S (Fig. 3.1). The water is assumed

31
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incompressible and inviscid with irrotational flow. A velocity potential ¢(r, 0, t) is used to describe
the flow. It satisfies the Laplace equation in the polar coordinate system,

Op 1op 109
_2+——+—2 > =
or ror r 06

3.1)

In the body-fixed coordinates, the normal velocity of the fluid particle on the body boundary must
be zero. Then the body boundary condition gives

op B
00

(3.2)

First, a general solution satisfying the governing equation in Eq. (3.1) and body boundary condition
in Eq. (3.2) will be found. More restrictions, such as finite velocity at the separation point, will also
be satisfied. Then for different problems, the description of the free surface condition is different.
Therefore, different particular solutions can be obtained.

Appendix A shows the derivation of the general solution of ¢(r, 6, t) satisfying Eq. (3.1) and (3.2).
The solution is

¢(r.0.t)=C,(B,+D,Inr)+ Y C cos(nd)(Br"+Dr") (3.3)

n>0

where C,, By, Dy, B,, D, are time-dependent coefficients and n is a real number. So the radial
velocity is

v =2 D+ Y cos(n0) (B 4 D) (3.4)

ar n>0

At the separation point where r—0, the velocity must be finite, so the coefficients in front of ' and
r ™! must be zero. Further, if 0 < n < 1, the coefficients in front of r ™! must also be zero. Therefore,
the general solution can be rewritten as

@(r,0,t)= A4, + Arcosd+ ZAJ’" cos(n0) (3.5

n>1

where the coefficients C;, By, Dy, B, D, have been combined to given the new coefficients A, and
A, (n>1), which are also time-dependent. So the radial velocity and angular velocity are given by

v = 8_ =4 cosf+ Z Anr"" cos(nd) (3.6)
A n>1
1 op . pl .
v, =——=-4 s1nt9—ZnA”r sin (n6) 3.7

r 89 n>1
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Along the body surface, 6=0, hence

v (0=0)=4+> A" (3.8)

n>1

At the separation point r = 0, the tangential velocity Us along the body surface in s-direction (s-axis
is shown in Fig. 3.1 with origin at the separation point) can be expressed as

U=-v(0=0,r=0)=-4 (3.9)

s

If the water flow separates tangentially along the body surface, then the free surface approaches the
straight line 6=n near the separation point. From Eq. (3.6), we have

v (0=7)—>U, asr—0 (3.10)

which means that the tangential velocity on the free surface near the separation point tends to the
tangential velocity at the separation point as the location approaches the separation position.

3.2 Flow separation at knuckles

Based on the general solution given in the section 3.1, a local analytical solution can be found for
the flow separation at the knuckle of a 2D section impacting water surface. The free surface
conditions will be satisfied. This local solution can be incorporated into the BEM to simulate the
non-viscous flow separation at the knuckle point. An example will be given to demonstrate the
effectiveness of the flow separation model.

3.2.1 Local analytical solution near a knuckle

In the water entry of a two-dimensional section, the water flow will separate from the knuckle if
there is a sharp corner at the knuckle point. The general solution given in the section 3.1 is further
developed by satisfying the free surface conditions. Neglecting the gravity, the dynamic free
surface condition can be written as

o0 1 1
LoVl ==r () G.11)
o 2 2

where V(f) is the water entry speed of the section relative to the calm water. From Egs. (3.5) and
(3.9), the term O¢/0t can be expressed as

dp dA(1) dU (i dA, (t
g _d4,@) ‘“()rc059+z ,(0)
or  dt dt

———7" cos(n0) (3.12)
dt

Inserting Egs. (3.6), (3.7) and (3.12) into Eq. (3.11), we have
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@_§0+l(vz+vgz):dAo(t) dU(t) 05O+ Zal (1), (n@)

r' cos
o 2" dt dt -
, (3.13)
1
+5[ U, cos¢9+ZA nr'” cos(nﬁ)} +E|:U sin @ — ZnAr’ sm(n@)} ——V(t)
n>1 n>l1
Eq. (3.13) can be expanded as
dA, (1) dU_(t) 1, 1 2
_— 0+ 0)+—U " +— A4
P 0 ; r cos(n ) U 22}( nr )
X (3.14)
—UXZ:Annr”l cos [(n—l)ﬁ ZZA A mnr"'r"" cos [(m—n)ﬁ] ==V(@t)
n>1 n>1 m>1 2

Near the separation point, the coordinate r is small, so we can rearrange the terms in Eq. (3.14) in
ascending order of r " . The lowest order approximation of Eq. (3.14) is formed by zero order terms
in O(°),

dA (1) 1
ﬁ‘F_U

2 1 2
, ==V (3.15)
dt 2

This equation is automatically satisfied because it follows from the fact that the pressure at the
separation point is atmospheric pressure. The second lowest order approximation is given from the
terms in O(r™"), i.e.

~U Anr'" cos[(n-1)0]=0 at0=m and r—0 (3.16)

Therefore,

1
(n-)z=(k+—)r fork=0,1,2,... (3.17)
2

The lowest order corresponds to k=0, which gives n=3/2. If we neglect all the other higher order
terms, then the velocity potential close to the separation point can be written as

3
p(r,0,t)=A4,(t)-U (t)rcos @+ 4,,,(¢)r"" cos (— 9) (3.18)
‘ ' 2
Then the radial velocity near the separation point is
3 s 3
v, =-U, cosl9+—Aw(t)r cos| —6 (3.19)
‘ 2 2

On the body surface at 6=0, the tangential velocity is
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s

3 /
v =-v =U, —EAM (¢)r'” (3.20)

On the free surface at 0= and r—0,

v=v =U 3.21)

3 1/2
v,=—A,,r (3.22)

From the kinematic free surface condition, the fluid particle on the free surface will always stay on
the free surface, hence,

an_v % (3.23)
ds v %

s s

where the n-axis is normal to the s-axis as shown in Fig. 3.1. From Egs. (3.21), (3.22) and (3.23),
one has

dn 34, (3.24)
ds 2 U

Integrating this equation in s, one can obtain the profile of the free surface as

A
n(s) =—2s"° (3.25)
U

s

The coefficient A;;(t) can not be determined by this local analysis. It follows by matching the local
solution with the global analysis.

The pressure on the body surface near the separation position can be written as

op
—+
ot

| |
p-p, =—p[ —|V¢|2} +—pV (1)’ (3.26)
2 e 2

Inserting the velocity potential in Eq. (3.18) and the radial velocity in Eq. (3.20) into the pressure
gives

0 R 3 T S S
p=p, =—p—[AO-UOr+ 4,00 |-=p|U -=4,, (1) | +=pV(@®  (3.27)
ot ' 2L 2 2
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o4,(t) 1 oU (t 3 L1 .
ie. p-p, =—p|: °()+—Uj} [ 4, (1) - ():|r+—pUSA3/2(t)r' +—pV (1)’ (3.28)
o 2 2 2

where the terms with order higher than O(r) have been neglected. The term proportional to ' in
the pressure will result in the following term in the pressure gradient op/cr,

_pUA 3/2( )\/’ (329)

Because of this term, the pressure gradient will go to infinity, as the position approaches the
separation point, i.e. r—0. Due to the infinite pressure gradient, the acceleration of a fluid particle
at the separation point will be very large, which can be much larger than the gravitational
acceleration. This is consistent with the earlier assumption that the gravity should be neglected
around the separation position.

3.2.2 Numerical implementation

In the numerical calculations, the relations in the local solution described in section 3.2.1 will be
utilized. From Egs. (3.20) and (3.21), in the very close vicinity of the separation point, the
tangential velocity v, on the free surface can be approximated by the tangential velocity on the
body surface. As a further approximation, the term proportional to r'* in Eq. (3.20) has been
neglected. The geometry of the free surface and the normal velocity on the free surface should
follow Eq. (3.25) and (3.22), respectively. However, the coefficients U(t) and Aj/(t) are unknown
in advance. However, very close to the separation point, the terms of order O(+"?) and O(*?) are
small values. If these terms in Egs. ( 3.25) and (3.22) are neglected, the normal velocity v, and the
normal displacement n(s) will be approximated as zeros. It means that, in the very close vicinity of
S, the free surface is just tangential to the body surface and the normal velocity on the free surface
equals the normal velocity of the rigid body.

Artificial body

surface \
Knuckle

point

Wedge
surface

Free
surface

pd \ C C G

Initially calm free surface

Fig. 3.2. Numerical simulation of the flow separation at a knuckle.
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In the numerical simulations, an artificial body surface tangentially extended from the knuckle
point S along the wedge surface is introduced (Fig. 3.2). The wetted artificial body surface is
treated like a physical body surface when we solve the fluid field. Once it is detected that the water
goes beyond the knuckle point S, the flow separation model will be applied.

The following steps are performed to make the flow separate from the knuckle point. At first, the
free surface is located at ABC as shown in Fig. 3.2. Then the artificial body surface SA is changed
into a part of the free surface by keeping its geometry and normal velocity but changing the
tangential velocity. The tangential velocity on SA is set equal to the tangential velocity at knuckle
point S, which is calculated by using the velocity potential on the physical wedge surface adjacent
to S. The free surface part SA is then updated to a new position A;A;" by using the free surface
conditions and the free surface part ABC is updated to a new position A;” B,C, . These two parts of
free surface AjA," and A," B,C, are connected to form the new free surface A; B;C,. The small
surface SA, then becomes an artificial body surface. In the next time step, the similar procedure is
followed by changing the artificial body surface SA; to a part of free surface and then updating it.
Then a separated free surface A,B,C, can be obtained. By following those steps, the water flow
will continuously separate from the wedge surface.

Gravity has been neglected in the local analytical solution. Zhao et al. (1996) incorporated this
local solution with a Boundary Element Method without considering gravity effects. However, in
the present BEM, the gravity is, in general, included. It may be questioned whether this local
solution can still be combined with the present BEM. The answer to this question is positive. In the
currently studied problems, although the gravity matters in some areas away from the knuckle, it is
less important in the very close vicinity of the separation point. The validation of the combination
of the local analytical solution and the present BEM can be seen from the examples as follows.

The free surface profiles during the free water entry of a 30 degree V-shaped section in the
experiment by Greenhow & Lin (1983) are compared with present numerical results in Fig. 3.3 (a)-
(d). Free surface profiles obtained by the numerical simulations are plotted in the experimental
photos taken at four different time instants. The beam of the section is 0.218m. The water entry
speed has been estimated from the photos. A decelerated motion can be observed. The initial time
instant is t = 0.200s when the wedge apex just touches the water surface. At t = 0.205s, a very thin
jet is formed along the body surface; at t = 0.210s the spray root has just passed the knuckle; at t =
0.215s, the top of the jet turns over, which implies the existence of the gravity effect. The
discrepancies in the figures can be explained by the following reasons. Firstly, the information
about the falling speed is not given in the experiment report. So the speed can only be roughly
estimated from the photos. Errors may be introduced during this estimation. Further, as stated in the
experiment report, the timing system in photographing can have an error of +0.005s, which may
also affect the agreement. However, generally speaking the numerical simulations show good
predictions of the free surface profile.
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: - 1=0.205s
t=0200s _

Fig. 3.3. Free surface elevations around a wedge in a free water entry. The results by the numerical
simulations are compared with the photos taken in the drop tests by Greenhow & Lin (1983).

3.3 Steady flow separation from transom stern

A similar local solution can be found for the flow separation from the transom stern of a planing
hull (Chapter 9 in Faltinsen, 2005) in steady motions. As shown in Fig. 3.4, the flow separates from
the stern in a centerline plane of a planing hull. In reality, the flow around the transom stern should
be three-dimensional. For simplicity, one can assume a two-dimensional flow in the centerline
plane. A local 2D coordinate system ¢-¢ fixed on the hull is used. By following the similar
procedure as in section 3.2, one can find the following relation from the lowest order

approximation
U, =+J2gD, +U’ (3.30)

where U is the fluid velocity at the flow separation position, Dy is the draft at the transom stern and
U is the forward speed of the planing hull.
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Fig. 3.4. Flow separation at the transom stern of a planing vessel in steady motions.

If one includes the second lowest order terms, the velocity potential near the separation point can
be approximated by

p=Ay+UE+ Ay, cos(30/2) (3.31)

This solution is in the same form as the solution in Eq. (3.18). Therefore, similarly as in the last
section, the free surface profile is given by

A P
(E=—"L¢& (3.32)
U

s

The pressure on the hull surface near the separation position, i.e. the transom stern, is written as

s 16=0

3 |
p-p, =-pUu :EpUSA“r ” (3.33)

An application of this local solution will be given in Chapter 7 to demonstrate the 3D effects near
the transom stern.

3.4 Flow separation from a curved body surface

The non-viscous flow separation can also happen on a curved body surface, such as the surface of a
horizontal circular cylinder, during the water entry of the cylinder. At first, a water jet will rise
along the body surface as shown by the dotted line BC in Fig. 3.5. The fluid particles in the jet tip
are moving in curved trails. The centripetal acceleration is provided by the pressure gradient in the
normal direction pointing into the body. In order to acquire this pressure gradient, the pressure on
the wetted surface near the jet tip must be lower than the atmosphere pressure on the jet surface.
However, if the low-pressure wetted area is too large, the air can easily enter the area. Then the
pressure gradient becomes insufficient to provide the necessary centripetal acceleration. As a result,
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the jet tip will tangentially run away from the body surface. That is how the non-viscous separation
happens on the curved surface.

Unlike the previously discussed non-viscous flow separation from a sharp corner, the flow
separation from the curved surface will not always occur at a fixed point. As the body enters the
water, the separation position will move along the body surface. Nevertheless, at a given time
instant, we can still obtain a similar local analytical solution around the flow separation position. If
we assume that the free surface separates tangentially from the body surface, and the body surface
in the close vicinity of the separation point can be viewed as a flat surface, then we can apply the
local solution derived in section 3.2 to describe the local flow around the moving separation
position. It will be shown how to incorporate this local solution in the global analysis.

Cylinder
surface

B,

Free
surface

/‘“C C, G,

Initially calm free surface

Fig. 3.5. Numerical simulation of the non-viscous flow separation on a curved surface.

The non-viscous flow separation can be simulated numerically as follows. When a large area with
pressure lower than p, is detected, say, the area between point A and B in Fig. 3.5, the following
will be done to make the water separate from the body surface. First the wetted body surface AB is
changed to a part of free surface, which means to keep its geometry and the normal velocity on it,
but to approximate the tangential velocity by the tangential velocity at point A on the body surface.
Then the free surface part AB is updated by using the free surface conditions to a new position
A;B,. The free surface part BC is updated to the free surface B;C,. Therefore a new free surface
AB|C, is obtained by connecting A;B; with B;C,. Point A, is projected to the body surface and
becomes the new body-water surface intersection. This point is then the flow separation position. In
the next time step, the free surface is just updated as usual. The curve A,B,C, shows the free
surface at a certain time instant after the flow separation. The separation position just moves along
the body surface until a new large area of low pressure is developed. When this happens, the
procedure above will be repeated.

From the description above, it can be expected that in the numerical simulation the separation
position will be moving back and forth on the body surface. This is because the position moves
upwards during the water entry in a general trend, but every time after the flow separation
procedure, the separation position will move backwards. The threshold of the length of the low
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pressure area, where the pressure is lower than the atmospheric pressure, is chosen in advance. It
will be shown later that the oscillation amplitude of the separation position can be reduced by using
a smaller threshold value. However, the body motions are not sensitive to the threshold value.

An example taken from the drop tests by Greenhow & Lin (1983) is now given. The water entry of
a half-buoyant circular cylinder is numerically simulated to show the validity and convergence of
the numerical method with the flow separation model. The diameter of the horizontal circular
cylinder is D = 0.11m. The mass of the half-buoyant cylinder of unit length is ptD*/8. The cylinder
is dropped from a height h = 0.5m above the water. For simplicity, the simulation of initial impact
stage is omitted. The numerical calculation by the BEM starts from the time instant when the
cylinder has entered slightly into the water. This time instant is set as t=0. The initial submergence
is arbitrarily chosen as a small value, say, 0.005m which is only 1/22 of the cylinder diameter. To
account for the speed reduction due to the initial impact, the inital water entry speed in the
calculation is roughly taken as 2.0ms”, which is not exact but in an acceptable range for the
purpose of testing the flow separation model. Detailed discussion of the influence of the initial
water impact phase and more exact results will be given in Chapter 4. It should be noted that the
definition of the time t=0 in the results given in Chapter 4 is different. In Chapter 4, t =0
corresponds to the time when the cylinder is released at a height above the water.

Fig. 3.6 shows the comparison of the numerical results by using different threshold values in the
flow separation model. The percentage ¢ is defined as the ratio of threshold length of the low
pressure area to the arc length of the half wetted area before the flow separation. The time histories
of the horizontal position Y, of the body-water surface intersection normalized by the radius of the
cylinder R = 0.055m are compared in Fig. 3.6 (a). When the threshold is smaller, the starting time
for the flow separation, when Y, suddenly decreases, is earlier, but the amplitudes of the
oscillations are smaller. The time histories of the vertical acceleration of the cylinder are compared
in Fig. 3.6 (b). The acceleration also oscillates due to the oscillatory change of the wetted surface.
However, the oscillations are very small compared with the overall acceleration. So the body
motions are not strongly affected by the choice of the threshold length of the low pressure area.
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Fig. 3.6. Influence of the threshold value in the flow separation simulation. The parameter ¢ is the ratio of the
threshold length of the low pressure area to the length of the wetted surface. (a) Horizontal coordinates of the
body-water surface intersection; (b) Vertical accelerations of the cylinder.
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Fig. 3.7. Free surface profiles in the right- half plane during the water entry of a half-buoyant circular cylinder.

Fig. 3.7 shows the numerically calculated free surface profiles around the circular cylinder at
different time instants during the water entry of the half-buoyant cylinder. In the calculations, € =
10%, At = 0.0001s. Due to the symmetry, only the right half of the cylinder (solid lines) and the
flow on the right side (dashed lines) are shown. The cylinder moves downwards continuously. The
seven half-circles and the free surface profiles tangentially attached to them shown from the top to
the bottom correspond respectively to the seven time instants at t = 0.01s, 0.02s, 0.03s, 0.04s, 0.05s,
0.085s and 0.120s. In the figure, the water flow separated from the body surface gradually develops
into a water jet and rises up, as the cylinder enters the water. The separation position does not
change much (See also Fig. 3.6 (a)). However, in a general trend, it moves upwards. At t = 0.120s,
the position moves to the upper surface of the cylinder. According the Zhu (2006)’s investigation
of the water entry of a circular cylinder with constant speed, the threshold Froude number (F,p=
[V|/(gD)"?) for the appearance of a closed air cushion on the cylinder top is between 0.9247 and 1.1.
For the present case, the Froude number estimated by using the initial speed 2.0ms™ is F,p=1.9,
which is much larger than the threshold value. So it means that in the later stage of the water entry
the water surfaces on the two sides of the cylinder will approach each other and close an air
cushion above the cylinder. However, the deceleration of the cylinder during the water entry and
the finite depth (0.3m) in the drop tests can affect the phenomenon.

The temporal and spatial convergence of the numerical method is shown in Table 3.1 and Fig. 3.8.
The water entry of the horizontal half-buoyant cylinder is calculated by using different time steps
and different number of elements on the body surface and the free surface. All the calculations
converge up to a certain time. The time history of the acceleration for each calculation is compared
with the first calculation. This calculation (No.1) is done by using the smallest time step and finest
discretizations and thus expected to produce the best result. So it is used as a reference calculation.
The plots of these calculations are given in Fig. 3.8. The errors of other calculations relative to the
reference calculation are estimated by using the following formula.
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(3.34)

where X,; means the results by calculation No. 1, X,; means the results in any other calculations
and X,max 1S the maximum value by the first calculation. N=2001 is the total number of compared
pairs of values from t = 0 to t = 0.04s. After t = 0.04s, all the calculations almost converge to a
single line. For At other than 0.00002s, the values are linearly interpolated so that in each
calculation there are N=2001 values. Seen from Table 3.1, the relative errors tend to smaller values
when the time step decreases and the number of elements increases. It shows that the calculations
converge relative to the time step and the grid size.
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Fig. 3.8. Time histories of the acceleration by different calculations.
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Table 3.1. Temporal and spatial convergence of the numerical method with a flow separation model.

No. At (s) Ng Ng E, relative to No. 1
1 0.00002 800 350 ---
2 0.00010 500 250 0.0063
3 0.00015 500 250 0.0074
4 0.00020 500 250 0.0093
5 0.00025 200 150 0.0206
6 0.00030 200 150 0.0253

Ns : Number of elements, which are equally distributed on the half circular body surface.
Nr : Number of elements on the free surface. (Ng-50) elements are equally distributed on the 25% length of
the free surface in the near-body region and 50 elements geometrically increasing are distributed on the rest

75% free surface.
At: Time step in second.
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CHAPTER 4

Free water entry of a two dimensional section

The water entry of a two dimensional section can be simulated by the BEM. In principle, the shape
of the cross-section can be arbitrary. The free water entry of three different cross-sections, i.e. a
wedge section, a bow-flare ship section and a circular cylinder, are studied in this chapter. In the
initial stage of the water entry, a flat plate theory, i.e. von Karman’s theory or Wagner’s theory, is
used to avoid the numerical difficulty at the initial time. Finally, the BEM is generalized to solve an
asymmetric water entry problem. The water entry of an inclined bow-flare ship section is studied.

4.1 Approximate methods

As mentioned in Chapter 2, Wagner’s theory is applied to simulate the initial stage of the free water
entry of a wedge and provide initial conditions for the BEM calculations. Von Karman’s theory can
also be applied as well. Faltinsen (1990, 2005) described these two flat plate theories used in water
entry problems. When the deadrise angle of a wedge is small, Wagner’s theory gives better
prediction than von Karman’s theory (see Faltinsen 2005, Chapter 8). However, for a very thin
body von Karman’ theory shows more reliable results.

The equation of the motion follows from Newton’s second law. Neglecting the buoyancy force in
the initial stage, the vertical force on the body due to the water pressure can be written as —
d(As;V)/dt (Faltinsen 1990, pp. 299). The rigid-body motion equation is then given by

v d
m—=——[4,V]-mg 4.1)
e dt

where m is the mass per unit length of the two-dimensional section, V(t) is the water entry velocity
with positive direction pointing upwards, As; is the high-frequency added mass in heave for the
body. The buoyancy force has been neglected, because in the initial time of the free water impact,
the buoyancy force is far less than the hydrodynamic force. According to a flat plate theory, the
added mass can be written as 433 = prr ¢*/2, where c(t) is half the wetted length of an equivalent flat
plate. Wagner’s theory and von Karman’s theory will give different predictions of this length. In
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Wagner’s theory the uprise of the free surface is taken into account while in von Karman’s theory
the length is measured from the undisturbed water surface. Integrating Eq. (4.1) once with respect
to time, one has

(m+ Ay )V =m[V(0) - gt] (4.2)

where the initial time t = 0 means the time instant when the body touches the calm water surface.
4.1.1 Circular cylinder

For a circular cylinder analytical solutions can be found by using the flat plate theories. From the
Wagner’s theory described in Faltinsen (1990), the half wetted length c(?) can be obtained from the
differential equation

—C(t)sz(t) 4.3)
2R di

where R is the cylinder radius. Inserting Eq. (4.3) and Asy; = pr ¢%/2 into Eq. (4.2), and then
integrating the resulting equation in time once again, it follows that

/2N m 1 2
p—c +—c +mV(0)t——mgt =0 4.4
16R 4R 2

Solving this equation, one can express c” as

& :2_’"{_”\/1+4£R[—V(o)t+0.5gt2]} (4.5)

Yoy m

Inserting Eq. (4.5) into Eq. (4.3), one has
V (0) —gt

V(t): 7oR
\/l+4]€[|:—V(O)t+O.5gt2:|

(4.6)

In von Karman’s theory, the half wetted length is expressed as ¢ =R*-(R - {)* where ( is the
submergence of the lowest point of the circular cylinder into the water relative to the calm water
surface. From this relation, one can obtain a differential equation

dc d¢
c—=(R-¢)—= 4.7
dt dt
From this relation, it is not straightforward to find the analytical solution similar as in the Wagner’s
method. However, numerical solutions can be found. Substituting Eq. (4.7) and 433 = pz ¢*/2 into
Eq. (4.1), one has
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1 ,\dV )
(m+—p7rc j—zV pﬂ(R—é’)—mg 4.8)
2 dt

This differential equation can be combined with V' = —d{/dt to form an equation system and then
numerically solved by a fourth-order Runge-Kutta method. In the initial stage of a water entry
when the submergence is very small, i.e. { <<R, the half wetted length can be approximated as ¢ =
(2R)". Using this relation, an approximate analytical solution can be derived. First, it can be
proved that the following differential equation holds

c(t) de B
Y

4.9)

This equation is quite similar to Eq. (4.3) except for a factor 2 in the denominator. Then a similar
procedure is followed and finally the water entry speed is written as

V(0)-gt

V(Z): PR
\/1+2Z[—V(O)t+0.5gt2]

(4.10)

4.1.2 Arbitrary section

Both Wagner’s theory and von Karman’s theory can be used to solve the water entry problem of an
arbitrary section. However, it is simpler to use von Karman’s method because it is easier to
determine the half-wetted length c(t). Therefore, von Karman’s method is adopted to solve the
initial stage of the water entry of a ship bow section in section 4.3. Further, the lower part of the
bow section is thin. For the water entry of a thin body, von Karman’s method is expected to give
good predictions.

The submergence of the apex of the section into mean water surface is {(t). In the von Karman’s
theory the half-wetted length can be expressed as a function of the submergence, i.e c(t) = f ({(t)),
where the function z = f{y) gives the section profile in the right half plane when the lowest point on
the section just touches the calm water surface. Hence, the added mass is given by

A, :%,M (9} @.11)

From equation (4.2) and (4.11) and the relation d{(t)/dt = -V(t), one can obtain

a¢ . FV(O)+gt (4.12)
dt 1+%pﬂ'f(§)2/m

This differential equation for {(#) can be numerically solved by the fourth order Runge-kutta
method. Then the velocity is given by Eq. (4.12), and the acceleration is calculated from equation
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av _Viprf($)f'(§)/m-g
dt

- 4.13)
l+5p7rf2/m

The derivative f' ({) = df/d( in the equation has to be evaluated numerically if one only knows the
section shape at discrete points rather than an analytical expression describing the surface.

In order to test this method for an arbitrary section, the following comparisons are made. The water
entry of a circular section is calculated by both the present method for an arbitrary section and the
specific numerical method for a circular cylinder in section 4.1.1. Discrete points on a circle are
provided as the input to the first calculations. The radius is R = 1.0m. The initial water entry
velocity is /(0) =—1.0ms™". The mass per unit length of the section is m = 1000kg/m. Then the time
histories of the submergence and the water entry velocity of the circular section by these two
methods are compared in Fig. 4.1. These two calculations show good consistency. So the numerical
method for an arbitrary section by the von Karman’s theory is verified.

1.0
-4 Method for a circular section
Method for an arbitray section -1.0 4 ----#--- Method for a circular section

0.8+ Method for an arbitrary section
2 0.6 E 154
o 04+ >

2.0
0.2+
0.0 T T T T T 25
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 01 0.2 0.3 0.4 05 0.6
Time (s) Time (s)
() (b)

Fig. 4.1. Comparisons between two numerical methods based on von Karman’s theory for the water entry of a
circular section. (a) Submergence {(?); (b) Water entry velocity V(z).

4.2 Water entry of a wedge section

Aarsnes (1996) performed free drop tests of a V-shaped section and a ship-bow section. The cases
with roll angle 6 = 0, i.e. symmetric water entries for the V-shaped section (or wedge section) are
numerically studied in this section. The configuration of the section model used by Aarsnes (1996)
is shown in Fig. 4.2. The deadrise angle of the wedge section is 30 degrees. The horizontal and
vertical forces were measured on a measuring section with length 0.1m during the drop tests. Two
dummy sections with length 0.45m were fixed on both ends of the measuring section. So the total
length of the model is 1.0m. The vertical acceleration of the falling body was also measured. The
total weight of the falling rig is 288kg. The pressures at five points from P1 to P5 (Fig. 4.2) on the
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bottom of the section were measured. The drop tests of the ship-bow section will be numerically
studied in later sections.

Four cases with roll angle 6 = 0 and drop heights h = 0.13m, 0.195m, 0.313m and 0.5m are studied
in this section. The drop height is defined to be the distance from the apex of the wedge to the calm
water surface when the section is at rest in the air and going to be released. The experimental
results and the results numerically calculated by the BEM for these four cases are shown in Fig. 4.3
— Fig. 4.6, respectively. The time histories of the vertical velocity and acceleration, the vertical
force and the pressures are shown. The measured pressures in the model tests are not shown in the
figures, because the quality of the measured data is not satisfactory enough. The data often show
inconsistencies between different cases. Sometimes they even conflict with the reality.

In the numerical calculations, the initial stage is simulated by Wagner’s theory in the way
mentioned in Chapter 2. After a short time duration, about 0.001 ~ 0.003s, the BEM takes over the
calculations. The initial water entry speed in the calculation for each case is given by the estimated
drop speed in Aarsnes (1996). They are respectively 1.55ms™, 1.91ms™, 2.42ms™ and 3.05ms™ for
h = 0.13m, 0.195m, 0.313m and 0.5m. These drop speeds are slightly smaller than what can be
calculated from (2gh)"? with g = 9.81ms™. Aarisnes (1996) may have accounted for the speed loss
due to some reasons during the free fall of the rig in the air. One of the possible reasons is the
frictional force between the falling rig and the trail. Air resistance is not likely to affect the speed
apparently, as indicated in the study by Zhu (2006).

. Force Transducer..

© LED%*

Fig. 4.2. V-shaped section in the drop tests by Aarsnes (1996).
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Fig. 4.3. Results for the water entry of the wedge for a drop height h = 0.13m. Exp.: Experiments by Aarsnes
(1996); BEM: Calculations by the BEM. P1-P5: Five positions on the wedge surface (1 bar = 10° Nm™).

The measured results for accelerations and forces have been filtered using a cut-off frequency of
700 Hz. The oscillations of the experimental results after low pass filtering are due to the vibration
of the drop rig which supports the model during the tests. Because the vibrations are present even
before the section touches the calm water surface, they are probably excited when the rig is
released. The vertical force results were further corrected after the filtering by subtracting the
inertial force — Ma, from the filtered force results, where M=10.3kg is the mass of the measuring
section and a, is the vertical acceleration. The corrected force is then the vertical force due to the
water pressure, which includes the added mass force. Because the added mass force —43;a. depends
on the vertical acceleration, the oscillations in the acceleration cause the oscillations in the
corrected force results. It seems as if some high-frequency oscillations have been superimposed on
the mean force results. The mean lines of the experimental results for the acceleration and the
vertical force show reasonable agreement with the numerical results. The vertical velocity is less
affected by the vibrations and better agreement can be seen.
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Fig. 4.4. Results for the water entry of the wedge for a drop height h = 0.195m. Exp.: Experiments by Aarsnes
(1996); BEM: Calculations by the BEM. P1-P5: Five positions on the wedge surface (1 bar = 10° Nm™).

The maximum acceleration and vertical force occur near the instant when the spray root reaches the
knuckle. Afterwards, the water flow separates from the knuckles and the acceleration and vertical
force start to decrease. The maximum values are larger for cases with larger drop heights. The
calculated maximum vertical forces are always greater than the experimental results. One of the
reasons is the three-dimensional effects as analyzed in Zhao et al. (1996) in their study of the free
drop tests for the same wedge model. The 3D effects were estimated by applying Meyerhoff’s
(1970) results to be able to cause a 20% reduction in the vertical force at the stage when the spray
roots reach the knuckles. So it means the maximum forces shown in Figs. 4.3-4.6 can be reduced
by 20% due to the 3D effects. With such corrections, the numerical predictions can be clearly
improved, except for the case in Fig. 4.5. The maximum force in Fig. 4.5 after such a correction
will be obviously smaller than the experimental result. This is because the oscillations in the force
results also affect the predicted maximum force. Another possible reason for the overestimate of
the maximum forces is the frictional force along the guide trail. However, just from the information
given in the experiment report, it is difficult to judge how large the influence from the frictional
force could be.
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Fig. 4.5. Results for the water entry of the wedge for a drop height h = 0.313m. Exp.: Experiments by Aarsnes
(1996); BEM: Calculations by the BEM. P1-P5: Five positions on the wedge surface (1 bar = 10° Nm™).

In all the four cases, the calculated maximum pressures at the five positions are successively
captured from the lowest P1 to the highest P5. The time when the maximum pressure at a certain
position occurs should correspond to the time when the spray root reaches that position. This is due
to the fact that the maximum pressure exists near the spray root in the spatial pressure distribution
along the wedge surface, for a deadrise angle of 30°. For a larger drop height, the maximum
pressure at a position is larger and occurs earlier. It means that the spray root moves faster when
the water entry speed is larger.

In a drop test, the maximum pressure values for different positions from P1 to P5 are similar. The
pressure depends on both the velocity and acceleration of the body. In a flat plate theory (Faltinsen
2005), the pressure on the body can be expressed as

op c dc av

p=—p—=—pV—F——-p—c —x
ot Je o2 de T dt

2
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Fig. 4.6. Results for the water entry of the wedge for a drop height h = 0.5m. Exp.: Experiments by Aarsnes
(1996); BEM: Calculations by the BEM. P1-P5: Five positions on the wedge surface (1 bar = 10° Nm™).

The first term associated with the impact velocity is the slamming pressure. The second term is
related with the acceleration and is called as added-mass pressure. In the four cases, the
accelerations are relatively small. So the slamming pressure dominates and the velocities do not
change much during the water entry. As a result, the maximum pressures at four different positions
have comparable values. For the water entry of a wedge with constant speed and deadrise angle 3,
the spatial maximum pressure coefficient expressed by Cpmax = Pmax/(0.5pV?) is a constant. The
present deadrise angle is f=30°. For this angle, the similarity solution in Zhao & Faltinsen (1993)
gives Cpmax = 6.927 for a constant water entry speed. A rough calculation of Cj.x based on the
numerical pressure results can be done. For the four cases shown in Fig. 4.4 — Fig. 4.9, the
maximum pressures are pma.x ~ 0.10, 0.14, 0.22 and 0.32 bar, and the averaged water entry speeds
are |V| = 1.7, 2.0, 2.45 and 3.0 ms™, so we can obtain Comax = 6.9, 7.0, 7.3 and 7.1, respectively.
These results are very close to the similarity solution result, which verifies the order of magnitude
of the calculated pressures.
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4.3 Water entry of a ship bow section

The shape of the ship bow section in the drop tests by Aarsnes (1996) is shown in Fig. 4.7. The left
figure is reproduced from Aarsnes (1996) and the right figure shows the profile of the outer surface
of one half section in an Earth-fixed y-z coordinate system. The coordinates on the profile are read
from the left figure by assuming that the section locates just above the calm water surface.
Pressures are measured at the four points P1-P4 on one side of the section shown in Fig. 4.7.
Similar as for the wedge model, the total length of the ship bow section is 1.0m. However, the
forces were measured on a measuring section of 0.1m, which is placed in the middle of two dummy
sections of length 0.45m. The total weight of the falling rig is 261kg. Four cases with roll angle
0=0 and different drop heights are studied in this section. The initial water entry speed are given as
0.58ms™, 0.61ms™, 1.48ms™ and 2.43ms™ for h=0.018m, 0.020m, 0.118m and 0.318m, respectively.

The numerical solution by von Karman’s theory described in section 4.1.2 is used to simulate the
initial stage of the water entry of this bow-flare section. The initial time span in which the
approximate method is used is denoted as t;. In the cases calculated in this section, t; is chosen in
the range of 0.0008s~0.003s. Then the BEM starts the calculations from t = t;.
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Fig. 4.7. Ship bow section in the drop tests by Aarsnes (1996).
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Fig. 4.8. Results for the water entry of the ship bow section for a drop height h = 0.018m. Exp.: Experiments
by Aarsnes (1996); BEM: Calculations by the BEM. P1-P4: Four positions on the section surface (1 bar = 10°

Nm™).

In the numerical simulations, the section profile is formed by connecting the discrete points read
from the left picture in Fig. 4.7. Due to the errors in the reading, the normal vectors on the section
surface calculated from the discrete coordinates show irregular oscillations along the section profile
which cause spatial oscillations in the pressure distributions. This purely artificial disturbance can
be minimized by using the regriding technique based on the cubic-spline approximations described
in chapter 2. A new set of coordinates equally spaced on a continuous section profile can be
obtained and thus the calculated pressure distributions are much smoother. The coordinates of P2,
P3 and P4 on the section are calculated by using the distances marked in Fig. 4.7 between the
pressure-cell positions to the knuckle point. The value is interpreted by the author to be the length
of the curve between every two points. The flow separation model introduced in section 3.2 is
applied to simulate the non-viscous flow separation from the knuckles during the water entry.

The calculated results are compared with experimental results in Fig. 4.8 to Fig. 4.11. The
measured accelerations and forces were filtered using a cut-off frequency of 300 Hz and the
vertical force was further corrected by subtracting the inertial force — Ma, where the mass of the

bl
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measuring section is M=6.9kg. The results for accelerations and vertical forces after filtering still
show obvious oscillations whose governing frequency is 100Hz. Similarly as in the drop tests of
the V-shaped section discussed in section 4.2, those oscillations are caused by the oscillations of
the drop rig, and possibly excited during the release of the drop rig (see Aarsnes, 1996). The large
amplitude oscillations in the accelerations induce oscillations in the added mass force, which can
be implied in the oscillations of the vertical force results. Reasonable agreement can be seen
between the calculations and the experiments. In some cases, we can see phase differences between
the experiments and calculations. Because the falling rig continuously oscillates during the free fall,
it was hard to detect the time instant when the section touches the calm water surface in the
experiments. The error in the estimation of the initial time instant in the experiments can be one of
the reasons for the phase differences. The three-dimensional effects and the mechanic friction force
also influence the agreement between the experimental and numerical results. Zhao et al.’s (1996)
analysis for this ship bow section shows that the 3D effects causes 8% reduction of the maximum
force. It implies that the 3D effects for this bow-flare section case are not so important as for the
wedge cases, in which the 3D effects can cause 20% reductions (see section 4.2).

0.2 5
-0.44 <« Ae---Exp. ! 41 Exp. ,
~ 061 N < —— BEM !
g 08 e 09 noa
-0.8 ~ i
= 15 oy
= -1.04 = \
g o
< 124 % -5
> 14 o
=< 141 o
g g
5 S .10 AT
> 184 = A I R VA
2 vl
2.0 b
2.2 . . . : -15 . — . .
-0.05 0.00 0.05 0.10 0.15 0.20 -0.05 0.00 0.05 0.10 0.15 0.20
Time (s) Time (s)
200 008
— 0,06 -
=
8 100 z
L Q 0,04
S e
£ S
2 2 002
o
OA
0,00 -
T T T T T T T T
-0,05 0,00 0,05 0,10 0,15 0,20 0,00 0,05 0,10 0,15 0,20
Time (s) Time (s)

Fig. 4.9. Results for the water entry of the ship bow section for a drop height h = 0.020m. Exp.: Experiments
by Aarsnes (1996); BEM: Calculations by the BEM. P1-P4: Four positions on the section surface (1 bar = 10°
Nm™).
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Fig. 4.10. Results for the water entry of the ship bow section for a drop height h = 0.118m. Exp.: Experiments

by Aarsnes (1996); BEM: Calculations by the BEM. P1-P4: Four positions on the section surface (1 bar = 10°
Nm™).

Measured pressures in the drop tests are shown in Figs. 4.8 — 4.11. The calculated pressures yield
good agreement with the experimental results. The pressure at the bottom of the section shows a
sharp peak in the initial impact phase. Afterwards, the maximum pressures at P1-P4 occur almost at
the same time at a later stage when the water flow hits the flare part of the section. This is
obviously different from what appears in the wedge entries, where the maximum pressures for
different positions successively occur in time. Further the pressure histories imply that when the
water impacts the flare region the high pressure area covers almost the whole section surface.

Similar phenomenon was presented by Arai and Matsunaga (1989) in their study of the water entry
of a bow-flare section.

For the last case with h = 0.318m, the present numerical results by the BEM are also compared

with the numerical results in Zhu (2006) by a CIP method. Good agreement is shown between the
two numerical calculations.
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Fig. 4.11. Results for the water entry of the ship bow section for a drop height h = 0.318m. Exp.: Experiments
by Aarsnes (1996); BEM: Calculations by the BEM; CIP: Calculations in Zhu (2006) by a CIP method. P1-P4:
Four positions on the section surface (1 bar = 10° Nm™).
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4.4 Water entry of a circular cylinder

The BEM is now applied to study the water entry of a circular cylinder except in the initial phase.
The initial stage of the water entry is simulated by Wagner’s method or von Karman’s method as
presented in section 4.1.1. The numerical results are compared with the experimental results by
Greenhow and Lin (1983). Greenhow and Lin (1983) did free drop tests of horizontal circular
cylinders into initially calm water. A half buoyant cylinder model and a neutrally buoyant cylinder
model are used in the experiments. ‘Half buoyant’ means that the cylinder’s weight equals one half
of the buoyancy force on a totally submerged cylinder, while the ‘neutrally buoyant’ means the
weight equals the buoyancy force. The diameters of both cylinders are 0.11m. Both cylinders are
dropped from a height of 0.5m, which is measured from the centre of the cylinder at rest to the
calm water surface. So the distance that the cylinder falls in the air should be h = (0.5-0.011/2)m =
0.445m. The initial water entry speed is then calculated as ¥ = (2gh)"*= 2.955ms™". The timing in
the drop tests starts from the moment when the cylinders were released, so the time instant when
the cylinder touches the water surface is ) = Vy/g = 0.301s. Wagner’s method is used in the initial
time interval for 0.0015s right after the cylinder touches the water. Afterwards, the BEM takes over
the calculations.

The calculated results for the penetration depth into the water are compared with the experimental
results by Greenhow and Lin (1983) in Fig. 4.12. Reasonable agreement is obtained, except for the
experimental value with a question mark. Greenhow and Lin put a question mark upon this value,
because the data obviously deviate from the other data. The free surface profiles during the water
entries of the half buoyant cylinder and the neutrally buoyant cylinder are shown in Fig. 4.13 and
Fig. 4.14, respectively. The solid lines represent the results by the BEM. The photos show the
experimental pictures. The numerically predicted free surfaces are in good agreement with the free
surface elevations in the photos. In the experiments, instability seems to develop on the free surface
adjacent to the open cavity above the cylinder in the drop tests for the neutrally buoyant case.
However, this fact is not present in the numerical results. The phenomenon can be seen in the
photos at t = 0.390s, 0.410s and 0.500s. There is a spatially oscillating behavior with small
amplitude on the free surface which is not shown by the BEM results.
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Fig. 4.12. Depth of penetration during the water entry of a rigid circular cylinder. BEM: the present
calculations; EXP: experimental results by Greenhow and Lin (1983).
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t=0.330s t=0.385s

Fig. 4.13. Free surface profiles during the water entry of a half buoyant circular cylinder. Photos are taken by
Greenhow & Lin (1983). Solid lines show the numerical results by the present BEM.

Viscous effects have a non-negligible effect on the hydrodynamic loads if viscous flow separation
occurs in the Reynolds number range of interest for the considered problem. According to the CIP
results by Zhu (2006), viscous flow separation does not occur. If viscous flow separation does not
happen, the level of viscous loads can be found by considering the frictional forces. The present
method can in principle be combined with a separate boundary layer calculation to estimate the
viscous loads in a transient boundary layer. This would require that the time-dependent boundary
layer equations are solved and then the resulting shear stresses and their effects on the pressures are
taken into account. For simplicity, only a rough estimation of the frictional force is shown here to
check their order of magnitude. It is assumed that a circular cylinder be moving steadily in an
infinite water domain at the same Reynolds number as in the present problem. The diameter of the
cylinder is D=0.11m. The speed of the inflow U is assumed to be 3.0ms™'. The kinematic viscosity
of water is set to be v =1.0x10°m’s™". So the Reynolds number R,p=UDv" is about 3x10°. Then
from the experimental results by Achenbach (1968, 1971), the friction coefficient Cy= 11(0.5pUD)
is about 0.017, which gives the frictional force f= 8.4Nm™'. However, the studied cylinder is not
fully wetted, so the frictional force is even smaller. It implies that the frictional force is clearly
smaller than the water impact force which is in the order of 100 N/m and can be much higher in the
initial water impact.



4.4 Water entry of a circular cylinder 61

JmEaynsRESaRY Tt

t=0.315s t=0.390s

\ H -«iw |

iy ¥,

1

t=0410s t=0.500s

Fig. 4.14. Free surface profiles during the water entry of a neutrally buoyant circular cylinder. Photos are
taken by Greenhow & Lin (1983). Solid lines show the numerical results by the present BEM.

For the neutrally buoyant case, the cylinder bounces on the bottom of the tank at a depth of 0.3m. A
rigid bottom is modeled in the BEM calculations. The effect of the wall will be obviously felt when
the cylinder is at a close distance from the wall. The finite depth clearly influences the
accelerations, but has a negligible effect on the motions. This wall effect is different from what
happens to a cylinder near a wall in a semi-infinite domain (Faltinsen 1990, pp. 54). In that case,
the hydrodynamic force increases when the cylinder moves closer to the wall. In our case the force
diminishes as the cylinder approaches the wall. This is associated with a decreasing wetted surface
as the cylinder approaches the wall.

The initial force impulse is important. The water entry velocity is rapidly decelerated during an
initial phase. The influence of the force impulse can be demonstrated by using the flat plate
theories. In Wagner’s theory, one can approximate the acceleration, i.e. the time derivative of ¥(t)

in Eq. (4.6), for small time ¢ as

dv 4h

—zg(——lj (4.14)
dt kR
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where V/(0) is replaced by —(2gh)"* and the mass is expressed as m = kpzR’ where k is a parameter.
For h>kR/4, the water entry speed will be decelerated. The initial dV/dt is 31.4ms™ for the neutrally
buoyant case (k=1), and 63.7ms™ for the half buoyant case (k=0.5). The upward acceleration dV/dt
will decelerate the water entry speed |V]. The acceleration is larger for a smaller k£ (i.e. a lighter
cylinder) or a larger h/R ratio. This is why the half buoyant cylinder is more decelerated than the
neutrally buoyant cylinder in the initial phase (see Fig. 4.12).

In von Karman’s theory, the time derivative of V(t) expressed in Eq. (4.10) can be approximated by
using Eq. (4.8) as

dv (211 )
—rg| -1 (4.15)

So the von Karman’s method gives a smaller deceleration than the Wagner’s method initially. It
implies that by using different flat plate theories initially, the starting conditions for the BEM will
be different. However, if the takeover by the BEM is early enough, the influence to the later
calculations by the BEM due to this initial difference is not prominent.

Fig. 4.15 shows the comparison of the results by using different flat plate theories initially. The
results for both the neutrally buoyant and the half buoyant circular cylinders are shown. Either
Wagner’s method or von Karman’s method is used to simulate the initial 0.0015s. The difference
between different calculations is not prominent. Ideally, we need to know the bias error range for
the experimental results in order to justify which calculation agrees better with the experiments.
However, the error analysis for the drop test was not presented in Greechow and Lin (1983).
Intuitively speaking, for the half buoyant case the calculations by the BEM plus Wagner’s method
agrees better with the experiments, while for the neutrally buoyant case, the results by the BEM
plus von Karman’s method show better agreement with the experiments. It is expected that
Wagner’s method will give a better prediction than von Karman’s method in the initial water entry
of a circular cylinder, because the bottom of the cylinder is very flat and the angle between the
body surface and the impacting water surface is very small. However, from the comparisons in Fig.
4.15, one can not draw such a conclusion that Wagner’s theory is better than von Karman’s method.
What is sure is that the difference caused by using different flat plate theories in the initial time will
become smaller when the transition of the calculation to the BEM is earlier.

Von Karman’s method and Wagner’s method as described in section 4.1.1 can be independently
applied to simulate the water entry of the circular cylinder for a longer time, rather than just in the
initial stage. It will be shown that von Karman’s theory gives obviously better predictions than
Wagner’s theory in a later stage. Figure 4.16 shows the comparison of the results by only von
Karman’s method and by only Wagner’s method with the results by the BEM plus theWagner’s
method in the initial 0.0015s. When the cylinder submergence is larger than the cylinder diameter,
the calculations stop. In von Karman’s method, the small submergence approximation is not
followed, which means that the exact differential equation Eq. (4.8) and V' = —d{/dt are numerically
solved by the fourth-order Runge-Kutta method.

From Fig. 4.16 we can see that in the early stage of the water entry, different calculations agree
well with each other. Then the results by the von Karman’s theory keep close to the BEM results
for a longer time than those by the Wagner’s theory. The results by von Karman’s method also
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starts to diverge from the BEM results when the submergence is larger than the cylinder radius, i.e.
{()>R=0.055m. However, the buoyancy force will contribute when the submergence is large.
Considering this effect, one can expect a better agreement between the results by von Karman’s
method and the BEM results for {(#)>R. The comparisons show that for the studied cases von
Karman’s method gives better predictions than Wagner’s method in the later stage of the water

entry.
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Fig. 4.15. Comparisons between the experimental results and the results by using different flat plate theories
in the initial time duration of 0.0015s. (a) Half buoyant case; (b) Neutrally buoyant case.
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Fig. 4.16. Comparisons between the results by the BEM and the results by two different flat plate theories
(von Karman’s method and Wagner’s method) for the water entry of a horizontal circular cylinder. (a) Half
buoyant case; (b) Neutrally buoyant case.
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4.5 Asymmetric water entry of a two-dimensional section

For a two-dimensional section symmetric about a vertical line, the water flow around it will be
non-symmetric if it impacts the water in the following two situations. The first one is that the
section enters the water with both a vertical and a horizontal speed. This is called ‘inclined water
entry’. The other situation is that the section inlines to one side and moves vertically down into the
water. Only the second case will be studied in this section. A constant roll angle, or a heel angle, is
given to the section before the water entry. Then the section enters vertically into the water.

4.5.1 The calculation in a whole fluid domain

An asymmetric water entry of a two-dimensional section is shown in Fig. 4.18. The constant roll
angle of the section is denoted as 0. The water flow on the two sides of the section is different.
Therefore, the whole water domain has to be solved in the numerical simulations. In contrast, only
the right half of the fluid domain is solved in a symmetric water entry problem as presented in
Chapter 2 and in the previous sections.

A 2D section

V

et ’
;. Symmetry hrﬁ‘/’ Truncation
; boundary
Bottom Sg S

Fig. 4.18. Asymmetric water entry of a two-dimensional section.

The numerical method, i.e. the BEM, is generalized to solve the whole water domain. As shown in
Fig. 4.18, the water domain is surrounded by the wetted section surface S, the free surface on the
right Sk, the truncation boundary on the right Sz, the bottom surface Sg, the truncation boundary
on the left Sy and the free surface on the left Sg;. The origin of the space-fixed coordinates y-z is at
the lowest point of the rotated section when the section just touches the calm water surface. The
velocity potential in the water domain ¢(y,z,t) satisfies the governing equation in Eq. (2.1). The
body boundary condition in Eq. (2.2) is satisfied on the body surface Sg and the free surface
conditions in Egs. (2.3)-(2.4) are satisfied on the two free surfaces Spr and Sg;. The truncation
boundaries and the bottom boundary are set far from the body, so that the disturbances on these
boundaries are assumed zero in the time scale of the studied water entry problems. The boundary
value problem is solved by the BEM. Numerical techniques such as jet-cutting, spray-cutting,
smoothing and regriding are applied on both free surfaces. The free surfaces are updated by using
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the free surface conditions. Flow separations can happen at both knuckles of the section. The flow
separation model is applied when the flow separation occurs.

Generally speaking, in the numerical techniques, there is nothing new for this asymmetric problem
relative to the symmetric problem. All the treatments to the body surface and the free surface on the
right are similarly applied to those on the left. However, attention must be paid to the following
differences when the treatments are numerically implemented. First, when the section rotates, not
only the coordinates on the section, but also the normal vector on the section will be changed in the
space-fixed coordinate system. Secondly, there are two body-water surface intersections P and Py
(Fig. 4.18). The numbering of the discretized elements starts from the left intersection P and then
along the wetted body surface. Successively in clock-wise direction, the elements on Sgg, S, Sg,
Si. will be numbered. The final element on the left free surface intersects the first element on the
body surface at point P;. This new intersection point must be carefully treated.

In the initial stage, the flat plate theory can also be used. In section 4.1.2, a numerical method based

on von Karman’s theory is introduced to simulate the initial water entry of an arbitrary section.

This method can be generalized for the asymmetric water entry problem. The wetted length of the

equivalent flat plate is given by c(t)+cr(t), where ci(t) is the wetted length on the left side and cg(t)
is the wetted length on the right side. They can be expressed as functions of the submergence { of
the lowest point of the section, respectively as

c, ()= f,(¢) and ¢, () = £, (&) (4.16)

Further, the half wetted length can be written as

t)+ t
c(t) = 0re 4.17)
So Egs. (4.11) to (4.13) can still be used if the function f{) in these equations is replaced by
£+ 1)
f(:)=—2 (4.18)

The method developed for the whole water domain is verified. The symmetric water entry of a
ship-bow section is calculated by both the new program and the previous program for a half
domain. The results by these two programs agree very well, which proves the accuracy of the new
program developed for the whole water domain.

4.5.2 Asymmetric water entry of a ship bow section

The drop tests of a ship-bow section in Aarsnes (1996) with different non-zero roll angles are
numerically studied. The same model as in the symmetric cases discussed in Section 4.3 was used
in the drop tests. The only difference is that the section is rotated with a constant non-zero angle 0
during the water entries. The drop tests were performed for five different roll angles. They are 6 =
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4.8°,9.8° 14.7°, 20.3° and 28.3°. For each roll angle, the section was dropped from different drop
heights.

The numerical results will be compared with the experiments for cases with different roll angles
and different drop heights in the section. The influence of the roll angle on the forces, pressures,
accelerations and velocities will be discussed by comparing the results for different roll angles and
similar drop heights. The influence of the drop height, or the initial water entry speed, will be
discussed by comparing results for various drop heights and the same roll angle. The initial water
entry speeds were estimated in the experiments (Aarsnes 1996), similarly as in the symmetric cases,
and applied in the numerical calculations.

The roll angles and drop heights for the numerically studied cases, i.e. case 1 — case 7, are listed in
Table 4.1. The serial numbers for the drop tests in the experiments are quoted. In most of the drop
tests listed in Table 4.1, the pressures were measured at the apex P1 and P2 — P4 on the impact side,
i.e. the right side of the section in Fig. 4.7 when the section rotates to the right as shown in Fig.
4.18. However, in one case for 6 = 9.8° and one case for 6 = 20.3°, the pressures were measured at
the apex P1 and the positions P2 — P4 on the leeward side, i.e. the left side in Fig. 4.7.

Table 4.1. Parameters for the cases in the numerical calculations.

Case | Test Number Drop Roll Initial water | Position of Pressure gauges
height | angle entry speed
(m) (degree) | (ms™)
1 No.217,No.218 | 0.017 4.8 0.57 P2-P4 on the impact side and P1
2 No.225, No.226 | 0.020 9.8 0.61 P2-P4 on the impact side and P1
No.227, No.228 0.020 9.8 0.61 P2-P4 on the lee side and P1
3 No.269, No.270 | 0.020 14.7 0.61 P2-P4 on the impact side and P1
4 No.236, No.237 | 0.030 20.3 0.75 P2-P4 on the impact side and P1
No.234, No.235 | 0.030 20.3 0.75 P2-P4 on the lee side and P1
5 No.268 0.020 28.3 0.61 P2-P4 on the impact side and P1
6 No.221,No.222 | 0.119 9.8 1.49 P2-P4 on the impact side and P1
7 No.223, No.224 | 0.318 9.8 243 P2-P4 on the impact side and P1

Fig. 4.19 — Fig. 4.22 show the comparisons between the present calculations by the BEM and the
experiments for different roll angles (cases 1 — 5). The numerical results presented in Zhu (2006)
by the CIP method are also shown in the Fig. 4.19 and Fig. 4.20 except for the case 5 with 6 = 28.3°,
because this case (No. 268) were not presented in Zhu (2006). Then Fig. 4.23 shows the pressure
distribution on the ship bow section at different time instants for the case 4 with a large roll angle 0
= 20.3° and a drop height h = 0.030m. Fig. 4.24 — Fig. 4.26 show the present numerical results and
the experimental results for cases 2, 6 and 7 with 6 = 9.8° and three obviously different drop
heights. Before the comparisons, the signs of the horizontal force, vertical acceleration and the
vertical velocity in the experiments and in the CIP results are changed, because of the different
definitions of the positive directions of these values in the experiments and in the CIP calculations,
relative to the present definitions.
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The experimental results of the forces and accelerations have been filtered by using a cut-off
frequency of 300 Hz. The oscillations in the experimental results for the forces and accelerations
are due to the vibrations of the drop rig, similarly as in the symmetric case (see section 4.3). The
calculations show reasonable agreement with the experiments in all the cases. Elastic ropes were
used to stop the model at the later stage of the water entry. Experimental bias errors caused by this
fact can account for the apparent discrepancies in the acceleration and velocity results at the later
time for some cases. In Fig. 4.20 for cases with 8 = 9.8° and 6 = 20.3°, such errors are obvious.
Near the end of the time histories in those cases, the measured accelerations increase and the
resulting water entry speeds suddenly decrease, which implies the section is held up by something.
The CIP results are consistent with the present BEM results. Similar discrepancies are also shown
between the CIP results and the experiments.

The effects of the roll angle are investigated by examining the results shown in Figs. 4.19 — 4.22. In
Fig. 4.19, the influence of the constant roll angle to the forces on the measuring section can be seen.
When the roll angle is larger, both the maximum vertical force and the maximum horizontal force
become larger. However, the maximum horizontal force does not change so obviously as the
maximum vertical force. The reason can be the following. The maximum vertical and horizontal
forces are obtained when the spray root of the water jet arrives at the knuckle of the section. The
main contribution comes from the large pressure on the flare area on the impact side. For larger roll
angles, the flare surface is quite flat, which means the horizontal component of the normal vector
on the surface is very small. Although the pressures on the flare area are larger for larger roll angle
(see Fig. 4.21), the horizontal components of the pressures are not necessarily so. As a result, the
total horizontal forces are not obviously larger.

From the results of the vertical acceleration and velocity for different roll angles in Fig. 4.20, it can
be seen that, although the maximum acceleration increases when the roll angle is larger, the vertical
velocity is not obviously affected by changing the roll angle.

Fig. 4.21 gives the time histories of the pressures at the apex P1 and the positions P2-P4 at the
impact side for the five cases with different roll angles. Good agreement between the calculations
and the experiments is obtained, except some phase differences. Positions P3 and P4 are located at
the flare area of the section. When the roll angle increases, the maximum pressures at P3 and P4
increase. It implies that the pressures on the flare region become larger for larger roll angles. This
is consistent with the fact that the maximum pressure on a wedge surface is higher when the
deadrise angle is smaller. P1 locates at the apex of the section. As the section rotates to the right, P1
turns to the leeward side. There is a sharp peak pressure at P1 in the initial stage when the round
bottom impacts the water. To predict the peak value, one must consider the finite dimension of the
pressure gauge and the pressure should be averaged on the area covered by the pressure gauge.
This is not followed in the present calculations, so the numerically predicted pressure peaks are
often larger than those in the experiments. However, this peak pressure does not matter much
because of its very short duration. It is more important to note that the pressure at P1 becomes
negative in the later stage for large roll angles 6 = 20.3° and 0 = 28.3°. The negative pressure means
the pressure is less than the atmospheric pressure. A large area of negative pressure on the wetted
body surface may result in ventilation. However, the ventilation needs to be triggered by other
factors. It was indicated in Zhu (2006) that the ventilation actually occurred in the experiments at 6
= 28.3° This could be triggered by the rig vibrations in the tests (Zhu 2006). However, this does
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not seem to have happened in test No. 268 for 6 = 28.3°, because the pressure measured at P1 keeps
negative. If ventilation happened, the pressure would go back to zero, i.e. atmospheric pressure.

Fig. 4.22 shows the time histories of the pressures at P1 and P2-P4 on the leeward side for the drop
tests with different roll angles. The pressures on the leeward side were measured only for cases
with two different roll angles 8 = 9.8° and 6 = 20.3°. For larger roll angles, the pressures at P2-P4
are smaller. So the pressures on the leeward side contribute less to the total forces. For 6 = 20.3°,
the measured pressures at P1- P4 never return to zero. It means that ventilation did not happen in
that test.

The numerically calculated pressure distributions along the ship bow section at different time
instants t = 0.05s, 0.08s, 0.09s, 0.10s, 0.12s and 0.17s are shown in Fig. 4.23 for a large roll angle 0
= 20.3° and drop height h = 0.03m. The time history of the vertical force for this case has been
shown in Fig. 4.19. The spray root comes to the knuckle point and the maximum vertical force
occurs near t = 0.09s. Correspondingly, in Fig. 4.23 at t = 0.09s the spatial maximum pressure
appears near the knuckle point. After the flow separation from the knuckle on the right, i.e. for t =
0.10s, 0.12s and 0.17s, the pressure on this side becomes more uniform than before. On the other
hand, negative pressure develops on the leeward side adjacent to the apex of the section in a larger
and larger area. As discussed earlier, ventilation can happen but does not necessarily happen.

The effects of the drop height are investigated by examining the results in Figs. 4.24 — 4.26. In Fig.
4.24, the vertical forces and horizontal forces on the ship section with 6 = 9.8° for three different
drop heights are shown. The effect of the drop height (or the initial water entry speed) can be seen
from the comparison of the results. For larger drop height, the maximum horizontal and vertical
forces are larger and occur earlier. Fig. 4.25 shows the vertical acceleration and velocity.
Consistently with the vertical force results, the maximum vertical acceleration is larger for larger
drop height and reached earlier, which means the falling body is decelerated more rapidly. Fig.
4.26 shows the pressures at P1 and P2 — P4 on the impact side for two different drop heights. The
pressures are obviously larger for a larger drop height.

For drop height h = 0.119m, the experimental accelerations rapidly increase to very large values in
the end of the time histories. This shows an obvious effect of the elastic ropes which were used to
stop the falling of the section. Therefore, the experimental results after about t = 0.1s are doubtful
for this case.

In summary, the capability of the present BEM to simulate the asymmetric water entry with non-
viscous flow separations at knuckles is shown. The effects of constant roll angle (or heel angle) are
the following. First, for larger roll angle, the maximum vertical force becomes larger and horizontal
force also becomes larger. Secondly, the pressure on the flare area on the impact side is higher for
larger roll angles, while the pressure on the leeward side is lower. Thirdly, for large roll angles,
negative pressure appears adjacent to the tip of the section on the leeward side. Ventilation can
happen in such a case. However, no ventilation is expected for the studied cases by examining the
experimental pressures on the leeward side. Finally, the effect of the drop height is found. For
larger drop heights, the maximum forces on the body will be larger. The acceleration is larger and
the section is more rapidly decelerated. The maximum pressures on the impact side also become
larger.
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Fig. 4.19. (See the caption in the next page.)
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Fig. 4.21. Pressures at the apex P1 and the positions P2, P3 and P4 on the impact side of the ship bow section

during the water entries for different roll angles 0 and similar drop heights h (1 bar = 10° Nm™). Solid lines:
Numerical results by the BEM; Dashed lines: Experimental results by Aarsnes (1996).
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10°Nm™). Solid lines: Numerical results by the BEM; Dashed lines: Experimental results by Aarsnes (1996).



4.5 Asymmetric water entry of a two-dimensional section 75

0=20.3°

—t=0.05s t=0.10s
t=0.08s -~~~ t=0.12s

—1t=0.09s - t=0.17s

T T 17 T T * T T T 7 1T ' 1
-0,10 -0,05 0,00 0,05 0,10 0,15 020 0,25

y (m)

0,2
.
0,0 —

02 v T v T v T
0,1

o’o_. /—//k/
0.2 M t=0.09s
0,1

0,0

O 2 T T T T T T
0,1
0,0 <
O 2 T T T
0,1
0,0
0,2
0,1

T T
-0,10 -0,05 0,00 0,05 0,10 0,15 0,20 0,2
y (m)

t=0.08s

Pressure (Bar)

t=0.10s

t=0.12s

t=0.17s

CBEEHEE

Fig. 4.23. Pressure distributions along the wetted surface of the ship bow section at different time instants
during the water entry with a roll angle 6 = 20.3° and a drop height h = 0.030m (1 bar = 10° Nm™).



76  Chapter 4 Free water entry of a two-dimensional section

h =0.020m
200 50
- z
Z 8 04
8 100 s
= =
© c
£ R -50-
£ =
> 2 -
od --=---No. 228
-100 4 — BEM
T T T T T T T T
-0,05 0,00 0,05 0,10 0,15 0,20 -0,05 0,00 0,05 0,10 0,15 0,20
Time (s) Time (s)
h=0.119m
300 100
~emes No, 221
= 50 A ---—--No. 222
~ 200 = :
= ©
© =
=4 ° 04
o —_
= 100 g
©
o [=]
£ N .50
Q o
> T
04
-1004
-100 T T T T -150 : T T T
0,05 0,00 0,05 0,10 0,15 0,20 -0,05 0,00 0,05 0,10 0,15 0,20
Time (s) Time (s)
h=0.318m
500 50
z 0
Z @
© 2
S 250 8 N
£ s
© = i
S g -too
s 5 “eenees NO.223
> T _150A T N0224
—— BEM
04
-200 -]
T T T T T T T T
-0,05 0,00 0,05 0,10 0,15 0,20 -0,05 0,00 0,05 0,10 0,15 0,20

Time (s)

Fig. 4.24. Vertical and horizontal forces on the ship bow section during the water entries with 6 = 9.8° for
different drop heights 4. Left column: Vertical force; Right column: Horizontal force. Results denoted by a
serial number are experimental results by Aarsnes (1996); BEM: Results by the BEM.



4.5 Asymmetric water entry of a two-dimensional section 77
h =0.020m
0,0
20 _
“.7;; --No. 228 ' ~ 0,5
——BEM '
£ 104 e g
< RO =
2 iy 2 -1,04
< TR S S
3 04 b AT 2
[ i k >
8 Toan N < 15
= 10 WAL & A A S
S ] WP o
E R > 2,01
3 W
> 204 DR
T T T T -2v5 T T T T
-0,05 0,00 0,05 0,10 015 0,20 -0,05 0,00 0,05 0,10 0,15 0,20
Time (s) Time (s)
h=0.119m
100 00
——————— No. 221 :
807 ~---=No. 222 , Y No.221 |
2 BEM T --No.222 | |
= 60+ E ——BEM
2 2 -1,0 7
S a0 g
s 3
3 = -1,5
= =
o (]
£ 07 > 2,0
]
>
-20 4
T T T '2y5 T T T T
-0.05 0.00 0.05 0.10 0.15 0.20 -0,05 0,00 0,05 0,10 0,15 0,20
Time (s) Time (s)
h=0.318m
30 0
! |-ee—No223 | ] | No.223
<, 20 -~ ------N0.224
£ E —— BEM
= ~ -14
2 104 2
g 8
El 2
e S 2
= =4
o (&}
£ .10 >
]
>
-20 T T T T -3 T T T T
-0,05 0,00 0,05 0,10 0,15 0,20 -0,05 0,00 0,05 0,10 0,15 0,20
Time (s) Time (s)

Fig. 4.25. Vertical accelerations and velocities of the ship bow section during the water entries with 6 = 9.8°
for different drop heights /. Left column: Vertical force; Right column: Horizontal force. Results denoted by a
serial number are experimental results by Aarsnes (1996); BEM: Results by the BEM.
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Fig. 4.26. Pressures at the apex P1 and positions P2, P3 and P4 on the impact side of the ship bow section with
a roll angle 0 = 9.8° during the water entries for different drop heights h (1 bar = 10° Nm™). Solid lines:
Numerical results by the BEM; Dashed lines: Experimental results by Aarsnes (1996).



CHAPTER 5

Water entry of an elastic cylindrical shell with
hydroelasticity effect

The water entry of a cylindrical shell is numerically studied in this chapter. The effect of
hydroelasticity is considered. The BEM or flat plate theories are applied to solve the water flow
around the shell, while modal analysis is used to solve the structural responses. The hydroelasticity
effect is accounted for by solving the water flow and the structural responses simultaneously. The
calculations by the BEM together with the modal analysis are compared with the experiments by
Arai and Miyauchi (1998) and with the experiments by Shibue et al. (1994).

5.1 Fluid-structure coupled problem

5.1.1 Formulation of the problem

l V@ |

Sp

Fig. 5.1. Coordinate system and definitions for the numerical simulation of the water entry of a cylindrical
shell.
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As shown in Fig. 5.1, a cylindrical shell is penetrating the water surface with a time varying
vertical water entry speed |V(t)]. The same coordinate system as in Fig. 2.1 is used. The water
domain and the closed boundary are also defined like before. The fluid is assumed inviscid and
incompressible with an irrotational flow. Therefore a velocity potential ¢(y,z,¢) satisfying the two-
dimensional Laplace equation §%¢p/dy* +8%¢/dz> =0 in the fluid domain Q can be used to describe

the fluid flow. Surface tension is neglected and the kinematic and dynamic boundary conditions on
the free surface given in Egs. (2.3) and (2.4) are satisfied on Sg. The boundary condition on the
shell surface Sg is

0
@ _ V-n+w on the shell surface Sg 5.1

on

where V = V(t)k is the velocity of the rigid-body motion of the cylinder. The body surface Sg is the
undeformed shell surface and the termw = 0w/ Ot is the normal vibration velocity with positive
direction pointing to the cylinder centre. The body boundary condition in Eq. (5.1) is originally
satisfied on the instantaneous deflected shell surface. If the displacement is much smaller than the
radius of the cylinder, we can Taylor expand the boundary condition around the mean position of
the elastically vibrating shell surface and neglect the higher order terms. This gives the boundary
condition satisfied on the mean shell surface. The boundary conditions on the bottom and the
symmetry line boundary are zero normal velocity. The behavior of ¢ at S; for deep water is like a
vertical dipole in an infinite fluid with singularity at y =0 and z = 0.

Before the cylinder impacts the water surface, calm water is assumed. So ¢ is initially zero on the
undisturbed free surface. The fact that the time rate of the change of the wetted surface of the
circular cylinder is initially infinite causes numerical problems in the BEM. This is circumvented
by using a flat plate theory, either the von Karman’s theory or the Wagner’s theory, in an initial
period, after which the BEM will take over and continue the calculations. This is similar as in the
water entry of a rigid cylinder discussed in Chapter 4. The coupled analysis by using a modal
analysis and a flat plate theory will be presented in section 5.3.

From Bernoulli’s equation, the pressure on the shell surface p(6,7) can be calculated by Eq. (2.7).
The angular coordinate 6 is defined in Fig. 5.1. It is numerically difficult to accurately determine
Og/0t directly for moving bodies, no matter whether the body is rigid (section 2.1) or elastic. For an
elastic body, Tanizawa (1999) proposed to use an acceleration potential. In the present study, a
different approach is applied.

Similar as for a rigid body case, a function given by w=0¢/0t+V-V ¢ is introduced to calculate
Op/0t indirectly. The governing equation is a 2D Laplace equation for . This can be similarly

shown as Greco (2001) did for a rigid-body case. From Eq. (2.4), the free surface condition for y
can be written in the same form as in Eq. (2.10). It means

1
w=V-Vp-— E|V¢|2 -gz on the free surface Sg (5.2)

The following relation holds
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oy _ 9 Dyop | _ Dyo [ 09 (5.3)
on on\ Dt Dt \ on
with the differential operator Dgo/Dt = &/0t+V-V . This relation was derived for a rigid body in
Greco (2001). However, it is still valid for a flexible shell. Substituting Eq. (5.1) into Eq. (5.3), one
has

0 .
@ V-n+w+V-Vw on the shell surface Sg 5.4)

on

where Ji=0%w/a is the vibration acceleration and V =dV /dt is the vertical rigid-